Oracle® Data Provider for NET
Developer's Guide

12¢ Release 2 (12.2) for Microsoft Windows
E83836-01

March 2017
ORACLE

Oracle Data Provider for .NET Developer's Guide, 12c Release 2 (12.2) for Microsoft Windows
E83836-01

Copyright © 2002, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Maitreyee Chaliha

Contributing Authors: Sumit Jeloka, Janis Greenberg, Alex Keh, Kiminari Akiyama, Sinclair Hsu, Shailendra
Jain, Riaz Ahmed, Ashish Shah, Lakshminarayanan Suriamoorthy, Steven Caminez, Naveen Doraiswamy,
Neeraj Gupta, Chithra Ramamurthy, Martha Woo, Arun Singh, Sujith Somanathan, Nishant Singh

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience Ixxviii
Documentation Accessibility Ixxviii
Related Documents IXXix
Passwords in Code Examples Ixxx
Conventions Ixxx

Changes in This Release for Oracle Data Provider for .NET

Changes in Oracle Data Provider for .NET Release 12.2.0.1 [xxxi
Changes in Oracle Data Provider for .NET in ODAC 12c Release 4 Ixxxiii
Changes in Oracle Data Provider for .NET in ODAC 12c Release 3 IXxxV
Changes in Oracle Data Provider for .NET Release 12.1.0.2 [Xxxvi
Changes in Oracle Data Provider for .NET in ODAC 12c Release 2 [Xxxvii
Changes in Oracle Data Provider for .NET in ODAC 12c Release 1 Ixxxviii
Changes in Oracle Data Provider for .NET Release 12.1 Ixxxviii
Changes in Oracle Data Provider for .NET Release 11.2.0.3.20 Xciii
Changes in Oracle Data Provider for .NET Release 11.2.0.3 XCili
Changes in Oracle Data Provider for .NET Release 11.2.0.2 XCiv
Changes in Oracle Data Provider for .NET Release 11.2.0.1.2 XCV
Changes in Oracle Data Provider for .NET Release 11.2 XCV
Changes in Oracle Data Provider for .NET Release 11.1.0.7.20 Xcvi
Changes in Oracle Data Provider for .NET Release 11.1.0.6.20 Xcviii
Changes in Oracle Data Provider for .NET Release 11.1 c

1 Introducing Oracle Data Provider for .NET

1.1 .NET Data Access in Oracle: Products and Documentation 1-1
1.1.1 Oracle Data Provider for .NET (ODP.NET) 1-1
1.1.2 Oracle Developer Tools for Visual Studio 1-2
1.1.3 Oracle Database Extensions for .NET 1-2
1.1.4 Oracle Providers for ASP.NET 1-2
1.1.5 Oracle Services for Microsoft Transaction Server 1-3

ORACLE iii

1.1.6 Oracle TimesTen In-Memory Database 1-3

1.2 Overview of Oracle Data Provider for .NET (ODP.NET) 1-3
1.3 Oracle Data Provider for .NET Assemblies 1-4
1.3.1 Oracle Data Provider for .NET, Unmanaged Driver Assemblies 1-4
1.3.2 Oracle Data Provider for .NET, Managed Driver Assemblies 1-4
1.3.3 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces 1-5
1.3.3.1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client 1-5
1.3.3.2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Enumerations 1-11
1.3.4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces 1-14
1.3.4.1 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Structures 1-14
1.3.4.2 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Exceptions 1-15
1.3.4.3 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Classes 1-15
1.3.4.4 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Interfaces 1-16
1.3.4.5 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Enumerations 1-17
1.4 Differences between the ODP.NET Managed Driver and Unmanaged Driver 1-17
1.5 Using ODP.NET Client Provider in a Simple Application 1-20

2 Installing and Configuring Oracle Data Provider for .NET

2.1 System Requirements 2-1
2.2 Entity Framework Requirements 2-2
2.2.1 Entity Framework Database First and Model First Requirements 2-2
2.2.2 Entity Framework Code First Requirements 2-3

2.3 Oracle Data Provider for .NET Versioning Scheme 2-3
2.4 Installing Oracle Data Provider for .NET, Unmanaged Driver 2-5
2.4.1 File Locations After Installation 2-6
2.4.2 Search Order for Unmanaged DLLs 2-6
2.4.2.1 ODP.NET and Dependent Unmanaged DLL Mismatch 2-7

2.5 Installing Oracle Data Provider for .NET, Managed Driver 2-7
2.5.1 Platform-Dependent Assemblies and Their Search Order 2-9
2.5.2 File Locations After Installation 2-10

2.6 Entity Framework Code First Assemblies and File Location 2-10
2.7 Configuring Oracle Data Provider for .NET 2-11
2.7.1 Oracle Client Configuration File Automated Setup During Installation 2-12
2.7.2 Oracle Client Configuration File Settings 2-12

ORACLE iv

2.7.3 Machine-Wide Configuration Option 2-13

2.8 Oracle Data Provider for .NET, Unmanaged Driver Configuration 2-14
2.8.1 Supported Configuration Settings 2-14
2.8.2 Windows Registry 2-22
2.8.3 Configuration File Support 2-23

2.8.3.1 SQL Translation Framework Configuration 2-24
2.8.3.2 Specifying UDT Mappings with Unified Configuration for
Unmanaged ODP.NET 2-27

2.9 Oracle Data Provider for .NET, Managed Driver Configuration 2-28
2.9.1 version Section 2-29
2.9.2 dataSources Section 2-30
2.9.3 settings section 2-32
2.9.4 LDAPsettings section 2-35
2.9.5 Lightweight Directory Access Protocol 2-36
2.9.6 implicitRefCursor section 2-36
2.9.7 distributedTransaction section 2-37
2.9.8 edmMappings section 2-37
2.9.9 onsConfig section 2-38
2.9.10 Client Side ONS Daemon Configuration 2-38
2.9.11 Relative Windows Path and Windows Environment Variable

Configuration Settings 2-40

2.10 Distributed Transactions 2-41
2.10.1 Oracle Services for Microsoft Transaction Server 2-41
2.10.2 ODP.NET, Managed Driver Setup 2-42
2.10.3 ODP.NET, Unmanaged Driver Setup 2-43

2.11 Configuration differences between ODP.NET, Managed Driver and

ODP.NET, Unmanaged Driver 2-44

2.12 Configuring for Entity Framework Code First 2-45
2.12.1 Entity Framework 6 Code-Based Registration 2-46

2.13 Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver 2-46

2.14 Configuring a Port to Listen for Database Notifications 2-47

2.15 General .NET Programming Recommendations and Tips for ODP.NET 2-48

3 Features of Oracle Data Provider for .NET

3.1 Base Classes and Provider Factory Classes 3-1

3.2 Code Access Security 3-2
3.2.1 Configuring OraclePermission 3-2
3.2.2 Configuring OraclePermission for Web Applications with High or

Medium Trust Levels 3-3

3.2.3 Configuring OraclePermission for Windows Applications Running in a
Partial Trust Environment 3-4
3.3 Connecting to Oracle Database 3-4

ORACLE Y

3.3.1 Connecting to Oracle Database Exadata Express Cloud Service 3-5

3.3.2 Connection String Attributes 3-6
3.3.3 Connection String Builder 3-8
3.3.4 Specifying the Data Source Attribute 3-8
3.3.4.1 Using the TNS Alias 3-9
3.3.4.2 Using the Connect Descriptor 3-9
3.3.4.3 Using Easy Connect Naming Method 3-9
3.3.4.4 Using LDAP 3-10
3.3.4.5 Data Source Enumerator 3-10
3.3.5 Using Transport Layer Security and Secure Sockets Layer 3-10
3.3.5.1 Secure Sockets Layer and Transport Layer Security Differences 3-10
3.3.5.2 ODP.NET Secure Sockets Layer Configuration 3-11
3.3.5.3 Troubleshooting TLS/SSL Setup 3-13
3.3.6 Using Secure External Password Store 3-15
3.3.6.1 Configuring Secure External Password Store (SEPS) 3-15
3.3.7 Using Kerberos 3-16
3.3.7.1 File Based Credential Cache and MSLSA 3-16
3.3.7.2 ODP.NET, Managed Driver Dependency on MIT Kerberos 3-16
3.3.7.3 Configuring Kerberos Authentication with ODP.NET 3-17
3.3.8 Using Windows Native Authentication (NTS) 3-20
3.3.8.1 Configuring Windows Native Authentication (NTS) for the
ODP.NET Client 3-20
3.3.9 Network Data Encryption and Integrity 3-21
3.3.9.1 Using Data Encryption 3-21
3.3.9.2 Using Data Integrity 3-22
3.3.10 Schema Discovery 3-22
3.3.10.1 User Customization of Metadata 3-23
3.3.11 Connection Pooling 3-23
3.3.11.1 Using Connection Pooling 3-24
3.3.12 Connection Pool Management 3-25
3.3.13 Connection Pool Performance Counters 3-26
3.3.13.1 Publishing Performance Counters 3-27
3.3.13.2 Setting Performance Counters Using .NET Configuration Entry 3-27
3.3.13.3 Instance Names of Performance Counters 3-27
3.3.14 Pluggable Databases 3-29
3.3.15 Edition-Based Redefinition 3-29
3.3.16 Operating System Authentication 3-30
3.3.17 Privileged Connections 3-31
3.3.18 Password Expiration 3-32
3.3.19 Proxy Authentication 3-33
3.3.20 Dynamic Distributed Transaction Enlistment 3-34

ORACLE vi

3.3.21 Client Identifier and End-to-End Tracing
3.3.22 Transparent Application Failover (TAF) Callback Support
3.3.22.1 TAF Natification
3.3.22.2 When Failover Occurs
3.3.22.3 Registering an Event Handler for Failover
3.4 Real Application Clusters and Global Data Services
3.4.1 Fast Application Notification
3.4.2 Runtime Connection Load Balancing
3.4.3 Fast Connection Failover (FCF)
3.4.4 Using FCF Planned Outage to Minimize Service Disruption
3.4.5 Pool Behavior in an Oracle RAC Database
3.5 Using Transaction Guard to Prevent Logical Corruption
3.5.1 ODP.NET and Transaction Guard
3.6 Application Continuity
3.6.1 ODP.NET and Application Continuity
3.7 Database Sharding
3.7.1 ODP.NET Sharding
3.8 OracleCommand Object
3.8.1 Transactions
3.8.2 System.Transactions and Promotable Transactions

3.8.2.1 Implicit Transaction Enlistment Using TransactionScope
3.8.2.2 Explicit Transaction Enlistment Using CommittableTransaction

3.8.2.3 Local Transaction Support for Older Databases

3.8.3 Parameter Binding
3.8.3.1 Command Timeouts
3.8.3.2 OracleDbType Enumeration Type
3.8.3.3 Inference of DbType, OracleDbType, and .NET Types
3.8.3.4 PL/SQL Associative Array Binding
3.8.3.5 Array Binding

3.8.4 Batch Processing

3.8.5 Statement Caching
3.8.5.1 Statement Caching Connection String Attributes
3.8.5.2 Enabling Statement Caching through the Registry
3.8.5.3 Statement Caching Methods and Properties
3.8.5.4 Connections and Statement Caching
3.8.5.,5 Pooling and Statement Caching

3.8.6 Self-Tuning
3.8.6.1 Self-Tuning Statement Caching
3.8.6.2 Enabling or Disabling Self-Tuning for Applications
3.8.6.3 Tracing Optimization Changes

3.9 ODP.NET Types Overview

ORACLE

3-34
3-35
3-35
3-35
3-36
3-37
3-38
3-39
3-39
3-40
3-42
3-42
3-43
3-46
3-46
3-47
3-47
3-48
3-49
3-49
3-50
3-51
3-53
3-53
3-54
3-54
3-55
3-59
3-62
3-65
3-66
3-66
3-66
3-67
3-67
3-67
3-67
3-68
3-69
3-69
3-70

Vii

3.10 Obtaining Data from an OracleDataReader Object

3.10.1

Typed OracleDataReader Accessors

3.10.1.1 .NET Type Accessors
3.10.1.2 ODP.NET Type Accessors

3.10.2

Obtaining LONG and LONG RAW Data

3.10.2.1 Setting InitiaLONGFetchSize to Zero or a Value Greater than

Zero

3.10.2.2 Setting InitialLONGFetchSize to -1

3.10.3

Obtaining LOB Data

3.10.3.1 Setting InitialLOBFetchSize to Zero

3.10.3.2 Setting InitialLOBFetchSize to a Value Greater than Zero
3.10.3.3 Setting InitialLOBFetchSize to -1

3.10.3.4 Performance Considerations Related to the InitialLOBFetchSize

3.10.4 Controlling the Number of Rows Fetched in One Database Round-Trip

Property

3.10.4.1 Use of FetchSize
3.10.4.2 Fine-Tuning FetchSize
3.10.4.3 Using the RowSize Property
3.11 PL/SQL REF CURSOR and OracleRefCursor

3.11.1
3.11.2
3.11.3
3.11.4
3.11.5
3.11.6
3.11.7
3.11.8

Obtaining an OracleRefCursor Object

Obtaining a REF CURSOR Data Type

Populating an OracleDataReader from a REF CURSOR
Populating the DataSet from a REF CURSOR
Populating an OracleRefCursor from a REF CURSOR
Updating a DataSet Obtained from a REF CURSOR
Behavior of ExecuteScalar Method for REF CURSOR
Passing a REF CURSOR to a Stored Procedure

3.12 Implicit REF CURSOR Binding

3.12.1

3.12.2
3.12.3

Specifying REF CURSOR Bind and Metadata Information in the .NET
Configuration File

Sample Configuration File and Application
Usage Considerations

3.12.3.1 CommandText Property Considerations
3.12.3.2 Bind Considerations

3.12.3.3 Overloaded Stored Procedures
3.12.3.4 Type Initialization Exceptions

3.12.3.5 Using Stored Functions with Function Import
3.13 LOB Support

3.131
3.13.2
3.13.3
3.134

ORACLE

Large Character and Large Binary Data Types

Oracle Data Provider for .NET LOB Objects

Updating LOBs Using a DataSet

Updating LOBs Using OracleCommand and OracleParameter

3-71
3-71
3-71
3-74
3-75

3-75
3-76
3-76
3-77
3-77
3-77

3-79
3-80
3-80
3-80
3-80
3-81
3-82
3-82
3-82
3-82
3-83
3-83
3-83
3-84
3-85

3-86
3-89
3-92
3-92
3-93
3-93
3-93
3-93
3-94
3-94
3-94
3-95
3-96

viii

3.13.5

Updating LOBs Using ODP.NET LOB Objects

3.13.6 Temporary LOBs
3.14 ODP.NET XML Support

3.14.1
3.14.2
3.14.3
3.14.4

3.14.5
3.14.6
3.14.7

3.14.8

3.15

3.15.1
3.15.2

3.144.1

3.14.4.2

3.14.7.1
3.14.7.2
3.14.7.3
3.14.7.4

3.14.7.5
3.14.7.6
3.14.7.7

3.148.1
3.14.8.2
3.14.8.3
3.14.8.4
3.14.8.5

3.14.8.6
3.14.8.7
3.14.8.8
3.14.8.9

Supported XML Features

XQuery Support

OracleXmIType and Connection Dependency
Updating XMLType Data in the Database

Updating with DataSet, OracleDataAdapter, and
OracleCommandBuilder

Updating with OracleCommand and OracleParameter

Updating XML Data in OracleXmlIType
Characters with Special Meaning in XML
Retrieving Query Result Set as XML

Handling Date and Time Format
Characters with Special Meaning in Column Data
Characters in Table or View Name

Case-Sensitivity in Column Name to XML Element Name
Mapping

Column Name to XML Element Name Mapping
Object-Relational Data

NULL Values

Data Manipulation Using XML

Handling Date and Time Format

Saving Changes Using XML

Characters with Special Meaning in Column Data
Characters with Special Meaning in Table or View Name
Case-Sensitivity in XML Element Name to Column Name
Mapping

XML Element Name to Column Name Mapping

Saving Changes to a Table Using an XML Document
Object-Relational Data

Multiple Tables

3.14.8.10 Commit Transactions

Oracle User-Defined Types (UDTs) and .NET Custom Types

3.15.2.1
3.15.2.2

Oracle User-Defined Types (UDTs)
Custom Types

Required Custom Type Implementations
Optional Custom Type Implementations

3.15.3 Specifying Custom Type Mappings

ORACLE

3.15.3.1

Using a Custom Type Factory to Specify Custom Type Mappings

3-96
3-96
3-97
3-97
3-98
3-99
3-99

3-99
3-100
3-101
3-101
3-101
3-101
3-102
3-103

3-103
3-103
3-105
3-105
3-105
3-105
3-106
3-106
3-107

3-107
3-107
3-107
3-109
3-109
3-109
3-109
3-110
3-110
3-111
3-112
3-113

3-114

3.15.3.2 Using XML in Configuration Files to Specify Custom Type

Mappings 3-114

3.15.3.3 Using Custom Type Mappings 3-115

3.15.4 Converting Between Custom Types and Oracle UDTs 3-116
3.15.5 Oracle UDT Attribute Mappings 3-117
3.15.6 Oracle UDT Retrieval from OracleDataReader 3-118
3.15.7 Oracle UDT Metadata Retrieval from OracleDataReader 3-119
3.15.8 Oracle UDT Parameter Binding with OracleParameter 3-120
3.15.8.1 Guidelines for Binding UDT Input and Output Parameters 3-120
3.15.8.2 UDT Input Parameter Binding with OracleParameters 3-121
3.15.8.3 UDT Output Parameter Binding with OracleParameters 3-122

3.15.9 Populating the DataSet with Oracle UDTs 3-123
3.15.10 UDT Method Invocation 3-124
3.15.11 Configuration Settings for Oracle UDTs 3-124
3.15.11.1 StatementCacheWithUdts 3-125
3.15.11.2 UdtCacheSize 3-125

3.16 Bulk Copy 3-125
3.16.1 Data Types Supported by Bulk Copy 3-125
3.16.2 Restrictions on Oracle Bulk Copy of a Single Partition 3-126
3.16.3 Integrity Constraints Affecting Oracle Bulk Copy 3-126
3.16.4 Database Insert Triggers 3-127
3.16.5 Field Defaults 3-127
3.17 Oracle Database Advanced Queuing Support 3-127
3.17.1 Using ODP.NET for Advanced Queuing 3-129
3.17.1.1 Enqueuing and Dequeuing Example 3-130

3.18 Continuous Query Notification Support 3-132
3.18.1 Continuous Query Notification Classes 3-134
3.18.2 Supported Operations 3-135
3.18.3 Requirements of Notification Registration 3-136
3.18.4 Using Continuous Query Notification 3-136
3.18.4.1 Application Steps 3-136
3.18.4.2 Flow of Notification Process 3-136

3.18.5 Best Practice Guidelines and Performance Considerations 3-138
3.19 OracleDataAdapter Safe Type Mapping 3-139
3.19.1 Comparison Between Oracle Data Types and .NET Types 3-139
3.19.2 SafeMapping Property 3-141
3.19.2.1 Using Safe Type Mapping 3-141

3.20 OracleDataAdapter Requery Property 3-143
3.21 Guaranteeing Uniqueness in Updating DataSet to Database 3-143
3.21.1 What Constitutes Uniqueness in DataRow Objects? 3-144
3.21.2 Configuring PrimaryKey and Constraints Properties 3-144

ORACLE X

3.21.3 Updating Without PrimaryKey and Constraints Configuration 3-145
3.22 Globalization Support 3-145
3.22.1 Globalization Settings 3-146
3.22.1.1 Client Globalization Settings 3-146
3.22.1.2 Session Globalization Settings 3-146
3.22.1.3 Thread-Based Globalization Settings 3-147
3.22.2 Globalization-Sensitive Operations 3-148
3.22.2.1 Operations Dependent on Client Computer's Globalization
Settings 3-148
3.22.2.2 Operations Dependent on Thread Globalization Settings 3-149
3.22.2.3 Operations Sensitive to Session Globalization Parameters 3-149
3.22.3 ODP.NET Managed and Unmanaged Drivers Differences 3-149
3.23 Debug Tracing 3-150
3.24 Database Application Migration: SQL Translation Framework 3-150
3.24.1 The SQL Translation Profile 3-151
4 ADO.NET Entity Framework and LINQ to Entities

4.1 Overview of Entity Framework 4-1
4.2 Language Integrated Query and Entity SQL 4-2
4.3 Mapping Oracle Data Types to EDM Types 4-2
4.3.1 EDM Type Facets 4-6
4.4 Oracle Number Default Data Type Mapping and Customization 4-13
4.4.1 Entity Framework 5 and Earlier Mapping and Customization 4-14
4.4.2 Entity Framework 6 Mapping and Customization 4-16
4.4.2.1 New Default Mappings 4-16
4.4.3 Data Type Mapping and Customization Process 4-17
4.4.4 StoreGeneratedPattern Enumeration 4-18
4.4.4.1 Identity Attribute 4-18
4.4.4.2 Virtual Column 4-18
445 Resolving Compilation Errors When Using Custom Mapping 4-18

4.4.6 Mapping Boolean and Guid Parameters in Custom INSERT, UPDATE,
and DELETE Stored Procedures 4-19
4.5 Migrating Existing Entity Framework 5 Applications to Entity Framework 6 4-19
4.6 Code First 4-20
4.6.1 Mapping of .NET Types to Oracle Types 4-20
4.6.2 Code First Migrations 4-24
4.6.2.1 Code First Migrations With No Supporting Code Migration File 4-25
4.6.3 Code First Database Initialization 4-25
4.6.4 Oracle Database Object Creation 4-25
4.6.5 Using the Default Connection Factory 4-28

ORACLE

Xi

4.7 Unsupported Entity Framework Features 4-28
5 Oracle Data Provider for .NET Stored Procedures

5.1 Introducing .NET Stored Procedure Execution Using ODP.NET 5-1
5.2 Limitations and Restrictions on ODP.NET Within .NET Stored Procedure 5-2
5.2.1 Implicit Database Connection 5-2
5.2.2 Transaction Support 5-3
5.2.3 Unsupported SQL Commands 5-6
5.2.4 Oracle User-Defined Type (UDT) Support 5-6

5.3 Porting Client Application to .NET Stored Procedure 5-6

6 Oracle Data Provider for .NET Classes

6.1 OracleClientFactory Class 6-2
6.1.1 OracleClientFactory Members 6-3
6.1.2 OracleClientFactory Field 6-4
6.1.2.1 Instance 6-4

6.1.3 OracleClientFactory Constructor 6-4
6.1.4 OracleClientFactory Public Properties 6-5
6.1.4.1 CanCreateDataSourceEnumerator 6-5

6.1.5 OracleClientFactory Public Methods 6-5
6.1.5.1 CreateCommand 6-6

6.1.5.2 CreateCommandBuilder 6-6

6.1.5.3 CreateConnection 6-6

6.1.5.4 CreateConnectionStringBuilder 6-7

6.1.5.5 CreateDataAdapter 6-7

6.1.5.6 CreateDataSourceEnumerator 6-7

6.1.5.7 CreateParameter 6-8

6.1.5.8 CreatePermission 6-8

6.2 OracleCommand Class 6-8
6.2.1 OracleCommand Members 6-10
6.2.2 OracleCommand Constructors 6-13
6.2.2.1 OracleCommand() 6-13

6.2.2.2 OracleCommand(string) 6-13

6.2.2.3 OracleCommand(string, OracleConnection) 6-14

6.2.3 OracleCommand Static Methods 6-14
6.2.4 OracleCommand Properties 6-14
6.2.4.1 AddRowid 6-16

6.2.4.2 AddToStatementCache 6-16

6.2.4.3 ArrayBindCount 6-17

ORACLE

Xii

6.2.4.4 ArrayBindRowsAffected 6-18

6.2.4.5 BindByName 6-18
6.2.4.6 CommandText 6-19
6.2.4.7 CommandTimeout 6-20
6.2.4.8 CommandType 6-20
6.2.4.9 Connection 6-21
6.2.4.10 DesignTimeVisible 6-21
6.2.4.11 FetchSize 6-22
6.2.4.12 ImplicitRefCursors 6-23
6.2.4.13 InitialLOBFetchSize 6-23
6.2.4.14 InitiaLONGFetchSize 6-24
6.2.4.15 Naotification 6-24
6.2.4.16 NotificationAutoEnlist 6-25
6.2.4.17 Parameters 6-26
6.2.4.18 RowSize 6-26
6.2.4.19 Transaction 6-27
6.2.4.20 UpdatedRowSource 6-27
6.2.4.21 UseEdmMapping 6-28
6.2.4.22 XmlCommandType 6-28
6.2.4.23 XmlQueryProperties 6-29
6.2.4.24 XmlSaveProperties 6-29
6.2.5 OracleCommand Public Methods 6-30
6.2.5.1 Cancel 6-31
6.2.5.2 Clone 6-34
6.2.5.3 CreateParameter 6-35
6.2.5.4 Dispose 6-35
6.2.5.5 ExecuteNonQuery 6-35
6.2.5.6 ExecuteReader 6-37
6.2.5.7 ExecuteReader() 6-37
6.2.5.8 ExecuteReader(CommandBehavior) 6-39
6.2.5.9 ExecuteScalar 6-40
6.2.5.10 ExecuteStream 6-41
6.2.5.11 ExecuteToStream 6-41
6.2.5.12 ExecuteXmlReader 6-42
6.2.5.13 Prepare 6-43
6.3 OracleCommandBuilder Class 6-43
6.3.1 OracleCommandBuilder Members 6-45
6.3.2 OracleCommandBuilder Constructors 6-47
6.3.2.1 OracleCommandBuilder() 6-47
6.3.2.2 OracleCommandBuilder(OracleDataAdapter) 6-47
6.3.3 OracleCommandBuilder Static Methods 6-47

ORACLE Xiii

6.3.3.1 DeriveParameters 6-48

6.3.4 OracleCommandBuilder Properties 6-50
6.3.4.1 CaseSensitive 6-51
6.3.4.2 CatalogLocation 6-51
6.3.4.3 CatalogSeparator 6-51
6.3.4.4 ConflictOption 6-52
6.3.4.5 DataAdapter 6-52
6.3.4.6 QuotePrefix 6-52
6.3.4.7 QuoteSuffix 6-53
6.3.4.8 SchemaSeparator 6-53

6.3.5 OracleCommandBuilder Public Methods 6-54
6.3.5.1 GetDeleteCommand 6-55
6.3.5.2 GetDeleteCommand() 6-55
6.3.5.3 GetDeleteCommand(bool) 6-56
6.3.5.4 GetlnsertCommand 6-56
6.3.5.5 GetlnsertCommand() 6-57
6.3.5.6 GetlnsertCommand(bool) 6-57
6.3.5.7 GetUpdateCommand 6-58
6.3.5.8 GetUpdateCommand() 6-58
6.3.5.9 GetUpdateCommand(bool) 6-58
6.3.5.10 Quoteldentifier 6-59
6.3.5.11 RefreshSchema 6-60
6.3.5.12 Unquoteldentifier 6-60

6.3.6 OracleCommandBuilder Events 6-61

6.4 OracleConnection Class 6-61

6.4.1 OracleConnection Members 6-63

6.4.2 OracleConnection Constructors 6-66
6.4.2.1 OracleConnection() 6-66
6.4.2.2 OracleConnection(String) 6-67

6.4.3 OracleConnection Static Properties 6-67
6.4.3.1 IsAvailable 6-67

6.4.4 OracleConnection Static Methods 6-68
6.4.4.1 ClearPool 6-69
6.4.4.2 ClearAllPools 6-70

6.4.5 OracleConnection Properties 6-71
6.4.5.1 ActionName 6-72
6.4.5.2 Clientld 6-72
6.4.5.3 Clientinfo 6-73
6.4.5.4 ConnectionString 6-73
6.4.5.5 ConnectionTimeout 6-78
6.4.5.6 ConnectionType 6-79

ORACLE Xiv

6.4.5.7

6.4.5.8

6.4.5.9

6.4.5.10
6.4.5.11
6.4.5.12
6.4.5.13
6.4.5.14
6.4.5.15
6.4.5.16
6.4.5.17

Database

DatabaseDomainName

DatabaseName
DataSource
HostName
InstanceName
ModuleName
ServerVersion
ServiceName
State
StatementCacheSize

6.4.6 OracleConnection Public Methods

6.4.6.1
6.4.6.2
6.4.6.3
6.4.6.4
6.4.6.5
6.4.6.6
6.4.6.7
6.4.6.8
6.4.6.9
6.4.6.10
6.4.6.11
6.4.6.12
6.4.6.13
6.4.6.14
6.4.6.15
6.4.6.16
6.4.6.17
6.4.6.18
6.4.6.19
6.4.6.20
6.4.6.21
6.4.6.22

BeginTransaction
BeginTransaction()
BeginTransaction(lsolationLevel)
ChangeDatabase
Clone
Close
CreateCommand
EnlistDistributedTransaction
EnlistTransaction
FlushCache
GetSchema
GetSchema()
GetSchema (string collectionName)
GetSchema (string collectionName, string|[] restrictions)
GetSessioninfo
GetSessionInfo()
GetSessionInfo(OracleGlobalization)
Open
OpenWithNewPassword
PurgeStatementCache
SetSessioninfo

SetShardingKey(OracleShardingKey, OracleShardingKey)

6.4.7 OracleConnection Events

6.4.7.1
6.4.7.2
6.4.7.3
6.4.7.4

Failover
HAEvent
InfoMessage
StateChange

6.5 OracleConnectionStringBuilder Class

6.5.1 OracleConnectionStringBuilder Members

ORACLE

6-79
6-80
6-80
6-80
6-80
6-81
6-81
6-81
6-82
6-82
6-82
6-83
6-84
6-84
6-85
6-86
6-87
6-88
6-88
6-89
6-91
6-92
6-92
6-93
6-94
6-95
6-98
6-98
6-99
6-99
6-100
6-100
6-101
6-102
6-103
6-104
6-104
6-105
6-105
6-106
6-109

XV

6.5.2 OracleConnectionStringBuilder Constructors 6-111

6.5.2.1 OracleConnectionStringBuilder() 6-111
6.5.2.2 OracleConnectionStringBuilder(string) 6-112
6.5.3 OracleConnectionStringBuilder Public Properties 6-112
6.5.3.1 ConnectionLifeTime 6-114
6.5.3.2 ConnectionTimeout 6-114
6.5.3.3 ContextConnection 6-115
6.5.3.4 DataSource 6-115
6.5.3.5 DBAPrivilege 6-115
6.5.3.6 DecrPoolSize 6-116
6.5.3.7 Enlist 6-116
6.5.3.8 HAEvents 6-117
6.5.3.9 IncrPoolSize 6-117
6.5.3.10 IsFixedSize 6-118
6.5.3.11 Item 6-118
6.5.3.12 Keys 6-118
6.5.3.13 LoadBalancing 6-119
6.5.3.14 MaxPoolSize 6-119
6.5.3.15 MetadataPooling 6-119
6.5.3.16 MinPoolSize 6-120
6.5.3.17 Password 6-120
6.5.3.18 PersistSecuritylnfo 6-120
6.5.3.19 Pooling 6-121
6.5.3.20 PromotableTransaction 6-121
6.5.3.21 ProxyPassword 6-121
6.5.3.22 ProxyUserld 6-122
6.5.3.23 SelfTuning 6-122
6.5.3.24 StatementCachePurge 6-122
6.5.3.25 StatementCacheSize 6-123
6.5.3.26 UserlD 6-123
6.5.3.27 ValidateConnection 6-123
6.5.3.28 Values 6-124
6.5.4 OracleConnectionStringBuilder Public Methods 6-124
6.5.4.1 Clear 6-125
6.5.4.2 ContainsKey 6-125
6.5.4.3 Remove 6-125
6.5.4.4 TryGetValue 6-126

6.6 OracleDataAdapter Class 6-126
6.6.1 OracleDataAdapter Members 6-128
6.6.2 OracleDataAdapter Constructors 6-130
6.6.2.1 OracleDataAdapter() 6-131

ORACLE XVi

6.6.2.2

6.6.2.3 OracleDataAdapter(string, OracleConnection)

6.6.2.4

OracleDataAdapter(OracleCommand)

OracleDataAdapter(string, string)

6.6.3 OracleDataAdapter Static Methods
6.6.4 OracleDataAdapter Properties

6.6.4.1
6.6.4.2
6.6.4.3
6.6.4.4
6.6.4.5
6.6.4.6
6.6.4.7
6.6.4.8
6.6.4.9

DeleteCommand
Identitylnsert

IdentityUpdate
InsertCommand

Requery
ReturnProviderSpecificTypes
SafeMapping
SelectCommand
UpdateBatchSize

6.6.4.10 UpdateCommand
6.6.5 OracleDataAdapter Public Methods

6.6.5.1
6.6.5.2
6.6.5.3
6.6.5.4
6.6.5.5

Fill

Fill(DataTable, OracleRefCursor)
Fill(DataSet, OracleRefCursor)

Fill(DataSet, string, OracleRefCursor)
Fill(DataSet, int, int, string, OracleRefCursor)

6.6.6 OracleDataAdapter Events

6.6.6.1
6.6.6.2

RowUpdated
RowUpdating

6.7 OracleDatabase Class

6.7.1 OracleDatabase Members

6.7.2 OracleDatabase Constructor

6.7.3 OracleDatabase Properties

6.7.3.1

ServerVersion

6.7.4 OracleDatabase Public Methods

6.74.1
6.7.4.2
6.7.4.3
6.7.4.4
6.7.4.5
6.7.4.6
6.7.4.7
6.7.4.8

Dispose

ExecuteNonQuery

Shutdown

Shutdown()
Shutdown(OracleDBShutdownMode, bool)
Startup

Startup()

Startup(OracleDBStartupMode, string, bool)

6.8 OracleDataReader Class

6.8.1 OracleDataReader Members
6.8.2 OracleDataReader Static Methods

ORACLE

6-131
6-131
6-132
6-133
6-133
6-134
6-134
6-135
6-135
6-136
6-136
6-136
6-137
6-137
6-138
6-139
6-139
6-140
6-140
6-141
6-142
6-142
6-143
6-145
6-145
6-147
6-148
6-148
6-149
6-149
6-149
6-149
6-150
6-150
6-151
6-153
6-153
6-153
6-154
6-157
6-160

XVii

6.8.3 OracleDataReader Properties

6.8.4 OracleDataReader Public Methods

ORACLE

6.8.3.1
6.8.3.2
6.8.3.3
6.8.3.4
6.8.3.5
6.8.3.6
6.8.3.7
6.8.3.8
6.8.3.9
6.8.3.10
6.8.3.11
6.8.3.12
6.8.3.13
6.8.3.14
6.8.3.15

6.8.4.1
6.8.4.2
6.8.4.3
6.8.4.4
6.8.4.5
6.8.4.6
6.8.4.7
6.8.4.8
6.8.4.9
6.8.4.10
6.8.4.11
6.8.4.12
6.8.4.13
6.8.4.14
6.8.4.15
6.8.4.16
6.8.4.17
6.8.4.18
6.8.4.19
6.8.4.20
6.8.4.21
6.8.4.22
6.8.4.23
6.8.4.24

Depth

FetchSize

FieldCount

HasRows

HiddenFieldCount

IsClosed

Iltem

Item [index]

Item [string]
InitialLOBFetchSize
InitiaLONGFetchSize
RecordsAffected
RowSize
UseEdmMapping
VisibleFieldCount

Close

Dispose

GetBoolean

GetByte

GetBytes

GetChar

GetChars

GetData

GetDataTypeName
GetDateTime
GetDecimal
GetDouble
GetEnumerator
GetFieldType
GetFloat
GetGuid
GetIntl6
GetInt32
GetInt64
GetName
GetOracleBFile
GetOracleBinary
GetOracleBlob
GetOracleBlobForUpdate

6-160
6-161
6-162
6-162
6-163
6-164
6-164
6-165
6-165
6-165
6-166
6-166
6-167
6-167
6-168
6-168
6-170
6-172
6-172
6-173
6-173
6-174
6-175
6-175
6-176
6-176
6-177
6-177
6-178
6-179
6-179
6-180
6-180
6-181
6-182
6-182
6-183
6-184
6-184
6-185
6-186

XViii

6.8.4.25
6.8.4.26
6.8.4.27
6.8.4.28
6.8.4.29
6.8.4.30
6.8.4.31
6.8.4.32
6.8.4.33
6.8.4.34
6.8.4.35
6.8.4.36
6.8.4.37
6.8.4.38
6.8.4.39
6.8.4.40
6.8.4.41
6.8.4.42
6.8.4.43
6.8.4.44
6.8.4.45
6.8.4.46
6.8.4.47
6.8.4.48
6.8.4.49
6.8.4.50
6.8.4.51
6.8.4.52
6.8.4.53
6.8.4.54
6.8.4.55

GetOracleBlobForUpdate(int)
GetOracleBlobForUpdate(int, int)
GetOracleClob
GetOracleClobForUpdate
GetOracleClobForUpdate(int)
GetOracleClobForUpdate(int, int)
GetOracleDate
GetOracleDecimal
GetOraclelntervalDS
GetOraclelntervalYM
GetOracleRef
GetOracleString
GetOracleTimeStamp
GetOracleTimeStampLTZ
GetOracleTimeStampTZ
GetOracleXmlIType
GetOracleValue
GetOracleValues

GetOrdinal
GetProviderSpecificFieldType
GetProviderSpecificValue
GetProviderSpecificValues
GetSchemaTable

GetString

GetTimeSpan

GetValue

GetValues

GetXmlIReader

IsDBNull

NextResult

Read

6.9 OracleDataSourceEnumerator Class

6.9.1 OracleDataSourceEnumerator Members

6.9.2 OracleDataSourceEnumerator Constructor

6.9.3 OracleDataSourceEnumerator Public Methods

6.9.3.1

GetDataSources

6.10 OracleError Class
6.10.1 OracleError Members
6.10.2 OracleError Static Methods
6.10.3 OracleError Properties

6.10.3.1

ORACLE

ArrayBindIndex

6-186
6-188
6-189
6-190
6-190
6-192
6-194
6-194
6-195
6-195
6-196
6-196
6-197
6-198
6-198
6-199
6-199
6-200
6-200
6-201
6-202
6-202
6-203
6-207
6-208
6-208
6-209
6-210
6-210
6-211
6-211
6-212
6-213
6-214
6-214
6-214
6-215
6-216
6-217
6-217
6-218

XiX

6.10.3.2 DataSource 6-218

6.10.3.3 Message 6-219
6.10.3.4 Number 6-219
6.10.3.5 Procedure 6-219
6.10.3.6 Source 6-219
6.10.4 OracleError Methods 6-220
6.10.4.1 ToString 6-220

6.11 OracleErrorCollection Class 6-220
6.11.1 OracleErrorCollection Members 6-222
6.11.2 OracleErrorCollection Static Methods 6-222
6.11.3 OracleErrorCollection Properties 6-223
6.11.4 OracleErrorCollection Public Methods 6-223
6.12 OracleException Class 6-223
6.12.1 OracleException Members 6-225
6.12.2 OracleException Static Methods 6-226
6.12.3 OracleException Properties 6-226
6.12.3.1 DataSource 6-227
6.12.3.2 Errors 6-227
6.12.3.3 IsRecoverable 6-228
6.12.3.4 Message 6-228
6.12.3.5 Number 6-228
6.12.3.6 OracleLogicalTransaction 6-229
6.12.3.7 Procedure 6-229
6.12.3.8 Source 6-230
6.12.4 OracleException Methods 6-230
6.12.4.1 GetObjectData 6-230
6.12.4.2 ToString 6-231

6.13 OracleInfoMessageEventArgs Class 6-232
6.13.1 OracleInfoMessageEventArgs Members 6-233
6.13.2 OracleInfoMessageEventArgs Static Methods 6-234
6.13.3 OracleinfoMessageEventArgs Properties 6-234
6.13.3.1 Errors 6-234
6.13.3.2 Message 6-234
6.13.3.3 Source 6-235
6.13.4 OracleInfoMessageEventArgs Public Methods 6-235
6.13.4.1 ToString 6-235

6.14 OracleInfoMessageEventHandler Delegate 6-236
6.15 OracleLogicalTransaction Class 6-236
6.15.1 OracleLogicalTransaction Members 6-237
6.15.2 OracleLogicalTransaction Public Read-Only Properties 6-237
6.15.2.1 Committed 6-238

ORACLE XX

6.15.2.2
6.15.2.3
6.15.2.4

ConnectionString
LogicalTransactionld
UserCallCompleted

6.15.3 OracleLogicalTransaction Methods

6.16

6.16.1
6.16.2

6.15.3.1
6.15.3.2

Dispose
GetOutcome

OracleParameter Class

6.16.2.1
6.16.2.2
6.16.2.3
6.16.2.4
6.16.2.5

6.16.2.6
6.16.2.7
6.16.2.8

6.16.2.9

OracleParameter Members
OracleParameter Constructors

OracleParameter()

OracleParameter(string, OracleDbType)
OracleParameter(string, object)

OracleParameter(string, OracleDbType, ParameterDirection)

OracleParameter(string, OracleDbType, object,
ParameterDirection)

OracleParameter(string, OracleDbType, int)
OracleParameter(string, OracleDbType, int, string)

OracleParameter(string, OracleDbType, int, ParameterDirection,
bool, byte, byte, string, DataRowVersion, object)

OracleParameter(string, OracleDbType, int, object,
ParameterDirection)

6.16.3 OracleParameter Static Methods
6.16.4 OracleParameter Properties

ORACLE

6.16.4.1
6.16.4.2
6.16.4.3
6.16.4.4
6.16.4.5
6.16.4.6
6.16.4.7
6.16.4.8
6.16.4.9
6.16.4.10
6.16.4.11
6.16.4.12
6.16.4.13
6.16.4.14
6.16.4.15
6.16.4.16
6.16.4.17
6.16.4.18
6.16.4.19

ArrayBindSize
ArrayBindStatus
CollectionType
DbType
Direction
IsNullable
Offset
OracleDbType
OracleDbTypeEx
ParameterName
Precision
Scale
Size
SourceColumn
SourceColumnNullMapping
SourceVersion
Status
UdtTypeName
Value

6-239
6-239
6-240
6-240
6-241
6-241
6-242
6-243
6-245
6-246
6-246
6-247
6-248

6-249
6-250
6-251

6-252

6-253
6-254
6-254
6-255
6-257
6-257
6-258
6-258
6-259
6-259
6-260
6-260
6-261
6-261
6-262
6-262
6-263
6-264
6-264
6-265
6-265
6-266

XXi

6.16.5 OracleParameter Public Methods
6.16.5.1 Clone
6.16.5.2 Dispose
6.16.5.3 ResetDbType
6.16.5.4 ResetOracleDbType
6.16.5.5 ToString
6.17 OracleParameterCollection Class
6.17.1 OracleParameterCollection Members
6.17.2 OracleParameterCollection Static Methods
6.17.3 OracleParameterCollection Properties
6.17.3.1 Count
6.17.3.2 Item
6.17.3.3 Item[int]
6.17.3.4 Item][string]
6.17.3.5 IsFixedSize
6.17.3.6 IsReadOnly
6.17.3.7 IsSynchronized
6.17.3.8 SyncRoot
6.17.4 OracleParameterCollection Public Methods
6.17.4.1 Add
6.17.4.2 Add(object)
6.17.4.3 Add(OracleParameter)
6.17.4.4 Add(string, object)
6.17.4.5 Add(string, OracleDbType)
6.17.4.6 Add(string, OracleDbType, ParameterDirection)
6.17.4.7 Add(string, OracleDbType, object, ParameterDirection)
6.17.4.8 Add(string, OracleDbType, int, object, ParameterDirection)
6.17.4.9 Add(string, OracleDbType, int)
6.17.4.10 Add (string, OracleDbType, int, string)
6.17.4.11
byte, string, DataRowVersion, object)
6.17.4.12 AddRange
6.17.4.13 Clear
6.17.4.14 Contains
6.17.4.15 Contains(object)
6.17.4.16 Contains(string)
6.17.4.17 CopyTo
6.17.4.18 GetEnumerator
6.17.4.19 IndexOf
6.17.4.20 IndexOf(object)
6.17.4.21 IndexOf(String)

ORACLE

Add(string, OracleDbType, int, ParameterDirection, bool, byte,

6-267
6-268
6-269
6-269
6-269
6-270
6-270
6-272
6-273
6-273
6-274
6-274
6-275
6-275
6-275
6-276
6-276
6-276
6-277
6-278
6-279
6-279
6-280
6-280
6-280
6-281
6-282
6-282
6-283

6-284
6-285
6-285
6-286
6-286
6-287
6-288
6-289
6-289
6-289
6-290

XXii

6.17.4.22 Insert

6.17.4.23 Remove

6.17.4.24 RemoveAt

6.17.4.25 RemoveAt(int)

6.17.4.26 RemoveAt(String)
6.18 OraclePermission Class

6.18.1 OraclePermission Members

6.18.2 OraclePermission Constructor

6.18.3 OraclePermission Static Methods

6.18.4 OraclePermission Public Properties

6.18.5 OraclePermission Public Methods
6.18.5.1 Add

6.18.5.2 Copy
6.18.5.3 IsSubsetOf
6.19 OraclePermissionAttribute Class

6.19.1
6.19.2
6.19.3
6.19.4
6.19.5

OraclePermissionAttribute Members
OraclePermissionAttribute Constructor
OraclePermissionAttribute Static Methods
OraclePermissionAttribute Public Properties
OraclePermissionAttribute Public Methods

6.19.5.1 CreatePermission
6.20 OracleRowUpdatedEventArgs Class

6.20.1
6.20.2
6.20.3
6.20.4

OracleRowUpdatedEventArgs Members
OracleRowUpdatedEventArgs Constructor
OracleRowUpdatedEventArgs Static Methods
OracleRowUpdatedEventArgs Properties

6.20.4.1 Command

6.20.5

OracleRowUpdatedEventArgs Public Methods

6.21 OracleRowUpdatedEventHandler Delegate

6.22 OracleRowUpdatingEventArgs Class

6.22.1
6.22.2
6.22.3
6.22.4

OracleRowUpdatingEventArgs Members
OracleRowUpdatingEventArgs Constructor
OracleRowUpdatingEventArgs Static Methods
OracleRowUpdatingEventArgs Properties

6.22.4.1 Command

6.22.5

OracleRowUpdatingEventArgs Public Methods

6.23 OracleRowUpdatingEventHandler Delegate
6.24 OracleShardingKey Class

6.24.1
6.24.2

OracleShardingKey Members
OracleShardingKey Constructors

6.24.2.1 OracleShardingKey()

ORACLE

6-290
6-291
6-292
6-292
6-292
6-293
6-293
6-295
6-295
6-296
6-296
6-296
6-298
6-298
6-298
6-299
6-300
6-301
6-301
6-301
6-302
6-302
6-303
6-304
6-305
6-305
6-305
6-306
6-306
6-307
6-307
6-308
6-309
6-309
6-310
6-310
6-310
6-311
6-312
6-313
6-313

XXiii

6.24.2.2 OracleShardingKey(OracleDbType, object) 6-313

6.24.3 OracleShardingKey Instance Methods 6-314
6.24.3.1 SetShardingKey(OracleDbType, object) 6-314
6.24.3.2 Dispose 6-314

6.25 OracleTransaction Class 6-315

6.25.1 OracleTransaction Members 6-317

6.25.2 OracleTransaction Static Methods 6-318

6.25.3 OracleTransaction Properties 6-318
6.25.3.1 IsolationLevel 6-318
6.25.3.2 Connection 6-319

6.25.4 OracleTransaction Public Methods 6-319
6.25.4.1 Commit 6-320
6.25.4.2 Dispose 6-322
6.25.4.3 Rollback 6-322
6.25.4.4 Rollback() 6-322
6.25.4.5 Rollback(string) 6-324
6.25.4.6 Save 6-324

6.26 OracleConnectionType Enumeration 6-326
6.27 OracleCollectionType Enumeration 6-326
6.28 OracleDBShutdownMode Enumeration 6-327
6.29 OracleDBStartupMode Enumeration 6-328
6.30 OracleDbType Enumeration 6-328
6.31 OracleldentityType Enumeration 6-330
6.32 OracleParameterStatus Enumeration 6-330

7 Oracle Data Provider for .NET XML-Related Classes

7.1 OracleXmlCommandType Enumeration 7-1
7.2 OracleXmlQueryProperties Class 7-2
7.2.1 OracleXmlQueryProperties Members 7-5
7.2.2 OracleXmlQueryProperties Constructor 7-5
7.2.3 OracleXmlQueryProperties Properties 7-6
7.2.3.1 MaxRows 7-6
7.2.3.2 RootTag 7-6
7.2.3.3 RowTag 7-7
7.2.3.4 Xslt 7-7
7.2.3.5 XsltParams 7-8

7.2.4 OracleXmlQueryProperties Public Methods 7-8
7.24.1 Clone 7-8

7.3 OracleXmlSaveProperties Class 7-9
7.3.1 OracleXmlSaveProperties Members 7-11

ORACLE XXiV

7.3.2

7.3.3 OracleXmlSaveProperties Properties

OracleXmlSaveProperties Constructor

7.3.3.1 KeyColumnsList
7.3.3.2 RowTag

7.3.3.3 Table
7.3.3.4 UpdateColumnsList
7.3.35 Xslt

7.3.3.6 XsltParams

7.3.4 OracleXmlSaveProperties Public Methods

7.3.4.1 Clone
7.4 OracleXmlStream Class

7.4.1
7.4.2
7.4.3
7.4.4

OracleXmlStream Members
OracleXmlStream Constructor

OracleXmlStream Static Methods
OracleXmlStream Instance Properties

7.4.4.1 CanRead
7.4.4.2 CanSeek
7.4.4.3 Connection
7.4.4.4 Length
7.4.45 Position
7.4.4.6 Value

7.4.5 OracleXmlStream Instance Methods

7.45.1 Clone
7.45.2 Close
7.4.5.3 Dispose
7.45.4 Flush
7455 Read

7.4.5.6 Read(byte[], int, int)
7.4.5.7 Read(char[], int, int)
7.45.8 Seek
7.4.5.9 SetLength
7.45.10 Write
7.45.11 WriteLine

7.5 OracleXmlIType Class

7.5.1 OracleXmIType Members
7.5.2 OracleXmIType Constructors
7.5.2.1 OracleXmIType(OracleClob)
7.5.2.2 OracleXmIType(OracleConnection, string)
7.5.2.3
7.5.2.4

ORACLE

OracleXmIType(OracleConnection, XmIReader)
OracleXmIType(OracleConnection, XmIDocument)
7.5.3 OracleXmlIType Static Methods

7-12
7-12
7-13
7-13
7-14
7-14
7-15
7-15
7-15
7-16
7-16
7-17
7-18
7-19
7-19
7-19
7-20
7-20
7-20
7-21
7-21
7-22
7-22
7-23
7-23
7-23
7-23
7-24
7-25
7-25
7-26
7-26
7-26
7-26
7-27
7-29
7-29
7-30
7-31
7-31
7-32

XXV

7.5.4 OracleXmlIType Static Fields 7-32
7.5.4.1 Null 7-32
7.5.5 OracleXmIType Instance Properties 7-32
7.5.5.1 Connection 7-33
7.5.5.2 IsEmpty 7-33
7.5.5.3 IsFragment 7-34
7.5.5.4 IsNull 7-34
7.5.55 IsSchemaBased 7-34
7.5.5.6 RootElement 7-35
7.5.5.7 Schema 7-35
7.5.5.8 SchemaUrl 7-36
7.5.5.9 Value 7-36
7.5.6 OracleXmlIType Instance Methods 7-36
7.5.6.1 Clone 7-37
7.5.6.2 Dispose 7-38
7.5.6.3 Extract 7-38
7.5.6.4 Extract(string, string) 7-38
7.5.6.5 Extract(string, XmINameSpaceManager) 7-39
7.5.6.6 GetStream 7-39
7.5.6.7 GetXmlDocument 7-40
7.5.6.8 GetXmlReader 7-40
7.5.6.9 IsExists 7-41
7.5.6.10 IsExists(string, string) 7-41
7.5.6.11 IsExists(string, XmINameSpaceManager) 7-42
7.5.6.12 Transform 7-42
7.5.6.13 Transform(OracleXmlIType, string) 7-43
7.5.6.14 Transform(string, string) 7-43
7.5.6.15 Update 7-44
7.5.6.16 Update(string, string, string) 7-44
7.5.6.17 Update(string, XmINameSpaceManager, string) 7-45
7.5.6.18 Update(string, string, OracleXmIType) 7-46
7.5.6.19 Update(string, XmINameSpaceManager, OracleXmIType) 7-46
7.5.6.20 Validate 7-47
8 Oracle Data Provider for .NET HA Event Classes

8.1 OracleHAEventArgs Class 8-1
8.1.1 OracleHAEventArgs Members 8-2
8.1.2 OracleHAEventArgs Properties 8-2
8.1.2.1 DatabaseDomainName 8-2
8.1.2.2 DatabaseName 8-3

ORACLE

XXVi

8.1.2.3 HostName 8-3

8.1.2.4 InstanceName 8-3

8.1.2.5 Reason 8-3

8.1.2.6 ServiceName 8-4

8.1.2.7 Source 8-4

8.1.2.8 Status 8-4

8.1.2.9 Time 8-5

8.2 OracleHAEventHandler Delegate 8-5
8.3 OracleHAEventSource Enumeration 8-5
8.4 OracleHAEventStatus Enumeration 8-6

O Continuous Query Notification Classes

9.1 OracleDependency Class 9-1
9.1.1 OracleDependency Members 9-2
9.1.2 OracleDependency Constructors 9-4
9.1.2.1 OracleDependency () 9-4

9.1.2.2 OracleDependency(OracleCommand) 9-4

9.1.2.3 OracleDependency(OracleCommand, bool, int, bool) 9-5

9.1.3 OracleDependency Static Fields 9-7
9.1.3.1 Port 9-7

9.1.4 OracleDependency Static Methods 9-7
9.1.4.1 GetOracleDependency 9-8

9.1.5 OracleDependency Properties 9-8
9.1.5.1 DataSource 9-9

9.1.5.2 HasChanges 9-9

9.1.53 Id 9-10

9.1.5.4 IsEnabled 9-10

9.1.5.5 QueryBasedNoatification 9-10

9.1.5.6 RegisteredQuerylDs 9-11

9.1.5.7 RegisteredResources 9-11

9.1.5.8 RowidInfo 9-12

9.1.5.9 UserName 9-12

9.1.6 OracleDependency Methods 9-13
9.1.6.1 AddCommandDependency 9-13

9.1.6.2 RemoveRegistration 9-14

9.1.7 OracleDependency Events 9-15
9.1.7.1 OnChange 9-15

9.2 OracleNotificationRequest Class 9-15
9.2.1 OracleNotificationRequest Members 9-16
9.2.2 OracleNotificationRequest Static Methods 9-17

ORACLE XXVii

9.2.3 OracleNotificationRequest Properties 9-17
9.2.3.1 IsNotifiedOnce 9-17

9.2.3.2 IsPersistent 9-18

9.2.3.3 Timeout 9-18

9.2.3.4 GroupingNotificationEnabled 9-19

9.2.3.5 GroupingType 9-19

9.2.3.6 Groupinginterval 9-20

9.2.4 OracleNotificationRequest Methods 9-20
9.3 OracleNotificationEventArgs Class 9-20
9.3.1 OracleNotificationEventArgs Members 9-21
9.3.2 OracleNotificationEventArgs Static Fields 9-22
9.3.3 OracleNotificationEventArgs Static Methods 9-22
9.3.4 OracleNotificationEventArgs Properties 9-22
9.3.4.1 Details 9-23

9.3.4.2 Info 9-24

9.3.4.3 ResourceNames 9-24

9.3.4.4 Source 9-24

9.3.45 Type 9-26

9.3.5 OracleNotificationEventArgs Methods 9-26
9.4 OnChangeEventHandler Delegate 9-26
9.5 OracleRowidlnfo Enumeration 9-27
9.6 OracleNotificationType Enumeration 9-27
9.7 OracleNotificationSource Enumeration 9-28
9.8 OracleNotificationinfo Enumeration 9-28

10 Oracle Data Provider for .NET Globalization Classes

10.1 OracleGlobalization Class 10-1
10.1.1 OracleGlobalization Members 10-2
10.1.2 OracleGlobalization Static Methods 10-3
10.1.2.1 GetClientinfo 10-4
10.1.2.2 GetClientInfo() 10-4
10.1.2.3 GetClientInfo(OracleGlobalization) 10-5
10.1.2.4 GetThreadinfo 10-5
10.1.2.5 GetThreadinfo() 10-6
10.1.2.6 GetThreadInfo(OracleGlobalization) 10-7
10.1.2.7 SetThreadInfo 10-7

10.1.3 OracleGlobalization Properties 10-8
10.1.3.1 Calendar 10-9
10.1.3.2 ClientCharacterSet 10-10
10.1.3.3 Comparison 10-10

ORACLE

XXV

10.1.3.4 Currency 10-10
10.1.3.5 DateFormat 10-11
10.1.3.6 DateLanguage 10-11
10.1.3.7 DualCurrency 10-11
10.1.3.8 ISOCurrency 10-12
10.1.3.9 Language 10-12
10.1.3.10 LengthSemantics 10-13
10.1.3.11 NCharConversionException 10-13
10.1.3.12 NumericCharacters 10-14
10.1.3.13 Sort 10-14
10.1.3.14 Territory 10-14
10.1.3.15 TimeStampFormat 10-15
10.1.3.16 TimeStampTZFormat 10-15
10.1.3.17 TimeZone 10-15

10.1.4 OracleGlobalization Public Methods 10-16
10.1.4.1 Clone 10-16
10.1.4.2 Dispose 10-17

11 Oracle Data Provider for .NET Failover Classes

11.1 OracleFailoverEventArgs Class 11-1
11.1.1 OracleFailoverEventArgs Members 11-3
11.1.2 OracleFailoverEventArgs Static Methods 11-4
11.1.3 OracleFailoverEventArgs Properties 11-4
11.1.3.1 FailoverType 11-4
11.1.3.2 FailoverEvent 11-4

11.1.4 OracleFailoverEventArgs Public Methods 11-4
11.2 OracleFailoverEventHandler Delegate 11-5
11.3 FailoverEvent Enumeration 11-6
11.4 FailoverReturnCode Enumeration 11-6
11.5 FailoverType Enumeration 11-7

12 Oracle Database Advanced Queuing Classes

12.1 OracleAQAgent Class 12-1
12.1.1 OracleAQAgent Members 12-2
12.1.2 OracleAQAgent Constructors 12-2
12.1.2.1 OracleAQAgent (string) 12-3
12.1.2.2 OracleAQAgent (string, string) 12-3

12.1.3 OracleAQAgent Properties 12-4
12.1.3.1 Address 12-4

ORACLE

XXiX

12.1.3.2

Name

12.2 OracleAQDequeueOptions Class

12.2.1 OracleAQDequeueOptions Members

12.2.2 OracleAQDequeueOptions Constructor

12.2.3 OracleAQDequeueOptions Properties

12.2.31
12.2.3.2
12.2.3.3
12.2.3.4
12.2.35
12.2.3.6
12.2.3.7
12.2.3.8
12.2.3.9

12.2.4 OracleAQDequeueOptions Public Methods

12.2.4.1

ConsumerName
Correlation
DeliveryMode
DequeueMode
Messageld
NavigationMode
ProviderSpecificType
Visibility

Wait

Clone

12.3 OracleAQENnqueueOptions Class

12.3.1 OracleAQEnqueueOptions Members

12.3.2 OracleAQEnqueueOptions Constructor

12.3.3 OracleAQENnqueueOptions Properties

12.3.3.1
12.3.3.2

12.3.4 OracleAQEnqueueOptions Public Methods

12.34.1

DeliveryMode
Visibility

Clone

12.4 OracleAQMessage Class
12.4.1 OracleAQMessage Members
12.4.2 OracleAQMessage Constructors

12421
12.4.2.2

OracleAQMessage()
OracleAQMessage(Object)

12.4.3 OracleAQMessage Properties

12431
12.4.3.2
12.4.3.3
12.4.3.4
12.4.35
12.4.3.6
12.4.3.7
12.4.3.8
12.4.3.9
12.4.3.10
12.4.3.11

ORACLE

Correlation
Delay
DeliveryMode
DequeueAttempts
EnqueueTime
ExceptionQueue
Expiration
Messageld
OriginalMessageld
Payload
Priority

12-4

12-5

12-5

12-6

12-6

12-7

12-7

12-8

12-8

12-9

12-9
12-10
12-10
12-11
12-11
12-11
12-12
12-12
12-13
12-13
12-13
12-14
12-14
12-15
12-15
12-16
12-17
12-17
12-17
12-18
12-19
12-19
12-20
12-20
12-20
12-21
12-21
12-22
12-22
12-22
12-23

XXX

12.4.3.12 Recipients 12-23

12.4.3.13 Senderld 12-23
12.4.3.14 State 12-24
12.4.3.15 TransactionGroup 12-24
12.5 OracleAQMessageAvailableEventArgs Class 12-24
12.5.1 OracleAQMessageAvailableEventArgs Members 12-25
12.5.2 OracleAQMessageAvailableEventArgs Constructor 12-26
12.5.3 OracleAQMessageAvailableEventArgs Properties 12-26
12.5.3.1 AvailableMessages 12-27
12.5.3.2 ConsumerName 12-28
12.5.3.3 Correlation 12-28
12.5.3.4 Delay 12-28
12.5.3.5 DeliveryMode 12-28
12.5.3.6 EnqueueTime 12-29
12.5.3.7 ExceptionQueue 12-29
12.5.3.8 Expiration 12-29
12.5.3.9 Messageld 12-30
12.5.3.10 NotificationType 12-30
12.5.3.11 OriginalMessageld 12-30
12.5.3.12 Priority 12-30
12.5.3.13 QueueName 12-31
12.5.3.14 Senderld 12-31
12.5.3.15 State 12-31
12.6 OracleAQMessageAvailableEventHandler Delegate 12-31
12.7 OracleAQQueue Class 12-32
12.7.1 OracleAQQueue Members 12-32
12.7.2 OracleAQQueue Constructors 12-34
12.7.2.1 OracleAQQueue(string) 12-34
12.7.2.2 OracleAQQueue(string, OracleConnection) 12-35

12.7.2.3 OracleAQQueue(string, OracleConnection,
OracleAQMessageType) 12-36

12.7.2.4 OracleAQQueue(string, OracleConnection,
OracleAQMessageType, string) 12-36
12.7.3 OracleAQQueue Static Methods 12-37
12.7.3.1 Listen 12-37
12.7.3.2 Listen(OracleConnection, OracleAQAgent|]) 12-38
12.7.3.3 Listen(OracleConnection, OracleAQAgent|], int) 12-38
12.7.4 OracleAQQueue Properties 12-39
12.7.4.1 Connection 12-40
12.7.4.2 DequeueOptions 12-40
12.7.4.3 EnqueueOptions 12-41
12.7.4.4 MessageType 12-41

ORACLE XXXi

12.7.4.5 Name 12-42
12.7.4.6 Notification 12-42
12.7.4.7 NotificationConsumers 12-43
12.7.4.8 UdtTypeName 12-43
12.7.5 OracleAQQueue Public Methods 12-44
12.7.5.1 Dequeue 12-44
12.7.5.2 Dequeue() 12-44
12.7.5.3 Dequeue(OracleAQDequeueOptions) 12-45
12.7.5.4 DequeueArray 12-46
12.7.5.5 DequeueArray(int) 12-46
12.7.5.6 DequeueArray(int, OracleAQDequeueOptions) 12-47
12.7.5.7 Dispose 12-48
12.7.5.8 Enqueue 12-48
12.7.5.9 Enqueue(OracleAQMessage) 12-48
12.7.5.10 Enqueue(OracleAQMessage, OracleAQEnqueueOptions) 12-49
12.7.5.11 EnqueueArray 12-50
12.7.5.12 EnqueueArray(OracleAQMessage[]) 12-50
12.7.5.13 EnqueueArray(OracleAQMessage|],
OracleAQEnqueueOptions) 12-51
12.7.5.14 Listen 12-52
12.7.5.15 Listen(string[]) 12-52
12.7.5.16 Listen (string[], int) 12-56
12.7.6 OracleAQQueue Events 12-57
12.7.6.1 MessageAvailable Event 12-57
12.8 OracleAQDequeueMode Enumeration 12-61
12.9 OracleAQMessageDeliveryMode Enumeration 12-61
12.10 OracleAQMessageState Enumeration 12-62
12.11 OracleAQMessageType Enumeration 12-63
12.12 OracleAQNavigationMode Enumeration 12-64
12.13 OracleAQNotificationGroupingType Enumeration 12-65
12.14 OracleAQNotificationType Enumeration 12-65
12.15 OracleAQVisibilityMode Enumeration 12-66
13 Oracle Data Provider for .NET Types Classes
13.1 OracleBFile Class 13-1
13.1.1 OracleBFile Members 13-3
13.1.2 OracleBFile Constructors 13-5
13.1.2.1 OracleBFile(OracleConnection) 13-6
13.1.2.2 OracleBFile(OracleConnection, string, string) 13-6
13.1.3 OracleBFile Static Fields 13-7
13.1.3.1 MaxSize 13-7

ORACLE

XXX

13.1.3.2

Null

13.1.4 OracleBFile Static Methods
13.1.5 OracleBFile Instance Properties

13.1.51
13.1.5.2
13.1.5.3
13.1.5.4
13.1.55
13.1.5.6
13.1.5.7
13.1.5.8
13.1.5.9
13.1.5.10
13.1.5.11
13.1.5.12
13.1.5.13

CanRead
CanSeek
CanWrite
Connection
DirectoryName
FileExists
FileName
ISEmpty
IsNull
IsOpen
Length
Position
Value

13.1.6 OracleBFile Instance Methods

13.1.6.1
13.1.6.2
13.1.6.3
13.1.6.4
13.1.6.5
13.1.6.6
13.1.6.7
13.1.6.8
13.1.6.9
13.1.6.10
13.1.6.11
13.1.6.12
13.1.6.13
13.1.6.14
13.1.6.15
13.1.6.16
13.1.6.17
13.1.6.18
13.1.6.19
13.1.6.20
13.1.6.21

Clone

Close

CloseFile

Compare

CopyTo
CopyTo(OracleBlob)
CopyTo(OracleBlob, Int64)

CopyTo(Int64, OracleBlob, Int64, Int64)

CopyTo(OracleClob)

CopyTo(OracleClob, Int64)
CopyTo(Int64, OracleClob, Int64, Int64)

Dispose
Flush
FlushAsync
IsEqual
OpenFile
Read
Search
Seek
SetLength
Write

13.2 OracleBlob Class
13.2.1 OracleBlob Members
13.2.2 OracleBlob Constructors

ORACLE

13-7

13-7

13-8

13-8

13-8

13-9

13-9

13-9
13-10
13-10
13-11
13-11
13-11
13-12
13-12
13-12
13-13
13-14
13-16
13-16
13-16
13-18
13-19
13-19
13-20
13-21
13-22
13-23
13-24
13-24
13-24
13-24
13-25
13-25
13-27
13-28
13-30
13-30
13-31
13-32
13-35

XXXiii

13.2.2.1
13.2.2.2

OracleBlob(OracleConnection)
OracleBlob(OracleConnection, bool)

13.2.3 OracleBlob Static Fields

13.2.3.1
13.2.3.2

MaxSize
Null

13.2.4 OracleBlob Static Methods

13.2.5

13.2.6

ORACLE

13.25.1
13.25.2
13.2.5.3
13.2.5.4
13.2.5.5
13.2.5.6
13.2.5.7
13.2.5.8
13.2.5.9
13.2.5.10
13.25.11
13.2.5.12

13.26.1
13.2.6.2
13.2.6.3
13.2.6.4
13.2.6.5
13.2.6.6
13.2.6.7
13.2.6.8
13.2.6.9
13.2.6.10
13.2.6.11
13.2.6.12
13.2.6.13
13.2.6.14
13.2.6.15
13.2.6.16
13.2.6.17
13.2.6.18
13.2.6.19
13.2.6.20
13.2.6.21

OracleBlob Instance Properties

CanRead

CanSeek

CanWrite

Connection

ISEmpty

IsInChunkWriteMode

ISNull

IsTemporary

Length
OptimumChunkSize
Position
Value

OracleBlob Instance Methods

Append
Append(OracleBlob)
Append(byte[], int, int)
BeginChunkWrite
Clone
Close
Compare
CopyTo
CopyTo(OracleBlob)
CopyTo(OracleBlob, Int64)
CopyTo(Int64, OracleBlob, Int64, Int64)
Dispose
EndChunkWrite
Erase
Erase()
Erase(Int64, Int64)
Flush
IsEqual
Read
Search
Seek

13-36
13-36
13-37
13-37
13-37
13-37
13-38
13-38
13-38
13-39
13-39
13-39
13-40
13-40
13-40
13-40
13-41
13-41
13-42
13-42
13-43
13-44
13-44
13-45
13-46
13-47
13-47
13-48
13-48
13-49
13-50
13-52
13-52
13-52
13-53
13-53
13-53
13-54
13-54
13-56
13-57

XXXIV

13.2.6.22 SetlLength 13-58

13.2.6.23 Write 13-59
13.3 OracleClob Class 13-60
13.3.1 OracleClob Members 13-62
13.3.2 OracleClob Constructors 13-65
13.3.2.1 OracleClob(OracleConnection) 13-65
13.3.2.2 OracleClob(OracleConnection, bool, bool) 13-66
13.3.3 OracleClob Static Fields 13-66
13.3.3.1 MaxSize 13-66
13.3.3.2 Null 13-67
13.3.4 OracleClob Static Methods 13-67
13.3.5 OracleClob Instance Properties 13-67
13.3.5.1 CanRead 13-68
13.3.5.2 CanSeek 13-68
13.3.5.3 CanWrite 13-68
13.3.5.4 Connection 13-69
13.3.5.5 ISsEmpty 13-69
13.3.5.6 IsInChunkWriteMode 13-69
13.3.5.7 IsNClob 13-70
13.3.5.8 IsNull 13-70
13.3.5.9 IsTemporary 13-70
13.3.5.10 Length 13-70
13.3.5.11 OptimumChunkSize 13-71
13.3.5.12 Position 13-71
13.3.5.13 Value 13-72
13.3.6 OracleClob Instance Methods 13-72
13.3.6.1 Append 13-73
13.3.6.2 Append(OracleClob) 13-74
13.3.6.3 Append(byte [], int, int) 13-74
13.3.6.4 Append(char [], int, int) 13-75
13.3.6.5 BeginChunkWrite 13-76
13.3.6.6 Clone 13-76
13.3.6.7 Close 13-77
13.3.6.8 Compare 13-78
13.3.6.9 CopyTo 13-79
13.3.6.10 CopyTo(OracleClob) 13-79
13.3.6.11 CopyTo(OracleClob, Int64) 13-80
13.3.6.12 CopyTo(Int64, OracleClob, Int64, Int64) 13-80
13.3.6.13 Dispose 13-82
13.3.6.14 EndChunkWrite 13-82
13.3.6.15 Erase 13-83

ORACLE' -

13.3.6.16 Erase() 13-83
13.3.6.17 Erase(Int64, Int64) 13-83
13.3.6.18 Flush 13-84
13.3.6.19 GetHashCode 13-84
13.3.6.20 IsEqual 13-84
13.3.6.21 Read 13-85
13.3.6.22 Read(byte [], int, int) 13-85
13.3.6.23 Read(char [], int, int) 13-86
13.3.6.24 Search 13-87
13.3.6.25 Search(byte[], Int64, Int64) 13-88
13.3.6.26 Search(char[], Int64, Int64) 13-88
13.3.6.27 Seek 13-90
13.3.6.28 SetlLength 13-91
13.3.6.29 Write 13-91
13.3.6.30 Write(byte[], int, int) 13-92
13.3.6.31 Write(char][], int, int) 13-92
13.4 OracleRefCursor Class 13-94
13.4.1 OracleRefCursor Members 13-96
13.4.2 OracleRefCursor Static Methods 13-97
13.4.3 OracleRefCursor Static Fields 13-97
13.4.3.1 Null 13-98
13.4.4 OracleRefCursor Properties 13-98
13.4.4.1 Connection 13-98
13.4.4.2 FetchSize 13-99
13.4.4.3 IsNull 13-100
13.4.4.4 RowsSize 13-100
13.4.5 OracleRefCursor Instance Methods 13-101
13.4.5.1 Dispose 13-101
13.45.2 GetDataReader 13-101
14 Oracle Data Provider for .NET Types Structures

14.1 OracleBinary Structure 14-1
14.1.1 OracleBinary Members 14-2
14.1.2 OracleBinary Constructor 14-4
14.1.3 OracleBinary Static Fields 14-5
14.1.3.1 Null 14-5
14.1.4 OracleBinary Static Methods 14-5
14.1.41 Concat 14-5
14.1.4.2 Equals 14-6
14.1.4.3 GetXsdType 14-7

ORACLE

XXXVI

14.1.4.4
14.1.45
14.1.4.6
14.1.4.7
14.1.4.8

GreaterThan
GreaterThanOrEqual
LessThan
LessThanOrEqual
NotEquals

14.1.5 OracleBinary Static Operators

14.1.5.2
14.15.3
14.1.54
14.1.55
14.1.5.6
14.1.5.7

14.1.6 OracleBinary Static Type Conversion Operators

14.16.1
14.1.6.2

operator ==
operator >
operator >=
operator !=
operator <
operator <=

explicit operator byte|[]

implicit operator OracleBinary

14.1.7 OracleBinary Properties

14171
14.1.7.2
14.1.7.3
14.1.7.4

14.1.8 OracleBinary Instance Methods

14.1.8.1
14.1.8.2
14.1.8.3
14.1.8.4

ISNull
Item
Length
Value

CompareTo
Equals
GetHashCode
ToString

14.2 OracleBoolean Structure

14.2.1 OracleBoolean Members

14.2.2 OracleBoolean Constructors

14221
14.2.2.2

OracleBoolean(bool)
OracleBoolean(int)

14.2.3 OracleBoolean Static Fields

14231
14.2.3.2
14.2.3.3
14.2.3.4
14.2.3.5

False
Null
One
True
Zero

14.2.4 OracleBoolean Static Methods

14241
14.2.4.2
14.2.4.3
14.2.4.4

ORACLE

And

Equals

GreaterThan
GreaterThanOrEquals

14-7
14-8
14-8
14-9

14-10

14-10

14-11

14-11

14-12

14-13

14-13

14-14

14-14

14-14

14-15

14-15

14-15

14-16

14-16

14-17

14-17

14-18

14-19

14-19

14-19

14-20

14-21

14-24

14-24

14-24

14-25

14-25

14-25

14-25

14-26

14-26

14-26

14-27

14-27

14-28

14-28

XXXVii

14.2.4.5 LessThan
14.2.4.6 LessThanOrEquals
14.2.4.7 NotEquals
14.2.4.8 OnesComplement
14.2.49 Or
14.2.4.10 Parse
14.2.4.11 Xor
14.2.,5 OracleBoolean Static Operators
14.2.5.1 operator >
14.2.5.2 operator >=
14.2.5.3 operator <
14.2.5.4 operator <=
14.2.5.5 operator ==
14.2.5.6 operator !=
14.2.5.7 operator!
14.2.5.8 operator ~
14.2.5.9 operator false
14.2.5.10 operator true
14.2.5.11 operator &
14.2.5.12 operator |
14.2.5.13 operator »
14.2.6 OracleBoolean Static Type Conversions
14.2.6.1 implicit operator OracleBoolean
14.2.6.2 explicit operator bool
14.2.6.3 explicit operator OracleBoolean
14.2.6.4 explicit operator OracleBoolean(byte)
14.2.6.5 explicit operator OracleBoolean(Decimal)
14.2.6.6 explicit operator OracleBoolean(Double)
14.2.6.7 explicit operator OracleBoolean(Int16)
14.2.6.8 explicit operator OracleBoolean(int)
14.2.6.9 explicit operator OracleBoolean(Int64)
14.2.6.10 explicit operator OracleBoolean(Single)
14.2.6.11 explicit operator OracleBoolean(String)
14.2.7 OracleBoolean Properties
14.2.7.1 ByteValue
14.2.7.2 IsFalse
14.2.7.3 IsNull
14.2.7.4 IsTrue
14.2.7.5 Value

14.2.8 OracleBoolean Instance Methods

14.2.8.1

ORACLE

CompareTo

14-29
14-29
14-30
14-30
14-31
14-31
14-32
14-32
14-33
14-34
14-34
14-35
14-35
14-36
14-36
14-37
14-37
14-37
14-38
14-38
14-39
14-39
14-40
14-40
14-41
14-41
14-41
14-42
14-42
14-42
14-43
14-43
14-43
14-44
14-44
14-44
14-45
14-45
14-45
14-46
14-46

XXXVl

14.2.8.2
14.2.8.3
14.2.8.4

Equals
GetHashCode
ToString

14.3 OracleDate Structure
14.3.1 OracleDate Members
14.3.2 OracleDate Constructors

14321
14.3.2.2
14.3.2.3
14.3.2.4
14.3.25

OracleDate(DateTime)
OracleDate(string)
OracleDate(int, int, int)
OracleDate(int, int, int, int, int, int)
OracleDate(byte [])

14.3.3 OracleDate Static Fields

14.3.3.1
14.3.3.2
14.3.3.3

MaxValue
MinValue
Null

14.3.4 OracleDate Static Methods

14341
14.3.4.2
14.3.4.3
14.3.4.4
14.3.4.5
14.3.4.6
14.3.4.7
14.3.4.8

Equals

GreaterThan
GreaterThanOrEqual
LessThan
LessThanOrEqual
NotEquals
GetSysDate

Parse

14.3.5 OracleDate Static Operators

14351
14.3.5.2
14.3.5.3
14354
14.3.5.5
14.3.5.6

operator ==
operator >
operator >=
operator !=
operator <
operator <=

14.3.6 OracleDate Static Type Conversions

14.3.6.1
14.3.6.2
14.3.6.3
14.3.6.4
14.3.6.5

explicit operator DateTime

explicit operator OracleDate

explicit operator OracleDate(DateTime)

explicit operator OracleDate(OracleTimeStamp)
explicit operator OracleDate(string)

14.3.7 OracleDate Properties

14.3.7.1
14.3.7.2
14.3.7.3

ORACLE

BinData
Day
IsNull

14-47
14-47
14-48
14-48
14-49
14-52
14-52
14-52
14-54
14-54
14-55
14-55
14-55
14-56
14-56
14-56
14-57
14-57
14-58
14-58
14-59
14-59
14-60
14-60
14-61
14-62
14-62
14-63
14-63
14-64
14-65
14-65
14-65
14-66
14-66
14-66
14-67
14-68
14-69
14-69
14-69

XXXiX

14.3.8

14.3.7.4
14.3.7.5
14.3.7.6
14.3.7.7
14.3.7.8
14.3.7.9

14.3.8.1
14.3.8.2
14.3.8.3
14.3.8.4
14.3.8.5
14.3.8.6

Hour
Minute
Month
Second
Value
Year

OracleDate Methods

CompareTo

Equals
GetHashCode
GetDaysBetween
ToOracleTimeStamp
ToString

14.4 OracleDecimal Structure

14.4.1
14.4.2

14421
14.4.2.2
14.4.2.3
14.4.2.4
14.4.2.5
14.4.2.6
14.4.2.7
14.4.2.8

OracleDecimal Members
OracleDecimal Constructors

OracleDecimal(byte [])
OracleDecimal(decimal)
OracleDecimal(double)
OracleDecimal(int)
OracleDecimal(float)
OracleDecimal(long)
OracleDecimal(string)
OracleDecimal(string, string)

14.4.3 OracleDecimal Static Fields

ORACLE

14431
14.4.3.2
14.4.3.3
14.4.3.4
14.4.3.5
14.4.3.6
14.4.3.7
14.4.3.8
14.4.3.9

MaxPrecision
MaxScale
MaxValue
MinScale
MinValue
NegativeOne
Null

One

Pi

14.4.3.10 Zero
14.4.4 OracleDecimal Static (Comparison) Methods

14441
14.4.4.2
14.4.4.3
14.4.4.4
14.4.45

Equals

GreaterThan
GreaterThanOrEqual
LessThan
LessThanOrEqual

14-69
14-70
14-70
14-70
14-71
14-71
14-71
14-72
14-73
14-73
14-73
14-74
14-74
14-75
14-77
14-82
14-83
14-84
14-84
14-84
14-85
14-85
14-85
14-86
14-87
14-87
14-88
14-88
14-88
14-88
14-88
14-89
14-89
14-89
14-89
14-89
14-90
14-90
14-91
14-91
14-92

Xl

14.4.4.6 NotEquals
14.4.,5 OracleDecimal Static (Manipulation) Methods
14.45.1 Abs
14452 Add
14.4.5.3 AdjustScale
14.45.4 Ceiling
14.45.5 ConvertToPrecScale
14.45.6 Divide
14.45.7 Floor
14.45.8 Max
14459 Min
14.45.10 Mod
14.4.5.11 Multiply
14.45.12 Negate
14.45.13 Parse
14.45.14 Round
14.45.15 SetPrecision
14.45.16 Shift
14.45.17 Sign
14.45.18 Sart
14.45.19 Subtract
14.4.5.20 Truncate
14.4.6 OracleDecimal Static (Logarithmic) Methods
14.4.6.1 Exp
14.46.2 Log
14.4.6.3 Log(OracleDecimal)
14.4.6.4 Log(OracleDecimal, int)
14.4.6.5 Log(OracleDecimal, OracleDecimal)
14.46.6 Pow
14.4.6.7 Pow(OracleDecimal, int)
14.4.6.8 Pow(OracleDecimal, OracleDecimal)
14.4.7 OracleDecimal Static (Trigonometric) Methods
14471 Acos
14.47.2 Asin
14.4.7.3 Atan
14.4.7.4 Atan2
14475 Cos
14476 Sin
14.4.7.7 Tan
14.47.8 Cosh
14.47.9 Sinh
ORACLE

14-93

14-93

14-94

14-95

14-95

14-96

14-97

14-98

14-98

14-98

14-99

14-99
14-100
14-100
14-101
14-101
14-102
14-103
14-103
14-104
14-104
14-105
14-105
14-105
14-106
14-106
14-107
14-107
14-108
14-108
14-109
14-109
14-110
14-110
14-111
14-111
14-112
14-112
14-113
14-113
14-114

xli

14.4.7.10

Tanh

14.4.8 OracleDecimal Static (Comparison) Operators

14.4.8.1
14.4.8.2
14.4.8.3
14.4.8.4
14.4.8.5
14.4.8.6
14.4.8.7
14.4.8.8
14.4.8.9
14.4.8.10
14.4.8.11
14.4.8.12

operator +
operator /
operator ==
operator >
operator >=
operator !=
operator <
operator <=
operator *
operator -
operator -
operator%

14.4.9 OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

14.4.9.1 implicit operator OracleDecimal
14.4.9.2 implicit operator OracleDecimal(decimal)
14.4.9.3 implicit operator OracleDecimal(int)
14.4.9.4 implicit operator OracleDecimal(long)
14.4.9.5 explicit operator OracleDecimal
14.49.6 explicit operator OracleDecimal(double)
14.4.9.7 explicit operator OracleDecimal(string)
14.4.10 OracleDecimal Static Operators (Conversion from OracleDecimal
to .NET)
14.4.10.1 explicit operator byte
14.4.10.2 explicit operator decimal
14.4.10.3 explicit operator double
14.4.10.4 explicit operator short
14.4.10.5 explicit operator int
14.4.10.6 explicit operator long
14.4.10.7 explicit operator float
14.4.11 OracleDecimal Properties
14.4.11.1 BinData
14.4.11.2 Format
14.4.11.3 IsInt
14.4.11.4 IsNull
14.4.11.5 IsPositive
14.4.11.6 IsZero
14.4.11.7 Value

14.4.12 OracleDecimal Instance Methods

14.4.12.1

ORACLE

CompareTo

14-114
14-114
14-115
14-115
14-116
14-116
14-117
14-118
14-118
14-119
14-119
14-120
14-120
14-121

14-121
14-121
14-122
14-122
14-122
14-123
14-123
14-123

14-124
14-124
14-125
14-125
14-126
14-126
14-127
14-127
14-127
14-128
14-128
14-129
14-129
14-129
14-130
14-130
14-130
14-131

xlii

14.4.12.2 Equals 14-132

14.4.12.3 GetHashCode 14-132
14.4.12.4 ToByte 14-133
14.4.12.5 ToDouble 14-133
14.4.12.6 TolIntl6 14-133
14.4.12.7 Tolnt32 14-134
14.4.12.8 Tolnt64 14-134
14.4.12.9 ToSingle 14-134
14.4.12.10 ToString 14-135
14.5 OraclelntervalDS Structure 14-135
145.1 OraclelntervalDS Members 14-137
14.5.2 OraclelntervalDS Constructors 14-140
14.5.2.1 OraclelntervalDS(TimeSpan) 14-141
14.5.2.2 OraclelntervalDS(string) 14-141
14.5.2.3 OraclelntervalDS(double) 14-141
14.5.2.4 OraclelntervalDS(int, int, int, int, double) 14-142
14.5.2.5 OracleIntervalDS(int, int, int, int, int) 14-143
14.5.2.6 OracleIntervalDS(byte[]) 14-143
14.5.3 OraclelntervalDS Static Fields 14-144
145.3.1 MaxValue 14-144
14.5.3.2 MinValue 14-144
14.5.3.3 Null 14-145
145.3.4 Zero 14-145
14.5.4 OraclelntervalDS Static Methods 14-145
145.4.1 Equals 14-146
145.4.2 GreaterThan 14-146
145.4.3 GreaterThanOrEqual 14-147
14.5.4.4 LessThan 14-148
14.5.45 LessThanOrEqual 14-148
145.4.6 NotEquals 14-149
145.4.7 Parse 14-149
14.5.4.8 SetPrecision 14-150
14.5.,5 OraclelntervalDS Static Operators 14-151
14.5.5.1 operator + 14-151
145.5.2 operator == 14-152
14.5.5.3 operator > 14-152
14.5.5.4 operator >= 14-153
14.5.5.5 operator != 14-153
14.55.6 operator < 14-154
14.5.5.7 operator <= 14-155
14.5.5.8 operator - 14-155

ORACLE xliii

14.5.5.9 operator - 14-156

14.5.5.10 operator * 14-156
145.5.11 operator / 14-157
14.5.6 OraclelntervalDS Type Conversions 14-157
14.5.6.1 explicit operator TimeSpan 14-157
14.5.6.2 explicit operator OraclelntervalDS 14-158
14.5.6.3 implicit operator OraclelntervalDS 14-158
14.5.7 OraclelntervalDS Properties 14-159
14.5.7.1 BinData 14-159
145.7.2 Days 14-160
14.5.7.3 Hours 14-160
14.5.7.4 IsNull 14-160
14.5.7.5 Milliseconds 14-161
145.7.6 Minutes 14-161
14.5.7.7 Nanoseconds 14-161
14.5.7.8 Seconds 14-162
145.7.9 TotalDays 14-162
14.5.7.10 Value 14-162
14.5.8 OraclelntervalDS Methods 14-162
145.8.1 CompareTo 14-163
145.8.2 Equals 14-164
145.8.3 GetHashCode 14-164
14.5.8.4 ToString 14-164
14.6 OraclelntervalYM Structure 14-165
14.6.1 OraclelntervalYM Members 14-166
14.6.2 OraclelntervalYM Constructors 14-169
14.6.2.1 OraclelntervalYM(long) 14-169
14.6.2.2 OraclelntervalYM(string) 14-170
14.6.2.3 OraclelntervalYM(double) 14-170
14.6.2.4 Oraclelnterval YM(int, int) 14-171
14.6.2.5 OraclelntervalYM(byte[]) 14-171
14.6.3 OraclelntervalYM Static Fields 14-172
14.6.3.1 MaxValue 14-172
14.6.3.2 MinValue 14-172
14.6.3.3 Null 14-172
14.6.3.4 Zero 14-173
14.6.4 OraclelntervalYM Static Methods 14-173
14.6.4.1 Equals 14-173
14.6.4.2 GreaterThan 14-174
14.6.4.3 GreaterThanOrEqual 14-174
14.6.4.4 LessThan 14-175

ORACLE xliv

14.6.5

14.6.7

14.6.8

14.7

14.7.1
14.7.2

ORACLE

14.6.4.5
14.6.4.6
14.6.4.7
14.6.4.8

14.6.5.1
14.6.5.2
14.6.5.3
14.6.5.4
14.6.5.5
14.6.5.6
14.6.5.7
14.6.5.8
14.6.5.9

14.6.5.10
14.6.5.11
14.6.6

14.6.6.1
14.6.6.2
14.6.6.3

14.6.7.1
14.6.7.2
14.6.7.3
14.6.7.4
14.6.7.5
14.6.7.6

14.6.8.1
14.6.8.2
14.6.8.3
14.6.8.4

LessThanOrEqual
NotEquals

Parse
SetPrecision

OraclelntervalYM Static Operators

operator +
operator ==
operator >
operator >=
operator !=
operator <
operator <=
operator -
operator -
operator *
operator /

OraclelntervalYM Type Conversions

explicit operator long
explicit operator OraclelntervalYM
implicit operator OraclelntervalYM

OraclelntervalYM Properties

BinData
ISNull
Months
TotalYears
Value
Years

OraclelntervalYM Methods

CompareTo
Equals
GetHashCode
ToString

OracleString Structure

14.7.2.1
14.7.2.2
14.7.2.3
14.7.2.4
14.7.2.5
14.7.2.6

OracleString Members
OracleString Constructors

OracleString(string)
OracleString(string, bool)
OracleString(byte [], bool)
OracleString(byte [], bool, bool)
OracleString(byte [], int, int, bool)

OracleString(byte [], int, int, bool, bool)

14-176
14-176
14-177
14-177
14-178
14-178
14-179
14-180
14-180
14-181
14-181
14-182
14-182
14-183
14-183
14-184
14-184
14-185
14-185
14-186
14-186
14-186
14-187
14-187
14-187
14-188
14-188
14-188
14-189
14-189
14-190
14-190
14-191
14-192
14-195
14-195
14-196
14-196
14-196
14-197
14-198

xIv

14.7.3 OracleString Static Fields

14.7.3.1 Null
14.7.4 OracleString Static Methods
14.7.4.1 Concat
14.7.4.2 Equals
14.7.4.3 GreaterThan
14.7.4.4 GreaterThanOrEqual
14.7.45 LessThan
14.7.4.6 LessThanOrEqual
14.7.4.7 NotEquals
14.7.5 OracleString Static Operators
14.7.5.1 operator +
14.7.5.2 operator ==
14.7.5.3 operator >
14.7.5.4 operator >=
14.7.5.5 operator !=
14.7.5.6 operator <
14.7.5.7 operator <=
14.7.6 OracleString Type Conversions
14.7.6.1 explicit operator string
14.7.6.2 implicit operator OracleString
14.7.7 OracleString Properties
14.7.7.1 IsCaselgnored
14.7.7.2 IsNull
14.7.7.3 ltem
14.7.7.4 Length
14.7.7.5 Value
14.7.8 OracleString Methods
14.7.8.1 Clone
14.7.8.2 CompareTo
14.7.8.3 Equals
14.7.8.4 GetHashCode
14.7.8.5 GetNonUnicodeBytes
14.7.8.6 GetUnicodeBytes
14.7.8.7 ToString

14.8 OracleTimeStamp Structure

14.8.1 OracleTimeStamp Members

14.8.2 OracleTimeStamp Constructors

14.8.2.1
14.8.2.2
14.8.2.3

ORACLE

OracleTimeStamp(DateTime)
OracleTimeStamp(string)
OracleTimeStamp(int, int, int)

14-198
14-199
14-199
14-199
14-200
14-200
14-201
14-201
14-202
14-203
14-203
14-204
14-204
14-205
14-205
14-206
14-206
14-207
14-207
14-208
14-208
14-208
14-209
14-210
14-210
14-210
14-211
14-211
14-211
14-212
14-213
14-213
14-214
14-214
14-214
14-215
14-216
14-220
14-220
14-221
14-222

XIvi

14.8.2.4 OracleTimeStamp(int, int, int, int, int, int)
14.8.2.5 OracleTimeStamp(int, int, int, int, int, int, double)
14.8.2.6 OracleTimeStamp(int, int, int, int, int, int, int)
14.8.2.7 OracleTimeStamp(byte [])
14.8.3 OracleTimeStamp Static Fields
14.8.3.1 MaxValue
14.8.3.2 MinValue
14.8.3.3 Null
14.8.4 OracleTimeStamp Static Methods
14.8.4.1 Equals
14.8.4.2 GreaterThan
14.8.4.3 GreaterThanOrEqual
14.8.4.4 LessThan
14.8.4.5 LessThanOrEqual
14.8.4.6 NotEquals
14.8.4.7 GetSysDate
14.8.4.8 Parse
14.8.4.9 SetPrecision
14.8.5 OracleTimeStamp Static Operators
14.8.5.1 operator +
14.8.5.2 operator + (OracleTimeStamp, OraclelntervalDS)
14.8.5.3 operator + (OracleTimeStamp, OraclelntervalYM)
14.8.5.4 operator + (OracleTimeStamp, TimeSpan)
14.8.5.5 operator ==
14.8.5.6 operator >
14.8.5.7 operator >=
14.8.5.8 operator !=
14.8.5.9 operator <
14.8.5.10 operator <=
14.8.5.11 operator -
14.8.5.12 operator - (OracleTimeStamp, OraclelntervalDS)
14.8.5.13 operator - (OracleTimeStamp, OraclelntervalYM)
14.8.5.14 operator - (OracleTimeStamp, TimeSpan)
14.8.6 OracleTimeStamp Static Type Conversions
14.8.6.1 explicit operator OracleTimeStamp
14.8.6.2 explicit operator OracleTimeStamp(OracleTimeStampLTZ)
14.8.6.3 explicit operator OracleTimeStamp(OracleTimeStampTZ)
14.8.6.4 explicit operator OracleTimeStamp(string)
14.8.6.5 implicit operator OracleTimeStamp
14.8.6.6 implicit operator OracleTimeStamp(OracleDate)
14.8.6.7 implicit operator OracleTimeStamp(DateTime)

ORACLE

14-222
14-223
14-224
14-225
14-225
14-225
14-225
14-226
14-226
14-226
14-227
14-228
14-228
14-229
14-229
14-230
14-230
14-231
14-232
14-232
14-233
14-233
14-234
14-234
14-235
14-235
14-236
14-237
14-237
14-238
14-238
14-239
14-239
14-240
14-240
14-240
14-241
14-241
14-242
14-243
14-243

xIvii

14.8.6.8 explicit operator DateTime

14.8.7 OracleTimeStamp Properties

14.8.7.1 BinData
14.8.7.2 Day
14.8.7.3 IsNull
14.8.7.4 Hour
14.8.7.5 Millisecond
14.8.7.6 Minute
14.8.7.7 Month
14.8.7.8 Nanosecond
14.8.7.9 Second
14.8.7.10 Value
14.8.7.11 Year

14.8.8 OracleTimeStamp Methods

14.9

14.8.8.1 AddDays

14.8.8.2 AddHours

14.8.8.3 AddMilliseconds

14.8.8.4 AddMinutes

14.8.8.5 AddMonths

14.8.8.6 AddNanoseconds

14.8.8.7 AddSeconds

14.8.8.8 AddYears

14.8.8.9 CompareTo

14.8.8.10 Equals

14.8.8.11 GetHashCode

14.8.8.12 GetDaysBetween

14.8.8.13 GetYearsBetween

14.8.8.14 ToOracleDate

14.8.8.15 ToOracleTimeStampLTZ

14.8.8.16 ToOracleTimeStampTZ

14.8.8.17 ToString
OracleTimeStampLTZ Structure

14.9.1 OracleTimeStampLTZ Members
14.9.2 OracleTimeStampLTZ Constructors

ORACLE

14.9.2.1 OracleTimeStampLTZ(DateTime)

14.9.2.2 OracleTimeStampLTZ(string)

14.9.2.3 OracleTimeStampLTZ(int, int, int)

14.9.2.4 OracleTimeStampLTZ(int, int, int, int, int, int)
14.9.2.5 OracleTimeStampLTZ(int, int, int, int, int, int, double)
14.9.2.6 OracleTimeStampLTZ(int, int, int, int, int, int, int)
14.9.2.7 OracleTimeStampLTZ(byte [])

14-243
14-244
14-244
14-245
14-245
14-245
14-246
14-246
14-246
14-247
14-247
14-247
14-247
14-248
14-249
14-249
14-250
14-250
14-250
14-251
14-251
14-252
14-252
14-253
14-254
14-254
14-254
14-255
14-255
14-255
14-256
14-257
14-258
14-262
14-263
14-263
14-264
14-265
14-266
14-266
14-267

xIviii

14.9.3 OracleTimeStampLTZ Static Fields

14931
14.9.3.2
14.9.3.3

MaxValue
MinValue
Null

14.9.4 OracleTimeStampLTZ Static Methods

149.4.1
14.9.4.2
14.9.4.3
14.9.4.4
14.9.4.5
14.9.4.6
14.9.4.7
14.9.4.8
14.9.4.9
14.9.4.10
14.9.4.11

Equals
GetLocalTimeZoneName
GetLocalTimeZoneOffset
GetSysDate
GreaterThan
GreaterThanOrEqual
LessThan
LessThanOrEqual
NotEquals

Parse

SetPrecision

14.9.5 OracleTimeStampLTZ Static Operators

14.9.5.1
14.9.5.2
14.95.3
14954
14955
14.9.5.6
14.9.5.7
14.9.5.8
14.95.9
14.9.5.10
14.9.5.11
14.9.5.12
14.9.5.13
14.9.5.14

operator +
operator + (OracleTimeStampLTZ, OraclelntervalDS)
operator + (OracleTimeStampLTZ, OraclelntervalYM)
operator + (OracleTimeStampLTZ, TimeSpan)
operator ==
operator >
operator >=
operator !=
operator <
operator <=
operator -
operator - (OracleTimeStampLTZ, OraclelntervalDS)
operator - (OracleTimeStampLTZ, OraclelntervalYM)
operator - (OracleTimeStampLTZ, TimeSpan)

14.9.6 OracleTimeStampLTZ Static Type Conversions

14.9.6.1
14.9.6.2
14.9.6.3
14.9.6.4
14.9.6.5
14.9.6.6
14.9.6.7
14.9.6.8

explicit operator OracleTimeStampLTZ

explicit operator OracleTimeStampLTZ(OracleTimeStamp)
explicit operator OracleTimeStampLTZ(OracleTimeStampTZ)

explicit operator OracleTimeStampLTZ(string)
implicit operator OracleTimeStampLTZ

implicit operator OracleTimeStampLTZ(OracleDate)
implicit operator OracleTimeStampLTZ(DateTime)
explicit operator DateTime

14.9.7 OracleTimeStampLTZ Properties

ORACLE

14-268
14-268
14-268
14-268
14-269
14-269
14-270
14-270
14-270
14-270
14-271
14-272
14-272
14-273
14-273
14-275
14-275
14-276
14-276
14-277
14-277
14-278
14-278
14-279
14-279
14-280
14-281
14-281
14-282
14-282
14-283
14-283
14-283
14-284
14-284
14-285
14-286
14-286
14-287
14-287
14-287

xlix

14.9.7.1 BinData 14-288

14.9.7.2 Day 14-288
14.9.7.3 IsNull 14-289
14.9.7.4 Hour 14-289
14.9.7.5 Millisecond 14-289
14.9.7.6 Minute 14-289
14.9.7.7 Month 14-290
14.9.7.8 Nanosecond 14-290
14.9.7.9 Second 14-290
14.9.7.10 Value 14-291
149.7.11 VYear 14-291
14.9.8 OracleTimeStampLTZ Methods 14-291
14.9.8.1 AddDays 14-292
14.9.8.2 AddHours 14-293
14.9.8.3 AddMilliseconds 14-293
14.9.8.4 AddMinutes 14-294
14.9.8.5 AddMonths 14-294
14.9.8.6 AddNanoseconds 14-295
14.9.8.7 AddSeconds 14-295
14.9.8.8 AddYears 14-295
14.9.8.9 CompareTo 14-296
14.9.8.10 Equals 14-297
14.9.8.11 GetHashCode 14-297
14.9.8.12 GetDaysBetween 14-298
14.9.8.13 GetYearsBetween 14-298
14.9.8.14 ToOracleDate 14-298
14.9.8.15 ToOracleTimeStamp 14-299
14.9.8.16 ToOracleTimeStampTZ 14-299
14.9.8.17 ToString 14-300
14.9.8.18 ToUniversalTime 14-301
14.10 OracleTimeStampTZ Structure 14-301
14.10.1 OracleTimeStampTZ Members 14-303
14.10.2 OracleTimeStampTZ Constructors 14-307
14.10.2.1 OracleTimeStampTZ(DateTime) 14-308
14.10.2.2 OracleTimeStampTZ(DateTime, string) 14-308
14.10.2.3 OracleTimeStampTZ(string) 14-309
14.10.2.4 OracleTimeStampTZ(int, int, int) 14-310
14.10.2.5 OracleTimeStampTZ(int, int, int, string) 14-311
14.10.2.6 OracleTimeStampTZ(int, int, int, int, int, int) 14-312
14.10.2.7 OracleTimeStampTZ(int, int, int, int, int, int, string) 14-313
14.10.2.8 OracleTimeStampTZ(int, int, int, int, int, int, double) 14-314

ORACLE

14.10.2.9 OracleTimeStampTZ(int, int, int, int, int, int, double, string)
14.10.2.10 OracleTimeStampTZ(int, int, int, int, int, int, int)
14.10.2.11 OracleTimeStampTZ(int, int, int, int, int, int, int, string)
14.10.2.12 OracleTimeStampTZ(byte [])

14.10.3 OracleTimeStampTZ Static Fields

14.10.3.1 MaxValue
14.10.3.2 MinValue
14.10.3.3 Null

14.10.4 OracleTimeStampTZ Static Methods

14.10.4.1 Equals

14.10.4.2 GetSysDate
14.10.4.3 GreaterThan
14.10.4.4 GreaterThanOrEqual
14.10.4.5 LessThan

14.10.4.6 LessThanOrEqual
14.10.4.7 NotEquals

14.10.4.8 Parse

14.10.4.9 SetPrecision

14.10.5 OracleTimeStampTZ Static Operators

14.10.5.1 operator +

14.10.5.2 operator +(OracleTimeStampTZ, OraclelntervalDS)
14.10.5.3 operator +(OracleTimeStampTZ, OraclelntervalYM)
14.10.5.4 operator +(OracleTimeStampTZ, TimeSpan)
14.10.5.5 operator ==

14.10.5.6 operator >

14.10.5.7 operator >=

14.10.5.8 operator =

14.10.5.9 operator <

14.10.5.10 operator <=

14.10.5.11 operator -

14.10.5.12 operator - (OracleTimeStampTZ, OraclelntervalDS)
14.10.5.13 operator - (OracleTimeStampTZ, OraclelntervalYM)
14.10.5.14 operator - (OracleTimeStampTZ valuel, TimeSpan value2)

14.10.6 OracleTimeStampTZ Static Type Conversions

ORACLE

14.10.6.1 explicit operator OracleTimeStampTZ

14.10.6.2 explicit operator OracleTimeStampTZ(OracleTimeStamp)
14.10.6.3 explicit operator OracleTimeStampTZ(OracleTimeStampLTZ)
14.10.6.4 explicit operator OracleTimeStampTZ(string)

14.10.6.5 implicit operator OracleTimeStampTZ

14.10.6.6 implicit operator OracleTimeStampTZ(OracleDate)

14.10.6.7 implicit operator OracleTimeStampTZ(DateTime)

14-315
14-316
14-317
14-318
14-318
14-318
14-319
14-319
14-319
14-320
14-320
14-321
14-321
14-322
14-322
14-323
14-323
14-325
14-325
14-326
14-326
14-327
14-327
14-328
14-328
14-329
14-329
14-330
14-331
14-331
14-332
14-332
14-333
14-333
14-333
14-334
14-334
14-335
14-336
14-336
14-337

14.10.6.8

explicit operator DateTime

14.10.7 OracleTimeStampTZ Properties

14.10.7.1
14.10.7.2
14.10.7.3
14.10.7.4
14.10.7.5
14.10.7.6
14.10.7.7
14.10.7.8
14.10.7.9
14.10.7.10
14.10.7.11
14.10.7.12

BinData

Day

IsNull

Hour

Millisecond

Minute

Month

Nanosecond

Second
TimeZone
Value
Year

14.10.8 OracleTimeStampTZ Methods

14.10.8.1
14.10.8.2
14.10.8.3
14.10.8.4
14.10.8.5
14.10.8.6
14.10.8.7
14.10.8.8
14.10.8.9
14.10.8.10
14.10.8.11
14.10.8.12
14.10.8.13
14.10.8.14
14.10.8.15
14.10.8.16
14.10.8.17
14.10.8.18
14.10.8.19
14.10.8.20

AddDays
AddHours
AddMilliseconds
AddMinutes
AddMonths
AddNanoseconds
AddSeconds
AddYears
CompareTo
Equals
GetDaysBetween
GetHashCode
GetTimeZoneOffset
GetYearsBetween
ToLocalTime
ToOracleDate
ToOracleTimeStampLTZ
ToOracleTimeStamp
ToString
ToUniversalTime

14.11 INullable Interface
14.11.1 INullable Interface Members
14.11.2 INullable Interface Properties

14.11.21

ORACLE

IsNull

14-337
14-338
14-338
14-339
14-339
14-339
14-340
14-340
14-340
14-341
14-341
14-341
14-342
14-342
14-342
14-343
14-344
14-344
14-345
14-345
14-345
14-346
14-346
14-347
14-348
14-348
14-349
14-349
14-349
14-350
14-350
14-350
14-351
14-351
14-352
14-353
14-353
14-353
14-354

15 Oracle Data Provider for .NET Types Exceptions

15.1 OracleTypeException Class 15-1
15.1.1 OracleTypeException Members 15-1
15.1.2 OracleTypeException Constructors 15-3

15.1.2.1 OracleTypeException(string) 15-3
15.1.2.2 OracleTypeException(SerializationInfo, StreamingContext) 15-3
15.1.3 OracleTypeException Static Methods 15-4
15.1.4 OracleTypeException Properties 15-4
15.1.4.1 Message 154
15.1.4.2 Number 15-5
15.1.4.3 Source 15-5
15.1.5 OracleTypeException Methods 15-5
15.1.5.1 ToString 15-5

15.2 OracleNullValueException Class 15-6
15.2.1 OracleNullValueException Members 15-6
15.2.2 OracleNullValueException Constructors 15-8

15.2.2.1 OracleNullValueException() 15-8
15.2.2.2 OracleNullValueException(string) 15-8
15.2.3 OracleNullValueException Static Methods 15-8
15.2.4 OracleNullValueException Properties 15-9
15.2.5 OracleNullValueException Methods 15-9

15.3 OracleTruncateException Class 15-9
15.3.1 OracleTruncateException Members 15-10
15.3.2 OracleTruncateException Constructors 15-11

15.3.2.1 OracleTruncateException() 15-11
15.3.2.2 OracleTruncateException(string) 15-12
15.3.3 OracleTruncateException Static Methods 15-12
15.3.4 OracleTruncateException Properties 15-12
15.3.5 OracleTruncateException Methods 15-12

16 Oracle Data Provider for .NET UDT-Related Classes

16.1 OracleCustomTypeMappingAttribute Class 16-1
16.1.1 OracleCustomTypeMappingAttribute Members 16-2
16.1.2 OracleCustomTypeMappingAttribute Constructors 16-3

16.1.2.1 OracleCustomTypeMappingAttribute(string) 16-4
16.1.3 OracleCustomTypeMappingAttribute Static Methods 16-4
16.1.4 OracleCustomTypeMappingAttribute Properties 16-4

16.1.4.1 UdtTypeName 16-5
16.1.5 OracleCustomTypeMappingAttribute Methods 16-5

16.2 OracleObjectMappingAttribute Class 16-5

ORACLE liii

16.2.1 OracleObjectMappingAttribute Members 16-6

16.2.2 OracleObjectMappingAttribute Constructors 16-7
16.2.2.1 OracleObjectMappingAttribute(string) 16-7
16.2.2.2 OracleObjectMappingAttribute(int) 16-8

16.2.3 OracleObjectMappingAttribute Static Methods 16-8

16.2.4 OracleObjectMappingAttribute Properties 16-8
16.2.4.1 Attributelndex 16-9
16.2.4.2 AttributeName 16-9

16.2.5 OracleObjectMappingAttribute Methods 16-9

16.3 OracleArrayMappingAttribute Class 16-10

16.3.1 OracleArrayMappingAttribute Members 16-11

16.3.2 OracleArrayMappingAttribute Constructors 16-12
16.3.2.1 OracleArrayMappingAttribute() 16-12

16.3.3 OracleArrayMappingAttribute Static Methods 16-12

16.3.4 OracleArrayMappingAttribute Properties 16-13

16.3.5 OracleArrayMappingAttribute Methods 16-13

16.4 IOracleCustomType Interface 16-13

16.4.1 IOracleCustomType Members 16-14

16.4.2 IOracleCustomType Interface Methods 16-14
16.4.2.1 FromCustomObject 16-14
16.4.2.2 ToCustomObiject 16-15

16.5 IOracleCustomTypeFactory Interface 16-15

16.5.1 IOracleCustomTypeFactory Members 16-16

16.5.2 IOracleCustomTypeFactory Interface Methods 16-16
16.5.2.1 CreateObject 16-16

16.6 IOracleArrayTypeFactory Interface 16-17

16.6.1 IOracleArrayTypeFactory Members 16-17

16.6.2 IOracleArrayTypeFactory Interface Methods 16-18
16.6.2.1 CreateArray 16-18
16.6.2.2 CreateStatusArray 16-18

16.7 OracleUdt Class 16-19

16.7.1 OracleUdt Members 16-19

16.7.2 OracleUDT Static Methods 16-20
16.7.2.1 GetValue 16-20
16.7.2.2 GetValue(OracleConnection, IntPtr, string) 16-21
16.7.2.3 GetValue(OracleConnection, IntPtr, int) 16-22
16.7.2.4 GetValue(OracleConnection, IntPtr, string, out object) 16-23
16.7.2.5 GetValue(OracleConnection, IntPtr, int, out object) 16-24
16.7.2.6 IsDBNull 16-25
16.7.2.7 IsDBNull(OracleConnection, IntPtr, string) 16-25
16.7.2.8 IsDBNull(OracleConnection, IntPtr, int) 16-26

ORACLE liv

16.7.2.9 SetValue 16-26

16.7.2.10 SetValue(OracleConnection, IntPtr, string, object) 16-27
16.7.2.11 SetValue(OracleConnection, IntPtr, int, object) 16-28
16.7.2.12 SetValue(OracleConnection, IntPtr, string, object, object) 16-29
16.7.2.13 SetValue(OracleConnection, IntPtr, int, object, object) 16-30
16.8 OracleRef Class 16-31
16.8.1 OracleRef Members 16-31
16.8.2 OracleRef Constructors 16-33
16.8.2.1 OracleRef(OracleConnection, string) 16-33
16.8.2.2 OracleRef(OracleConnection, string, string) 16-34
16.8.3 OracleRef Static Fields 16-35
16.8.3.1 Null 16-35
16.8.4 OracleRef Static Methods 16-35
16.8.5 OracleRef Instance Properties 16-35
16.8.5.1 Connection 16-36
16.8.5.2 HasChanges 16-36
16.8.5.3 IsLocked 16-36
16.8.5.4 IsNull 16-37
16.8.5.5 ObjectTableName 16-37
16.8.5.6 Value 16-38
16.8.6 Oracle Ref Instance Methods 16-38
16.8.6.1 Clone 16-39
16.8.6.2 Delete 16-39
16.8.6.3 Dispose 16-40
16.8.6.4 Flush 16-40
16.8.6.5 GetCustomObject 16-40
16.8.6.6 GetCustomObject(OracleUdtFetchOption) 16-41
16.8.6.7 GetCustomObject(OracleUdtFetchOption, int) 16-42
16.8.6.8 GetCustomObjectForUpdate 16-43
16.8.6.9 GetCustomObjectForUpdate(bool) 16-43
16.8.6.10 GetCustomObjectForUpdate(bool, int) 16-44
16.8.6.11 IsEqual 16-45
16.8.6.12 Lock 16-46
16.8.6.13 Update 16-46
16.9 OracleUdtFetchOption Enumeration 16-47
16.10 OracleUdtStatus Enumeration 16-48

17 Oracle Data Provider for .NET Bulk Copy Classes

17.1 OracleBulkCopy Class 17-1
17.1.1 OracleBulkCopy Members 17-2

ORACLE Iv

17.1.2 OracleBulkCopy Constructors

17.1.2.1 OracleBulkCopy(OracleConnection)
17.1.2.2 OracleBulkCopy(string)
17.1.2.3 OracleBulkCopy(OracleConnection, OracleBulkCopyOptions)
17.1.2.4 OracleBulkCopy(string, OracleBulkCopyOptions)
17.1.3 OracleBulkCopy Properties
17.1.3.1 BatchSize
17.1.3.2 BulkCopyOptions
17.1.3.3 BulkCopyTimeout
17.1.3.4 ColumnMappings
17.1.3.5 Connection
17.1.3.6 DestinationPartitionName
17.1.3.7 DestinationTableName
17.1.3.8 NotifyAfter
17.1.4 OracleBulkCopy Public Methods
17.1.4.1 Close
17.1.4.2 Dispose
17.1.4.3 WriteToServer
17.1.4.4 WriteToServer(DataRow(])
17.1.4.5 WriteToServer(DataTable)
17.1.4.6 WriteToServer(IDataReader)
17.1.4.7 WriteToServer(DataTable, DataRowState)
17.1.4.8 WriteToServer(OracleRefCursor)

17.1.5 OracleBulkCopy Events

17.151

OracleRowsCopied

17.2 OracleBulkCopyColumnMapping Class

17.2.1 OracleBulkCopyColumnMapping Members

17.2.2 OracleBulkCopyColumnMapping Constructors

17.221
17.2.2.2
17.2.2.3
17.2.2.4
17.2.25

OracleBulkCopyColumnMapping()
OracleBulkCopyColumnMapping(int, int)
OracleBulkCopyColumnMapping(int, string)
OracleBulkCopyColumnMapping(string, int)
OracleBulkCopyColumnMapping(string, string)

17.2.3 OracleBulkCopyColumnMapping Methods

17.231

CompareTo

17.2.4 OracleBulkCopyColumnMapping Properties

17.2.4.1
17.2.4.2
17.2.4.3
17.2.4.4

DestinationColumn
DestinationOrdinal
SourceColumn
SourceOrdinal

17.3 OracleBulkCopyColumnMappingCollection Class

ORACLE

17-3
17-4
17-4
17-5
17-5
17-6
17-7
17-7
17-8
17-8
17-9
17-9
17-9
17-10
17-10
17-11
17-11
17-11
17-12
17-12
17-13
17-14
17-14
17-15
17-15
17-15
17-16
17-17
17-18
17-18
17-18
17-19
17-19
17-19
17-20
17-20
17-21
17-21
17-21
17-22
17-22

Ivi

17.3.1 OracleBulkCopyColumnMappingCollection Members 17-23

17.3.2 OracleBulkCopyColumnMappingCollection Properties 17-24
17.3.2.1 Item[index] 17-24

17.3.3 OracleBulkCopyColumnMappingCollection Public Methods 17-25
17.3.3.1 Add 17-25
17.3.3.2 Add(OracleBulkCopyColumnMapping) 17-26
17.3.3.3 Add(int, int) 17-26
17.3.3.4 Add(int, string) 17-27
17.3.3.5 Add(string, int) 17-28
17.3.3.6 Add(string, string) 17-28
17.3.3.7 Clear 17-29
17.3.3.8 Contains 17-30
17.3.3.9 CopyTo 17-30
17.3.3.10 IndexOf 17-30
17.3.3.11 Insert 17-31
17.3.3.12 Remove 17-31
17.3.3.13 RemoveAt 17-32

17.4 OracleBulkCopyOptions Enumeration 17-32
17.5 OracleRowsCopiedEventHandler Delegate 17-33
17.6 OracleRowsCopiedEventArgs Class 17-34
17.6.1 OracleRowsCopiedEventArgs Members 17-35
17.6.2 OracleRowsCopiedEventArgs Constructors 17-35
17.6.2.1 OracleRowsCopiedEventArgs(long) 17-36

17.6.3 OracleRowsCopiedEventArgs Properties 17-36
17.6.3.1 Abort 17-36
17.6.3.2 RowsCopied 17-37

A Oracle Schema Collections

A.1 Common Schema Collections A-1
A.1.1 MetaDataCollections A-1
A.1.2 DataSourcelnformation A-2
A.1.3 DataTypes A-3
A.1.4 Restrictions A-5
A.1.5 ReservedWords A-5

A.2 ODP.NET-Specific Schema Collection A-5
A.2.1 Tables A-6
A.2.2 Columns A-6
A.2.3 Views A-7
A.2.4 XMLSchema A-7
A.25 Users A-8

ORACLE Ivii

A.2.6

A2.7

A.2.8

A.2.9

A.2.10
A.2.11
A.2.12
A.2.13
A.2.14
A.2.15
A.2.16
A.2.17
A.2.18
A.2.19
A.2.20

B Mapping LINQ Canonical Functions and Oracle Functions

Synonyms

Sequences

Functions

Procedures
ProcedureParameters
Arguments
Packages
PackageBodies
JavaClasses
Indexes
IndexColumns
PrimaryKeys
ForeignKeys
ForeignKeyColumns
UniqueKeys

A-8

A-9
A-10
A-11
A-12
A-13
A-13
A-14
A-15
A-17
A-18
A-19
A-20
A-20

Glossary

Index

ORACLE"

Ivii

List of Examples

2-1 Setting the profile which could be used for all connections

2-2 Setting the Profile for a Specific Data Source

2-3 Setting the Profile for a Specific User Id

2-4 Setting the Profile for a Specific Data Source and User Id'

2-5 Configuring Multiple Default Profile Entries

3-1 Using the add Element with bindinfo

3-2 Using the add Element with metadata

4-1 First Sample ODP.NET, Unmanaged Driver Application Configuration File to Custom
Map the Number (p,0) Data Type

4-2 Second Sample ODP.NET, Unmanaged Driver Application Configuration File to
Custom Map the Number (p,0) Data Type

4-3 Sample ODP.NET, Managed Driver Application Configuration File to Custom Map the
Number Data Type

ORACLE

2-26
2-27
2-27
2-27
2-27
3-89
3-89

4-15

4-15

4-15

lix

List of Tables

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
2-1
2-2
2-3
2-4

2-5

2-6
2-7
2-8
2-9

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15

Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations
Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Structures
Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Exceptions
Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes
Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces
Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations
Application Programming Interfaces not supported in ODP.NET, Managed Driver
ODP.NET, Managed Driver Files with Descriptions

Configuration Attributes

Encryption Algorithms for ODP.NET, Managed Driver

Microsoft Active Directory: Encryption Types and Authentication Credentials For
Connecting and Binding

Oracle Internet Directory: Encryption Types and Authentication Credentials For
Connecting and Binding

Required ONS Configuration Parameters

Optional ONS Configuration Parameters

Supported ODP.NET Type and .NET Framework Version for Distributed Transaction

Configuration Differences between ODP.NET, Unmanaged Driver and ODP.NET,
Managed Driver

ODP.NET Classes that Inherit from ADO.NET 2.0 Base Classes

Supported Connection String Attributes

Performance Counters for Connection Pooling

Field Names of Performance Counters and Maximum Number of Characters
Configurations for ODP.NET Driver Types

Implication of Committed and UserCallCompleted Values

OracleDbType Enumeration Values

Inference of System.Data.DbType from OracleDbType

Inference of OracleDbType from DbType

Inference of DbType and OracleDbType from Value (.NET Datatypes)
Inference of DbType and OracleDbType from Value (ODP.NET Types)
OracleParameterStatus Members

Value Property Type of ODP.NET Type

.NET Type Accessors

ODP.NET Type Accessors

ORACLE

1-6
1-11
1-14
1-15
1-15
1-16
1-17
1-17

2-8
2-15
2-35

2-36

2-36
2-39
2-39
2-42

2-44
3-2
3-6

3-26

3-28

3-38

3-44

3-54

3-56

3-57

3-58

3-58

3-65

3-70

3-72

3-74

3-16 Supported OracleDataReader CLOB Methods for InitialLOBFetchSize of -1 and
LegacyEntireLobFetch of 1

3-17 Supported OracleDataReader BLOB Methods for InitialLOBFetchSize of -1 and
LegacyEntireLobFetch of 1

3-18 Allowed Parameters in Attributes List

3-19 ODP.NET LOB Objects

3-20 Characters with Special Meaning in XML

3-21 Attribute Mappings Between UDTs and Custom Object Types

3-22 Type and Value Returned from OracleDataReader Object

3-23 Values Returned from OracleDataReader Methods

3-24 Valid Ways to Bind Input Parameters for Oracle UDTs

3-25 Valid Ways to Bind Output Parameters for Oracle UDTs

3-26 Types that Populate the DataSet with ADO.NET 2.0

3-27 Mapping AQ Features with their ODP.NET Implementation

3-28 Oracle NUMBER to .NET Decimal Comparisons

3-29 Oracle Date to .NET DateTime Comparisons

3-30 Oracle TimeStamp to .NET DateTime Comparisons

3-31 Oracle INTERVAL DAY TO SECOND to .NET TimeSpan Comparisons

4-1 Mapping of Oracle Data Types and EDM Types

4-2 EDM Type Facets for Bfile

4-3 EDM Type Facets for Blob

4-4 EDM Type Facets for Char

4-5 EDM Type Facets for Clob

4-6 EDM Type Facets for Date

4-7 EDM Type Facets for Float

4-8 EDM Type Facets for Interval Day To Second

4-9 EDM Type Facets for Interval Year To Month

4-10 EDM Type Facets for Long

4-11 EDM Type Facets for Long Raw

4-12 EDM Type Facets for NChar

4-13 EDM Type Facets for NClob

4-14 EDM Type Facets for Number

4-15 EDM Type Facets for NVarchar2

4-16 EDM Type Facets for Raw

4-17 EDM Type Facets for ROWID

4-18 EDM Type Facets for Timestamp

4-19 EDM Type Facets for Timestamp with Local Time Zone

ORACLE

4-10
4-10
4-10
4-11
4-11
4-12
4-12

IXi

4-20 EDM Type Facets for Timestamp with Time Zone 4-12

4-21 EDM Type Facets for UROWID 4-12
4-22 EDM Type Facets for Varchar2 4-13
4-23 EDM Type Facets for XMLType 4-13
4-24 Mapping of .NET Data Types to Oracle Data Types 4-20
4-25 Mapping of Data Annotations and the Code First Fluent APls 4-23
5-1 API Support Comparison Between Client Application and .NET Stored Procedure 5-6
6-1 OracleClientFactory Field 6-3
6-2 OracleClientFactory Constructor 6-3
6-3 OracleClientFactory Public Properties 6-3
6-4 OracleClientFactory Public Method 6-4
6-5 OracleClientFactory Field 6-4
6-6 OracleClientFactory Public Properties 6-5
6-7 OracleClientFactory Public Method 6-5
6-8 OracleCommand Constructors 6-10
6-9 OracleCommand Static Method 6-10
6-10 OracleCommand Properties 6-10
6-11 OracleCommand Public Methods 6-12
6-12 OracleCommand Static Method 6-14
6-13 OracleCommand Properties 6-14
6-14 OracleCommand Public Methods 6-30
6-15 OracleCommandBuilder Constructors 6-45
6-16 OracleCommandBuilder Static Methods 6-45
6-17 OracleCommandBuilder Properties 6-45
6-18 OracleCommandBuilder Public Methods 6-46
6-19 OracleCommandBuilder Events 6-47
6-20 OracleCommandBuilder Static Methods 6-48
6-21 OracleCommandBuilder Properties 6-50
6-22 OracleCommandBuilder Public Methods 6-54
6-23 OracleCommandBuilder Event 6-61
6-24 OracleConnection Constructors 6-63
6-25 OracleConnection Static Property 6-63
6-26 OracleConnection Static Methods 6-63
6-27 OracleConnection Properties 6-64
6-28 OracleConnection Public Methods 6-64
6-29 OracleConnection Events 6-66
6-30 OracleConnection Static Property 6-67

ORACLE Iii

6-31 OracleConnection Static Methods

6-32 OracleConnection Properties

6-33 Supported Connection String Attributes

6-34 OracleConnection Public Methods

6-35 OracleConnection Events

6-36 OracleConnectionStringBuilder Constructors
6-37 OracleConnectionStringBuilder Public Properties
6-38 OracleConnectionStringBuilder Public Methods
6-39 OracleConnectionStringBuilder Public Properties
6-40 OracleConnectionStringBuilder Public Methods
6-41 OracleDataAdapter Constructors

6-42 OracleDataAdapter Static Method

6-43 OracleDataAdapter Properties

6-44 OracleDataAdapter Public Methods

6-45 OracleDataAdapter Events

6-46 OracleDataAdapter Static Method

6-47 OracleDataAdapter Properties

6-48 OracleDataAdapter Public Methods

6-49 OracleDataAdapter Events

6-50 OracleDatabase Constructors

6-51 OracleDatabase Properties

6-52 OracleDatabase Public Methods

6-53 OracleDatabase Properties

6-54 OracleDatabase Public Methods

6-55 OracleDataReader Static Method

6-56 OracleDataReader Properties

6-57 OracleDataReader Public Methods

6-58 OracleDataReader Static Method

6-59 OracleDataReader Properties

6-60 OracleDataReader Public Methods

6-61 OracleDataReader SchemaTable

6-62 OracleDataSourceEnumerator Method

6-63 OracleDataSourceEnumerator Method

6-64 OracleDataSourceEnumerator Method

6-65 OracleError Static Method

6-66 OracleError Properties

6-67 OracleError Methods

ORACLE

6-68

6-71

6-74

6-83
6-103
6-109
6-109
6-111
6-112
6-124
6-128
6-129
6-129
6-130
6-130
6-133
6-133
6-139
6-143
6-147
6-147
6-148
6-148
6-149
6-157
6-157
6-158
6-160
6-161
6-170
6-203
6-213
6-214
6-214
6-216
6-217
6-217

Iiii

6-68 OracleError Static Method

6-69 OracleError Properties

6-70 OracleError Methods

6-71 OracleErrorCollection Static Methods

6-72 OracleErrorCollection Properties

6-73 OracleErrorCollection Public Methods

6-74 OracleErrorCollection Static Method

6-75 OracleErrorCollection Properties

6-76 OracleErrorCollection Public Methods

6-77 OracleException Static Method

6-78 OracleException Properties

6-79 OracleException Methods

6-80 OracleException Static Method

6-81 OracleException Properties

6-82 OracleException Methods

6-83 OraclelnfoMessageEventArgs Static Method
6-84 OracleinfoMessageEventArgs Properties
6-85 OraclelnfoMessageEventArgs Public Methods
6-86 OracleInfoMessageEventArgs Static Method
6-87 OraclelnfoMessageEventArgs Properties
6-88 OraclelnfoMessageEventArgs Public Methods
6-89 OracleLogicalTransaction Public Read-Only Properties
6-90 OracleLogicalTransaction Methods

6-91 OracleLogicalTransaction Public Read-Only Properties
6-92 Outcome of OracleLogicalTransaction Committed and UserCallCompleted Properties
6-93 OracleLogicalTransaction Methods

6-94 OracleParameter Constructors

6-95 OracleParameter Static Methods

6-96 OracleParameter Properties

6-97 OracleParameter Public Methods

6-98 OracleParameter Static Method

6-99 OracleParameter Properties

6-100 OracleParameter Public Methods

6-101 OracleParameterCollection Static Methods
6-102 OracleParameterCollection Properties

6-103 OracleParameterCollection Public Methods
6-104 OracleParameterCollection Static Method
ORACLE

6-217
6-217
6-220
6-222
6-222
6-222
6-223
6-223
6-223
6-225
6-225
6-226
6-226
6-227
6-230
6-233
6-233
6-234
6-234
6-234
6-235
6-237
6-237
6-238
6-238
6-240
6-243
6-243
6-244
6-245
6-254
6-255
6-267
6-272
6-272
6-273
6-273

IXiv

6-105
6-106
6-107
6-108
6-109
6-110
6-111
6-112
6-113
6-114
6-115
6-116
6-117
6-118
6-119
6-120
6-121
6-122
6-123
6-124
6-125
6-126
6-127
6-128
6-129
6-130
6-131
6-132
6-133
6-134
6-135
6-136
6-137
6-138
6-139
6-140
6-141

OracleParameterCollection Properties
OracleParameterCollection Public Methods
OraclePermission Constructor
OraclePermission Static Methods
OraclePermission Public Properties
OraclePermission Public Methods
OraclePermission Static Methods
OraclePermission Public Properties
OraclePermission Public Methods
OraclePermission Constructor
OraclePermissionAttribute Static Methods
OraclePermissionAttribute Public Properties
OraclePermissionAttribute Public Methods
OraclePermissionAttribute Static Methods
OraclePermissionAttribute Public Properties
OraclePermissionAttribute Public Methods
OracleRowUpdatedEventArgs Constructors
OracleRowUpdatedEventArgs Static Method
OracleRowUpdatedEventArgs Properties
OracleRowUpdatedEventArgs Public Methods
OracleRowUpdatedEventArgs Static Method
OracleRowUpdatedEventArgs Properties
OracleRowUpdatedEventArgs Public Methods
OracleRowUpdatingEventArgs Constructors
OracleRowUpdatingEventArgs Static Methods
OracleRowUpdatingEventArgs Properties
OracleRowUpdatingEventArgs Public Methods
OracleRowUpdatingEventArgs Static Method
OracleRowUpdatingEventArgs Properties
OracleRowUpdatingEventArgs Public Methods
OracleShardingKey Constructors
OracleShardingKey Instance Methods
OracleShardingKey Instance Methods
OracleTransaction Static Method
OracleTransaction Properties
OracleTransaction Public Methods

OracleTransaction Static Method

ORACLE

6-274
6-277
6-293
6-294
6-294
6-294
6-295
6-296
6-296
6-299
6-299
6-300
6-300
6-301
6-301
6-302
6-303
6-303
6-303
6-304
6-305
6-305
6-306
6-307
6-308
6-308
6-308
6-309
6-309
6-310
6-312
6-313
6-314
6-317
6-317
6-318
6-318

Ixv

6-142

6-143 OracleTransaction Public Methods

6-144 OracleConnectionType Enumeration Values
6-145 OracleCollectionType Enumeration Values
6-146 OracleDBShutdownMode Enumeration Values
6-147 OracleDBStartupMode Enumeration Values
6-148 OracleDbType Enumeration Values

6-149 OracleldentityType Members

6-150 OracleParameterStatus Members

7-1 OracleXmlCommandType Members

7-2 OracleXmlQueryProperties Constructors
7-3 OracleXmlQueryProperties Properties

7-4 OracleXmlQueryProperties Public Methods
7-5 OracleXmlQueryProperties Properties

7-6 OracleXmlQueryProperties Public Methods
7-7 OracleXmlSaveProperties Constructor

7-8 OracleXmlSaveProperties Properties

7-9 OracleXmlSaveProperties Public Methods
7-10 OracleXmlSaveProperties Properties

7-11 OracleXmlSaveProperties Public Methods
7-12 OracleXmlIStream Constructors

7-13 OracleXmlIStream Static Methods

7-14 OracleXmlStream Instance Properties
7-15 OracleXmlStream Instance Methods

7-16 OracleXmlIStream Static Methods

7-17 OracleXmlStream Instance Properties
7-18 OracleXmlIStream Instance Methods

7-19 OracleXmlType Constructors

7-20 OracleXmlType Static Methods

7-21 OracleXmlType Static Field

7-22 OracleXmlType Instance Properties

7-23 OracleXmlType Instance Methods

7-24 OracleXmlType Static Methods

7-25 OracleXmlType Static Field

7-26 OracleXmlType Instance Properties

7-27 OracleXmlType Instance Methods

8-1 OracleHAEventArgs Properties
ORACLE

OracleTransaction Properties

6-318
6-319
6-326
6-327
6-327
6-328
6-328
6-330
6-330
7-1
7-5
7-5
7-5
7-6
7-8
7-12
7-12
7-12
7-13
7-16
7-17
7-17
7-17
7-18
7-19
7-19
7-22
7-27
7-27
7-28
7-28
7-28
7-32
7-32
7-32
7-37
8-2

Ixvi

8-2

OracleHAEventArgs Properties

8-3 OracleHAEventSource Enumeration Member Values
8-4 OracleHAEventStatus Enumeration Values
9-1 OracleDependency Constructors

9-2 OracleDependency Static Field

9-3 OracleDependency Static Methods

9-4 OracleDependency Properties

9-5 OracleDependency Methods

9-6 OracleDependency Events

9-7 OracleDependency Static Field

9-8 OracleDependency Static Methods

9-9 OracleDependency Properties

9-10 OracleDependency Methods

9-11 OracleDependency Event

9-12 OracleNatificationRequest Static Method
9-13 OracleNatificationRequest Properties

9-14 OracleNaotificationRequest Methods

9-15 OracleNatificationRequest Static Method
9-16 OracleNatificationRequest Properties

9-17 OracleNaotificationRequest Methods

9-18 OracleNatificationEventArgs Static Field
9-19 OracleNatificationEventArgs Static Method
9-20 OracleNatificationEventArgs Properties
9-21 OracleNatificationEventArgs Methods
9-22 OracleNatificationEventArgs Static Field
9-23 OracleNatificationEventArgs Static Method
9-24 OracleNatificationEventArgs Properties
9-25 DataTable Object Column Data

9-26 OracleNatificationEventArgs Methods
9-27 OracleRowidInfo Members

9-28 OracleNatificationType Members

9-29 OracleNotificationSource Members

9-30 OracleNotificationinfo Members

10-1 OracleGlobalization Static Methods

10-2 OracleGlobalization Properties

10-3 OracleGlobalization Public Methods

10-4 OracleGlobalization Static Methods
ORACLE

8-2
8-5
8-6
9-2
9-2
9-2
9-3
9-3
9-3
9-7
9-8
9-8
9-13
9-15
9-16
9-16
9-17
9-17
9-17
9-20
9-21
9-21
9-21
9-22
9-22
9-22
9-23
9-23
9-26
9-27
9-27
9-28
9-29
10-2
10-3
10-3
10-4

Ixvii

10-5
10-6
11-1
11-2
11-3
11-4
11-5
11-6
11-7
11-8
11-9
12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8
12-9
12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19
12-20
12-21
12-22
12-23
12-24
12-25
12-26

OracleGlobalization Properties
OracleGlobalization Public Methods
OracleFailoverEventArgs Static Methods
OracleFailoverEventArgs Properties
OracleFailoverEventArgs Public Methods
OracleFailoverEventArgs Static Methods
OracleFailoverEventArgs Properties
OracleFailoverEventArgs Public Methods
FailoverEvent Enumeration Values
FailoverReturnCode Enumeration Values
FailoverType Enumeration Values
OracleAQAgent Constructors
OracleAQAgent Properties
OracleAQAgent Properties
OracleAQDequeueOptions Constructor

OracleAQDequeueOptions Properties

OracleAQDequeueOptions Public Methods

OracleAQDequeueOptions Properties

OracleAQDequeueOptions Public Methods

OracleAQEnqueueOptions Constructor

OracleAQEnqueueOptions Properties

OracleAQEnqueueOptions Public Methods

OracleAQEnqueueOptions Properties

OracleAQEnqueueOptions Public Methods

OracleAQMessage Constructors
OracleAQMessage Properties

OracleAQMessage Properties

OracleAQMessageAvailableEventArgs Constructor
OracleAQMessageAvailableEventArgs Properties

OracleAQMessageAvailableEventArgs Properties

OracleAQQueue Constructors
OracleAQQueue Static Methods
OracleAQQueue Properties
OracleAQQueue Public Methods
OracleAQQueue Events
OracleAQQueue Static Methods

OracleAQQueue Properties

ORACLE

10-8
10-16
11-3
11-3
11-3
11-4
11-4
11-5
11-6
11-7
11-7
12-2
12-2
12-4
12-5
12-6
12-6
12-7
12-11
12-12
12-13
12-13
12-13
12-15
12-16
12-16
12-18
12-25
12-26
12-27
12-33
12-33
12-33
12-34
12-34
12-37
12-39

IXviii

12-27
12-28
12-29
12-30
12-31
12-32
12-33
12-34
12-35
12-36
12-37
12-38
13-1

13-2

13-3

13-4

13-5

13-6

13-7

13-8

13-9

13-10
13-11
13-12
13-13
13-14
13-15
13-16
13-17
13-18
13-19
13-20
13-21
13-22
13-23
13-24
13-25

Message Types and Payloads

Payload Types for Dequeued Messages

OracleAQQueue Public Methods

OracleAQQueue Events

OracleAQDequeueMode Members
OracleAQMessageDeliveryMode Members
OracleAQMessageState Members
OracleAQMessageType Members
OracleAQNavigationMode Members
OracleAQNoatificationGroupingType Members
OracleAQNoatificationType Members

OracleAQVisibilityMode Members
OracleBFile Constructors
OracleBFile Static Fields
OracleBFile Static Methods
OracleBFile Instance Properties
OracleBFile Instance Methods
OracleBFile Static Fields
OracleBFile Static Methods
OracleBFile Instance Properties
OracleBFile Instance Methods
OracleBlob Constructors
OracleBlob Static Fields
OracleBlob Static Methods
OracleBlob Instance Properties
OracleBlob Instance Methods
OracleBlob Static Fields
OracleBlob Static Methods
OracleBlob Instance Properties
OracleBlob Instance Methods
OracleClob Constructors
OracleClob Static Fields
OracleClob Static Methods
OracleClob Instance Properties
OracleClob Instance Methods
OracleClob Static Fields
OracleClob Static Methods

ORACLE

12-42
12-42
12-44
12-57
12-61
12-62
12-63
12-63
12-64
12-65
12-65
12-66

13-3

13-3

13-4

13-4

13-4

13-7

13-8

13-8
13-13
13-33
13-33
13-33
13-33
13-34
13-37
13-37
13-38
13-42
13-62
13-62
13-63
13-63
13-64
13-66
13-67

IXix

13-26
13-27
13-28
13-29
13-30
13-31
13-32
13-33
13-34
13-35
14-1

14-2

14-3

14-4

14-5

14-6

14-7

14-8

14-9

14-10
14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25
14-26
14-27

OracleClob Instance Properties
OracleClob Instance Methods
OracleRefCursor Static Methods
OracleRefCursor Static Field
OracleRefCursor Properties
OracleRefCursor Instance Methods
OracleRefCursor Static Methods
OracleRefCursor Static Field
OracleRefCursor Properties
OracleRefCursor Instance Methods
OracleBinary Constructors
OracleBinary Static Fields

OracleBinary Static Methods
OracleBinary Static Operators
OracleBinary Static Type Conversion Operators
OracleBinary Properties

OracleBinary Instance Methods
OracleBinary Static Fields

OracleBinary Static Methods
OracleBinary Static Operators
OracleBinary Static Type Conversion Operators
OracleBinary Properties

OracleBinary Instance Methods
OracleBoolean Constructors
OracleBoolean Static Fields
OracleBoolean Static Methods
OracleBoolean Static Operators
OracleBoolean Static Type Conversions
OracleBoolean Properties
OracleBoolean Instance Methods
OracleBoolean Static Fields
OracleBoolean Static Methods
OracleBoolean Static Operators
OracleBoolean Static Type Conversions
OracleBoolean Properties
OracleBoolean Instance Methods

OracleDate Constructors

ORACLE

13-67
13-72
13-96
13-96
13-97
13-97
13-97
13-98
13-98
13-101
14-2
14-2
14-3
14-3
14-4
14-4
14-4
14-5
14-5
14-10
14-14
14-15
14-17
14-21
14-21
14-22
14-22
14-23
14-23
14-24
14-25
14-26
14-32
14-40
14-44
14-46
14-49

IXX

14-28
14-29
14-30
14-31
14-32
14-33
14-34
14-35
14-36
14-37
14-38
14-39
14-40
14-41
14-42
14-43
14-44
14-45
14-46
14-47
14-48
14-49
14-50
14-51
14-52
14-53
14-54
14-55
14-56
14-57
14-58
14-59
14-60
14-61
14-62
14-63
14-64

OracleDate Static Fields

OracleDate Static Methods

OracleDate Static Operators

OracleDate Static Type Conversions

OracleDate Properties

OracleDate Methods

OracleDate Static Fields

OracleDate Static Methods

OracleDate Static Operators

OracleDate Static Type Conversions

OracleDate Properties

OracleDate Methods

OracleDecimal Constructors

OracleDecimal Static Fields

OracleDecimal Static (Comparison) Methods

OracleDecimal Static (Manipulation) Methods

OracleDecimal Static (Logarithmic) Methods

OracleDecimal Static (Trigonometric) Methods

OracleDecimal Static (Comparison) Operators

OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)
OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)
OracleDecimal Properties

OracleDecimal Instance Methods

OracleDecimal Static Fields

OracleDecimal Static (Comparison) Methods

OracleDecimal Static (Manipulation) Methods

OracleDecimal Static (Logarithmic) Methods

OracleDecimal Static (Trigonometric) Methods

OracleDecimal Static (Comparison) Operators

OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)
OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)
OracleDecimal Properties

OracleDecimal Instance Methods

OraclelntervalDS Constructors

OraclelntervalDS Static Fields

OraclelntervalDS Static Methods

OraclelntervalDS Static Operators

ORACLE

14-49
14-50
14-50
14-50
14-51
14-51
14-55
14-56
14-61
14-65
14-68
14-71
14-77
14-77
14-78
14-78
14-79
14-80
14-80
14-81
14-81
14-82
14-82
14-87
14-89
14-93
14-105
14-110
14-114
14-121
14-124
14-128
14-131
14-137
14-137
14-138
14-138

Ixxi

14-65
14-66
14-67
14-68
14-69
14-70
14-71
14-72
14-73
14-74
14-75
14-76
14-77
14-78
14-79
14-80
14-81
14-82
14-83
14-84
14-85
14-86
14-87
14-88
14-89
14-90
14-91
14-92
14-93
14-94
14-95
14-96
14-97
14-98
14-99
14-100
14-101

OraclelntervalDS Type Conversions
OraclelntervalDS Properties
OraclelntervalDS Methods
OraclelntervalDS Static Fields
OraclelntervalDS Static Methods
OraclelntervalDS Static Operators
OraclelntervalDS Type Conversions
OraclelntervalDS Properties
OraclelntervalDS Methods
OraclelntervalYM Constructors
OraclelntervalYM Static Fields
OraclelntervalYM Static Methods
OraclelntervalYM Static Operators
OraclelntervalYM Type Conversions
OraclelntervalYM Properties
OraclelntervalYM Methods
OraclelntervalYM Static Fields
OraclelntervalYM Static Methods
OraclelntervalYM Static Operators
OraclelntervalYM Type Conversions
OraclelntervalYM Properties
OraclelntervalYM Methods
OracleString Constructors
OracleString Static Fields
OracleString Static Methods
OracleString Static Operators
OracleString Type Conversions
OracleString Properties
OracleString Methods

OracleString Static Fields
OracleString Static Methods
OracleString Static Operators
OracleString Type Conversions
OracleString Properties
OracleString Methods
OracleTimeStamp Constructors

OracleTimeStamp Static Fields

ORACLE

14-139
14-139
14-140
14-144
14-145
14-151
14-157
14-159
14-163
14-166
14-166
14-166
14-167
14-168
14-168
14-168
14-172
14-173
14-178
14-184
14-186
14-188
14-192
14-192
14-193
14-193
14-194
14-194
14-194
14-198
14-199
14-203
14-207
14-209
14-211
14-216
14-216

Ixxii

14-102
14-103
14-104
14-105
14-106
14-107
14-108
14-109
14-110
14-111
14-112
14-113
14-114
14-115
14-116
14-117
14-118
14-119
14-120
14-121
14-122
14-123
14-124
14-125
14-126
14-127
14-128
14-129
14-130
14-131
14-132
14-133
14-134
14-135
14-136
14-137
14-138

OracleTimeStamp Static Methods
OracleTimeStamp Static Operators
OracleTimeStamp Static Type Conversions
OracleTimeStamp Properties
OracleTimeStamp Methods
OracleTimeStamp Static Fields
OracleTimeStamp Static Methods
OracleTimeStamp Static Operators
OracleTimeStamp Static Type Conversions
OracleTimeStamp Properties
OracleTimeStamp Methods
OracleTimeStampLTZConstructors
OracleTimeStampLTZ Static Fields
OracleTimeStampLTZ Static Methods
OracleTimeStampLTZ Static Operators
OracleTimeStampLTZ Static Type Conversions
OracleTimeStampLTZ Properties
OracleTimeStampLTZ Methods
OracleTimeStampLTZ Static Fields
OracleTimeStampLTZ Static Methods
OracleTimeStampLTZ Static Operators
OracleTimeStampLTZ Static Type Conversions
OracleTimeStampLTZ Properties
OracleTimeStampLTZ Methods
OracleTimeStampTZ Constructors
OracleTimeStampTZ Static Fields
OracleTimeStampTZ Static Methods
OracleTimeStampTZ Static Operators
OracleTimeStampTZ Static Type Conversions
OracleTimeStampTZ Properties
OracleTimeStampTZ Methods
OracleTimeStampTZ Static Fields
OracleTimeStampTZ Static Methods
OracleTimeStampTZ Static Operators
OracleTimeStampTZ Static Type Conversions
OracleTimeStampTZ Properties

OracleTimeStampTZ Methods

ORACLE

14-216
14-217
14-217
14-218
14-218
14-225
14-226
14-232
14-240
14-244
14-248
14-258
14-258
14-259
14-259
14-260
14-260
14-261
14-268
14-269
14-275
14-283
14-288
14-291
14-303
14-303
14-303
14-304
14-304
14-305
14-306
14-318
14-319
14-325
14-333
14-338
14-342

[xxiii

14-139 INullable Interface Properties

14-140 INullable Interface Properties

15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8
15-9
15-10
15-11
15-12
15-13
15-14
15-15
15-16
15-17
15-18
15-19
15-20
15-21
16-1
16-2
16-3
16-4
16-5
16-6
16-7
16-8
16-9
16-10
16-11
16-12
16-13
16-14

OracleTypeException Constructor
OracleTypeException Static Methods
OracleTypeException Properties
OracleTypeException Methods
OracleTypeException Static Methods
OracleTypeException Properties
OracleTypeException Methods
OracleNullValueException Constructors
OracleNullValueException Static Methods
OracleNullValueException Properties
OracleNullValueException Methods
OracleNullValueException Static Methods
OracleNullValueException Properties
OracleNullValueException Methods
OracleTruncateException Constructors
OracleTruncateException Static Methods
OracleTruncateException Properties
OracleTruncateException Methods
OracleTruncateException Static Methods
OracleTruncateException Properties
OracleTruncateException Methods
OracleCustomTypeMappingAttribute Constructors
OracleCustomTypeMappingAttribute Static Methods
OracleCustomTypeMappingAttribute Properties
OracleCustomTypeMappingAttribute Methods
OracleCustomTypeMappingAttribute Static Methods
OracleCustomTypeMappingAttribute Properties
OracleCustomTypeMappingAttribute Methods
OracleObjectMappingAttribute Constructors
OracleObjectMappingAttribute Static Methods
OracleObjectMappingAttribute Properties
OracleObjectMappingAttribute Methods
OracleObjectMappingAttribute Static Method
OracleObjectMappingAttribute Properties
OracleObjectMappingAttribute Methods

ORACLE

14-353
14-354
15-2
15-2
15-2
15-2
15-4
15-4
15-5
15-7
15-7
15-7
15-7
15-8
15-9
15-9
15-10
15-10
15-10
15-11
15-12
15-12
15-13
16-2
16-3
16-3
16-3
16-4
16-4
16-5
16-6
16-6
16-7
16-7
16-8
16-9
16-10

IXxiv

16-15
16-16
16-17
16-18
16-19
16-20
16-21
16-22
16-23
16-24
16-25
16-26
16-27
16-28
16-29
16-30
16-31
16-32
16-33
16-34
16-35
16-36
16-37
16-38
16-39
16-40
17-1

17-2

17-3

17-4

17-5

17-6

17-7

17-8

17-9

17-10
17-11

OracleArrayMappingAttribute Constructors
OracleArrayMappingAttribute Static Methods
OracleArrayMappingAttribute Properties
OracleArrayMappingAttribute Methods
OracleArrayMappingAttribute Static Methods
OracleArrayMappingAttribute Properties
OracleArrayMappingAttribute Methods
IOracleCustomType Interface Methods
IOracleCustomType Interface Methods
IOracleCustomTypeFactory Interface Methods
IOracleCustomTypeFactory Interface Methods
IOracleArrayTypeFactory Interface Methods
IOracleArrayTypeFactory Interface Methods
OracleUdt Static Methods

OracleUdt Static Methods

OracleRef Constructors

OracleRef Static Fields

OracleRef Static Methods

OracleRef Instance Properties

OracleRef Instance Methods

OracleRef Static Fields

OracleRef Static Methods

OracleRef Instance Properties

OracleRef Instance Methods
OracleUdtFetchOption Enumeration Values
OracleUdtStatus Enumeration Values
OracleBulkCopy Constructors
OracleBulkCopy Properties

OracleBulkCopy Public Methods
OracleBulkCopy Events

OracleBulkCopy Properties

OracleBulkCopy Public Methods
OracleBulkCopy Events
OracleBulkCopyColumnMapping Constructors
OracleBulkCopyColumnMapping Method
OracleBulkCopyColumnMapping Properties
OracleBulkCopyColumnMapping Method

ORACLE

16-11
16-11
16-11
16-11
16-12
16-13
16-13
16-14
16-14
16-16
16-16
16-17
16-18
16-20
16-20
16-31
16-32
16-32
16-32
16-32
16-35
16-35
16-35
16-38
16-48
16-48

17-2

17-2

17-3

17-3

17-6
17-11
17-15
17-17
17-17
17-17
17-20

[xxv

17-12 OracleBulkCopyColumnMapping Properties

17-13 OracleBulkCopyColumnMappingCollection Properties
17-14 OracleBulkCopyColumnMappingCollection Public Methods
17-15 OracleBulkCopyColumnMappingCollection Properties
17-16 OracleBulkCopyColumnMappingCollection Public Methods
17-17 OracleBulkCopyOptions Enumeration Members

17-18 OracleRowsCopiedEventArgs Constructors

17-19 OracleRowsCopiedEventArgs Properties

17-20 OracleRowsCopiedEventArgs Properties

A-1 MetaDataCollections

A-2 DataSource Information

A-3 Data Types

A-4 Restrictions

A-5 ReservedWords

A-6 Tables

A-7 Columns

A-8 Views

A-9 XMLSchema

A-10 Users

A-11 Synonyms

A-12 Sequences

A-13 Functions

A-14 Procedures

A-15 ProcedureParameters

A-16 Arguments

A-17 Packages

A-18 PackageBodies

A-19 JavaClasses

A-20 Indexes

A-21 IndexColumns

A-22 PrimaryKeys

A-23 ForeignKeys

A-24 ForeignKeyColumns

A-25 UniqueKeys

B-1 Mapping of Aggregate Canonical Functions and Oracle Functions
B-2 Mapping of Math Canonical Functions and Oracle Functions
B-3 Mapping of String Canonical Functions and Oracle Functions
ORACLE

17-20
17-23
17-23
17-24
17-25
17-33
17-35
17-35
17-36

IXxvi

B-4 Mapping of Date And Time Canonical Functions and Oracle Functions
B-5 Mapping of Bitwise Canonical Functions and Oracle Functions

B-6 Mapping of Other Canonical Functions and Oracle Functions

ORACLE

B-2
B-4
B-4

Ixxvii

Preface

Preface

Audience

This document is your primary source of introductory, installation, postinstallation
configuration, and usage information for Oracle Data Provider for .NET.

Oracle Data Provider for .NET is an implementation of the Microsoft ADO.NET
interface.

This Preface contains these topics:

* Audience

* Documentation Accessibility

* Related Documents

* Passwords in Code Examples

 Conventions

Oracle Data Provider for .NET Developer's Guide is intended for programmers who
are developing applications to access an Oracle database using Oracle Data Provider
for .NET. This documentation is also valuable to systems analysts, project managers,
and others interested in the development of database applications.

To use this document, you must be familiar with Microsoft .NET Framework classes
and ADO.NET and have a working knowledge of application programming using
Microsoft C#, Visual Basic .NET, or another .NET language.

Although the examples in the documentation and the samples in the sample directory
are written in C#, developers can use these examples as models for writing code in
other .NET languages.

Users should also be familiar with the use of Structured Query Language (SQL) to
access information in relational database systems.

Documentation Accessibility

ORACLE

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

IXXViii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

Related Documents

ORACLE

For more information, see these Oracle resources:

* Oracle Database Installation Guide for Microsoft Windows

* Oracle Database Release Notes for Microsoft Windows

* Oracle Database Platform Guide for Microsoft Windows

* Oracle Database Administrator's Guide

» Oracle Database Development Guide

» Oracle Database SecureFiles and Large Objects Developer's Guide

* Oracle Real Application Clusters Administration and Deployment Guide
» Oracle Database New Features Guide

* Oracle Database Concepts

* Oracle Database Reference

* Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows
* Oracle Database Object-Relational Developer's Guide

* Oracle Database SQL Language Reference

* Oracle Database Net Services Administrator's Guide

» Oracle Database Net Services Reference

» Oracle Call Interface Programmer's Guide

* Oracle Services for Microsoft Transaction Server Developer's Guide for Microsoft
Windows

* Oracle Database Globalization Support Guide

e Oracle XML DB Developer's Guide

* Oracle XML Developer's Kit Programmer's Guide
* Oracle Database Security Guide

» Oracle Spatial Developer's Guide

» Oracle Data Guard Concepts and Administration

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technetwork/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://docs.oracle.com/database/122/index.htm

Ixxix

Preface

For additional information, see:

https://msdn.microsoft.com/en-us/default.aspx

and

http://msdn.microsoft.com/library

Passwords in Code Examples

For simplicity in demonstrating this product, code examples do not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide for
password management guidelines and other security recommendations.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

ORACLE [xxX

Changes in This Release for Oracle Data
Provider for .NET

This preface contains:

Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .
Changes in Oracle Data Provider for .

Changes in Oracle Data Provider for .

NET Release 12.2.0.1

NET in ODAC 12c Release 4
NET in ODAC 12c Release 3
NET Release 12.1.0.2

NET in ODAC 12c Release 2
NET in ODAC 12c Release 1
NET Release 12.1

NET Release 11.2.0.3.20
NET Release 11.2.0.3

NET Release 11.2.0.2

NET Release 11.2.0.1.2
NET Release 11.2

NET Release 11.1.0.7.20
NET Release 11.1.0.6.20
NET Release 11.1

Changes in Oracle Data Provider for .NET Release 12.2.0.1

The following are the changes in Oracle Data Provider for .NET for Release 12.2.0.1.

New Features

ORACLE

The following features are new in this release:

.NET Cloud Development and Deployment

ODP.NET, Managed and Unmanaged Drivers can be deployed easily to Oracle
Cloud, private clouds, and third-party cloud environments through Web Deploy. All
ODP.NET specific settings no longer require any operating system level
configuration. These settings can be made in the .NET configuration files.
Managed and Unmanaged ODP.NET Drivers now share a unified configuration file

format.

Application Continuity

Ixxxi

ORACLE

Changes in This Release for Oracle Data Provider for .NET

Application Continuity recovers incomplete requests from an ODP.NET,
Unmanaged Driver perspective and masks many system failures, communication
failures, hardware failures, and storage outages from the user.

See also "Application Continuity" for more information.
Sharding and ODP.NET Routing

Starting from Release 12.2.0.1, ODP.NET, Unmanaged Driver and Oracle
Database support sharding. Oracle Sharding provides the ability to horizontally
partition the data across multiple independent Oracle databases (shards). Based
on a key specified in the connect string, ODP.NET can route the database
requests to a particular shard.

Oracle Sharding is a shared-nothing architecture that allows near-linear scaling of
the database across low-cost commodity database servers located in one or more
local or global data centers. Other key benefits include global data distribution
(store particular data close to consumers) and fault containment (failure of one
shard does not affect the availability of other shards). Global Data Services
manages the location of data among the shards and allows ODP.NET client
requests to be routed to the appropriate shard in this distributed database system.

See also "Database Sharding" for more information.
Longer Schema Identifiers

Oracle Data Provider for .NET now supports schema object identifier names, such
as tables, columns, views, stored procedures, and functions, up to 128 characters
in length. This feature is available in both ODP.NET, Managed and Unmanaged
Drivers.

ODP.NET, Managed Driver — Data Integrity

ODP.NET, Managed Driver supports cryptographic hash functions to better ensure
data integrity between the database server and the client. The algorithms
supported include MD5, SHA-1, and SHA-2 (SHA-256, SHA-384, and SHA-512).

See also "settings section" and "Network Data Encryption and Integrity" for more
information.

ODP.NET, Managed Driver -- Transport Layer Security (TLS)

ODP.NET, Managed Driver has added support for TLS 1.1 and 1.2 in addition to
existing support for TLS 1.0 and SSL 3.0.

ODP.NET, Managed Driver -- Distinguished Name for SSL/TLS

ODP.NET, Managed Driver connections using SSL/TLS can ensure that the
distinguished name (DN) is correct for the database server that it is trying to
connect to.

ODP.NET, Managed Driver - Boolean Data Type

ODP.NET, Managed Driver now supports the OracleBoolean data type when using
the database's PL/SQL Boolean data type. The managed driver must be connected
to Oracle Database 12c Release 2 (12.2) or higher. Booleans store TRUE or FALSE
values.

The ODP.NET OracleBoolean data type eases parameter binding and data type
mapping setup with Boolean values.

See also "OracleBoolean Structure"” for more information.

IXxxii

Changes in This Release for Oracle Data Provider for .NET

Desupported Features

Some features previously described in this document are desupported in Oracle
Database 12c¢ Release 2 (12.2). See Oracle Database Upgrade Guide for a complete
list of desupported features in this release.

The following features are no longer supported by Oracle:

e OracleLogicalTransactionStatus class

e OracleConnection.GetLogicalTransactionStatus method

e OracleConnection.LogicalTransactionld property

* OracleConnection.OracleLogicalTransaction property

e OraclelLogicalTransaction.DataSource property

e OraclelogicalTransaction.GetOutcome() method

e OraclelLogicalTransaction.GetOutcome(sting, string, string) method

* OraclelLogicalTransaction.Userld property

Changes in Oracle Data Provider for .NET in ODAC 12¢

Release 4

The following are the changes in Oracle Data Provider for .NET for ODAC 12¢
Release 4.

New Features

ORACLE

The following features are new in this release:

e .NET Framework 4.6 and 4.6.1 Certification

ODP.NET, Managed and Unmanaged Drivers are certified for .NET Framework
4.6 and 4.6.1.

See also "System Requirements" for more information.
e ODP.NET, Managed Driver - Windows Installer

ODP.NET, Managed Driver is now available as part of an ODAC Microsoft
Windows Installer package.

* ODP.NET, Managed Driver - Network Data Encryption

ODP.NET, Managed Driver supports database security network data encryption
using Advanced Encryption Standard (AES), RC4, or Triple-DES to enable more
secure database communication over intranet and cloud access.

See also "settings section" and "Network Data Encryption and Integrity" for more
information.

 ODP.NET, Managed Driver - Secure External Password Store

ODP.NET, Managed Driver supports connection establishment by retrieving
password credentials from a client-side Oracle wallet.

See also "Using Secure External Password Store" for more information.

[xxxiii

ORACLE

Changes in This Release for Oracle Data Provider for .NET

ODP.NET, Managed Driver - Microsoft Local Security Authority (MSLSA)

ODP.NET, Managed Driver now supports the Kerberos credential cache type,
MSLSA. MSLSA is used to access the Microsoft Kerberos Logon Session
credentials cache.

See also "Using Kerberos" for more information.
ODP.NET, Managed Driver - SSL/TLS Connections Use a Single Port

An ODP.NET, Managed Driver SSL/TLS connection will now continue on the
original connection to the database listener instead of the previous SSL/TLS client
redirection to a database server created new listening endpoint on a dynamic
(ephemeral) port. Hence, firewalls will only need to allow access to the TNS
listener's port. For example, 1521.

See also "Using Transport Layer Security and Secure Sockets Layer" for more
information.

Service Relocation Connection Timeout

Whenever a database service becomes unavailable, an application can encounter
numerous connectivity errors. To avoid connection attempts to an unavailable
service, ODP.NET, Managed and Unmanaged Drivers block any connection
attempts until the service is up or until the configured time limit expires from the
time when the service DOWN event was received. This feature is useful for
planned outages and service relocations. It works with Oracle RAC and Oracle
Data Guard.

See also "ServiceRelocationConnectionTimeout" for more information.
ODP.NET, Unmanaged Driver - Transaction Guard

Transaction Guard allows ODP.NET applications to use at-most-once execution in
case of planned and unplanned outages and repeated submissions. This feature's
architecture has been modified to simplify the application code needed for
transaction recovery. Developers will find it easier to utilize Transaction Guard in
their applications.

See also "Using Transaction Guard to Prevent Logical Corruption” for more
information.

ODP.NET, Managed Driver - Transaction Guard

ODP.NET, Managed Driver now supports Transaction Guard. Its APl and
architecture are the same as ODP.NET, Unmanaged Driver's in ODAC 12¢
Release 4 to provide improved developer productivity.

See also "Using Transaction Guard to Prevent Logical Corruption” for more
information.

ODP.NET, Unmanaged Driver - Managed Code for Distributed Transactions

In .NET Framework 4.5.2 or higher, ODP.NET, Unmanaged Driver includes
managed code for distributed transaction enlistment and commitment services
using Microsoft Distributed Transaction Coordinator. Previously, applications had
to use Oracle Services for Microsoft Transaction Server for these services. This
new feature simplifies setup and deployment of ODP.NET, Unmanaged Driver
applications that use distributed transactions.

See also "Distributed Transactions" for more information.

ODP.NET, Unmanaged Driver - SQL Translation Framework

IXXXiv

Changes in This Release for Oracle Data Provider for .NET

Introduced in Oracle Database 12c, SQL Translation Framework helps
migrate .NET client applications that use SQL statements with vendor-proprietary
syntax to semantically-equivalent Oracle syntax.

The framework automatically translates non-Oracle SQL to Oracle SQL, thereby
enabling existing client-side application code to run largely unchanged against an
Oracle Database. This reduces the cost of migration to Oracle Database
significantly.

See also "Database Application Migration: SQL Translation Framework" and "SQL
Translation Framework Configuration” for more information.

Tracing Enhancements

ODP.NET improves and unifies tracing features between managed and
unmanaged ODP.NET. Key features include traces now output to a Windows
temporary files directory and both providers use the same tracing parameters.

See also "Debug Tracing" for more information.

Changes in Oracle Data Provider for .NET in ODAC 12¢

Release 3

New Features

ORACLE

The following are the changes in Oracle Data Provider for .NET for ODAC 12¢
Release 3.

The following features are new in this release:

Entity Framework Code First and Code First Migrations

In Entity Framework 6 and higher, managed and unmanaged ODP.NET support
Code First and Code First Migrations.

See also "ADO.NET Entity Framework and LINQ to Entities" for more information.
Entity Framework 6

ODP.NET, Managed and Unmanaged Drivers are certified and supported natively
for Entity Framework version 6.

See also "Entity Framework Requirements" for more information.
NuGet

ODP.NET, Managed Driver is available in a NuGet package. This feature
simplifies distributing customized ODP.NET, Managed Driver to developers.

The Entity Framework assembly for Code First and Entity Framework 6 is
available as a separate NuGet package.

NuGet is the package manager for Microsoft .NET. NuGet can install software by
copying library files to a .NET solution and automatically updating the project
accordingly by adding references and updating config files.

See also "Installing Oracle Data Provider for .NET, Managed Driver" for more
information.

ODP.NET, Managed Driver - XML DB APIs

[xxxVv

Changes in This Release for Oracle Data Provider for .NET

ODP.NET, Managed Driver now supports all ODP.NET XML classes supported by
ODP.NET, Unmanaged Driver.

» Distributed Transactions without Oracle.ManagedDataAccessDTC.dl1

The Oracle.ManagedDataAccessDTC.dI 1 assembly is no longer required for
distributed transaction applications running in .NET Framework 4.5.2 or higher and
ODP.NET, Managed Driver. Upon ODP.NET installation,
Oracle.ManagedDataAccessDTC.dI1 is no longer placed into the Global Assembly
Cache (GAC). For applications that use .NET Framework 4.5.1 or earlier,
Oracle.ManagedDataAccessDTC.dl1 needs to either be placed in the application
directory or in the GAC.

e ODP.NET, Managed Driver - Kerberos

Kerberos is a network authentication service for security in distributed
environments. ODP.NET, Managed Driver can now use Kerberos for single sign-
on and centralized user authentication.

See also "Using Kerberos" for more information.
* ODP.NET, Managed Driver - Implicit Ref Cursor

ODP.NET, Managed Driver introduces support for the new Oracle Database 12¢
Implicit Ref Cursor. Configuration occurs using the <implicitrefcursor> .NET
configuration section. When using database implicit ref cursors, the bindinfo
element should be specified with a mode of "Implicit":

<bindinfo mode="Implicit" />

See also "implicitRefCursor section" for more information.
» Configuration Files: Unified Managed and Unmanaged ODP.NET Format

ODP.NET, Unmanaged Driver now has the option of using the same configuration
file format as ODP.NET, Managed Driver. The format simplifies configuration by
using a single unified scheme. To utilize this format, the existing unmanaged
ODP.NET configuration section should be renamed from
<oracle.dataaccess.client> to <oracle.unmanageddataaccess.client>. The existing
unmanaged ODP.NET elements and values are supported within the new section
using the same format as with ODP.NET, Managed Driver.

The traditional ODP.NET, Unmanaged Driver configuration file format will continue
to be supported.

See Also "Configuration File Support" for more information.

Changes in Oracle Data Provider for .NET Release 12.1.0.2

The following are the changes in Oracle Data Provider for .NET for Release 12.1.0.2.

New Features

The following features are new in this release:

e« .NET Framework 4.5.2 Certification

ODP.NET, Managed and Unmanaged Drivers are certified for NET Framework
4.5.2.

See also "System Requirements" for more information.

ORACLE IXxXVi

Changes in This Release for Oracle Data Provider for .NET

* Character Data Types Extended to 32 KB

ODP.NET, Managed Driver supports the VARCHAR2, NVARCHAR2, and RAW data types
up to 32 KB in size. No code changes are required to use the larger data types.

By being able to store more data, developers can use these data types more
frequently, providing programming flexibility. In addition, SQL Server to Oracle
Database application migration is easier with these new data type sizes.

» Return Number of Rows Affected from Each Input in Array Binding Operations

When using array binding to execute multiple DML statements, ODP.NET,
Managed Driver provides an array that lists the number of rows affected for each
input value from the bound array, rather than just the total number of rows
affected. This information provides more detailed feedback for the application
developer. To retrieve the row count, ODP.NET can call the
OracleCommand.ArrayBindRowsAffected property.

With more detailed feedback on the array bound DML execution, the developer
can better evaluate the query's efficiency and whether the data changes were
correctly applied.

See Also "ArrayBindRowsAffected" for more information.

Changes in Oracle Data Provider for .NET in ODAC 12¢
Release 2

The following are the changes in Oracle Data Provider for .NET for ODAC 12¢
Release 2.

New Features

The following features are new in this release:

* .NET Framework 4.5.1 Certification
Oracle Data Provider for .NET is now certified for .NET Framework 4.5.1.
See also "System Requirements" for more information.

* .NET Framework 4.6 Certification
Oracle Data Provider for .NET is now certified for .NET Framework 4.6.
See also "System Requirements" for more information.

* Improvements to ODP.NET, Managed Driver Versioning

This feature allows unigue identification of ODP.NET, Managed Driver assemblies
which have the same assembly version number.

See also "Oracle Data Provider for .NET Versioning Scheme" for more
information.

ORACLE IXXXVii

Changes in This Release for Oracle Data Provider for .NET

Changes in Oracle Data Provider for .NET in ODAC 12¢

Release 1

The following are the changes in Oracle Data Provider for .NET for ODAC 12¢
Release 1.

New Features

The following feature is new in this release:

LDAP Connections to Active Directory and Oracle Internet Directory

ODP.NET, Managed Driver supports TNS alias resolution through a LDAP server/
service, specifically Microsoft Active Directory and Oracle Internet Directory.

This feature allows ODP.NET, Managed Driver to connect to a database using a
directory server/service.

See also "Lightweight Directory Access Protocol”.

Changes in Oracle Data Provider for .NET Release 12.1

The following are the changes in Oracle Data Provider for .NET for Release 12.1.

New Features

The following features are new in this release:

ORACLE

ODP.NET, Managed Driver

ODP.NET now includes a fully managed provider version, which is 100%

native .NET code. ODP.NET, Managed Driver includes nearly all the features of
ODP.NET, Unmanaged Driver and uses the same application programming
interface. This makes migrating existing ODP.NET applications to ODP.NET,
Managed Driver easier.

With ODP.NET, Managed Driver, it is easier and faster to deploy ODP.NET. There
are fewer assemblies, as few as one to deploy, which also makes patching
straightforward, and the install size is smaller at less than 10 MB. Only one
ODP.NET, Managed Driver assembly is necessary whether you are using 32-bit or
64-bit .NET Framework. Side-by-side deployment with other ODP.NET versions is
simple since there are no unmanaged assemblies to account for. As a fully
managed provider, ODP.NET can better integrate with Code Access Security and
ClickOnce deployment.

See also "Installing Oracle Data Provider for .NET, Managed Driver" .
Support for Pluggable Database

Pluggable Databases (PDBs) enable an Oracle database to contain a portable
collection of schemas, schema objects, and nonschema objects that appears to
ODP.NET as a separate database. ODP.NET can seamlessly use PDBs.

PDBs allow fast database provisioning, fast database redeployment by unplugging
and plugging in existing databases, and quick patching or upgrading many
databases at the cost of doing it once or by unplugging a PDB and plugging it into

IXxXxviii

ORACLE

Changes in This Release for Oracle Data Provider for .NET

a different container database. A machine can run more database instances in the
form of PDBs than as individual, monolithic databases. It is also easier to separate
application administrator duties from the Oracle system administrator duties.

" See Also:

— "Pluggable Databases"

Support for Auto Increment Identity Column

Oracle Database 12c Release 1 (12.1) introduces an auto increment identity
column. ODP.NET, Unmanaged Driver 12.1 and higher releases support
interacting with this column data. Identity columns are generally used to uniquely
identify rows in a table when there is no other natural primary key constraint.

An identity column simplifies .NET development for applications with no natural
primary key and eases application migration from databases that have an identity
column.

¢ See Also:

— "ldentitylnsert"
— "ldentityUpdate"

— "OracleldentityType Enumeration"

Support for Character Data Types Extended to 32 KB

Starting with Oracle Database 12c Release 1 (12.1), ODP.NET, Unmanaged
Driver now supports the VARCHAR2, NVARCHAR2, and RAW data types up to 32 KB in
size. No code changes are required to use the larger data types.

By being able to store more data, developers can use these data types more
frequently, providing programming flexibility. In addition, SQL Server to Oracle
Database application migration is easier with these new data type sizes.

Boolean Data Type

Oracle Database 12c Release 1 (12.1) introduces a new PL/SQL Boolean data
type, which ODP.NET, Unmanaged Driver can store as an OracleBoolean data
type. Booleans store TRUE or FALSE values.

The ODP.NET OracleBoolean data type eases parameter binding and data type
mapping setup with Boolean values.

" See Also:

— "OracleBoolean Structure"

Enhanced Implicit REF Cursor Binding

IXxXix

ORACLE

Changes in This Release for Oracle Data Provider for .NET

In Oracle Database 12c Release 1 (12.1), ODP.NET 12c can retrieve the results of
a SELECT statement run in PL/SQL without an explicit target nor REF CURSOR
data type. ODP.NET retrieves result sets from stored procedures implicitly without
declaring a return type. It is no longer necessary to declare REF CURSOR
metadata in a .NET configuration file, except when using Entity Framework, REF
Cursors that can be updated, or constraint metadata is required to be passed to
the client side.

This capability simplifies using implicit Oracle result sets. In addition, it eases
migration to the Oracle database from other vendor databases that use a similar
feature.

" See Also:

— "ImplicitRefCursors"
"Implicit REF CURSOR Binding"

Return Number of Rows Affected from Each Input in Array Binding Operations

When using array binding to execute multiple DML statements, Oracle Data
Provider for .NET, Unmanaged Driver, now provides an array that lists the number
of rows affected for each input value from the bound array, rather than just the
total number of rows affected. This information provides more detailed feedback
for the application developer. To retrieve the row count, ODP.NET can call the
OracleCommand.ArrayBindRowsAffected property.

With more detailed feedback on the array bound DML execution, the developer
can better evaluate the query's efficiency and whether the data changes were
correctly applied.

" See Also:

"ArrayBindRowsAffected"

Support for APPLY Keyword

Language Integrated Query (LINQ) is a .NET querying language. At runtime, LINQ
is translated into native database SQL before it can query the database. In some
circumstances, LINQ uses the non-standard APPLY keyword in its SQL translation
for retrieving lateral views. Oracle Database and ODP.NET support the APPLY
keyword in Oracle Database 12c Release 1 (12.1) to more fully support LINQ.

This feature allows the occasional LINQ query that uses SQL APPLY to work
seamlessly with ODP.NET and Oracle Database for lateral views.

" See Also:

— ADO.NET Entity Framework and LINQ to Entities

Transaction Guard Support

XC

ORACLE

Changes in This Release for Oracle Data Provider for .NET

Transaction Guard in Oracle Database 12c Release 1 (12.1) preserves transaction
commit outcomes for ODP.NET, Unmanaged Driver, 12c applications during
planned and unplanned outages, preventing applications from repeatedly
submitting the same transaction. Applications use a new logical transaction
identifier to determine the last open transaction's outcome in a database session
following an outage. With the known outcome, the application can confidently
determine whether to resubmit the transaction or not. Without Transaction Guard,
applications that retry operations following outages by committing duplicate
transactions can cause logical corruptions.

Transaction Guard preserves the commit outcome for every transaction and
makes it available to ODP.NET applications. It allows ODP.NET developers to
maintain at-most-once transaction execution.

2 See Also:

"Using Transaction Guard to Prevent Logical Corruption”

Recoverable Error Detection and Recovery

After an Oracle Database 12c¢ Release 1 (12.1) failure, ODP.NET, Unmanaged
Driver, 12c can determine if a failed transaction is recoverable or not. ODP.NET
returns the OracleException IsRecoverable property indicating whether the
transaction is recoverable. If true, the application can retry the transaction.

This feature makes determining whether failed transactions are recoverable
easier, allowing applications to proceed quickly to the next step in the recovery
process.

See Also:

"Using Transaction Guard to Prevent Logical Corruption"

Support for Faster and Planned Database Outage

In Oracle Database 12c Release 1 (12.1), a database being brought offline
automatically alerts ODP.NET applications of the impending downtime. ODP.NET
will then stop allocating new connections and close connections returned to the
pool from that particular instance.

This feature enables databases to be brought offline more quickly and minimizes
potential end user disruptions by disallowing new ODP.NET connections to
databases being brought offline.

¢ See Also:

— "Using FCF Planned Outage to Minimize Service Disruption"

Support for Oracle Notification Service

XCi

ORACLE

Changes in This Release for Oracle Data Provider for .NET

Oracle Notification Service (ONS) is a publish and subscribe service for
communicating Fast Application Notification (FAN) events. ODP.NET receives fast
connection failover and load balancing messages from the database server
through ONS. Previously, ODP.NET used Oracle Advanced Queuing (AQ) as its
FAN publish and subscribe service.

Because ONS is a memory-based service, it delivers messages faster than AQ.
Using ONS, Oracle consolidates the publish and subscribe service that all Oracle
data access drivers use.

" See Also:

— "Fast Application Notification"

Support for Global Data Services

Global Data Services (GDS) is a capability of Oracle Database 12c that extends
the concept of services, which previously only was available in Oracle RAC, to a
globally distributed configuration that can include a combination of Oracle RAC,
Oracle Data Guard, and Oracle GoldenGate. This allows services to be deployed
anywhere within this globally distributed configuration, supporting load balancing,
high availability, database affinity, and so on with ODP.NET.

ODP.NET applications can now more efficiently use database resources on a
global basis to improve performance and availability. Applications that utilize the
Oracle RAC concept of services can now extend the same benefits of automatic
workload management to their Oracle Data Guard and Oracle GoldenGate
configurations. Similarly, Oracle Data Guard and Oracle GoldenGate customers
can now fully utilize the benefits of services and automatic workload management
for their replicated configurations.

¢ See Also:

"Runtime Connection Load Balancing"

"Fast Connection Failover (FCF)"

Transaction and Connection Association

Connections associate with System.Transactions transactions when they enlist
either implicitly through enlist=true connection string attribute, or explicitly through
OracleConnection.EnlistTransaction() method. A connection in ODP.NET now, by
default, detaches from a transaction only when the connection object is closed or
when the transaction object is disposed.

In earlier ODP.NET releases, the connection would get detached from a
transaction under the conditions mentioned earlier and when the transaction was
complete (committed, aborted, or timed out). When the transaction timeout
elapses before the transaction completes, the connection unbinds itself from the
transaction and all subsequent operations on this connection execute in
AutoCommit mode. Any operations prior to the timeout roll back, but operations
performed after the timeout commit. The new transaction unbinding default
behavior also alerts users with an exception if transactions time out and

XCli

Changes in This Release for Oracle Data Provider for .NET

subsequent operations execute on this connection before the transaction is
disposed. This new behavior provides a consistent transactional experience for the
end user, even when a timeout occurs.

See also "LegacyTransactionBindingBehavior" for more information.
e Greater Granular Connection Pool Monitoring

Performance counters can now monitor at the application domain, pool, or
database instance level.

It is now easier to distinguish which application domains, pools, and instances are
healthy and which ones are having problems.

" See Also:

"Connection Pool Performance Counters"

Changes in Oracle Data Provider for .NET Release
11.2.0.3.20

The following are changes in Oracle Data Provider for .NET for Release 11.2.0.3.20.

New Features

The following feature is new in this release:

* .NET Framework 4.5 and Entity Framework 5 Support

Oracle Data Provider for .NET supports .NET Framework 4.5 and Entity
Framework 5.

See also "System Requirements" for more information.

Changes in Oracle Data Provider for .NET Release 11.2.0.3

The following are changes in Oracle Data Provider for .NET for Release 11.2.0.3.

New Features

The following features are new in this release:

e ADO.NET Entity Framework and LINQ to Entities Support

ODP.NET now includes support for the ADO.NET Entity Framework and LINQ to
Entities. Entity Framework is a framework for providing object-relational mapping
service on data models. Entity Framework addresses the impedance mismatch
between the relational database format and the client's preferred object format.
Language Integrated Query (LINQ) defines a set of operators that can be used to
query, project, and filter data in arrays, enumerable classes, XML, relational
databases, and other data sources. One form of LINQ, LINQ to Entities, allows
querying of Entity Framework data sources. ODP.NET supports Entity Framework

ORACLE Xciii

Changes in This Release for Oracle Data Provider for .NET

such that the Oracle database can participate in object-relational modeling and
LINQ to Entities queries.

Entity Framework and LINQ provides productivity benefits for the .NET developer.
It abstracts the database's data model from the application's data model. Working
with object-relational data becomes easier with Entity Framework's tools. Oracle's
integration with Entity Framework and LINQ enables Oracle .NET developers to
take advantage of all these productivity benefits.

See ADO.NET Entity Framework and LINQ to Entities for more information on
ODP.NET support for the ADO.NET Entity Framework and LINQ to Entities.

WCF Data Services and OData

Windows Communication Foundation (WCF) Data Services enable developers to
create services that use the Open Data Protocol (OData) to expose and consume
data over the internet by using the semantics of representational state transfer
(REST). OData exposes data as resources that are addressable by URIs. OData
uses Entity Data Model conventions to expose resources as sets of entities that
are related by associations. ODP.NET supports Entity Framework, and can
expose its data through OData and WCF Data Services.

WCF Data Services and OData facilitate creating flexible data services from any
data source and naturally integrating them with the Web. All data sources,
including Oracle databases, can be used by the same data sharing standard
making data exchange more interoperable.

Implicit REF CURSOR Parameter Binding

ODP.NET can bind REF CURSOR parameters for stored procedures without
binding them explicitly. To do so, the application must provide the REF CURSOR
metadata as part of the .NET configuration file. This feature allows Entity
Framework Function Import to call Oracle stored procedures and return REF
CURSOR result sets. ODP.NET can also update the database's data with a
DataSet or DataTable obtained through a REF CURSOR.

In Entity Framework, result set parameters are generally not declared. By
supporting the implicit REF CURSOR parameter, ODP.NET more closely
integrates with typical Entity Framework usage scenarios.

See "Implicit REF CURSOR Binding" for detailed information on implicit REF
CURSOR parameter binding.

Changes in Oracle Data Provider for NET Release 11.2.0.2

The following are changes in Oracle Data Provider for .NET for Release 11.2.0.2.

New Features

ORACLE

The following features are new in this release:

64-bit ODP.NET XCopy for Windows x64

Now available for Windows x64 systems, ODP.NET XCopy provides system
administrators with a smaller client install size than the standard ODP.NET client,
and is easier to configure. ODP.NET XCopy simplifies embedding ODP.NET in
customized deployment packages.

XCIV

Changes in This Release for Oracle Data Provider for .NET

" See Also:

XCopy under "Installing Oracle Data Provider for .NET, Unmanaged Driver"

e TimesTen In-Memory Database Support

Oracle Data Provider for .NET enables fast data access for any .NET application,
such as C# .NET, Visual Basic .NET, and ASP.NET, to TimesTen In-memory
databases. ODP.NET support for TimesTen includes the classes, enumerations,
interfaces, delegates and structures of the Oracle.DataAccess.Client and
Oracle.DataAccess. Types namespaces. ODP.NET supports TimesTen Release
11.2.1.6.1 or later on Microsoft Windows 32-bit and 64-bit platforms. TimesTen
can be used with .NET Framework 2.0, 3.0, 3.5, and 4 with Microsoft Visual Studio
2005 or later.

¢ See Also:

The latest TimesTen In-Memory Database documentation and resources
can be accessed from:

http://www.oracle.com/technetwork/database/database-technologies/
timesten/overview/index.html

Changes in Oracle Data Provider for .NET Release
11.2.0.1.2

The following are changes in Oracle Data Provider for .NET for Release 11.2.0.1.2.

New Features

The following features are new in this release:

e Support for Microsoft .NET Framework 4

ODP.NET for .NET Framework 4 supports .NET Framework 4 and the .NET
Framework 4 Client Profile.

Changes in Oracle Data Provider for NET Release 11.2

The following are changes in Oracle Data Provider for .NET for Release 11.2.

New Features

The following features are new in this release:

e End-to-End Tracing: Clientinfo Property

ODP.NET now supports the ClientInfo write-only property, in addition to the
ActionName, Clientld, and ModuleName properties, on the OracleConnection object.
This property specifies the client information for the connection.

ORACLE' -

Changes in This Release for Oracle Data Provider for .NET

The ClientInfo property is an end-to-end tracing attribute that can be set on the
client or middle tier. This attribute is propagated to the database server whenever
the next server round-trip happens. This reduces the added overhead associated
with an independent database round trip. Using the Clientinfo property is helpful
in tracking database user activities and debugging applications.

¢ See Also:

— "Client Identifier and End-to-End Tracing"

— "ClientInfo"

Edition-Based Redefinition

Edition-based redefinition enables you to upgrade the database component of an
application even while the .NET application is being used. This minimizes or
eliminates downtime for the application.

¢ See Also:

"Edition-Based Redefinition"

Changes in Oracle Data Provider for .NET Release

11.1.0.7.20

New Features

ORACLE

The following are changes in Oracle Data Provider for .NET for Release 11.1.0.7.20.

The following features are new in this release:

Self-Tuning for Applications

Based on run-time sampling, ODP.NET dynamically adjusts statement cache size
to provide better application performance. Self-tuning also takes into account
memory usage on the client machine in order to prevent excessive memory usage.
Self-tuning improves ODP.NET performance, reduces network usage, and
decreases server CPU and client CPU activity.

¢ See Also:
"Self-Tuning"

Faster Data Retrieval and Less Memory Usage

Retrieving data using OracleDataReader or populating a DataSet from an
OracleDataAdapter is now faster.

XCVi

Changes in This Release for Oracle Data Provider for .NET

ODP.NET reuses the same fetch array buffer for statements executed non-
concurrently, saving on memory usage. The fetch array buffer stores data
retrieved from the database.

No code changes are necessary to use these features. These features provide
better performance and scalability for ODP.NET applications.

* Oracle Streams Advanced Queuing Support

ODP.NET supports access to Oracle Streams Advanced Queuing (AQ). AQ
provides database-integrated message queuing functionality to store messages
persistently, propagate messages between queues on different machines and
databases, and transmit messages using Oracle NET services, HTTP, HTTPS and
SMTP.

ODP.NET can access all the operational features of AQ, such as enqueue,
dequeue, listen and notification. Oracle Developer Tools for Visual Studio can
administer and manage AQ resources.

" See Also:

"Oracle Database Advanced Queuing Support"

» Promotable Local Transaction Support

Distributed transactions require the orchestration of application, transaction
coordinator, and multiple databases. Local transactions only require an application
and a single resource manager, or database. Local transactions have less of an
overhead when compared to distributed transactions.

It may be difficult to determine whether a transaction will be local or distributed at
design time. Developers are forced to design applications for distributed
transactions, even if local transactions are used most of the time. This situation
leads to more resource usage than necessary at run time.

Promotable local transactions allow all transactions to remain local until more than
one database is brought into the transaction. At this point, the transaction is
promoted to a distributed transaction so that it can be managed by the transaction
coordinator. This provides a better utilization of system resources. This feature is
supported with Oracle Database 119 release 1 (11.1.0.7) and higher.

¢ See Also:

"System.Transactions and Promotable Transactions"

* ODP.NET Security Enhancements

ODP.NET makes use of the OraclePermission class to enforce imperative security.
This helps ensure that a user or application has a security level adequate for
accessing data.

ORACLE XCVii

Changes in This Release for Oracle Data Provider for .NET

" See Also:

"Code Access Security"
— "OraclePermission Class"

— "OraclePermissionAttribute Class"

Callbacks for HA Event Notifications

ODP.NET can register for Oracle High Availability (HA) events when "ha
events=true" is specified in the connection string. ODP.NET is then able to receive
notifications on which database, service, host, or instance has gone down or come
up. .NET developers can register a callback with ODP.NET to notify the
application when one of these events occurs and subsequently execute an event
handler, as needed.

¢ See Also:

— Oracle Data Provider for .NET HA Event Classes
— "HAEvent"

— "OracleConnection Properties"

Database Startup and Shutdown Operations

Users with database administrator privileges can use the OracleDatabase class to
startup or shutdown a database instance.

¢ See Also:

— "OracleDatabase Class"
"Shutdown"
— "Startup”

Changes in Oracle Data Provider for .NET Release

11.1.0.6.20

The following are changes in Oracle Data Provider for .NET for Release 11.1.0.6.20.

New Features

The following features are new in this release:

ORACLE

32-bit ODP.NET XCopy

XCVili

Changes in This Release for Oracle Data Provider for .NET

Oracle XCopy provides system administrators with an ODP.NET client that is
smaller in disk size than the standard ODP.NET client and is easily configurable.
Oracle XCopy makes embedding ODP.NET in customized deployment packages
much simpler.

" See Also:

"XCopy"

e Support for Oracle User-Defined Types

ODP.NET has the ability to represent Oracle UDTs defined in the database as
custom types in .NET applications.

¢ See Also:

— "Oracle User-Defined Types (UDTs) and .NET Custom Types"
— Oracle Data Provider for .NET UDT-Related Classes

* Bulk Copy Operations
ODP.NET supports the Bulk Copy operations to load a large amount of data

efficiently.
" See Also:

— "Bulk Copy"
— Oracle Data Provider for .NET Bulk Copy Classes

* Additional Connection Pool Optimizations for Oracle Real Application Clusters
(Oracle RAC) and Oracle Data Guard

ODP.NET now cleans up the connection pool when the database down event is
received from Oracle RAC or Oracle Data Guard. This is in addition to the events
that ODP.NET already cleaned up the connection pool for: node down, service
member down, and service down events.

¢ See Also:
"Real Application Clusters and Global Data Services"

e Windows-Authenticated User Connection Pooling

Operating system-authenticated connections can now be managed as part of
ODP.NET connection pools

ORACLE XCiX

Changes in This Release for Oracle Data Provider for .NET

" See Also:

"Operating System Authentication "

* Connection Pool Performance Counters

ODP.NET publishes performance counters for connection pooling, which can be
viewed using the Windows Performance Monitor.

¢ See Also:

"Connection Pool Performance Counters"

e End-to-End Tracing Attribute Support

ODP.NET supports the ActionName, Clientld, Clientinfo, and ModuleName write-
only properties on the OracleConnection object. These properties correspond to
end-to-end tracing attributes that can be set on the client or middle-tier, and
propagated to the database server whenever the next server round-trip happens.
This reduces the added overhead associated with an independent database round
trip. Using these attributes is helpful in tracking database user activities and
debugging applications.

¢ See Also:

"Client Identifier and End-to-End Tracing"

Changes in Oracle Data Provider for NET Release 11.1

The following are changes in Oracle Data Provider for .NET for Release 11.1.

New Features

The following features are new in this release:

* Performance Enhancements
The following performance enhancements have been made:
— Improved Parameter Context Caching

This release enhances the existing caching infrastructure to cache ODP.NET
parameter contexts. This enhancement is independent of database version
and it is available for all the supported database versions. This feature
provides significant performance improvement for the applications that
execute the same statement repeatedly.

This enhancement is transparent to the developer. No code changes are
needed to use this feature.

— Efficient LOB Retrieval with LOBS or SecureFiles

ORACLE c

Changes in This Release for Oracle Data Provider for .NET

When using LOBS or SecureFiles, this release improves the performance of
small-sized LOB retrieval by reducing the number of round-trips to the
database. SecureFiles is available with Oracle 11g release 1 or later database
versions.

This enhancement is transparent to the developer. No code changes are
needed to use this feature.

ORACLE i

Introducing Oracle Data Provider for .NET

This chapter introduces Oracle Data Provider for .NET (ODP.NET), an implementation
of a .NET data provider for Oracle Database.

This chapter contains these topics:

* .NET Data Access in Oracle: Products and Documentation

e Overview of Oracle Data Provider for .NET (ODP.NET)

* Oracle Data Provider for .NET Assemblies

» Differences between the ODP.NET Managed Driver and Unmanaged Driver

e Using ODP.NET Client Provider in a Simple Application

1.1 .NET Data Access in Oracle: Products and
Documentation

This section discusses Oracle Data Provider for .NET and Oracle Database
components that use Oracle Data Provider for .NET for data access. It briefly
describes what each component does and where to find additional documentation.

These Oracle products provide .NET integration on the Windows operating system:

1.1.1 Oracle Data Provider for .NET (ODP.NET)

ORACLE

Oracle Data Provider for .NET provides fast data access from .NET clients to Oracle
databases. ODP.NET enables .NET applications to take advantage of Oracle
advanced features, such as Oracle Real Application Clusters (Oracle RAC) and XML
DB. It is accessible through any .NET language, including C#, Visual Basic .NET, and
C++ .NET.

ODP.NET consists of two drivers: ODP.NET, Managed Driver and ODP.NET,
Unmanaged Driver. ODP.NET, Managed Driver is a fully managed ADO.NET provider,
consisting of fewer DLLs and smaller install size than ODP.NET, Unmanaged Driver.
The managed driver has the same exact application programming interfaces (APIs) as
ODP.NET, Unmanaged Driver. However, the managed driver's APIs are a subset of
the Unmanaged Driver's APIs.

This guide describes Oracle Data Provider for .NET features, their use, installation,
requirements, and classes. The guide distinguishes which classes and APIs are
supported for the managed driver, unmanaged driver, .NET stored procedures,
and .NET clients.

Additionally, Oracle Data Provider for .NET Dynamic Help, which is context-sensitive
online help, contains the same reference sections available in Oracle Data Provider
for .NET Developer's Guide for Microsoft Windows, this guide.

1-1

Chapter 1
.NET Data Access in Oracle: Products and Documentation

Oracle Data Provider for .NET Dynamic Help is integrated with Visual Studio Dynamic
Help. With Dynamic Help, you can access Oracle Data Provider for .NET
documentation within Visual Studio by placing the cursor on an Oracle Data Provider
for .NET keyword and pressing the F1 function key.

1.1.2 Oracle Developer Tools for Visual Studio

Oracle Developer Tools is an add-in to Visual Studio that provides graphical user
interface (GUI) access to Oracle functionality. It provides improved developer
productivity and ease of use. Oracle Developer Tools provide the ability to build .NET
stored procedures using Visual Basic .NET, C#, and other .NET languages.

Oracle Developer Tools for Visual Studio Help describes Oracle Developer Tools. This
help is in the form of dynamic help, which installs as part of the product.

Additionally, the Oracle Developer Tools for Visual Studio Help includes the following
documentation:

* Oracle Database PL/SQL Language Reference

* Oracle Database SQL Language Reference

* Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows
* Oracle Database Error Messages Reference

» Access to Oracle Data Provider for .NET Dynamic Help

» Access to Oracle Providers for ASP.NET Dynamic Help

1.1.3 Oracle Database Extensions for NET

Oracle Database Extensions for .NET provides the following:

* Hosting of Microsoft Common Language Runtime (CLR) in an external process on
the server side, to execute .NET stored procedures.

 ODP.NET data access on the server side, from within the .NET stored procedure.

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows describes all
ODP.NET classes. Classes that are not supported by Oracle Database Extensions
for .NET are described as Not Supported in a .NET Stored Procedure.

1.1.4 Oracle Providers for ASP.NET

ORACLE

Oracle Providers for ASP.NET offer ASP.NET developers an easy to use method to
store state common to web applications within an Oracle database. These providers
are modeled on existing Microsoft ASP.NET providers, sharing similar schema and
programming interfaces to provide .NET developers a familiar interface. Oracle
supports the following providers:

» Cache Dependency Provider
* Membership Provider

* Profile Provider

* Role Provider

e Session State Provider

1-2

Chapter 1
Overview of Oracle Data Provider for .NET (ODP.NET)

e Site Map Provider
Web Events Provider
Web Parts Personalization Provider

Oracle Providers for ASP.NET classes, their use, installation, and requirements are
described in Oracle Providers for ASP.NET Developer's Guide for Microsoft Windows,
which is also provided as dynamic help.

1.1.5 Oracle Services for Microsoft Transaction Server

Oracle Services for Microsoft Transaction Server (OraMTS) permit Oracle databases
to be used as resource managers in Microsoft application coordinated transactions.
OraMTS acts as a proxy for the Oracle database to the Microsoft Distributed
Transaction Coordinator (MSDTC). As a result, OraMTS provides client-side
connection pooling and allows client components that leverage Oracle to participate in
promotable and distributed transactions. In addition, OraMTS can operate with Oracle
databases running on any operating system, given that the services themselves are
run on Windows.

1.1.6 Oracle TimesTen In-Memory Database

ODP.NET support for Oracle TimesTen In-Memory Database (TimesTen) provides
fast and efficient ADO.NET data access for applications that require the highest
performance.

You can use ODP.NET with any of the following TimesTen installations:

» TimesTen Data Manager only (for direct connections)

» TimesTen Client only (for client/server connections, assuming a TimesTen Data
Manager instance and TimesTen Server instance are accessible elsewhere)

» TimesTen Data Manager with TimesTen Server

For more information on ODP.NET features specific to a TimesTen environment, refer
to the Oracle Data Provider for .NET Oracle TimesTen In-Memory Database Support
User's Guide.

Note:

TimesTen does not support ODP.NET, Managed Driver.

1.2 Overview of Oracle Data Provider for NET (ODP.NET)

ORACLE

Oracle Data Provider for .NET (ODP.NET) is an implementation of a .NET data
provider for Oracle Database, using and inheriting from classes and interfaces
available in the Microsoft .NET Framework Class Library.

Following the .NET Framework, ODP.NET uses the ADO.NET model, which allows
native providers to expose provider-specific features and data types. This is similar to
Oracle Provider for OLE DB, where ADO (ActiveX Data Objects) provides an

1-3

Chapter 1
Oracle Data Provider for .NET Assemblies

automation layer that exposes an easy programming model. ADO.NET provides a
similar programming model, but without the automation layer, for better performance.

Oracle Data Provider for .NET uses Oracle native APIs to offer fast and reliable
access to Oracle data and features from any .NET application. ODP.NET consists of
two drivers: ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver.
ODP.NET, Managed Driver is a fully managed ADO.NET provider, consisting of fewer
DLLs and smaller install size than ODP.NET, Unmanaged Driver. The managed driver
has the same exact application programming interfaces (APIs) as ODP.NET,
Unmanaged Driver. However, the managed driver's APIs are a subset of the
Unmanaged Driver's APIs.

The ODP.NET classes described in this guide are contained in the
Oracle.DataAccess.dll and Oracle.ManagedDataAccess.dll assembly.

e Client Applications: All ODP.NET classes are available for use in client
applications.

As ODP.NET, Managed Driver does not support all classes and members in the
ODP.NET, Unmanaged Driver, the unsupported managed driver classes and
members will be labeled Not Supported in ODP.NET, Managed Driver.

* .NET Stored Procedures: Most ODP.NET classes can be used from within .NET
stored procedures and functions. Those classes which cannot, are labeled Not
Supported in a .NET Stored Procedure. Additionally, some classes contain
members which may not be supported, and this is so indicated in the member
tables that follow the class descriptions, and listed in Chapter 4 of this guide.

1.3 Oracle Data Provider for .NET Assemblies

This section contains the following topics:

e Oracle Data Provider for .NET, Unmanaged Driver Assemblies
* Oracle Data Provider for .NET, Managed Driver Assemblies
* Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces

* Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Namespaces

1.3.1 Oracle Data Provider for .NET, Unmanaged Driver Assemblies

The Oracle.DataAccess.dll assembly provides two namespaces:

e The Oracle.DataAccess.Client namespace contains ODP.NET classes and
enumerations for the client-side provider.

* The Oracle.DataAccess.Types namespace contains the Oracle Data Provider
for .NET data types (ODP.NET Types).

To use Code First or Entity Framework 6 or higher with ODP.NET, Unmanaged Driver,
add Oracle.DataAccess.EntityFramework.dll as a project assembly reference. It
contains the namespace Oracle.DataAccess.EntityFramework.

1.3.2 Oracle Data Provider for .NET, Managed Driver Assemblies

ORACLE

The Oracle.ManagedDataAccess.dll assembly provides two namespaces:

1-4

Chapter 1
Oracle Data Provider for NET Assemblies

e The Oracle.ManagedDataAccess.Client hamespace contains ODP.NET classes and
enumerations for the client-side provider.

e The Oracle.ManagedDataAccess. Types hamespace contains the Oracle Data
Provider for .NET data types (ODP.NET Types).

ODP.NET, Managed Driver contains additional assemblies. These assemblies are
optional to install if not using the specific functionality.

Applications do not need to explicitly add these assemblies to their project. ODP.NET,
Managed Driver will access these assemblies by default if installed.

The one exception is Oracle.ManagedDataAccess.EntityFramework.dll. That DLL must
be explicitly added to a project for its functionality to be used.

e Oracle.ManagedDataAccessDTC.dI1 - Only required when using distributed
transactions. The assembly is fully managed, but has 32-bit and x64 versions
depending on the .NET Framework's bitness in which it runs. The assembly makes
calls to unmanaged assemblies.

e Oracle.ManagedDataAccess.EntityFramework.dll - Only required when using Code
First or Entity Framework 6 or higher. It contains the
Oracle.ManagedDataAccess.EntityFramework namespace.

e Oracle.ManagedDataAccessI0P.dl1 - Only required when using Kerberos. The
assembly has 32-bit and x64 versions depending on the .NET Framework's
bitness in which it runs. The assembly makes calls to unmanaged assemblies.
Applications do not need to explicitly add this assembly to their project as
ODP.NET is already configured to access this assembly by default.

1.3.3 Oracle.DataAccess.Client and
Oracle.ManagedDataAccess.Client Namespaces

The Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client namespaces
contains implementations of core ADO.NET classes and enumerations for ODP.NET,
as well as ODP.NET specific classes.

The following tables list ODP.NET classes, enumerations, and types that are
supported by the Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
namespaces. The tables indicate which of them are not supported by ODP.NET,
Managed Driver and/or by .NET stored procedures. All are supported by ODP.NET,
Unmanaged Driver.

1.3.3.1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Table 1-1 lists the Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
classes and delegates.

ORACLE 1-5

Chapter 1
Oracle Data Provider for .NET Assemblies

Table 1-1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate

Supported in the Supported in .NET Stored Description
ODP.NET, Managed Procedures
Driver

OnChangeEventHandler
Delegate

OracleAQAgent Class

OracleAQDequeueOptions
Class

OracleAQEnqueueOptions
Class

OracleAQMessage Class

OracleAQMessageAvailabl

eEventArgs Class

OracleAQMessageAvailabl
eEventHandler Delegate

OracleAQQueue Class

OracleBulkCopy Class

ORACLE

- No The
OnChangedEventHandler
event delegate represents
the signature of the method
that handles the
notification.

No - The OracleAQAgent class
represents agents that may
be senders or recipients of
a message.

No - An
OracleAQDequeueOptions
object represents the
options available when
dequeuing a message from
an OracleAQQueue object.

No - The
OracleAQEnqueueOptions
class represents the
options available when
engueuing a message to
an OracleAQQueue.

No - An OracleAQMessage object
represents a message to
be enqueued and
dequeued.

No - The
OracleAQMessageAvai labl
eEventArgs class provides
event data for the
OracleAQQueue .MessageAv
ailable event.

No - The
OracleAQMessageAvai labl
eEventHandler delegate
represents the signature of
the method that handles
the
OracleAQQueue .MessageAv
ailable event.

No - An OracleAQQueue object
represents a queue.

No - An OracleBulkCopy object
efficiently bulk loads or
copies data into an Oracle
table from another data
source.

1-6

Chapter 1

Oracle Data Provider for NET Assemblies

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate

Supported in the
ODP.NET, Managed
Driver

Procedures

Supported in .NET Stored Description

OracleBulkCopyColumnMa
pping Class

OracleBulkCopyColumnMa
ppingCollection Class

OracleClientFactory Class

OracleCommand Class

OracleCommandBuilder
Class

OracleConnection Class

OracleConnectionStringBui

Ider Class

OracleDataAdapter Class

OracleDatabase Class

ORACLE

No -

No -

The
OracleBulkCopyColumnMap
ping class defines the
mapping between a column
in the data source and a
column in the destination
database table.

The
OracleBulkCopyColumnMap
pingCollection class
represents a collection of
OracleBulkCopyColumnMap
ping objects that are used
to map columns in the data
source to columns in a
destination table.

An OracleClientFactory
object allows applications
to instantiate ODP.NET

classes in a generic way.

An OracleCommand object
represents a SQL
command, a stored
procedure or function, or a
table name.

An OracleCommandBui lder
object provides automatic
SQL generation for the
OracleDataAdapter when
the database is updated.

An OracleConnection
object represents a
connection to Oracle
Database.

An
OracleConnectionStringB
ui lder object allows
applications to create or
modify connection strings.

An OracleDataAdapter
object represents a data
provider object that
communicates with the
DataSet.

An OracleDatabase object
represents an Oracle
Database instance.

1-7

Chapter 1

Oracle Data Provider for NET Assemblies

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate

Supported in the
ODP.NET, Managed
Driver

Supported in .NET Stored Description
Procedures

OracleDataReader Class

OracleDataSourceEnumer

ator Class

OracleDependency Class

OracleError Class

OracleErrorCollection
Class

OracleException Class

OracleFailoverEventArgs

Class

OracleFailoverEventHandle

r Delegate

OracleGlobalization Class

ORACLE

No

No

No

No

An OracleDataReader
object represents a
forward-only, read-only, in-
memory result set.

An
OracleDataSourceEnumera
tor object allows
applications to generically
obtain a collection of data
sources to connect to.

An OracleDependency
class represents a
dependency between an
application and an Oracle
database.

The OracleError object
represents an error
reported by an Oracle
database.

An
OracleErrorCollection
object represents a
collection of OracleErrors.

The OracleException
object represents an
exception that is thrown
when Oracle Data Provider
for .NET encounters an
error.

The

OracleFai loverEventArgs
class provides event data
for the
OracleConnection.Failov
er event.

The
OracleFailoverEventHand
ler represents the
signature of the method
that handles the
OracleConnection.Failov
er event.

The OracleGlobalization
class is used to obtain and
set the Oracle globalization
settings of the session,
thread, and local computer
(read-only).

1-8

Chapter 1
Oracle Data Provider for NET Assemblies

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate

Supported in the Supported in .NET Stored Description
ODP.NET, Managed Procedures
Driver

OracleHAEventArgs Class

OracleHAEventHandler
Delegate

OraclelnfoMessageEventAr
gs Class

OracleIlnfoMessageEventH
andler Delegate

OracleNotificationEventArg
s Class

OracleNotificationRequest

Class

OracleParameter Class

OracleParameterCollection

Class

OraclePermission Class

ORACLE

- - The OracleHAEventArgs
class provides event data
for the
OracleConnection.HAEven
t event.

- - The
OracleHAEventHandler
delegate represents the
signature of the method
that handles the
OracleConnection.HAEven
t event.

- - The
OraclelnfoMessageEventA
rgs object provides event
data for the
OracleConnection. InfoMe
ssage event.

- - The
OraclelnfoMessageEventH
andler delegate represents
the signature of the method
that handles the
OracleConnection. InfoMe
ssage event.

- - The
OracleNotificationEvent
Args class provides event
data for a notification.

- No An
OracleNotificationReque
st class represents a
notification request to be
subscribed in the database.

- - An OracleParameter object
represents a parameter for
an OracleCommand.

An
OracleParameterCollecti
on object represents a
collection of
OracleParameters.

- - An OraclePermission
object enables ODP.NET
to enforce imperative
security and helps ensure
that a user has a security
level adequate for
accessing data.

1-9

Chapter 1
Oracle Data Provider for .NET Assemblies

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the Supported in .NET Stored Description
ODP.NET, Managed Procedures
Driver

OraclePermissionAttribute - - An

Class

OracleRowsCopiedEventH
andler Delegate

OracleRowsCopiedEventAr
gs Class

OracleRowUpdatedEventA
rgs Class

OracleRowUpdatedEventH
andler Delegate

OracleRowUpdatingEventA
rgs Class

OracleRowUpdatingEventH
andler Delegate

ORACLE

OraclePermissionAttribu
te object enables
ODP.NET to enforce
declarative security and
helps ensure that a user
has a security level
adequate for accessing
data.

No - The
OracleRowsCopiedEventHa
ndler delegate represents
the method that handles
the OracleRowsCopied
event of an
OracleBulkCopy object.

No - The
OracleRowsCopiedEventAr
gs class represents the set
of arguments passed as
part of event data for the
OracleRowsCopied event.

- - The
OracleRowUpdatedEventAr
gs object provides event
data for the
OracleDataAdapter.RowUp
dated event.

- - The
OracleRowUpdatedEventHa
ndler delegate represents
the signature of the method
that handles the
OracleDataAdapter.RowlUp
dated event.

- - The
OracleRowUpdatingEventA
rgs object provides event
data for the
OracleDataAdapter_RowUp
dating event.

- - The
OracleRowUpdatingEventH
andler delegate represents
the signature of the method
that handles the
OracleDataAdapter.RowlUp
dating event.

1-10

Chapter 1

Oracle Data Provider for NET Assemblies

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate

Supported in the

Supported in .NET Stored Description

ODP.NET, Managed Procedures
Driver
OracleShardingKey Class No No An OracleShardingKey
object can represent either
a sharding key or a super
sharding key.
OracleTransaction Class - No An OracleTransaction

OracleXmlQueryProperties
Class

OracleXmlSaveProperties
Class

object represents a local
transaction.

An
OracleXmlQueryPropertie
s object represents the
XML properties used by the
OracleCommand class when
the XmICommandType
property is Query.

An
OracleXmlSaveProperties
object represents the XML
properties used by the
OracleCommand class when
the XmICommandType
property is Insert, Update,
or Delete.

1.3.3.2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Enumerations

Table 1-2 lists the client enumerations.

Table 1-2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations

Enumeration Supported in the Supported Description
ODP.NET, in .NET Stored
Managed Driver Procedures
FailoverEvent Enumeration No No FailoverEvent enumerated
values are used to specify the
state of the failover.
FailoverReturnCode Enumeration No No FailoverReturnCode
enumerated values are passed
back by the application to the
ODP.NET provider to request a
retry in case of a failover error,
or to continue in case of a
successful failover.
FailoverType Enumeration No No FailoverType enumerated

ORACLE

values are used to indicate the
type of failover event that was
raised.

1-11

Chapter 1

Oracle Data Provider for .NET Assemblies

Table 1-2 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Enumerations

Enumeration

Supported in the
ODP.NET,
Managed Driver

Supported
in .NET Stored
Procedures

Description

OracleAQDequeueMode Enumeration

OracleAQMessageDeliveryMode
Enumeration

OracleAQMessageState Enumeration

OracleAQMessageType Enumeration

OracleAQNavigationMode Enumeration

OracleAQNotificationGroupingType

Enumeration

OracleAQNotificationType Enumeration

OracleAQVisibilityMode Enumeration

OracleBulkCopyOptions Enumeration

OracleCollectionType Enumeration

ORACLE

No

No

No

No

No

No

No

No

The OracleAQDequeueMode
enumeration type specifies the
dequeue mode.

The
OracleAQMessageDeliveryMode
enumeration type specifies the
delivery mode of the message.

The OracleAQMessageState
enumeration type identifies the
state of the message at the time
of dequeue.

The OracleAQMessageType
enumeration type specifies the
message payload type.

The OracleAQNavigationMode
enumeration type specifies the
navigation mode.

The
OracleAQNotificationGroupin
gType enumeration type
specifies the notification

grouping type.

The OracleAQNotificationType
enumeration type specifies the
notification type of the received
notification.

The OracleAQVisibilityMode
enumeration type specifies
whether the enqueue or
dequeue operation is part of the
current transaction.

The OracleBulkCopyOptions
enumeration specifies the
values that can be combined
with an instance of the
OracleBulkCopy class and used
as options to determine its
behavior and the behavior of the
WriteToServer methods for that
instance.

OracleCollectionType
enumerated values specify
whether or not the
OracleParameter object
represents a collection, and if
S0, specifies the collection type.

1-12

Chapter 1
Oracle Data Provider for NET Assemblies

Table 1-2 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Enumerations

Enumeration

Supported in the
ODP.NET,
Managed Driver

Supported

Description

in .NET Stored

Procedures

OracleConnectionType Enumeration

OracleDBShutdownMode Enumeration

OracleDBStartupMode Enumeration

OracleDbType Enumeration

OracleHAEventSource Enumeration

OracleHAEventStatus Enumeration

OracleldentityType Enumeration

OracleNotificationinfo Enumeration

OracleNotificationSource Enumeration

OracleNotificationType Enumeration

OracleParameterStatus Enumeration

ORACLE

No

No

No

No

No

No

OracleConnectionType
enumerated values specify
whether a particular connection
object is associated with an
Oracle database connection, a
TimesTen database connection,
or no physical connection at all.

OracleDBShutdownMode
enumerated values specify the
database shutdown options.

OracleDBStartupMode
enumerated values specify the
database startup options.

OracleDbType enumerated
values are used to explicitly
specify the OracleDbType of an
OracleParameter.

The OracleHAEventSource
enumeration indicates the
source of the HA event.

The OracleHAEventStatus
enumeration indicates the
status of the HA event source.

The OracleldentityType
enumeration specifies how
Oracle identity column values
are generated.

OracleNotificationlInfo
enumerated values specify the
database event that causes the
notification.

OracleNotificationSource
enumerated values specify the
different sources that cause
notification.

OracleNotificationType
enumerated values specify the
different types that cause the
notification.

The OracleParameterStatus
enumeration type indicates
whether a NULL value is fetched
from a column, or truncation has
occurred during the fetch, or a
NULL value is to be inserted into
a database column.

1-13

Chapter 1
Oracle Data Provider for .NET Assemblies

Table 1-2 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Enumerations

___|]
Enumeration Supported in the Supported Description

ODP.NET,

in .NET Stored

Managed Driver Procedures

OracleRowidInfo Enumeration -

OracleXmlCommandType Enumeration -

- The OracleRowidInfo
enumeration values specify
whether ROWID information is
included as part of the
ChangeNotificationEventArgs
or not

- The OracleXmlCommandType
enumeration specifies the
values that are allowed for the
OracleXmlCommandType property
of the OracleCommand class.

1.3.4 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Namespaces

The Oracle.DataAccess.Types and Oracle.ManagedDataAccess. Types namespaces
provides classes, structures, and exceptions for Oracle native types that can be used
with Oracle Data Provider for .NET.

1.3.4.1 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types

Structures

Table 1-3 lists the type structures.

Table 1-3 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types

Structures

Structure

Description

OracleBinary Structure

OracleBoolean Structure

OracleDate Structure

OracleDecimal Structure

OraclelntervalDS Structure

OraclelntervalYM Structure

OracleString Structure

ORACLE

The OracleBinary structure represents a variable-length
stream of binary data.

The OracleBoolean structure represents a logical value that
is either TRUE or FALSE.

The OracleDate structure represents the Oracle DATE data
type.

The OracleDecimal structure represents an Oracle NUMBER
in the database or any Oracle numeric value.

The OraclelntervalDS structure represents the Oracle
INTERVAL DAY TO SECOND data type.

The Oraclelnterval YM structure represents the Oracle
INTERVAL YEAR TO MONTH data type.

The OracleString structure represents a variable-length
stream of characters.

1-14

Chapter 1
Oracle Data Provider for NET Assemblies

Table 1-3 (Cont.) Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Structures

Structure

Description

OracleTimeStamp Structure

OracleTimeStampLTZ Structure

OracleTimeStampTZ Structure

The OracleTimeStamp structure represents the Oracle
TimeStamp data type.

The OracleTimeStampLTZ structure represents the Oracle
TIMESTAMP WITH LOCAL TIME ZONE data type.

The OracleTimeStampTZ structure represents the Oracle
TIMESTAMP WITH TIME ZONE data type.

1.3.4.2 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types

Exceptions

Type Exceptions are thrown only by ODP.NET type structures. Table 1-4 lists the type

exceptions.

Table 1-4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types

Exceptions

Exception

Description

OracleTypeException Class

OracleNullValueException Class

OracleTruncateException Class

The OracleTypeException object is the base exception
class for handling exceptions that occur in the ODP.NET
Types classes.

The OracleNullValueException represents an exception
that is thrown when trying to access an ODP.NET Types
structure that is null.

The OracleTruncateException class represents an
exception that is thrown when truncation in an ODP.NET
Types class occurs.

1.3.4.3 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types

Classes

Table 1-5 lists the type classes.

Table 1-5 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes

Class Supported in
the
ODP.NET,
Managed
Driver

Description

OracleArrayMappingAttribute Class No

ORACLE

The OracleArrayMappingAttribute class is required to mark
a custom class field or property with information that
ODP.NET uses when a custom type represents an Oracle
Collection type.

1-15

Chapter 1
Oracle Data Provider for .NET Assemblies

Table 1-5 (Cont.) Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes

___|
Class Supported in Description

the
ODP.NET,
Managed
Driver

OracleBFile Class -

OracleBlob Class -

OracleClob Class -

OracleCustomTypeMappingAttribut No
e Class

OracleObjectMappingAttribute No
Class
OracleRef Class No

OracleRefCursor Class -

OracleUdt Class No

OracleXmlStream Class -

OracleXmlType Class -

An OracleBFile is an object that has a reference to BFILE
data. It provides methods for performing operations on BFILE
objects.

An OracleBlob object is an object that has a reference to
BLOB data. It provides methods for performing operations on
BLOB objects.

An OracleClob is an object that has a reference to CLOB data.
It provides methods for performing operations on CLOB
objects.

The OracleCustomTypeMappingAttribute class is used to
mark a custom type factory class or struct with information
that is used by ODP.NET when a custom type is used to
represent an Oracle UDT.

The OracleObjectMappingAttribute class marks custom
class fields or properties with information that ODP.NET uses
when a custom type represents an Oracle Object type.

An OracleRef instance represents an Oracle REF, which
references a persistent, standalone, referenceable object that
resides in the database. The OracleRef object provides
methods to insert, update, and delete the Oracle REF.

An OracleRefCursor object represents an Oracle REF CURSOR.

The OracleUdt class defines static methods that are used
when converting between Custom Types and Oracle UDTs
and vice-versa.

An OracleXmlStream object represents a sequential read-only
stream of XML data stored in an OracleXmlType object.

An OracleXxmlType object represents an Oracle XmlType
instance.

1.3.4.4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types

Interfaces

Table 1-6 lists the type interfaces.

Table 1-6 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces

Interface Supported in the Description
ODP.NET,
Managed Driver
IOracleArrayTypeFactory No The 10racleArrayTypeFactory interface is used by ODP.NET
Interface to create arrays that represent Oracle Collections.
ORACLE 1-16

Chapter 1
Differences between the ODP.NET Managed Driver and Unmanaged Driver

Table 1-6 (Cont.) Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces
]

Interface Supported in the Description
ODP.NET,
Managed Driver
IOracleCustomType Interface No I10racleCustomType is an interface for converting between a
Custom Type and an Oracle Object or Collection Type.
IOracleCustomTypeFactory No The 10racleCustomTypeFactory interface is used by
Interface ODP.NET to create custom objects that represent Oracle

Objects or Collections.

INullable Interface - The INullable interface is used to determine whether or not
an ODP.NET type has a NULL value.

1.3.4.5 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Enumerations

Table 1-7 lists the type enumerations.

Table 1-7 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations

Enumeration Supported in the Description

ODP.NET, Managed

Driver
OracleUdtFetchOption No OracleUdtFetchOption enumeration values specify how to
Enumeration retrieve a copy of the referenceable object.
OracleUdtStatus No OracleUdtStatus enumeration values specify the status of
Enumeration an object attribute or collection element. An object attribute

or a collection element can be a valid value or a null value.

1.4 Differences between the ODP.NET Managed Driver and
Unmanaged Driver

ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver have a number of
configuration setting differences.

Table 1-8 Application Programming Interfaces not supported in ODP.NET, Managed Driver

Namespace Class/Enumeration/interface Unsupported Method/Property/
Event
Oracle.ManagedDataAccess.Client FailoverEvent enumeration All

Oracle.ManagedDataAccess.Client FailoverReturnCode enumeration All
Oracle.ManagedDataAccess.Client FailoverType enumeration All
Oracle.ManagedDataAccess.Client OracleAQAgent class All
Oracle.ManagedDataAccess.Client OracleAQDequeueuMode enumeration All

Oracle.ManagedDataAccess.Client OracleAQDequeueOptions class All

ORACLE 1-17

Chapter 1

Differences between the ODP.NET Managed Driver and Unmanaged Driver

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed

Driver

Namespace Class/Enumeration/interface Unsupported Method/Property/
Event
Oracle.ManagedDataAccess.Client OracleAQEnqueueOptions class All
Oracle.ManagedDataAccess.Client OracleAQMessage class All
Oracle.ManagedDataAccess.Client OracleAQMessageAvailableEventArg All
s class
Oracle.ManagedDataAccess.Client OracleAQMessageAvailableEventHan All
dler class
Oracle.ManagedDataAccess.Client OracleAQMessageDeliveryMode All
enumeration
Oracle.ManagedDataAccess.Client OracleAQMessageState enumeration All
Oracle.ManagedDataAccess.Client OracleAQMessageType enumeration All
Oracle.ManagedDataAccess.Client OracleAQNavigationMode All
enumeration
Oracle.ManagedDataAccess.Client OracleAQNotificationGroupingType All
enumeration
Oracle.ManagedDataAccess.Client OracleAQNotificationType All
enumeration
Oracle.ManagedDataAccess.Client OracleAQQueue class All
Oracle.ManagedDataAccess.Client OracleAQVisibilityMode All
enumeration
Oracle.ManagedDataAccess.Client OracleBulkCopy class All
Oracle.ManagedDataAccess.Client OracleBulkCopyColumnMapping class All
Oracle.ManagedDataAccess.Client OracleBulkCopyColumnMappingColle All
ction class
Oracle.ManagedDataAccess.Client OracleBulkCopyOptions class All
Oracle.ManagedDataAccess.Client OracleCommand class ArrayBindRowsAffected property
Oracle.ManagedDataAccess.Client OracleCommand class ImplicitRefCursors property
Oracle.ManagedDataAccess.Client OracleConnection class FlushCache() method
Oracle.ManagedDataAccess.Client OracleConnection class Failover event
Oracle.ManagedDataAccess.Client OracleConnection class ConnectionType property
Oracle.ManagedDataAccess.Client OracleConnection class SetShardingKey method
Oracle.ManagedDataAccess.Client OracleConnectionType enumeration All
Oracle.ManagedDataAccess.Client OracleDBShutdownMode enumeration All
Oracle.ManagedDataAccess.Client OracleDBStartupMode enumeration All
Oracle.ManagedDataAccess.Client OracleDataReader class GetOracleRef() method
Oracle.ManagedDataAccess.Client OracleDataReader class GetOracleBlobForUpdate() method
If the method is called, then a
NotSupportedException is thrown.
ORACLE 1-18

Chapter 1

Differences between the ODP.NET Managed Driver and Unmanaged Driver

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed

Driver

Namespace Class/Enumeration/interface Unsupported Method/Property/
Event
Oracle.ManagedDataAccess.Client OracleDataReader class GetOracleClobForUpdate() method
If the method is called, then a
NotSupportedException is thrown.
Oracle.ManagedDataAccess.Client OracleDataReader class IsAutolncrement and ldentityType
properties of the GetSchemaTable
Oracle.ManagedDataAccess.Client OracleDataAdapter class Identitylnsert property
Oracle.ManagedDataAccess.Client OracleDataAdapter class IdentityUpdate property
Oracle.ManagedDataAccess.Client OracleDataAdapter class SafeMapping property
Oracle.ManagedDataAccess.Client OracleDatabase class All
Oracle.ManagedDataAccess.Client OracleDbType enumeration Array
Oracle.ManagedDataAccess.Client OracleDbType enumeration Object
Oracle.ManagedDataAccess.Client OracleDbType enumeration Ref
Oracle.ManagedDataAccess.Client OracleException class IsRecoverable property
Oracle.ManagedDataAccess.Client OracleFailoverEventArgs class All
Oracle.ManagedDataAccess.Client OracleFailoverEventHandler class All
Oracle.ManagedDataAccess.Client OracleGlobalization class ClientCharacterSet property
Oracle.ManagedDataAccess.Client OracleGlobalization class GetClientInfo() method
Oracle.ManagedDataAccess.Client OracleGlobalization class GetThreadlInfo() method
Oracle.ManagedDataAccess.Client OracleGlobalization class SetThreadInfo() method
Oracle.ManagedDataAccess.Client OracleldentityType enumeration All
Oracle.ManagedDataAccess.Client OracleNotificationRequest class Groupinglnterval property
Oracle.ManagedDataAccess.Client OracleNotificationRequest class GroupingNotificationEnabled
property
Oracle.ManagedDataAccess.Client OracleNotificationRequest class GroupingType property
Oracle.ManagedDataAccess.Client OracleRowsCopiedEventArgs class All
Oracle.ManagedDataAccess.Client OracleRowsCopiedEventHandler All
class
Oracle.ManagedDataAccess.Types lOracleArrayTypeFactory interface All
Oracle.ManagedDataAccess.Types l0racleCustomType interface All
Oracle.ManagedDataAccess.Types I0racleCustomTypeFactory interface All
Oracle.ManagedDataAccess.Types OracleArrayMappingAttribute class All
Oracle.ManagedDataAccess.Types OracleCustomTypeMappingAttribute All
class
Oracle.ManagedDataAccess.Types OracleObjectMappingAttribute All
class
Oracle.ManagedDataAccess.Types OracleRef class All
Oracle.ManagedDataAccess.Types OracleShardingKey class All
ORACLE’ 1-19

Chapter 1
Using ODP.NET Client Provider in a Simple Application

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed

Driver

Namespace Class/Enumeration/interface Unsupported Method/Property/
Event
Oracle.ManagedDataAccess.Types OracleTimestampTZ structure OracleTimeStampTZ(DateTime dt,
string timeZone) constructor. This
constructor is supported but the
timeZone must be an hour offset.
Oracle.ManagedDataAccess.Types OracleUdt class All

Oracle.ManagedDataAccess.Types OracleUdtFetchOption enumeration All

Oracle.ManagedDataAccess.Types OracleUdtStatus enumeration All

1.5 Using ODP.NET Client Provider in a Simple Application

ORACLE

The following is a simple C# application that connects to Oracle Database and
displays its version number before disconnecting using ODP.NET, Unmanaged Driver:

/1 C#

using System;
using Oracle._DataAccess.Client;

class Sample

{
static void Main()
{
// Connect to Oracle
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();
// Display Version Number
Console.WriteLine("Connected to Oracle "™ + con.ServerVersion);
// Close and Dispose OracleConnection
con.Close();
con._Dispose();
}
}

If you are using OPD.NET, Managed Driver, then replace the contents of Program.cs
with the following C# code. The namespace of ODP.NET, Managed Driver
(Oracle.ManagedDataAccess.*) is different from the namespace of ODP.NET,
Unmanaged Driver (Oracle.DataAccess.*)

// C#

using System;

using Oracle.ManagedDataAccess.Client;
using Oracle.ManagedDataAccess.Types;

namespace Connect

{

1-20

Chapter 1
Using ODP.NET Client Provider in a Simple Application

class Program

{
static void Main(string[] args)
{

try

{
// Please replace the connection string attribute settings
string constr = "user id=scott;password=tiger;data source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();
Console.WriteLine(*'Connected to Oracle Database {0}", con.ServerVersion);
con.Dispose();
Console.WriteLine("'Press RETURN to exit.");
Console.ReadLine();

}

catch (Exception ex)

{
Console.WriteLine("Error : {0}", ex);

}

}
}
}
" Note:

Additional samples are provided in the ORACLE_BASE\ORACLE_HOVE\ODACsamples
directory.

ORACLE 1-21

Installing and Configuring Oracle Data
Provider for .NET

This section describes installation and configuration requirements for Oracle Data
Provider for .NET.

This section contains these topics:

System Requirements

Entity Framework Requirements

Oracle Data Provider for .NET Versioning Scheme

Installing Oracle Data Provider for .NET, Unmanaged Driver
Installing Oracle Data Provider for .NET, Managed Driver

Entity Framework Code First Assemblies and File Location
Configuring Oracle Data Provider for .NET

Oracle Data Provider for .NET, Unmanaged Driver Configuration
Oracle Data Provider for .NET, Managed Driver Configuration
Distributed Transactions

Configuration differences between ODP.NET, Managed Driver and ODP.NET,
Unmanaged Driver

Configuring for Entity Framework Code First
Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver
Configuring a Port to Listen for Database Notifications

General .NET Programming Recommendations and Tips for ODP.NET

2.1 System Requirements

Oracle Data Provider for .NET, Unmanaged Driver requires the following:

ORACLE

Windows operating system

— 64-bit: Windows 7 x64 (Professional, Enterprise, and Ultimate Editions),
Windows 8 (Pro and Enterprise Editions), Windows 8.1 (Pro and Enterprise
Editions), Windows Server 2012 x64 (Standard, Datacenter, Essentials, and
Foundation Editions), Windows Server 2012 R2 x64 (Standard, Datacenter,
Essentials, and Foundation Editions), or Windows 10 x64 (Pro, Enterprise, and
Education Editions).

Oracle supports 32-bit ODP.NET and 64-bit ODP.NET for Windows x64 on
these operating systems.

2-1

Chapter 2
Entity Framework Requirements

Note:

ODP.NET does not support Itanium systems.

Microsoft .NET Framework

— ODP.NET for .NET Framework 2.0 is only supported with Microsoft .NET
Framework 3.5 SP 1 and later.

— ODP.NET for .NET Framework 4 is only supported with Microsoft .NET
Framework 4.5.2, 4.6, 4.6.1, and 4.6.2.

Access to Oracle Database 10g Release 2 or later
Oracle Client release 12.1

This is automatically installed as part of the ODP.NET installation.

Oracle Data Provider for .NET, Managed Driver requires the following:

Same Windows operating system support as ODP.NET, Unmanaged Driver.

ODP.NET, Managed Driver is built with AnyCPU. It runs on either 32-bit or 64-bit
(x64) Windows and on either 32-bit or 64-bit (x64) .NET Framework.

Microsoft .NET Framework 4.5.2, 4.6, 4.6.1, or 4.6.2.

Access to Oracle Database 10g Release 2 or later

Possible additional requirements for both ODP.NET, Managed and Unmanaged
Drivers:

Applications using promotable and distributed transactions require Oracle Services
for Microsoft Transaction Server 12.1 in whole or in part. ODP.NET only supports
the read committed isolation level for distributed transactions. Refer to the
Distributed Transactions section for more information.

2.2 Entity Framework Requirements

This section contains the following topics:

Entity Framework Database First and Model First Requirements

Entity Framework Code First Requirements

2.2.1 Entity Framework Database First and Model First Requirements

Oracle's support for Entity Framework Database First and Model First has the

ORACLE

following version requirements:

ODP.NET 11.2.0.3 or higher

Microsoft Entity Framework 4 or higher, up to and including the 6.x versions.

If using Visual Studio tools, then use Visual Studio 2010 or higher and install Oracle
Developer Tools for Visual Studio.

2-2

Chapter 2
Oracle Data Provider for .NET Versioning Scheme

2.2.2 Entity Framework Code First Requirements

Oracle's support for Entity Framework Code First has the following version
requirements:

¢ ODP.NET 12.1.0.2 or higher
* Microsoft Entity Framework 6 or higher
* Microsoft .NET Framework 4.5 or higher

Projects must set the target framework to .NET Framework 4.5 or higher. This can
be done by modifying the project's properties in Visual Studio 2012 or higher.

2.3 Oracle Data Provider for .NET Versioning Scheme

ORACLE

Starting with 11.2.0.1.2, Oracle Data Provider for .NET, Unmanaged Driver ships with
two sets of binaries: one set for .NET Framework 2.0 and another for .NET Framework
4. ODP.NET, Managed Driver ships with one set of binaries for .NET Framework 4.

For example, ODP.NET 11.2.0.1.2 binaries would be the following:
* ODP.NET for .NET Framework 4

— Oracle.DataAccess.dll
* Built with .NET Framework 4
* Assembly version number: 4.x.x.x
— OraOpsliw.dll
* Used by ODP.NET for .NET Framework 2.0 and 4
* ODP.NET for .NET Framework 2.0
— Oracle.DataAccess.dll
* Built with .NET Framework 2.0
* Assembly version number: 2.x.x.x
— OraOpsliw.dll
* Used by ODP.NET for .NET Framework 2.0 and 4
The convention for ODP.NET assembly/DLL versioning is
nl.olo2.0304.05

where:

* nlisthe most significant .NET Framework version number.

* 0102 are the first two digits of the ODP.NET product version number.

* 0304 are the third and forth digits of the ODP.NET product version number.
» 05 is the fifth and last digit of the ODP.NET product version number.

For example, if the ODP.NET product version number is 11.2.0.2.0, the corresponding
ODP.NET assembly versions are:

e .NET Framework 4 version: 4.112.2.0

2-3

ORACLE

Chapter 2
Oracle Data Provider for .NET Versioning Scheme

e« .NET Framework 2.0 version: 2.112.2.0

Note that the Oracle installer and documentation still refer to the ODP.NET product
version number and not the assembly/DLL version nhumber.

As with the .NET Framework system libraries, the first digit of the assembly version
number indicates the version of the .NET Framework to use with an ODP.NET
assembly.

Publisher Policy DLL is provided as before so that applications built with older versions
of ODP.NET are redirected to the newer ODP.NET assembly, even though the
versioning scheme has changed.

ODP.NET, Managed Driver follows a similar version model for its binaries.
ODP.NET for .NET Framework 4:

* Oracle.ManagedDataAccess.dll
— Built with .NET Framework 4
— Assembly version number: 4.x.x.x
* Oracle_ManagedDataAccessDTC.dII
— Used by ODP.NET for .NET Framework 4 for distributed transactions only.

ODP.NET, Managed Driver Versioning

Starting with ODAC 12c Release 2, the ODP.NET, Managed Driver uses assembly
manifest attribute AssemblyInformationalVersionAttribute to uniquely identify
assemblies with the same AssemblyVersionAttribute attribute value. This value can be
accessed via .NET code, PowerShell, and other Windows applications to identify
ODP.NET, Managed Driver versions uniquely.

AssemblyInformationalVersionAttribute is set to the same version as the actual .NET
assembly version, except the fourth digit, which will no longer be 0. Instead, the
version will be unique for each ODP.NET, Managed Driver release by incrementing
the fourth digit for every subsequent release.

This value is accessible using .NET Framework
System.Diagnostics.FileVersioninfo.ProductVersion property. The returned value can
be used as a Version object or as a comparison String using comparison operators or
methods. Essentially, among a collection of ODP.NET, Managed Driver assemblies
that have the same assembly version, the newest ODP.NET, Managed Driver
assembly will have the largest fourth digit ProductVersion value than an older
assembly.

PowerShell Example: In this example, administrators uniquely distinguish the
assemblies between ODP.NET, Managed Driver versions from an old version of
ODP.NET, Managed Driver in c:\old and a more recent one in c:\new.

Script:

$VC1 = New-Object System.Version((Get-Command C:\old
\Oracle_ManagedDataAccess.dll).FileVersionlnfo_ProductVersion)
$VC2 = New-Object System.Version((Get-Command C:\new
\Oracle_ManagedDataAccess.dll).FileVersionlnfo_ProductVersion)
"Compare V1 to V2: ™ + $VC1.CompareTo($VC2)

"Compare V1 to V1: ™ + $VC1.CompareTo($VC1l)

"Compare V2 to V1: ™ + $VC2.CompareTo($VC1)

2-4

Chapter 2
Installing Oracle Data Provider for .NET, Unmanaged Driver

Output:

Compare V1 to V2: -1
Compare V1 to V1: O
Compare V2 to V1: 1

" Note:

ProductVersion property comparisons will provide correct information on which
version is more recent than the other only for ODP.NET, Managed Driver
released from ODAC 12c¢ Release 2 and later.

2.4 Installing Oracle Data Provider for .NET, Unmanaged

Driver

ORACLE

Oracle Data Provider for .NET is part of Oracle Data Access Components (ODAC),
which can be downloaded from OTN. Beginning with ODAC 11.1.0.6.20, Oracle Data
Provider for .NET can be installed through XCopy or Oracle Universal Installer.

* XCopy

Administrators use XCopy to deploy Oracle Data Provider for .NET to large
numbers of computers for production deployments. The XCopy has a smaller
installation size and fine-grain control during installation and configuration than
Oracle Universal Installer.

e Oracle Universal Installer (OUI)

Developers and administrators use Oracle Universal Installer for automated
ODP.NET installations. It includes documentation and code samples that are not
part of the XCopy.

Note:

This section describes installation using the Oracle Universal Installer. For
installation and configuration using the XCopy install, refer to the
README.TXT file that is part of the XCopy installation.

Additionally, Oracle Data Provider for .NET Dynamic Help is registered with Visual
Studio, providing context-sensitive online help that is seamlessly integrated with Visual
Studio Dynamic Help. With Dynamic Help, the user can access ODP.NET
documentation within the Visual Studio IDE by placing the cursor on an ODP.NET
keyword and pressing the F1 function key.

Oracle Data Provider for .NET creates an entry in the machine.config file of the
computer on which it is installed, for applications using the OracleClientFactory class.
This enables the DbProviderFactories class to recognize ODP.NET.

ODP.NET, Unmanaged Driver Entity Framework 6 and Code First functionality are
available through a NuGet package. OUI and Xcopy installations include this package
as well, but require post-install configuration steps. The NuGet package for ODP.NET,

2-5

Chapter 2
Installing Oracle Data Provider for .NET, Unmanaged Driver

Unmanaged Driver Entity Framework automates these post-install steps, except for
the application-specific connection string settings.

2.4.1 File Locations After Installation

The Oracle.DataAccess.dll assembly is installed to the following locations
.NET Framework 2.0:

ORACLE_BASE\ORACLE_HOME\odp.net\bin\2.x directory

.NET Framework 4:

ORACLE_BASE\CRACLE_HOME\odp.net\bin\4 directory

" Note:

If the machine has the corresponding .NET Framework installed, then the
Oracle.DataAccess.dll assembly is added to the Global Assembly Cache (GAC)
as well. This is to ensure that existing applications can start using the newly
installed ODP.NET version immediately. However, if this is not desired, be sure
to remove the policy DLLs from the GAC.

Documentation and the readme.txt file can be accessed through ORACLE_BASE
\ORACLE_HOVE\ODACDoc\DocumentationLibrary\doc\index.htm.

Samples are provided in the ORACLE_BASE\ORACLE_HOME\ODACsamples directory.

2.4.2 Search Order for Unmanaged DLLs

ORACLE

ODP.NET consists of managed and unmanaged binaries. Through the use of the
DIIPath configuration parameter, each application can specify the ORACLE_BASE\

\ ORACLE_HOME\bin location that the dependent unmanaged Oracle Client binaries are
loaded from. However, the ORACLE_BASE\ \ ORACLE_HOME must have the same ODP.NET
version installed as the version that the application uses. Otherwise, a version
mismatch exception is thrown.

The Oracle.DataAccess.dll searches for dependent unmanaged DLLs (such as Oracle
Client) based on the following order:

1. Directory of the application or executable.

2. DIIPath setting specified by application config or web.config.

3. DIIPath setting specified by machine.config.

4. DIIPath setting specified by the Windows Registry.
HKEY_LOCAL_MACHINE\Software\Oracle\ODP.NET\ver si on\Dl IPath

5. Directories specified by the Windows PATH environment variable.

Upon installation of ODP.NET, Oracle Universal Installer sets the DI1Path Windows
Registry value to the ORACLE_BASE\ \ ORACLE_HOME\bin directory where the corresponding
dependent DLLs are installed. Developers must provide this configuration information
on an application-by-application basis.

2-6

Chapter 2
Installing Oracle Data Provider for .NET, Managed Driver

When a new ODP.NET version is installed, default values are set in the Windows
Registry for the new version. Because the policy DLLs redirect all ODP.NET
references to this new ODP.NET version, applications use the default values.
Developers can provide a config or web.config file specific to the application to prevent
this redirection. The configuration file settings always apply to the application,
regardless of whether or not patches or new versions are installed later.

Note:

Both Oracle.DataAccess.dll for NET Framework 2.0 and Oracle.DataAccess.dll
for .NET Framework 4 use the same unmanaged DLL, OraOps12.dIl.

2.4.2.1 ODP.NET and Dependent Unmanaged DLL Mismatch

To enforce the usage of Oracle.DataAccess.dll assembly with the correct version of its
unmanaged DLLs, an exception is raised if Oracle.DataAccess.dll notices it has loaded
a mismatched version of a dependent unmanaged DLL.

2.5 Installing Oracle Data Provider for .NET, Managed

Driver

ORACLE

Getting started with ODP.NET, Managed Driver

You can get started with ODP.NET Managed Driver by either using the Oracle
Universal Installer (OUI), XCopy, or NuGet.

If you are using OUI: Follow the Oracle Universal Installer (OUI) steps to install
ODP.NET, Managed Driver

If you are using XCopy: Download ODP.NET, Managed Driver .zip file to a directory
for staging the install. The .zip file contains a README file with XCopy installation
instructions.

Run the configure._bat script in one of the following directories:
e For 32-bit .NET Framework: OH\odp.net\managed\x86
* For 64-bit .NET Framework: OH\odp.net\managed\x64

Each directory contains an unconfigure._bat if ODP.NET, Managed Driver needs to be
unconfigured and removed from the machine.

If you are using NuGet: Download the ODP.NET NuGet package(s) and use NuGet
Package Manager to install.

The following NuGet packages are available:

 ODP.NET, Managed Driver

» Entity Framework assembly for Code First and Entity Framework 6 or higher use
with ODP.NET, Managed Driver

If you are using Windows Installer: Follow the Microsoft Windows Installer (MSI)
steps to install ODP.NET, Managed Driver.

2-7

ORACLE

Chapter 2

Installing Oracle Data Provider for .NET, Managed Driver

ODP.NET, Managed Driver Files

ODP.NET, Managed Driver consists of the following files:

Table 2-1 ODP.NET, Managed Driver Files with Descriptions

File

Description

Oracle.ManagedDataAccess.dll

\x64\0racle.ManagedDataAccessDTC.dlI

\x86\0racle.ManagedDataAccessDTC.dlI

\Resources\<lang>
\Oracle._ManagedDataAccess.resources.dll

OraProvCfg.exe

configure.bat

unconfigure.bat

tnsnames.ora

sqlnet.ora

ConfigSchema.xsd

Oracle.ManagedDataAccess.EntityFramework
.dhl

\x64\0racle.ManagedDataAccessIOP.dll

\x86\0racle.ManagedDataAccesslIOP.dll

Platform-independent (AnyCPU), fully-
managed ADO.NET provider

Platform-dependent (64-bit .NET Framework
only), Managed Assembly for Distributed
Transaction support.

Platform-dependent (32-bit .NET Framework
only), Managed Assembly for Distributed
Transaction support.

Platform-independent (AnyCPU), fully-
managed ADO.NET provider resource DLLs.

Platform-independent (AnyCPU) utility to
configure/unconfigure ODP.NET, Managed
and Unmanaged Drivers.

Batch file to place ODP.NET, Managed Driver
into the GAC and add configuration entries
into the machine.config.

Batch file to remove ODP.NET, Managed
Driver from the GAC and remove configuration
entries from machine.config.

A sample configuration file that defines data
source aliases.

A sample configuration file that configures
network related settings.

An XML schema file that defines the
configuration section for ODP.NET, Managed
Driver.

Platform-independent (AnyCPU), fully-
managed assembly for Code First and Entity
Framework 6 higher

Platform-dependent (64-bit .NET Framework),
Managed Assembly for Kerberos support

Platform-dependent (32-bit .NET Framework),
Managed Assembly for Kerberos support

e Oracle.ManagedDataAccessDTC.dl1 is only needed if the application uses distributed
transactions and the .NET Framework version is 4.5.1 or earlier. Higher .NET
Framework versions do not require this DLL.

» If distributed transactions are used by ODP.NET, Managed Driver running in .NET
Framework 4.5.1 or earlier, then the appropriate Oracle.ManagedDataAccessDTC.dl |
(32-bit or 64-bit .NET Framework) must be loaded in the Global Assembly Cache
(GAC) or in the same directory as the .exe for it to be loaded by
Oracle.ManagedDataAccess.dll. The installer no longer GACs this DLL. It must now

be performed manually.

2-8

Chapter 2
Installing Oracle Data Provider for .NET, Managed Driver

* Oracle.ManagedDataAccessDTC.dl1 must not be referenced by the application.
ODP.NET, Managed Driver will reference it implicitly.

e On a 64-bit OS, only the x64 version of Oracle.ManagedDataAccessDTC.dl1 is placed
into the GAC upon the completion of an OUI install or an invocation of the XCopy
configure.bat.

2.5.1 Platform-Dependent Assemblies and Their Search Order

ORACLE

ODP.NET, Managed Driver has two sets of platform-dependent DLLs:
Oracle.ManagedDataAccessDTC.dl1 and Oracle.ManagedDataAccessIOP.dll. For each DLL,
there is a 32-bit .NET version and a 64-bit .NET version. While they consist of 100%
managed code, they call APIs outside of .NET, which is why they are platform
dependent.

Oracle.ManagedDataAccessDTC.dl1 supports coordinating distributed transactions. This
assembly is only needed in your application if you use distributed transactions

with .NET Framework 4.5.1 or lower. It is optional to use with .NET Framework 4.5.2
or higher.

Oracle.ManagedDataAccessI0P.dl1 supports Kerberos. This assembly is only needed in
your application if you are using Kerberos security.

These two assemblies are not intended to be directly referenced by an application.
Rather, they will be referenced implicitly. ODP.NET, Managed Driver will reference
these assemblies by using the following search order:

1. Global Assembly Cache
2. The web application's bin directory or Windows application's EXE directory

3. The x86 or x64 subdirectory based on whether the application runs in 32-bit or 64-
bit .NET Framework. If the application is built using AnyCPU, then ODP.NET will
use the correct DLL bitness as long as the assembly is available. Oracle
recommends using this method of finding dependent assemblies if your application
is AnyCPU.

For example, use the following steps for your application to use the 64-bit version of
Oracle.ManagedDataAccessIOP.dll:

1. Right click Visual Studio project, select Add, and then select New Folder.
2. Name the folder x64.

3. Right-click the newly created x64 folder, select Add, and then select Existing
Item.

4. Browse to the folder where the DLL is located, which usually is ORACLE_HOVE
\odp.net\managed\x64, and then select Oracle.ManagedDataAccessIOP.dIl.

5. Click Add.
6. Click the newly added Oracle.ManagedDataAccesslOP.dll in the x64 folder.
7. Inthe properties window, set Copy To Output Director to Copy Always.

For x86 targeted applications, name the folder x86 and add the assembly from the x86
directory.

Use the same steps for adding Oracle.ManagedDataAccessDTC.dl1.

2-9

Chapter 2
Entity Framework Code First Assemblies and File Location

To make your application platform independent even if it depends on
Oracle.ManagedDataAccessDTC.dl1, Oracle.ManagedDataAccessIOP.dll or both, create
both x64 and x86 folders with the necessary assemblies added to them.

2.5.2 File Locations After Installation

In an Oracle Universal Installer based install, the Oracle.ManagedDataAccess.dll
assembly is installed to the following location:

.NET Framework 4:
ORACLE_BASE\ORACLE HOME\odp.net\managed\common directory

Documentation and the readme.txt file can be accessed through ORACLE BASE
\ORACLE_HOVE\ODACDoc\DocumentationLibrary\doc\index. htm.

Samples are provided in the ORACLE_BASE\ORACLE_HOME\ODACsamples directory.

2.6 Entity Framework Code First Assemblies and File
Location

ODP.NET now ships with a separate assembly to support Code First and Entity
Framework 6. This functionality resides in a dedicated assembly, while the ADO.NET
and earlier Entity Framework version functionality resides in the main ODP.NET
assembly. This model physically separates Entity Framework 6 functionality from
ADO.NET functionality.

This ODP.NET assembly is:

e Oracle.DataAccess.EntityFramework.dll for ODP.NET, Unmanaged Driver.
e Oracle.ManagedDataAccess.EntityFramework.dll for ODP.NET, Managed Driver.

Whether it is installed using the Oracle Universal Installer or the XCopy package, the
Oracle Entity Framework assemblies may be found in the following location after install
(where %ORACLE_HOME% represents the operating system path to the installation
directory):

For Unmanaged Driver:
%ORACLE_HOME%\odp - net\bin\4\EF6\Oracle.DataAccess.EntityFramework.dll
For Managed Driver:

%ORACLE_HOME%\odp . net\managed\common
\EF6\Oracle.ManagedDataAccess.EntityFramework.dll

Both assemblies are compiled as Any CPU and therefore there is no need for separate
32-bit and 64-bit versions of the assemblies. Each assembly is designed to be bin
deployable meaning that the assembly should be copied into the application's bin
directory. As such the assemblies are not registered in the Global Assembly Cache
(GAC) during installation.

ORACLE 2-10

Chapter 2
Configuring Oracle Data Provider for NET

Note:

If desired the Oracle Entity Framework 6 assemblies may be registered in the
GAC manually but Oracle recommends not doing so.

2.7 Configuring Oracle Data Provider for .NET

ORACLE

The settings for specific versions of ODP.NET, can be configured in several ways for
specific effects on precedence:

* The Windows registry entries are machine-wide settings for a particular version of
ODP.NET.

Windows registry based configuration is not supported for ODP.NET, Managed
Driver.

e The machine.config settings are .NET framework-wide settings that override the
Windows registry values.

* The application or web config file settings are application-specific settings that
override the machine.config settings and the Windows registry settings.

Note:

There is one exception to app/web/config settings overriding
machine.config. For oracle.manageddataaccess.client and
oracle.unmanageddataaccess.client sections, a machine.config with a
specific ODP.NET version subsection, that is, <version
number="4.121.2.0">, will override an app/web.config subsection that
references all versions generically, that is, <version number="*">. To
override the machine.config subsection, create a subsection for that version
in the app/web/config file, that is, <version number="4.121.2.0">.

* Any attribute settings that are equivalent to the connection string override
everything.

The application or web config file can be useful and sometimes essential in scenarios
where more than one application on a computer use the same version of ODP.NET,
but each application needs a different ODP.NET configuration. The Windows registry
value settings for a given version of ODP.NET affect all the applications that use that
version of ODP.NET. However, having ODP.NET configuration values in the
application or web config file assure that these settings are applied only for that
application, thus providing more granularities.

For example, if the application or web.config file has a StatementCacheSize configuration
setting of 100, this application-specific setting forces the version of ODP.NET that is
loaded by that application to use 100 for the StatementCacheSize and overrides any
setting in the machine.config and in the registry. Note that for any setting that does not
exist in a config file (machine.config or application/web config), the value in the registry
for a loaded version of ODP.NET is used, as in previous releases.

Note that ODP.NET reads the machine.config files from the version of the .NET
Framework on which ODP.NET runs, not from the version of ODP.NET.

2-11

Chapter 2
Configuring Oracle Data Provider for NET

ODP.NET only reads the Windows Registry and the XML configuration file when it is
loaded into memory, thus any configuration changes made after that are not read or
used until the application is re-started.

All boolean attributes in ODP.NET .NET configuration settings accept true, false, 1,
and 0 as valid values. 1 is equivalent to true and 0 is equivalent to false.

2.7.1 Oracle Client Configuration File Automated Setup During

Installation

When installing Oracle Data Access Components (ODAC) in a new Oracle Home,
Oracle Universal Installer (OUI) automatically copies the Oracle local naming
(tnsnames.ora), profile (sglnet.ora), and directory (Idap.ora) parameter files and
settings from an existing Oracle home into the newly installed ODAC home, as long as
they share the same bitness. That is, they are both 32-bit installations or they are both
64-bit installations.

Alternatively, existing *.ora files can be copied over from another existing Oracle
home, besides the last active one, to the new ODAC Oracle home. OUI provides
location information for these files from up to three other existing Oracle homes if they
exist. The *.ora files can be customized if the new Oracle home uses a different
configuration from the previous Oracle home from which the files were copied over.

If you install into an existing ODAC or RDBMS Oracle home, then no new *.ora files is
copied or created.

If you install onto a computer without any previous Oracle homes present, then OUI
prompts the user for the database connection alias information. OUI then automatically
creates the tnsnames.ora file. If no alias information is provided, then no tnsnames.ora
file is created. Even if the user does not have all the database connection information
readily available, Oracle recommends inserting placeholder values during the install
process, then modifying the tnsnames.ora file later with actual values to replace the
placeholders.

2.7.2 Oracle Client Configuration File Settings

ORACLE

ODP.NET tnsnames.ora, sqlnet.ora, and ldap.ora parameter values can be set in

a .NET configuration file or within the *.ora file itself. The *.ora file location can be a
location different from the standard ORACLE_HOVE/network/admin directory. The *_ora
settings order of precedence is similar to ODP.NET's settings order of precedence.
The main difference is that the *.ora files themselves are included in the search order.
The tnsnames.ora and sqlnet.ora precedence order is as follows:

app-.config or web.config

machine.config

1.

2

3. File location specified by TNS_ADMIN setting

4. The current .EXE or web application root directory
5

%ORACLE_HOME%\network\admin if using ODP.NET, Unmanaged Driver

The l1dap.ora precedence order is as follows:

1. app.config or web.config

2. machine.config

2-12

Chapter 2
Configuring Oracle Data Provider for NET

File location specified by TNS_ADMIN setting in .NET config file

3
4. File location specified by LDAP_ADMIN setting in .NET config file
5. The current .EXE or web application root directory

6

%ORACLE_HOME%\network\admin if using ODP.NET, Unmanaged Driver
7. %ORACLE_HOME%\Idap\admin if using ODP.NET, Unmanaged Driver

Oracle recommends using an app.config or web.config file to store all these Oracle
Client configuration parameter settings.

Once the first tnsnames.ora, sqlnet.ora, and Idap.ora are found and read, no additional
*_.ora file lower in the precedence order is read. That means all Oracle Client
configuration settings must be made in the app.config, web.config, machine.config, or
the first set of *.ora files found. Additional parameter values set in *_ora files lower in
the precedence order will not be read.

2.7.3 Machine-Wide Configuration Option

ORACLE

ODAC OUI and xcopy installs ODP.NET with either machine-wide or non-machine-
wide configuration for managed and unmanaged ODP.NET. Machine-wide
configuration makes global changes to the machine's .NET setup, including placing the
provider assembly into the Global Assembly Cache (GAC) and updating the
machine.config with configuration section handler and DbProviderFactory information.

Machine-wide configuration also creates a TNS_ADMIN machine.config setting. If
TNS_ADMIN already exists as a Windows environment variable in an OUI ODAC
installation, then the TNS_ADMIN machine.config setting is set to that directory location. If
TNS_ADMIN does not already exist for an OUI ODAC installation, then the machine.config
TNS_ADMIN value is set to ORACLE_HOME\network\admin. Xcopy installations always create
a machine.config TNS_ADMIN value set to ORACLE_HOME\network\admin.

For ODAC OUI machine-wide configuration installations only, the LDAP_ADMIN setting
may also be created in machine.config if an Idap.ora file can be found through the
existing LDAP_ADMIN or TNS_ADMIN Windows environment variables. ODAC OUI
installations may also create a NAMES.DIRECTORY_PATH setting in machine.config for
machine-wide configuration.

If non-machine-wide configuration is selected, then none of these changes are made.
Starting with release 12.2, ODAC installs default to non-machine-wide configuration for
a new Oracle home installation. For existing Oracle homes, ODAC re-installs the
default to the same configuration setting chosen for that Oracle home from the
previous installation.

If you plan to install ODAC and the ODP.NET NuGet install on the same machine,
then ODP.NET should be configured for non-machine-wide, especially if both share
the same ODP.NET version number that .NET Framework uses to distinguish
assembly versions, for example, 4.121.2.0.

Users can reconfigure ODP.NET from machine-wide configuration to non-machine-
wide configuration by re-installing ODP.NET to the same Oracle home where
ODP.NET of the same version is already installed. For example, if you have already
configured ODP.NET machine-wide, then you can re-configure it by re-installing
ODP.NET onto the same Oracle home and selecting the non-machine-wide
configuration option.

2-13

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

For applications that depend on an ODP.NET version that was not configured
machine-wide, it is important to note the following:

 ODP.NET assembly or assemblies that the application depends on will need to be
copied over to the application directory.

» Proper .NET configuration settings will be required to use Provider Factory, or
Provider-specific configuration, or both.

2.8 Oracle Data Provider for .NET, Unmanaged Driver
Configuration

The following sections explain how to configure ODP.NET, Unmanaged Driver.

ODP.NET can be configured using an XML file named web.config, app.config, or
machine.config. These config files contain sections specific to ODP.NET configuration.

For unmanaged ODP.NET, developers use either the traditional
<oracle.dataaccess.client> section or the newer <oracle.unmanageddataaccess.client>
section. Oracle recommends applications use <oracle.unmanageddataaccess.client>
when possible. For managed ODP.NET, developers use
<oracle.manageddataaccess.client>.

<oracle.unmanageddataaccess.client> is a superset of
<oracle.manageddataaccess.client> as unmanaged ODP.NET supports some features
not available in the managed driver. For features both providers have in common, they
share the same structure, properties, and nearly all values. Programmers will find
using either provider interchangeably or migrating between unmanaged and managed
ODP.NET is easier with the shared format.

This documentation section covers unmanaged ODP.NET configuration settings in the
Windows registry, <oracle.dataaccess.client>, or unigque
<oracle.unmanageddataaccess.client> settings. For shared settings with
<oracle.manageddataaccess.client>.

2.8.1 Supported Configuration Settings

ODP.NET, Unmanaged Driver supports the configuration of an attribute as follows:

e In the Windows registry.
* Inan XML file.

e Through a different mechanism such as a connection string or programmatically
through an ODP.NET class, if applicable.

Table 2-2 describes each configurable attribute that is supported by ODP.NET. In the
table, the term Configuration Support is followed by the types of configuration support
(Windows registry, XML file, and so on) that are available for that attribute.

The table describes valid values as well as the default for each attribute.

ORACLE 2-14

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

Note:

The default values shown are the values used for an attribute if the registry key
does not exist or if it is not configured anywhere.

Table 2-2 Configuration Attributes

__|
Attribute/Setting Name Description

CheckConStatus Specifies whether the status of the connection
is checked or not before putting the connection
back into the connection pool. This registry
entry is not created by the installation of
ODP.NET. However, the default value 1 is
used.

Configuration Support:
Windows Registry and XML file
Valid Values:
1: Check the status of the connection.
0: Do not check the status of the connection.
Default: 1

DbNotificationPort Specifies the port number which ODP.NET
listens to, for all notifications sent by the
database for change notification, HA, or RLB
features. ODP.NET does not throw any errors
if an invalid or used port number is specified.
The port can also be set to override the
Windows registry and XML configuration file

by setting the OracleDependency.Port static
field.

Configuration Support:
XML file, and ODP.NET class
Valid Values:
-1: Open a random unused port to listen to.
n > = 0: Listen on port n.
Default: -1
DemandOraclePermission Specifies whether ODP.NET demands
OraclePermission from the .NET application

that is trying to access the database using
ODP.NET.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Disables demands for OraclePermission.
1: Enables demands for OraclePermission
Default: 0

ORACLE 2-15

ORACLE

Chapter 2

Oracle Data Provider for NET, Unmanaged Driver Configuration

Table 2-2 (Cont.) Configuration Attributes
|

Attribute/Setting Name

Description

DIIPath

DynamicEnlistment

FetchSize

LegacyEntireLobFetch

Specifies the location where dependent
unmanaged Oracle Client binaries load from.

Configuration Support: Windows Registry and
XML file

Valid Values:

The path where dependent unmanaged Oracle
Client binaries reside.

Default: ORACLE_BASE\ \ ORACLE_HOMVE\bin

Due to a behavior change with the ODAC 12c
Release 3 version of ODP.NET connection

string attribute enlist=dynamic,
DynamicEnlistment has no operation now.

Specifies the total memory size, in bytes, that
ODP.NET allocates to cache the data fetched
from a database round-trip. This value can be
set on the OracleCommand and the
OracleDataReader FetchSize property as well.
Configuration Support:

Windows Registry, XML file, and ODP.NET
class

Valid Values:

0 <=n<= int.MaxValue: n is the size of the
cache in bytes.

Default: 131072

Returns either OracleBlob and OracleClob
types or OracleBinary and OracleString
types from Oracle Database BLOB and CLOB

columns. This setting only applies when
InitialLobFetchSize is set to -1.

Valid Values:

0: Returns OracleBlob and OracleClob

1: Returns OracleBinary and OracleString
Default: 0

2-16

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

Table 2-2 (Cont.) Configuration Attributes

__|
Attribute/Setting Name Description

LegacyTransactionBindingBehavior Specifies when a database connection
detaches from a System.Transactions
transaction. By default, connections detach
from a transaction only when explicitly
unbound as is the case when the connection
closes or implicitly unbound when the
transaction is disposed. Alternatively, this
attribute can be set so that the connection
detaches whenever the transaction ends
(commits, aborts, or times out), the connection
closes, or the transaction is disposed.

In ODP.NET 11.2.0.3.20 and earlier releases,
the latter was the default behavior. Oracle
recommends using the current default
behavior.

In the earlier default behavior, when the
timeout elapses before the transaction
completes, the connection unbinds itself from
the transaction and all subsequent executions
on this connection execute in AutoCommit
mode. Any operations prior to the timeout roll
back, but operations performed after the
timeout commit.

In the current default setting, users receive an
exception when the transaction times out and
additional operations execute on the
connection.

Configuration Support:
Windows Registry and XML file
Valid Values:

0: Connections detach from transaction when
the connection closes or the transaction is
disposed.

1: Connections detach from transaction when
the connection closes, the transaction is
disposed, or the transaction completes
(commits, rolls back, times out).

Default: 0
MaxStatementCacheSize Specifies the maximum number of statements

that can be cached when self-tuning is
enabled.

Configuration Support:
Windows Registry and XML file
Valid Values:

0 to System. Int32_MaxValue.
Default: 100

ORACLE 2-17

Chapter 2
Oracle Data Provider for NET, Unmanaged Driver Configuration

Table 2-2 (Cont.) Configuration Attributes

__|
Attribute/Setting Name Description

MetaDataXml Specifies the name of the XML file that
customizes the queries to obtain the metadata
the ADO.NET 2.0 GetSchema method returns.
MetaDataXml can only be set in a configuration
file.

Configuration Support:
XML file only
Valid Values:
A complete file name for the XML file.
Default: none

PerformanceCounters Enables or disables publishing performance
counters for connection pooling. Multiple

performance counters can be obtained by
adding the valid values.

Configuration Support:
Windows Registry and XML file
Valid Values:

0: Not Enabled

1: Number of sessions being established with
Oracle Database every second.

2: Number of sessions being severed from
Oracle Database every second.

4: Number of active connections originating
from connection pools every second.

8: Number of active connections going back to
the connection pool every second.

16: Total number of active connections.
32: Number of inactive connection pools.
64: Total number of connections in use.

128: Total number of connections available for
use in all the connection pools.

256: Number of pooled active connections.
1024: Number of non-pooled active
connections.

2048: Number of connections that will be soon
available in the pool. User has closed these
connections, but they are currently awaiting
actions, such transaction completion, before
they can be placed back into the pool as free
connections.

4095: All the above
Default: 0

ORACLE 2-18

ORACLE

Chapter 2

Oracle Data Provider for .NET, Unmanaged Driver Configuration

Table 2-2 (Cont.) Configuration Attributes
|

Attribute/Setting Name

Description

PromotableTransaction

SelfTuning

StatementCacheSize

Specifies the type of transaction to use when
the first connection participates in the
TransactionScope object.

Configuration Support:

Windows Registry, XML file, and promotable
transaction connection string attribute

Valid Values:

local: The first connection opened in the
TransactionScope object uses a local
transaction.

promotable: The first connection and all
subsequent connections opened in the same
TransactionScope object enlist in the same
distributed transaction.

Default: promotable

This property has been deprecated in 12.2.0.1.
It will be desupported in a future release.
Specifies whether self-tuning is enabled for an
ODP.NET application.

Configuration Support:

Windows Registry, XML file, and Self Tuning
connection string attribute

Valid Values:

0: Self Tuning is disabled. Used in the registry
or XML file.

false: Self Tuning is disabled. Used for the
Self Tuning connection string attribute.

1: Self Tuning is enabled. Used in the registry
or XML file.

true: Self Tuning is enabled. Used for the
Self Tuning connection string attribute.

Default: 1

Specifies the number of cursors or statements
to be cached on the database for each
connection. This setting corresponds to
Statement Cache Size attribute in the
connection string. A value greater than zero
also enables statement caching.
Configuration Support:

Windows Registry, XML file, and Statement
Cache Size connection string attribute
Valid Values:

0 <=n <=the value of OPEN_CURSORS
parameter set in init.ora database config
file.

n is the number to set.
Default: 0

2-19

Chapter 2
Oracle Data Provider for NET, Unmanaged Driver Configuration

Table 2-2 (Cont.) Configuration Attributes

__|
Attribute/Setting Name Description

StatementCacheWithUdts Specifies whether or not Oracle UDTs
retrieved by executing a SELECT statement are
cached along with the statement in the
statement cache. This setting affects the
memory usage and performance of the
application.

Configuration Support:
Windows Registry and XML file
Valid Values:

0: Oracle UDTs are not cached with
statements.

1: Oracle UDTs are cached along with
statements.

Default: 1

ThreadPoolMaxSize Specifies the default maximum size of worker
threads for each available processor in a
process. This value may affect the
performance of ODP.NET connection creation,
command execution timeout, and external
procedures (extproc) that use the thread pool.
However, unnecessarily increasing thread pool
maximum size can also cause performance
problems.

Configuration Support:
Windows Registry and XML file
Valid Values:

0 <=n <= int.MaxValue: Allows ODP.NET to
reset thread pool maximum size with the value
n. The ODP.NET reset operation may be
ignored if the value is invalid. For example, if n
is less than the number of available
processors of the system. In this case, the
result is the same as the value -1.

-1: Leave the thread pool max size as is.

Default: -1 (this registry entry is not created by
default)

Note that prior to ODAC 2007 or version
11.1.0.6.20, ODP.NET resets the thread pool
maximum size to int.MaxValue when the
OracleCommand.CommandTimeout property is
set to a value greater than 0. This erroneous
behavior has been corrected.
OracleCommand.CommandTimeout does not
change thread pool maximum size.

ORACLE 2-20

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

Table 2-2 (Cont.) Configuration Attributes

__|
Attribute/Setting Name Description

TraceFileName Specifies the file name to be used for logging
trace information.

Configuration Support:

Windows Registry and XML file

Valid Values:

Any valid directory location and file name.
Default: c:\odpnet2.trc (for .NET Framework
2.0)

TraceLevel Specifies the level of tracing in ODP.NET.
Because tracing all the entry and exit calls for
all the objects can be excessive, TraceLevel
is provided to limit tracing to certain areas of
the provider. Each valid value indicates a
possible tracing level. Compounded tracing
levels can be obtained by adding the valid
values.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: None

1: Entry, exit, and SQL statement information
2: Connection pooling statistics

4: Distributed transactions (enlistment and
delistment)

8: User-mode dump creation upon unmanaged
exception

16: HA Event Information

32: Load Balancing Information
64: Self Tuning Information
127: All the above

Default: 0

Note: ODP.NET does bit-wise checking on the
value. When tracing is enabled, logging to the
trace file can affect ODP.NET performance.

Note: The user-mode dump creation requires
dbghelp.dll version 5.1.2600.0 or later.

ORACLE 2-21

Chapter 2
Oracle Data Provider for NET, Unmanaged Driver Configuration

Table 2-2 (Cont.) Configuration Attributes

__|
Attribute/Setting Name Description

TraceOption Specifies whether to log trace information in
single or multiple files for different threads. If a
single trace file is specified, the file name
specified in TraceFi leName is used. If the
multiple trace files option is requested, a
Thread ID is appended to the file name
provided to create a trace file for each thread.

Configuration Support:
Windows Registry and XML file
Valid Values:
0: Single trace file
1: Multiple trace files
Default: 0
UdtCacheSize Specifies the size of the object cache for each

connection in kilobytes (KB) that ODP.NET
uses to retrieve and manipulate Oracle UDTs.

Configuration Support:
Windows Registry and XML file
Valid Values:
0 <=n <= 4194303, n is the number to set.
Default: 4096

UDT Mappi ng Specifies a mapping between a custom type
and an Oracle UDT in the database. The
mappings can be specified in configuration
files and custom type factories. However, if the
mapping is specified in both places, mappings
specified in the configuration files takes

precedence over mappings specified using
custom type factories.

Configuration Support:

XML file and Custom Type Factory Classes
Valid Values:

Any valid mapping.

Default: none

2.8.2 Windows Registry

ORACLE

Upon installation, ODP.NET creates entries for configuration and tracing within the
Windows Registry. Configuration and tracing registry values apply across all ODP.NET
applications running in that Oracle client installation. Individual ODP.NET applications
can override some of these values by configuring them within the ODP.NET
application itself (for example, FetchSize). Applications can also use the .NET
configuration files to override some of the ODP.NET Windows Registry values.

The ODP.NET registry values are located under HKEY_LOCAL_MACHINE\Software\Oracle
\ODP.NET\ver si on\. There is one key for .NET Framework 3.5, and one key for .NET
Framework 4 and later.

2-22

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

Note:

32-bit applications running on an x64-based version of Windows use the
registry subkey, HKEY_LOCAL_MACHINE\Software\WOW6432node in place of
HKEY_LOCAL_MACHINE\Software. If such applications use Oracle Data Provider
for .NET (32-bit), then the ODP.NET registry values are located under

HKEY _LOCAL_MACHINE\SOFTWARE\Wow6432Node\Oracle\ODP.NET\version\.

2.8.3 Configuration File Support

ORACLE

For customers who have numerous applications on a computer that depends on a
single version of ODP.NET, the Windows Registry settings for a given version of
ODP.NET may not necessarily be applicable for all applications that use that version
of ODP.NET. To provide more granular control, ODP.NET Configuration File Support
allows developers to specify ODP.NET configuration settings in an application config,
web.config, or a machine.config file.

If a computer does not require granular control beyond configuration settings at the
ODP.NET version level, there is no need to specify ODP.NET configuration settings
through configuration files.

The following is an example of a web.config file for .NET Framework 2.0 and later:

<?xml version="1.0" encoding="utf-8" 7>

<configuration>
<oracle.dataaccess.client>
<settings>
<add name="DIlIPath" value="C:\oracle\bin"/>
<add name="FetchSize" value="131072"/>
<add name="StatementCacheSize" value="10"/>
<add name="TraceFileName" value="D:\odpnet2._trc"/>
<add name="TracelLevel" value="63"/>
<add name="TraceOption" value="1"/>
</settings>
</oracle.dataaccess.client>
</configuration>

The following is an example of app.config for ODP.NET, Unmanaged Driver
using .NET Framework 2.0, which sets some additional attributes as well as two UDT

type mappings:

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<oracle.dataaccess.client>
<settings>
<add name="DbNotificationPort" value="-1"/>
<add name="DIIPath" value="C:\app\user\product\11.1.0\client_1\bin"/>
<add name="DynamicEnlistment™ value="0"/>
<add name="FetchSize" value="131072"/>
<add name="MetaDataXml" value="CustomMetaData.xml"/>
<add name="PerformanceCounters" value="4095"/>
<add name="StatementCacheSize" value="50"/>
<add name="ThreadPoolMaxSize" value="30"/>
<add name="TraceFileName"™ value="D:\odpnet2.trc"/>
<add name="TraceLevel" value="0"/>
<add name="TraceOption" value="0"/>

2-23

Chapter 2
Oracle Data Provider for NET, Unmanaged Driver Configuration

<add name="Person" value="udtMapping factoryName="PersonFactory, Sample,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null® typeName="PERSON"
schemaName="SCOTT" dataSource="oracle""/>
<add name="Student" value="udtMapping factoryName="StudentFactory, Sample,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null® typeName="STUDENT"
schemaName="SCOTT"""/>
</settings>
</oracle.dataaccess.client>
</configuration>

ODP.NET, Unmanaged Driver now has the option of using the same configuration file
format as ODP.NET, Managed Driver. The format simplifies configuration by using a
single unified scheme. To utilize this format, the existing unmanaged ODP.NET
configuration section should be renamed from <oracle.dataaccess.client> to
<oracle.unmanageddataaccess.client>. The existing unmanaged ODP.NET elements
and values are supported within the new section using the same format as with
ODP.NET, Managed Driver. To see how to set the elements and values, see "Oracle
Data Provider for .NET, Managed Driver Configuration" for more information.

For example, converting the FetchSize element and value from the traditional to the
new format would be done as follows:

<oracle.dataaccess.client>
<settings>
<add name="FetchSize" value="131072" />
</settings>
</oracle.dataaccess.client>

<oracle.unmanageddataaccess.client>
<version number="*">
<settings>
<setting name="FetchSize" value="131072" />
</settings>
</version>
</oracle.unmanageddataaccess.client>

The traditional ODP.NET, Unmanaged Driver configuration file format will continue to
be supported.

2.8.3.1 SQL Translation Framework Configuration

ORACLE

Configuring the SQL Translation Profile

The default SQL Translation Profile can be set in the .NET config file, either for all
connections across the application, or it is also possible to limit the scope of a profile
based on optional dataSource and userld XML attributes. Please note that these
dataSource and userld XML attributes directly correspond to the Data Source and User
1d attributes in the connection string used to open a database connection.

Note:

SQL Translation Profile settings are only supported in the
<oracle.unmanageddataaccess.client> section. It is not supported in the
<oracle.dataaccess.client> section nor the <oracle.manageddataaccess.client>
section.

2-24

ORACLE

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

This would be used for all connections to the Data Sources and User Ids.

This would be used for all connections to the specified Data Source.

This would be used for all connections to the specified User Id.

This would be used for all connections to the specified Data Source and User Id.

It is possible to configure multiple default profile entries which allow configuring default
profiles for different dataSource and userld attributes, but while selecting a profile, the
profile with maximum matching attributes will be selected.

In case there are 2 matching entries, one with dataSource only and the other with
userld only then the entry with matching the userld would be given priority over the
entry with matching dataSource.

With the above configuration, if we try to connect with a connection string which has
stf_ds for Data Source and stf_user for User Id attributes, then both the entries given
above will match and in such cases, we will give priority to the entry with a matching
User Id attribute which means profile_user will be selected as the default profile.

Configuring the Error Mapping

Applications can configure the connection related error mapping in their application
configuration file. The error mapping can also be scoped based on Data Source hame,
User Id and the profile name itself.

Here is an example of providing error mapping with all three attributes.

<configuration>
<oracle.unmanageddataaccess.client>
<version number="*">
<sglTranslation>
<defaultProfiles>
<defaultProfile dataSource="stf _ds" userld="stf _user" profile=" Profile4"/>
</defaultProfiles>
<ErrorMappings>
<ErrorMapping dataSource="stf ds" userld="stf user" profile="Profile4">
<add oracleErrorNumber="1017" translatedErrorCode="222" />
<add oracleErrorNumber="1005" translatedErrorCode="888" />
</ErrorMapping>
</ErrorMappings>
</sqlTranslation>
</version>
</oracle.unmanageddataaccess.client>
</configuration>

Please note that dataSource and userld attributes are optional but can be used to
scope the mapping.

It is also possible to provide an error mapping which could be used for all profiles.
Here is an example:

<ErrorMappings>
<ErrorMapping profile="*">
<add oracleErrorNumber="1017" translatedErrorCode="222" />
<add oracleErrorNumber="1018" translatedErrorCode="888" />
</ErrorMapping>
</ErrorMappings>

2-25

Chapter 2
Oracle Data Provider for NET, Unmanaged Driver Configuration

Configuring the Default Error Mapping Profile

The default error mapping profile can be configured through the
defaultErrorMappingProfile setting. This is to be used to specify the default error
mapping profile, especially in scenarios when the default profile is not specified
through the .NET configuration file, but specified on the server side. In this case, if
connectivity related errors occur, then ODP.NET will be able to properly use error
mappings specified in the .NET configuration file for the profile specified by the
defaultErrorMappingProfile setting.

Here is an example to configure the default error mapping profile:

<sglTranslation>
<settings>
<add name="defaultErrorMappingProfile" value="error_mapping_profile" />
<settings>
</sqlTranslation>

Configuring the SQL Translation Framework Statement Cache Size

Client can configure the number of translated statements that ODP.NET can cache
internally to avoid translations, which can be an expensive operation.

Here is an example to configure default error mapping profile:

<sglTranslation>
<settings>
<add name="translatedStatementCacheSize" value="50" />
<settings>
</sqlTranslation>

Sample SQL Translation Framework configuration file

Here is a sample configuration file with all possible elements that can be used:

<sglTranslation>
<settings>
<add name="translatedStatementCacheSize" value="50" />
<add name="defaultErrorMappingProfile" value="def_Profile" />
<settings>
<defaultProfiles>
<defaultProfile profile="STF.NO_DS_NO_USERID"/>
<defaultProfile userld="stf" profile="STF_NO_DS"/>
<defaultProfile dataSource="stf_inst" profile="STF_NO_USERID"/>
<defaultProfile dataSource="stf_inst" userld="stf" profile="STF.STF_X"/>
</defaultProfiles>
<ErrorMappings>
<ErrorMapping profile="def_profile">
<add oracleErrorNumber="1017" translatedErrorCode="444" />
</ErrorMapping>
<ErrorMapping dataSource="stf _inst" userld="stf" profile=" STF.STF_X ">
<add oracleErrorNumber="1018" translatedErrorCode="88888" />
</ErrorMapping>
</ErrorMappings>
</sqlTranslation>

Example 2-1 Setting the profile which could be used for all connections

<configuration>
<oracle.unmanageddataaccess.client>

ORACLE 2-26

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

<version number="*">
<sglTranslation>
<defaultProfiles>
<defaultProfile profile="Profilel"/>
</defaultProfiles>
</sqlTranslation>
</version>
</oracle.unmanageddataaccess.client>
</configuration>

Example 2-2 Setting the Profile for a Specific Data Source

<defaultProfiles>
<defaultProfile dataSource="stf ds" profile="Profile2"/>
</defaultProfiles>

Example 2-3 Setting the Profile for a Specific User Id

<defaultProfiles>
<defaultProfile userld="stf _user" profile="Profile3"/>
</defaultProfiles>

Example 2-4 Setting the Profile for a Specific Data Source and User Id'

<defaultProfiles>
<defaultProfile dataSource="stf_ds" userld="stf _user" profile="Profile4"/>
</defaultProfiles>

Example 2-5 Configuring Multiple Default Profile Entries

<defaultProfiles>
<defaultProfile dataSource="stf _ds" profile="profile_ds"/>
<defaultProfile userld="stf _user" profile="profile_user"/>
</defaultProfiles>

2.8.3.2 Specifying UDT Mappings with Unified Configuration for Unmanaged

ODP.NET

ORACLE

As UDT mapping is not currently supported by ODP.NET, Managed Driver, a new
section within the <version> section is used to support custom UDT mappings for
unmanaged ODP.NET in the unified configuration format. This new section is identified
as <udtmappings> and each mapping is identified using a <udtmapping> element. The
following attributes may be specified for each udtMapping element:

* typeName (required)

e factoryName (required)
e dataSource (optional)
* schemaName (optional)

These elements retain the same name and meaning as when used with the traditional
configuration format.

Example of converting traditional format to unified format:

<configuration>
<oracle.dataaccess.client>
<settings>
<add name="Person" value="udtMapping factoryName="PersonFactory, Sample,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null® typeName="PERSON"

2-27

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

schemaName="SCOTT" dataSource="oracle"" />
</settings>
</oracle.dataaccess.client>
</configuration>

<configuration>
<oracle.unmanageddataaccess.client>
<udtmappings>
<udtmapping typename="PERSON" factoryname="PersonFactory, Sample,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null" schemaname="SCOTT"
datasource="oracle" />
</udtmappings>
</oracle.unmanageddataaccess.client>
</configuration>

2.9 Oracle Data Provider for .NET, Managed Driver
Configuration

ORACLE

ODP.NET, Managed Driver supports .NET configuration file-based settings in
machine.config, app.config, and web.config. It does not support Windows registry
based configuration. ODP.NET, Managed Driver settings in .NET configuration files
are similar to ODP.NET, Unmanaged Driver settings to make porting easier.

The ODP.NET, Managed Driver configuration file section name is
<oracle.manageddataaccess.client>. The <oracle.manageddataaccess.client> settings
and values are also supported in unmanaged ODP.NET configuration file:
<oracle.unmanageddataaccess.client>. While this documentation section discusses
managed ODP.NET configuration, it is also applicable to
<oracle.unmanageddataaccess.client>. The <oracle.unmanageddataaccess.client>
settings are actually a superset of <oracle.manageddataaccess.client>. The
<oracle.unmanageddataaccess.client> settings not available in managed ODP.NET are
documented in "Oracle Data Provider for .NET, Unmanaged Driver Configuration”. A
typical .NET config that uses ODP.NET, Managed Driver has some or all of the
following subsections nested within a <version> subsection under
<oracle.manageddataaccess.client> section. Note the tag names are case sensitive,
while the attribute names are case insensitive.

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<oracle.manageddataaccess.client>
<version number="*">
<dataSources>

</dataSources>
<settings>

</settings>
<LDAPsettings>

</LDAPsettings>
<implicitRefCursor>

2-28

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

</implicitRefCursor>
<edmMappings>

<edmMappings>

</version>

<version number="4.121.2.0">
<dataSources>

</dataSources>
<settings>

</settings>
<LDAPsettings>

</LDAPsettings>
<implicitRefCursor>

</implicitRefCursor>
<edmMappings>

<edmMappings>
</version>
</oracle.manageddataaccess.client>
</configuration>

The ODP.NET, Managed Driver configuration and settings are described in the
following sections. Many of the attributes are the same as ODP.NET, Unmanaged
Driver. See Table 2-2 for detailed attribute descriptions.

2.9.1 version Section

All the information required by an application should be grouped under the version
subsections. Each <version number="X"> section contains parameters applicable for
version X of the ODP.NET, Managed Driver. For example, <version
number="4.121.2.0"> section parameters will be applicable only for those applications
using ODP.NET, Managed Driver assembly 4.121.2.0.

Apart from version specific sections, there can also be a generic section <version
number="*">. This section's parameters are applicable for all ODP.NET, Managed
Driver versions. Parameters in the version specific section take precedence over the
parameters of the generic section. The following is an example of a version section:

<oracle.manageddataaccess.client>
<version number="*">
<settings>
<setting name="TraceOption" value="1"/>
<setting name="PerformanceCounters" value="0" />
</settings>
</version>
<version number="4.121.2.0">
<settings>
<setting name="PerformanceCounters" value="4095" />
</settings>

ORACLE 2-29

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

</version>
</oracle.manageddataaccess.client>

An application referencing ODP.NET, Managed Driver 4.121.2.0 has the following
values set:

* TraceOption = 1

o PerformanceCounters= 4095

2.9.2 dataSources Section

ORACLE

This section can appear only under a <version> section. The mapping between the
different data source aliases and corresponding data descriptors should appear in this
section. The following is an example.

<dataSources>

<dataSource alias="instl" descriptor="(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=sales-server)...... />

<dataSource alias="inst2" descriptor="(DESCRIPTION= N)/>
</dataSources>

" Note:

The data source connection string attribute can alternatively be set to a full
descriptor or Easy Connect syntax rather than a data source alias.

Requirements for connecting to a local database without specifying "data source”
connection string attribute:

e The listener must be up and running.

* ORACLE_SID environment variable must be set appropriately.

¢ Note:

When "data source" connection string attribute is not specified, protocol
defaults to 'tcp' and port defaults to '1521".

The ODP.NET managed driver reads and caches all the alias entries from the
app-config, web.config, machine.config, and from a tnsnames.ora file that is found at
application start-up time. However, aliases that are defined in LDAP servers are
resolved and cached on demand. This means for each unique alias that is used by the
application, an alias resolution query is executed against an LDAP server and the full
descriptor associated with the alias will be cached once it is fetched.

For developers that need to change or add alias settings while developing
applications, one may consider using OracleDataSourceEnumerator .GetDataSources()
rather than restarting the application. Invoking this method will first wipe out existing
cache entries that were read from the tnsnames.ora file and all aliases obtained from
the LDAP Server. Then, the tnsnames.ora is re-parsed and all its entries will be cached
again. Please note that the app.config, web.config, and machine.config entries are read

2-30

ORACLE

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

only once at application start-up time and thus their contents are maintained and not
re-parsed even if OracleDataSourceEnumerator .GetDataSources() is invoked.

The OracleDataSourceEnumerator .GetDataSources() method invocation has an impact on
the connection pool. This is because a connection pool, which is created for each
unique connection string, will cache the resolved full descriptor information after the
first connection is created for a given connection pool. After that, the connection pool
uses the cached full descriptor information for all subsequent connection creations.
Thus, for applications that have their tnsnames.ora or LDAP entries modified during the
execution of an application where an alias points to a different database than before,
one should call the OracleDataSourceEnumerator.GetDataSources() method to remove
old cached entries. This should be followed by the invocation of the

ClearPool (OracleConnection) instance method or the ClearAllPools() static method to
remove existing connections and also have it obtain a new full descriptor value that
was read by the invocation of OracleDataSourceEnumerator .GetDataSources(). Following
this scheme will assure that all the connections in the connection pool uses the new
full descriptor that is now associated with the alias and all connections in a connection
pool is established to the same database.

The following keywords are supported within the descriptor setting:

* ADDRESS
e ADDRESS_LIST (Note: only failover supported)

Oracle recommends using SCAN listener and Runtime Load Balancing to balance
the load when connecting to an Oracle RAC database.

e DESCRIPTION

e DESCRIPTION_LIST (Note: Failover supported; Address_list load balancing not
supported)

e HOST (Note: <hostname>, <IPv6 literal>, and <IPv4 literal> are supported)
e 1P (Note: "loopback" is supported)

e PROTOCOL (Note: tcp and tcps are supported)

* SDU (Note: 256 to 65536 are supported)

e SECURITY: SSL_VERSION (Note: overrides sqlnet.ora:ssl_version)

e TRANSPORT_CONNECT_TIMEOUT (Note: overrides tcp.connect_timeout)

Note:

e SSL is now supported via method MCS and FILE.

e Both Kerberos5 and NTS authentication are supported. RADIUS is not
supported.

e Only NTS authentication is supported. No RADIUS nor Kerberos5
authentication.

e Only Net Services, Easy Connect naming, and LDAP (namely, Active
Directory and Oracle Internet Directory) are supported.

* No bequeath (beq) support. Default address is instead TCP loopback with
port 1521 and Oracle service name from environment (ORACLE_SID)

2-31

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

Though managed ODP.NET does not support TNS descriptor based load balancing, it
does support failover through both an ADDRESS_LIST and DESCRIPTION_LIST.

Note that you need not specify either the LOAD_BALANCE or the FAILOVER directive,
because only failover is supported. The directives are ignored.

The following examples demonstrate TNS descriptors utilizing failover:

(DESCRIPTION=
(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=tcp) (HOST=host1) (PORT=1630))
(ADDRESS=(PROTOCOL=tcp) (HOST=host2) (PORT=1630))
(ADDRESS=(PROTOCOL=tcp) (HOST=host3) (PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=Sales.us.example.com)))

(DESCRIPTION_LIST=
(DESCRIPTION=
(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=tcp) (HOST=salesla-svr)(PORT=1521))
(ADDRESS=(PROTOCOL=tcp) (HOST=saleslb-svr)(PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=sales1.example.com)))
(DESCRIPTION=
(ADDRESS_LIST=
(ADDRESS=(PROTOCOL=tcp) (HOST=sales2a-svr) (PORT=1521))
(ADDRESS=(PROTOCOL=tcp) (HOST=sales2b-svr) (PORT=1521)))
(CONNECT_DATA=(SERVICE_NAME=sales2.us.example.com))))

2.9.3 settings section

This section can appear only under a <version> section. Any ODP.NET, Managed
Driver specific settings should appear in this section. The following is an example of a
settings section:

<settings>

<setting name="TraceLevel™ value="7" />

<setting name="TraceOption" value="1"/>

<setting name="TNS_ADMIN" value="C:\oracle\work"/>
</settings>

A new default behavior has been introduced for ODP.NET Release 12.1.0.2 and
higher when InitialLobFetchSize is set to -1. The new default value is
LegacyEntireLOBFetch = 0. To use the old behavior, set LegacyEntireLobFetch = 1 in the
ODP.NET configuration as explained in Setting InitiaLONGFetchSize to -1.

ODP.NET, Managed Driver configuration settings that are supported:
* BindByName

* DbNotificationPort

* DemandOraclePermission

* Disable_Oob: Interrupts database query execution via either TCP/IP urgent data or
normal TCP/IP data, called out of band data (default) or in band data, respectively.
(Default=0ff).

All Oracle database clients support interrupting database query execution, such as
through an ODP.NET command timeout. Windows-based database servers only
support in band breaks, whereas all other (predominantly UNIX-based) database
servers can support out of band (OOB) or in band breaks. ODP.NET, Managed

ORACLE 2-32

ORACLE

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

Driver uses OOB breaks by default with database servers that support it. For
certain network topologies, the routers or firewalls involved in the route to the
database may have been configured to drop urgent data or in band the data. If the
routers or firewalls can not be changed to handle urgent data appropriately, then
the ODP.NET, Managed Driver can be configured to utilize in band breaks by
setting the .NET configuration parameter Disable_0Oob to on.

FetchSize

LDAP_ADMIN: Specifies the Idap.ora location. The LDAP_ADMIN setting works in
conjunction with the TNS_ADMIN setting to set Idap.ora search order.

LegacyEntirelLOBFetch
MaxStatementCacheSize
MetaDataXml

NAMES.DIRECTORY_PATH: The default search order is TNSNAMES and EZCONNECT.
TNSNAMES, LDAP, and EZCONNECT are the only name resolution methods supported, but
their order of precedence can be modified.

NAMES . LDAP_AUTHENTICATE_BIND
NAMES . LDAP_CONN_T IMEOUT
NODELAY

ORA_DEBUG_JDWP: Allows Oracle PL/SQL Debugger and database to connect
automatically without application code changes. Value is set as host=<I P_addr ess
or host _nanme>;port=<debuggi ng port number>. EX. host=localhost;port=1234

ORACLE_SID
PerformanceCounters

RECEIVE_BUF_SIZE: Sets TCP SO_RECVBUF, the total buffer space associated with the
local side of a TCP socket

SelfTuning

SEND_BUF_SIZE: Sets TCP SO_SENDBUF, the total buffer space associated with the
local side of a TCP socket

ServiceRelocationConnectionTimeout
In seconds. (Default = 90).

Whenever a database service becomes unavailable, such as due to a service
being relocated, an application can encounter numerous connectivity errors during
this time. To avoid unnecessary connection attempts to an unavailable service
which will result in an error, ODP.NET, Managed and Unmanaged Drivers block
any connection attempts until the service is up or until this property's specified time
limit expires from the time when the service DOWN event was received, whichever
comes first. Once the specified time elapses, all the connection attempts to the
specific service which is known to be down will no longer be blocked. Those
requests will be sent to the server. ServiceRelocationConnectionTimeout is only
operational in conjunction with Oracle Fast Connection Failover (HA Events = true).
Once Fast Connection Failover is enabled for the .NET application, Service
Relocation Connection Timeout is automatically enabled. It will use its default
value if no ServiceRelocationConnectionTimeout value has been explicitly set. It
works with planned and unplanned outages.

2-33

ORACLE

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

SQLNET . AUTHENTICATION_SERVICES: Supported values are Kerberos5, NTS, TCPS, or
NONE.

Managed ODP.NET supports NTS, Kerberos5, and TCPS external authentication
methods. This setting should be set based on the desired database authentication
method. If internal database authentication is desired, then the setting should be
set to NONE. Example settings made in sqlnet.ora are:

SQLNET.AUTHENTICATION_SERVICES = (TCPS)
SQLNET.AUTHENTICATION_SERVICES = (NTS)
SQLNET.AUTHENTICATION_SERVICES = (Kerberos5, NTS)
SQLNET.AUTHENTICATION_SERVICES = (NONE)

" Note:

The NTS external authentication methodology is only supported on a
Windows-based client and server.

SQLNET.CRYPTO_CHECKSUM_CLIENT: Specifies the desired data integrity behavior when
this client connects to a server. Supported values are accepted, rejected,
requested, or required. Default = accepted.

SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT: Specifies the data integrity algorithms that
this client uses. Supported values are SHA512, SHA384, SHA256, SHAL, and MD5.

StatementCacheSize

SSL_SERVER_DN_MATCH: To enforce the distinguished name (DN) for the database
server matches its service name. (Default=no).

If you enforce the match verification, then SSL/TLS ensures that the certificate is
from the server. If you select to not enforce the match verification, then SSL/TLS
performs the check but allows the connection, regardless if there is a match. Not
enforcing the match allows the server to potentially fake its identify.

Supported values: yes | on | true to enforce a match.
Supported values: no | off | false to not enforce a match.

SSL_SERVER_DN_MATCH is often used together with SSL_SERVER_CERT_DN.
SSL_SERVER_CERT_DN specifies the distinguished name (DN) of the database server.
It can be set in the connect descriptor.

net_service_name=
(DESCRIPTION=
(ADDRESS=(PROTOCOL=tcp) (HOST=sales1-svr)(PORT=1521))
(ADDRESS=(PROTOCOL=tcp) (HOST=sales2-svr) (PORT=1521))
(CONNECT_DATA=
(SERVICE_NAME=sales.us.acme.com))
(SECURITY=
(SSL_SERVER_CERT_DN="cn=sales,cn=0racleContext,dc=us,dc=acme,dc=com')))

The client uses this information to obtain the list of DNs it expects for each of the
servers, enforcing the database server DN to match its service name. Use this
parameter with SSL_SERVER_DN_MATCH to enable server DN matching.

SSL_VERSION: Sets the version of the SSL/TLS connection. By default, all supported
versions are enabled, in the order 3.0, 1.0, 1.1, and 1.2.

2-34

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

The client and server negotiate to the highest version among the common
conversions specified in their configurations. The versions from lowest to highest
are: 3.0 (lowest), 1.0, 1.1, and 1.2 (highest).

TNS_ADMIN: Location where either one or more of tnsnames.ora, Idap.ora, and
sqlnet.ora are located. Locations can consist of either absolute or relative
directory paths.

TraceFileLocation: Trace file destination directory, for example, D:\traces. The
default TraceFileLocation is <W ndows user tenporary fol der >\ODP.NET\managed
\trace.

TracelLevel: 1 = public APIs; 2 = private APIs; 4 = network APIs/data. These values
can be ORed. To enable everything, set TraceLevel to 7. Errors will always be
traced.

TraceOption
TCP.CONNECT_TIMEOUT

WALLET_LOCATION: Microsoft Certificate Store (MCS) and file system wallets are
supported.

SQLNET.ENCRYPTION_CLIENT = Negotiates whether to turn on encryption. Supported
values are accepted, rejected, requested, or required.

SQLNET.ENCRYPTION_TYPES_CLIENT = Encryption algorithm(s) to use.

The following table lists the valid encryption algorithms for ODP.NET, Managed Driver.

Table 2-3 Encryption Algorithms for ODP.NET, Managed Driver
|

Algorithm Name Legal Value
AES 128-bit key AES128
AES 192-bit key AES192
AES 256-bit key AES256
RC4 128-bit key RC4_128
RC4 256-bit key RC4_256
2-key 3DES 3DES112
3-key 3DES 3DES168

2.9.4 LDAPsettings section

This section can appear only under a <version> section. Any ODP.NET, Managed
Driver specific LDAP settings should appear in this section. The following is an
example of a <LDAPsetting> subsection under the <LDAPsettings> section:

<LDAPsettings>

<LDAPsetting name="DIRECTORY_TYPE" value="AD" />
<LDAPsetting name="DEFAULT_ADMIN_CONTEXT" value="dc=Oracle,dc=com"/>

</LDAPsettings>

ORACLE

2-35

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2.9.5 Lightweight Directory Access Protocol

ODP.NET, Managed Driver supports TNS alias resolution through a LDAP server/
service, specifically Microsoft Active Directory and Oracle Internet Directory (OID).
TNS alias resolution occurs when using the LDAPsettings section or ldap-ora file

settings. The LDAPsettings section settings take precedence over Idap.ora settings.

For Active Directory, only the DIRECTORY_TYPE and DEFAULT_ADMIN_CONTEXT parameters
are required in 1dap.ora. When the DIRECTORY_SERVERS parameter is missing or has no
value, the default LDAP server for the current domain will be used.

For OID, all Idap.ora parameters must be set with valid values to complete
configuration.

ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver support the same level
of security when using LDAP for name resolution.

Table 2-4 Microsoft Active Directory: Encryption Types and Authentication
Credentials For Connecting and Binding

No Encryption SSL Encryption
Anonymous authentication Anonymous authentication
Domain User authentication Domain User authentication

Table 2-5 Oracle Internet Directory: Encryption Types and Authentication
Credentials For Connecting and Binding

__|
No Encryption SSL Encryption

Anonymous authentication Anonymous authentication

- Walllet based authentication

Note: Wallet based authentication for Oracle Internet
Directory is not supported for this release

2.9.6 implicitRefCursor section

ORACLE

This section can appear only under a <version> section. Any information about REF
CURSOR parameters that need to be bound implicitly should appear in this section. The
following is an example of an <implicitRefCursor> section:

<implicitRefCursor>
<storedProcedure schema="USERREFCUR" name=""TestProcl'>

<refCursor name="Param3">

<bindInfo mode="Output"/>

<metadata columnOrdinal="0" columnName="DEPTNO" baseColumnName="DEPTNO"
baseSchemaName="USERREFCUR" baseTableName="DEPT" nativeDataType="number"
providerType="Int32" dataType="System.Intl16" columnSize="2" allowDBNull="true" />

<metadata columnOrdinal="1" columnName="DNAME" baseColumnName="DNAME"
baseSchemaName="USERREFCUR" baseTableName="DEPT" nativeDataType="varchar2"
providerDBType="String" columnSize="30" />

</refCursor>

<refCursor name="param2'>

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

<bindInfo mode="Output"/>
<metadata columnOrdinal="0" columnName="EMPNO" baseColumnName="EMPNO"
baseSchemaName=""USERREFCUR" baseTableName="EMP" nativeDataType="number"
providerType="Int32" dataType="System.Int16" columnSize="4" allowDBNull="false" />
</refCursor>
</storedProcedure>

<I--Next stored procedure information-->
<storedProcedure name="TestProc2'">

</storedProcedure>
</implicitRefCursor>

2.9.7 distributedTransaction section

This section can appear only under a <version> section. Any information about
distributed transactions should appear in this section. The following is an example of a
distributedTransaction section:

<distributedTransaction>
<setting name="OMTSRECO_IP_ADDRESS" value="my-pc" />
<setting name="OMTSRECO_PORT" value="2040" />
<setting name="ORAMTS_SESS_TXNTIMETOLIVE" value="240" />
</distributedTransaction>

e OMTSRECO_IP_ADDRESS: Specifies the machine name (or IP address) that the OraMTS
Recovery service will be running on to resolve database in-doubt transactions. The
default is the local machine name.

* OMTSRECO_PORT: Specifies the port that the OraMTS Recovery service will be
listening on to resolve database in-doubt transactions. The default is 2030.

e ORAMTS_SESS_TXNTIMETOLIVE : Specifies the time in seconds that the transaction can
remain inactive after it has been detached or delisted from the database. Once this
time expires, the transaction is automatically terminated by the provider. The
default is 120 seconds.

* UseManagedDTC: When set to false and using .NET Framework 4.5.2 or higher,
ODP.NET uses .NET Framework for distributed transaction support. In all other
instances, ODP.NET uses Oracle Services for Microsoft Transaction Server to
support distributed transactions. Boolean (Default = false) for ODP.NET,
Managed Driver only.

* UseOraMTSManaged: When set to true and using .NET Framework 4.5.2 or higher,
ODP.NET uses managed code for distributed transactions. If set to true, but .NET
4.5.1 or lower is used, an exception will be thrown. If set to false, ODP.NET uses
Oracle Services for Microsoft Transaction Server to support distributed
transactions. Boolean (Default = false) for ODP.NET, Unmanaged Driver only.

2.9.8 edmMappings section

This section can appear only under a <version> section. Any information related to
EDM mappings should appear in this section. Refer to Oracle Number Default Data
Type Mapping and Customization for more examples on edmMappings section.

ORACLE 2-37

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2.9.9 onsConfig section

Oracle Notification Service (ONS) can be configured using either local or remote
configuration. Remote configuration is the preferred configuration for standalone client
applications. For releases earlier than Oracle Database 12c, this section is mandatory
for ODP.NET to receive ONS notifications. With Oracle Database 12c and later, this
section is optional and the information about the ONS daemons is received from the
server itself. However, ODP.NET will also listen for events from any <host:port> pairs
that is provided by the user in this section in addition to the <host:port> pairs received
from the server.

For local configuration, please ensure that ONS is configured and available on the
node where ODP.NET is running, so that ODP.NET can receive events directly from
the local ONS daemon. The following is a sample format for the local configuration:

<onsConfig configFile="C:\temp\test.config" mode="local">
</onsConfig>

¢ Note:

The configFile specified in .NET config should contain the same localport and
remoteport values as specified in the ons.config used by the local ONS
daemon. This will enable the application to receive events from the local ONS
daemon.

Remote configuration is used in scenarios where the application directly receives ONS
events from the ONS daemons running on remote machines. One of the advantages
of this configuration is that no ONS daemon is needed on the client end and, therefore,
there is no need to manage this process.

The following is a sample format for remote configuration:

<onsConfig mode="remote">
<ons database="db1">
<add name="nodeList" value="racnodel:4100, racnode2:4200" />
</ons>
<ons database="db2">
<add name="nodeList" value=" racnode3:4100, racnode4:4200" />
</ons>
</onsConfig>

In case of remote configuration, the application has to specify the <host>:<port> values
for every potential database that it can connect to. The <host>:<port> value pairs
represent the ports on the the different Oracle RAC nodes where the ONS daemons
are talking to their remote clients.

2.9.10 Client Side ONS Daemon Configuration

ORACLE

ONS configuration is controlled by the ONS configuration file, ORACLE_HOVE/opmn/conf/
ons.config. This file tells the ONS daemon how it should behave. The SRVCTL utility can
be used to start and stop the ONS daemon. It is installed on each node by default
during server install.

2-38

ORACLE

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

Configuration information within ons.config is defined in simple name and value pairs.
An example of ONS.config is given below

This is an example ons.config file

#

The first three values are required

localport=4100

remoteport=4200

nodes=racnodel.example.com:4200, racnode2.example.com:4200

Some parameters in the ons.config file are required and some are optional. Table
Table 2-6 lists the required ONS configuration parameters and Table 2-7 lists the
optional ONS configuration parameters.

Table 2-6 Required ONS Configuration Parameters
|

Parameter Explanation
localport The port that ONS binds to on the local host interface to talk to
local clients.

For example, localport=4100

remoteport The port that ONS binds to on all interfaces for talking to other
ONS daemons.

For example, remoteport=4200

nodes A list of other ONS daemons to talk to. Node values are given as
a comma-delimited list of either host names or IP addresses plus
ports. The port value that is given is the remote port that each
ONS instance is listening on. In order to maintain an identical file
on all nodes, the host:port of the current ONS node can also be
listed in the nodes list. It will be ignored when reading the list.

For example, nodes=myhost._example.com:
4200,123.123.123.123:4200

The nodes listed in the nodes line correspond to the individual
nodes in the Oracle RAC instance. Listing the nodes ensures
that the middle-tier node can communicate with the Oracle RAC
nodes. At least one middle-tier node and one node in the Oracle
RAC instance must be configured to see one another. As long as
one node on each side is aware of the other, all nodes are
visible. You need not list every single cluster and middle-tier
node in the ONS configuration file of each Oracle RAC node. In
particular, if one ONS configuration file cluster node is aware of
the middle tier, then all nodes in the cluster are aware of it.

Table 2-7 Optional ONS Configuration Parameters

__|
Parameter Description

loglevel The level of messages that should be logged by ONS. This value
is an integer that ranges from 1, which indicates least messages
logged, to 9, which indicates most messages logged. The default
value is 3.

For example, loglevel=3

logfile A log file that ONS should use for logging messages. The default
value for log file is $ORACLE_HOME/opmn/logs/ons. log.

For example, logfile=C:\app\user\product\12.1_0\opmn
\logs\myons. log

2-39

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

Table 2-7 (Cont.) Optional ONS Configuration Parameters

__|
Parameter Description

walletfile The wallet file used by the Oracle Secure Sockets Layer (SSL)
to store SSL certificates. If a wallet file is specified to ONS, then
it uses SSL when communicating with other ONS instances and
require SSL certificate authentication from all ONS instances
that try to connect to it. This means that if you want to turn on
SSL for one ONS instance, then you must turn it on for all
instances that are connected. This value should point to the
directory where your ewal let.p12 file is located.

For example, wal letfile=C:\app\user\product\12.1.0\opmn
\conf\ssl.wlt\default

useocr The value, reserved for use on the server-side, to indicate ONS
whether it should store all Oracle RAC nodes and port numbers
in Oracle Cluster Registry (OCR) instead of the ONS
configuration file or not. A value of useocr=on is used to store all
Oracle RAC nodes and port numbers in Oracle Cluster Registry
(OCR).
Do not use this option on the client-side.

The ons.config file allows blank lines and comments on lines that begin with the
number sign (#).

2.9.11 Relative Windows Path and Windows Environment Variable
Configuration Settings

The following managed ODP.NET configuration settings support relative Windows
path and environment variables:

e TraceFilelLocation
. WALLET_LOCATION

File locations for the above config parameters can now be set using relative Windows
paths. The "." notation informs ODP.NET to use the current working directory. Sub-
directories can be added by appending them. For example, .\mydir refers to the sub-
directory mydir in the current working directory. To navigate to a parent directory, use
the ".." notation.

For web applications, the current working directory is the application directory. For
Windows applications, the _EXE location is the current working directory.

Windows paths can also be set using Windows environment variable names within "%"
characters.

For example, %tns_admin%, c:\%dir%\my_app_location, c:\%top_level dir%\
%bottom_level_dir% etc.

ORACLE 2-40

Chapter 2
Distributed Transactions

Note:

e If the environment variable that is used by the configuration parameter is
not set to anything, then an exception will be thrown.

e Adirectory name cannot partially be using an environment variable. For
example, c:\my_app_%id%

e Multiple variables can used in given directory location. For example, c:\
%top_level_dir%\%bottom_level_dir%.

2.10 Distributed Transactions

ODP.NET, Managed and Unmanaged Drivers provide its resource manager, which
manage Oracle database transactions, and work in cooperation with Microsoft
Distributed Transaction Coordinator (MSDTC) to guarantee atomicity and isolation to
an application across networks. MSDTC coordinates with all the resource managers
that are enlisted to the same System.Transactions, to perform 2-phrase commit or
rollback atomically. With that, Oracle distributed transactions can then be committed or
rolled back across networks properly.

2.10.1 Oracle Services for Microsoft Transaction Server

ORACLE

Oracle Services for Microsoft Transaction (OraMTS) allow client components to
leverage Oracle database participation in MSDTC transactions. It acts as a proxy for
the Oracle database to MSDTC to ensure that Oracle distributed database
transactions commit or rollback together with the rest of the distributed transaction.

If a failure occurs, such as a network failure or server hardware failure, then it can
leave an in-process distributed transaction in-doubt. OraMTS has a recovery service to
resolve these transactions on the machine that began this transaction. This recovery
service runs as a Windows service.

It is required to install the OraMTS Recovery Service on all the client machines where
ODP.NET is running and participating in MSDTC. As a machine may have multiple IP
addresses, administrators for managed ODP.NET applications can specify the host
machine name or IP address that has the running recovery service in the
application's .NET configuration file. ODP.NET, Unmanaged Driver resolves the IP/
machine name for the recovery service automatically.

With .NET Framework 4.5.2, Microsoft introduced new API support that allows Oracle
to use only managed calls to coordinate ODP.NET transactions with the MSDTC.
ODP.NET utilizes this managed code with the managed driver (starting with ODAC
12c Release 3) and with the unmanaged driver (starting with ODAC 12c¢ Release 4).

While ODP.NET, Unmanaged Driver developers can opt out of using OraMTS when
using the latest .NET Framework and ODP.NET versions, they still need to install and
configure the OraMTS Windows recovery service to manage recovery scenarios.

2-41

Chapter 2
Distributed Transactions

Table 2-8 Supported ODP.NET Type and .NET Framework Version for
Distributed Transaction

ODP.NET Type .NET Framework Distributed Transaction Support
Version
Managed 4.5.2 and higher Uses .NET Framework's native managed

implementation (default) for distributed
transactions. This is Oracle's recommended

approach.
Managed 4.5.1 and lower Uses the Oracle.ManagedDataAccessDTC.dl1
Unmanaged 4.5.2 and higher Uses OraMTS (default) or managed OraMTS

implementation. Oracle recommends using
managed OraMTS for unmanaged ODP.NET
applications requiring high availability from Oracle
RAC or Data Guard.

Unmanaged 4.5.1 and lower Uses OraMTS

Note:

While .NET Framework 4.5.1 and lower within the .NET Framework 4 family
are no longer supported, administrators can still use any of the distributed
transaction configurations listed above in conjunction with .NET 4.5.2 and
higher. For .NET 4.5.1 and lower, the table merely recommends specific setups
based on user configuration. They are not requirements.

2.10.2 ODP.NET, Managed Driver Setup

ORACLE

This section explains the setup and configuration steps required for using distributed
transactions with ODP.NET, Managed Driver.

Oracle recommends that applications use .NET's native managed distributed
transaction implementation (default), which is available in .NET Framework 4.5.2 or
higher. Applications can set whether .NET's native managed distributed transaction or
Oracle.ManagedDataAccessDTC.dl1 is used by setting the UseManagedDTC parameter in
the .NET configuration file. Follow these steps to configure distributed transactions in
these .NET Framework versions:

1. Create and setup the OraMTS recovery service or make sure an existing recovery
service is running.

2. Set the value of OMTSRECO_PORT in the .NET configuration to specify the port number
that the OraMTS recovery service is running.

Alternatively, you can still use Oracle.ManagedDataAccessDTC.dI1 with .NET Framework
4.5.2 and managed ODP.NET. To do so, set UseManagedDTC to true and follow the
instructions listed below for .NET Framework 4.5.1.

For .NET Framework 4.5.1 and lower applications, follow these steps to setup and
configure managed ODP.NET for distributed instructions:

2-42

Chapter 2
Distributed Transactions

1. Create and setup the OraMTS recovery service or make sure an existing recovery
service is running.

2. Deploy Oracle.ManagedDataAccessDTC.dl1 along with the application.

3. Set the value of OMTSRECO_PORT in the .NET configuration to specify the port number
that the OraMTS recovery service is running.

Oracle.ManagedDataAccessDTC.dl1 is included with ODP.NET, Managed Driver. This
DLL makes unmanaged MSDTC COM calls to MSDTC, which means there is a 32-bit
version and 64-bit version of this DLL. These two DLLs share the same name. If you
are using 32-bit .NET Framework, then deploy the 32-bit
Oracle.ManagedDataAccessDTC.dI 1. If you are using 64-bit .NET Framework, then deploy
the 64-bit Oracle.ManagedDataAccessDTC.dIl. The DLLs are located in the following
directories:

e For 32-bit NET Framework: ORACLE_HOVE\odp. net\managed\x86
e For 64-bit .NET Framework: ORACLE_HOME\odp.net\managed\x64

Upon ODP.NET installation, Oracle.ManagedDataAccessDTC.dl1 is no longer placed into
the Global Assembly Cache (GAC). For applications that use this DLL,
Oracle.ManagedDataAccessDTC.dI1 must either be placed in the application directory or in
the GAC.

Oracle.ManagedDataAccessDTC.dI1 should not be directly referenced by a .NET
application. It will be implicitly loaded by ODP.NET, Managed Driver when using
distributed transactions.

For applications with platform target x64 or x86 specifically,
Oracle.ManagedDataAccess.dl 1 will load Oracle.ManagedDataAccessDTC.d11 appropriately if
it is placed into the GAC or if it resides in the application directory.

For applications that target AnyCPU, the corresponding
Oracle.ManagedDataAccessDTC.dl1 needs to be placed into x64 and x86 subdirectories
under wherever the Oracle_ManagedDataAccess.dll is loaded from by the application.
ODP.NET, Managed Driver will load the appropriate Oracle.ManagedDataAccessDTC.dl1
assembly (32-bit or 64-bit), based on whether the application is 32-bit or 64-bit. If both
32-bit and 64-bit versions of Oracle.ManagedDataAccessDTC.dl1 are in the GAC, then the
appropriate assemblies will be loaded automatically.

2.10.3 ODP.NET, Unmanaged Driver Setup

ORACLE

This section explains the setup and configuration steps required for using distributed
transactions with ODP.NET, Unmanaged Driver.

For .NET Framework 4.5.2 and higher, ODP.NET, Unmanaged Driver has embedded
a managed OraMTS implementation into its assembly. OraMTS remains the default
implementation for the ODP.NET, Unmanaged Driver, but the managed OraMTS
implementation is recommended when using any high availability FAN operations (HA
Events = true) with Oracle Real Application Clusters or Oracle Data Guard. The
managed OraMTS implementation supports this high availability functionality, while the
traditional OraMTS does not.

Applications can set whether OraMTS (default) or managed OraMTS is used by
setting the UseOraMTSManaged parameter in the .NET configuration file.

Install and configure OraMTS, including its recovery service to use OraMTS
implementation for ODP.NET, Unmanaged Driver.

2-43

Chapter 2

Configuration differences between ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver

For .NET Framework 4.5.2 and higher applications, you can use the managed
OraMTS implementation instead of the traditional OraMTS. To set this up, perform the
following steps:

1. Set UseOraMTSManaged to true in the .NET configuration file.

2. Create and setup the OraMTS recovery service or make sure an existing recovery
service is running.

2.11 Configuration differences between ODP.NET,
Managed Driver and ODP.NET, Unmanaged Driver

Table 2-9 lists other configuration differences between ODP.NET, Managed Driver and
ODP.NET, Unmanaged Driver.

Table 2-9 Configuration Differences between ODP.NET, Unmanaged Driver and ODP.NET,

Managed Driver

Feature Category

Difference compared to ODP.NET, Unmanaged Driver

Configuration

Configuration

Configuration

Configuration

Configuration Parameter
Configuration Parameter
Configuration Parameter
Configuration Parameter
Configuration Parameter
Configuration Parameter
Configuration Parameter
Configuration Parameter
Configuration Parameter
Configuration Parameter
Connection String

Connection String

Connection String

Connection String

Connectivity

ORACLE

The older, traditional ODP.NET, Unmanaged Driver configuration file format is
different. The new format allows both providers to share the same format. See
"Oracle Data Provider for .NET, Managed Driver Configuration."

ConfigSchema.xsd file, shipped with ODP.NET, Managed Driver (when
included as part of the schema (XML->Schemas) in Visual Studio) enables
app-config intelli-sense.

Windows Registry based configuration is not supported

Oracle High Availability (HA) & Oracle RAC Load Balancing (RLB) notifications
use Oracle Notification Service (ONS). Thus, to use HA or RLB, configure
database and client to use ONS, rather than Oracle Database Advanced
Queuing (AQ). Note that Continuous Query Notification will continue to use AQ.

Edition is not supported.
CheckConStatus is not supported.
DIIPath is not supported.
SatementCacheWithUdts is not supported.
ThreadPoolMaxSize is not supported.
TraceFileName is not supported.
UdtCacheSize is not supported.

UDT Mappi ng is not supported.
UseManagedDTC is supported by ODP.NET, Managed Driver only.
UseOraMTSManaged is not supported.
Context Connection is not supported.

LegacyTransactionBindingBehavior setting will be ignored. It will always be
set to the default value of 1.

Promotable Transaction setting will be ignored. It will always be set to
promotable and always support promotions.

Statement Cache Purge is not supported.

Connection to Oracle Times Ten Database is not supported.

2-44

Chapter 2
Configuring for Entity Framework Code First

Table 2-9 (Cont.) Configuration Differences between ODP.NET, Unmanaged Driver and
ODP.NET, Managed Driver

Feature Category

Difference compared to ODP.NET, Unmanaged Driver

Performance Monitor
Performance Monitor

Provider Types

Tracing

NumberOfStatisConnections performance counter is not supported.
Performance monitor category name is "ODP.NET, Managed Driver"

Provider Types accept (via constructors) and generate (via ToString()
methods) only culture-invariant strings

Dynamic tracing is enabled by changing the TracelLevel setting in the app/web/
machine.config. NOTE: For ASP.NET applications, doing so will recycle the
application domain.

2.12 Configuring for Entity Framework Code First

Developers must configure applications to use the Oracle Entity Framework
functionality. This consists of creating two entries in the app.config or web.config file
and adding an assembly reference:

* Add entries in the .NET config file

Connection string

A standard ADO.NET connection string is used rather than the Entity
Framework connection string used by Database First or Model First paths. The
connection string name should match the application context name. The
connection string entry is an element of the connectionStrings section in the
configuration file.

Provider registration

Entity Framework uses the provider registration to determine the assembly to
use for Oracle Entity Framework functionality. The provider registration is an
element of the providers section within the entityFramework section in the
application configuration file.

e Add Assembly reference

Add Oracle Entity Framework assembly to the project references.

" Note:

When using the official ODP.NET, NuGet installation, these preceding sections
are created automatically, if they do not already exist. After the NuGet install,
the ODP.NET connection string will need to be customized to the application's
specific settings.

When using the Oracle Universal Installer or xcopy install, the preceding
sections must all be configured manually.

Examples of connection strings are as follows:

¢ ODP.NET, Unmanaged Driver

ORACLE

2-45

Chapter 2
Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver

<add name="TestContext" providerName="Oracle.DataAccess.Client"
connectionString="User ld=test;Password=testpassword;Data Source=eftest" />

* ODP.NET, Managed Driver

<add name="TestContext" providerName="0Oracle._ManagedDataAccess.Client"
connectionString="User ld=test;Password=testpassword;Data Source=eftest" />

Examples of Oracle provider registration are as follows:

¢ ODP.NET, Unmanaged Driver

<provider invariantName="Oracle.DataAccess.Client"
type="0racle.DataAccess.EntityFramework.EFOracleProviderServices,
Oracle.DataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

e ODP.NET, Managed Driver

<provider invariantName="Oracle.ManagedDataAccess.Client"
type="0racle.ManagedDataAccess.EntityFramework.EFOracleProviderServices,
Oracle.ManagedDataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

2.12.1 Entity Framework 6 Code-Based Registration

Entity Framework 6 allows an application to register with an Entity Framework provider
without using any configuration file. With ODP.NET, Managed Driver, the code will
look as follows:

// C#
using Oracle.ManagedDataAccess.EntityFramework;

public class ModelConfiguration : DbConfiguration

{
public ModelConfiguration()

{

SetProviderServices("'Oracle_ManagedDataAccess.Client",
EFOracleProviderServices. Instance);

}
}

For ODP.NET, Unmanaged Driver, replace occurrences of ManagedDataAccess with
DataAccess in the preceding code.

If you are using code-based registration, then the configuration file should not include
the registration. The configuration file based registration overrides the code-based
registration.

2.13 Migrating from ODP.NET, Unmanaged Driver to
ODP.NET, Managed Driver

To ease migration, the APIs of ODP.NET, Managed Driver are a complete subset of
the APIs of ODP.NET, Unmanaged Driver. As long as the existing unmanaged
ODP.NET applications use currently available managed ODP.NET APIs, migration is
straightforward and simple.

ORACLE 2-46

Chapter 2
Configuring a Port to Listen for Database Notifications

In future versions, the managed driver will support more APIs of ODP.NET,
Unmanaged Driver. Both drivers will continue to be enhanced to support the latest
Oracle Database and .NET Framework features.

To migrate from unmanaged to managed ODP.NET, perform the following steps:

1. Add a Reference to Oracle.ManagedDataAccess.dll in the .NET project.

2. Change the existing ODP.NET, Unmanaged Driver namespace references to
ODP.NET, Managed Driver references.

// C#
using Oracle.ManagedDataAccess.Client;
using Oracle.ManagedDataAccess.Types;

// VB
Imports Oracle.ManagedDataAccess.Client
Imports Oracle.ManagedDataAccess.Types

3. Some provider configuration settings may need to be migrated because
ODP.NET, Managed Driver supports very few Windows Registry settings and a
different .NET configuration setting format.

2.14 Configuring a Port to Listen for Database Notifications

ORACLE

Oracle Data Provider for .NET opens a port to listen for database notifications when
the following features are used:

« HA Events

e Load Balancing

e Continuous Query Notification
e AQ Notifications

All these features share the same port, which can be configured centrally by setting
the db notifications port in an application or web configuration file.

If the configuration file does not exist or the db notification port is not specified,
ODP.NET uses a valid, random port number. The configuration file may also request
for a random port by specifying a db notification port value of -1. To specify a
particular port in ODP.NET, Unmanaged Driver, for example, 1200, an application or
web configuration file can be used as follows:

<configuration>
<oracle.dataaccess.client>
<settings>
<add name="DbNotificationPort" value="1200"/>
</settings>
</oracle.dataaccess.client>
</configuration>

To specify a particular port in ODP.NET, Managed Driver, an application or web
configuration file can be used as follows:

<configuration>
<oracle.manageddataaccess.client>
<version number="*">
<settings>

2-47

Chapter 2
General .NET Programming Recommendations and Tips for ODP.NET

<setting name="DbNotificationPort" value="1200"/>
</settings>
</version>
</oracle.manageddataaccess.client>
</configuration>

The port number should be unique for each process running on a computer. Thus, the
port number should be set uniquely for each application either programmatically or
through an application config file. Note that if the specified port number is already in
use or invalid, ODP.NET does not provide any errors.

When the process using ODP.NET starts, the application reads the db notification
port number and listens on that port. Once the port is opened, the port number cannot
be changed during the lifetime of the process.

2.15 General .NET Programming Recommendations and
Tips for ODP.NET

ORACLE

* Thread.Abort() should not be used, as unmanaged resources may remain
unreleased, which can potentially cause memory leaks and hangs.

e To optimize resource usage, ODP.NET objects, such as OracleConnection and
OracleCommand, should be explicitly closed or disposed, or both, when they are no
longer needed. This should be done rather than relying on the .NET Framework
garbage collector to reclaim resources. Many users have found that under stress
conditions, explicit Close or Dispose calls result in much lower resource usage.

e Itis recommended not to proceed with application execution if the application
encounters exceptions that are associated with possible memory corruption, such
as System.AccessViolationException and
System.Runtime. InteropServices.SEHException.

e If the HKEY_LOCAL_MACHINE\Software\Oracle\NLS_LANG registry entry is set to NA,
ODP.NET encounters ORA-12705 errors. To eliminate this problem, remove the
HKEY_LOCAL_MACHINE\Software\Oracle\NLS_LANG registry entry.

2-48

Features of Oracle Data Provider for NET

This section describes Oracle Data Provider for .NET provider-specific features and

how to use them to develop .NET applications.
This section contains the following topics:

* Base Classes and Provider Factory Classes

* Code Access Security

* Connecting to Oracle Database

* Real Application Clusters and Global Data Services

* Using Transaction Guard to Prevent Logical Corruption
* Application Continuity

» Database Sharding

e OracleCommand Object

* ODP.NET Types Overview

* Obtaining Data from an OracleDataReader Object

* PL/SQL REF CURSOR and OracleRefCursor

e Implicit REF CURSOR Binding

e LOB Support

e ODP.NET XML Support

* Oracle User-Defined Types (UDTs) and .NET Custom Types
* Bulk Copy

* Oracle Database Advanced Queuing Support

e Continuous Query Notification Support

* OracleDataAdapter Safe Type Mapping

* OracleDataAdapter Requery Property

e Guaranteeing Uniqueness in Updating DataSet to Database
* Globalization Support

* Debug Tracing

» Database Application Migration: SQL Translation Framework

3.1 Base Classes and Provider Factory Classes

ORACLE

With ADO.NET, data classes derive from the base classes defined in the

System.Data.Common namespace. Developers can create provider-specific instances of

these base classes using provider factory classes.

3-1

Chapter 3
Code Access Security

Provider factory classes allow generic data access code to access multiple data
sources with a minimum of data source-specific code. This reduces much of the
conditional logic currently used by applications accessing multiple data sources.

Using Oracle Data Provider for .NET, the OracleClientFactory class can be returned
and instantiated, enabling an application to create instances of the following ODP.NET
classes that inherit from the base classes:

Table 3-1 ODP.NET Classes that Inherit from ADO.NET 2.0 Base Classes
]

ODP.NET Classes Inherited from ADO.NET 2.0 Base Class
OracleClientFactory DbProviderFactory
OracleCommand DbCommand
OracleCommandBui lder DbCommandBui lder
OracleConnection DbConnection
OracleConnectionStringBuilder DbConnectionStringBuilder
OracleDataAdapter DbDataAdapter
OracleDataReader DbDataReader
OracleDataSourceEnumerator DbDataSourceEnumerator
OracleException DbException
OracleParameter DbParameter
OracleParameterCollection DbParameterCol lection
OracleTransaction DbTransaction

In general, applications still require Oracle-specific connection strings, SQL or stored
procedure calls, and declare that a factory from ODP.NET is used.

3.2 Code Access Security

ODP.NET implements code access security through the OraclePermission class. This
ensures that application code trying to access the database has the requisite
permission to do so.

When a .NET assembly tries to access Oracle Database through ODP.NET, ODP.NET
demands OraclePermission. The .NET runtime security system checks to see whether
the calling assembly, and all other assemblies in the call stack, have OraclePermission
granted to them. If all assemblies in the call stack have OraclePermission granted to
them, then the calling assembly can access the database. If any one of the assemblies
in the call stack does not have OraclePermission granted to it, then a security exception
is thrown.

3.2.1 Configuring OraclePermission

ORACLE

The DemandOraclePermission configuration attribute is used to enable or disable
OraclePermission demand for an ODP.NET API. The DemandOraclePermission value can
be specified in the Windows registry for unmanaged ODP.NET only, or an individual
application configuration file for both unmanaged and managed ODP.NET.

3-2

Chapter 3
Code Access Security

The following Windows registry key is used to configure the DemandOraclePermission
configuration attribute:

HKEY_LOCAL_MACHINENSOFTWARENORACLEN\ODP.NET\Assenbl y_Ver si on\DemandOraclePermission

Here Assenbl y_Versi on is the full assembly version number of Oracle._DataAccess.dll.
The DemandOraclePermission key is of type REG_SZ. It can be set to either 1 (enabled) or
0 (disabled).

You can also enable OraclePermission demand for an individual application using its
application configuration file. The following example enables the
DemandOraclePermission property in an application configuration file for ODP.NET,
Unmanaged Driver:

<configuration>
<oracle.dataaccess.client>
<settings>
<add name="DemandOraclePermission" value="1"/>
</settings>
</oracle.dataaccess.client>
</configuration>

Similarly, you can use DemandOraclePermission to configure ODP.NET, Managed Driver
under the settings section for managed provider configuration. See also "settings
section" for more information.

An application or assembly can successfully access the database if OraclePermission
has been added to the permission set associated with the assembly's code group. A
system administrator can modify the appropriate permission set manually or by using
the Microsoft .NET configuration tool (Mscorcfg.msc).

Administrators may also use an appropriate .NET Framework Tool, such as the Code
Access Security Policy Tool (Caspol.exe), to modify security policy at the machine,
user, and enterprise levels for including OraclePermission.

OracleConnection makes security demands using the OraclePermission object when
OraclePermission demand has been enabled using DemandOraclePermission
configuration attribute. Application developers should make sure that their code has
sufficient permission before using OracleConnection.

3.2.2 Configuring OraclePermission for Web Applications with High or
Medium Trust Levels

ORACLE

For Web applications operating under high or medium trust, OraclePermission needs to
be configured in the appropriate web_Tr ust Level .config file, so that the application
does not encounter any security errors.

OraclePermission can be configured using the OracProvCfg tool. OraProvCfg.exe adds
appropriate entries to the web_hightrust.config and web_mediumtrust.config files
associated with the specified .NET framework version.The following example
illustrates using the OraProvCfg tool for configuring OraclePermission in a .NET 2.0 Web
application:

OraProvCfg.exe /action:config /product:odp /component:oraclepermission
/frameworkversion:v2.0.50727
/providerpath:ful | _path_of _Oracle. DataAccess. dl |

3-3

Chapter 3
Connecting to Oracle Database

On running the preceding command, the following entry is added to the
web_hightrust.config and web_mediumtrust.config files under the ASP.NET permission
set:

<IPermission class="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess,
Version=2.112.2.0, Culture=neutral, PublicKeyToken=89h483f429c47342" version="1"
Unrestricted="true" />

OraProvCfg can also be used to remove these entries from the .config files when
required. The following example illustrates this:

OraProvCfg.exe /action:unconfig /product:odp /component:oraclepermission
/frameworkversion:v2.0.50727
/providerpath:ful | _pat h_of _Oracl e. Dat aAccess. dl |

3.2.3 Configuring OraclePermission for Windows Applications Running
in a Partial Trust Environment

For Windows applications operating in a partial trust environment, the OraclePermission
entry should be specified under the appropriate permission set in the security.config
file. The security.config file is available in the %windir®%\Microsoft.NET\Framework\
{ver si on} \CONFIG folder.

The following example specifies the OraclePermission entry for a .NET 2.0 Windows
application:

<IPermission class="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess,
Version=2.112.2.0, Culture=neutral, PublicKeyToken=89b483f429c47342" version="1"
Unrestricted="true" />

3.3 Connecting to Oracle Database

ORACLE

Oracle Data Provider for .NET can connect to Oracle Database in a number of ways,
such as using a user name and password, Windows Native Authentication, Kerberos,
and Transport Layer Security/Secure Sockets Layer. This section describes
OracleConnection provider-specific features, including:

» Connecting to Oracle Database Exadata Express Cloud Service
* Connection String Attributes

* Connection String Builder

* Specifying the Data Source Attribute

* Using Transport Layer Security and Secure Sockets Layer
* Using Secure External Password Store

* Using Kerberos

* Using Windows Native Authentication (NTS)

* Network Data Encryption and Integrity

* Schema Discovery

* Connection Pooling

e Connection Pool Management

e Connection Pool Performance Counters

3-4

Chapter 3
Connecting to Oracle Database

* Pluggable Databases

* Edition-Based Redefinition

e Operating System Authentication

* Privileged Connections

* Password Expiration

* Proxy Authentication

* Dynamic Distributed Transaction Enlistment

* Client Identifier and End-to-End Tracing

e Transparent Application Failover (TAF) Callback Support

3.3.1 Connecting to Oracle Database Exadata Express Cloud Service

ORACLE

Managed and unmanaged ODP.NET supports connecting to Oracle Database
Exadata Express Cloud Service.

Set-up Instructions

Oracle recommends using the latest ODAC version when connecting to Exadata
Express. You can find instructions about how to download, install, and configure
ODAC for Oracle Database Exadata Express Cloud Service at:

http://www.oracle.com/technetwork/topics/dotnet/tech-info/
dotnetcloudexaexpress-3112654.html

Known Restrictions

Managed and unmanaged ODP.NET do not support the following features when
connecting to Oracle Database Exadata Express Cloud Service:

e .NET Bulk Copy
e Advanced Queuing
e Any authentication besides username and password
e Application Continuity
* Client Result Cache
e Continuous Query Notification
* Data types
— BFILE
— User-Defined Types when using IN or IN/OUT parameter binding

User-Defined Types include objects, collections (VARRAY and nested table), and
references

— VARCHAR2 with increased size limit to 32 KB.

Note:

VARCHAR2 of sizes up to 4 KB is supported.

3-5

http://www.oracle.com/technetwork/topics/dotnet/tech-info/dotnetcloudexaexpress-3112654.html
http://www.oracle.com/technetwork/topics/dotnet/tech-info/dotnetcloudexaexpress-3112654.html

Chapter 3
Connecting to Oracle Database

— XMLType when using IN or IN/OUT parameter binding

e Distributed transactions

e Fast Application Notification (FAN)

— Features that rely on FAN, such as planned outage, run-time connection load
balancing, and fast connection failover are not supported

— In ODP.NET 12.1 or lower, ODP.NET applications will receive an error if FAN

is turned on

e Sharding

3.3.2 Connection String Attributes

Table 3-2 lists the supported connection string attributes.

Table 3-2 Supported Connection String Attributes

Connection String Attribute

Description Default Value

Application Continuity

Connection Lifetime

Connection Timeout

Context Connection

Data Source

DBA Privilege

Decr Pool Size

Enlist

ORACLE

Enables database requests to true
automatically replay transactional or
non-transactional operations in a non-
disruptive and rapid manner in the event

of a severed database session, which

results in a recoverable error.

Not available in ODP.NET, Managed
Driver

Minimum life time (in seconds) of the 0
connection.

Minimum time (in seconds) to wait fora 15
free connection from the pool.

Returns an implicit database connection false
if set to true.

Supported in a .NET stored procedure
only

Oracle Net Services Name, Connect
Descriptor, or an easy connect naming
that identifies the database to which to
connect.

empty string

Administrative privileges: SYSDBA or
SYSOPER.

empty string

Number of connections that are closed 1
when an excessive amount of
established connections are unused.

Controls the enlistment behavior and true
capabilities of a connection in context of
COM+ transactions or

System.Transactions.

3-6

Chapter 3

Connecting to Oracle Database

Table 3-2 (Cont.) Supported Connection String Attributes

Connection String Attribute

Description

Default Value

HA Events

Load Balancing

Incr Pool Size

Max Pool Size

Metadata Pooling

Min Pool Size
Password

Persist Security Info
Pooling

Promotable Transaction

Proxy User 1d
Proxy Password

Self Tuning

Statement Cache Purge

Statement Cache Size

User Id

Validate Connection

Enables ODP.NET connection pool to
proactively remove connections from the
pool when an Oracle database service,
service member, instance, or node goes
down. Works with Oracle Global Data
Services, including Oracle RAC, Data
Guard, GoldenGate, and some single
instance deployments.

Enables ODP.NET connection pool to
balance work requests across Oracle
database instances based on the load
balancing advisory and service goal.
Works with Oracle Global Data Services,
including Oracle RAC, Active Data
Guard, and GoldenGate.

Number of new connections to be
created when all connections in the pool
are in use.

Maximum number of connections in a
pool.

Caches metadata information.

Minimum number of connections in a
pool.

Password for the user specified by User
Id.

Retrieval of the password in the
connection string.

Connection pooling.

Indicates whether or not a transaction is
local or distributed throughout its
lifetime.

User name of the proxy user.
Password of the proxy user.

Enables or disables self-tuning for a
connection.

Statement cache purged when the
connection goes back to the pool.

Statement cache enabled and cache
size, that is, the maximum number of
statements that can be cached.

Oracle user name.

Validation of connections coming from
the pool.

true

true

100

True

empty string
false
true

promotable

empty string
empty string

true

false

empty string

false

The following example uses connection string attributes to connect to Oracle

Database:

ORACLE

3-7

Chapter 3
Connecting to Oracle Database

/1 C#

using System;
using Oracle._DataAccess.Client;

class ConnectionSample

{
static void Main()
{
OracleConnection con = new OracleConnection();
//using connection string attributes to connect to Oracle Database
con.ConnectionString = "User ld=scott;Password=tiger;Data Source=oracle";
con.Open();
Console.WriteLine(""Connected to Oracle"™ + con.ServerVersion);
// Close and Dispose OracleConnection object
con.Close();
con.Dispose();
Console.WriteLine("'Disconnected™);
}
}

3.3.3 Connection String Builder

The OracleConnectionStringBuilder class makes creating connection strings less error-
prone and easier to manage.

Using this class, developers can employ a configuration file to provide the connection
string and/or dynamically set the values though the key/value pairs. One example of a
configuration file entry follows:

<configuration>
<connectionStrings>
<add name="Publications" providerName="Oracle.DataAccess.Client"
connectionString="User ld=scott;Password=tiger;Data Source=instl" />
</connectionStrings>
</configuration>

Connection string information can be retrieved by specifying the connection string
name, in this example, Publications. Then, based on the providerName, the appropriate
factory for that provider can be obtained. This makes managing and modifying the
connection string easier. In addition, this provides better security against string
injection into a connection string.

3.3.4 Specifying the Data Source Attribute

ORACLE

This section describes different ways of specifying the data source attribute.

The following example shows a connect descriptor mapped to a TNS alias called sales
in the tnsnames.ora file:

sales=
(DESCRIPTION=
(ADDRESS= (PROTOCOL=tcp) (HOST=sales-server)(PORT=1521))

3-8

Chapter 3
Connecting to Oracle Database

(CONNECT_DATA=
(SERVICE_NAME=sales.us.acme.com)))

The connection pool will maintain the full descriptor of an alias so that subsequent
connection requests with the same connection string will not need to resolve the alias
again. This applies to tnsnames.ora, .NET config data sources, and LDAP aliases. To
flush out the cached full descriptor maintained by the connection pool, invoke
OracleDataSourceEnumerator.GetDataSources() followed by
OracleConnection.ClearPool () or OracleConnection.ClearAllPools().

If connection pooling is not used, the alias will need to be resolved to the full descriptor
for each request. In the case of LDAP, the LDAP server is contacted for each
connection request.

3.3.4.1 Using the TNS Alias

To connect as scott/tiger using the TNS Alias, a valid connection appears as follows:

"user id=scott;password=tiger;data source=sales";

3.3.4.2 Using the Connect Descriptor

ODP.NET also allows applications to connect without the use of the tnsnames.ora file.
To do so, the entire connect descriptor can be used as the "data source™.

The connection string appears as follows:

"user id=scott;password=tiger;data source=" +
" (DESCRIPT I10N=(ADDRESS=(PROTOCOL=tcp)" +
"(HOST=sales-server) (PORT=1521)) (CONNECT_DATA=""+
"(SERVICE_NAME=sales.us.acme.com)))"

3.3.4.3 Using Easy Connect Naming Method

The easy connect naming method enables clients to connect to a database without
any configuration.

Prior to using the easy connect naming method, make sure that EZCONNECT is specified
by the NAMES.DIRECTORY_PATH parameter in the sglnet.ora file as follows:

NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

With this enabled, ODP.NET allows applications to specify the ""Data Source™ attribute
in the form of:

[I'host :[port]/[service_nane]

Using the same example, some valid connection strings follow:

"user id=scott;password=tiger;data source=//sales-server:1521/sales.us.acme.com"
"user id=scott;password=tiger;data source=//sales-server/sales._us.acme.com"
"user id=scott;password=tiger;data source=sales-server/sales.us.acme.com"

If the port number is not specified, 1521 is used by default.

ORACLE 3-9

Chapter 3
Connecting to Oracle Database

3.3.4.4 Using LDAP

ODP.NET can connect with connect identifiers mapped to connect descriptors in an
LDAP-compliant directory server, such as Oracle Internet Directory and Microsoft
Active Directory.

To configure LDAP for ODP.NET, Unmanaged Driver, follow these Oracle
documentation instructions in Configuring the Directory Naming Method in Oracle
Database Net Services Administrator's Guide.

To configure LDAP for ODP.NET, Managed Driver, follow the instructions in "settings
section" and "LDAPsettings section."

3.3.4.5 Data Source Enumerator

The data source enumerator enables the application to generically obtain a collection
of the Oracle data sources that the application can connect to.

3.3.5 Using Transport Layer Security and Secure Sockets Layer

Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
industry standard protocols for securing network connections. Both managed and
unmanaged ODP.NET support SSL for database and transport authentication.

3.3.5.1 Secure Sockets Layer and Transport Layer Security Differences

Although SSL was primarily developed by Netscape Communications Corporation, the
Internet Engineering Task Force (IETF) took over development of it, and renamed it
Transport Layer Security (TLS).

Essentially, TLS is an incremental improvement to SSL version 3.0.

ODP.NET, Managed Driver supports SSL 3.0 and TLS 1.0, 1.1, and 1.2. ODP.NET,
Unmanaged Driver supports the same SSL and TLS versions as the Oracle Database
Client version it is certified with.

The SSL/TLS client can ensure that the distinguished name (DN) is correct for the
database server it is trying to connect to. Parameters for DN Matching are
SSL_SERVER_DN_MATCH (sqlnet.ora) and SSL_SERVER_CERT_DN (tnsnames.ora), which can be
defined in the .NET config file as well.

To turn DN Match on, set SSL_SERVER_DN_MATCH to True (or On or Yes). SSL_SERVER_CERT_DN
is optional. It allows the administrator to specify exactly the DN they want to match. If
the SSL_SERVER_CERT DN is not set, then the match is done by comparing the
SERVICE_NAME value to the Common Name (CN) portion of the server certificate's DN.

ORACLE 3-10

Chapter 3
Connecting to Oracle Database

" See Also:

e The TLS Protocol Version 1.0 [RFC 2246] at the IETF Web site, which can
be found at:

http://www. ietf.org
e SSL_VERSION in the "settings section."

" Note:

To simplify the discussion, this section uses the term SSL where either SSL or
TLS may be appropriate because SSL is the most widely recognized term.
However, where distinctions occur between how you use or configure these
protocols, this section specifies what is appropriate for either SSL or TLS.

3.3.5.2 ODP.NET Secure Sockets Layer Configuration

ORACLE

When you configure Secure Sockets Layer on the client, you must confirm that the
wallet is created and use TCP/IP with SSL on the client. Optionally, you can perform
additional steps to enhance the configuration.

SSL Configuration Topics:

e Step 1: Confirm Client Wallet Creation

e Step 2: Use TCP/IP with SSL on the Client

e Step 3: Specify Required Client SSL Configuration (Wallet Location)
e Step 4: Set the Required SSL Version on the Client (Optional)

e Step 5: Set SSL as an Authentication Service on the Client (Optional)

Step 1: Confirm Client Wallet Creation

Before proceeding to the next step, you must confirm that a wallet has been created
on the client and that the client has a valid certificate.

ODP.NET, Managed Driver supports file and Microsoft Certificate Store (MCS) based
wallets.

* For file-based wallets, use Oracle Wallet Manager to check that the wallet has
been created. See Step 1A: Confirm Wallet Creation on the Server in Oracle
Database Security Guide for information about checking a wallet.

* For MCS, the Windows domain credentials will be used for the client credentials.
Thus, a valid domain logon must be used while running the ODP.NET application.
ODP.NET, Managed Driver will retrieve the credentials from the MY or Personal
certificate store. Note that the server must also be configured to use MCS wallets.
See Microsoft Certificate Services in Oracle Database Platform Guide for Microsoft
Windows for information about setting up the server for MCS.

3-11

Chapter 3
Connecting to Oracle Database

Step 2: Use TCPI/IP with SSL on the Client

The ODP.NET Data Source must be modified to use SSL. Specifically, the transport
protocol must be changed to use TCP/IP with SSL or what Oracle calls "tcps". An
example ODP.NET Data Source for use with SSL is:

finance = (DESCRIPTION=
(ADDRESS = (PROTOCOL=tcps) (HOST=finance_server) (PORT=1575))
(CONNECT_DATA = (SERVICE_NAME=Finance.us.example.com)))

Step 3: Specify Required Client SSL Configuration (Wallet Location)
Edit the sglnet.ora or .NET application configuration to specify the wallet location.

* An example of setting the SSL wallet location for file based wallets, where
<wallet_location> is the specified location where the client wallet is stored:

wallet_location = (SOURCE=(METHOD= File)
(METHOD_DATA=(DIRECTORY=<wal let_location>)))

* An example of setting the SSL wallet location for MCS based wallets is:

wallet_location = (SOURCE=(METHOD= MCS))

Step 4: Set the Required SSL Version on the Client (Optional)

The SSL_VERSION parameter can be set through the sqglnet.ora or the .NET
application.config, web.congig, or machine.config file. Normally, it is not necessary to
set this parameter. The default setting for this parameter is any, which allows the
database server to apply any necessary restrictions to the SSL version accepted. An
example setting in the sqlnet.ora is:

SSL_VERSION=3.0

Step 5: Set SSL as an Authentication Service on the Client (Optional)

Set the SQLNET.AUTHENTICATION_SERVICE parameter in the sqlnet.ora or
application.config, web.congig, or machine.config file to allow SSL to be used as a
database external authentication methodology.

Note that SSL can be used as just a transport encryption vehicle. Hence, the "optional”
designation for this setting.

If SSL is to be used as a database external Authentication Service, then a database
externally authenticated user matching the client certificate must be created.

An example setting allowing SSL external authentication in the sqlnet.ora is:

SQLNET.AUTHENTICATION_SERVICES = (TCPS)

ORACLE 3-12

Chapter 3
Connecting to Oracle Database

Note:

Prior to ODAC 12c¢ Release 4, ODP.NET, Managed Driver SSL connections
would be redirected to dynamic (ephemeral) port on the database server
machine. With ODAC 12c¢ Release 4 and later, managed ODP.NET SSL
connections will now continue to the original socket connection to the Oracle
Listener. Hence, firewalls will now only need to allow access to the Oracle
Listener's port (e.g., 1521).

3.3.5.3 Troubleshooting TLS/SSL Setup

ORACLE

This section discusses commonly encountered issues and their typical resolution
steps.

Common TLS/SSL Wallet Errors

Microsoft Windows now restricts wallets from using the MD5 algorithm. Oracle wallets
may have been generated with this algorithm as that was the default option in Oracle
Public Key Infrastructure (orapki) utility 12.1 and earlier.

Orapki refers to orapki .exe. This utility is part of full Oracle client (administrator)
installations. It is not included with Oracle Instant Client. The utility is only needed to
setup up the wallet; it is not necessary to deploy it with the wallet.

When you setup TLS/SSL and encounter an "ORA-0052: Failure during SSL
handshake" error combined with a 0x80004005 error code and first inner exception "A
SSPI-call failed" and second inner exception "A token sent to the function is invalid",
then it is very likely that Microsoft Security Support Provider Interface (SSPI) rejected
your Oracle Wallet, such as when MD5 is used. This is a failure on the handshake.
You can resolve this error by using the SHA-2 algorithm instead.

If the second inner exception instead indicates "The credentials supplied to the
package were not recognized”, it is possible the user certificate was generated without
a certificate authority (CA). You can resolve this error by using orapki to generate a
CA/root certificate and then regenerating your user wallet/certificate to point to this
new CA/root certificate.

The steps below will regenerate your Oracle Wallet using orapki and SHA-2. Any
orapki version can be used to generate the wallet with these instructions.

1. Create root wallet, for example, a CA wallet.
orapki wallet create -wallet ./root -pwd <password>
2. Add a self-signed certificate (CA certificate) to the root wallet.

orapki wallet add -wallet ./root -dn "CN=<my root>" -keysize 1024 -self _signed -
validity 3650 -pwd <password> -sign_alg sha512

3. Export the self-signed certificate from the wallet.

orapki wallet export -wallet ./root -dn "CN=<my root>" -cert ./root/
b64certificate.txt -pwd <password>

4. Create a user wallet, for example, a customer wallet.

orapki wallet create -wallet ./user -pwd <password> -auto_login

3-13

10.

11.

12.

13.

14.

15.

16.

17.

ORACLE

Chapter 3
Connecting to Oracle Database

Add a certificate request.

orapki wallet add -wallet ./user -dn "CN=<client"s hostname>" -keysize 1024 -pwd
<password> -sign_alg sha512

Export the certificate request.

orapki wallet export -wallet ./user -dn "CN=<client"s hostname>" -request ./user/
creq.txt -pwd <password>

Create a certificate issued by a CA.

orapki cert create -wallet ./root -request ./user/creq.txt -cert ./user/cert.txt
-validity 3650 -pwd <password> -sign_alg sha512

Add a trusted certificate (CA certificate) to the wallet. This example assumes the
same CA for both the client and server wallets.

orapki wallet add -wallet ./user -trusted_cert -cert ./root/b64certificate.txt -
pwd <password>

Add a user certificate.

orapki wallet add -wallet ./user -user_cert -cert ./user/cert.txt -pwd
<password> -sign_alg sha512

Display contents of user wallet.

orapki wallet display -wallet ./user -pwd <password>

Create a server wallet.

orapki wallet create -wallet ./server -pwd <password> -auto_login
Add a server certificate request.

orapki wallet add -wallet ./server -dn "CN=<server®s hostname>" -keysize 1024 -
pwd <password> -sign_alg sha512

Export the certificate request.

orapki wallet export -wallet ./server -dn "CN=<server"s hostname>" -request ./
server/creq.txt -pwd <password>

Create a server certificate issued by a CA.

orapki cert create -wallet ./root -request ./server/creq.txt -cert ./server/
cert.txt -validity 3650 -pwd <password> -sign_alg sha512

Add a trusted certificate (CA certificate) to the server wallet. This example
assumes the same CA for both the client and server wallets.

orapki wallet add -wallet ./server -trusted cert -cert ./root/b64certificate.txt
-pwd <password>

Add an user_cert certificate for the server wallet.

orapki wallet add -wallet _/server -user_cert -cert _/server/cert._txt -pwd
<password> -sign_alg sha512

Display contents of server wallet.

orapki wallet display -wallet _/server -pwd <password>

3-14

Chapter 3
Connecting to Oracle Database

3.3.6 Using Secure External Password Store

The Secure External Password Store (SEPS) is the use of a client-side wallet for
securely storing the password credentials. Both ODP.NET, Managed Driver and
Unmanaged Driver can be configured to use the external password store.

An Oracle wallet is a container that securely stores authentication and signing
credentials. Wallets can simplify large-scale deployments that rely on password
credentials for database connections. Applications no longer need embedded user
names and passwords, which reduces security risk.

3.3.6.1 Configuring Secure External Password Store (SEPS)

ORACLE

Steps for configuring SEPS:

e Step 1. Create the wallet file

e Step 2. Point the configuration to the client wallet
e Step 3. Turn on SEPS

Step 1. Create the wallet file
Use the mkstore utility to create the wallet file and insert the credentials.

Step la. Create a wallet on the client by using the following syntax at the command
line:

mkstore -wrl wallet_location -create

For example:

mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -create
Enter password: password

Step 1b. Create database connection credentials in the wallet by using the following
syntax at the command line:

mkstore -wrl wallet_location -createCredential db_connect_string username
Enter password: password

For example:

mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -createCredential orcl system
Enter password: password

Step 2. Point the configuration to the client wallet

In the client sqlnet.ora file, enter the WALLET_LOCATION parameter and set it to the
directory location of the wallet you created in Step 1.

For example, if you created the wallet in $ORACLE_HOME/network/admin and your Oracle
home is set to C:\app\client\<user >\product\<ver si on>\client_1\, then you need to
enter the following into your client sqlnet.ora file:

WALLET _LOCATION =
(SOURCE =(METHOD = FILE)
(METHOD_DATA =

3-15

Chapter 3
Connecting to Oracle Database

(DIRECTORY = C:\app\client\<user>\product\<ver si on>\client_1\Network
\Admin)))

Step 3. Turn on SEPS
Step 3. Turn on SEPS
SQLNET.WALLET_OVERRIDE = TRUE

This setting causes all CONNECT /@db_connect_string statements to use the information
in the wallet at the specified location to authenticate to databases.

When external authentication is in use, an authenticated user with such a wallet can
use the CONNECT /@db_connect_string syntax to access the previously specified
databases without providing a user name and password. Note however, that the wallet
file needs to be kept up to date with the database credentials. If the database
credentials change, but the wallet file is not changed appropriately, then the
connections will fail.

3.3.7 Using Kerberos

Kerberos is a network authentication service for security in distributed environments.
ODP.NET applications can use Kerberos for single sign-on and centralized user
authentication. ODP.NET, Unmanaged Driver and Managed Driver both support
Kerberos for external authentication to the database server.

3.3.7.1 File Based Credential Cache and MSLSA

ODP.NET supports both a file-based Kerberos client credential cache (CC) and the
ability to use Windows logon credentials as Kerberos client credentials. The latter is
called MSLSA-based Kerberos authentication.

In order to utilize a file based Kerberos client credential cache (CC), the following
executables associated with the full Oracle Call Interface (OCI) install are needed:

e okinit.exe
e oklist.exe
* okdstry.exe

The executables are required in order to acquire the Kerberos5 credentials and store
them in the file based credential cache (CC). However, after credential cache creation,
as long as the credentials remain valid, the above executables are then unneeded by
the ODP.NET application at run-time.

3.3.7.2 ODP.NET, Managed Driver Dependency on MIT Kerberos

ORACLE

To use Kerberos5 database authentication in conjunction with ODP.NET, Managed
Driver, download and install MIT Kerberos for Windows 4.0.1 on the same machine as
ODP.NET, Managed Driver from the following location:

http://web.mit.edu/kerberos/dist/

3-16

Chapter 3
Connecting to Oracle Database

3.3.7.3 Configuring Kerberos Authentication with ODP.NET

ORACLE

Please reference the following "key" when viewing the below Kerberos configuration
examples:

« oracleclient = Kerberos/Windows Domain user ID used by the Oracle database
client program to represent the Oracle Client user on the domain

» oracleserver = Kerberos/Windows Domain user ID used by the Oracle database
server

* DOMAIN.COMPANY.COM = Kerberos/Windows domain

* dbhost.company.com = Oracle database server machine hostname

e kerberos_service name = Kerberos service name

* dc.company.com = hostname for Kerberos Key Distribution Center (KDC) and
Windows Domain Controller

Configuring Kerberos Authentication Topics:

e Step 1. Update Windows services file to include a "kerberos5" entry

e Step 2. Create client and server Kerberos users (Windows domain users for
MSLSA)

e Step 3. Associate the DB server's Kerberos principal name with the DB server's
Kerberos Service (SPN mapping) and generate the server keytab file

e Step 4. Confirm the mapping of server user to service principal
e Step 5. Setup server sqglnet.ora to point to the keytab file generated in step 2

e Step 6. Create a kerberos configuration file that points to the Kerberos KDC
(Windows Domain Controller for MSLSA)

e Step 7. Configure the Oracle database client and server sginet.ora or .NET config
to point to the above Kerberos configuration file

e Step 8. Point the client sqglnet.ora or .NET config to a credential cache file or to
MSLSA

e Step 9. Set the client and server authentication services in the sqglnet.ora or .NET
config to Kerberos5

e Step 10. Setup an externally authenticated database user that matches the
Kerberos client user setup in step 1 (note the case)

e Step 11. Login to the client machine via the Windows Domain client user (for
MSLSA) or perform an okinit to authenticate the client Kerberos user (for file
based CC):

Step 1. Update Windows services file to include a "kerberos5" entry

Change the Kerberos entry in the Windows service file (C:\windows\system32\drivers
\etc\services) from:

kerberos 88/tcp krb5 kerberos-sec #Kerberos
to:
kerberos 88/tcp kerberos5 krb5 kerberos-sec #Kerberos

3-17

ORACLE

Chapter 3
Connecting to Oracle Database

Step 2. Create client and server Kerberos users (Windows domain users for
MSLSA)

As noted in the above "key", we will use oracleclient and oracleserver as our client
and server Kerberos user IDs, respectively.

ODP.NET supports MSLSA using Windows domain users which have the following
attributes:

o "Kerberos DES" unchecked
» "Kerberos AES 128 bit" checked
» "Kerberos AES 256 bit" checked

» "Kerberos preauthentication not required" checked

Step 3. Associate the DB server's Kerberos principal name with the DB server's
Kerberos Service (SPN mapping) and generate the server keytab file

Run the following commands on the Kerberos KDC (Windows Domain Controller for
MSLSA) as an administrator:

> ktpass -princ kerberos_service_name/dbhost.company.com@OMAIN.COMPANY.COM /crypto
all /mapuser oracleserver@OMAIN.COMPANY.COM /pass <oracleserver password> /out
v5srvtab

> setspn -A kerberos_service_name/dbhost.company.com@OMAIN.COMPANY.COM oracleserver

Step 4. Confirm the mapping of server user to service principal
Also on the Kerberos KDC, run the following command, noting the output;

> setspn -L oracleserver

Registered ServicePrincipalNames for

CN=oracleserver,CN=Users,DC=domain,DC=company,DC=com:
kerberos_service_name/dbhost.company.com

kerberos_service_name/dbhost.company . com@DOMAIN . COMPANY . COM

Step 5. Setup server sqlnet.ora to point to the keytab file generated in step 2
Add the following line to the server sqlnet.ora:

sqlnet.kerberos5_keytab = c:\krb\v5srvtab

Step 6. Create a kerberos configuration file that points to the Kerberos KDC
(Windows Domain Controller for MSLSA)

An example kerberos configuration file (krb.conf):

[libdefaults]
default_realm = DOMAIN._COMPANY_COM

[realms]
DOMAIN.COMPANY.COM = {
kdc = dc.company.com

}

[domain_realm]
.domain.company.com = DOMAIN_COMPANY_COM
domain.company.com = DOMAIN.COMPANY _COM

3-18

ORACLE

Chapter 3
Connecting to Oracle Database

-DOMAIN.COMPANY .COM = DOMAIN.COMPANY .COM
DOMAIN.COMPANY .COM = DOMAIN.COMPANY .COM

Step 7. Configure the Oracle database client and server sqglnet.ora or .NET
config to point to the above Kerberos configuration file

Edit the client or server sqlnet.ora to include:

sgqlnet.kerberos5_conf = C:\krb\krb.conf

Or edit the client application config to include (in the settings section):

<setting name="sqlnet.kerberos5 conf" value="C:\krb\krb.conf" />

Step 8. Point the client sqglnet.ora or .NET config to a credential cache file or to
MSLSA

Example pointing to Credential Cache file:

sqlnet.kerberos5_cc_name = c:\krb\krb.cc

Example pointing to MSLSA:

sqlnet.kerberos5_cc_name = MSLSA:

Step 9. Set the client and server authentication services in the sqglnet.ora or .NET
config to Kerberos5

sqlnet.authentication_services=(Kerberos5)

Step 10. Setup an externally authenticated database user that matches the
Kerberos client user setup in step 1 (note the case)

create user "ORACLECLIENT@DOMAIN.COMPANY.COM" identified externally;
grant connect, create session to "ORACLECLIENT@DOMAIN.COMPANY.COM™;

Step 11. Login to the client machine via the Windows Domain client user (for
MSLSA) or perform an okinit to authenticate the client Kerberos user (for file
based CC):

okinit oracleclient

3-19

Chapter 3
Connecting to Oracle Database

Step 12. Run the ODP.NET application

< Note:

After configuring the client and server, the last 2 steps are the only steps
required on an ongoing basis to run the ODP.NET application.

A Microsoft Visual C Run-Time Library (MSVCRT.DLL) bug can cause
ODP.NET, Managed Driver's setting of the Kerberos5 configuration to be
ignored by the Microsoft run-time. In such a case, you will encounter the
error message:

Oraclelnternal .Network._NetworkException (0x80004005): NA Kerberos5:
Authentication handshake failure at stage: krb5 sname_to_principal:
default realm not found. Please set SQLNET.Kerberos5 conf.

To workaround this error, manually set KRB5_CONFIG in the ODP.NET
application's run-time environment to point to the Kerberos5 configuration
file pointed to by SQLNET .Kerberos5_conf. For example,

set KRB5 CONFIG=c:\oracle\network\admin\krb5. ini

3.3.8 Using Windows Native Authentication (NTS)

With the Windows native authentication adapter, Oracle users can authenticate to the
database using just their Windows user login credentials. It provides a way to enable
single sign-on and to simplify user and role credential management. Windows native
authentication is also known as Windows Native authentication (NTS).

Note:

Due to a limitation in the Microsoft .NET APls, ODP.NET, Managed Driver only
supports Windows Native authentication (NTS) via Microsoft NT LAN Manager
(NTLM) instead of Kerberos-based credentials. Normally, this limitation would
be invisible to the ODP.NET, Managed Driver application, since the Windows
domain and the Oracle database server will transparently support both NTLM
and Kerberos domain credentials by default.

3.3.8.1 Configuring Windows Native Authentication (NTS) for the ODP.NET

Client

ORACLE

Steps in configuring the NTS for the ODP.NET Client:

Step 1. Ensure OSAUTH_PREFIX_DOMAIN is set correctly
Step 2. Setup the externally identified database user

Step 3. Setup the client configuration to utilize NTS as the authentication
methodology

3-20

Chapter 3
Connecting to Oracle Database

Step 1. Ensure OSAUTH_PREFIX_DOMAIN is set correctly

Make sure 0SAUTH_PREFIX_DOMAIN is set appropriately. If you desire the externally
identified user ID to include the domain, set it to true, otherwise false. The parameter
is a registry setting that can be found at HKLM/software/oracle/HOME<ORACLE_SID>. For
example, if your ORACLE_SID is r1, it is located at HKLM/software/oracle/HOMEr1.

Step 2. Setup the externally identified database user

Assuming a Step 0 setting of true, use the following commands to setup the externally
identified database user associated with the desired Windows domain user:

create user "MYDOMAIN\MYUSER" identified externally;
grant connect, create session to "MYDOMAIN\MYUSER";

Step 3. Setup the client configuration to utilize NTS as the authentication
methodology

Edit the client sglnet.ora or app config to add NTS to the
sglnet.authentication_services. For example.

sqlnet.authentication_services = (NTS)

Note:

After configuring the client and server, the last 2 steps are the only steps
required on an ongoing basis to run the ODP.NET application.

3.3.9 Network Data Encryption and Integrity

ODP.NET enables data encryption and integrity over a network for both intranet and
cloud deployments. This ensures that data is disguised to all, except authorized users,
and guarantees the original message contents are not altered. In earlier releases,
these features were known as Oracle Advanced Security Option (ASO) encryption.
Starting with Oracle Database 12c, Oracle ASO is not required to use network data
encryption and data integrity.

3.3.9.1 Using Data Encryption

Managed and unmanaged ODP.NET support the following encryption standards and
algorithms:

e Advanced Encryption Standard (AES)
— AES 128-bit
— AES 192-bit
— AES 256-bit
« RSARC4
— 128-bit
— 256-bit

ORACLE 3-21

Chapter 3
Connecting to Oracle Database

- Triple-DES (3DES)
— 112-bit
— 168-bit

ODP.NET, Managed Driver uses the following settings to configure network
encryption:

e SQLNET.ENCRYPTION_CLIENT
e SQLNET.ENCRYPTION_TYPES_CLIENT

3.3.9.2 Using Data Integrity

Managed and unmanaged ODP.NET support the following data integrity algorithms:

e MD5

« SHA-1

SHA-2
— SHA-256
— SHA-384
— SHA-512

3.3.10 Schema Discovery

ORACLE

ADO.NET exposes five different types of metadata collections through the
OracleConnection.GetSchema API. This permits application developers to customize
metadata retrieval on an individual-application basis, for any Oracle data source. Thus,
developers can build a generic set of code to manage metadata from multiple data
sources.

The following types of metadata are exposed:

* MetaDataCollections

A list of metadata collections that is available from the data source, such as tables,
columns, indexes, and stored procedures.

e Restrictions

The restrictions that apply to each metadata collection, restricting the scope of the
requested schema information.

e DataSourcelnformation

Information about the instance of the database that is currently being used, such
as product name and version.

* DataTypes
A set of information about each data type that the database supports.
* ReservedWords

Reserved words for the Oracle query language.

3-22

Chapter 3
Connecting to Oracle Database

¢ See Also:

Oracle Schema Collections

3.3.10.1 User Customization of Metadata

ODP.NET provides a comprehensive set of database schema information. Developers
can extend or customize the metadata that is returned by the GetSchema method on an
individual application basis.

To do this, developers must create a customized metadata file and provide the file
name to the application as follows:

1. Create a customized metadata file and put it in the CONFIG subdirectory where
the .NET framework is installed. This is the directory that contains machine.config
and the security configuration settings.

This file must contain the entire set of schema configuration information, not just
the changes. Developers provide changes that modify the behavior of the schema
retrieval to user-specific requirements. For instance, a developer can filter out
internal database tables and just retrieve user-specific tables

2. Add an entry in the app.config file of the application, similar to the following, to
provide the name of the metadata file, in name-value pair format.

<oracle.dataaccess.client>
<settings>
<add name="MetaDataXml" value="Cust omet aData. xm " />
</settings>
</oracle.dataaccess.client>

When the GetSchema method is called, ODP.NET checks the app.config file for the
name of the customized metadata XML file. First, the GetSchema method searches for
an entry in the file with a element named after the provider, in this example,
oracle.dataaccess.client. In this XML element, the value that corresponds to the
name MetaDataXml is the name of the customized XML file, in this example,

Cust om\et aDat a. xn .

If the metadata file is not in the correct directory, then the application loads the default
metadata XML file, which is part of ODP.NET.

3.3.11 Connection Pooling

ORACLE

ODP.NET connection pooling is enabled and disabled using the Pooling connection
string attribute. By default, connection pooling is enabled. The following are
ConnectionString attributes that control the behavior of the connection pooling service:

e Connection Lifetime
e Connection Timeout
e Decr Pool Size

* HAEvents

* Incr Pool Size

* Load Balancing

3-23

Chapter 3
Connecting to Oracle Database

e Max Pool Size
e Min Pool Size
* Pooling

e Validate Connection

Connection Pooling Example

The following example opens a connection using ConnectionString attributes related to
connection pooling.

/1 C#

using System;
using Oracle.DataAccess.Client;

class ConnectionPoolingSample

{

static void Main()
OracleConnection con = new OracleConnection();

//0pen a connection using ConnectionString attributes

//related to connection pooling.

con.ConnectionString =
"User ld=scott;Password=tiger;Data Source=oracle;" +
"Min Pool Size=10;Connection Lifetime=100000;Connection Timeout=60;" +
"Incr Pool Size=5; Decr Pool Size=2";

con.Open();

Console.WriteLine(*'Connection pool successfully created");

// Close and Dispose OracleConnection object
con.Close();
con.Dispose();
Console.WriteLine(*'Connection is placed back into the pool.");
}
}

3.3.11.1 Using Connection Pooling

ORACLE

When connection pooling is enabled (the default), the Open and Close methods of the
OracleConnection object implicitly use the connection pooling service, which is
responsible for pooling and returning connections to the application.

The connection pooling service creates connection pools by using the
ConnectionString property as a signature, to uniquely identify a pool.

When a new connection is opened, if the connection string is not an exact match to an
existing pool, then a new pool is created. Prior to ODP.NET 12.1.0.2, only connection
string attribute values had to match. Now, connection strings themselves must be an
exact match. Keywords supplied in a different order for the same connection will be
pooled separately. If a pool already exists with the requested signature, a connection
is returned to the application from that pool.

When a connection pool is created, the connection pooling service initially creates the
number of connections defined by the Min Pool Size attribute of the ConnectionString
property. This number of connections is always maintained by the connection pooling
service for the connection pool, except when Fast Connection Failover removes invalid

3-24

Chapter 3
Connecting to Oracle Database

connections or Connection Lifetime is exceeded. In these two cases, the connection
number could drop below the Min Pool Size. ODP.NET would then attempt to restore
the minimum pool size level upon the next connection request.

At any given time, these connections are in use by the application or are available in
the pool.

The Incr Pool Size attribute of the ConnectionString property defines the number of
new connections to be created by the connection pooling service when more
connections are needed in the connection pool.

When the application closes a connection, the connection pooling service determines
whether or not the connection lifetime has exceeded the value of the Connection
Lifetime attribute. If so, the connection pooling service destroys the connection;
otherwise, the connection goes back to the connection pool. The connection pooling
service enforces the Connection Lifetime only when Close() or Dispose() is invoked.

The Max Pool Size attribute of the ConnectionString property sets the maximum number
of connections for a connection pool. If a new connection is requested, but no
connections are available and the limit for Max Pool Size has been reached, then the
connection pooling service waits for the time defined by the Connection Timeout
attribute. If the Connection Timeout time has been reached, and there are still no
connections available in the pool, the connection pooling service raises an exception
indicating that the connection pool request has timed-out. Upon a connection timeout,
ODP.NET distinguishes whether the timeout occurred due to the database server
failing to deliver a connection in the allotted time or no connection being available in
the pool due to the maximum pool size having been reached. The exception text
returned will either be "Connection request timed out" in the case of the former or
"Pooled connection request timed out" in the case of the latter.

The Vvalidate Connection attribute validates connections coming out of the pool. This
attribute should be used only when absolutely necessary, because it causes a round-
trip to the database to validate each connection immediately before it is provided to the
application. If invalid connections are uncommon, developers can create their own
event handler to retrieve and validate a new connection, rather than using the validate
Connection attribute. This generally provides better performance.

The connection pooling service closes connections when they are not used;
connections are closed every 3 minutes. The Decr Pool Size attribute of the
ConnectionString property provides connection pooling service for the maximum
number of connections that can be closed every 3 minutes.

Beginning with Oracle Data Provider for .NET release 11.1.0.6.20, enabling
connection pooling by setting "pooling=true" in the connection string (which is the
case by default) will also pool operating system authenticated connections.

3.3.12 Connection Pool Management

ODP.NET connection pool management provides explicit connection pool control to
ODP.NET applications. Applications can explicitly clear connections in a connection
pool.

Using connection pool management, applications can do the following:

ORACLE 3-25

Chapter 3
Connecting to Oracle Database

Note:

These APIs are not supported in a .NET stored procedure.

e Clear connections from connection pools using the ClearPool method.

* Clear connections in all the connection pools in an application domain, using the
ClearAllPools method.

3.3.13 Connection Pool Performance Counters

ORACLE

Installing Oracle Data Provider for .NET creates a set of performance counters on the
target system. These performance counters are published by ODP.NET for each
ODP.NET client application. These performance counters can be viewed using
Windows Performance Monitor (Perfmon).

In Perfmon, administrators can add ODP.NET counters to the performance monitor
graph. ODP.NET performance counters are published under the following Category
Name: Oracle Data Provider for .NET. Administrators can choose the ODP.NET
counters to monitor after selecting the Oracle Data Provider for .NET category.

As ODP.NET performance counters are not enabled by default, administrators must
enable the specific counters of interest before attempting to monitor them. In addition,
at least one ODP.NET instance must be actively running when attempting to monitor
using Perfmon.

Oracle Data Provider for .NET enables or disables publishing performance counters
for connection pooling, using registry entries.

Table 3-3 lists the performance counters used for connection pooling with their valid
registry values.

Table 3-3 Performance Counters for Connection Pooling
|

Performance Counter Valid Description
Values
None 0 Not enabled (Default)
HardConnectsPerSecond 1 Number of sessions being established
with the Oracle Database every second.
HardDisconnectsPerSecond 2 Number of sessions being severed from
the Oracle Database every second.
SoftConnectsPerSecond 4 Number of active connections originating
from connection pools every second.
SoftDisconnectsPerSecond 8 Number of active connections going back
to the connection pool every second.
NumberOfActiveConnectionPools 16 Total number of active connection pools.
NumberOfInactiveConnectionPools 32 Number of inactive connection pools.
NumberOfActiveConnections 64 Total number of connections in use.
NumberOfFreeConnections 128 Total number of connections available for

use in all the connection pools.

3-26

Chapter 3
Connecting to Oracle Database

Table 3-3 (Cont.) Performance Counters for Connection Pooling

Performance Counter Valid Description
Values
NumberOfPooledConnections 256 Number of pooled active connections.
NumberOfNonPooledConnections 512 Number of non-pooled active
connections.
NumberOfReclaimedConnections 1024 Number of connections which were

garbage-collected implicitly.

NumberOfStasisConnections 2048 Number of connections that will be soon
available in the pool. User has closed
these connections, but they are currently
awaiting actions such transaction
completion before they can be placed
back into the pool as free connections.

3.3.13.1 Publishing Performance Counters

Publication of individual performance counters is enabled or disabled using the registry
value PerformanceCounters of type REG_SZ or a .NET configuration file. This registry
value is under:

HKEY_LOCAL_MACHINE\SOFTWARE\ORACLEN\ODP .NET\Assenbl y_Ver si on
where Assenmbl y_Versi on is the full assembly version number of Oracle.DataAccess.dll.

Multiple performance counters can be obtained by adding the valid values. For
example, if PerformanceCounters is set to 3, both HardConnectsPerSecond and
HardDisconnectsPerSecond are enabled.

3.3.13.2 Setting Performance Counters Using .NET Configuration Entry

Performance counters can be set using an .NET configuration entry. Since .NET
configuration entries take precedence over the registry value setting, they can be used
for a specific application.

An .NET configuration entry uses name/value pairs as in the following example:

<configuration>
<oracle.dataaccess.client>
<settings>
<add name="PerformanceCounters"
value="3"/>
</settings>
</oracle.dataaccess.client>
</configuration>

3.3.13.3 Instance Names of Performance Counters

ORACLE

Performance counters can now monitor at the application domain, pool, or database
instance level. Database instance level monitoring only applies if load balancing or
Fast Connection Failover features are enabled.

The instance name format is as follows:

3-27

ORACLE

Chapter 3
Connecting to Oracle Database

<Application Domain Name> [<Process ld>, <Application Domain Id>][<Connection
String/Pool Name>][<Instance Name>]. The entry is limited to 127 characters. There is a
restriction length on every field in the instance name. The following table shows the
maximum number of characters allocated for each field:

Table 3-4 Field Names of Performance Counters and Maximum Number of
Characters

Field Name Maximum Number of Characters
Application Domain 40
Pool Name/Connection String 70
Database Instance Name 16

When the length of a field value exceeds the length limit, the string is truncated and
appended with ". . ." to fit within the length limit and indicate the continuation. For
example, for a given application called Program.exe with a connection string user
id=scott;Password=tiger;data source=instl;max pool size=125, one may see the
following similar to the following for a process that has two application domains:

* Program.exe [123, 1]

* Program.exe [123, 1][user id=scott;data source=instl;max pool siz...]

* Program.exe [123, 1][user id=scott;data source=instl;max pool siz...] [instA]
e Domain 2[123, 2]

° Domain 2[123, 2][user id=scott;data source=instl;max pool siz...]

° Domain 2[123, 2][user id=scott;data source=instl;max pool siz...] [instB]

° Domain 2[123, 2][user id=scott;data source=instl;max pool siz...] [instC]

Since connection pool attributes can be similar in their first 70 characters, applications
can set a Pool Name to uniquely identify each one in the monitoring tool. For example,
when using Pool Name, the process will show up as follows:

Domain 2[123, 2][Pool Name][instC]
The .NET config file can set the Pool Name attribute.

ODP.NET, Managed Driver

<oracle.manageddataaccess.client>
<version number="*">
<connectionPools>

<connectionPool connectionString="[connection string without password]"
poolName="[Pool Name]"> </connectionPool>

</connectionPools>
</version>
</oracle.manageddataaccess.client>

ODP.NET, Unmanaged Driver can use the same Pool Name attribute and format as
listed above by replacing the <oracle.manageddataaccess.client> tags with
<oracle.unmanageddataaccess.client> tags.

3-28

Chapter 3
Connecting to Oracle Database

ODP.NET, Unmanaged Driver

<configuration>
<oracle.dataaccess.client>
<settings>

<add name="[connection string w thout password]" value="connectionPool
name="[Pool Nane]""/>

</settings>
</oracle.dataaccess.client>
</configuration>

The behavior of two of the performance counters has now changed in the 12c¢ release:

* NumberOfPooledConnections -- Sum of the active connections and free connections.
Previously, this value was equal to just the number of active connections.

* NumberOfStasisConnections -- No longer supported.

3.3.14 Pluggable Databases

Oracle Database 12c introduced a new feature, Pluggable Databases, which enable
an Oracle database to contain a portable collection of schemas, schema objects, and
nonschema objects that appears to ODP.NET as a separate database. This self-
contained collection is called a pluggable database (PDB).

ODP.NET 12c and higher can connect to PDBs, which clients access through
database services. Database services have an optional PDB property. When a PDB is
created, a new default database service is created automatically. The service has the
same name as the PDB and can be used to access the PDB using the easy connect
syntax or the net service name. This service is intended primarily for performing
administrative tasks. It is recommended that you create additional services for use in
your applications.

All ODP.NET features can be used with PDBs with the following exceptions:

e Continuous Query Notification

» Switching from one PDB to another PDB using the ALTER SESSION SET CONTAINER
statement

3.3.15 Edition-Based Redefinition

ORACLE

Edition-based redefinition enables you to upgrade the database component of an
application even while the application is being used. This minimizes or eliminates
downtime for the application.

ODP.NET 11g Release 2 (11.2.0.1), and higher, supports specifying an Edition at
deployment time when used with Oracle Database 11.2 or later. Applications can
specify an Edition at deployment time using the registry or configuration file.

An application can create the following registry entry of type REG_SZ:

HKLM\Software\Oracle\ODP.NET\ver si on\Edi ti on

3-29

Chapter 3
Connecting to Oracle Database

Here versi on is the version of ODP.NET, and Edi ti on is a valid Edition string value.

An application can alternatively use the web.config or application.config configuration
file to specify the Edition at deployment time. The machine.config configuration file can
be used to specify the Edition for all applications that use a particular version of

the .NET framework.

The following example sets the Edition to E1 in a .NET configuration file for ODP.NET,
Unmanaged Driver:

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<oracle.dataaccess.client>

<settings>

<add name="Edition" value="E1"/>

</settings>
</oracle.dataaccess.client>
</configuration>

Note:

e ODP.NET only supports deployment-time configuration of Edition.

* ODP.NET does not support usage of the "ALTER SESSION" statement to
modify the Edition during the lifetime of a process.

 ODP.NET, Managed Driver does not support Edition-Based Redefinition.

3.3.16 Operating System Authentication

ORACLE

Oracle Database can use Windows user login credentials to authenticate database
users. To open a connection using Windows user login credentials, the User Id
connection string attribute must be set to a slash (/). If the Password attribute is
provided, it is ignored.

" Note:

Operating System Authentication is not supported in a .NET stored procedure.

All ODP.NET, Unmanaged Driver connections, including those using operating system
authentication, can be pooled. ODP.NET, Managed Driver supports operating system
authentication, except when the Windows domain is constrained to only support
Kerberos-based domain authentication. Connections are pooled by default, and no
configuration is required, as long as pooling is enabled.

The following example shows the use of operating system authentication:

/* Create an 0S-authenticated user in the database
Assume init.ora has 0S_AUTHENT PREFIX set to " and <OS_USER>
is any valid 0S or DOMAIN user.

create user <0S_USER> identified externally;

3-30

Chapter 3
Connecting to Oracle Database

grant connect, resource to <0S_USER>;
Login through 0S Authentication and execute the sample. See Oracle
documentation for details on how to configure an 0S-Authenticated user
*/
// C#

using System;
using Oracle._DataAccess.Client;

class OSAuthenticationSample

{
static void Main()
{
OracleConnection con = new OracleConnection();
//Establish connection using 0S Authentication
con.ConnectionString = "User Id=/;Data Source=oracle;";
con.Open();
Console.WriteLine(""Connected to Oracle" + con.ServerVersion);
// Close and Dispose OracleConnection object
con.Close();
con.Dispose();
Console.WriteLine("'Disconnected™);
}
}

3.3.17 Privileged Connections

ORACLE

Oracle allows database administrators to connect to Oracle Database with either
SYSDBA or SYSOPER privileges. This is done through the DBA Privilege attribute of the
ConnectionString property.

The following example connects scott/tiger as SYSDBA:

/1 C#

using System;
using Oracle.DataAccess.Client;

class PrivilegedConnectionSample

{

static void Main()

{

OracleConnection con = new OracleConnection();

//Connect scott/tiger as SYSDBA

con._ConnectionString = "User ld=scott;Password=tiger;" +
"DBA Privilege=SYSDBA;Data Source=oracle;";

con.Open();

Console.WriteLine(""Connected to Oracle™ + con.ServerVersion);

// Close and Dispose OracleConnection object
con.Close();

con._Dispose();
Console.WriteLine("Disconnected™);

3-31

Chapter 3
Connecting to Oracle Database

3.3.18 Password Expiration

ORACLE

Oracle allows users passwords to expire. ODP.NET lets applications handle the
password expiration by providing a new method, OpenWithNewPassword, that opens the
connection with a new password.

The following example uses the OracleConnection OpenWithNewPassword method to
connect with a new password of panther:

/* Database Setup

connect / as sysdba;

drop user testexpire cascade;

-- create user "testexpire" with password "testexpire"

grant connect , resource to testexpire identified by testexpire;
alter user testexpire password expire;

*/

/1 C#

using System;
using Oracle.DataAccess.Client;

class PasswordExpirationSample

{

static void Main()

{

OracleConnection con = new OracleConnection();

try
{
con.ConnectionString =
"User ld=testexpire;Password=testexpire;Data Source=oracle";
con.Open();
Console.WriteLine(*"Connected to Oracle” + con.ServerVersion);

catch (OracleException ex)

{

Console.WriteLine(ex.Message);

//check the error number

//0RA-28001 : the password has expired

if (ex.Number == 28001)

{
Console.WriteLine(""\nChanging password to panther™);
con.OpenWithNewPassword(“'panther™);
Console.WriteLine("Connected with new password.");

}

}
finally

// Close and Dispose OracleConnection object
con.Close();

con._Dispose();
Console.WriteLine("'Disconnected™);

}

3-32

Chapter 3
Connecting to Oracle Database

Note:

e The OpenWithNewPassword method should be used only when the user
password has expired, not for changing the password.

* If connection pooling is enabled, then invoking the OpenWithNewPassword
method also clears the connection pool. This closes all idle connections
created with the old password.

3.3.19 Proxy Authentication

ORACLE

With proper setup in the database, proxy authentication enables middle-tier
applications to control the security by preserving database user identities and
privileges, and auditing actions taken on behalf of these users. This is accomplished
by creating and using a proxy database user that connects and authenticates against
the database on behalf of a database user (that is, the real user) or database users.

Proxy authentication can then be used to provide better scalability with connection
pooling. When connection pooling is used in conjunction with proxy authentication, the
proxy authenticated connections can be shared among different real users. This is
because only the connection and session established for the proxy is cached. An
additional session is created for the real user when a proxy authenticated connection
is requested, but it will be destroyed appropriately when the proxy authenticated
connection is placed back into the pool. This design enables the application to scale
well without sacrificing security.

ODP.NET applications can use proxy authentication by setting the "Proxy User 1d" and
"Proxy Password" attributes in the connection string. The real user is specified by the
"User 1d" attribute. Optionally, to enforce greater security, the real user's password can
be provided through the "Password" connection string attribute. When using distributed
transactions in conjunction with proxy authentication, the real user's password is no
longer optional, and it must be supplied.

The following example illustrates the use of ODP.NET proxy authentication:

/* Log on as DBA (SYS or SYSTEM) that has CREATE USER privilege.
Create a proxy user and modified scott to allow proxy connection.

create user appserver identified by eagle;

grant connect, resource to appserver;

alter user scott grant connect through appserver;
*/

// C#

using System;
using Oracle.DataAccess.Client;

class ProxyAuthenticationSample

{

static void Main()

3-33

Chapter 3
Connecting to Oracle Database

OracleConnection con = new OracleConnection();

// Connecting using proxy authentication
con.ConnectionString = "User ld=scott;Password=tiger;" +
"Data Source=oracle;Proxy User ld=appserver;Proxy Password=eagle; "
con.Open();
Console.WriteLine(""Connected to Oracle"™ + con.ServerVersion);

// Close and Dispose OracleConnection object
con.Close();

con.Dispose();
Console.WriteLine("'Disconnected™);

3.3.20 Dynamic Distributed Transaction Enlistment

For those applications that dynamically enlist in distributed transactions through the
EnlistDistributedTransaction of the OracleConnection object, the "Enlist" connection
string attribute must be set to a value of "true”. If "Enlist=true”, the connection enlists
in a transaction when the Open method is called on the OracleConnection object, if it is
within the context of a COM+ transaction or a System.Transactions. If not, the
OracleConnection object does not enlist in a distributed transaction, but it can later
enlist explicitly using the EnlistDistributedTransaction or the EnlistTransaction
method. If "Enlist" is equal to "false" or "dynamic", the connection cannot enlist in the
transaction. ODP.NET, Unmanaged Driver in ODAC 12c Release 3 first introduced
this new behavior for "Enlist=dynamic".

3.3.21 Client Identifier and End-to-End Tracing

ORACLE

The client identifier is a predefined attribute from the Oracle application context
namespace USERENV. It is similar to proxy authentication because it can enable tracking
of user identities. However, client identifier does not require the creation of two
sessions (one for the proxy user and another for the end user) as proxy authentication
does. In addition, the client identifier does not have to be a database user. It can be
set to any string. But most importantly, by using client identifier, ODP.NET developers
can use application context and Oracle Label Security, and configure Oracle Virtual
Private Database (VPD) more easily. To set the client identifier, ODP.NET applications
can set the Clientld property on the OracleConnection object after opening a
connection. If connection pooling is enabled, the Clientld is reset to null whenever a
connection is placed back into the pool.

The client identifier can also be used for end-to-end application tracing. End-to-end
tracing simplifies the process of diagnosing performance problems in multitier
environments. In multitier environments, a request from an end client is routed to
different database sessions by the middle tier making it difficult to track a client across
different database sessions. End-to-end tracing uses the client identifier to uniquely
trace a specific end-client through all tiers to the database server.

ODP.NET exposes the ActionName, Clientld, ClientInfo, and ModuleName write-only
properties on the OracleConnection object. These properties correspond to the
following end-to-end tracing attributes:

e Action - Specifies an action, such as an INSERT or UPDATE operation, in a module

3-34

Chapter 3
Connecting to Oracle Database

e Clientld - Specifies an end user based on the logon ID, such as HR.HR
e Client info - Specifies user session information

* Module - Specifies a functional block, such as Accounts Receivable or General
Ledger, of an application

3.3.22 Transparent Application Failover (TAF) Callback Support

Transparent Application Failover (TAF) is a feature in Oracle Database that provides
high availability.

Note:

ODP.NET, Managed Driver does not support TAF nor TAF callbacks.

TAF enables an application connection to automatically reconnect to another database
instance if the connection gets severed. Active transactions roll back, but the new
database connection, made by way of a different node, is identical to the original. This
is true regardless of how the connection fails.

With TAF, a client notices no loss of connection as long as there is one instance left
serving the application. The database administrator controls which applications run on
which instances, and also creates a failover order for each application.

When a session fails over to another database, the NLS settings that were initially set
on the original session are not carried over to the new session. Therefore, it is the
responsibility of the application to set these NLS settings on the new session.

3.3.22.1 TAF Notification

Given the delays that failovers can cause, applications may wish to be notified by a
TAF callback. ODP.NET supports the TAF callback function through the Failover
event of the OracleConnection object, which allows applications to be notified whenever
a failover occurs. To receive TAF callbacks, an event handler function must be
registered with the Failover event.

3.3.22.2 When Failover Occurs

ORACLE

When a failover occurs, the Failover event is raised and the registered event handler
is invoked several times during the course of reestablishing the connection to another
Oracle instance.

The first call to the event handler occurs when Oracle Database first detects an
instance connection loss. This allows the application to act accordingly for the
upcoming delay for the failover.

If the failover is successful, the Failover event is raised again when the connection is
reestablished and usable. At this time, the application can resynchronize the
OracleGlobalization session setting and inform the application user that a failover has
occurred. No significant database operation should occur immediately after a
FailoverEvent.Begin event. SQL and major database operations should wait until the
FailoverEvent.End event. FailoverEvent.Begin is primarily used to reject failover or to

3-35

Chapter 3
Connecting to Oracle Database

trace it. FailoverEvent.Begin can also be used for non-database application
operations, such as informing the end user a failover is in progress and to wait until it
completes before proceeding. Transactions can be used in the FailoverEvent.End
callback phase, such as to file fault tickets or audit. These transactions must be
committed before the callback completes.

If failover is unsuccessful, the Failover event is raised to inform the application that a
failover did not take place.

The application can determine whether or not the failover is successful by checking
the OracleFailoverEventArgs object that is passed to the event handler.

3.3.22.3 Registering an Event Handler for Failover

The following example registers an event handler method called OnFailover:

// C#

using System;
using Oracle.DataAccess.Client;

class TAFCallBackSample
{
public static FailoverReturnCode OnFailover(object sender,
OracleFailoverEventArgs eventArgs)

{

switch (eventArgs.FailoverEvent)
{
case FailoverEvent._Begin :
Console.WriteLine(
" \nFailover Begin - Failing Over ... Please standby \n");
Console.WriteLine(
" Failover type was found to be " + eventArgs.FailoverType);
break;

case FailoverEvent.Abort :
Console.WriteLine(" Failover aborted. Failover will not take place.\n");
break;

case FailoverEvent.End :
Console.WriteLine(" Failover ended ...resuming services\n");
break;

case FailoverEvent.Reauth :
Console.WriteLine(" Failed over user. Resuming services\n");
break;

case FailoverEvent.Error :
Console.WriteLine(" Failover error gotten. Sleeping...\n");
return FailoverReturnCode.Retry;

default :
Console.WriteLine("Bad Failover Event: %d.\n", eventArgs.FailoverEvent);
break;

}

return FailoverReturnCode.Success;
} /* OnFailover */

static void Main()

{

ORACLE 3-36

Chapter 3
Real Application Clusters and Global Data Services

OracleConnection con = new OracleConnection();

con.ConnectionString = "User ld=scott;Password=tiger;Data Source=oracle;";
con.Open();

con.Failover += new OracleFailoverEventHandler(OnFailover);
Console.WriteLine("Event Handler is successfully registered");

// Close and Dispose OracleConnection object
con.Close();
con.Dispose();
}
}

The Failover event invokes only one event handler. If multiple Failover event handlers
are registered with the Failover event, only the event handler registered last is
invoked.

" Note:

Distributed transactions are not supported in an environment where failover is
enabled.

3.4 Real Application Clusters and Global Data Services

ORACLE

This section discusses optimizations for the following products:

e Oracle Real Application Clusters (Oracle RAC) is a cluster database with a shared
cache architecture that overcomes the limitations of traditional shared-nothing and
shared-disk approaches to provide highly scalable and available database
solutions for business applications.

e Oracle Data Guard provides one or more standby databases to protect Oracle
data from failures, disasters, human error, and data corruptions for high availability
in mission critical applications.

e Oracle GoldenGate replicates data among heterogeneous data environments. It
enables high availability solutions, real-time data integration, transactional change
data capture, data replication, transformations, and verification between
operational and analytical enterprise systems.

e Global Data Services (GDS), new in Oracle Database 12c, provides database
workload management features across replicated databases, such as Data Guard
and GoldenGate.

ODP.NET supports Oracle Real Application Clusters (Oracle RAC), Data Guard, and
GoldenGate transparently, meaning you do not need to change ODP.NET code to use
these Oracle components. To further take advantage of these technologies, ODP.NET
offers connection pooling optimization features for achieving better application high
availability and performance. You can do this through configuring ODP.NET to receive,
respond, and send database status messages to .NET applications.

These optimization configurations include the use of features such as Fast Application
Notification (FAN), Runtime Connection Load Balancing, and Fast Connection Failover
(FCF).

3-37

Chapter 3
Real Application Clusters and Global Data Services

These connection pooling optimizations can improve high availability and performance
for Oracle Real Application Clusters and Global Data Services products:

» Fast Application Notification
* Runtime Connection Load Balancing

* Fast Connection Failover (FCF)

3.4.1 Fast Application Notification

ORACLE

Fast Application Notification (FAN) is a high availability and load balancing notification
mechanism that Oracle RAC, Data Guard, and GoldenGate use to notify ODP.NET
applications about cluster configuration and service-level information, including status
changes such as UP or DOWN events and server load. FAN UP and DOWN events
can apply to instances, services, and nodes. Based on information received,
ODP.NET can adjust its connection pool accordingly to improve application availability
and performance.

With FAN, Oracle RAC, Data Guard, and GoldenGate use one of two Oracle
messaging infrastructures to send notifications to ODP.NET applications:

» Oracle Notification Service (ONS)
* Oracle Streams Advanced Queueing (AQ).

Table 3-5 describes when each messaging system is used and the ODP.NET-related
client configuration.

Table 3-5 Configurations for ODP.NET Driver Types
|

ODP.NET Database FAN Configuration Manual ONS Configuration
Driver Type Server Infrastructure Locations
Version
managed 12.1 and later ONS Automatic or Either of these two files:
Manual « .NET configuration file
* ONS configuration file
managed 11.2 and ONS Manual Either of these two files:
earlier « .NET configuration file
e ONS configuration file
unmanaged 12.1 andlater ONS Automatic or oraaccess.xml file
Manual
unmanaged 11.2 and AQ Automatic N/A
earlier

For automatic ONS configuration, developers can add more nodes and ports for
ODP.NET to listen to, in addition to the nodes and ports that ODP.NET obtains from
the database automatically.

ODP.NET applications do not require code changes to migrate from the AQ to ONS
FAN infrastructure. However, some ODP.NET client configuration changes may be
necessary when migrating to ONS, a newer database server version, or from
ODP.NET, Unmanaged Driver to the managed driver, as documented above.

On the database server side, FAN must be set up and configured.

3-38

Chapter 3
Real Application Clusters and Global Data Services

Using FAN Messages from the database, ODP.NET can do the following:

* With Runtime Connection Load Balancing, ODP.NET load balances connections
among Oracle RAC nodes, services, and service members and GDS resources.
This feature improves ODP.NET response time and ensures better resource
allocation of server resources.

» With the Fast Connection Failover (FCF) feature, Oracle RAC, Data Guard, and
GoldenGate can inform the ODP.NET connection pool if database nodes,
services, service members, or the databases have gone down. These DOWN
messages indicate which connections in the pool are invalid and must be
removed.

3.4.2 Runtime Connection Load Balancing

With Runtime Connection Load Balancing, Oracle Data Provider for .NET balances
work requests across Oracle RAC instances based on the load balancing advisory and
service goal. Because workloads can constantly change, load balancing occurs when
the application requests a hew connection. Thus, ODP.NET optimizes service levels
by connecting users to the least loaded nodes in real-time.

In Oracle Database 12¢, Runtime Connection Load Balancing has been extended to
Oracle Data Guard and Oracle GoldenGate so that ODP.NET 12¢ connections can be
load balanced with these two database services as part of Global Data Services. No
ODP.NET applications require code changes to use Global Data Services if they are
already using Runtime Connection Load Balancing.

When Runtime Connection Load Balancing is enabled:

» The ODP.NET connection pool dispenses connections based on the load
balancing advisory and service goal.

* The ODP.NET connection pool also balances the number of connections to each
service member providing the service, based on the load balancing advisory and
service goal.

By default, ODP.NET is enabled to receive Runtime Connection Load Balancing FAN
messages from the server. The feature has been enabled via the "Load
Balancing=true" and "pooling=true" settings in the connection string, which are the
default values. This feature can only be used if "pooling=true". In order to use Runtime
Connection Load Balancing, specific Oracle server configurations must be set.

The following connection string example enables Runtime Connection Load Balancing:

"user id=scott;password=tiger;data source=erp;load balancing=true;"

3.4.3 Fast Connection Failover (FCF)

ORACLE

When an Oracle RAC service, service member, node, or a Data Guard database fails,
the severed ODP.NET connection objects may continue to exist in the application. If
users attempt to use these invalid connections, they will encounter errors. FCF
enables ODP.NET to free these severed connections proactively and quickly. Users
then will be able to use the application after a server side failure without manual
intervention from an administrator.

In Oracle Database 12c¢, FCF has been extended to Oracle Data Guard and Oracle
GoldenGate for ODP.NET 12c¢ connections through Global Data Services. No

3-39

Chapter 3
Real Application Clusters and Global Data Services

ODP.NET applications require code changes to use Global Data Services if they
already use FCF.

ODP.NET applications can enable FCF through the High Availability Events, "HA
Events", connection string attribute. When HA Events are enabled:

e ODP.NET connection pool proactively removes connections from the pool when a
Global Data Service or Oracle RAC service, service member, node, or database
goes down.

e ODP.NET proactively forces threads waiting for responses from the downed
database to exit out from the existing call to avoid any hangs. When such a
connection is then returned to the pool, any resource associated with that
connection is freed.

e ODP.NET establishes connections to existing Oracle instances if the removal of
severed connections brings the total number of connections below the "min pool
size", upon the next connection request.

By default, ODP.NET is enabled to receive FCF FAN messages from the server. This
feature have been enabled via the HA Events=true and pooling=true settings in the
connection string, which are the default values.

The following connection string example enables HA Events:

"user id=scott;password=tiger;data source=erp;HA events=true;"

3.4.4 Using FCF Planned Outage to Minimize Service Disruption

ORACLE

FCF not only provides high availability services for unplanned outages, such as node
failures, but also for planned outages, such as server repairs, upgrades, and changes,
to minimize service disruption to ODP.NET application users.

When a database service is set to be stopped or relocated, a FAN message is
published with a planned reason code. A FCF-aware ODP.NET connection pool (HA
Events=true) receives the notification and commences to close idle connections, no
longer allowing new connections to that specific database service. Active connections
to that specific database service remain until users complete their tasks and the
connection is returned to the pool. Thus, no users must stop work mid-stream due to a
planned outage.

Eventually, all users complete their tasks and no connections remain to that database
service. The database administrator can then stop the service for the planned outage
task. This feature allows the database service to be stopped as quickly as possible
without end user disruption.

Oracle planned outage support works with Oracle Real Application Clusters (Oracle
RAC), Oracle Data Guard, and some single instance scenarios.

Oracle RAC Planned Outage

A typical planned outage scenario for Oracle RAC follows below. Note that the
database server commands apply to Oracle RAC 12¢ Release 2 or higher. Commands
for earlier releases may be different.

1. There is a need to upgrade, patch, or repair a software or hardware issue on a
database server. Stop the instance gracefully such that existing users experience
no to few errors. You can wait until all users complete their work before doing so.

3-40

ORACLE

Chapter 3
Real Application Clusters and Global Data Services

Business requirements will dictate whether you wait for all users to log out or begin
the planned outage after a set time. An administrator could issue the following
command line operation using Oracle Server Control Utility (srvctl):

srvctl relocate service —database <unique database name> —service <service name>
—drain_timeout 120 —stopoption IMMEDIATE —oldinst <existing instance>

This command relocates the database service from the existing instance to any
instance it is configured to run on. Oracle Cluster Ready Services (CRS) will
choose this instance, as the command line specifies no target. CRS will wait 120
seconds (—drain_timeout 120) for any active sessions to drain, after which any
sessions remaining on the existing instance will be forcibly disconnected (-
stopoption IMMEDIATE). If Application Continuity is used in conjunction with planned
outage, an attempt is made to recover these killed sessions, masking the outage
from end users.

The relocate operation starts the service in the new location prior to stopping the
service in its existing location. Immediate relocation allows draining with no
brownout. If the service cannot be started, it is not stopped at the original location
to maintain availability.

2. Meanwhile in the connection pool, the FAN planned DOWN event clears idle
sessions for the instance being shutdown from the ODP.NET connection pool
immediately and marks that instance’s active sessions to be released at the next
check-in. These FAN actions drain the sessions from this instance without
disrupting the users.

Existing connections on other instances remain usable, and new connections can
be opened to these other instances.

3. Not all sessions will check their connections into the pool immediately. The timeout
period specified by —drain_timeout after which the instance is forcibly shut down,
evicting any remaining client connections. Administrators can check whether any
active sessions to the instance remain by querying the v$session table.

4. Once the upgrade, patch, or repair is complete, restart the instance and the
service on the original node. The FAN UP event will inform the ODP.NET pool that
it can now use the original machine again.

¢ See Also:

Oracle Database High Availability Best Practices

Oracle Data Guard Planned Outage

Oracle Data Guard performs switchovers from primary databases to standby
databases in planned failover scenarios. During the switchover, administrators will
want to limit end user disruptions. In Oracle Database 12c Release 2 and higher,
these administrators can use the Data Guard command-line interface (DGMGRL)
command to switch roles between primary and standby databases:

SWITCHOVER TO <database name> [WAIT <timeout in seconds>];

The WAIT option specifies to wait for sessions to drain before proceeding with the
switchover.

3-41

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

Similar to the Oracle RAC scenario, FAN informs the ODP.NET to remove idle
connections from the pool. Connections subsequently checked in are destroyed until
no active connections remain to that primary database, which will allow the switchover
to begin.

When switchover to the standby completes, a FAN UP event informs ODP.NET that it
can start creating connections to the standby instance.

During the Data Guard service relocation process, new incoming connection requests

will not be accepted until the service has fully relocated. Incoming connection requests
arriving during the interim, such as in the middle of an Oracle Data Guard switchover,

will receive connectivity errors.

To prevent these errors, ODP.NET can pause connection attempts until the new
database service is available. ODP.NET, Managed and Unmanaged Drivers block any
connection attempts until the service is up or until the configured time limit expires
from the time when the service DOWN event was received. This feature is useful for
planned outages and service relocations. It works with Oracle RAC and Oracle Data
Guard.

This time limit is the ServiceRelocationConnectionTimeout Setting, which can be set in
the .NET configuration file.

3.4.5 Pool Behavior in an Oracle RAC Database

3.5 Using

ORACLE

When connection pools are created for a single-instance database, pool size attributes
are applied to the single service. Similarly, when connection pools are created for an
Oracle RAC database, the pool size attributes are applied to a service and not to
service members. For example, if "Min Pool Size"is set to N, then ODP.NET does not
create N connections for each service member. Instead, it creates, at minimum, N
connections for the entire service, where N connections are distributed among the
service members.

The following pool size connection string attributes are applied to a service.

* Min Pool Size
* Max Pool Size
* Incr Pool Size
e Decr Pool Size

ODP.NET connects to the same Oracle RAC node when required by a distributed
transaction that has already begun on a particular node, by an Oracle runtime
connection load balancing advisory, or by Oracle RAC load balancing gravitation in
which connections will gravitate to an under utilized node. If the connection pool has
no idle connections to this particular node, then ODP.NET will create a new
connection to this node. Node affinity is honored even when the connection pool runs
out of idle connections to dispense.

Transaction Guard to Prevent Logical Corruption

Transaction Guard allows managed and unmanged ODP.NET applications to use at-
most-once execution in case of planned and unplanned outages and repeated
submissions. Without Transaction Guard, applications that attempt to retry operations
following outages can cause logical corruption by committing duplicate transactions.

3-42

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

After an outage, one of the traditional problems for recovering applications had been
the non-durable commit message sent back to the client. If there is a break between
the client and the server, the client sees an error message indicating that the
communication failed, also known as a recoverable error. This error does not inform
the application if the submission executed any commit operations, or if a procedural
call ran to completion while executing all expected commits. The error also does not
indicate session state changes or intermittent failures. The client is left wondering if the
transaction committed and if it fully completed.

These recoverable errors may require end users or applications to attempt replay by
issuing duplicate transaction submissions or other forms of logical corruption. The
transaction cannot be validly resubmitted if the non-transactional state is incorrect or if
it is committed. Continuing to process a committed but not completed call can result in
the application using a database session that is in the wrong state.

3.5.1 ODP.NET and Transaction Guard

Transaction Guard allows ODP.NET, Managed Driver and ODP.NET, Unmanaged
Driver to eliminate duplicate transactions automatically and transparently, and in a
manner that scales.

When a failure occurs, such as a node, network, or database failure, ODP.NET
applications can deterministically conclude whether the transaction committed by
querying its status, if the database service is up. Oracle retains the transaction status
automatically, even after one of these failures.

In ODAC 12c¢ Release 4, using Transaction Guard application development has been
streamlined, reducing the application logic needed to determine the transaction
outcome. Moreover, these benefits are available to both managed and unmanaged
ODP.NET.

When a recoverable error is raised by a Transaction Guard enabled database service
upon a database commit or upon a SQL or PL/SQL execution, which could have called
a commit, then an ODP.NET OracleException is created with an
OracleLogicalTransaction instance. The database maintains the outcome of the logical
transaction for the retention period specified by the administrator. ODP.NET
automatically queries the database on behalf of the application when a recoverable
error occurs so that the OraclelLogicalTransaction object instance on the
OracleException object can indicate whether the transaction has committed or not and
whether the user call has completed or not.

If the status is committed, then the transaction has completed successfully. No other
action is likely needed by the administrator.

If not committed, then ODP.NET applications can learn the current transaction state,
whether it is recoverable, and whether it can be retried using
OracleLogicalTransaction. If the error is recoverable, then the transaction is safe to re-
submit. If the error is not recoverable, the application will need to determine the
transaction outcome using an alternative mechanism.

Note:

Transaction Guard supports only local transactions. It does not support
distributed transactions.

ORACLE 3-43

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

The Transaction Guard feature is enabled or disabled through the Oracle service-level
configuration through the COMMIT_OUTCOME setting. By default, it is not enabled. This
setting can be changed without bringing down the database. Only new connections
created against the service will use the new setting.

Here's an example of setting the COMMIT_OUTCOME using SRVCTL:

srvctl modify service -d orcl -s GOLD -commit_outcome TRUE

Note:

Grant the EXECUTE privilege on the DBMS_APP_CONT package to the database users
that retrieve the transaction status:

GRANT EXECUTE ON DBMS_APP_CONT TO <user name> ;

The following is an example ODP.NET Transaction Guard application scenario:

An ODP.NET application receives a Fast Application Naotification (FAN) down event or
error. FAN automatically aborts the dead session and the application receives an
OracleException. A Transaction Guard application built to handle errors transparently
would do the following:

1. Check the value of the OracleException.OracleLogicalTransaction property. If the
value is an OraclelogicalTransaction object, that is, non-null, then the error is
recoverable. If the property's value is null, then the error is not recoverable and/or
Transaction Guard has not been enabled.

2. For recoverable errors, check the OracleLogicalTransaction.Committed property. If
true, the transaction has been committed. If false, the transaction was not
submitted, but can now be safely re-submitted.

3. For recoverable errors, check the OracleLogicalTransaction.UserCallCompleted
property if transaction state outside the commit operation is important. See the
table below for the implications of what Committed and UserCal ICompleted values
mean.

Table 3-6 Implication of Committed and UserCallCompleted Values

|
Committed Value UserCallCompleted Outcome

Value
True True The transaction was successful. The result can be
returned to the application.
False False The transaction was not successful. The
application can resubmit the transaction again.
True False The transaction committed, but there may be

additional state, such as row counts or nested
PL/SQL logic, that prevents the application from
continuing as expected.

Sample Code

using System;
using Oracle.DataAccess.Client;

ORACLE 3-44

ORACLE

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

//alternatively can use using Oracle.ManagedDataAccess.Client;

class TransactionGuardSample

{

static void Main()

{

bool bReadyToCommit = false;

string constr = "user id=hr;password=hr;data source=oracle";
OracleConnection con = new OracleConnection(constr);
OracleTransaction txn = null;

OracleCommand cmd = null;

try
{
string sql = " update employees set salary=10000 where employee_id=103";
con.Open();
txn = con.BeginTransaction();
cmd = new OracleCommand(con, sql);
cmd.ExecuteNonQuery();
bReadyToCommit = true;
}

catch (Exception ex)

// rollback here as the SQL execution is unsuccessful
txn.Rollback();
Console.WriteLine(ex.ToString());

}
try
if (bReadyToCommit)
txn.Commit();
%atch (Exception ex)

if (ex is OracleException)

{

// 1t"s safe to re-submit the work if the error is recoverable and

the transaction has not been committed

if (ex.IsRecoverable && ex.OraclelLogicalTransaction !'= null && !

ex.OracleLogicalTransaction.Committed)

// safe to re-submit work

}
else
// do not re-submit work
}
}
}
finally
{
// dispose all objects
txn.Dispose();
cmd.Dispose();
con.Dispose(); // place the connection back to the connection pool
}

3-45

Chapter 3
Application Continuity

3.6 Application Continuity

Oracle Application Continuity enables database requests to automatically replay
transactional or non-transactional operations in a non-disruptive and rapid manner in
the event of a severed database session, which results in a recoverable error.
Application Continuity improves end-user experience by masking planned and
unplanned related errors. Applications can be developed without complex logic to
handle exceptions, while automatically replaying database operations upon a
recoverable error.

Without Application Continuity, it is almost impossible to mask outages in a safe and
reliable manner. Common issues encountered include:

e The client state remains at present time, with entered data, returned data, and
variables cached, while the database state changes are lost.

e If a transaction commit has occurred, the commit message is not durable.
Moreover, checking a lost request does not guarantee that it will not commit after
being checked.

* Non-transactional database session state is lost.

e If the request can continue, the database and the client session must be
synchronized.

Application Continuity is available with Oracle Database Enterprise Edition with a Real
Application Clusters or Active Data Guard option license.

3.6.1 ODP.NET and Application Continuity

ORACLE

ODP.NET, Unmanaged Driver first supported Application Continuity with version 12.2.
While Application Continuity was first introduced in Oracle Database 12¢ Release 1
(12.1), ODP.NET requires a minimum of Oracle Database 12c Release 2 (12.2)
server.

¢ Note:

ODP.NET, Managed Driver does not support Application Continuity.

With Application Continuity enabled, ODP.NET ensures all the application's executed
statements are logged appropriately so that they can be replayed upon a recoverable
error. This applies for all application SQL and PL/SQL, as well as any internal
ODP.NET operations.

On the client side, Application Continuity is enabled by setting the ODP.NET
connection string attribute, Application Continuity=true.

If Application Continuity is set to true, but the database server does not enable
Application Continuity, ODP.NET will still create new connections. However, these
connections will not be Application Continuity enabled.

3-46

Chapter 3
Database Sharding

3.7 Database Sharding

Sharding is a data tier architecture, where data is horizontally partitioned across
independent databases. Each database in such a configuration is called a shard. All
shards together make up a single logical database, which is referred to as a sharded
database. Sharding is a shared-nothing database architecture. The independent
physical databases do not share CPU, memory, or storage devices. However, from the
perspective of an application, the collection of physical databases looks like a single
logical database.

Sharding uses Global Data Services (GDS), where GDS routes a client request to an
appropriate database based on parameters such as availability, load, network latency,
and replication lag. A GDS pool is a set of replicated databases that offers the same
global service. The databases in a GDS pool can be located in multiple data centers
across different regions. A sharded GDS pool contains all shards of a sharded
database and their replicas, and appears as a single sharded database to database
clients.

Applications can connect to multiple databases (shards) where data is partitioned
based on one or more sharding strategies. The strategy can be hash based, range
based, or list based. Each time a database operation is required, the application needs
to determine which shard it must connect to.

A sharding key provides the partitioning key that determines in which shard a row of
data is stored. A table can be partitioned using a sharding key.

A super sharding key is a collection of shard chunks, where only those chunks, which
have a specific value of the super shard key identifier, are stored. A super sharding
key is used for distributing data across database groups. Specifying super sharding
keys are a way through which user-controlled data partitioning is possible.

3.7.1 ODP.NET Sharding

ORACLE

Starting from version 12.2, ODP.NET and Oracle Database both support sharding.

" Note:
ODP.NET, Managed Driver does not support sharding.

ODP.NET applications must provide the sharding key and super sharding key
information before opening the database connection for single shard queries. These
sharding values cannot be set or changed after opening the connection. If any of the
shard key values need to be modified, a new connection must be created with the new
values and then opened.

If shard keys are set after the connection has been opened, the ODP.NET connection
will not use these new shard key values until after the next OracleConnection.Open()
call.

The OracleShardingKey object stores one or more key values. Multiple keys can be set
to create a composite key. ODP.NET recognizes the sharding key(s) specified and
connects to the correct shard and chunk.

3-47

Chapter 3
OracleCommand Object

Sharding is supported with or without connection pooling. The ODP.NET connection
pool maintains connections to different shards and chunks of the sharded GDS
database within the same shared pool.

The shard key (SHARD_KEY) and super sharding key (GROUP_KEY) can be specified in the
TNS connect descriptor, rather than in the application code. The .NET developer then
chooses the connect descriptor applicable to the shard that the application will use.

The data distribution across the shards and chunks in the database is transparent to
the end user. ODP.NET minimizes the end user impact of chunk resharding within
GDS.

To perform cross-shard queries, no ODP.NET shard APIs are used. Instead,
applications connect to the GDS catalog service, allowing access to all the sharded
databases. The SQL query is specifically constructed to iterate over all the necessary
shards. For example, the non-shard database query select count(*) from employees is
equivalent to the cross- shard query select sum(c) from (lterator(select count(*) c
from employees(i)).

ODP.NET Single Shard Query Example

using System;
using Oracle.DataAccess.Client;

class Sharding

{

static void Main()

OracleConnection con = new OracleConnection(*'user id=hr;password=hr;Data
Source=orcl;");

//Setting a shard key

OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType. Int32, 123);

//Setting a second shard key value for a composite key

shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");

//Creating and setting the super shard key

OracleShardingKey superShardingKey = new OracleShardingKey();

superShardingKey.SetShardingKey(OracleDbType. Int32, 1000);

//Setting super sharding key and sharding key on the connection
con.SetShardingKey(shardingKey, superShardingKey);
con.Open();

//perform SQL query

3.8 OracleCommand Object

The OracleCommand object represents SQL statements or stored procedures executed
on Oracle Database.

< Note:

Optimizer hint syntax in the form --+ ... is not supported. ODP.NET supports
this syntax: /*+ ... */.

ORACLE 3-48

Chapter 3
OracleCommand Object

This section includes the following topics:

e Transactions

e System.Transactions and Promotable Transactions
* Parameter Binding

e Batch Processing

» Statement Caching

e Self-Tuning

3.8.1 Transactions

Oracle Database starts a transaction only in the context of a connection. Once a
transaction starts, all the successive command execution on that connection run in the
context of that transaction. Transactions can be started only on an OracleConnection
object, and the read-only Transaction property on the OracleCommand object is implicitly
set by the OracleConnection object. Therefore, the application cannot set the
Transaction property, nor does it need to.

Note:

Transactions are not supported in a .NET stored procedure.

Explicit transactions are required with SQL statements containing ""FOR UPDATE™ and
"RETURNING" clauses. This is not necessary if global transactions are used.

3.8.2 System.Transactions and Promotable Transactions

ORACLE

ODP.NET supports System.Transactions. A local transaction is created for the first
connection opened in the System.Transactions scope to Oracle Database 11g release
1 (11.1), or higher. When a second connection is opened, this transaction is
automatically promoted to a distributed transaction. This functionality provides
enhanced performance and scalability.

Connections created within a transaction context, such as TransactionScope or
ServicedComponent, can be established to different versions of Oracle Database.
However, in order to enable the local transaction to be promotable, the following must
be true:

e The first connection in the transaction context must be established to an Oracle
Database 11g release 1(11.1) instance or higher.

« All connections opened within the transaction context must have the "Promotable
Transaction” setting set to "promotable”. If you try to open a subsequent
connection in the same transaction context with the "Promotable Transaction”
setting set to "local™, an exception is thrown.

e Promoting local transactions requires Oracle Services for Microsoft Transaction
Server 11.1.0.7.20, or higher. If this requirement is not met, then a second
connection request in the same transaction context throws an exception.

3-49

Chapter 3
OracleCommand Object

Transaction promotion will throw an ORA-24797 error when the database transaction
is already distributed due to the use of database links.

Setting "local" as the value of "PromotableTransaction™ in the registry, configuration
file (machine/Web/application), or the "Promotable Transaction" connection string
attribute allows only one connection to be opened in the transaction context, which is
associated with a local transaction. Such local transactions cannot be promoted.
Starting with ODP.NET 12.1.0.2, connections with the Promotable Transaction setting
set to local will begin as and remain a local transaction. If a second connection
attempts to join the transaction, an exception will be thrown.

If applications use System.Transactions, it is required that the enlist connection string
attribute is set to either true (default) or dynamic. However, enlist=dynamic cannot be
used with TransactionScope because auto-enlistment requires enlist=true.

ODP.NET supports the following System.Transactions programming models for
applications using distributed transactions.

e Implicit Transaction Enlistment Using TransactionScope
e Explicit Transaction Enlistment Using CommittableTransaction .

e Local Transaction Support for Older Databases

3.8.2.1 Implicit Transaction Enlistment Using TransactionScope

ORACLE

The TransactionScope class provides a mechanism to write transactional applications
where the applications do not need to explicitly enlist in transactions.To accomplish
this, the application uses the TransactionScope object to define the transactional code.
Connections created within this transactional scope will enlist in a local transaction that
can be promoted to a distributed transaction.

< Note:

If the first connection is opened to a pre-Oracle Database 11g release 1 (11.1)
instance, then the connection enlists as a distributed transaction, by default.

You can optionally create the transaction as a local transaction by using the
procedure described in "Local Transaction Support for Older Databases".
However, these transactions cannot be promoted to distributed transactions.

Note that the application must call the Complete method on the TransactionScope object
to commit the changes. Otherwise, the transaction is aborted by default.

/1 C#

using System;

using Oracle.DataAccess.Client;
using System.Data;

using System.Data.Common;

using System.Transactions;

class psfTxnScope

{

static void Main()

3-50

Chapter 3
OracleCommand Object

int retval = 0;
string providerName = "Oracle.DataAccess.Client";
string constr =
@"'User ld=scott;Password=tiger;Data Source=oracle;enlist=true";

// Get the provider factory.
DbProviderFactory factory = DbProviderFactories.GetFactory(providerName);

try

// Create a TransactionScope object, (It will start an ambient
// transaction automatically).
using (TransactionScope scope = new TransactionScope())

// Create first connection object.

using (DbConnection connl = factory.CreateConnection())

{
// Set connection string and open the connection. this connection
// will be automatically enlisted in a promotable local transaction.
connl.ConnectionString = constr;
connl.0pen();

// Create a command to execute the sql statement.

DbCommand cmdl = factory.CreateCommand();

cmdl.Connection = connl;

cmdl.CommandText = @"insert into emp (empno, ename, job) values
(1234, “empl®, "devl®)";

// Execute the SQL statement to insert one row in DB.
retval = cmdl.ExecuteNonQuery();
Console.WriteLine("'Rows to be affected by cmdl: {0}", retval);

// Close the connection and dispose the command object.
connl.Close();
connl.Dispose();
cmdl.Dispose();
}

// The Complete method commits the transaction. If an exception has
// been thrown or Complete is not called then the transaction is
// rolled back.
scope.Complete();
}
}
catch (Exception ex)
{
Console.WriteLine(ex.Message);
Console.WriteLine(ex.StackTrace);
}
}
}

3.8.2.2 Explicit Transaction Enlistment Using CommittableTransaction

The instantiation of the CommittableTransaction object and the EnlistTransaction
method provides an explicit way to create and enlist in a transaction. Note that the
application must call Commit or Rol Iback on the CommittableTransaction object.

ORACLE 3-51

/1 C#

using System;

using Oracle._DataAccess.Client;
using System.Data;

using System.Data.Common;

using System.Transactions;

class psfEnlistTransaction

{

static void Main()

{
int retval = 0;

string providerName = "Oracle.DataAccess.Client";

string constr =

Chapter 3
OracleCommand Object

@"'User ld=scott;Password=tiger;Data Source=oracle;enlist=dynamic";

// Get the provider factory.

DbProviderFactory factory = DbProviderFactories.GetFactory(providerName);

try
{

// Create a committable transaction object.
CommittableTransaction cmtTx = new CommittableTransaction();

// Open a connection to the DB.

DbConnection connl = factory.CreateConnection();
connl.ConnectionString = constr;

connl.0pen();

// enlist the connection with the commitable transaction.
connl.EnlistTransaction(cmtTx);

// Create a command to execute the sql statement.
DbCommand cmdl = factory.CreateCommand();
cmdl.Connection = connl;
cmdl.CommandText = @"insert into emp (empno, ename, job) values
(1234, “empl®, "devl®)";

// Execute the SQL statement to insert one row in DB.

retval = cmdl.ExecuteNonQuery();

Console.WriteLine("'Rows to be affected by cmdl:

// commit/rollback the transaction.
cmtTx.Commit(); // commits the txn.
//cmtTx.Rollback(); // rolls back the txn.

// close and dispose the connection
connl.Close();
connl.Dispose();
cmdl.Dispose();

}

catch (Exception ex)

{
Console.WriteLine(ex.Message);
Console.WriteLine(ex.StackTrace);

}

}
}

ORACLE

{0}", retval);

3-52

Chapter 3
OracleCommand Object

3.8.2.3 Local Transaction Support for Older Databases

If the first connection in a TransactionScope is opened to a pre-Oracle Database 11g
release 1 (11.1) instance, then the connection creates a distributed transaction, by
default. You can optionally have the first connection create a local transaction by using
the procedure described in this section.

To create local transactions in a System.Transactions scope, either the
PromotableTransaction setting in the registry, machine/Web/application configuration
file, or the "Promotable Transaction' connection string attribute must be set to "local".

If "local™ is specified, the first connection opened in the TransactionScope uses a local
transaction. If any subsequent connections are opened within the same
TransactionScope, an exception is thrown. If there are connections already opened in
the TransactionScope, and an OracleConnection with "Promotable Transaction=local"
attempts to open within the same TransactionScope, an exception is thrown.

If "promotable" is specified, the first and all subsequent connections opened in the
same TransactionScope enlist in the same distributed transaction.

If both the registry and the connection string attribute are used and set to different
values, the connection string attribute overrides the registry entry value. If neither are
set, "promotable” is used. This is the default value and is equivalent to previous
versions of ODP.NET which only supported distributed transactions.

The registry entry for a particular version of ODP.NET applies for all applications using
that version of ODP.NET.

3.8.3 Parameter Binding

ORACLE

When the DbType property of an OracleParameter object is set, the OracleDbType property
of the OracleParameter object changes accordingly, or vice versa. The parameter set
last prevails.An application can bind the data and have ODP.NET infer both the DbType
and OracleDbType properties from the .NET type of the parameter value.ODP.NET
allows applications to obtain an output parameter as either a .NET Framework type or
an ODP.NET type. The application can specify which type to return for an output
parameter by setting the DbType property of the output parameter (.NET type) or the
OracleDbType property (ODP.NET type) of the OracleParameter object. For example, if
the output parameter is set as a DbType.String type by setting the DbType property, the
output data is returned as a .NET String type. On the other hand, if the parameter is
set as an OracleDbType.Char type by setting the OracleDbType property, the output data
is returned as an OracleString type. If both DbType and OracleDbType properties are set
before the command execution, the last setting takes affect.

ODP.NET populates InputOutput, Output, and ReturnvValue parameters with the Oracle
data, through the execution of the following OracleCommand methods:

° ExecuteReader
e ExecuteNonQuery
* ExecuteScalar

An application should not bind a value for output parameters; it is the responsibility of
ODP.NET to create the value object and populate the OracleParameter Value property
with the object.

3-53

Chapter 3
OracleCommand Object

When binding by position (default) to a function, ODP.NET expects the return value to
be bound first, before any other parameters.

This section describes the following:

e OracleDbType Enumeration Type

e Inference of DbType, OracleDbType, and .NET Types
e PL/SQL Associative Array Binding

e Array Binding

3.8.3.1 Command Timeouts

The OracleCommand CommandTimeout property limits how long a command is allowed to
execute before terminating with an exception. This setting prevents long running
commands from consuming excessive resources or from blocking other necessary
operations from occurring.

The database server can be interrupted via either TCP/IP urgent data or normal
TCP/IP data, called out of band (OOB) or in band data, respectively. Windows-based
database servers only support in band breaks, whereas all other (predominantly UNIX-
based) database servers can support OOB or in band breaks.

ODP.NET, Managed Driver uses OOB breaks by default with database servers that
support it. For certain network topologies, the routers or firewalls involved in the route
to the database may have been configured to drop urgent data or in band the data. If
the routers or firewalls can not be changed to handle urgent data appropriately, then
the ODP.NET, Managed Driver can be configured to utilize in band breaks by setting
the .NET configuration parameter Disable_Oob to on.

3.8.3.2 OracleDbType Enumeration Type

ORACLE

OracleDbType enumerated values are used to explicitly specify the OracleDbType value of
an OracleParameter object.

Table 3-7 lists all the OracleDbType enumeration values with a description of each
enumerated value.

Table 3-7 OracleDbType Enumeration Values
|

Member Name Description

Array Oracle Collection (VArray or Nested Table)
Not Available in ODP.NET, Managed Driver

BFile Oracle BFILE type

BinaryFloat Oracle BINARY_FLOAT type

BinaryDouble Oracle BINARY_DOUBLE type

Blob Oracle BLOB type

Boolean Oracle BOOLEAN type

Byte byte type

Char Oracle CHAR type

3-54

Chapter 3
OracleCommand Object

Table 3-7 (Cont.) OracleDbType Enumeration Values
|

Member Name Description
Clob Oracle CLOB type
Date Oracle DATE type
Decimal Oracle NUMBER type
Double 8-byte FLOAT type
Intl6 2-byte INTEGER type
Int32 4-byte INTEGER type
Int64 8-byte INTEGER type
IntervalDS Oracle INTERVAL DAY TO SECOND type
IntervalYM Oracle INTERVAL YEAR TO MONTH type
Long Oracle LONG type
LongRaw Oracle LONG RAW type
NChar Oracle NCHAR type
Object Oracle Object type
Not Available in ODP.NET, Managed Driver
NClob Oracle NCLOB type
NVarchar2 Oracle NVARCHAR2 type
Raw Oracle RAW type
Ref Oracle REF type
Not Available in ODP.NET, Managed Driver
RefCursor Oracle REF CURSOR type
Single 4-byte FLOAT type
TimeStamp Oracle TIMESTAMP type
TimeStampLTZ Oracle TIMESTAMP WITH LOCAL TIME ZONE type
TimeStampTZ Oracle TIMESTAMP WITH TIME ZONE type
Varchar2 Oracle VARCHAR2 type
XmIType Oracle XMLType type
¢ Note:

PL/SQL LONG, LONG RAW, RAW, and VARCHAR data types can be bound with a size
up to 32512 bytes.

3.8.3.3 Inference of DbType, OracleDbType, and .NET Types

This section explains the inference from the System.Data.DbType, OracleDbType, and
Value properties in the OracleParameter class.

ORACLE 3-55

Chapter 3
OracleCommand Object

In the OracleParameter class, DbType, OracleDbType, and Value properties are linked.
Specifying the value of any of these properties infers the value of one or more of the

other properties.

3.8.3.3.1 Inference of DbType from OracleDbType

ORACLE

In the OracleParameter class, specifying the value of OracleDbType infers the value of
DbType as shown in Table 3-8.

Table 3-8 Inference of System.Data.DbType from OracleDbType

OracleDbType System.Data.DbType
Array Object
BFile Object
Blob Object
BinaryFloat Single
BinaryDouble Double
Boolean Boolean
Byte Byte
Char StringFixedLength
Clob Object
Date Date
Decimal Decimal
Double Double
Intl6 Intl6
Int32 Int32
Int64 Int64
IntervalDS Object
IntervalYM Int64
Long String
LongRaw Binary
NChar StringFixedLength
NClob Object
NVarchar2 String
Object Object
Raw Binary
Ref Object
RefCursor Object
Single Single
TimeStamp DateTime
TimeStampLTZ DateTime
TimeStampTZ DateTime
Varchar2 String

3-56

Chapter 3
OracleCommand Object

Table 3-8 (Cont.) Inference of System.Data.DbType from OracleDbType

OracleDbType

System.Data.DbType

XmIType

String

3.8.3.3.2 Inference of OracleDbType from DbType

3.8.3.3.3 Inference of DbType and OracleDbType from Value

ORACLE

In the OracleParameter class, specifying the value of DbType infers the value of
OracleDbType as shown in Table 3-9.

Table 3-9 Inference of OracleDbType from DbType

System.Data.DbType OracleDbType
Binary Raw

Boolean Boolean

Byte Byte

Currency Not Supported
Date Date

DateTime TimeStamp
Decimal Decimal
Double Double

Guid Not Supported
Intl6 Intl6

Int32 Int32

Int64 Int64

Object Object

Shyte Not Supported
Single Single

String Varchar?2
StringFixedLength Char

Time TimeStamp
Ulntl6 Not Supported
UInt32 Not Supported
Uint64 Not Supported
VarNumeric Not Supported

In the OracleParameter class, Value is an object type that can be of any .NET
Framework data type or ODP.NET type. If the OracleDbType and DbType properties of
the OracleParameter class are not specified, the OracleDbType property is inferred from
the type of the value property.

3-57

ORACLE

Chapter 3
OracleCommand Object

Table 3-10 shows the inference of DbType and OracleDbType properties from the value
property when the type of value is one of the .NET Framework data types.

Table 3-10 Inference of DbType and OracleDbType from Value (.NET
Datatypes)

Value (.NET Datatypes) System.Data.DbType OracleDbType
Boolean Boolean Boolean
Byte Byte Byte
Byte[] Binary Raw
Char / Char [] String Varchar?2
DateTime DateTime TimeStamp
Decimal Decimal Decimal
Double Double Double
Float Single Single
Intl6 Intl6 Intl6
Int32 Int32 Int32
Int64 Int64 Int64
10racleCustomType Object Object
Single Single Single
String String Varchar?2
TimeSpan Object IntervalDS
" Note:

Using other .NET Framework data types as values for the OracleParameter
class without specifying either the DbType or the OracleDbType properties raises
an exception because inferring DbType and OracleDbType properties from

other .NET Framework data types is not supported.

Table 3-11 shows the inference of DbType and OracleDbType properties from the Value
property when type of value is one of Oracle.DataAccess.Types.

Table 3-11 Inference of DbType and OracleDbType from Value (ODP.NET
Types)
|

Value System.Data.DbType OracleDbType
(Oracle.DataAccess.Types)

OracleBFile Object BFile
OracleBinary Binary Raw
OracleBlob Object Blob
OracleBoolean Boolean Boolean
OracleClob Object Clob

3-58

Chapter 3
OracleCommand Object

Table 3-11 (Cont.) Inference of DbType and OracleDbType from Value

(ODP.NET Types)

Value
(Oracle.DataAccess.Types)

System.Data.DbType

OracleDbType

OracleDate Date Date
OracleDecimal Decimal Decimal
OraclelntervalDS Object IntervalDS
OraclelntervalYM Int64 IntervalYM
OracleRef Object Ref
OracleRefCursor Object RefCursor
OracleString String Varchar2
OracleTimeStamp DateTime TimeStamp
OracleTimeStampLTZ DateTime TimeStampLTZ
OracleTimeStampTZ DateTime TimeStampTZ
OracleXmlType String XmIType

3.8.3.4 PL/SQL Associative Array Binding

ODP.NET supports PL/SQL Associative Arrays (formerly known as PL/SQL Index-By

Tables) binding.

An application can bind an OracleParameter object, as a PL/SQL Associative Array, to a
PL/SQL stored procedure. The following OracleParameter properties are used for this

feature:

* CollectionType

This property must be set to OracleCollectionType.PLSQLAssociativeArray to bind a

PL/SQL Associative Array.

* ArrayBindSize

This property is ignored for the fixed-length element types (such as Int32).

For variable-length element types (such as Varchar2), each element in the

ORACLE

ArrayBindSize property specifies the size of the corresponding element in the value
property.

For Output parameters, InputOutput parameters, and return values, this property
must be set for variable-length variables.

Each ODP.NET array element can store up to 2 GB of characters per element or 4
GB of binary data per element

ArrayBindStatus

This property specifies the execution status of each element in the
OracleParameter.Value property.

Size

This property specifies the maximum number of elements to be bound in the
PL/SQL Associative Array.

3-59

ORACLE

Chapter 3
OracleCommand Object

* Value
This property must be set to an array of values, null, or the DBNul I .Value property.

ODP.NET supports binding parameters of PL/SQL Associative Arrays which contain
the following data types.

* BINARY_FLOAT

e CHAR

* DATE

* NCHAR
* NUMBER

* NVARCHAR2

e RAW

e ROWID

e UROWID

* VARCHAR2

Using unsupported data types with associative arrays can cause an ORA-600 error.

Example of PL/ISQL Associative Arrays

This example binds three OracleParameter objects as PL/SQL Associative Arrays:
Paraml as an In parameter, Param2 as an InputOutput parameter, and Param3 as an
Output parameter.

PL/SQL Package: MYPACK

/* Setup the tables and required PL/SQL:

connect scott/tiger@oracle
CREATE TABLE T1(COL1 number, COL2 varchar2(20));

CREATE or replace PACKAGE MYPACK AS
TYPE AssocArrayVarchar2_t is table of VARCHAR(20) index by BINARY_INTEGER;
PROCEDURE TestVarchar2(
Paraml IN AssocArrayVarchar2_t,
Param2 IN OUT AssocArrayVarchar2_t,
Param3 OUT AssocArrayVarchar2_t);
END MYPACK;

CREATE or REPLACE package body MYPACK as
PROCEDURE TestVarchar2(
Paraml IN AssocArrayVarchar2_t,
Param2 IN OUT AssocArrayVarchar2_t,
Param3 OUT AssocArrayVarchar2_t)
IS
i integer;
BEGIN
-- copy a few elements from Param2 to Paraml\n
Param3(1) := Param2(l);
Param3(2) := NULL;
Param3(3) := Param2(3);
-- copy all elements from Paraml to Param2\n
Param2(1) := Paraml(l);

3-60

ORACLE

Chapter 3

OracleCommand Object

Param2(2) := Paraml(2);
Param2(3) := Paraml(3);
-- insert some values to db\n
FOR i IN 1..3 LOOP
insert into T1 values(i,Param2(i));
END LOOP;
END TestVarchar2;

END MYPACK;

// C#

using System;

using System.Data;

using Oracle.DataAccess.Client;

class AssociativeArraySample

static void Main()

OracleConnection con = new OracleConnection();

con.ConnectionString = "User ld=scott;Password=tiger;Data Source=oracle";
con.Open();
Console.WriteLine(""Connected to Oracle"™ + con.ServerVersion);

OracleCommand cmd = new OracleCommand(
"begin MyPack.TestVarchar2(:1, :2, :3); end;", con);

OracleParameter Paraml = cmd.Parameters.Add(*'1", OracleDbType.Varchar2);
OracleParameter Param2 = cmd.Parameters.Add(*'2", OracleDbType.Varchar2);
OracleParameter Param3 = cmd.Parameters.Add(*'3", OracleDbType.Varchar2);

Paraml.Direction = ParameterDirection. Input;
Param2_Direction = ParameterDirection. InputOutput;
Param3.Direction = ParameterDirection.Output;

// Specify that we are binding PL/SQL Associative Array

Paraml.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
Param2.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
Param3.CollectionType = OracleCollectionType.PLSQLAssociativeArray;

// Setup the values for PL/SQL Associative Array
Paraml.Value = new string[3] {

"First Element"”, "Second Element ", "Third Element "
}:
Param2.Value = new string[3] {

"First Element"”, "Second Element ", "Third Element "
}:

Param3.Value = null;

// Specify the maximum number of elements in the PL/SQL Associative Array
Paraml.Size = 3;
Param2_Size = 3;
Param3.Size = 3;

// Setup the ArrayBindSize for Paraml
Paraml.ArrayBindSize = new int[3] { 13, 14, 13 };

// Setup the ArrayBindStatus for Paraml

3-61

Chapter 3
OracleCommand Object

Paraml.ArrayBindStatus = new OracleParameterStatus[3] {
OracleParameterStatus.Success, OracleParameterStatus.Success,
OracleParameterStatus.Success};

// Setup the ArrayBindSize for Param2
Param2.ArrayBindSize = new int[3] { 20, 20, 20 };

// Setup the ArrayBindSize for Param3
Param3.ArrayBindSize = new int[3] { 20, 20, 20 };

// execute the cmd
cmd .ExecuteNonQuery();

//print out the parameter®s values
Console.WriteLine("parameter values after executing the PL/SQL block™);
for (int 1 =0; 1 < 3; i+t)
Console.WriteLine("'Param2[{0}] = {1} ", i,
(cmd.Parameters[1].Value as Array).GetValue(i));

for (int 1 =0; i < 3; i++)
Console.WriteLine("'Param3[{0}] = {1} ", i,
(cmd.Parameters[2].Value as Array).GetValue(i));

// Close and Dispose OracleConnection object
con.Close();
con.Dispose();
Console.WriteLine("'Disconnected™);
}
}

3.8.3.5 Array Binding

ORACLE

The array bind feature enables applications to bind arrays of a type using the
OracleParameter class. Using the array bind feature, an application can insert multiple
rows into a table in a single database round-trip.

The following example inserts three rows into the Dept table with a single database
round-trip. The OracleCommand ArrayBindCount property defines the number of elements
of the array to use when executing the statement.

/1 C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindSample

{

static void Main()

{
OracleConnection con
con.ConnectionString
con.Open();
Console.WriteLine(""Connected successfully™);

new OracleConnection();
"User ld=scott;Password=tiger;Data Source=oracle;";

int[] myArrayDeptNo = new int[3] { 10, 20, 30 };
OracleCommand cmd = new OracleCommand();

// Set the command text on an OracleCommand object
cmd.CommandText = "insert into dept(deptno) values (:deptno)";

3-62

Chapter 3
OracleCommand Object

cmd.Connection = con;

// Set the ArrayBindCount to indicate the number of values
cmd.ArrayBindCount = 3;

// Create a parameter for the array operations
OracleParameter prm = new OracleParameter("deptno™, OracleDbType.Int32);

prm_Direction = ParameterDirection. Input;
prm_Value = myArrayDeptNo;

// Add the parameter to the parameter collection
cmd.Parameters.Add(prm);

// Execute the command
cmd . ExecuteNonQuery();
Console.WriteLine("Insert Completed Successfully");

// Close and Dispose OracleConnection object
con.Close();
con.Dispose();

3.8.3.5.1 OracleParameter Array Bind Properties

ORACLE

The OracleParameter class provides two properties for granular control when using the
array bind feature:

ArrayBindSize

The ArrayBindSize property is an array of integers specifying the maximum size for
each corresponding value in an array. The ArrayBindSize property is similar to the
Size property of an OracleParameter object, except the ArrayBindSize property
specifies the size for each value in an array.

Before the execution, the application must populate the ArrayBindSize property;
after the execution, ODP.NET populates it.

The ArrayBindSize property is used only for parameter types that have variable
length such as Clob, Blob, and Varchar2. The size is represented in bytes for binary
data types, and characters for the Unicode string types. The count for string types
does not include the terminating character. The size is inferred from the actual size
of the value, if it is not explicitly set. For an output parameter, the size of each
value is set by ODP.NET. The ArrayBindSize property is ignored for fixed-length
data types.

ArrayBindStatus

The ArrayBindStatus property is an array of OracleParameterStatus values that
specify the status of each corresponding value in an array for a parameter. This
property is similar to the Status property of the OracleParameter object, except that
the ArrayBindStatus property specifies the status for each array value.

Before the execution, the application must populate the ArrayBindStatus property.
After the execution, ODP.NET populates the property. Before the execution, an
application using the ArrayBindStatus property can specify a NULL value for the
corresponding element in the array for a parameter. After the execution, ODP.NET
populates the ArrayBindStatus property, indicating whether the corresponding

3-63

Chapter 3
OracleCommand Object

element in the array has a null value, or if data truncation occurred when the
value was fetched.

3.8.3.5.2 Error Handling for Array Binding

ORACLE

If an error occurs during an array bind execution, it can be difficult to determine which
element in the value property caused the error. ODP.NET provides a way to determine
the row where the error occurred, making it easier to find the element in the row that
caused the error.

When an OracleException object is thrown during an array bind execution, the
OracleErrorCollection object contains one or more OracleError objects. Each of these
OracleError objects represents an individual error that occurred during the execution,
and contains a provider-specific property, ArrayBindIndex, which indicates the row
number at which the error occurred.

The following example demonstrates error handling for array binding:

/* Database Setup

connect scott/tiger@oracle

drop table depttest;

create table depttest(deptno number(2));
*/

/1 C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindExceptionSample
{
static void Main()
{
OracleConnection con
con.ConnectionString
con.Open();

new OracleConnection();
"User ld=scott;Password=tiger;Data Source=oracle;";

OracleCommand cmd = new OracleCommand();

// Start a transaction
OracleTransaction txn = con.BeginTransaction(lsolationLevel .ReadCommitted);

try

{
int[] myArrayDeptNo = new int[3] { 10, 200000, 30 };
// int[] myArrayDeptNo = new int[3]{ 10,20,30};

// Set the command text on an OracleCommand object
cmd.CommandText = "insert into depttest(deptno) values (:deptno)";
cmd.Connection = con;

// Set the ArrayBindCount to indicate the number of values
cmd.ArrayBindCount = 3;

// Create a parameter for the array operations
OracleParameter prm = new OracleParameter(“deptno", OracleDbType. Int32);

prm.Direction = ParameterDirection. Input;
prm.Value = myArrayDeptNo;

3-64

Chapter 3
OracleCommand Object

// Add the parameter to the parameter collection
cmd.Parameters.Add(prm);

// Execute the command
cmd.ExecuteNonQuery();

catch (OracleException e)

{

Console.WriteLine("'OracleException {0} occured"”, e.Message);

if (e.Number == 24381)

for (int i = 0; i < e.Errors.Count; i++)
Console.WriteLine("'Array Bind Error {0} occured at Row Number {1}",
e.Errors[i].Message, e.Errors[i].ArrayBindIndex);

txn.Commit();

}

cmd.Parameters.Clear();
cmd.CommandText = "select count(*) from depttest";

decimal rows = (decimal)cmd.ExecuteScalar();
Console.WriteLine(""{0} row have been inserted”, rows);

con.Close();
con.Dispose();

3.8.3.5.3 OracleParameterStatus Enumeration Types

Table 3-12 lists OracleParameterStatus enumeration values.

Table 3-12 OracleParameterStatus Members

__|
Member Names Description

Success For input parameters, indicates that the input value has been

assigned to the column.

For output parameters, indicates that the provider assigned an
intact value to the parameter.

Nul IFetched Indicates that a NULL value has been fetched from a column or an
OUT parameter.

NullInsert Indicates that a NULL value is to be inserted into a column.

Truncation Indicates that truncation has occurred when fetching the data

from the column.

3.8.4 Batch Processing

ORACLE

The OracleDataAdapter UpdateBatchSize property enables batch processing when the
OracleDataAdapter.Update method is called. UpdateBatchSize is a numeric property that
indicates how many DataSet rows to update the Oracle database for each round-trip.

This enables the developer to reduce the number of round-trips to the database.

3-65

Chapter 3
OracleCommand Object

3.8.5 Statement Caching

Statement caching eliminates the need to parse each SQL or PL/SQL statement
before execution by caching server cursors created during the initial statement
execution. Subsequent executions of the same statement can reuse the parsed
information from the cursor, and then execute the statement without reparsing, for
better performance.

In order to see performance gains from statement caching, Oracle recommends
caching only those statements that will be repeatedly executed. Furthermore, SQL or
PL/SQL statements should use parameters rather than literal values. Doing so takes
full advantage of statement caching, because parsed information from parameterized
statements can be reused even if the parameter values change in subsequent
executions. However, if the literal values in the statements are different, the parsed
information cannot be reused unless the subsequent statements also have the same
literal values.

3.8.5.1 Statement Caching Connection String Attributes

The following connection string attributes control the behavior of the ODP.NET
statement caching feature:

e Statement Cache Size

This attribute enables or disables ODP.NET statement caching. By default, this
attribute is set to 0 (disabled). If it is set to a value greater than 0, ODP.NET
statement caching is enabled and the value specifies the maximum number of
statements that can be cached for a connection. Once a connection has cached
up to the specified maximum cache size, the least recently used cursor is freed to
make room to cache the newly created cursor.

If self tuning is enabled, then statement caching is enabled as well. The Statement
Cache Size is configured automatically in such cases.

e Statement Cache Purge

This attribute provides a way for connections to purge all statements that are
cached when a connection is closed or placed back into the connection pool. By
default, this attribute is set to false, which means that cursors are not freed when
connections are placed back into the pool.

3.8.5.2 Enabling Statement Caching through the Registry

ORACLE

To enable statement caching by default for all ODP.NET applications running in a
system, without changing the application, set the registry key of HKEY_LOCAL_MACHINE
\SOFTWARE\ORACLE\ODP.NET\Assenbl y_Ver si on \StatementCacheSize to a value greater
than 0. This value specifies the number of cursors that are to be cached on the server.

The default value for the system can be overridden at the connection pool level. The
Statement Cache Size attribute can be set to a different size than the registry value or it
can be turned off. The Statement Cache Size can also be configured through an XML
configuration file.

3-66

Chapter 3
OracleCommand Object

3.8.5.3 Statement Caching Methods and Properties

The following property and method are relevant only when statement caching is
enabled:

* OracleCommand.AddToStatementCache property

If statement caching is enabled, having this property set to true (default) adds
statements to the cache when they are executed. If statement caching is disabled
or if this property is set to false, the executed statement is not cached.

e OracleConnection.PurgeStatementCache method

This method purges all the cached statements by closing all open cursors on the
database that are associated with the particular connection. Note that statement
caching remains enabled after this call.

3.8.5.4 Connections and Statement Caching

Statement caching is managed separately for each connection. Therefore, executing
the same statement on different connections requires parsing once for each
connection and caching a separate cursor for each connection.

3.8.5.5 Pooling and Statement Caching

Pooling and statement caching can be used in conjunction. If connection pooling is
enabled and the Statement Cache Purge attribute is set to false, statements executed on
each separate connection are cached throughout the lifetime of the pooled connection.

If the Statement Cache Purge attribute is set to true, all the cached cursors are freed
when the connection is placed back into the pool. When connection pooling is
disabled, cursors are cached during the lifetime of the connection, but the cursors are
closed when the OracleConnection object is closed or disposed of.

3.8.6 Self-Tuning

ORACLE

ODP.NET applications can be self-tuned for performance optimization. ODP.NET
dynamically monitors application queries during runtime.

Note:

Self-tuning for applications does not take place if the Pooling connection string
attribute is set to false. Self-tuning is also not supported inside .NET stored
procedures.

The statement cache size (StatementCacheSize) is tuned automatically by monitoring
the statements that are executed by the application. The following sections discuss
self-tuning in applications:

e Self-Tuning Statement Caching
* Enabling or Disabling Self-Tuning for Applications

* Tracing Optimization Changes

3-67

Chapter 3
OracleCommand Object

3.8.6.1 Self-Tuning Statement Caching

ORACLE

Statement caching helps improve performance by eliminating the need to re-parse
each SQL or PL/SQL statement before execution.

If self-tuning is enabled for an application, then ODP.NET continuously monitors
application behavior in order to determine the optimum value for the statement cache
size. Any statement cache size value specified in the connection string, configuration
file, or registry is ignored.

When the application first initializes, it uses the default value of statement cache size.
As the application executes statements, ODP.NET collects statistics that are used to
self-tune the value of statement cache size. Self-tuning of statement cache size results
in increased performance.

Note:

To take full advantage of statement caching, you should not dynamically
generate statements, with different inline values, for every statement execution.
Instead, use parameterized commands to minimize the number of unique
statements that need to be executed and cached. This is because only one
statement needs to be cached for every unique command text, regardless of
the parameter values and the number of times that the statement is executed.

The maximum number of statements that can be cached per connection is determined
by the MaxStatementCacheSize configuration attribute. The MaxStatementCacheSize value
can be specified in the Windows registry or XML configuration file.

The MaxStatementCacheSize setting is useful in limiting the number of cached
statements, as well as the number of open cursors. This is because a cached
statement equates to a cursor being opened on the server. For this reason, you should
not set MaxStatementCacheSize to a value that is greater than the database
MAX_OPEN_CURSORS setting.

The following Windows registry key is used to configure the MaxStatementCacheSize
configuration attribute:

HKLM\Software\Oracle\ODP.NET\ver si on\MaxStatementCacheSize

The MaxStatementCacheSize key is of type REG_SZ. It can be set to an integer value
between 0 and System. Int32.MaxValue.

The following example sets the MaxStatementCacheSize property in an ADO.NET 2.0, or
above, configuration file:

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<oracle.dataaccess.client>
<settings>
<add name="MaxStatementCacheSize" value="300"/>
</settings>
</oracle.dataaccess.client>
</configuration>

3-68

Chapter 3
OracleCommand Object

If self-tuning is disabled for an application, then the value of statement cache size is
determined by the settings in the connection string, configuration file, or the registry. If
statement cache size is not specified in any of these sources, then the default value of
statement cache size is set to 0. To have ODP.NET configured with the same default
settings as previous releases of ODP.NET, disable self-tuning and set the
StatementCacheSize value to 10.

3.8.6.2 Enabling or Disabling Self-Tuning for Applications

Self-tuning for ODP.NET applications is enabled by default. An application can enable
or disable self-tuning using one of the following methods:

Self-Tuning Connection String Attribute

An application can modify the Self Tuning connection string attribute to enable or
disable self-tuning for a particular connection pool. The default value for Self
Tuning is true.

Windows Registry

An application can enable or disable self-tuning for a particular version of
ODP.NET by modifying the following registry entry:

HKLM\Software\Oracle\ODP.NET\ver si on\SelfTuning

The SelfTuning key is of type REG_SZ. It can be set to either 1 (enabled) or 0
(disabled).

Configuration File

An ODP.NET application can modify the application configuration file (app.config)
or Web configuration file (web.config) to enable or disable self-tuning.

The following example shows how to enable self-tuning in an ADO.NET 2.0
application configuration file:

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<oracle.dataaccess.client>
<settings>
<add name="SelfTuning” value="1"/>
</settings>
</oracle.dataaccess.client>
</configuration>

Note:

If the optimal statement cache size is known for an application, then you
can disable self-tuning and set StatementCacheSize to its optimum value in
the registry, configuration file, or the application. If self-tuning is disabled
and StatementCacheSize is not set at all, then the default value of 0 is used
for StatementCacheSize.

3.8.6.3 Tracing Optimization Changes

Applications can trace optimization changes made by self-tuning. All changes to
StatementCacheSize are traced. Errors, if any, are also traced.

ORACLE

3-69

3.9 ODP.NET Types Overview

ORACLE

The TraceLevel used for tracing self-tuning is 64.

Chapter 3
ODP.NET Types Overview

ODP.NET types represent Oracle native data types and PL/SQL data types as a
structure or as a class. ODP.NET type structures follow value semantics, while
ODP.NET type classes follow reference semantics. ODP.NET types provide safer and
more efficient ways of obtaining Oracle native data and PL/SQL data types in a .NET
application than .NET types. For example, an OracleDecimal structure holds up to 38
digits of precision, while a .NET Decimal only holds up to 28.

Table 3-13 lists data types supported by ODP.NET and their corresponding ODP.NET
types: data types in the first column refer to both Oracle native data types and PL/SQL
data types of that name. Those data types that exist only in PL/SQL are indicated by
(PL/SQL only) after the data type name. The entries for the PL/SQL data types also
represent the subtypes of the data types, if any. The third column lists the .NET
Framework data type that corresponds to the Value property of each ODP.NET type.

Table 3-13 Value Property Type of ODP.NET Type
|

Oracle Native Data Type or PL/SQL

Data Type

ODP.NET Type

.NET Framework Data
Types

BFILE
BINARY_DOUBLE

BINARY_FLOAT

BINARY_INTEGER (PL/SQL only)
BLOB

BOOLEAN (PL/SQL only)

CHAR

CLOB

DATE

INTERVAL DAY TO SECOND

INTERVAL YEAR TO MONTH

LONG

LONG RAW

NCHAR

NCLOB

NUMBER

NVARCHAR2

PLS_INTEGER (PL/SQL only)
RAW

REF

REF CURSOR (PL/SQL only)
ROWID

OracleBFile class
OracleDecimal structure
OracleDecimal structure
OracleDecimal structure
OracleBlob class
OracleBoolean structure
OracleString structure
OracleClob class
OracleDate structure

OraclelntervalDS
structure

OraclelntervalYM
structure

OracleString structure
OracleBinary structure
OracleString structure
OracleClob class
OracleDecimal structure
OracleString structure
OracleDecimal Structure
OracleBinary structure
OracleRef class
OracleRefCursor class

OracleString structure

System.Byte[]
System.Decimal
System.Decimal
System.Decimal
System.Byte[]
System.Boolean
System.String
System.String
System.DateTime
System.TimeSpan

System. Int64

System.String
System.Byte[]

System.String
System.String
System.Decimal
System.String
System.Decimal
System.Byte[]

System.String
Not Applicable

System.String

3-70

Chapter 3
Obtaining Data from an OracleDataReader Object

Table 3-13 (Cont.) Value Property Type of ODP.NET Type

Oracle Native Data Type or PL/ISQL ODP.NET Type .NET Framework Data

Data Type Types

TIMESTAMP OracleTimeStamp System.DateTime
structure

TIMESTAMP WITH LOCAL TIME ZONE OracleTimeStampLTZ System.DateTime
structure

TIMESTAMP WITH TIME ZONE OracleTimeStampTZ System.DateTime
structure

UROWID OracleString structure System.String

VARCHAR2 OracleString structure System.String

XMLType OraclexmlType class System.String

3.10 Obtaining Data from an OracleDataReader Object

The ExecuteReader method of the OracleCommand object returns an OracleDataReader
object, which is a read-only, forward-only result set.

This section provides the following information about the OracleDataReader object:

e Typed OracleDataReader Accessors
e Obtaining LONG and LONG RAW Data
e Obtaining LOB Data

e Controlling the Number of Rows Fetched in One Database Round-Trip

3.10.1 Typed OracleDataReader Accessors

The OracleDataReader class provides two types of typed accessors:

* .NET Type Accessors
« ODP.NET Type Accessors

3.10.1.1 .NET Type Accessors

Table 3-14 lists all the Oracle native database types that ODP.NET supports, and the
corresponding .NET types that can represent the Oracle native type. If more than

one .NET type can be used to represent an Oracle native type, the first entry is

the .NET type that best represents the Oracle native type. The third column indicates
the valid typed accessor that can be invoked for an Oracle native type to be obtained
as a .NET type. If an invalid typed accessor is used for a column, an
InvalidCastException is thrown. Oracle native data types depend on the version of the
database; therefore, some data types are not available in earlier versions of Oracle
Database.

ORACLE 3-71

ORACLE

¢ See Also:

Table 3-14 .NET Type Accessors

Chapter 3

Obtaining Data from an OracleDataReader Object

e "OracleDataAdapter Class "

e "OracleDataReader Class"

Oracle Native Data Type

NET Type

Typed Accessor

BFILE
BINARY_DOUBLE
BINARY_FLOAT
BLOB

CHAR

CLOB

DATE
INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
LONG

LONG RAW
NCHAR

NCLOB

NUMBER

NVARCHAR2

RAW
REF
ROWID

TIMESTAMP
TIMESTAMP WITH LOCAL TIME ZONE

System.Byte[]
System.Double
System.Single
System.Byte[]

System.String
System.Char[]

System.String
System.Char[]

System.DateTime
System.Timespan
System. Int64
System.String
System.Char[]
System.Byte[]
System.String
System.Char[]
System.String
System.Char[]
System.Decimal
System.Byte
System. Int16
System. Int32
System. Int64
System.Single
System.Double
System.String
System.Char[]
System.Byte[]
System.String
System.String
System.Char[]
System.DateTime
System.DateTime

GetBytes
GetDouble
GetFloat
GetBytes

GetString
GetChars

GetString
GetChars

GetDateTime
GetTimeSpan
GetlInt64

GetString
GetChars

GetBytes
GetString
GetChars
GetString
GetChars
GetDecimal
GetByte
GetlIntl6
GetlInt32
GetlInt64
GetFloat
GetDouble
GetString
GetChars
GetBytes
GetString
GetString
GetChars
GetDateTime

GetDateTime

3-72

ORACLE

Chapter 3
Obtaining Data from an OracleDataReader Object

Table 3-14 (Cont.) .NET Type Accessors
|

Oracle Native Data Type .NET Type Typed Accessor
TIMESTAMP WITH TIME ZONE System.DateTime GetDateTime
UROWID System.String GetString
System.Char[] GetChars
VARCHAR2 System.String GetString
System.Char[] GetChars
XMLType System.String GetString
System.Xml . XmlReader GetXmlReader

Certain methods and properties of the OracleDataReader object require ODP.NET to
map a NUMBER column to a .NET type based on the precision and scale of the column.
These members are:

e Item property

e GetFieldType method
* Getvalue method

* Getvalues method

ODP.NET determines the appropriate .NET type by considering the following .NET
types in order, and selecting the first .NET type from the list that can represent the
entire range of values of the column:

e System.Byte

e System.Intl6

e System.Int32

e System.Int64

e System.Single
* System.Double
e System.Decimal

If no .NET type exists that can represent the entire range of values of the column, then
an attempt is made to represent the column values as a System.Decimal type. If the
value in the column cannot be represented as System._Decimal, then an exception is
raised.

For example, consider two columns defined as NUMBER(4,0) and NUMBER(10,2). The

first NET types from the previous list that can represent the entire range of values of
the columns are System. Int16 and System.Double, respectively. However, consider a
column defined as NUMBER(20,10). In this case, there is no .NET type that can represent
the entire range of values on the column, so an attempt is made to return values in the
column as a System.Decimal type. If a value in the column cannot be represented as a
System.Decimal type, then an exception is raised.

The Fill method of the OracleDataAdapter class uses the OracleDataReader object to
populate or refresh a DataTable or DataSet with .NET types. As a result, the .NET type
used to represent a NUMBER column in the DataTable or DataSet also depends on the
precision and scale of the column.

3-73

3.10.1.2 ODP.NET Type Accessors

ORACLE

Chapter 3

Obtaining Data from an OracleDataReader Object

ODP.NET exposes provider-specific types that natively represent the data types in the
database. In some cases, these ODP.NET types provide better performance and
functioning than the corresponding .NET types. The ODP.NET types can be obtained
from the OracleDataReader object by calling their respective typed accessor.

Table 3-15 lists the valid type accessors that ODP.NET uses to obtain ODP.NET types

for an Oracle native type.

Table 3-15 ODP.NET Type Accessors
|

Oracle Native Data Type

ODP.NET Type

Typed Accessor

BFILE
BINARY_DOUBLE
BINARY_FLOAT
BLOB

CHAR
CLOB

DATE

INTERVAL DAY TO SECOND
INTERVAL YEAR TO MONTH
LONG

LONG RAW

NCHAR

NCLOB

NUMBER

NVARCHAR2

RAW

REF

ROWID

TIMESTAMP

TIMESTAMP WITH LOCAL TIME
ZONE

TIMESTAMP WITH TIME ZONE
UROWID

VARCHAR2

XMLType

OracleBFile
OracleDecimal
OracleDecimal

OracleBlob
OracleBlob
OracleBinary

OracleString

OracleClob
OracleClob
OracleString

OracleDate
OraclelntervalDS
OraclelntervalYM
OracleString
OracleBinary
OracleString
OracleString
OracleDecimal
OracleString
OracleBinary
OracleRef
OracleString
OracleTimeStamp

OracleTimeStampLTZ

OracleTimeStampTZ
OracleString
OracleString

OracleString
OracleXmlType

GetOracleBFile
GetOracleDecimal
GetOracleDecimal

GetOracleBlob
GetOracleBlobForUpdate
GetOracleBinary

GetOracleString

GetOracleClob
GetOracleClobForUpdate
GetOracleString

GetOracleDate
GetOraclelntervalDS
GetOraclelntervalYM
GetOracleString
GetOracleBinary
GetOracleString
GetOracleString
GetOracleDecimal
GetOracleString
GetOracleBinary
GetOracleRef
GetOracleString
GetOracleTimeStamp
GetOracleTimeStampLTZ

GetOracleTimeStampTZ
GetOracleString
GetOracleString

GetOracleString
GetOracleXmlType

3-74

Chapter 3
Obtaining Data from an OracleDataReader Object

3.10.2 Obtaining LONG and LONG RAW Data

ODP.NET fetches and caches rows from the database during the Read method
invocations on the OracleDataReader object. The amount of LONG and LONG RAW column
data that is retrieved from this operation is determined by InitialLONGFetchSize. The
different behaviors observed when InitialLONGFetchSize is set to 0, greater than 0, and
-1 are explained in the following sections.

Note:

ODP.NET does not support the CommandBehavior.SequentialAccess enumeration
value. Therefore, LONG and LONG RAW data can be fetched randomly.

3.10.2.1 Setting InitiaLONGFetchSize to Zero or a Value Greater than Zero

ORACLE

The specified amount of InitialLONGFetchSize characters or bytes for LONG or LONG RAW
column data is retrieved into the cache during the Read method invocations on the
OracleDataReader object.

By default, InitialLONGFetchSize is set to O. In this case, ODP.NET does not fetch any
LONG or LONG RAW column data during the Read method invocations on the
OracleDataReader object. The LONG or LONG RAW data is fetched when the typed accessor
method is explicitly invoked for the LONG or LONG RAW column, which incurs a database
round-trip because no data is cached.

If InitialLONGFetchSize is set to a value greater than 0, that amount of specified data is
cached by ODP.NET during the Read method invocations on the OracleDataReader
object. If the application requests an amount of data less than or equal to the

Initial LONGFetchSize through the typed accessor methods, no database round-trip is
incurred. However, an additional database round-trip is required to fetch data beyond
Initial LONGFetchSize.

To obtain data beyond the InitialLONGFetchSize characters or bytes, one of the
following must be in the select list:

* Primary key
e ROWID
e Unique columns - (defined as a set of columns on which a unique constraint has

been defined or a unique index has been created, where at least one of the
columns in the set has a NOT NULL constraint defined on it)

To be able to fetch the entire LONG or LONG RAW data without having a primary key
column, a ROWID, or unique columns in the select list, set the size of the
InitialLONGFetchSize property on the OracleCommand object to equal or greater than the
number of characters or bytes needed to be retrieved.

The LONG or LONG RAW data is returned when the appropriate typed accessor method
(GetChars, GetOracleString, or GetString for LONG or GetOracleBinary or GetBytes for LONG
RAW) is called on the OracleDataReader object.

3-75

Chapter 3
Obtaining Data from an OracleDataReader Object

3.10.2.2 Setting InitiaLONGFetchSize to -1

By setting InitialLONGFetchSize to -1, it is possible to fetch the entire LONG or LONG RAW
data from the database for a select query, without requiring a primary key, ROWID, or
unique column in the select list.

When InitialLONGFetchSize is set to -1, the entire LONG or LONG RAW data is retrieved and
cached during Read method invocations on the OracleDataReader object. Calls to
GetString, GetOracleString, GetChars, GetBytes, or GetOracleBinary in the
OracleDataReader return the entire column data.

3.10.3 Obtaining LOB Data

ORACLE

ODP.NET fetches and caches rows from the database during the Read method
invocations on the OracleDataReader object. The amount of LOB column data that is
retrieved from this operation is determined by InitialLOBFetchSize.

The following is a complete list of typed accessor methods that an application can call
for the CLOB and BLOB columns, if InitialLOBFetchSize is set to 0, greater than 0, or -1:

* Methods callable for BLOB column
— GetBytes
— Getvalue
— GetvValues
— GetOracleBinary
— GetOracleBlob
— GetOracleBlobForUpdate
— GetOraclevalue
— GetOracleValues
* Methods callable for CLOB column

GetChars

GetString

— Getvalue

— Getvalues

— GetOracleString

— GetOracleClob

— GetOracleClobForUpdate
— GetOraclevalue

— GetOraclevalues

The following sections explain the different behaviors observed when
Initial LOBFetchSize is set to 0, greater than 0, and -1.

3-76

Chapter 3
Obtaining Data from an OracleDataReader Object

3.10.3.1 Setting InitialLOBFetchSize to Zero

By default, the InitialLOBFetchSize property is 0. This value dictates to ODP.NET that
any LOBs selected will have their client LOB data fetches deferred until after the
OracleDataReader Read, such as when using the an accessor. Each LOB value is
retrieved only at the point it is individually accessed.

The advantage of using this retrieval strategy is that it conserves client memory and
bandwidth. If the LOBs selected are either very large or not necessary to be
immediately consumed by the end user, or both, then the application can perform
better if LOBs are retrieved as needed, rather than all at once.

3.10.3.2 Setting InitialLOBFetchSize to a Value Greater than Zero

If InitialLOBFetchSize is set to a value greater than 0, ODP.NET caches LOB data up
to InitialLOBFetchSize characters or bytes for each LOB selected during the Read
method invocations on the OracleDataReader object. The maximum value is
2,147,483,647 (2GB). If the total size of a selected LOB is less than this number, the
entire LOB data will be read.

By pre-fetching all LOB entries in one or more database round trips, applications can
perform faster by reducing round trips. This approach is most advantageous when
most LOBs are either small in size, or consumed by the end user almost immediately,
or both. The down side of a large fetch size is higher memory consumption.

This section discusses the ways to fetch beyond the InitialLOBFetchSize characters or
bytes that are cached.

The remaining LOB data is returned when a typed accessor is invoked, regardless of
the value set to the InitialLOBFetchSize property. Primary key, ROWID, or unique
columns are not required to be in the query select list to obtain data beyond the
specified InitialLOBFetchSize.

The GetOracleBlob, GetOracleClob, GetOracleBlobForUpdate, and GetOracleClobForUpdate
methods can now be invoked even if InitialLOBFetchSize is greater than 0.

3.10.3.3 Setting InitialLOBFetchSize to -1

ORACLE

To fetch all LOB data selected during the read operation and not be bound by a set
limit per LOB, set InitialLOBFetchSize to -1. A new default behavior has been
introduced for ODP.NET Release 12.1.0.2 and higher when InitialLobFetchSize is set
to -1.

When LegacyEntireLOBFetch = 0, which is the default value, the following operations
are invoked for a LOB column:

e OracleDataReader.GetOracleClob(): returns OracleClob object

e OracleDataReader.GetOracleBlob() : returns OracleBlob object

* OracleDataReader.GetOracleClobForUpdate(): returns OracleClob object

e OracleDataReader.GetOracleBlobForUpdate(): returns OracleBlob object

e OracleDataReader.GetOracleValue(): returns OracleClob object for a CLOB column

e OracleDataReader.GetOraclevalue(): returns OracleBlob object for a BLOB column

3-77

Chapter 3
Obtaining Data from an OracleDataReader Object

* OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleClob for a CLOB column

* OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleBlob for a BLOB column

To use the old behavior, set LegacyEntireLobFetch = 1 in the ODP.NET configuration.

When LegacyEntireLobFetch = 1 and InitialLOBFetchSize = -1, GetOracleClob,
GetOracleClobForUpdate, GetOracleBlob, and GetOracleBlobForUpdate methods are not
supported. The following operations are invoked for a LOB column in this scenario:

e OracleDataReader.GetOracleClob(): throws InvalidCastException()

e OracleDataReader.GetOracleBlob(): throws InvalidCastException()

e OracleDataReader.GetOracleClobForUpdate(): throws InvalidCastException()

e OracleDataReader.GetOracleBlobForUpdate(): throws InvalidCastException()

e OracleDataReader.GetOraclevalue(): returns OracleString object for a CLOB column
e OracleDataReader.GetOracleValue(): returns OracleBinary object for a BLOB column

e OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleString for a CLOB column

e OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleBinary for a BLOB column

For releases prior to ODP.NET 12.1.0.2, by setting InitialLOBFetchSize to -1, it is
possible to fetch the entire LOB data from the database for a select query, without
requiring a primary key, ROWID, or unique column in the select list. When
InitialLOBFetchSize is set to -1, the entire LOB column data is fetched and cached
during the Read method invocations on the OracleDataReader object. Calls to GetString,
GetOracleString, GetChars, GetBytes, or GetOracleBinary in the OracleDataReader allow
retrieving all data.

3.10.3.3.1 Methods Supported for InitialLOBFetchSize of -1 and LegacyEntireLobFetch of

1

ORACLE

This section lists supported and not supported methods for the CLOB and BLOB data
types when the InitialLOBFetchSize property is set to -1 and LegacyEntireLobFetch
property is set to 1.

Table 3-16 lists supported and not supported methods for the CLOB data types.

Table 3-16 Supported OracleDataReader CLOB Methods for
InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

OracleDataReader CLOB Methods Supported
GetChars Yes
GetString Yes
GetValue Yes
GetValues Yes
GetOracleString Yes
GetOracleValue Yes

3-78

Chapter 3
Obtaining Data from an OracleDataReader Object

Table 3-16 (Cont.) Supported OracleDataReader CLOB Methods for
InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

OracleDataReader CLOB Methods Supported
GetOracleValues Yes
GetOracleClob No
GetOracleClobForUpdate No

Table 3-17 lists supported and not supported methods for the BLOB data types.

Table 3-17 Supported OracleDataReader BLOB Methods for
InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

OracleDataReader BLOB Methods Supported
GetBytes Yes
GetValue Yes
GetValues Yes
GetOracleBinary Yes
GetOraclevValue Yes
GetOracleValues Yes
GetOracleBlob No
GetOracleBlobForUpdate No

3.10.3.4 Performance Considerations Related to the InitialLOBFetchSize
Property

This section discusses the advantages and disadvantages of the various
Initial LOBFetchSize property settings in different situations.

An application does not have to choose between performance and OracleBlob and
OracleClob functionality. Setting the InitialLOBFetchSize property results in a
performance boost and still gives the flexibility to use the OracleBlob and OracleClob
objects.

If the size of the LOB data is unknown or if the LOB data size varies irregularly, then it
is better to leave the InitialLOBFetchSize property to its default value of 0. This still
gives better performance in most cases.

Setting the InitialLOBFetchSize property to a size equal to or greater than the LOB
data size for most rows improves performance. It is generally recommended that the
Initial LOBFetchSize property be set to a value larger than the size of the LOB data for
more than 80% of the rows returned by the query. For example, if the size of the LOB
data is less than 1 KB in 80% of the rows, and more than 1 MB for 20% of the rows,
set the InitialLOBFetchSize property to 1 KB.

ORACLE 3-79

Chapter 3
Obtaining Data from an OracleDataReader Object

3.10.4 Controlling the Number of Rows Fetched in One Database

Round-Trip

Application performance depends on the number of rows the application needs to
fetch, and the number of database round-trips that are needed to retrieve them.

3.10.4.1 Use of FetchSize

The FetchSize property represents the total memory size in bytes that ODP.NET
allocates to cache the data fetched from a database round-trip.

The FetchSize property can be set on the OracleCommand, OracleDataReader, or
OracleRefCursor object, depending on the situation. It controls the fetch size for filling a
DataSet or DataTable using an OracleDataAdapter.

If the FetchSize property is set on the OracleCommand object, then the newly created
OracleDataReader object inherits the FetchSize property of the OracleCommand object.
This inherited FetchSize value can be left as is, or modified to override the inherited
value. The FetchSize property of the OracleDataReader object can be changed before
the first Read method invocation, which allocates memory specified by the FetchSize
property. All subsequent fetches from the database use the same cache allocated for
that OracleDataReader object. Therefore, changing the FetchSize value after the first
Read method invocation has no effect.

3.10.4.2 Fine-Tuning FetchSize

By fine-tuning the FetchSize property, applications can control memory usage and the
number of rows fetched in one database round-trip for better performance.

For example, if a query returns 100 rows and each row takes 1024 bytes, then setting
the FetchSize property to 102400 takes just one database round-trip to fetch 100 rows.
For the same query, if the FetchSize property is set to 10240, it takes 10 database
round-trips to retrieve 100 rows. If the application requires all the rows to be fetched
from the result set, the first scenario is faster than the second. However, if the
application requires just the first 10 rows from the result set, the second scenario can
perform better because it fetches only 10 rows, not 100 rows. When the next 10 rows
are fetched, then the memory allocated for rows 1-10 is reused for rows 11-20.

The larger the FetchSize, the more system memory is used. Developers should not set
large fetch sizes if their client systems have limited memory resources.

3.10.4.3 Using the RowSize Property

ORACLE

The RowSize property of the OracleCommand or OracleRefCursor object is populated with
the row size (in bytes) after an execution of a SELECT statement. The FetchSize property
can then be set to a value relative to the RowSize property by setting it to the result of
multiplying the RowSize value times the number of rows to fetch for each database
round-trip.

For example, setting the FetchSize to RowSize * 10 forces the OracleDataReader object to
fetch exactly 10 rows for each database round-trip. Note that the RowSize value does
not change due to the data length in each individual column. Instead, the RowSize value

3-80

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

is determined strictly from the metadata information of the database table(s) that the
SELECT statement is executed against.

The RowSize property can be used to set the FetchSize property at design time or at run
time, as described in the following sections.

3.10.4.3.1 Setting FetchSize Value in the Registry

The HKLM\Software\Oracle\ODP.NET\ ver si on\FetchSize registry entry can be set to
specify the default result set fetch size (in bytes) for all applications that use that
particular version of ODP.NET or the FetchSize attribute in the application
configuration or web.config file can specify the default value for a given application. By
default, the fetch size is 131072 bytes. This value can be overridden programmatically
by having the applications set the FetchSize property on either the OracleCommand or the
OracleDataReader at run time.

3.10.4.3.2 Setting FetchSize Value at Design Time

If the row size for a particular SELECT statement is already known from a previous
execution, the FetchSize value of the OracleCommand object can be set at design time to
the result of multiplying that row size times the number of rows the application wishes
to fetch for each database round-trip. The FetchSize value set on the OracleCommand
object is inherited by the OracleDataReader object that is created by the ExecuteReader
method invocation on the OracleCommand object. Rather than setting the FetchSize value
on the OracleCommand object, the FetchSize value can also be set on the
OracleDataReader object directly. In either case, the FetchSize value is set at design
time, without accessing the RowSize property value at run time.

3.10.4.3.3 Setting FetchSize Value at Run Time

Applications that do not know the row size at design time can use the RowSize property
of the OracleCommand object to set the FetchSize property of the OracleDataReader object.
The RowSize property provides a dynamic way of setting the FetchSize property based
on the size of a row.

After an OracleDataReader object is obtained by invoking the ExecuteReader method on
the OracleCommand object, the RowSize property is populated with the size of the row (in
bytes). By using the RowSize property, the application can dynamically set the FetchSize
property of the OracleDataReader object to the product of the RowSize property value
multiplied by the number of rows the application wishes to fetch for each database
round-trip. In this scenario, the FetchSize property is set by accessing the RowSize
property at run time.

3.11 PL/SQL REF CURSOR and OracleRefCursor

The REF CURSOR is a data type in the Oracle PL/SQL language. It represents a cursor or
a result set in Oracle Database. The OracleRefCursor object is a corresponding
ODP.NET type for the REF CURSCR type.

This section discusses the following aspects of using the REF CURSOR data type and
OracleRefCursor objects:

e Obtaining an OracleRefCursor Object
e Obtaining a REF CURSOR Data Type

ORACLE 3-81

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

» Populating an OracleDataReader from a REF CURSOR
» Populating the DataSet from a REF CURSOR

* Populating an OracleRefCursor from a REF CURSOR

» Updating a DataSet Obtained from a REF CURSOR

* Behavior of ExecuteScalar Method for REF CURSOR

» Passing a REF CURSOR to a Stored Procedure

3.11.1 Obtaining an OracleRefCursor Object

There are no constructors for OracleRefCursor objects. They can be acquired only as
parameter values from PL/SQL stored procedures, stored functions, or anonymous
blocks.

An OracleRefCursor object is a connected object. The connection used to execute the
command returning an OracleRefCursor object is required for its lifetime. Once the
connection associated with an OracleRefCursor object is closed, the OracleRefCursor
object cannot be used.

3.11.2 Obtaining a REF CURSOR Data Type

A REF CURSOR data type can be obtained as an OracleDataReader, DataSet, or
OracleRefCursor object. If the REF CURSOR data type is obtained as an OracleRefCursor
object, it can be used to create an OracleDataReader object or populate a DataSet from
it. When accessing a REF CURSOR data type, always bind it as an OracleDbType.RefCursor
parameter.

3.11.3 Populating an OracleDataReader from a REF CURSOR

A REF CURSOR data type can be obtained as an OracleDataReader object by calling the
ExecuteReader method of the OracleCommand object. The output parameter with the
OracleDbType property set is bound to OracleDbType.RefCursor. None of the output
parameters of type OracleDbType.RefCursor is populated after the ExecuteReader method
is invoked.

If there are multiple output REF CURSOR parameters, use the NextResult method of the
OracleDataReader object to access the next REF CURSOR data type. The OracleDataReader
NextResult method provides sequential access to the REF CURSOR data types; only one
REF CURSOR data type can be accessed at a given time.

The order in which OracleDataReader objects are created for the corresponding REF
CURSOR data types depends on the order in which the parameters are bound. If a
PL/SQL stored function returns a REF CURSOR data type, then it becomes the first
OracleDataReader object and all the output REF CURSOR data types follow the order in
which the parameters are bound.

3.11.4 Populating the DataSet from a REF CURSOR

ORACLE

For the Fill method to populate the DataSet properly, the SelectCommand property of the
OracleDataAdapter class must be bound with an output parameter of type
OracleDbType.RefCursor. If the Fill method is successful, the DataSet is populated with
a DataTable that represents a REF CURSOR data type.

3-82

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

If the command execution returns multiple REF CURSOR data types, the DataSet is
populated with multiple DataTable objects.

With Oracle Data Provider for .NET release 11.1.0.6.20, the extended property,
REFCursorName, has been introduced on the DataTable, to identify the REF CURSOR that
populates the DataTable.

This property is particularly useful when a DataSet is being populated with more than
one REF CURSOR, one or more of which is NULL. For example, if a DataSet is populated by
executing a stored procedure that returns three REF CURSORS and the second REF CURSOR
is NULL, the REFCursorName property value for the first DataTable is REFCursor and for the
second DataTable, REFCursor2 . No DataTable is populated for the NULL REF CURSOR.

3.11.5 Populating an OracleRefCursor from a REF CURSOR

When the ExecuteNonQuery method is invoked on a command that returns one or more
REF CURSOR data types, each of the OracleCommand parameters that are bound as an
OracleDbType.RefCursor gets a reference to an OracleRefCursor object.

To create an OracleDataReader object from an OracleRefCursor object, invoke the
GetDataReader method from the OracleRefCursor object. Subsequent calls to the
GetDataReader method return a reference to the same OracleDataReader object.

To populate a DataSet with an OracleRefCursor object, the application can invoke a Fill
method of the OracleDataAdapter class that takes an OracleRefCursor object. Similar to
the OracleDataReader object, an OracleRefCursor object is forward-only. Therefore, once
a row is read from an OracleRefCursor object, that same row cannot be obtained again
from it unless it is populated again from a query.

When multiple REF CURSOR data types are returned from a command execution as
OracleRefCursor objects, the application can choose to create an OracleDataReader
object or populate a DataSet with a particular OracleRefCursor object. All the
OracleDataReader objects or DataSet objects created from the OracleRefCursor objects
are active at the same time, and can be accessed in any order.

3.11.6 Updating a DataSet Obtained from a REF CURSOR

REF CURSOR types cannot be updated. However, data that is retrieved into a DataSet can
be updated. Therefore, the OracleDataAdapter class requires a custom SQL statement
to flush any REF CURSOR data updates to the database.

The OracleCommandBui lder object cannot be used to generate SQL statements for REF
CURSOR updates.

3.11.7 Behavior of ExecuteScalar Method for REF CURSOR

The ExecuteScalar method returns the value of the first column of the first row of the
REF CURSOR if it is one of the following:

e Areturn value of a stored function execution

e The first bind parameter of a stored procedure execution

ORACLE 3-83

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3.11.8 Passing a REF CURSOR to a Stored Procedure

ORACLE

An application can retrieve a REF CURSOR type from a PL/SQL stored procedure or
function and pass it to another stored procedure or function. This feature is useful in
scenarios where a stored procedure or a function returns a REF CURSOR type to the .NET
application, and based on the application logic, the application passes this REF CURSOR
to another stored procedure for processing. Note that if you retrieve the data from a
REF CURSOR type in the .NET application, you cannot pass it back to another stored
procedure.

The following example demonstrate passing a REF CURSOR:

/*

connect scott/tiger@oracle

create table test (coll number);
insert into test(coll) values (1);
commit;

create or replace package testPkg as type empCur is REF Cursor;
end testPkg;
/

create or replace procedure testSP(paraml IN testPkg.empCur, param2 OUT NUMBER)
as

begin

FETCH paraml into param2;

end;

/

*/

// C#

using System;

using Oracle.DataAccess.Client;
using System.Data;

class InRefCursorParameterSample
{

static void Main()

OracleConnection conn = new OracleConnection
("User ld=scott; Password=tiger; Data Source=oracle™);

conn.Open(); // Open the connection to the database

// Command text for getting the REF Cursor as OUT parameter
String cmdTxtl = "begin open :1 for select coll from test; end;";

// Command text to pass the REF Cursor as IN parameter
String cmdTxt2 = "begin testSP (:1, :2); end;";

// Create the command object for executing cmdTxtl and cmdTxt2
OracleCommand cmd = new OracleCommand(cmdTxtl, conn);

// Bind the Ref cursor to the PL/SQL stored procedure

OracleParameter outRefPrm = cmd.Parameters.Add("'outRefPrm",
OracleDbType.RefCursor, DBNull.Value, ParameterDirection.Output);

3-84

Chapter 3
Implicit REF CURSOR Binding

cmd .ExecuteNonQuery(); // Execute the anonymous PL/SQL block

// Reset the command object to execute another anonymous PL/SQL block
cmd.Parameters.Clear();
cmd.CommandText = cmdTxt2;

// REF Cursor obtained from previous execution is passed to this

// procedure as IN parameter

OracleParameter inRefPrm = cmd.Parameters.Add("inRefPrm",
OracleDbType.RefCursor, outRefPrm.Value, ParameterDirection. Input);

// Bind another Number parameter to get the REF Cursor column value
OracleParameter outNumPrm = cmd.Parameters.Add("'outNumPrm",
OracleDbType. Int32, DBNull.Value, ParameterDirection.Output);

cmd .ExecuteNonQuery(); //Execute the stored procedure

// Display the out parameter value
Console.WriteLine("out parameter is: " + outNumPrm.Value.ToString());
}
}

3.12 Implicit REF CURSOR Binding

ORACLE

ODP.NET enables applications to run stored procedures with REF CURSOR parameters
without using explicit binding for these parameters in the .NET code. ODP.NET
unmanaged and managed drivers support REF CURSOR implicit binding through
configuration done in .NET configuration files.

For a read-only result set, such as a REF CURSOR using OracleDataReader, REF CURSOR
schema information is retrieved automatically.

For some scenarios, such as when updateable REF CURSORs or Entity Framework is
used, developers need to define the REF CURSOR schema information so that the
application can bind the implicit REF CURSOR. Entity Framework applications use implicit
REF CURSOR binding to instantiate complex types from REF CURSOR data. Applications
must specify REF CURSOR bind and metadata information in the app.config, web.config,
or machine.config .NET configuration file.

The attributes supplied in the .NET configuration file are also used when the
application requests for schema information from the OracleDataReader object that
represents a REF CURSOR. This means that for REF CURSORS that are created using a
SELECT from a single table, the application can update that table through the use of
OracleDataAdapter and OracleCommandBui lder.

When using the Entity Framework, function imports can return an implicitly-bound REF
CURSOR. The REF CURSOR can be returned as a collection of complex types or entity
types. To return a complex type collection, the .NET configuration file needs to define
the REF CURSOR bind and metadata information. To return an entity type collection, only
the bind information needs to be defined in the .NET configuration file.

This section contains the following topics:

e Specifying REF CURSOR Bind and Metadata Information in the .NET
Configuration File

e Sample Configuration File and Application

* Usage Considerations

3-85

Chapter 3
Implicit REF CURSOR Binding

3.12.1 Specifying REF CURSOR Bind and Metadata Information in
the .NET Configuration File

ORACLE

Specify the REF CURSOR information in the oracle.dataacccess.client configuration
section of the .NET configuration file. Use an <add> element for each piece of
information. The add element uses name-value attributes to specify REF CURSOR
information. Use the following format to specify bind information:

<add

name="SchemaNane .PackageName .St or edPr ocedur eNane .RefCursor . Ref Cur sor Par anet er Posi ti on
O Nanme"

value="implicitRefCursor bi ndi nf o="mode=InputOutput|Output|Returnvalue*" />

Use the following format to specify metadata information:

<add

name="SchemaNane .PackageNarme. St or edPr ocedur eNane .RefCursorMetaData.Ref Cur sor Par anet er
Posi ti onor Name.Column.Col umOrdi nal ™

value="implicitRefCursor metadata=AttributesList" />

Each REF CURSOR column needs to have an add element defined for it. For example, if
you have a REF CURSOR returning five columns, then you need to define five add
elements in the config file.

Each add element contains the name and value attributes. The value attribute must
begin with the word implicitRefCursor followed by the bindinfo or metadata attribute for
specifying bind or metadata information.

The bindinfo information is used by ODP.NET for binding REF CURSOR parameters. The
metadata information is used by ODP.NET to associate the schema information with
the appropriate REF CURSOR. The metadata comprises of an attributes list that includes
parameters together with their values.

The SchemaNane, PackageNane, and St or edPr ocedur eNane are case-sensitive. In order to
run a stored procedure with implicit REF CURSOR binding, the
SchemaNane . PackageNane . St or edPr ocedur eName portion of the name attribute must exactly
match the name specified in the data dictionary for that stored procedure.

Note:

If the application uses implicit REF CURSOR binding feature outside of Entity
Framework, then the .NET configuration file and OracleCommand CommandText do
not require the schema name concatenated before the stored procedure name.

If any schema, package, or stored procedure name in the database contains
lowercase characters, then it must be enclosed within double quotation marks (") in
the config file to preserve the case. Double quotation marks are used within the name
attribute by using " when needed. For example, if the schema name is HrSchema,
the package name is HrPackage, and the stored procedure name is HrStoredProcedure
in the database, the config file should use the following:

3-86

ORACLE

Chapter 3
Implicit REF CURSOR Binding

<add
name="4"HrSchema" ."HrPackage" ."HrStoredProcedure" .RefCur
sorMetaData . . . />

By default, Oracle Database stores these names as uppercase characters. ODP.NET
assumes default behavior, and converts all names to uppercase characters unless you
explicitly preserve the case by using double quotation marks.

Note:

The SchemaNane, PackageNane, St or edPr ocedur eNane, Or Par anet er Name cannot

contain a period (".") in the name. For example, P.0 is an unacceptable
parameter name.

Depending on whether the application uses bind-by-name or bind-by-position, the

Ref Cur sor Par anet er Posi ti onOr Nane portion of the name attribute must be set with the
correct parameter position (for bind by position) or parameter name (for bind by
name). For functions, the position is 0-based, where the position 0 represents the
return value. For procedures, the position is 1-based, as there are no return values for
procedures. For example, if a stored procedure accepts five parameters, returning only
two REF CURSORs in the third and fifth parameter positions, then the .NET config REF
CURSOR bind information should contain one entry for position 3 and one entry for
position 5.

If bind-by-name is used, the attribute name is used to identify the REF CURSOR
parameter. The name should use the same name and case as the one specified in the
data dictionary for that stored procedure.

For bindinfo, the mode specifies the parameter direction of the parameter. The mode
must be either InputOutput, Output, or Returnvalue.

Note:
Implicit REF CURSOR binding for an input REF CURSOR parameter is not supported.

An exception is thrown at runtime if the .NET configuration file contains an
entry for a REF CURSOR whose mode is set to Input.

For metadata, The AttributesLi st contains the list of parameters. Table 3-18 describes
the parameters that can be included in the Attri but esLi st.

Example 3-1 shows a sample add element that uses bindinfo. Here, the schema name
is SCOTT and the stored procedure name is TESTPROC. The parameter name is
parameterl. The mode is output.

Example 3-2 shows a sample add element that uses metadata.

3-87

Chapter 3
Implicit REF CURSOR Binding

Table 3-18 Allowed Parameters in Attributes List

Name Type Required/Optional Description
for Entity
Framework
ColumnName System.String Required The name of the column.
ProviderType Oracle.DataAcces Required The database column type
s.Client.OracleD (OracleDbType) of the column
bType

NativeDataType System.String Required The Oracle type. For example,
NCLOB.

BaseColumnName System.String Optional The name of the column in the
database if an alias is used for
the column.

BaseSchemaName System.String Optional The name of the schema in the
database that contains the
column.

BaseTableName System.String Optional The name of the table or view in
the database that contains the
column.

ColumnSize System. Int64 Optional The maximum possible length

of a value in the column

NumericPrecision System.Intl16 Optional The maximum precision of the
column, if the column is a
numeric data type.

NumericScale System. Intl16 Optional The maximum scale of the
column, if the column is a
numeric data type.

IsUnique System.Boolean Optional Indicates whether or not the
column is unique.

IsKey System.Boolean Optional Indicates whether or not the
column is a key column. For a
table to be updated with the REF
CURSOR information, at least one
of the columns in the REF
CURSOR metadata should have
this value set to true

IsRowlD System.Boolean Optional true if the column is a ROWID,
otherwise false.
DataType System.RuntimeTy Optional Maps to the common language
pe runtime type.
AllowDBNull System.Boolean Optional true if null values are allowed,

otherwise false

IsAliased System.Boolean Optional true if the column is an alias;
otherwise false.
IsByteSemantic System.Boolean Optional IsByteSemantic is:
e true if the ColumnSize
value uses bytes semantics

« false if ColumnSize uses
character semantics

ORACLE 3-88

Chapter 3
Implicit REF CURSOR Binding

Table 3-18 (Cont.) Allowed Parameters in Attributes List
|

Name Type Required/Optional Description
for Entity
Framework
IsExpression System.Boolean Optional true if the column is an
expression, else false.
IsHidden System.Boolean Optional true if the column is hidden,
else false.
IsReadOnly System.Boolean Optional true if the column is read-only,
else false
IsLong System.Boolean Optional true if the column is of LONG,

LONG RAW, BLOB, CLOB, or
BFILE type, else false.

UdtTypeName System.String Optional The type name of the UDT.
ProviderDBType System.Data.DbTy Optional System.Data.DbType
pe
ObjectName System.String Optional Represents the name of the
object.

Some of the attributes, listed in Table 3-18, automatically have their values set using
the result set's metadata. Developers can override these default values by setting a
value explicitly.

You may have to explicitly define some attributes listed as optional for certain
operations. For example, updateable REF CURSOR requires the developer to define key
information.

Example 3-1 Using the add Element with bindinfo

<add name="SCOTT.TESTPROC.RefCursor.parameterl” value="implicitRefCursor
bindinfo="mode=Output®" />

Example 3-2 Using the add Element with metadata

<add name="scott.TestProc.RefCursorMetaData.parameterl.Column.0"
value="implicitRefCursor metadata="ColumnName=EMPNO;BaseColumnName=EMPNO;
BaseSchemaName=SCOTT ;BaseTableName=EMP ;NativeDataType=number;
ProviderType=Int32;DataType=System. Int32;ColumnSize=4;AllowDBNul l=false;
IsKey=true"" />

3.12.2 Sample Configuration File and Application

ORACLE

This section builds a sample application to illustrate implicit REF CURSOR binding. It
contains the following topics:

e Sample Stored Procedure and Function
e Sample Application Configuration File

e Sample Application That Uses the Configuration File

3-89

ORACLE

Chapter 3
Implicit REF CURSOR Binding

Sample Stored Procedure and Function

CREATE OR REPLACE FUNCTION GETEMP (
EMPID IN NUMBER) return sys_refcursor is
emp sys_refcursor;
BEGIN
OPEN emp FOR SELECT empno, ename FROM emp where empno = EMPID;
return emp;
END;
/

CREATE OR REPLACE PROCEDURE "GetEmpAndDept" (
EMPS OUT sys_refcursor,
DEPTS OUT sys_refcursor) AS
BEGIN
OPEN EMPS for SELECT empno, ename from emp;
OPEN DEPTS for SELECT deptno, dname from dept;
END;
/

Sample Application Configuration File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<oracle.dataaccess.client>
<settings>

<1-- The following is for SCOTT.GETEMP -->
<add name="'SCOTT.GETEMP.RefCursor.0"
value="implicitRefCursor bindinfo="mode=Returnvalue"" />

<1-- The following is for SCOTT.GETEMP"s REF CURSOR metadata -->

<add name="'SCOTT.GETEMP.RefCursorMetaData.0.Column.0"
value="implicitRefCursor metadata="ColumnName=EMPNO;
BaseColumnName=EMPNO; BaseSchemaName=SCOTT ; BaseTableName=EMP;
NativeDataType=number ;ProviderType=Int32;ProviderDBType=Int32;
DataType=System. Int32;ColumnSize=4;NumericPrecision=10;
NumericScale=3;AllowDBNul I=false; IsKey=true"" />

<add name="SCOTT.GETEMP.RefCursorMetaData.0.Column.1"
value="implicitRefCursor metadata="ColumnName=ENAME;
BaseColumnName=ENAME ; BaseSchemaName=SCOTT ;BaseTableName=EMP;
NativeDataType=varchar2;ProviderType=Varchar2;
ProviderDBType=String;DataType=System.String;
ColumnSize=10;AllowDBNul I=true*" />

<1-- The following is for "SCOTT"."GetEmpAndDept" -->
<add name="SCOTT."GetEmpAndDepté" .RefCursor . EMPS"
value="implicitRefCursor bindinfo="mode=Output*" />

<I-- The following is for SCOTT.GETEMP"s EMPS REF CURSOR metadata -->

<add name="SCOTT."GetEmpAndDeptéquot;
.RefCursorMetaData.EMPS.Column.0"
value="implicitRefCursor metadata="ColumnName=EMPNO;
BaseColumnName=EMPNO; BaseSchemaName=SCOTT ; BaseTableName=EMP;
NativeDataType=number ;ProviderType=Int32;ProviderDBType=Int32;
DataType=System. Int32;ColumnSize=4;NumericPrecision=10;
NumericScale=3;AllowDBNul I=false; IsKey=true"" />

<add name="SCOTT."GetEmpAndDeptéquot;

3-90

ORACLE

Chapter 3
Implicit REF CURSOR Binding

.RefCursorMetaData.EMPS.Column.1"

value="implicitRefCursor metadata="ColumnName=ENAME;
BaseColumnName=ENAME ; BaseSchemaName=SCOTT ;BaseTableName=EMP;
NativeDataType=varchar2;ProviderType=Varchar2;
ProviderDBType=String;DataType=System.String;
ColumnSize=10;AllowDBNul I=true*" />

<1-- The following is for SCOTT.GETEMP"s DEPTS REF CURSOR metadata -->
<add name="SCOTT."GetEmpAndDepté" .RefCursor . DEPTS"
value="implicitRefCursor bindinfo="mode=Output"" />

<add name="SCOTT."GetEmpAndDept"
.RefCursorMetaData.DEPTS.Column.0Q"
value="implicitRefCursor metadata="ColumnName=DEPTNO;
BaseColumnName=DEPTNO ; BaseSchemaName=SCOTT ; BaseTableName=DEPT;
NativeDataType=number ;ProviderType=Int32;ProviderDBType=Int32;
DataType=System. Int32;ColumnSize=4;NumericPrecision=10;
NumericScale=3;AllowDBNul I=false; IsKey=true"" />

<add name="SCOTT."GetEmpAndDeptéquot;
.RefCursorMetaData.DEPTS.Column.1"
value="implicitRefCursor metadata="ColumnName=DNAME;
BaseColumnName=DNAME ; BaseSchemaName=SCOTT ;BaseTableName=DEPT;
NativeDataType=varchar2;ProviderType=Varchar2;
ProviderDBType=String;DataType=System.String;
ColumnSize=10;AllowDBNul I=true*" />

</settings>

</oracle.dataaccess.client>
</configuration>

Sample Application That Uses the Configuration File

using System;
using System.Data;
using Oracle.DataAccess.Client;

class Program
{
static void Main(string[] args)
{
try
{
// Open a connection
string constr =
"User ld=scott;Password=tiger;Data Source=instl";
OracleConnection con = new OracleConnection(constr);
con.Open();

// Use implicit REF CURSOR binding

// to execute SCOTT.GETEMP function

// Use bind by position as configured

// in app.config for SCOT.GETEMP

OracleCommand cmd = con.CreateCommand();

cmd.CommandText = "SCOTT.GETEMP";

cmd.CommandType = CommandType.StoredProcedure;

cmd.BindByName = false;

OracleParameter empid = cmd.Parameters.Add("empid",
OracleDbType.Int32, ParameterDirection.Input);

empid.Value = 7654;

// Populate the DataSet

3-91

Chapter 3
Implicit REF CURSOR Binding

OracleDataAdapter adapter = new OracleDataAdapter(cmd);

DataSet ds = new DataSet();

adapter.Fill(ds);

Console.WriteLine("'Retrieved {0} row from EMP",
ds.Tables[0].Rows.Count);

// Use implicit REF CURSOR binding

// to execute "SCOTT"."GetEmpAndDept" procedure

// Use bind by name as configured

// in app.config for "SCOTT"."GetEmpAndDept"

cmd = con.CreateCommand();

cmd.CommandText = "\"SCOTT\".\"GetEmpAndDept\"";

cmd.CommandType = CommandType.StoredProcedure;

cmd.BindByName = true;

adapter = new OracleDataAdapter(cmd);

adapter.Fill(ds);

Console.WriteLine(*'Retrieved {0} rows from DEPT",
ds.Tables[1].Rows.Count);

catch (Exception ex)

// Output the message
Console.WriteLine(ex.Message);
if (ex.InnerException = null)
{
// If any details are available regarding
// errors in the app.config, print them out
Console.WriteLine(ex. InnerException._Message);
it (ex.InnerException.InnerException != null)
{
Console.WriteLine(
ex. InnerException. InnerException.Message);

3.12.3 Usage Considerations

This section discusses the following usage considerations when using implicit REF
CURSOR:

CommandText Property Considerations
Bind Considerations

Overloaded Stored Procedures

Type Initialization Exceptions

Using Stored Functions with Function Import

3.12.3.1 CommandText Property Considerations

ORACLE

ODP.NET applications should ensure that the stored procedure name and the
OracleCommand CommandText match exactly. Let's take a scenario where the stored
procedure name in the database is SCOTT.TESTPROC. Now, if the CommandText uses
TESTPROC, ODP.NET will look for entries matching TESTPROC only. The current schema

3-92

Chapter 3
Implicit REF CURSOR Binding

name will not be automatically appended to TESTPROC. So, the correct CommandText to
use in this scenario would be SCOTT.TESTPROC.

Also, the CommandText is case-sensitive and must use the same case as the stored
procedure name in the database. So if the stored procedure name in the database is
SCOTT.Testproc, then the CommandText must use SCOTT.Testproc.

3.12.3.2 Bind Considerations

If information about a REF CURSOR parameter has been added to the configuration file,
then applications should not try to explicitly bind the REF CURSOR parameter to
OracleCommand. ODP.NET automatically binds the REF CURSOR parameter at the
appropriate locations based on the information provided in the configuration file. If the
application stored procedure also has non-REF CURSOR parameters, then these
parameters must still be explicitly bound to OracleCommand.

If the information specified in the configuration file for a stored procedure identifies the
REF CURSOR parameter by name, then all the other non-REF CURSOR parameters should
also be bound by name. Also the BindByName property for the OracleCommand object
should be set to true in this case. Entity Framework always uses BindByName to run
stored procedures. Your .NET configuration file parameter names must use the same
case that was used when creating the stored procedure in the database.

If the OracleCommand BindByName property is set to false (default), then ODP.NET
assumes that the parameters have been bound based on their position, and all
parameters have been specified in the correct order. For such cases, the parameters
specified in the configuration file are bound in the same order in which they appear in
the configuration file.

3.12.3.3 Overloaded Stored Procedures

ODP.NET does not support multiple stored procedures with the same name inside the
configuration file. If an ODP.NET application uses an overloaded stored procedure, the
application can store only one overloaded stored procedure information in the
configuration file.

3.12.3.4 Type Initialization Exceptions

Type initialization exceptions can be caused by invalid .NET configuration file entries.
Evaluate the exception that is caught as well as its inner exceptions to determine
the .NET configuration file entry or the attribute setting that is causing the exception.

ODP.NET tracing logs the valid and invalid .NET configuration file entries that
ODP.NET has parsed. To look for .NET configuration file related entries, set the
TracelLevel to the Entry, exit, and SQL statement information level setting. Trace
entries related to implicit REF CURSOR binding have a (REFCURSOR) entry along with
(ERROR), if any errors are encountered.

3.12.3.5 Using Stored Functions with Function Import

ORACLE

Function Import only supports stored procedures, and does not support functions.
When using the Add Function Import dialog for the Entity Data Model that you have
created, the Get Column Information button does not return the metadata
information for the REF CURSOR that is being returned by a stored function, even if it is
configured properly in the .NET configuration file.

3-93

Chapter 3
LOB Support

3.13 LOB Support

ODP.NET provides an easy and optimal way to access and manipulate large object
(LOB) data types.

Note:

SecureFiles can be used with existing ODP.NET LOB classes.

This section includes the following topics:

e Large Character and Large Binary Data Types

e Oracle Data Provider for .NET LOB Objects

e Updating LOBs Using a DataSet

e Updating LOBs Using OracleCommand and OracleParameter
» Updating LOBs Using ODP.NET LOB Objects

e Temporary LOBs

3.13.1 Large Character and Large Binary Data Types
Oracle Database supports large character and large binary data types.

Large Character Data Types

e CLOB - Character data can store up to 4 gigabytes.

* NCLOB - Unicode National character set data can store up to 4 gigabytes.
Large Binary Data Types

e BLOB - Unstructured binary data can store up to 4 gigabytes.

e BFILE - Binary data stored in external file can store up to 4 gigabytes.

¢ Note:

LONG and LONG RAW data types are made available for backward compatibility
in Oracle9i, but should not be used in new applications.

3.13.2 Oracle Data Provider for NET LOB Objects

ODP.NET provides three objects for manipulating LOB data: OracleBFile, OracleBlob,
and OracleClob.

Table 3-19 shows the proper ODP.NET object to use for a particular Oracle LOB type.

ORACLE 3-94

Chapter 3
LOB Support

Table 3-19 ODP.NET LOB Objects

Oracle LOB Type ODP.NET LOB Object
BFILE OracleBFile

BLOB OracleBlob

CLOB OracleClob

NCLOB OracleClob

The ODP.NET LOB objects can be obtained by calling the proper typed accessor on
the OracleDataReader object, or by calling the proper typed accessor as an output
parameter on a command execution with the proper bind type.

All ODP.NET LOB objects inherit from the .NET Stream class to provide generic Stream
operations. The LOB data (except for BFILE types) can be updated using the ODP.NET
LOB objects by using methods such as Write. Data is not cached in the LOB objects
when read and write operations are carried out. Therefore, each read or write request
incurs a database round-trip. The OracleClob object overloads the Read method,
providing two ways to read data from a CLOB. The Read method that takes a byte[] as
the buffer populates it with CLOB data as Unicode byte array. The Read method that
takes a char[] as the buffer populates it with Unicode characters.

Additional methods can also be found on the OracleBFile object. An OracleBFile object
must be explicitly opened using the OpenFile method before any data can be read from
it. To close a previously opened BFILE, use the CloseFile method.

Every ODP.NET LOB object is a connected object and requires a connection during its
lifetime. If the connection associated with a LOB object is closed, then the LOB object
is not usable and should be disposed of.

If an ODP.NET LOB object is obtained from an OracleDataReader object through a
typed accessor, then its Connection property is set with a reference to the same
OracleConnection object used by the OracleDataReader object. If a LOB object is
obtained as an output parameter, then its Connection property is set with a reference to
the same OracleConnection property used by the OracleCommand object. If a LOB object
is obtained by invoking an ODP.NET LOB object constructor to create a temporary
LOB, the Connection property is set with a reference to the OracleConnection object
provided in the constructor.

The ODP.NET LOB object Connection property is read-only and cannot be changed
during its lifetime. In addition, the ODP.NET LOB types object can be used only within
the context of the same OracleConnection referenced by the ODP.NET LOB object. For
example, the ODP.NET LOB Connection property must reference the same connection
as the OracleCommand object if the ODP.NET LOB object is a parameter of the
OracleCommand. If that is not the case, ODP.NET raises an exception when the
command is executed.

3.13.3 Updating LOBs Using a DataSet

ORACLE

BFILE and BLOB data are stored in the DataSet as byte arrays while CLOB and NCLOB data
are stored as strings. In a similar manner to other types, an OracleDataAdapter object
can be used to fill and update LOB data changes along with the use of the
OracleCommandBui Ider object for automatically generating SQL.

3-95

Chapter 3
LOB Support

Note that an Oracle LOB column can store up to 4 GB of data. When the LOB data is
fetched into the DataSet, the actual amount of LOB data the DataSet can hold for a LOB
column is limited to the maximum size of a .NET string type, which is 2 GB. Therefore,
when fetching LOB data that is greater than 2 GB, ODP.NET LOB objects must be
used to avoid any data loss.

3.13.4 Updating LOBs Using OracleCommand and OracleParameter

To update LOB columns, LOB data can be bound as a parameter for SQL statements,
anonymous PL/SQL blocks, or stored procedures. The parameter value can be set as
a NET Framework type, ODP.NET type, or as an ODP.NET LOB object type. For
example, when inserting .NET string data into a LOB column in an Oracle9i database
or later, that parameter can be bound as OracleDbType.Varchar2. For a parameter
whose value is set to an OracleClob object, the parameter should be bound as
OracleDbType.Clob.

3.13.5 Updating LOBs Using ODP.NET LOB Objects

Oracle BFILEs cannot be updated; therefore, OracleBFile objects do not allow updates
to BFILE columns.

Two requirements must be met to update LOB data using ODP.NET LOB objects:

1. A transaction must be started before a LOB column is selected.

The transaction must be started using the BeginTransaction method on the
OracleConnection object before the command execution, so that the lock can be
released when the OracleTransaction Commit or Rollback method is invoked.

2. The row in which the LOB column resides must be locked; as part of an entire
result set, or on a row-by-row basis.

a. Locking the entire result set

Add the FOR UPDATE clause to the end of the SELECT statement. After execution
of the command, the entire result set is locked.

b. Locking the row - there are two options:

* Invoke one of the OracleDataReader typed accessors
(GetOracleClobForUpdate or GetOracleBlobForUpdate) on the
OracleDataReader object to obtain an ODP.NET LOB object, while also
locking the current row.

This approach requires a primary key, unique column(s), or a ROWID in the
result set because the OracleDataReader object must uniquely identify the
row to re-select it for locking.

e Execute an INSERT or an UPDATE statement that returns a LOB in the
RETURNING clause.

3.13.6 Temporary LOBs

ORACLE

Temporary LOBs can be instantiated for BLOB, CLOB, and NCLOB objects. To instantiate
an ODP.NET LOB object that represents a temporary LOB, the OracleClob or the
OracleBlob constructor can be used.

Temporary ODP.NET LOB objects can be used for the following purposes:

3-96

Chapter 3
ODP.NET XML Support

* Toinitialize and populate a LOB column with empty or non-empty LOB data.

* To pass a LOB type as an input parameter to a SQL statement, an anonymous
PL/SQL block, or a stored procedure.

* To act as the source or the destination of data transfer between two LOB objects
as in the CopyTo operation.

Note:

Temporary LOBs are not transaction aware. Commit and rollback
operations do not affect the data referenced by a temporary LOB.

3.14 ODP.NET XML Support

ODP.NET allows the extraction of data from relational and object-relational tables and
views as XML documents. The use of XML documents for insert, update, and delete
operations to the database is also allowed. Oracle Database supports XML natively in
the database, through Oracle XML DB, a distinct group of technologies related to high-
performance XML storage and retrieval. Oracle XML DB is an evolution of the
database that encompasses both SQL and XML data models in a highly interoperable
manner, providing native XML support.

ODP.NET, Managed Driver follows XPath 1.0 specification and hence it does not
support default XML namespaces. XML namespaces must be explicitly added to
search or update nodes. This behavior differs from ODP.NET, Unmanaged Driver.

For samples related to ODP.NET XML support in ODAC installs, see the following
directory:

ORACLE_BASE\ORACLE_HOVE\ODACsamples

This section includes these topics:

e Supported XML Features

* OracleXmIType and Connection Dependency
* Updating XMLType Data in the Database

e Updating XML Data in OracleXmlIType

* Characters with Special Meaning in XML

» Retrieving Query Result Set as XML

* Data Manipulation Using XML

3.14.1 Supported XML Features

ORACLE

XML support in ODP.NET provides the ability to do the following:

e Store XML data natively in the database as the Oracle database native type,
XMLType.

* Access relational and object-relational data as XML data from an Oracle Database
instance into the Microsoft .NET environment, and process the XML using the
Microsoft .NET Framework.

3-97

Chapter 3
ODP.NET XML Support

Save changes to the database using XML data.

Execute XQuery statements.

For the .NET application developer, these features include the following:

Enhancements to the OracleCommand, OracleConnection, and OracleDataReader
classes.

The following XML-specific classes:

OracleXmlType
OracleXmlType objects are used to retrieve Oracle native XMLType data.
OraclexmlStream

OracleXmlStream objects are used to retrieve XML data from OracleXmlType
objects as a read-only .NET Stream object.

OracleXmlQueryProperties

OracleXmlQueryProperties objects represent the XML properties used by the
OracleCommand class when the XmlCommandType property is Query.

OracleXmlSaveProperties

OracleXmlSaveProperties objects represent the XML properties used by the
OracleCommand class when the XmlCommandType property is Insert, Update, or
Delete.

¢ See Also:

— "XQuery Support"

— "OracleCommand Class"

— "OracleXmlType Class"

— "OracleXmlStream Class"

— "OracleXmlQueryProperties Class"
— "OracleXmlSaveProperties Class"
— Oracle XML DB Developer’s Guide

3.14.2 XQuery Support

ODP.NET supports the XQuery language through a native implementation of
SQL/XML functions, XMLQuery and XMLTable. When executing XQuery statements,
Oracle XML DB generally evaluates XQuery expressions by compiling them into the
same underlying structures as relational queries. Queries are optimized, leveraging
both relational-database and XQuery-specific optimization technologies, so that Oracle
XML DB serves as a native XQuery engine.The treatment of all XQuery expressions,

ORACLE

whether natively compiled or evaluated functionally, is transparent: programmers do

not need to change their code to take advantage of XQuery optimizations.

3-98

Chapter 3
ODP.NET XML Support

3.14.3 OracleXmlType and Connection Dependency

The read-only Connection property of the OracleXmlType class holds a reference to the
OracleConnection object used to instantiate the OraclexmlType class.

How the OracleXmlType object obtains a reference to an OracleConnection object
depends on how the OracleXmlType class is instantiated:

* Instantiated from an OracleDataReader class using the GetOracleXmlType,
GetOraclevalue, or GetOracleValues method:

The Connection property is set with a reference to the same OracleConnection
object used by the OracleDataReader object.

* Instantiated by invoking an OracleXmlType constructor with one of the parameters
of type OracleConnection:

The Connection property is set with a reference to the same OracleConnection
object provided in the constructor.

e Instantiated by invoking an OraclexmlType(OracleClob) constructor:

The Connection property is set with a reference to the OracleConnection object used
by the OracleClob object.

An OraclexmlType object that is associated with one connection cannot be used with a
different connection. For example, if an OracleXmlType object is obtained using
OracleConnection A, that OraclexmlType object cannot be used as an input parameter of
a command that uses OracleConnection B. By checking the Connection property of the
OracleXmlType objects, the application can ensure that OraclexmlType objects are used
only within the context of the OracleConnection referenced by its connection property.
Otherwise, ODP.NET raises an exception.

3.14.4 Updating XMLType Data in the Database

Updating XMLType columns does not require a transaction. However, encapsulating the
entire database update process within a transaction is highly recommended. This
allows the updates to be rolled back if there are any errors.

XMLType columns in the database can be updated using Oracle Data Provider for .NET
in a few ways:

» Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder

* Updating with OracleCommand and OracleParameter

3.14.4.1 Updating with DataSet, OracleDataAdapter, and
OracleCommandBuilder

ORACLE

If the XMLType column is fetched into the DataSet, the XMLType data is represented as
a .NET String.

Modifying XMLType data in the DataSet does not require special treatment. XMLType data
can be modified in the same way as any data that is stored in the DataSet. When a
change is made and the OracleDataAdapter.Update method is invoked, the
OracleDataAdapter object ensures that the XMLType data is handled properly. The
OracleDataAdapter object uses any custom SQL INSERT, UPDATE, or DELETE statements

3-99

Chapter 3
ODP.NET XML Support

that are provided. Otherwise, valid SQL statements are generated by the
OracleCommandBui Ider object as needed to flush the changes to the database.

3.14.4.2 Updating with OracleCommand and OracleParameter

The OracleCommand class provides a powerful way of updating XMLType data, especially
with the use of an OracleParameter object. To update columns in a database table, the
new value for the column can be passed as an input parameter of a command.

3.14.4.2.1 Input Binding

To update an XMLType column in the database, a SQL statement can be executed using
static values. In addition, input parameters can be bound to SQL statements,
anonymous PL/SQL blocks, or stored procedures to update XMLType columns. The
parameter value can be set as .NET Framework Types, ODP.NET Types, or
OracleXmlType objects.

While XMLType columns can be updated using an OracleXmlType object, having an
instance of an OracleXmlType class does not guarantee that the XMLType column in the
database can be updated.

3.14.4.2.2 Setting XMLType Column to NULL Value

Applications can set an XMLType column in the database to a NULL value, with or without
input binding, as follows:

e Setting NULL values in an XMLType column with input binding

To set the XMLType column to NULL, the application can bind an input parameter
whose value is DBNulI.Value. This indicates to the OracleCommand object that a NULL
value is to be inserted.

Passing in a null OracleXmlType object as an input parameter does not insert a NULL
value into the XMLType column. In this case, the OracleCommand object raises an
exception.

e Setting NULL Values in an XMLType Column without input binding

The following example demonstrates setting NULL values in an XMLType column
without input binding:

// Create a table with an XMLType column in the database
CREATE TABLE XML_TABLE(NUM_COL number, XMLTYPE_COL xmltype);

An application can set a NULL value in the XMLType column by explicitly inserting a
NULL value or by not inserting anything into that column as in the following
examples:

insert into xml_table(xmltype_col) values(NULL);

update xml_table t set t.xmltype_col=NULL;

3.14.4.2.3 Setting XMLType Column to Empty XML Data

The XMLType column can be initialized with empty XML data, using a SQL statement:

// Create a table with an XMLType column in the database
CREATE TABLE XML_TABLE(NUM_COL number, XMLTYPE_COL xmltype);

ORACLE 3-100

Chapter 3
ODP.NET XML Support

INSERT INTO XML_TABLE (NUM_COL, XMLTYPE_COL) VALUES (4,
XMLType.createxml (*<DOC/>"));

3.14.5 Updating XML Data in OracleXmlType

The following are ways that XML data can be updated in an OracleXmlType object.

e The XML data can be updated by passing an XPATH expression and the new
value to the Update method on the OracleXmlType object.

* The XML data can be retrieved on the client side as the .NET Framework
XmIDocument object using the GetXmlDocument method on the OracleXmlType object.
This XML data can then be manipulated using suitable .NET Framework classes.
A new OracleXmlType can be created with the updated XML data from the .NET
Framework classes. This new OraclexmlType is bound as an input parameter to an
update or insert statement.

3.14.6 Characters with Special Meaning in XML

The following characters in Table 3-20 have special meaning in XML. For more
information, refer to the XML 1.0 specifications

Table 3-20 Characters with Special Meaning in XML
|

Character Meaning in XML Entity Encoding
< Begins an XML tag <
> Ends an XML tag >
Quotation mark "
! Apostrophe or single quotation '
mark
& Ampersand &

When these characters appear as data in an XML element, they are replaced with
their equivalent entity encoding.

Also certain characters are not valid in XML element names. When SQL identifiers
(such as column names) are mapped to XML element names, these characters are
converted to a sequence of hexadecimal digits, derived from the Unicode encoding of
the character, bracketed by an introductory underscore, a lowercase x and a trailing
underscore. A blank space is not a valid character in an XML element name. If a SQL
identifier contains a space character, then in the corresponding XML element name,
the space character is replaced by _x0020_, which is based on Unicode encoding of the
space character.

3.14.7 Retrieving Query Result Set as XML

This section discusses retrieving the result set from a SQL query as XML data.

3.14.7.1 Handling Date and Time Format

The generated XML DATE and TIMESTAMP formats are based on the standard XML
Schema formats.

ORACLE 3-101

Chapter 3
ODP.NET XML Support

3.14.7.2 Characters with Special Meaning in Column Data

ORACLE

If the data in any of the select list columns in the query contains any characters with
special meaning in XML (see Table 3-20), these characters are replaced with their
corresponding entity encoding in the result XML document.

The following examples demonstrate how ODP.NET handles the angle bracket
characters in the column data:

/* Database Setup

connect scott/tiger@oracle

drop table specialchars;

create table specialchars ("id" number, name varchar2(255));
insert into specialchars values (1, "<Jones>");

commit;

*/

// C#

using System;

using System.Data;

using System.Xml;

using Oracle.DataAccess.Client;

class QueryResultAsXMLSample
{

static void Main()

{

OracleConnection con = new OracleConnection();

con.ConnectionString = "User ld=scott;Password=tiger;Data Source=oracle;";
con.Open();

// Create the command
OracleCommand cmd = new OracleCommand(

, con);

// Set the XML command type to query.
cmd.XmlCommandType = OracleXmlCommandType.Query;

// Set the SQL query
cmd.CommandText = "select * from specialchars";

// Set command properties that affect XML query behavior.
cmd.BindByName = true;

// Set the XML query properties
cmd . XmlQueryProperties._MaxRows = -1;

// Get the XML document as an XmlIReader.
XmIReader xmIReader = cmd.ExecuteXmlReader();
XmIDocument xmlIDocument = new XmlDocument();

xmIDocument.PreserveWhitespace = true;
xmIDocument.Load(xmIReader);
Console.WriteLine(xmIDocument.OuterXml);

// Close and Dispose OracleConnection object

con.Close();
con.Dispose();

3-102

Chapter 3
ODP.NET XML Support

}
}

The following XML document is generated for that table: The XML entity encoding that
represents the angle brackets appears in bold.

<?xml version = "1.0"?>
<ROWSET>
<ROW>
<id>1</id >
<NAME>&I t ; Jonesé> ; </NAME>
</ROW>
</ROWSET>

3.14.7.3 Characters in Table or View Name

If a table or view name has any non-alphanumeric characters other than an
underscore (), the table or view name must be enclosed in quotation marks.

For example, to select all entries from a table with the name test”ing, the CommandText
property of the OracleCommand object must be set to the following string:

"select * from \"test"ing\"";

3.14.7.4 Case-Sensitivity in Column Name to XML Element Name Mapping

The mapping of SQL identifiers (column names) to XML element names is case-
sensitive, and the element names are in exactly the same case as the column names
of the table or view.

However, the root tag and row tag hames are case-insensitive. The following example
demonstrates case-sensitivity in this situation:

//Create the following table
create table casesensitive_table ("1d" number, NAME varchar2(255));

//insert name and id
insert into casesensitive_table values(l, "Smith");

The following XML document is generated:

<?xml version = "1.0"?>
<ROWSET>
<ROW>
<ld>1</1d>
<NAME>Smi th</NAME>
</ROW>
</ROWSET>

Note that the element name for the 1d column matches the case of the column name.

3.14.7.5 Column Name to XML Element Name Mapping

For each row generated by the SQL query, the SQL identifier (column name) maps to
an XML element in the generated XML document, as shown in the following example:

ORACLE 3-103

Chapter 3
ODP.NET XML Support

// Create the following table

create table emp_table (EMPLOYEE_ID NUMBER(4), LAST_NAME varchar2(25));
// Insert some data

insert into emp_table values(205, "Higgins®);

The SQL query, SELECT * FROM EMP_TABLE, generates the following XML document:

<?XML version="1.0"?>
<ROWSET>
<ROW>
<EMPLOYEE_1D>205</EMPLOYEE_I1D>
<LAST_NAME>Higgins</LAST_NAME>
</ROW>
</ROWSET>

The EMPLOYEE_ID and LAST_NAME database columns of the employees table map to the
EMPLOYEE_ID and LAST_NAME elements of the generated XML document.

This section demonstrates how Oracle database handles the mapping of SQL
identifiers to XML element names, when retrieving query results as XML from the
database. The demonstration uses the specialchars table involving the some id column.

// Create the specialchars table
create table specialchars ('some id" number, name varchar2(255));

Note that the specialchars table has a column named some id that contains a blank
space character. The space character is not allowed in an XML element name.

When retrieving the query results as XML, the SQL identifiers in the query select list
can contain characters that are not valid in XML element names. When these SQL
identifiers (such as column names) are mapped to XML element names, each of these
characters is converted to a sequence of hexadecimal digits, derived from the Unicode
encoding of the characters, bracketed by an introductory underscore, a lowercase x,
and a trailing underscore.

Thus, the SQL query in the following example can be used to get a result as an XML
document from the specialchars table:

select "some id", name from specialchars;

3.14.7.5.1 Improving Default Mapping

ORACLE

You can improve the default mapping of SQL identifiers to XML element names by
using the following techniques:

* Modify the source. Create an object-relational view over the source schema, and
make that view the new source.

* Use cursor subqueries and cast-multiset constructs in the SQL query.

* Create an alias for the column or attribute names in the SQL query. Prefix the
aliases with an at sign (@) to map them to XML attributes instead of XML
elements.

* Modify the XML document. Use Extensible Stylesheet Language Transformation
(XSLT) to transform the XML document. Specify the XSL document and
parameters. The transformation is done automatically after the XML document is
generated from the relational data. Note that this may have an impact on
performance.

3-104

Chapter 3
ODP.NET XML Support

» Specify the name of the root tag and row tag used in the XML document.

3.14.7.6 Object-Relational Data

ODP.NET can generate an XML document for data stored in object-relational columns,
tables, and views, as shown in the following example:

// Create the following tables and types
CREATE TYPE "EmployeeType" AS OBJECT (EMPNO NUMBER, ENAME VARCHAR2(20));
/
CREATE TYPE EmployeeListType AS TABLE OF "EmployeeType™;
/
CREATE TABLE mydept (DEPTNO NUMBER, DEPTNAME VARCHAR2(20),
EMPLIST EmployeeListType)
NESTED TABLE EMPLIST STORE AS EMPLIST_TABLE;
INSERT INTO mydept VALUES (1, “"depta®,
EmployeeListType(""EmployeeType (1, “empa®)));

The following XML document is generated for the table:

<?xml version = "1.0"?>
<ROWSET>
<ROW>
<DEPTNO>1</DEPTNO>
<DEPTNAME>depta</DEPTNAME>
<EMPLIST>
<Enpl oyeeType>
<EMPNO>1</EMPNO>
<ENAME>empa</ENAME>
</Enpl oyeeType>
</EMPLIST>
</ROW>
</ROWSET>

ODP.NET encloses each item in a collection element, with the database type name of
the element in the collection. The mydept table has a collection in the EMPLIST database
column and each item in the collection is of type EmployeeType. Therefore, in the XML
document, each item in the collection is enclosed in the type name EmployeeType, which
appears in bold in the example.

3.14.7.7 NULL Values

If any database row has a column with a NULL value, then that column does not appear
for that row in the generated XML document.

3.14.8 Data Manipulation Using XML

This section discusses making changes to the database data using XML.

3.14.8.1 Handling Date and Time Format

The generated XML DATE and TIMESTAMP formats are based on the standard XML
Schema formats.

ORACLE 3-105

Chapter 3
ODP.NET XML Support

3.14.8.2 Saving Changes Using XML

Changes can be saved to database tables and views using XML data. However,
insert, update, and delete operations cannot be combined in a single XML document.
ODP.NET cannot accept a single XML document and determine which are insert,
update, or delete changes.

The insert change must be in an XML document containing only rows to be inserted,
the update changes only with rows to be updated, and the delete changes only with
rows to be deleted.

For example, using the employees table that comes with the HR sample schema, you
can specify the following query:

select employee_id, last_name from employees where employee_id = 205;

The following XML document is generated:

<?xml version = "1.0"?>
<ROWSET>
<ROW>
<EMPLOYEE_ 1D>205</EMPLOYEE_I1D>
<LAST_NAME>H ggi ns</LAST_NAME>
</ROW>
</ROWSET>

To change the name of employee 205 from Hi ggi ns to Sni t h, specify the employees table
and the XML data containing the changes as follows:

<?xml version = "1.0"?>
<ROWSET>
<ROW>
<EMPLOYEE_1D>205</EMPLOYEE_I1D>
<LAST_NAME>Sni t h</LAST_NAME>
</ROW>
</ROWSET>

3.14.8.3 Characters with Special Meaning in Column Data

ORACLE

If the data in any of the elements in the XML document contains characters that have
a special meaning in XML (see Table 3-20), these characters must be replaced with
appropriate entity encoding, or be preceded by an escape character in the XML
document, so that the data is stored correctly in the database table column. Otherwise,
ODP.NET throws an exception.

The following example demonstrates how ODP.NET handles the angle bracket special
characters in the column data, using entity encoding:

// Create the following table
create table specialchars ("id" number, name varchar2(255));

The following XML document can be used to insert values (1, "<Jones>") into the
specialchars table. The XML entity encoding that represents the angle brackets
appeatrs in bold.

<?xml version = "1.0"?>
<ROWSET>

<ROW>

<id>1</id >

3-106

Chapter 3
ODP.NET XML Support

<NAME>&! t ; Jonesé> ; </NAME>
</ROW>
</ROWSET>

3.14.8.4 Characters with Special Meaning in Table or View Name

If a table or view name has any non-alphanumeric characters other than an
underscore (), the table or view name must be enclosed in quotation marks.

For example, to save changes to a table with the name test"ing, the
OracleCommand . XmlSaveProperties.TableName property must be set to "\"test"ing\"""

3.14.8.5 Case-Sensitivity in XML Element Name to Column Name Mapping

For each XML element that represents a row of data in the XML document, the child
XML elements map to database column names. The mapping of the child element
name to the column name is always case-sensitive, but the root tag and row tag
names are case-insensitive. The following example demonstrates this case-sensitivity:

//Create the following table
create table casesensitive_table ("1d" number, NAME varchar2(255));

The following XML document can be used to insert values (1, Smith) into the
casesensitive_table:

<?xml version = "1.0"?>
<ROWSET>
<ROW>
<ld>1</1d>
<NAME>Smi th</NAME>
</ROW>
</ROWSET>

Note that the element name for the 1d column matches the case of the column name.

3.14.8.6 XML Element Name to Column Name Mapping

This section describes how Oracle database handles the mapping of XML element
names to column names when using XML for data manipulation in the database. The
following specialchars table involving the some id column demonstrates this handling.

// Create the specialchars table
create table specialchars (“'some id" number, name varchar2(255));

Note that the specialchars table has a column named some id that contains a blank
space character. The space character is not allowed in an XML element name.

3.14.8.7 Saving Changes to a Table Using an XML Document

ORACLE

When an XML document is used to save changes to a table or view, the
OracleCommand. XmlSaveProperties.UpdateColumnsList property is used to specify the list
of columns to update or insert.

When an XML document is used to save changes to a column in a table or view, and
the corresponding column name contains any of the characters that are not valid in an
XML element name, the escaped column name must be specified in the
UpdateColumnsList property as in the following example.

3-107

ORACLE

Chapter 3
ODP.NET XML Support

The following XML document can be used to insert values (2, <Jones>) into the
specialchars table:

<?xml version = "1.0"?>
<ROWSET>
<ROW>
<some_x0020_id>2</some_x0020_id>
<NAME>&It;Jonesé> ; </NAME>
</ROW>
</ROWSET>

The following example specifies the list of columns to update or insert:

/* Database Setup

connect scott/tiger@oracle

drop table specialchars;

create table specialchars (“'some id" number, name varchar2(255));
insert into specialchars values (1, "<Jones>");

commit;

*/

// C#

using System;

using System.Data;

using System.Xml;

using Oracle.DataAccess.Client;

class InsertUsingXmlDocSample
{

static void Main()

{

OracleConnection con = new OracleConnection();

con.ConnectionString = "User ld=scott;Password=tiger;Data Source=oracle;";
con.Open();
Console.WriteLine("'Connected Successfully™);

// Create the command
OracleCommand cmd = new OracleCommand(

, con);

// Set the XML command type to query.
cmd.XmlCommandType = OracleXmlCommandType. Insert;

// Set the XML document

cmd.CommandText = "<?xml version = "1.0"?>\n" + "<ROWSET>\n" + "<ROW>\n" +
""'<some_x0020_id>2</some_x0020_id>\n" + "<NAME>&It;Jones></NAME>\n" +
"</ROW>\n" + "'</ROWSET>\n";

cmd.XmlSaveProperties.Table = "specialchars";

string[] ucols = new string[2];
ucols[0] = "some_x0020_id";
ucols[1] = "NAME";

cmd.XmlSaveProperties.UpdateColumnsList = ucols;

// Insert rows
int rows = cmd.ExecuteNonQuery();

Console.WriteLine("Number of rows inserted successfully : {0} ", rows);

3-108

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

// Close and Dispose OracleConnection object
con.Close();
con.Dispose();
}
}

3.14.8.7.1 Improving Default Mapping
You can improve the default mapping by using the following techniques:

* Modify the target. Create an object-relational view over the target schema, and
make the view the new target.

* Modify the XML document. Use XSLT to transform the XML document. Specify the
XSL document and parameters. The transformation is done before the changes
are saved. Note that this is may have an impact on performance.

» Specify the name of the row tag used in the XML document.

3.14.8.8 Object-Relational Data

Changes in an XML document can also be saved to object-relational data. Each item
in a collection can be specified in one of the following ways in the XML document:

e By enclosing the database type name of the item as the XML element name.

e By enclosing the name of the database column holding the collection with _ITEM
appended as the XML element name.

3.14.8.9 Multiple Tables

Oracle Database does not save changes to multiple relational tables that have been
joined together. Oracle recommends that you create a view on those relational tables,
and then update that view. If the view cannot be updated, triggers can be used
instead.

3.14.8.10 Commit Transactions

When the changes in an XML document are made, either all the changes are
committed, or if an error occurs, all changes are rolled back.

3.15 Oracle User-Defined Types (UDTs) and .NET Custom
Types

ODP.NET has the ability to represent Oracle UDTs found in the database as custom
types in .NET applications. UDTs are useful in representing complex entities as a
single object that can be shared among applications. Oracle products, such as Oracle
Spatial and Oracle XML DB, use their own complex types frequently.

To represent Oracle UDTs as .NET custom types, applications must apply .NET
attributes to custom classes and structs, and to their public fields and properties.

ORACLE 3-109

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

Note:

ODP.NET, Managed Driver does not support UDTs and .NET Custom Types

To convert between UDTs and custom types, ODP.NET uses custom interfaces.
This section discusses the following topics:

» Oracle User-Defined Types (UDTs)

e Custom Types

e Specifying Custom Type Mappings

e Converting Between Custom Types and Oracle UDTs

* Oracle UDT Attribute Mappings

e Oracle UDT Retrieval from OracleDataReader

* Oracle UDT Metadata Retrieval from OracleDataReader
e Oracle UDT Parameter Binding with OracleParameter

» Populating the DataSet with Oracle UDTs

* UDT Method Invocation

e Configuration Settings for Oracle UDTs

3.15.1 Oracle User-Defined Types (UDTs)

Oracle Data Provider for .NET supports Oracle object types or user-defined types
(UDTs), which are defined in the Oracle database.

There are two kinds of UDTs:

* Object types (Oracle Object)

» Collection types (which can be VARRAY types or nested table types)
Additionally, ODP.NET supports references (REF) to object types.

The term UDT is used interchangeably with Oracle object types and abstract data
types (ADTS).

The name of the Oracle UDT is case-sensitive and must be in the form
schema_nane. t ype_nane.

UDT samples are provided in the ORACLE_BASE\ \ ORACLE_HOMVE\ODP .NET\Samples\UDT
directory.

3.15.2 Custom Types

ORACLE

Oracle Data Provider for .NET supports UDTs by representing Oracle UDTs defined in
the database as .NET types, that is, custom types. For every Oracle UDT that the
application wishes to fetch and manipulate, one custom type factory and one custom
type are needed. The custom factory class is solely responsible for instantiating the
custom type. ODP.NET uses the interfaces implemented on the custom factory

3-110

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

classes to instantiate custom types at run time. Custom types define the mapping
between the Oracle UDT attributes or elements to the .NET members. ODP.NET uses
the interfaces implemented on the custom type instances to transfer values between
the Oracle UDT and the custom type at run time.

Custom types can be .NET classes or structures. They can represent either Oracle
Objects or Oracle Collections. Custom types can be implemented manually by the
application developer or generated through an ODP.NET code generation tool.

Once the factory class and the custom type are defined and meet the implementation
requirements, the application may set ODP.NET to automatically discover the mapping
between the Oracle UDT and the custom type. This discovery process is based on the
attribute that is applied on the custom factory class. Alternatively, the application can
provide an explicit mapping through a configuration file.

Oracle Collections can be represented as an array of .NET Types. For example, an
Oracle Collection type of NUMBER can be mapped to an int[]. Moreover, an Oracle
Collection type of an Oracle UDT can be mapped to an array of the custom type.

Custom types must adhere to certain requirements in order for ODP.NET to represent
Oracle UDTs as custom types. These requirements are as follows:

3.15.2.1 Required Custom Type Implementations

ORACLE

This section lists the required implementations for a custom .NET class or structure.

* Oracle.DataAcess.Types. I0racleCustomType interface implementation
This interface is used for conversions between custom types and Oracle UDTs.

The interface methods are implemented using the static methods of the Oracleudt
class.

e Custom Type Factories

A custom type factory is used to create an instance of a custom type. A custom
type factory is an implementation of either the 10racleCustomTypeFactory interface,
the I0racleArrayTypeFactory interface, or both interfaces, as follows:

— To create a custom type that represents an Oracle Object, the custom type or
a separate custom type factory class must implement the
Oracle.DataAccess.Types. I0racleCustomTypeFactory interface.

— To create a custom type that represents an Oracle Collection, the custom type
or a separate custom type factory class must implement the
Oracle.DataAccess. Types. I0racleCustomTypeFactory interface and the
Oracle.DataAccess.Types. I0racleArrayTypeFactory interface.

— To create an array type that represents an Oracle Collection, a custom type
factory class must implement the
Oracle.DataAccess.Types. I0racleArrayTypeFactory interface.

e Custom Type Member Mapping Attributes

The custom type member mapping attributes specify the mapping between custom
type members and either Oracle object attributes or Oracle collection elements.

There are two types of custom type member mapping attributes:

— OracleObjectMappingAttribute

3-111

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

This attribute specifies the mapping between custom type members and
Oracle object attributes for custom types that represent Oracle objects. This
attribute must be applied to each custom type member (either field or property)
that represents an Oracle Object attribute.

Note:

Not all Oracle object attributes need to be mapped to custom type
members. If there is no OracleObjectMappingAttribute for a particular
object attribute, ODP.NET ignores that object attribute when converting
between Oracle objects and custom types.

— OracleArrayMappingAttribute

This attribute specifies the custom type member that stores the elements of an
Oracle collection for custom types representing Oracle collections.The
attribute must be specified on only one of the custom type members.

Oracle.DataAcess.Types. INullable interface implementation

This interface is used to determine if an instance of a custom type represents a
null UDT. The IsNull property of the interface enables applications and ODP.NET
to determine whether or not the UDT is null.

Static Null field

The public static Nul I property is used to return a null UDT. This property returns a
custom type with an IsNull property that returns true.

3.15.2.2 Optional Custom Type Implementations

ORACLE

The following are optional:

IXMLSerializable

The IXMLSerializable interface is used in the .NET 2.0 framework to enable
conversion between the custom type and its XML representation.This interface is
only used if the serialization and deserialization of a custom type is needed in the
DataSet.

Static Parse and Public ToString methods

These methods enable conversion between the custom type and its string
representation.

These methods are invoked when a DataGrid control is used to accept changes
and display instance values.

Type Inheritance

Type Inheritance refers to the process of deriving an Oracle UDT in the database
from a super type.

If the custom type represents an Oracle UDT that is derived from a super type, the
custom class should follow the same type hierarchy, that is, the custom class
should be derived from another custom class that represents the super type
defined in the database.

OracleCustomTypeMappingAttribute

3-112

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

The OracleCustomTypeMappingAttribute object specifies the mapping between a
custom type (or an array type) and an Oracle UDT.

There must be a unique custom type factory for each Oracle UDT used by the
application as follows:

— Oracle Object Types:

The custom type factory must return a custom type that only represents the
specified Oracle Object Type.

— Oracle Collection Types:

The custom type factory may return a custom type that can be used by other
Oracle Collection Types. This is common when an array type is used to
represent an Oracle Collection, for example, when an int[] is used to
represent a collection of NUMBERS.

If the OracleCustomTypeMappingAttribute is not specified, then custom type
mappings must be specified through XML configuration files, that is,
machine.config, and either app.config for Windows applications or web.config for
web applications.

3.15.3 Specifying Custom Type Mappings

After creating a custom type, the application must specify a custom type mapping that
maps the custom type to an Oracle UDT in the database. This can be done using a
custom type factory or XML in configuration files.

Using XML to specify custom type mappings has priority, if both techniques have been
implemented. At run time, if ODP.NET finds custom type mappings specified in
configuration files, it ignores any custom type mappings specified through the
OracleCustomTypeMappingAttribute object. If a .NET application dynamically loads .NET
assemblies, which contain .NET classes that Oracle UDTs are mapped to, then the
mapping between .NET classes and Oracle UDTs must be configured using a .NET
config file.

Custom type mappings cannot be specified using synonyms, regardless of whether or
not the mapping is provided through the OracleCustomTypeMappingAttribute object or
the XML configuration file.

¢ See Also:

Oracle Developer Tools for Visual Studio help sections on User-Defined Types
Node under Server Explorer in Visual Studio for further information on UDT

mapping.

This section contains these topics:

e "Using a Custom Type Factory to Specify Custom Type Mappings"
e "Using XML in Configuration Files to Specify Custom Type Mappings"

ORACLE 3-113

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3.15.3.1 Using a Custom Type Factory to Specify Custom Type Mappings

The application can specify a custom type mapping using a custom type factory. The
application supplies the name of the Oracle UDT, in the format schenma_nane. t ype_nane,
to an OracleCustomTypeMappingAttribute object and applies the name to the
corresponding custom type factory. A custom type factory is a class or struct that
implements either or both the 10racleCustomTypeFactory and 10racleArrayTypeFactory
interfaces.

Note that for each Oracle UDT used by the application, there must be a unique custom
type factory. Additionally, for Oracle Object Types, the custom type factory must return
a custom type that uniquely represents the specified Oracle Object Type. For Oracle
Collection Types, the custom type factory returns a custom type that can be used by
other Oracle Collection Types. This is common when an custom type that is an array
type represents an Oracle Collection, that is, when an int[] is used to represent a
collection of NUMBERS.

At run time, using reflection programming, ODP.NET discovers all the custom type
mappings specified by the application through the OracleCustomTypeMappingAttribute
object.

Note:

The UDT name that is specified in the OracleCustomTypeMappingAttribute may
not contain a period.

3.15.3.2 Using XML in Configuration Files to Specify Custom Type Mappings

The application can specify a custom type mapping with XML in configuration files, for
example: using machine.config, and either app.config for Windows applications or
web.config for web applications.

The custom type mappings must be specified in the oracle.dataaccess.client
configuration section group. Each custom type mapping must be added to the
collection of custom type mappings using the XML element <add>.

Each custom type mapping is consists of a name attribute and a value attribute. The
name attribute may be any user-specified name that represents the custom type
mapping. The value attribute must begin with udtMapping and be followed by the
required and optional attributes listed below.

3.15.3.2.1 Required Attributes

ORACLE

» factoryName

The case-sensitive assembly qualified name of the custom type factory class or
struct.

If the assembly that defines the custom type factory does not have a strong name,
then a partial assembly name consisting of just the assembly name is sufficient. In
the case of strongly named assemblies, a complete assembly name is required. It
must include the assembly name, the Version, Culture, PublicKeyToken.

3-114

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

* typeName

The case-sensitive name of the UDT defined in the database. By default all UDTs
are created in the database with upper case names

e schemaName

The case-sensitive schema in which the UDT is defined in the database. By
default all schemas are created in the database with upper case names

3.15.3.2.2 Optional Attributes

e dataSource

If specified, indicates that the custom type mapping applies only to Oracle UDTs
defined in the database that the application connects to, as specified by the TNS
name alias.

The Data Source is case-insensitive.

The following is an example of the format of the XML that can be specified in the
configuration file for .NET 2.0:

<oracle.dataaccess.client>
<settings>
<add name="Person" value="udtMapping factoryName="Sample.PersonFactory,
Sample, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"
typeName="PERSON" schemaName="SCOTT" dataSource="oracle""/>
<add name="Student" value="udtMapping factoryName="Sample.StudentFactory,
Sample, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null"”
typeName="STUDENT" schemaName="SCOTT""/>
</settings>
</oracle.dataaccess.client>

3.15.3.3 Using Custom Type Mappings

ORACLE

During data retrieval, the application uses the custom type mappings to convert an
Oracle UDT to a custom type. When data is provided back to the database through an
input or input/output parameter, or by an update through an Oracle REF, the application
uses the mappings to convert the custom type to an Oracle UDT.

In the case of input and input/output parameters, the application must also set the
OracleParameter UdtTypeName property to the user-defined type name of the parameter.

In certain cases, where Oracle UDTs are part of a type hierarchy, the custom type
must be instantiated as a specific type in the type hierarchy. The Oracle UDT provided
by the custom type mapping must a subtype of the Oracle UDT specified by the
OracleParameter UdtTypeName property.

For example, the parameter for a stored procedure is of type, SCOTT.PERSON and has a
subtype, SCOTT.STUDENT. The application has a custom class instance that represents
SCOTT.STUDENT. The UdtTypeName is set to SCOTT.PERSON, but the custom type mapping
indicates that the custom class is mapped to SCOTT.STUDENT and overrides the
UdtTypeName when it instantiates the Oracle UDT. Thus, ODP.NET instantiates and
binds Oracle UDTs appropriately when the custom object represents an Oracle UDT
that is a subtype of the parameter type.

3-115

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3.15.4 Converting Between Custom Types and Oracle UDTs

ODP.NET can convert between Oracle UDTs and custom types, if the proper attribute
mappings are specified and the custom types are defined properly.

ORACLE

ODP.NET performs a conversion whenever an Oracle UDT is fetched as:

In, out, in/out parameters bound for SQL or PL/SQL execution

The DbType property of OracleParameter must be set to DbType.Object or the
OracleDbType property must be set to OracleDbType.Object or OracleDbType.Array.

For parameters that are user-defined types, the UdtTypeName property of the
OracleParameter object must be always set to the parameter type.

Note: The UdtTypeName may differ from the Oracle UDT specified in the custom type
mapping. This is the case when the parameter type is a super type of the Oracle
UDT that the custom type represents.

Column value retrieved from an OracleDataReader object

If the application requests for the value either through the Getvalue, GetValues,
GetOracleValue, GetOracleValues, GetProviderSpecificValue, or
GetProviderSpecificvalues methods or the Item[] property for a UDT column,
ODP.NET finds the corresponding custom type that represents the Oracle UDT
and carries out the proper conversion.

Part of a Resultset that populates the DataSet

If the application populates the DataSet with a result that contains UDTs using the
Fill method on the OracleDataAdapter, the DataSet is populated with custom types
that represent Oracle UDTs. With ADO.NET 2.0, the DataSet is populated with
custom types for UDT columns regardless of whether the
ReturnProviderSpecificTypes on the OracleDataAdapter is set to true or false.

A Object referenced through a REF

When an Object referenced by a REF is retrieved, the custom type that represents
the Oracle UDT is returned.

The application can use the OracleUdtFetchOption method to control the copy of
the Object that is returned as follows:

— If the OracleUdtFetchOption.Cache option is specified and a cached copy of the
object exists, the cached copy is immediately returned. If no cached copy
exists, the latest object copy from the database is cached and returned.

— If the OracleUdtFetchOption.Server option is specified, the latest object copy
from the database is cached and returned. If the object is already cached, the
latest object copy overwrites the existing one.

— If the OracleUdtFetchOption.TransactionCache option is specified, there are two
possibilities within the same transaction:

* If the object copy was previously retrieved using the Server or
TransactionCache option, the TransactionCache option behavior becomes
equivalent to the Cache option behavior.

* If the object copy was not previously retrieved using the Server or
TransactionCache option, the TransactionCache option behavior becomes
equivalent to the Server option behavior.

3-116

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3.15.5 Oracle UDT Attribute Mappings

ORACLE

Table 3-21 lists valid mappings of attributes (for objects) and elements (for
collections), between Oracle UDT types and custom object types which can be
either .NET types or Oracle provider-specific types (ODP.NET types).

Oracle collections do not have to map to a custom class. They can map to arrays of a
specific type. Table 3-21 indicates those collections with elements of a specified
Oracle type that can map to arrays of a .NET Type or a provider-specific type. For
example, if an Oracle Collection is a VARRAY of NUMBER(8), it can map to a typeof(int[]).
This eliminates the need to construct a class that only holds an int[].

For .NET 2.0, Oracle Collections can be mapped to Nullable types. This allows .NET
2.0 applications to obtain a nullable int[] which can hold null values in the int[].

Note that Oracle UDT attributes and elements cannot be mapped to object or
object[].

Table 3-21 Attribute Mappings Between UDTs and Custom Object Types
|

Type of UDT Attribute or Element .NET Type ODP.NET Type
BFILE #1 System.Byte[] OracleBFile
BINARY FLOAT System.Byte, OracleDecimal

System. Intl16,
System. Int32,
System. Int64,
System.Single,
System.Double,
System.Decimal

BINARY DOUBLE System.Byte, OracleDecimal
System. Intl16,
System. Int32,
System. Int64,
System.Single,
System.Double,
System.Decimal

BLOB System.Byte[] OracleBlob

CHAR System.Char[], OracleString
System.String

CLOB System.Char[], OracleClob
System.String

DATE System.DateTime OracleDate

INTERVAL DAY TO SECOND System.TimeSpan, OraclelntervalDS

INTERVAL YEAR TO MONTH System. Int64 OraclelntervalYM

LONG RAW System.Byte[] OracleBinary

NCHAR System.Char[], OracleString
System.String

NCLOB System.Char[], OracleClob

System.String

3-117

Chapter 3

Oracle User-Defined Types (UDTs) and .NET Custom Types

Table 3-21 (Cont.) Attribute Mappings Between UDTs and Custom Object

Types

Type of UDT Attribute or Element .NET Type ODP.NET Type
Nested Table custom type, . NET CDP Type[]
type[], or cust om
type[]
NUMBER System.Byte, OracleDecimal
System. Intl16,
System. Int32,
System. Int64,
System.Single,
System.Double,
System.Decimal
NVARCHAR2 System.Char[], OracleString
System.String
Object Type custom type N/A
RAW System.Byte[] OracleBinary
REF System.String OracleRef
TIMESTAMP System.DateTime OracleTimeStamp
TIMESTAMP WITH LOCAL TIME ZONE System.DateTime OracleTimeStampLTZ
TIMESTAMP WITH TIME ZONE System.DateTime OracleTimeStampTZ
VARCHAR2 System.Char[], OracleString
System.String
VARRAY custom type, . NET CDP Type[]
type[], or cust om
type[l
Notes:

1. Conversion from a System._Byte[] to a BFILE is not supported, and therefore,

System.Byte[] only represents a BFILE in read-only scenarios.

3.15.6 Oracle UDT Retrieval from OracleDataReader

In order to retrieve Oracle UDTs from the OracleDataReader, an application must
specify a custom type mapping that determines the type that will represent the Oracle
UDT. Once a custom type mapping has been specified and any necessary custom
types have been created, the application can retrieve Oracle UDTSs.

ORACLE

Table 3-22 shows the type and value returned from an OracleDataReader object based
on the method invoked, the column type, and whether or not there is a valid Custom

type mapping.

Note:

PS uj ect refers to a provider-specific object.

3-118

Chapter 3

Oracle User-Defined Types (UDTs) and .NET Custom Types

Table 3-22 Type and Value Returned from OracleDataReader Object

OracleDataReader method/ Column Data Custom Type Value Returned for NULL Value

property invocation Type Mapping Oracle UDT Returned for
Oracle UDT

Item[index], I'tem[name], Object, none Exception thrown Exception thrown

GetValue(), GetValues() Collection

Item[index], I'tem[name], Object schenma. type cust om obj ect DBNull.vValue

GetValue(), GetValues()

Item[index], I'tem[name], Collection schema. type cust om obj ect | DBNull.value

Getvalue(), Getvalues()

Item[index], 1tem[name],
GetValue(), GetValues()

GetString()

GetProviderSpecificvalue(
),
GetProviderSpecificVvalue
s(), GetOraclevalue(),
GetOraclevalues()

GetProviderSpecificvalue(
),
GetProviderSpecificvalue
s(), GetOraclevalue(),
GetOraclevalues()

GetProviderSpecificvalue(
),
GetProviderSpecificValue
s(), GetOraclevalue(),
GetOraclevalues(),
GetOracleRef()

GetOracleString()

REF

REF
Object,

Collection

Collection

REF

REF

none | schema. t ype

none | schena. t ype

schema. type

schema. type

none | schema. t ype

none | schena. t ype

custom obj ect[]
| . NET Type[] | PS
obj ect[]

string (HEX)

string (HEX)

cust om obj ect

custom obj ect[]
| . NET Type[] | PS
obj ect[]

OracleRef

DBNull .Value

Exception thrown

custom type.Null

null

OracleRef.Null

OracleString (HEX) OracleString._Nul

3.15.7 Oracle UDT Metadata Retrieval from OracleDataReader

An OracleDataReader object can return metadata used to determine the custom type
that represents an Oracle UDT when a .NET Type or Provider-Specific Type accessor
is invoked. The same custom type is used when populating the DataSet using the
OracleDataAdapter.Fill method.

Table 3-23 shows the values returned from the OracleDataReader GetFieldType and
GetProviderSpecificFieldType methods that specify the .NET type of the column.

ORACLE

3-119

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

Table 3-23 Values Returned from OracleDataReader Methods
]

OracleDataReader Column Data Custom Type Return Value

Method/Property Type Mapping

invocation

GetFieldType(index) Object, none Exception thrown
Collection

GetFieldType(index) Object schema. type typeof(cust om type)

GetFieldType(index) Collection schenma. type typeof(cust om type) |

typeof(custom type[])) |
typeof(. NET type[])) |

typeof(PS type[])

GetFieldType(index) REF none | typeof(string)
schema. type

GetProviderSpecificField Object, none Exception thrown

Type(index) Collection

GetProviderSpecificField Object, schema. type typeof(cust om type)

Type(index)

GetProviderSpecificField Collection schema. type typeof(cust om type) |

Type(index) typeof(customtype[])) |
typeof (. NET type[])) |
typeof(PS type[])

GetProviderSpecificField REF none | typeof(OracleRef)
Type(index) schema. type

3.15.8 Oracle UDT Parameter Binding with OracleParameter

This section discusses using UDT output and input parameter bindings with an
OracleParameter object.

¢ See Also:

"Parameter Binding"

This section contains these topics:

e Guidelines for Binding UDT Input and Output Parameters
e UDT Input Parameter Binding with OracleParameters

e UDT Output Parameter Binding with OracleParameters

3.15.8.1 Guidelines for Binding UDT Input and Output Parameters

Developers must consider the following when using UDT parameter bindings with an
OracleParameter object.

* The UdtTypeName property must be set. Binding is based on the UdtTypeName
property regardless of the parameter direction.

ORACLE 3-120

Chapter 3

Oracle User-Defined Types (UDTs) and .NET Custom Types

Note:

The udtTypeName may differ from the Oracle UDT specified in the custom
type mapping. This occurs when the parameter type is a super type of the
Oracle UDT that the custom type represents.

e In case of Input/Output binding, the behavior is the same as Input and Output

parameters.

e For Input parameter values, the bind value is converted to the UDT specified by

the custom type mapping.

e For Output parameters:

— If the value being returned is an Oracle Object or Collection, it is converted to
a custom type or array type as specified by the custom type mapping. The
value returned is always a custom type or an array type, regardless of whether
the property most recently set was DbType or OracleDbType.

— If the value being returned is a REF, then no custom type mapping is required.

3.15.8.2 UDT Input Parameter Binding with OracleParameters

Only certain combinations of these OracleParameter property values, DbType,
OracleDbType, and UdtTypeName, can exist on the OracleParameter object.
OracleParameter objects cannot be set to combinations that are not listed.

Table 3-24 describes the valid ways of binding input parameters for Oracle UDTs.

The last column indicates the Oracle type that ODP.NET converts the OracleParameter

value to before binding.

Table 3-24 Valid Ways to Bind Input Parameters for Oracle UDTs
]

OracleParameter.

OracleParameter.

OracleParameter Custom Type

Oracle Type converted to

Value DbType or . UdtTypeName Mappings before Binding
OracleParameter.
OracleDbType

cust om obj ect | DbType.Object | not set none | Exception thrown

cust om obj ect[] OracleDbType.Object | schenma. type

| NET object[] | OracleDbType.Array |

PS object[] | OracleDbType.Ref |

String (HEX) |

OracleString(HEX

) | OracleRef

cust om obj ect[] DbType.Object | schema. type none Exception thrown

| NET object[] | OracleDbType.Object |

PS object[] OracleDbType.Array

cust om obj ect DbType.Object schema. type schema. type Specified UDT is

ORACLE

instantiated. Value is
bound as Object or
Collection, based on the
UdtTypeName property

3-121

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

Table 3-24 (Cont.) Valid Ways to Bind Input Parameters for Oracle UDTs
]

OracleParameter.
Value

OracleParameter. OracleParameter Custom Type Oracle Type converted to
DbType or . UdtTypeName Mappings before Binding
OracleParameter.

OracleDbType

cust om obj ect

cust om obj ect

.NET object[] |
PS object[] |
cust om obj ect[]

.NET object[] |
PS object[] |
cust om obj ect[]

cust om obj ect

| NET object[] |
PS object[]

cust om obj ect[]

String (HEX) |
OracleString
(HEX) | OracleRef

Char[] (HEX) |
String (HEX) |
OracleString
(HEX) | OracleRef

OracleDbType.Object schema. type schena. type Specified UDT is
instantiated. schena. t ype
must represent an object.

OracleDbType.Array schema. type schema. type Specified UDT is
instantiated. schema. t ype
must represent a

collection.
DbType.Object | schema. type schema. type UDT specified by
OracleDbType.Array OracleParameter.UdtType
Name is instantiated.
OracleDbType.Object schema. type none | Exception thrown
schema. type
OracleDbType.Ref schema. type none | Exception thrown
schema. type
DbType.Object | schema. type none | Exception thrown
OracleDbType.Object | schena. t ype
OracleDbType.Array
OracleDbType.Ref schema. type none | A REF
schema. type

3.15.8.3 UDT Output Parameter Binding with OracleParameters

Table 3-25 Vali

Only certain combinations of these OracleParameter property values, DbType,
OracleDbType, and UdtTypeName, can exist on the OracleParameter object.
OracleParameter objects cannot be set to combinations that are not listed.

Table 3-25 shows the supported ODP.NET output parameter bindings of Oracle
database objects.

The last column indicates the type that ODP.NET converts the OracleParameter value
to before binding.

d Ways to Bind Output Parameters for Oracle UDTs

Type returned OracleParameter. DbType OracleParame Custom Type Type converted to
from Oracle ter. Mappings
UdtTypeName

Object/ DbType.Object | not set none | schena. type Exception thrown
Collection/REF OracleDbType.Object |

OracleDbType.Array |

OracleDbType.Ref
ORACLE 3-122

Chapter 3

Oracle User-Defined Types (UDTs) and .NET Custom Types

Table 3-25 (Cont.) Valid Ways to Bind Output Parameters for Oracle UDTs

___|]
OracleParameter. DbType OracleParame Custom Type

Type returned

Type converted to

from Oracle ter. Mappings
UdtTypeName

Object/ DbType.Object | schenma. type none Exception thrown

Collection OracleDbType.Object |
OracleDbType.Array

Object DbType.Object | schema. type schema. type cust om obj ect
OracleDbType.Object

Object OracleDbType.Array | schema. type none | schema. type Exception thrown
OracleDbType.Ref

Collection OracleDbType.Array | schema. type schema. type custom obj ect | custom
DbType.Object object[] |.NET

object[] | PS object[]

Collection OracleDbType.Ref | schenma. type none | schema. type Exception thrown
OracleDbType.Object

REF DbType.Object | schema. type none | schema. type Exception thrown
OracleDbType.Object |
OracleDbType.Array

REF OracleDbType.Ref schema. type none | schema.type OracleRef

3.15.9 Populating the DataSet with Oracle UDTs

The DataSet is a disconnected result set. With ADO.NET 2.0, both .NET types and
provider-specific types can be used to populate the DataSet. This section describes the
types used to populate the DataSet when the column is an Oracle UDT.

Table 3-26 lists the types that populate the DataSet column, based on the Oracle
column type, the ReturnProviderSpecificTypes property of the DataAdapter, the
existence of a custom type mapping, the DataSet column type, the DataSet column

value, and the DataSet column null value.

Table 3-26 Types that Populate the DataSet with ADO.NET 2.0
]

Oracle ReturnProvider- Custom Type DataSet Column Type DataSet Column DataSet
Column SpecificTypes Mappings Value Column Null
Type Property Value
Object/ False/True none Exception thrown Exception thrown Exception
Collection thrown
Object/ False schema.type typeof(customtype) custom obj ect DbNul'l.Value
Collection
Object/ True schema.type typeof(customtype) custom obj ect custom
Collection obj ect .Null
Collection False schema.type typeof(cust om .NET type[] | PS DbNul'l.value

type[])| typeof(. NET object[] | custom

type[]) | typeof(PS obj ect[]

type[])
ORACLE 3-123

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

Table 3-26 (Cont.) Types that Populate the DataSet with ADO.NET 2.0
]

Oracle ReturnProvider- Custom Type DataSet Column Type DataSet Column DataSet
Column SpecificTypes Mappings Value Column Null
Type Property Value
Collection True schema.type typeof(cust om .NET type[] | PS null
type[])| typeof(. NET object[] | custom
type[]) | typeof(PS object[]
type[])
REF False none | typeof(string) string/HEX DbNul'l.Value
schema.type
REF True none | typeof(OracleRef) OracleRef OracleRef.Nu
schema.type 11

3.15.10 UDT Method Invocation

ODP.NET supports invocation of methods defined for a UDT on the database. This
can be accomplished by doing the following:

1. Set the CommandType as CommandType.StoredProcedure.
2. Set the CommandText as "type_nane. pr ocedur e_name"

3. Execute the command using any of the Execute methods on the OracleCommand
object.

For instance functions, the parameters are as follows:
e The first parameter must be the return value.

e The second parameter must be the UDT instance on which the instance method is
invoked, which is the instance of the .NET custom object.

e Subsequent parameters are for the function.

For instance procedures, the first parameter must be the UDT instance.

For static methods, the UDT instance is not needed.

3.15.11 Configuration Settings for Oracle UDTs

ORACLE

ODP.NET exposes two configuration settings to determine how ODP.NET handles
Oracle UDTs.

* StatementCacheWithUdts
* UdtCacheSize

These configuration settings can be specified as machine-wide settings for a particular
version of ODP.NET, using the registry key with the name that exists under
HKEY_LOCAL_MACH INE\SOFTWARENORACLE\ODP .NET\Assenbl y_Ver si on. The configuration
settings specified in the registry can be overridden if an entry is created in the
machine.config for .NET framework-wide settings, or in the app.config or web.config for
application-specific settings.

3-124

Chapter 3
Bulk Copy

3.15.11.1 StatementCacheWithUdts

StatementCacheWithUdts specifies whether or not ODP.NET caches Oracle UDTs
retrieved by a SELECT statement along with the statement when it is returned to the
statement cache. Possible values are 1 - Yes (the default) or O - No.

For the value of 1, the Oracle UDTs are cached along with the statements. Therefore,
the memory that contained the UDTs can be re-used; subsequent executions of the
same statement do not require additional memory. This may result in an overall higher
performance.

For the value of 0, ODP.NET frees the memory for the retrieved Oracle UDTs before
the statement is returned to the statement cache. This may result in poorer
performance because subsequent executions will require new memory allocations.

3.15.11.2 UdtCacheSize

UdtCacheSize specifies the size of the object cache for each connection that ODP.NET
uses when retrieving and manipulating Oracle UDTs. The value for this setting must
be specified in kilobytes (KB) with the default 4096KB, equivalent to 4 MB.

This configuration setting is used to determine how frequently the objects in the object
cache will be purged (using an LRU approach) as the limit of the object cache size
approaches.

3.16 Bulk Copy

ODP.NET provides a Bulk Copy feature which enables applications to efficiently load
large amounts of data from a table in one database to another table in the same or a
different database.

The ODP.NET Bulk Copy feature uses a direct path load approach, which is similar to,
but not the same as Oracle SQL*Loader. Using direct path load is faster than
conventional loading (using conventional SQL INSERT statements). Conventional
loading formats Oracle data blocks and writes the data blocks directly to the data files.
Bulk Copy eliminates considerable processing overhead.

The ODP.NET Bulk Copy feature can load data into older Oracle databases.

Note:

ODP.NET, Managed Driver does not support Bulk Copy.

The ODP.NET Bulk Copy feature is subject to the same basic restrictions and integrity
constraints for direct path loads, as discussed in the next few sections.

3.16.1 Data Types Supported by Bulk Copy

Bulk Copy supports the following Oracle database data types:

* NUMBER

ORACLE 3-125

Chapter 3
Bulk Copy

* BINARY_DOUBLE
* BINARY_FLOAT

e CHAR
* NCHAR
* VARCHAR2

* NVARCHAR2

* LONG
e C(CLOB
e BLOB
* DATE
e TIMESTAMP

e TIMESTAMP WITH TIME ZONE

e TIMESTAMP WITH LOCAL TIME ZONE
e INTERVAL YEAR TO MONTH

* INTERVAL DAY TO SECOND

Bulk copy does not support overwrites.

3.16.2 Restrictions on Oracle Bulk Copy of a Single Partition

* The table that contains the partition cannot have any global indexes defined on it.

* The tables that the partition is a member of cannot have referential and check
constraints enabled.

* Enabled triggers are not allowed.

3.16.3 Integrity Constraints Affecting Oracle Bulk Copy

ORACLE

During a Oracle bulk copy, some integrity constraints are automatically enabled or
disabled, as follows:

Enabled Constraints

During an Oracle bulk copy, the following constraints are automatically enabled by
default:

* NOT NULL
e UNIQUE
e PRIMARY KEY (unique-constraints on not-null columns)

NOT NULL constraints are checked at column array build time. Any row that violates the
NOT NULL constraint is rejected.

UNIQUE constraints are verified when indexes are rebuilt at the end of the load. The
index is left in an Index Unusable state if it violates a UNIQUE constraint.

3-126

Chapter 3
Oracle Database Advanced Queuing Support

Disabled Constraints

During an Oracle bulk copy, the following constraints are automatically disabled by
default:

* CHECK constraints
» Referential constraints (FOREIGN KEY)

If the EVALUATE CHECK_CONSTRAINTS clause is specified, then CHECK constraints are not
automatically disabled. The CHECK constraints are evaluated during a direct path load
and any row that violates the CHECK constraint is rejected.

3.16.4 Database Insert Triggers

Table insert triggers are disabled when a direct path load begins. After the rows are
loaded and indexes rebuilt, any triggers that were disabled are automatically
reenabled. The log file lists all triggers that were disabled for the load. There should be
no errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table when
they are enabled. As a result, insert triggers do not fire for any rows loaded on the
direct path. When using the direct path, the application must ensure that any behavior
associated with insert triggers is carried out for the new rows.

3.16.5 Field Defaults

Default column specifications defined in the database are not available with direct path
loading. Fields for which default values are desired must be specified with the
DEFAULTIF clause. If a DEFAULTIF clause is not specified and the field is NULL, then a null
value is inserted into the database.

3.17 Oracle Database Advanced Queuing Support

ORACLE

Oracle Database Advanced Queuing (AQ) provides database-integrated message
gueuing functionality. Oracle Database AQ is built on top of Oracle Streams and
leverages the functions of Oracle Database so that messages can be stored
persistently, propagated between queues on different computers and databases, and
transmitted using Oracle Net Services and HTTP(S).

Note:
ODP.NET, Managed Driver does not support the AQ .NET classes.

As Oracle Database AQ is implemented in database tables, all operational benefits of
high availability, scalability, and reliability are also applicable to queue data. Oracle
Database AQ supports standard database features such as recovery, restart, and
security.

The following items discuss Oracle Database AQ concepts:

* Queues and Queue Tables

3-127

ORACLE

Chapter 3
Oracle Database Advanced Queuing Support

Messages enqueued in a queue are stored in a queue table. A queue table must
be created before creating a queue based on it. Use the DBMS_AQADM PL/SQL
package or Oracle Developer Tools for Visual Studio to create and administer
gueue tables and queues.

Queues are represented by OracleAQQueue objects.
Single-Consumer and Multiple-Consumer Queues

A single-consumer queue is created based on a single consumer queue table.
Messages enqueued in a single-consumer queue can be dequeued by only a
single consumer.

A multiple-consumer queue is based on a multiple-consumer queue table. This
gueue supports queue subscribers and message recipients.

Message Recipients

A message producer can submit a list of recipients when enqueuing a message.
This allows for a unique set of recipients for each message in the queue. The
recipient list associated with the message overrides the subscriber list, if any,
associated with the queue. The recipients need not be in the subscriber list.
However, recipients can be selected from among the subscribers.The Recipients
property of an OracleAQMessage can be used to specify the recipients to a specific
message in terms of OracleAQAgent objects.

Enqueue

Messages are enqueued when producer applications push the messages into a
gueue. This is accomplished by calling the Enqueue method on an OracleAQQueue
object. Multiple messages can be enqueued using the EnqueueArray method.

Dequeue

Messages are dequeued when consumer applications pull the messages from a
gueue. This is accomplished by calling the Dequeue method on an OracleAQQueue
object. Multiple messages can be dequeued using the DequeueArray method.

Listen

Subscriber applications can use a Listen call to monitor multiple queues for
subscriptions on different queues. This is a more scalable solution for cases where
a subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.This is accomplished by calling the
Listen method of the OracleAQQueue class, passing the list of subscriptions in form
of an array.

Notification

Subscriber applications can utilize the notification mechanism to get notifications
about message availability in a queue. The applications can decide to skip or
dequeue the message from the queue based on the information received.

A subscriber application must register for event notification on the queues from
which it wants to receive notifications. This is represented by the MessageAvailable
event on OracleAQQueue. The event is triggered when messages matching the
subscriptions arrive.

Notifications can be registered as regular or grouping notifications. A time out
value for these notifications can also be specified. Various notification options can
be set using the OracleAQQueue.Notification property. Notifications set on an
OracleAQQueue object gets cancelled automatically when the object gets disposed.

3-128

Chapter 3
Oracle Database Advanced Queuing Support

» Buffered Messaging

In buffered messaging, messages reside in a shared memory area. This makes it
faster than persistent messaging. The messages are written to disk only when the
total memory consumption of buffered messages approaches the available shared
memory limit. Buffered messaging is ideal for applications that do not require the
reliability and transaction support of Oracle Database AQ persistent messaging.

Buffered and persistent messages use the same single-consumer or multi-
consumer queues, and the same administrative and operational interfaces. They
are distinguished from each other by a delivery mode parameter. When an
application enqueues a message to an Oracle Database AQ queue, it sets the
delivery mode parameter as well.

The delivery mode parameter can be set on OracleAQMessage by modifying the
DeliveryMode property. Buffered messaging is supported in all queue tables
created with compatibility 8.1 or higher.

3.17.1 Using ODP.NET for Advanced Queuing

.NET applications can use ODP.NET to access all the operational features of AQ such
as Enqueuing, Dequeuing, Listen, and Notification.

Table 3-27 maps the AQ features to their corresponding ODP.NET implementation.

Table 3-27 Mapping AQ Features with their ODP.NET Implementation

___|
Functionality ODP.NET Implementation

Create a Message Create an OracleAQMessage object

Enqueue a single message Specify the message as OracleAQMessage, queue as
OracleAQQueue and enqueue options on OracleAQQueue, call
OracleAQQueue.Enqueue

Enqueue multiple messages Specify the messages as an OracleAQMessage array in
OracleAQQueue.EnqueueArray

Dequeue a single message Specify dequeue options on OracleAQQueue and call
OracleAQQueue.Dequeue

Dequeue multiple messages Call OracleAQQueue.DequeueArray

Listen for messages on Call OracleAQQueue.Listen.To listen on multiple queues use
Queue(s) static Listen method of OracleAQQueue
Message Notifications Use OracleAQQueue.MessageAvailable Event along with the

NotificationConsumers property

Note:

AQ samples are provided in the ORACLE_BASE\ORACLE_HOVE\ODP.NET\Samples
directory.

ORACLE 3-129

Chapter 3
Oracle Database Advanced Queuing Support

3.17.1.1 Enqueuing and Dequeuing Example

ORACLE

The following example demonstrates enqueuing and dequeuing messages using a
single consumer queue. The first part of the example performs the requisite database
setup for the database user, SCOTT. The second part of the example demonstrates
enqueuing and dequeuing messages.

-- Part I: Database setup required for this demo

SQL> ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY Pwd4Sct;
User altered.
SQL> GRANT ALL ON DBMS_AQADM TO scott;

BEGIN
DBMS_AQADM.CREATE_QUEUE_TABLE(
queue_table=>"scott.test_g_tab",
queue_payload_type=>"RAW",
multiple_consumers=>FALSE);

DBMS_AQADM. CREATE_QUEUE(
gueue_name=>"scott.test_q°,
queue_table=>"scott.test_g_tab");

DBMS_AQADM.START_QUEUE(queue_name=>"scott._test_q");
END;

BEGIN
DBMS_AQADM.STOP_QUEUE("scott.test_q");

DBMS_AQADM.. DROP_QUEUE(
gueue_name => "scott.test -,
auto_commit => TRUE);

DBMS_AQADM .DROP_QUEUE_TABLE(
queue_table => "scott.test _g_tab",
force => FALSE,
auto_commit => TRUE);

END;
/
-- End of Part |, database setup.

//Part 11: Enqueuing and dequeuing messages
//C#

using System;

using System.Text;

using Oracle.DataAccess.Client;

using Oracle.DataAccess.Types;

namespace ODPSample

3-130

ORACLE

Chapter 3
Oracle Database Advanced Queuing Support

/// <summary>
/// Demonstrates Enqueuing and Dequeuing raw message
/// using a single consumer queue
/// </summary>
class EnqueueDequeue
{
static void Main(string[] args)
{
// Create connection
string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
OracleConnection con = new OracleConnection(constr);

// Create queue
OracleAQQueue queue = new OracleAQQueue(''scott.test g, con);

try

{
// Open connection
con.Open();

// Begin txn for enqueue
OracleTransaction txn = con.BeginTransaction();

// Set message type for the queue
queue.MessageType = OracleAQMessageType.Raw;

// Prepare message and RAW payload

OracleAQMessage engMsg = new OracleAQMessage();

byte[] bytePayload = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
engMsg.Payload = bytePayload;

// Prepare to Enqueue
queue.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

// Enqueue message
queue.Enqueue(engMsg) ;

Console.WriteLine("Enqueued Message Payload
+ ByteArrayToString(engMsg.Payload as byte[]));
Console.WriteLine("Messageld of Enqueued Message : "
+ ByteArrayToString(engMsg.-Messageld));

// Enqueue txn commit
txn.Commit();

// Begin txn for Dequeue
txn = con.BeginTransaction();

// Prepare to Dequeue
queue.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
queue.DequeueOptions.Wait = 10;

// Dequeue message
OracleAQMessage degMsg = queue.Dequeue();

Console.WriteLine("'Dequeued Message Payload
+ ByteArrayToString(degMsg.Payload as byte[]));
Console.WriteLine("Messageld of Dequeued Message : "
+ ByteArrayToString(degMsg.-Messageld));

3-131

Chapter 3
Continuous Query Notification Support

// Dequeue txn commit
txn.Commit();
}

catch (Exception e)

{

Console.WriteLine("Error: {0}", e.Message);

}
finally

// Close/Dispose objects
queue.Dispose();
con.Close();
con.Dispose();

}
}

// Function to convert byte[] to string
static private string ByteArrayToString(byte[] byteArray)

StringBuilder sb = new StringBuilder();
for (int n = 0; n < byteArray.Length; n++)

sh.Append((int.Parse(byteArray[n].ToString())).ToString("'X"));

return sb.ToString();

}
}
}

3.18 Continuous Query Notification Support

Oracle Data Provider for .NET provides a notification framework that supports
Continuous Query Notification, enabling applications to receive client-side notifications
when there is a change in a query result set, schema objects, or the state of the
database, even if no Oracle Data Provider for .NET database connection exists. Using
Continuous Query Notification, an application can maintain the validity of the client-
side cache (for example, the ADO.NET DataSet) easily. Continuous Query Notification
was previously known as Database Change Notification.

Note:

Continuous Query Notification is not supported in a .NET stored procedure.

Using the notification framework, applications can specify a query result set as a
registered query for notification request on the database, and create this notification
registration to maintain the validity of the query result set. When there is a change on
the database that could affect the client-side cache's query results, the notification
framework notifies the application.

ORACLE 3-132

ORACLE

Chapter 3
Continuous Query Notification Support

Note:

The content of a change notification is referred to as an invalidation message. It
indicates that the query result set is now invalid and provides information about
the changes.

Based on the information provided by the invalidation message, the application can
then act accordingly. For example, the application might need to refresh its own copy
of the data for the registered query that is stored locally in the application.

¢ Note:

If a registered object is dropped from the database and a new one is created
with the same name in the same schema, re-registration is required to receive
notifications for the newly created object.

¢ See Also:

Firewalls, such as Windows Firewall, may be set up to block TCP network ports, which
blocks incoming database natifications. Ensure the firewall is configured so that
database applications can use the designated port for Continuous Query Notification.

Beginning with Oracle Database 11g and ODP.NET 11g (11.1), Continuous Query
Notification queries can be query-based (default) or object-based. The query-based
registrations allow ODP.NET to notify applications when the selected rows have
changed in the database. The object-based registrations allow ODP.NET to notify
applications for any changes that occur in the table(s) containing the selected rows.

Query-based registrations have two modes: guaranteed mode and best-effort mode. In
guaranteed mode, any continuous query notification ensures that a change occurred
to something contained in the queried result set. However, if a query is complex, then
it cannot be registered in guaranteed mode. Best-effort mode is used in such cases.

Best-effort mode simplifies the query for query-based registration. No notifications are
lost from the simplification. However, the simplification may cause false positives, as
the simpler version's query result could change when the original query result would
not.There still remain some restrictions on which queries can have best-effort mode
query-based registrations. In such cases, developers can use object-based
registrations, which can register most query types. Object-based registrations
generate notifications when the query object changes, even if the actual query result
does not. This also means that object-based registrations are more prone to false
positives than query-based registrations. Developers should be aware of the relative
strengths and weaknesses of each continuous query notification option and choose
the one that best suits their requirements.

If a large number of rows are modified at once, consuming significant shared pool
resources, the application will not receive any change notifications with specific row

3-133

Chapter 3
Continuous Query Notification Support

information that had undergone changes. Rather, it will receive a notification with
OracleNotificationEventArgs. Info property set to OracleNotificationInfo.Error.

This section contains the following topics:

Continuous Query Notification Classes
Supported Operations

Requirements of Notification Registration
Using Continuous Query Notification

Best Practice Guidelines and Performance Considerations

3.18.1 Continuous Query Notification Classes

The following classes are associated with Continuous Query Notification Support:

ORACLE

OracleDependency

Represents a dependency between an application and an Oracle database based
on the database events which the application is interested in. It contains
information about the dependency and provides the mechanism to notify the
application when specified database events occurs. The OracleDependency class is
also responsible for creating the notification listener to listen for database
notifications. There is only one database notification listener for each application
domain. This notification listener terminates when the application process
terminates.

The dependency between the application and the database is not established
when the OracleDependency object is created. The dependency is established when
the command that is associated with this OracleDependency object is executed. That
command execution creates a continuous query notification registration in the
database.

When a change has occurred in the database, the HasChanges property of the
OracleDependency object is set to true. Furthermore, if an event handler was
registered with the OnChange event of the OracleDependency object, the registered
event handler function will be invoked.

OracleNotificationRequest

Represents a notification request to be registered in the database. It contains
information about the request and the properties of the notification.

OracleNotificationEventArgs

Represents the invalidation message generated for a notification when a specified
database event occurs and contains details about that database event.

¢ See Also:

— "OracleDependency Class"
"OracleNotificationRequest Class"

"OracleNotificationEventArgs Class”

3-134

Chapter 3
Continuous Query Notification Support

3.18.2 Supported Operations

The ODP.NET notification framework in conjunction with Continuous Query
Notification supports the following activities:

ORACLE

Creating a notification registration by:

— Creating an OracleDependency instance and binding it to an OracleCommand
instance.

Grouping multiple notification requests into one registration by:
— Using the OracleDependency .AddCommandDependency method.

— Setting the OracleCommand.Notification request using the same
OracleNotificationRequest instance.

Registering for Continuous Query Notification by:

— Executing the OracleCommand. If either the natification property is null or
NotificationAutoEnlist is false, the notification will not be made.

Removing notification registration by:
— Using the OracleDependency .RemoveRegistration method.

— Setting the Timeout property in the OracleNotificationRequest instance before
the registration is created.

— Setting the IsNotifiedOnce property to true in the OracleNotificationRequest
instance before the registration is created. The registration is removed once a
database notification is sent.

Ensuring Change Notification Persistence by:

— Specifying whether or not the invalidation message is queued persistently in
the database before delivery. If an invalidation message is to be stored
persistently in the database, then the change notification is guaranteed to be
sent. If an invalidation message is stored in an in-memory queue, the change
notification can be received faster, however, it could be lost upon database
shutdown or crashes.

Retrieving natification information including:

— The changed object name.

— The schema name of the changed object.

— Database events that cause the notification, such as insert, delete, and so on.
— The RowlD of the modified object row.

In Oracle SQL, the ROWIDTOCHAR(ROWID) and ROWIDTONCHAR(ROWID) functions
convert a ROWID value to VARCHAR2 and NVARCHAR data types, respectively. If
these functions are used within a SQL statement, ROWIDsS are not returned in
the OracleNotificationEventArgs object that is passed to the continuous query
notification callback.

Defining the listener port number.

By default, the static OracleDependency-Port property is set to -1. This indicates that
the ODP.NET listens on a port that is randomly picked when ODP.NET registers a
continuous query notification request for the first time during the execution of an
application.

3-135

Chapter 3
Continuous Query Notification Support

ODP.NET creates only one listener that listens on one port within an application
domain. Once ODP.NET starts the listener, the port number cannot be changed;
Changes to the static OracleDependency-Port property will generate an error if a
listener has already been created.

3.18.3 Requirements of Notification Registration

The connected user must have the CHANGE NOTIFICATION privilege to create a notification
registration.

This SQL statement grants the CHANGE NOTIFICATION privilege:

grant change notification to user nane

This SQL statement revokes the CHANGE NOTIFICATION privilege:

revoke change notification from user nane

3.18.4 Using Continuous Query Notification

This section describes what the application should do, and the flow of the process,
when an application uses Continuous Query Notification to receive notifications for any
changes in the registered query result set.

3.18.4.1 Application Steps

The application should do the following:

1.
2.

Create an OracleDependency instance.

Assign an event handler to the OracleDependency.OnChange event property if the
application wishes to have an event handler invoked when database changes are
detected. Otherwise, the application can choose to poll on the HasChanges property
of the OracleDependency object. This event handler is invoked when the change
notification is received.

Set the port number for the listener to listen on. The application can specify the
port number for one notification listener to listen on. If the application does not
specify a port number, a random one is used by the listener.

Bind the OracleDependency instance to an OracleCommand instance that contains the
actual query to be executed. Internally, the Continuous Query Notification request
(an OracleNotificationRequest instance) is created and assigned to the
OracleCommand.Notification property.

3.18.4.2 Flow of Notification Process

ORACLE

1.

When the command associated with the notification request is executed, the
notification registration is created in the database. The command execution must
return a result set, or contain one or more REF cursors for a PL/SQL stored
procedure.

ODP.NET starts the application listener on the first successful notification
registration.

When a change related to the registration occurs in the database, the application
is notified through the event delegate assigned to the OracleDependency.OnChange

3-136

ORACLE

Chapter 3
Continuous Query Notification Support

event property, or the application can poll the OracleDependency .HasChanges
property.
The following example demonstrates the continuous query notification feature.

// Database Setup

// NOTE: unless the following SQL command is executed,
// ORA-29972 will be obtained from running this sample
/*

grant change notification to scott;

*/

using System;

using System.Threading;

using System.Data;

using Oracle.DataAccess.Client;

using Oracle.DataAccess.Types;

//This sample shows the continuous query notification feature in ODP_NET.
//Application specifies to get a notification when emp table is updated.
//When emp table is updated, the application will get a notification
//through an event handler.
namespace NotificationSample
{

public class MyNotificationSample

{

public static bool IsNotified = false;

public static void Main(string[] args)

{
//To Run this sample, make sure that the change notification privilege
//is granted to scott.
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = null;
OracleDependency dep = null;

try

{
con = new OracleConnection(constr);
OracleCommand cmd = new OracleCommand(“'select * from emp™, con);
con.Open();

// Set the port number for the listener to listen for the notification
// request
OracleDependency.Port = 1005;

// Create an OracleDependency instance and bind it to an OracleCommand
// instance.

// When an OracleDependency instance is bound to an OracleCommand

// instance, an OracleNotificationRequest is created and is set in the
// OracleCommand®s Notification property. This indicates subsequent
// execution of command will register the notification.

// By default, the notification request is using the Database Change
// Notification.

dep = new OracleDependency(cmd);

// Add the event handler to handle the notification. The
// OnMyNotification method will be invoked when a notification message
// 1is received from the database
dep.OnChange +=
new OnChangeEventHandler(MyNotificationSample.OnMyNotificaton);

// The notification registration is created and the query result sets

3-137

}

Chapter 3
Continuous Query Notification Support

// associated with the command can be invalidated when there is a
// change. When the first notification registration occurs, the
// notification listener is started and the listener port number
// will be 1005.

cmd.ExecuteNonQuery();

// Updating emp table so that a notification can be received when
// the emp table is updated.
// Start a transaction to update emp table
OracleTransaction txn = con.BeginTransaction();
// Create a new command which will update emp table
string updateCmdText =

"update emp set sal = sal + 10 where empno = 7782";
OracleCommand updateCmd = new OracleCommand(updateCmdText, con);
// Update the emp table
updateCmd.ExecuteNonQuery();
//When the transaction is committed, a notification will be sent from
//the database
txn.Commit();

catch (Exception e)

Console.WriteLine(e.Message);

con.Close();
// Loop while waiting for notification
while(MyNotificationSample.IsNotified == false)

Thread.Sleep(100);

public static void OnMyNotificaton(object src,
OracleNotificationEventArgs arg)

Console.WriteLine("Notification Received");
DataTable changeDetails = arg.Details;
Console.WriteLine("'Data has changed in {0}",

changeDetails.Rows[0]['ResourceName"]);

MyNotificationSample.IsNotified = true;

3.18.5 Best Practice Guidelines and Performance Considerations

This section provides guidelines for working with Continuous Query Notification and
the ODP.NET notification framework, and discusses the performance impacts.Every
change notification registration consumes database memory, storage or network
resources, or some combination thereof. The resource consumption further depends
on the volume and size of the invalidation message. In order to scale well with a large
number of mid-tier clients, Oracle recommends that the client implement these best
practices:

ORACLE

Few and mostly read-only tables

There should be few registered objects, and these should be mostly read-only,
with very infrequent invalidations. If an object is extremely volatile, then a large
number of invalidation notifications are sent, potentially requiring a lot of space (in

3-138

Chapter 3
OracleDataAdapter Safe Type Mapping

memory or on disk) in the invalidation queue. This is also true if a large number of
objects are registered.

* Few rows updated for each table

Transactions should update (or insert or delete) only a small number of rows within
the registered tables. Depending on database resources, a whole table could be
invalidated if too many rows are updated within a single transaction, for a given
table.

This policy helps to contain the size of a single invalidation message, and reduces
disk storage for the invalidation queue.

3.19 OracleDataAdapter Safe Type Mapping

The ODP.NET OracleDataAdapter class provides the Safe Type Mapping feature to
ensure that the following Oracle data types do not lose data when converted to their
closely related .NET types in the DataSet:

* NUMBER
* DATE
e TimeStamp (refers to all TimeStamp objects)

e INTERVAL DAY TO SECOND

< Note:

ODP.NET, Managed Driver does not support Safe Type Mapping.

This section includes the following topics:

» Comparison Between Oracle Data Types and .NET Types
» SafeMapping Property

3.19.1 Comparison Between Oracle Data Types and .NET Types

ORACLE

The following sections provide more details about the differences between the Oracle
data types and the corresponding .NET types. In general, the Oracle data types allow
a greater degree of precision than the .NET types do.

Oracle NUMBER Type to .NET Decimal Type

The Oracle data type NUMBER can hold up to 38 precision, and the .NET Decimal type
can hold up to 28 precision. If a NUMBER data type that has more than 28 precision is
retrieved into a .NET Decimal type, it loses precision.

Table 3-28 lists the maximum and minimum values for Oracle NUMBER and .NET Decimal
types.

3-139

ORACLE

Chapter 3
OracleDataAdapter Safe Type Mapping

Table 3-28 Oracle NUMBER to .NET Decimal Comparisons

]
Value Oracle NUMBER .NET Decimal
Limits
Maximum 9.99999999999999999999999999999999 79,228,162,514,264,337,593,543,950,
99999 el125 335

Minimum -9.9999999999999999999999999999999 -79,228,162,514,264,337,593,543,950,
999999 e125 335

Oracle Date Type to .NET DateTime Type

The Oracle data type DATE can represent dates in BC whereas the .NET DateTime type
cannot. If a DATE that goes to BC get retrieved into a .NET DateTime type, it loses data.

Table 3-29 lists the maximum and minimum values for Oracle Date and .NET DateTime
types.

Table 3-29 Oracle Date to .NET DateTime Comparisons

Value Oracle Date .NET DateTime

Limits

Maximum Dec 31, 9999 AD Dec 31, 9999 AD 23:59:59.9999999
Minimum Jan 1, 4712 BC Jan 1, 0001 AD 00:00:00.0000000

Oracle TimeStamp Type to .NET DateTime Type

Similar to the DATE data type, the Oracle TimeStamp data type can represent a date in
BC, and a .NET DateTime type cannot. If a TimeStamp that goes to BC is retrieved into
a.NET DateTime type, it loses data. The Oracle TimeStamp type can represent values in
units of e-9; the .NET DateTime type can represent only values in units of e-7. The
Oracle TimeStamp with time zone data type can store time zone information, and

the .NET DateTime type cannot.

Table 3-30 lists the maximum and minimum values for Oracle TimeStamp and .NET
DateTime types.

Table 3-30 Oracle TimeStamp to .NET DateTime Comparisons

Value Oracle TimeStamp .NET DateTime

Limits

Maximum Dec 31, 9999 AD 23:59:59.999999999 Dec 31, 9999 AD 23:59:59.9999999
Minimum Jan 1, 4712 BC 00:00:00.000000000 Jan 1, 0001 AD 00:00:00.0000000

Oracle INTERVAL DAY TO SECOND to .NET TimeSpan

The Oracle data type INTERVAL DAY TO SECOND can hold up to 9 precision, and the .NET
TimeSpan type can hold up to 7 precision. If an INTERVAL DAY TO SECOND data type that
has more than 7 precision is retrieved into a .NET TimeSpan type, it loses precision.
The Oracle INTERVAL DAY TO SECOND type can represent values in units of e-9, and

the .NET TimeSpan type can represent only values in units of e-7.

3-140

Chapter 3
OracleDataAdapter Safe Type Mapping

Table 3-31 lists the maximum and minimum values for Oracle INTERVAL DAY TO SECOND
and .NET DateTime types.

Table 3-31 Oracle INTERVAL DAY TO SECOND to .NET TimeSpan
Comparisons

Value Oracle INTERVAL DAY TO SECOND .NET TmeSpan

Limits
Maximum +999999999 23:59:59.999999999 +10675199 02:48:05.4775807
Minimum -999999999 23:59:59.999999999 -10675199 02:48:05.4775808

3.19.2 SafeMapping Property

The OracleDataAdapter Safe Type Mapping feature prevents data loss when populating
Oracle data for any of these types into a .NET DataSet. By setting the SafeMapping
property appropriately, these types can be safely represented in the DataSet, as either
of the following:

e .NET byte[] in Oracle format
* .NET String
By default, Safe Type Mapping is disabled.

3.19.2.1 Using Safe Type Mapping

ORACLE

To use the Safe Type Mapping feature, the OracleDataAdapter.SafeMapping property
must be set with a hash table of key-value pairs. The key-value pairs must map
database table column names (of type string) to a .NET type (of type Type). ODP.NET

supports Safe Type Mapping to byte[] and String types. Any other type mapping
causes an exception.

In situations where the column names are not known at design time, an asterisk ("*")
can be used to map all occurrences of database types to a safe .NET type. If both the
valid column name and the asterisk are present, the column name is used.

Note:

» Database table column names are case-sensitive.

e Column names in the hash table that correspond to invalid column names
are ignored.

Safe Type Mapping as a string is more readable without further conversion.
Converting certain Oracle data types to a string requires extra conversion, which can
be slower than converting it to a byte[]. Conversion of .NET strings back to ODP.NET
types relies on the formatting information of the session.

SafeTyping Example
// C#

3-141

Chapter 3
OracleDataAdapter Safe Type Mapping

using System;
using System.Data;
using Oracle.DataAccess.Client;

class SafeMappingSample
{

static void Main()

{

string constr = "User ld=scott;Password=tiger;Data Source=oracle";

// In this SELECT statement, EMPNO, HIREDATE and SALARY must be
// preserved using safe type mapping.
string cmdstr = "SELECT EMPNO, ENAME, HIREDATE, SAL FROM EMP"';

// Create the adapter with the selectCommand txt and the connection string
OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

// Get the connection from the adapter
OracleConnection connection = adapter.SelectCommand.Connection;

// Create the safe type mapping for the adapter

// which can safely map column data to byte arrays, where

// applicable. By executing the following statement, EMPNO, HIREDATE AND
// SALARY columns will be mapped to byte[]

adapter.SafeMapping.Add("*", typeof(byte[]));

// Map HIREDATE to a string

// 1f the column name in the EMP table is case-sensitive,
// the safe type mapping column name must be case-sensitive.
adapter.SafeMapping.Add(""HIREDATE", typeof(string));

// Map EMPNO to a string

// 1f the column name in the EMP table is case-sensitive,

// the safe type mapping column name must also be case-sensitive.
adapter.SafeMapping.Add("'EMPNO", typeof(string));
adapter.SafeMapping.Add(*'SAL", typeof(string));

// Create and fill the DataSet using the EMP
DataSet dataset = new DataSet();
adapter.Fill(dataset, "EMP");

// Get the EMP table from the dataset
DataTable table = dataset.Tables["EMP"];

// Get the first row from the EMP table
DataRow row = table_Rows[0];

// Print out the row info
Console.WriteLine("EMPNO Column: type = " + row["EMPNO"].CetType() +
"; value = " + row["EMPNO"]);
Console.WriteLine("ENAME Column: type = " + row["ENAME"].CetType() +
"; value = " + row["ENAME"]);
Console.WriteLine("HIREDATE Column: type = " + row["HIREDATE"].GetType()+
"; value = " + row["HIREDATE"]);
Console.WriteLine(""SAL Column: type = " + row["SAL"].GetType() +
"; value = " + row["SAL"]);

ORACLE 3-142

Chapter 3
OracleDataAdapter Requery Property

3.20 OracleDataAdapter Requery Property

The OracleDataAdapter Requery property controls whether or not queries are reexecuted
for OracleDataAdapter Fill calls after the initial Fill call.

The OracleDataAdapter Fill method allows appending or refreshing data in the DataSet.
When appending the DataSet using the same query with subsequent Fill calls,
reexecuting the query may not be desirable.

When the Requery property is set to true, each subsequent Fill call reexecutes the
qguery and fills the DataSet. This is an expensive operation, and if the reexecution is not
required, set Requery to false. If any of the SelectCommand properties or associated
parameters must be changed, Requery must be set to true.

When the Requery property is set to false, the DataSet has all the data as a snapshot at
a particular time. The query is executed only for the first Fill call; subsequent Fill
calls fetch the data from a cursor opened with the first execution of the query. This
feature is supported only for forward-only fetches. Fill calls that try to fetch rows
before the last fetched row raise an exception. The connection used for the first Fill
call must be available for subsequent Fill calls.

When filling a DataSet with an OracleRefCursor object, the Requery property can be used
in a similar manner. When the Requery property is set to false, both the connection
used for the first Fill call and the OracleRefCursor object must be available for the
subsequent Fill calls.

3.21 Guaranteeing Unigueness in Updating DataSet to

Database

ORACLE

This section describes how the OracleDataAdapter object configures the Primarykey and
Constraints properties of the DataTable object which guarantee uniqueness when the
OracleCommandBui Ider object is updating DataSet changes to the database.

Using the OracleCommandBui lder object to dynamically generate DML statements to be
executed against the database is one of the ways to reconcile changes made in a
single DataTable object with the database.

In this process, the OracleCommandBui lder object must not be allowed to generate DML
statements that may affect (update or delete) more that a single row in the database
when reconciling a single DataRow change. Otherwise the OracleCommandBui lder could
corrupt data in the database.

To guarantee that each DataRow object change affects only a single row, there must be
a set of DataColumn objects in the DataTable for which all rows in the DataTable have a
unigue set of values. The set of DataColumn objects indicated by the properties
DataTable.PrimaryKey and DataTable.Constraints meets this requirement. The
OracleCommandBui Ider object determines uniqueness in the DataTable by checking if the
DataTable.PrimaryKey is not a null value or if there exists a UniqueConstraint object in
the DataTable.Constraints collection.

This discussion first explains what constitutes uniqueness in DataRow objects and then
explains how to maintain that uniqueness while updating, through the DataTable
property configuration.

3-143

Chapter 3
Guaranteeing Uniqueness in Updating DataSet to Database

This section includes the following topics:
* What Constitutes Uniqueness in DataRow Objects?
e Configuring PrimaryKey and Constraints Properties

» Updating Without PrimaryKey and Constraints Configuration

3.21.1 What Constitutes Uniqueness in DataRow Objects?

This section describes the minimal conditions that must be met to guarantee
uniqueness of DataRow objects. The condition of uniqgueness must be guaranteed
before the DataTable.PrimaryKey and DataTable.Constraints properties can be
configured, as described in the next section.

Uniqueness is guaranteed in a DataTable object if any one of the following is true:

e All the columns of the primary key are in the select list of the
OracleDataAdapter.SelectCommand property.

* All the columns of a unique constraint are in the select list of the
OracleDataAdapter.SelectCommand property, with at least one involved column
having a NOT NULL constraint defined on it.

* All the columns of a unique index are in the select list of the
OracleDataAdapter.SelectCommand property, with at least one of the involved
columns having a NOT NULL constraint defined on it.

* AROWID is present in the select list of the OracleDataAdapter . SelectCommand
property.

¢ Note:

A set of columns, on which a unigue constraint has been defined or a unique
index has been created, requires at least one column that cannot be null for the
following reason: if all the columns of the column set can be null, then multiple
rows could exist that have a NULL value for each column in the column set. This
would violate the uniqueness condition that each row has a unique set of
values for the column set.

3.21.2 Configuring PrimaryKey and Constraints Properties

ORACLE

If the minimal conditions described in "What Constitutes Uniqueness in DataRow
Objects?" are met, then the DataTable.PrimaryKey or DataTable.Constraints properties
can be set.

After these properties are set, the OracleCommandBui lder object can determine
uniqueness in the DataTable by checking the DataTable.PrimaryKey property or the
presence of a UniqueConstraint object in the DataTable.Constraints collection. Once
uniqueness is determined, the OracleCommandBui Ider object can safely generate DML
statements to update the database.

The OracleDataAdapter.FillSchema method attempts to set these properties according
to this order of priority:

3-144

Chapter 3
Globalization Support

1. If the primary key is returned in the select list, it is set as the DataTable.PrimaryKey
property.

2. If a set of columns that meets the following criteria is returned in the select list, it is
set as the DataTable.PrimaryKey property.

Criteria: The set of columns has a unique constraint defined on it or a unique index
created on it, with each column having a NOT NULL constraint defined on it.

3. If a set of columns that meets the following criteria is returned in the select list, a
UniqueConstraint object is added to the DataTable.Constraints collection, but the
DataTable._PrimaryKey property is not set.

Criteria: The set of columns has a unique constraint defined on it or a unique index
created on it, with at least one column having a NOT NULL constraint defined on it.

4. If a ROWID is part of the select list, it is set as the DataTable.PrimaryKey property.

Additionally, the OracleDataAdapter_FillSchema method performs as follows:

e Setting the DataTable.PrimaryKey property implicitly creates a UniqueConstraint
object.

e If a column is part of the DataTable.PrimaryKey property or the UniqueConstraint
object, or both, it will be repeated for each occurrence of the column in the select
list.

3.21.3 Updating Without PrimaryKey and Constraints Configuration

If the DataTable.PrimaryKey or Constraints properties have not been configured, for
example, if the application has not called the OracleDataAdapter.FillSchema method,
the OracleCommandBui Ider object directly checks the select list of the
OracleDataAdapter.SelectCommand property to determine if it guarantees uniqueness in
the DataTable. However this check results in a database round-trip to retrieve the
metadata for the SELECT statement of the OracleDataAdapter.SelectCommand.

Note that OracleCommandBui Ider object cannot update a DataTable created from PL/SQL
statements because they do not return any key information in their metadata.

3.22 Globalization Support

ODP.NET globalization support enables applications to manipulate culture-sensitive
data appropriately. This feature ensures proper string format, date, time, monetary,
numeric, sort order, and calendar conventions depending on the Oracle globalization
settings.

Note:

e ODP.NET, Managed Driver is not NLS_LANG sensitive. It is only .NET locale
sensitive.

e« ODP.NET, Managed Driver does not support thread-based globalization.

ORACLE 3-145

Chapter 3
Globalization Support

" See Also:

"OracleGlobalization Class"

This section includes the following:

* Globalization Settings

* Globalization-Sensitive Operations

3.22.1 Globalization Settings

An OracleGlobalization object can be used to represent the following:
e Client Globalization Settings
* Session Globalization Settings

» Thread-Based Globalization Settings

3.22.1.1 Client Globalization Settings

Client globalization settings are derived from the Oracle globalization setting (NLS_LANG)
in the Windows registry of the local computer. The client globalization parameter
settings are read-only and remain constant throughout the lifetime of the application.
These settings can be obtained by calling the OracleGlobalization.GetClientInfo static
method.

The following example retrieves the client globalization settings:

// C#

using System;
using Oracle.DataAccess.Client;

class ClientGlobalizationSample

{

static void Main()
OracleGlobalization ClientGlob = OracleGlobalization.GetClientinfo();

Console.WriteLine("Client machine language: " + ClientGlob.Language);
Console.WriteLine("Client characterset: " + ClientGlob.ClientCharacterSet);

}
}

The properties of the OracleGlobalization object provide the Oracle globalization value
settings.

3.22.1.2 Session Globalization Settings

ORACLE

Session globalization parameters are initially identical to client globalization settings.
Unlike client settings, session globalization settings can be updated. However, they
can be obtained only after establishing a connection against the database. The
session globalization settings can be obtained by calling the GetSessionInfo method on
the OracleConnection object. Invoking this method returns an instance of an

3-146

Chapter 3
Globalization Support

OracleGlobalization class whose properties represent the globalization settings of the
session.

When the OracleConnection object establishes a connection, it implicitly opens a
session whose globalization parameters are initialized with those values specified by
the client computer's Oracle globalization (or (NLS)) registry settings. The session
settings can be updated and can change during its lifetime.

The following example changes the date format setting on the session:

/1 C#

using System;
using Oracle._DataAccess.Client;

class SessionGlobalizationSample

{

static void Main()

{

OracleConnection con = new OracleConnection();

con.ConnectionString = "User ld=scott;Password=tiger;Data Source=oracle;";
con.Open();

OracleGlobalization SessionGlob = con.GetSessionInfo();

// SetSessionlnfo updates the Session with the new value
SessionGlob.DateFormat = "YYYY/MM/DD";
con.SetSessionInfo(SessionGlob);

Console.WriteLine("'Date Format successfully changed for the session™);

// Close and Dispose OracleConnection object
con.Close();
con.Dispose();
}
}

3.22.1.3 Thread-Based Globalization Settings

Thread-based globalization parameter settings are specific to each thread. Initially,
these settings are identical to the client globalization parameters, but they can be
changed as specified by the application. When ODP.NET Types are converted to and
from strings, the thread-based globalization parameters are used, if applicable.

Thread-based globalization parameter settings are obtained by invoking the
GetThreadInfo static method of the OracleGlobalization class. The SetThreadInfo static
method of the OracleGlobalization class can be called to set the thread's globalization
settings.

ODP.NET classes and structures rely solely on the OracleGlobalization settings when
manipulating culture-sensitive data. They do not use .NET thread culture information.
If the application uses only .NET types, OracleGlobalization settings have no effect.
However, when conversions are made between ODP.NET types and .NET types,
OracleGlobalization settings are used where applicable.

ORACLE 3-147

Chapter 3
Globalization Support

Note:

Changes to the System.Threading.Thread. CurrentThread.CurrentCulture
property do not impact the OracleGlobalization settings of the thread or the
session, or the reverse.

The following example shows how the thread's globalization settings are used by the
ODP.NET Types:

/1 C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ThreadBasedGlobalizationSample

{

static void Main(string[] args)

{

// Set the thread"s DateFormat for the OracleDate constructor
OracleGlobalization info = OracleGlobalization.GetClientinfo();
info.DateFormat = "YYYY-MON-DD";
OracleGlobalization.SetThreadInfo(info);

// construct OracleDate from a string using the DateFormat specified.
OracleDate date = new OracleDate("'1999-DEC-01");

// Set a different DateFormat for the thread
info.DateFormat = "MM/DD/YYYY";
OracleGlobalization.SetThreadInfo(info);

// Print "12/01/1999"
Console.WriteLine(date.ToString());

}
}

The OracleGlobalization object validates property changes made to it. If an invalid
value is used to set a property, an exception is thrown. Note that changes made to the
Territory and Language properties change other properties of the OracleGlobalization
object implicitly.

3.22.2 Globalization-Sensitive Operations

This section lists ODP.NET types and operations that are dependent on or sensitive to
globalization settings.

3.22.2.1 Operations Dependent on Client Computer's Globalization Settings

ORACLE

The OracleString structure depends on the OracleGlobalization settings of the client
computer. The client character set of the local computer is used when it converts a

Unicode string to a byte[] in the GetNonUnicode method and when it converts a byte[]
of ANSI characters to Unicode in the OracleString constructor that accepts a byte[].

3-148

Chapter 3
Globalization Support

3.22.2.2 Operations Dependent on Thread Globalization Settings

The thread globalization settings are used by ODP.NET types whenever they are
converted to and from .NET string types, where applicable. Specific thread
globalization settings are used in most cases, depending on the ODP.NET type, by the
following:

e The ToString method

e The Parse static method

e Constructors that accept .NET string data

e Conversion operators to and from .NET strings

For example, the OracleDate type uses the DateFormat property of the thread
globalization settings when the ToString method is invoked on it. This returns a DATE as
a string in the format specified by the thread's settings.

The thread globalization settings also affect data that is retrieved into the DataSet as a
string using Safe Type Mapping. If the type is format-sensitive, the strings are always
in the format specified by the thread globalization settings.

For example, INTERVAL DAY TO SECOND data is not affected by thread settings because no
format is applicable for this type. However, the DateFormat and NumericCharacters
properties can impact the string representation of DATE and NUMBER types, respectively,
when they are retrieved as strings into the DataSet through Safe Type Mapping.

3.22.2.3 Operations Sensitive to Session Globalization Parameters

Session globalization settings affect any data that is retrieved from or sent to the
database as a string.

For example, if a DATE column is selected with the TO_CHAR function applied on it, the
DATE column data will be a string in the date format specified by the DateFormat property
of the session globalization settings. Transmitting data in the other direction, the string
data that is to be inserted into the DATE column, must be in the format specified by the
DateFormat property of the session globalization settings.

3.22.3 ODP.NET Managed and Unmanaged Drivers Differences

ORACLE

ODP.NET, Managed and Unmanaged Drivers set the default session time zone
differently. While the session time zone for unmanaged ODP.NET uses an hour offset,
managed ODP.NET uses the region identifier for setting its session time zone. As a
result, managed ODP.NET is sensitive to daylight savings in scenarios where the
timestamp LTZ values have to be converted from or to the session time zone.

There are two methods to resolve this difference if needed. For ODP.NET,
Unmanaged Driver, the application explicitly sets the region identifier with the
environment variable ORA_SDTZ. For example, set ORA_SDTZ = <Region I1D>. If ORA_SDTZ
variable is set, Oracle Client considers this value as the session time zone. The
second method is to execute an alter session command to set the session time zone
property to the region identifier.

3-149

Chapter 3
Debug Tracing

3.23 Debug Tracing

ODP.NET provides debug tracing support, which allows logging of all the ODP.NET
activities into a trace file. Different levels of tracing are available.

The provider can record the following information:

e Entry and exit information for the ODP.NET public methods

e User-provided SQL statements as well as SQL statements modified by the
provider

e Connection pooling statistics such as enlistment and delistment
e Thread ID (entry and exit)

e HA Events and Load Balancing information

» Distributed Transactions

e Self-tuning information

e User-mode dumps upon unmanaged exceptions

To enable ODP.NET for tracing, TraceFileLocation, TraceLevel, and TraceOption must
be set appropriately either in the Windows Registry or in an XML configuration file.
ODP.NET, Managed and Unmanaged Drivers support the XML configuration file.
Windows Registry settings are available for ODP.NET, Unmanaged Driver only.

In ODAC 12c¢ Release 4, ODP.NET now uses new directories to write trace files to by
default.

* ODP.NET, Managed Driver: <W ndows user tenporary f ol der >\ODP.NET\managed
\trace

e ODP.NET, Unmanaged Driver: <Windows user temporary folder>\0DP.NET
\unmanaged\trace

The Windows user temporary folder is determined by your local Windows settings,
such as your Windows TMP or TEMP environment variable. Typically, it can be C:\temp or
C:\Users\<user name>\AppData\Local\Temp. ODP.NET will create an entry in the
Windows event log where the trace was created anytime it creates a trace file.

For ODP.NET, Unmanaged Driver specifically, TraceFileLocation is now supported
similar to ODP.NET, Managed Driver. TraceFileLocation defines the directory where
the trace files will be created. Neither TraceFileName nor TraceFileLocation will be
created by default in the Windows Registry.

3.24 Database Application Migration: SQL Translation
Framework

ORACLE

A key part of migrating non-Oracle database applications to an Oracle Database
requires converting non-Oracle SQL statements to SQL statements that can be
processed by an Oracle Database. SQL conversion is generally a manual and
laborious process. To minimize the effort, Oracle Database 12c¢ introduces SQL
Translation Framework which takes non-Oracle SQL statements from client
applications and then translates them at run-time for the Oracle Database to execute.

3-150

Chapter 3
Database Application Migration: SQL Translation Framework

The SQL Translation Framework can be used to map non-Oracle stored procedure to
Oracle stored procedures to ensure successful execution of those stored procedures
when migrating to Oracle Database.

Currently, SQL Translation Framework is available for Sybase Adaptive Server
Enterprise and Microsoft SQL Server. There is limited support for IBM DB2.

" Note:

SQL Translation Framework is only supported by ODP.NET, Unmanaged
Driver. ODP.NET, Managed Driver does not support this feature.

3.24.1 The SQL Translation Profile

ORACLE

The SQL Translation Profile is a database object that contains the set of captured non-
Oracle SQL statements, and their translations or translation errors. The SQL
Translation Profile is used to review, approve, and modify translations. A profile is
associated to a single translator. However, a translator can be used in one or more
SQL Translation Profiles. Typically, there is one SQL Translation Profile per
application, otherwise applications can share translated queries. You can export
profiles among various databases.

1. Configuring the SQL Translation Profile Name

The default translation profile name for SQL Translation Framework can be
configured through the app/web/machine .NET configuration file. If configured,
connections, by default will automatically be set to the specified profile when the
connection is initially created.

2. Changing the SQL Translation Profile Name

ODP.NET supports setting the profile name through the .NET config file, logon
trigger, or database service. ODP.NET does not support using ALTER SESSION from
an application to set the profile name.

3. Forcing Translation

Applications are strictly prohibited to execute the following SQL which forces
translation of all SQL's on the database:

ALTER SESSION SET events = "10601 trace name context forever, level 32°
4. Connection Related Error Mapping

Connection Related Error Mapping can be configured through the .NET
configuration file. Please note that this error mapping strictly applies to errors
which could be thrown before the connection is successfully established. Once the
database connection is established successfully, then these error mapping will be
completely ignored and further error translation will be provided through the error
mapping configured in the database.

The rules to choose an error mapping section in the configuration file are as
follows:

a. ODP.NET uses the error mapping section which matches the configured
userld, dataSource, and profile, where userld and dataSource matches the
corresponding values in the connection string and profile matches the
defaultProfile configuration setting.

3-151

ORACLE

5.

Chapter 3
Database Application Migration: SQL Translation Framework

b. If no error mapping section is found from 4.a.), then ODP.NET uses the error
mapping section which matches the userld, dataSource, and profile similar to
4.a.), but with the profile that matches with the defaultErrorMappingProfile
configuration setting.

c. If still no error mapping section is found, then ODP.NET uses the global
mapping, that is, <ErrorMapping profile="*">, if configured.

Stored Procedure Mapping.

Application must map their native stored procedure names to the corresponding
Oracle stored procedure names on the translation profile in the database. The
following procedure can be used to setup the mapping in the database.

DBMS_SQL_TRANSLATOR.REGISTER_SQL_TRANSLATION(
PROFILE_NAME VARCHAR2 IN

SQL_TEXT CLOB IN
TRANSLATED_TEXT CLOB IN DEFAULT
ENABLE BOOLEAN IN DEFAULT)

Example of stored procedure mapping:

DBMS_SQL_TRANSLATOR.REGISTER_SQL_TRANSLATION("profile_name®,
"native_sp_name”®,
"oracle_sp_name");

3-152

ADO.NET Entity Framework and LINQ to
Entities

This section describes ADO.NET Entity Framework and LINQ to Entities. Entity
Framework is a framework for providing object-relational mapping service on data
models.

This section contains these topics:

e Overview of Entity Framework

* Language Integrated Query and Entity SQL

* Mapping Oracle Data Types to EDM Types

* Oracle Number Default Data Type Mapping and Customization

* Migrating Existing Entity Framework 5 Applications to Entity Framework 6
* Code First

e Unsupported Entity Framework Features

4.1 Overview of Entity Framework

ORACLE

ODP.NET 11.2.0.3.0 and higher includes support for the ADO.NET Entity Framework
and LINQ to Entities. ODP.NET also supports Entity SQL.

Entity Framework is a framework for providing object-relational mapping service on
data models. Entity Framework addresses the impedance mismatch between the
relational database format and the client's preferred object format.

Entity Framework and LINQ provides productivity benefits for the .NET developer. It
abstracts the database's data model from the application's data model. Working with
object-relational data becomes easier with Entity Framework's tools. Oracle's
integration with Entity Framework and LINQ enables Oracle .NET developers to take
advantage of all these productivity benefits.

Note:

* Entity Framework and LINQ to Entities support is included in ODP.NET
for .NET Framework 4. ODP.NET for .NET Framework 2.0 does not
support the ADO.NET Entity Framework and LINQ to Entities.

e Code First is supported starting with Entity Framework 6 and higher.

e Binding scalar parameters is supported with ODP.NET and Entity
Framework. In Entity Framework, parameter binding by name is supported.
Binding by position is not supported.

4-1

Chapter 4
Language Integrated Query and Entity SQL

Entity data models can be generated from Oracle database schemas. Schemas can
be generated from entity data models. These Oracle entity data models can be
gueried and manipulated using Visual Studio and ODP.NET. Oracle supports Code
First, Database First, and Model First modeling approaches. Specifying filters on the
Visual Studio Server Explorer data connection enables the Entity Data Model Wizard
to also filter Oracle database objects that are fetched and displayed.

LINQ to Entities can perform queries on the Oracle Database using ODP.NET,
including using LINQ to Entities built-in functions. INSERTS, UPDATES, and DELETES can be
executed using Oracle stored procedures, or by using the ObjectContext SaveChanges
method.

ODP.NET supports function import of Oracle stored procedures that Entity Framework
can then execute. These Oracle function imports can return a collection of scalar,
complex, and entity types, including returning an Oracle implicit result set as an entity
type. Implicit result set binding is supported using Oracle REF CURSOR.

4.2 Language Integrated Query and Entity SQL

Language Integrated Query (LINQ) defines a set of operators that can be used to
query, project, and filter data in arrays, enumerable classes, XML, relational
databases, and other data sources. One form of LINQ, LINQ to Entities, allows
querying of Entity Framework data sources. ODP.NET supports Entity Framework
such that the Oracle database can participate in object-relational modeling and LINQ
to Entities queries.

Entity SQL is a language that enables querying of Entity Framework conceptual
models. It allows querying Entity Framework entities and relationships in a format that
is similar to SQL. ODP.NET supports querying Oracle databases through Entity SQL.

LINQ and Entity SQL syntax are generally data source neutral.

4.3 Mapping Oracle Data Types to EDM Types

The ODP.NET manifest file describes the primitive types, such as VARCHAR2 and Number,
and the Entity Data Model (EDM) types, such as string and Int32, that they map to. It
also includes the facets for each EDM type.

ODP.NET does not support Time literals and canonical functions related to the Time
type.

Oracle considers both NULL and empty strings to be NULL strings and are considered to
be equal. Operations, such as Equals(), Length(), and Trim() on such strings will
result in a NULL string.

Table 4-1 maps the Oracle data types to their corresponding EDM types. The table
also includes details about provider type attributes and the EDM type facets
associated with each Oracle data type.

ORACLE 4-2

Chapter 4
Mapping Oracle Data Types to EDM Types

Table 4-1 Mapping of Oracle Data Types and EDM Types
|

Oracle Data EDM Types Provider Type Attributes: EDM Type Facets
Types (Primitive- Name and Value
TypeKind)
Bfile Binary e Equal Comparable: EDM Type Facets
False for Bfile
e Order Comparable:
False
Binary_Double Double e Equal Comparable: Not Applicable
True
e Order Comparable:
True
Binary Float Single e Equal Comparable: Not Applicable
True
e Order Comparable:
True
Binary_Integer Int32 e Equal Comparable: Not Applicable
True
e Order Comparable:
True
Blob Binary e Equal Comparable: EDM Type Facets
False for Blob
e Order Comparable:
False
Char String e Equal Comparable: EDM Type Facets
True for Char
e Order Comparable:
True
Clob String e Equal Comparable: EDM Type Facets
False for Clob
e Order Comparable:
False
Date DateTime e Equal Comparable: EDM Type Facets
True for Date
e Order Comparable:
True
Float Decimal e Equal Comparable: EDM Type Facets
True for Float
e Order Comparable:
True
Int Int32 e Equal Comparable: Not Applicable
True
e Order Comparable:
True
Interval Day To Decimal e Equal Comparable: EDM Type Facets
Second True for Interval Day To
+ Order Comparable: Second
True

ORACLE' 4.3

ORACLE

Chapter 4
Mapping Oracle Data Types to EDM Types

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data EDM Types Provider Type Attributes: EDM Type Facets
Types (Primitive- Name and Value
TypeKind)
Interval Year To Decimal e Equal Comparable: EDM Type Facets
Month True for Interval Year To
o Order Comparable: Month
True
Long String e Equal Comparable: EDM Type Facets
False for Long
e Order Comparable:
False
Long Raw Binary e Equal Comparable: EDM Type Facets
False for Long Raw
e Order Comparable:
False
NChar String e Equal Comparable: EDM Type Facets
True for NChar
e Order Comparable:
True
NClob String e Equal Comparable: EDM Type Facets
False for NClob
e Order Comparable:
False
Nested Table Not Applicable Not Applicable and
Not Supported
Number(1,0) Intl6 e Equal Comparable: Not Applicable
Number(2,0) True
Number (3,0) e Order Comparable:
’ True
Number(4,0)
Number(5,0)
Number(6,0) Int32 e Equal Comparable: Not Applicable
Number(7,0) True
Number (8, 0) e Order Comparable:
’ True
Number(9,0)
Number(10,0)
Number(11,0) Int64 e Equal Comparable: Not Applicable
Number(12,0) True
Number(13,0) e Order Comparable:
’ True
Number (14,0)
Number(15,0)
Number(16,0)
Number(17,0)
Number(18,0)
Number(19,0)

4-4

ORACLE

Chapter 4

Mapping Oracle Data Types to EDM Types

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data EDM Types Provider Type Attributes: EDM Type Facets
Types (Primitive- Name and Value
TypeKind)
Number Decimal e Equal Comparable: EDM Type Facets
(all other cases) True for Number
e Order Comparable:
True
NVarchar2 String e Equal Comparable: EDM Type Facets
True for NVarchar2
e Order Comparable:
True
Object Not Applicable Not Applicable and
Not Supported
Raw Binary e Equal Comparable: EDM Type Facets
True for Raw
e Order Comparable:
True
Raw(16) Guid e Equal Comparable: Not Applicable
True
e Order Comparable:
True
Ref Not Applicable Not Applicable and
Not Supported
ROWID String e Equal Comparable: EDM Type Facets
True for ROWID
e Order Comparable:
True
Smallint Intl6 e Equal Comparable: Not Applicable
True
e Order Comparable:
True
Timestamp DateTime e Equal Comparable: EDM Type Facets
True for Timestamp
e Order Comparable:
True
Timestamp with DateTime e Equal Comparable: EDM Type Facets
Local Time Zone True for Timestamp with
« Order Comparable: Local Time Zone
True
Timestamp with DateTimeOffset e Equal Comparable: EDM Type Facets
Time Zone True for Timestamp with
« Order Comparable: Time Zone
True
UROWID Binary e Equal Comparable: EDM Type Facets
(size) True for UROWID

e Order Comparable:

True

4-5

Chapter 4
Mapping Oracle Data Types to EDM Types

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data EDM Types Provider Type Attributes: EDM Type Facets
Types (Primitive- Name and Value
TypeKind)
Varchar2 String e Equal Comparable: EDM Type Facets
True for Varchar2
e Order Comparable:
True
VArray Not Applicable Not Applicable and
Not Supported
XMLType String e Equal Comparable: EDM Type Facets
False for XMLType
e Order Comparable:
False

4.3.1 EDM Type Facets

ORACLE

The following sections enumerate the EDM type facets for the preceding Oracle data
types. The first column of each table displays the EDM type facet names for the Oracle
data type. Subsequent columns list the facet attribute names and displays their
respective values.

EDM Type Facets for Bfile

Table 4-2 EDM Type Facets for Bfile
]
Facet name Attributes Name and Value
MaxLength DefaultValue: 2147483648

Constant: True

FixedLength Defaultvalue: False
Constant: True

EDM Type Facets for Blob

Table 4-3 EDM Type Facets for Blob

|
Facet name Attributes Name and Value
MaxLength DefaultValue: 2147483648

Constant: True

FixedLength Defaultvalue: False
Constant: True

EDM Type Facets for Char

4-6

ORACLE

Chapter 4
Mapping Oracle Data Types to EDM Types

Table 4-4 EDM Type Facets for Char

]
Facet Name Attributes Name and Value

MaxLength Minimum: 1
Maximum: 2000
Defaultvalue: 2000
Constant: False
Unicode DefaultvValue: False
Constant: True
FixedLength DefaultValue: True
Constant: True

EDM Type Facets for Clob

Table 4-5 EDM Type Facets for Clob

|
Facet Name Attributes Name and Value

MaxLength DefaultValue: 2147483647
Constant: True

Unicode Defaultvalue: False
Constant: True

FixedLength Defaultvalue: False
Constant: True

EDM Type Facets for Date

Table 4-6 EDM Type Facets for Date

'
Facet Name Attributes Name and Value

Precision Constant: True
DefaultValue: 0

EDM Type Facets for Float

Table 4-7 EDM Type Facets for Float

|
Facet name Attributes Name and Value

Precision Minimum: O
Maximum: 126
Defaultvalue: 0
Constant: False

4-7

Chapter 4
Mapping Oracle Data Types to EDM Types

Table 4-7 (Cont.) EDM Type Facets for Float
|

Facet name

Attributes Name and Value

Scale

Minimum: O
Maximum: 38
Defaultvalue: 0
Constant: False

EDM Type Facets for Interval Day To Second

Table 4-8 EDM Type Facets for Interval Day To Second

Facet name

Attributes Name and Value

Precision

Scale

Minimum: 1
Maximum: 251
DefaultValue: 251
Constant: False
Minimum: O
Maximum: 9
DefaultvValue: 0
Constant: False

Note:

EDM types do not support TimeSpan.

Use Decimal to represent the total number of seconds. An application can
obtain a TimeSpan by using the TimeSpan.FromSeconds static method.

EDM Type Facets for Interval Year To Month

Table 4-9 EDM Type Facets for Interval Year To Month
|

Facet name

Attributes Name and Value

Precision

Scale

Minimum: 1
Maximum: 250
DefaultValue: 250
Constant: False
Minimum: O
Maximum: 9
Defaultvalue: 0
Constant: False

ORACLE

4-8

EDM Type Facets for Long

Table 4-10 EDM Type Facets for Long

Chapter 4
Mapping Oracle Data Types to EDM Types

Facet name

Attributes Name and Value

MaxLength

Unicode

FixedLength

DefaultValue: 2147483647
Constant: True

DefaultValue: False
Constant: True

DefaultValue: False
Constant: True

EDM Type Facets for Long Raw

Table 4-11 EDM Type Facets for Long Raw

Facet name

Attributes Name and Value

MaxLength

FixedLength

DefaultValue: 2147483647
Constant: True

DefaultValue: False
Constant: True

EDM Type Facets for NChar

Table 4-12 EDM Type Facets for NChar

Facet name

Attributes Name and Value

MaxLength

Unicode

FixedLength

Minimum: 1
Maximum: 1000
Defaultvalue: 1000
Constant: False

DefaultValue: True
Constant: True
Defaultvalue: True
Constant: True

ORACLE

4-9

Chapter 4
Mapping Oracle Data Types to EDM Types

Note:
For NChar, the actual data is subject to the maximum byte limit of 2000.

The value of 1000 for Maximum and Defaultvalue allows the EDM wizard to
display columns of NCHAR(1000), where 1000 is the maximum number of
characters allowed in DDL.

EDM Type Facets for NClob

Table 4-13 EDM Type Facets for NClob

]
Facet name Attributes Name and Value

MaxLength Defaultvalue: 2147483647
Constant: True

Unicode DefaultValue: True
Constant: True

FixedLength Defaultvalue: False
Constant: True

EDM Type Facets for Number

Table 4-14 EDM Type Facets for Number
|

Facet name Attributes Name and Value
Precision Minimum: 1
Maximum: 38

Defaultvalue: 38
Constant: False
Scale Minimum: O
Maximum: 38
Defaultvalue: 0
Constant: False

EDM Type Facets for NVarchar2

Table 4-15 EDM Type Facets for NVarchar2

]
Facet name Attributes Name and Value

MaxLength Minimum: 1
Maximum: 2000
Defaultvalue: 2000
Constant: False

ORACLE 4-10

Chapter 4
Mapping Oracle Data Types to EDM Types

Table 4-15 (Cont.) EDM Type Facets for NVarchar2

Facet name

Attributes Name and Value

Unicode

FixedLength

Defaultvalue: True
Constant: True
Defaultvalue: False
Constant: True

EDM Type Facets for Raw

Table 4-16 EDM Type Facets for Raw

Note:

For NVARCHAR2, the actual data is subject to the maximum byte limit of 4000.

The value of 2000 for Maximum and DefaultValue allows the EDM wizard to
display columns of NVARCHAR2(2000), where 2000 is the maximum number of
characters allowed in DDL.

Facet name

Attributes Name and Value

MaxLength

FixedLength

Minimum: 1

Maximum: 2000
Constant: False
Defaultvalue: False
Constant: True

EDM Type Facets for ROWID

Table 4-17 EDM Type Facets for ROWID

Facet name

Attributes Name and Value

MaxLength

Unicode

FixedLength

DefaultValue: 18
Constant: True

Defaultvalue: False
Constant: True
DefaultValue: True
Constant: True

EDM Type Facets for Timestamp

ORACLE

4-11

Chapter 4
Mapping Oracle Data Types to EDM Types

Table 4-18 EDM Type Facets for Timestamp

Facet name Attributes Name and Value
Precision Minimum: O
Maximum: 9

DefaultValue: 6
Constant: False

EDM Type Facets for Timestamp with Local Time Zone

Table 4-19 EDM Type Facets for Timestamp with Local Time Zone

Facet name Attributes Name and Value
Precision Minimum: O
Maximum: 9

DefaultValue: 6
Constant: False

EDM Type Facets for Timestamp with Time Zone

Table 4-20 EDM Type Facets for Timestamp with Time Zone

Facet name Attributes Name and Value
Precision Minimum: O
Maximum: 9

DefaultValue: 6
Constant: False

EDM Type Facets for UROWID

Table 4-21 EDM Type Facets for UROWID

|
Facet name Attributes Name and Value
MaxLength Defaultvalue: 4000
Constant: True

FixedLength Defaultvalue: True
Constant: True

EDM Type Facets for Varchar2

ORACLE 4-12

Chapter 4
Oracle Number Default Data Type Mapping and Customization

Table 4-22 EDM Type Facets for Varchar2

]
Facet name Attributes Name and Value

MaxLength Minimum: 1
Maximum: 4000
Defaultvalue: 4000
Constant: False
Unicode DefaultvValue: False
Constant: True
FixedLength Defaultvalue: False
Constant: True

EDM Type Facets for XMLType

Table 4-23 EDM Type Facets for XMLType

|
Facet name Attributes Name and Value
MaxLength DefaultValue: 2147483647

Constant: True

Unicode Defaultvalue: True
Constant: True

FixedLength Defaultvalue: False
Constant: True

4.4 Oracle Number Default Data Type Mapping and
Customization

ORACLE

This section describes the default number mapping behavior and how to customize it
for your application. You can configure a custom mapping in the .NET configuration file
to override the default mapping for each Oracle NUMBER(p,0), which represents integer
values.

Oracle NUMBER data types that represent integers do not have a matching .NET integer
data type with exactly the same range of acceptable values. ODP.NET uses a default
mapping that ensures any .NET integer type values can be stored within the Oracle
database without requiring custom data type mapping. However, it is possible that
Oracle NUMBER(p,0) column data can be larger than what a .NET data type can hold
when retrieving values from the database.

For example, in Entity Framework 6, Oracle NUMBER(3,0) has a default mapping

to .NET Byte. Oracle NUMBER(3,0) can store a value up to 999, while a .NET BYTE can
store up to the value of 255. If you expect the Oracle data to exceed 255, modify the
mapping to a larger numeric data type, such as a .NET Int16. Setting up this custom
mapping allows you to consume the data in .NET without encountering an error. When
such a custom mapping is used, be cautious not to insert a .NET Int16 value beyond
what an Oracle NUMBER(3,0) column can hold. Trying to insert Int16.MaxValue (i.e.
32,767) into a NUMBER(3,0) column will cause an Oracle Database error.

4-13

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4.4.1 Entity Framework 5 and Earlier Mapping and Customization

ORACLE

Example 4-1 shows an ODP.NET, Unmanaged Driver sample app.config file that uses
custom mapping to map the Number(1,0) Oracle data type to the bool EDM type. For
example, Number(1,0), which is mapped to Int16 by default, can be custom mapped to
the .NET Bool or .NET Byte type. This example maps Number(3,0) to byte, and sets the
maximum precisions for the Int16, Int32, and Int64 data types to 4, 9, and 18
respectively.

Example 4-2 shows the same changes as Example 4-1, but using the traditional
ODP.NET, Unmanaged Driver app-config format.

Example 4-3 shows a ODP.NET, Managed Driver sample app-config file.

Example 4-1, Example 4-2, and Example 4-3 customizes the mappings as follows:

Oracle Type Default EDM Type Custom EDM Type
Number(1,0) Intl6 bool
Number(2,0) to Number(3,0) Intl6 byte

Number(4,0) Intl6 Intl6

Number(5,0) Intl6 Int32
Number(6,0) to Number(9,0) Int32 Int32
Number(10,0) Int32 Int64
Number(11,0) to Int64 Int64
Number(18,0)

Number(19,0) Int64 Decimal

Custom mapping configures the maximum precision of the Oracle Number type that
would map to the .NET/EDM type. So, for example, the preceding custom application
configuration file configures ODP.NET to map Number(10,0) through Number(18,0) to
Int64, as opposed to the default range of Number(11,0) through Number(19,0) for Int64.

Note:

e Custom mapping does not require you to map all the .NET/EDM types. For
example, if custom mapping is required just for Int16, then having a single
entry for Int16 is sufficient. Default mapping gets used for the other types.

* When using Model First, a Byte attribute is mapped to Number(3,0) by
default. However, when a model is generated for a Number(3,0) column, it
gets mapped to Intl16 by default unless custom mapping for Byte is
specified.

You must make sure that your mappings allow the data to fit within the range of

the .NET/EDM type and the Number(p, s) type. If you select a .NET/EDM type with a
range too small for the Oracle Number data, then errors will occur during data retrieval.
Also, if you select a .NET/EDM type, and the corresponding data is too big for the

4-14

Chapter 4
Oracle Number Default Data Type Mapping and Customization

Oracle Number column, then INSERTs and UPDATESs to the Oracle database will error
out.

Example 4-1 First Sample ODP.NET, Unmanaged Driver Application
Configuration File to Custom Map the Number (p,0) Data Type

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<oracle.unmanageddataaccess.client>
<version number="*">
<edmMappings>
<edmMapping dataType="number">
<add name="bool" precision="1"/>
<add name="byte" precision="3" />
<add name="intl6" precision="4" />
<add name="int32" precision="9" />
<add name="int64" precision="18" />
</edmMapping>
</edmMappings>
</version>
</oracle.unmanageddataaccess.client>
</configuration>

Example 4-2 Second Sample ODP.NET, Unmanaged Driver Application
Configuration File to Custom Map the Number (p,0) Data Type

<?xml version="1.0" encoding="utf-8"?>
<configuration>
<connectionStrings>
</connectionStrings>
<oracle.dataaccess.client>
<settings>
<add name="bool" value="edmmapping number(1,0)" />
<add name="byte" value="edmmapping number(3,0)" />
<add name="int16" value="edmmapping number(4,0)" />
<add name="int32" value="edmmapping number(9,0)" />
<add name="int64" value="edmmapping number(18,0)" />
</settings>
</oracle.dataaccess.client>
</configuration>

Example 4-3 Sample ODP.NET, Managed Driver Application Configuration File
to Custom Map the Number Data Type

<?xml version="1.0" encoding="utf-8" 7>
<configuration>
<oracle.manageddataaccess.client>
<version number="*">
<edmMappings>
<edmMapping dataType="number">
<add name="bool" precision="1"/>
<add name="byte" precision="3" />
<add name="intl16" precision="4" />
<add name="int32" precision="9" />
<add name="int64" precision="18" />
</edmMapping>
</edmMappings>
</version>
</oracle.manageddataaccess.client>
</configuration>

ORACLE 4-15

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4.4.2 Entity Framework 6 Mapping and Customization

ODP.NET 12.1.0.2 introduces a new .NET configuration setting format for both
managed and unmanaged ODP.NET. This new setting format applies only for use with
Entity Framework 6 and Entity Data Model mappings, including Code First, Database
First, and Model First use cases. Developers can continue using the existing
ODP.NET format for non-Entity Framework 6 applications.

This new format unifies how ODP.NET, Managed and Unmanaged Drivers sets their
configuration values and supports auto-completion.

The following is an example of an edmMappings section for ODP.NET, Managed Driver:

<oracle.manageddataaccess.client>
<edmMappings>
<edmNumberMapping>
<add NETType="bool" MinPrecision="1" MaxPrecision="1" DBType="Number" />
<add NETType="byte" MinPrecision="2" MaxPrecision="3" DBType="Number" />
<add NETType="intl16" MinPrecision="4" MaxPrecision="5" DBType="Number" />
<add NETType="int32" MinPrecision="6" MaxPrecision="10" DBType="Number" />
<add NETType="int64" MinPrecision="11" MaxPrecision="19" DBType="Number" />
</edmNumberMapping>
</edmMappings>
</version>
</oracle.manageddataaccess.client>

Where:

* DBType is the Oracle Database data type

* NETType is the .NET data type that the Oracle data type maps to

* MinPrecision is the minimum range the Oracle data type will map to the .NET type
* MaxPrecision is the maximum range the Oracle data type will map to the .NET type

The following is an example of an edmmappings section for ODP.NET, Unmanaged
Driver. It is exactly same format as the managed driver with the exception of the
opening and closing tags.

<oracle.unmanageddataaccess.client>
<version number="*">
<edmMappings>
<edmNumberMapping>
<add NETType="bool" MinPrecision="1" MaxPrecision="1" DBType="Number" />
<add NETType="byte" MinPrecision="2" MaxPrecision="3" DBType="Number" />
<add NETType="intl16" MinPrecision="4" MaxPrecision="5" DBType="Number" />
<add NETType="int32" MinPrecision="6" MaxPrecision="10" DBType="Number" />
<add NETType="int64" MinPrecision="11" MaxPrecision="19" DBType="Number" />
</edmNumberMapping>
</edmMappings>
</version>
</oracle.unmanageddataaccess.client>

4.4.2.1 New Default Mappings

For Entity Framework 6, ODP.NET 12.1.0.2 introduces new default mappings that
apply to Code First, Database First, and Model First scenarios. These changes were
necessary to support Code First interoperability.

ORACLE 4-16

Chapter 4
Oracle Number Default Data Type Mapping and Customization

* .NET Booleans map to Oracle Number(1,0) and vice-versa by default
e .NET Bytes map to Oracle Number(2,0) and Number(3,0) and vice-versa by default

This default behavior can be changed by providing an alternative data type mapping
by configuring the section of the .NET config file.

4.4.3 Data Type Mapping and Customization Process

ORACLE

To enable custom mapping, add the mapping information to the .NET config file prior
to EDM creation.

If the EDM was created already before providing the mapping information, then you
can modify the mappings either through the Visual Studio tools or manually. Using
Visual Studio, go to the EDM Model Browser page. Right-click on the table(s) requiring
new data type mapping and select Table Mapping from the pop-up menu. The
Mapping Details window will appear usually at the bottom of your screen. Update
Column Mappings as desired.

If you need to add or delete mappings, find the Type values in the CSDL mapping
section of your project's existing EDMX file. Add or delete those Type values to

the .NET data types you want the application to use. In the example below, the
property name types for BOOLCOL and BYTECOL are added to the CSDL and mapped to
Boolean and Byte, respectively.

Example Mapping Before CSDL Customization:

<Property Name="INT16COL" Type="Int16" Nullable="false" />

Example Mapping After CSDL Customization:

<Property Name="BOOLCOL" Type="Boolean"™ Nullable="false" />
<Property Name="BYTECOL" Type="Byte" Nullable="false" />
<Property Name="INT16COL" Type="Int16" Nullable="false" />

You can employ combinations of these customization possibilities depending on your
planned mapping changes. If many tables and many columns require mapping
changes, it is most efficient to delete the EDMX file and regenerate the data model. If
a few tables and many columns require changes, then delete the affected tables, save
the EDMX file, and select Update Model from Database... to include those tables
again. If only a single table and one or two columns require changes, then modify the
EDMX either manually or by using the Mapping Details window.

" Note:

When using the EDM wizard to create a complex type from a function import,
any custom EDM type mappings specified will not be applied automatically.
The EDM wizard uses the default type mappings. Developers must then
manually edit the resulting complex type. Developers begin this process after
the complex type is generated. Any type declaration (field, property, constructor
parameter, etc.) in the complex object which has an undesired type mapping,
such as Decimal rather than Boolean, should be manually edited to the desired

type.

4-17

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4.4.4 StoreGeneratedPattern Enumeration

The following sections describe the Identity attribute and the Virtual column.

4.4.4.1 ldentity Attribute

Oracle Database 12c¢ (12.1) and later versions support table or view ldentity attribute
columns. Oracle has three Identity attribute types. When the EDM wizard generates a
data model from an Oracle Identity attribute-containing table or view, ODP.NET will set
the value of StoreGeneratedPattern to Identity in the .edmx file for any of three Oracle
Identity types. The Identity attribute-associated column will use the server-generated
value during INSERT: hence, application developers no longer need to create a
sequence nor trigger. If the .NET application attempts to set the Identity attribute itself,
this value will be ignored.

For Oracle Database 11g Release 2 (11.2) and earlier versions that do not support
Identity columns, application developers can manually set StoreGeneratedPattern to
Identity in columns through the entity model designer Properties after model
generation, then create an INSERT trigger. Depending on the data type, a sequence
may not be necessary if a server function, such as sys_guid(), can generate the value
for the column.

4.4.4.2 Virtual Column

Oracle Database 11g (11.1) and later versions can store expressions directly in base
tables as Virtual columns, also known as Generated columns. Virtual columns cannot
be inserted into or updated. ODP.NET will not automatically set StoreGeneratedPattern
to Computed in the EF model for Virtual columns. To avoid errors, application
developers need to add or change the value of StoreGeneratedPattern to Computed for
Virtual columns after the model generation. Once done, Virtual columns are excluded
from INSERTs and UPDATES upon calling SaveChanges().

4.4.5 Resolving Compilation Errors When Using Custom Mapping

If the custom mapping in a .NET configuration file has changed, then regenerate the
data model to solve compilation errors introduced by the changes.

Under certain scenarios, custom mapping may cause compilation errors when a
project that uses custom mapping is loaded by Visual Studio. One specific scenario is
when Visual Studio opens a project with an existing custom mapping that now
generates errors when those errors did not exist before. You may use the following
workaround for such scenarios:

1. Open Visual Studio Help, About Microsoft Visual Studio. Click OK to exit the dialog
box.

Alternatively, open the to-be-used connection in Server Explorer.

2. Compile the project again to eliminate the compilation errors.

ORACLE 4-18

Chapter 4
Migrating Existing Entity Framework 5 Applications to Entity Framework 6

4.4.6 Mapping Boolean and Guid Parameters in Custom INSERT,
UPDATE, and DELETE Stored Procedures

When using your custom INSERT, UPDATE, or DELETE stored procedure in Stored
Procedure Mapping, the following error might occur:

Error 2042: Parameter Mapping specified is not valid.

This can happen if a Number parameter has been mapped to a Boolean attribute, or if a
RAW parameter has been mapped to a Guid attribute.

The solution is to manually add Precision="1" for the Number parameter, and
MaxLength="16" for the RAW parameter of your stored procedure in the SSDL.

4.5 Migrating Existing Entity Framework 5 Applications to
Entity Framework 6

To migrate existing Database First Entity Framework 5 applications to Entity
Framework 6, use the following instructions. The first four steps are generic to all
Entity Framework applications. The last four steps are specific to Oracle deployments.

1.

ORACLE

Uninstall Entity Framework 5 in Visual Studio Package Manager Console. For
example,

Uninstall-Package EntityFramework
Install Entity Framework 6 in Package Manager Console. For example,
Install-Package EntityFramework -Version 6.0.2

This step adds Entity Framework 6 to the configSections entry and adds a new
section called entityFramework

Delete the following namespaces from your application:

// C#
using System.Data.EntityClient;
using System.Data.Objects;

Add the following namespaces to your application:

// C#
using System.Data.Entity.Core.EntityClient;
using System.Data.Entity.Core.Objects;

Add the Oracle Entity Framework 6 provider configuration information to the .NET

config file in the providers section. Modify the ODP.NET version if using a version

besides 6.121.2.0. If you installed the ODP.NET NuGet package, you can skip this
step as the NuGet install has already added made this change.

<provider invariantName="Oracle.DataAccess.Client"
type="0Oracle.DataAccess.EntityFramework.EFOracleProviderServices,Oracle_DataAcces
s.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

<provider invariantName="0Oracle.ManagedDataAccess.Client"
type="0racle.ManagedDataAccess.EntityFramework.EFOracleProviderServices,Oracle._Ma

4-19

Chapter 4
Code First

nagedDataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

6. Add the Oracle.ManagedDataAccess.EntityFramework or
Oracle.DataAccess.EntityFramework assembly as a reference to the project.

7. Modify the Oracle data type to .NET data type mappings as required by your
application. See "Entity Framework 6 Mapping and Customization” for more
details.

8. Rebuild the application.

4.6 Code First

Using the Entity Framework Code First modeling path, developers define the
application domain model using source code rather than working directly with a
designer or an XML-based configuration file. The classes defined within the source
code become the model. The Code First model path offers an alternative to the
existing Entity Framework Database First and Model First paths. Within Code First, the
classes defined in code that comprise the model are known as Plain Old CLR Objects
(POCOs). This name derives from the fact that these classes have no dependency
upon Entity Framework itself and are independent of it.

Oracle's support for the Code First modeling path enables .NET developers to take
advantage of Oracle Database benefits.

4.6.1 Mapping of .NET Types to Oracle Types

When using the Code First path, the model is defined by the application's classes and
properties. The property data types need to be mapped to the Oracle Database table
data types. The following table lists the default mapping of supported .NET types to
Oracle types as well as how to map a String property to non-default Oracle types:

Table 4-24 Mapping of .NET Data Types to Oracle Data Types

|
.NET Data Type Oracle Data Type Mapping Method

Boolean number(1, 0) Use EDM Mapping

Note: Requires use of EDM
Mapping configuration.
Reference the EDM Mapping
sections in the documentation
for additional information.

Byte number (3, 0) Use EDM Mapping

Note: Requires use of EDM
Mapping configuration.
Reference the EDM Mapping
sections in the documentation
for additional information.

Byte[] blob Default

ORACLE 4-20

ORACLE

Chapter 4
Code First

Table 4-24 (Cont.) Mapping of .NET Data Types to Oracle Data Types

.NET Data Type

Oracle Data Type

Mapping Method

Intl6

Int32

Int64

Decimal

Single

Double

Guid

DateTime
DateTimeOffset
String

String

String

String

number (5, 0)

number (10, 0)

number(19, 0)

number (18, 2)
binary_float
binary_double

raw(16)

date

timestamp with time zone
nclob

clob

nvarchar?2

varchar?2

Default

Note: The default mapping of
integer types may be specified
in the EDM Mapping
configuration. Reference the
EDM Mapping sections in the
documentation for additional
information.

Default

Note: The default mapping of
integer types may be specified
in the EDM Mapping
configuration. Reference the
EDM Mapping sections in the
documentation for additional
information.

Default

Note: The default mapping of
integer types may be specified
in the EDM Mapping
configuration. Reference the
EDM Mapping sections in the
documentation for additional
information.

Default
Default
Default
Default
Default
Default
Default

Set Unicode to false using
IsUnicode() fluent API

Set Max Length to <= 2000
using HasMaxLength() fluent
API or MaxLength data
annotation

Set Max Length to <= 4000
using HasMaxLength() fluent
API or MaxLength data
annotation and set Unicode to
false using IsUnicode() fluent
API

4-21

ORACLE

Chapter 4
Code First

Table 4-24 (Cont.) Mapping of .NET Data Types to Oracle Data Types

.NET Data Type

Oracle Data Type

Mapping Method

String

String

String

String

String

nchar

char

Long

rowid

urowid

Set Max Length to <= 1000
using HasMaxLength() fluent
API or MaxLength annotation
and Set Column Type to NCHAR
using HasColumnType() fluent
API or Column data
annotation

Set Max Length to <= 2000
using HasMaxLength() fluent
API or MaxLength annotation
and Set Column Type to CHAR
using HasColumnType() fluent
API or Column data annotation

Set Column Type to LONG
using HasColumnType() fluent
API or Column data annotation

Note: The long data type is
deprecated and not
recommended.

Set Column Type to ROWID
using HasColumnType() fluent
API or Column data annotation

Set Column Type to UROWID
using HasColumnType() fluent
API or Column data annotation

" Note:

Influencing the Oracle Data Type Characteristics

The character based columns, namely, CHAR, NCHAR, VARCHAR2, NVARCHAR2 will be
created using character semantics to be able to store the specified Max Length
amount of characters. However, due to the Oracle database limit, these
columns can store only up to 4000 bytes. As such, these columns may not be
able to store 4000 characters even if Max Length is set to 4000 characters since
one character may require multiple number of bytes of storage, depending on
the data and the database character set. If the character data can be longer
than 4000 bytes, it may be more appropriate to use CLOB or NCLOB column.

The type mappings listed in the previous table represent the mappings that occur by
default or what is known as convention in Entity Framework. As illustrated with the
String type, you can influence the resulting Oracle Data Type for a property as well as
characteristics of that data type. There are two Entity Framework methods to influence
the resulting Oracle Data Type: Data Annotations and the Code First Fluent API. Data
Annotations permit you to explicitly mark a class property with one or more attributes,
whereas the Code First Fluent API permits you to use code rather than attributes to
achieve the same goal. For additional information regarding the use of Data

4-22

Chapter 4
Code First

Annotations and the Code First Fluent API refer to the MSDN Entity Framework

documentation.

The following table illustrates the available functionality:

Table 4-25 Mapping of Data Annotations and the Code First Fluent APIs

Data Annotation

Fluent API

Purpose

Applies To

Key

Required

MaxLength

NotMapped

ConcurrencyCheck

TimeStamp

Column

ORACLE

HasKey

IsRequired

HasMaxLength

Ignore

IsConcurrencyToken

IsRowVersion

HasColumnType

Set a property as the
Primary Key.

Set the database
column as NOT NULL.

Specifies the
maximum length of
the property.

Indicates the property
is not mapped to a
database column.

Indicates the column
should be used for
optimistic concurrency
checking.

Note: Do not use with
an unbounded (no
maximum length
specified) string
property as this will
create a LOB column.
Use of a LOB column
in the concurrency
check will result in an
ORA-00932:
inconsistent
datatypes error.

Indicates to create the
column as a
rowversion column.

Indicates the provider-
specific type to use for
the database column.

Note: Must be a legal
compatible type. For
example a Date
property is not legal to
map to a number
column. Use the
TypeName property
with the Column Data
Annotation to specify
the type.

All Scalar Types

All

String

All

All

Not Supported

All

4-23

Chapter 4
Code First

Table 4-25 (Cont.) Mapping of Data Annotations and the Code First Fluent APIs
|

Data Annotation Fluent API

Purpose Applies To

N/A IsUnicode

N/A HasPrecision

Indicates to create the String
column as an N-type,

that is, nvarchar?2 or

nclob. Default is true.

Note: There is no Data
Annotation equivalent
for IsUnicode.

Indicates the precision Decimal
and scale for a
decimal property.

Note: There is no Data
Annotation equivalent
for HasPrecision.

4.6.2 Code First Migrations

The Oracle Data Provider for .NET supports Code First Migrations functionality. The
use of Code First Migrations with Oracle Database is supported through the Package
Manager Console window migrations commands. For information on these
commands, refer to the MSDN Code First Migrations documentation:

http://msdn.microsoft.com/en-us/data/jj591621 . aspx

Code First Migrations utilizes a table known as the Migration History table for tracking
migration operations as well as model changes. ODP.NET creates this table, by
default, in the user schema specified in the context connection string. This table is

named __MigrationHistory.

This table can be created in another user schema besides the user specified in the
context connection string. This is accomplished through a process known as Migration
History Table Customization, which is described in the following MSDN

documentation.

http://msdn.microsoft.com/en-us/data/dn456841

Note:

customization.

command.

ORACLE

e Changing the user schema for the table is the only supported

e Code First Automatic Migrations is limited to working with the dbo schema
only. Due to this limitation it is recommended to use code-based
migrations, that is, add explicit migrations through the Add-Migration

4-24

Chapter 4
Code First

4.6.2.1 Code First Migrations With No Supporting Code Migration File

4.6.3 Code

When using Code First Migrations with ODP.NET, the migration history table may be
dropped if no supporting code migration file existed prior to updating the database.
Developers should ensure the supporting code migration file has been added prior to
updating the database.

The following steps can remove the migration history table:

1. Execute application to create database objects

2. Enable-Migrations in the Package Manager Console
3. Make code change to POCO

4. Update-Database in the Package Manager Console

The following steps ensure the code migration file is created:

1. Execute application to create database objects

2. Enable-Migrations in the Package Manager Console
3. Make code change to POCO
4

Add-Migration in the Package Manager Console. This step will create the
necessary code migration file.

5. Update-Database in the Package Manager Console

First Database Initialization

ODP.NET supports the following Code First Database Initializer methods:

» CreateDatabaselfNotExists (default if none specified)
* DropCreateDatabaseAlways

* DropCreateDatabaselfModelChanges

* NullDatabaselnitializer

* MigrateDatabaseTolLatestVersion

These methods are documented on MSDN.

Due to differences in how Oracle and SQL Server define a database, database
initialization actions work on all of the Oracle objects in the model. An Oracle
Database is not created or dropped, rather the objects that compose the model are
considered to be the database for these operations.

4.6.4 Oracle Database Object Creation

ORACLE

In order to support the client application, ODP.NET will create and maintain the
required database objects. The following are the database objects created and
maintained by the provider:

« Table
e Table Column

e Primary Key

4-25

Chapter 4
Code First

* Foreign Key
* Index
* Sequence

» Trigger

Note:

Sequences and triggers may be created in Oracle Database 11g Release 2
and earlier databases to support identity columns.

For objects which directly relate to a client application object, namely, a table which
represents an application class and a table column which represents a class property,
the object names used are those provided by the client. These object names must
conform to the object identifier length limits for Oracle Database. For example, if a
class name length exceeds the valid object identifier length in Oracle Database then
the ORA-00972: identifier is too long exception will be raised at object creation time.

For the remaining objects, ODP.NET utilizes a nhame generation algorithm if the
supplied name length exceeds the database identifier length limit. If the supplied name
length does not exceed the database limit the name is used as-is. In all cases, the
object name is created as a quoted identifier in order to preserve case and any special
characters which may be part of the identifier.

In cases where the provider generates a name to comply with database identifier
length limits, the name is composed of the following underscore separated elements:

e A substring of the original name (from the first character)
e A numeric suffix value calculated from the original name

The following example illustrates the results of the name generation algorithm using a
simple POCO in the client application:

public class LongSamplePocoTestClassName

{
[Key]
public int Id { get; set; }
[MaxLength(64)]
public string Name { get; set; }
}

The default name for the Primary Key for the resulting table will be:

PK_LongSamplePocoTestClassNames

As this name contains 31 characters (single byte per character), it violates the
database identifier restrictions. The rewritten Primary Key name will resemble the
following value:

PK_LongSamplePocoTes_730795129

The algorithm is designed to utilize as many characters as possible from the original
name such that the new name does not violate the identifier length restrictions.

ORACLE 4-26

ORACLE

Chapter 4
Code First

Controlling Table Name and Owner

Through the use of Data Annotations or the Entity Framework Fluent API you may
control the table name, as well as the table owner. For example, you may choose to
explicitly set the table name to conform to your organization's naming standards or if
you do not wish to, use the name Entity Framework provides. The Table Data
Annotation is used to control both the table name and the owner. When using the
Fluent API, the ToTable method is used to control the table name and the owner within
the OnModelCreating override in your class which derives from DbContext.

The following examples use an incomplete class definition to illustrate these actions.
Setting the table name using a Data Annotation:

[Table(""Employee™)]
public class Employee

Setting the table name using the Fluent API:

protected override void OnModelCreating(DbModelBuilder modelBuilder)

{
modelBui lder .Entity<Employee>().ToTable("Employee™);

}

Setting the table name and the owner using a Data Annotation:

[Table("Employee ", Schema="TESTUSER™)]
public class Employee

Setting the table name and the owner using the Fluent API:
protected override void OnModelCreating(DbModelBuilder modelBuilder)

modelBuilder.Entity<Employee>().ToTable("Employee™, "TESTUSER™);
}

Note:

When using Data Annotations or the Fluent API as above to set the owner, it is
required to also set the name.

Setting the Default Table Owner

Rather than set the table owner for each user table, Entity Framework 6 and higher
allows you to set the default owner to be used. This is done by invoking the
HasDefaul tSchema method within the OnModelCreating override in your class, which
derives from DbContext.

For example, the following code will cause all user tables to be created within the
TESTUSER schema by default:

protected override void OnModelCreating(DbModelBuilder modelBuilder)

{
modelBui lder.HasDefaultSchema(""TESTUSER™);

}

4-27

Chapter 4
Unsupported Entity Framework Features

Note:

The owner name is case-sensitive.

4.6.5 Using the Default Connection Factory

The default connection factory allows ODP.NET connections to be created by
providing an Oracle connection string to the DbContext constructor. For example, the
following entry could be used to configure the ODP.NET, Managed Driver default
connection factory:

<defaultConnectionFactory
type="0Oracle._ManagedDataAccess.EntityFramework.OracleConnectionFactory,
Oracle.ManagedDataAccess.EntityFramework,

Version=6.121.2.0,

Culture=neutral,

PublicKeyToken=89b483f429c47342" />

When using the default connection factory, the application supplies an Oracle
connection string to the DbContext base constructor as follows:

public class TestContext : DbContext

{
public TestContext()

. base(*'<connection string>")

{
}
}

Where <connection string> is the ODP.NET connection string. This allows the
application to connect to the database using code similar to the following:

using (var ctx = new TestContext())

{
L

For additional information please see the MSDN documentation for the
IDbConnectionFactory interface:

http://msdn.microsoft.com/en-us/library/
system.data.entity. infrastructure. idbconnectionfactory%28v=vs.113%29.aspx

4.7 Unsupported Entity Framework Features

ORACLE

The following items are not supported by the current release of the provider:

e Mapping Code First Insert, Update, Delete operations to Stored Procedures
e TimeStamp/RowVersion properties

e Custom Configuration

e Spatial Types

e Table-valued functions

4-28

Chapter 4
Unsupported Entity Framework Features

* Asynchronous Query and Save
» Connection Resiliency

e Oracle synonyms

ORACLE 4-29

Oracle Data Provider for .NET Stored
Procedures

This section discusses server-side features provided by Oracle Data Provider
for .NET.

With the support for .NET stored procedures in Oracle Databases for Windows that
Oracle Database Extensions for .NET provides, ODP.NET can be used to access
Oracle data through the implicit database connection that is available from the context
of the .NET stored procedure execution. Explicit user connections can also be created
to establish connections to the database that hosts the .NET stored procedure or to
other Oracle Databases.

¢ See Also:

Oracle Database Extensions for .NET Developer's Guide for Microsoft
Windows

This section contains these topics:

* Introducing .NET Stored Procedure Execution Using ODP.NET

* Limitations and Restrictions on ODP.NET Within .NET Stored Procedure
» Porting Client Application to .NET Stored Procedure

5.1 Introducing .NET Stored Procedure Execution Using

ODP.NET

ORACLE

Oracle Data Provider for .NET classes and APIs provide data access to the Oracle
Database from a .NET client application and from .NET stored procedures and
functions.

However, some limitations and restrictions exist when Oracle Data Provider for .NET is
used within a .NET stored procedure. These are discussed in the next section.

The following is a simple .NET stored procedure example.

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

public class CLRLibraryl

{
// _NET Stored Function returning the DEPTNO of the employee whose

// EMPNO is “empno*
public static uint GetDeptNo(uint empno)

{

5-1

Chapter 5
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

uint deptno = 0;

// Create and open a context connection
OracleConnection conn = new OracleConnection();
if(OracleConnection.IsAvailable == true)

{

conn.ConnectionString = "context connection=true";

}

else
{
//set connection string for a normal client connection
conn.ConnectionString = "user id=scott;password=tiger;" +
"data source=oracle";

conn.Open();

// Create and execute a command
OracleCommand cmd = conn.CreateCommand();
cmd.CommandText = "SELECT DEPTNO FROM EMP WHERE EMPNO = :1';
cmd.Parameters.Add(*':1",0racleDbType. Int32,empno,
System.Data.ParameterDirection. Input);
OracleDataReader rdr = cmd.ExecuteReader();
if (rdr.Read())

deptno = (uint)rdr.GetInt32(0);
rdr.Close();
cmd.Dispose();
conn.Close();
return deptno;

} // GetDeptNo
} // CLRLibraryl

5.2 Limitations and Restrictions on ODP.NET Within .NET
Stored Procedure

This section covers important concepts that apply when Oracle Data Provider for .NET
is used within a .NET stored procedure.

Note:

ODP.NET, Managed Driver does not support .NET stored procedures.

5.2.1 Implicit Database Connection

ORACLE

Within a .NET stored procedure, an implicit database connection is available for use to
access Oracle data. This implicit database connection should be used rather than
establishing a user connection because the implicit database connection is already
established by the caller of the .NET stored procedure, thereby minimizing resource
usage.

To obtain an OracleConnection object in a .NET stored procedure that represents the
implicit database connection, set the ConnectionString property of the OracleConnection
object to "context connection=true" and invoke the Open method. No connection string

5-2

Chapter 5
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

attributes can be used with "context connection=true", except the Statement Cache Size
attribute.

The availability of the implicit database connection can be checked at run time through
the static OracleConnection. IsAvailable property. This property always returns true
when Oracle Data Provider for .NET is used within a .NET stored procedure.
Otherwise, false is returned.

Note:

DBLinks are not supported in .NET stored procedures.

Only one implicit database connection is available within a .NET stored procedure
invocation. To establish more connections in addition to the implicit database
connection, an explicit connection must be created. When the Close method is invoked
on the OracleConnection that represents the implicit database connection, the
connection is not actually closed. Therefore, the Open method of the same or another
OracleConnection object can be invoked to obtain the connection that represents the
implicit database connection.

The implicit database connection can only be acquired by the Open method invocation
by a native Oracle thread that initially invokes the .NET stored procedure. However,
threads spawned from the native Oracle thread can use implicit database connections
that are obtained by the native Oracle thread.

5.2.2 Transaction Support

ORACLE

The .NET stored procedure execution automatically inherits the current transaction on
the implicit database connection. No explicit transaction can be started, committed, or
rolled back inside a .NET stored procedure on a Context connection. However, explicit
transaction can be started, committed, or rolled back inside a .NET stored procedure
on a Client connection.

For example, OracleConnection.BeginTransaction is not allowed inside a .NET stored
procedure for a context connection, but is allowed for a client connection. .NET stored
procedures do not support distributed transactions. If you have enlisted a client
connection in a distributed transaction and call a .NET stored procedure or function, an
error occurs.

If a .NET stored procedure or function performs operations on the database that are
required to be part of a transaction, the transaction must be started prior to calling
the .NET stored procedure. Any desired commit or rollback must be performed after
returning from the .NET stored procedure or function.

The following example consists of a client application and a .NET stored procedure,
InsertRecordSP, that inserts an employee record into an EVP table.

Example (.NET Stored Procedure)

using System;

using System.Data;

using Oracle.DataAccess.Client;

// This class represents an Oracle .NET stored procedure that inserts
// an employee record into an EMP table of SCOTT schema.

5-3

ORACLE

Chapter 5
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

public class InsertRecordSP

{
// This procedure will insert a row into the emp database
// For simplicity we are using only two parameters, the rest are hard coded
public static void InsertRecord(int EmpNo, string EmpName)

if(OracleConnection.IsAvailable == true)
{
OracleConnection conn = new OracleConnection(
"context connection=true");
conn.Open();
// Create new command object from connection context
OracleCommand Cmd = conn.CreateCommand();
Cmd.CommandText = "INSERT INTO EMP(EMPNO, ENAME, JOB," +
"MGR, HIREDATE, SAL, COMM, DEPTNO) " +
"WALUES (:1, :2, "ANALYST", 7566, " +
"*06-DEC-04", 5000, 0, 20)";
Cmd.Parameters.Add(":1", OracleDbType. Int32,
EmpNo, ParameterDirection.Input);
Cmd.Parameters.Add(":2", OracleDbType.Varchar2,
EmpName, ParameterDirection.lnput);
Cmd.ExecuteNonQuery();

}

Example (Client Application)

The example enters new employee, Bernstein, employee number 7950, into the EMP
table.

// C#
// This sample demonstrates how to start the transaction with ODP.NET client
// application and execute an Oracle _NET stored procedure that performs
// a DML operation. Since .NET stored procedure inherits the current
// transaction from the implicit database connection, DML operation
// in _NET stored procedure will not be in auto-committed mode.
// Therefore, it is up to the client application to do a COMMIT or ROLLBACK
// after returning from .NET stored procedure
using System;
using System.Data;
using Oracle.DataAccess.Client;
// In this class we are starting a transaction on the client side and
// executing a .NET stored procedure, which inserts a record into EMP
// table and then verifies record count before and after COMMIT statement
class TransactionSample
{
static void Main(string[] args)
{
OracleConnection Conn = null;
OracleTransaction Txn = null;
OracleCommand Cmd = null;
try
{
Console.WriteLine("Sample: Open DB connection in non auto-committed "
+ "mode," +
"DML operation performed by _NET stored " +
"procedure doesn"t have an effect before COMMIT " +
"is called.");
// Create and Open oracle connection
Conn = new OracleConnection();

5-4

ORACLE

}

Chapter 5
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

Conn.ConnectionString = "User ld=scott;Password=tiger;" +

"Data Source=oracle;";

Conn.Open();

// Start transaction

Txn = Conn.BeginTransaction(IsolationLevel _ReadCommitted);
// Create command object

Cmd = new OracleCommand();

Cmd.Connection = Conn;

Cmd.CommandType = CommandType.StoredProcedure;
Cmd.CommandText = "InsertRecord"; // .NET Stored procedure
// Parameter settings

OracleParameter EmpNoPrm = Cmd.Parameters.Add(

"empno", OracleDbType.Int32);

EmpNoPrm.Direction = ParameterDirection.Input;
EmpNoPrm.Value = 7950;
OracleParameter EmpNamePrm = Cmd.Parameters.Add(

"ename", OracleDbType.Varchar2, 10);
EmpNamePrm.Direction = ParameterDirection. Input;
EmpNamePrm.Value = "Bernstein";

// Execute .NET stored procedure
Cmd.ExecuteNonQuery();
Console.WriteLine("Number of record(s) before COMMIT {0}",

RecordCount());

Txn.Commit();
Console.WriteLine("Number of record(s) after COMMIT {0}",

RecordCount());

catch(OracleException OE)

{
Console.WriteLine(OE.Message);
}
finally
{
// Cleanup objects
if(null '= Txn)
Txn.Dispose();
if(null '=Cmd)
Cmd.Dispose();
if(null !'= Conn && Conn.State == ConnectionState.Open)
Conn.Close();
}

static int RecordCount()

{

int EmpCount = 0;
OracleConnection Conn = null;
OracleCommand Cmd = null;

try

{

Conn = new OracleConnection("User ld=scott;Password=tiger;" +
"Data Source=oracle;");

Conn.Open();

Cmd = new OracleCommand("SELECT COUNT(*) FROM EMP", Conn);

Object o = Cmd.ExecuteScalar();

EmpCount = Convert.Tolnt32(0.ToString());

catch(OracleException OE)

{
}

Console.WriteLine(OE.Message);

finally

5-5

Chapter 5
Porting Client Application to .NET Stored Procedure

if(null '=Cmd)
Cmd.Dispose();
}

return EmpCount;

}
}

5.2.3 Unsupported SQL Commands

Transaction controls commands such as COMMIT, ROLLBACK, and SAVEPOINT are not
supported in a .NET stored procedure.

Data definition commands such as CREATE and ALTER are not supported with an implicit
database connection, but they are supported with an explicit user connection in a .NET
stored procedure.

5.2.4 Oracle User-Defined Type (UDT) Support

UDTs are not supported within a context connection but they are supported with a
client connection. UDTs are not supported as parameters to .NET stored procedures.

5.3 Porting Client Application to .NET Stored Procedure

ORACLE

All classes and class members provide the same functionality for both client
applications and .NET stored procedures, unless it is otherwise stated.

Table 5-1 lists those classes or class members that have different behavior depending
on whether or not they are used in a client application or in a .NET stored procedure.

Column Headings

The column headings for this table are:

Client application: The client application.

Implicit connection: The implicit database connections in a .NET stored procedure.

Explicit connection: The explicit user connections in a .NET stored procedure.

Table 5-1 API Support Comparison Between Client Application and .NET
Stored Procedure

Class or Class Members Client Application Implicit Connection/Explicit
Connection

OnChangeEventHandler Yes No/No

Delegate

-all members

OracleDependency Class Yes No/No

-all members

OracleNotificationEventArgs Yes No/No

Class

-all members

5-6

Chapter 5
Porting Client Application to .NET Stored Procedure

Table 5-1 (Cont.) API Support Comparison Between Client Application
and .NET Stored Procedure

Class or Class Members Client Application Implicit Connection/Explicit
Connection

OracleNotificationRequest Yes No/No

Class

-all members

OracleFailoverEventArgs Yes No/No

Class

-all members

OracleFailoverEventHandler ~ Yes No/No

Delegate

-all members

OracleTransaction Class Yes No/No

-all members

OracleCommand Class Yes No: Always returns null /No:

-Transaction Property Always returns null.

OracleConnection Class Yes Yes: Implicit database

-ConnectionTimeout Property veag connection always returns

-DataSource Property Yes Ofves

-BeginTransaction Method No Yes: Implicit database

connection always returns an

-ChangeDatabase Method Yes empty string/Yes

-Clone Method Yes

T) No/Yes
-EnlistDistributedTransaction vgg No/No
Method Yes No/Y
-OpenWithNewPassword v orYes
Method es No/No
-Failover Event No/Yes
-OracleFailoverEventHandler No/No
Delegate No/No
ODP.NET Enumerations Yes No/No
-FailoverEvent Enumeration yeag No/No
-FailoverReturnCode Yes No/No
Enumeration
e L.Il © aTo £ i Yes No/No
-FailoverType Enumeration
OI ;/N {? p ul ‘ ! Yes No/No
-OracleNotificationInfo
Enumeration Yes No/No
-OracleNotificationSource
Enumeration
-OracleNotificationType
Enumeration

ORACLE 5.7

Oracle Data Provider for .NET Classes

ORACLE

This chapter describes the following Oracle Data Provider for .NET classes.

OracleClientFactory Class
OracleCommand Class
OracleCommandBuilder Class
OracleConnection Class
OracleConnectionStringBuilder Class
OracleDataAdapter Class

OracleDatabase Class

OracleDataReader Class
OracleDataSourceEnumerator Class
OracleError Class

OracleErrorCollection Class
OracleException Class
OraclelnfoMessageEventArgs Class
OraclelnfoMessageEventHandler Delegate
OracleLogicalTransaction Class
OracleParameter Class
OracleParameterCollection Class
OraclePermission Class
OraclePermissionAttribute Class
OracleRowUpdatedEventArgs Class
OracleRowUpdatedEventHandler Delegate
OracleRowUpdatingEventArgs Class
OracleRowUpdatingEventHandler Delegate
OracleShardingKey Class
OracleTransaction Class
OracleConnectionType Enumeration
OracleCollectionType Enumeration
OracleDBShutdownMode Enumeration
OracleDBStartupMode Enumeration
OracleDbType Enumeration

OracleldentityType Enumeration

6-1

Chapter 6
OracleClientFactory Class

e OracleParameterStatus Enumeration

6.1 OracleClientFactory Class

ORACLE

An OracleClientFactory object allows applications to instantiate ODP.NET classes in a
generic way.

Class Inheritance
System.Object
System.Data.Common.DbProviderFactory

Oracle.DataAccess.Client.OracleClientFactory

Declaration

// C#
public sealed class OracleClientFactory : DbProviderFactory

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver
Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll
Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client
.NET Framework 3.5,45,4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

/1 C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class FactorySample

{

static void Main()

{

string constr = "user id=scott;password=tiger;data source=oracle";

DbProviderFactory factory =
DbProviderFactories.GetFactory("'Oracle.DataAccess.Client");

DbConnection conn = factory.CreateConnection();
try
{

conn.ConnectionString = constr;
conn.Open();

6-2

Chapter 6
OracleClientFactory Class

DbCommand cmd = factory.CreateCommand();
cmd.Connection = conn;
cmd.CommandText = "'select * from emp";

DbDataReader reader = cmd.ExecuteReader();
while (reader.Read())

Console.WriteLine(reader["EMPNO™] + ™ : ™ + reader["ENAME"]);
}
catch (Exception ex)
{

Console.WriteLine(ex.Message);
Console.WriteLine(ex.StackTrace);
}
}
}

6.1.1 OracleClientFactory Members

ORACLE

OracleClientFactory members are listed in the following tables.

OracleClientFactory Field

The OracleClientFactory field is listed in Table 6-1

Table 6-1 OracleClientFactory Field

e ___________________________________|
Property Description

Instance Gets an instance of the OracleClientFactory class

OracleClientFactory Constructor

The OracleClientFactory constructor is listed in Table 6-2

Table 6-2 OracleClientFactory Constructor
|

Property Description
OracleClientFactory Constructor Instantiates a new instance of OracleClientFactory
class

OracleClientFactory Public Properties

The OracleClientFactory public properties are listed in Table 6-3.

Table 6-3 OracleClientFactory Public Properties

e ___________________________________|
Property Description

CanCreateDataSourceEnumerator Indicates whether or not the
CreateDataSourceEnumerator method is supported

OracleClientFactory Public Methods

OracleClientFactory Public Methods are listed in Table 6-4.

6-3

Chapter 6
OracleClientFactory Class

Table 6-4 OracleClientFactory Public Method
|

Method

Description

CreateCommand

Returns a DbCommand object that represents an
OracleCommand object

CreateCommandBuilder

Returns a DbCommandBui Ider object that represents
an OracleCommandBui Ider object

CreateConnection

Returns a DbConnection object that represents an
OracleConnection object

CreateConnectionStringBuilder

Returns a DbConnectionStringBuilder object that
represents an OracleConnectionStringBuilder
object

CreateDataAdapter

Returns a DbDataAdapter object that represents an
OracleDataAdapter object

CreateDataSourceEnumerator

Returns a DbDataSourceEnumerator object that
represents an OracleDataSourceEnumerator object

CreateParameter

Returns a DbParameter object that represents an
OracleParameter object

CreatePermission

Returns a CodeAccessPermission object that
represents an OraclePermission object

6.1.2 OracleClientFactory Field

The OracleClientFactory field is listed in Table 6-5

Table 6-5 OracleClientFactory Field
|

Property

Description

Instance

Gets an instance of the OracleClientFactory class

6.1.2.1 Instance

The Instance field gets an instance of the OracleClientFactory class. This can be used

to retrieve strongly typed data objects.

Declaration

/1 C#

public static readonly OracleClientFactory Instance

6.1.3 OracleClientFactory Constructor

The OracleClientFactory constructor creates a new instances of the

OracleClientFactory class.

ORACLE

6-4

Chapter 6
OracleClientFactory Class

Declaration

// C#
public OracleClientFactory();

6.1.4 OracleClientFactory Public Properties

The OracleClientFactory public properties are listed in Table 6-6.

Table 6-6 OracleClientFactory Public Properties

|
Property Description

CanCreateDataSourceEnumerator Indicates whether or not the
CreateDataSourceEnumerator method is supported

6.1.4.1 CanCreateDataSourceEnumerator

This property indicates whether or not the CreateDataSourceEnumerator method is
supported.

Declaration

// C#
public override bool CanCreateDataSourceEnumerator { get; }

Property Value

Returns true.

Remarks

ODP.NET supports the OracleDataSourceEnumerator object.

6.1.5 OracleClientFactory Public Methods

The OracleClientFactory public method is listed in Table 6-7.

Table 6-7 OracleClientFactory Public Method

. ________________________________|
Method Description

CreateCommand Returns a DbCommand object that represents an
OracleCommand object

CreateCommandBuilder Returns a DbCommandBui Ider object that represents
an OracleCommandBui Ider object

CreateConnection Returns a DbConnection object that represents an
OracleConnection object

ORACLE 6-5

Chapter 6
OracleClientFactory Class

Table 6-7 (Cont.) OracleClientFactory Public Method
|

Method Description

CreateConnectionStringBuilder Returns a DbConnectionStringBui lder object that
represents an OracleConnectionStringBui lder
object

CreateDataAdapter Returns a DbDataAdapter object that represents an

OracleDataAdapter object

CreateDataSourceEnumerator Returns a DbDataSourceEnumerator object that
represents an OracleDataSourceEnumerator object

CreateParameter Returns a DbParameter object that represents an
OracleParameter object

CreatePermission Returns a CodeAccessPermission object that
represents an OraclePermission object

6.1.5.1 CreateCommand

This method returns a DbCommand object that represents an OracleCommand object.

Declaration

// C#
public override DbCommand CreateCommand();

Return Value

A DbCommand object that represents an OracleCommand object.

6.1.5.2 CreateCommandBuilder

This method returns a bbCommandBui Ider object that represents an OracleCommandBui lder
object.

Declaration

// C#
public override DbCommandBuilder CreateCommandBuilder();

Return Value

A DbCommandBui Ider object that represents an OracleCommandBui lder object.

6.1.5.3 CreateConnection

This method returns a DbConnection object that represents an OracleConnection object.

ORACLE 6-6

Chapter 6
OracleClientFactory Class

Declaration

// C#
public override DbConnection CreateConnection();

Return Value

A DbConnection object that represents an OracleConnection object.

6.1.5.4 CreateConnectionStringBuilder

This method returns a DbConnectionStringBuilder object that represents an
OracleConnectionStringBui lder object.

Declaration

// C#
public override DbConnectionStringBuilder CreateConnectionStringBuilder();

Return Value

A DbConnectionStringBui lder object that represents an OracleConnectionStringBuilder
object.

6.1.5.5 CreateDataAdapter

This method returns a DbDataAdapter object that represents an OracleDataAdapter
object.

Declaration

// C#
public override DbDataAdapter CreateDataAdapter();

Return Value

A DbDataAdapter object that represents an OracleDataAdapter object.

6.1.5.6 CreateDataSourceEnumerator

ORACLE

This method returns a DbDataSourceEnumerator object that represents an
OracleDataSourceEnumerator object.

Declaration

// C#
public override DbDataSourceEnumerator CreateDataSourceEnumerator();

Return Value

A DbDataSourceEnumerator object that represents an OracleDataSourceEnumerator object.

6-7

Chapter 6
OracleCommand Class

6.1.5.7 CreateParameter

This method returns a DbParameter object that represents an OracleParameter object.

Declaration

// C#
public override DbParameter CreateParameter();

Return Value

A DbParameter object that represents an OracleParameter object.

6.1.5.8 CreatePermission

This method returns a CodeAccessPermission object that represents an OraclePermission
object.

Declaration

// C#
public override System.Security.CodeAccessPermission CreatePermission(
System.Security.Permissions.PermissionState state);

Parameter
e state

A PermissionState object.
Return Value

A CodeAccessPermission object that represents an OraclePermission object.

Remarks

This method enables users, writing provider-independent code, to get a
CodeAccessPermission instance that represents an OraclePermission object.

6.2 OracleCommand Class

ORACLE

An OracleCommand object represents a SQL command, a stored procedure, or a table
name. The OracleCommand object is responsible for formulating the request and passing
it to the database. If results are returned, OracleCommand is responsible for returning
results as an OracleDataReader, a .NET XmIReader, a .NET Stream, a scalar value, or as
output parameters.

Class Inheritance
System.Object
System.MarshalByRefObject

System.ComponentModel .Component

6-8

ORACLE

Chapter 6
OracleCommand Class

System.Data.Common.DbCommand

Oracle.DataAccess.Client.OracleCommand

Declaration

// C#
public sealed class OracleCommand : DbCommand, ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver
Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll
Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client
.NET Framework 3.5,45,4.6 45,4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The execution of any transaction-related statements from an OracleCommand is not
recommended because it is not reflected in the state of the OracleTransaction object
represents the current local transaction, if one exists.

ExecuteXmlReader, ExecuteStream, and ExecuteToStream methods are only supported for
XML operations.

ExecuteReader and ExecuteScalar methods are not supported for XML operations.

To minimize the number of open server cursors, OracleCommand objects should be
explicitly disposed.

Example

// C#

using System;
using System.Data;
using Oracle._DataAccess.Client;

class OracleCommandSample

{

static void Main()

{

string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);

con.Open();

string cmdQuery = "select ename, empno from emp";

// Create the OracleCommand
OracleCommand cmd = new OracleCommand(cmdQuery);

cmd.Connection = con;
cmd.CommandType = CommandType.Text;

6-9

Chapter 6
OracleCommand Class

// Execute command, create OracleDataReader object
OracleDataReader reader = cmd.ExecuteReader();

while (reader.Read())

{
// output Employee Name and Number
Console.WriteLine("Employee Name : " + reader.GetString(0) + " , " +
"Employee Number : " + reader.GetDecimal(1));
}
// Clean up

reader.Dispose();
cmd.Dispose();
con.Dispose();

6.2.1 OracleCommand Members

OracleCommand members are listed in the following tables.

OracleCommand Constructors

OracleCommand constructors are listed in Table 6-8.

Table 6-8 OracleCommand Constructors

Constructor

Description

OracleCommand Constructors

Instantiates a new instance of OracleCommand class
(Overloaded)

OracleCommand Static Methods

The OracleCommand static method is listed in Table 6-9.

Table 6-9 OracleCommand Static Method

Method

Description

Equals

Inherited from System.Object (Overloaded)

OracleCommand Properties

OracleCommand properties are listed in Table 6-10.

Table 6-10 OracleCommand Properties

Property Description

AddRowid Adds the ROWID as part of the select list

AddToStatementCache Causes executed statements to be cached, when the
property is set to true and statement caching is enabled

ORACLE

6-10

Chapter 6
OracleCommand Class

Table 6-10 (Cont.) OracleCommand Properties

- __________________________________|
Property Description

ArrayBindCount Specifies if the array binding feature is to be used and
also specifies the maximum number of array elements to
be bound in the Value property

ArrayBindRowsAffected Returns the number of affected rows for each iteration
while executing a DML using array binding

BindByName Specifies the binding method in the collection

CommandText Specifies the SQL statement or stored procedure to run

against the Oracle database or the XML data used to
store changes to the Oracle database

CommandTimeout Specifies the number of seconds the command is
allowed to execute before terminating the execution with
an exception

CommandType Specifies the command type that indicates how the
CommandText property is to be interpreted

Connection Specifies the OracleConnection object that is used to
identify the connection to execute a command

Container Inherited from System.ComponentModel .Component

DesignTimeVisible Specifies whether or not the OracleCommand object is

visible on designer controls.

FetchSize Specifies the size of OracleDataReader's internal cache
to store result set data

ImplicitRefCursors Specifies an array of OracleRefCursors mapped to an
implicit resultset returned by the stored procedure.

Not available in the ODP.NET, Managed Driver

InitialLOBFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LOB columns

InitiaLONGFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LONG and LONG RAW columns

Notification Indicates that there is a notification request for the
command

NotificationAutoEnlist Indicates whether or not to register for a continuous

query notification with the database automatically when
the command is executed

Parameters Specifies the parameters for the SQL statement or
stored procedure

RowSize Specifies the amount of memory needed by the
OracleDataReader internal cache to store one row of
data

Site Inherited from System.ComponentModel .Component

Transaction Specifies the OracleTransaction object in which the

OracleCommand executes
Not supported in a .NET stored procedure

ORACLE 6-11

ORACLE

Chapter 6
OracleCommand Class

Table 6-10 (Cont.) OracleCommand Properties

Property Description
UpdatedRowSource Specifies how query command results are applied to the
row being updated
Not supported in a .NET stored procedure
UseEdmMapping Indicates whether or not the command object utilizes the

Entity Data Model mapping configuration values

XmICommandType

Specifies the type of XML operation on the
OracleCommand

XmlQueryProperties

Specifies the properties that are used when an XML
document is created from the result set of a SQL query
statement

XmlSaveProperties

Specifies the properties that are used when an XML
document is used to save changes to the database

OracleCommand Public Methods

OracleCommand public methods are listed in Table 6-11.

Table 6-11 OracleCommand Public Methods
- |

Public Method

Description

Cancel Attempts to cancels a command that is currently
executing on a particular connection

Clone Creates a copy of OracleCommand object

CreateObjRef Inherited from System._MarshalByRefObject

CreateParameter Creates a new instance of OracleParameter class

Dispose Releases any resources or memory allocated by the
object

Equals Inherited from System.Object (Overloaded)

ExecuteNonQuery Executes a SQL statement or a command using the
XmlCommandType and CommandText properties and returns
the number of rows affected

ExecuteReader Executes a command (Overloaded)

ExecuteScalar Returns the first column of the first row in the result set
returned by the query

ExecuteStream Executes a command using the XmlCommandType and
CommandText properties and returns the results in a new
Stream object

ExecuteToStream Executes a command using the XmICommandType and

CommandText properties and appends the results as an
XML document to the existing Stream

ExecuteXmlReader

Executes a command using the XmlCommandType and
CommandText properties and returns the result as an XML
document in a .NET XmlTextReader object

GetHashCode

Inherited from System.Object

6-12

Chapter 6
OracleCommand Class

Table 6-11 (Cont.) OracleCommand Public Methods
- |

Public Method Description

GetLifetimeService Inherited from System_MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System.MarshalByRefObject
Prepare This method is a no-op

ToString Inherited from System.Object

6.2.2 OracleCommand Constructors

OracleCommand constructors instantiate new instances of OracleCommand class.

Overload List:

e OracleCommand()
This constructor instantiates a new instance of OracleCommand class.
* OracleCommand(string)

This constructor instantiates a new instance of OracleCommand class using the
supplied SQL command or stored procedure, and connection to the Oracle
database.

e OracleCommand(string, OracleConnection)

This constructor instantiates a new instance of OracleCommand class using the
supplied SQL command or stored procedure, and connection to the Oracle
database.

6.2.2.1 OracleCommand()

This constructor instantiates a new instance of OracleCommand class.

Declaration

// C#
public OracleCommand();

Remarks

Default constructor.

6.2.2.2 OracleCommand(string)

ORACLE

This constructor instantiates a new instance of OracleCommand class using the supplied
SQL command or stored procedure, and connection to the Oracle database.

Declaration

// C#
public OracleCommand(string cndText);

6-13

Chapter 6
OracleCommand Class

Parameters

e cmdText

The SQL command or stored procedure to be executed.

6.2.2.3 OracleCommand(string, OracleConnection)

This constructor instantiates a new instance of OracleCommand class using the supplied
SQL command or stored procedure, and connection to the Oracle database.

Declaration

// C#
public OracleCommand(string cndText , OracleConnection O acl eConnection);

Parameters
* cmdText

The SQL command or stored procedure to be executed.
e Oacl eConnection

The connection to the Oracle database.

6.2.3 OracleCommand Static Methods

The OracleCommand static method is listed in Table 6-12.

Table 6-12 OracleCommand Static Method

- __|
Method Description

Equals Inherited from System._Object (Overloaded)

6.2.4 OracleCommand Properties

OracleCommand properties are listed in Table 6-13.

Table 6-13 OracleCommand Properties
|

Property Description
AddRowid Adds the ROWID as part of the select list
AddToStatementCache Causes executed statements to be cached, when the

property is set to true and statement caching is enabled

ArrayBindCount Specifies if the array binding feature is to be used and
also specifies the maximum number of array elements to
be bound in the Value property

ArrayBindRowsAffected Returns the number of affected rows for each iteration
while executing a DML using array binding

BindByName Specifies the binding method in the collection

ORACLE 6-14

ORACLE

Chapter 6
OracleCommand Class

Table 6-13 (Cont.) OracleCommand Properties

Property

Description

CommandText

Specifies the SQL statement or stored procedure to run
against the Oracle database or the XML data used to
store changes to the Oracle database

CommandTimeout

Specifies the number of seconds the command is allowed
to execute before terminating the execution with an
exception

CommandType Specifies the command type that indicates how the
CommandText property is to be interpreted

Connection Specifies the OracleConnection object that is used to
identify the connection to execute a command

Container Inherited from System.ComponentModel .Component

DesignTimeVisible Specifies whether or not the OracleCommand object is
visible on designer controls.

FetchSize Specifies the size of OracleDataReader's internal cache to

store result set data

ImplicitRefCursors

Specifies an array of OracleRefCursors mapped to an
implicit resultset returned by the stored procedure.

Not available in the ODP.NET, Managed Driver

InitialLOBFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LOB columns

InitiaLONGFetchSize Specifies the amount that of data the OracleDataReader
initially fetches for LONG and LONG RAW columns

Notification Indicates that there is a notification request for the

command

NotificationAutoEnlist

Indicates whether or not to register for a continuous query
notification with the database automatically when the
command is executed

Parameters Specifies the parameters for the SQL statement or stored
procedure
RowSize Specifies the amount of memory needed by the
OracleDataReader internal cache to store one row of data
Site Inherited from System.ComponentModel .Component
Transaction Specifies the OracleTransaction object in which the
OracleCommand executes
Not supported in a .NET stored procedure
UpdatedRowSource Specifies how query command results are applied to the
row being updated
Not supported in a .NET stored procedure
UseEdmMapping Indicates whether or not the command object utilizes the

Entity Data Model mapping configuration values

XmICommandType

Specifies the type of XML operation on the OracleCommand

XmlQueryProperties

Specifies the properties that are used when an XML
document is created from the result set of a SQL query
statement

6-15

Chapter 6
OracleCommand Class

Table 6-13 (Cont.) OracleCommand Properties

e
Property Description

XmlSaveProperties Specifies the properties that are used when an XML
document is used to save changes to the database

6.2.4.1 AddRowid

This property adds the ROWID as part of the select list.

Declaration

/1 C#
public bool AddRowid {get; set;}

Property Value

bool

Remarks
Default is false.

This ROWID column is hidden and is not accessible by the application. To gain access to
the ROWIDs of a table, the ROWID must explicitly be added to the select list without the
use of this property.

6.2.4.2 AddToStatementCache

ORACLE

This property causes executed statements to be cached when the property is set to
true and statement caching is enabled. If statement caching is disabled or if this
property is set to false, the executed statement is not cached.

Declaration

// Ci#
public bool AddToStatementCache{get; set;}

Return Value

Returns bool value. A value of true indicates that statements are being added to the
cache, false indicates otherwise.

Property Value

A bool value that indicates that the statements will be cached when they are executed,
if statement caching is enabled.

Remarks

Default is true.

6-16

Chapter 6
OracleCommand Class

AddToStatementCache is ignored if statement caching is disabled. Statement caching is
enabled by setting the Statement Cache Size connection string attribute to a value
greater than 0.

When statement caching is enabled, however, this property provides a way to
selectively add statements to the cache.

Example

/1 C#

using System;
using System.Data;
using Oracle._DataAccess.Client;

class AddToStatementCacheSample
{
static void Main()
{
string constr = "User ld=scott;Password=tiger;Data Source=oracle;" +
"statement cache size=10";
OracleConnection con = new OracleConnection(constr);
con.Open();

OracleCommand cmd = new OracleCommand(‘'select * from emp", con);

if (cmd.AddToStatementCache)

Console.WriteLine(*'Added to the statement cache:" + cmd.CommandText);
else

Console.WriteLine("'Not added to the statement cache:" + cmd.CommandText);

// The execution of "select * from emp” will be added to the statement cache
// because statement cache size is greater than 0 and OracleCommand®s

// AddToStatementCache is true by default.

OracleDataReader readerEmp = cmd.ExecuteReader();

// Do not add "select * from dept" to the statement cache
cmd.CommandText = "select * from dept";
cmd.AddToStatementCache = false;

if (cmd.AddToStatementCache)

Console.WriteLine(*'Added to the statement cache:" + cmd.CommandText);
else

Console.WriteLine("'Not added to the statement cache:" + cmd.CommandText);

// The execution of "select * from dept” will not be added to the
// statement cache because AddToStatementCache is set to false.
OracleDataReader readerDept = cmd.ExecuteReader();

// Clean up
con.Dispose();

6.2.4.3 ArrayBindCount

This property specifies if the array binding feature is to be used and also specifies the
number of array elements to be bound in the OracleParameter Value property.

ORACLE 6-17

Chapter 6
OracleCommand Class

Declaration

// C#
public int ArrayBindCount {get; set;}

Property Value

An int value that specifies number of array elements to be bound in the
OracleParameter Value property.

Exceptions

ArgumentException - The ArrayBindCount value specified is invalid.

Remarks
Default = 0.

If ArrayBindCount is equal to 0, array binding is not used; otherwise, array binding is
used and OracleParameter Value property is interpreted as an array of values. The
value of ArrayBindCount must be specified to use the array binding feature.

If neither DbType nor OracleDbType is set, it is strongly recommended that you set
ArrayBindCount before setting the OracleParameter Value property so that inference of
DbType and OracleDbType from Value can be correctly done.

Array binding is not used by default.

If the XmICommandType property is set to any value other than None, this property is
ignored.

6.2.4.4 ArrayBindRowsAffected

This property returns the number of affected rows for each iteration while executing a
DML using array binding.

Declaration

// C#
public long[] ArrayBindRowsAffected ;

Property Value
A long type

6.2.4.5 BindByName

ORACLE

This property specifies the binding method in the collection.

Declaration

// C#
public bool BindByName {get; set;}

6-18

Chapter 6
OracleCommand Class

Property Value

Returns true if the parameters are bound by name; returns false if the parameters are
bound by position.

Remarks
Default = false.
BindByName is ignored under the following conditions:

* The value of the XxmICommandType property is Insert, Update, or Delete.

e The value of the XmlCommandType property is Query, but there are no parameters set
on the OracleCommand.

If the XmICommandType property is OraclexXmlCommandType.Query and any parameters are
set on the OracleCommand, the BindByName property must be set to true. Otherwise, the
following OracleCommand methods throw an InvalidOperationException.

e ExecuteNonQuery
* ExecuteXmlReader
o ExecuteStream

e ExecuteToStream

6.2.4.6 CommandText

ORACLE

This property specifies the SQL statement or stored procedure to run against the
Oracle database or the XML data used to store changes to the Oracle database.

Declaration

// C#
public override string CommandText {get; set;}

Property Value

A string.

Implements

I1DbCommand

Remarks
The default is an empty string.

When the CommandType property is set to StoredProcedure, the CommandText property is
set to the name of the stored procedure. The command calls this stored procedure
when an Execute method is called.

The effects of XmlCommandType values on CommandText are:

e XmlCommandType = None.
CommandType property determines the contents of CommandText.

e XmlCommandType = Query.

6-19

Chapter 6
OracleCommand Class

CommandText must be a SQL query. The SQL query should be a select statement.
CommandType property is ignored.

* XmlCommandType property is Insert, Update, or Delete.

CommandText must be an XML document. CommandType property is ignored.

6.2.4.7 CommandTimeout

This property specifies the minimum number of seconds that the command is allowed
to execute before terminating with an exception.
Declaration

/1 C#
public override int CommandTimeout {get; set;}

Property Value
int
Implements

IDbCommand . CommandT imeout

Exceptions

InvalidArgument - The specified value is less than 0.

Remarks
Default is 0 seconds, which enforces no time limit.

When the specified timeout value expires before a command execution finishes, the
command attempts to cancel. If cancellation is successful, an exception is thrown with
the message of ORA-01013: user requested cancel of current operation. Other possible
exceptions thrown after a command timeout expiration occurs include 0RA-00936 and
ORA-00604. If the command executed in time without any errors, no exceptions are
thrown.

In a situation where multiple OracleCommand objects use the same connection, the
timeout expiration on one of the OracleCommand objects may terminate any of the
executions on the single connection. To make the timeout expiration of a OracleCommand
cancel only its own command execution, simply use one OracleCommand for each
connection if that OracleCommand sets the CommandTimeout property to a value greater
than 0.

6.2.4.8 CommandType

ORACLE

This property specifies the command type that indicates how the CommandText property
is to be interpreted.

Declaration

// C#
public override CommandType CommandType {get; set;}

6-20

Chapter 6
OracleCommand Class

Property Value

A CommandType.

Exceptions

ArgumentException - The value is not a valid CommandType such as: CommandType. Text,
CommandType.StoredProcedure, CommandType.TableDirect.

Remarks
Default = CommandType.Text

If the value of the XmICommandType property is not None, then the CommandType property is
ignored.

6.2.4.9 Connection

This property specifies the OracleConnection object that is used to identify the
connection to execute a command.

Declaration

// C#
public OracleConnection Connection {get; set;}

Property Value

An OracleConnection object.

Implements

I1DbCommand

Remarks

Default = null

6.2.4.10 DesignTimeVisible

ORACLE

This property specifies whether or not the OracleCommand object is visible on designer
controls.

Declaration

// C#
public override bool DesignTimeVisible { get; set; }

Property Value

A value that indicate whether or not OracleCommand object is visible in a control. The
default is true.

6-21

Chapter 6
OracleCommand Class

Remarks

This property is used by developers to indicate whether or not OracleCommand object is
visible in a control.

6.2.4.11 FetchSize

ORACLE

This property specifies the size of OracleDataReader's internal cache to store result set
data.

Declaration

// C#
public long FetchSize {get; set;}

Property Value

A long that specifies the size (in bytes) of the OracleDataReader's internal cache.

Exceptions

ArgumentException - The FetchSize value specified is invalid.

Remarks
Default = 131072.

The FetchSize property is inherited by the OracleDataReader that is created by a
command execution returning a result set. The FetchSize property on the
OracleDataReader object determines the amount of data the OracleDataReader fetches
into its internal cache for each database round-trip.

If the XmICommandType property is set to any value other than None, this property is
ignored.

The RowSize and FetchSize properties handle UDT and XMLType data differently than
other scalar data types. Because only a reference to the UDT and XMLType data is
stored in the ODP.NET's internal cache, the RowSize property accounts for only the
memory needed for the reference (which is very small) and not the actual size of the
UDT and XMLType data. Thus, applications can inadvertently fetch a large number of
UDT or XMLType instances from the database in a single database round-trip. This is
because the actual size of UDT and XMLType data do not count against the FetchSize,
and it would require numerous UDT and XMLType references to fill up the default cache
size of 131072 bytes. Therefore, when fetching UDT or XMLType data, the FetchSize
property must be appropriately configured to control the number of UDT and XMLType
instances that are to be fetched, rather than the amount of the actual UDT and XMLType
data to be fetched.

NOTE: For LOB and LONG data types, only the sizes specified in the
InitialLOBFetchSize and InitialLONGFetchSize properties are accounted for by the
RowSize property in addition to the metadata and reference information that is
maintained by the cache for each LOB in the select list.

6-22

Chapter 6
OracleCommand Class

6.2.4.12 ImplicitRefCursors

This property returns an array of OracleRefCursors, where each OracleRefCursor maps
to an implicit resultset returned by the stored procedure.

Declaration

// C#
public OracleRefCursor[] ImplicitRefCursors {get; set;}

Property Value

An array of OracleRefCursors.

Remarks

This property is populated only when the stored procedure is executed through
ExecuteNonQuery and it does not get populated in any other scenarios.

6.2.4.13 InitialLOBFetchSize

ORACLE

This property specifies the amount of data that the OracleDataReader initially fetches for
LOB columns.

Declaration

// C#
public int InitialLOBFetchSize {get; set;}

Property Value

An int specifying the number of characters or bytes to fetch initially.

Exceptions

ArgumentException - The InitialLOBFetchSize value specified is invalid.

Remarks

The value of InitialLOBFetchSize specifies the initial amount of LOB data that is
immediately fetched by the OracleDataReader. The property value specifies the number
of characters for CLOB and NCLOB data, and the number of bytes for BLOB data.

The InitialLOBFetchSize value is used to determine the length of the LOB column data
to fetch, if the LOB column is in the select list. If the select list does not contain a LOB
column, the InitialLOBFetchSize value is ignored.

When InitialLOBFetchSize is set to -1, the entire LOB data is prefetched and stored in
the fetch array.

Default = 0.
The maximum value supported for InitialLOBFetchSize is 2 GB.

GetOracleBlob and GetOracleClob methods can be used to retrieve any LOBs no matter
the InitialLOBFetchSize value.

6-23

Chapter 6
OracleCommand Class

6.2.4.14 InitiaLONGFetchSize

This property specifies the amount of data that the OracleDataReader initially fetches for
LONG and LONG RAW columns.

Declaration

// C#
public int InitialLONGFetchSize {get; set;}

Property Value

An int specifying the amount.

Exceptions

ArgumentException - The InitialLONGFetchSize value specified is invalid.

Remarks

The maximum value supported for InitialLONGFetchSize is 32767. If this property is set
to a higher value, the provider resets it to 32767.

The value of InitialLONGFetchSize specifies the initial amount of LONG or LONG RAW data
that is immediately fetched by the OracleDataReader. The property value specifies the
number of characters for LONG data and the number of bytes for LONG RAW. To fetch more
than the specified InitialLONGFetchSize amount, one of the following must be in the
select list:

* Primary key
e ROWID

* Unique columns - (defined as a set of columns on which a unique constraint has
been defined or a unique index has been created, where at least one of the
columns in the set has a NOT NULL constraint defined on it)

The InitialLONGFetchSize value is used to determine the length of the LONG and LONG
RAW column data to fetch if one of the two is in the select list. If the select list does not
contain a LONG or a LONG RAW column, the InitialLONGFetchSize value is ignored.

When InitialLONGFetchSize is set to -1, the entire LONG or LONG RAW data is prefetched
and stored in the fetch array. Calls to GetString, GetChars, or GetBytes in
OracleDataReader allow retrieving the entire data.

Default = 0.

Setting this property to 0 defers the LONG and LONG RAW data retrieval entirely until the
application specifically requests it.

6.2.4.15 Notification

This instance property indicates that there is a notification request for the command.

Declaration

// C#
public OracleNotificationRequest Notification {set; get;}

ORACLE 6-24

Chapter 6
OracleCommand Class

Property Value

A notification request for the command.

Remarks

When a changed notification is first registered, the client listener is started in order to
receive any database notification. The listener uses the port number defined in the
OracleDependency .Port static field. Subsequent change notification registrations use the
same listener in the same client process and do not start another listener.

When Notification is set to an OracleNotificationRequest instance, a notification
registration is created (if it has not already been created) when the command is
executed. Once the registration is created, the properties of the
OracleNotificationRequest instance cannot be modified. If the notification registration
has already been created, the result set that is associated with the command is added
to the existing registration.

When Notification is set to null, subsequent command executions do not require a
notification request. If a notification request is not required, set the Notification
property to null, or set the NotificationAutoEnlist property to false.

For Continuous Query Notification, a notification request can be used for multiple
command executions. In that case, any query result set associated with different
commands can be invalidated within the same registration.

When the OracleDependency.0OnChange event is fired, if the ROWID column is explicitly
included in the query (or AddRowid property is set to true), then the Rowid column
contains ROWID values in the DataTable referenced by the
OracleNotificationEventArgs.Details property. This behavior can be overridden by
explicitly requesting for an inclusion and exclusion of ROWID values in the
OracleNotificationEventArgs by setting the OracleDependency.RowidInfo to
OracleRowidInfo. Include or OracleRowidInfo.Exclude, respectively.

6.2.4.16 NotificationAutoEnlist

ORACLE

This instance property indicates whether or not to register for a continuous query
notification with the database automatically when the command is executed.
Declaration

// C#
public bool NotificationAutoEnlist {set; get;}

Property Value

A bool value indicating whether or not to make a continuous query notification request
automatically, when the command is executed. If NotificationAutoEnlist is set to true,
and the Notification property is set appropriately, a continuous query notification
request is registered automatically; otherwise, no continuous query notification
registration is made.

Default value: true

6-25

Chapter 6
OracleCommand Class

Remarks

A notification request can be used for multiple command executions using the same
OracleCommand instance. In that case, set the NotificationAutoEnlist property to true.

6.2.4.17 Parameters

This property specifies the parameters for the SQL statement or stored procedure.

Declaration

// C#
public OracleParameterCollection Parameters {get;}

Property Value

OracleParameterCollection

Implements

1DbCommand

Remarks
Default value = an empty collection

The number of the parameters in the collection must be equal to the number of
parameter placeholders within the command text, or an error is raised.

If the command text does not contain any parameter tokens (such as,:1,:2), the values
in the Parameters property are ignored.

6.2.4.18 RowSize

ORACLE

This property specifies the amount of memory needed by the OracleDataReader internal
cache to store one row of data.

Declaration

// C#
public long RowSize {get;}

Property Value

A long that indicates the amount of memory (in bytes) that an OracleDataReader needs
to store one row of data for the executed query.

Remarks
Default value = 0

The RowSize property is set to a nonzero value after the execution of a command that
returns a result set. This property can be used at design time or dynamically during
runtime, to set the FetchSize, based on number of rows. For example, to enable the
OracleDataReader to fetch N rows for each database round-trip, the OracleDataReader
FetchSize property can be set dynamically to RowSize * N. Note that for the FetchSize to

6-26

Chapter 6
OracleCommand Class

take effect appropriately, it must be set after OracleCommand.ExecuteReader() but before
OracleDataReader.Read().

ODP.NET now supports values up to 32K for VARCHAR2, NVARCHAR2 or RAW type columns
in its calculation of RowSiize value.

6.2.4.19 Transaction

This property specifies the OracleTransaction object in which the OracleCommand
executes.

Declaration

// C#
public OracleTransaction Transaction {set; get;}

Property Value

OracleTransaction

Implements

I1DbCommand

Remarks
Default value = null

Transaction returns a reference to the transaction object associated with the
OracleCommand connection object. Thus the command is executed in whatever
transaction context its connection is currently in.

< Note:

When this property is accessed through an IDbCommand reference, its set
accessor method is not operational.

Remarks (.NET Stored Procedure)

Always returns null.

6.2.4.20 UpdatedRowSource

ORACLE

This property specifies how query command results are applied to the row to be
updated.

Declaration

// C#
public override UpdateRowSource UpdatedRowSource {get; set;}

Property Value

An UpdateRowSource.

6-27

Chapter 6
OracleCommand Class

Implements

I1DbCommand

Exceptions

ArgumentException - The UpdateRowSource value specified is invalid.

Remarks
Always returns UpdateRowSource,

Set accessor throws an ArgumentException if the value is other than
UpdateRowSource .None.

6.2.4.21 UseEdmMapping

This property Indicates whether or not the OracleCommand object utilizes the Entity Data
Model mapping configuration values.

Declaration

// C#
public bool UseEdmMapping

Property Value
A bool.

Remarks
Default is false.

The UseEdmMapping property allows user to explicitly specify that the OracleCommand
object should use the Entity Data Model mapping configuration values. This enables
use of Entity Framework Multiple Result Sets feature.

6.2.4.22 XmICommandType

ORACLE

This property specifies the type of XML operation on the OracleCommand.

Declaration

// C#
public OracleXmlCommandType XmlCommandType {get; set;}

Property Value

An OracleXmlCommandType.

Remarks
Default value is None.
XmlCommandType values and usage:

* None - The CommandType property specifies the type of operation.

6-28

Chapter 6
OracleCommand Class

* Query - CommandText property must be set to a SQL select statement. The query is
executed, and the results are returned as an XML document. The SQL select
statement in the CommandText and the properties specified by the
XmlQueryProperties property are used to perform the operation. The CommandType
property is ignored.

e Insert, Update, or Delete - CommandText property is an XML document containing the
changes to be made. The XML document in the CommandText and the properties
specified by the XmlSaveProperties property are used to perform the operation. The
CommandType property is ignored.

6.2.4.23 XmlQueryProperties

This property specifies the properties that are used when an XML document is created
from the result set of a SQL query statement.

Declaration

// C#
public OracleXmlQueryProperties XmlQueryProperties {get; set;}

Property Value

OracleXmlQueryProperties.

Remarks

When a new instance of OracleCommand is created, an instance of
OracleXmlQueryProperties is automatically available on the OracleCommand instance
through the OracleCommand.XmIQueryProperties property.

A new instance of OraclexmlQueryProperties can be assigned to an OracleCommand
instance. Assigning an instance of OracleXmlQueryProperties to the XmlQueryProperties
of an OracleCommand instance creates a new instance of the given
OracleXmlQueryProperties instance for the OracleCommand. This way each OracleCommand
instance has its own OracleXxmlQueryProperties instance.

Use the default constructor to get a new instance of OracleXmlQueryProperties.

Use the OraclexmlQueryProperties.Clone() method to get a copy of an
OracleXmlQueryProperties instance.

6.2.4.24 XmlSaveProperties

ORACLE

This property specifies the properties that are used when an XML document is used to
save changes to the database.

Declaration

// C#
public OracleXmlSaveProperties XmlSaveProperties {get; set;}

Property Value

OracleXmlSaveProperties.

6-29

Remarks

Chapter 6
OracleCommand Class

When a new instance of OracleCommand is created, an instance of
OracleXmlSaveProperties is automatically available on the OracleCommand instance
through the OracleCommand.XmlSaveProperties property.

A new instance of OracleXmlSaveProperties can be assigned to an OracleCommand
instance. Assigning an instance of OracleXmlSaveProperties to the XmlSaveProperties of
an OracleCommand instance creates a new instance of the given OracleXmlSaveProperties
instance for the OracleCommand. This way each OracleCommand instance has its own

OracleXmlSaveProperties instance.

Use the default constructor to get a new instance of OracleXmlSaveProperties.

Use the OracleXmlSaveProperties.Clone() method to get a copy of an

OracleXmlSaveProperties instance.

6.2.5 OracleCommand Public Methods

OracleCommand public methods are listed in Table 6-14.

ORACLE

Table 6-14 OracleCommand Public Methods

Public Method

Description

Cancel Attempts to cancels a command that is currently
executing on a particular connection

Clone Creates a copy of OracleCommand object

CreateObjRef Inherited from System_MarshalByRefObject

CreateParameter Creates a new instance of OracleParameter class

Dispose Releases any resources or memory allocated by the
object

Equals Inherited from System.Object (Overloaded)

ExecuteNonQuery Executes a SQL statement or a command using the
XmlCommandType and CommandText properties and
returns the number of rows affected

ExecuteReader Executes a command (Overloaded)

ExecuteScalar Returns the first column of the first row in the result
set returned by the query

ExecuteStream Executes a command using the XmlCommandType
and CommandText properties and returns the results
in a new Stream object

ExecuteToStream Executes a command using the XmlCommandType

and CommandText properties and appends the
results as an XML document to the existing Stream

ExecuteXmlReader

Executes a command using the XmlCommandType
and CommandText properties and returns the result
as an XML document in a .NET XmITextReader
object

GetHashCode

Inherited from System.Object

6-30

Chapter 6
OracleCommand Class

Table 6-14 (Cont.) OracleCommand Public Methods
|

Public Method Description

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
InitializeLifetimeService Inherited from System._MarshalByRefObject
Prepare This method is a no-op

ToString Inherited from System.Object

6.2.5.1 Cancel

ORACLE

This method attempts to cancel a command that is currently executing on a particular
connection.

Declaration

// C#
public override void Cancel();

Implements

I1DbCommand . Cancel

Remarks

If cancellation of the command succeeds, an exception is thrown. If cancellation is not
successful, no exception is thrown. If there is no command being executed at the time
of the Cancel invocation, Cancel does nothing. Invoking the Cancel method does not
guarantee that the command executing at the time will always be cancelled. The
execution may complete before it can be terminated. In such cases, no exception is
thrown.

When multiple OracleCommand objects share the same connection, only one command
can be executed on that connection at any one time. When it is invoked, the Cancel
method attempts to cancel the statement currently running on the connection that the
OracleCommand object is using to execute the command. However, when multiple
OracleCommand objects execute statements on the same connection simultaneously,
issuing a Cancel method invocation may cancel any of the issued commands. This is
because the command designated for cancellation may complete before the Cancel
invocation is effective. If this happens, a command executed by a different
OracleCommand could be cancelled instead.

There are several ways to avoid this non-deterministic situation that the Cancel method
can cause:

e The application can create just one OracleCommand object for each connection.
Doing so assures that the Cancel invocation only cancels commands executed by
the OracleCommand object using a particular connection.

» Command executions in the application are synchronized between OracleCommand
objects that use the same connection.

These suggestions do not apply if Cancel is not used in the application.

6-31

ORACLE

Chapter 6
OracleCommand Class

Because the termination on the currently running execution is non-deterministic, it is
recommended that any non-atomic SQL or PL/SQL execution be started within a
transaction. When the command execution successfully terminates with an exception
of ORA-01013: user requested cancel of current operation, the transaction can be rolled
back for data integrity. Other possible exceptions thrown after a command cancellation
occurs include 0RA-00936 and ORA-00604. Examples of non-atomic execution are
collections of DML command executions that are executed one-by-one and multiple
DML commands that are part of a PL/SQL stored procedure or function.

Example

/1 C#

// This example shows how command executions can be cancelled in a

// deterministic way even if multiple commands are executed on a single

// connection. This is accomplished by synchronizing threads through events.
// Since the Cancel method terminates the currently running operation on the
// connection, threads must be serialized if multiple threads are using the
// same connection to execute server round-trip incurring operations.

// Furthermore, the example shows how the execution and cancel threads should
// be synchronized so that nth iteration of the command execution does not
// inappropriately cancel the (n+1)th command executed by the same thread.

using System;

using System.Data;

using Oracle.DataAccess.Client;
using System.Threading;

class CancelSample
{
private OracleCommand cmd;
Thread t1, t2;
// threads signal following events when assigned operations are completed

private AutoResetEvent ExecuteEvent = new AutoResetEvent(false);
private AutoResetEvent CancelEvent = new AutoResetEvent(false);
private AutoResetEvent FinishedEvent = new AutoResetEvent(false);
AutoResetEvent[] ExecuteAndCancel = new AutoResetEvent[2];

// Default constructor
CancelSample()
{
cmd = new OracleCommand(*'select * from all_objects”,
new OracleConnection("'user id=scott;password=tiger;data source=oracle™));
ExecuteAndCancel [0] = ExecuteEvent;
ExecuteAndCancel[1] = CancelEvent;

}

// Constructor that takes a particular command and connection
CancelSample(string command, OracleConnection con)
{

cmd = new OracleCommand(command, con);

ExecuteAndCancel [0] = ExecuteEvent;

ExecuteAndCancel[1] = CancelEvent;

}

// Execution of the command
public void Execute()
{

OracleDataReader reader = null;

6-32

Chapter 6
OracleCommand Class

try
{
Console.WriteLine("Execute.");
reader = cmd.ExecuteReader();
Console.WriteLine("Execute Done.");
reader.Close();
}
catch(Exception e)
{
Console.WriteLine(""The command has been cancelled.”, e.Message);
}
Console.WriteLine("ExecuteEvent.Set()");
ExecuteEvent.Set();

}

// Canceling of the command
public void Cancel ()

{
try

// cancel query if it takes longer than 100 ms to finish execution
System.Threading.Thread.Sleep(100);
Console.WriteLine(*'Cancel.");
cmd.Cancel();
}

catch (Exception e)

{
}

Console.WriteLine("'Cancel done.™);
Console.WriteLine("CancelEvent.Set()");
CancelEvent.Set();

}

Console.WriteLine(e.ToString());

// Execution of the command with a potential of cancelling
public void ExecuteWithinLimitedTime()
{
for (int 1 =0; 1 <5; i+t)
{
Monitor.Enter(typeof(CancelSample));
try
{
Console.WriteLine("Executing " + this.cmd.CommandText);
ExecuteEvent.Reset();
CancelEvent.Reset();
tl = new Thread(new ThreadStart(this.Execute));
t2 = new Thread(new ThreadStart(this.Cancel));
tl.Start();
t2.Start();
}
finally
{
WaitHandle.WaitAll (ExecuteAndCancel);
Monitor.Exit(typeof(CancelSample));
}
}
FinishedEvent.Set();
}
[MTAThread]
static void Main()

{

ORACLE 6-33

6.2.5.2 Clone

ORACLE

Chapter 6
OracleCommand Class

try
{

AutoResetEvent[] ExecutionCompleteEvents = new AutoResetEvent[3];

// Create the connection that is to be used by three commands

OracleConnection con = new OracleConnection(*'user id=scott;" +
"password=tiger;data source=oracle");

con.Open();

// Create instances of CancelSample class

CancelSample testl = new CancelSample(*'select * from all_objects", con);

CancelSample test2 = new CancelSample(*'select * from all_objects, emp",
con);

CancelSample test3 = new CancelSample(*'select * from all_objects, dept",
con);

// Create threads for each CancelSample object instance

Thread t1 = new Thread(new ThreadStart(testl.ExecuteWithinLimitedTime));
Thread t2 = new Thread(new ThreadStart(test2._ExecuteWithinLimitedTime));
Thread t3 = new Thread(new ThreadStart(test3.ExecuteWithinLimitedTime));

// Obtain a handle to an event from each object

ExecutionCompleteEvents[0] = testl.FinishedEvent;
ExecutionCompleteEvents[1] = test2.FinishedEvent;
ExecutionCompleteEvents[2] = test3.FinishedEvent;

// Start all threads to execute three commands using a single connection
tl.Start();
t2.Start();
t3.Start();

// Wait for all three commands to finish executing/canceling before
//closing the connection
WaitHandle.WaitAll(ExecutionCompleteEvents);

con.Close();

}

catch (Exception e)

{
Console.WriteLine(e.ToString());

}
}
}

This method creates a copy of an OracleCommand object.

Declaration

// C#
public object Clone();

Return Value

An OracleCommand object

Implements

ICloneable

6-34

Chapter 6
OracleCommand Class

Remarks

The cloned object has the same property values as that of the object being cloned.

6.2.5.3 CreateParameter

This method creates a new instance of OracleParameter class.

Declaration

// C#
public OracleParameter CreateParameter();

Return Value

A new OracleParameter with default values.

Implements

1DbCommand

6.2.5.4 Dispose

This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The Dispose method also closes the OracleCommand object.

6.2.5.5 ExecuteNonQuery

ORACLE

This method executes a SQL statement or a command using the XmICommandType and
CommandText properties and returns the number of rows affected.

Declaration

// C#
public override int ExecuteNonQuery();

Return Value

The number of rows affected.

Implements

I1DbCommand

6-35

ORACLE

Chapter 6
OracleCommand Class

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks
ExecuteNonQuery returns the number of rows affected, for the following:

e |If the command is UPDATE, INSERT, or DELETE and the XmlCommandType property is set
to OracleXxmlCommandType.None.

e If the XmICommandType property is set to OracleXmlCommandType. Insert,
OracleXmlCommandType .Update, OracleXmlCommandType.Delete.

For all other types of statements, the return value is -1.
ExecuteNonQuery is used for either of the following:

« Catalog operations (for example, querying the structure of a database or creating
database objects such as tables).

» Changing the data in a database without using a DataSet, by executing UPDATE,
INSERT, or DELETE statements.

e Changing the data in a database using an XML document.

Although ExecuteNonQuery does not return any rows, it populates any output
parameters or return values mapped to parameters with data.

If the XmICommandType property is set to OraclexmlCommandType.Query then
ExecuteNonQuery executes the select statement in the CommandText property, and if
successful, returns -1. The XML document that is generated is discarded. This is
useful for determining if the operation completes successfully without getting the XML
document back as a result.

If the XmICommandType property is set to OracleXmlCommandType. Insert,
OracleXmlCommandType.Update, or OracleXmlCommandType.Delete, then the value of the
CommandText property is an XML document. ExecuteNonQuery saves the changes in that
XML document to the table or view that is specified in the XmlSaveProperties property.
The return value is the number of rows that are processed in the XML document. Also,
each row in the XML document could affect multiple rows in the database, but the
return value is still the number of rows in the XML document.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteNonQuerySample
{
static void Main()
{
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();

OracleCommand cmd = new OracleCommand(
"select sal from emp where empno=7934", con);

6-36

}

Chapter 6
OracleCommand Class

object sal = cmd.ExecuteScalar();
Console.WriteLine("Employee sal before update: " + sal);

cmd.CommandText = "update emp set sal = sal + .01 where empno=7934";

// Auto-commit changes
int rowsUpdated = cmd.ExecuteNonQuery();

if (rowsUpdated > 0)

cmd.CommandText = "select sal from emp where empno=7934";
sal = cmd.ExecuteScalar();
Console.WriteLine("Employee sal after update: " + sal);

}

// Clean up
cmd.Dispose();
con.Dispose();

Requirements

For XML support, this method requires Oracle9i XML Developer's Kits (Oracle XDK) or
later, to be installed in the database. Oracle XDK can be downloaded from Oracle
Technology Network (OTN).

6.2.5.6 ExecuteReader

Overload List:

ExecuteReader executes a command specified in the CommandText.

ExecuteReader()

This method executes a command specified in the CommandText and returns an
OracleDataReader object.

ExecuteReader(CommandBehavior)

This method executes a command specified in the CommandText and returns an
OracleDataReader object, using the specified CommandBehavior value.

6.2.5.7 ExecuteReader()

ORACLE

This method executes a command specified in the CommandText and returns an
OracleDataReader object.

Declaration

// C#
public OracleDataReader ExecuteReader();

Return Value

An OracleDataReader.

6-37

ORACLE

Chapter 6
OracleCommand Class

Implements

I1DbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

When the CommandType property is set to CommandType.StoredProcedure, the CommandText
property should be set to the name of the stored procedure.

The specified command executes this stored procedure when ExecuteReader is called.
If parameters for the stored procedure consist of REF CURSOR objects, behavior differs
depending on whether ExecuteReader() or ExecuteNonQuery() is called. If
ExecuteReader() is invoked, REF CURSOR objects can be accessed through the
OracleDataReader that is returned.If more than one REF CURSOR is returned from a single
execution, subsequent REF CURSOR objects can be accessed sequentially by the
NextResult method on the OracleDataReader. If the ExecuteNonQuery method is invoked,
the output parameter value can be cast to a OracleRefCursor type and the
OracleRefCursor object then can be used to either populate a DataSet or create an
OracleDataReader object from it. This approach provides random access to all the REF
CURSOR objects returned as output parameters.

The value of 100 is used for the FetchSize. If 0 is specified, no rows are fetched. For
further information, see "Obtaining LONG and LONG RAW Data".

If the value of the XmICommandType property is set to OraclexmlCommandType. Insert,
OracleXmlCommandType.Update, OracleXmlCommandType.Delete, or
OracleXmlCommandType.Query then the ExecuteReader method throws an
InvalidOperationException.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteReaderSample

{

static void Main()

{

string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);

con.Open();

OracleCommand cmd = new OracleCommand(*'select ename from emp™, con);
OracleDataReader reader = cmd.ExecuteReader();

while (reader.Read())

Console.WriteLine("Employee Name : " + reader.GetString(0));
}

// Clean up

6-38

Chapter 6
OracleCommand Class

reader.Dispose();
cmd.Dispose();
con.Dispose();
}
}

6.2.5.8 ExecuteReader(CommandBehavior)

ORACLE

This method executes a command specified in the CommandText and returns an
OracleDataReader object, using the specified behavior.

Declaration

// C#
public OracleDataReader ExecuteReader(CommandBehavior behavior);

Parameters
e behavior

The expected behavior.
Return Value

An OracleDataReader.

Implements

I1DbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

A description of the results and the effect on the database of the query command is
indicated by the supplied behavi or that specifies command behavior.

For valid CommandBehavior values and for the command behavior of each
CommandBehavior enumerated type, read the .NET Framework documentation.

When the CommandType property is set to CommandType.StoredProcedure, the CommandText
property should be set to the name of the stored procedure. The command executes
this stored procedure when ExecuteReader() is called.

If the stored procedure returns stored REF CURSORS, read the section on
OracleRefCursors for more details. See "OracleRefCursor Class".

The value of 100 is used for the FetchSize. If 0 is specified, no rows are fetched. For
more information, see "Obtaining LONG and LONG RAW Data".

If the value of the XmICommandType property is set to OraclexmlCommandType. Insert,
OracleXmlCommandType.Update, OracleXmlCommandType.Delete, or
OraclexmlCommandType.Query then the ExecuteReader method throws an
InvalidOperationException.

6-39

Chapter 6
OracleCommand Class

6.2.5.9 ExecuteScalar

ORACLE

This method executes the query using the connection, and returns the first column of
the first row in the result set returned by the query.

Declaration

// C#
public override object ExecuteScalar();

Return Value

An object which represents the value of the first row, first column.

Implements

I1DbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

Extra columns or rows are ignored. ExecuteScalar retrieves a single value (for
example, an aggregate value) from a database. This requires less code than using the
ExecuteReader() method, and then performing the operations necessary to generate
the single value using the data returned by an OracleDataReader.

If the query does not return any row, it returns null.

The ExecuteScalar method throws an InvalidOperationException, if the value of the
XmlCommandType property is set to one of the following OraclexmlCommandType values:
Insert, Update, Delete, Query.

Example

/1 C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteScalarSample

{

static void Main()

{
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();
OracleCommand cmd = new OracleCommand(*'select count(*) from emp", con);
object count = cmd.ExecuteScalar();

Console.WriteLine("There are {0} rows in table emp", count);

// Clean up
cmd.Dispose();

6-40

Chapter 6
OracleCommand Class

con.Dispose();
}
}

6.2.5.10 ExecuteStream

This method executes a command using the XmICommandType and CommandText
properties and returns the result as an XML document in a new Stream object.
Declaration

// C#
public Stream ExecuteStream();

Return Value

A Stream.

Remarks
The behavior of ExecuteStream varies depending on the XmlCommandType property value:

* XmICommandType = OracleXmlCommandType.None
ExecuteStream throws an InvalidOperationException.
e XmlCommandType = OracleXmlCommandType.Query

ExecuteStream executes the select statement in the CommandText property, and if
successful, returns an OracleClob object containing the XML document that was
generated. OracleClob contains Unicode characters.

If the SQL query does not return any rows, then ExcecuteStream returns an
OracleClob object containing an empty XML document.

e XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update, or
OracleXmlCommandType.Delete.

The value of the CommandText property is an XML document. ExecuteStream saves
the data in that XML document to the table or view that is specified in the
XmlSaveProperties property and an empty OracleClob is returned.

6.2.5.11 ExecuteToStream

ORACLE

This method executes a command using the XmICommandType and CommandText
properties and appends the result as an XML document to the existing Stream provided
by the application.

Declaration

// C#
public void ExecuteToStream(Stream out put Stream);

Parameters

* outputStream

A Streanm.

6-41

Chapter 6
OracleCommand Class

Remarks

The behavior of ExecuteToStream varies depending on the XmlCommandType property
value:

e XmlCommandType = OracleXmlCommandType.None
ExecuteToStream throws an InvalidOperationException.
e XmlCommandType = OracleXmlCommandType.Query

ExecuteToStream executes the select statement in the CommandText property, and if
successful, appends the XML document that was generated to the given Streanm.

If the SQL query does not return any rows, then nothing is appended to the given
Stream. The character set of the appended data is Unicode.

* XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update, or
OracleXmlCommandType.Delete

The value of the CommandText property is an XML document. ExecuteToStream saves
the changes in that XML document to the table or view that is specified in the
XmlSaveProperties property. Nothing is appended to the given Stream.

6.2.5.12 ExecuteXmlReader

ORACLE

This method executes the command using the XmlCommandType and CommandText
properties and returns the result as an XML document in a .NET XmITextReader object.
Declaration

// C#
public XmIReader ExecuteXmlReader();

Return Value

An XmlIReader.

Remarks

The behavior of ExecuteXmlReader varies depending on the XmlCommandType property
value:

e XmlCommandType = OracleXmlCommandType.None
ExecuteStream throws an InvalidOperationException.
e XmlCommandType = OracleXmlCommandType.Query

ExecuteXmlReader executes the select statement in the CommandText property, and if
successful, returns a .NET XmITextReader object containing the XML document that
was generated.

If the XML document is empty, which can happen if the SQL query does not return
any rows, then an empty .NET XmlTextReader object is returned.

* XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update, or
OracleXmlCommandType.Delete.

6-42

Chapter 6
OracleCommandBuilder Class

The value of the CommandText property is an XML document, and ExecuteXmlReader
saves the changes in that XML document to the table or view that is specified in
the XmlSaveProperties property. An empty .NET XmlTextReader object is returned.

6.2.5.13 Prepare

This method is not supported.

6.3 OracleCommandBuilder Class

ORACLE

An OracleCommandBui lder object provides automatic SQL generation for the
OracleDataAdapter when updates are made to the database.

Class Inheritance
System.Object
System.MarshalByRefObject
System.ComponentModel .Component
System.Data.Common.DbCommandBui Ider

OracleDataAccess.Client.OracleCommandBuilder

Declaration

// C#
public sealed class OracleCommandBuilder : DbCommandBuilder

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver
Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll
Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client
.NET Framework 3.5,45,4.6 45,46

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleCommandBui lder automatically generates SQL statements for single-table updates
when the SelectCommand property of the OracleDataAdapter is set. An exception is
thrown if the DataSet contains multiple tables. The OracleCommandBui lder registers itself
as a listener for RowUpdating events whenever its DataAdapter property is set. Only one
OracleDataAdapter object and one OracleCommandBui lder object can be associated with
each other at one time.

To generate INSERT, UPDATE, or DELETE statements, the OracleCommandBui lder uses
ExtendedProperties within the DataSet to retrieve a required set of metadata. If the

6-43

Chapter 6
OracleCommandBuilder Class

SelectCommand is changed after the metadata is retrieved (for example, after the first
update), the RefreshSchema method should be called to update the metadata.

OracleCommandBui Ider first looks for the metadata from the ExtendedProperties of the
DataSet; if the metadata is not available, OracleCommandBui lder uses the SelectCommand
property of the OracleDataAdapter to retrieve the metadata.

Example

The following example performs an update on the EMP table. It uses the
OracleCommandBui Ider object to create the UpdateCommand for the OracleDataAdapter
object when OracleDataAdapter .Update() is called.

/1 C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleCommandBuilderSample

{

static void Main()

{

string constr
string cmdstr

"User ld=scott;Password=tiger;Data Source=oracle";
"SELECT empno, sal from emp";

// Create the adapter with the selectCommand txt and the
// connection string
OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

// Create the builder for the adapter to automatically generate
// the Command when needed
OracleCommandBuilder builder = new OracleCommandBuilder(adapter);

// Create and fill the DataSet using the EMP
DataSet dataset = new DataSet();
adapter.Fill(dataset, "EMP");

// Get the EMP table from the dataset
DataTable table = dataset.Tables["EMP"];

// Indicate DataColumn EMPNO is unique
// This is required by the OracleCommandBuilder to update the EMP table
table.Columns["EMPNO"].Unique = true;

// Get the first row from the EMP table
DataRow row = table_Rows[0];

// Update the salary
double sal = double.Parse(row["SAL"].ToString());
row["SAL"] = sal + .01;

// Now update the EMP using the adapter

// The OracleCommandBuilder will create the UpdateCommand for the
// adapter to update the EMP table

adapter.Update(dataset, "EMP™);

Console.WriteLine("Row updated successfully™);

ORACLE 6-44

Chapter 6
OracleCommandBuilder Class

6.3.1 OracleCommandBuilder Members

ORACLE

OracleCommandBui lder members are listed in the following tables.
OracleCommandBuilder Constructors

OracleCommandBui Ider constructors are listed in Table 6-15.

Table 6-15 OracleCommandBuilder Constructors
- |

Constructor Description
OracleCommandBuilder Instantiates a new instance of OracleCommandBui lder
Constructors class (Overloaded)

OracleCommandBuilder Static Methods

OracleCommandBui Ider static methods are listed in Table 6-16.

Table 6-16 OracleCommandBuilder Static Methods

- ____________________________________|
Method Description

DeriveParameters Queries for the parameters of a stored procedure or
function, represented by a specified OracleCommand, and
populates the OracleParameterCol lection of the
command with the return values

Equals Inherited from System.Object (Overloaded)

OracleCommandBuilder Properties

OracleCommandBui Ider properties are listed in Table 6-17.

Table 6-17 OracleCommandBuilder Properties
|

Property Description
Container Inherited from System.ComponentModel .Component
CaseSensitive Indicates whether or not double quotes are used around Oracle object

names when generating SQL statements

CatalogLocation Not Supported

CatalogSeparator Not Supported

ConflictOption Not Supported

DataAdapter Indicates the OracleDataAdapter for which the SQL statements are
generated

QuotePrefix Specifies the beginning character or characters used to specify

database objects whose names contain special characters such as
spaces or reserved words

QuoteSuffix Specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or
reserved words

6-45

ORACLE

Chapter 6
OracleCommandBuilder Class

Table 6-17 (Cont.) OracleCommandBuilder Properties

Property Description

SchemaSeparator Specifies the character to be used for the separator between the
schema identifier and other identifiers

Site Inherited from System.ComponentModel .Component

OracleCommandBuilder Public Methods

OracleCommandBui Ider public methods are listed in Table 6-18.

Table 6-18 OracleCommandBuilder Public Methods
- |

Public Method

Description

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from System.ComponentModel .Component
Equals Inherited from System.Object (Overloaded)

GetDeleteCommand

Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
deletions on the database (Overloaded)

GetHashCode

Inherited from System.Object

GetlnsertCommand

Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
insertions on the database (Overloaded)

GetLifetimeService Inherited from System.MarshalByRefObject
GetType Inherited from System.Object
GetUpdateCommand Gets the automatically generated OracleCommand object

that has the SQL statement (CommandText) perform
updates on the database (Overloaded)

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Quoteldentifier

Returns the correct quoted form of the provided unquoted
identifier, with any embedded quotes in the identifier
properly escaped

RefreshSchema

Refreshes the database schema information used to
generate INSERT, UPDATE, or DELETE statements

Unquoteldentifier

Returns the correct unquoted form of the provided quoted
identifier, removing any escape notation for quotes
embedded in the identifier

ToString

Inherited from System.Object

OracleCommandBuilder Events

The OracleCommandBuilder event is listed in Table 6-19.

6-46

Chapter 6
OracleCommandBuilder Class

Table 6-19 OracleCommandBuilder Events

e ____________________________________|
Event Name Description

Disposed Inherited from System.ComponentModel .Component

6.3.2 OracleCommandBuilder Constructors

OracleCommandBui Ider constructors create new instances of the OracleCommandBui Ider
class.

Overload List:

e OracleCommandBuilder()
This constructor creates an instance of the OracleCommandBui Ider class.
e OracleCommandBuilder(OracleDataAdapter)

This constructor creates an instance of the OracleCommandBuilder class and sets
the DataAdapter property to the provided OracleDataAdapter object.

6.3.2.1 OracleCommandBuilder()

This constructor creates an instance of the OracleCommandBui lder class.

Declaration

// C#
public OracleCommandBuilder();

Remarks

Default constructor.

6.3.2.2 OracleCommandBuilder(OracleDataAdapter)

This constructor creates an instance of the OracleCommandBui lder class and sets the
DataAdapter property to the provided OracleDataAdapter object.

Declaration

// C#
public OracleCommandBuilder(OracleDataAdapter da);

Parameters
* da

The OracleDataAdapter object provided.

6.3.3 OracleCommandBuilder Static Methods

OracleCommandBui Ider static methods are listed in Table 6-20.

ORACLE 6-47

Chapter 6
OracleCommandBuilder Class

Table 6-20 OracleCommandBuilder Static Methods

e
Method Description

DeriveParameters Queries for the parameters of a stored procedure or function,
represented by a specified OracleCommand, and populates the
OracleParameterCollection of the command with the return
values

Equals Inherited from System.Object (Overloaded)

6.3.3.1 DeriveParameters

ORACLE

This method queries for the parameters of a stored procedure or function, represented
by a specified OracleCommand, and populates the OracleParameterCollection of the
command with the return values.

Declaration

// C#
public static void DeriveParameters(OracleCommand command);

Parameters

e command

The command that represents the stored procedure or function for which
parameters are to be derived.

Exceptions

InvalidOperationException - The CommandText is not a valid stored procedure or function
name, the CommandType is not CommandType.StoredProcedure, or the Connection.State is
not ConnectionState.Open.

Remarks

When DeriveParameters is used to populate the Parameter collection of an OracleCommand
Object that represents a stored function, the return value of the function is bound as
the first parameter (at position 0 of the OracleParameterCol lection).

DeriveParameters can only be used for stored procedures or functions, not for
anonymous PL/SQL blocks.

DeriveParameters incurs a database round-trip to retrieve parameter metadata prior to
executing the stored procedure/function. It should only be used during design time. To
avoid unnecessary database round-trips in a production environment, the
DeriveParameters method itself should be replaced with the explicit parameter settings
that were returned by the DeriveParameters method at design time.

DeriveParameters can only preserve the case of the stored procedure or function name
if it is encapsulated by double-quotes. For example, if the stored procedure in the
database is named GetEmployees with mixed-case, the CommandText property on the
OracleCommand object must be set appropriately as in the following example:

cmd.CommandText = "\"GetEmployees\"";

6-48

ORACLE

Chapter 6
OracleCommandBuilder Class

Stored procedures and functions in a package must be provided in the following
format:

<package name>.<procedure or function name>

For example, to obtain parameters for a stored procedure named GetEmployees (mixed-
case) in a package named EmpProcedures (mixed-case), the name provided to the
OracleCommand is:

"\"EmpProcedures\".\"GetEmployees\""

DeriveParameters cannot be used for object type methods.

The derived parameters contain all the metadata information that is needed for the
stored procedure to execute properly. The application must provide the value of the
parameters before execution, if required. The application may also modify the
metadata information of the parameters before execution. For example, the Size
property of the OracleParameter may be modified for PL/SQL character and string types
to optimize the execution of the stored procedure.

The output values of derived parameters return as .NET Types by default. To obtain
output parameters as provider types, the OracleDbType property of the parameter must
be set explicitly by the application to override this default behavior. One quick way to
do this is to set the OracleDbType to itself for all output parameters that should be
returned as provider types.

The BindByName property of the supplied OracleCommand is left as is, but the application
can change its value.

If the specified stored procedure or function is overloaded, the first overload is used to
populate the parameters collection.

// Database Setup

/*

connect scott/tiger@oracle

CREATE OR REPLACE PROCEDURE MyOracleStoredProc (arg_in IN VARCHAR2,
arg_out OUT VARCHAR2) IS

BEGIN
arg_out := arg_in;

END;

/

*/

// C#

using System;

using System.Data;

using Oracle.DataAccess.Client;

class DeriveParametersSample

{

static void Main()

{
// Create the PL/SQL Stored Procedure MyOracleStoredProc as indicated in

// the preceding Database Setup

string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);

con.Open();

// Create an OracleCommand
OracleCommand cmd = new OracleCommand(*'MyOracleStoredProc", con);

6-49

Chapter 6
OracleCommandBuilder Class

cmd.CommandType = CommandType.StoredProcedure;

// Derive Parameters
OracleCommandBui Ider.DeriveParameters(cmd);
Console.WriteLine("Parameters Derived");

// Prints "Number of Parameters for MyOracleStoredProc = 2"
Console.WriteLine(""Number of Parameters for MyOracleStoredProc = {0}",
cmd.Parameters.Count);

// The PL/SQL stored procedure MyOracleStoredProc has one IN and
// one OUT parameter. Set the Value for the IN parameter.
cmd.Parameters[0].Value = "MyText";

// The application may modify the other OracleParameter properties also
// This sample uses the default Size for the IN parameter and modifies
// the Size for the OUT parameter

// The default size for OUT VARCHAR2 is 4000
// Prints "cmd.Parameters[1].Size = 4000"
Console.WriteLine(*'cmd.Parameters[1].Size = " + cmd.Parameters[1].Size);

// Set the Size for the OUT parameter
cmd.Parameters[1].Size = 6;

// Execute the command
cmd . ExecuteNonQuery();

// Prints "cmd.Parameters[1].Value = MyText"
Console.WriteLine('cmd.Parameters[1].Value = " + cmd.Parameters[1].Value);

con.Close();
con.Dispose();
}
}

Example

6.3.4 OracleCommandBuilder Properties

ORACLE

OracleCommandBui Ider properties are listed in Table 6-21.

Table 6-21 OracleCommandBuilder Properties

Property Description
Container Inherited from System.ComponentModel .Component
CaseSensitive Indicates whether or not double quotes are used around Oracle object

names when generating SQL statements

CatalogLocation Not Supported

CatalogSeparator Not Supported

ConflictOption Not Supported
DataAdapter Indicates the OracleDataAdapter for which the SQL statements are
generated

6-50

Chapter 6
OracleCommandBuilder Class

Table 6-21 (Cont.) OracleCommandBuilder Properties

e
Property Description

QuotePrefix Specifies the beginning character or characters used to specify
database objects whose names contain special characters such as
spaces or reserved words

QuoteSuffix Specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or
reserved words

SchemaSeparator Specifies the character to be used for the separator between the
schema identifier and other identifiers

Site Inherited from System.ComponentModel .Component

6.3.4.1 CaseSensitive

This property indicates whether or not double quotes are used around Oracle object
names (for example, tables or columns) when generating SQL statements.

Declaration

// C#
bool CaseSensitive {get; set;}

Property Value

A bool that indicates whether or not double quotes are used.

Remarks

Default = false

6.3.4.2 CatalogLocation

This property is not supported.

Declaration

// C#
public override CatalogLocation CataloglLocation {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

6.3.4.3 CatalogSeparator

This property is not supported.

ORACLE 6-51

Chapter 6
OracleCommandBuilder Class

Declaration

// C#
public override string CatalogSeparator {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

6.3.4.4 ConflictOption

This property is not supported.

Declaration

// C#
public override string ConflictOption {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

6.3.4.5 DataAdapter

This property indicates the OracleDataAdapter object for which the SQL statements are
generated.

Declaration

// C#
OracleDataAdapter DataAdapter{get; set;}

Property Value

An OracleDataAdapter object.

Remarks

Default = null

6.3.4.6 QuotePrefix

This property specifies the beginning character or characters used to specify database
objects whose names contain special characters such as spaces or reserved words.

ORACLE 6-52

Chapter 6
OracleCommandBuilder Class

Declaration

// C#
public override string QuotePrefix {get; set;}

Property Value

The beginning character or characters to use. The default value is "\"".

Remarks

This property is independent of any OracleConnection or OracleCommand objects.

6.3.4.7 QuoteSuffix

This property specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or reserved words.

Declaration

// C#
public override string QuoteSuffix {get; set;}

Property Value

The ending character or characters to use. The default value is "\"".

Remarks

This property is independent of any OracleConnection or OracleCommand objects.

6.3.4.8 SchemaSeparator

ORACLE

This property specifies the character to be used for the separator between the schema
identifier and other identifiers.

Declaration

// C#
public override string SchemaSeparator {get; set; }

Property Value
The character to be used as the schema separator.
Exceptions

NotSupportedException - The input value is not a dot (.).

Remarks

The default schema separator is a dot (.). The only acceptable value for this property
is a dot (.).

This property is independent of any OracleConnection or OracleCommand objects.

6-53

Example

/1 C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class SchemaSeperatorSample

{

static void Main(string[] args)
{
try
OracleCommandBuilder cmdBui

//schemaSeparator is dot(.)

Chapter 6
OracleCommandBuilder Class

Ider = new OracleCommandBuilder();

Console.WriteLine("'schemaSeparator is {0}",
cmdBui lder.SchemaSeparator);

//set the schemaseparator,
cmdBui lder.SchemaSeparator

only "." is allowed.

// the only acceptable value for this property is a dot (.)
// Hence the following line will throw NotSupportedException

cmdBui lder.SchemaSeparator

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);
Console.WriteLine(ex.StackTrace);

}
}
}

6.3.5 OracleCommandBuilder Public Methods

OracleCommandBui Ider public methods are listed in Table 6-22.

ORACLE

Table 6-22 OracleCommandB

uilder Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject
Dispose Inherited from System.ComponentModel . Component
Equals Inherited from System.Object (Overloaded)

GetDeleteCommand

Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
deletions on the database (Overloaded)

GetHashCode

Inherited from System.Object

GetlnsertCommand

Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
insertions on the database (Overloaded)

6-54

Chapter 6
OracleCommandBuilder Class

Table 6-22 (Cont.) OracleCommandBuilder Public Methods

Public Method

Description

GetLifetimeService Inherited from System_MarshalByRefObject
GetType Inherited from System.Object
GetUpdateCommand Gets the automatically generated OracleCommand object

that has the SQL statement (CommandText) perform
updates on the database (Overloaded)

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Quoteldentifier

Returns the correct quoted form of the provided unquoted
identifier, with any embedded quotes in the identifier
properly escaped

RefreshSchema

Refreshes the database schema information used to
generate INSERT, UPDATE, or DELETE statements

Unquoteldentifier

Returns the correct unquoted form of the provided quoted
identifier, removing any escape notation for quotes
embedded in the identifier

ToString

Inherited from System.Object

6.3.5.1 GetDeleteCommand

Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform deletions on the database

Overload List

* GetDeleteCommand()

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform deletions on the database when an
application calls Update() on the OracleDataAdapter.

* GetDeleteCommand(bool)

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform deletions on the database when an
application calls Update() on the OracleDataAdapter.

6.3.5.2 GetDeleteCommand()

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform deletions on the database when an application calls
Update() on the OracleDataAdapter.

ORACLE

Declaration

/1 C#

public OracleCommand GetDeleteCommand();

Return Value

An OracleCommand.

6-55

Chapter 6
OracleCommandBuilder Class

Exceptions
ObjectDisposedException - The OracleCommandBui lder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

6.3.5.3 GetDeleteCommand(bool)

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform deletions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetDeleteCommand(bool useColumnsForParameterNames);

Parameters

° useColumnsForParameterNames

If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Exceptions
ObjectDisposedException - The OracleCommandBui lder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

6.3.5.4 GetlnsertCommand

ORACLE

Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform insertions on the database

Overload List

* GetlnsertCommand()

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform insertions on the database when an
application calls Update() on the OracleDataAdapter.

e GetlnsertCommand(bool)

6-56

Chapter 6
OracleCommandBuilder Class

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform insertions on the database when an
application calls Update() on the OracleDataAdapter.

6.3.5.5 GetlnsertCommandy)

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform insertions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// Ci#
public OracleCommand GetlnsertCommand();

Return Value

An OracleCommand.

Exceptions
ObjectDisposedException - The OracleCommandBui lder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

6.3.5.6 GetlnsertCommand(bool)

ORACLE

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform insertions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetlnsertCommand(bool useColumnsForParameterNames);

Parameters

° useColumnsForParameterNames

If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Exceptions
ObjectDisposedException - The OracleCommandBui lder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

6-57

Chapter 6
OracleCommandBuilder Class

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

6.3.5.7 GetUpdateCommand

Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform updates on the database

Overload List

e GetUpdateCommand()

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform updates on the database when an
application calls Update() on the OracleDataAdapter.

* GetUpdateCommand(bool)

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform updates on the database when an
application calls Update() on the OracleDataAdapter.

6.3.5.8 GetUpdateCommandy()

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform updates on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetUpdateCommand();

Return Value

An OracleCommand.

Exceptions
ObjectDisposedException - The OracleCommandBui lder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

6.3.5.9 GetUpdateCommand(bool)

This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform updates on the database when an application calls
Update() on the OracleDataAdapter.

ORACLE 6-58

Chapter 6
OracleCommandBuilder Class

Declaration

// C#
public OracleCommand GetUpdateCommand(bool useColumnsForParameterNames);

Parameters

e useColumnsForParameterNames

If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Exceptions
ObjectDisposedException - The OracleCommandBui lder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

6.3.5.10 Quoteldentifier

ORACLE

This method returns the correct quoted form of the provided unquoted identifier, with
any embedded quotes in the identifier properly escaped.

Declaration

// C#
public override string Quoteldentifier(string unquotedldentifier);

Parameters
* Unquot edl dentifier

An unquoted identifier string.
Return Value

The quoted version of the identifier. Embedded quotes within the identifier are properly
escaped.

Exceptions

ArgumentNul IException - The input parameter is null.

Remarks

This method is independent of any OracleConnection or OracleCommand objects.

6-59

Chapter 6
OracleCommandBuilder Class

Example

/1 C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class QuoteldentifierSample

{

static void Main(string[] args)

OracleCommandBuilder builder = new OracleCommandBuilder();
string quoteldentifier = builder.Quoteldentifier("US\"ER");

//quoteldentifier for "US\"ER" is (\"US\"\"ER\")
Console.WriteLine("quoteldentifier is {0}" , quoteldentifier);
}
}

6.3.5.11 RefreshSchema

This method refreshes the database schema information used to generate INSERT,
UPDATE, or DELETE statements.

Declaration

// C#
public override void RefreshSchema();

Remarks

An application should call RefreshSchema whenever the SelectCommand value of the
OracleDataAdapter object changes.

6.3.5.12 Unquoteldentifier

ORACLE

This method returns the correct unquoted form of the provided quoted identifier,
removing any escape notation for quotes embedded in the identifier.

Declaration

// C#
public override string Unquoteldentifier(string quotedl dentifier);

Parameters

e quotedldentifier

The quoted string identifier.

Return Value

The unquoted identifier, with escape notation for any embedded quotes removed.

6-60

Chapter 6
OracleConnection Class

Exceptions
ArgumentNul IException - The input parameter is null.

ArgumentException - The input parameter is empty.

Remarks

This method is independent of any OracleConnection or OracleCommand objects.

Example

/1 C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class UnQuoteldentifierSample

{
static void Main(string[] args)
{
//create an OracleCommandBuilder object.
OracleCommandBuilder builder = new OracleCommandBuilder();
string identifier = "US\"ER";
Console.WriteLine("ldentifier is {0}", identifier);
// quote the identifier
string quoteldentifier = builder.Quoteldentifier(identifier);
//quoteldentifier of "US\"ER" is (\"US\'"\"ER\")
Console.WriteLine(""Quotedldentifier is {0}" , quoteldentifier);
string unquoteldentifier = builder.Unquoteldentifier(quoteldentifier);
//And its unquoteldentifier is US\"ER
Console.WriteLine("Unquotedldentifier is {0}" , unquoteldentifier);
}
}

6.3.6 OracleCommandBuilder Events

The OracleCommandBuilder event is listed in Table 6-23.

Table 6-23 OracleCommandBuilder Event

|
Event Name Description

Disposed Inherited from System.ComponentModel .Component

6.4 OracleConnection Class

An OracleConnection object represents a connection to an Oracle database.

ORACLE 6-61

ORACLE

Chapter 6
OracleConnection Class

Class Inheritance
System.Object
System.MarshalByRefObject
System.ComponentModel .Component
System.Data.Common.DbConnection

Oracle.DataAccess.Client.OracleConnection

Declaration

// C#
public sealed class OracleConnection : DbConnection, IDbConnection, ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver
Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll
Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client
.NET Framework 3.5,45,4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

/1 C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleConnectionSample

{

static void Main()
{
// Connect
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();

// Execute a SQL SELECT

OracleCommand cmd = con.CreateCommand();
cmd.CommandText = "select * from emp";
OracleDataReader reader = cmd.ExecuteReader();

// Print all employee numbers
while (reader.Read())
Console.WriteLine(reader.GetInt32(0));

// Clean up

reader.Dispose();
cmd.Dispose();

6-62

Chapter 6
OracleConnection Class

con.Dispose();
}
}

6.4.1 OracleConnection Members

OracleConnection members are listed in the following tables.

OracleConnection Constructors

OracleConnection constructors are listed in Table 6-24.

Table 6-24 OracleConnection Constructors

e ___________________________________|
Constructor Description

OracleConnection Constructors Instantiates a new instance of the
OracleConnection class (Overloaded)

OracleConnection Static Properties

The OracleConnection static property is listed in Table 6-26.

Table 6-25 OracleConnection Static Property

e ___________________________________|
Property Description

IsAvailable Indicates whether or not the implicit database
connection is available for use

OracleConnection Static Methods

The OracleConnection static methods are listed in Table 6-26.

Table 6-26 OracleConnection Static Methods
-]

Method Description
Equals Inherited from System.Object (Overloaded)
ClearPool Clears the connection pool that is associated with

the provided OracleConnection object.
Not supported in a .NET stored procedure

ClearAllPools Clears all connections from all the connection pools
Not supported in a .NET stored procedure

OracleConnection Properties

OracleConnection properties are listed in Table 6-27.

ORACLE 6-63

ORACLE

Chapter 6
OracleConnection Class

Table 6-27 OracleConnection Properties

Property Description

ActionName Specifies the action name for the connection
Clientld Specifies the client identifier for the connection
Clientinfo Specifies the client information for the connection

ConnectionString

Specifies connection information used to connect to an Oracle
database

ConnectionTimeout

Indicates the maximum amount of time that the Open method can
take to obtain a pooled connection before the request is terminated

ConnectionType Determines whether a particular connection object is associated with
a TimesTen database connection, an Oracle database connection, or
no physical connection
Not available in ODP.NET, Managed Driver

Container Inherited from System.ComponentModel .Component

Database Not Supported

DatabaseDomainName

Specifies the name of the database domain to which the connection
is set

DatabaseName Specifies the name of the database to which the connection is set
DataSource Specifies the Oracle Net Services Name, Connect Descriptor, or an
easy connect naming that identifies the database to which to connect
HostName Specifies the name of the host to which the connection is set
InstanceName Specifies the name of the instance to which the connection is set

ModuleName

Specifies the module name for the connection

ServerVersion

Specifies the version number of the Oracle database to which the
OracleConnection has established a connection

ServiceName

Specifies the name of the service to which the connection is set

Site

Inherited from System.ComponentModel .Component

State

Specifies the current state of the connection

StatementCacheSize

Specifies the current size of the statement cache associated with this
connection

OracleConnection Public Methods

OracleConnection public methods are listed in Table 6-28.

Table 6-28 OracleConnection Public Methods
-

Public Method

Description

BeginTransaction

Begins a local transaction (Overloaded)
Not supported in a .NET stored procedure for context

connection
ChangeDatabase Not Supported
Clone Creates a copy of an OracleConnection object

Not supported in a .NET stored procedure

6-64

ORACLE

Chapter 6
OracleConnection Class

Table 6-28 (Cont.) OracleConnection Public Methods
|

Public Method

Description

Close Closes the database connection

CreateCommand Creates and returns an OracleCommand object
associated with the OracleConnection object

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel .Component

EnlistDistributed Transaction

Enables applications to explicitly enlist in a specified
distributed transaction

Not supported in a .NET stored procedure

EnlistTransaction

Enables applications to enlist in a specified distributed
transaction

Not supported in a .NET stored procedure

Equals Inherited from System.Object (Overloaded)
FlushCache Flushes all updates and deletes made through REF
objects retrieved using this connection
Not available in ODP.NET, Managed Driver
GetHashCode Inherited from System.Object
GetLifetimeService Inherited from System.MarshalByRefObject
GetSchema Returns schema information for the data source of the

OracleConnection

GetSessionInfo

Returns or refreshes the property values of the
OracleGlobalization object that represents the
globalization settings of the session (Overloaded)

GetType

Inherited from System.Object

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Open Opens a database connection with the property settings
specified by the ConnectionString

OpenWithNewPassword Opens a new connection with the new password
Not supported in a .NET stored procedure for context
connection

PurgeStatementCache Flushes the Statement Cache by closing all open

cursors on the database, when statement caching is
enabled

SetSessioninfo

Alters the session's globalization settings with the
property values provided by the OracleGlobalization
object

SetShardingKey(OracleShardingKey,

Enables applications to set the sharding key and super

OracleShardingKey) sharding key before requesting a connection
Not available in ODP.NET, Managed Driver
ToString Inherited from System.Object

OracleConnection Events

OracleConnection events are listed in Table 6-29.

6-65

Chapter 6
OracleConnection Class

Table 6-29 OracleConnection Events

Event Name Description
Disposed Inherited from System.ComponentModel .Component
Failover An event that is triggered when an Oracle failover
occurs
Not supported in a .NET stored procedure
Not Available in ODP.NET, Managed Driver
HAEvent An event that is triggered when an HA event occurs.
InfoMessage An event that is triggered for any message or
warning sent by the database
StateChange An event that is triggered when the connection state
changes

6.4.2 OracleConnection Constructors

OracleConnection constructors instantiate new instances of the OracleConnection class.

Overload List:

OracleConnection()

This constructor instantiates a new instance of the OracleConnection class using
default property values.

OracleConnection(String)

This constructor instantiates a new instance of the OracleConnection class with the
provided connection string.

6.4.2.1 OracleConnection()

This constructor instantiates a new instance of the OracleConnection class using default
property values.

ORACLE

Declaration

// C#
public OracleConnection();

Remarks

The properties for OracleConnection are set to the following default values:

ConnectionString = empty string

ConnectionTimeout = 15 (default value of 0 is used for the implicit database
connection)

DataSource = empty string

ServerVersion = empty string

6-66

Chapter 6
OracleConnection Class

6.4.2.2 OracleConnection(String)

This constructor instantiates a new instance of the OracleConnection class with the
provided connection string.

Declaration

// C#
public OracleConnection(String connectionString);

Parameters

° connectionString

The connection information used to connect to the Oracle database.

Remarks

The ConnectionString property is set to the supplied connecti onString. The
ConnectionString property is parsed and an exception is thrown if it contains invalid
connection string attributes or attribute values.

The properties of the OracleConnection object default to the following values unless
they are set by the connection string:

e ConnectionString = empty string

e ConnectionTimeout = 15 (default value of 0 is used for the implicit database
connection)

e DataSource = empty string

* ServerVersion = empty string

6.4.3 OracleConnection Static Properties

The OracleConnection static property is listed in Table 6-30.

Table 6-30 OracleConnection Static Property

. ___________________________________|
Property Description

IsAvailable Indicates whether or not the implicit database
connection is available for use

6.4.3.1 IsAvailable

This property indicates whether or the implicit database connection is available for
use.

Declaration

// C#
public static bool IsAvailable {get;}

ORACLE 6-67

Chapter 6
OracleConnection Class

Property Value

Returns true if the implicit database connection is available for use.

Remarks

The availability of the implicit database connection can be checked at runtime through
this static property. When Oracle Data Provider for .NET is used within a .NET stored
procedure, this property always returns true. Otherwise, false is returned.

To obtain an OracleConnection object in a .NET stored procedure that represents the
implicit database connection, set the ConnectionString property of the OracleConnection
object to "context connection=true™ and invoke the Open method.

Note that not all features that are available for an explicit user connection are available
for an implicit database connection. See "Implicit Database Connection" for details.

Example

// C# (Library/DLL)
using System;
using Oracle.DataAccess.Client;

public class IsAvailableSample

{
static void MyStoredProcedure()

{
OracleConnection con = new OracleConnection();
if (OracleConnection.lIsAvailable)

// This function is invoked as a stored procedure

// Obtain the implicit database connection by setting
// “context connection=true"” in the connection string
con.ConnectionString = "context connection=true";

}

else

// This function is not invoked as a stored procedure
// Set the connection string for a normal client connection
con.ConnectionString = "user id=scott;password=tiger;data source=oracle";

}

con.Open();
Console.WriteLine(*'connected!");
}
}

6.4.4 OracleConnection Static Methods

ORACLE

The OracleConnection static methods are listed in Table 6-31.

Table 6-31 OracleConnection Static Methods

- ___|
Method Description

Equals Inherited from System.Object (Overloaded)

6-68

Chapter 6
OracleConnection Class

Table 6-31 (Cont.) OracleConnection Static Methods

- ___|
Method Description

ClearPool Clears the connection pool that is associated with the provided
OracleConnection object.

Not supported in a .NET stored procedure

ClearAllPools Clears all connections from all the connection pools
Not supported in a .NET stored procedure

6.4.4.1 ClearPool

ORACLE

This method clears the connection pool that is associated with the provided
OracleConnection object.

Declaration

// C#
public static void ClearPool(OracleConnection connection);

Remarks

When this method is invoked, all idle connections are closed and freed from the pool.
Currently used connections are not discarded until they are returned to the pool.

Beginning with ODP.NET 12c Release 1 (12.1), ClearPool does not automatically
repopulate the pool with new connections. This prevents the pool from being
repopulated with invalid connections if client remains unable to connect with the
database server. Developers programmatically control when the pool is repopulated by
calling OracleConnection.Open(), which will repopulate the pool with at least the Min
Pool Size number of connections.

Connections created after this method invocation are not cleared unless another
invocation is made.

This method can be invoked with an OracleConnection object before opening the
connection as well as after, provided the ConnectionString is properly set.

Exceptions

InvalidOperationException — Either the connection pool cannot be found or the
provided connection string is invalid.

Example

// C#
// Sample demonstrating the use of ClearPool APl in OracleConnection class

using System;
using Oracle.DataAccess.Client;

class ClearPoolSample

{

static void Main()

{

Console.WriteLine("Running ClearPool sample...™);

6-69

Chapter 6
OracleConnection Class

// Set the connection string

string strConn = "User ld=scott;Password=tiger;Data Source=oracle;" +
"Min pool size=5;";

OracleConnection conn = new OracleConnection(strConn);

// Open the connection
conn.Open();

// Clears the connection pool associated with connection "conn®
OracleConnection.ClearPool (conn);

// This connection will be placed back into the pool
conn.Close ();

// Open the connection again to create additional connections in the pool
conn.Open();

// Create a new connection object
OracleConnection connNew = new OracleConnection(strConn);

// Clears the pool associated with Connection "connNew"

// Since the same connection string is set for both the connections,
// connNew and conn, they will be part of the same connection pool.
// We need not do an Open() on the connection object before calling
// ClearPool

OracleConnection.ClearPool (connNew);

// cleanup
conn.Close();
Console.WriteLine("'Done!");

6.4.4.2 ClearAllPools

ORACLE

This method clears all connections from all the connection pools.

Declaration

// C#
public static void ClearAllPools();

Remarks

This call is analogous to calling ClearPool for all the connection pools that are created
for the application.

Exceptions
InvalidOperationException — No connection pool could be found for the application.

Example

// C#
// Sample demonstrating the use of ClearAllPools APl in OracleConnection class

using Systenm;
using Oracle._DataAccess.Client;

6-70

Chapter 6
OracleConnection Class

class ClearAllPoolsSample

{

static void Main()

{

Console.WriteLine("Running ClearAllPools sample...");

// Set the connection string

string strConn = "User ld=scott;Password=tiger;Data Source=oracle;" +
"Min pool size=5;";

OracleConnection conn = new OracleConnection(strConn);

// Create another connection object with a different connection string
string strConnNew = "User ld=scott;Password=tiger;Data Source=oracle;";
OracleConnection connNew = new OracleConnection(strConnNew);

// Open the connections. Separate pools are created for conn and connNew

conn.Open();
connNew.Open();

// Clears the pools associated with conn and connNew
OracleConnection.ClearAllPools ();

// cleanup
conn.Close();
connNew.Close();

Console.WriteLine("'Done!");

6.4.5 OracleConnection Properties

OracleConnection properties are listed in Table 6-32

ORACLE

Table 6-32 OracleConnection Properties

Property Description

ActionName Specifies the action name for the connection
Clientld Specifies the client identifier for the connection
ClientInfo Specifies the client information for the connection

ConnectionString

Specifies connection information used to connect to an Oracle
database

ConnectionTimeout

Indicates the maximum amount of time that the Open method can
take to obtain a pooled connection before the request is terminated

ConnectionType Determines whether a particular connection object is associated with
a TimesTen database connection, an Oracle database connection, or
no physical connection
Not available in ODP.NET, Managed Driver

Container Inherited from System.ComponentModel .Component

Database Not Supported

DatabaseDomainName

Specifies the name of the database domain to which the connection
is set

DatabaseName

Specifies the name of the database to which the connection is set

6-71

Chapter 6
OracleConnection Class

Table 6-32 (Cont.) OracleConnection Properties
|

Property Description

DataSource Specifies the Oracle Net Services Name, Connect Descriptor, or an
easy connect naming that identifies the database to which to connect

HostName Specifies the name of the host to which the connection is set

InstanceName Specifies the name of the instance to which the connection is set

ModuleName Specifies the module name for the connection

ServerVersion Specifies the version number of the Oracle database to which the
OracleConnection has established a connection

ServiceName Specifies the name of the service to which the connection is set

Site Inherited from System.ComponentModel .Component

State Specifies the current state of the connection

StatementCacheSize Specifies the current size of the statement cache associated with this
connection

6.4.5.1 ActionName

This property specifies the action name for the connection.

Declaration

// C#
public string ActionName {set;}

Property Value

The string to be used as the action name.

Remarks
The default value is null.

Using the ActionName property allows the application to set the action name in the
application context for a given OracleConnection object.

The ActionName property is reset to null when the Close or Dispose method is called on
the OracleConnection object.

6.4.5.2 Clientld

ORACLE

This property specifies the client identifier for the connection.

Declaration

// C#
public string Clientld {set;}

Property Value

The string to be used as the client identifier.

6-72

Chapter 6
OracleConnection Class

Remarks
The default value is null.

Using the Clientld property allows the application to set the client identifier in the
application context for a given OracleConnection object.

Setting Clientld to null resets the client identifier for the connection. Clientld is set to
null when the Close or Dispose method is called on the OracleConnection object.

6.4.5.3 ClientInfo

This property specifies the client information for the connection.

Declaration

// C#
public string Clientinfo {set;}

Property Value

The string to be used as the client information.

Remarks
The default value is null.

Using the ClientiInfo property allows the application to set the client information in the
application context for a given OracleConnection object.

The ClientInfo property is reset to null when the Close or Dispose method is called on
the OracleConnection object.

6.4.5.4 ConnectionString

ORACLE

This property specifies connection information used to connect to an Oracle database.

Declaration

// C#
public override string ConnectionString{get; set;}

Property Value

If the connection string is supplied through the constructor, this property is set to that
string.

Implements

IDbConnection

Exceptions
ArgumentException - An invalid syntax is specified for the connection string.

InvalidOperationException - ConnectionString is being set while the connection is open.

6-73

ORACLE

Chapter 6
OracleConnection Class

Remarks
The default value is an empty string.

ConnectionString must be a string of attribute name and value pairings, separated by a
semi-colon, for example:

"User ld=scott;password=tiger;data source=oracle"

If the ConnectionString is not in a proper format, an exception is thrown. All spaces are
ignored unless they are within double quotes.

When the ConnectionString property is set, the OracleConnection object immediately
parses the string for errors. An ArgumentException is thrown if the ConnectionString
contains invalid attributes or invalid values. Attribute values for User 1d, Password, Proxy
User Id, Proxy Password, and Data Source (if provided) are not validated until the Open
method is called.

The connection must be closed to set the ConnectionString property. When the
ConnectionString property is reset, all previously set values are reinitialized to their
default values before the new values are applied.

Starting with ODP.NET 11.1, password and proxy password connection string attribute
values are accepted as case-sensitive strings. Thus, they are passed to the database
for authentication in the case provided in the connection string. Therefore, if the
database is configured to support case-sensitive passwords, passwords must be
passed in the correct case.

If a connection string attribute is set more than once, the last setting takes effect and
no exceptions are thrown.

Boolean connection string attributes can be set to either true, false, yes, or no.

Remarks (.NET Stored Procedure)

To obtain an OracleConnection object in a .NET stored procedure that represents the
implicit database connection, set the ConnectionString property of the OracleConnection
object to "context connection=true" and invoke the Open method. Other connection
string attributes cannot be used in conjunction with ""context connection™ when it is set
to true.

Supported Connection String Attributes

Table 6-33 lists the supported connection string attributes.

Table 6-33 Supported Connection String Attributes
|

Connection String Description Default Value
Attribute

Application Enables database requests to automatically replay true
Continuity transactional or non-transactional operations in a non-

disruptive and rapid manner in the event of a severed
database session, which results in a recoverable error.

Not available in ODP.NET, Managed Driver

6-74

ORACLE

Chapter 6
OracleConnection Class

Table 6-33 (Cont.) Supported Connection String Attributes

Connection String Description Default Value
Attribute

Connection Minimum life time (in seconds) of the connection. 0

Lifetime

Connection Timeout

Context Connection

Data Source

DBA Privilege

Decr Pool Size

This attribute specifies the lifetime of the connection in
seconds. Before the Connection is placed back into the
pool upon a Close() or Dispose() call, the lifetime of
the connection is checked. If the lifetime of the
connection exceeds this property value, then the
connection is destroyed. If this property value is 0, then
the connection lifetime is never checked.

Minimum time (in seconds) to wait for a free connection 15
from the pool.

This attribute specifies the minimum amount of time (in
seconds) that the Open() method must take to obtain a
pooled connection before it terminates the request. This
value comes into effect only if no free connection is
available from the connection pool and the Max Pool
Size is reached. If a free connection is not available
within the specified time, an exception is thrown.
Connection Timeout does not limit the time required to
open new connections.

This attribute value takes effect for pooled connection
requests and not for new connection requests.

(The default value is 0 for the implicit database
connection in a .NET stored procedure.)

Returns an implicit database connection if set to true. false

An implicit database connection can only be obtained
from within a .NET stored procedure. Other connection
string attributes cannot be used in conjunction with
"context connection' when it is set to true.

Supported in a .NET stored procedure only

Oracle Net Services Name, Connect Descriptor, or an empty string
easy connect naming that identifies the database to
which to connect.

Administrative privileges SYSDBA or SYSOPER. empty string

This connection string attribute only accepts SYSDBA or
SYSOPER as the attribute value. It is case-insensitive.

Number of connections that are closed when an 1
excessive amount of established connections are
unused.

This connection string attribute controls the maximum
number of unused connections that are closed when
the pool regulator makes periodic checks. The regulator
thread is spawned every 3 minutes and closes up to
Decr Pool Size amount of pooled connections if they
are not used. The pool regulator never takes the total
number of connections below the Min Pool Size by
closing pooled connections.

6-75

ORACLE

Chapter 6
OracleConnection Class

Table 6-33 (Cont.) Supported Connection String Attributes
|

Connection String

Attribute

Description Default Value

Enlist

HA Events

Load Balancing

Incr Pool Size

Max Pool Size

Metadata Pooling

Controls the enlistment behavior and capabilities of a true
connection in context of COM+ transactions or
System.Transactions.

If this attribute is set to true, the connection is
automatically enlisted in the thread's transaction
context. If this attribute is false, no enlistments are
made. If this attribute is set to dynamic, applications can
dynamically enlist in distributed transactions. This
attribute can be set to true, false, yes, no, or dynamic.

Enables ODP.NET connection pool to proactively true
remove connections from the pool when an Oracle
database service, service member, or node goes down.

This feature can be used with Global Data Services,
including Oracle RAC, Data Guard, GoldenGate, and
single instance deployments. "pooling=true" must also
be set

This attribute can be set to true, false, yes, or no.

Enables ODP.NET connection pool to balance work true
requests across Oracle database instances based on
the load balancing advisory and service goal.

This feature can be used with Global Data Services,
including Oracle RAC, Active Data Guard, and
GoldenGate. "pooling=true" must also be set.

This attribute can be set to true, false, yes, or no.

Number of new connections to be created when all 5
connections in the pool are in use.

This connection string attribute determines the number
of new connections that are established when a pooled
connection is requested, but no unused connections are
available and Max Pool Size is not reached. If new
connections have been created for a pool, the regulator
thread skips a cycle and does not have an opportunity
to close any connections for 6 minutes. Note, however,
that some connections can be still be closed during this
time if their lifetime has been exceeded.

Maximum number of connections in a pool. 100

This attribute specifies the maximum number of
connections allowed in the particular pool used by that
OracleConnection. Simply changing this attribute in the
connection string does not change the Max Pool Size
restriction on a currently existing pool. Doing so simply
creates a new pool with a different Max Pool Size
restriction. This attribute must be set to a value greater
than the Min Pool Size. This value is ignored unless
Pooling is turned on.

Caches metadata information. True

This attribute indicates whether or not metadata
information for executed queries are cached for
improved performance.

6-76

Chapter 6
OracleConnection Class

Table 6-33 (Cont.) Supported Connection String Attributes
|

Connection String Description Default Value
Attribute
Min Pool Size Minimum number of connections in a pool. 1

Password

Persist Security

Info

Pooling

Promotable
Transaction

Proxy User I1d

ORACLE

This attribute specifies the minimum number of
connections to be maintained by the pool during its
entire lifetime. Simply changing this attribute in the
connection string does not change the Min Pool Size
restriction on a currently existing pool. Doing so simply
creates a new pool with a different Min Pool Size
restriction. This value is ignored unless Pooling is
turned on.

Password for the user specified by User 1d. empty string

This attribute specifies an Oracle user's password.
Password is case-sensitive by default for Oracle
Database 11g release 1 (11.1) and later.

Retrieval of the password in the connection string. false

If this attribute is set to false, the Password value
setting is not returned when the application requests the
ConnectionString after the connection is successfully
opened by the Open() method. This attribute can be set
to either true, false, yes, or no.

Connection pooling. true

This attribute specifies whether or not connection
pooling is to be used. Pools are created using an
attribute value matching algorithm. This means that
connection strings which only differ in the number of
spaces in the connection string use the same pool. If
two connection strings are identical except that one sets
an attribute to a default value while the other does not
set that attribute, both requests obtain connections from
the same pool. This attribute can be set to either true,
false, yes, or no.

Promotable to distributed transaction or not. promotable

If "promotable” is specified, the first and all subsequent
connections opened in the same TransactionScope
enlist in the same distributed transaction. If "local" is
specified, the first connection opened in the
TransactionScope uses a local transaction.

User name of the proxy user. empty string

This connection string attribute specifies the middle-tier
user, or the proxy user, who establishes a connection
on behalf of a client user specified by the User 1d
attribute. ODP.NET attempts to establish a proxy
connection if either the Proxy User Id or the Proxy
Password attribute is set to a non-empty string.

For the proxy user to connect to an Oracle database
using operating system authentication, the Proxy User
Id must be set to "'/". The Proxy Password is ignored in
this case. The User Id cannot be set to /" when
establishing proxy connections. The case of this
attribute value is preserved.

6-77

Chapter 6
OracleConnection Class

Table 6-33 (Cont.) Supported Connection String Attributes
|

Connection String Description Default Value
Attribute
Proxy Password Password of the proxy user. empty string

Statement Cache
Purge

Statement Cache
Size

Self Tuning

User Id

Validate
Connection

This connection string attribute specifies the password
of the middle-tier user or the proxy user. This user
establishes a connection on behalf of a client user
specified by the User 1d attribute. ODP.NET attempts to
establish a proxy connection if either the Proxy User Id
or the Proxy Password attribute is set to a non-empty
string.

The case of this attribute value is preserved if it is
surrounded by double quotes.

Statement cache purged when the connection goes false
back to the pool.

If statement caching is enabled, setting this attribute to
true purges the Statement Cache when the connection
goes back to the pool.

Statement cache enabled and cache size set size, that 0
is, the maximum number of statements that can be
cached.

A value greater than zero enables statement caching
and sets the cache size to itself. This value should not
be greater than the value of the OPEN_CURSORS
parameter set in the init.ora database configuration
file.

Enables or disables self-tuning for the connection. true

If self-tuning is enabled, then the StatementCacheSize
settings in the registry, configuration files, and
connection string are ignored.

If self-tuning is disabled, then a StatementCacheSize
value of 0 is used unless StatementCachSize is
specified in the registry, configuration file, or connection
string.

Oracle user name. empty string

This attribute specifies the Oracle user name. The case
of this attribute value is preserved if it is surrounded by
double quotes. For the user to connect to an Oracle
database using operating system authentication, set the
User Id to "/". Any Password attribute setting is ignored
in this case.

Validation of connections coming from the pool. false

Validation causes a round-trip to the database for each
connection. Therefore, it should only be used when
necessary.

6.4.5.5 ConnectionTimeout

This property indicates the minimum amount of time that the Open method can take to
obtain a pooled connection before the request is terminated.

ORACLE

6-78

Chapter 6
OracleConnection Class

Declaration

// C#
public override int ConnectionTimeout {get;}

Property Value

The minimum time allowed for a pooled connection request, in seconds.

Implements

IDbConnection

Remarks

This property indicates the connection timeout that has been set using the
ConnectionString attribute Connection TimeOut.

This property is read-only.
Remarks (.NET Stored Procedure)

There is no connection string specified by the application and a connection on the
implicit database is always available, therefore, this property is set to 0.

6.4.5.6 ConnectionType

This property enables an ODP.NET application to determine whether a particular
connection object is associated with an Oracle database connection, a TimesTen
database connection, or no physical connection at all.

Declaration

// C#
public OracleConnectionType ConnectionType {get;}

Property Value

The OracleConnectionType that this connection object is associated with.

6.4.5.7 Database

ORACLE

This property is not supported.

Declaration

// C#
public override string Database {get;}

Property Value

A string.

Implements

IDbConnection.Database

6-79

Chapter 6
OracleConnection Class

Remarks

This property is not supported. It always returns an empty string.

6.4.5.8 DatabaseDomainName

This property specifies the name of the database domain that this connection is
connected to.

Declaration

// C#
public string DatabaseDomainName {get;}

Property Value

The database domain that this connection is connected to.

6.4.5.9 DatabaseName

This property specifies the name of the database that this connection is connected to.

Declaration

// C#
public string DatabaseName {get;}

Property Value

The database that this connection is connected to.

6.4.5.10 DataSource

This property specifies the Oracle Net Services Name, Connect Descriptor, or an easy
connect naming that identifies the database to which to connect

Declaration

// C#
public override string DataSource {get;}

Property Value

Oracle Net Services Name, Connect Descriptor, or an easy connect naming that
identifies the database to which to connect.

Remarks (.NET Stored Procedure)

The value of this property is always an empty string for the implicit database
connection.

6.4.5.11 HostName

This property specifies the name of the host that this connection is connected to.

ORACLE 6-80

Chapter 6
OracleConnection Class

Declaration

// C#
public string HostName {get;}

Property Value

The host that this connection is connected to.

6.4.5.12 InstanceName

This property specifies the name of the instance that this connection is connected to.

Declaration

// C#
public string InstanceName {get;}

Property Value

The instance that this connection is connected to.

6.4.5.13 ModuleName

This property specifies the module name for the connection.

Declaration

// C#
public string ModuleName {set;}

Property Value

The string to be used as the module name.

Remarks
The default value is null.

Using the ModuleName property allows the application to set the module name in the
application context for a given OracleConnection object.

The ModuleName property is reset to null when the Close or Dispose method is called on
the OracleConnection object.

6.4.5.14 ServerVersion

ORACLE

This property specifies the version number of the Oracle database to which the
OracleConnection has established a connection.

Declaration

/1 C#
public override string ServerVersion {get;}

6-81

Chapter 6
OracleConnection Class

Property Value

The version of the Oracle database.

Exceptions

InvalidOperationException - The connection is closed.

Remarks

The default is an empty string.

6.4.5.15 ServiceName

This property specifies the name of the service that this connection is connected to.

Declaration

// C#
public string ServiceName {get;}

Property Value

The service that this connection is connected to.

6.4.5.16 State

This property specifies the current state of the connection.

Declaration

// C#
public override ConnectionState State {get;}

Property Value

The ConnectionState of the connection.

Implements

IDbConnection

Remarks

ODP.NET supports ConnectionState.Closed and ConnectionState.Open for this property.
The default value is ConnectionState.Closed.

6.4.5.17 StatementCacheSize

This property specifies the current size of the statement cache associated with this
connection.

ORACLE 6-82

Chapter 6
OracleConnection Class

Declaration

// C#
public int StatementCacheSize{get;}

Property Value

An integer value indicating the size of the statement cache.

Remarks

If self tuning is not enabled, then the default value of this property depends upon the
statement cache size specified in the connection string, application configuration file,
or the registry. If none of these values are specified, then a default value of O is used.

If self tuning is enabled, then the property value is adjusted automatically. Any values
specified in the connection string, application configuration file, or the registry are
ignored.

6.4.6 OracleConnection Public Methods

ORACLE

OracleConnection public methods are listed in Table 6-34.

Table 6-34 OracleConnection Public Methods

Public Method Description

BeginTransaction Begins a local transaction (Overloaded)
Not supported in a .NET stored procedure for context
connection

ChangeDatabase Not Supported

Clone Creates a copy of an OracleConnection object

Not supported in a .NET stored procedure

Close Closes the database connection

CreateCommand Creates and returns an OracleCommand object
associated with the OracleConnection object

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel .Component

EnlistDistributedTransaction Enables applications to explicitly enlist in a specified

distributed transaction
Not supported in a .NET stored procedure

EnlistTransaction Enables applications to enlist in a specified distributed
transaction

Not supported in a .NET stored procedure

Equals Inherited from System.Object (Overloaded)

FlushCache Flushes all updates and deletes made through REF
objects retrieved using this connection

Not available in ODP.NET, Managed Driver

GetHashCode Inherited from System.Object

6-83

Chapter 6
OracleConnection Class

Table 6-34 (Cont.) OracleConnection Public Methods
|

Public Method

Description

GetLifetimeService

Inherited from System_MarshalByRefObject

GetSchema

Returns schema information for the data source of the
OracleConnection

GetSessionInfo

Returns or refreshes the property values of the
OracleGlobalization object that represents the
globalization settings of the session (Overloaded)

GetType

Inherited from System.Object

InitializeLifetimeService

Inherited from System.MarshalByRefObject

Open Opens a database connection with the property settings
specified by the ConnectionString

OpenWithNewPassword Opens a new connection with the new password
Not supported in a .NET stored procedure for context
connection

PurgeStatementCache Flushes the Statement Cache by closing all open

cursors on the database, when statement caching is
enabled

SetSessionInfo

Alters the session's globalization settings with the
property values provided by the OracleGlobalization
object

SetShardingKey(OracleShardingKey,

Enables applications to set the sharding key and super

OracleShardingKey) sharding key before requesting a connection
Not available in ODP.NET, Managed Driver
ToString Inherited from System.Object

6.4.6.1 BeginTransaction

BeginTransaction methods begin local transactions.

Overload List

* BeginTransaction()

This method begins a local transaction.

* BeginTransaction(IsolationLevel)

This method begins a local transaction with the specified isolation level.

6.4.6.2 BeginTransaction()

This method begins a local transaction.

Declaration

/1 C#

public OracleTransaction BeginTransaction();

ORACLE

6-84

Chapter 6
OracleConnection Class

Return Value

An OracleTransaction object representing the new transaction.

Implements

IDbConnection

Exceptions

InvalidOperationException - A transaction has already been started.

Remarks

The transaction is created with its isolation level set to its default value of
IsolationLevel .ReadCommitted. All further operations related to the transaction must be
performed on the returned OracleTransaction object.

Remarks (.NET Stored Procedure)

Using this method in a .NET stored procedure for context connection causes a Not
Supported exception.

6.4.6.3 BeginTransaction(lsolationLevel)

ORACLE

This method begins a local transaction with the specified isolation level.

Declaration

// Ci
public OracleTransaction BeginTransaction(lsolationLevel isol ationLevel);

Parameters
e jsolationLevel

The isolation level for the new transaction.
Return Value

An OracleTransaction object representing the new transaction.

Implements

IDbConnection

Exceptions
InvalidOperationException - A transaction has already been started.

ArgumentException - The isolationLevel specified is invalid.

Remarks

The following isolation levels are supported: IsolationLevel .ReadCommitted and
IsolationLevel .Serializable.

6-85

Chapter 6
OracleConnection Class

Although the BeginTransaction method supports the IsolationLevel .Serializable
isolation level, serializable transactions are not supported when using
System.Transactions and TransactionScope.

Requesting other isolation levels causes an exception.

Remarks (.NET Stored Procedure)

Using this method in a .NET stored procedure for context connection causes a Not
Supported exception.

Example

// C#

using System;
using System.Data;

using Oracle.DataAccess.Client;

class BeginTransactionSample

{
static void Main()
{
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();
// Create an OracleCommand object using the connection object
OracleCommand cmd = con.CreateCommand();
// Start a transaction
OracleTransaction txn = con.BeginTransaction(lsolationLevel .ReadCommitted);
// Update EMP table
cmd.CommandText = "update emp set sal = sal + 100";
cmd .ExecuteNonQuery();
// Rollback transaction
txn.Rollback();
Console.WriteLine("Transaction rolledback™);
// Clean up
txn.Dispose();
cmd.Dispose();
con.Dispose();
}
}
6.4.6.4 ChangeDatabase
This method is not supported.
Declaration
// C#

public override void ChangeDatabase(string dat abaseNane);

ORACLE 6-86

6.4.6.5 Clone

ORACLE

Chapter 6
OracleConnection Class

Parameters
e dat abaseNanme

The name of the database that replaces the current database name.
Implements

IDbConnection.ChangeDatabase

Exceptions

NotSupportedException - Method not supported.

Remarks

This method is not supported and throws a NotSupportedException if invoked.

This method creates a copy of an OracleConnection object.

Declaration

// C#
public object Clone();

Return Value

An OracleConnection object.

Implements

ICloneable

Remarks

The cloned object has the same property values as that of the object being cloned.

Remarks (.NET Stored Procedure)

This method is not supported for an implicit database connection.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class CloneSample

{

static void Main()

{

string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();

// Need a proper casting for the return value when cloned

6-87

6.4.6.6 Close

Chapter 6
OracleConnection Class

OracleConnection clonedCon = (OracleConnection)con.Clone();

// Cloned connection is always closed, regardless of its source,
// But the connection string should be identical
clonedCon.Open();
it (clonedCon.ConnectionString.Equals(con.ConnectionString))
Console.WriteLine(*'The connection strings are the same.");
else
Console.WriteLine(*'The connection strings are different.");

// Close and Dispose OracleConnection object
clonedCon.Dispose();

}
}

This method closes the connection to the database.

Declaration

// C#
public override void Close();

Implements

IDbConnection

Remarks
Performs the following:

* Rolls back any pending local transactions that are not yet committed. Distributed
transactions will rely on the distributed transaction coordinator on whether roll back
iS necessary.

* Places the connection to the connection pool if connection pooling is enabled.
Even if connection pooling is enabled, the connection can be closed if it exceeds
the connection lifetime specified in the connection string. If connection pooling is
disabled, the connection is closed.

* Closes the connection to the database.

The connection can be reopened using Open().

6.4.6.7 CreateCommand

ORACLE

This method creates and returns an OracleCommand object associated with the
OracleConnection object.

Declaration

// C#
public OracleCommand CreateCommand();

Return Value

The OracleCommand object.

6-88

Chapter 6
OracleConnection Class

Implements

IDbConnection
Example

// C#

using System;
using System.Data;

using Oracle.DataAccess.Client;

class CreateCommandSample

{

static void Main()

{
// Connect
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();
// Execute a SQL SELECT
OracleCommand cmd = con.CreateCommand();
cmd.CommandText = “select * from emp"’;
OracleDataReader reader = cmd.ExecuteReader();
// Print all employee numbers
while (reader.Read())

Console.WriteLine(reader.GetInt32(0));

// Clean up
reader.Dispose();
cmd.Dispose();
con.Dispose();

}

}

6.4.6.8 EnlistDistributedTransaction

ORACLE

This method enables applications to explicitly enlist in a specific distributed transaction
after a connection has been opened.

Declaration

// C#
public void EnlistDistributedTransaction(ITransaction transaction);

Parameters

e transaction

An ITransaction interface.

Exceptions

InvalidOperationException - The connection is part of a local transaction or the
connection is closed.

6-89

ORACLE

Chapter 6
OracleConnection Class

Remarks

EnlistDistributedTransaction enables objects to enlist in a specific transaction that is
passed to the method. The ITransaction interface can be obtained by applying an
(1Transaction) cast to the ContexUtil . Transaction property within the component that
started the distributed transaction.

The connection must be open before calling this method or an
InvalidOperationException is thrown.

If a connection is part of a local transaction that was started implicitly or explicitly while
attempting to enlist in a distributed transaction, the local transaction is rolled back and
an exception is thrown.

By default, distributed transactions roll back, unless the method-level AutoComplete
declaration is set.

Invoking the commit on the ITranasction raises an exception.

Invoking the rollback on the ITransaction method and calling ContextUtil .SetComplete
on the same distributed transaction raises an exception.

Remarks (.NET Stored Procedure)

Using this method causes a Not Supported exception.

Example
Application:
// C#

/* This is the class that will utilize the Enterprise Services
component. This module needs to be built as an executable.

The Enterprise Services Component DLL must be built first
before building this module.
In addition, the DLL needs to be referenced appropriately
when building this application.

*/

using System;
using System.EnterpriseServices;
using DistribTxnSample;

class DistribTxnSample_App
{

static void Main()

{

DistribTxnSample_Comp comp = new DistribTxnSample_Comp();
comp.DoWork() ;

}
}

Component:

/1 C#

/* This module needs to be
1) built as a component DLL/Library

6-90

Chapter 6
OracleConnection Class

2) built with a strong name

This library must be built first before the application is built.
*/

using System;

using System.Data;

using Oracle.DataAccess.Client;
using System.EnterpriseServices;

namespace DistribTxnSample

{

[Transaction(TransactionOption.RequiresNew)]
public class DistribTxnSample_Comp : ServicedComponent

{
public void DoWork()
{ -
string constr =
"User ld=scott;Password=tiger;Data Source=oracle;enlist=false";
OracleConnection con = new OracleConnection(constr);
con.Open();
// Enlist in a distrubuted transaction
con.EnlistDistributedTransaction((ITransaction)ContextUtil.Transaction);
// Update EMP table
OracleCommand cmd = con.CreateCommand();
cmd.CommandText = "UPDATE emp set sal = sal + .01";
cmd . ExecuteNonQuery();
// Commit
ContextUtil.SetComplete();
// Dispose OracleConnection object
con.Dispose();
}
}

6.4.6.9 EnlistTransaction

ORACLE

This method enlists the connection to the specified transaction.

Declaration

// C#
public override void EnlistTransaction(Transaction transaction)

Parameters
e transaction

A System.Transactions.Transaction object.
Exceptions

InvalidOperationException - The connection is part of a local transaction or the
connection is closed.

6-91

Chapter 6
OracleConnection Class

Remarks

Invocation of this method immediately enlists the connection to a transaction that is
specified by the provided transaction parameter.

If OracleConnection is still associated with a distributed transaction that has not
completed from a previous EnlistTransaction method invocation, calling this method
will cause an exception to be thrown.

In general, for transaction enlistments to succeed, the "enlist” connection string
attribute must be set to "true" before invoking the Open method. Setting the "enlist"
connection string attribute to "true" will implicitly enlist the connection when the Open
method is called, if the connection is within a transaction context. The "enlist"
attribute should be set to "false" or "dynamic" only if the connection will never enlist in
a transaction.

6.4.6.10 FlushCache

This method flushes all updates and deletes made through REF objects retrieved using
this connection.

Declaration

// c#
public void FlushCache();

Exceptions

InvalidOperationException - The specified connection is not open.

Remarks

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection object.
This is because if the object being flushed has not already been locked by the
application, an exclusive lock is obtained implicitly for the object. The lock is only
released when the transaction commits or rollbacks.

6.4.6.11 GetSchema

ORACLE

GetSchema methods return schema information for the data source of the
OracleConnection.

Overload List

* GetSchema()

This method returns schema information for the data source of the
OracleConnection.

* GetSchema (string collectionName)

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name.

* GetSchema (string collectionName, string[] restrictions)

6-92

Chapter 6
OracleConnection Class

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name and the
specified string array for the restriction values.

6.4.6.12 GetSchema()

ORACLE

This method returns schema information for the data source of the OracleConnection.

Declaration

// C#
public override DataTable GetSchema();

Return Value

A DataTable object.

Exceptions

InvalidOperationException — The connection is closed.

Remarks

This method returns a DataTable object that contains a row for each metadata
collection available from the database.

The method is equivalent to specifying the String value "MetaDataCol lections™ when
using the GetSchema(String) method.

Example

// C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

class GetSchemaSample

{

static void Main(string[] args)

{

string constr = "User ld=scott; Password=tiger; Data Source=oracle;";
string ProviderName = "Oracle.DataAccess.Client";

DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

using (DbConnection conn = factory.CreateConnection())
{
try
{
conn.ConnectionString = constr;
conn.Open();

//Get all the schema collections and write to an XML file.
//The XML file name is Oracle.DataAccess.Client_Schema.xml
DataTable dtSchema = conn.GetSchema();
dtSchema.WriteXml(ProviderName + ™_Schema.xml™);

6-93

Chapter 6
OracleConnection Class

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);
Console.WriteLine(ex.StackTrace);

}
}
}
}

6.4.6.13 GetSchema (string collectionName)

This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name.

Declaration

// C#
public override DataTable GetSchema (string col | ectionNane);

Parameters
col | ecti onNane

Name of the collection for which metadata is required.

Return Value

A DataTable object.

Exceptions
ArgumentException — The requested collection is not defined.
InvalidOperationException — The connection is closed.

InvalidOperationException — The requested collection is not supported by current
version of Oracle database.

InvalidOperationException — No population string is specified for requested collection.

Example

/1 C#

using System;

using System.Data;

using System.Data.Common;

using Oracle._DataAccess.Client;

class GetSchemaSample

{

static void Main(string[] args)

{

string constr = "User ld=scott; Password=tiger; Data Source=oracle;";
string ProviderName = "Oracle.DataAccess.Client";

DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

using (DbConnection conn = factory.CreateConnection())

ORACLE 6-94

Chapter 6
OracleConnection Class

try

conn.ConnectionString = constr;
conn.Open();

//Cet MetaDataCollections and write to an XML file.
//This is equivalent to GetSchema()
DataTable dtMetadata =
conn.GetSchema(DbMetaDataCol lectionNames.MetaDataCollections);
dtMetadata.WriteXml(ProviderName + "_MetaDataCol lections.xml');

//Get Restrictions and write to an XML file.
DataTable dtRestrictions =

conn.GetSchema(DbMetaDataCol lectionNames.Restrictions);
dtRestrictions.WriteXml(ProviderName + "_Restrictions.xml™);

//Get DataSourcelnformation and write to an XML file.
DataTable dtDataSrcinfo =

conn.GetSchema(DbMetaDataCol lectionNames.DataSourcelnformation);
dtDataSrcInfo.WriteXml(ProviderName + "_DataSourcelnformation.xml™);

//data types and write to an XML file.
DataTable dtDataTypes =

conn.GetSchema(DbMetaDataCol lectionNames.DataTypes);
dtDataTypes.WriteXml (ProviderName + "'_DataTypes.xml');

//Cet ReservedWords and write to an XML file.
DataTable dtReservedWords =

conn.GetSchema(DbMetaDataCol lectionNames.ReservedWords);
dtReservedWords.WriteXml(ProviderName + " _ReservedWords.xml');

//Cet all the tables and write to an XML file.
DataTable dtTables = conn.GetSchema(*'Tables™);
dtTables.WriteXml(ProviderName + "_Tables.xml");

//Cet all the views and write to an XML file.
DataTable dtViews = conn.GetSchema("'Views");
dtViews.WriteXml(ProviderName + " _Views.xml');

//Cet all the columns and write to an XML file.
DataTable dtColumns = conn.GetSchema(*'Columns™);
dtColumns_WriteXml(ProviderName + "_Columns.xml");

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);
Console.WriteLine(ex.StackTrace);

}
}
}
}

6.4.6.14 GetSchema (string collectionName, string[] restrictions)

This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name and the specified string array for the
restriction values.

ORACLE 6-95

ORACLE

Chapter 6
OracleConnection Class

Declaration

// C#
public override DataTable GetSchema (string col | ectionName,
string[] restrictions);

Parameters

* collectionName
The name of the collection of metadata being retrieved.
° restrictions

An array of restrictions that apply to the metadata being retrieved.

Return Value

A DataTable object.

Exception

* ArgumentException — The requested collection is not defined.

e InvalidOperationException — One of the following conditions exist:
— The connection is closed.

— The requested collection is not supported by the current version of Oracle
database.

— More restrictions were provided than the requested collection supports.

— No population string is specified for requested collection.

Remarks

This method takes the name of a metadata collection and an array of String values
that specify the restrictions for filtering the rows in the returned DataTable. This returns
a DataTable that contains only rows from the specified metadata collection that match
the specified restrictions.

For example, if the Columns collection has three restrictions (owner, tablename, and
columnname), to retrieve all the columns for the EMP table regardless of schema, the
GetSchema method must pass in at least these values: null, EMP.

If no restriction value is passed in, default values are used for that restriction, which is
the same as passing in null. This differs from passing in an empty string for the
parameter value. In this case, the empty string (') is considered the value for the
specified parameter.

col I ecti onNane is not case-sensitive, but restrictions (string values) are.

Example

/1 C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;

6-96

ORACLE

Chapter 6
OracleConnection Class

class GetSchemaSample
{
static void Main(string[] args)
{
string constr = "User ld=scott; Password=tiger; Data Source=oracle;";
string ProviderName = "Oracle.DataAccess.Client";

DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

using (DbConnection conn = factory.CreateConnection())
{
try
{
conn.ConnectionString = constr;
conn.Open();

//Cet Restrictions
DataTable dtRestrictions =
conn.GetSchema(DbMetaDataCol lectionNames.Restrictions);

DataView dv = dtRestrictions.DefaultView;

dv.RowFilter = "CollectionName = "Columns®";
dv.Sort = "RestrictionNumber";

for (int i = 0; i < dv.Count; i++)
Console.WriteLine("'{0} (default) {1}" ,
dtRestrictions.Rows[i]["RestrictionName"],
dtRestrictions.Rows[i]["RestrictionDefault"]);

//Set restriction string array
string[] restrictions = new string[3];

//Get all columns from all tables owned by "SCOTT"
restrictions[0] = "SCOTT";
DataTable dtAllScottCols = conn.GetSchema("'Columns", restrictions);

// clear collection
for (int 1 =0; 1 < 3; i+t)
restrictions[i] = null;

//Get all columns from all tables named "EMP" owned by any
//owner/schema

restrictions[1] = "EMP";

DataTable dtAllEmpCols = conn.GetSchema(*'Columns", restrictions);

// clear collection
for (int 1 =0; 1 < 3; i+t)
restrictions[i] = null;

//Get columns named "EMPNO"™ from tables named "EMP",

//owned by any owner/schema

restrictions[1] = "EMP";

restrictions[2] = "EMPNO";

DataTable dtAllScottEmpCols = conn.GetSchema("'Columns", restrictions);

// clear collection

for (int 1 =0; 1 < 3; i+t)
restrictions[i] = null;

6-97

Chapter 6
OracleConnection Class

//Get columns named "EMPNO"™ from all
//tables, owned by any owner/schema
restrictions[2] = "EMPNO";
DataTable dtAllEmpNoCols = conn.GetSchema(*'Columns™, restrictions);

}

catch (Exception ex)

{
Console.WriteLine(ex.Message);
Console.WriteLine(ex.Source);

}

}
}
}

6.4.6.15 GetSessionInfo

GetSessionlInfo returns or refreshes an OracleGlobalization object that represents the
globalization settings of the session.

Overload List:

e GetSessioninfo()

This method returns a new instance of the OracleGlobalization object that
represents the globalization settings of the session.

* GetSessionInfo(OracleGlobalization)

This method refreshes the provided OracleGlobalization object with the
globalization settings of the session.

6.4.6.16 GetSessionInfo()

ORACLE

This method returns a new instance of the OracleGlobalization object that represents
the globalization settings of the session.
Declaration

// C#
public OracleGlobalization GetSessionInfo();

Return Value

The newly created OracleGlobalization object.

Example

/1 C#

using System;
using Oracle.DataAccess.Client;

class GetSessionlInfoSample

{

static void Main()

{
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();

6-98

Chapter 6
OracleConnection Class

// Get session info from connection object
OracleGlobalization info = con.GetSessionInfo();

// Update session info
info.DateFormat = "YYYY-MM-DD"';
con.SetSessionInfo(info);

// Execute SQL SELECT

OracleCommand cmd = con.CreateCommand();

cmd.CommandText = "select TO_CHAR(hiredate) from emp";

Console.WriteLine("Hire Date ({0}): {1}",
info.DateFormat, cmd.ExecuteScalar());

// Clean up
cmd.Dispose();
con.Dispose();
}
}

6.4.6.17 GetSessionInfo(OracleGlobalization)

This method refreshes the provided OracleGlobalization object with the globalization
settings of the session.

Declaration

// C#
public void GetSessionInfo(OracleGlobalization orad ob);

Parameters

e oradob

The OracleGlobalization object to be updated.

6.4.6.18 Open

ORACLE

This method opens a connection to an Oracle database.

Declaration

// C#
public overide void Open();

Implements

IDbConnection
Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The connection is already opened or the connection string
is null or empty.

6-99

Chapter 6
OracleConnection Class

Remarks

The connection is obtained from the pool if connection pooling is enabled. Otherwise,
a new connection is established.

It is possible that the pool does not contain any unused connections when the Open()
method is invoked. In this case, a hew connection is established.

If no connections are available within the specified connection timeout value, when the
Max Pool Size is reached, an OracleException is thrown.

6.4.6.19 OpenWithNewPassword

This method opens a new connection with the new password.

Declaration

// C#
public void OpenWithNewPassword(string newPassword);

Parameters
e newPassword

A string that contains the new password.
Remarks

This method uses the ConnectionString property settings to establish a new
connection. The old password must be provided in the connection string as the
Password attribute value.

This method can only be called on an OracleConnection in the closed state.

Remarks (.NET Stored Procedure)

This method is not supported in a .NET stored procedure for context connection.

¢ Note:

If connection pooling is enabled, then invoking the OpenWithNewPassword method
also clears the connection pool. This closes all idle connections created with
the old password.

6.4.6.20 PurgeStatementCache

ORACLE

This method flushes the statement cache by closing all open cursors on the database,
when statement caching is enabled.

Declaration

// C#
public void PurgeStatementCache();

6-100

Chapter 6
OracleConnection Class

Remarks

Flushing the statement cache repetitively results in decreased performance and may
negate the performance benefit gained by enabling the statement cache.

Statement caching remains enabled after the call to PurgeStatementCache.

Invocation of this method purges the cached cursors that are associated with the
OracleConnection. It does not purge all the cached cursors in the database.

Example

// C#

using System;
using System.Data;

using Oracle.DataAccess.Client;

class PurgeStatementCacheSample

{
static void Main()
{
string constr = "User ld=scott;Password=tiger;Data Source=oracle;" +
"Statement Cache Size=20";
OracleConnection con = new OracleConnection(constr);
con.Open();
OracleCommand cmd = new OracleCommand(‘'select * from emp™, con);
cmd.CommandType = CommandType.Text;
OracleDataReader reader = cmd.ExecuteReader();
// Purge Statement Cache
con.PurgeStatementCache();
// Close and Dispose OracleConnection object
Console.WriteLine("'Statement Cache Flushed");
con.Close();
con.Dispose();
}
}
6.4.6.21 SetSessioninfo

ORACLE

This method alters the session's globalization settings with all the property values
specified in the provided OracleGlobalization object.

Declaration

// C#
public void SetSessionInfo(OracleGlobalization orad ob);

Parameters

e oradob

An OracleGlobalization object.

6-101

Chapter 6
OracleConnection Class

Remarks

Calling this method is equivalent to calling an ALTER SESSION SQL on the session.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class SetSessionInfoSample

{

static void Main()

{
string constr = "User ld=scott;Password=tiger;Data Source=oracle";
OracleConnection con = new OracleConnection(constr);
con.Open();

// Get session info from connection object
OracleGlobalization info = con.GetSessionInfo();

// Execute SQL SELECT

OracleCommand cmd = con.CreateCommand();

cmd.CommandText = "select TO_CHAR(hiredate) from emp";

Console.WriteLine("Hire Date ({0}): {1}",
info.DateFormat, cmd.ExecuteScalar());

// Update session info
info.DateFormat = "MM-DD-RR";
con.SetSessionInfo(info);

// Execute SQL SELECT again
Console.WriteLine("Hire Date ({0}): {1}",
info.DateFormat, cmd.ExecuteScalar());

// Clean up
cmd.Dispose();
con.Dispose();
}
}

6.4.6.22 SetShardingKey(OracleShardingKey, OracleShardingKey)

ORACLE

This instance method enables applications to set the sharding key and the super
sharding key before requesting a connection.

Declaration

// C#
public void SetShardingKey(OracleShardingKey shardKey, OracleShardingKey
super Shar di ngKey);

Exceptions

InvalidArgumentException — An invalid Oracle sharding key is supplied.

6-102

Chapter 6
OracleConnection Class

InvalidOperationException — The method is invoked when the connection is in an Open
state.

Remarks

This method sets the sharding key and the super sharding key that is to be used for
returning the proper connection upon the Open method invocation.

This method can only be invoked when the connection is in a Closed state.

Example

/1 C#

using System;
using Oracle.DataAccess.Client;

class Sharding

{

static void Main()

OracleConnection con = new OracleConnection(*'user id=hr;password=hr;Data
Source=orcl;");

//Setting a shard key

OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 123);

//Setting a second shard key value for a composite key

shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");

//Creating and setting the super shard key

OracleShardingKey superShardingKey = new OracleShardingKey();

superShardingKey.SetShardingKey(OracleDbType. Int32, 1000);

//Setting super sharding key and sharding key on the connection
con.SetShardingKey(shardingKey, superShardingKey);
con.Open();

//perform SQL query

6.4.7 OracleConnection Events

ORACLE

OracleConnection events are listed in Table 6-35.

Table 6-35 OracleConnection Events
]

Event Name Description
Disposed Inherited from System.ComponentModel . Component
Failover An event that is triggered when an Oracle failover occurs

Not supported in a .NET stored procedure
Not available in ODP.NET, Managed Driver

HAEvent An event that is triggered when an HA event occurs.

InfoMessage An event that is triggered for any message or warning sent by the
database

StateChange An event that is triggered when the connection state changes

6-103

Chapter 6
OracleConnection Class

6.4.7.1 Failover

This event is triggered when an Oracle failover occurs.

Declaration

// C#
public event OracleFailoverEventHandler Failover;

Event Data

The event handler receives an OracleFailoverEventArgs object which exposes the
following properties containing information about the event.

* FailoverType
Indicates the type of the failover.
* FailoverEvent

Indicates the state of the failover.

Remarks

The Failover event is raised when a connection to an Oracle instance is unexpectedly
severed. The client should create an OracleFailoverEventHandler delegate to listen to
this event.

6.4.7.2 HAEvent

ORACLE

This event is triggered when an HA event occurs.

Declaration

// C#
public static event OracleHAEventHandler HAEvent;

Event Data

The event handler receives an OracleHAEventArgs object which exposes the following
properties containing information about the event.

* Source
Indicates the source of the event.
¢ Status
Indicates the status of the event.
* DatabaseName
Indicates the database name affected by this event.
* DatabaseDomainName
Indicates the database domain name affected by this event.
° HostName

Indicates the host name affected by this event.

6-104

Chapter 6
OracleConnection Class

. InstanceName

Indicates the instance name affected by this event.
* ServiceName

Indicates the service name affected by this event.
e Time

Indicates the time of the event.

Remarks

The HAEvent is static, which means that any HA Events that happen within the
application domain can trigger this event. Note that in order to receive HA event
notifications, OracleConnection objects that establish connections within the application
domain must have "ha events=true" in the application. Otherwise, the application
never receives any HA Events.

6.4.7.3 InfoMessage

This event is triggered for any message or warning sent by the database.

Declaration

// C#
public event OraclelnfoMessageEventHandler InfoMessage;

Event Data

The event handler receives an OraclelnfoMessageEventArgs object which exposes the
following properties containing information about the event.

° Errors

The collection of errors generated by the data source.
* Message

The error text generated by the data source.
* Source

The name of the object that generated the error.

Remarks

In order to respond to warnings and messages from the database, the client should
create an OraclelnfoMessageEventHandler delegate to listen to this event.

6.4.7.4 StateChange

This event is triggered when the connection state changes.

Declaration

// C#
public override event StateChangeEventHandler StateChange;

ORACLE 6-105

Chapter 6
OracleConnectionStringBuilder Class

Event Data

The event handler receives a StateChangeEventArgs object which exposes the following
properties containing information about the event.

o CurrentState
The new state of the connection.
* OriginalState

The original state of the connection.

Remarks

The StateChange event is raised after a connection changes state, whenever an explicit
call is made to Open, Close or Dispose.

6.5 OracleConnectionStringBuilder Class

ORACLE

An OracleConnectionStringBuilder object allows applications to create or modify
connection strings.

Class Inheritance
System.Object
System.Data.Common.DbConnectionStringBuilder

Oracle.DataAccess.Client.OracleConnectionStringBuilder

Declaration

// C#
public sealed class OracleConnectionStringBuilder : DbConnectionStringBuilder

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver
Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll
Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client
.NET Framework 3.5,45,4.6 45,4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks
The following rules must be followed for setting values with reserved characters:

1. Values containing characters enclosed within single quotes

If the value contains characters that are enclosed within single quotation marks,
then the entire value must be enclosed within double quotation marks.

6-106

ORACLE

Chapter 6
OracleConnectionStringBuilder Class

For example, password = ""scoTT"" where the value is "scoTT".
Values containing characters enclosed within double quotes

Values should be enclosed in double quotation marks to preserve the case and to
avoid the upper casing of values.

If the value contains characters enclosed in double quotation marks, then it must
be enclosed in single quotation marks.

For example, password = "'scoTT"" where the value is "scoTT".
Values containing characters enclosed in both single and double quotes

If the value contains characters enclosed in both single and double quotation
marks, the quotation mark used to enclose the value must be doubled each time it
occurs within the value.

For example, password = ""sco”"TT"" where the value is "sco*TT".
Values containing spaces

All leading and trailing spaces are ignored, but the spaces between the value are
recognized. If the value needs to have leading or trailing spaces then it must be
enclosed in double quotation marks.

For example, User 1D = Sco TT where the value is <Sco TT>.
For example, User 1D ="Sco TT " where the value is <Sco TT>.
Keywords occurring multiple times in a connection string

If a specific keyword occurs multiple times in a connection string, the last
occurrence listed is used in the value set.

For example, with "User 1D = scott; password = tiger; User ID = david”
connection string, User 1D value is david.

Example

/1 C#

using System;

using System.Data;

using System.Data.Common;

using Oracle.DataAccess.Client;
using System.Collections;

class ConnectionStringBuilderSample

{

static void Main(string[] args)

bool bRet = false;

// Create an instance of OracleConnectionStringBuilder
OracleConnectionStringBuilder connStrBuilder =
new OracleConnectionStringBuilder();

// Add new key/value pairs to the connection string
connStrBuilder_Add("User Id", "scott");
connStrBuilder_Add("'Password", "tiger™);
connStrBuilder_Add("'Data Source", "oracle™);
connStrBuilder_Add("'pooling"”, false);

// Modify the existing value

6-107

Chapter 6
OracleConnectionStringBuilder Class

connStrBuilder["Data source"] = "instl";

// Remove an entry from the connection string
bRet = connStrBuilder_.Remove("'pooling™);

//ContainsKey indicates whether or not the specific key exist

//returns true even if the user has not specified it explicitly

Console.WriteLine(Enlist exist: " +
connStrBuilder.Containskey("Enlist™));

//returns false
connStrBuilder.ContainsKey("Invalid");

// ShouldSerialize indicates whether or not a specific key

// exists in connection string inherited from DbConnectionStringBuilder.
// returns true if the key is explicitly added the user otherwise false;
// this will return false as this key doesn"t exists.
connStrBuilder.ShouldSerialize(*'user™);

// returns false because this key is nott added by user explicitly.
connStrBuilder.ShouldSerialize("Enlist");

// 1sFixedSize [read-only property]
Console.WriteLine(""Connection String is fixed size only: "

+ connStrBuilder. IsFixedSize);
Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

//adding a new key which is not supported by the provider
//is not allowed.
try

//this will throw an exception.
connStrBuilder.Add("NewKey", "newvalue');

}

catch (Exception ex)

{

Console.WriteLine(ex.Message);

}

Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

//modifying a existing key is allowed.
connStrBuilder.Add("Enlist", false);
Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

// Get all the keys and values supported by the provider.
ICollection keyCollection = connStrBuilder.Keys;
ICollection valueCollection = connStrBuilder.Values;

IEnumerator keys = keyCollection.GetEnumerator();
IEnumerator values = valueCollection.GetEnumerator();

while (keys.MoveNext())
{

values.MoveNext();
Console.WriteLine(*'Key: {0} Value: {1} \n"
,keys.Current ,values.Current);

ORACLE 6-108

Chapter 6
OracleConnectionStringBuilder Class

6.5.1 OracleConnectionStringBuilder Members

OracleConnectionStringBuilder members are listed in the following tables.

OracleConnectionStringBuilder Constructors

OracleConnectionStringBuilder constructors are listed in Table 6-36.

Table 6-36 OracleConnectionStringBuilder Constructors

Constructor

Description

OracleConnectionStringBuilder
Constructors

Instantiates a new instance of
OracleConnectionStringBuilder class (Overloaded)

OracleConnectionStringBuilder Public Properties

OracleConnectionStringBui lder instance properties are listed in Table 6-37.

Table 6-37 OracleConnectionStringBuilder Public Properties

Properties

Description

BrowsableConnectionString

Inherited from System._Data.Common.
DbConnectionStringBuilder

ConnectionLifeTime

Specifies the value corresponding to the Connection
Lifetime attribute in the ConnectionString property

ConnectionString

Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionTimeout

Specifies the value corresponding to the Connection
Timeout attribute in the ConnectionString property

ContextConnection Specifies the value corresponding to the Context
Connection attribute in the ConnectionString property
Count Inherited from
System.Data.Common.DbConnectionStringBuilder
DataSource Specifies the value corresponding to the Data Source
attribute in the ConnectionString property
DBAPrivilege Specifies the value corresponding to the DBA Privilege

attribute in the ConnectionString property

DecrPoolSize

Specifies the value corresponding to the Decr Pool Size
attribute in the ConnectionString property

Enlist Specifies the value corresponding to the Enlist attribute
in the ConnectionString property

HAEvents Specifies the value corresponding to the HA Events
attribute in the ConnectionString property

IncrPoolSize Specifies the value corresponding to the Incr Pool Size
attribute in the