
Oracle® Data Provider for .NET
Developer's Guide

12c Release 2 (12.2) for Microsoft Windows
E83836-01
March 2017

Oracle Data Provider for .NET Developer's Guide, 12c Release 2 (12.2) for Microsoft Windows

E83836-01

Copyright © 2002, 2017, Oracle and/or its affiliates. All rights reserved.

Primary Author: Maitreyee Chaliha

Contributing Authors: Sumit Jeloka, Janis Greenberg, Alex Keh, Kiminari Akiyama, Sinclair Hsu, Shailendra
Jain, Riaz Ahmed, Ashish Shah, Lakshminarayanan Suriamoorthy, Steven Caminez, Naveen Doraiswamy,
Neeraj Gupta, Chithra Ramamurthy, Martha Woo, Arun Singh, Sujith Somanathan, Nishant Singh

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience lxxviii

Documentation Accessibility lxxviii

Related Documents lxxix

Passwords in Code Examples lxxx

Conventions lxxx

 Changes in This Release for Oracle Data Provider for .NET

Changes in Oracle Data Provider for .NET Release 12.2.0.1 lxxxi

Changes in Oracle Data Provider for .NET in ODAC 12c Release 4 lxxxiii

Changes in Oracle Data Provider for .NET in ODAC 12c Release 3 lxxxv

Changes in Oracle Data Provider for .NET Release 12.1.0.2 lxxxvi

Changes in Oracle Data Provider for .NET in ODAC 12c Release 2 lxxxvii

Changes in Oracle Data Provider for .NET in ODAC 12c Release 1 lxxxviii

Changes in Oracle Data Provider for .NET Release 12.1 lxxxviii

Changes in Oracle Data Provider for .NET Release 11.2.0.3.20 xciii

Changes in Oracle Data Provider for .NET Release 11.2.0.3 xciii

Changes in Oracle Data Provider for .NET Release 11.2.0.2 xciv

Changes in Oracle Data Provider for .NET Release 11.2.0.1.2 xcv

Changes in Oracle Data Provider for .NET Release 11.2 xcv

Changes in Oracle Data Provider for .NET Release 11.1.0.7.20 xcvi

Changes in Oracle Data Provider for .NET Release 11.1.0.6.20 xcviii

Changes in Oracle Data Provider for .NET Release 11.1 c

1 Introducing Oracle Data Provider for .NET

1.1 .NET Data Access in Oracle: Products and Documentation 1-1

1.1.1 Oracle Data Provider for .NET (ODP.NET) 1-1

1.1.2 Oracle Developer Tools for Visual Studio 1-2

1.1.3 Oracle Database Extensions for .NET 1-2

1.1.4 Oracle Providers for ASP.NET 1-2

1.1.5 Oracle Services for Microsoft Transaction Server 1-3

iii

1.1.6 Oracle TimesTen In-Memory Database 1-3

1.2 Overview of Oracle Data Provider for .NET (ODP.NET) 1-3

1.3 Oracle Data Provider for .NET Assemblies 1-4

1.3.1 Oracle Data Provider for .NET, Unmanaged Driver Assemblies 1-4

1.3.2 Oracle Data Provider for .NET, Managed Driver Assemblies 1-4

1.3.3 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces 1-5

1.3.3.1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client 1-5

1.3.3.2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Enumerations 1-11

1.3.4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces 1-14

1.3.4.1 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Structures 1-14

1.3.4.2 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Exceptions 1-15

1.3.4.3 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Classes 1-15

1.3.4.4 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Interfaces 1-16

1.3.4.5 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Enumerations 1-17

1.4 Differences between the ODP.NET Managed Driver and Unmanaged Driver 1-17

1.5 Using ODP.NET Client Provider in a Simple Application 1-20

2 Installing and Configuring Oracle Data Provider for .NET

2.1 System Requirements 2-1

2.2 Entity Framework Requirements 2-2

2.2.1 Entity Framework Database First and Model First Requirements 2-2

2.2.2 Entity Framework Code First Requirements 2-3

2.3 Oracle Data Provider for .NET Versioning Scheme 2-3

2.4 Installing Oracle Data Provider for .NET, Unmanaged Driver 2-5

2.4.1 File Locations After Installation 2-6

2.4.2 Search Order for Unmanaged DLLs 2-6

2.4.2.1 ODP.NET and Dependent Unmanaged DLL Mismatch 2-7

2.5 Installing Oracle Data Provider for .NET, Managed Driver 2-7

2.5.1 Platform-Dependent Assemblies and Their Search Order 2-9

2.5.2 File Locations After Installation 2-10

2.6 Entity Framework Code First Assemblies and File Location 2-10

2.7 Configuring Oracle Data Provider for .NET 2-11

2.7.1 Oracle Client Configuration File Automated Setup During Installation 2-12

2.7.2 Oracle Client Configuration File Settings 2-12

iv

2.7.3 Machine-Wide Configuration Option 2-13

2.8 Oracle Data Provider for .NET, Unmanaged Driver Configuration 2-14

2.8.1 Supported Configuration Settings 2-14

2.8.2 Windows Registry 2-22

2.8.3 Configuration File Support 2-23

2.8.3.1 SQL Translation Framework Configuration 2-24

2.8.3.2 Specifying UDT Mappings with Unified Configuration for
Unmanaged ODP.NET 2-27

2.9 Oracle Data Provider for .NET, Managed Driver Configuration 2-28

2.9.1 version Section 2-29

2.9.2 dataSources Section 2-30

2.9.3 settings section 2-32

2.9.4 LDAPsettings section 2-35

2.9.5 Lightweight Directory Access Protocol 2-36

2.9.6 implicitRefCursor section 2-36

2.9.7 distributedTransaction section 2-37

2.9.8 edmMappings section 2-37

2.9.9 onsConfig section 2-38

2.9.10 Client Side ONS Daemon Configuration 2-38

2.9.11 Relative Windows Path and Windows Environment Variable
Configuration Settings 2-40

2.10 Distributed Transactions 2-41

2.10.1 Oracle Services for Microsoft Transaction Server 2-41

2.10.2 ODP.NET, Managed Driver Setup 2-42

2.10.3 ODP.NET, Unmanaged Driver Setup 2-43

2.11 Configuration differences between ODP.NET, Managed Driver and
ODP.NET, Unmanaged Driver 2-44

2.12 Configuring for Entity Framework Code First 2-45

2.12.1 Entity Framework 6 Code-Based Registration 2-46

2.13 Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver 2-46

2.14 Configuring a Port to Listen for Database Notifications 2-47

2.15 General .NET Programming Recommendations and Tips for ODP.NET 2-48

3 Features of Oracle Data Provider for .NET

3.1 Base Classes and Provider Factory Classes 3-1

3.2 Code Access Security 3-2

3.2.1 Configuring OraclePermission 3-2

3.2.2 Configuring OraclePermission for Web Applications with High or
Medium Trust Levels 3-3

3.2.3 Configuring OraclePermission for Windows Applications Running in a
Partial Trust Environment 3-4

3.3 Connecting to Oracle Database 3-4

v

3.3.1 Connecting to Oracle Database Exadata Express Cloud Service 3-5

3.3.2 Connection String Attributes 3-6

3.3.3 Connection String Builder 3-8

3.3.4 Specifying the Data Source Attribute 3-8

3.3.4.1 Using the TNS Alias 3-9

3.3.4.2 Using the Connect Descriptor 3-9

3.3.4.3 Using Easy Connect Naming Method 3-9

3.3.4.4 Using LDAP 3-10

3.3.4.5 Data Source Enumerator 3-10

3.3.5 Using Transport Layer Security and Secure Sockets Layer 3-10

3.3.5.1 Secure Sockets Layer and Transport Layer Security Differences 3-10

3.3.5.2 ODP.NET Secure Sockets Layer Configuration 3-11

3.3.5.3 Troubleshooting TLS/SSL Setup 3-13

3.3.6 Using Secure External Password Store 3-15

3.3.6.1 Configuring Secure External Password Store (SEPS) 3-15

3.3.7 Using Kerberos 3-16

3.3.7.1 File Based Credential Cache and MSLSA 3-16

3.3.7.2 ODP.NET, Managed Driver Dependency on MIT Kerberos 3-16

3.3.7.3 Configuring Kerberos Authentication with ODP.NET 3-17

3.3.8 Using Windows Native Authentication (NTS) 3-20

3.3.8.1 Configuring Windows Native Authentication (NTS) for the
ODP.NET Client 3-20

3.3.9 Network Data Encryption and Integrity 3-21

3.3.9.1 Using Data Encryption 3-21

3.3.9.2 Using Data Integrity 3-22

3.3.10 Schema Discovery 3-22

3.3.10.1 User Customization of Metadata 3-23

3.3.11 Connection Pooling 3-23

3.3.11.1 Using Connection Pooling 3-24

3.3.12 Connection Pool Management 3-25

3.3.13 Connection Pool Performance Counters 3-26

3.3.13.1 Publishing Performance Counters 3-27

3.3.13.2 Setting Performance Counters Using .NET Configuration Entry 3-27

3.3.13.3 Instance Names of Performance Counters 3-27

3.3.14 Pluggable Databases 3-29

3.3.15 Edition-Based Redefinition 3-29

3.3.16 Operating System Authentication 3-30

3.3.17 Privileged Connections 3-31

3.3.18 Password Expiration 3-32

3.3.19 Proxy Authentication 3-33

3.3.20 Dynamic Distributed Transaction Enlistment 3-34

vi

3.3.21 Client Identifier and End-to-End Tracing 3-34

3.3.22 Transparent Application Failover (TAF) Callback Support 3-35

3.3.22.1 TAF Notification 3-35

3.3.22.2 When Failover Occurs 3-35

3.3.22.3 Registering an Event Handler for Failover 3-36

3.4 Real Application Clusters and Global Data Services 3-37

3.4.1 Fast Application Notification 3-38

3.4.2 Runtime Connection Load Balancing 3-39

3.4.3 Fast Connection Failover (FCF) 3-39

3.4.4 Using FCF Planned Outage to Minimize Service Disruption 3-40

3.4.5 Pool Behavior in an Oracle RAC Database 3-42

3.5 Using Transaction Guard to Prevent Logical Corruption 3-42

3.5.1 ODP.NET and Transaction Guard 3-43

3.6 Application Continuity 3-46

3.6.1 ODP.NET and Application Continuity 3-46

3.7 Database Sharding 3-47

3.7.1 ODP.NET Sharding 3-47

3.8 OracleCommand Object 3-48

3.8.1 Transactions 3-49

3.8.2 System.Transactions and Promotable Transactions 3-49

3.8.2.1 Implicit Transaction Enlistment Using TransactionScope 3-50

3.8.2.2 Explicit Transaction Enlistment Using CommittableTransaction 3-51

3.8.2.3 Local Transaction Support for Older Databases 3-53

3.8.3 Parameter Binding 3-53

3.8.3.1 Command Timeouts 3-54

3.8.3.2 OracleDbType Enumeration Type 3-54

3.8.3.3 Inference of DbType, OracleDbType, and .NET Types 3-55

3.8.3.4 PL/SQL Associative Array Binding 3-59

3.8.3.5 Array Binding 3-62

3.8.4 Batch Processing 3-65

3.8.5 Statement Caching 3-66

3.8.5.1 Statement Caching Connection String Attributes 3-66

3.8.5.2 Enabling Statement Caching through the Registry 3-66

3.8.5.3 Statement Caching Methods and Properties 3-67

3.8.5.4 Connections and Statement Caching 3-67

3.8.5.5 Pooling and Statement Caching 3-67

3.8.6 Self-Tuning 3-67

3.8.6.1 Self-Tuning Statement Caching 3-68

3.8.6.2 Enabling or Disabling Self-Tuning for Applications 3-69

3.8.6.3 Tracing Optimization Changes 3-69

3.9 ODP.NET Types Overview 3-70

vii

3.10 Obtaining Data from an OracleDataReader Object 3-71

3.10.1 Typed OracleDataReader Accessors 3-71

3.10.1.1 .NET Type Accessors 3-71

3.10.1.2 ODP.NET Type Accessors 3-74

3.10.2 Obtaining LONG and LONG RAW Data 3-75

3.10.2.1 Setting InitialLONGFetchSize to Zero or a Value Greater than
Zero 3-75

3.10.2.2 Setting InitialLONGFetchSize to -1 3-76

3.10.3 Obtaining LOB Data 3-76

3.10.3.1 Setting InitialLOBFetchSize to Zero 3-77

3.10.3.2 Setting InitialLOBFetchSize to a Value Greater than Zero 3-77

3.10.3.3 Setting InitialLOBFetchSize to -1 3-77

3.10.3.4 Performance Considerations Related to the InitialLOBFetchSize
Property 3-79

3.10.4 Controlling the Number of Rows Fetched in One Database Round-Trip 3-80

3.10.4.1 Use of FetchSize 3-80

3.10.4.2 Fine-Tuning FetchSize 3-80

3.10.4.3 Using the RowSize Property 3-80

3.11 PL/SQL REF CURSOR and OracleRefCursor 3-81

3.11.1 Obtaining an OracleRefCursor Object 3-82

3.11.2 Obtaining a REF CURSOR Data Type 3-82

3.11.3 Populating an OracleDataReader from a REF CURSOR 3-82

3.11.4 Populating the DataSet from a REF CURSOR 3-82

3.11.5 Populating an OracleRefCursor from a REF CURSOR 3-83

3.11.6 Updating a DataSet Obtained from a REF CURSOR 3-83

3.11.7 Behavior of ExecuteScalar Method for REF CURSOR 3-83

3.11.8 Passing a REF CURSOR to a Stored Procedure 3-84

3.12 Implicit REF CURSOR Binding 3-85

3.12.1 Specifying REF CURSOR Bind and Metadata Information in the .NET
Configuration File 3-86

3.12.2 Sample Configuration File and Application 3-89

3.12.3 Usage Considerations 3-92

3.12.3.1 CommandText Property Considerations 3-92

3.12.3.2 Bind Considerations 3-93

3.12.3.3 Overloaded Stored Procedures 3-93

3.12.3.4 Type Initialization Exceptions 3-93

3.12.3.5 Using Stored Functions with Function Import 3-93

3.13 LOB Support 3-94

3.13.1 Large Character and Large Binary Data Types 3-94

3.13.2 Oracle Data Provider for .NET LOB Objects 3-94

3.13.3 Updating LOBs Using a DataSet 3-95

3.13.4 Updating LOBs Using OracleCommand and OracleParameter 3-96

viii

3.13.5 Updating LOBs Using ODP.NET LOB Objects 3-96

3.13.6 Temporary LOBs 3-96

3.14 ODP.NET XML Support 3-97

3.14.1 Supported XML Features 3-97

3.14.2 XQuery Support 3-98

3.14.3 OracleXmlType and Connection Dependency 3-99

3.14.4 Updating XMLType Data in the Database 3-99

3.14.4.1 Updating with DataSet, OracleDataAdapter, and
OracleCommandBuilder 3-99

3.14.4.2 Updating with OracleCommand and OracleParameter 3-100

3.14.5 Updating XML Data in OracleXmlType 3-101

3.14.6 Characters with Special Meaning in XML 3-101

3.14.7 Retrieving Query Result Set as XML 3-101

3.14.7.1 Handling Date and Time Format 3-101

3.14.7.2 Characters with Special Meaning in Column Data 3-102

3.14.7.3 Characters in Table or View Name 3-103

3.14.7.4 Case-Sensitivity in Column Name to XML Element Name
Mapping 3-103

3.14.7.5 Column Name to XML Element Name Mapping 3-103

3.14.7.6 Object-Relational Data 3-105

3.14.7.7 NULL Values 3-105

3.14.8 Data Manipulation Using XML 3-105

3.14.8.1 Handling Date and Time Format 3-105

3.14.8.2 Saving Changes Using XML 3-106

3.14.8.3 Characters with Special Meaning in Column Data 3-106

3.14.8.4 Characters with Special Meaning in Table or View Name 3-107

3.14.8.5 Case-Sensitivity in XML Element Name to Column Name
Mapping 3-107

3.14.8.6 XML Element Name to Column Name Mapping 3-107

3.14.8.7 Saving Changes to a Table Using an XML Document 3-107

3.14.8.8 Object-Relational Data 3-109

3.14.8.9 Multiple Tables 3-109

3.14.8.10 Commit Transactions 3-109

3.15 Oracle User-Defined Types (UDTs) and .NET Custom Types 3-109

3.15.1 Oracle User-Defined Types (UDTs) 3-110

3.15.2 Custom Types 3-110

3.15.2.1 Required Custom Type Implementations 3-111

3.15.2.2 Optional Custom Type Implementations 3-112

3.15.3 Specifying Custom Type Mappings 3-113

3.15.3.1 Using a Custom Type Factory to Specify Custom Type Mappings
3-114

ix

3.15.3.2 Using XML in Configuration Files to Specify Custom Type
Mappings 3-114

3.15.3.3 Using Custom Type Mappings 3-115

3.15.4 Converting Between Custom Types and Oracle UDTs 3-116

3.15.5 Oracle UDT Attribute Mappings 3-117

3.15.6 Oracle UDT Retrieval from OracleDataReader 3-118

3.15.7 Oracle UDT Metadata Retrieval from OracleDataReader 3-119

3.15.8 Oracle UDT Parameter Binding with OracleParameter 3-120

3.15.8.1 Guidelines for Binding UDT Input and Output Parameters 3-120

3.15.8.2 UDT Input Parameter Binding with OracleParameters 3-121

3.15.8.3 UDT Output Parameter Binding with OracleParameters 3-122

3.15.9 Populating the DataSet with Oracle UDTs 3-123

3.15.10 UDT Method Invocation 3-124

3.15.11 Configuration Settings for Oracle UDTs 3-124

3.15.11.1 StatementCacheWithUdts 3-125

3.15.11.2 UdtCacheSize 3-125

3.16 Bulk Copy 3-125

3.16.1 Data Types Supported by Bulk Copy 3-125

3.16.2 Restrictions on Oracle Bulk Copy of a Single Partition 3-126

3.16.3 Integrity Constraints Affecting Oracle Bulk Copy 3-126

3.16.4 Database Insert Triggers 3-127

3.16.5 Field Defaults 3-127

3.17 Oracle Database Advanced Queuing Support 3-127

3.17.1 Using ODP.NET for Advanced Queuing 3-129

3.17.1.1 Enqueuing and Dequeuing Example 3-130

3.18 Continuous Query Notification Support 3-132

3.18.1 Continuous Query Notification Classes 3-134

3.18.2 Supported Operations 3-135

3.18.3 Requirements of Notification Registration 3-136

3.18.4 Using Continuous Query Notification 3-136

3.18.4.1 Application Steps 3-136

3.18.4.2 Flow of Notification Process 3-136

3.18.5 Best Practice Guidelines and Performance Considerations 3-138

3.19 OracleDataAdapter Safe Type Mapping 3-139

3.19.1 Comparison Between Oracle Data Types and .NET Types 3-139

3.19.2 SafeMapping Property 3-141

3.19.2.1 Using Safe Type Mapping 3-141

3.20 OracleDataAdapter Requery Property 3-143

3.21 Guaranteeing Uniqueness in Updating DataSet to Database 3-143

3.21.1 What Constitutes Uniqueness in DataRow Objects? 3-144

3.21.2 Configuring PrimaryKey and Constraints Properties 3-144

x

3.21.3 Updating Without PrimaryKey and Constraints Configuration 3-145

3.22 Globalization Support 3-145

3.22.1 Globalization Settings 3-146

3.22.1.1 Client Globalization Settings 3-146

3.22.1.2 Session Globalization Settings 3-146

3.22.1.3 Thread-Based Globalization Settings 3-147

3.22.2 Globalization-Sensitive Operations 3-148

3.22.2.1 Operations Dependent on Client Computer's Globalization
Settings 3-148

3.22.2.2 Operations Dependent on Thread Globalization Settings 3-149

3.22.2.3 Operations Sensitive to Session Globalization Parameters 3-149

3.22.3 ODP.NET Managed and Unmanaged Drivers Differences 3-149

3.23 Debug Tracing 3-150

3.24 Database Application Migration: SQL Translation Framework 3-150

3.24.1 The SQL Translation Profile 3-151

4 ADO.NET Entity Framework and LINQ to Entities

4.1 Overview of Entity Framework 4-1

4.2 Language Integrated Query and Entity SQL 4-2

4.3 Mapping Oracle Data Types to EDM Types 4-2

4.3.1 EDM Type Facets 4-6

4.4 Oracle Number Default Data Type Mapping and Customization 4-13

4.4.1 Entity Framework 5 and Earlier Mapping and Customization 4-14

4.4.2 Entity Framework 6 Mapping and Customization 4-16

4.4.2.1 New Default Mappings 4-16

4.4.3 Data Type Mapping and Customization Process 4-17

4.4.4 StoreGeneratedPattern Enumeration 4-18

4.4.4.1 Identity Attribute 4-18

4.4.4.2 Virtual Column 4-18

4.4.5 Resolving Compilation Errors When Using Custom Mapping 4-18

4.4.6 Mapping Boolean and Guid Parameters in Custom INSERT, UPDATE,
and DELETE Stored Procedures 4-19

4.5 Migrating Existing Entity Framework 5 Applications to Entity Framework 6 4-19

4.6 Code First 4-20

4.6.1 Mapping of .NET Types to Oracle Types 4-20

4.6.2 Code First Migrations 4-24

4.6.2.1 Code First Migrations With No Supporting Code Migration File 4-25

4.6.3 Code First Database Initialization 4-25

4.6.4 Oracle Database Object Creation 4-25

4.6.5 Using the Default Connection Factory 4-28

xi

4.7 Unsupported Entity Framework Features 4-28

5 Oracle Data Provider for .NET Stored Procedures

5.1 Introducing .NET Stored Procedure Execution Using ODP.NET 5-1

5.2 Limitations and Restrictions on ODP.NET Within .NET Stored Procedure 5-2

5.2.1 Implicit Database Connection 5-2

5.2.2 Transaction Support 5-3

5.2.3 Unsupported SQL Commands 5-6

5.2.4 Oracle User-Defined Type (UDT) Support 5-6

5.3 Porting Client Application to .NET Stored Procedure 5-6

6 Oracle Data Provider for .NET Classes

6.1 OracleClientFactory Class 6-2

6.1.1 OracleClientFactory Members 6-3

6.1.2 OracleClientFactory Field 6-4

6.1.2.1 Instance 6-4

6.1.3 OracleClientFactory Constructor 6-4

6.1.4 OracleClientFactory Public Properties 6-5

6.1.4.1 CanCreateDataSourceEnumerator 6-5

6.1.5 OracleClientFactory Public Methods 6-5

6.1.5.1 CreateCommand 6-6

6.1.5.2 CreateCommandBuilder 6-6

6.1.5.3 CreateConnection 6-6

6.1.5.4 CreateConnectionStringBuilder 6-7

6.1.5.5 CreateDataAdapter 6-7

6.1.5.6 CreateDataSourceEnumerator 6-7

6.1.5.7 CreateParameter 6-8

6.1.5.8 CreatePermission 6-8

6.2 OracleCommand Class 6-8

6.2.1 OracleCommand Members 6-10

6.2.2 OracleCommand Constructors 6-13

6.2.2.1 OracleCommand() 6-13

6.2.2.2 OracleCommand(string) 6-13

6.2.2.3 OracleCommand(string, OracleConnection) 6-14

6.2.3 OracleCommand Static Methods 6-14

6.2.4 OracleCommand Properties 6-14

6.2.4.1 AddRowid 6-16

6.2.4.2 AddToStatementCache 6-16

6.2.4.3 ArrayBindCount 6-17

xii

6.2.4.4 ArrayBindRowsAffected 6-18

6.2.4.5 BindByName 6-18

6.2.4.6 CommandText 6-19

6.2.4.7 CommandTimeout 6-20

6.2.4.8 CommandType 6-20

6.2.4.9 Connection 6-21

6.2.4.10 DesignTimeVisible 6-21

6.2.4.11 FetchSize 6-22

6.2.4.12 ImplicitRefCursors 6-23

6.2.4.13 InitialLOBFetchSize 6-23

6.2.4.14 InitialLONGFetchSize 6-24

6.2.4.15 Notification 6-24

6.2.4.16 NotificationAutoEnlist 6-25

6.2.4.17 Parameters 6-26

6.2.4.18 RowSize 6-26

6.2.4.19 Transaction 6-27

6.2.4.20 UpdatedRowSource 6-27

6.2.4.21 UseEdmMapping 6-28

6.2.4.22 XmlCommandType 6-28

6.2.4.23 XmlQueryProperties 6-29

6.2.4.24 XmlSaveProperties 6-29

6.2.5 OracleCommand Public Methods 6-30

6.2.5.1 Cancel 6-31

6.2.5.2 Clone 6-34

6.2.5.3 CreateParameter 6-35

6.2.5.4 Dispose 6-35

6.2.5.5 ExecuteNonQuery 6-35

6.2.5.6 ExecuteReader 6-37

6.2.5.7 ExecuteReader() 6-37

6.2.5.8 ExecuteReader(CommandBehavior) 6-39

6.2.5.9 ExecuteScalar 6-40

6.2.5.10 ExecuteStream 6-41

6.2.5.11 ExecuteToStream 6-41

6.2.5.12 ExecuteXmlReader 6-42

6.2.5.13 Prepare 6-43

6.3 OracleCommandBuilder Class 6-43

6.3.1 OracleCommandBuilder Members 6-45

6.3.2 OracleCommandBuilder Constructors 6-47

6.3.2.1 OracleCommandBuilder() 6-47

6.3.2.2 OracleCommandBuilder(OracleDataAdapter) 6-47

6.3.3 OracleCommandBuilder Static Methods 6-47

xiii

6.3.3.1 DeriveParameters 6-48

6.3.4 OracleCommandBuilder Properties 6-50

6.3.4.1 CaseSensitive 6-51

6.3.4.2 CatalogLocation 6-51

6.3.4.3 CatalogSeparator 6-51

6.3.4.4 ConflictOption 6-52

6.3.4.5 DataAdapter 6-52

6.3.4.6 QuotePrefix 6-52

6.3.4.7 QuoteSuffix 6-53

6.3.4.8 SchemaSeparator 6-53

6.3.5 OracleCommandBuilder Public Methods 6-54

6.3.5.1 GetDeleteCommand 6-55

6.3.5.2 GetDeleteCommand() 6-55

6.3.5.3 GetDeleteCommand(bool) 6-56

6.3.5.4 GetInsertCommand 6-56

6.3.5.5 GetInsertCommand() 6-57

6.3.5.6 GetInsertCommand(bool) 6-57

6.3.5.7 GetUpdateCommand 6-58

6.3.5.8 GetUpdateCommand() 6-58

6.3.5.9 GetUpdateCommand(bool) 6-58

6.3.5.10 QuoteIdentifier 6-59

6.3.5.11 RefreshSchema 6-60

6.3.5.12 UnquoteIdentifier 6-60

6.3.6 OracleCommandBuilder Events 6-61

6.4 OracleConnection Class 6-61

6.4.1 OracleConnection Members 6-63

6.4.2 OracleConnection Constructors 6-66

6.4.2.1 OracleConnection() 6-66

6.4.2.2 OracleConnection(String) 6-67

6.4.3 OracleConnection Static Properties 6-67

6.4.3.1 IsAvailable 6-67

6.4.4 OracleConnection Static Methods 6-68

6.4.4.1 ClearPool 6-69

6.4.4.2 ClearAllPools 6-70

6.4.5 OracleConnection Properties 6-71

6.4.5.1 ActionName 6-72

6.4.5.2 ClientId 6-72

6.4.5.3 ClientInfo 6-73

6.4.5.4 ConnectionString 6-73

6.4.5.5 ConnectionTimeout 6-78

6.4.5.6 ConnectionType 6-79

xiv

6.4.5.7 Database 6-79

6.4.5.8 DatabaseDomainName 6-80

6.4.5.9 DatabaseName 6-80

6.4.5.10 DataSource 6-80

6.4.5.11 HostName 6-80

6.4.5.12 InstanceName 6-81

6.4.5.13 ModuleName 6-81

6.4.5.14 ServerVersion 6-81

6.4.5.15 ServiceName 6-82

6.4.5.16 State 6-82

6.4.5.17 StatementCacheSize 6-82

6.4.6 OracleConnection Public Methods 6-83

6.4.6.1 BeginTransaction 6-84

6.4.6.2 BeginTransaction() 6-84

6.4.6.3 BeginTransaction(IsolationLevel) 6-85

6.4.6.4 ChangeDatabase 6-86

6.4.6.5 Clone 6-87

6.4.6.6 Close 6-88

6.4.6.7 CreateCommand 6-88

6.4.6.8 EnlistDistributedTransaction 6-89

6.4.6.9 EnlistTransaction 6-91

6.4.6.10 FlushCache 6-92

6.4.6.11 GetSchema 6-92

6.4.6.12 GetSchema() 6-93

6.4.6.13 GetSchema (string collectionName) 6-94

6.4.6.14 GetSchema (string collectionName, string[] restrictions) 6-95

6.4.6.15 GetSessionInfo 6-98

6.4.6.16 GetSessionInfo() 6-98

6.4.6.17 GetSessionInfo(OracleGlobalization) 6-99

6.4.6.18 Open 6-99

6.4.6.19 OpenWithNewPassword 6-100

6.4.6.20 PurgeStatementCache 6-100

6.4.6.21 SetSessionInfo 6-101

6.4.6.22 SetShardingKey(OracleShardingKey, OracleShardingKey) 6-102

6.4.7 OracleConnection Events 6-103

6.4.7.1 Failover 6-104

6.4.7.2 HAEvent 6-104

6.4.7.3 InfoMessage 6-105

6.4.7.4 StateChange 6-105

6.5 OracleConnectionStringBuilder Class 6-106

6.5.1 OracleConnectionStringBuilder Members 6-109

xv

6.5.2 OracleConnectionStringBuilder Constructors 6-111

6.5.2.1 OracleConnectionStringBuilder() 6-111

6.5.2.2 OracleConnectionStringBuilder(string) 6-112

6.5.3 OracleConnectionStringBuilder Public Properties 6-112

6.5.3.1 ConnectionLifeTime 6-114

6.5.3.2 ConnectionTimeout 6-114

6.5.3.3 ContextConnection 6-115

6.5.3.4 DataSource 6-115

6.5.3.5 DBAPrivilege 6-115

6.5.3.6 DecrPoolSize 6-116

6.5.3.7 Enlist 6-116

6.5.3.8 HAEvents 6-117

6.5.3.9 IncrPoolSize 6-117

6.5.3.10 IsFixedSize 6-118

6.5.3.11 Item 6-118

6.5.3.12 Keys 6-118

6.5.3.13 LoadBalancing 6-119

6.5.3.14 MaxPoolSize 6-119

6.5.3.15 MetadataPooling 6-119

6.5.3.16 MinPoolSize 6-120

6.5.3.17 Password 6-120

6.5.3.18 PersistSecurityInfo 6-120

6.5.3.19 Pooling 6-121

6.5.3.20 PromotableTransaction 6-121

6.5.3.21 ProxyPassword 6-121

6.5.3.22 ProxyUserId 6-122

6.5.3.23 SelfTuning 6-122

6.5.3.24 StatementCachePurge 6-122

6.5.3.25 StatementCacheSize 6-123

6.5.3.26 UserID 6-123

6.5.3.27 ValidateConnection 6-123

6.5.3.28 Values 6-124

6.5.4 OracleConnectionStringBuilder Public Methods 6-124

6.5.4.1 Clear 6-125

6.5.4.2 ContainsKey 6-125

6.5.4.3 Remove 6-125

6.5.4.4 TryGetValue 6-126

6.6 OracleDataAdapter Class 6-126

6.6.1 OracleDataAdapter Members 6-128

6.6.2 OracleDataAdapter Constructors 6-130

6.6.2.1 OracleDataAdapter() 6-131

xvi

6.6.2.2 OracleDataAdapter(OracleCommand) 6-131

6.6.2.3 OracleDataAdapter(string, OracleConnection) 6-131

6.6.2.4 OracleDataAdapter(string, string) 6-132

6.6.3 OracleDataAdapter Static Methods 6-133

6.6.4 OracleDataAdapter Properties 6-133

6.6.4.1 DeleteCommand 6-134

6.6.4.2 IdentityInsert 6-134

6.6.4.3 IdentityUpdate 6-135

6.6.4.4 InsertCommand 6-135

6.6.4.5 Requery 6-136

6.6.4.6 ReturnProviderSpecificTypes 6-136

6.6.4.7 SafeMapping 6-136

6.6.4.8 SelectCommand 6-137

6.6.4.9 UpdateBatchSize 6-137

6.6.4.10 UpdateCommand 6-138

6.6.5 OracleDataAdapter Public Methods 6-139

6.6.5.1 Fill 6-139

6.6.5.2 Fill(DataTable, OracleRefCursor) 6-140

6.6.5.3 Fill(DataSet, OracleRefCursor) 6-140

6.6.5.4 Fill(DataSet, string, OracleRefCursor) 6-141

6.6.5.5 Fill(DataSet, int, int, string, OracleRefCursor) 6-142

6.6.6 OracleDataAdapter Events 6-142

6.6.6.1 RowUpdated 6-143

6.6.6.2 RowUpdating 6-145

6.7 OracleDatabase Class 6-145

6.7.1 OracleDatabase Members 6-147

6.7.2 OracleDatabase Constructor 6-148

6.7.3 OracleDatabase Properties 6-148

6.7.3.1 ServerVersion 6-149

6.7.4 OracleDatabase Public Methods 6-149

6.7.4.1 Dispose 6-149

6.7.4.2 ExecuteNonQuery 6-149

6.7.4.3 Shutdown 6-150

6.7.4.4 Shutdown() 6-150

6.7.4.5 Shutdown(OracleDBShutdownMode, bool) 6-151

6.7.4.6 Startup 6-153

6.7.4.7 Startup() 6-153

6.7.4.8 Startup(OracleDBStartupMode, string, bool) 6-153

6.8 OracleDataReader Class 6-154

6.8.1 OracleDataReader Members 6-157

6.8.2 OracleDataReader Static Methods 6-160

xvii

6.8.3 OracleDataReader Properties 6-160

6.8.3.1 Depth 6-161

6.8.3.2 FetchSize 6-162

6.8.3.3 FieldCount 6-162

6.8.3.4 HasRows 6-163

6.8.3.5 HiddenFieldCount 6-164

6.8.3.6 IsClosed 6-164

6.8.3.7 Item 6-165

6.8.3.8 Item [index] 6-165

6.8.3.9 Item [string] 6-165

6.8.3.10 InitialLOBFetchSize 6-166

6.8.3.11 InitialLONGFetchSize 6-166

6.8.3.12 RecordsAffected 6-167

6.8.3.13 RowSize 6-167

6.8.3.14 UseEdmMapping 6-168

6.8.3.15 VisibleFieldCount 6-168

6.8.4 OracleDataReader Public Methods 6-170

6.8.4.1 Close 6-172

6.8.4.2 Dispose 6-172

6.8.4.3 GetBoolean 6-173

6.8.4.4 GetByte 6-173

6.8.4.5 GetBytes 6-174

6.8.4.6 GetChar 6-175

6.8.4.7 GetChars 6-175

6.8.4.8 GetData 6-176

6.8.4.9 GetDataTypeName 6-176

6.8.4.10 GetDateTime 6-177

6.8.4.11 GetDecimal 6-177

6.8.4.12 GetDouble 6-178

6.8.4.13 GetEnumerator 6-179

6.8.4.14 GetFieldType 6-179

6.8.4.15 GetFloat 6-180

6.8.4.16 GetGuid 6-180

6.8.4.17 GetInt16 6-181

6.8.4.18 GetInt32 6-182

6.8.4.19 GetInt64 6-182

6.8.4.20 GetName 6-183

6.8.4.21 GetOracleBFile 6-184

6.8.4.22 GetOracleBinary 6-184

6.8.4.23 GetOracleBlob 6-185

6.8.4.24 GetOracleBlobForUpdate 6-186

xviii

6.8.4.25 GetOracleBlobForUpdate(int) 6-186

6.8.4.26 GetOracleBlobForUpdate(int, int) 6-188

6.8.4.27 GetOracleClob 6-189

6.8.4.28 GetOracleClobForUpdate 6-190

6.8.4.29 GetOracleClobForUpdate(int) 6-190

6.8.4.30 GetOracleClobForUpdate(int, int) 6-192

6.8.4.31 GetOracleDate 6-194

6.8.4.32 GetOracleDecimal 6-194

6.8.4.33 GetOracleIntervalDS 6-195

6.8.4.34 GetOracleIntervalYM 6-195

6.8.4.35 GetOracleRef 6-196

6.8.4.36 GetOracleString 6-196

6.8.4.37 GetOracleTimeStamp 6-197

6.8.4.38 GetOracleTimeStampLTZ 6-198

6.8.4.39 GetOracleTimeStampTZ 6-198

6.8.4.40 GetOracleXmlType 6-199

6.8.4.41 GetOracleValue 6-199

6.8.4.42 GetOracleValues 6-200

6.8.4.43 GetOrdinal 6-200

6.8.4.44 GetProviderSpecificFieldType 6-201

6.8.4.45 GetProviderSpecificValue 6-202

6.8.4.46 GetProviderSpecificValues 6-202

6.8.4.47 GetSchemaTable 6-203

6.8.4.48 GetString 6-207

6.8.4.49 GetTimeSpan 6-208

6.8.4.50 GetValue 6-208

6.8.4.51 GetValues 6-209

6.8.4.52 GetXmlReader 6-210

6.8.4.53 IsDBNull 6-210

6.8.4.54 NextResult 6-211

6.8.4.55 Read 6-211

6.9 OracleDataSourceEnumerator Class 6-212

6.9.1 OracleDataSourceEnumerator Members 6-213

6.9.2 OracleDataSourceEnumerator Constructor 6-214

6.9.3 OracleDataSourceEnumerator Public Methods 6-214

6.9.3.1 GetDataSources 6-214

6.10 OracleError Class 6-215

6.10.1 OracleError Members 6-216

6.10.2 OracleError Static Methods 6-217

6.10.3 OracleError Properties 6-217

6.10.3.1 ArrayBindIndex 6-218

xix

6.10.3.2 DataSource 6-218

6.10.3.3 Message 6-219

6.10.3.4 Number 6-219

6.10.3.5 Procedure 6-219

6.10.3.6 Source 6-219

6.10.4 OracleError Methods 6-220

6.10.4.1 ToString 6-220

6.11 OracleErrorCollection Class 6-220

6.11.1 OracleErrorCollection Members 6-222

6.11.2 OracleErrorCollection Static Methods 6-222

6.11.3 OracleErrorCollection Properties 6-223

6.11.4 OracleErrorCollection Public Methods 6-223

6.12 OracleException Class 6-223

6.12.1 OracleException Members 6-225

6.12.2 OracleException Static Methods 6-226

6.12.3 OracleException Properties 6-226

6.12.3.1 DataSource 6-227

6.12.3.2 Errors 6-227

6.12.3.3 IsRecoverable 6-228

6.12.3.4 Message 6-228

6.12.3.5 Number 6-228

6.12.3.6 OracleLogicalTransaction 6-229

6.12.3.7 Procedure 6-229

6.12.3.8 Source 6-230

6.12.4 OracleException Methods 6-230

6.12.4.1 GetObjectData 6-230

6.12.4.2 ToString 6-231

6.13 OracleInfoMessageEventArgs Class 6-232

6.13.1 OracleInfoMessageEventArgs Members 6-233

6.13.2 OracleInfoMessageEventArgs Static Methods 6-234

6.13.3 OracleInfoMessageEventArgs Properties 6-234

6.13.3.1 Errors 6-234

6.13.3.2 Message 6-234

6.13.3.3 Source 6-235

6.13.4 OracleInfoMessageEventArgs Public Methods 6-235

6.13.4.1 ToString 6-235

6.14 OracleInfoMessageEventHandler Delegate 6-236

6.15 OracleLogicalTransaction Class 6-236

6.15.1 OracleLogicalTransaction Members 6-237

6.15.2 OracleLogicalTransaction Public Read-Only Properties 6-237

6.15.2.1 Committed 6-238

xx

6.15.2.2 ConnectionString 6-239

6.15.2.3 LogicalTransactionId 6-239

6.15.2.4 UserCallCompleted 6-240

6.15.3 OracleLogicalTransaction Methods 6-240

6.15.3.1 Dispose 6-241

6.15.3.2 GetOutcome 6-241

6.16 OracleParameter Class 6-242

6.16.1 OracleParameter Members 6-243

6.16.2 OracleParameter Constructors 6-245

6.16.2.1 OracleParameter() 6-246

6.16.2.2 OracleParameter(string, OracleDbType) 6-246

6.16.2.3 OracleParameter(string, object) 6-247

6.16.2.4 OracleParameter(string, OracleDbType, ParameterDirection) 6-248

6.16.2.5 OracleParameter(string, OracleDbType, object,
ParameterDirection) 6-249

6.16.2.6 OracleParameter(string, OracleDbType, int) 6-250

6.16.2.7 OracleParameter(string, OracleDbType, int, string) 6-251

6.16.2.8 OracleParameter(string, OracleDbType, int, ParameterDirection,
bool, byte, byte, string, DataRowVersion, object) 6-252

6.16.2.9 OracleParameter(string, OracleDbType, int, object,
ParameterDirection) 6-253

6.16.3 OracleParameter Static Methods 6-254

6.16.4 OracleParameter Properties 6-254

6.16.4.1 ArrayBindSize 6-255

6.16.4.2 ArrayBindStatus 6-257

6.16.4.3 CollectionType 6-257

6.16.4.4 DbType 6-258

6.16.4.5 Direction 6-258

6.16.4.6 IsNullable 6-259

6.16.4.7 Offset 6-259

6.16.4.8 OracleDbType 6-260

6.16.4.9 OracleDbTypeEx 6-260

6.16.4.10 ParameterName 6-261

6.16.4.11 Precision 6-261

6.16.4.12 Scale 6-262

6.16.4.13 Size 6-262

6.16.4.14 SourceColumn 6-263

6.16.4.15 SourceColumnNullMapping 6-264

6.16.4.16 SourceVersion 6-264

6.16.4.17 Status 6-265

6.16.4.18 UdtTypeName 6-265

6.16.4.19 Value 6-266

xxi

6.16.5 OracleParameter Public Methods 6-267

6.16.5.1 Clone 6-268

6.16.5.2 Dispose 6-269

6.16.5.3 ResetDbType 6-269

6.16.5.4 ResetOracleDbType 6-269

6.16.5.5 ToString 6-270

6.17 OracleParameterCollection Class 6-270

6.17.1 OracleParameterCollection Members 6-272

6.17.2 OracleParameterCollection Static Methods 6-273

6.17.3 OracleParameterCollection Properties 6-273

6.17.3.1 Count 6-274

6.17.3.2 Item 6-274

6.17.3.3 Item[int] 6-275

6.17.3.4 Item[string] 6-275

6.17.3.5 IsFixedSize 6-275

6.17.3.6 IsReadOnly 6-276

6.17.3.7 IsSynchronized 6-276

6.17.3.8 SyncRoot 6-276

6.17.4 OracleParameterCollection Public Methods 6-277

6.17.4.1 Add 6-278

6.17.4.2 Add(object) 6-279

6.17.4.3 Add(OracleParameter) 6-279

6.17.4.4 Add(string, object) 6-280

6.17.4.5 Add(string, OracleDbType) 6-280

6.17.4.6 Add(string, OracleDbType, ParameterDirection) 6-280

6.17.4.7 Add(string, OracleDbType, object, ParameterDirection) 6-281

6.17.4.8 Add(string, OracleDbType, int, object, ParameterDirection) 6-282

6.17.4.9 Add(string, OracleDbType, int) 6-282

6.17.4.10 Add (string, OracleDbType, int, string) 6-283

6.17.4.11 Add(string, OracleDbType, int, ParameterDirection, bool, byte,
byte, string, DataRowVersion, object) 6-284

6.17.4.12 AddRange 6-285

6.17.4.13 Clear 6-285

6.17.4.14 Contains 6-286

6.17.4.15 Contains(object) 6-286

6.17.4.16 Contains(string) 6-287

6.17.4.17 CopyTo 6-288

6.17.4.18 GetEnumerator 6-289

6.17.4.19 IndexOf 6-289

6.17.4.20 IndexOf(object) 6-289

6.17.4.21 IndexOf(String) 6-290

xxii

6.17.4.22 Insert 6-290

6.17.4.23 Remove 6-291

6.17.4.24 RemoveAt 6-292

6.17.4.25 RemoveAt(int) 6-292

6.17.4.26 RemoveAt(String) 6-292

6.18 OraclePermission Class 6-293

6.18.1 OraclePermission Members 6-293

6.18.2 OraclePermission Constructor 6-295

6.18.3 OraclePermission Static Methods 6-295

6.18.4 OraclePermission Public Properties 6-296

6.18.5 OraclePermission Public Methods 6-296

6.18.5.1 Add 6-296

6.18.5.2 Copy 6-298

6.18.5.3 IsSubsetOf 6-298

6.19 OraclePermissionAttribute Class 6-298

6.19.1 OraclePermissionAttribute Members 6-299

6.19.2 OraclePermissionAttribute Constructor 6-300

6.19.3 OraclePermissionAttribute Static Methods 6-301

6.19.4 OraclePermissionAttribute Public Properties 6-301

6.19.5 OraclePermissionAttribute Public Methods 6-301

6.19.5.1 CreatePermission 6-302

6.20 OracleRowUpdatedEventArgs Class 6-302

6.20.1 OracleRowUpdatedEventArgs Members 6-303

6.20.2 OracleRowUpdatedEventArgs Constructor 6-304

6.20.3 OracleRowUpdatedEventArgs Static Methods 6-305

6.20.4 OracleRowUpdatedEventArgs Properties 6-305

6.20.4.1 Command 6-305

6.20.5 OracleRowUpdatedEventArgs Public Methods 6-306

6.21 OracleRowUpdatedEventHandler Delegate 6-306

6.22 OracleRowUpdatingEventArgs Class 6-307

6.22.1 OracleRowUpdatingEventArgs Members 6-307

6.22.2 OracleRowUpdatingEventArgs Constructor 6-308

6.22.3 OracleRowUpdatingEventArgs Static Methods 6-309

6.22.4 OracleRowUpdatingEventArgs Properties 6-309

6.22.4.1 Command 6-310

6.22.5 OracleRowUpdatingEventArgs Public Methods 6-310

6.23 OracleRowUpdatingEventHandler Delegate 6-310

6.24 OracleShardingKey Class 6-311

6.24.1 OracleShardingKey Members 6-312

6.24.2 OracleShardingKey Constructors 6-313

6.24.2.1 OracleShardingKey() 6-313

xxiii

6.24.2.2 OracleShardingKey(OracleDbType, object) 6-313

6.24.3 OracleShardingKey Instance Methods 6-314

6.24.3.1 SetShardingKey(OracleDbType, object) 6-314

6.24.3.2 Dispose 6-314

6.25 OracleTransaction Class 6-315

6.25.1 OracleTransaction Members 6-317

6.25.2 OracleTransaction Static Methods 6-318

6.25.3 OracleTransaction Properties 6-318

6.25.3.1 IsolationLevel 6-318

6.25.3.2 Connection 6-319

6.25.4 OracleTransaction Public Methods 6-319

6.25.4.1 Commit 6-320

6.25.4.2 Dispose 6-322

6.25.4.3 Rollback 6-322

6.25.4.4 Rollback() 6-322

6.25.4.5 Rollback(string) 6-324

6.25.4.6 Save 6-324

6.26 OracleConnectionType Enumeration 6-326

6.27 OracleCollectionType Enumeration 6-326

6.28 OracleDBShutdownMode Enumeration 6-327

6.29 OracleDBStartupMode Enumeration 6-328

6.30 OracleDbType Enumeration 6-328

6.31 OracleIdentityType Enumeration 6-330

6.32 OracleParameterStatus Enumeration 6-330

7 Oracle Data Provider for .NET XML-Related Classes

7.1 OracleXmlCommandType Enumeration 7-1

7.2 OracleXmlQueryProperties Class 7-2

7.2.1 OracleXmlQueryProperties Members 7-5

7.2.2 OracleXmlQueryProperties Constructor 7-5

7.2.3 OracleXmlQueryProperties Properties 7-6

7.2.3.1 MaxRows 7-6

7.2.3.2 RootTag 7-6

7.2.3.3 RowTag 7-7

7.2.3.4 Xslt 7-7

7.2.3.5 XsltParams 7-8

7.2.4 OracleXmlQueryProperties Public Methods 7-8

7.2.4.1 Clone 7-8

7.3 OracleXmlSaveProperties Class 7-9

7.3.1 OracleXmlSaveProperties Members 7-11

xxiv

7.3.2 OracleXmlSaveProperties Constructor 7-12

7.3.3 OracleXmlSaveProperties Properties 7-12

7.3.3.1 KeyColumnsList 7-13

7.3.3.2 RowTag 7-13

7.3.3.3 Table 7-14

7.3.3.4 UpdateColumnsList 7-14

7.3.3.5 Xslt 7-15

7.3.3.6 XsltParams 7-15

7.3.4 OracleXmlSaveProperties Public Methods 7-15

7.3.4.1 Clone 7-16

7.4 OracleXmlStream Class 7-16

7.4.1 OracleXmlStream Members 7-17

7.4.2 OracleXmlStream Constructor 7-18

7.4.3 OracleXmlStream Static Methods 7-19

7.4.4 OracleXmlStream Instance Properties 7-19

7.4.4.1 CanRead 7-19

7.4.4.2 CanSeek 7-20

7.4.4.3 Connection 7-20

7.4.4.4 Length 7-20

7.4.4.5 Position 7-21

7.4.4.6 Value 7-21

7.4.5 OracleXmlStream Instance Methods 7-22

7.4.5.1 Clone 7-22

7.4.5.2 Close 7-23

7.4.5.3 Dispose 7-23

7.4.5.4 Flush 7-23

7.4.5.5 Read 7-23

7.4.5.6 Read(byte[], int, int) 7-24

7.4.5.7 Read(char[], int, int) 7-25

7.4.5.8 Seek 7-25

7.4.5.9 SetLength 7-26

7.4.5.10 Write 7-26

7.4.5.11 WriteLine 7-26

7.5 OracleXmlType Class 7-26

7.5.1 OracleXmlType Members 7-27

7.5.2 OracleXmlType Constructors 7-29

7.5.2.1 OracleXmlType(OracleClob) 7-29

7.5.2.2 OracleXmlType(OracleConnection, string) 7-30

7.5.2.3 OracleXmlType(OracleConnection, XmlReader) 7-31

7.5.2.4 OracleXmlType(OracleConnection, XmlDocument) 7-31

7.5.3 OracleXmlType Static Methods 7-32

xxv

7.5.4 OracleXmlType Static Fields 7-32

7.5.4.1 Null 7-32

7.5.5 OracleXmlType Instance Properties 7-32

7.5.5.1 Connection 7-33

7.5.5.2 IsEmpty 7-33

7.5.5.3 IsFragment 7-34

7.5.5.4 IsNull 7-34

7.5.5.5 IsSchemaBased 7-34

7.5.5.6 RootElement 7-35

7.5.5.7 Schema 7-35

7.5.5.8 SchemaUrl 7-36

7.5.5.9 Value 7-36

7.5.6 OracleXmlType Instance Methods 7-36

7.5.6.1 Clone 7-37

7.5.6.2 Dispose 7-38

7.5.6.3 Extract 7-38

7.5.6.4 Extract(string, string) 7-38

7.5.6.5 Extract(string, XmlNameSpaceManager) 7-39

7.5.6.6 GetStream 7-39

7.5.6.7 GetXmlDocument 7-40

7.5.6.8 GetXmlReader 7-40

7.5.6.9 IsExists 7-41

7.5.6.10 IsExists(string, string) 7-41

7.5.6.11 IsExists(string, XmlNameSpaceManager) 7-42

7.5.6.12 Transform 7-42

7.5.6.13 Transform(OracleXmlType, string) 7-43

7.5.6.14 Transform(string, string) 7-43

7.5.6.15 Update 7-44

7.5.6.16 Update(string, string, string) 7-44

7.5.6.17 Update(string, XmlNameSpaceManager, string) 7-45

7.5.6.18 Update(string, string, OracleXmlType) 7-46

7.5.6.19 Update(string, XmlNameSpaceManager, OracleXmlType) 7-46

7.5.6.20 Validate 7-47

8 Oracle Data Provider for .NET HA Event Classes

8.1 OracleHAEventArgs Class 8-1

8.1.1 OracleHAEventArgs Members 8-2

8.1.2 OracleHAEventArgs Properties 8-2

8.1.2.1 DatabaseDomainName 8-2

8.1.2.2 DatabaseName 8-3

xxvi

8.1.2.3 HostName 8-3

8.1.2.4 InstanceName 8-3

8.1.2.5 Reason 8-3

8.1.2.6 ServiceName 8-4

8.1.2.7 Source 8-4

8.1.2.8 Status 8-4

8.1.2.9 Time 8-5

8.2 OracleHAEventHandler Delegate 8-5

8.3 OracleHAEventSource Enumeration 8-5

8.4 OracleHAEventStatus Enumeration 8-6

9 Continuous Query Notification Classes

9.1 OracleDependency Class 9-1

9.1.1 OracleDependency Members 9-2

9.1.2 OracleDependency Constructors 9-4

9.1.2.1 OracleDependency () 9-4

9.1.2.2 OracleDependency(OracleCommand) 9-4

9.1.2.3 OracleDependency(OracleCommand, bool, int, bool) 9-5

9.1.3 OracleDependency Static Fields 9-7

9.1.3.1 Port 9-7

9.1.4 OracleDependency Static Methods 9-7

9.1.4.1 GetOracleDependency 9-8

9.1.5 OracleDependency Properties 9-8

9.1.5.1 DataSource 9-9

9.1.5.2 HasChanges 9-9

9.1.5.3 Id 9-10

9.1.5.4 IsEnabled 9-10

9.1.5.5 QueryBasedNotification 9-10

9.1.5.6 RegisteredQueryIDs 9-11

9.1.5.7 RegisteredResources 9-11

9.1.5.8 RowidInfo 9-12

9.1.5.9 UserName 9-12

9.1.6 OracleDependency Methods 9-13

9.1.6.1 AddCommandDependency 9-13

9.1.6.2 RemoveRegistration 9-14

9.1.7 OracleDependency Events 9-15

9.1.7.1 OnChange 9-15

9.2 OracleNotificationRequest Class 9-15

9.2.1 OracleNotificationRequest Members 9-16

9.2.2 OracleNotificationRequest Static Methods 9-17

xxvii

9.2.3 OracleNotificationRequest Properties 9-17

9.2.3.1 IsNotifiedOnce 9-17

9.2.3.2 IsPersistent 9-18

9.2.3.3 Timeout 9-18

9.2.3.4 GroupingNotificationEnabled 9-19

9.2.3.5 GroupingType 9-19

9.2.3.6 GroupingInterval 9-20

9.2.4 OracleNotificationRequest Methods 9-20

9.3 OracleNotificationEventArgs Class 9-20

9.3.1 OracleNotificationEventArgs Members 9-21

9.3.2 OracleNotificationEventArgs Static Fields 9-22

9.3.3 OracleNotificationEventArgs Static Methods 9-22

9.3.4 OracleNotificationEventArgs Properties 9-22

9.3.4.1 Details 9-23

9.3.4.2 Info 9-24

9.3.4.3 ResourceNames 9-24

9.3.4.4 Source 9-24

9.3.4.5 Type 9-26

9.3.5 OracleNotificationEventArgs Methods 9-26

9.4 OnChangeEventHandler Delegate 9-26

9.5 OracleRowidInfo Enumeration 9-27

9.6 OracleNotificationType Enumeration 9-27

9.7 OracleNotificationSource Enumeration 9-28

9.8 OracleNotificationInfo Enumeration 9-28

10

Oracle Data Provider for .NET Globalization Classes

10.1 OracleGlobalization Class 10-1

10.1.1 OracleGlobalization Members 10-2

10.1.2 OracleGlobalization Static Methods 10-3

10.1.2.1 GetClientInfo 10-4

10.1.2.2 GetClientInfo() 10-4

10.1.2.3 GetClientInfo(OracleGlobalization) 10-5

10.1.2.4 GetThreadInfo 10-5

10.1.2.5 GetThreadInfo() 10-6

10.1.2.6 GetThreadInfo(OracleGlobalization) 10-7

10.1.2.7 SetThreadInfo 10-7

10.1.3 OracleGlobalization Properties 10-8

10.1.3.1 Calendar 10-9

10.1.3.2 ClientCharacterSet 10-10

10.1.3.3 Comparison 10-10

xxviii

10.1.3.4 Currency 10-10

10.1.3.5 DateFormat 10-11

10.1.3.6 DateLanguage 10-11

10.1.3.7 DualCurrency 10-11

10.1.3.8 ISOCurrency 10-12

10.1.3.9 Language 10-12

10.1.3.10 LengthSemantics 10-13

10.1.3.11 NCharConversionException 10-13

10.1.3.12 NumericCharacters 10-14

10.1.3.13 Sort 10-14

10.1.3.14 Territory 10-14

10.1.3.15 TimeStampFormat 10-15

10.1.3.16 TimeStampTZFormat 10-15

10.1.3.17 TimeZone 10-15

10.1.4 OracleGlobalization Public Methods 10-16

10.1.4.1 Clone 10-16

10.1.4.2 Dispose 10-17

11

Oracle Data Provider for .NET Failover Classes

11.1 OracleFailoverEventArgs Class 11-1

11.1.1 OracleFailoverEventArgs Members 11-3

11.1.2 OracleFailoverEventArgs Static Methods 11-4

11.1.3 OracleFailoverEventArgs Properties 11-4

11.1.3.1 FailoverType 11-4

11.1.3.2 FailoverEvent 11-4

11.1.4 OracleFailoverEventArgs Public Methods 11-4

11.2 OracleFailoverEventHandler Delegate 11-5

11.3 FailoverEvent Enumeration 11-6

11.4 FailoverReturnCode Enumeration 11-6

11.5 FailoverType Enumeration 11-7

12

Oracle Database Advanced Queuing Classes

12.1 OracleAQAgent Class 12-1

12.1.1 OracleAQAgent Members 12-2

12.1.2 OracleAQAgent Constructors 12-2

12.1.2.1 OracleAQAgent (string) 12-3

12.1.2.2 OracleAQAgent (string, string) 12-3

12.1.3 OracleAQAgent Properties 12-4

12.1.3.1 Address 12-4

xxix

12.1.3.2 Name 12-4

12.2 OracleAQDequeueOptions Class 12-5

12.2.1 OracleAQDequeueOptions Members 12-5

12.2.2 OracleAQDequeueOptions Constructor 12-6

12.2.3 OracleAQDequeueOptions Properties 12-6

12.2.3.1 ConsumerName 12-7

12.2.3.2 Correlation 12-7

12.2.3.3 DeliveryMode 12-8

12.2.3.4 DequeueMode 12-8

12.2.3.5 MessageId 12-9

12.2.3.6 NavigationMode 12-9

12.2.3.7 ProviderSpecificType 12-10

12.2.3.8 Visibility 12-10

12.2.3.9 Wait 12-11

12.2.4 OracleAQDequeueOptions Public Methods 12-11

12.2.4.1 Clone 12-11

12.3 OracleAQEnqueueOptions Class 12-12

12.3.1 OracleAQEnqueueOptions Members 12-12

12.3.2 OracleAQEnqueueOptions Constructor 12-13

12.3.3 OracleAQEnqueueOptions Properties 12-13

12.3.3.1 DeliveryMode 12-13

12.3.3.2 Visibility 12-14

12.3.4 OracleAQEnqueueOptions Public Methods 12-14

12.3.4.1 Clone 12-15

12.4 OracleAQMessage Class 12-15

12.4.1 OracleAQMessage Members 12-16

12.4.2 OracleAQMessage Constructors 12-17

12.4.2.1 OracleAQMessage() 12-17

12.4.2.2 OracleAQMessage(Object) 12-17

12.4.3 OracleAQMessage Properties 12-18

12.4.3.1 Correlation 12-19

12.4.3.2 Delay 12-19

12.4.3.3 DeliveryMode 12-20

12.4.3.4 DequeueAttempts 12-20

12.4.3.5 EnqueueTime 12-20

12.4.3.6 ExceptionQueue 12-21

12.4.3.7 Expiration 12-21

12.4.3.8 MessageId 12-22

12.4.3.9 OriginalMessageId 12-22

12.4.3.10 Payload 12-22

12.4.3.11 Priority 12-23

xxx

12.4.3.12 Recipients 12-23

12.4.3.13 SenderId 12-23

12.4.3.14 State 12-24

12.4.3.15 TransactionGroup 12-24

12.5 OracleAQMessageAvailableEventArgs Class 12-24

12.5.1 OracleAQMessageAvailableEventArgs Members 12-25

12.5.2 OracleAQMessageAvailableEventArgs Constructor 12-26

12.5.3 OracleAQMessageAvailableEventArgs Properties 12-26

12.5.3.1 AvailableMessages 12-27

12.5.3.2 ConsumerName 12-28

12.5.3.3 Correlation 12-28

12.5.3.4 Delay 12-28

12.5.3.5 DeliveryMode 12-28

12.5.3.6 EnqueueTime 12-29

12.5.3.7 ExceptionQueue 12-29

12.5.3.8 Expiration 12-29

12.5.3.9 MessageId 12-30

12.5.3.10 NotificationType 12-30

12.5.3.11 OriginalMessageId 12-30

12.5.3.12 Priority 12-30

12.5.3.13 QueueName 12-31

12.5.3.14 SenderId 12-31

12.5.3.15 State 12-31

12.6 OracleAQMessageAvailableEventHandler Delegate 12-31

12.7 OracleAQQueue Class 12-32

12.7.1 OracleAQQueue Members 12-32

12.7.2 OracleAQQueue Constructors 12-34

12.7.2.1 OracleAQQueue(string) 12-34

12.7.2.2 OracleAQQueue(string, OracleConnection) 12-35

12.7.2.3 OracleAQQueue(string, OracleConnection,
OracleAQMessageType) 12-36

12.7.2.4 OracleAQQueue(string, OracleConnection,
OracleAQMessageType, string) 12-36

12.7.3 OracleAQQueue Static Methods 12-37

12.7.3.1 Listen 12-37

12.7.3.2 Listen(OracleConnection, OracleAQAgent[]) 12-38

12.7.3.3 Listen(OracleConnection, OracleAQAgent[], int) 12-38

12.7.4 OracleAQQueue Properties 12-39

12.7.4.1 Connection 12-40

12.7.4.2 DequeueOptions 12-40

12.7.4.3 EnqueueOptions 12-41

12.7.4.4 MessageType 12-41

xxxi

12.7.4.5 Name 12-42

12.7.4.6 Notification 12-42

12.7.4.7 NotificationConsumers 12-43

12.7.4.8 UdtTypeName 12-43

12.7.5 OracleAQQueue Public Methods 12-44

12.7.5.1 Dequeue 12-44

12.7.5.2 Dequeue() 12-44

12.7.5.3 Dequeue(OracleAQDequeueOptions) 12-45

12.7.5.4 DequeueArray 12-46

12.7.5.5 DequeueArray(int) 12-46

12.7.5.6 DequeueArray(int, OracleAQDequeueOptions) 12-47

12.7.5.7 Dispose 12-48

12.7.5.8 Enqueue 12-48

12.7.5.9 Enqueue(OracleAQMessage) 12-48

12.7.5.10 Enqueue(OracleAQMessage, OracleAQEnqueueOptions) 12-49

12.7.5.11 EnqueueArray 12-50

12.7.5.12 EnqueueArray(OracleAQMessage[]) 12-50

12.7.5.13 EnqueueArray(OracleAQMessage[],
OracleAQEnqueueOptions) 12-51

12.7.5.14 Listen 12-52

12.7.5.15 Listen(string[]) 12-52

12.7.5.16 Listen (string[], int) 12-56

12.7.6 OracleAQQueue Events 12-57

12.7.6.1 MessageAvailable Event 12-57

12.8 OracleAQDequeueMode Enumeration 12-61

12.9 OracleAQMessageDeliveryMode Enumeration 12-61

12.10 OracleAQMessageState Enumeration 12-62

12.11 OracleAQMessageType Enumeration 12-63

12.12 OracleAQNavigationMode Enumeration 12-64

12.13 OracleAQNotificationGroupingType Enumeration 12-65

12.14 OracleAQNotificationType Enumeration 12-65

12.15 OracleAQVisibilityMode Enumeration 12-66

13

Oracle Data Provider for .NET Types Classes

13.1 OracleBFile Class 13-1

13.1.1 OracleBFile Members 13-3

13.1.2 OracleBFile Constructors 13-5

13.1.2.1 OracleBFile(OracleConnection) 13-6

13.1.2.2 OracleBFile(OracleConnection, string, string) 13-6

13.1.3 OracleBFile Static Fields 13-7

13.1.3.1 MaxSize 13-7

xxxii

13.1.3.2 Null 13-7

13.1.4 OracleBFile Static Methods 13-7

13.1.5 OracleBFile Instance Properties 13-8

13.1.5.1 CanRead 13-8

13.1.5.2 CanSeek 13-8

13.1.5.3 CanWrite 13-9

13.1.5.4 Connection 13-9

13.1.5.5 DirectoryName 13-9

13.1.5.6 FileExists 13-10

13.1.5.7 FileName 13-10

13.1.5.8 IsEmpty 13-11

13.1.5.9 IsNull 13-11

13.1.5.10 IsOpen 13-11

13.1.5.11 Length 13-12

13.1.5.12 Position 13-12

13.1.5.13 Value 13-12

13.1.6 OracleBFile Instance Methods 13-13

13.1.6.1 Clone 13-14

13.1.6.2 Close 13-16

13.1.6.3 CloseFile 13-16

13.1.6.4 Compare 13-16

13.1.6.5 CopyTo 13-18

13.1.6.6 CopyTo(OracleBlob) 13-19

13.1.6.7 CopyTo(OracleBlob, Int64) 13-19

13.1.6.8 CopyTo(Int64, OracleBlob, Int64, Int64) 13-20

13.1.6.9 CopyTo(OracleClob) 13-21

13.1.6.10 CopyTo(OracleClob, Int64) 13-22

13.1.6.11 CopyTo(Int64, OracleClob, Int64, Int64) 13-23

13.1.6.12 Dispose 13-24

13.1.6.13 Flush 13-24

13.1.6.14 FlushAsync 13-24

13.1.6.15 IsEqual 13-24

13.1.6.16 OpenFile 13-25

13.1.6.17 Read 13-25

13.1.6.18 Search 13-27

13.1.6.19 Seek 13-28

13.1.6.20 SetLength 13-30

13.1.6.21 Write 13-30

13.2 OracleBlob Class 13-31

13.2.1 OracleBlob Members 13-32

13.2.2 OracleBlob Constructors 13-35

xxxiii

13.2.2.1 OracleBlob(OracleConnection) 13-36

13.2.2.2 OracleBlob(OracleConnection, bool) 13-36

13.2.3 OracleBlob Static Fields 13-37

13.2.3.1 MaxSize 13-37

13.2.3.2 Null 13-37

13.2.4 OracleBlob Static Methods 13-37

13.2.5 OracleBlob Instance Properties 13-38

13.2.5.1 CanRead 13-38

13.2.5.2 CanSeek 13-38

13.2.5.3 CanWrite 13-39

13.2.5.4 Connection 13-39

13.2.5.5 IsEmpty 13-39

13.2.5.6 IsInChunkWriteMode 13-40

13.2.5.7 IsNull 13-40

13.2.5.8 IsTemporary 13-40

13.2.5.9 Length 13-40

13.2.5.10 OptimumChunkSize 13-41

13.2.5.11 Position 13-41

13.2.5.12 Value 13-42

13.2.6 OracleBlob Instance Methods 13-42

13.2.6.1 Append 13-43

13.2.6.2 Append(OracleBlob) 13-44

13.2.6.3 Append(byte[], int, int) 13-44

13.2.6.4 BeginChunkWrite 13-45

13.2.6.5 Clone 13-46

13.2.6.6 Close 13-47

13.2.6.7 Compare 13-47

13.2.6.8 CopyTo 13-48

13.2.6.9 CopyTo(OracleBlob) 13-48

13.2.6.10 CopyTo(OracleBlob, Int64) 13-49

13.2.6.11 CopyTo(Int64, OracleBlob, Int64, Int64) 13-50

13.2.6.12 Dispose 13-52

13.2.6.13 EndChunkWrite 13-52

13.2.6.14 Erase 13-52

13.2.6.15 Erase() 13-53

13.2.6.16 Erase(Int64, Int64) 13-53

13.2.6.17 Flush 13-53

13.2.6.18 IsEqual 13-54

13.2.6.19 Read 13-54

13.2.6.20 Search 13-56

13.2.6.21 Seek 13-57

xxxiv

13.2.6.22 SetLength 13-58

13.2.6.23 Write 13-59

13.3 OracleClob Class 13-60

13.3.1 OracleClob Members 13-62

13.3.2 OracleClob Constructors 13-65

13.3.2.1 OracleClob(OracleConnection) 13-65

13.3.2.2 OracleClob(OracleConnection, bool, bool) 13-66

13.3.3 OracleClob Static Fields 13-66

13.3.3.1 MaxSize 13-66

13.3.3.2 Null 13-67

13.3.4 OracleClob Static Methods 13-67

13.3.5 OracleClob Instance Properties 13-67

13.3.5.1 CanRead 13-68

13.3.5.2 CanSeek 13-68

13.3.5.3 CanWrite 13-68

13.3.5.4 Connection 13-69

13.3.5.5 IsEmpty 13-69

13.3.5.6 IsInChunkWriteMode 13-69

13.3.5.7 IsNClob 13-70

13.3.5.8 IsNull 13-70

13.3.5.9 IsTemporary 13-70

13.3.5.10 Length 13-70

13.3.5.11 OptimumChunkSize 13-71

13.3.5.12 Position 13-71

13.3.5.13 Value 13-72

13.3.6 OracleClob Instance Methods 13-72

13.3.6.1 Append 13-73

13.3.6.2 Append(OracleClob) 13-74

13.3.6.3 Append(byte [], int, int) 13-74

13.3.6.4 Append(char [], int, int) 13-75

13.3.6.5 BeginChunkWrite 13-76

13.3.6.6 Clone 13-76

13.3.6.7 Close 13-77

13.3.6.8 Compare 13-78

13.3.6.9 CopyTo 13-79

13.3.6.10 CopyTo(OracleClob) 13-79

13.3.6.11 CopyTo(OracleClob, Int64) 13-80

13.3.6.12 CopyTo(Int64, OracleClob, Int64, Int64) 13-80

13.3.6.13 Dispose 13-82

13.3.6.14 EndChunkWrite 13-82

13.3.6.15 Erase 13-83

xxxv

13.3.6.16 Erase() 13-83

13.3.6.17 Erase(Int64, Int64) 13-83

13.3.6.18 Flush 13-84

13.3.6.19 GetHashCode 13-84

13.3.6.20 IsEqual 13-84

13.3.6.21 Read 13-85

13.3.6.22 Read(byte [], int, int) 13-85

13.3.6.23 Read(char [], int, int) 13-86

13.3.6.24 Search 13-87

13.3.6.25 Search(byte[], Int64, Int64) 13-88

13.3.6.26 Search(char[], Int64, Int64) 13-88

13.3.6.27 Seek 13-90

13.3.6.28 SetLength 13-91

13.3.6.29 Write 13-91

13.3.6.30 Write(byte[], int, int) 13-92

13.3.6.31 Write(char[], int, int) 13-92

13.4 OracleRefCursor Class 13-94

13.4.1 OracleRefCursor Members 13-96

13.4.2 OracleRefCursor Static Methods 13-97

13.4.3 OracleRefCursor Static Fields 13-97

13.4.3.1 Null 13-98

13.4.4 OracleRefCursor Properties 13-98

13.4.4.1 Connection 13-98

13.4.4.2 FetchSize 13-99

13.4.4.3 IsNull 13-100

13.4.4.4 RowSize 13-100

13.4.5 OracleRefCursor Instance Methods 13-101

13.4.5.1 Dispose 13-101

13.4.5.2 GetDataReader 13-101

14

Oracle Data Provider for .NET Types Structures

14.1 OracleBinary Structure 14-1

14.1.1 OracleBinary Members 14-2

14.1.2 OracleBinary Constructor 14-4

14.1.3 OracleBinary Static Fields 14-5

14.1.3.1 Null 14-5

14.1.4 OracleBinary Static Methods 14-5

14.1.4.1 Concat 14-5

14.1.4.2 Equals 14-6

14.1.4.3 GetXsdType 14-7

xxxvi

14.1.4.4 GreaterThan 14-7

14.1.4.5 GreaterThanOrEqual 14-8

14.1.4.6 LessThan 14-8

14.1.4.7 LessThanOrEqual 14-9

14.1.4.8 NotEquals 14-10

14.1.5 OracleBinary Static Operators 14-10

14.1.5.2 operator == 14-11

14.1.5.3 operator > 14-11

14.1.5.4 operator >= 14-12

14.1.5.5 operator != 14-13

14.1.5.6 operator < 14-13

14.1.5.7 operator <= 14-14

14.1.6 OracleBinary Static Type Conversion Operators 14-14

14.1.6.1 explicit operator byte[] 14-14

14.1.6.2 implicit operator OracleBinary 14-15

14.1.7 OracleBinary Properties 14-15

14.1.7.1 IsNull 14-15

14.1.7.2 Item 14-16

14.1.7.3 Length 14-16

14.1.7.4 Value 14-17

14.1.8 OracleBinary Instance Methods 14-17

14.1.8.1 CompareTo 14-18

14.1.8.2 Equals 14-19

14.1.8.3 GetHashCode 14-19

14.1.8.4 ToString 14-19

14.2 OracleBoolean Structure 14-20

14.2.1 OracleBoolean Members 14-21

14.2.2 OracleBoolean Constructors 14-24

14.2.2.1 OracleBoolean(bool) 14-24

14.2.2.2 OracleBoolean(int) 14-24

14.2.3 OracleBoolean Static Fields 14-25

14.2.3.1 False 14-25

14.2.3.2 Null 14-25

14.2.3.3 One 14-25

14.2.3.4 True 14-26

14.2.3.5 Zero 14-26

14.2.4 OracleBoolean Static Methods 14-26

14.2.4.1 And 14-27

14.2.4.2 Equals 14-27

14.2.4.3 GreaterThan 14-28

14.2.4.4 GreaterThanOrEquals 14-28

xxxvii

14.2.4.5 LessThan 14-29

14.2.4.6 LessThanOrEquals 14-29

14.2.4.7 NotEquals 14-30

14.2.4.8 OnesComplement 14-30

14.2.4.9 Or 14-31

14.2.4.10 Parse 14-31

14.2.4.11 Xor 14-32

14.2.5 OracleBoolean Static Operators 14-32

14.2.5.1 operator > 14-33

14.2.5.2 operator >= 14-34

14.2.5.3 operator < 14-34

14.2.5.4 operator <= 14-35

14.2.5.5 operator == 14-35

14.2.5.6 operator != 14-36

14.2.5.7 operator ! 14-36

14.2.5.8 operator ~ 14-37

14.2.5.9 operator false 14-37

14.2.5.10 operator true 14-37

14.2.5.11 operator & 14-38

14.2.5.12 operator | 14-38

14.2.5.13 operator ^ 14-39

14.2.6 OracleBoolean Static Type Conversions 14-39

14.2.6.1 implicit operator OracleBoolean 14-40

14.2.6.2 explicit operator bool 14-40

14.2.6.3 explicit operator OracleBoolean 14-41

14.2.6.4 explicit operator OracleBoolean(byte) 14-41

14.2.6.5 explicit operator OracleBoolean(Decimal) 14-41

14.2.6.6 explicit operator OracleBoolean(Double) 14-42

14.2.6.7 explicit operator OracleBoolean(Int16) 14-42

14.2.6.8 explicit operator OracleBoolean(int) 14-42

14.2.6.9 explicit operator OracleBoolean(Int64) 14-43

14.2.6.10 explicit operator OracleBoolean(Single) 14-43

14.2.6.11 explicit operator OracleBoolean(String) 14-43

14.2.7 OracleBoolean Properties 14-44

14.2.7.1 ByteValue 14-44

14.2.7.2 IsFalse 14-44

14.2.7.3 IsNull 14-45

14.2.7.4 IsTrue 14-45

14.2.7.5 Value 14-45

14.2.8 OracleBoolean Instance Methods 14-46

14.2.8.1 CompareTo 14-46

xxxviii

14.2.8.2 Equals 14-47

14.2.8.3 GetHashCode 14-47

14.2.8.4 ToString 14-48

14.3 OracleDate Structure 14-48

14.3.1 OracleDate Members 14-49

14.3.2 OracleDate Constructors 14-52

14.3.2.1 OracleDate(DateTime) 14-52

14.3.2.2 OracleDate(string) 14-52

14.3.2.3 OracleDate(int, int, int) 14-54

14.3.2.4 OracleDate(int, int, int, int, int, int) 14-54

14.3.2.5 OracleDate(byte []) 14-55

14.3.3 OracleDate Static Fields 14-55

14.3.3.1 MaxValue 14-55

14.3.3.2 MinValue 14-56

14.3.3.3 Null 14-56

14.3.4 OracleDate Static Methods 14-56

14.3.4.1 Equals 14-57

14.3.4.2 GreaterThan 14-57

14.3.4.3 GreaterThanOrEqual 14-58

14.3.4.4 LessThan 14-58

14.3.4.5 LessThanOrEqual 14-59

14.3.4.6 NotEquals 14-59

14.3.4.7 GetSysDate 14-60

14.3.4.8 Parse 14-60

14.3.5 OracleDate Static Operators 14-61

14.3.5.1 operator == 14-62

14.3.5.2 operator > 14-62

14.3.5.3 operator >= 14-63

14.3.5.4 operator != 14-63

14.3.5.5 operator < 14-64

14.3.5.6 operator <= 14-65

14.3.6 OracleDate Static Type Conversions 14-65

14.3.6.1 explicit operator DateTime 14-65

14.3.6.2 explicit operator OracleDate 14-66

14.3.6.3 explicit operator OracleDate(DateTime) 14-66

14.3.6.4 explicit operator OracleDate(OracleTimeStamp) 14-66

14.3.6.5 explicit operator OracleDate(string) 14-67

14.3.7 OracleDate Properties 14-68

14.3.7.1 BinData 14-69

14.3.7.2 Day 14-69

14.3.7.3 IsNull 14-69

xxxix

14.3.7.4 Hour 14-69

14.3.7.5 Minute 14-70

14.3.7.6 Month 14-70

14.3.7.7 Second 14-70

14.3.7.8 Value 14-71

14.3.7.9 Year 14-71

14.3.8 OracleDate Methods 14-71

14.3.8.1 CompareTo 14-72

14.3.8.2 Equals 14-73

14.3.8.3 GetHashCode 14-73

14.3.8.4 GetDaysBetween 14-73

14.3.8.5 ToOracleTimeStamp 14-74

14.3.8.6 ToString 14-74

14.4 OracleDecimal Structure 14-75

14.4.1 OracleDecimal Members 14-77

14.4.2 OracleDecimal Constructors 14-82

14.4.2.1 OracleDecimal(byte []) 14-83

14.4.2.2 OracleDecimal(decimal) 14-84

14.4.2.3 OracleDecimal(double) 14-84

14.4.2.4 OracleDecimal(int) 14-84

14.4.2.5 OracleDecimal(float) 14-85

14.4.2.6 OracleDecimal(long) 14-85

14.4.2.7 OracleDecimal(string) 14-85

14.4.2.8 OracleDecimal(string, string) 14-86

14.4.3 OracleDecimal Static Fields 14-87

14.4.3.1 MaxPrecision 14-87

14.4.3.2 MaxScale 14-88

14.4.3.3 MaxValue 14-88

14.4.3.4 MinScale 14-88

14.4.3.5 MinValue 14-88

14.4.3.6 NegativeOne 14-88

14.4.3.7 Null 14-89

14.4.3.8 One 14-89

14.4.3.9 Pi 14-89

14.4.3.10 Zero 14-89

14.4.4 OracleDecimal Static (Comparison) Methods 14-89

14.4.4.1 Equals 14-90

14.4.4.2 GreaterThan 14-90

14.4.4.3 GreaterThanOrEqual 14-91

14.4.4.4 LessThan 14-91

14.4.4.5 LessThanOrEqual 14-92

xl

14.4.4.6 NotEquals 14-93

14.4.5 OracleDecimal Static (Manipulation) Methods 14-93

14.4.5.1 Abs 14-94

14.4.5.2 Add 14-95

14.4.5.3 AdjustScale 14-95

14.4.5.4 Ceiling 14-96

14.4.5.5 ConvertToPrecScale 14-97

14.4.5.6 Divide 14-98

14.4.5.7 Floor 14-98

14.4.5.8 Max 14-98

14.4.5.9 Min 14-99

14.4.5.10 Mod 14-99

14.4.5.11 Multiply 14-100

14.4.5.12 Negate 14-100

14.4.5.13 Parse 14-101

14.4.5.14 Round 14-101

14.4.5.15 SetPrecision 14-102

14.4.5.16 Shift 14-103

14.4.5.17 Sign 14-103

14.4.5.18 Sqrt 14-104

14.4.5.19 Subtract 14-104

14.4.5.20 Truncate 14-105

14.4.6 OracleDecimal Static (Logarithmic) Methods 14-105

14.4.6.1 Exp 14-105

14.4.6.2 Log 14-106

14.4.6.3 Log(OracleDecimal) 14-106

14.4.6.4 Log(OracleDecimal, int) 14-107

14.4.6.5 Log(OracleDecimal, OracleDecimal) 14-107

14.4.6.6 Pow 14-108

14.4.6.7 Pow(OracleDecimal, int) 14-108

14.4.6.8 Pow(OracleDecimal, OracleDecimal) 14-109

14.4.7 OracleDecimal Static (Trigonometric) Methods 14-109

14.4.7.1 Acos 14-110

14.4.7.2 Asin 14-110

14.4.7.3 Atan 14-111

14.4.7.4 Atan2 14-111

14.4.7.5 Cos 14-112

14.4.7.6 Sin 14-112

14.4.7.7 Tan 14-113

14.4.7.8 Cosh 14-113

14.4.7.9 Sinh 14-114

xli

14.4.7.10 Tanh 14-114

14.4.8 OracleDecimal Static (Comparison) Operators 14-114

14.4.8.1 operator + 14-115

14.4.8.2 operator / 14-115

14.4.8.3 operator == 14-116

14.4.8.4 operator > 14-116

14.4.8.5 operator >= 14-117

14.4.8.6 operator != 14-118

14.4.8.7 operator < 14-118

14.4.8.8 operator <= 14-119

14.4.8.9 operator * 14-119

14.4.8.10 operator - 14-120

14.4.8.11 operator - 14-120

14.4.8.12 operator% 14-121

14.4.9 OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal) 14-121

14.4.9.1 implicit operator OracleDecimal 14-121

14.4.9.2 implicit operator OracleDecimal(decimal) 14-122

14.4.9.3 implicit operator OracleDecimal(int) 14-122

14.4.9.4 implicit operator OracleDecimal(long) 14-122

14.4.9.5 explicit operator OracleDecimal 14-123

14.4.9.6 explicit operator OracleDecimal(double) 14-123

14.4.9.7 explicit operator OracleDecimal(string) 14-123

14.4.10 OracleDecimal Static Operators (Conversion from OracleDecimal
to .NET) 14-124

14.4.10.1 explicit operator byte 14-124

14.4.10.2 explicit operator decimal 14-125

14.4.10.3 explicit operator double 14-125

14.4.10.4 explicit operator short 14-126

14.4.10.5 explicit operator int 14-126

14.4.10.6 explicit operator long 14-127

14.4.10.7 explicit operator float 14-127

14.4.11 OracleDecimal Properties 14-127

14.4.11.1 BinData 14-128

14.4.11.2 Format 14-128

14.4.11.3 IsInt 14-129

14.4.11.4 IsNull 14-129

14.4.11.5 IsPositive 14-129

14.4.11.6 IsZero 14-130

14.4.11.7 Value 14-130

14.4.12 OracleDecimal Instance Methods 14-130

14.4.12.1 CompareTo 14-131

xlii

14.4.12.2 Equals 14-132

14.4.12.3 GetHashCode 14-132

14.4.12.4 ToByte 14-133

14.4.12.5 ToDouble 14-133

14.4.12.6 ToInt16 14-133

14.4.12.7 ToInt32 14-134

14.4.12.8 ToInt64 14-134

14.4.12.9 ToSingle 14-134

14.4.12.10 ToString 14-135

14.5 OracleIntervalDS Structure 14-135

14.5.1 OracleIntervalDS Members 14-137

14.5.2 OracleIntervalDS Constructors 14-140

14.5.2.1 OracleIntervalDS(TimeSpan) 14-141

14.5.2.2 OracleIntervalDS(string) 14-141

14.5.2.3 OracleIntervalDS(double) 14-141

14.5.2.4 OracleIntervalDS(int, int, int, int, double) 14-142

14.5.2.5 OracleIntervalDS(int, int, int, int, int) 14-143

14.5.2.6 OracleIntervalDS(byte[]) 14-143

14.5.3 OracleIntervalDS Static Fields 14-144

14.5.3.1 MaxValue 14-144

14.5.3.2 MinValue 14-144

14.5.3.3 Null 14-145

14.5.3.4 Zero 14-145

14.5.4 OracleIntervalDS Static Methods 14-145

14.5.4.1 Equals 14-146

14.5.4.2 GreaterThan 14-146

14.5.4.3 GreaterThanOrEqual 14-147

14.5.4.4 LessThan 14-148

14.5.4.5 LessThanOrEqual 14-148

14.5.4.6 NotEquals 14-149

14.5.4.7 Parse 14-149

14.5.4.8 SetPrecision 14-150

14.5.5 OracleIntervalDS Static Operators 14-151

14.5.5.1 operator + 14-151

14.5.5.2 operator == 14-152

14.5.5.3 operator > 14-152

14.5.5.4 operator >= 14-153

14.5.5.5 operator != 14-153

14.5.5.6 operator < 14-154

14.5.5.7 operator <= 14-155

14.5.5.8 operator - 14-155

xliii

14.5.5.9 operator - 14-156

14.5.5.10 operator * 14-156

14.5.5.11 operator / 14-157

14.5.6 OracleIntervalDS Type Conversions 14-157

14.5.6.1 explicit operator TimeSpan 14-157

14.5.6.2 explicit operator OracleIntervalDS 14-158

14.5.6.3 implicit operator OracleIntervalDS 14-158

14.5.7 OracleIntervalDS Properties 14-159

14.5.7.1 BinData 14-159

14.5.7.2 Days 14-160

14.5.7.3 Hours 14-160

14.5.7.4 IsNull 14-160

14.5.7.5 Milliseconds 14-161

14.5.7.6 Minutes 14-161

14.5.7.7 Nanoseconds 14-161

14.5.7.8 Seconds 14-162

14.5.7.9 TotalDays 14-162

14.5.7.10 Value 14-162

14.5.8 OracleIntervalDS Methods 14-162

14.5.8.1 CompareTo 14-163

14.5.8.2 Equals 14-164

14.5.8.3 GetHashCode 14-164

14.5.8.4 ToString 14-164

14.6 OracleIntervalYM Structure 14-165

14.6.1 OracleIntervalYM Members 14-166

14.6.2 OracleIntervalYM Constructors 14-169

14.6.2.1 OracleIntervalYM(long) 14-169

14.6.2.2 OracleIntervalYM(string) 14-170

14.6.2.3 OracleIntervalYM(double) 14-170

14.6.2.4 OracleIntervalYM(int, int) 14-171

14.6.2.5 OracleIntervalYM(byte[]) 14-171

14.6.3 OracleIntervalYM Static Fields 14-172

14.6.3.1 MaxValue 14-172

14.6.3.2 MinValue 14-172

14.6.3.3 Null 14-172

14.6.3.4 Zero 14-173

14.6.4 OracleIntervalYM Static Methods 14-173

14.6.4.1 Equals 14-173

14.6.4.2 GreaterThan 14-174

14.6.4.3 GreaterThanOrEqual 14-174

14.6.4.4 LessThan 14-175

xliv

14.6.4.5 LessThanOrEqual 14-176

14.6.4.6 NotEquals 14-176

14.6.4.7 Parse 14-177

14.6.4.8 SetPrecision 14-177

14.6.5 OracleIntervalYM Static Operators 14-178

14.6.5.1 operator + 14-178

14.6.5.2 operator == 14-179

14.6.5.3 operator > 14-180

14.6.5.4 operator >= 14-180

14.6.5.5 operator != 14-181

14.6.5.6 operator < 14-181

14.6.5.7 operator <= 14-182

14.6.5.8 operator - 14-182

14.6.5.9 operator - 14-183

14.6.5.10 operator * 14-183

14.6.5.11 operator / 14-184

14.6.6 OracleIntervalYM Type Conversions 14-184

14.6.6.1 explicit operator long 14-185

14.6.6.2 explicit operator OracleIntervalYM 14-185

14.6.6.3 implicit operator OracleIntervalYM 14-186

14.6.7 OracleIntervalYM Properties 14-186

14.6.7.1 BinData 14-186

14.6.7.2 IsNull 14-187

14.6.7.3 Months 14-187

14.6.7.4 TotalYears 14-187

14.6.7.5 Value 14-188

14.6.7.6 Years 14-188

14.6.8 OracleIntervalYM Methods 14-188

14.6.8.1 CompareTo 14-189

14.6.8.2 Equals 14-189

14.6.8.3 GetHashCode 14-190

14.6.8.4 ToString 14-190

14.7 OracleString Structure 14-191

14.7.1 OracleString Members 14-192

14.7.2 OracleString Constructors 14-195

14.7.2.1 OracleString(string) 14-195

14.7.2.2 OracleString(string, bool) 14-196

14.7.2.3 OracleString(byte [], bool) 14-196

14.7.2.4 OracleString(byte [], bool, bool) 14-196

14.7.2.5 OracleString(byte [], int, int, bool) 14-197

14.7.2.6 OracleString(byte [], int, int, bool, bool) 14-198

xlv

14.7.3 OracleString Static Fields 14-198

14.7.3.1 Null 14-199

14.7.4 OracleString Static Methods 14-199

14.7.4.1 Concat 14-199

14.7.4.2 Equals 14-200

14.7.4.3 GreaterThan 14-200

14.7.4.4 GreaterThanOrEqual 14-201

14.7.4.5 LessThan 14-201

14.7.4.6 LessThanOrEqual 14-202

14.7.4.7 NotEquals 14-203

14.7.5 OracleString Static Operators 14-203

14.7.5.1 operator + 14-204

14.7.5.2 operator == 14-204

14.7.5.3 operator > 14-205

14.7.5.4 operator >= 14-205

14.7.5.5 operator != 14-206

14.7.5.6 operator < 14-206

14.7.5.7 operator <= 14-207

14.7.6 OracleString Type Conversions 14-207

14.7.6.1 explicit operator string 14-208

14.7.6.2 implicit operator OracleString 14-208

14.7.7 OracleString Properties 14-208

14.7.7.1 IsCaseIgnored 14-209

14.7.7.2 IsNull 14-210

14.7.7.3 Item 14-210

14.7.7.4 Length 14-210

14.7.7.5 Value 14-211

14.7.8 OracleString Methods 14-211

14.7.8.1 Clone 14-211

14.7.8.2 CompareTo 14-212

14.7.8.3 Equals 14-213

14.7.8.4 GetHashCode 14-213

14.7.8.5 GetNonUnicodeBytes 14-214

14.7.8.6 GetUnicodeBytes 14-214

14.7.8.7 ToString 14-214

14.8 OracleTimeStamp Structure 14-215

14.8.1 OracleTimeStamp Members 14-216

14.8.2 OracleTimeStamp Constructors 14-220

14.8.2.1 OracleTimeStamp(DateTime) 14-220

14.8.2.2 OracleTimeStamp(string) 14-221

14.8.2.3 OracleTimeStamp(int, int, int) 14-222

xlvi

14.8.2.4 OracleTimeStamp(int, int, int, int, int, int) 14-222

14.8.2.5 OracleTimeStamp(int, int, int, int, int, int, double) 14-223

14.8.2.6 OracleTimeStamp(int, int, int, int, int, int, int) 14-224

14.8.2.7 OracleTimeStamp(byte []) 14-225

14.8.3 OracleTimeStamp Static Fields 14-225

14.8.3.1 MaxValue 14-225

14.8.3.2 MinValue 14-225

14.8.3.3 Null 14-226

14.8.4 OracleTimeStamp Static Methods 14-226

14.8.4.1 Equals 14-226

14.8.4.2 GreaterThan 14-227

14.8.4.3 GreaterThanOrEqual 14-228

14.8.4.4 LessThan 14-228

14.8.4.5 LessThanOrEqual 14-229

14.8.4.6 NotEquals 14-229

14.8.4.7 GetSysDate 14-230

14.8.4.8 Parse 14-230

14.8.4.9 SetPrecision 14-231

14.8.5 OracleTimeStamp Static Operators 14-232

14.8.5.1 operator + 14-232

14.8.5.2 operator + (OracleTimeStamp, OracleIntervalDS) 14-233

14.8.5.3 operator + (OracleTimeStamp, OracleIntervalYM) 14-233

14.8.5.4 operator + (OracleTimeStamp, TimeSpan) 14-234

14.8.5.5 operator == 14-234

14.8.5.6 operator > 14-235

14.8.5.7 operator >= 14-235

14.8.5.8 operator != 14-236

14.8.5.9 operator < 14-237

14.8.5.10 operator <= 14-237

14.8.5.11 operator - 14-238

14.8.5.12 operator - (OracleTimeStamp, OracleIntervalDS) 14-238

14.8.5.13 operator - (OracleTimeStamp, OracleIntervalYM) 14-239

14.8.5.14 operator - (OracleTimeStamp, TimeSpan) 14-239

14.8.6 OracleTimeStamp Static Type Conversions 14-240

14.8.6.1 explicit operator OracleTimeStamp 14-240

14.8.6.2 explicit operator OracleTimeStamp(OracleTimeStampLTZ) 14-240

14.8.6.3 explicit operator OracleTimeStamp(OracleTimeStampTZ) 14-241

14.8.6.4 explicit operator OracleTimeStamp(string) 14-241

14.8.6.5 implicit operator OracleTimeStamp 14-242

14.8.6.6 implicit operator OracleTimeStamp(OracleDate) 14-243

14.8.6.7 implicit operator OracleTimeStamp(DateTime) 14-243

xlvii

14.8.6.8 explicit operator DateTime 14-243

14.8.7 OracleTimeStamp Properties 14-244

14.8.7.1 BinData 14-244

14.8.7.2 Day 14-245

14.8.7.3 IsNull 14-245

14.8.7.4 Hour 14-245

14.8.7.5 Millisecond 14-246

14.8.7.6 Minute 14-246

14.8.7.7 Month 14-246

14.8.7.8 Nanosecond 14-247

14.8.7.9 Second 14-247

14.8.7.10 Value 14-247

14.8.7.11 Year 14-247

14.8.8 OracleTimeStamp Methods 14-248

14.8.8.1 AddDays 14-249

14.8.8.2 AddHours 14-249

14.8.8.3 AddMilliseconds 14-250

14.8.8.4 AddMinutes 14-250

14.8.8.5 AddMonths 14-250

14.8.8.6 AddNanoseconds 14-251

14.8.8.7 AddSeconds 14-251

14.8.8.8 AddYears 14-252

14.8.8.9 CompareTo 14-252

14.8.8.10 Equals 14-253

14.8.8.11 GetHashCode 14-254

14.8.8.12 GetDaysBetween 14-254

14.8.8.13 GetYearsBetween 14-254

14.8.8.14 ToOracleDate 14-255

14.8.8.15 ToOracleTimeStampLTZ 14-255

14.8.8.16 ToOracleTimeStampTZ 14-255

14.8.8.17 ToString 14-256

14.9 OracleTimeStampLTZ Structure 14-257

14.9.1 OracleTimeStampLTZ Members 14-258

14.9.2 OracleTimeStampLTZ Constructors 14-262

14.9.2.1 OracleTimeStampLTZ(DateTime) 14-263

14.9.2.2 OracleTimeStampLTZ(string) 14-263

14.9.2.3 OracleTimeStampLTZ(int, int, int) 14-264

14.9.2.4 OracleTimeStampLTZ(int, int, int, int, int, int) 14-265

14.9.2.5 OracleTimeStampLTZ(int, int, int, int, int, int, double) 14-266

14.9.2.6 OracleTimeStampLTZ(int, int, int, int, int, int, int) 14-266

14.9.2.7 OracleTimeStampLTZ(byte []) 14-267

xlviii

14.9.3 OracleTimeStampLTZ Static Fields 14-268

14.9.3.1 MaxValue 14-268

14.9.3.2 MinValue 14-268

14.9.3.3 Null 14-268

14.9.4 OracleTimeStampLTZ Static Methods 14-269

14.9.4.1 Equals 14-269

14.9.4.2 GetLocalTimeZoneName 14-270

14.9.4.3 GetLocalTimeZoneOffset 14-270

14.9.4.4 GetSysDate 14-270

14.9.4.5 GreaterThan 14-270

14.9.4.6 GreaterThanOrEqual 14-271

14.9.4.7 LessThan 14-272

14.9.4.8 LessThanOrEqual 14-272

14.9.4.9 NotEquals 14-273

14.9.4.10 Parse 14-273

14.9.4.11 SetPrecision 14-275

14.9.5 OracleTimeStampLTZ Static Operators 14-275

14.9.5.1 operator + 14-276

14.9.5.2 operator + (OracleTimeStampLTZ, OracleIntervalDS) 14-276

14.9.5.3 operator + (OracleTimeStampLTZ, OracleIntervalYM) 14-277

14.9.5.4 operator + (OracleTimeStampLTZ, TimeSpan) 14-277

14.9.5.5 operator == 14-278

14.9.5.6 operator > 14-278

14.9.5.7 operator >= 14-279

14.9.5.8 operator != 14-279

14.9.5.9 operator < 14-280

14.9.5.10 operator <= 14-281

14.9.5.11 operator - 14-281

14.9.5.12 operator - (OracleTimeStampLTZ, OracleIntervalDS) 14-282

14.9.5.13 operator - (OracleTimeStampLTZ, OracleIntervalYM) 14-282

14.9.5.14 operator - (OracleTimeStampLTZ, TimeSpan) 14-283

14.9.6 OracleTimeStampLTZ Static Type Conversions 14-283

14.9.6.1 explicit operator OracleTimeStampLTZ 14-283

14.9.6.2 explicit operator OracleTimeStampLTZ(OracleTimeStamp) 14-284

14.9.6.3 explicit operator OracleTimeStampLTZ(OracleTimeStampTZ) 14-284

14.9.6.4 explicit operator OracleTimeStampLTZ(string) 14-285

14.9.6.5 implicit operator OracleTimeStampLTZ 14-286

14.9.6.6 implicit operator OracleTimeStampLTZ(OracleDate) 14-286

14.9.6.7 implicit operator OracleTimeStampLTZ(DateTime) 14-287

14.9.6.8 explicit operator DateTime 14-287

14.9.7 OracleTimeStampLTZ Properties 14-287

xlix

14.9.7.1 BinData 14-288

14.9.7.2 Day 14-288

14.9.7.3 IsNull 14-289

14.9.7.4 Hour 14-289

14.9.7.5 Millisecond 14-289

14.9.7.6 Minute 14-289

14.9.7.7 Month 14-290

14.9.7.8 Nanosecond 14-290

14.9.7.9 Second 14-290

14.9.7.10 Value 14-291

14.9.7.11 Year 14-291

14.9.8 OracleTimeStampLTZ Methods 14-291

14.9.8.1 AddDays 14-292

14.9.8.2 AddHours 14-293

14.9.8.3 AddMilliseconds 14-293

14.9.8.4 AddMinutes 14-294

14.9.8.5 AddMonths 14-294

14.9.8.6 AddNanoseconds 14-295

14.9.8.7 AddSeconds 14-295

14.9.8.8 AddYears 14-295

14.9.8.9 CompareTo 14-296

14.9.8.10 Equals 14-297

14.9.8.11 GetHashCode 14-297

14.9.8.12 GetDaysBetween 14-298

14.9.8.13 GetYearsBetween 14-298

14.9.8.14 ToOracleDate 14-298

14.9.8.15 ToOracleTimeStamp 14-299

14.9.8.16 ToOracleTimeStampTZ 14-299

14.9.8.17 ToString 14-300

14.9.8.18 ToUniversalTime 14-301

14.10 OracleTimeStampTZ Structure 14-301

14.10.1 OracleTimeStampTZ Members 14-303

14.10.2 OracleTimeStampTZ Constructors 14-307

14.10.2.1 OracleTimeStampTZ(DateTime) 14-308

14.10.2.2 OracleTimeStampTZ(DateTime, string) 14-308

14.10.2.3 OracleTimeStampTZ(string) 14-309

14.10.2.4 OracleTimeStampTZ(int, int, int) 14-310

14.10.2.5 OracleTimeStampTZ(int, int, int, string) 14-311

14.10.2.6 OracleTimeStampTZ(int, int, int, int, int, int) 14-312

14.10.2.7 OracleTimeStampTZ(int, int, int, int, int, int, string) 14-313

14.10.2.8 OracleTimeStampTZ(int, int, int, int, int, int, double) 14-314

l

14.10.2.9 OracleTimeStampTZ(int, int, int, int, int, int, double, string) 14-315

14.10.2.10 OracleTimeStampTZ(int, int, int, int, int, int, int) 14-316

14.10.2.11 OracleTimeStampTZ(int, int, int, int, int, int, int, string) 14-317

14.10.2.12 OracleTimeStampTZ(byte []) 14-318

14.10.3 OracleTimeStampTZ Static Fields 14-318

14.10.3.1 MaxValue 14-318

14.10.3.2 MinValue 14-319

14.10.3.3 Null 14-319

14.10.4 OracleTimeStampTZ Static Methods 14-319

14.10.4.1 Equals 14-320

14.10.4.2 GetSysDate 14-320

14.10.4.3 GreaterThan 14-321

14.10.4.4 GreaterThanOrEqual 14-321

14.10.4.5 LessThan 14-322

14.10.4.6 LessThanOrEqual 14-322

14.10.4.7 NotEquals 14-323

14.10.4.8 Parse 14-323

14.10.4.9 SetPrecision 14-325

14.10.5 OracleTimeStampTZ Static Operators 14-325

14.10.5.1 operator + 14-326

14.10.5.2 operator +(OracleTimeStampTZ, OracleIntervalDS) 14-326

14.10.5.3 operator +(OracleTimeStampTZ, OracleIntervalYM) 14-327

14.10.5.4 operator +(OracleTimeStampTZ, TimeSpan) 14-327

14.10.5.5 operator == 14-328

14.10.5.6 operator > 14-328

14.10.5.7 operator >= 14-329

14.10.5.8 operator != 14-329

14.10.5.9 operator < 14-330

14.10.5.10 operator <= 14-331

14.10.5.11 operator - 14-331

14.10.5.12 operator - (OracleTimeStampTZ, OracleIntervalDS) 14-332

14.10.5.13 operator - (OracleTimeStampTZ, OracleIntervalYM) 14-332

14.10.5.14 operator - (OracleTimeStampTZ value1, TimeSpan value2) 14-333

14.10.6 OracleTimeStampTZ Static Type Conversions 14-333

14.10.6.1 explicit operator OracleTimeStampTZ 14-333

14.10.6.2 explicit operator OracleTimeStampTZ(OracleTimeStamp) 14-334

14.10.6.3 explicit operator OracleTimeStampTZ(OracleTimeStampLTZ) 14-334

14.10.6.4 explicit operator OracleTimeStampTZ(string) 14-335

14.10.6.5 implicit operator OracleTimeStampTZ 14-336

14.10.6.6 implicit operator OracleTimeStampTZ(OracleDate) 14-336

14.10.6.7 implicit operator OracleTimeStampTZ(DateTime) 14-337

li

14.10.6.8 explicit operator DateTime 14-337

14.10.7 OracleTimeStampTZ Properties 14-338

14.10.7.1 BinData 14-338

14.10.7.2 Day 14-339

14.10.7.3 IsNull 14-339

14.10.7.4 Hour 14-339

14.10.7.5 Millisecond 14-340

14.10.7.6 Minute 14-340

14.10.7.7 Month 14-340

14.10.7.8 Nanosecond 14-341

14.10.7.9 Second 14-341

14.10.7.10 TimeZone 14-341

14.10.7.11 Value 14-342

14.10.7.12 Year 14-342

14.10.8 OracleTimeStampTZ Methods 14-342

14.10.8.1 AddDays 14-343

14.10.8.2 AddHours 14-344

14.10.8.3 AddMilliseconds 14-344

14.10.8.4 AddMinutes 14-345

14.10.8.5 AddMonths 14-345

14.10.8.6 AddNanoseconds 14-345

14.10.8.7 AddSeconds 14-346

14.10.8.8 AddYears 14-346

14.10.8.9 CompareTo 14-347

14.10.8.10 Equals 14-348

14.10.8.11 GetDaysBetween 14-348

14.10.8.12 GetHashCode 14-349

14.10.8.13 GetTimeZoneOffset 14-349

14.10.8.14 GetYearsBetween 14-349

14.10.8.15 ToLocalTime 14-350

14.10.8.16 ToOracleDate 14-350

14.10.8.17 ToOracleTimeStampLTZ 14-350

14.10.8.18 ToOracleTimeStamp 14-351

14.10.8.19 ToString 14-351

14.10.8.20 ToUniversalTime 14-352

14.11 INullable Interface 14-353

14.11.1 INullable Interface Members 14-353

14.11.2 INullable Interface Properties 14-353

14.11.2.1 IsNull 14-354

lii

15

Oracle Data Provider for .NET Types Exceptions

15.1 OracleTypeException Class 15-1

15.1.1 OracleTypeException Members 15-1

15.1.2 OracleTypeException Constructors 15-3

15.1.2.1 OracleTypeException(string) 15-3

15.1.2.2 OracleTypeException(SerializationInfo, StreamingContext) 15-3

15.1.3 OracleTypeException Static Methods 15-4

15.1.4 OracleTypeException Properties 15-4

15.1.4.1 Message 15-4

15.1.4.2 Number 15-5

15.1.4.3 Source 15-5

15.1.5 OracleTypeException Methods 15-5

15.1.5.1 ToString 15-5

15.2 OracleNullValueException Class 15-6

15.2.1 OracleNullValueException Members 15-6

15.2.2 OracleNullValueException Constructors 15-8

15.2.2.1 OracleNullValueException() 15-8

15.2.2.2 OracleNullValueException(string) 15-8

15.2.3 OracleNullValueException Static Methods 15-8

15.2.4 OracleNullValueException Properties 15-9

15.2.5 OracleNullValueException Methods 15-9

15.3 OracleTruncateException Class 15-9

15.3.1 OracleTruncateException Members 15-10

15.3.2 OracleTruncateException Constructors 15-11

15.3.2.1 OracleTruncateException() 15-11

15.3.2.2 OracleTruncateException(string) 15-12

15.3.3 OracleTruncateException Static Methods 15-12

15.3.4 OracleTruncateException Properties 15-12

15.3.5 OracleTruncateException Methods 15-12

16

Oracle Data Provider for .NET UDT-Related Classes

16.1 OracleCustomTypeMappingAttribute Class 16-1

16.1.1 OracleCustomTypeMappingAttribute Members 16-2

16.1.2 OracleCustomTypeMappingAttribute Constructors 16-3

16.1.2.1 OracleCustomTypeMappingAttribute(string) 16-4

16.1.3 OracleCustomTypeMappingAttribute Static Methods 16-4

16.1.4 OracleCustomTypeMappingAttribute Properties 16-4

16.1.4.1 UdtTypeName 16-5

16.1.5 OracleCustomTypeMappingAttribute Methods 16-5

16.2 OracleObjectMappingAttribute Class 16-5

liii

16.2.1 OracleObjectMappingAttribute Members 16-6

16.2.2 OracleObjectMappingAttribute Constructors 16-7

16.2.2.1 OracleObjectMappingAttribute(string) 16-7

16.2.2.2 OracleObjectMappingAttribute(int) 16-8

16.2.3 OracleObjectMappingAttribute Static Methods 16-8

16.2.4 OracleObjectMappingAttribute Properties 16-8

16.2.4.1 AttributeIndex 16-9

16.2.4.2 AttributeName 16-9

16.2.5 OracleObjectMappingAttribute Methods 16-9

16.3 OracleArrayMappingAttribute Class 16-10

16.3.1 OracleArrayMappingAttribute Members 16-11

16.3.2 OracleArrayMappingAttribute Constructors 16-12

16.3.2.1 OracleArrayMappingAttribute() 16-12

16.3.3 OracleArrayMappingAttribute Static Methods 16-12

16.3.4 OracleArrayMappingAttribute Properties 16-13

16.3.5 OracleArrayMappingAttribute Methods 16-13

16.4 IOracleCustomType Interface 16-13

16.4.1 IOracleCustomType Members 16-14

16.4.2 IOracleCustomType Interface Methods 16-14

16.4.2.1 FromCustomObject 16-14

16.4.2.2 ToCustomObject 16-15

16.5 IOracleCustomTypeFactory Interface 16-15

16.5.1 IOracleCustomTypeFactory Members 16-16

16.5.2 IOracleCustomTypeFactory Interface Methods 16-16

16.5.2.1 CreateObject 16-16

16.6 IOracleArrayTypeFactory Interface 16-17

16.6.1 IOracleArrayTypeFactory Members 16-17

16.6.2 IOracleArrayTypeFactory Interface Methods 16-18

16.6.2.1 CreateArray 16-18

16.6.2.2 CreateStatusArray 16-18

16.7 OracleUdt Class 16-19

16.7.1 OracleUdt Members 16-19

16.7.2 OracleUDT Static Methods 16-20

16.7.2.1 GetValue 16-20

16.7.2.2 GetValue(OracleConnection, IntPtr, string) 16-21

16.7.2.3 GetValue(OracleConnection, IntPtr, int) 16-22

16.7.2.4 GetValue(OracleConnection, IntPtr, string, out object) 16-23

16.7.2.5 GetValue(OracleConnection, IntPtr, int, out object) 16-24

16.7.2.6 IsDBNull 16-25

16.7.2.7 IsDBNull(OracleConnection, IntPtr, string) 16-25

16.7.2.8 IsDBNull(OracleConnection, IntPtr, int) 16-26

liv

16.7.2.9 SetValue 16-26

16.7.2.10 SetValue(OracleConnection, IntPtr, string, object) 16-27

16.7.2.11 SetValue(OracleConnection, IntPtr, int, object) 16-28

16.7.2.12 SetValue(OracleConnection, IntPtr, string, object, object) 16-29

16.7.2.13 SetValue(OracleConnection, IntPtr, int, object, object) 16-30

16.8 OracleRef Class 16-31

16.8.1 OracleRef Members 16-31

16.8.2 OracleRef Constructors 16-33

16.8.2.1 OracleRef(OracleConnection, string) 16-33

16.8.2.2 OracleRef(OracleConnection, string, string) 16-34

16.8.3 OracleRef Static Fields 16-35

16.8.3.1 Null 16-35

16.8.4 OracleRef Static Methods 16-35

16.8.5 OracleRef Instance Properties 16-35

16.8.5.1 Connection 16-36

16.8.5.2 HasChanges 16-36

16.8.5.3 IsLocked 16-36

16.8.5.4 IsNull 16-37

16.8.5.5 ObjectTableName 16-37

16.8.5.6 Value 16-38

16.8.6 Oracle Ref Instance Methods 16-38

16.8.6.1 Clone 16-39

16.8.6.2 Delete 16-39

16.8.6.3 Dispose 16-40

16.8.6.4 Flush 16-40

16.8.6.5 GetCustomObject 16-40

16.8.6.6 GetCustomObject(OracleUdtFetchOption) 16-41

16.8.6.7 GetCustomObject(OracleUdtFetchOption, int) 16-42

16.8.6.8 GetCustomObjectForUpdate 16-43

16.8.6.9 GetCustomObjectForUpdate(bool) 16-43

16.8.6.10 GetCustomObjectForUpdate(bool, int) 16-44

16.8.6.11 IsEqual 16-45

16.8.6.12 Lock 16-46

16.8.6.13 Update 16-46

16.9 OracleUdtFetchOption Enumeration 16-47

16.10 OracleUdtStatus Enumeration 16-48

17

Oracle Data Provider for .NET Bulk Copy Classes

17.1 OracleBulkCopy Class 17-1

17.1.1 OracleBulkCopy Members 17-2

lv

17.1.2 OracleBulkCopy Constructors 17-3

17.1.2.1 OracleBulkCopy(OracleConnection) 17-4

17.1.2.2 OracleBulkCopy(string) 17-4

17.1.2.3 OracleBulkCopy(OracleConnection, OracleBulkCopyOptions) 17-5

17.1.2.4 OracleBulkCopy(string, OracleBulkCopyOptions) 17-5

17.1.3 OracleBulkCopy Properties 17-6

17.1.3.1 BatchSize 17-7

17.1.3.2 BulkCopyOptions 17-7

17.1.3.3 BulkCopyTimeout 17-8

17.1.3.4 ColumnMappings 17-8

17.1.3.5 Connection 17-9

17.1.3.6 DestinationPartitionName 17-9

17.1.3.7 DestinationTableName 17-9

17.1.3.8 NotifyAfter 17-10

17.1.4 OracleBulkCopy Public Methods 17-10

17.1.4.1 Close 17-11

17.1.4.2 Dispose 17-11

17.1.4.3 WriteToServer 17-11

17.1.4.4 WriteToServer(DataRow[]) 17-12

17.1.4.5 WriteToServer(DataTable) 17-12

17.1.4.6 WriteToServer(IDataReader) 17-13

17.1.4.7 WriteToServer(DataTable, DataRowState) 17-14

17.1.4.8 WriteToServer(OracleRefCursor) 17-14

17.1.5 OracleBulkCopy Events 17-15

17.1.5.1 OracleRowsCopied 17-15

17.2 OracleBulkCopyColumnMapping Class 17-15

17.2.1 OracleBulkCopyColumnMapping Members 17-16

17.2.2 OracleBulkCopyColumnMapping Constructors 17-17

17.2.2.1 OracleBulkCopyColumnMapping() 17-18

17.2.2.2 OracleBulkCopyColumnMapping(int, int) 17-18

17.2.2.3 OracleBulkCopyColumnMapping(int, string) 17-18

17.2.2.4 OracleBulkCopyColumnMapping(string, int) 17-19

17.2.2.5 OracleBulkCopyColumnMapping(string, string) 17-19

17.2.3 OracleBulkCopyColumnMapping Methods 17-19

17.2.3.1 CompareTo 17-20

17.2.4 OracleBulkCopyColumnMapping Properties 17-20

17.2.4.1 DestinationColumn 17-21

17.2.4.2 DestinationOrdinal 17-21

17.2.4.3 SourceColumn 17-21

17.2.4.4 SourceOrdinal 17-22

17.3 OracleBulkCopyColumnMappingCollection Class 17-22

lvi

17.3.1 OracleBulkCopyColumnMappingCollection Members 17-23

17.3.2 OracleBulkCopyColumnMappingCollection Properties 17-24

17.3.2.1 Item[index] 17-24

17.3.3 OracleBulkCopyColumnMappingCollection Public Methods 17-25

17.3.3.1 Add 17-25

17.3.3.2 Add(OracleBulkCopyColumnMapping) 17-26

17.3.3.3 Add(int, int) 17-26

17.3.3.4 Add(int, string) 17-27

17.3.3.5 Add(string, int) 17-28

17.3.3.6 Add(string, string) 17-28

17.3.3.7 Clear 17-29

17.3.3.8 Contains 17-30

17.3.3.9 CopyTo 17-30

17.3.3.10 IndexOf 17-30

17.3.3.11 Insert 17-31

17.3.3.12 Remove 17-31

17.3.3.13 RemoveAt 17-32

17.4 OracleBulkCopyOptions Enumeration 17-32

17.5 OracleRowsCopiedEventHandler Delegate 17-33

17.6 OracleRowsCopiedEventArgs Class 17-34

17.6.1 OracleRowsCopiedEventArgs Members 17-35

17.6.2 OracleRowsCopiedEventArgs Constructors 17-35

17.6.2.1 OracleRowsCopiedEventArgs(long) 17-36

17.6.3 OracleRowsCopiedEventArgs Properties 17-36

17.6.3.1 Abort 17-36

17.6.3.2 RowsCopied 17-37

A Oracle Schema Collections

A.1 Common Schema Collections A-1

A.1.1 MetaDataCollections A-1

A.1.2 DataSourceInformation A-2

A.1.3 DataTypes A-3

A.1.4 Restrictions A-5

A.1.5 ReservedWords A-5

A.2 ODP.NET-Specific Schema Collection A-5

A.2.1 Tables A-6

A.2.2 Columns A-6

A.2.3 Views A-7

A.2.4 XMLSchema A-7

A.2.5 Users A-8

lvii

A.2.6 Synonyms A-8

A.2.7 Sequences A-9

A.2.8 Functions A-9

A.2.9 Procedures A-10

A.2.10 ProcedureParameters A-11

A.2.11 Arguments A-12

A.2.12 Packages A-13

A.2.13 PackageBodies A-13

A.2.14 JavaClasses A-14

A.2.15 Indexes A-15

A.2.16 IndexColumns A-17

A.2.17 PrimaryKeys A-18

A.2.18 ForeignKeys A-19

A.2.19 ForeignKeyColumns A-20

A.2.20 UniqueKeys A-20

B Mapping LINQ Canonical Functions and Oracle Functions

Glossary

Index

lviii

List of Examples

2-1 Setting the profile which could be used for all connections 2-26

2-2 Setting the Profile for a Specific Data Source 2-27

2-3 Setting the Profile for a Specific User Id 2-27

2-4 Setting the Profile for a Specific Data Source and User Id' 2-27

2-5 Configuring Multiple Default Profile Entries 2-27

3-1 Using the add Element with bindinfo 3-89

3-2 Using the add Element with metadata 3-89

4-1 First Sample ODP.NET, Unmanaged Driver Application Configuration File to Custom

Map the Number (p,0) Data Type 4-15

4-2 Second Sample ODP.NET, Unmanaged Driver Application Configuration File to

Custom Map the Number (p,0) Data Type 4-15

4-3 Sample ODP.NET, Managed Driver Application Configuration File to Custom Map the

Number Data Type 4-15

lix

List of Tables

1-1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client 1-6

1-2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations 1-11

1-3 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Structures 1-14

1-4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Exceptions 1-15

1-5 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes 1-15

1-6 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces 1-16

1-7 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations 1-17

1-8 Application Programming Interfaces not supported in ODP.NET, Managed Driver 1-17

2-1 ODP.NET, Managed Driver Files with Descriptions 2-8

2-2 Configuration Attributes 2-15

2-3 Encryption Algorithms for ODP.NET, Managed Driver 2-35

2-4 Microsoft Active Directory: Encryption Types and Authentication Credentials For

Connecting and Binding 2-36

2-5 Oracle Internet Directory: Encryption Types and Authentication Credentials For

Connecting and Binding 2-36

2-6 Required ONS Configuration Parameters 2-39

2-7 Optional ONS Configuration Parameters 2-39

2-8 Supported ODP.NET Type and .NET Framework Version for Distributed Transaction 2-42

2-9 Configuration Differences between ODP.NET, Unmanaged Driver and ODP.NET,

Managed Driver 2-44

3-1 ODP.NET Classes that Inherit from ADO.NET 2.0 Base Classes 3-2

3-2 Supported Connection String Attributes 3-6

3-3 Performance Counters for Connection Pooling 3-26

3-4 Field Names of Performance Counters and Maximum Number of Characters 3-28

3-5 Configurations for ODP.NET Driver Types 3-38

3-6 Implication of Committed and UserCallCompleted Values 3-44

3-7 OracleDbType Enumeration Values 3-54

3-8 Inference of System.Data.DbType from OracleDbType 3-56

3-9 Inference of OracleDbType from DbType 3-57

3-10 Inference of DbType and OracleDbType from Value (.NET Datatypes) 3-58

3-11 Inference of DbType and OracleDbType from Value (ODP.NET Types) 3-58

3-12 OracleParameterStatus Members 3-65

3-13 Value Property Type of ODP.NET Type 3-70

3-14 .NET Type Accessors 3-72

3-15 ODP.NET Type Accessors 3-74

lx

3-16 Supported OracleDataReader CLOB Methods for InitialLOBFetchSize of -1 and

LegacyEntireLobFetch of 1 3-78

3-17 Supported OracleDataReader BLOB Methods for InitialLOBFetchSize of -1 and

LegacyEntireLobFetch of 1 3-79

3-18 Allowed Parameters in Attributes List 3-88

3-19 ODP.NET LOB Objects 3-95

3-20 Characters with Special Meaning in XML 3-101

3-21 Attribute Mappings Between UDTs and Custom Object Types 3-117

3-22 Type and Value Returned from OracleDataReader Object 3-119

3-23 Values Returned from OracleDataReader Methods 3-120

3-24 Valid Ways to Bind Input Parameters for Oracle UDTs 3-121

3-25 Valid Ways to Bind Output Parameters for Oracle UDTs 3-122

3-26 Types that Populate the DataSet with ADO.NET 2.0 3-123

3-27 Mapping AQ Features with their ODP.NET Implementation 3-129

3-28 Oracle NUMBER to .NET Decimal Comparisons 3-140

3-29 Oracle Date to .NET DateTime Comparisons 3-140

3-30 Oracle TimeStamp to .NET DateTime Comparisons 3-140

3-31 Oracle INTERVAL DAY TO SECOND to .NET TimeSpan Comparisons 3-141

4-1 Mapping of Oracle Data Types and EDM Types 4-3

4-2 EDM Type Facets for Bfile 4-6

4-3 EDM Type Facets for Blob 4-6

4-4 EDM Type Facets for Char 4-7

4-5 EDM Type Facets for Clob 4-7

4-6 EDM Type Facets for Date 4-7

4-7 EDM Type Facets for Float 4-7

4-8 EDM Type Facets for Interval Day To Second 4-8

4-9 EDM Type Facets for Interval Year To Month 4-8

4-10 EDM Type Facets for Long 4-9

4-11 EDM Type Facets for Long Raw 4-9

4-12 EDM Type Facets for NChar 4-9

4-13 EDM Type Facets for NClob 4-10

4-14 EDM Type Facets for Number 4-10

4-15 EDM Type Facets for NVarchar2 4-10

4-16 EDM Type Facets for Raw 4-11

4-17 EDM Type Facets for ROWID 4-11

4-18 EDM Type Facets for Timestamp 4-12

4-19 EDM Type Facets for Timestamp with Local Time Zone 4-12

lxi

4-20 EDM Type Facets for Timestamp with Time Zone 4-12

4-21 EDM Type Facets for UROWID 4-12

4-22 EDM Type Facets for Varchar2 4-13

4-23 EDM Type Facets for XMLType 4-13

4-24 Mapping of .NET Data Types to Oracle Data Types 4-20

4-25 Mapping of Data Annotations and the Code First Fluent APIs 4-23

5-1 API Support Comparison Between Client Application and .NET Stored Procedure 5-6

6-1 OracleClientFactory Field 6-3

6-2 OracleClientFactory Constructor 6-3

6-3 OracleClientFactory Public Properties 6-3

6-4 OracleClientFactory Public Method 6-4

6-5 OracleClientFactory Field 6-4

6-6 OracleClientFactory Public Properties 6-5

6-7 OracleClientFactory Public Method 6-5

6-8 OracleCommand Constructors 6-10

6-9 OracleCommand Static Method 6-10

6-10 OracleCommand Properties 6-10

6-11 OracleCommand Public Methods 6-12

6-12 OracleCommand Static Method 6-14

6-13 OracleCommand Properties 6-14

6-14 OracleCommand Public Methods 6-30

6-15 OracleCommandBuilder Constructors 6-45

6-16 OracleCommandBuilder Static Methods 6-45

6-17 OracleCommandBuilder Properties 6-45

6-18 OracleCommandBuilder Public Methods 6-46

6-19 OracleCommandBuilder Events 6-47

6-20 OracleCommandBuilder Static Methods 6-48

6-21 OracleCommandBuilder Properties 6-50

6-22 OracleCommandBuilder Public Methods 6-54

6-23 OracleCommandBuilder Event 6-61

6-24 OracleConnection Constructors 6-63

6-25 OracleConnection Static Property 6-63

6-26 OracleConnection Static Methods 6-63

6-27 OracleConnection Properties 6-64

6-28 OracleConnection Public Methods 6-64

6-29 OracleConnection Events 6-66

6-30 OracleConnection Static Property 6-67

lxii

6-31 OracleConnection Static Methods 6-68

6-32 OracleConnection Properties 6-71

6-33 Supported Connection String Attributes 6-74

6-34 OracleConnection Public Methods 6-83

6-35 OracleConnection Events 6-103

6-36 OracleConnectionStringBuilder Constructors 6-109

6-37 OracleConnectionStringBuilder Public Properties 6-109

6-38 OracleConnectionStringBuilder Public Methods 6-111

6-39 OracleConnectionStringBuilder Public Properties 6-112

6-40 OracleConnectionStringBuilder Public Methods 6-124

6-41 OracleDataAdapter Constructors 6-128

6-42 OracleDataAdapter Static Method 6-129

6-43 OracleDataAdapter Properties 6-129

6-44 OracleDataAdapter Public Methods 6-130

6-45 OracleDataAdapter Events 6-130

6-46 OracleDataAdapter Static Method 6-133

6-47 OracleDataAdapter Properties 6-133

6-48 OracleDataAdapter Public Methods 6-139

6-49 OracleDataAdapter Events 6-143

6-50 OracleDatabase Constructors 6-147

6-51 OracleDatabase Properties 6-147

6-52 OracleDatabase Public Methods 6-148

6-53 OracleDatabase Properties 6-148

6-54 OracleDatabase Public Methods 6-149

6-55 OracleDataReader Static Method 6-157

6-56 OracleDataReader Properties 6-157

6-57 OracleDataReader Public Methods 6-158

6-58 OracleDataReader Static Method 6-160

6-59 OracleDataReader Properties 6-161

6-60 OracleDataReader Public Methods 6-170

6-61 OracleDataReader SchemaTable 6-203

6-62 OracleDataSourceEnumerator Method 6-213

6-63 OracleDataSourceEnumerator Method 6-214

6-64 OracleDataSourceEnumerator Method 6-214

6-65 OracleError Static Method 6-216

6-66 OracleError Properties 6-217

6-67 OracleError Methods 6-217

lxiii

6-68 OracleError Static Method 6-217

6-69 OracleError Properties 6-217

6-70 OracleError Methods 6-220

6-71 OracleErrorCollection Static Methods 6-222

6-72 OracleErrorCollection Properties 6-222

6-73 OracleErrorCollection Public Methods 6-222

6-74 OracleErrorCollection Static Method 6-223

6-75 OracleErrorCollection Properties 6-223

6-76 OracleErrorCollection Public Methods 6-223

6-77 OracleException Static Method 6-225

6-78 OracleException Properties 6-225

6-79 OracleException Methods 6-226

6-80 OracleException Static Method 6-226

6-81 OracleException Properties 6-227

6-82 OracleException Methods 6-230

6-83 OracleInfoMessageEventArgs Static Method 6-233

6-84 OracleInfoMessageEventArgs Properties 6-233

6-85 OracleInfoMessageEventArgs Public Methods 6-234

6-86 OracleInfoMessageEventArgs Static Method 6-234

6-87 OracleInfoMessageEventArgs Properties 6-234

6-88 OracleInfoMessageEventArgs Public Methods 6-235

6-89 OracleLogicalTransaction Public Read-Only Properties 6-237

6-90 OracleLogicalTransaction Methods 6-237

6-91 OracleLogicalTransaction Public Read-Only Properties 6-238

6-92 Outcome of OracleLogicalTransaction Committed and UserCallCompleted Properties 6-238

6-93 OracleLogicalTransaction Methods 6-240

6-94 OracleParameter Constructors 6-243

6-95 OracleParameter Static Methods 6-243

6-96 OracleParameter Properties 6-244

6-97 OracleParameter Public Methods 6-245

6-98 OracleParameter Static Method 6-254

6-99 OracleParameter Properties 6-255

6-100 OracleParameter Public Methods 6-267

6-101 OracleParameterCollection Static Methods 6-272

6-102 OracleParameterCollection Properties 6-272

6-103 OracleParameterCollection Public Methods 6-273

6-104 OracleParameterCollection Static Method 6-273

lxiv

6-105 OracleParameterCollection Properties 6-274

6-106 OracleParameterCollection Public Methods 6-277

6-107 OraclePermission Constructor 6-293

6-108 OraclePermission Static Methods 6-294

6-109 OraclePermission Public Properties 6-294

6-110 OraclePermission Public Methods 6-294

6-111 OraclePermission Static Methods 6-295

6-112 OraclePermission Public Properties 6-296

6-113 OraclePermission Public Methods 6-296

6-114 OraclePermission Constructor 6-299

6-115 OraclePermissionAttribute Static Methods 6-299

6-116 OraclePermissionAttribute Public Properties 6-300

6-117 OraclePermissionAttribute Public Methods 6-300

6-118 OraclePermissionAttribute Static Methods 6-301

6-119 OraclePermissionAttribute Public Properties 6-301

6-120 OraclePermissionAttribute Public Methods 6-302

6-121 OracleRowUpdatedEventArgs Constructors 6-303

6-122 OracleRowUpdatedEventArgs Static Method 6-303

6-123 OracleRowUpdatedEventArgs Properties 6-303

6-124 OracleRowUpdatedEventArgs Public Methods 6-304

6-125 OracleRowUpdatedEventArgs Static Method 6-305

6-126 OracleRowUpdatedEventArgs Properties 6-305

6-127 OracleRowUpdatedEventArgs Public Methods 6-306

6-128 OracleRowUpdatingEventArgs Constructors 6-307

6-129 OracleRowUpdatingEventArgs Static Methods 6-308

6-130 OracleRowUpdatingEventArgs Properties 6-308

6-131 OracleRowUpdatingEventArgs Public Methods 6-308

6-132 OracleRowUpdatingEventArgs Static Method 6-309

6-133 OracleRowUpdatingEventArgs Properties 6-309

6-134 OracleRowUpdatingEventArgs Public Methods 6-310

6-135 OracleShardingKey Constructors 6-312

6-136 OracleShardingKey Instance Methods 6-313

6-137 OracleShardingKey Instance Methods 6-314

6-138 OracleTransaction Static Method 6-317

6-139 OracleTransaction Properties 6-317

6-140 OracleTransaction Public Methods 6-318

6-141 OracleTransaction Static Method 6-318

lxv

6-142 OracleTransaction Properties 6-318

6-143 OracleTransaction Public Methods 6-319

6-144 OracleConnectionType Enumeration Values 6-326

6-145 OracleCollectionType Enumeration Values 6-327

6-146 OracleDBShutdownMode Enumeration Values 6-327

6-147 OracleDBStartupMode Enumeration Values 6-328

6-148 OracleDbType Enumeration Values 6-328

6-149 OracleIdentityType Members 6-330

6-150 OracleParameterStatus Members 6-330

7-1 OracleXmlCommandType Members 7-1

7-2 OracleXmlQueryProperties Constructors 7-5

7-3 OracleXmlQueryProperties Properties 7-5

7-4 OracleXmlQueryProperties Public Methods 7-5

7-5 OracleXmlQueryProperties Properties 7-6

7-6 OracleXmlQueryProperties Public Methods 7-8

7-7 OracleXmlSaveProperties Constructor 7-12

7-8 OracleXmlSaveProperties Properties 7-12

7-9 OracleXmlSaveProperties Public Methods 7-12

7-10 OracleXmlSaveProperties Properties 7-13

7-11 OracleXmlSaveProperties Public Methods 7-16

7-12 OracleXmlStream Constructors 7-17

7-13 OracleXmlStream Static Methods 7-17

7-14 OracleXmlStream Instance Properties 7-17

7-15 OracleXmlStream Instance Methods 7-18

7-16 OracleXmlStream Static Methods 7-19

7-17 OracleXmlStream Instance Properties 7-19

7-18 OracleXmlStream Instance Methods 7-22

7-19 OracleXmlType Constructors 7-27

7-20 OracleXmlType Static Methods 7-27

7-21 OracleXmlType Static Field 7-28

7-22 OracleXmlType Instance Properties 7-28

7-23 OracleXmlType Instance Methods 7-28

7-24 OracleXmlType Static Methods 7-32

7-25 OracleXmlType Static Field 7-32

7-26 OracleXmlType Instance Properties 7-32

7-27 OracleXmlType Instance Methods 7-37

8-1 OracleHAEventArgs Properties 8-2

lxvi

8-2 OracleHAEventArgs Properties 8-2

8-3 OracleHAEventSource Enumeration Member Values 8-5

8-4 OracleHAEventStatus Enumeration Values 8-6

9-1 OracleDependency Constructors 9-2

9-2 OracleDependency Static Field 9-2

9-3 OracleDependency Static Methods 9-2

9-4 OracleDependency Properties 9-3

9-5 OracleDependency Methods 9-3

9-6 OracleDependency Events 9-3

9-7 OracleDependency Static Field 9-7

9-8 OracleDependency Static Methods 9-8

9-9 OracleDependency Properties 9-8

9-10 OracleDependency Methods 9-13

9-11 OracleDependency Event 9-15

9-12 OracleNotificationRequest Static Method 9-16

9-13 OracleNotificationRequest Properties 9-16

9-14 OracleNotificationRequest Methods 9-17

9-15 OracleNotificationRequest Static Method 9-17

9-16 OracleNotificationRequest Properties 9-17

9-17 OracleNotificationRequest Methods 9-20

9-18 OracleNotificationEventArgs Static Field 9-21

9-19 OracleNotificationEventArgs Static Method 9-21

9-20 OracleNotificationEventArgs Properties 9-21

9-21 OracleNotificationEventArgs Methods 9-22

9-22 OracleNotificationEventArgs Static Field 9-22

9-23 OracleNotificationEventArgs Static Method 9-22

9-24 OracleNotificationEventArgs Properties 9-23

9-25 DataTable Object Column Data 9-23

9-26 OracleNotificationEventArgs Methods 9-26

9-27 OracleRowidInfo Members 9-27

9-28 OracleNotificationType Members 9-27

9-29 OracleNotificationSource Members 9-28

9-30 OracleNotificationInfo Members 9-29

10-1 OracleGlobalization Static Methods 10-2

10-2 OracleGlobalization Properties 10-3

10-3 OracleGlobalization Public Methods 10-3

10-4 OracleGlobalization Static Methods 10-4

lxvii

10-5 OracleGlobalization Properties 10-8

10-6 OracleGlobalization Public Methods 10-16

11-1 OracleFailoverEventArgs Static Methods 11-3

11-2 OracleFailoverEventArgs Properties 11-3

11-3 OracleFailoverEventArgs Public Methods 11-3

11-4 OracleFailoverEventArgs Static Methods 11-4

11-5 OracleFailoverEventArgs Properties 11-4

11-6 OracleFailoverEventArgs Public Methods 11-5

11-7 FailoverEvent Enumeration Values 11-6

11-8 FailoverReturnCode Enumeration Values 11-7

11-9 FailoverType Enumeration Values 11-7

12-1 OracleAQAgent Constructors 12-2

12-2 OracleAQAgent Properties 12-2

12-3 OracleAQAgent Properties 12-4

12-4 OracleAQDequeueOptions Constructor 12-5

12-5 OracleAQDequeueOptions Properties 12-6

12-6 OracleAQDequeueOptions Public Methods 12-6

12-7 OracleAQDequeueOptions Properties 12-7

12-8 OracleAQDequeueOptions Public Methods 12-11

12-9 OracleAQEnqueueOptions Constructor 12-12

12-10 OracleAQEnqueueOptions Properties 12-13

12-11 OracleAQEnqueueOptions Public Methods 12-13

12-12 OracleAQEnqueueOptions Properties 12-13

12-13 OracleAQEnqueueOptions Public Methods 12-15

12-14 OracleAQMessage Constructors 12-16

12-15 OracleAQMessage Properties 12-16

12-16 OracleAQMessage Properties 12-18

12-17 OracleAQMessageAvailableEventArgs Constructor 12-25

12-18 OracleAQMessageAvailableEventArgs Properties 12-26

12-19 OracleAQMessageAvailableEventArgs Properties 12-27

12-20 OracleAQQueue Constructors 12-33

12-21 OracleAQQueue Static Methods 12-33

12-22 OracleAQQueue Properties 12-33

12-23 OracleAQQueue Public Methods 12-34

12-24 OracleAQQueue Events 12-34

12-25 OracleAQQueue Static Methods 12-37

12-26 OracleAQQueue Properties 12-39

lxviii

12-27 Message Types and Payloads 12-42

12-28 Payload Types for Dequeued Messages 12-42

12-29 OracleAQQueue Public Methods 12-44

12-30 OracleAQQueue Events 12-57

12-31 OracleAQDequeueMode Members 12-61

12-32 OracleAQMessageDeliveryMode Members 12-62

12-33 OracleAQMessageState Members 12-63

12-34 OracleAQMessageType Members 12-63

12-35 OracleAQNavigationMode Members 12-64

12-36 OracleAQNotificationGroupingType Members 12-65

12-37 OracleAQNotificationType Members 12-65

12-38 OracleAQVisibilityMode Members 12-66

13-1 OracleBFile Constructors 13-3

13-2 OracleBFile Static Fields 13-3

13-3 OracleBFile Static Methods 13-4

13-4 OracleBFile Instance Properties 13-4

13-5 OracleBFile Instance Methods 13-4

13-6 OracleBFile Static Fields 13-7

13-7 OracleBFile Static Methods 13-8

13-8 OracleBFile Instance Properties 13-8

13-9 OracleBFile Instance Methods 13-13

13-10 OracleBlob Constructors 13-33

13-11 OracleBlob Static Fields 13-33

13-12 OracleBlob Static Methods 13-33

13-13 OracleBlob Instance Properties 13-33

13-14 OracleBlob Instance Methods 13-34

13-15 OracleBlob Static Fields 13-37

13-16 OracleBlob Static Methods 13-37

13-17 OracleBlob Instance Properties 13-38

13-18 OracleBlob Instance Methods 13-42

13-19 OracleClob Constructors 13-62

13-20 OracleClob Static Fields 13-62

13-21 OracleClob Static Methods 13-63

13-22 OracleClob Instance Properties 13-63

13-23 OracleClob Instance Methods 13-64

13-24 OracleClob Static Fields 13-66

13-25 OracleClob Static Methods 13-67

lxix

13-26 OracleClob Instance Properties 13-67

13-27 OracleClob Instance Methods 13-72

13-28 OracleRefCursor Static Methods 13-96

13-29 OracleRefCursor Static Field 13-96

13-30 OracleRefCursor Properties 13-97

13-31 OracleRefCursor Instance Methods 13-97

13-32 OracleRefCursor Static Methods 13-97

13-33 OracleRefCursor Static Field 13-98

13-34 OracleRefCursor Properties 13-98

13-35 OracleRefCursor Instance Methods 13-101

14-1 OracleBinary Constructors 14-2

14-2 OracleBinary Static Fields 14-2

14-3 OracleBinary Static Methods 14-3

14-4 OracleBinary Static Operators 14-3

14-5 OracleBinary Static Type Conversion Operators 14-4

14-6 OracleBinary Properties 14-4

14-7 OracleBinary Instance Methods 14-4

14-8 OracleBinary Static Fields 14-5

14-9 OracleBinary Static Methods 14-5

14-10 OracleBinary Static Operators 14-10

14-11 OracleBinary Static Type Conversion Operators 14-14

14-12 OracleBinary Properties 14-15

14-13 OracleBinary Instance Methods 14-17

14-14 OracleBoolean Constructors 14-21

14-15 OracleBoolean Static Fields 14-21

14-16 OracleBoolean Static Methods 14-22

14-17 OracleBoolean Static Operators 14-22

14-18 OracleBoolean Static Type Conversions 14-23

14-19 OracleBoolean Properties 14-23

14-20 OracleBoolean Instance Methods 14-24

14-21 OracleBoolean Static Fields 14-25

14-22 OracleBoolean Static Methods 14-26

14-23 OracleBoolean Static Operators 14-32

14-24 OracleBoolean Static Type Conversions 14-40

14-25 OracleBoolean Properties 14-44

14-26 OracleBoolean Instance Methods 14-46

14-27 OracleDate Constructors 14-49

lxx

14-28 OracleDate Static Fields 14-49

14-29 OracleDate Static Methods 14-50

14-30 OracleDate Static Operators 14-50

14-31 OracleDate Static Type Conversions 14-50

14-32 OracleDate Properties 14-51

14-33 OracleDate Methods 14-51

14-34 OracleDate Static Fields 14-55

14-35 OracleDate Static Methods 14-56

14-36 OracleDate Static Operators 14-61

14-37 OracleDate Static Type Conversions 14-65

14-38 OracleDate Properties 14-68

14-39 OracleDate Methods 14-71

14-40 OracleDecimal Constructors 14-77

14-41 OracleDecimal Static Fields 14-77

14-42 OracleDecimal Static (Comparison) Methods 14-78

14-43 OracleDecimal Static (Manipulation) Methods 14-78

14-44 OracleDecimal Static (Logarithmic) Methods 14-79

14-45 OracleDecimal Static (Trigonometric) Methods 14-80

14-46 OracleDecimal Static (Comparison) Operators 14-80

14-47 OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal) 14-81

14-48 OracleDecimal Static Operators (Conversion from OracleDecimal to .NET) 14-81

14-49 OracleDecimal Properties 14-82

14-50 OracleDecimal Instance Methods 14-82

14-51 OracleDecimal Static Fields 14-87

14-52 OracleDecimal Static (Comparison) Methods 14-89

14-53 OracleDecimal Static (Manipulation) Methods 14-93

14-54 OracleDecimal Static (Logarithmic) Methods 14-105

14-55 OracleDecimal Static (Trigonometric) Methods 14-110

14-56 OracleDecimal Static (Comparison) Operators 14-114

14-57 OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal) 14-121

14-58 OracleDecimal Static Operators (Conversion from OracleDecimal to .NET) 14-124

14-59 OracleDecimal Properties 14-128

14-60 OracleDecimal Instance Methods 14-131

14-61 OracleIntervalDS Constructors 14-137

14-62 OracleIntervalDS Static Fields 14-137

14-63 OracleIntervalDS Static Methods 14-138

14-64 OracleIntervalDS Static Operators 14-138

lxxi

14-65 OracleIntervalDS Type Conversions 14-139

14-66 OracleIntervalDS Properties 14-139

14-67 OracleIntervalDS Methods 14-140

14-68 OracleIntervalDS Static Fields 14-144

14-69 OracleIntervalDS Static Methods 14-145

14-70 OracleIntervalDS Static Operators 14-151

14-71 OracleIntervalDS Type Conversions 14-157

14-72 OracleIntervalDS Properties 14-159

14-73 OracleIntervalDS Methods 14-163

14-74 OracleIntervalYM Constructors 14-166

14-75 OracleIntervalYM Static Fields 14-166

14-76 OracleIntervalYM Static Methods 14-166

14-77 OracleIntervalYM Static Operators 14-167

14-78 OracleIntervalYM Type Conversions 14-168

14-79 OracleIntervalYM Properties 14-168

14-80 OracleIntervalYM Methods 14-168

14-81 OracleIntervalYM Static Fields 14-172

14-82 OracleIntervalYM Static Methods 14-173

14-83 OracleIntervalYM Static Operators 14-178

14-84 OracleIntervalYM Type Conversions 14-184

14-85 OracleIntervalYM Properties 14-186

14-86 OracleIntervalYM Methods 14-188

14-87 OracleString Constructors 14-192

14-88 OracleString Static Fields 14-192

14-89 OracleString Static Methods 14-193

14-90 OracleString Static Operators 14-193

14-91 OracleString Type Conversions 14-194

14-92 OracleString Properties 14-194

14-93 OracleString Methods 14-194

14-94 OracleString Static Fields 14-198

14-95 OracleString Static Methods 14-199

14-96 OracleString Static Operators 14-203

14-97 OracleString Type Conversions 14-207

14-98 OracleString Properties 14-209

14-99 OracleString Methods 14-211

14-100 OracleTimeStamp Constructors 14-216

14-101 OracleTimeStamp Static Fields 14-216

lxxii

14-102 OracleTimeStamp Static Methods 14-216

14-103 OracleTimeStamp Static Operators 14-217

14-104 OracleTimeStamp Static Type Conversions 14-217

14-105 OracleTimeStamp Properties 14-218

14-106 OracleTimeStamp Methods 14-218

14-107 OracleTimeStamp Static Fields 14-225

14-108 OracleTimeStamp Static Methods 14-226

14-109 OracleTimeStamp Static Operators 14-232

14-110 OracleTimeStamp Static Type Conversions 14-240

14-111 OracleTimeStamp Properties 14-244

14-112 OracleTimeStamp Methods 14-248

14-113 OracleTimeStampLTZConstructors 14-258

14-114 OracleTimeStampLTZ Static Fields 14-258

14-115 OracleTimeStampLTZ Static Methods 14-259

14-116 OracleTimeStampLTZ Static Operators 14-259

14-117 OracleTimeStampLTZ Static Type Conversions 14-260

14-118 OracleTimeStampLTZ Properties 14-260

14-119 OracleTimeStampLTZ Methods 14-261

14-120 OracleTimeStampLTZ Static Fields 14-268

14-121 OracleTimeStampLTZ Static Methods 14-269

14-122 OracleTimeStampLTZ Static Operators 14-275

14-123 OracleTimeStampLTZ Static Type Conversions 14-283

14-124 OracleTimeStampLTZ Properties 14-288

14-125 OracleTimeStampLTZ Methods 14-291

14-126 OracleTimeStampTZ Constructors 14-303

14-127 OracleTimeStampTZ Static Fields 14-303

14-128 OracleTimeStampTZ Static Methods 14-303

14-129 OracleTimeStampTZ Static Operators 14-304

14-130 OracleTimeStampTZ Static Type Conversions 14-304

14-131 OracleTimeStampTZ Properties 14-305

14-132 OracleTimeStampTZ Methods 14-306

14-133 OracleTimeStampTZ Static Fields 14-318

14-134 OracleTimeStampTZ Static Methods 14-319

14-135 OracleTimeStampTZ Static Operators 14-325

14-136 OracleTimeStampTZ Static Type Conversions 14-333

14-137 OracleTimeStampTZ Properties 14-338

14-138 OracleTimeStampTZ Methods 14-342

lxxiii

14-139 INullable Interface Properties 14-353

14-140 INullable Interface Properties 14-354

15-1 OracleTypeException Constructor 15-2

15-2 OracleTypeException Static Methods 15-2

15-3 OracleTypeException Properties 15-2

15-4 OracleTypeException Methods 15-2

15-5 OracleTypeException Static Methods 15-4

15-6 OracleTypeException Properties 15-4

15-7 OracleTypeException Methods 15-5

15-8 OracleNullValueException Constructors 15-7

15-9 OracleNullValueException Static Methods 15-7

15-10 OracleNullValueException Properties 15-7

15-11 OracleNullValueException Methods 15-7

15-12 OracleNullValueException Static Methods 15-8

15-13 OracleNullValueException Properties 15-9

15-14 OracleNullValueException Methods 15-9

15-15 OracleTruncateException Constructors 15-10

15-16 OracleTruncateException Static Methods 15-10

15-17 OracleTruncateException Properties 15-10

15-18 OracleTruncateException Methods 15-11

15-19 OracleTruncateException Static Methods 15-12

15-20 OracleTruncateException Properties 15-12

15-21 OracleTruncateException Methods 15-13

16-1 OracleCustomTypeMappingAttribute Constructors 16-2

16-2 OracleCustomTypeMappingAttribute Static Methods 16-3

16-3 OracleCustomTypeMappingAttribute Properties 16-3

16-4 OracleCustomTypeMappingAttribute Methods 16-3

16-5 OracleCustomTypeMappingAttribute Static Methods 16-4

16-6 OracleCustomTypeMappingAttribute Properties 16-4

16-7 OracleCustomTypeMappingAttribute Methods 16-5

16-8 OracleObjectMappingAttribute Constructors 16-6

16-9 OracleObjectMappingAttribute Static Methods 16-6

16-10 OracleObjectMappingAttribute Properties 16-7

16-11 OracleObjectMappingAttribute Methods 16-7

16-12 OracleObjectMappingAttribute Static Method 16-8

16-13 OracleObjectMappingAttribute Properties 16-9

16-14 OracleObjectMappingAttribute Methods 16-10

lxxiv

16-15 OracleArrayMappingAttribute Constructors 16-11

16-16 OracleArrayMappingAttribute Static Methods 16-11

16-17 OracleArrayMappingAttribute Properties 16-11

16-18 OracleArrayMappingAttribute Methods 16-11

16-19 OracleArrayMappingAttribute Static Methods 16-12

16-20 OracleArrayMappingAttribute Properties 16-13

16-21 OracleArrayMappingAttribute Methods 16-13

16-22 IOracleCustomType Interface Methods 16-14

16-23 IOracleCustomType Interface Methods 16-14

16-24 IOracleCustomTypeFactory Interface Methods 16-16

16-25 IOracleCustomTypeFactory Interface Methods 16-16

16-26 IOracleArrayTypeFactory Interface Methods 16-17

16-27 IOracleArrayTypeFactory Interface Methods 16-18

16-28 OracleUdt Static Methods 16-20

16-29 OracleUdt Static Methods 16-20

16-30 OracleRef Constructors 16-31

16-31 OracleRef Static Fields 16-32

16-32 OracleRef Static Methods 16-32

16-33 OracleRef Instance Properties 16-32

16-34 OracleRef Instance Methods 16-32

16-35 OracleRef Static Fields 16-35

16-36 OracleRef Static Methods 16-35

16-37 OracleRef Instance Properties 16-35

16-38 OracleRef Instance Methods 16-38

16-39 OracleUdtFetchOption Enumeration Values 16-48

16-40 OracleUdtStatus Enumeration Values 16-48

17-1 OracleBulkCopy Constructors 17-2

17-2 OracleBulkCopy Properties 17-2

17-3 OracleBulkCopy Public Methods 17-3

17-4 OracleBulkCopy Events 17-3

17-5 OracleBulkCopy Properties 17-6

17-6 OracleBulkCopy Public Methods 17-11

17-7 OracleBulkCopy Events 17-15

17-8 OracleBulkCopyColumnMapping Constructors 17-17

17-9 OracleBulkCopyColumnMapping Method 17-17

17-10 OracleBulkCopyColumnMapping Properties 17-17

17-11 OracleBulkCopyColumnMapping Method 17-20

lxxv

17-12 OracleBulkCopyColumnMapping Properties 17-20

17-13 OracleBulkCopyColumnMappingCollection Properties 17-23

17-14 OracleBulkCopyColumnMappingCollection Public Methods 17-23

17-15 OracleBulkCopyColumnMappingCollection Properties 17-24

17-16 OracleBulkCopyColumnMappingCollection Public Methods 17-25

17-17 OracleBulkCopyOptions Enumeration Members 17-33

17-18 OracleRowsCopiedEventArgs Constructors 17-35

17-19 OracleRowsCopiedEventArgs Properties 17-35

17-20 OracleRowsCopiedEventArgs Properties 17-36

A-1 MetaDataCollections A-1

A-2 DataSource Information A-2

A-3 Data Types A-3

A-4 Restrictions A-5

A-5 ReservedWords A-5

A-6 Tables A-6

A-7 Columns A-6

A-8 Views A-7

A-9 XMLSchema A-8

A-10 Users A-8

A-11 Synonyms A-8

A-12 Sequences A-9

A-13 Functions A-9

A-14 Procedures A-10

A-15 ProcedureParameters A-11

A-16 Arguments A-12

A-17 Packages A-13

A-18 PackageBodies A-13

A-19 JavaClasses A-14

A-20 Indexes A-15

A-21 IndexColumns A-18

A-22 PrimaryKeys A-18

A-23 ForeignKeys A-19

A-24 ForeignKeyColumns A-20

A-25 UniqueKeys A-20

B-1 Mapping of Aggregate Canonical Functions and Oracle Functions B-1

B-2 Mapping of Math Canonical Functions and Oracle Functions B-1

B-3 Mapping of String Canonical Functions and Oracle Functions B-2

lxxvi

B-4 Mapping of Date And Time Canonical Functions and Oracle Functions B-2

B-5 Mapping of Bitwise Canonical Functions and Oracle Functions B-4

B-6 Mapping of Other Canonical Functions and Oracle Functions B-4

lxxvii

Preface

This document is your primary source of introductory, installation, postinstallation
configuration, and usage information for Oracle Data Provider for .NET.

Oracle Data Provider for .NET is an implementation of the Microsoft ADO.NET
interface.

This Preface contains these topics:

• Audience

• Documentation Accessibility

• Related Documents

• Passwords in Code Examples

• Conventions

Audience
Oracle Data Provider for .NET Developer's Guide is intended for programmers who
are developing applications to access an Oracle database using Oracle Data Provider
for .NET. This documentation is also valuable to systems analysts, project managers,
and others interested in the development of database applications.

To use this document, you must be familiar with Microsoft .NET Framework classes
and ADO.NET and have a working knowledge of application programming using
Microsoft C#, Visual Basic .NET, or another .NET language.

Although the examples in the documentation and the samples in the sample directory
are written in C#, developers can use these examples as models for writing code in
other .NET languages.

Users should also be familiar with the use of Structured Query Language (SQL) to
access information in relational database systems.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Preface

lxxviii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Related Documents
For more information, see these Oracle resources:

• Oracle Database Installation Guide for Microsoft Windows

• Oracle Database Release Notes for Microsoft Windows

• Oracle Database Platform Guide for Microsoft Windows

• Oracle Database Administrator's Guide

• Oracle Database Development Guide

• Oracle Database SecureFiles and Large Objects Developer's Guide

• Oracle Real Application Clusters Administration and Deployment Guide

• Oracle Database New Features Guide

• Oracle Database Concepts

• Oracle Database Reference

• Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows

• Oracle Database Object-Relational Developer's Guide

• Oracle Database SQL Language Reference

• Oracle Database Net Services Administrator's Guide

• Oracle Database Net Services Reference

• Oracle Call Interface Programmer's Guide

• Oracle Services for Microsoft Transaction Server Developer's Guide for Microsoft
Windows

• Oracle Database Globalization Support Guide

• Oracle XML DB Developer's Guide

• Oracle XML Developer's Kit Programmer's Guide

• Oracle Database Security Guide

• Oracle Spatial Developer's Guide

• Oracle Data Guard Concepts and Administration

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technetwork/index.html

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://docs.oracle.com/database/122/index.htm

Preface

lxxix

For additional information, see:

https://msdn.microsoft.com/en-us/default.aspx

and

http://msdn.microsoft.com/library

Passwords in Code Examples
For simplicity in demonstrating this product, code examples do not perform the
password management techniques that a deployed system normally uses. In a
production environment, follow the Oracle Database password management
guidelines, and disable any sample accounts. See Oracle Database Security Guide for
password management guidelines and other security recommendations.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

lxxx

Changes in This Release for Oracle Data
Provider for .NET

This preface contains:

• Changes in Oracle Data Provider for .NET Release 12.2.0.1

• Changes in Oracle Data Provider for .NET in ODAC 12c Release 4

• Changes in Oracle Data Provider for .NET in ODAC 12c Release 3

• Changes in Oracle Data Provider for .NET Release 12.1.0.2

• Changes in Oracle Data Provider for .NET in ODAC 12c Release 2

• Changes in Oracle Data Provider for .NET in ODAC 12c Release 1

• Changes in Oracle Data Provider for .NET Release 12.1

• Changes in Oracle Data Provider for .NET Release 11.2.0.3.20

• Changes in Oracle Data Provider for .NET Release 11.2.0.3

• Changes in Oracle Data Provider for .NET Release 11.2.0.2

• Changes in Oracle Data Provider for .NET Release 11.2.0.1.2

• Changes in Oracle Data Provider for .NET Release 11.2

• Changes in Oracle Data Provider for .NET Release 11.1.0.7.20

• Changes in Oracle Data Provider for .NET Release 11.1.0.6.20

• Changes in Oracle Data Provider for .NET Release 11.1

Changes in Oracle Data Provider for .NET Release 12.2.0.1
The following are the changes in Oracle Data Provider for .NET for Release 12.2.0.1.

New Features
The following features are new in this release:

• .NET Cloud Development and Deployment

ODP.NET, Managed and Unmanaged Drivers can be deployed easily to Oracle
Cloud, private clouds, and third-party cloud environments through Web Deploy. All
ODP.NET specific settings no longer require any operating system level
configuration. These settings can be made in the .NET configuration files.
Managed and Unmanaged ODP.NET Drivers now share a unified configuration file
format.

• Application Continuity

lxxxi

Application Continuity recovers incomplete requests from an ODP.NET,
Unmanaged Driver perspective and masks many system failures, communication
failures, hardware failures, and storage outages from the user.

See also "Application Continuity" for more information.

• Sharding and ODP.NET Routing

Starting from Release 12.2.0.1, ODP.NET, Unmanaged Driver and Oracle
Database support sharding. Oracle Sharding provides the ability to horizontally
partition the data across multiple independent Oracle databases (shards). Based
on a key specified in the connect string, ODP.NET can route the database
requests to a particular shard.

Oracle Sharding is a shared-nothing architecture that allows near-linear scaling of
the database across low-cost commodity database servers located in one or more
local or global data centers. Other key benefits include global data distribution
(store particular data close to consumers) and fault containment (failure of one
shard does not affect the availability of other shards). Global Data Services
manages the location of data among the shards and allows ODP.NET client
requests to be routed to the appropriate shard in this distributed database system.

See also "Database Sharding" for more information.

• Longer Schema Identifiers

Oracle Data Provider for .NET now supports schema object identifier names, such
as tables, columns, views, stored procedures, and functions, up to 128 characters
in length. This feature is available in both ODP.NET, Managed and Unmanaged
Drivers.

• ODP.NET, Managed Driver – Data Integrity

ODP.NET, Managed Driver supports cryptographic hash functions to better ensure
data integrity between the database server and the client. The algorithms
supported include MD5, SHA-1, and SHA-2 (SHA-256, SHA-384, and SHA-512).

See also "settings section" and "Network Data Encryption and Integrity" for more
information.

• ODP.NET, Managed Driver -- Transport Layer Security (TLS)

ODP.NET, Managed Driver has added support for TLS 1.1 and 1.2 in addition to
existing support for TLS 1.0 and SSL 3.0.

• ODP.NET, Managed Driver -- Distinguished Name for SSL/TLS

ODP.NET, Managed Driver connections using SSL/TLS can ensure that the
distinguished name (DN) is correct for the database server that it is trying to
connect to.

• ODP.NET, Managed Driver - Boolean Data Type

ODP.NET, Managed Driver now supports the OracleBoolean data type when using
the database's PL/SQL Boolean data type. The managed driver must be connected
to Oracle Database 12c Release 2 (12.2) or higher. Booleans store TRUE or FALSE
values.

The ODP.NET OracleBoolean data type eases parameter binding and data type
mapping setup with Boolean values.

See also "OracleBoolean Structure" for more information.

Changes in This Release for Oracle Data Provider for .NET

lxxxii

Desupported Features
Some features previously described in this document are desupported in Oracle
Database 12c Release 2 (12.2). See Oracle Database Upgrade Guide for a complete
list of desupported features in this release.

The following features are no longer supported by Oracle:

• OracleLogicalTransactionStatus class

• OracleConnection.GetLogicalTransactionStatus method

• OracleConnection.LogicalTransactionId property

• OracleConnection.OracleLogicalTransaction property

• OracleLogicalTransaction.DataSource property

• OracleLogicalTransaction.GetOutcome() method

• OracleLogicalTransaction.GetOutcome(sting, string, string) method

• OracleLogicalTransaction.UserId property

Changes in Oracle Data Provider for .NET in ODAC 12c
Release 4

The following are the changes in Oracle Data Provider for .NET for ODAC 12c
Release 4.

New Features
The following features are new in this release:

• .NET Framework 4.6 and 4.6.1 Certification

ODP.NET, Managed and Unmanaged Drivers are certified for .NET Framework
4.6 and 4.6.1.

See also "System Requirements" for more information.

• ODP.NET, Managed Driver - Windows Installer

ODP.NET, Managed Driver is now available as part of an ODAC Microsoft
Windows Installer package.

• ODP.NET, Managed Driver - Network Data Encryption

ODP.NET, Managed Driver supports database security network data encryption
using Advanced Encryption Standard (AES), RC4, or Triple-DES to enable more
secure database communication over intranet and cloud access.

See also "settings section" and "Network Data Encryption and Integrity" for more
information.

• ODP.NET, Managed Driver - Secure External Password Store

ODP.NET, Managed Driver supports connection establishment by retrieving
password credentials from a client-side Oracle wallet.

See also "Using Secure External Password Store" for more information.

Changes in This Release for Oracle Data Provider for .NET

lxxxiii

• ODP.NET, Managed Driver - Microsoft Local Security Authority (MSLSA)

ODP.NET, Managed Driver now supports the Kerberos credential cache type,
MSLSA. MSLSA is used to access the Microsoft Kerberos Logon Session
credentials cache.

See also "Using Kerberos" for more information.

• ODP.NET, Managed Driver - SSL/TLS Connections Use a Single Port

An ODP.NET, Managed Driver SSL/TLS connection will now continue on the
original connection to the database listener instead of the previous SSL/TLS client
redirection to a database server created new listening endpoint on a dynamic
(ephemeral) port. Hence, firewalls will only need to allow access to the TNS
listener's port. For example, 1521.

See also "Using Transport Layer Security and Secure Sockets Layer" for more
information.

• Service Relocation Connection Timeout

Whenever a database service becomes unavailable, an application can encounter
numerous connectivity errors. To avoid connection attempts to an unavailable
service, ODP.NET, Managed and Unmanaged Drivers block any connection
attempts until the service is up or until the configured time limit expires from the
time when the service DOWN event was received. This feature is useful for
planned outages and service relocations. It works with Oracle RAC and Oracle
Data Guard.

See also "ServiceRelocationConnectionTimeout" for more information.

• ODP.NET, Unmanaged Driver - Transaction Guard

Transaction Guard allows ODP.NET applications to use at-most-once execution in
case of planned and unplanned outages and repeated submissions. This feature's
architecture has been modified to simplify the application code needed for
transaction recovery. Developers will find it easier to utilize Transaction Guard in
their applications.

See also "Using Transaction Guard to Prevent Logical Corruption" for more
information.

• ODP.NET, Managed Driver - Transaction Guard

ODP.NET, Managed Driver now supports Transaction Guard. Its API and
architecture are the same as ODP.NET, Unmanaged Driver's in ODAC 12c
Release 4 to provide improved developer productivity.

See also "Using Transaction Guard to Prevent Logical Corruption" for more
information.

• ODP.NET, Unmanaged Driver - Managed Code for Distributed Transactions

In .NET Framework 4.5.2 or higher, ODP.NET, Unmanaged Driver includes
managed code for distributed transaction enlistment and commitment services
using Microsoft Distributed Transaction Coordinator. Previously, applications had
to use Oracle Services for Microsoft Transaction Server for these services. This
new feature simplifies setup and deployment of ODP.NET, Unmanaged Driver
applications that use distributed transactions.

See also "Distributed Transactions" for more information.

• ODP.NET, Unmanaged Driver - SQL Translation Framework

Changes in This Release for Oracle Data Provider for .NET

lxxxiv

Introduced in Oracle Database 12c, SQL Translation Framework helps
migrate .NET client applications that use SQL statements with vendor-proprietary
syntax to semantically-equivalent Oracle syntax.

The framework automatically translates non-Oracle SQL to Oracle SQL, thereby
enabling existing client-side application code to run largely unchanged against an
Oracle Database. This reduces the cost of migration to Oracle Database
significantly.

See also "Database Application Migration: SQL Translation Framework" and "SQL
Translation Framework Configuration" for more information.

• Tracing Enhancements

ODP.NET improves and unifies tracing features between managed and
unmanaged ODP.NET. Key features include traces now output to a Windows
temporary files directory and both providers use the same tracing parameters.

See also "Debug Tracing" for more information.

Changes in Oracle Data Provider for .NET in ODAC 12c
Release 3

The following are the changes in Oracle Data Provider for .NET for ODAC 12c
Release 3.

New Features
The following features are new in this release:

• Entity Framework Code First and Code First Migrations

In Entity Framework 6 and higher, managed and unmanaged ODP.NET support
Code First and Code First Migrations.

See also "ADO.NET Entity Framework and LINQ to Entities" for more information.

• Entity Framework 6

ODP.NET, Managed and Unmanaged Drivers are certified and supported natively
for Entity Framework version 6.

See also "Entity Framework Requirements" for more information.

• NuGet

ODP.NET, Managed Driver is available in a NuGet package. This feature
simplifies distributing customized ODP.NET, Managed Driver to developers.

The Entity Framework assembly for Code First and Entity Framework 6 is
available as a separate NuGet package.

NuGet is the package manager for Microsoft .NET. NuGet can install software by
copying library files to a .NET solution and automatically updating the project
accordingly by adding references and updating config files.

See also "Installing Oracle Data Provider for .NET, Managed Driver" for more
information.

• ODP.NET, Managed Driver - XML DB APIs

Changes in This Release for Oracle Data Provider for .NET

lxxxv

ODP.NET, Managed Driver now supports all ODP.NET XML classes supported by
ODP.NET, Unmanaged Driver.

• Distributed Transactions without Oracle.ManagedDataAccessDTC.dll

The Oracle.ManagedDataAccessDTC.dll assembly is no longer required for
distributed transaction applications running in .NET Framework 4.5.2 or higher and
ODP.NET, Managed Driver. Upon ODP.NET installation,
Oracle.ManagedDataAccessDTC.dll is no longer placed into the Global Assembly
Cache (GAC). For applications that use .NET Framework 4.5.1 or earlier,
Oracle.ManagedDataAccessDTC.dll needs to either be placed in the application
directory or in the GAC.

• ODP.NET, Managed Driver - Kerberos

Kerberos is a network authentication service for security in distributed
environments. ODP.NET, Managed Driver can now use Kerberos for single sign-
on and centralized user authentication.

See also "Using Kerberos" for more information.

• ODP.NET, Managed Driver - Implicit Ref Cursor

ODP.NET, Managed Driver introduces support for the new Oracle Database 12c
Implicit Ref Cursor. Configuration occurs using the <implicitrefcursor> .NET
configuration section. When using database implicit ref cursors, the bindInfo
element should be specified with a mode of "Implicit":

<bindinfo mode="Implicit" />

See also "implicitRefCursor section" for more information.

• Configuration Files: Unified Managed and Unmanaged ODP.NET Format

ODP.NET, Unmanaged Driver now has the option of using the same configuration
file format as ODP.NET, Managed Driver. The format simplifies configuration by
using a single unified scheme. To utilize this format, the existing unmanaged
ODP.NET configuration section should be renamed from
<oracle.dataaccess.client> to <oracle.unmanageddataaccess.client>. The existing
unmanaged ODP.NET elements and values are supported within the new section
using the same format as with ODP.NET, Managed Driver.

The traditional ODP.NET, Unmanaged Driver configuration file format will continue
to be supported.

See Also "Configuration File Support" for more information.

Changes in Oracle Data Provider for .NET Release 12.1.0.2
The following are the changes in Oracle Data Provider for .NET for Release 12.1.0.2.

New Features
The following features are new in this release:

• .NET Framework 4.5.2 Certification

ODP.NET, Managed and Unmanaged Drivers are certified for .NET Framework
4.5.2.

See also "System Requirements" for more information.

Changes in This Release for Oracle Data Provider for .NET

lxxxvi

• Character Data Types Extended to 32 KB

ODP.NET, Managed Driver supports the VARCHAR2, NVARCHAR2, and RAW data types
up to 32 KB in size. No code changes are required to use the larger data types.

By being able to store more data, developers can use these data types more
frequently, providing programming flexibility. In addition, SQL Server to Oracle
Database application migration is easier with these new data type sizes.

• Return Number of Rows Affected from Each Input in Array Binding Operations

When using array binding to execute multiple DML statements, ODP.NET,
Managed Driver provides an array that lists the number of rows affected for each
input value from the bound array, rather than just the total number of rows
affected. This information provides more detailed feedback for the application
developer. To retrieve the row count, ODP.NET can call the
OracleCommand.ArrayBindRowsAffected property.

With more detailed feedback on the array bound DML execution, the developer
can better evaluate the query's efficiency and whether the data changes were
correctly applied.

See Also "ArrayBindRowsAffected" for more information.

Changes in Oracle Data Provider for .NET in ODAC 12c
Release 2

The following are the changes in Oracle Data Provider for .NET for ODAC 12c
Release 2.

New Features
The following features are new in this release:

• .NET Framework 4.5.1 Certification

Oracle Data Provider for .NET is now certified for .NET Framework 4.5.1.

See also "System Requirements" for more information.

• .NET Framework 4.6 Certification

Oracle Data Provider for .NET is now certified for .NET Framework 4.6.

See also "System Requirements" for more information.

• Improvements to ODP.NET, Managed Driver Versioning

This feature allows unique identification of ODP.NET, Managed Driver assemblies
which have the same assembly version number.

See also "Oracle Data Provider for .NET Versioning Scheme" for more
information.

Changes in This Release for Oracle Data Provider for .NET

lxxxvii

Changes in Oracle Data Provider for .NET in ODAC 12c
Release 1

The following are the changes in Oracle Data Provider for .NET for ODAC 12c
Release 1.

New Features
The following feature is new in this release:

• LDAP Connections to Active Directory and Oracle Internet Directory

ODP.NET, Managed Driver supports TNS alias resolution through a LDAP server/
service, specifically Microsoft Active Directory and Oracle Internet Directory.

This feature allows ODP.NET, Managed Driver to connect to a database using a
directory server/service.

See also "Lightweight Directory Access Protocol".

Changes in Oracle Data Provider for .NET Release 12.1
The following are the changes in Oracle Data Provider for .NET for Release 12.1.

New Features
The following features are new in this release:

• ODP.NET, Managed Driver

ODP.NET now includes a fully managed provider version, which is 100%
native .NET code. ODP.NET, Managed Driver includes nearly all the features of
ODP.NET, Unmanaged Driver and uses the same application programming
interface. This makes migrating existing ODP.NET applications to ODP.NET,
Managed Driver easier.

With ODP.NET, Managed Driver, it is easier and faster to deploy ODP.NET. There
are fewer assemblies, as few as one to deploy, which also makes patching
straightforward, and the install size is smaller at less than 10 MB. Only one
ODP.NET, Managed Driver assembly is necessary whether you are using 32-bit or
64-bit .NET Framework. Side-by-side deployment with other ODP.NET versions is
simple since there are no unmanaged assemblies to account for. As a fully
managed provider, ODP.NET can better integrate with Code Access Security and
ClickOnce deployment.

See also "Installing Oracle Data Provider for .NET, Managed Driver" .

• Support for Pluggable Database

Pluggable Databases (PDBs) enable an Oracle database to contain a portable
collection of schemas, schema objects, and nonschema objects that appears to
ODP.NET as a separate database. ODP.NET can seamlessly use PDBs.

PDBs allow fast database provisioning, fast database redeployment by unplugging
and plugging in existing databases, and quick patching or upgrading many
databases at the cost of doing it once or by unplugging a PDB and plugging it into

Changes in This Release for Oracle Data Provider for .NET

lxxxviii

a different container database. A machine can run more database instances in the
form of PDBs than as individual, monolithic databases. It is also easier to separate
application administrator duties from the Oracle system administrator duties.

See Also:

– "Pluggable Databases"

• Support for Auto Increment Identity Column

Oracle Database 12c Release 1 (12.1) introduces an auto increment identity
column. ODP.NET, Unmanaged Driver 12.1 and higher releases support
interacting with this column data. Identity columns are generally used to uniquely
identify rows in a table when there is no other natural primary key constraint.

An identity column simplifies .NET development for applications with no natural
primary key and eases application migration from databases that have an identity
column.

See Also:

– "IdentityInsert"

– "IdentityUpdate"

– "OracleIdentityType Enumeration"

• Support for Character Data Types Extended to 32 KB

Starting with Oracle Database 12c Release 1 (12.1), ODP.NET, Unmanaged
Driver now supports the VARCHAR2, NVARCHAR2, and RAW data types up to 32 KB in
size. No code changes are required to use the larger data types.

By being able to store more data, developers can use these data types more
frequently, providing programming flexibility. In addition, SQL Server to Oracle
Database application migration is easier with these new data type sizes.

• Boolean Data Type

Oracle Database 12c Release 1 (12.1) introduces a new PL/SQL Boolean data
type, which ODP.NET, Unmanaged Driver can store as an OracleBoolean data
type. Booleans store TRUE or FALSE values.

The ODP.NET OracleBoolean data type eases parameter binding and data type
mapping setup with Boolean values.

See Also:

– "OracleBoolean Structure"

• Enhanced Implicit REF Cursor Binding

Changes in This Release for Oracle Data Provider for .NET

lxxxix

In Oracle Database 12c Release 1 (12.1), ODP.NET 12c can retrieve the results of
a SELECT statement run in PL/SQL without an explicit target nor REF CURSOR
data type. ODP.NET retrieves result sets from stored procedures implicitly without
declaring a return type. It is no longer necessary to declare REF CURSOR
metadata in a .NET configuration file, except when using Entity Framework, REF
Cursors that can be updated, or constraint metadata is required to be passed to
the client side.

This capability simplifies using implicit Oracle result sets. In addition, it eases
migration to the Oracle database from other vendor databases that use a similar
feature.

See Also:

– "ImplicitRefCursors"

– "Implicit REF CURSOR Binding"

• Return Number of Rows Affected from Each Input in Array Binding Operations

When using array binding to execute multiple DML statements, Oracle Data
Provider for .NET, Unmanaged Driver, now provides an array that lists the number
of rows affected for each input value from the bound array, rather than just the
total number of rows affected. This information provides more detailed feedback
for the application developer. To retrieve the row count, ODP.NET can call the
OracleCommand.ArrayBindRowsAffected property.

With more detailed feedback on the array bound DML execution, the developer
can better evaluate the query's efficiency and whether the data changes were
correctly applied.

See Also:

– "ArrayBindRowsAffected"

• Support for APPLY Keyword

Language Integrated Query (LINQ) is a .NET querying language. At runtime, LINQ
is translated into native database SQL before it can query the database. In some
circumstances, LINQ uses the non-standard APPLY keyword in its SQL translation
for retrieving lateral views. Oracle Database and ODP.NET support the APPLY
keyword in Oracle Database 12c Release 1 (12.1) to more fully support LINQ.

This feature allows the occasional LINQ query that uses SQL APPLY to work
seamlessly with ODP.NET and Oracle Database for lateral views.

See Also:

– ADO.NET Entity Framework and LINQ to Entities

• Transaction Guard Support

Changes in This Release for Oracle Data Provider for .NET

xc

Transaction Guard in Oracle Database 12c Release 1 (12.1) preserves transaction
commit outcomes for ODP.NET, Unmanaged Driver, 12c applications during
planned and unplanned outages, preventing applications from repeatedly
submitting the same transaction. Applications use a new logical transaction
identifier to determine the last open transaction's outcome in a database session
following an outage. With the known outcome, the application can confidently
determine whether to resubmit the transaction or not. Without Transaction Guard,
applications that retry operations following outages by committing duplicate
transactions can cause logical corruptions.

Transaction Guard preserves the commit outcome for every transaction and
makes it available to ODP.NET applications. It allows ODP.NET developers to
maintain at-most-once transaction execution.

See Also:

– "Using Transaction Guard to Prevent Logical Corruption"

• Recoverable Error Detection and Recovery

After an Oracle Database 12c Release 1 (12.1) failure, ODP.NET, Unmanaged
Driver, 12c can determine if a failed transaction is recoverable or not. ODP.NET
returns the OracleException IsRecoverable property indicating whether the
transaction is recoverable. If true, the application can retry the transaction.

This feature makes determining whether failed transactions are recoverable
easier, allowing applications to proceed quickly to the next step in the recovery
process.

See Also:

– "Using Transaction Guard to Prevent Logical Corruption"

• Support for Faster and Planned Database Outage

In Oracle Database 12c Release 1 (12.1), a database being brought offline
automatically alerts ODP.NET applications of the impending downtime. ODP.NET
will then stop allocating new connections and close connections returned to the
pool from that particular instance.

This feature enables databases to be brought offline more quickly and minimizes
potential end user disruptions by disallowing new ODP.NET connections to
databases being brought offline.

See Also:

– "Using FCF Planned Outage to Minimize Service Disruption"

• Support for Oracle Notification Service

Changes in This Release for Oracle Data Provider for .NET

xci

Oracle Notification Service (ONS) is a publish and subscribe service for
communicating Fast Application Notification (FAN) events. ODP.NET receives fast
connection failover and load balancing messages from the database server
through ONS. Previously, ODP.NET used Oracle Advanced Queuing (AQ) as its
FAN publish and subscribe service.

Because ONS is a memory-based service, it delivers messages faster than AQ.
Using ONS, Oracle consolidates the publish and subscribe service that all Oracle
data access drivers use.

See Also:

– "Fast Application Notification"

• Support for Global Data Services

Global Data Services (GDS) is a capability of Oracle Database 12c that extends
the concept of services, which previously only was available in Oracle RAC, to a
globally distributed configuration that can include a combination of Oracle RAC,
Oracle Data Guard, and Oracle GoldenGate. This allows services to be deployed
anywhere within this globally distributed configuration, supporting load balancing,
high availability, database affinity, and so on with ODP.NET.

ODP.NET applications can now more efficiently use database resources on a
global basis to improve performance and availability. Applications that utilize the
Oracle RAC concept of services can now extend the same benefits of automatic
workload management to their Oracle Data Guard and Oracle GoldenGate
configurations. Similarly, Oracle Data Guard and Oracle GoldenGate customers
can now fully utilize the benefits of services and automatic workload management
for their replicated configurations.

See Also:

– "Runtime Connection Load Balancing"

– "Fast Connection Failover (FCF)"

• Transaction and Connection Association

Connections associate with System.Transactions transactions when they enlist
either implicitly through enlist=true connection string attribute, or explicitly through
OracleConnection.EnlistTransaction() method. A connection in ODP.NET now, by
default, detaches from a transaction only when the connection object is closed or
when the transaction object is disposed.

In earlier ODP.NET releases, the connection would get detached from a
transaction under the conditions mentioned earlier and when the transaction was
complete (committed, aborted, or timed out). When the transaction timeout
elapses before the transaction completes, the connection unbinds itself from the
transaction and all subsequent operations on this connection execute in
AutoCommit mode. Any operations prior to the timeout roll back, but operations
performed after the timeout commit. The new transaction unbinding default
behavior also alerts users with an exception if transactions time out and

Changes in This Release for Oracle Data Provider for .NET

xcii

subsequent operations execute on this connection before the transaction is
disposed. This new behavior provides a consistent transactional experience for the
end user, even when a timeout occurs.

See also "LegacyTransactionBindingBehavior" for more information.

• Greater Granular Connection Pool Monitoring

Performance counters can now monitor at the application domain, pool, or
database instance level.

It is now easier to distinguish which application domains, pools, and instances are
healthy and which ones are having problems.

See Also:

"Connection Pool Performance Counters"

Changes in Oracle Data Provider for .NET Release
11.2.0.3.20

The following are changes in Oracle Data Provider for .NET for Release 11.2.0.3.20.

New Features
The following feature is new in this release:

• .NET Framework 4.5 and Entity Framework 5 Support

Oracle Data Provider for .NET supports .NET Framework 4.5 and Entity
Framework 5.

See also "System Requirements" for more information.

Changes in Oracle Data Provider for .NET Release 11.2.0.3
The following are changes in Oracle Data Provider for .NET for Release 11.2.0.3.

New Features
The following features are new in this release:

• ADO.NET Entity Framework and LINQ to Entities Support

ODP.NET now includes support for the ADO.NET Entity Framework and LINQ to
Entities. Entity Framework is a framework for providing object-relational mapping
service on data models. Entity Framework addresses the impedance mismatch
between the relational database format and the client's preferred object format.
Language Integrated Query (LINQ) defines a set of operators that can be used to
query, project, and filter data in arrays, enumerable classes, XML, relational
databases, and other data sources. One form of LINQ, LINQ to Entities, allows
querying of Entity Framework data sources. ODP.NET supports Entity Framework

Changes in This Release for Oracle Data Provider for .NET

xciii

such that the Oracle database can participate in object-relational modeling and
LINQ to Entities queries.

Entity Framework and LINQ provides productivity benefits for the .NET developer.
It abstracts the database's data model from the application's data model. Working
with object-relational data becomes easier with Entity Framework's tools. Oracle's
integration with Entity Framework and LINQ enables Oracle .NET developers to
take advantage of all these productivity benefits.

See ADO.NET Entity Framework and LINQ to Entities for more information on
ODP.NET support for the ADO.NET Entity Framework and LINQ to Entities.

• WCF Data Services and OData

Windows Communication Foundation (WCF) Data Services enable developers to
create services that use the Open Data Protocol (OData) to expose and consume
data over the internet by using the semantics of representational state transfer
(REST). OData exposes data as resources that are addressable by URIs. OData
uses Entity Data Model conventions to expose resources as sets of entities that
are related by associations. ODP.NET supports Entity Framework, and can
expose its data through OData and WCF Data Services.

WCF Data Services and OData facilitate creating flexible data services from any
data source and naturally integrating them with the Web. All data sources,
including Oracle databases, can be used by the same data sharing standard
making data exchange more interoperable.

• Implicit REF CURSOR Parameter Binding

ODP.NET can bind REF CURSOR parameters for stored procedures without
binding them explicitly. To do so, the application must provide the REF CURSOR
metadata as part of the .NET configuration file. This feature allows Entity
Framework Function Import to call Oracle stored procedures and return REF
CURSOR result sets. ODP.NET can also update the database's data with a
DataSet or DataTable obtained through a REF CURSOR.

In Entity Framework, result set parameters are generally not declared. By
supporting the implicit REF CURSOR parameter, ODP.NET more closely
integrates with typical Entity Framework usage scenarios.

See "Implicit REF CURSOR Binding" for detailed information on implicit REF
CURSOR parameter binding.

Changes in Oracle Data Provider for .NET Release 11.2.0.2
The following are changes in Oracle Data Provider for .NET for Release 11.2.0.2.

New Features
The following features are new in this release:

• 64-bit ODP.NET XCopy for Windows x64

Now available for Windows x64 systems, ODP.NET XCopy provides system
administrators with a smaller client install size than the standard ODP.NET client,
and is easier to configure. ODP.NET XCopy simplifies embedding ODP.NET in
customized deployment packages.

Changes in This Release for Oracle Data Provider for .NET

xciv

See Also:

XCopy under "Installing Oracle Data Provider for .NET, Unmanaged Driver"

• TimesTen In-Memory Database Support

Oracle Data Provider for .NET enables fast data access for any .NET application,
such as C# .NET, Visual Basic .NET, and ASP.NET, to TimesTen In-memory
databases. ODP.NET support for TimesTen includes the classes, enumerations,
interfaces, delegates and structures of the Oracle.DataAccess.Client and
Oracle.DataAccess.Types namespaces. ODP.NET supports TimesTen Release
11.2.1.6.1 or later on Microsoft Windows 32-bit and 64-bit platforms. TimesTen
can be used with .NET Framework 2.0, 3.0, 3.5, and 4 with Microsoft Visual Studio
2005 or later.

See Also:

The latest TimesTen In-Memory Database documentation and resources
can be accessed from:

http://www.oracle.com/technetwork/database/database-technologies/

timesten/overview/index.html

Changes in Oracle Data Provider for .NET Release
11.2.0.1.2

The following are changes in Oracle Data Provider for .NET for Release 11.2.0.1.2.

New Features
The following features are new in this release:

• Support for Microsoft .NET Framework 4

ODP.NET for .NET Framework 4 supports .NET Framework 4 and the .NET
Framework 4 Client Profile.

Changes in Oracle Data Provider for .NET Release 11.2
The following are changes in Oracle Data Provider for .NET for Release 11.2.

New Features
The following features are new in this release:

• End-to-End Tracing: ClientInfo Property

ODP.NET now supports the ClientInfo write-only property, in addition to the
ActionName, ClientId, and ModuleName properties, on the OracleConnection object.
This property specifies the client information for the connection.

Changes in This Release for Oracle Data Provider for .NET

xcv

The ClientInfo property is an end-to-end tracing attribute that can be set on the
client or middle tier. This attribute is propagated to the database server whenever
the next server round-trip happens. This reduces the added overhead associated
with an independent database round trip. Using the ClientInfo property is helpful
in tracking database user activities and debugging applications.

See Also:

– "Client Identifier and End-to-End Tracing"

– "ClientInfo"

• Edition-Based Redefinition

Edition-based redefinition enables you to upgrade the database component of an
application even while the .NET application is being used. This minimizes or
eliminates downtime for the application.

See Also:

"Edition-Based Redefinition"

Changes in Oracle Data Provider for .NET Release
11.1.0.7.20

The following are changes in Oracle Data Provider for .NET for Release 11.1.0.7.20.

New Features
The following features are new in this release:

• Self-Tuning for Applications

Based on run-time sampling, ODP.NET dynamically adjusts statement cache size
to provide better application performance. Self-tuning also takes into account
memory usage on the client machine in order to prevent excessive memory usage.
Self-tuning improves ODP.NET performance, reduces network usage, and
decreases server CPU and client CPU activity.

See Also:

"Self-Tuning"

• Faster Data Retrieval and Less Memory Usage

Retrieving data using OracleDataReader or populating a DataSet from an
OracleDataAdapter is now faster.

Changes in This Release for Oracle Data Provider for .NET

xcvi

ODP.NET reuses the same fetch array buffer for statements executed non-
concurrently, saving on memory usage. The fetch array buffer stores data
retrieved from the database.

No code changes are necessary to use these features. These features provide
better performance and scalability for ODP.NET applications.

• Oracle Streams Advanced Queuing Support

ODP.NET supports access to Oracle Streams Advanced Queuing (AQ). AQ
provides database-integrated message queuing functionality to store messages
persistently, propagate messages between queues on different machines and
databases, and transmit messages using Oracle NET services, HTTP, HTTPS and
SMTP.

ODP.NET can access all the operational features of AQ, such as enqueue,
dequeue, listen and notification. Oracle Developer Tools for Visual Studio can
administer and manage AQ resources.

See Also:

"Oracle Database Advanced Queuing Support"

• Promotable Local Transaction Support

Distributed transactions require the orchestration of application, transaction
coordinator, and multiple databases. Local transactions only require an application
and a single resource manager, or database. Local transactions have less of an
overhead when compared to distributed transactions.

It may be difficult to determine whether a transaction will be local or distributed at
design time. Developers are forced to design applications for distributed
transactions, even if local transactions are used most of the time. This situation
leads to more resource usage than necessary at run time.

Promotable local transactions allow all transactions to remain local until more than
one database is brought into the transaction. At this point, the transaction is
promoted to a distributed transaction so that it can be managed by the transaction
coordinator. This provides a better utilization of system resources. This feature is
supported with Oracle Database 11g release 1 (11.1.0.7) and higher.

See Also:

"System.Transactions and Promotable Transactions"

• ODP.NET Security Enhancements

ODP.NET makes use of the OraclePermission class to enforce imperative security.
This helps ensure that a user or application has a security level adequate for
accessing data.

Changes in This Release for Oracle Data Provider for .NET

xcvii

See Also:

– "Code Access Security"

– "OraclePermission Class"

– "OraclePermissionAttribute Class"

• Callbacks for HA Event Notifications

ODP.NET can register for Oracle High Availability (HA) events when "ha
events=true" is specified in the connection string. ODP.NET is then able to receive
notifications on which database, service, host, or instance has gone down or come
up. .NET developers can register a callback with ODP.NET to notify the
application when one of these events occurs and subsequently execute an event
handler, as needed.

See Also:

– Oracle Data Provider for .NET HA Event Classes

– "HAEvent"

– "OracleConnection Properties"

• Database Startup and Shutdown Operations

Users with database administrator privileges can use the OracleDatabase class to
startup or shutdown a database instance.

See Also:

– "OracleDatabase Class"

– "Shutdown"

– "Startup"

Changes in Oracle Data Provider for .NET Release
11.1.0.6.20

The following are changes in Oracle Data Provider for .NET for Release 11.1.0.6.20.

New Features
The following features are new in this release:

• 32-bit ODP.NET XCopy

Changes in This Release for Oracle Data Provider for .NET

xcviii

Oracle XCopy provides system administrators with an ODP.NET client that is
smaller in disk size than the standard ODP.NET client and is easily configurable.
Oracle XCopy makes embedding ODP.NET in customized deployment packages
much simpler.

See Also:

"XCopy"

• Support for Oracle User-Defined Types

ODP.NET has the ability to represent Oracle UDTs defined in the database as
custom types in .NET applications.

See Also:

– "Oracle User-Defined Types (UDTs) and .NET Custom Types"

– Oracle Data Provider for .NET UDT-Related Classes

• Bulk Copy Operations

ODP.NET supports the Bulk Copy operations to load a large amount of data
efficiently.

See Also:

– "Bulk Copy"

– Oracle Data Provider for .NET Bulk Copy Classes

• Additional Connection Pool Optimizations for Oracle Real Application Clusters
(Oracle RAC) and Oracle Data Guard

ODP.NET now cleans up the connection pool when the database down event is
received from Oracle RAC or Oracle Data Guard. This is in addition to the events
that ODP.NET already cleaned up the connection pool for: node down, service
member down, and service down events.

See Also:

"Real Application Clusters and Global Data Services"

• Windows-Authenticated User Connection Pooling

Operating system-authenticated connections can now be managed as part of
ODP.NET connection pools

Changes in This Release for Oracle Data Provider for .NET

xcix

See Also:

"Operating System Authentication "

• Connection Pool Performance Counters

ODP.NET publishes performance counters for connection pooling, which can be
viewed using the Windows Performance Monitor.

See Also:

"Connection Pool Performance Counters"

• End-to-End Tracing Attribute Support

ODP.NET supports the ActionName, ClientId, ClientInfo, and ModuleName write-
only properties on the OracleConnection object. These properties correspond to
end-to-end tracing attributes that can be set on the client or middle-tier, and
propagated to the database server whenever the next server round-trip happens.
This reduces the added overhead associated with an independent database round
trip. Using these attributes is helpful in tracking database user activities and
debugging applications.

See Also:

"Client Identifier and End-to-End Tracing"

Changes in Oracle Data Provider for .NET Release 11.1
The following are changes in Oracle Data Provider for .NET for Release 11.1.

New Features
The following features are new in this release:

• Performance Enhancements

The following performance enhancements have been made:

– Improved Parameter Context Caching

This release enhances the existing caching infrastructure to cache ODP.NET
parameter contexts. This enhancement is independent of database version
and it is available for all the supported database versions. This feature
provides significant performance improvement for the applications that
execute the same statement repeatedly.

This enhancement is transparent to the developer. No code changes are
needed to use this feature.

– Efficient LOB Retrieval with LOBS or SecureFiles

Changes in This Release for Oracle Data Provider for .NET

c

When using LOBS or SecureFiles, this release improves the performance of
small-sized LOB retrieval by reducing the number of round-trips to the
database. SecureFiles is available with Oracle 11g release 1 or later database
versions.

This enhancement is transparent to the developer. No code changes are
needed to use this feature.

Changes in This Release for Oracle Data Provider for .NET

ci

1
Introducing Oracle Data Provider for .NET

This chapter introduces Oracle Data Provider for .NET (ODP.NET), an implementation
of a .NET data provider for Oracle Database.

This chapter contains these topics:

• .NET Data Access in Oracle: Products and Documentation

• Overview of Oracle Data Provider for .NET (ODP.NET)

• Oracle Data Provider for .NET Assemblies

• Differences between the ODP.NET Managed Driver and Unmanaged Driver

• Using ODP.NET Client Provider in a Simple Application

1.1 .NET Data Access in Oracle: Products and
Documentation

This section discusses Oracle Data Provider for .NET and Oracle Database
components that use Oracle Data Provider for .NET for data access. It briefly
describes what each component does and where to find additional documentation.

These Oracle products provide .NET integration on the Windows operating system:

1.1.1 Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET provides fast data access from .NET clients to Oracle
databases. ODP.NET enables .NET applications to take advantage of Oracle
advanced features, such as Oracle Real Application Clusters (Oracle RAC) and XML
DB. It is accessible through any .NET language, including C#, Visual Basic .NET, and
C++ .NET.

ODP.NET consists of two drivers: ODP.NET, Managed Driver and ODP.NET,
Unmanaged Driver. ODP.NET, Managed Driver is a fully managed ADO.NET provider,
consisting of fewer DLLs and smaller install size than ODP.NET, Unmanaged Driver.
The managed driver has the same exact application programming interfaces (APIs) as
ODP.NET, Unmanaged Driver. However, the managed driver's APIs are a subset of
the Unmanaged Driver's APIs.

This guide describes Oracle Data Provider for .NET features, their use, installation,
requirements, and classes. The guide distinguishes which classes and APIs are
supported for the managed driver, unmanaged driver, .NET stored procedures,
and .NET clients.

Additionally, Oracle Data Provider for .NET Dynamic Help, which is context-sensitive
online help, contains the same reference sections available in Oracle Data Provider
for .NET Developer's Guide for Microsoft Windows, this guide.

1-1

Oracle Data Provider for .NET Dynamic Help is integrated with Visual Studio Dynamic
Help. With Dynamic Help, you can access Oracle Data Provider for .NET
documentation within Visual Studio by placing the cursor on an Oracle Data Provider
for .NET keyword and pressing the F1 function key.

1.1.2 Oracle Developer Tools for Visual Studio
Oracle Developer Tools is an add-in to Visual Studio that provides graphical user
interface (GUI) access to Oracle functionality. It provides improved developer
productivity and ease of use. Oracle Developer Tools provide the ability to build .NET
stored procedures using Visual Basic .NET, C#, and other .NET languages.

Oracle Developer Tools for Visual Studio Help describes Oracle Developer Tools. This
help is in the form of dynamic help, which installs as part of the product.

Additionally, the Oracle Developer Tools for Visual Studio Help includes the following
documentation:

• Oracle Database PL/SQL Language Reference

• Oracle Database SQL Language Reference

• Oracle Database Extensions for .NET Developer's Guide for Microsoft Windows

• Oracle Database Error Messages Reference

• Access to Oracle Data Provider for .NET Dynamic Help

• Access to Oracle Providers for ASP.NET Dynamic Help

1.1.3 Oracle Database Extensions for .NET
Oracle Database Extensions for .NET provides the following:

• Hosting of Microsoft Common Language Runtime (CLR) in an external process on
the server side, to execute .NET stored procedures.

• ODP.NET data access on the server side, from within the .NET stored procedure.

Oracle Data Provider for .NET Developer's Guide for Microsoft Windows describes all
ODP.NET classes. Classes that are not supported by Oracle Database Extensions
for .NET are described as Not Supported in a .NET Stored Procedure.

1.1.4 Oracle Providers for ASP.NET
Oracle Providers for ASP.NET offer ASP.NET developers an easy to use method to
store state common to web applications within an Oracle database. These providers
are modeled on existing Microsoft ASP.NET providers, sharing similar schema and
programming interfaces to provide .NET developers a familiar interface. Oracle
supports the following providers:

• Cache Dependency Provider

• Membership Provider

• Profile Provider

• Role Provider

• Session State Provider

Chapter 1
.NET Data Access in Oracle: Products and Documentation

1-2

• Site Map Provider

• Web Events Provider

• Web Parts Personalization Provider

Oracle Providers for ASP.NET classes, their use, installation, and requirements are
described in Oracle Providers for ASP.NET Developer's Guide for Microsoft Windows,
which is also provided as dynamic help.

1.1.5 Oracle Services for Microsoft Transaction Server
Oracle Services for Microsoft Transaction Server (OraMTS) permit Oracle databases
to be used as resource managers in Microsoft application coordinated transactions.
OraMTS acts as a proxy for the Oracle database to the Microsoft Distributed
Transaction Coordinator (MSDTC). As a result, OraMTS provides client-side
connection pooling and allows client components that leverage Oracle to participate in
promotable and distributed transactions. In addition, OraMTS can operate with Oracle
databases running on any operating system, given that the services themselves are
run on Windows.

1.1.6 Oracle TimesTen In-Memory Database
ODP.NET support for Oracle TimesTen In-Memory Database (TimesTen) provides
fast and efficient ADO.NET data access for applications that require the highest
performance.

You can use ODP.NET with any of the following TimesTen installations:

• TimesTen Data Manager only (for direct connections)

• TimesTen Client only (for client/server connections, assuming a TimesTen Data
Manager instance and TimesTen Server instance are accessible elsewhere)

• TimesTen Data Manager with TimesTen Server

For more information on ODP.NET features specific to a TimesTen environment, refer
to the Oracle Data Provider for .NET Oracle TimesTen In-Memory Database Support
User's Guide.

Note:

TimesTen does not support ODP.NET, Managed Driver.

1.2 Overview of Oracle Data Provider for .NET (ODP.NET)
Oracle Data Provider for .NET (ODP.NET) is an implementation of a .NET data
provider for Oracle Database, using and inheriting from classes and interfaces
available in the Microsoft .NET Framework Class Library.

Following the .NET Framework, ODP.NET uses the ADO.NET model, which allows
native providers to expose provider-specific features and data types. This is similar to
Oracle Provider for OLE DB, where ADO (ActiveX Data Objects) provides an

Chapter 1
Overview of Oracle Data Provider for .NET (ODP.NET)

1-3

automation layer that exposes an easy programming model. ADO.NET provides a
similar programming model, but without the automation layer, for better performance.

Oracle Data Provider for .NET uses Oracle native APIs to offer fast and reliable
access to Oracle data and features from any .NET application. ODP.NET consists of
two drivers: ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver.
ODP.NET, Managed Driver is a fully managed ADO.NET provider, consisting of fewer
DLLs and smaller install size than ODP.NET, Unmanaged Driver. The managed driver
has the same exact application programming interfaces (APIs) as ODP.NET,
Unmanaged Driver. However, the managed driver's APIs are a subset of the
Unmanaged Driver's APIs.

The ODP.NET classes described in this guide are contained in the
Oracle.DataAccess.dll and Oracle.ManagedDataAccess.dll assembly.

• Client Applications: All ODP.NET classes are available for use in client
applications.

As ODP.NET, Managed Driver does not support all classes and members in the
ODP.NET, Unmanaged Driver, the unsupported managed driver classes and
members will be labeled Not Supported in ODP.NET, Managed Driver.

• .NET Stored Procedures: Most ODP.NET classes can be used from within .NET
stored procedures and functions. Those classes which cannot, are labeled Not
Supported in a .NET Stored Procedure. Additionally, some classes contain
members which may not be supported, and this is so indicated in the member
tables that follow the class descriptions, and listed in Chapter 4 of this guide.

1.3 Oracle Data Provider for .NET Assemblies
This section contains the following topics:

• Oracle Data Provider for .NET, Unmanaged Driver Assemblies

• Oracle Data Provider for .NET, Managed Driver Assemblies

• Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces

• Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Namespaces

1.3.1 Oracle Data Provider for .NET, Unmanaged Driver Assemblies
The Oracle.DataAccess.dll assembly provides two namespaces:

• The Oracle.DataAccess.Client namespace contains ODP.NET classes and
enumerations for the client-side provider.

• The Oracle.DataAccess.Types namespace contains the Oracle Data Provider
for .NET data types (ODP.NET Types).

To use Code First or Entity Framework 6 or higher with ODP.NET, Unmanaged Driver,
add Oracle.DataAccess.EntityFramework.dll as a project assembly reference. It
contains the namespace Oracle.DataAccess.EntityFramework.

1.3.2 Oracle Data Provider for .NET, Managed Driver Assemblies
The Oracle.ManagedDataAccess.dll assembly provides two namespaces:

Chapter 1
Oracle Data Provider for .NET Assemblies

1-4

• The Oracle.ManagedDataAccess.Client namespace contains ODP.NET classes and
enumerations for the client-side provider.

• The Oracle.ManagedDataAccess.Types namespace contains the Oracle Data
Provider for .NET data types (ODP.NET Types).

ODP.NET, Managed Driver contains additional assemblies. These assemblies are
optional to install if not using the specific functionality.

Applications do not need to explicitly add these assemblies to their project. ODP.NET,
Managed Driver will access these assemblies by default if installed.

The one exception is Oracle.ManagedDataAccess.EntityFramework.dll. That DLL must
be explicitly added to a project for its functionality to be used.

• Oracle.ManagedDataAccessDTC.dll - Only required when using distributed
transactions. The assembly is fully managed, but has 32-bit and x64 versions
depending on the .NET Framework's bitness in which it runs. The assembly makes
calls to unmanaged assemblies.

• Oracle.ManagedDataAccess.EntityFramework.dll - Only required when using Code
First or Entity Framework 6 or higher. It contains the
Oracle.ManagedDataAccess.EntityFramework namespace.

• Oracle.ManagedDataAccessIOP.dll - Only required when using Kerberos. The
assembly has 32-bit and x64 versions depending on the .NET Framework's
bitness in which it runs. The assembly makes calls to unmanaged assemblies.
Applications do not need to explicitly add this assembly to their project as
ODP.NET is already configured to access this assembly by default.

1.3.3 Oracle.DataAccess.Client and
Oracle.ManagedDataAccess.Client Namespaces

The Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client namespaces
contains implementations of core ADO.NET classes and enumerations for ODP.NET,
as well as ODP.NET specific classes.

The following tables list ODP.NET classes, enumerations, and types that are
supported by the Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
namespaces. The tables indicate which of them are not supported by ODP.NET,
Managed Driver and/or by .NET stored procedures. All are supported by ODP.NET,
Unmanaged Driver.

1.3.3.1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Table 1-1 lists the Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
classes and delegates.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-5

Table 1-1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in .NET Stored
Procedures

Description

OnChangeEventHandler
Delegate

- No The
OnChangedEventHandler
event delegate represents
the signature of the method
that handles the
notification.

OracleAQAgent Class No - The OracleAQAgent class
represents agents that may
be senders or recipients of
a message.

OracleAQDequeueOptions
Class

No - An
OracleAQDequeueOptions
object represents the
options available when
dequeuing a message from
an OracleAQQueue object.

OracleAQEnqueueOptions
Class

No - The
OracleAQEnqueueOptions
class represents the
options available when
enqueuing a message to
an OracleAQQueue.

OracleAQMessage Class No - An OracleAQMessage object
represents a message to
be enqueued and
dequeued.

OracleAQMessageAvailabl
eEventArgs Class

No - The
OracleAQMessageAvailabl
eEventArgs class provides
event data for the
OracleAQQueue.MessageAv
ailable event.

OracleAQMessageAvailabl
eEventHandler Delegate

No - The
OracleAQMessageAvailabl
eEventHandler delegate
represents the signature of
the method that handles
the
OracleAQQueue.MessageAv
ailable event.

OracleAQQueue Class No - An OracleAQQueue object
represents a queue.

OracleBulkCopy Class No - An OracleBulkCopy object
efficiently bulk loads or
copies data into an Oracle
table from another data
source.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-6

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in .NET Stored
Procedures

Description

OracleBulkCopyColumnMa
pping Class

No - The
OracleBulkCopyColumnMap
ping class defines the
mapping between a column
in the data source and a
column in the destination
database table.

OracleBulkCopyColumnMa
ppingCollection Class

No - The
OracleBulkCopyColumnMap
pingCollection class
represents a collection of
OracleBulkCopyColumnMap
ping objects that are used
to map columns in the data
source to columns in a
destination table.

OracleClientFactory Class - - An OracleClientFactory
object allows applications
to instantiate ODP.NET
classes in a generic way.

OracleCommand Class - - An OracleCommand object
represents a SQL
command, a stored
procedure or function, or a
table name.

OracleCommandBuilder
Class

- - An OracleCommandBuilder
object provides automatic
SQL generation for the
OracleDataAdapter when
the database is updated.

OracleConnection Class - - An OracleConnection
object represents a
connection to Oracle
Database.

OracleConnectionStringBui
lder Class

- - An
OracleConnectionStringB
uilder object allows
applications to create or
modify connection strings.

OracleDataAdapter Class - - An OracleDataAdapter
object represents a data
provider object that
communicates with the
DataSet.

OracleDatabase Class No - An OracleDatabase object
represents an Oracle
Database instance.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-7

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in .NET Stored
Procedures

Description

OracleDataReader Class - - An OracleDataReader
object represents a
forward-only, read-only, in-
memory result set.

OracleDataSourceEnumer
ator Class

- - An
OracleDataSourceEnumera
tor object allows
applications to generically
obtain a collection of data
sources to connect to.

OracleDependency Class - No An OracleDependency
class represents a
dependency between an
application and an Oracle
database.

OracleError Class - - The OracleError object
represents an error
reported by an Oracle
database.

OracleErrorCollection
Class

- - An
OracleErrorCollection
object represents a
collection of OracleErrors.

OracleException Class - - The OracleException
object represents an
exception that is thrown
when Oracle Data Provider
for .NET encounters an
error.

OracleFailoverEventArgs
Class

No No The
OracleFailoverEventArgs
class provides event data
for the
OracleConnection.Failov
er event.

OracleFailoverEventHandle
r Delegate

No No The
OracleFailoverEventHand
ler represents the
signature of the method
that handles the
OracleConnection.Failov
er event.

OracleGlobalization Class - - The OracleGlobalization
class is used to obtain and
set the Oracle globalization
settings of the session,
thread, and local computer
(read-only).

Chapter 1
Oracle Data Provider for .NET Assemblies

1-8

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in .NET Stored
Procedures

Description

OracleHAEventArgs Class - - The OracleHAEventArgs
class provides event data
for the
OracleConnection.HAEven
t event.

OracleHAEventHandler
Delegate

- - The
OracleHAEventHandler
delegate represents the
signature of the method
that handles the
OracleConnection.HAEven
t event.

OracleInfoMessageEventAr
gs Class

- - The
OracleInfoMessageEventA
rgs object provides event
data for the
OracleConnection.InfoMe
ssage event.

OracleInfoMessageEventH
andler Delegate

- - The
OracleInfoMessageEventH
andler delegate represents
the signature of the method
that handles the
OracleConnection.InfoMe
ssage event.

OracleNotificationEventArg
s Class

- - The
OracleNotificationEvent
Args class provides event
data for a notification.

OracleNotificationRequest
Class

- No An
OracleNotificationReque
st class represents a
notification request to be
subscribed in the database.

OracleParameter Class - - An OracleParameter object
represents a parameter for
an OracleCommand.

OracleParameterCollection
Class

- - An
OracleParameterCollecti
on object represents a
collection of
OracleParameters.

OraclePermission Class - - An OraclePermission
object enables ODP.NET
to enforce imperative
security and helps ensure
that a user has a security
level adequate for
accessing data.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-9

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in .NET Stored
Procedures

Description

OraclePermissionAttribute
Class

- - An
OraclePermissionAttribu
te object enables
ODP.NET to enforce
declarative security and
helps ensure that a user
has a security level
adequate for accessing
data.

OracleRowsCopiedEventH
andler Delegate

No - The
OracleRowsCopiedEventHa
ndler delegate represents
the method that handles
the OracleRowsCopied
event of an
OracleBulkCopy object.

OracleRowsCopiedEventAr
gs Class

No - The
OracleRowsCopiedEventAr
gs class represents the set
of arguments passed as
part of event data for the
OracleRowsCopied event.

OracleRowUpdatedEventA
rgs Class

- - The
OracleRowUpdatedEventAr
gs object provides event
data for the
OracleDataAdapter.RowUp
dated event.

OracleRowUpdatedEventH
andler Delegate

- - The
OracleRowUpdatedEventHa
ndler delegate represents
the signature of the method
that handles the
OracleDataAdapter.RowUp
dated event.

OracleRowUpdatingEventA
rgs Class

- - The
OracleRowUpdatingEventA
rgs object provides event
data for the
OracleDataAdapter.RowUp
dating event.

OracleRowUpdatingEventH
andler Delegate

- - The
OracleRowUpdatingEventH
andler delegate represents
the signature of the method
that handles the
OracleDataAdapter.RowUp
dating event.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-10

Table 1-1 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client

Class or Delegate Supported in the
ODP.NET, Managed
Driver

Supported in .NET Stored
Procedures

Description

OracleShardingKey Class No No An OracleShardingKey
object can represent either
a sharding key or a super
sharding key.

OracleTransaction Class - No An OracleTransaction
object represents a local
transaction.

OracleXmlQueryProperties
Class

- - An
OracleXmlQueryPropertie
s object represents the
XML properties used by the
OracleCommand class when
the XmlCommandType
property is Query.

OracleXmlSaveProperties
Class

- - An
OracleXmlSaveProperties
object represents the XML
properties used by the
OracleCommand class when
the XmlCommandType
property is Insert, Update,
or Delete.

1.3.3.2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Enumerations

Table 1-2 lists the client enumerations.

Table 1-2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations

Enumeration Supported in the
ODP.NET,
Managed Driver

Supported
in .NET Stored
Procedures

Description

FailoverEvent Enumeration No No FailoverEvent enumerated
values are used to specify the
state of the failover.

FailoverReturnCode Enumeration No No FailoverReturnCode
enumerated values are passed
back by the application to the
ODP.NET provider to request a
retry in case of a failover error,
or to continue in case of a
successful failover.

FailoverType Enumeration No No FailoverType enumerated
values are used to indicate the
type of failover event that was
raised.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-11

Table 1-2 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Enumerations

Enumeration Supported in the
ODP.NET,
Managed Driver

Supported
in .NET Stored
Procedures

Description

OracleAQDequeueMode Enumeration No - The OracleAQDequeueMode
enumeration type specifies the
dequeue mode.

OracleAQMessageDeliveryMode
Enumeration

No - The
OracleAQMessageDeliveryMode
enumeration type specifies the
delivery mode of the message.

OracleAQMessageState Enumeration No - The OracleAQMessageState
enumeration type identifies the
state of the message at the time
of dequeue.

OracleAQMessageType Enumeration No - The OracleAQMessageType
enumeration type specifies the
message payload type.

OracleAQNavigationMode Enumeration No - The OracleAQNavigationMode
enumeration type specifies the
navigation mode.

OracleAQNotificationGroupingType
Enumeration

No - The
OracleAQNotificationGroupin
gType enumeration type
specifies the notification
grouping type.

OracleAQNotificationType Enumeration No - The OracleAQNotificationType
enumeration type specifies the
notification type of the received
notification.

OracleAQVisibilityMode Enumeration No - The OracleAQVisibilityMode
enumeration type specifies
whether the enqueue or
dequeue operation is part of the
current transaction.

OracleBulkCopyOptions Enumeration No - The OracleBulkCopyOptions
enumeration specifies the
values that can be combined
with an instance of the
OracleBulkCopy class and used
as options to determine its
behavior and the behavior of the
WriteToServer methods for that
instance.

OracleCollectionType Enumeration - No OracleCollectionType
enumerated values specify
whether or not the
OracleParameter object
represents a collection, and if
so, specifies the collection type.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-12

Table 1-2 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Enumerations

Enumeration Supported in the
ODP.NET,
Managed Driver

Supported
in .NET Stored
Procedures

Description

OracleConnectionType Enumeration No - OracleConnectionType
enumerated values specify
whether a particular connection
object is associated with an
Oracle database connection, a
TimesTen database connection,
or no physical connection at all.

OracleDBShutdownMode Enumeration No - OracleDBShutdownMode
enumerated values specify the
database shutdown options.

OracleDBStartupMode Enumeration No - OracleDBStartupMode
enumerated values specify the
database startup options.

OracleDbType Enumeration - - OracleDbType enumerated
values are used to explicitly
specify the OracleDbType of an
OracleParameter.

OracleHAEventSource Enumeration - - The OracleHAEventSource
enumeration indicates the
source of the HA event.

OracleHAEventStatus Enumeration - - The OracleHAEventStatus
enumeration indicates the
status of the HA event source.

OracleIdentityType Enumeration - - The OracleIdentityType
enumeration specifies how
Oracle identity column values
are generated.

OracleNotificationInfo Enumeration - No OracleNotificationInfo
enumerated values specify the
database event that causes the
notification.

OracleNotificationSource Enumeration - No OracleNotificationSource
enumerated values specify the
different sources that cause
notification.

OracleNotificationType Enumeration - No OracleNotificationType
enumerated values specify the
different types that cause the
notification.

OracleParameterStatus Enumeration - - The OracleParameterStatus
enumeration type indicates
whether a NULL value is fetched
from a column, or truncation has
occurred during the fetch, or a
NULL value is to be inserted into
a database column.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-13

Table 1-2 (Cont.) Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Enumerations

Enumeration Supported in the
ODP.NET,
Managed Driver

Supported
in .NET Stored
Procedures

Description

OracleRowidInfo Enumeration - - The OracleRowidInfo
enumeration values specify
whether ROWID information is
included as part of the
ChangeNotificationEventArgs
or not

OracleXmlCommandType Enumeration - - The OracleXmlCommandType
enumeration specifies the
values that are allowed for the
OracleXmlCommandType property
of the OracleCommand class.

1.3.4 Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Namespaces

The Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types namespaces
provides classes, structures, and exceptions for Oracle native types that can be used
with Oracle Data Provider for .NET.

1.3.4.1 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Structures

Table 1-3 lists the type structures.

Table 1-3 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Structures

Structure Description

OracleBinary Structure The OracleBinary structure represents a variable-length
stream of binary data.

OracleBoolean Structure The OracleBoolean structure represents a logical value that
is either TRUE or FALSE.

OracleDate Structure The OracleDate structure represents the Oracle DATE data
type.

OracleDecimal Structure The OracleDecimal structure represents an Oracle NUMBER
in the database or any Oracle numeric value.

OracleIntervalDS Structure The OracleIntervalDS structure represents the Oracle
INTERVAL DAY TO SECOND data type.

OracleIntervalYM Structure The OracleIntervalYM structure represents the Oracle
INTERVAL YEAR TO MONTH data type.

OracleString Structure The OracleString structure represents a variable-length
stream of characters.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-14

Table 1-3 (Cont.) Oracle.DataAccess.Types and
Oracle.ManagedDataAccess.Types Structures

Structure Description

OracleTimeStamp Structure The OracleTimeStamp structure represents the Oracle
TimeStamp data type.

OracleTimeStampLTZ Structure The OracleTimeStampLTZ structure represents the Oracle
TIMESTAMP WITH LOCAL TIME ZONE data type.

OracleTimeStampTZ Structure The OracleTimeStampTZ structure represents the Oracle
TIMESTAMP WITH TIME ZONE data type.

1.3.4.2 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Exceptions

Type Exceptions are thrown only by ODP.NET type structures. Table 1-4 lists the type
exceptions.

Table 1-4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Exceptions

Exception Description

OracleTypeException Class The OracleTypeException object is the base exception
class for handling exceptions that occur in the ODP.NET
Types classes.

OracleNullValueException Class The OracleNullValueException represents an exception
that is thrown when trying to access an ODP.NET Types
structure that is null.

OracleTruncateException Class The OracleTruncateException class represents an
exception that is thrown when truncation in an ODP.NET
Types class occurs.

1.3.4.3 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Classes

Table 1-5 lists the type classes.

Table 1-5 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes

Class Supported in
the
ODP.NET,
Managed
Driver

Description

OracleArrayMappingAttribute Class No The OracleArrayMappingAttribute class is required to mark
a custom class field or property with information that
ODP.NET uses when a custom type represents an Oracle
Collection type.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-15

Table 1-5 (Cont.) Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes

Class Supported in
the
ODP.NET,
Managed
Driver

Description

OracleBFile Class - An OracleBFile is an object that has a reference to BFILE
data. It provides methods for performing operations on BFILE
objects.

OracleBlob Class - An OracleBlob object is an object that has a reference to
BLOB data. It provides methods for performing operations on
BLOB objects.

OracleClob Class - An OracleClob is an object that has a reference to CLOB data.
It provides methods for performing operations on CLOB
objects.

OracleCustomTypeMappingAttribut
e Class

No The OracleCustomTypeMappingAttribute class is used to
mark a custom type factory class or struct with information
that is used by ODP.NET when a custom type is used to
represent an Oracle UDT.

OracleObjectMappingAttribute
Class

No The OracleObjectMappingAttribute class marks custom
class fields or properties with information that ODP.NET uses
when a custom type represents an Oracle Object type.

OracleRef Class No An OracleRef instance represents an Oracle REF, which
references a persistent, standalone, referenceable object that
resides in the database. The OracleRef object provides
methods to insert, update, and delete the Oracle REF.

OracleRefCursor Class - An OracleRefCursor object represents an Oracle REF CURSOR.

OracleUdt Class No The OracleUdt class defines static methods that are used
when converting between Custom Types and Oracle UDTs
and vice-versa.

OracleXmlStream Class - An OracleXmlStream object represents a sequential read-only
stream of XML data stored in an OracleXmlType object.

OracleXmlType Class - An OracleXmlType object represents an Oracle XmlType
instance.

1.3.4.4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Interfaces

Table 1-6 lists the type interfaces.

Table 1-6 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces

Interface Supported in the
ODP.NET,
Managed Driver

Description

IOracleArrayTypeFactory
Interface

No The IOracleArrayTypeFactory interface is used by ODP.NET
to create arrays that represent Oracle Collections.

Chapter 1
Oracle Data Provider for .NET Assemblies

1-16

Table 1-6 (Cont.) Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces

Interface Supported in the
ODP.NET,
Managed Driver

Description

IOracleCustomType Interface No IOracleCustomType is an interface for converting between a
Custom Type and an Oracle Object or Collection Type.

IOracleCustomTypeFactory
Interface

No The IOracleCustomTypeFactory interface is used by
ODP.NET to create custom objects that represent Oracle
Objects or Collections.

INullable Interface - The INullable interface is used to determine whether or not
an ODP.NET type has a NULL value.

1.3.4.5 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Enumerations

Table 1-7 lists the type enumerations.

Table 1-7 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations

Enumeration Supported in the
ODP.NET, Managed
Driver

Description

OracleUdtFetchOption
Enumeration

No OracleUdtFetchOption enumeration values specify how to
retrieve a copy of the referenceable object.

OracleUdtStatus
Enumeration

No OracleUdtStatus enumeration values specify the status of
an object attribute or collection element. An object attribute
or a collection element can be a valid value or a null value.

1.4 Differences between the ODP.NET Managed Driver and
Unmanaged Driver

ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver have a number of
configuration setting differences.

Table 1-8 Application Programming Interfaces not supported in ODP.NET, Managed Driver

Namespace Class/Enumeration/Interface Unsupported Method/Property/
Event

Oracle.ManagedDataAccess.Client FailoverEvent enumeration All

Oracle.ManagedDataAccess.Client FailoverReturnCode enumeration All

Oracle.ManagedDataAccess.Client FailoverType enumeration All

Oracle.ManagedDataAccess.Client OracleAQAgent class All

Oracle.ManagedDataAccess.Client OracleAQDequeueuMode enumeration All

Oracle.ManagedDataAccess.Client OracleAQDequeueOptions class All

Chapter 1
Differences between the ODP.NET Managed Driver and Unmanaged Driver

1-17

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed
Driver

Namespace Class/Enumeration/Interface Unsupported Method/Property/
Event

Oracle.ManagedDataAccess.Client OracleAQEnqueueOptions class All

Oracle.ManagedDataAccess.Client OracleAQMessage class All

Oracle.ManagedDataAccess.Client OracleAQMessageAvailableEventArg
s class

All

Oracle.ManagedDataAccess.Client OracleAQMessageAvailableEventHan
dler class

All

Oracle.ManagedDataAccess.Client OracleAQMessageDeliveryMode
enumeration

All

Oracle.ManagedDataAccess.Client OracleAQMessageState enumeration All

Oracle.ManagedDataAccess.Client OracleAQMessageType enumeration All

Oracle.ManagedDataAccess.Client OracleAQNavigationMode
enumeration

All

Oracle.ManagedDataAccess.Client OracleAQNotificationGroupingType
enumeration

All

Oracle.ManagedDataAccess.Client OracleAQNotificationType
enumeration

All

Oracle.ManagedDataAccess.Client OracleAQQueue class All

Oracle.ManagedDataAccess.Client OracleAQVisibilityMode
enumeration

All

Oracle.ManagedDataAccess.Client OracleBulkCopy class All

Oracle.ManagedDataAccess.Client OracleBulkCopyColumnMapping class All

Oracle.ManagedDataAccess.Client OracleBulkCopyColumnMappingColle
ction class

All

Oracle.ManagedDataAccess.Client OracleBulkCopyOptions class All

Oracle.ManagedDataAccess.Client OracleCommand class ArrayBindRowsAffected property

Oracle.ManagedDataAccess.Client OracleCommand class ImplicitRefCursors property

Oracle.ManagedDataAccess.Client OracleConnection class FlushCache() method

Oracle.ManagedDataAccess.Client OracleConnection class Failover event

Oracle.ManagedDataAccess.Client OracleConnection class ConnectionType property

Oracle.ManagedDataAccess.Client OracleConnection class SetShardingKey method

Oracle.ManagedDataAccess.Client OracleConnectionType enumeration All

Oracle.ManagedDataAccess.Client OracleDBShutdownMode enumeration All

Oracle.ManagedDataAccess.Client OracleDBStartupMode enumeration All

Oracle.ManagedDataAccess.Client OracleDataReader class GetOracleRef() method

Oracle.ManagedDataAccess.Client OracleDataReader class GetOracleBlobForUpdate() method

If the method is called, then a
NotSupportedException is thrown.

Chapter 1
Differences between the ODP.NET Managed Driver and Unmanaged Driver

1-18

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed
Driver

Namespace Class/Enumeration/Interface Unsupported Method/Property/
Event

Oracle.ManagedDataAccess.Client OracleDataReader class GetOracleClobForUpdate() method

If the method is called, then a
NotSupportedException is thrown.

Oracle.ManagedDataAccess.Client OracleDataReader class IsAutoIncrement and IdentityType
properties of the GetSchemaTable

Oracle.ManagedDataAccess.Client OracleDataAdapter class IdentityInsert property

Oracle.ManagedDataAccess.Client OracleDataAdapter class IdentityUpdate property

Oracle.ManagedDataAccess.Client OracleDataAdapter class SafeMapping property

Oracle.ManagedDataAccess.Client OracleDatabase class All

Oracle.ManagedDataAccess.Client OracleDbType enumeration Array

Oracle.ManagedDataAccess.Client OracleDbType enumeration Object

Oracle.ManagedDataAccess.Client OracleDbType enumeration Ref

Oracle.ManagedDataAccess.Client OracleException class IsRecoverable property

Oracle.ManagedDataAccess.Client OracleFailoverEventArgs class All

Oracle.ManagedDataAccess.Client OracleFailoverEventHandler class All

Oracle.ManagedDataAccess.Client OracleGlobalization class ClientCharacterSet property

Oracle.ManagedDataAccess.Client OracleGlobalization class GetClientInfo() method

Oracle.ManagedDataAccess.Client OracleGlobalization class GetThreadInfo() method

Oracle.ManagedDataAccess.Client OracleGlobalization class SetThreadInfo() method

Oracle.ManagedDataAccess.Client OracleIdentityType enumeration All

Oracle.ManagedDataAccess.Client OracleNotificationRequest class GroupingInterval property

Oracle.ManagedDataAccess.Client OracleNotificationRequest class GroupingNotificationEnabled
property

Oracle.ManagedDataAccess.Client OracleNotificationRequest class GroupingType property

Oracle.ManagedDataAccess.Client OracleRowsCopiedEventArgs class All

Oracle.ManagedDataAccess.Client OracleRowsCopiedEventHandler
class

All

Oracle.ManagedDataAccess.Types IOracleArrayTypeFactory interface All

Oracle.ManagedDataAccess.Types IOracleCustomType interface All

Oracle.ManagedDataAccess.Types IOracleCustomTypeFactory interface All

Oracle.ManagedDataAccess.Types OracleArrayMappingAttribute class All

Oracle.ManagedDataAccess.Types OracleCustomTypeMappingAttribute
class

All

Oracle.ManagedDataAccess.Types OracleObjectMappingAttribute
class

All

Oracle.ManagedDataAccess.Types OracleRef class All

Oracle.ManagedDataAccess.Types OracleShardingKey class All

Chapter 1
Differences between the ODP.NET Managed Driver and Unmanaged Driver

1-19

Table 1-8 (Cont.) Application Programming Interfaces not supported in ODP.NET, Managed
Driver

Namespace Class/Enumeration/Interface Unsupported Method/Property/
Event

Oracle.ManagedDataAccess.Types OracleTimestampTZ structure OracleTimeStampTZ(DateTime dt,
string timeZone) constructor. This
constructor is supported but the
timeZone must be an hour offset.

Oracle.ManagedDataAccess.Types OracleUdt class All

Oracle.ManagedDataAccess.Types OracleUdtFetchOption enumeration All

Oracle.ManagedDataAccess.Types OracleUdtStatus enumeration All

1.5 Using ODP.NET Client Provider in a Simple Application
The following is a simple C# application that connects to Oracle Database and
displays its version number before disconnecting using ODP.NET, Unmanaged Driver:

// C#

using System;
using Oracle.DataAccess.Client;

class Sample
{
 static void Main()
 {
 // Connect to Oracle
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Display Version Number
 Console.WriteLine("Connected to Oracle " + con.ServerVersion);

 // Close and Dispose OracleConnection
 con.Close();
 con.Dispose();
 }
}

If you are using OPD.NET, Managed Driver, then replace the contents of Program.cs
with the following C# code. The namespace of ODP.NET, Managed Driver
(Oracle.ManagedDataAccess.*) is different from the namespace of ODP.NET,
Unmanaged Driver (Oracle.DataAccess.*)

// C#
using System;
using Oracle.ManagedDataAccess.Client;
using Oracle.ManagedDataAccess.Types;

namespace Connect
{

Chapter 1
Using ODP.NET Client Provider in a Simple Application

1-20

 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 // Please replace the connection string attribute settings
 string constr = "user id=scott;password=tiger;data source=oracle";

 OracleConnection con = new OracleConnection(constr);
 con.Open();
 Console.WriteLine("Connected to Oracle Database {0}", con.ServerVersion);
 con.Dispose();

 Console.WriteLine("Press RETURN to exit.");
 Console.ReadLine();
 }
 catch (Exception ex)
 {
 Console.WriteLine("Error : {0}", ex);
 }
 }
 }
}

Note:

Additional samples are provided in the ORACLE_BASE\ORACLE_HOME\ODACsamples
directory.

Chapter 1
Using ODP.NET Client Provider in a Simple Application

1-21

2
Installing and Configuring Oracle Data
Provider for .NET

This section describes installation and configuration requirements for Oracle Data
Provider for .NET.

This section contains these topics:

• System Requirements

• Entity Framework Requirements

• Oracle Data Provider for .NET Versioning Scheme

• Installing Oracle Data Provider for .NET, Unmanaged Driver

• Installing Oracle Data Provider for .NET, Managed Driver

• Entity Framework Code First Assemblies and File Location

• Configuring Oracle Data Provider for .NET

• Oracle Data Provider for .NET, Unmanaged Driver Configuration

• Oracle Data Provider for .NET, Managed Driver Configuration

• Distributed Transactions

• Configuration differences between ODP.NET, Managed Driver and ODP.NET,
Unmanaged Driver

• Configuring for Entity Framework Code First

• Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver

• Configuring a Port to Listen for Database Notifications

• General .NET Programming Recommendations and Tips for ODP.NET

2.1 System Requirements
Oracle Data Provider for .NET, Unmanaged Driver requires the following:

• Windows operating system

– 64-bit: Windows 7 x64 (Professional, Enterprise, and Ultimate Editions),
Windows 8 (Pro and Enterprise Editions), Windows 8.1 (Pro and Enterprise
Editions), Windows Server 2012 x64 (Standard, Datacenter, Essentials, and
Foundation Editions), Windows Server 2012 R2 x64 (Standard, Datacenter,
Essentials, and Foundation Editions), or Windows 10 x64 (Pro, Enterprise, and
Education Editions).

Oracle supports 32-bit ODP.NET and 64-bit ODP.NET for Windows x64 on
these operating systems.

2-1

Note:

ODP.NET does not support Itanium systems.

• Microsoft .NET Framework

– ODP.NET for .NET Framework 2.0 is only supported with Microsoft .NET
Framework 3.5 SP 1 and later.

– ODP.NET for .NET Framework 4 is only supported with Microsoft .NET
Framework 4.5.2, 4.6, 4.6.1, and 4.6.2.

• Access to Oracle Database 10g Release 2 or later

• Oracle Client release 12.1

This is automatically installed as part of the ODP.NET installation.

Oracle Data Provider for .NET, Managed Driver requires the following:

• Same Windows operating system support as ODP.NET, Unmanaged Driver.

ODP.NET, Managed Driver is built with AnyCPU. It runs on either 32-bit or 64-bit
(x64) Windows and on either 32-bit or 64-bit (x64) .NET Framework.

• Microsoft .NET Framework 4.5.2, 4.6, 4.6.1, or 4.6.2.

• Access to Oracle Database 10g Release 2 or later

Possible additional requirements for both ODP.NET, Managed and Unmanaged
Drivers:

• Applications using promotable and distributed transactions require Oracle Services
for Microsoft Transaction Server 12.1 in whole or in part. ODP.NET only supports
the read committed isolation level for distributed transactions. Refer to the
Distributed Transactions section for more information.

2.2 Entity Framework Requirements
This section contains the following topics:

• Entity Framework Database First and Model First Requirements

• Entity Framework Code First Requirements

2.2.1 Entity Framework Database First and Model First Requirements
Oracle's support for Entity Framework Database First and Model First has the
following version requirements:

• ODP.NET 11.2.0.3 or higher

• Microsoft Entity Framework 4 or higher, up to and including the 6.x versions.

If using Visual Studio tools, then use Visual Studio 2010 or higher and install Oracle
Developer Tools for Visual Studio.

Chapter 2
Entity Framework Requirements

2-2

2.2.2 Entity Framework Code First Requirements
Oracle's support for Entity Framework Code First has the following version
requirements:

• ODP.NET 12.1.0.2 or higher

• Microsoft Entity Framework 6 or higher

• Microsoft .NET Framework 4.5 or higher

Projects must set the target framework to .NET Framework 4.5 or higher. This can
be done by modifying the project's properties in Visual Studio 2012 or higher.

2.3 Oracle Data Provider for .NET Versioning Scheme
Starting with 11.2.0.1.2, Oracle Data Provider for .NET, Unmanaged Driver ships with
two sets of binaries: one set for .NET Framework 2.0 and another for .NET Framework
4. ODP.NET, Managed Driver ships with one set of binaries for .NET Framework 4.

For example, ODP.NET 11.2.0.1.2 binaries would be the following:

• ODP.NET for .NET Framework 4

– Oracle.DataAccess.dll

* Built with .NET Framework 4

* Assembly version number: 4.x.x.x

– OraOps11w.dll

* Used by ODP.NET for .NET Framework 2.0 and 4

• ODP.NET for .NET Framework 2.0

– Oracle.DataAccess.dll

* Built with .NET Framework 2.0

* Assembly version number: 2.x.x.x

– OraOps11w.dll

* Used by ODP.NET for .NET Framework 2.0 and 4

The convention for ODP.NET assembly/DLL versioning is

n1.o1o2.o3o4.o5

where:

• n1 is the most significant .NET Framework version number.

• o1o2 are the first two digits of the ODP.NET product version number.

• o3o4 are the third and forth digits of the ODP.NET product version number.

• o5 is the fifth and last digit of the ODP.NET product version number.

For example, if the ODP.NET product version number is 11.2.0.2.0, the corresponding
ODP.NET assembly versions are:

• .NET Framework 4 version: 4.112.2.0

Chapter 2
Oracle Data Provider for .NET Versioning Scheme

2-3

• .NET Framework 2.0 version: 2.112.2.0

Note that the Oracle installer and documentation still refer to the ODP.NET product
version number and not the assembly/DLL version number.

As with the .NET Framework system libraries, the first digit of the assembly version
number indicates the version of the .NET Framework to use with an ODP.NET
assembly.

Publisher Policy DLL is provided as before so that applications built with older versions
of ODP.NET are redirected to the newer ODP.NET assembly, even though the
versioning scheme has changed.

ODP.NET, Managed Driver follows a similar version model for its binaries.

ODP.NET for .NET Framework 4:

• Oracle.ManagedDataAccess.dll

– Built with .NET Framework 4

– Assembly version number: 4.x.x.x

• Oracle.ManagedDataAccessDTC.dll

– Used by ODP.NET for .NET Framework 4 for distributed transactions only.

ODP.NET, Managed Driver Versioning

Starting with ODAC 12c Release 2, the ODP.NET, Managed Driver uses assembly
manifest attribute AssemblyInformationalVersionAttribute to uniquely identify
assemblies with the same AssemblyVersionAttribute attribute value. This value can be
accessed via .NET code, PowerShell, and other Windows applications to identify
ODP.NET, Managed Driver versions uniquely.

AssemblyInformationalVersionAttribute is set to the same version as the actual .NET
assembly version, except the fourth digit, which will no longer be 0. Instead, the
version will be unique for each ODP.NET, Managed Driver release by incrementing
the fourth digit for every subsequent release.

This value is accessible using .NET Framework
System.Diagnostics.FileVersionInfo.ProductVersion property. The returned value can
be used as a Version object or as a comparison String using comparison operators or
methods. Essentially, among a collection of ODP.NET, Managed Driver assemblies
that have the same assembly version, the newest ODP.NET, Managed Driver
assembly will have the largest fourth digit ProductVersion value than an older
assembly.

PowerShell Example: In this example, administrators uniquely distinguish the
assemblies between ODP.NET, Managed Driver versions from an old version of
ODP.NET, Managed Driver in c:\old and a more recent one in c:\new.

Script:

$VC1 = New-Object System.Version((Get-Command C:\old
\Oracle.ManagedDataAccess.dll).FileVersionInfo.ProductVersion)
$VC2 = New-Object System.Version((Get-Command C:\new
\Oracle.ManagedDataAccess.dll).FileVersionInfo.ProductVersion)
"Compare V1 to V2: " + $VC1.CompareTo($VC2)
"Compare V1 to V1: " + $VC1.CompareTo($VC1)
"Compare V2 to V1: " + $VC2.CompareTo($VC1)

Chapter 2
Oracle Data Provider for .NET Versioning Scheme

2-4

Output:

Compare V1 to V2: -1
Compare V1 to V1: 0
Compare V2 to V1: 1

Note:

ProductVersion property comparisons will provide correct information on which
version is more recent than the other only for ODP.NET, Managed Driver
released from ODAC 12c Release 2 and later.

2.4 Installing Oracle Data Provider for .NET, Unmanaged
Driver

Oracle Data Provider for .NET is part of Oracle Data Access Components (ODAC),
which can be downloaded from OTN. Beginning with ODAC 11.1.0.6.20, Oracle Data
Provider for .NET can be installed through XCopy or Oracle Universal Installer.

• XCopy

Administrators use XCopy to deploy Oracle Data Provider for .NET to large
numbers of computers for production deployments. The XCopy has a smaller
installation size and fine-grain control during installation and configuration than
Oracle Universal Installer.

• Oracle Universal Installer (OUI)

Developers and administrators use Oracle Universal Installer for automated
ODP.NET installations. It includes documentation and code samples that are not
part of the XCopy.

Note:

This section describes installation using the Oracle Universal Installer. For
installation and configuration using the XCopy install, refer to the
README.TXT file that is part of the XCopy installation.

Additionally, Oracle Data Provider for .NET Dynamic Help is registered with Visual
Studio, providing context-sensitive online help that is seamlessly integrated with Visual
Studio Dynamic Help. With Dynamic Help, the user can access ODP.NET
documentation within the Visual Studio IDE by placing the cursor on an ODP.NET
keyword and pressing the F1 function key.

Oracle Data Provider for .NET creates an entry in the machine.config file of the
computer on which it is installed, for applications using the OracleClientFactory class.
This enables the DbProviderFactories class to recognize ODP.NET.

ODP.NET, Unmanaged Driver Entity Framework 6 and Code First functionality are
available through a NuGet package. OUI and Xcopy installations include this package
as well, but require post-install configuration steps. The NuGet package for ODP.NET,

Chapter 2
Installing Oracle Data Provider for .NET, Unmanaged Driver

2-5

Unmanaged Driver Entity Framework automates these post-install steps, except for
the application-specific connection string settings.

2.4.1 File Locations After Installation
The Oracle.DataAccess.dll assembly is installed to the following locations

.NET Framework 2.0:

ORACLE_BASE\ORACLE_HOME\odp.net\bin\2.x directory

.NET Framework 4:

ORACLE_BASE\ORACLE_HOME\odp.net\bin\4 directory

Note:

If the machine has the corresponding .NET Framework installed, then the
Oracle.DataAccess.dll assembly is added to the Global Assembly Cache (GAC)
as well. This is to ensure that existing applications can start using the newly
installed ODP.NET version immediately. However, if this is not desired, be sure
to remove the policy DLLs from the GAC.

Documentation and the readme.txt file can be accessed through ORACLE_BASE
\ORACLE_HOME\ODACDoc\DocumentationLibrary\doc\index.htm.

Samples are provided in the ORACLE_BASE\ORACLE_HOME\ODACsamples directory.

2.4.2 Search Order for Unmanaged DLLs
ODP.NET consists of managed and unmanaged binaries. Through the use of the
DllPath configuration parameter, each application can specify the ORACLE_BASE\
\ORACLE_HOME\bin location that the dependent unmanaged Oracle Client binaries are
loaded from. However, the ORACLE_BASE\\ORACLE_HOME must have the same ODP.NET
version installed as the version that the application uses. Otherwise, a version
mismatch exception is thrown.

The Oracle.DataAccess.dll searches for dependent unmanaged DLLs (such as Oracle
Client) based on the following order:

1. Directory of the application or executable.

2. DllPath setting specified by application config or web.config.

3. DllPath setting specified by machine.config.

4. DllPath setting specified by the Windows Registry.

HKEY_LOCAL_MACHINE\Software\Oracle\ODP.NET\version\DllPath

5. Directories specified by the Windows PATH environment variable.

Upon installation of ODP.NET, Oracle Universal Installer sets the DllPath Windows
Registry value to the ORACLE_BASE\\ORACLE_HOME\bin directory where the corresponding
dependent DLLs are installed. Developers must provide this configuration information
on an application-by-application basis.

Chapter 2
Installing Oracle Data Provider for .NET, Unmanaged Driver

2-6

When a new ODP.NET version is installed, default values are set in the Windows
Registry for the new version. Because the policy DLLs redirect all ODP.NET
references to this new ODP.NET version, applications use the default values.
Developers can provide a config or web.config file specific to the application to prevent
this redirection. The configuration file settings always apply to the application,
regardless of whether or not patches or new versions are installed later.

Note:

Both Oracle.DataAccess.dll for .NET Framework 2.0 and Oracle.DataAccess.dll
for .NET Framework 4 use the same unmanaged DLL, OraOps12.dll.

2.4.2.1 ODP.NET and Dependent Unmanaged DLL Mismatch
To enforce the usage of Oracle.DataAccess.dll assembly with the correct version of its
unmanaged DLLs, an exception is raised if Oracle.DataAccess.dll notices it has loaded
a mismatched version of a dependent unmanaged DLL.

2.5 Installing Oracle Data Provider for .NET, Managed
Driver

Getting started with ODP.NET, Managed Driver

You can get started with ODP.NET Managed Driver by either using the Oracle
Universal Installer (OUI), XCopy, or NuGet.

If you are using OUI: Follow the Oracle Universal Installer (OUI) steps to install
ODP.NET, Managed Driver

If you are using XCopy: Download ODP.NET, Managed Driver .zip file to a directory
for staging the install. The .zip file contains a README file with XCopy installation
instructions.

Run the configure.bat script in one of the following directories:

• For 32-bit .NET Framework: OH\odp.net\managed\x86

• For 64-bit .NET Framework: OH\odp.net\managed\x64

Each directory contains an unconfigure.bat if ODP.NET, Managed Driver needs to be
unconfigured and removed from the machine.

If you are using NuGet: Download the ODP.NET NuGet package(s) and use NuGet
Package Manager to install.

The following NuGet packages are available:

• ODP.NET, Managed Driver

• Entity Framework assembly for Code First and Entity Framework 6 or higher use
with ODP.NET, Managed Driver

If you are using Windows Installer: Follow the Microsoft Windows Installer (MSI)
steps to install ODP.NET, Managed Driver.

Chapter 2
Installing Oracle Data Provider for .NET, Managed Driver

2-7

ODP.NET, Managed Driver Files

ODP.NET, Managed Driver consists of the following files:

Table 2-1 ODP.NET, Managed Driver Files with Descriptions

File Description

Oracle.ManagedDataAccess.dll Platform-independent (AnyCPU), fully-
managed ADO.NET provider

\x64\Oracle.ManagedDataAccessDTC.dll Platform-dependent (64-bit .NET Framework
only), Managed Assembly for Distributed
Transaction support.

\x86\Oracle.ManagedDataAccessDTC.dll Platform-dependent (32-bit .NET Framework
only), Managed Assembly for Distributed
Transaction support.

\Resources\<lang>
\Oracle.ManagedDataAccess.resources.dll

Platform-independent (AnyCPU), fully-
managed ADO.NET provider resource DLLs.

OraProvCfg.exe Platform-independent (AnyCPU) utility to
configure/unconfigure ODP.NET, Managed
and Unmanaged Drivers.

configure.bat Batch file to place ODP.NET, Managed Driver
into the GAC and add configuration entries
into the machine.config.

unconfigure.bat Batch file to remove ODP.NET, Managed
Driver from the GAC and remove configuration
entries from machine.config.

tnsnames.ora A sample configuration file that defines data
source aliases.

sqlnet.ora A sample configuration file that configures
network related settings.

ConfigSchema.xsd An XML schema file that defines the
configuration section for ODP.NET, Managed
Driver.

Oracle.ManagedDataAccess.EntityFramework
.dll

Platform-independent (AnyCPU), fully-
managed assembly for Code First and Entity
Framework 6 higher

\x64\Oracle.ManagedDataAccessIOP.dll Platform-dependent (64-bit .NET Framework),
Managed Assembly for Kerberos support

\x86\Oracle.ManagedDataAccessIOP.dll Platform-dependent (32-bit .NET Framework),
Managed Assembly for Kerberos support

• Oracle.ManagedDataAccessDTC.dll is only needed if the application uses distributed
transactions and the .NET Framework version is 4.5.1 or earlier. Higher .NET
Framework versions do not require this DLL.

• If distributed transactions are used by ODP.NET, Managed Driver running in .NET
Framework 4.5.1 or earlier, then the appropriate Oracle.ManagedDataAccessDTC.dll
(32-bit or 64-bit .NET Framework) must be loaded in the Global Assembly Cache
(GAC) or in the same directory as the .exe for it to be loaded by
Oracle.ManagedDataAccess.dll. The installer no longer GACs this DLL. It must now
be performed manually.

Chapter 2
Installing Oracle Data Provider for .NET, Managed Driver

2-8

• Oracle.ManagedDataAccessDTC.dll must not be referenced by the application.
ODP.NET, Managed Driver will reference it implicitly.

• On a 64-bit OS, only the x64 version of Oracle.ManagedDataAccessDTC.dll is placed
into the GAC upon the completion of an OUI install or an invocation of the XCopy
configure.bat.

2.5.1 Platform-Dependent Assemblies and Their Search Order
ODP.NET, Managed Driver has two sets of platform-dependent DLLs:
Oracle.ManagedDataAccessDTC.dll and Oracle.ManagedDataAccessIOP.dll. For each DLL,
there is a 32-bit .NET version and a 64-bit .NET version. While they consist of 100%
managed code, they call APIs outside of .NET, which is why they are platform
dependent.

Oracle.ManagedDataAccessDTC.dll supports coordinating distributed transactions. This
assembly is only needed in your application if you use distributed transactions
with .NET Framework 4.5.1 or lower. It is optional to use with .NET Framework 4.5.2
or higher.

Oracle.ManagedDataAccessIOP.dll supports Kerberos. This assembly is only needed in
your application if you are using Kerberos security.

These two assemblies are not intended to be directly referenced by an application.
Rather, they will be referenced implicitly. ODP.NET, Managed Driver will reference
these assemblies by using the following search order:

1. Global Assembly Cache

2. The web application's bin directory or Windows application's EXE directory

3. The x86 or x64 subdirectory based on whether the application runs in 32-bit or 64-
bit .NET Framework. If the application is built using AnyCPU, then ODP.NET will
use the correct DLL bitness as long as the assembly is available. Oracle
recommends using this method of finding dependent assemblies if your application
is AnyCPU.

For example, use the following steps for your application to use the 64-bit version of
Oracle.ManagedDataAccessIOP.dll:

1. Right click Visual Studio project, select Add, and then select New Folder.

2. Name the folder x64.

3. Right-click the newly created x64 folder, select Add, and then select Existing
Item.

4. Browse to the folder where the DLL is located, which usually is ORACLE_HOME
\odp.net\managed\x64, and then select Oracle.ManagedDataAccessIOP.dll.

5. Click Add.

6. Click the newly added Oracle.ManagedDataAccessIOP.dll in the x64 folder.

7. In the properties window, set Copy To Output Director to Copy Always.

For x86 targeted applications, name the folder x86 and add the assembly from the x86
directory.

Use the same steps for adding Oracle.ManagedDataAccessDTC.dll.

Chapter 2
Installing Oracle Data Provider for .NET, Managed Driver

2-9

To make your application platform independent even if it depends on
Oracle.ManagedDataAccessDTC.dll, Oracle.ManagedDataAccessIOP.dll or both, create
both x64 and x86 folders with the necessary assemblies added to them.

2.5.2 File Locations After Installation
In an Oracle Universal Installer based install, the Oracle.ManagedDataAccess.dll
assembly is installed to the following location:

.NET Framework 4:

ORACLE_BASE\ORACLE_HOME\odp.net\managed\common directory

Documentation and the readme.txt file can be accessed through ORACLE_BASE
\ORACLE_HOME\ODACDoc\DocumentationLibrary\doc\index.htm.

Samples are provided in the ORACLE_BASE\ORACLE_HOME\ODACsamples directory.

2.6 Entity Framework Code First Assemblies and File
Location

ODP.NET now ships with a separate assembly to support Code First and Entity
Framework 6. This functionality resides in a dedicated assembly, while the ADO.NET
and earlier Entity Framework version functionality resides in the main ODP.NET
assembly. This model physically separates Entity Framework 6 functionality from
ADO.NET functionality.

This ODP.NET assembly is:

• Oracle.DataAccess.EntityFramework.dll for ODP.NET, Unmanaged Driver.

• Oracle.ManagedDataAccess.EntityFramework.dll for ODP.NET, Managed Driver.

Whether it is installed using the Oracle Universal Installer or the XCopy package, the
Oracle Entity Framework assemblies may be found in the following location after install
(where %ORACLE_HOME% represents the operating system path to the installation
directory):

For Unmanaged Driver:

%ORACLE_HOME%\odp.net\bin\4\EF6\Oracle.DataAccess.EntityFramework.dll

For Managed Driver:

%ORACLE_HOME%\odp.net\managed\common

\EF6\Oracle.ManagedDataAccess.EntityFramework.dll

Both assemblies are compiled as Any CPU and therefore there is no need for separate
32-bit and 64-bit versions of the assemblies. Each assembly is designed to be bin
deployable meaning that the assembly should be copied into the application's bin
directory. As such the assemblies are not registered in the Global Assembly Cache
(GAC) during installation.

Chapter 2
Entity Framework Code First Assemblies and File Location

2-10

Note:

If desired the Oracle Entity Framework 6 assemblies may be registered in the
GAC manually but Oracle recommends not doing so.

2.7 Configuring Oracle Data Provider for .NET
The settings for specific versions of ODP.NET, can be configured in several ways for
specific effects on precedence:

• The Windows registry entries are machine-wide settings for a particular version of
ODP.NET.

Windows registry based configuration is not supported for ODP.NET, Managed
Driver.

• The machine.config settings are .NET framework-wide settings that override the
Windows registry values.

• The application or web config file settings are application-specific settings that
override the machine.config settings and the Windows registry settings.

Note:

There is one exception to app/web/config settings overriding
machine.config. For oracle.manageddataaccess.client and
oracle.unmanageddataaccess.client sections, a machine.config with a
specific ODP.NET version subsection, that is, <version
number="4.121.2.0">, will override an app/web.config subsection that
references all versions generically, that is, <version number="*">. To
override the machine.config subsection, create a subsection for that version
in the app/web/config file, that is, <version number="4.121.2.0">.

• Any attribute settings that are equivalent to the connection string override
everything.

The application or web config file can be useful and sometimes essential in scenarios
where more than one application on a computer use the same version of ODP.NET,
but each application needs a different ODP.NET configuration. The Windows registry
value settings for a given version of ODP.NET affect all the applications that use that
version of ODP.NET. However, having ODP.NET configuration values in the
application or web config file assure that these settings are applied only for that
application, thus providing more granularities.

For example, if the application or web.config file has a StatementCacheSize configuration
setting of 100, this application-specific setting forces the version of ODP.NET that is
loaded by that application to use 100 for the StatementCacheSize and overrides any
setting in the machine.config and in the registry. Note that for any setting that does not
exist in a config file (machine.config or application/web config), the value in the registry
for a loaded version of ODP.NET is used, as in previous releases.

Note that ODP.NET reads the machine.config files from the version of the .NET
Framework on which ODP.NET runs, not from the version of ODP.NET.

Chapter 2
Configuring Oracle Data Provider for .NET

2-11

ODP.NET only reads the Windows Registry and the XML configuration file when it is
loaded into memory, thus any configuration changes made after that are not read or
used until the application is re-started.

All boolean attributes in ODP.NET .NET configuration settings accept true, false, 1,
and 0 as valid values. 1 is equivalent to true and 0 is equivalent to false.

2.7.1 Oracle Client Configuration File Automated Setup During
Installation

When installing Oracle Data Access Components (ODAC) in a new Oracle Home,
Oracle Universal Installer (OUI) automatically copies the Oracle local naming
(tnsnames.ora), profile (sqlnet.ora), and directory (ldap.ora) parameter files and
settings from an existing Oracle home into the newly installed ODAC home, as long as
they share the same bitness. That is, they are both 32-bit installations or they are both
64-bit installations.

Alternatively, existing *.ora files can be copied over from another existing Oracle
home, besides the last active one, to the new ODAC Oracle home. OUI provides
location information for these files from up to three other existing Oracle homes if they
exist. The *.ora files can be customized if the new Oracle home uses a different
configuration from the previous Oracle home from which the files were copied over.

If you install into an existing ODAC or RDBMS Oracle home, then no new *.ora files is
copied or created.

If you install onto a computer without any previous Oracle homes present, then OUI
prompts the user for the database connection alias information. OUI then automatically
creates the tnsnames.ora file. If no alias information is provided, then no tnsnames.ora
file is created. Even if the user does not have all the database connection information
readily available, Oracle recommends inserting placeholder values during the install
process, then modifying the tnsnames.ora file later with actual values to replace the
placeholders.

2.7.2 Oracle Client Configuration File Settings
ODP.NET tnsnames.ora, sqlnet.ora, and ldap.ora parameter values can be set in
a .NET configuration file or within the *.ora file itself. The *.ora file location can be a
location different from the standard ORACLE_HOME/network/admin directory. The *.ora
settings order of precedence is similar to ODP.NET's settings order of precedence.
The main difference is that the *.ora files themselves are included in the search order.
The tnsnames.ora and sqlnet.ora precedence order is as follows:

1. app.config or web.config

2. machine.config

3. File location specified by TNS_ADMIN setting

4. The current .EXE or web application root directory

5. %ORACLE_HOME%\network\admin if using ODP.NET, Unmanaged Driver

The ldap.ora precedence order is as follows:

1. app.config or web.config

2. machine.config

Chapter 2
Configuring Oracle Data Provider for .NET

2-12

3. File location specified by TNS_ADMIN setting in .NET config file

4. File location specified by LDAP_ADMIN setting in .NET config file

5. The current .EXE or web application root directory

6. %ORACLE_HOME%\network\admin if using ODP.NET, Unmanaged Driver

7. %ORACLE_HOME%\ldap\admin if using ODP.NET, Unmanaged Driver

Oracle recommends using an app.config or web.config file to store all these Oracle
Client configuration parameter settings.

Once the first tnsnames.ora, sqlnet.ora, and ldap.ora are found and read, no additional
*.ora file lower in the precedence order is read. That means all Oracle Client
configuration settings must be made in the app.config, web.config, machine.config, or
the first set of *.ora files found. Additional parameter values set in *.ora files lower in
the precedence order will not be read.

2.7.3 Machine-Wide Configuration Option
ODAC OUI and xcopy installs ODP.NET with either machine-wide or non-machine-
wide configuration for managed and unmanaged ODP.NET. Machine-wide
configuration makes global changes to the machine's .NET setup, including placing the
provider assembly into the Global Assembly Cache (GAC) and updating the
machine.config with configuration section handler and DbProviderFactory information.

Machine-wide configuration also creates a TNS_ADMIN machine.config setting. If
TNS_ADMIN already exists as a Windows environment variable in an OUI ODAC
installation, then the TNS_ADMIN machine.config setting is set to that directory location. If
TNS_ADMIN does not already exist for an OUI ODAC installation, then the machine.config
TNS_ADMIN value is set to ORACLE_HOME\network\admin. Xcopy installations always create
a machine.config TNS_ADMIN value set to ORACLE_HOME\network\admin.

For ODAC OUI machine-wide configuration installations only, the LDAP_ADMIN setting
may also be created in machine.config if an ldap.ora file can be found through the
existing LDAP_ADMIN or TNS_ADMIN Windows environment variables. ODAC OUI
installations may also create a NAMES.DIRECTORY_PATH setting in machine.config for
machine-wide configuration.

If non-machine-wide configuration is selected, then none of these changes are made.
Starting with release 12.2, ODAC installs default to non-machine-wide configuration for
a new Oracle home installation. For existing Oracle homes, ODAC re-installs the
default to the same configuration setting chosen for that Oracle home from the
previous installation.

If you plan to install ODAC and the ODP.NET NuGet install on the same machine,
then ODP.NET should be configured for non-machine-wide, especially if both share
the same ODP.NET version number that .NET Framework uses to distinguish
assembly versions, for example, 4.121.2.0.

Users can reconfigure ODP.NET from machine-wide configuration to non-machine-
wide configuration by re-installing ODP.NET to the same Oracle home where
ODP.NET of the same version is already installed. For example, if you have already
configured ODP.NET machine-wide, then you can re-configure it by re-installing
ODP.NET onto the same Oracle home and selecting the non-machine-wide
configuration option.

Chapter 2
Configuring Oracle Data Provider for .NET

2-13

For applications that depend on an ODP.NET version that was not configured
machine-wide, it is important to note the following:

• ODP.NET assembly or assemblies that the application depends on will need to be
copied over to the application directory.

• Proper .NET configuration settings will be required to use Provider Factory, or
Provider-specific configuration, or both.

2.8 Oracle Data Provider for .NET, Unmanaged Driver
Configuration

The following sections explain how to configure ODP.NET, Unmanaged Driver.

ODP.NET can be configured using an XML file named web.config, app.config, or
machine.config. These config files contain sections specific to ODP.NET configuration.

For unmanaged ODP.NET, developers use either the traditional
<oracle.dataaccess.client> section or the newer <oracle.unmanageddataaccess.client>
section. Oracle recommends applications use <oracle.unmanageddataaccess.client>
when possible. For managed ODP.NET, developers use
<oracle.manageddataaccess.client>.

<oracle.unmanageddataaccess.client> is a superset of
<oracle.manageddataaccess.client> as unmanaged ODP.NET supports some features
not available in the managed driver. For features both providers have in common, they
share the same structure, properties, and nearly all values. Programmers will find
using either provider interchangeably or migrating between unmanaged and managed
ODP.NET is easier with the shared format.

This documentation section covers unmanaged ODP.NET configuration settings in the
Windows registry, <oracle.dataaccess.client>, or unique
<oracle.unmanageddataaccess.client> settings. For shared settings with
<oracle.manageddataaccess.client>.

2.8.1 Supported Configuration Settings
ODP.NET, Unmanaged Driver supports the configuration of an attribute as follows:

• In the Windows registry.

• In an XML file.

• Through a different mechanism such as a connection string or programmatically
through an ODP.NET class, if applicable.

Table 2-2 describes each configurable attribute that is supported by ODP.NET. In the
table, the term Configuration Support is followed by the types of configuration support
(Windows registry, XML file, and so on) that are available for that attribute.

The table describes valid values as well as the default for each attribute.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-14

Note:

The default values shown are the values used for an attribute if the registry key
does not exist or if it is not configured anywhere.

Table 2-2 Configuration Attributes

Attribute/Setting Name Description

CheckConStatus Specifies whether the status of the connection
is checked or not before putting the connection
back into the connection pool. This registry
entry is not created by the installation of
ODP.NET. However, the default value 1 is
used.

Configuration Support:

Windows Registry and XML file

Valid Values:

1: Check the status of the connection.

0: Do not check the status of the connection.

Default: 1

DbNotificationPort Specifies the port number which ODP.NET
listens to, for all notifications sent by the
database for change notification, HA, or RLB
features. ODP.NET does not throw any errors
if an invalid or used port number is specified.
The port can also be set to override the
Windows registry and XML configuration file
by setting the OracleDependency.Port static
field.

Configuration Support:

XML file, and ODP.NET class

Valid Values:

-1: Open a random unused port to listen to.

n > = 0: Listen on port n.

Default: -1

DemandOraclePermission Specifies whether ODP.NET demands
OraclePermission from the .NET application
that is trying to access the database using
ODP.NET.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Disables demands for OraclePermission.

1: Enables demands for OraclePermission

Default: 0

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-15

Table 2-2 (Cont.) Configuration Attributes

Attribute/Setting Name Description

DllPath Specifies the location where dependent
unmanaged Oracle Client binaries load from.

Configuration Support: Windows Registry and
XML file

Valid Values:

The path where dependent unmanaged Oracle
Client binaries reside.

Default: ORACLE_BASE\\ORACLE_HOME\bin

DynamicEnlistment Due to a behavior change with the ODAC 12c
Release 3 version of ODP.NET connection
string attribute enlist=dynamic,
DynamicEnlistment has no operation now.

FetchSize Specifies the total memory size, in bytes, that
ODP.NET allocates to cache the data fetched
from a database round-trip. This value can be
set on the OracleCommand and the
OracleDataReader FetchSize property as well.

Configuration Support:

Windows Registry, XML file, and ODP.NET
class

Valid Values:

0 <= n <= int.MaxValue: n is the size of the
cache in bytes.

Default: 131072

LegacyEntireLobFetch Returns either OracleBlob and OracleClob
types or OracleBinary and OracleString
types from Oracle Database BLOB and CLOB
columns. This setting only applies when
InitialLobFetchSize is set to -1.

Valid Values:

0: Returns OracleBlob and OracleClob

1: Returns OracleBinary and OracleString

Default: 0

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-16

Table 2-2 (Cont.) Configuration Attributes

Attribute/Setting Name Description

LegacyTransactionBindingBehavior Specifies when a database connection
detaches from a System.Transactions
transaction. By default, connections detach
from a transaction only when explicitly
unbound as is the case when the connection
closes or implicitly unbound when the
transaction is disposed. Alternatively, this
attribute can be set so that the connection
detaches whenever the transaction ends
(commits, aborts, or times out), the connection
closes, or the transaction is disposed.

In ODP.NET 11.2.0.3.20 and earlier releases,
the latter was the default behavior. Oracle
recommends using the current default
behavior.

In the earlier default behavior, when the
timeout elapses before the transaction
completes, the connection unbinds itself from
the transaction and all subsequent executions
on this connection execute in AutoCommit
mode. Any operations prior to the timeout roll
back, but operations performed after the
timeout commit.

In the current default setting, users receive an
exception when the transaction times out and
additional operations execute on the
connection.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Connections detach from transaction when
the connection closes or the transaction is
disposed.

1: Connections detach from transaction when
the connection closes, the transaction is
disposed, or the transaction completes
(commits, rolls back, times out).

Default: 0

MaxStatementCacheSize Specifies the maximum number of statements
that can be cached when self-tuning is
enabled.

Configuration Support:

Windows Registry and XML file

Valid Values:

0 to System.Int32.MaxValue.

Default: 100

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-17

Table 2-2 (Cont.) Configuration Attributes

Attribute/Setting Name Description

MetaDataXml Specifies the name of the XML file that
customizes the queries to obtain the metadata
the ADO.NET 2.0 GetSchema method returns.
MetaDataXml can only be set in a configuration
file.

Configuration Support:

XML file only

Valid Values:

A complete file name for the XML file.

Default: none

PerformanceCounters Enables or disables publishing performance
counters for connection pooling. Multiple
performance counters can be obtained by
adding the valid values.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Not Enabled

1: Number of sessions being established with
Oracle Database every second.

2: Number of sessions being severed from
Oracle Database every second.

4: Number of active connections originating
from connection pools every second.

8: Number of active connections going back to
the connection pool every second.

16: Total number of active connections.

32: Number of inactive connection pools.

64: Total number of connections in use.

128: Total number of connections available for
use in all the connection pools.

256: Number of pooled active connections.

1024: Number of non-pooled active
connections.

2048: Number of connections that will be soon
available in the pool. User has closed these
connections, but they are currently awaiting
actions, such transaction completion, before
they can be placed back into the pool as free
connections.

4095: All the above

Default: 0

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-18

Table 2-2 (Cont.) Configuration Attributes

Attribute/Setting Name Description

PromotableTransaction Specifies the type of transaction to use when
the first connection participates in the
TransactionScope object.

Configuration Support:

Windows Registry, XML file, and promotable
transaction connection string attribute

Valid Values:

local: The first connection opened in the
TransactionScope object uses a local
transaction.

promotable: The first connection and all
subsequent connections opened in the same
TransactionScope object enlist in the same
distributed transaction.

Default: promotable

This property has been deprecated in 12.2.0.1.
It will be desupported in a future release.

SelfTuning Specifies whether self-tuning is enabled for an
ODP.NET application.

Configuration Support:

Windows Registry, XML file, and Self Tuning
connection string attribute

Valid Values:

0: Self Tuning is disabled. Used in the registry
or XML file.

false: Self Tuning is disabled. Used for the
Self Tuning connection string attribute.

1: Self Tuning is enabled. Used in the registry
or XML file.

true: Self Tuning is enabled. Used for the
Self Tuning connection string attribute.

Default: 1

StatementCacheSize Specifies the number of cursors or statements
to be cached on the database for each
connection. This setting corresponds to
Statement Cache Size attribute in the
connection string. A value greater than zero
also enables statement caching.

Configuration Support:

Windows Registry, XML file, and Statement
Cache Size connection string attribute

Valid Values:

0 <= n <= the value of OPEN_CURSORS
parameter set in init.ora database config
file.

n is the number to set.

Default: 0

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-19

Table 2-2 (Cont.) Configuration Attributes

Attribute/Setting Name Description

StatementCacheWithUdts Specifies whether or not Oracle UDTs
retrieved by executing a SELECT statement are
cached along with the statement in the
statement cache. This setting affects the
memory usage and performance of the
application.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Oracle UDTs are not cached with
statements.

1: Oracle UDTs are cached along with
statements.

Default: 1

ThreadPoolMaxSize Specifies the default maximum size of worker
threads for each available processor in a
process. This value may affect the
performance of ODP.NET connection creation,
command execution timeout, and external
procedures (extproc) that use the thread pool.
However, unnecessarily increasing thread pool
maximum size can also cause performance
problems.

Configuration Support:

Windows Registry and XML file

Valid Values:

0 <= n <= int.MaxValue: Allows ODP.NET to
reset thread pool maximum size with the value
n. The ODP.NET reset operation may be
ignored if the value is invalid. For example, if n
is less than the number of available
processors of the system. In this case, the
result is the same as the value -1.

-1: Leave the thread pool max size as is.

Default: -1 (this registry entry is not created by
default)

Note that prior to ODAC 2007 or version
11.1.0.6.20, ODP.NET resets the thread pool
maximum size to int.MaxValue when the
OracleCommand.CommandTimeout property is
set to a value greater than 0. This erroneous
behavior has been corrected.
OracleCommand.CommandTimeout does not
change thread pool maximum size.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-20

Table 2-2 (Cont.) Configuration Attributes

Attribute/Setting Name Description

TraceFileName Specifies the file name to be used for logging
trace information.

Configuration Support:

Windows Registry and XML file

Valid Values:

Any valid directory location and file name.

Default: c:\odpnet2.trc (for .NET Framework
2.0)

TraceLevel Specifies the level of tracing in ODP.NET.
Because tracing all the entry and exit calls for
all the objects can be excessive, TraceLevel
is provided to limit tracing to certain areas of
the provider. Each valid value indicates a
possible tracing level. Compounded tracing
levels can be obtained by adding the valid
values.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: None

1: Entry, exit, and SQL statement information

2: Connection pooling statistics

4: Distributed transactions (enlistment and
delistment)

8: User-mode dump creation upon unmanaged
exception

16: HA Event Information

32: Load Balancing Information

64: Self Tuning Information

127: All the above

Default: 0

Note: ODP.NET does bit-wise checking on the
value. When tracing is enabled, logging to the
trace file can affect ODP.NET performance.

Note: The user-mode dump creation requires
dbghelp.dll version 5.1.2600.0 or later.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-21

Table 2-2 (Cont.) Configuration Attributes

Attribute/Setting Name Description

TraceOption Specifies whether to log trace information in
single or multiple files for different threads. If a
single trace file is specified, the file name
specified in TraceFileName is used. If the
multiple trace files option is requested, a
Thread ID is appended to the file name
provided to create a trace file for each thread.

Configuration Support:

Windows Registry and XML file

Valid Values:

0: Single trace file

1: Multiple trace files

Default: 0

UdtCacheSize Specifies the size of the object cache for each
connection in kilobytes (KB) that ODP.NET
uses to retrieve and manipulate Oracle UDTs.

Configuration Support:

Windows Registry and XML file

Valid Values:

0 <= n <= 4194303, n is the number to set.

Default: 4096

UDT Mapping Specifies a mapping between a custom type
and an Oracle UDT in the database. The
mappings can be specified in configuration
files and custom type factories. However, if the
mapping is specified in both places, mappings
specified in the configuration files takes
precedence over mappings specified using
custom type factories.

Configuration Support:

XML file and Custom Type Factory Classes

Valid Values:

Any valid mapping.

Default: none

2.8.2 Windows Registry
Upon installation, ODP.NET creates entries for configuration and tracing within the
Windows Registry. Configuration and tracing registry values apply across all ODP.NET
applications running in that Oracle client installation. Individual ODP.NET applications
can override some of these values by configuring them within the ODP.NET
application itself (for example, FetchSize). Applications can also use the .NET
configuration files to override some of the ODP.NET Windows Registry values.

The ODP.NET registry values are located under HKEY_LOCAL_MACHINE\Software\Oracle
\ODP.NET\version\. There is one key for .NET Framework 3.5, and one key for .NET
Framework 4 and later.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-22

Note:

32-bit applications running on an x64-based version of Windows use the
registry subkey, HKEY_LOCAL_MACHINE\Software\WOW6432node in place of
HKEY_LOCAL_MACHINE\Software. If such applications use Oracle Data Provider
for .NET (32-bit), then the ODP.NET registry values are located under
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Oracle\ODP.NET\version\.

2.8.3 Configuration File Support
For customers who have numerous applications on a computer that depends on a
single version of ODP.NET, the Windows Registry settings for a given version of
ODP.NET may not necessarily be applicable for all applications that use that version
of ODP.NET. To provide more granular control, ODP.NET Configuration File Support
allows developers to specify ODP.NET configuration settings in an application config,
web.config, or a machine.config file.

If a computer does not require granular control beyond configuration settings at the
ODP.NET version level, there is no need to specify ODP.NET configuration settings
through configuration files.

The following is an example of a web.config file for .NET Framework 2.0 and later:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DllPath" value="C:\oracle\bin"/>
 <add name="FetchSize" value="131072"/>
 <add name="StatementCacheSize" value="10"/>
 <add name="TraceFileName" value="D:\odpnet2.trc"/>
 <add name="TraceLevel" value="63"/>
 <add name="TraceOption" value="1"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

The following is an example of app.config for ODP.NET, Unmanaged Driver
using .NET Framework 2.0, which sets some additional attributes as well as two UDT
type mappings:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DbNotificationPort" value="-1"/>
 <add name="DllPath" value="C:\app\user\product\11.1.0\client_1\bin"/>
 <add name="DynamicEnlistment" value="0"/>
 <add name="FetchSize" value="131072"/>
 <add name="MetaDataXml" value="CustomMetaData.xml"/>
 <add name="PerformanceCounters" value="4095"/>
 <add name="StatementCacheSize" value="50"/>
 <add name="ThreadPoolMaxSize" value="30"/>
 <add name="TraceFileName" value="D:\odpnet2.trc"/>
 <add name="TraceLevel" value="0"/>
 <add name="TraceOption" value="0"/>

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-23

 <add name="Person" value="udtMapping factoryName='PersonFactory, Sample,
 Version=0.0.0.0, Culture=neutral, PublicKeyToken=null' typeName='PERSON'
 schemaName='SCOTT' dataSource='oracle'"/>
 <add name="Student" value="udtMapping factoryName='StudentFactory, Sample,
 Version=0.0.0.0, Culture=neutral, PublicKeyToken=null' typeName='STUDENT'
 schemaName='SCOTT'"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

ODP.NET, Unmanaged Driver now has the option of using the same configuration file
format as ODP.NET, Managed Driver. The format simplifies configuration by using a
single unified scheme. To utilize this format, the existing unmanaged ODP.NET
configuration section should be renamed from <oracle.dataaccess.client> to
<oracle.unmanageddataaccess.client>. The existing unmanaged ODP.NET elements
and values are supported within the new section using the same format as with
ODP.NET, Managed Driver. To see how to set the elements and values, see "Oracle
Data Provider for .NET, Managed Driver Configuration" for more information.

For example, converting the FetchSize element and value from the traditional to the
new format would be done as follows:

<oracle.dataaccess.client>
 <settings>
 <add name="FetchSize" value="131072" />
 </settings>
</oracle.dataaccess.client>

<oracle.unmanageddataaccess.client>
 <version number="*">
 <settings>
 <setting name="FetchSize" value="131072" />
 </settings>
 </version>
</oracle.unmanageddataaccess.client>

The traditional ODP.NET, Unmanaged Driver configuration file format will continue to
be supported.

2.8.3.1 SQL Translation Framework Configuration

Configuring the SQL Translation Profile

The default SQL Translation Profile can be set in the .NET config file, either for all
connections across the application, or it is also possible to limit the scope of a profile
based on optional dataSource and userId XML attributes. Please note that these
dataSource and userId XML attributes directly correspond to the Data Source and User
Id attributes in the connection string used to open a database connection.

Note:

SQL Translation Profile settings are only supported in the
<oracle.unmanageddataaccess.client> section. It is not supported in the
<oracle.dataaccess.client> section nor the <oracle.manageddataaccess.client>
section.

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-24

This would be used for all connections to the Data Sources and User Ids.

This would be used for all connections to the specified Data Source.

This would be used for all connections to the specified User Id.

This would be used for all connections to the specified Data Source and User Id.

It is possible to configure multiple default profile entries which allow configuring default
profiles for different dataSource and userId attributes, but while selecting a profile, the
profile with maximum matching attributes will be selected.

In case there are 2 matching entries, one with dataSource only and the other with
userId only then the entry with matching the userId would be given priority over the
entry with matching dataSource.

With the above configuration, if we try to connect with a connection string which has
stf_ds for Data Source and stf_user for User Id attributes, then both the entries given
above will match and in such cases, we will give priority to the entry with a matching
User Id attribute which means profile_user will be selected as the default profile.

Configuring the Error Mapping

Applications can configure the connection related error mapping in their application
configuration file. The error mapping can also be scoped based on Data Source name,
User Id and the profile name itself.

Here is an example of providing error mapping with all three attributes.

<configuration>
 <oracle.unmanageddataaccess.client>
 <version number="*">
 <sqlTranslation>
 <defaultProfiles>
 <defaultProfile dataSource="stf_ds" userId="stf_user" profile=" Profile4"/>
 </defaultProfiles>
 <ErrorMappings>
 <ErrorMapping dataSource="stf_ds" userId="stf_user" profile="Profile4">
 <add oracleErrorNumber="1017" translatedErrorCode="222" />
 <add oracleErrorNumber="1005" translatedErrorCode="888" />
 </ErrorMapping>
 </ErrorMappings>
 </sqlTranslation>
 </version>
 </oracle.unmanageddataaccess.client>
</configuration>

Please note that dataSource and userId attributes are optional but can be used to
scope the mapping.

It is also possible to provide an error mapping which could be used for all profiles.
Here is an example:

<ErrorMappings>
 <ErrorMapping profile="*">
 <add oracleErrorNumber="1017" translatedErrorCode="222" />
 <add oracleErrorNumber="1018" translatedErrorCode="888" />
 </ErrorMapping>
</ErrorMappings>

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-25

Configuring the Default Error Mapping Profile

The default error mapping profile can be configured through the
defaultErrorMappingProfile setting. This is to be used to specify the default error
mapping profile, especially in scenarios when the default profile is not specified
through the .NET configuration file, but specified on the server side. In this case, if
connectivity related errors occur, then ODP.NET will be able to properly use error
mappings specified in the .NET configuration file for the profile specified by the
defaultErrorMappingProfile setting.

Here is an example to configure the default error mapping profile:

<sqlTranslation>
 <settings>
 <add name="defaultErrorMappingProfile" value="error_mapping_profile" />
 <settings>
</sqlTranslation>

Configuring the SQL Translation Framework Statement Cache Size

Client can configure the number of translated statements that ODP.NET can cache
internally to avoid translations, which can be an expensive operation.

Here is an example to configure default error mapping profile:

<sqlTranslation>
 <settings>
 <add name="translatedStatementCacheSize" value="50" />
 <settings>
</sqlTranslation>

Sample SQL Translation Framework configuration file

Here is a sample configuration file with all possible elements that can be used:

<sqlTranslation>
 <settings>
 <add name="translatedStatementCacheSize" value="50" />
 <add name="defaultErrorMappingProfile" value="def_Profile" />
 <settings>
 <defaultProfiles>
 <defaultProfile profile="STF.NO_DS_NO_USERID"/>
 <defaultProfile userId="stf" profile="STF_NO_DS"/>
 <defaultProfile dataSource="stf_inst" profile="STF_NO_USERID"/>
 <defaultProfile dataSource="stf_inst" userId="stf" profile="STF.STF_X"/>
 </defaultProfiles>
 <ErrorMappings>
 <ErrorMapping profile="def_profile">
 <add oracleErrorNumber="1017" translatedErrorCode="444" />
 </ErrorMapping>
 <ErrorMapping dataSource="stf_inst" userId="stf" profile=" STF.STF_X ">
 <add oracleErrorNumber="1018" translatedErrorCode="88888" />
 </ErrorMapping>
 </ErrorMappings>
</sqlTranslation>

Example 2-1 Setting the profile which could be used for all connections

<configuration>
 <oracle.unmanageddataaccess.client>

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-26

 <version number="*">
 <sqlTranslation>
 <defaultProfiles>
 <defaultProfile profile="Profile1"/>
 </defaultProfiles>
 </sqlTranslation>
 </version>
 </oracle.unmanageddataaccess.client>
</configuration>

Example 2-2 Setting the Profile for a Specific Data Source

<defaultProfiles>
 <defaultProfile dataSource="stf_ds" profile="Profile2"/>
</defaultProfiles>

Example 2-3 Setting the Profile for a Specific User Id

<defaultProfiles>
 <defaultProfile userId="stf_user" profile="Profile3"/>
</defaultProfiles>

Example 2-4 Setting the Profile for a Specific Data Source and User Id'

<defaultProfiles>
 <defaultProfile dataSource="stf_ds" userId="stf_user" profile="Profile4"/>
</defaultProfiles>

Example 2-5 Configuring Multiple Default Profile Entries

<defaultProfiles>
 <defaultProfile dataSource="stf_ds" profile="profile_ds"/>
 <defaultProfile userId="stf_user" profile="profile_user"/>
</defaultProfiles>

2.8.3.2 Specifying UDT Mappings with Unified Configuration for Unmanaged
ODP.NET

As UDT mapping is not currently supported by ODP.NET, Managed Driver, a new
section within the <version> section is used to support custom UDT mappings for
unmanaged ODP.NET in the unified configuration format. This new section is identified
as <udtmappings> and each mapping is identified using a <udtmapping> element. The
following attributes may be specified for each udtMapping element:

• typeName (required)

• factoryName (required)

• dataSource (optional)

• schemaName (optional)

These elements retain the same name and meaning as when used with the traditional
configuration format.

Example of converting traditional format to unified format:

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="Person" value="udtMapping factoryName='PersonFactory, Sample,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null' typeName='PERSON'

Chapter 2
Oracle Data Provider for .NET, Unmanaged Driver Configuration

2-27

schemaName='SCOTT' dataSource='oracle'" />
 </settings>
 </oracle.dataaccess.client>
</configuration>

<configuration>
 <oracle.unmanageddataaccess.client>
 <udtmappings>
 <udtmapping typename="PERSON" factoryname="PersonFactory, Sample,
Version=0.0.0.0, Culture=neutral, PublicKeyToken=null" schemaname="SCOTT"
datasource="oracle" />
 </udtmappings>
 </oracle.unmanageddataaccess.client>
</configuration>

2.9 Oracle Data Provider for .NET, Managed Driver
Configuration

ODP.NET, Managed Driver supports .NET configuration file-based settings in
machine.config, app.config, and web.config. It does not support Windows registry
based configuration. ODP.NET, Managed Driver settings in .NET configuration files
are similar to ODP.NET, Unmanaged Driver settings to make porting easier.

The ODP.NET, Managed Driver configuration file section name is
<oracle.manageddataaccess.client>. The <oracle.manageddataaccess.client> settings
and values are also supported in unmanaged ODP.NET configuration file:
<oracle.unmanageddataaccess.client>. While this documentation section discusses
managed ODP.NET configuration, it is also applicable to
<oracle.unmanageddataaccess.client>. The <oracle.unmanageddataaccess.client>
settings are actually a superset of <oracle.manageddataaccess.client>. The
<oracle.unmanageddataaccess.client> settings not available in managed ODP.NET are
documented in "Oracle Data Provider for .NET, Unmanaged Driver Configuration". A
typical .NET config that uses ODP.NET, Managed Driver has some or all of the
following subsections nested within a <version> subsection under
<oracle.manageddataaccess.client> section. Note the tag names are case sensitive,
while the attribute names are case insensitive.

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.manageddataaccess.client>
 <version number="*">
 <dataSources>
 ...
 ...
 </dataSources>
 <settings>
 ...
 ...
 </settings>
 <LDAPsettings>
 ...
 ...
 </LDAPsettings>
 <implicitRefCursor>
 ...
 ...

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-28

 </implicitRefCursor>
 <edmMappings>
 ...
 ...
 <edmMappings>
 </version>
 <version number="4.121.2.0">
 <dataSources>
 ...
 ...
 </dataSources>
 <settings>
 ...
 ...
 </settings>
 <LDAPsettings>
 ...
 ...
 </LDAPsettings>
 <implicitRefCursor>
 ...
 ...
 </implicitRefCursor>
 <edmMappings>
 ...
 ...
 <edmMappings>
 </version>
 </oracle.manageddataaccess.client>
</configuration>

The ODP.NET, Managed Driver configuration and settings are described in the
following sections. Many of the attributes are the same as ODP.NET, Unmanaged
Driver. See Table 2-2 for detailed attribute descriptions.

2.9.1 version Section
All the information required by an application should be grouped under the version
subsections. Each <version number="X"> section contains parameters applicable for
version X of the ODP.NET, Managed Driver. For example, <version
number="4.121.2.0"> section parameters will be applicable only for those applications
using ODP.NET, Managed Driver assembly 4.121.2.0.

Apart from version specific sections, there can also be a generic section <version
number="*">. This section's parameters are applicable for all ODP.NET, Managed
Driver versions. Parameters in the version specific section take precedence over the
parameters of the generic section. The following is an example of a version section:

<oracle.manageddataaccess.client>
 <version number="*">
 <settings>
 <setting name="TraceOption" value="1"/>
 <setting name="PerformanceCounters" value="0" />
 </settings>
 </version>
 <version number="4.121.2.0">
 <settings>
 <setting name="PerformanceCounters" value="4095" />
 </settings>

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-29

 </version>
</oracle.manageddataaccess.client>

An application referencing ODP.NET, Managed Driver 4.121.2.0 has the following
values set:

• TraceOption = 1

• PerformanceCounters= 4095

2.9.2 dataSources Section
This section can appear only under a <version> section. The mapping between the
different data source aliases and corresponding data descriptors should appear in this
section. The following is an example.

<dataSources>
 <dataSource alias="inst1" descriptor="(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=sales-server)......)))"/>
 <dataSource alias="inst2" descriptor="(DESCRIPTION=)))"/>
</dataSources>

Note:

The data source connection string attribute can alternatively be set to a full
descriptor or Easy Connect syntax rather than a data source alias.

Requirements for connecting to a local database without specifying "data source"
connection string attribute:

• The listener must be up and running.

• ORACLE_SID environment variable must be set appropriately.

Note:

When "data source" connection string attribute is not specified, protocol
defaults to 'tcp' and port defaults to '1521'.

The ODP.NET managed driver reads and caches all the alias entries from the
app.config, web.config, machine.config, and from a tnsnames.ora file that is found at
application start-up time. However, aliases that are defined in LDAP servers are
resolved and cached on demand. This means for each unique alias that is used by the
application, an alias resolution query is executed against an LDAP server and the full
descriptor associated with the alias will be cached once it is fetched.

For developers that need to change or add alias settings while developing
applications, one may consider using OracleDataSourceEnumerator.GetDataSources()
rather than restarting the application. Invoking this method will first wipe out existing
cache entries that were read from the tnsnames.ora file and all aliases obtained from
the LDAP Server. Then, the tnsnames.ora is re-parsed and all its entries will be cached
again. Please note that the app.config, web.config, and machine.config entries are read

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-30

only once at application start-up time and thus their contents are maintained and not
re-parsed even if OracleDataSourceEnumerator.GetDataSources() is invoked.

The OracleDataSourceEnumerator.GetDataSources() method invocation has an impact on
the connection pool. This is because a connection pool, which is created for each
unique connection string, will cache the resolved full descriptor information after the
first connection is created for a given connection pool. After that, the connection pool
uses the cached full descriptor information for all subsequent connection creations.
Thus, for applications that have their tnsnames.ora or LDAP entries modified during the
execution of an application where an alias points to a different database than before,
one should call the OracleDataSourceEnumerator.GetDataSources() method to remove
old cached entries. This should be followed by the invocation of the
ClearPool(OracleConnection) instance method or the ClearAllPools() static method to
remove existing connections and also have it obtain a new full descriptor value that
was read by the invocation of OracleDataSourceEnumerator.GetDataSources(). Following
this scheme will assure that all the connections in the connection pool uses the new
full descriptor that is now associated with the alias and all connections in a connection
pool is established to the same database.

The following keywords are supported within the descriptor setting:

• ADDRESS

• ADDRESS_LIST (Note: only failover supported)

Oracle recommends using SCAN listener and Runtime Load Balancing to balance
the load when connecting to an Oracle RAC database.

• DESCRIPTION

• DESCRIPTION_LIST (Note: Failover supported; Address_list load balancing not
supported)

• HOST (Note: <hostname>, <IPv6 literal>, and <IPv4 literal> are supported)

• IP (Note: "loopback" is supported)

• PROTOCOL (Note: tcp and tcps are supported)

• SDU (Note: 256 to 65536 are supported)

• SECURITY: SSL_VERSION (Note: overrides sqlnet.ora:ssl_version)

• TRANSPORT_CONNECT_TIMEOUT (Note: overrides tcp.connect_timeout)

Note:

• SSL is now supported via method MCS and FILE.

• Both Kerberos5 and NTS authentication are supported. RADIUS is not
supported.

• Only NTS authentication is supported. No RADIUS nor Kerberos5
authentication.

• Only Net Services, Easy Connect naming, and LDAP (namely, Active
Directory and Oracle Internet Directory) are supported.

• No bequeath (beq) support. Default address is instead TCP loopback with
port 1521 and Oracle service name from environment (ORACLE_SID)

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-31

Though managed ODP.NET does not support TNS descriptor based load balancing, it
does support failover through both an ADDRESS_LIST and DESCRIPTION_LIST.

Note that you need not specify either the LOAD_BALANCE or the FAILOVER directive,
because only failover is supported. The directives are ignored.

The following examples demonstrate TNS descriptors utilizing failover:

(DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=host1)(PORT=1630))
 (ADDRESS=(PROTOCOL=tcp)(HOST=host2)(PORT=1630))
 (ADDRESS=(PROTOCOL=tcp)(HOST=host3)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=Sales.us.example.com)))

(DESCRIPTION_LIST=
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales1a-svr)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales1b-svr)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=sales1.example.com)))
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales2a-svr)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales2b-svr)(PORT=1521)))
 (CONNECT_DATA=(SERVICE_NAME=sales2.us.example.com))))

2.9.3 settings section
This section can appear only under a <version> section. Any ODP.NET, Managed
Driver specific settings should appear in this section. The following is an example of a
settings section:

<settings>
 <setting name="TraceLevel" value="7" />
 <setting name="TraceOption" value="1"/>
 <setting name="TNS_ADMIN" value="C:\oracle\work"/>
</settings>

A new default behavior has been introduced for ODP.NET Release 12.1.0.2 and
higher when InitialLobFetchSize is set to -1. The new default value is
LegacyEntireLOBFetch = 0. To use the old behavior, set LegacyEntireLobFetch = 1 in the
ODP.NET configuration as explained in Setting InitialLONGFetchSize to -1.

ODP.NET, Managed Driver configuration settings that are supported:

• BindByName

• DbNotificationPort

• DemandOraclePermission

• Disable_Oob: Interrupts database query execution via either TCP/IP urgent data or
normal TCP/IP data, called out of band data (default) or in band data, respectively.
(Default=off).

All Oracle database clients support interrupting database query execution, such as
through an ODP.NET command timeout. Windows-based database servers only
support in band breaks, whereas all other (predominantly UNIX-based) database
servers can support out of band (OOB) or in band breaks. ODP.NET, Managed

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-32

Driver uses OOB breaks by default with database servers that support it. For
certain network topologies, the routers or firewalls involved in the route to the
database may have been configured to drop urgent data or in band the data. If the
routers or firewalls can not be changed to handle urgent data appropriately, then
the ODP.NET, Managed Driver can be configured to utilize in band breaks by
setting the .NET configuration parameter Disable_Oob to on.

• FetchSize

• LDAP_ADMIN: Specifies the ldap.ora location. The LDAP_ADMIN setting works in
conjunction with the TNS_ADMIN setting to set ldap.ora search order.

• LegacyEntireLOBFetch

• MaxStatementCacheSize

• MetaDataXml

• NAMES.DIRECTORY_PATH: The default search order is TNSNAMES and EZCONNECT.
TNSNAMES, LDAP, and EZCONNECT are the only name resolution methods supported, but
their order of precedence can be modified.

• NAMES.LDAP_AUTHENTICATE_BIND

• NAMES.LDAP_CONN_TIMEOUT

• NODELAY

• ORA_DEBUG_JDWP: Allows Oracle PL/SQL Debugger and database to connect
automatically without application code changes. Value is set as host=<IP_address
or host_name>;port=<debugging port number>. Ex. host=localhost;port=1234

• ORACLE_SID

• PerformanceCounters

• RECEIVE_BUF_SIZE: Sets TCP SO_RECVBUF, the total buffer space associated with the
local side of a TCP socket

• SelfTuning

• SEND_BUF_SIZE: Sets TCP SO_SENDBUF, the total buffer space associated with the
local side of a TCP socket

• ServiceRelocationConnectionTimeout

In seconds. (Default = 90).

Whenever a database service becomes unavailable, such as due to a service
being relocated, an application can encounter numerous connectivity errors during
this time. To avoid unnecessary connection attempts to an unavailable service
which will result in an error, ODP.NET, Managed and Unmanaged Drivers block
any connection attempts until the service is up or until this property's specified time
limit expires from the time when the service DOWN event was received, whichever
comes first. Once the specified time elapses, all the connection attempts to the
specific service which is known to be down will no longer be blocked. Those
requests will be sent to the server. ServiceRelocationConnectionTimeout is only
operational in conjunction with Oracle Fast Connection Failover (HA Events = true).
Once Fast Connection Failover is enabled for the .NET application, Service
Relocation Connection Timeout is automatically enabled. It will use its default
value if no ServiceRelocationConnectionTimeout value has been explicitly set. It
works with planned and unplanned outages.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-33

• SQLNET.AUTHENTICATION_SERVICES: Supported values are Kerberos5, NTS, TCPS, or
NONE.

Managed ODP.NET supports NTS, Kerberos5, and TCPS external authentication
methods. This setting should be set based on the desired database authentication
method. If internal database authentication is desired, then the setting should be
set to NONE. Example settings made in sqlnet.ora are:

SQLNET.AUTHENTICATION_SERVICES = (TCPS)
SQLNET.AUTHENTICATION_SERVICES = (NTS)
SQLNET.AUTHENTICATION_SERVICES = (Kerberos5, NTS)
SQLNET.AUTHENTICATION_SERVICES = (NONE)

Note:

The NTS external authentication methodology is only supported on a
Windows-based client and server.

• SQLNET.CRYPTO_CHECKSUM_CLIENT: Specifies the desired data integrity behavior when
this client connects to a server. Supported values are accepted, rejected,
requested, or required. Default = accepted.

• SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT: Specifies the data integrity algorithms that
this client uses. Supported values are SHA512, SHA384, SHA256, SHA1, and MD5.

• StatementCacheSize

• SSL_SERVER_DN_MATCH: To enforce the distinguished name (DN) for the database
server matches its service name. (Default=no).

If you enforce the match verification, then SSL/TLS ensures that the certificate is
from the server. If you select to not enforce the match verification, then SSL/TLS
performs the check but allows the connection, regardless if there is a match. Not
enforcing the match allows the server to potentially fake its identify.

Supported values: yes | on | true to enforce a match.

Supported values: no | off | false to not enforce a match.

SSL_SERVER_DN_MATCH is often used together with SSL_SERVER_CERT_DN.
SSL_SERVER_CERT_DN specifies the distinguished name (DN) of the database server.
It can be set in the connect descriptor.

net_service_name=
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales1-svr)(PORT=1521))
 (ADDRESS=(PROTOCOL=tcp)(HOST=sales2-svr)(PORT=1521))
 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com))
 (SECURITY=
 (SSL_SERVER_CERT_DN="cn=sales,cn=OracleContext,dc=us,dc=acme,dc=com")))

The client uses this information to obtain the list of DNs it expects for each of the
servers, enforcing the database server DN to match its service name. Use this
parameter with SSL_SERVER_DN_MATCH to enable server DN matching.

• SSL_VERSION: Sets the version of the SSL/TLS connection. By default, all supported
versions are enabled, in the order 3.0, 1.0, 1.1, and 1.2.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-34

The client and server negotiate to the highest version among the common
conversions specified in their configurations. The versions from lowest to highest
are: 3.0 (lowest), 1.0, 1.1, and 1.2 (highest).

• TNS_ADMIN: Location where either one or more of tnsnames.ora, ldap.ora, and
sqlnet.ora are located. Locations can consist of either absolute or relative
directory paths.

• TraceFileLocation: Trace file destination directory, for example, D:\traces. The
default TraceFileLocation is <Windows user temporary folder>\ODP.NET\managed
\trace.

• TraceLevel: 1 = public APIs; 2 = private APIs; 4 = network APIs/data. These values
can be ORed. To enable everything, set TraceLevel to 7. Errors will always be
traced.

• TraceOption

• TCP.CONNECT_TIMEOUT

• WALLET_LOCATION: Microsoft Certificate Store (MCS) and file system wallets are
supported.

• SQLNET.ENCRYPTION_CLIENT = Negotiates whether to turn on encryption. Supported
values are accepted, rejected, requested, or required.

• SQLNET.ENCRYPTION_TYPES_CLIENT = Encryption algorithm(s) to use.

The following table lists the valid encryption algorithms for ODP.NET, Managed Driver.

Table 2-3 Encryption Algorithms for ODP.NET, Managed Driver

Algorithm Name Legal Value

AES 128-bit key AES128

AES 192-bit key AES192

AES 256-bit key AES256

RC4 128-bit key RC4_128

RC4 256-bit key RC4_256

2-key 3DES 3DES112

3-key 3DES 3DES168

2.9.4 LDAPsettings section
This section can appear only under a <version> section. Any ODP.NET, Managed
Driver specific LDAP settings should appear in this section. The following is an
example of a <LDAPsetting> subsection under the <LDAPsettings> section:

<LDAPsettings>
 <LDAPsetting name="DIRECTORY_TYPE" value="AD" />
 <LDAPsetting name="DEFAULT_ADMIN_CONTEXT" value="dc=Oracle,dc=com"/>
</LDAPsettings>

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-35

2.9.5 Lightweight Directory Access Protocol
ODP.NET, Managed Driver supports TNS alias resolution through a LDAP server/
service, specifically Microsoft Active Directory and Oracle Internet Directory (OID).
TNS alias resolution occurs when using the LDAPsettings section or ldap.ora file
settings. The LDAPsettings section settings take precedence over ldap.ora settings.

For Active Directory, only the DIRECTORY_TYPE and DEFAULT_ADMIN_CONTEXT parameters
are required in ldap.ora. When the DIRECTORY_SERVERS parameter is missing or has no
value, the default LDAP server for the current domain will be used.

For OID, all ldap.ora parameters must be set with valid values to complete
configuration.

ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver support the same level
of security when using LDAP for name resolution.

Table 2-4 Microsoft Active Directory: Encryption Types and Authentication
Credentials For Connecting and Binding

No Encryption SSL Encryption

Anonymous authentication Anonymous authentication

Domain User authentication Domain User authentication

Table 2-5 Oracle Internet Directory: Encryption Types and Authentication
Credentials For Connecting and Binding

No Encryption SSL Encryption

Anonymous authentication Anonymous authentication

- Wallet based authentication

Note: Wallet based authentication for Oracle Internet
Directory is not supported for this release

2.9.6 implicitRefCursor section
This section can appear only under a <version> section. Any information about REF
CURSOR parameters that need to be bound implicitly should appear in this section. The
following is an example of an <implicitRefCursor> section:

<implicitRefCursor>
 <storedProcedure schema="USERREFCUR" name="TestProc1">
 <refCursor name="Param3">
 <bindInfo mode="Output"/>
 <metadata columnOrdinal="0" columnName="DEPTNO" baseColumnName="DEPTNO"
baseSchemaName="USERREFCUR" baseTableName="DEPT" nativeDataType="number"
providerType="Int32" dataType="System.Int16" columnSize="2" allowDBNull="true" />
 <metadata columnOrdinal="1" columnName="DNAME" baseColumnName="DNAME"
baseSchemaName="USERREFCUR" baseTableName="DEPT" nativeDataType="varchar2"
providerDBType="String" columnSize="30" />
 </refCursor>
 <refCursor name="param2">

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-36

 <bindInfo mode="Output"/>
 <metadata columnOrdinal="0" columnName="EMPNO" baseColumnName="EMPNO"
baseSchemaName="USERREFCUR" baseTableName="EMP" nativeDataType="number"
providerType="Int32" dataType="System.Int16" columnSize="4" allowDBNull="false" />
 </refCursor>
 </storedProcedure>

 <!--Next stored procedure information-->
 <storedProcedure name="TestProc2">
 ...
 ...
 </storedProcedure>
</implicitRefCursor>

2.9.7 distributedTransaction section
This section can appear only under a <version> section. Any information about
distributed transactions should appear in this section. The following is an example of a
distributedTransaction section:

<distributedTransaction>
 <setting name="OMTSRECO_IP_ADDRESS" value="my-pc" />
 <setting name="OMTSRECO_PORT" value="2040" />
 <setting name="ORAMTS_SESS_TXNTIMETOLIVE" value="240" />
</distributedTransaction>

• OMTSRECO_IP_ADDRESS: Specifies the machine name (or IP address) that the OraMTS
Recovery service will be running on to resolve database in-doubt transactions. The
default is the local machine name.

• OMTSRECO_PORT: Specifies the port that the OraMTS Recovery service will be
listening on to resolve database in-doubt transactions. The default is 2030.

• ORAMTS_SESS_TXNTIMETOLIVE : Specifies the time in seconds that the transaction can
remain inactive after it has been detached or delisted from the database. Once this
time expires, the transaction is automatically terminated by the provider. The
default is 120 seconds.

• UseManagedDTC: When set to false and using .NET Framework 4.5.2 or higher,
ODP.NET uses .NET Framework for distributed transaction support. In all other
instances, ODP.NET uses Oracle Services for Microsoft Transaction Server to
support distributed transactions. Boolean (Default = false) for ODP.NET,
Managed Driver only.

• UseOraMTSManaged: When set to true and using .NET Framework 4.5.2 or higher,
ODP.NET uses managed code for distributed transactions. If set to true, but .NET
4.5.1 or lower is used, an exception will be thrown. If set to false, ODP.NET uses
Oracle Services for Microsoft Transaction Server to support distributed
transactions. Boolean (Default = false) for ODP.NET, Unmanaged Driver only.

2.9.8 edmMappings section
This section can appear only under a <version> section. Any information related to
EDM mappings should appear in this section. Refer to Oracle Number Default Data
Type Mapping and Customization for more examples on edmMappings section.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-37

2.9.9 onsConfig section
Oracle Notification Service (ONS) can be configured using either local or remote
configuration. Remote configuration is the preferred configuration for standalone client
applications. For releases earlier than Oracle Database 12c, this section is mandatory
for ODP.NET to receive ONS notifications. With Oracle Database 12c and later, this
section is optional and the information about the ONS daemons is received from the
server itself. However, ODP.NET will also listen for events from any <host:port> pairs
that is provided by the user in this section in addition to the <host:port> pairs received
from the server.

For local configuration, please ensure that ONS is configured and available on the
node where ODP.NET is running, so that ODP.NET can receive events directly from
the local ONS daemon. The following is a sample format for the local configuration:

<onsConfig configFile="C:\temp\test.config" mode="local">
</onsConfig>

Note:

The configFile specified in .NET config should contain the same localport and
remoteport values as specified in the ons.config used by the local ONS
daemon. This will enable the application to receive events from the local ONS
daemon.

Remote configuration is used in scenarios where the application directly receives ONS
events from the ONS daemons running on remote machines. One of the advantages
of this configuration is that no ONS daemon is needed on the client end and, therefore,
there is no need to manage this process.

The following is a sample format for remote configuration:

 <onsConfig mode="remote">
 <ons database="db1">
 <add name="nodeList" value="racnode1:4100, racnode2:4200" />
 </ons>
 <ons database="db2">
 <add name="nodeList" value=" racnode3:4100, racnode4:4200" />
 </ons>
 </onsConfig>

In case of remote configuration, the application has to specify the <host>:<port> values
for every potential database that it can connect to. The <host>:<port> value pairs
represent the ports on the the different Oracle RAC nodes where the ONS daemons
are talking to their remote clients.

2.9.10 Client Side ONS Daemon Configuration
ONS configuration is controlled by the ONS configuration file, ORACLE_HOME/opmn/conf/
ons.config. This file tells the ONS daemon how it should behave. The SRVCTL utility can
be used to start and stop the ONS daemon. It is installed on each node by default
during server install.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-38

Configuration information within ons.config is defined in simple name and value pairs.
An example of ONS.config is given below

This is an example ons.config file
#
The first three values are required
localport=4100
remoteport=4200
nodes=racnode1.example.com:4200,racnode2.example.com:4200

Some parameters in the ons.config file are required and some are optional. Table
Table 2-6 lists the required ONS configuration parameters and Table 2-7 lists the
optional ONS configuration parameters.

Table 2-6 Required ONS Configuration Parameters

Parameter Explanation

localport The port that ONS binds to on the local host interface to talk to
local clients.

For example, localport=4100

remoteport The port that ONS binds to on all interfaces for talking to other
ONS daemons.

For example, remoteport=4200

nodes A list of other ONS daemons to talk to. Node values are given as
a comma-delimited list of either host names or IP addresses plus
ports. The port value that is given is the remote port that each
ONS instance is listening on. In order to maintain an identical file
on all nodes, the host:port of the current ONS node can also be
listed in the nodes list. It will be ignored when reading the list.

For example, nodes=myhost.example.com:
4200,123.123.123.123:4200

The nodes listed in the nodes line correspond to the individual
nodes in the Oracle RAC instance. Listing the nodes ensures
that the middle-tier node can communicate with the Oracle RAC
nodes. At least one middle-tier node and one node in the Oracle
RAC instance must be configured to see one another. As long as
one node on each side is aware of the other, all nodes are
visible. You need not list every single cluster and middle-tier
node in the ONS configuration file of each Oracle RAC node. In
particular, if one ONS configuration file cluster node is aware of
the middle tier, then all nodes in the cluster are aware of it.

Table 2-7 Optional ONS Configuration Parameters

Parameter Description

loglevel The level of messages that should be logged by ONS. This value
is an integer that ranges from 1, which indicates least messages
logged, to 9, which indicates most messages logged. The default
value is 3.

For example, loglevel=3

logfile A log file that ONS should use for logging messages. The default
value for log file is $ORACLE_HOME/opmn/logs/ons.log.

For example, logfile=C:\app\user\product\12.1.0\opmn
\logs\myons.log

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-39

Table 2-7 (Cont.) Optional ONS Configuration Parameters

Parameter Description

walletfile The wallet file used by the Oracle Secure Sockets Layer (SSL)
to store SSL certificates. If a wallet file is specified to ONS, then
it uses SSL when communicating with other ONS instances and
require SSL certificate authentication from all ONS instances
that try to connect to it. This means that if you want to turn on
SSL for one ONS instance, then you must turn it on for all
instances that are connected. This value should point to the
directory where your ewallet.p12 file is located.

For example, walletfile=C:\app\user\product\12.1.0\opmn
\conf\ssl.wlt\default

useocr The value, reserved for use on the server-side, to indicate ONS
whether it should store all Oracle RAC nodes and port numbers
in Oracle Cluster Registry (OCR) instead of the ONS
configuration file or not. A value of useocr=on is used to store all
Oracle RAC nodes and port numbers in Oracle Cluster Registry
(OCR).

Do not use this option on the client-side.

The ons.config file allows blank lines and comments on lines that begin with the
number sign (#).

2.9.11 Relative Windows Path and Windows Environment Variable
Configuration Settings

The following managed ODP.NET configuration settings support relative Windows
path and environment variables:

• TraceFileLocation

• WALLET_LOCATION

File locations for the above config parameters can now be set using relative Windows
paths. The "." notation informs ODP.NET to use the current working directory. Sub-
directories can be added by appending them. For example, .\mydir refers to the sub-
directory mydir in the current working directory. To navigate to a parent directory, use
the ".." notation.

For web applications, the current working directory is the application directory. For
Windows applications, the .EXE location is the current working directory.

Windows paths can also be set using Windows environment variable names within "%"
characters.

For example, %tns_admin%, c:\%dir%\my_app_location, c:\%top_level_dir%\
%bottom_level_dir% etc.

Chapter 2
Oracle Data Provider for .NET, Managed Driver Configuration

2-40

Note:

• If the environment variable that is used by the configuration parameter is
not set to anything, then an exception will be thrown.

• A directory name cannot partially be using an environment variable. For
example, c:\my_app_%id%

• Multiple variables can used in given directory location. For example, c:\
%top_level_dir%\%bottom_level_dir%.

2.10 Distributed Transactions
ODP.NET, Managed and Unmanaged Drivers provide its resource manager, which
manage Oracle database transactions, and work in cooperation with Microsoft
Distributed Transaction Coordinator (MSDTC) to guarantee atomicity and isolation to
an application across networks. MSDTC coordinates with all the resource managers
that are enlisted to the same System.Transactions, to perform 2-phrase commit or
rollback atomically. With that, Oracle distributed transactions can then be committed or
rolled back across networks properly.

2.10.1 Oracle Services for Microsoft Transaction Server
Oracle Services for Microsoft Transaction (OraMTS) allow client components to
leverage Oracle database participation in MSDTC transactions. It acts as a proxy for
the Oracle database to MSDTC to ensure that Oracle distributed database
transactions commit or rollback together with the rest of the distributed transaction.

If a failure occurs, such as a network failure or server hardware failure, then it can
leave an in-process distributed transaction in-doubt. OraMTS has a recovery service to
resolve these transactions on the machine that began this transaction. This recovery
service runs as a Windows service.

It is required to install the OraMTS Recovery Service on all the client machines where
ODP.NET is running and participating in MSDTC. As a machine may have multiple IP
addresses, administrators for managed ODP.NET applications can specify the host
machine name or IP address that has the running recovery service in the
application's .NET configuration file. ODP.NET, Unmanaged Driver resolves the IP/
machine name for the recovery service automatically.

With .NET Framework 4.5.2, Microsoft introduced new API support that allows Oracle
to use only managed calls to coordinate ODP.NET transactions with the MSDTC.
ODP.NET utilizes this managed code with the managed driver (starting with ODAC
12c Release 3) and with the unmanaged driver (starting with ODAC 12c Release 4).

While ODP.NET, Unmanaged Driver developers can opt out of using OraMTS when
using the latest .NET Framework and ODP.NET versions, they still need to install and
configure the OraMTS Windows recovery service to manage recovery scenarios.

Chapter 2
Distributed Transactions

2-41

Table 2-8 Supported ODP.NET Type and .NET Framework Version for
Distributed Transaction

ODP.NET Type .NET Framework
Version

Distributed Transaction Support

Managed 4.5.2 and higher Uses .NET Framework's native managed
implementation (default) for distributed
transactions. This is Oracle's recommended
approach.

Managed 4.5.1 and lower Uses the Oracle.ManagedDataAccessDTC.dll

Unmanaged 4.5.2 and higher Uses OraMTS (default) or managed OraMTS
implementation. Oracle recommends using
managed OraMTS for unmanaged ODP.NET
applications requiring high availability from Oracle
RAC or Data Guard.

Unmanaged 4.5.1 and lower Uses OraMTS

Note:

While .NET Framework 4.5.1 and lower within the .NET Framework 4 family
are no longer supported, administrators can still use any of the distributed
transaction configurations listed above in conjunction with .NET 4.5.2 and
higher. For .NET 4.5.1 and lower, the table merely recommends specific setups
based on user configuration. They are not requirements.

2.10.2 ODP.NET, Managed Driver Setup
This section explains the setup and configuration steps required for using distributed
transactions with ODP.NET, Managed Driver.

Oracle recommends that applications use .NET's native managed distributed
transaction implementation (default), which is available in .NET Framework 4.5.2 or
higher. Applications can set whether .NET's native managed distributed transaction or
Oracle.ManagedDataAccessDTC.dll is used by setting the UseManagedDTC parameter in
the .NET configuration file. Follow these steps to configure distributed transactions in
these .NET Framework versions:

1. Create and setup the OraMTS recovery service or make sure an existing recovery
service is running.

2. Set the value of OMTSRECO_PORT in the .NET configuration to specify the port number
that the OraMTS recovery service is running.

Alternatively, you can still use Oracle.ManagedDataAccessDTC.dll with .NET Framework
4.5.2 and managed ODP.NET. To do so, set UseManagedDTC to true and follow the
instructions listed below for .NET Framework 4.5.1.

For .NET Framework 4.5.1 and lower applications, follow these steps to setup and
configure managed ODP.NET for distributed instructions:

Chapter 2
Distributed Transactions

2-42

1. Create and setup the OraMTS recovery service or make sure an existing recovery
service is running.

2. Deploy Oracle.ManagedDataAccessDTC.dll along with the application.

3. Set the value of OMTSRECO_PORT in the .NET configuration to specify the port number
that the OraMTS recovery service is running.

Oracle.ManagedDataAccessDTC.dll is included with ODP.NET, Managed Driver. This
DLL makes unmanaged MSDTC COM calls to MSDTC, which means there is a 32-bit
version and 64-bit version of this DLL. These two DLLs share the same name. If you
are using 32-bit .NET Framework, then deploy the 32-bit
Oracle.ManagedDataAccessDTC.dll. If you are using 64-bit .NET Framework, then deploy
the 64-bit Oracle.ManagedDataAccessDTC.dll. The DLLs are located in the following
directories:

• For 32-bit .NET Framework: ORACLE_HOME\odp.net\managed\x86

• For 64-bit .NET Framework: ORACLE_HOME\odp.net\managed\x64

Upon ODP.NET installation, Oracle.ManagedDataAccessDTC.dll is no longer placed into
the Global Assembly Cache (GAC). For applications that use this DLL,
Oracle.ManagedDataAccessDTC.dll must either be placed in the application directory or in
the GAC.

Oracle.ManagedDataAccessDTC.dll should not be directly referenced by a .NET
application. It will be implicitly loaded by ODP.NET, Managed Driver when using
distributed transactions.

For applications with platform target x64 or x86 specifically,
Oracle.ManagedDataAccess.dll will load Oracle.ManagedDataAccessDTC.dll appropriately if
it is placed into the GAC or if it resides in the application directory.

For applications that target AnyCPU, the corresponding
Oracle.ManagedDataAccessDTC.dll needs to be placed into x64 and x86 subdirectories
under wherever the Oracle.ManagedDataAccess.dll is loaded from by the application.
ODP.NET, Managed Driver will load the appropriate Oracle.ManagedDataAccessDTC.dll
assembly (32-bit or 64-bit), based on whether the application is 32-bit or 64-bit. If both
32-bit and 64-bit versions of Oracle.ManagedDataAccessDTC.dll are in the GAC, then the
appropriate assemblies will be loaded automatically.

2.10.3 ODP.NET, Unmanaged Driver Setup
This section explains the setup and configuration steps required for using distributed
transactions with ODP.NET, Unmanaged Driver.

For .NET Framework 4.5.2 and higher, ODP.NET, Unmanaged Driver has embedded
a managed OraMTS implementation into its assembly. OraMTS remains the default
implementation for the ODP.NET, Unmanaged Driver, but the managed OraMTS
implementation is recommended when using any high availability FAN operations (HA
Events = true) with Oracle Real Application Clusters or Oracle Data Guard. The
managed OraMTS implementation supports this high availability functionality, while the
traditional OraMTS does not.

Applications can set whether OraMTS (default) or managed OraMTS is used by
setting the UseOraMTSManaged parameter in the .NET configuration file.

Install and configure OraMTS, including its recovery service to use OraMTS
implementation for ODP.NET, Unmanaged Driver.

Chapter 2
Distributed Transactions

2-43

For .NET Framework 4.5.2 and higher applications, you can use the managed
OraMTS implementation instead of the traditional OraMTS. To set this up, perform the
following steps:

1. Set UseOraMTSManaged to true in the .NET configuration file.

2. Create and setup the OraMTS recovery service or make sure an existing recovery
service is running.

2.11 Configuration differences between ODP.NET,
Managed Driver and ODP.NET, Unmanaged Driver

Table 2-9 lists other configuration differences between ODP.NET, Managed Driver and
ODP.NET, Unmanaged Driver.

Table 2-9 Configuration Differences between ODP.NET, Unmanaged Driver and ODP.NET,
Managed Driver

Feature Category Difference compared to ODP.NET, Unmanaged Driver

Configuration The older, traditional ODP.NET, Unmanaged Driver configuration file format is
different. The new format allows both providers to share the same format. See
"Oracle Data Provider for .NET, Managed Driver Configuration."

Configuration ConfigSchema.xsd file, shipped with ODP.NET, Managed Driver (when
included as part of the schema (XML->Schemas) in Visual Studio) enables
app.config intelli-sense.

Configuration Windows Registry based configuration is not supported

Configuration Oracle High Availability (HA) & Oracle RAC Load Balancing (RLB) notifications
use Oracle Notification Service (ONS). Thus, to use HA or RLB, configure
database and client to use ONS, rather than Oracle Database Advanced
Queuing (AQ). Note that Continuous Query Notification will continue to use AQ.

Configuration Parameter Edition is not supported.

Configuration Parameter CheckConStatus is not supported.

Configuration Parameter DllPath is not supported.

Configuration Parameter SatementCacheWithUdts is not supported.

Configuration Parameter ThreadPoolMaxSize is not supported.

Configuration Parameter TraceFileName is not supported.

Configuration Parameter UdtCacheSize is not supported.

Configuration Parameter UDT Mapping is not supported.

Configuration Parameter UseManagedDTC is supported by ODP.NET, Managed Driver only.

Configuration Parameter UseOraMTSManaged is not supported.

Connection String Context Connection is not supported.

Connection String LegacyTransactionBindingBehavior setting will be ignored. It will always be
set to the default value of 1.

Connection String Promotable Transaction setting will be ignored. It will always be set to
promotable and always support promotions.

Connection String Statement Cache Purge is not supported.

Connectivity Connection to Oracle Times Ten Database is not supported.

Chapter 2
Configuration differences between ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver

2-44

Table 2-9 (Cont.) Configuration Differences between ODP.NET, Unmanaged Driver and
ODP.NET, Managed Driver

Feature Category Difference compared to ODP.NET, Unmanaged Driver

Performance Monitor NumberOfStatisConnections performance counter is not supported.

Performance Monitor Performance monitor category name is "ODP.NET, Managed Driver"

Provider Types Provider Types accept (via constructors) and generate (via ToString()
methods) only culture-invariant strings

Tracing Dynamic tracing is enabled by changing the TraceLevel setting in the app/web/
machine.config. NOTE: For ASP.NET applications, doing so will recycle the
application domain.

2.12 Configuring for Entity Framework Code First
Developers must configure applications to use the Oracle Entity Framework
functionality. This consists of creating two entries in the app.config or web.config file
and adding an assembly reference:

• Add entries in the .NET config file

– Connection string

A standard ADO.NET connection string is used rather than the Entity
Framework connection string used by Database First or Model First paths. The
connection string name should match the application context name. The
connection string entry is an element of the connectionStrings section in the
configuration file.

– Provider registration

Entity Framework uses the provider registration to determine the assembly to
use for Oracle Entity Framework functionality. The provider registration is an
element of the providers section within the entityFramework section in the
application configuration file.

• Add Assembly reference

Add Oracle Entity Framework assembly to the project references.

Note:

When using the official ODP.NET, NuGet installation, these preceding sections
are created automatically, if they do not already exist. After the NuGet install,
the ODP.NET connection string will need to be customized to the application's
specific settings.

When using the Oracle Universal Installer or xcopy install, the preceding
sections must all be configured manually.

Examples of connection strings are as follows:

• ODP.NET, Unmanaged Driver

Chapter 2
Configuring for Entity Framework Code First

2-45

<add name="TestContext" providerName="Oracle.DataAccess.Client"
connectionString="User Id=test;Password=testpassword;Data Source=eftest" />

• ODP.NET, Managed Driver

<add name="TestContext" providerName="Oracle.ManagedDataAccess.Client"
connectionString="User Id=test;Password=testpassword;Data Source=eftest" />

Examples of Oracle provider registration are as follows:

• ODP.NET, Unmanaged Driver

<provider invariantName="Oracle.DataAccess.Client"
type="Oracle.DataAccess.EntityFramework.EFOracleProviderServices,
Oracle.DataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

• ODP.NET, Managed Driver

<provider invariantName="Oracle.ManagedDataAccess.Client"
type="Oracle.ManagedDataAccess.EntityFramework.EFOracleProviderServices,
Oracle.ManagedDataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

2.12.1 Entity Framework 6 Code-Based Registration
Entity Framework 6 allows an application to register with an Entity Framework provider
without using any configuration file. With ODP.NET, Managed Driver, the code will
look as follows:

// C#
using Oracle.ManagedDataAccess.EntityFramework;
...
public class ModelConfiguration : DbConfiguration
{
 public ModelConfiguration()
 {
 SetProviderServices("Oracle.ManagedDataAccess.Client",
EFOracleProviderServices.Instance);
 }
}

For ODP.NET, Unmanaged Driver, replace occurrences of ManagedDataAccess with
DataAccess in the preceding code.

If you are using code-based registration, then the configuration file should not include
the registration. The configuration file based registration overrides the code-based
registration.

2.13 Migrating from ODP.NET, Unmanaged Driver to
ODP.NET, Managed Driver

To ease migration, the APIs of ODP.NET, Managed Driver are a complete subset of
the APIs of ODP.NET, Unmanaged Driver. As long as the existing unmanaged
ODP.NET applications use currently available managed ODP.NET APIs, migration is
straightforward and simple.

Chapter 2
Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver

2-46

In future versions, the managed driver will support more APIs of ODP.NET,
Unmanaged Driver. Both drivers will continue to be enhanced to support the latest
Oracle Database and .NET Framework features.

To migrate from unmanaged to managed ODP.NET, perform the following steps:

1. Add a Reference to Oracle.ManagedDataAccess.dll in the .NET project.

2. Change the existing ODP.NET, Unmanaged Driver namespace references to
ODP.NET, Managed Driver references.

// C#
using Oracle.ManagedDataAccess.Client;
using Oracle.ManagedDataAccess.Types;

// VB
Imports Oracle.ManagedDataAccess.Client
Imports Oracle.ManagedDataAccess.Types

3. Some provider configuration settings may need to be migrated because
ODP.NET, Managed Driver supports very few Windows Registry settings and a
different .NET configuration setting format.

2.14 Configuring a Port to Listen for Database Notifications
Oracle Data Provider for .NET opens a port to listen for database notifications when
the following features are used:

• HA Events

• Load Balancing

• Continuous Query Notification

• AQ Notifications

All these features share the same port, which can be configured centrally by setting
the db notifications port in an application or web configuration file.

If the configuration file does not exist or the db notification port is not specified,
ODP.NET uses a valid, random port number. The configuration file may also request
for a random port by specifying a db notification port value of -1. To specify a
particular port in ODP.NET, Unmanaged Driver, for example, 1200, an application or
web configuration file can be used as follows:

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DbNotificationPort" value="1200"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

To specify a particular port in ODP.NET, Managed Driver, an application or web
configuration file can be used as follows:

<configuration>
 <oracle.manageddataaccess.client>
 <version number="*">
 <settings>

Chapter 2
Configuring a Port to Listen for Database Notifications

2-47

 <setting name="DbNotificationPort" value="1200"/>
 </settings>
 </version>
 </oracle.manageddataaccess.client>
</configuration>

The port number should be unique for each process running on a computer. Thus, the
port number should be set uniquely for each application either programmatically or
through an application config file. Note that if the specified port number is already in
use or invalid, ODP.NET does not provide any errors.

When the process using ODP.NET starts, the application reads the db notification
port number and listens on that port. Once the port is opened, the port number cannot
be changed during the lifetime of the process.

2.15 General .NET Programming Recommendations and
Tips for ODP.NET

• Thread.Abort() should not be used, as unmanaged resources may remain
unreleased, which can potentially cause memory leaks and hangs.

• To optimize resource usage, ODP.NET objects, such as OracleConnection and
OracleCommand, should be explicitly closed or disposed, or both, when they are no
longer needed. This should be done rather than relying on the .NET Framework
garbage collector to reclaim resources. Many users have found that under stress
conditions, explicit Close or Dispose calls result in much lower resource usage.

• It is recommended not to proceed with application execution if the application
encounters exceptions that are associated with possible memory corruption, such
as System.AccessViolationException and
System.Runtime.InteropServices.SEHException.

• If the HKEY_LOCAL_MACHINE\Software\Oracle\NLS_LANG registry entry is set to NA,
ODP.NET encounters ORA-12705 errors. To eliminate this problem, remove the
HKEY_LOCAL_MACHINE\Software\Oracle\NLS_LANG registry entry.

Chapter 2
General .NET Programming Recommendations and Tips for ODP.NET

2-48

3
Features of Oracle Data Provider for .NET

This section describes Oracle Data Provider for .NET provider-specific features and
how to use them to develop .NET applications.

This section contains the following topics:

• Base Classes and Provider Factory Classes

• Code Access Security

• Connecting to Oracle Database

• Real Application Clusters and Global Data Services

• Using Transaction Guard to Prevent Logical Corruption

• Application Continuity

• Database Sharding

• OracleCommand Object

• ODP.NET Types Overview

• Obtaining Data from an OracleDataReader Object

• PL/SQL REF CURSOR and OracleRefCursor

• Implicit REF CURSOR Binding

• LOB Support

• ODP.NET XML Support

• Oracle User-Defined Types (UDTs) and .NET Custom Types

• Bulk Copy

• Oracle Database Advanced Queuing Support

• Continuous Query Notification Support

• OracleDataAdapter Safe Type Mapping

• OracleDataAdapter Requery Property

• Guaranteeing Uniqueness in Updating DataSet to Database

• Globalization Support

• Debug Tracing

• Database Application Migration: SQL Translation Framework

3.1 Base Classes and Provider Factory Classes
With ADO.NET, data classes derive from the base classes defined in the
System.Data.Common namespace. Developers can create provider-specific instances of
these base classes using provider factory classes.

3-1

Provider factory classes allow generic data access code to access multiple data
sources with a minimum of data source-specific code. This reduces much of the
conditional logic currently used by applications accessing multiple data sources.

Using Oracle Data Provider for .NET, the OracleClientFactory class can be returned
and instantiated, enabling an application to create instances of the following ODP.NET
classes that inherit from the base classes:

Table 3-1 ODP.NET Classes that Inherit from ADO.NET 2.0 Base Classes

ODP.NET Classes Inherited from ADO.NET 2.0 Base Class

OracleClientFactory DbProviderFactory

OracleCommand DbCommand

OracleCommandBuilder DbCommandBuilder

OracleConnection DbConnection

OracleConnectionStringBuilder DbConnectionStringBuilder

OracleDataAdapter DbDataAdapter

OracleDataReader DbDataReader

OracleDataSourceEnumerator DbDataSourceEnumerator

OracleException DbException

OracleParameter DbParameter

OracleParameterCollection DbParameterCollection

OracleTransaction DbTransaction

In general, applications still require Oracle-specific connection strings, SQL or stored
procedure calls, and declare that a factory from ODP.NET is used.

3.2 Code Access Security
ODP.NET implements code access security through the OraclePermission class. This
ensures that application code trying to access the database has the requisite
permission to do so.

When a .NET assembly tries to access Oracle Database through ODP.NET, ODP.NET
demands OraclePermission. The .NET runtime security system checks to see whether
the calling assembly, and all other assemblies in the call stack, have OraclePermission
granted to them. If all assemblies in the call stack have OraclePermission granted to
them, then the calling assembly can access the database. If any one of the assemblies
in the call stack does not have OraclePermission granted to it, then a security exception
is thrown.

3.2.1 Configuring OraclePermission
The DemandOraclePermission configuration attribute is used to enable or disable
OraclePermission demand for an ODP.NET API. The DemandOraclePermission value can
be specified in the Windows registry for unmanaged ODP.NET only, or an individual
application configuration file for both unmanaged and managed ODP.NET.

Chapter 3
Code Access Security

3-2

The following Windows registry key is used to configure the DemandOraclePermission
configuration attribute:

HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly_Version\DemandOraclePermission

Here Assembly_Version is the full assembly version number of Oracle.DataAccess.dll.
The DemandOraclePermission key is of type REG_SZ. It can be set to either 1 (enabled) or
0 (disabled).

You can also enable OraclePermission demand for an individual application using its
application configuration file. The following example enables the
DemandOraclePermission property in an application configuration file for ODP.NET,
Unmanaged Driver:

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DemandOraclePermission" value="1"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

Similarly, you can use DemandOraclePermission to configure ODP.NET, Managed Driver
under the settings section for managed provider configuration. See also "settings
section" for more information.

An application or assembly can successfully access the database if OraclePermission
has been added to the permission set associated with the assembly's code group. A
system administrator can modify the appropriate permission set manually or by using
the Microsoft .NET configuration tool (Mscorcfg.msc).

Administrators may also use an appropriate .NET Framework Tool, such as the Code
Access Security Policy Tool (Caspol.exe), to modify security policy at the machine,
user, and enterprise levels for including OraclePermission.

OracleConnection makes security demands using the OraclePermission object when
OraclePermission demand has been enabled using DemandOraclePermission
configuration attribute. Application developers should make sure that their code has
sufficient permission before using OracleConnection.

3.2.2 Configuring OraclePermission for Web Applications with High or
Medium Trust Levels

For Web applications operating under high or medium trust, OraclePermission needs to
be configured in the appropriate web_TrustLevel.config file, so that the application
does not encounter any security errors.

OraclePermission can be configured using the OracProvCfg tool. OraProvCfg.exe adds
appropriate entries to the web_hightrust.config and web_mediumtrust.config files
associated with the specified .NET framework version.The following example
illustrates using the OraProvCfg tool for configuring OraclePermission in a .NET 2.0 Web
application:

OraProvCfg.exe /action:config /product:odp /component:oraclepermission
 /frameworkversion:v2.0.50727
 /providerpath:full_path_of_Oracle.DataAccess.dll

Chapter 3
Code Access Security

3-3

On running the preceding command, the following entry is added to the
web_hightrust.config and web_mediumtrust.config files under the ASP.NET permission
set:

<IPermission class="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess,
Version=2.112.2.0, Culture=neutral, PublicKeyToken=89b483f429c47342" version="1"
Unrestricted="true" />

OraProvCfg can also be used to remove these entries from the .config files when
required. The following example illustrates this:

OraProvCfg.exe /action:unconfig /product:odp /component:oraclepermission
 /frameworkversion:v2.0.50727
 /providerpath:full_path_of_Oracle.DataAccess.dll

3.2.3 Configuring OraclePermission for Windows Applications Running
in a Partial Trust Environment

For Windows applications operating in a partial trust environment, the OraclePermission
entry should be specified under the appropriate permission set in the security.config
file. The security.config file is available in the %windir%\Microsoft.NET\Framework\
{version}\CONFIG folder.

The following example specifies the OraclePermission entry for a .NET 2.0 Windows
application:

<IPermission class="Oracle.DataAccess.Client.OraclePermission, Oracle.DataAccess,
 Version=2.112.2.0, Culture=neutral, PublicKeyToken=89b483f429c47342" version="1"
 Unrestricted="true" />

3.3 Connecting to Oracle Database
Oracle Data Provider for .NET can connect to Oracle Database in a number of ways,
such as using a user name and password, Windows Native Authentication, Kerberos,
and Transport Layer Security/Secure Sockets Layer. This section describes
OracleConnection provider-specific features, including:

• Connecting to Oracle Database Exadata Express Cloud Service

• Connection String Attributes

• Connection String Builder

• Specifying the Data Source Attribute

• Using Transport Layer Security and Secure Sockets Layer

• Using Secure External Password Store

• Using Kerberos

• Using Windows Native Authentication (NTS)

• Network Data Encryption and Integrity

• Schema Discovery

• Connection Pooling

• Connection Pool Management

• Connection Pool Performance Counters

Chapter 3
Connecting to Oracle Database

3-4

• Pluggable Databases

• Edition-Based Redefinition

• Operating System Authentication

• Privileged Connections

• Password Expiration

• Proxy Authentication

• Dynamic Distributed Transaction Enlistment

• Client Identifier and End-to-End Tracing

• Transparent Application Failover (TAF) Callback Support

3.3.1 Connecting to Oracle Database Exadata Express Cloud Service
Managed and unmanaged ODP.NET supports connecting to Oracle Database
Exadata Express Cloud Service.

Set-up Instructions

Oracle recommends using the latest ODAC version when connecting to Exadata
Express. You can find instructions about how to download, install, and configure
ODAC for Oracle Database Exadata Express Cloud Service at:

http://www.oracle.com/technetwork/topics/dotnet/tech-info/
dotnetcloudexaexpress-3112654.html

Known Restrictions

Managed and unmanaged ODP.NET do not support the following features when
connecting to Oracle Database Exadata Express Cloud Service:

• .NET Bulk Copy

• Advanced Queuing

• Any authentication besides username and password

• Application Continuity

• Client Result Cache

• Continuous Query Notification

• Data types

– BFILE

– User-Defined Types when using IN or IN/OUT parameter binding

User-Defined Types include objects, collections (VARRAY and nested table), and
references

– VARCHAR2 with increased size limit to 32 KB.

Note:

VARCHAR2 of sizes up to 4 KB is supported.

Chapter 3
Connecting to Oracle Database

3-5

http://www.oracle.com/technetwork/topics/dotnet/tech-info/dotnetcloudexaexpress-3112654.html
http://www.oracle.com/technetwork/topics/dotnet/tech-info/dotnetcloudexaexpress-3112654.html

– XMLType when using IN or IN/OUT parameter binding

• Distributed transactions

• Fast Application Notification (FAN)

– Features that rely on FAN, such as planned outage, run-time connection load
balancing, and fast connection failover are not supported

– In ODP.NET 12.1 or lower, ODP.NET applications will receive an error if FAN
is turned on

• Sharding

3.3.2 Connection String Attributes
Table 3-2 lists the supported connection string attributes.

Table 3-2 Supported Connection String Attributes

Connection String Attribute Description Default Value

Application Continuity Enables database requests to
automatically replay transactional or
non-transactional operations in a non-
disruptive and rapid manner in the event
of a severed database session, which
results in a recoverable error.

Not available in ODP.NET, Managed
Driver

true

Connection Lifetime Minimum life time (in seconds) of the
connection.

0

Connection Timeout Minimum time (in seconds) to wait for a
free connection from the pool.

15

Context Connection Returns an implicit database connection
if set to true.

Supported in a .NET stored procedure
only

false

Data Source Oracle Net Services Name, Connect
Descriptor, or an easy connect naming
that identifies the database to which to
connect.

empty string

DBA Privilege Administrative privileges: SYSDBA or
SYSOPER.

empty string

Decr Pool Size Number of connections that are closed
when an excessive amount of
established connections are unused.

1

Enlist Controls the enlistment behavior and
capabilities of a connection in context of
COM+ transactions or
System.Transactions.

true

Chapter 3
Connecting to Oracle Database

3-6

Table 3-2 (Cont.) Supported Connection String Attributes

Connection String Attribute Description Default Value

HA Events Enables ODP.NET connection pool to
proactively remove connections from the
pool when an Oracle database service,
service member, instance, or node goes
down. Works with Oracle Global Data
Services, including Oracle RAC, Data
Guard, GoldenGate, and some single
instance deployments.

true

Load Balancing Enables ODP.NET connection pool to
balance work requests across Oracle
database instances based on the load
balancing advisory and service goal.
Works with Oracle Global Data Services,
including Oracle RAC, Active Data
Guard, and GoldenGate.

true

Incr Pool Size Number of new connections to be
created when all connections in the pool
are in use.

5

Max Pool Size Maximum number of connections in a
pool.

100

Metadata Pooling Caches metadata information. True

Min Pool Size Minimum number of connections in a
pool.

1

Password Password for the user specified by User
Id.

empty string

Persist Security Info Retrieval of the password in the
connection string.

false

Pooling Connection pooling. true

Promotable Transaction Indicates whether or not a transaction is
local or distributed throughout its
lifetime.

promotable

Proxy User Id User name of the proxy user. empty string

Proxy Password Password of the proxy user. empty string

Self Tuning Enables or disables self-tuning for a
connection.

true

Statement Cache Purge Statement cache purged when the
connection goes back to the pool.

false

Statement Cache Size Statement cache enabled and cache
size, that is, the maximum number of
statements that can be cached.

0

User Id Oracle user name. empty string

Validate Connection Validation of connections coming from
the pool.

false

The following example uses connection string attributes to connect to Oracle
Database:

Chapter 3
Connecting to Oracle Database

3-7

// C#

using System;
using Oracle.DataAccess.Client;

class ConnectionSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 //using connection string attributes to connect to Oracle Database
 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

3.3.3 Connection String Builder
The OracleConnectionStringBuilder class makes creating connection strings less error-
prone and easier to manage.

Using this class, developers can employ a configuration file to provide the connection
string and/or dynamically set the values though the key/value pairs. One example of a
configuration file entry follows:

<configuration>
 <connectionStrings>
<add name="Publications" providerName="Oracle.DataAccess.Client"
 connectionString="User Id=scott;Password=tiger;Data Source=inst1" />
 </connectionStrings>
</configuration>

Connection string information can be retrieved by specifying the connection string
name, in this example, Publications. Then, based on the providerName, the appropriate
factory for that provider can be obtained. This makes managing and modifying the
connection string easier. In addition, this provides better security against string
injection into a connection string.

3.3.4 Specifying the Data Source Attribute
This section describes different ways of specifying the data source attribute.

The following example shows a connect descriptor mapped to a TNS alias called sales
in the tnsnames.ora file:

sales=
 (DESCRIPTION=
 (ADDRESS= (PROTOCOL=tcp)(HOST=sales-server)(PORT=1521))

Chapter 3
Connecting to Oracle Database

3-8

 (CONNECT_DATA=
 (SERVICE_NAME=sales.us.acme.com)))

The connection pool will maintain the full descriptor of an alias so that subsequent
connection requests with the same connection string will not need to resolve the alias
again. This applies to tnsnames.ora, .NET config data sources, and LDAP aliases. To
flush out the cached full descriptor maintained by the connection pool, invoke
OracleDataSourceEnumerator.GetDataSources() followed by
OracleConnection.ClearPool() or OracleConnection.ClearAllPools().

If connection pooling is not used, the alias will need to be resolved to the full descriptor
for each request. In the case of LDAP, the LDAP server is contacted for each
connection request.

3.3.4.1 Using the TNS Alias
To connect as scott/tiger using the TNS Alias, a valid connection appears as follows:

"user id=scott;password=tiger;data source=sales";

3.3.4.2 Using the Connect Descriptor
ODP.NET also allows applications to connect without the use of the tnsnames.ora file.
To do so, the entire connect descriptor can be used as the "data source".

The connection string appears as follows:

"user id=scott;password=tiger;data source=" +
 "(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)" +
 "(HOST=sales-server)(PORT=1521))(CONNECT_DATA="+
 "(SERVICE_NAME=sales.us.acme.com)))"

3.3.4.3 Using Easy Connect Naming Method
The easy connect naming method enables clients to connect to a database without
any configuration.

Prior to using the easy connect naming method, make sure that EZCONNECT is specified
by the NAMES.DIRECTORY_PATH parameter in the sqlnet.ora file as follows:

NAMES.DIRECTORY_PATH= (TNSNAMES, EZCONNECT)

With this enabled, ODP.NET allows applications to specify the "Data Source" attribute
in the form of:

//host:[port]/[service_name]

Using the same example, some valid connection strings follow:

"user id=scott;password=tiger;data source=//sales-server:1521/sales.us.acme.com"
"user id=scott;password=tiger;data source=//sales-server/sales.us.acme.com"
"user id=scott;password=tiger;data source=sales-server/sales.us.acme.com"

If the port number is not specified, 1521 is used by default.

Chapter 3
Connecting to Oracle Database

3-9

3.3.4.4 Using LDAP
ODP.NET can connect with connect identifiers mapped to connect descriptors in an
LDAP-compliant directory server, such as Oracle Internet Directory and Microsoft
Active Directory.

To configure LDAP for ODP.NET, Unmanaged Driver, follow these Oracle
documentation instructions in Configuring the Directory Naming Method in Oracle
Database Net Services Administrator's Guide.

To configure LDAP for ODP.NET, Managed Driver, follow the instructions in "settings
section" and "LDAPsettings section."

3.3.4.5 Data Source Enumerator
The data source enumerator enables the application to generically obtain a collection
of the Oracle data sources that the application can connect to.

3.3.5 Using Transport Layer Security and Secure Sockets Layer
Transport Layer Security (TLS) and its predecessor, Secure Sockets Layer (SSL), are
industry standard protocols for securing network connections. Both managed and
unmanaged ODP.NET support SSL for database and transport authentication.

3.3.5.1 Secure Sockets Layer and Transport Layer Security Differences
Although SSL was primarily developed by Netscape Communications Corporation, the
Internet Engineering Task Force (IETF) took over development of it, and renamed it
Transport Layer Security (TLS).

Essentially, TLS is an incremental improvement to SSL version 3.0.

ODP.NET, Managed Driver supports SSL 3.0 and TLS 1.0, 1.1, and 1.2. ODP.NET,
Unmanaged Driver supports the same SSL and TLS versions as the Oracle Database
Client version it is certified with.

The SSL/TLS client can ensure that the distinguished name (DN) is correct for the
database server it is trying to connect to. Parameters for DN Matching are
SSL_SERVER_DN_MATCH (sqlnet.ora) and SSL_SERVER_CERT_DN (tnsnames.ora), which can be
defined in the .NET config file as well.

To turn DN Match on, set SSL_SERVER_DN_MATCH to True (or On or Yes). SSL_SERVER_CERT_DN
is optional. It allows the administrator to specify exactly the DN they want to match. If
the SSL_SERVER_CERT_DN is not set, then the match is done by comparing the
SERVICE_NAME value to the Common Name (CN) portion of the server certificate's DN.

Chapter 3
Connecting to Oracle Database

3-10

See Also:

• The TLS Protocol Version 1.0 [RFC 2246] at the IETF Web site, which can
be found at:

http://www.ietf.org

• SSL_VERSION in the "settings section."

Note:

To simplify the discussion, this section uses the term SSL where either SSL or
TLS may be appropriate because SSL is the most widely recognized term.
However, where distinctions occur between how you use or configure these
protocols, this section specifies what is appropriate for either SSL or TLS.

3.3.5.2 ODP.NET Secure Sockets Layer Configuration
When you configure Secure Sockets Layer on the client, you must confirm that the
wallet is created and use TCP/IP with SSL on the client. Optionally, you can perform
additional steps to enhance the configuration.

SSL Configuration Topics:

• Step 1: Confirm Client Wallet Creation

• Step 2: Use TCP/IP with SSL on the Client

• Step 3: Specify Required Client SSL Configuration (Wallet Location)

• Step 4: Set the Required SSL Version on the Client (Optional)

• Step 5: Set SSL as an Authentication Service on the Client (Optional)

Step 1: Confirm Client Wallet Creation

Before proceeding to the next step, you must confirm that a wallet has been created
on the client and that the client has a valid certificate.

ODP.NET, Managed Driver supports file and Microsoft Certificate Store (MCS) based
wallets.

• For file-based wallets, use Oracle Wallet Manager to check that the wallet has
been created. See Step 1A: Confirm Wallet Creation on the Server in Oracle
Database Security Guide for information about checking a wallet.

• For MCS, the Windows domain credentials will be used for the client credentials.
Thus, a valid domain logon must be used while running the ODP.NET application.
ODP.NET, Managed Driver will retrieve the credentials from the MY or Personal
certificate store. Note that the server must also be configured to use MCS wallets.
See Microsoft Certificate Services in Oracle Database Platform Guide for Microsoft
Windows for information about setting up the server for MCS.

Chapter 3
Connecting to Oracle Database

3-11

Step 2: Use TCP/IP with SSL on the Client

The ODP.NET Data Source must be modified to use SSL. Specifically, the transport
protocol must be changed to use TCP/IP with SSL or what Oracle calls "tcps". An
example ODP.NET Data Source for use with SSL is:

finance = (DESCRIPTION=
 (ADDRESS = (PROTOCOL=tcps) (HOST=finance_server) (PORT=1575))
 (CONNECT_DATA = (SERVICE_NAME=Finance.us.example.com)))

Step 3: Specify Required Client SSL Configuration (Wallet Location)

Edit the sqlnet.ora or .NET application configuration to specify the wallet location.

• An example of setting the SSL wallet location for file based wallets, where
<wallet_location> is the specified location where the client wallet is stored:

wallet_location = (SOURCE=(METHOD= File)
 (METHOD_DATA=(DIRECTORY=<wallet_location>)))

• An example of setting the SSL wallet location for MCS based wallets is:

wallet_location = (SOURCE=(METHOD= MCS))

Step 4: Set the Required SSL Version on the Client (Optional)

The SSL_VERSION parameter can be set through the sqlnet.ora or the .NET
application.config, web.congig, or machine.config file. Normally, it is not necessary to
set this parameter. The default setting for this parameter is any, which allows the
database server to apply any necessary restrictions to the SSL version accepted. An
example setting in the sqlnet.ora is:

SSL_VERSION=3.0

Step 5: Set SSL as an Authentication Service on the Client (Optional)

Set the SQLNET.AUTHENTICATION_SERVICE parameter in the sqlnet.ora or
application.config, web.congig, or machine.config file to allow SSL to be used as a
database external authentication methodology.

Note that SSL can be used as just a transport encryption vehicle. Hence, the "optional"
designation for this setting.

If SSL is to be used as a database external Authentication Service, then a database
externally authenticated user matching the client certificate must be created.

An example setting allowing SSL external authentication in the sqlnet.ora is:

SQLNET.AUTHENTICATION_SERVICES = (TCPS)

Chapter 3
Connecting to Oracle Database

3-12

Note:

Prior to ODAC 12c Release 4, ODP.NET, Managed Driver SSL connections
would be redirected to dynamic (ephemeral) port on the database server
machine. With ODAC 12c Release 4 and later, managed ODP.NET SSL
connections will now continue to the original socket connection to the Oracle
Listener. Hence, firewalls will now only need to allow access to the Oracle
Listener's port (e.g., 1521).

3.3.5.3 Troubleshooting TLS/SSL Setup
This section discusses commonly encountered issues and their typical resolution
steps.

Common TLS/SSL Wallet Errors

Microsoft Windows now restricts wallets from using the MD5 algorithm. Oracle wallets
may have been generated with this algorithm as that was the default option in Oracle
Public Key Infrastructure (orapki) utility 12.1 and earlier.

Orapki refers to orapki.exe. This utility is part of full Oracle client (administrator)
installations. It is not included with Oracle Instant Client. The utility is only needed to
setup up the wallet; it is not necessary to deploy it with the wallet.

When you setup TLS/SSL and encounter an "ORA-0052: Failure during SSL
handshake" error combined with a 0x80004005 error code and first inner exception "A
SSPI-call failed" and second inner exception "A token sent to the function is invalid",
then it is very likely that Microsoft Security Support Provider Interface (SSPI) rejected
your Oracle Wallet, such as when MD5 is used. This is a failure on the handshake.
You can resolve this error by using the SHA-2 algorithm instead.

If the second inner exception instead indicates "The credentials supplied to the
package were not recognized", it is possible the user certificate was generated without
a certificate authority (CA). You can resolve this error by using orapki to generate a
CA/root certificate and then regenerating your user wallet/certificate to point to this
new CA/root certificate.

The steps below will regenerate your Oracle Wallet using orapki and SHA-2. Any
orapki version can be used to generate the wallet with these instructions.

1. Create root wallet, for example, a CA wallet.

orapki wallet create -wallet ./root -pwd <password>

2. Add a self-signed certificate (CA certificate) to the root wallet.

orapki wallet add -wallet ./root -dn 'CN=<my root>' -keysize 1024 -self_signed -
validity 3650 -pwd <password> -sign_alg sha512

3. Export the self-signed certificate from the wallet.

orapki wallet export -wallet ./root -dn 'CN=<my root>' -cert ./root/
b64certificate.txt -pwd <password>

4. Create a user wallet, for example, a customer wallet.

orapki wallet create -wallet ./user -pwd <password> -auto_login

Chapter 3
Connecting to Oracle Database

3-13

5. Add a certificate request.

orapki wallet add -wallet ./user -dn 'CN=<client's hostname>' -keysize 1024 -pwd
<password> -sign_alg sha512

6. Export the certificate request.

orapki wallet export -wallet ./user -dn 'CN=<client's hostname>' -request ./user/
creq.txt -pwd <password>

7. Create a certificate issued by a CA.

orapki cert create -wallet ./root -request ./user/creq.txt -cert ./user/cert.txt
-validity 3650 -pwd <password> -sign_alg sha512

8. Add a trusted certificate (CA certificate) to the wallet. This example assumes the
same CA for both the client and server wallets.

orapki wallet add -wallet ./user -trusted_cert -cert ./root/b64certificate.txt -
pwd <password>

9. Add a user certificate.

orapki wallet add -wallet ./user -user_cert -cert ./user/cert.txt -pwd
<password> -sign_alg sha512

10. Display contents of user wallet.

orapki wallet display -wallet ./user -pwd <password>

11. Create a server wallet.

orapki wallet create -wallet ./server -pwd <password> -auto_login

12. Add a server certificate request.

orapki wallet add -wallet ./server -dn 'CN=<server's hostname>' -keysize 1024 -
pwd <password> -sign_alg sha512

13. Export the certificate request.

orapki wallet export -wallet ./server -dn 'CN=<server's hostname>' -request ./
server/creq.txt -pwd <password>

14. Create a server certificate issued by a CA.

orapki cert create -wallet ./root -request ./server/creq.txt -cert ./server/
cert.txt -validity 3650 -pwd <password> -sign_alg sha512

15. Add a trusted certificate (CA certificate) to the server wallet. This example
assumes the same CA for both the client and server wallets.

orapki wallet add -wallet ./server -trusted_cert -cert ./root/b64certificate.txt
-pwd <password>

16. Add an user_cert certificate for the server wallet.

orapki wallet add -wallet ./server -user_cert -cert ./server/cert.txt -pwd
<password> -sign_alg sha512

17. Display contents of server wallet.

orapki wallet display -wallet ./server -pwd <password>

Chapter 3
Connecting to Oracle Database

3-14

3.3.6 Using Secure External Password Store
The Secure External Password Store (SEPS) is the use of a client-side wallet for
securely storing the password credentials. Both ODP.NET, Managed Driver and
Unmanaged Driver can be configured to use the external password store.

An Oracle wallet is a container that securely stores authentication and signing
credentials. Wallets can simplify large-scale deployments that rely on password
credentials for database connections. Applications no longer need embedded user
names and passwords, which reduces security risk.

3.3.6.1 Configuring Secure External Password Store (SEPS)
Steps for configuring SEPS:

• Step 1. Create the wallet file

• Step 2. Point the configuration to the client wallet

• Step 3. Turn on SEPS

Step 1. Create the wallet file

Use the mkstore utility to create the wallet file and insert the credentials.

Step 1a. Create a wallet on the client by using the following syntax at the command
line:

mkstore -wrl wallet_location -create

For example:

mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -create
Enter password: password

Step 1b. Create database connection credentials in the wallet by using the following
syntax at the command line:

mkstore -wrl wallet_location -createCredential db_connect_string username
Enter password: password

For example:

mkstore -wrl c:\oracle\product\12.1.0\db_1\wallets -createCredential orcl system
Enter password: password

Step 2. Point the configuration to the client wallet

In the client sqlnet.ora file, enter the WALLET_LOCATION parameter and set it to the
directory location of the wallet you created in Step 1.

For example, if you created the wallet in $ORACLE_HOME/network/admin and your Oracle
home is set to C:\app\client\<user>\product\<version>\client_1\, then you need to
enter the following into your client sqlnet.ora file:

WALLET_LOCATION =
 (SOURCE =(METHOD = FILE)
 (METHOD_DATA =

Chapter 3
Connecting to Oracle Database

3-15

 (DIRECTORY = C:\app\client\<user>\product\<version>\client_1\Network
\Admin)))

Step 3. Turn on SEPS

Step 3. Turn on SEPS

SQLNET.WALLET_OVERRIDE = TRUE

This setting causes all CONNECT /@db_connect_string statements to use the information
in the wallet at the specified location to authenticate to databases.

When external authentication is in use, an authenticated user with such a wallet can
use the CONNECT /@db_connect_string syntax to access the previously specified
databases without providing a user name and password. Note however, that the wallet
file needs to be kept up to date with the database credentials. If the database
credentials change, but the wallet file is not changed appropriately, then the
connections will fail.

3.3.7 Using Kerberos
Kerberos is a network authentication service for security in distributed environments.
ODP.NET applications can use Kerberos for single sign-on and centralized user
authentication. ODP.NET, Unmanaged Driver and Managed Driver both support
Kerberos for external authentication to the database server.

3.3.7.1 File Based Credential Cache and MSLSA
ODP.NET supports both a file-based Kerberos client credential cache (CC) and the
ability to use Windows logon credentials as Kerberos client credentials. The latter is
called MSLSA-based Kerberos authentication.

In order to utilize a file based Kerberos client credential cache (CC), the following
executables associated with the full Oracle Call Interface (OCI) install are needed:

• okinit.exe

• oklist.exe

• okdstry.exe

The executables are required in order to acquire the Kerberos5 credentials and store
them in the file based credential cache (CC). However, after credential cache creation,
as long as the credentials remain valid, the above executables are then unneeded by
the ODP.NET application at run-time.

3.3.7.2 ODP.NET, Managed Driver Dependency on MIT Kerberos
To use Kerberos5 database authentication in conjunction with ODP.NET, Managed
Driver, download and install MIT Kerberos for Windows 4.0.1 on the same machine as
ODP.NET, Managed Driver from the following location:

http://web.mit.edu/kerberos/dist/

Chapter 3
Connecting to Oracle Database

3-16

3.3.7.3 Configuring Kerberos Authentication with ODP.NET
Please reference the following "key" when viewing the below Kerberos configuration
examples:

• oracleclient = Kerberos/Windows Domain user ID used by the Oracle database
client program to represent the Oracle Client user on the domain

• oracleserver = Kerberos/Windows Domain user ID used by the Oracle database
server

• DOMAIN.COMPANY.COM = Kerberos/Windows domain

• dbhost.company.com = Oracle database server machine hostname

• kerberos_service_name = Kerberos service name

• dc.company.com = hostname for Kerberos Key Distribution Center (KDC) and
Windows Domain Controller

Configuring Kerberos Authentication Topics:

• Step 1. Update Windows services file to include a "kerberos5" entry

• Step 2. Create client and server Kerberos users (Windows domain users for
MSLSA)

• Step 3. Associate the DB server's Kerberos principal name with the DB server's
Kerberos Service (SPN mapping) and generate the server keytab file

• Step 4. Confirm the mapping of server user to service principal

• Step 5. Setup server sqlnet.ora to point to the keytab file generated in step 2

• Step 6. Create a kerberos configuration file that points to the Kerberos KDC
(Windows Domain Controller for MSLSA)

• Step 7. Configure the Oracle database client and server sqlnet.ora or .NET config
to point to the above Kerberos configuration file

• Step 8. Point the client sqlnet.ora or .NET config to a credential cache file or to
MSLSA

• Step 9. Set the client and server authentication services in the sqlnet.ora or .NET
config to Kerberos5

• Step 10. Setup an externally authenticated database user that matches the
Kerberos client user setup in step 1 (note the case)

• Step 11. Login to the client machine via the Windows Domain client user (for
MSLSA) or perform an okinit to authenticate the client Kerberos user (for file
based CC):

Step 1. Update Windows services file to include a "kerberos5" entry

Change the Kerberos entry in the Windows service file (C:\windows\system32\drivers
\etc\services) from:

kerberos 88/tcp krb5 kerberos-sec #Kerberos

to:

kerberos 88/tcp kerberos5 krb5 kerberos-sec #Kerberos

Chapter 3
Connecting to Oracle Database

3-17

Step 2. Create client and server Kerberos users (Windows domain users for
MSLSA)

As noted in the above "key", we will use oracleclient and oracleserver as our client
and server Kerberos user IDs, respectively.

ODP.NET supports MSLSA using Windows domain users which have the following
attributes:

• "Kerberos DES" unchecked

• "Kerberos AES 128 bit" checked

• "Kerberos AES 256 bit" checked

• "Kerberos preauthentication not required" checked

Step 3. Associate the DB server's Kerberos principal name with the DB server's
Kerberos Service (SPN mapping) and generate the server keytab file

Run the following commands on the Kerberos KDC (Windows Domain Controller for
MSLSA) as an administrator:

> ktpass -princ kerberos_service_name/dbhost.company.com@DOMAIN.COMPANY.COM /crypto
all /mapuser oracleserver@DOMAIN.COMPANY.COM /pass <oracleserver password> /out
v5srvtab

> setspn -A kerberos_service_name/dbhost.company.com@DOMAIN.COMPANY.COM oracleserver

Step 4. Confirm the mapping of server user to service principal

Also on the Kerberos KDC, run the following command, noting the output:

> setspn -L oracleserver

Registered ServicePrincipalNames for
CN=oracleserver,CN=Users,DC=domain,DC=company,DC=com:
 kerberos_service_name/dbhost.company.com
kerberos_service_name/dbhost.company.com@DOMAIN.COMPANY.COM

Step 5. Setup server sqlnet.ora to point to the keytab file generated in step 2

Add the following line to the server sqlnet.ora:

sqlnet.kerberos5_keytab = c:\krb\v5srvtab

Step 6. Create a kerberos configuration file that points to the Kerberos KDC
(Windows Domain Controller for MSLSA)

An example kerberos configuration file (krb.conf):

[libdefaults]
default_realm = DOMAIN.COMPANY.COM

[realms]
DOMAIN.COMPANY.COM = {
 kdc = dc.company.com
 }

[domain_realm]
.domain.company.com = DOMAIN.COMPANY.COM
domain.company.com = DOMAIN.COMPANY.COM

Chapter 3
Connecting to Oracle Database

3-18

.DOMAIN.COMPANY.COM = DOMAIN.COMPANY.COM
DOMAIN.COMPANY.COM = DOMAIN.COMPANY.COM

Step 7. Configure the Oracle database client and server sqlnet.ora or .NET
config to point to the above Kerberos configuration file

Edit the client or server sqlnet.ora to include:

sqlnet.kerberos5_conf = C:\krb\krb.conf

Or edit the client application config to include (in the settings section):

<setting name="sqlnet.kerberos5_conf" value="C:\krb\krb.conf" />

Step 8. Point the client sqlnet.ora or .NET config to a credential cache file or to
MSLSA

Example pointing to Credential Cache file:

sqlnet.kerberos5_cc_name = c:\krb\krb.cc

Example pointing to MSLSA:

sqlnet.kerberos5_cc_name = MSLSA:

Step 9. Set the client and server authentication services in the sqlnet.ora or .NET
config to Kerberos5

sqlnet.authentication_services=(Kerberos5)

Step 10. Setup an externally authenticated database user that matches the
Kerberos client user setup in step 1 (note the case)

create user "ORACLECLIENT@DOMAIN.COMPANY.COM" identified externally;
grant connect, create session to "ORACLECLIENT@DOMAIN.COMPANY.COM";

Step 11. Login to the client machine via the Windows Domain client user (for
MSLSA) or perform an okinit to authenticate the client Kerberos user (for file
based CC):

okinit oracleclient

Chapter 3
Connecting to Oracle Database

3-19

Step 12. Run the ODP.NET application

Note:

• After configuring the client and server, the last 2 steps are the only steps
required on an ongoing basis to run the ODP.NET application.

• A Microsoft Visual C Run-Time Library (MSVCRT.DLL) bug can cause
ODP.NET, Managed Driver's setting of the Kerberos5 configuration to be
ignored by the Microsoft run-time. In such a case, you will encounter the
error message:

OracleInternal.Network.NetworkException (0x80004005): NA Kerberos5:
Authentication handshake failure at stage: krb5_sname_to_principal:
default realm not found. Please set SQLNET.Kerberos5_conf.

To workaround this error, manually set KRB5_CONFIG in the ODP.NET
application's run-time environment to point to the Kerberos5 configuration
file pointed to by SQLNET.Kerberos5_conf. For example,

set KRB5_CONFIG=c:\oracle\network\admin\krb5.ini

3.3.8 Using Windows Native Authentication (NTS)
With the Windows native authentication adapter, Oracle users can authenticate to the
database using just their Windows user login credentials. It provides a way to enable
single sign-on and to simplify user and role credential management. Windows native
authentication is also known as Windows Native authentication (NTS).

Note:

Due to a limitation in the Microsoft .NET APIs, ODP.NET, Managed Driver only
supports Windows Native authentication (NTS) via Microsoft NT LAN Manager
(NTLM) instead of Kerberos-based credentials. Normally, this limitation would
be invisible to the ODP.NET, Managed Driver application, since the Windows
domain and the Oracle database server will transparently support both NTLM
and Kerberos domain credentials by default.

3.3.8.1 Configuring Windows Native Authentication (NTS) for the ODP.NET
Client

Steps in configuring the NTS for the ODP.NET Client:

• Step 1. Ensure OSAUTH_PREFIX_DOMAIN is set correctly

• Step 2. Setup the externally identified database user

• Step 3. Setup the client configuration to utilize NTS as the authentication
methodology

Chapter 3
Connecting to Oracle Database

3-20

Step 1. Ensure OSAUTH_PREFIX_DOMAIN is set correctly

Make sure OSAUTH_PREFIX_DOMAIN is set appropriately. If you desire the externally
identified user ID to include the domain, set it to true, otherwise false. The parameter
is a registry setting that can be found at HKLM/software/oracle/HOME<ORACLE_SID>. For
example, if your ORACLE_SID is r1, it is located at HKLM/software/oracle/HOMEr1.

Step 2. Setup the externally identified database user

Assuming a Step 0 setting of true, use the following commands to setup the externally
identified database user associated with the desired Windows domain user:

create user "MYDOMAIN\MYUSER" identified externally;
grant connect, create session to "MYDOMAIN\MYUSER";

Step 3. Setup the client configuration to utilize NTS as the authentication
methodology

Edit the client sqlnet.ora or app config to add NTS to the
sqlnet.authentication_services. For example.

sqlnet.authentication_services = (NTS)

Note:

After configuring the client and server, the last 2 steps are the only steps
required on an ongoing basis to run the ODP.NET application.

3.3.9 Network Data Encryption and Integrity
ODP.NET enables data encryption and integrity over a network for both intranet and
cloud deployments. This ensures that data is disguised to all, except authorized users,
and guarantees the original message contents are not altered. In earlier releases,
these features were known as Oracle Advanced Security Option (ASO) encryption.
Starting with Oracle Database 12c, Oracle ASO is not required to use network data
encryption and data integrity.

3.3.9.1 Using Data Encryption
Managed and unmanaged ODP.NET support the following encryption standards and
algorithms:

• Advanced Encryption Standard (AES)

– AES 128-bit

– AES 192-bit

– AES 256-bit

• RSA RC4

– 128-bit

– 256-bit

Chapter 3
Connecting to Oracle Database

3-21

• Triple-DES (3DES)

– 112-bit

– 168-bit

ODP.NET, Managed Driver uses the following settings to configure network
encryption:

• SQLNET.ENCRYPTION_CLIENT

• SQLNET.ENCRYPTION_TYPES_CLIENT

3.3.9.2 Using Data Integrity
Managed and unmanaged ODP.NET support the following data integrity algorithms:

• MD5

• SHA-1

• SHA-2

– SHA-256

– SHA-384

– SHA-512

3.3.10 Schema Discovery
ADO.NET exposes five different types of metadata collections through the
OracleConnection.GetSchema API. This permits application developers to customize
metadata retrieval on an individual-application basis, for any Oracle data source. Thus,
developers can build a generic set of code to manage metadata from multiple data
sources.

The following types of metadata are exposed:

• MetaDataCollections

A list of metadata collections that is available from the data source, such as tables,
columns, indexes, and stored procedures.

• Restrictions

The restrictions that apply to each metadata collection, restricting the scope of the
requested schema information.

• DataSourceInformation

Information about the instance of the database that is currently being used, such
as product name and version.

• DataTypes

A set of information about each data type that the database supports.

• ReservedWords

Reserved words for the Oracle query language.

Chapter 3
Connecting to Oracle Database

3-22

See Also:

Oracle Schema Collections

3.3.10.1 User Customization of Metadata
ODP.NET provides a comprehensive set of database schema information. Developers
can extend or customize the metadata that is returned by the GetSchema method on an
individual application basis.

To do this, developers must create a customized metadata file and provide the file
name to the application as follows:

1. Create a customized metadata file and put it in the CONFIG subdirectory where
the .NET framework is installed. This is the directory that contains machine.config
and the security configuration settings.

This file must contain the entire set of schema configuration information, not just
the changes. Developers provide changes that modify the behavior of the schema
retrieval to user-specific requirements. For instance, a developer can filter out
internal database tables and just retrieve user-specific tables

2. Add an entry in the app.config file of the application, similar to the following, to
provide the name of the metadata file, in name-value pair format.

<oracle.dataaccess.client>
 <settings>
 <add name="MetaDataXml" value="CustomMetaData.xml" />
 </settings>
</oracle.dataaccess.client>

When the GetSchema method is called, ODP.NET checks the app.config file for the
name of the customized metadata XML file. First, the GetSchema method searches for
an entry in the file with a element named after the provider, in this example,
oracle.dataaccess.client. In this XML element, the value that corresponds to the
name MetaDataXml is the name of the customized XML file, in this example,
CustomMetaData.xml.

If the metadata file is not in the correct directory, then the application loads the default
metadata XML file, which is part of ODP.NET.

3.3.11 Connection Pooling
ODP.NET connection pooling is enabled and disabled using the Pooling connection
string attribute. By default, connection pooling is enabled. The following are
ConnectionString attributes that control the behavior of the connection pooling service:

• Connection Lifetime

• Connection Timeout

• Decr Pool Size

• HA Events

• Incr Pool Size

• Load Balancing

Chapter 3
Connecting to Oracle Database

3-23

• Max Pool Size

• Min Pool Size

• Pooling

• Validate Connection

Connection Pooling Example

The following example opens a connection using ConnectionString attributes related to
connection pooling.

// C#

using System;
using Oracle.DataAccess.Client;

class ConnectionPoolingSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 //Open a connection using ConnectionString attributes
 //related to connection pooling.
 con.ConnectionString =
 "User Id=scott;Password=tiger;Data Source=oracle;" +
 "Min Pool Size=10;Connection Lifetime=100000;Connection Timeout=60;" +
 "Incr Pool Size=5; Decr Pool Size=2";
 con.Open();
 Console.WriteLine("Connection pool successfully created");

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Connection is placed back into the pool.");
 }
}

3.3.11.1 Using Connection Pooling
When connection pooling is enabled (the default), the Open and Close methods of the
OracleConnection object implicitly use the connection pooling service, which is
responsible for pooling and returning connections to the application.

The connection pooling service creates connection pools by using the
ConnectionString property as a signature, to uniquely identify a pool.

When a new connection is opened, if the connection string is not an exact match to an
existing pool, then a new pool is created. Prior to ODP.NET 12.1.0.2, only connection
string attribute values had to match. Now, connection strings themselves must be an
exact match. Keywords supplied in a different order for the same connection will be
pooled separately. If a pool already exists with the requested signature, a connection
is returned to the application from that pool.

When a connection pool is created, the connection pooling service initially creates the
number of connections defined by the Min Pool Size attribute of the ConnectionString
property. This number of connections is always maintained by the connection pooling
service for the connection pool, except when Fast Connection Failover removes invalid

Chapter 3
Connecting to Oracle Database

3-24

connections or Connection Lifetime is exceeded. In these two cases, the connection
number could drop below the Min Pool Size. ODP.NET would then attempt to restore
the minimum pool size level upon the next connection request.

At any given time, these connections are in use by the application or are available in
the pool.

The Incr Pool Size attribute of the ConnectionString property defines the number of
new connections to be created by the connection pooling service when more
connections are needed in the connection pool.

When the application closes a connection, the connection pooling service determines
whether or not the connection lifetime has exceeded the value of the Connection
Lifetime attribute. If so, the connection pooling service destroys the connection;
otherwise, the connection goes back to the connection pool. The connection pooling
service enforces the Connection Lifetime only when Close() or Dispose() is invoked.

The Max Pool Size attribute of the ConnectionString property sets the maximum number
of connections for a connection pool. If a new connection is requested, but no
connections are available and the limit for Max Pool Size has been reached, then the
connection pooling service waits for the time defined by the Connection Timeout
attribute. If the Connection Timeout time has been reached, and there are still no
connections available in the pool, the connection pooling service raises an exception
indicating that the connection pool request has timed-out. Upon a connection timeout,
ODP.NET distinguishes whether the timeout occurred due to the database server
failing to deliver a connection in the allotted time or no connection being available in
the pool due to the maximum pool size having been reached. The exception text
returned will either be "Connection request timed out" in the case of the former or
"Pooled connection request timed out" in the case of the latter.

The Validate Connection attribute validates connections coming out of the pool. This
attribute should be used only when absolutely necessary, because it causes a round-
trip to the database to validate each connection immediately before it is provided to the
application. If invalid connections are uncommon, developers can create their own
event handler to retrieve and validate a new connection, rather than using the Validate
Connection attribute. This generally provides better performance.

The connection pooling service closes connections when they are not used;
connections are closed every 3 minutes. The Decr Pool Size attribute of the
ConnectionString property provides connection pooling service for the maximum
number of connections that can be closed every 3 minutes.

Beginning with Oracle Data Provider for .NET release 11.1.0.6.20, enabling
connection pooling by setting "pooling=true" in the connection string (which is the
case by default) will also pool operating system authenticated connections.

3.3.12 Connection Pool Management
ODP.NET connection pool management provides explicit connection pool control to
ODP.NET applications. Applications can explicitly clear connections in a connection
pool.

Using connection pool management, applications can do the following:

Chapter 3
Connecting to Oracle Database

3-25

Note:

These APIs are not supported in a .NET stored procedure.

• Clear connections from connection pools using the ClearPool method.

• Clear connections in all the connection pools in an application domain, using the
ClearAllPools method.

3.3.13 Connection Pool Performance Counters
Installing Oracle Data Provider for .NET creates a set of performance counters on the
target system. These performance counters are published by ODP.NET for each
ODP.NET client application. These performance counters can be viewed using
Windows Performance Monitor (Perfmon).

In Perfmon, administrators can add ODP.NET counters to the performance monitor
graph. ODP.NET performance counters are published under the following Category
Name: Oracle Data Provider for .NET. Administrators can choose the ODP.NET
counters to monitor after selecting the Oracle Data Provider for .NET category.

As ODP.NET performance counters are not enabled by default, administrators must
enable the specific counters of interest before attempting to monitor them. In addition,
at least one ODP.NET instance must be actively running when attempting to monitor
using Perfmon.

Oracle Data Provider for .NET enables or disables publishing performance counters
for connection pooling, using registry entries.

Table 3-3 lists the performance counters used for connection pooling with their valid
registry values.

Table 3-3 Performance Counters for Connection Pooling

Performance Counter Valid
Values

Description

None 0 Not enabled (Default)

HardConnectsPerSecond 1 Number of sessions being established
with the Oracle Database every second.

HardDisconnectsPerSecond 2 Number of sessions being severed from
the Oracle Database every second.

SoftConnectsPerSecond 4 Number of active connections originating
from connection pools every second.

SoftDisconnectsPerSecond 8 Number of active connections going back
to the connection pool every second.

NumberOfActiveConnectionPools 16 Total number of active connection pools.

NumberOfInactiveConnectionPools 32 Number of inactive connection pools.

NumberOfActiveConnections 64 Total number of connections in use.

NumberOfFreeConnections 128 Total number of connections available for
use in all the connection pools.

Chapter 3
Connecting to Oracle Database

3-26

Table 3-3 (Cont.) Performance Counters for Connection Pooling

Performance Counter Valid
Values

Description

NumberOfPooledConnections 256 Number of pooled active connections.

NumberOfNonPooledConnections 512 Number of non-pooled active
connections.

NumberOfReclaimedConnections 1024 Number of connections which were
garbage-collected implicitly.

NumberOfStasisConnections 2048 Number of connections that will be soon
available in the pool. User has closed
these connections, but they are currently
awaiting actions such transaction
completion before they can be placed
back into the pool as free connections.

3.3.13.1 Publishing Performance Counters
Publication of individual performance counters is enabled or disabled using the registry
value PerformanceCounters of type REG_SZ or a .NET configuration file. This registry
value is under:

HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly_Version

where Assembly_Version is the full assembly version number of Oracle.DataAccess.dll.

Multiple performance counters can be obtained by adding the valid values. For
example, if PerformanceCounters is set to 3, both HardConnectsPerSecond and
HardDisconnectsPerSecond are enabled.

3.3.13.2 Setting Performance Counters Using .NET Configuration Entry
Performance counters can be set using an .NET configuration entry. Since .NET
configuration entries take precedence over the registry value setting, they can be used
for a specific application.

An .NET configuration entry uses name/value pairs as in the following example:

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="PerformanceCounters"
 value="3"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

3.3.13.3 Instance Names of Performance Counters
Performance counters can now monitor at the application domain, pool, or database
instance level. Database instance level monitoring only applies if load balancing or
Fast Connection Failover features are enabled.

The instance name format is as follows:

Chapter 3
Connecting to Oracle Database

3-27

<Application Domain Name> [<Process Id>, <Application Domain Id>][<Connection

String/Pool Name>][<Instance Name>]. The entry is limited to 127 characters. There is a
restriction length on every field in the instance name. The following table shows the
maximum number of characters allocated for each field:

Table 3-4 Field Names of Performance Counters and Maximum Number of
Characters

Field Name Maximum Number of Characters

Application Domain 40

Pool Name/Connection String 70

Database Instance Name 16

When the length of a field value exceeds the length limit, the string is truncated and
appended with "..." to fit within the length limit and indicate the continuation. For
example, for a given application called Program.exe with a connection string user
id=scott;Password=tiger;data source=inst1;max pool size=125, one may see the
following similar to the following for a process that has two application domains:

• Program.exe [123, 1]

• Program.exe [123, 1][user id=scott;data source=inst1;max pool siz...]

• Program.exe [123, 1][user id=scott;data source=inst1;max pool siz...] [instA]

• Domain 2[123, 2]

• Domain 2[123, 2][user id=scott;data source=inst1;max pool siz...]

• Domain 2[123, 2][user id=scott;data source=inst1;max pool siz...] [instB]

• Domain 2[123, 2][user id=scott;data source=inst1;max pool siz...] [instC]

Since connection pool attributes can be similar in their first 70 characters, applications
can set a Pool Name to uniquely identify each one in the monitoring tool. For example,
when using Pool Name, the process will show up as follows:

Domain 2[123, 2][Pool Name][instC]

The .NET config file can set the Pool Name attribute.

ODP.NET, Managed Driver

<oracle.manageddataaccess.client>
 <version number="*">
 <connectionPools>
 .
 .
 <connectionPool connectionString="[connection string without password]"
poolName="[Pool Name]"> </connectionPool>
 .
 .
 </connectionPools>
 </version>
</oracle.manageddataaccess.client>

ODP.NET, Unmanaged Driver can use the same Pool Name attribute and format as
listed above by replacing the <oracle.manageddataaccess.client> tags with
<oracle.unmanageddataaccess.client> tags.

Chapter 3
Connecting to Oracle Database

3-28

ODP.NET, Unmanaged Driver

<configuration>
 <oracle.dataaccess.client>
 <settings>
 .
 .
 <add name="[connection string without password]" value="connectionPool
name='[Pool Name]'"/>
 .
 .
 </settings>
 </oracle.dataaccess.client>
</configuration>

The behavior of two of the performance counters has now changed in the 12c release:

• NumberOfPooledConnections -- Sum of the active connections and free connections.
Previously, this value was equal to just the number of active connections.

• NumberOfStasisConnections -- No longer supported.

3.3.14 Pluggable Databases
Oracle Database 12c introduced a new feature, Pluggable Databases, which enable
an Oracle database to contain a portable collection of schemas, schema objects, and
nonschema objects that appears to ODP.NET as a separate database. This self-
contained collection is called a pluggable database (PDB).

ODP.NET 12c and higher can connect to PDBs, which clients access through
database services. Database services have an optional PDB property. When a PDB is
created, a new default database service is created automatically. The service has the
same name as the PDB and can be used to access the PDB using the easy connect
syntax or the net service name. This service is intended primarily for performing
administrative tasks. It is recommended that you create additional services for use in
your applications.

All ODP.NET features can be used with PDBs with the following exceptions:

• Continuous Query Notification

• Switching from one PDB to another PDB using the ALTER SESSION SET CONTAINER
statement

3.3.15 Edition-Based Redefinition
Edition-based redefinition enables you to upgrade the database component of an
application even while the application is being used. This minimizes or eliminates
downtime for the application.

ODP.NET 11g Release 2 (11.2.0.1), and higher, supports specifying an Edition at
deployment time when used with Oracle Database 11.2 or later. Applications can
specify an Edition at deployment time using the registry or configuration file.

An application can create the following registry entry of type REG_SZ:

HKLM\Software\Oracle\ODP.NET\version\Edition

Chapter 3
Connecting to Oracle Database

3-29

Here version is the version of ODP.NET, and Edition is a valid Edition string value.

An application can alternatively use the web.config or application.config configuration
file to specify the Edition at deployment time. The machine.config configuration file can
be used to specify the Edition for all applications that use a particular version of
the .NET framework.

The following example sets the Edition to E1 in a .NET configuration file for ODP.NET,
Unmanaged Driver:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="Edition" value="E1"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

Note:

• ODP.NET only supports deployment-time configuration of Edition.

• ODP.NET does not support usage of the "ALTER SESSION" statement to
modify the Edition during the lifetime of a process.

• ODP.NET, Managed Driver does not support Edition-Based Redefinition.

3.3.16 Operating System Authentication
Oracle Database can use Windows user login credentials to authenticate database
users. To open a connection using Windows user login credentials, the User Id
connection string attribute must be set to a slash (/). If the Password attribute is
provided, it is ignored.

Note:

Operating System Authentication is not supported in a .NET stored procedure.

All ODP.NET, Unmanaged Driver connections, including those using operating system
authentication, can be pooled. ODP.NET, Managed Driver supports operating system
authentication, except when the Windows domain is constrained to only support
Kerberos-based domain authentication. Connections are pooled by default, and no
configuration is required, as long as pooling is enabled.

The following example shows the use of operating system authentication:

/* Create an OS-authenticated user in the database
 Assume init.ora has OS_AUTHENT_PREFIX set to "" and <OS_USER>
 is any valid OS or DOMAIN user.

 create user <OS_USER> identified externally;

Chapter 3
Connecting to Oracle Database

3-30

 grant connect, resource to <OS_USER>;

 Login through OS Authentication and execute the sample. See Oracle
 documentation for details on how to configure an OS-Authenticated user
*/

// C#

using System;
using Oracle.DataAccess.Client;

class OSAuthenticationSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 //Establish connection using OS Authentication
 con.ConnectionString = "User Id=/;Data Source=oracle;";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

3.3.17 Privileged Connections
Oracle allows database administrators to connect to Oracle Database with either
SYSDBA or SYSOPER privileges. This is done through the DBA Privilege attribute of the
ConnectionString property.

The following example connects scott/tiger as SYSDBA:

// C#

using System;
using Oracle.DataAccess.Client;

class PrivilegedConnectionSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 //Connect scott/tiger as SYSDBA
 con.ConnectionString = "User Id=scott;Password=tiger;" +
 "DBA Privilege=SYSDBA;Data Source=oracle;";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");

Chapter 3
Connecting to Oracle Database

3-31

 }
}

3.3.18 Password Expiration
Oracle allows users passwords to expire. ODP.NET lets applications handle the
password expiration by providing a new method, OpenWithNewPassword, that opens the
connection with a new password.

The following example uses the OracleConnection OpenWithNewPassword method to
connect with a new password of panther:

/* Database Setup
connect / as sysdba;
drop user testexpire cascade;
-- create user "testexpire" with password "testexpire"
grant connect , resource to testexpire identified by testexpire;
alter user testexpire password expire;
*/

// C#

using System;
using Oracle.DataAccess.Client;

class PasswordExpirationSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 try
 {
 con.ConnectionString =
 "User Id=testexpire;Password=testexpire;Data Source=oracle";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);
 }
 catch (OracleException ex)
 {
 Console.WriteLine(ex.Message);

 //check the error number
 //ORA-28001 : the password has expired
 if (ex.Number == 28001)
 {
 Console.WriteLine("\nChanging password to panther");
 con.OpenWithNewPassword("panther");
 Console.WriteLine("Connected with new password.");
 }
 }
 finally
 {
 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }

Chapter 3
Connecting to Oracle Database

3-32

 }
}

Note:

• The OpenWithNewPassword method should be used only when the user
password has expired, not for changing the password.

• If connection pooling is enabled, then invoking the OpenWithNewPassword
method also clears the connection pool. This closes all idle connections
created with the old password.

3.3.19 Proxy Authentication
With proper setup in the database, proxy authentication enables middle-tier
applications to control the security by preserving database user identities and
privileges, and auditing actions taken on behalf of these users. This is accomplished
by creating and using a proxy database user that connects and authenticates against
the database on behalf of a database user (that is, the real user) or database users.

Proxy authentication can then be used to provide better scalability with connection
pooling. When connection pooling is used in conjunction with proxy authentication, the
proxy authenticated connections can be shared among different real users. This is
because only the connection and session established for the proxy is cached. An
additional session is created for the real user when a proxy authenticated connection
is requested, but it will be destroyed appropriately when the proxy authenticated
connection is placed back into the pool. This design enables the application to scale
well without sacrificing security.

ODP.NET applications can use proxy authentication by setting the "Proxy User Id" and
"Proxy Password" attributes in the connection string. The real user is specified by the
"User Id" attribute. Optionally, to enforce greater security, the real user's password can
be provided through the "Password" connection string attribute. When using distributed
transactions in conjunction with proxy authentication, the real user's password is no
longer optional, and it must be supplied.

The following example illustrates the use of ODP.NET proxy authentication:

/* Log on as DBA (SYS or SYSTEM) that has CREATE USER privilege.
 Create a proxy user and modified scott to allow proxy connection.

 create user appserver identified by eagle;
 grant connect, resource to appserver;
 alter user scott grant connect through appserver;
*/

// C#

using System;
using Oracle.DataAccess.Client;

class ProxyAuthenticationSample
{
 static void Main()

Chapter 3
Connecting to Oracle Database

3-33

 {
 OracleConnection con = new OracleConnection();

 // Connecting using proxy authentication
 con.ConnectionString = "User Id=scott;Password=tiger;" +
 "Data Source=oracle;Proxy User Id=appserver;Proxy Password=eagle; ";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

3.3.20 Dynamic Distributed Transaction Enlistment
For those applications that dynamically enlist in distributed transactions through the
EnlistDistributedTransaction of the OracleConnection object, the "Enlist" connection
string attribute must be set to a value of "true". If "Enlist=true", the connection enlists
in a transaction when the Open method is called on the OracleConnection object, if it is
within the context of a COM+ transaction or a System.Transactions. If not, the
OracleConnection object does not enlist in a distributed transaction, but it can later
enlist explicitly using the EnlistDistributedTransaction or the EnlistTransaction
method. If "Enlist" is equal to "false" or "dynamic", the connection cannot enlist in the
transaction. ODP.NET, Unmanaged Driver in ODAC 12c Release 3 first introduced
this new behavior for "Enlist=dynamic".

3.3.21 Client Identifier and End-to-End Tracing
The client identifier is a predefined attribute from the Oracle application context
namespace USERENV. It is similar to proxy authentication because it can enable tracking
of user identities. However, client identifier does not require the creation of two
sessions (one for the proxy user and another for the end user) as proxy authentication
does. In addition, the client identifier does not have to be a database user. It can be
set to any string. But most importantly, by using client identifier, ODP.NET developers
can use application context and Oracle Label Security, and configure Oracle Virtual
Private Database (VPD) more easily. To set the client identifier, ODP.NET applications
can set the ClientId property on the OracleConnection object after opening a
connection. If connection pooling is enabled, the ClientId is reset to null whenever a
connection is placed back into the pool.

The client identifier can also be used for end-to-end application tracing. End-to-end
tracing simplifies the process of diagnosing performance problems in multitier
environments. In multitier environments, a request from an end client is routed to
different database sessions by the middle tier making it difficult to track a client across
different database sessions. End-to-end tracing uses the client identifier to uniquely
trace a specific end-client through all tiers to the database server.

ODP.NET exposes the ActionName, ClientId, ClientInfo, and ModuleName write-only
properties on the OracleConnection object. These properties correspond to the
following end-to-end tracing attributes:

• Action - Specifies an action, such as an INSERT or UPDATE operation, in a module

Chapter 3
Connecting to Oracle Database

3-34

• ClientId - Specifies an end user based on the logon ID, such as HR.HR

• Client info - Specifies user session information

• Module - Specifies a functional block, such as Accounts Receivable or General
Ledger, of an application

3.3.22 Transparent Application Failover (TAF) Callback Support
Transparent Application Failover (TAF) is a feature in Oracle Database that provides
high availability.

Note:

ODP.NET, Managed Driver does not support TAF nor TAF callbacks.

TAF enables an application connection to automatically reconnect to another database
instance if the connection gets severed. Active transactions roll back, but the new
database connection, made by way of a different node, is identical to the original. This
is true regardless of how the connection fails.

With TAF, a client notices no loss of connection as long as there is one instance left
serving the application. The database administrator controls which applications run on
which instances, and also creates a failover order for each application.

When a session fails over to another database, the NLS settings that were initially set
on the original session are not carried over to the new session. Therefore, it is the
responsibility of the application to set these NLS settings on the new session.

3.3.22.1 TAF Notification
Given the delays that failovers can cause, applications may wish to be notified by a
TAF callback. ODP.NET supports the TAF callback function through the Failover
event of the OracleConnection object, which allows applications to be notified whenever
a failover occurs. To receive TAF callbacks, an event handler function must be
registered with the Failover event.

3.3.22.2 When Failover Occurs
When a failover occurs, the Failover event is raised and the registered event handler
is invoked several times during the course of reestablishing the connection to another
Oracle instance.

The first call to the event handler occurs when Oracle Database first detects an
instance connection loss. This allows the application to act accordingly for the
upcoming delay for the failover.

If the failover is successful, the Failover event is raised again when the connection is
reestablished and usable. At this time, the application can resynchronize the
OracleGlobalization session setting and inform the application user that a failover has
occurred. No significant database operation should occur immediately after a
FailoverEvent.Begin event. SQL and major database operations should wait until the
FailoverEvent.End event. FailoverEvent.Begin is primarily used to reject failover or to

Chapter 3
Connecting to Oracle Database

3-35

trace it. FailoverEvent.Begin can also be used for non-database application
operations, such as informing the end user a failover is in progress and to wait until it
completes before proceeding. Transactions can be used in the FailoverEvent.End
callback phase, such as to file fault tickets or audit. These transactions must be
committed before the callback completes.

If failover is unsuccessful, the Failover event is raised to inform the application that a
failover did not take place.

The application can determine whether or not the failover is successful by checking
the OracleFailoverEventArgs object that is passed to the event handler.

3.3.22.3 Registering an Event Handler for Failover
The following example registers an event handler method called OnFailover:

// C#

using System;
using Oracle.DataAccess.Client;

class TAFCallBackSample
{
 public static FailoverReturnCode OnFailover(object sender,
 OracleFailoverEventArgs eventArgs)
 {
 switch (eventArgs.FailoverEvent)
 {
 case FailoverEvent.Begin :
 Console.WriteLine(
 " \nFailover Begin - Failing Over ... Please standby \n");
 Console.WriteLine(
 " Failover type was found to be " + eventArgs.FailoverType);
 break;

 case FailoverEvent.Abort :
 Console.WriteLine(" Failover aborted. Failover will not take place.\n");
 break;

 case FailoverEvent.End :
 Console.WriteLine(" Failover ended ...resuming services\n");
 break;

 case FailoverEvent.Reauth :
 Console.WriteLine(" Failed over user. Resuming services\n");
 break;

 case FailoverEvent.Error :
 Console.WriteLine(" Failover error gotten. Sleeping...\n");
 return FailoverReturnCode.Retry;

 default :
 Console.WriteLine("Bad Failover Event: %d.\n", eventArgs.FailoverEvent);
 break;
 }
 return FailoverReturnCode.Success;
 } /* OnFailover */

 static void Main()
 {

Chapter 3
Connecting to Oracle Database

3-36

 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();
 con.Failover += new OracleFailoverEventHandler(OnFailover);
 Console.WriteLine("Event Handler is successfully registered");

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

The Failover event invokes only one event handler. If multiple Failover event handlers
are registered with the Failover event, only the event handler registered last is
invoked.

Note:

Distributed transactions are not supported in an environment where failover is
enabled.

3.4 Real Application Clusters and Global Data Services
This section discusses optimizations for the following products:

• Oracle Real Application Clusters (Oracle RAC) is a cluster database with a shared
cache architecture that overcomes the limitations of traditional shared-nothing and
shared-disk approaches to provide highly scalable and available database
solutions for business applications.

• Oracle Data Guard provides one or more standby databases to protect Oracle
data from failures, disasters, human error, and data corruptions for high availability
in mission critical applications.

• Oracle GoldenGate replicates data among heterogeneous data environments. It
enables high availability solutions, real-time data integration, transactional change
data capture, data replication, transformations, and verification between
operational and analytical enterprise systems.

• Global Data Services (GDS), new in Oracle Database 12c, provides database
workload management features across replicated databases, such as Data Guard
and GoldenGate.

ODP.NET supports Oracle Real Application Clusters (Oracle RAC), Data Guard, and
GoldenGate transparently, meaning you do not need to change ODP.NET code to use
these Oracle components. To further take advantage of these technologies, ODP.NET
offers connection pooling optimization features for achieving better application high
availability and performance. You can do this through configuring ODP.NET to receive,
respond, and send database status messages to .NET applications.

These optimization configurations include the use of features such as Fast Application
Notification (FAN), Runtime Connection Load Balancing, and Fast Connection Failover
(FCF).

Chapter 3
Real Application Clusters and Global Data Services

3-37

These connection pooling optimizations can improve high availability and performance
for Oracle Real Application Clusters and Global Data Services products:

• Fast Application Notification

• Runtime Connection Load Balancing

• Fast Connection Failover (FCF)

3.4.1 Fast Application Notification
Fast Application Notification (FAN) is a high availability and load balancing notification
mechanism that Oracle RAC, Data Guard, and GoldenGate use to notify ODP.NET
applications about cluster configuration and service-level information, including status
changes such as UP or DOWN events and server load. FAN UP and DOWN events
can apply to instances, services, and nodes. Based on information received,
ODP.NET can adjust its connection pool accordingly to improve application availability
and performance.

With FAN, Oracle RAC, Data Guard, and GoldenGate use one of two Oracle
messaging infrastructures to send notifications to ODP.NET applications:

• Oracle Notification Service (ONS)

• Oracle Streams Advanced Queueing (AQ).

Table 3-5 describes when each messaging system is used and the ODP.NET-related
client configuration.

Table 3-5 Configurations for ODP.NET Driver Types

ODP.NET
Driver Type

Database
Server
Version

FAN
Infrastructure

Configuration Manual ONS Configuration
Locations

managed 12.1 and later ONS Automatic or
Manual

Either of these two files:

• .NET configuration file
• ONS configuration file

managed 11.2 and
earlier

ONS Manual Either of these two files:

• .NET configuration file
• ONS configuration file

unmanaged 12.1 and later ONS Automatic or
Manual

oraaccess.xml file

unmanaged 11.2 and
earlier

AQ Automatic N/A

For automatic ONS configuration, developers can add more nodes and ports for
ODP.NET to listen to, in addition to the nodes and ports that ODP.NET obtains from
the database automatically.

ODP.NET applications do not require code changes to migrate from the AQ to ONS
FAN infrastructure. However, some ODP.NET client configuration changes may be
necessary when migrating to ONS, a newer database server version, or from
ODP.NET, Unmanaged Driver to the managed driver, as documented above.

On the database server side, FAN must be set up and configured.

Chapter 3
Real Application Clusters and Global Data Services

3-38

Using FAN Messages from the database, ODP.NET can do the following:

• With Runtime Connection Load Balancing, ODP.NET load balances connections
among Oracle RAC nodes, services, and service members and GDS resources.
This feature improves ODP.NET response time and ensures better resource
allocation of server resources.

• With the Fast Connection Failover (FCF) feature, Oracle RAC, Data Guard, and
GoldenGate can inform the ODP.NET connection pool if database nodes,
services, service members, or the databases have gone down. These DOWN
messages indicate which connections in the pool are invalid and must be
removed.

3.4.2 Runtime Connection Load Balancing
With Runtime Connection Load Balancing, Oracle Data Provider for .NET balances
work requests across Oracle RAC instances based on the load balancing advisory and
service goal. Because workloads can constantly change, load balancing occurs when
the application requests a new connection. Thus, ODP.NET optimizes service levels
by connecting users to the least loaded nodes in real-time.

In Oracle Database 12c, Runtime Connection Load Balancing has been extended to
Oracle Data Guard and Oracle GoldenGate so that ODP.NET 12c connections can be
load balanced with these two database services as part of Global Data Services. No
ODP.NET applications require code changes to use Global Data Services if they are
already using Runtime Connection Load Balancing.

When Runtime Connection Load Balancing is enabled:

• The ODP.NET connection pool dispenses connections based on the load
balancing advisory and service goal.

• The ODP.NET connection pool also balances the number of connections to each
service member providing the service, based on the load balancing advisory and
service goal.

By default, ODP.NET is enabled to receive Runtime Connection Load Balancing FAN
messages from the server. The feature has been enabled via the "Load
Balancing=true" and "pooling=true" settings in the connection string, which are the
default values. This feature can only be used if "pooling=true". In order to use Runtime
Connection Load Balancing, specific Oracle server configurations must be set.

The following connection string example enables Runtime Connection Load Balancing:

"user id=scott;password=tiger;data source=erp;load balancing=true;"

3.4.3 Fast Connection Failover (FCF)
When an Oracle RAC service, service member, node, or a Data Guard database fails,
the severed ODP.NET connection objects may continue to exist in the application. If
users attempt to use these invalid connections, they will encounter errors. FCF
enables ODP.NET to free these severed connections proactively and quickly. Users
then will be able to use the application after a server side failure without manual
intervention from an administrator.

In Oracle Database 12c, FCF has been extended to Oracle Data Guard and Oracle
GoldenGate for ODP.NET 12c connections through Global Data Services. No

Chapter 3
Real Application Clusters and Global Data Services

3-39

ODP.NET applications require code changes to use Global Data Services if they
already use FCF.

ODP.NET applications can enable FCF through the High Availability Events, "HA
Events", connection string attribute. When HA Events are enabled:

• ODP.NET connection pool proactively removes connections from the pool when a
Global Data Service or Oracle RAC service, service member, node, or database
goes down.

• ODP.NET proactively forces threads waiting for responses from the downed
database to exit out from the existing call to avoid any hangs. When such a
connection is then returned to the pool, any resource associated with that
connection is freed.

• ODP.NET establishes connections to existing Oracle instances if the removal of
severed connections brings the total number of connections below the "min pool
size", upon the next connection request.

By default, ODP.NET is enabled to receive FCF FAN messages from the server. This
feature have been enabled via the HA Events=true and pooling=true settings in the
connection string, which are the default values.

The following connection string example enables HA Events:

"user id=scott;password=tiger;data source=erp;HA events=true;"

3.4.4 Using FCF Planned Outage to Minimize Service Disruption
FCF not only provides high availability services for unplanned outages, such as node
failures, but also for planned outages, such as server repairs, upgrades, and changes,
to minimize service disruption to ODP.NET application users.

When a database service is set to be stopped or relocated, a FAN message is
published with a planned reason code. A FCF-aware ODP.NET connection pool (HA
Events=true) receives the notification and commences to close idle connections, no
longer allowing new connections to that specific database service. Active connections
to that specific database service remain until users complete their tasks and the
connection is returned to the pool. Thus, no users must stop work mid-stream due to a
planned outage.

Eventually, all users complete their tasks and no connections remain to that database
service. The database administrator can then stop the service for the planned outage
task. This feature allows the database service to be stopped as quickly as possible
without end user disruption.

Oracle planned outage support works with Oracle Real Application Clusters (Oracle
RAC), Oracle Data Guard, and some single instance scenarios.

Oracle RAC Planned Outage

A typical planned outage scenario for Oracle RAC follows below. Note that the
database server commands apply to Oracle RAC 12c Release 2 or higher. Commands
for earlier releases may be different.

1. There is a need to upgrade, patch, or repair a software or hardware issue on a
database server. Stop the instance gracefully such that existing users experience
no to few errors. You can wait until all users complete their work before doing so.

Chapter 3
Real Application Clusters and Global Data Services

3-40

Business requirements will dictate whether you wait for all users to log out or begin
the planned outage after a set time. An administrator could issue the following
command line operation using Oracle Server Control Utility (srvctl):

srvctl relocate service –database <unique database name> –service <service name>
–drain_timeout 120 –stopoption IMMEDIATE –oldinst <existing instance>

This command relocates the database service from the existing instance to any
instance it is configured to run on. Oracle Cluster Ready Services (CRS) will
choose this instance, as the command line specifies no target. CRS will wait 120
seconds (–drain_timeout 120) for any active sessions to drain, after which any
sessions remaining on the existing instance will be forcibly disconnected (–
stopoption IMMEDIATE). If Application Continuity is used in conjunction with planned
outage, an attempt is made to recover these killed sessions, masking the outage
from end users.

The relocate operation starts the service in the new location prior to stopping the
service in its existing location. Immediate relocation allows draining with no
brownout. If the service cannot be started, it is not stopped at the original location
to maintain availability.

2. Meanwhile in the connection pool, the FAN planned DOWN event clears idle
sessions for the instance being shutdown from the ODP.NET connection pool
immediately and marks that instance’s active sessions to be released at the next
check-in. These FAN actions drain the sessions from this instance without
disrupting the users.

Existing connections on other instances remain usable, and new connections can
be opened to these other instances.

3. Not all sessions will check their connections into the pool immediately. The timeout
period specified by –drain_timeout after which the instance is forcibly shut down,
evicting any remaining client connections. Administrators can check whether any
active sessions to the instance remain by querying the v$session table.

4. Once the upgrade, patch, or repair is complete, restart the instance and the
service on the original node. The FAN UP event will inform the ODP.NET pool that
it can now use the original machine again.

See Also:

Oracle Database High Availability Best Practices

Oracle Data Guard Planned Outage

Oracle Data Guard performs switchovers from primary databases to standby
databases in planned failover scenarios. During the switchover, administrators will
want to limit end user disruptions. In Oracle Database 12c Release 2 and higher,
these administrators can use the Data Guard command-line interface (DGMGRL)
command to switch roles between primary and standby databases:

SWITCHOVER TO <database name> [WAIT <timeout in seconds>];

The WAIT option specifies to wait for sessions to drain before proceeding with the
switchover.

Chapter 3
Real Application Clusters and Global Data Services

3-41

Similar to the Oracle RAC scenario, FAN informs the ODP.NET to remove idle
connections from the pool. Connections subsequently checked in are destroyed until
no active connections remain to that primary database, which will allow the switchover
to begin.

When switchover to the standby completes, a FAN UP event informs ODP.NET that it
can start creating connections to the standby instance.

During the Data Guard service relocation process, new incoming connection requests
will not be accepted until the service has fully relocated. Incoming connection requests
arriving during the interim, such as in the middle of an Oracle Data Guard switchover,
will receive connectivity errors.

To prevent these errors, ODP.NET can pause connection attempts until the new
database service is available. ODP.NET, Managed and Unmanaged Drivers block any
connection attempts until the service is up or until the configured time limit expires
from the time when the service DOWN event was received. This feature is useful for
planned outages and service relocations. It works with Oracle RAC and Oracle Data
Guard.

This time limit is the ServiceRelocationConnectionTimeout setting, which can be set in
the .NET configuration file.

3.4.5 Pool Behavior in an Oracle RAC Database
When connection pools are created for a single-instance database, pool size attributes
are applied to the single service. Similarly, when connection pools are created for an
Oracle RAC database, the pool size attributes are applied to a service and not to
service members. For example, if "Min Pool Size" is set to N, then ODP.NET does not
create N connections for each service member. Instead, it creates, at minimum, N
connections for the entire service, where N connections are distributed among the
service members.

The following pool size connection string attributes are applied to a service.

• Min Pool Size

• Max Pool Size

• Incr Pool Size

• Decr Pool Size

ODP.NET connects to the same Oracle RAC node when required by a distributed
transaction that has already begun on a particular node, by an Oracle runtime
connection load balancing advisory, or by Oracle RAC load balancing gravitation in
which connections will gravitate to an under utilized node. If the connection pool has
no idle connections to this particular node, then ODP.NET will create a new
connection to this node. Node affinity is honored even when the connection pool runs
out of idle connections to dispense.

3.5 Using Transaction Guard to Prevent Logical Corruption
Transaction Guard allows managed and unmanged ODP.NET applications to use at-
most-once execution in case of planned and unplanned outages and repeated
submissions. Without Transaction Guard, applications that attempt to retry operations
following outages can cause logical corruption by committing duplicate transactions.

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

3-42

After an outage, one of the traditional problems for recovering applications had been
the non-durable commit message sent back to the client. If there is a break between
the client and the server, the client sees an error message indicating that the
communication failed, also known as a recoverable error. This error does not inform
the application if the submission executed any commit operations, or if a procedural
call ran to completion while executing all expected commits. The error also does not
indicate session state changes or intermittent failures. The client is left wondering if the
transaction committed and if it fully completed.

These recoverable errors may require end users or applications to attempt replay by
issuing duplicate transaction submissions or other forms of logical corruption. The
transaction cannot be validly resubmitted if the non-transactional state is incorrect or if
it is committed. Continuing to process a committed but not completed call can result in
the application using a database session that is in the wrong state.

3.5.1 ODP.NET and Transaction Guard
Transaction Guard allows ODP.NET, Managed Driver and ODP.NET, Unmanaged
Driver to eliminate duplicate transactions automatically and transparently, and in a
manner that scales.

When a failure occurs, such as a node, network, or database failure, ODP.NET
applications can deterministically conclude whether the transaction committed by
querying its status, if the database service is up. Oracle retains the transaction status
automatically, even after one of these failures.

In ODAC 12c Release 4, using Transaction Guard application development has been
streamlined, reducing the application logic needed to determine the transaction
outcome. Moreover, these benefits are available to both managed and unmanaged
ODP.NET.

When a recoverable error is raised by a Transaction Guard enabled database service
upon a database commit or upon a SQL or PL/SQL execution, which could have called
a commit, then an ODP.NET OracleException is created with an
OracleLogicalTransaction instance. The database maintains the outcome of the logical
transaction for the retention period specified by the administrator. ODP.NET
automatically queries the database on behalf of the application when a recoverable
error occurs so that the OracleLogicalTransaction object instance on the
OracleException object can indicate whether the transaction has committed or not and
whether the user call has completed or not.

If the status is committed, then the transaction has completed successfully. No other
action is likely needed by the administrator.

If not committed, then ODP.NET applications can learn the current transaction state,
whether it is recoverable, and whether it can be retried using
OracleLogicalTransaction. If the error is recoverable, then the transaction is safe to re-
submit. If the error is not recoverable, the application will need to determine the
transaction outcome using an alternative mechanism.

Note:

Transaction Guard supports only local transactions. It does not support
distributed transactions.

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

3-43

The Transaction Guard feature is enabled or disabled through the Oracle service-level
configuration through the COMMIT_OUTCOME setting. By default, it is not enabled. This
setting can be changed without bringing down the database. Only new connections
created against the service will use the new setting.

Here's an example of setting the COMMIT_OUTCOME using SRVCTL:

srvctl modify service -d orcl -s GOLD -commit_outcome TRUE

Note:

Grant the EXECUTE privilege on the DBMS_APP_CONT package to the database users
that retrieve the transaction status:

GRANT EXECUTE ON DBMS_APP_CONT TO <user name> ;

The following is an example ODP.NET Transaction Guard application scenario:

An ODP.NET application receives a Fast Application Notification (FAN) down event or
error. FAN automatically aborts the dead session and the application receives an
OracleException. A Transaction Guard application built to handle errors transparently
would do the following:

1. Check the value of the OracleException.OracleLogicalTransaction property. If the
value is an OracleLogicalTransaction object, that is, non-null, then the error is
recoverable. If the property's value is null, then the error is not recoverable and/or
Transaction Guard has not been enabled.

2. For recoverable errors, check the OracleLogicalTransaction.Committed property. If
true, the transaction has been committed. If false, the transaction was not
submitted, but can now be safely re-submitted.

3. For recoverable errors, check the OracleLogicalTransaction.UserCallCompleted
property if transaction state outside the commit operation is important. See the
table below for the implications of what Committed and UserCallCompleted values
mean.

Table 3-6 Implication of Committed and UserCallCompleted Values

Committed Value UserCallCompleted
Value

Outcome

True True The transaction was successful. The result can be
returned to the application.

False False The transaction was not successful. The
application can resubmit the transaction again.

True False The transaction committed, but there may be
additional state, such as row counts or nested
PL/SQL logic, that prevents the application from
continuing as expected.

Sample Code

using System;
using Oracle.DataAccess.Client;

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

3-44

//alternatively can use using Oracle.ManagedDataAccess.Client;

class TransactionGuardSample
{
 static void Main()
 {
 bool bReadyToCommit = false;

 string constr = "user id=hr;password=hr;data source=oracle";
 OracleConnection con = new OracleConnection(constr);
 OracleTransaction txn = null;
 OracleCommand cmd = null;

 try
 {
 string sql = " update employees set salary=10000 where employee_id=103";
 con.Open();
 txn = con.BeginTransaction();
 cmd = new OracleCommand(con, sql);
 cmd.ExecuteNonQuery();
 bReadyToCommit = true;
 }
 catch (Exception ex)
 {
 // rollback here as the SQL execution is unsuccessful
 txn.Rollback();
 Console.WriteLine(ex.ToString());
 }

 try
 {
 if (bReadyToCommit)
 txn.Commit();
 }
 catch (Exception ex)
 {
 if (ex is OracleException)
 {
 // It's safe to re-submit the work if the error is recoverable and
the transaction has not been committed
 if (ex.IsRecoverable && ex.OracleLogicalTransaction != null && !
ex.OracleLogicalTransaction.Committed)
 {
 // safe to re-submit work
 }
 else
 {
 // do not re-submit work
 }
 }
 }
 finally
 {
 // dispose all objects
 txn.Dispose();
 cmd.Dispose();
 con.Dispose(); // place the connection back to the connection pool
 }
 }
}

Chapter 3
Using Transaction Guard to Prevent Logical Corruption

3-45

3.6 Application Continuity
Oracle Application Continuity enables database requests to automatically replay
transactional or non-transactional operations in a non-disruptive and rapid manner in
the event of a severed database session, which results in a recoverable error.
Application Continuity improves end-user experience by masking planned and
unplanned related errors. Applications can be developed without complex logic to
handle exceptions, while automatically replaying database operations upon a
recoverable error.

Without Application Continuity, it is almost impossible to mask outages in a safe and
reliable manner. Common issues encountered include:

• The client state remains at present time, with entered data, returned data, and
variables cached, while the database state changes are lost.

• If a transaction commit has occurred, the commit message is not durable.
Moreover, checking a lost request does not guarantee that it will not commit after
being checked.

• Non-transactional database session state is lost.

• If the request can continue, the database and the client session must be
synchronized.

Application Continuity is available with Oracle Database Enterprise Edition with a Real
Application Clusters or Active Data Guard option license.

3.6.1 ODP.NET and Application Continuity
ODP.NET, Unmanaged Driver first supported Application Continuity with version 12.2.
While Application Continuity was first introduced in Oracle Database 12c Release 1
(12.1), ODP.NET requires a minimum of Oracle Database 12c Release 2 (12.2)
server.

Note:

ODP.NET, Managed Driver does not support Application Continuity.

With Application Continuity enabled, ODP.NET ensures all the application's executed
statements are logged appropriately so that they can be replayed upon a recoverable
error. This applies for all application SQL and PL/SQL, as well as any internal
ODP.NET operations.

On the client side, Application Continuity is enabled by setting the ODP.NET
connection string attribute, Application Continuity=true.

If Application Continuity is set to true, but the database server does not enable
Application Continuity, ODP.NET will still create new connections. However, these
connections will not be Application Continuity enabled.

Chapter 3
Application Continuity

3-46

3.7 Database Sharding
Sharding is a data tier architecture, where data is horizontally partitioned across
independent databases. Each database in such a configuration is called a shard. All
shards together make up a single logical database, which is referred to as a sharded
database. Sharding is a shared-nothing database architecture. The independent
physical databases do not share CPU, memory, or storage devices. However, from the
perspective of an application, the collection of physical databases looks like a single
logical database.

Sharding uses Global Data Services (GDS), where GDS routes a client request to an
appropriate database based on parameters such as availability, load, network latency,
and replication lag. A GDS pool is a set of replicated databases that offers the same
global service. The databases in a GDS pool can be located in multiple data centers
across different regions. A sharded GDS pool contains all shards of a sharded
database and their replicas, and appears as a single sharded database to database
clients.

Applications can connect to multiple databases (shards) where data is partitioned
based on one or more sharding strategies. The strategy can be hash based, range
based, or list based. Each time a database operation is required, the application needs
to determine which shard it must connect to.

A sharding key provides the partitioning key that determines in which shard a row of
data is stored. A table can be partitioned using a sharding key.

A super sharding key is a collection of shard chunks, where only those chunks, which
have a specific value of the super shard key identifier, are stored. A super sharding
key is used for distributing data across database groups. Specifying super sharding
keys are a way through which user-controlled data partitioning is possible.

3.7.1 ODP.NET Sharding
Starting from version 12.2, ODP.NET and Oracle Database both support sharding.

Note:

ODP.NET, Managed Driver does not support sharding.

ODP.NET applications must provide the sharding key and super sharding key
information before opening the database connection for single shard queries. These
sharding values cannot be set or changed after opening the connection. If any of the
shard key values need to be modified, a new connection must be created with the new
values and then opened.

If shard keys are set after the connection has been opened, the ODP.NET connection
will not use these new shard key values until after the next OracleConnection.Open()
call.

The OracleShardingKey object stores one or more key values. Multiple keys can be set
to create a composite key. ODP.NET recognizes the sharding key(s) specified and
connects to the correct shard and chunk.

Chapter 3
Database Sharding

3-47

Sharding is supported with or without connection pooling. The ODP.NET connection
pool maintains connections to different shards and chunks of the sharded GDS
database within the same shared pool.

The shard key (SHARD_KEY) and super sharding key (GROUP_KEY) can be specified in the
TNS connect descriptor, rather than in the application code. The .NET developer then
chooses the connect descriptor applicable to the shard that the application will use.

The data distribution across the shards and chunks in the database is transparent to
the end user. ODP.NET minimizes the end user impact of chunk resharding within
GDS.

To perform cross-shard queries, no ODP.NET shard APIs are used. Instead,
applications connect to the GDS catalog service, allowing access to all the sharded
databases. The SQL query is specifically constructed to iterate over all the necessary
shards. For example, the non-shard database query select count(*) from employees is
equivalent to the cross- shard query select sum(c) from (Iterator(select count(*) c
from employees(i)).

ODP.NET Single Shard Query Example

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection("user id=hr;password=hr;Data
Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

3.8 OracleCommand Object
The OracleCommand object represents SQL statements or stored procedures executed
on Oracle Database.

Note:

Optimizer hint syntax in the form --+ ... is not supported. ODP.NET supports
this syntax: /*+ ... */.

Chapter 3
OracleCommand Object

3-48

This section includes the following topics:

• Transactions

• System.Transactions and Promotable Transactions

• Parameter Binding

• Batch Processing

• Statement Caching

• Self-Tuning

3.8.1 Transactions
Oracle Database starts a transaction only in the context of a connection. Once a
transaction starts, all the successive command execution on that connection run in the
context of that transaction. Transactions can be started only on an OracleConnection
object, and the read-only Transaction property on the OracleCommand object is implicitly
set by the OracleConnection object. Therefore, the application cannot set the
Transaction property, nor does it need to.

Note:

Transactions are not supported in a .NET stored procedure.

Explicit transactions are required with SQL statements containing "FOR UPDATE" and
"RETURNING" clauses. This is not necessary if global transactions are used.

3.8.2 System.Transactions and Promotable Transactions
ODP.NET supports System.Transactions. A local transaction is created for the first
connection opened in the System.Transactions scope to Oracle Database 11g release
1 (11.1), or higher. When a second connection is opened, this transaction is
automatically promoted to a distributed transaction. This functionality provides
enhanced performance and scalability.

Connections created within a transaction context, such as TransactionScope or
ServicedComponent, can be established to different versions of Oracle Database.
However, in order to enable the local transaction to be promotable, the following must
be true:

• The first connection in the transaction context must be established to an Oracle
Database 11g release 1(11.1) instance or higher.

• All connections opened within the transaction context must have the "Promotable
Transaction" setting set to "promotable". If you try to open a subsequent
connection in the same transaction context with the "Promotable Transaction"
setting set to "local", an exception is thrown.

• Promoting local transactions requires Oracle Services for Microsoft Transaction
Server 11.1.0.7.20, or higher. If this requirement is not met, then a second
connection request in the same transaction context throws an exception.

Chapter 3
OracleCommand Object

3-49

Transaction promotion will throw an ORA-24797 error when the database transaction
is already distributed due to the use of database links.

Setting "local" as the value of "PromotableTransaction" in the registry, configuration
file (machine/Web/application), or the "Promotable Transaction" connection string
attribute allows only one connection to be opened in the transaction context, which is
associated with a local transaction. Such local transactions cannot be promoted.
Starting with ODP.NET 12.1.0.2, connections with the Promotable Transaction setting
set to local will begin as and remain a local transaction. If a second connection
attempts to join the transaction, an exception will be thrown.

If applications use System.Transactions, it is required that the enlist connection string
attribute is set to either true (default) or dynamic. However, enlist=dynamic cannot be
used with TransactionScope because auto-enlistment requires enlist=true.

ODP.NET supports the following System.Transactions programming models for
applications using distributed transactions.

• Implicit Transaction Enlistment Using TransactionScope

• Explicit Transaction Enlistment Using CommittableTransaction .

• Local Transaction Support for Older Databases

3.8.2.1 Implicit Transaction Enlistment Using TransactionScope
The TransactionScope class provides a mechanism to write transactional applications
where the applications do not need to explicitly enlist in transactions.To accomplish
this, the application uses the TransactionScope object to define the transactional code.
Connections created within this transactional scope will enlist in a local transaction that
can be promoted to a distributed transaction.

Note:

If the first connection is opened to a pre-Oracle Database 11g release 1 (11.1)
instance, then the connection enlists as a distributed transaction, by default.

You can optionally create the transaction as a local transaction by using the
procedure described in "Local Transaction Support for Older Databases".
However, these transactions cannot be promoted to distributed transactions.

Note that the application must call the Complete method on the TransactionScope object
to commit the changes. Otherwise, the transaction is aborted by default.

// C#

using System;
using Oracle.DataAccess.Client;
using System.Data;
using System.Data.Common;
using System.Transactions;

class psfTxnScope
{
 static void Main()

Chapter 3
OracleCommand Object

3-50

 {
 int retVal = 0;
 string providerName = "Oracle.DataAccess.Client";
 string constr =
 @"User Id=scott;Password=tiger;Data Source=oracle;enlist=true";

 // Get the provider factory.
 DbProviderFactory factory = DbProviderFactories.GetFactory(providerName);

 try
 {
 // Create a TransactionScope object, (It will start an ambient
 // transaction automatically).
 using (TransactionScope scope = new TransactionScope())
 {
 // Create first connection object.
 using (DbConnection conn1 = factory.CreateConnection())
 {
 // Set connection string and open the connection. this connection
 // will be automatically enlisted in a promotable local transaction.
 conn1.ConnectionString = constr;
 conn1.Open();

 // Create a command to execute the sql statement.
 DbCommand cmd1 = factory.CreateCommand();
 cmd1.Connection = conn1;
 cmd1.CommandText = @"insert into emp (empno, ename, job) values
 (1234, 'emp1', 'dev1')";

 // Execute the SQL statement to insert one row in DB.
 retVal = cmd1.ExecuteNonQuery();
 Console.WriteLine("Rows to be affected by cmd1: {0}", retVal);

 // Close the connection and dispose the command object.
 conn1.Close();
 conn1.Dispose();
 cmd1.Dispose();
 }

 // The Complete method commits the transaction. If an exception has
 // been thrown or Complete is not called then the transaction is
 // rolled back.
 scope.Complete();
 }
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
}

3.8.2.2 Explicit Transaction Enlistment Using CommittableTransaction
The instantiation of the CommittableTransaction object and the EnlistTransaction
method provides an explicit way to create and enlist in a transaction. Note that the
application must call Commit or Rollback on the CommittableTransaction object.

Chapter 3
OracleCommand Object

3-51

// C#

using System;
using Oracle.DataAccess.Client;
using System.Data;
using System.Data.Common;
using System.Transactions;

class psfEnlistTransaction
{
 static void Main()
 {
 int retVal = 0;
 string providerName = "Oracle.DataAccess.Client";
 string constr =
 @"User Id=scott;Password=tiger;Data Source=oracle;enlist=dynamic";

 // Get the provider factory.
 DbProviderFactory factory = DbProviderFactories.GetFactory(providerName);

 try
 {
 // Create a committable transaction object.
 CommittableTransaction cmtTx = new CommittableTransaction();

 // Open a connection to the DB.
 DbConnection conn1 = factory.CreateConnection();
 conn1.ConnectionString = constr;
 conn1.Open();

 // enlist the connection with the commitable transaction.
 conn1.EnlistTransaction(cmtTx);

 // Create a command to execute the sql statement.
 DbCommand cmd1 = factory.CreateCommand();
 cmd1.Connection = conn1;
 cmd1.CommandText = @"insert into emp (empno, ename, job) values
 (1234, 'emp1', 'dev1')";

 // Execute the SQL statement to insert one row in DB.
 retVal = cmd1.ExecuteNonQuery();
 Console.WriteLine("Rows to be affected by cmd1: {0}", retVal);

 // commit/rollback the transaction.
 cmtTx.Commit(); // commits the txn.
 //cmtTx.Rollback(); // rolls back the txn.

 // close and dispose the connection
 conn1.Close();
 conn1.Dispose();
 cmd1.Dispose();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
}

Chapter 3
OracleCommand Object

3-52

3.8.2.3 Local Transaction Support for Older Databases
If the first connection in a TransactionScope is opened to a pre-Oracle Database 11g
release 1 (11.1) instance, then the connection creates a distributed transaction, by
default. You can optionally have the first connection create a local transaction by using
the procedure described in this section.

To create local transactions in a System.Transactions scope, either the
PromotableTransaction setting in the registry, machine/Web/application configuration
file, or the "Promotable Transaction" connection string attribute must be set to "local".

If "local" is specified, the first connection opened in the TransactionScope uses a local
transaction. If any subsequent connections are opened within the same
TransactionScope, an exception is thrown. If there are connections already opened in
the TransactionScope, and an OracleConnection with "Promotable Transaction=local"
attempts to open within the same TransactionScope, an exception is thrown.

If "promotable" is specified, the first and all subsequent connections opened in the
same TransactionScope enlist in the same distributed transaction.

If both the registry and the connection string attribute are used and set to different
values, the connection string attribute overrides the registry entry value. If neither are
set, "promotable" is used. This is the default value and is equivalent to previous
versions of ODP.NET which only supported distributed transactions.

The registry entry for a particular version of ODP.NET applies for all applications using
that version of ODP.NET.

3.8.3 Parameter Binding
When the DbType property of an OracleParameter object is set, the OracleDbType property
of the OracleParameter object changes accordingly, or vice versa. The parameter set
last prevails.An application can bind the data and have ODP.NET infer both the DbType
and OracleDbType properties from the .NET type of the parameter value.ODP.NET
allows applications to obtain an output parameter as either a .NET Framework type or
an ODP.NET type. The application can specify which type to return for an output
parameter by setting the DbType property of the output parameter (.NET type) or the
OracleDbType property (ODP.NET type) of the OracleParameter object. For example, if
the output parameter is set as a DbType.String type by setting the DbType property, the
output data is returned as a .NET String type. On the other hand, if the parameter is
set as an OracleDbType.Char type by setting the OracleDbType property, the output data
is returned as an OracleString type. If both DbType and OracleDbType properties are set
before the command execution, the last setting takes affect.

ODP.NET populates InputOutput, Output, and ReturnValue parameters with the Oracle
data, through the execution of the following OracleCommand methods:

• ExecuteReader

• ExecuteNonQuery

• ExecuteScalar

An application should not bind a value for output parameters; it is the responsibility of
ODP.NET to create the value object and populate the OracleParameter Value property
with the object.

Chapter 3
OracleCommand Object

3-53

When binding by position (default) to a function, ODP.NET expects the return value to
be bound first, before any other parameters.

This section describes the following:

• OracleDbType Enumeration Type

• Inference of DbType, OracleDbType, and .NET Types

• PL/SQL Associative Array Binding

• Array Binding

3.8.3.1 Command Timeouts
The OracleCommand CommandTimeout property limits how long a command is allowed to
execute before terminating with an exception. This setting prevents long running
commands from consuming excessive resources or from blocking other necessary
operations from occurring.

The database server can be interrupted via either TCP/IP urgent data or normal
TCP/IP data, called out of band (OOB) or in band data, respectively. Windows-based
database servers only support in band breaks, whereas all other (predominantly UNIX-
based) database servers can support OOB or in band breaks.

ODP.NET, Managed Driver uses OOB breaks by default with database servers that
support it. For certain network topologies, the routers or firewalls involved in the route
to the database may have been configured to drop urgent data or in band the data. If
the routers or firewalls can not be changed to handle urgent data appropriately, then
the ODP.NET, Managed Driver can be configured to utilize in band breaks by setting
the .NET configuration parameter Disable_Oob to on.

3.8.3.2 OracleDbType Enumeration Type
OracleDbType enumerated values are used to explicitly specify the OracleDbType value of
an OracleParameter object.

Table 3-7 lists all the OracleDbType enumeration values with a description of each
enumerated value.

Table 3-7 OracleDbType Enumeration Values

Member Name Description

Array Oracle Collection (VArray or Nested Table)

Not Available in ODP.NET, Managed Driver

BFile Oracle BFILE type

BinaryFloat Oracle BINARY_FLOAT type

BinaryDouble Oracle BINARY_DOUBLE type

Blob Oracle BLOB type

Boolean Oracle BOOLEAN type

Byte byte type

Char Oracle CHAR type

Chapter 3
OracleCommand Object

3-54

Table 3-7 (Cont.) OracleDbType Enumeration Values

Member Name Description

Clob Oracle CLOB type

Date Oracle DATE type

Decimal Oracle NUMBER type

Double 8-byte FLOAT type

Int16 2-byte INTEGER type

Int32 4-byte INTEGER type

Int64 8-byte INTEGER type

IntervalDS Oracle INTERVAL DAY TO SECOND type

IntervalYM Oracle INTERVAL YEAR TO MONTH type

Long Oracle LONG type

LongRaw Oracle LONG RAW type

NChar Oracle NCHAR type

Object Oracle Object type

Not Available in ODP.NET, Managed Driver

NClob Oracle NCLOB type

NVarchar2 Oracle NVARCHAR2 type

Raw Oracle RAW type

Ref Oracle REF type

Not Available in ODP.NET, Managed Driver

RefCursor Oracle REF CURSOR type

Single 4-byte FLOAT type

TimeStamp Oracle TIMESTAMP type

TimeStampLTZ Oracle TIMESTAMP WITH LOCAL TIME ZONE type

TimeStampTZ Oracle TIMESTAMP WITH TIME ZONE type

Varchar2 Oracle VARCHAR2 type

XmlType Oracle XMLType type

Note:

PL/SQL LONG, LONG RAW, RAW, and VARCHAR data types can be bound with a size
up to 32512 bytes.

3.8.3.3 Inference of DbType, OracleDbType, and .NET Types
This section explains the inference from the System.Data.DbType, OracleDbType, and
Value properties in the OracleParameter class.

Chapter 3
OracleCommand Object

3-55

In the OracleParameter class, DbType, OracleDbType, and Value properties are linked.
Specifying the value of any of these properties infers the value of one or more of the
other properties.

3.8.3.3.1 Inference of DbType from OracleDbType
In the OracleParameter class, specifying the value of OracleDbType infers the value of
DbType as shown in Table 3-8.

Table 3-8 Inference of System.Data.DbType from OracleDbType

OracleDbType System.Data.DbType

Array Object

BFile Object

Blob Object

BinaryFloat Single

BinaryDouble Double

Boolean Boolean

Byte Byte

Char StringFixedLength

Clob Object

Date Date

Decimal Decimal

Double Double

Int16 Int16

Int32 Int32

Int64 Int64

IntervalDS Object

IntervalYM Int64

Long String

LongRaw Binary

NChar StringFixedLength

NClob Object

NVarchar2 String

Object Object

Raw Binary

Ref Object

RefCursor Object

Single Single

TimeStamp DateTime

TimeStampLTZ DateTime

TimeStampTZ DateTime

Varchar2 String

Chapter 3
OracleCommand Object

3-56

Table 3-8 (Cont.) Inference of System.Data.DbType from OracleDbType

OracleDbType System.Data.DbType

XmlType String

3.8.3.3.2 Inference of OracleDbType from DbType
In the OracleParameter class, specifying the value of DbType infers the value of
OracleDbType as shown in Table 3-9.

Table 3-9 Inference of OracleDbType from DbType

System.Data.DbType OracleDbType

Binary Raw

Boolean Boolean

Byte Byte

Currency Not Supported

Date Date

DateTime TimeStamp

Decimal Decimal

Double Double

Guid Not Supported

Int16 Int16

Int32 Int32

Int64 Int64

Object Object

Sbyte Not Supported

Single Single

String Varchar2

StringFixedLength Char

Time TimeStamp

UInt16 Not Supported

UInt32 Not Supported

Uint64 Not Supported

VarNumeric Not Supported

3.8.3.3.3 Inference of DbType and OracleDbType from Value
In the OracleParameter class, Value is an object type that can be of any .NET
Framework data type or ODP.NET type. If the OracleDbType and DbType properties of
the OracleParameter class are not specified, the OracleDbType property is inferred from
the type of the Value property.

Chapter 3
OracleCommand Object

3-57

Table 3-10 shows the inference of DbType and OracleDbType properties from the Value
property when the type of Value is one of the .NET Framework data types.

Table 3-10 Inference of DbType and OracleDbType from Value (.NET
Datatypes)

Value (.NET Datatypes) System.Data.DbType OracleDbType

Boolean Boolean Boolean

Byte Byte Byte

Byte[] Binary Raw

Char / Char [] String Varchar2

DateTime DateTime TimeStamp

Decimal Decimal Decimal

Double Double Double

Float Single Single

Int16 Int16 Int16

Int32 Int32 Int32

Int64 Int64 Int64

IOracleCustomType Object Object

Single Single Single

String String Varchar2

TimeSpan Object IntervalDS

Note:

Using other .NET Framework data types as values for the OracleParameter
class without specifying either the DbType or the OracleDbType properties raises
an exception because inferring DbType and OracleDbType properties from
other .NET Framework data types is not supported.

Table 3-11 shows the inference of DbType and OracleDbType properties from the Value
property when type of Value is one of Oracle.DataAccess.Types.

Table 3-11 Inference of DbType and OracleDbType from Value (ODP.NET
Types)

Value
(Oracle.DataAccess.Types)

System.Data.DbType OracleDbType

OracleBFile Object BFile

OracleBinary Binary Raw

OracleBlob Object Blob

OracleBoolean Boolean Boolean

OracleClob Object Clob

Chapter 3
OracleCommand Object

3-58

Table 3-11 (Cont.) Inference of DbType and OracleDbType from Value
(ODP.NET Types)

Value
(Oracle.DataAccess.Types)

System.Data.DbType OracleDbType

OracleDate Date Date

OracleDecimal Decimal Decimal

OracleIntervalDS Object IntervalDS

OracleIntervalYM Int64 IntervalYM

OracleRef Object Ref

OracleRefCursor Object RefCursor

OracleString String Varchar2

OracleTimeStamp DateTime TimeStamp

OracleTimeStampLTZ DateTime TimeStampLTZ

OracleTimeStampTZ DateTime TimeStampTZ

OracleXmlType String XmlType

3.8.3.4 PL/SQL Associative Array Binding
ODP.NET supports PL/SQL Associative Arrays (formerly known as PL/SQL Index-By
Tables) binding.

An application can bind an OracleParameter object, as a PL/SQL Associative Array, to a
PL/SQL stored procedure. The following OracleParameter properties are used for this
feature:

• CollectionType

This property must be set to OracleCollectionType.PLSQLAssociativeArray to bind a
PL/SQL Associative Array.

• ArrayBindSize

This property is ignored for the fixed-length element types (such as Int32).

For variable-length element types (such as Varchar2), each element in the
ArrayBindSize property specifies the size of the corresponding element in the Value
property.

For Output parameters, InputOutput parameters, and return values, this property
must be set for variable-length variables.

Each ODP.NET array element can store up to 2 GB of characters per element or 4
GB of binary data per element

• ArrayBindStatus

This property specifies the execution status of each element in the
OracleParameter.Value property.

• Size

This property specifies the maximum number of elements to be bound in the
PL/SQL Associative Array.

Chapter 3
OracleCommand Object

3-59

• Value

This property must be set to an array of values, null, or the DBNull.Value property.

ODP.NET supports binding parameters of PL/SQL Associative Arrays which contain
the following data types.

• BINARY_FLOAT

• CHAR

• DATE

• NCHAR

• NUMBER

• NVARCHAR2

• RAW

• ROWID

• UROWID

• VARCHAR2

Using unsupported data types with associative arrays can cause an ORA-600 error.

Example of PL/SQL Associative Arrays

This example binds three OracleParameter objects as PL/SQL Associative Arrays:
Param1 as an In parameter, Param2 as an InputOutput parameter, and Param3 as an
Output parameter.

PL/SQL Package: MYPACK

/* Setup the tables and required PL/SQL:

 connect scott/tiger@oracle
 CREATE TABLE T1(COL1 number, COL2 varchar2(20));

 CREATE or replace PACKAGE MYPACK AS
 TYPE AssocArrayVarchar2_t is table of VARCHAR(20) index by BINARY_INTEGER;
 PROCEDURE TestVarchar2(
 Param1 IN AssocArrayVarchar2_t,
 Param2 IN OUT AssocArrayVarchar2_t,
 Param3 OUT AssocArrayVarchar2_t);
 END MYPACK;
/

 CREATE or REPLACE package body MYPACK as
 PROCEDURE TestVarchar2(
 Param1 IN AssocArrayVarchar2_t,
 Param2 IN OUT AssocArrayVarchar2_t,
 Param3 OUT AssocArrayVarchar2_t)
 IS
 i integer;
 BEGIN
 -- copy a few elements from Param2 to Param1\n
 Param3(1) := Param2(1);
 Param3(2) := NULL;
 Param3(3) := Param2(3);
 -- copy all elements from Param1 to Param2\n
 Param2(1) := Param1(1);

Chapter 3
OracleCommand Object

3-60

 Param2(2) := Param1(2);
 Param2(3) := Param1(3);
 -- insert some values to db\n
 FOR i IN 1..3 LOOP
 insert into T1 values(i,Param2(i));
 END LOOP;
 END TestVarchar2;
 END MYPACK;
/
 */

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class AssociativeArraySample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle";
 con.Open();
 Console.WriteLine("Connected to Oracle" + con.ServerVersion);

 OracleCommand cmd = new OracleCommand(
 "begin MyPack.TestVarchar2(:1, :2, :3); end;", con);

 OracleParameter Param1 = cmd.Parameters.Add("1", OracleDbType.Varchar2);
 OracleParameter Param2 = cmd.Parameters.Add("2", OracleDbType.Varchar2);
 OracleParameter Param3 = cmd.Parameters.Add("3", OracleDbType.Varchar2);

 Param1.Direction = ParameterDirection.Input;
 Param2.Direction = ParameterDirection.InputOutput;
 Param3.Direction = ParameterDirection.Output;

 // Specify that we are binding PL/SQL Associative Array
 Param1.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
 Param2.CollectionType = OracleCollectionType.PLSQLAssociativeArray;
 Param3.CollectionType = OracleCollectionType.PLSQLAssociativeArray;

 // Setup the values for PL/SQL Associative Array
 Param1.Value = new string[3] {
 "First Element", "Second Element ", "Third Element "
 };
 Param2.Value = new string[3] {
 "First Element", "Second Element ", "Third Element "
 };
 Param3.Value = null;

 // Specify the maximum number of elements in the PL/SQL Associative Array
 Param1.Size = 3;
 Param2.Size = 3;
 Param3.Size = 3;

 // Setup the ArrayBindSize for Param1
 Param1.ArrayBindSize = new int[3] { 13, 14, 13 };

 // Setup the ArrayBindStatus for Param1

Chapter 3
OracleCommand Object

3-61

 Param1.ArrayBindStatus = new OracleParameterStatus[3] {
 OracleParameterStatus.Success, OracleParameterStatus.Success,
 OracleParameterStatus.Success};

 // Setup the ArrayBindSize for Param2
 Param2.ArrayBindSize = new int[3] { 20, 20, 20 };

 // Setup the ArrayBindSize for Param3
 Param3.ArrayBindSize = new int[3] { 20, 20, 20 };

 // execute the cmd
 cmd.ExecuteNonQuery();

 //print out the parameter's values
 Console.WriteLine("parameter values after executing the PL/SQL block");
 for (int i = 0; i < 3; i++)
 Console.WriteLine("Param2[{0}] = {1} ", i,
 (cmd.Parameters[1].Value as Array).GetValue(i));

 for (int i = 0; i < 3; i++)
 Console.WriteLine("Param3[{0}] = {1} ", i,
 (cmd.Parameters[2].Value as Array).GetValue(i));

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 Console.WriteLine("Disconnected");
 }
}

3.8.3.5 Array Binding
The array bind feature enables applications to bind arrays of a type using the
OracleParameter class. Using the array bind feature, an application can insert multiple
rows into a table in a single database round-trip.

The following example inserts three rows into the Dept table with a single database
round-trip. The OracleCommand ArrayBindCount property defines the number of elements
of the array to use when executing the statement.

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();
 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();
 Console.WriteLine("Connected successfully");

 int[] myArrayDeptNo = new int[3] { 10, 20, 30 };
 OracleCommand cmd = new OracleCommand();

 // Set the command text on an OracleCommand object
 cmd.CommandText = "insert into dept(deptno) values (:deptno)";

Chapter 3
OracleCommand Object

3-62

 cmd.Connection = con;

 // Set the ArrayBindCount to indicate the number of values
 cmd.ArrayBindCount = 3;

 // Create a parameter for the array operations
 OracleParameter prm = new OracleParameter("deptno", OracleDbType.Int32);

 prm.Direction = ParameterDirection.Input;
 prm.Value = myArrayDeptNo;

 // Add the parameter to the parameter collection
 cmd.Parameters.Add(prm);

 // Execute the command
 cmd.ExecuteNonQuery();
 Console.WriteLine("Insert Completed Successfully");

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

3.8.3.5.1 OracleParameter Array Bind Properties
The OracleParameter class provides two properties for granular control when using the
array bind feature:

• ArrayBindSize

The ArrayBindSize property is an array of integers specifying the maximum size for
each corresponding value in an array. The ArrayBindSize property is similar to the
Size property of an OracleParameter object, except the ArrayBindSize property
specifies the size for each value in an array.

Before the execution, the application must populate the ArrayBindSize property;
after the execution, ODP.NET populates it.

The ArrayBindSize property is used only for parameter types that have variable
length such as Clob, Blob, and Varchar2. The size is represented in bytes for binary
data types, and characters for the Unicode string types. The count for string types
does not include the terminating character. The size is inferred from the actual size
of the value, if it is not explicitly set. For an output parameter, the size of each
value is set by ODP.NET. The ArrayBindSize property is ignored for fixed-length
data types.

• ArrayBindStatus

The ArrayBindStatus property is an array of OracleParameterStatus values that
specify the status of each corresponding value in an array for a parameter. This
property is similar to the Status property of the OracleParameter object, except that
the ArrayBindStatus property specifies the status for each array value.

Before the execution, the application must populate the ArrayBindStatus property.
After the execution, ODP.NET populates the property. Before the execution, an
application using the ArrayBindStatus property can specify a NULL value for the
corresponding element in the array for a parameter. After the execution, ODP.NET
populates the ArrayBindStatus property, indicating whether the corresponding

Chapter 3
OracleCommand Object

3-63

element in the array has a null value, or if data truncation occurred when the
value was fetched.

3.8.3.5.2 Error Handling for Array Binding
If an error occurs during an array bind execution, it can be difficult to determine which
element in the Value property caused the error. ODP.NET provides a way to determine
the row where the error occurred, making it easier to find the element in the row that
caused the error.

When an OracleException object is thrown during an array bind execution, the
OracleErrorCollection object contains one or more OracleError objects. Each of these
OracleError objects represents an individual error that occurred during the execution,
and contains a provider-specific property, ArrayBindIndex, which indicates the row
number at which the error occurred.

The following example demonstrates error handling for array binding:

/* Database Setup
connect scott/tiger@oracle
drop table depttest;
create table depttest(deptno number(2));
*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindExceptionSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();
 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();

 OracleCommand cmd = new OracleCommand();

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(IsolationLevel.ReadCommitted);

 try
 {
 int[] myArrayDeptNo = new int[3] { 10, 200000, 30 };
 // int[] myArrayDeptNo = new int[3]{ 10,20,30};

 // Set the command text on an OracleCommand object
 cmd.CommandText = "insert into depttest(deptno) values (:deptno)";
 cmd.Connection = con;

 // Set the ArrayBindCount to indicate the number of values
 cmd.ArrayBindCount = 3;

 // Create a parameter for the array operations
 OracleParameter prm = new OracleParameter("deptno", OracleDbType.Int32);

 prm.Direction = ParameterDirection.Input;
 prm.Value = myArrayDeptNo;

Chapter 3
OracleCommand Object

3-64

 // Add the parameter to the parameter collection
 cmd.Parameters.Add(prm);

 // Execute the command
 cmd.ExecuteNonQuery();
 }
 catch (OracleException e)
 {
 Console.WriteLine("OracleException {0} occured", e.Message);
 if (e.Number == 24381)
 for (int i = 0; i < e.Errors.Count; i++)
 Console.WriteLine("Array Bind Error {0} occured at Row Number {1}",
 e.Errors[i].Message, e.Errors[i].ArrayBindIndex);

 txn.Commit();
 }
 cmd.Parameters.Clear();
 cmd.CommandText = "select count(*) from depttest";

 decimal rows = (decimal)cmd.ExecuteScalar();

 Console.WriteLine("{0} row have been inserted", rows);
 con.Close();
 con.Dispose();
 }
}

3.8.3.5.3 OracleParameterStatus Enumeration Types
Table 3-12 lists OracleParameterStatus enumeration values.

Table 3-12 OracleParameterStatus Members

Member Names Description

Success For input parameters, indicates that the input value has been
assigned to the column.

For output parameters, indicates that the provider assigned an
intact value to the parameter.

NullFetched Indicates that a NULL value has been fetched from a column or an
OUT parameter.

NullInsert Indicates that a NULL value is to be inserted into a column.

Truncation Indicates that truncation has occurred when fetching the data
from the column.

3.8.4 Batch Processing
The OracleDataAdapter UpdateBatchSize property enables batch processing when the
OracleDataAdapter.Update method is called. UpdateBatchSize is a numeric property that
indicates how many DataSet rows to update the Oracle database for each round-trip.

This enables the developer to reduce the number of round-trips to the database.

Chapter 3
OracleCommand Object

3-65

3.8.5 Statement Caching
Statement caching eliminates the need to parse each SQL or PL/SQL statement
before execution by caching server cursors created during the initial statement
execution. Subsequent executions of the same statement can reuse the parsed
information from the cursor, and then execute the statement without reparsing, for
better performance.

In order to see performance gains from statement caching, Oracle recommends
caching only those statements that will be repeatedly executed. Furthermore, SQL or
PL/SQL statements should use parameters rather than literal values. Doing so takes
full advantage of statement caching, because parsed information from parameterized
statements can be reused even if the parameter values change in subsequent
executions. However, if the literal values in the statements are different, the parsed
information cannot be reused unless the subsequent statements also have the same
literal values.

3.8.5.1 Statement Caching Connection String Attributes
The following connection string attributes control the behavior of the ODP.NET
statement caching feature:

• Statement Cache Size

This attribute enables or disables ODP.NET statement caching. By default, this
attribute is set to 0 (disabled). If it is set to a value greater than 0, ODP.NET
statement caching is enabled and the value specifies the maximum number of
statements that can be cached for a connection. Once a connection has cached
up to the specified maximum cache size, the least recently used cursor is freed to
make room to cache the newly created cursor.

If self tuning is enabled, then statement caching is enabled as well. The Statement
Cache Size is configured automatically in such cases.

• Statement Cache Purge

This attribute provides a way for connections to purge all statements that are
cached when a connection is closed or placed back into the connection pool. By
default, this attribute is set to false, which means that cursors are not freed when
connections are placed back into the pool.

3.8.5.2 Enabling Statement Caching through the Registry
To enable statement caching by default for all ODP.NET applications running in a
system, without changing the application, set the registry key of HKEY_LOCAL_MACHINE
\SOFTWARE\ORACLE\ODP.NET\Assembly_Version \StatementCacheSize to a value greater
than 0. This value specifies the number of cursors that are to be cached on the server.

The default value for the system can be overridden at the connection pool level. The
Statement Cache Size attribute can be set to a different size than the registry value or it
can be turned off. The Statement Cache Size can also be configured through an XML
configuration file.

Chapter 3
OracleCommand Object

3-66

3.8.5.3 Statement Caching Methods and Properties
The following property and method are relevant only when statement caching is
enabled:

• OracleCommand.AddToStatementCache property

If statement caching is enabled, having this property set to true (default) adds
statements to the cache when they are executed. If statement caching is disabled
or if this property is set to false, the executed statement is not cached.

• OracleConnection.PurgeStatementCache method

This method purges all the cached statements by closing all open cursors on the
database that are associated with the particular connection. Note that statement
caching remains enabled after this call.

3.8.5.4 Connections and Statement Caching
Statement caching is managed separately for each connection. Therefore, executing
the same statement on different connections requires parsing once for each
connection and caching a separate cursor for each connection.

3.8.5.5 Pooling and Statement Caching
Pooling and statement caching can be used in conjunction. If connection pooling is
enabled and the Statement Cache Purge attribute is set to false, statements executed on
each separate connection are cached throughout the lifetime of the pooled connection.

If the Statement Cache Purge attribute is set to true, all the cached cursors are freed
when the connection is placed back into the pool. When connection pooling is
disabled, cursors are cached during the lifetime of the connection, but the cursors are
closed when the OracleConnection object is closed or disposed of.

3.8.6 Self-Tuning
ODP.NET applications can be self-tuned for performance optimization. ODP.NET
dynamically monitors application queries during runtime.

Note:

Self-tuning for applications does not take place if the Pooling connection string
attribute is set to false. Self-tuning is also not supported inside .NET stored
procedures.

The statement cache size (StatementCacheSize) is tuned automatically by monitoring
the statements that are executed by the application. The following sections discuss
self-tuning in applications:

• Self-Tuning Statement Caching

• Enabling or Disabling Self-Tuning for Applications

• Tracing Optimization Changes

Chapter 3
OracleCommand Object

3-67

3.8.6.1 Self-Tuning Statement Caching
Statement caching helps improve performance by eliminating the need to re-parse
each SQL or PL/SQL statement before execution.

If self-tuning is enabled for an application, then ODP.NET continuously monitors
application behavior in order to determine the optimum value for the statement cache
size. Any statement cache size value specified in the connection string, configuration
file, or registry is ignored.

When the application first initializes, it uses the default value of statement cache size.
As the application executes statements, ODP.NET collects statistics that are used to
self-tune the value of statement cache size. Self-tuning of statement cache size results
in increased performance.

Note:

To take full advantage of statement caching, you should not dynamically
generate statements, with different inline values, for every statement execution.
Instead, use parameterized commands to minimize the number of unique
statements that need to be executed and cached. This is because only one
statement needs to be cached for every unique command text, regardless of
the parameter values and the number of times that the statement is executed.

The maximum number of statements that can be cached per connection is determined
by the MaxStatementCacheSize configuration attribute. The MaxStatementCacheSize value
can be specified in the Windows registry or XML configuration file.

The MaxStatementCacheSize setting is useful in limiting the number of cached
statements, as well as the number of open cursors. This is because a cached
statement equates to a cursor being opened on the server. For this reason, you should
not set MaxStatementCacheSize to a value that is greater than the database
MAX_OPEN_CURSORS setting.

The following Windows registry key is used to configure the MaxStatementCacheSize
configuration attribute:

HKLM\Software\Oracle\ODP.NET\version\MaxStatementCacheSize

The MaxStatementCacheSize key is of type REG_SZ. It can be set to an integer value
between 0 and System.Int32.MaxValue.

The following example sets the MaxStatementCacheSize property in an ADO.NET 2.0, or
above, configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="MaxStatementCacheSize" value="300"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

Chapter 3
OracleCommand Object

3-68

If self-tuning is disabled for an application, then the value of statement cache size is
determined by the settings in the connection string, configuration file, or the registry. If
statement cache size is not specified in any of these sources, then the default value of
statement cache size is set to 0. To have ODP.NET configured with the same default
settings as previous releases of ODP.NET, disable self-tuning and set the
StatementCacheSize value to 10.

3.8.6.2 Enabling or Disabling Self-Tuning for Applications
Self-tuning for ODP.NET applications is enabled by default. An application can enable
or disable self-tuning using one of the following methods:

• Self-Tuning Connection String Attribute

An application can modify the Self Tuning connection string attribute to enable or
disable self-tuning for a particular connection pool. The default value for Self
Tuning is true.

• Windows Registry

An application can enable or disable self-tuning for a particular version of
ODP.NET by modifying the following registry entry:

HKLM\Software\Oracle\ODP.NET\version\SelfTuning

The SelfTuning key is of type REG_SZ. It can be set to either 1 (enabled) or 0
(disabled).

• Configuration File

An ODP.NET application can modify the application configuration file (app.config)
or Web configuration file (web.config) to enable or disable self-tuning.

The following example shows how to enable self-tuning in an ADO.NET 2.0
application configuration file:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="SelfTuning" value="1"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

Note:

If the optimal statement cache size is known for an application, then you
can disable self-tuning and set StatementCacheSize to its optimum value in
the registry, configuration file, or the application. If self-tuning is disabled
and StatementCacheSize is not set at all, then the default value of 0 is used
for StatementCacheSize.

3.8.6.3 Tracing Optimization Changes
Applications can trace optimization changes made by self-tuning. All changes to
StatementCacheSize are traced. Errors, if any, are also traced.

Chapter 3
OracleCommand Object

3-69

The TraceLevel used for tracing self-tuning is 64.

3.9 ODP.NET Types Overview
ODP.NET types represent Oracle native data types and PL/SQL data types as a
structure or as a class. ODP.NET type structures follow value semantics, while
ODP.NET type classes follow reference semantics. ODP.NET types provide safer and
more efficient ways of obtaining Oracle native data and PL/SQL data types in a .NET
application than .NET types. For example, an OracleDecimal structure holds up to 38
digits of precision, while a .NET Decimal only holds up to 28.

Table 3-13 lists data types supported by ODP.NET and their corresponding ODP.NET
types: data types in the first column refer to both Oracle native data types and PL/SQL
data types of that name. Those data types that exist only in PL/SQL are indicated by
(PL/SQL only) after the data type name. The entries for the PL/SQL data types also
represent the subtypes of the data types, if any. The third column lists the .NET
Framework data type that corresponds to the Value property of each ODP.NET type.

Table 3-13 Value Property Type of ODP.NET Type

Oracle Native Data Type or PL/SQL
Data Type

ODP.NET Type .NET Framework Data
Types

BFILE OracleBFile class System.Byte[]

BINARY_DOUBLE OracleDecimal structure System.Decimal

BINARY_FLOAT OracleDecimal structure System.Decimal

BINARY_INTEGER (PL/SQL only) OracleDecimal structure System.Decimal

BLOB OracleBlob class System.Byte[]

BOOLEAN (PL/SQL only) OracleBoolean structure System.Boolean

CHAR OracleString structure System.String

CLOB OracleClob class System.String

DATE OracleDate structure System.DateTime

INTERVAL DAY TO SECOND OracleIntervalDS
structure

System.TimeSpan

INTERVAL YEAR TO MONTH OracleIntervalYM
structure

System.Int64

LONG OracleString structure System.String

LONG RAW OracleBinary structure System.Byte[]

NCHAR OracleString structure System.String

NCLOB OracleClob class System.String

NUMBER OracleDecimal structure System.Decimal

NVARCHAR2 OracleString structure System.String

PLS_INTEGER (PL/SQL only) OracleDecimal Structure System.Decimal

RAW OracleBinary structure System.Byte[]

REF OracleRef class System.String

REF CURSOR (PL/SQL only) OracleRefCursor class Not Applicable

ROWID OracleString structure System.String

Chapter 3
ODP.NET Types Overview

3-70

Table 3-13 (Cont.) Value Property Type of ODP.NET Type

Oracle Native Data Type or PL/SQL
Data Type

ODP.NET Type .NET Framework Data
Types

TIMESTAMP OracleTimeStamp
structure

System.DateTime

TIMESTAMP WITH LOCAL TIME ZONE OracleTimeStampLTZ
structure

System.DateTime

TIMESTAMP WITH TIME ZONE OracleTimeStampTZ
structure

System.DateTime

UROWID OracleString structure System.String

VARCHAR2 OracleString structure System.String

XMLType OracleXmlType class System.String

3.10 Obtaining Data from an OracleDataReader Object
The ExecuteReader method of the OracleCommand object returns an OracleDataReader
object, which is a read-only, forward-only result set.

This section provides the following information about the OracleDataReader object:

• Typed OracleDataReader Accessors

• Obtaining LONG and LONG RAW Data

• Obtaining LOB Data

• Controlling the Number of Rows Fetched in One Database Round-Trip

3.10.1 Typed OracleDataReader Accessors
The OracleDataReader class provides two types of typed accessors:

• .NET Type Accessors

• ODP.NET Type Accessors

3.10.1.1 .NET Type Accessors
Table 3-14 lists all the Oracle native database types that ODP.NET supports, and the
corresponding .NET types that can represent the Oracle native type. If more than
one .NET type can be used to represent an Oracle native type, the first entry is
the .NET type that best represents the Oracle native type. The third column indicates
the valid typed accessor that can be invoked for an Oracle native type to be obtained
as a .NET type. If an invalid typed accessor is used for a column, an
InvalidCastException is thrown. Oracle native data types depend on the version of the
database; therefore, some data types are not available in earlier versions of Oracle
Database.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-71

See Also:

• "OracleDataAdapter Class "

• "OracleDataReader Class"

Table 3-14 .NET Type Accessors

Oracle Native Data Type .NET Type Typed Accessor

BFILE System.Byte[] GetBytes

BINARY_DOUBLE System.Double GetDouble

BINARY_FLOAT System.Single GetFloat

BLOB System.Byte[] GetBytes

CHAR System.String

System.Char[]

GetString

GetChars

CLOB System.String

System.Char[]

GetString

GetChars

DATE System.DateTime GetDateTime

INTERVAL DAY TO SECOND System.Timespan GetTimeSpan

INTERVAL YEAR TO MONTH System.Int64 GetInt64

LONG System.String

System.Char[]

GetString

GetChars

LONG RAW System.Byte[] GetBytes

NCHAR System.String

System.Char[]

GetString

GetChars

NCLOB System.String

System.Char[]

GetString

GetChars

NUMBER System.Decimal

System.Byte

System.Int16

System.Int32

System.Int64

System.Single

System.Double

GetDecimal

GetByte

GetInt16

GetInt32

GetInt64

GetFloat

GetDouble

NVARCHAR2 System.String

System.Char[]

GetString

GetChars

RAW System.Byte[] GetBytes

REF System.String GetString

ROWID System.String

System.Char[]

GetString

GetChars

TIMESTAMP System.DateTime GetDateTime

TIMESTAMP WITH LOCAL TIME ZONE System.DateTime GetDateTime

Chapter 3
Obtaining Data from an OracleDataReader Object

3-72

Table 3-14 (Cont.) .NET Type Accessors

Oracle Native Data Type .NET Type Typed Accessor

TIMESTAMP WITH TIME ZONE System.DateTime GetDateTime

UROWID System.String

System.Char[]

GetString

GetChars

VARCHAR2 System.String

System.Char[]

GetString

GetChars

XMLType System.String

System.Xml.XmlReader

GetString

GetXmlReader

Certain methods and properties of the OracleDataReader object require ODP.NET to
map a NUMBER column to a .NET type based on the precision and scale of the column.
These members are:

• Item property

• GetFieldType method

• GetValue method

• GetValues method

ODP.NET determines the appropriate .NET type by considering the following .NET
types in order, and selecting the first .NET type from the list that can represent the
entire range of values of the column:

• System.Byte

• System.Int16

• System.Int32

• System.Int64

• System.Single

• System.Double

• System.Decimal

If no .NET type exists that can represent the entire range of values of the column, then
an attempt is made to represent the column values as a System.Decimal type. If the
value in the column cannot be represented as System.Decimal, then an exception is
raised.

For example, consider two columns defined as NUMBER(4,0) and NUMBER(10,2). The
first .NET types from the previous list that can represent the entire range of values of
the columns are System.Int16 and System.Double, respectively. However, consider a
column defined as NUMBER(20,10). In this case, there is no .NET type that can represent
the entire range of values on the column, so an attempt is made to return values in the
column as a System.Decimal type. If a value in the column cannot be represented as a
System.Decimal type, then an exception is raised.

The Fill method of the OracleDataAdapter class uses the OracleDataReader object to
populate or refresh a DataTable or DataSet with .NET types. As a result, the .NET type
used to represent a NUMBER column in the DataTable or DataSet also depends on the
precision and scale of the column.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-73

3.10.1.2 ODP.NET Type Accessors
ODP.NET exposes provider-specific types that natively represent the data types in the
database. In some cases, these ODP.NET types provide better performance and
functioning than the corresponding .NET types. The ODP.NET types can be obtained
from the OracleDataReader object by calling their respective typed accessor.

Table 3-15 lists the valid type accessors that ODP.NET uses to obtain ODP.NET types
for an Oracle native type.

Table 3-15 ODP.NET Type Accessors

Oracle Native Data Type ODP.NET Type Typed Accessor

BFILE OracleBFile GetOracleBFile

BINARY_DOUBLE OracleDecimal GetOracleDecimal

BINARY_FLOAT OracleDecimal GetOracleDecimal

BLOB OracleBlob

OracleBlob

OracleBinary

GetOracleBlob

GetOracleBlobForUpdate

GetOracleBinary

CHAR OracleString GetOracleString

CLOB OracleClob

OracleClob

OracleString

GetOracleClob

GetOracleClobForUpdate

GetOracleString

DATE OracleDate GetOracleDate

INTERVAL DAY TO SECOND OracleIntervalDS GetOracleIntervalDS

INTERVAL YEAR TO MONTH OracleIntervalYM GetOracleIntervalYM

LONG OracleString GetOracleString

LONG RAW OracleBinary GetOracleBinary

NCHAR OracleString GetOracleString

NCLOB OracleString GetOracleString

NUMBER OracleDecimal GetOracleDecimal

NVARCHAR2 OracleString GetOracleString

RAW OracleBinary GetOracleBinary

REF OracleRef GetOracleRef

ROWID OracleString GetOracleString

TIMESTAMP OracleTimeStamp GetOracleTimeStamp

TIMESTAMP WITH LOCAL TIME
ZONE

OracleTimeStampLTZ GetOracleTimeStampLTZ

TIMESTAMP WITH TIME ZONE OracleTimeStampTZ GetOracleTimeStampTZ

UROWID OracleString GetOracleString

VARCHAR2 OracleString GetOracleString

XMLType OracleString

OracleXmlType

GetOracleString

GetOracleXmlType

Chapter 3
Obtaining Data from an OracleDataReader Object

3-74

3.10.2 Obtaining LONG and LONG RAW Data
ODP.NET fetches and caches rows from the database during the Read method
invocations on the OracleDataReader object. The amount of LONG and LONG RAW column
data that is retrieved from this operation is determined by InitialLONGFetchSize. The
different behaviors observed when InitialLONGFetchSize is set to 0, greater than 0, and
-1 are explained in the following sections.

Note:

ODP.NET does not support the CommandBehavior.SequentialAccess enumeration
value. Therefore, LONG and LONG RAW data can be fetched randomly.

3.10.2.1 Setting InitialLONGFetchSize to Zero or a Value Greater than Zero
The specified amount of InitialLONGFetchSize characters or bytes for LONG or LONG RAW
column data is retrieved into the cache during the Read method invocations on the
OracleDataReader object.

By default, InitialLONGFetchSize is set to 0. In this case, ODP.NET does not fetch any
LONG or LONG RAW column data during the Read method invocations on the
OracleDataReader object. The LONG or LONG RAW data is fetched when the typed accessor
method is explicitly invoked for the LONG or LONG RAW column, which incurs a database
round-trip because no data is cached.

If InitialLONGFetchSize is set to a value greater than 0, that amount of specified data is
cached by ODP.NET during the Read method invocations on the OracleDataReader
object. If the application requests an amount of data less than or equal to the
InitialLONGFetchSize through the typed accessor methods, no database round-trip is
incurred. However, an additional database round-trip is required to fetch data beyond
InitialLONGFetchSize.

To obtain data beyond the InitialLONGFetchSize characters or bytes, one of the
following must be in the select list:

• Primary key

• ROWID

• Unique columns - (defined as a set of columns on which a unique constraint has
been defined or a unique index has been created, where at least one of the
columns in the set has a NOT NULL constraint defined on it)

To be able to fetch the entire LONG or LONG RAW data without having a primary key
column, a ROWID, or unique columns in the select list, set the size of the
InitialLONGFetchSize property on the OracleCommand object to equal or greater than the
number of characters or bytes needed to be retrieved.

The LONG or LONG RAW data is returned when the appropriate typed accessor method
(GetChars, GetOracleString, or GetString for LONG or GetOracleBinary or GetBytes for LONG
RAW) is called on the OracleDataReader object.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-75

3.10.2.2 Setting InitialLONGFetchSize to -1
By setting InitialLONGFetchSize to -1, it is possible to fetch the entire LONG or LONG RAW
data from the database for a select query, without requiring a primary key, ROWID, or
unique column in the select list.

When InitialLONGFetchSize is set to -1, the entire LONG or LONG RAW data is retrieved and
cached during Read method invocations on the OracleDataReader object. Calls to
GetString, GetOracleString, GetChars, GetBytes, or GetOracleBinary in the
OracleDataReader return the entire column data.

3.10.3 Obtaining LOB Data
ODP.NET fetches and caches rows from the database during the Read method
invocations on the OracleDataReader object. The amount of LOB column data that is
retrieved from this operation is determined by InitialLOBFetchSize.

The following is a complete list of typed accessor methods that an application can call
for the CLOB and BLOB columns, if InitialLOBFetchSize is set to 0, greater than 0, or -1:

• Methods callable for BLOB column

– GetBytes

– GetValue

– GetValues

– GetOracleBinary

– GetOracleBlob

– GetOracleBlobForUpdate

– GetOracleValue

– GetOracleValues

• Methods callable for CLOB column

– GetChars

– GetString

– GetValue

– GetValues

– GetOracleString

– GetOracleClob

– GetOracleClobForUpdate

– GetOracleValue

– GetOracleValues

The following sections explain the different behaviors observed when
InitialLOBFetchSize is set to 0, greater than 0, and -1.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-76

3.10.3.1 Setting InitialLOBFetchSize to Zero
By default, the InitialLOBFetchSize property is 0. This value dictates to ODP.NET that
any LOBs selected will have their client LOB data fetches deferred until after the
OracleDataReader Read, such as when using the an accessor. Each LOB value is
retrieved only at the point it is individually accessed.

The advantage of using this retrieval strategy is that it conserves client memory and
bandwidth. If the LOBs selected are either very large or not necessary to be
immediately consumed by the end user, or both, then the application can perform
better if LOBs are retrieved as needed, rather than all at once.

3.10.3.2 Setting InitialLOBFetchSize to a Value Greater than Zero
If InitialLOBFetchSize is set to a value greater than 0, ODP.NET caches LOB data up
to InitialLOBFetchSize characters or bytes for each LOB selected during the Read
method invocations on the OracleDataReader object. The maximum value is
2,147,483,647 (2GB). If the total size of a selected LOB is less than this number, the
entire LOB data will be read.

By pre-fetching all LOB entries in one or more database round trips, applications can
perform faster by reducing round trips. This approach is most advantageous when
most LOBs are either small in size, or consumed by the end user almost immediately,
or both. The down side of a large fetch size is higher memory consumption.

This section discusses the ways to fetch beyond the InitialLOBFetchSize characters or
bytes that are cached.

The remaining LOB data is returned when a typed accessor is invoked, regardless of
the value set to the InitialLOBFetchSize property. Primary key, ROWID, or unique
columns are not required to be in the query select list to obtain data beyond the
specified InitialLOBFetchSize.

The GetOracleBlob, GetOracleClob, GetOracleBlobForUpdate, and GetOracleClobForUpdate
methods can now be invoked even if InitialLOBFetchSize is greater than 0.

3.10.3.3 Setting InitialLOBFetchSize to -1
To fetch all LOB data selected during the read operation and not be bound by a set
limit per LOB, set InitialLOBFetchSize to -1. A new default behavior has been
introduced for ODP.NET Release 12.1.0.2 and higher when InitialLobFetchSize is set
to -1.

When LegacyEntireLOBFetch = 0, which is the default value, the following operations
are invoked for a LOB column:

• OracleDataReader.GetOracleClob(): returns OracleClob object

• OracleDataReader.GetOracleBlob() : returns OracleBlob object

• OracleDataReader.GetOracleClobForUpdate(): returns OracleClob object

• OracleDataReader.GetOracleBlobForUpdate(): returns OracleBlob object

• OracleDataReader.GetOracleValue(): returns OracleClob object for a CLOB column

• OracleDataReader.GetOracleValue(): returns OracleBlob object for a BLOB column

Chapter 3
Obtaining Data from an OracleDataReader Object

3-77

• OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleClob for a CLOB column

• OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleBlob for a BLOB column

To use the old behavior, set LegacyEntireLobFetch = 1 in the ODP.NET configuration.

When LegacyEntireLobFetch = 1 and InitialLOBFetchSize = -1, GetOracleClob,
GetOracleClobForUpdate, GetOracleBlob, and GetOracleBlobForUpdate methods are not
supported. The following operations are invoked for a LOB column in this scenario:

• OracleDataReader.GetOracleClob(): throws InvalidCastException()

• OracleDataReader.GetOracleBlob(): throws InvalidCastException()

• OracleDataReader.GetOracleClobForUpdate(): throws InvalidCastException()

• OracleDataReader.GetOracleBlobForUpdate(): throws InvalidCastException()

• OracleDataReader.GetOracleValue(): returns OracleString object for a CLOB column

• OracleDataReader.GetOracleValue(): returns OracleBinary object for a BLOB column

• OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleString for a CLOB column

• OracleDataAdapter.Fill() with ProviderSpecificTypes=true: populates DataTable
with OracleBinary for a BLOB column

For releases prior to ODP.NET 12.1.0.2, by setting InitialLOBFetchSize to -1, it is
possible to fetch the entire LOB data from the database for a select query, without
requiring a primary key, ROWID, or unique column in the select list. When
InitialLOBFetchSize is set to -1, the entire LOB column data is fetched and cached
during the Read method invocations on the OracleDataReader object. Calls to GetString,
GetOracleString, GetChars, GetBytes, or GetOracleBinary in the OracleDataReader allow
retrieving all data.

3.10.3.3.1 Methods Supported for InitialLOBFetchSize of -1 and LegacyEntireLobFetch of
1

This section lists supported and not supported methods for the CLOB and BLOB data
types when the InitialLOBFetchSize property is set to -1 and LegacyEntireLobFetch
property is set to 1.

Table 3-16 lists supported and not supported methods for the CLOB data types.

Table 3-16 Supported OracleDataReader CLOB Methods for
InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

OracleDataReader CLOB Methods Supported

GetChars Yes

GetString Yes

GetValue Yes

GetValues Yes

GetOracleString Yes

GetOracleValue Yes

Chapter 3
Obtaining Data from an OracleDataReader Object

3-78

Table 3-16 (Cont.) Supported OracleDataReader CLOB Methods for
InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

OracleDataReader CLOB Methods Supported

GetOracleValues Yes

GetOracleClob No

GetOracleClobForUpdate No

Table 3-17 lists supported and not supported methods for the BLOB data types.

Table 3-17 Supported OracleDataReader BLOB Methods for
InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

OracleDataReader BLOB Methods Supported

GetBytes Yes

GetValue Yes

GetValues Yes

GetOracleBinary Yes

GetOracleValue Yes

GetOracleValues Yes

GetOracleBlob No

GetOracleBlobForUpdate No

3.10.3.4 Performance Considerations Related to the InitialLOBFetchSize
Property

This section discusses the advantages and disadvantages of the various
InitialLOBFetchSize property settings in different situations.

An application does not have to choose between performance and OracleBlob and
OracleClob functionality. Setting the InitialLOBFetchSize property results in a
performance boost and still gives the flexibility to use the OracleBlob and OracleClob
objects.

If the size of the LOB data is unknown or if the LOB data size varies irregularly, then it
is better to leave the InitialLOBFetchSize property to its default value of 0. This still
gives better performance in most cases.

Setting the InitialLOBFetchSize property to a size equal to or greater than the LOB
data size for most rows improves performance. It is generally recommended that the
InitialLOBFetchSize property be set to a value larger than the size of the LOB data for
more than 80% of the rows returned by the query. For example, if the size of the LOB
data is less than 1 KB in 80% of the rows, and more than 1 MB for 20% of the rows,
set the InitialLOBFetchSize property to 1 KB.

Chapter 3
Obtaining Data from an OracleDataReader Object

3-79

3.10.4 Controlling the Number of Rows Fetched in One Database
Round-Trip

Application performance depends on the number of rows the application needs to
fetch, and the number of database round-trips that are needed to retrieve them.

3.10.4.1 Use of FetchSize
The FetchSize property represents the total memory size in bytes that ODP.NET
allocates to cache the data fetched from a database round-trip.

The FetchSize property can be set on the OracleCommand, OracleDataReader, or
OracleRefCursor object, depending on the situation. It controls the fetch size for filling a
DataSet or DataTable using an OracleDataAdapter.

If the FetchSize property is set on the OracleCommand object, then the newly created
OracleDataReader object inherits the FetchSize property of the OracleCommand object.
This inherited FetchSize value can be left as is, or modified to override the inherited
value. The FetchSize property of the OracleDataReader object can be changed before
the first Read method invocation, which allocates memory specified by the FetchSize
property. All subsequent fetches from the database use the same cache allocated for
that OracleDataReader object. Therefore, changing the FetchSize value after the first
Read method invocation has no effect.

3.10.4.2 Fine-Tuning FetchSize
By fine-tuning the FetchSize property, applications can control memory usage and the
number of rows fetched in one database round-trip for better performance.

For example, if a query returns 100 rows and each row takes 1024 bytes, then setting
the FetchSize property to 102400 takes just one database round-trip to fetch 100 rows.
For the same query, if the FetchSize property is set to 10240, it takes 10 database
round-trips to retrieve 100 rows. If the application requires all the rows to be fetched
from the result set, the first scenario is faster than the second. However, if the
application requires just the first 10 rows from the result set, the second scenario can
perform better because it fetches only 10 rows, not 100 rows. When the next 10 rows
are fetched, then the memory allocated for rows 1-10 is reused for rows 11-20.

The larger the FetchSize, the more system memory is used. Developers should not set
large fetch sizes if their client systems have limited memory resources.

3.10.4.3 Using the RowSize Property
The RowSize property of the OracleCommand or OracleRefCursor object is populated with
the row size (in bytes) after an execution of a SELECT statement. The FetchSize property
can then be set to a value relative to the RowSize property by setting it to the result of
multiplying the RowSize value times the number of rows to fetch for each database
round-trip.

For example, setting the FetchSize to RowSize * 10 forces the OracleDataReader object to
fetch exactly 10 rows for each database round-trip. Note that the RowSize value does
not change due to the data length in each individual column. Instead, the RowSize value

Chapter 3
Obtaining Data from an OracleDataReader Object

3-80

is determined strictly from the metadata information of the database table(s) that the
SELECT statement is executed against.

The RowSize property can be used to set the FetchSize property at design time or at run
time, as described in the following sections.

3.10.4.3.1 Setting FetchSize Value in the Registry
The HKLM\Software\Oracle\ODP.NET\ version\FetchSize registry entry can be set to
specify the default result set fetch size (in bytes) for all applications that use that
particular version of ODP.NET or the FetchSize attribute in the application
configuration or web.config file can specify the default value for a given application. By
default, the fetch size is 131072 bytes. This value can be overridden programmatically
by having the applications set the FetchSize property on either the OracleCommand or the
OracleDataReader at run time.

3.10.4.3.2 Setting FetchSize Value at Design Time
If the row size for a particular SELECT statement is already known from a previous
execution, the FetchSize value of the OracleCommand object can be set at design time to
the result of multiplying that row size times the number of rows the application wishes
to fetch for each database round-trip. The FetchSize value set on the OracleCommand
object is inherited by the OracleDataReader object that is created by the ExecuteReader
method invocation on the OracleCommand object. Rather than setting the FetchSize value
on the OracleCommand object, the FetchSize value can also be set on the
OracleDataReader object directly. In either case, the FetchSize value is set at design
time, without accessing the RowSize property value at run time.

3.10.4.3.3 Setting FetchSize Value at Run Time
Applications that do not know the row size at design time can use the RowSize property
of the OracleCommand object to set the FetchSize property of the OracleDataReader object.
The RowSize property provides a dynamic way of setting the FetchSize property based
on the size of a row.

After an OracleDataReader object is obtained by invoking the ExecuteReader method on
the OracleCommand object, the RowSize property is populated with the size of the row (in
bytes). By using the RowSize property, the application can dynamically set the FetchSize
property of the OracleDataReader object to the product of the RowSize property value
multiplied by the number of rows the application wishes to fetch for each database
round-trip. In this scenario, the FetchSize property is set by accessing the RowSize
property at run time.

3.11 PL/SQL REF CURSOR and OracleRefCursor
The REF CURSOR is a data type in the Oracle PL/SQL language. It represents a cursor or
a result set in Oracle Database. The OracleRefCursor object is a corresponding
ODP.NET type for the REF CURSOR type.

This section discusses the following aspects of using the REF CURSOR data type and
OracleRefCursor objects:

• Obtaining an OracleRefCursor Object

• Obtaining a REF CURSOR Data Type

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3-81

• Populating an OracleDataReader from a REF CURSOR

• Populating the DataSet from a REF CURSOR

• Populating an OracleRefCursor from a REF CURSOR

• Updating a DataSet Obtained from a REF CURSOR

• Behavior of ExecuteScalar Method for REF CURSOR

• Passing a REF CURSOR to a Stored Procedure

3.11.1 Obtaining an OracleRefCursor Object
There are no constructors for OracleRefCursor objects. They can be acquired only as
parameter values from PL/SQL stored procedures, stored functions, or anonymous
blocks.

An OracleRefCursor object is a connected object. The connection used to execute the
command returning an OracleRefCursor object is required for its lifetime. Once the
connection associated with an OracleRefCursor object is closed, the OracleRefCursor
object cannot be used.

3.11.2 Obtaining a REF CURSOR Data Type
A REF CURSOR data type can be obtained as an OracleDataReader, DataSet, or
OracleRefCursor object. If the REF CURSOR data type is obtained as an OracleRefCursor
object, it can be used to create an OracleDataReader object or populate a DataSet from
it. When accessing a REF CURSOR data type, always bind it as an OracleDbType.RefCursor
parameter.

3.11.3 Populating an OracleDataReader from a REF CURSOR
A REF CURSOR data type can be obtained as an OracleDataReader object by calling the
ExecuteReader method of the OracleCommand object. The output parameter with the
OracleDbType property set is bound to OracleDbType.RefCursor. None of the output
parameters of type OracleDbType.RefCursor is populated after the ExecuteReader method
is invoked.

If there are multiple output REF CURSOR parameters, use the NextResult method of the
OracleDataReader object to access the next REF CURSOR data type. The OracleDataReader
NextResult method provides sequential access to the REF CURSOR data types; only one
REF CURSOR data type can be accessed at a given time.

The order in which OracleDataReader objects are created for the corresponding REF
CURSOR data types depends on the order in which the parameters are bound. If a
PL/SQL stored function returns a REF CURSOR data type, then it becomes the first
OracleDataReader object and all the output REF CURSOR data types follow the order in
which the parameters are bound.

3.11.4 Populating the DataSet from a REF CURSOR
For the Fill method to populate the DataSet properly, the SelectCommand property of the
OracleDataAdapter class must be bound with an output parameter of type
OracleDbType.RefCursor. If the Fill method is successful, the DataSet is populated with
a DataTable that represents a REF CURSOR data type.

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3-82

If the command execution returns multiple REF CURSOR data types, the DataSet is
populated with multiple DataTable objects.

With Oracle Data Provider for .NET release 11.1.0.6.20, the extended property,
REFCursorName, has been introduced on the DataTable, to identify the REF CURSOR that
populates the DataTable.

This property is particularly useful when a DataSet is being populated with more than
one REF CURSOR, one or more of which is NULL. For example, if a DataSet is populated by
executing a stored procedure that returns three REF CURSORs and the second REF CURSOR
is NULL, the REFCursorName property value for the first DataTable is REFCursor and for the
second DataTable, REFCursor2 . No DataTable is populated for the NULL REF CURSOR.

3.11.5 Populating an OracleRefCursor from a REF CURSOR
When the ExecuteNonQuery method is invoked on a command that returns one or more
REF CURSOR data types, each of the OracleCommand parameters that are bound as an
OracleDbType.RefCursor gets a reference to an OracleRefCursor object.

To create an OracleDataReader object from an OracleRefCursor object, invoke the
GetDataReader method from the OracleRefCursor object. Subsequent calls to the
GetDataReader method return a reference to the same OracleDataReader object.

To populate a DataSet with an OracleRefCursor object, the application can invoke a Fill
method of the OracleDataAdapter class that takes an OracleRefCursor object. Similar to
the OracleDataReader object, an OracleRefCursor object is forward-only. Therefore, once
a row is read from an OracleRefCursor object, that same row cannot be obtained again
from it unless it is populated again from a query.

When multiple REF CURSOR data types are returned from a command execution as
OracleRefCursor objects, the application can choose to create an OracleDataReader
object or populate a DataSet with a particular OracleRefCursor object. All the
OracleDataReader objects or DataSet objects created from the OracleRefCursor objects
are active at the same time, and can be accessed in any order.

3.11.6 Updating a DataSet Obtained from a REF CURSOR
REF CURSOR types cannot be updated. However, data that is retrieved into a DataSet can
be updated. Therefore, the OracleDataAdapter class requires a custom SQL statement
to flush any REF CURSOR data updates to the database.

The OracleCommandBuilder object cannot be used to generate SQL statements for REF
CURSOR updates.

3.11.7 Behavior of ExecuteScalar Method for REF CURSOR
The ExecuteScalar method returns the value of the first column of the first row of the
REF CURSOR if it is one of the following:

• A return value of a stored function execution

• The first bind parameter of a stored procedure execution

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3-83

3.11.8 Passing a REF CURSOR to a Stored Procedure
An application can retrieve a REF CURSOR type from a PL/SQL stored procedure or
function and pass it to another stored procedure or function. This feature is useful in
scenarios where a stored procedure or a function returns a REF CURSOR type to the .NET
application, and based on the application logic, the application passes this REF CURSOR
to another stored procedure for processing. Note that if you retrieve the data from a
REF CURSOR type in the .NET application, you cannot pass it back to another stored
procedure.

The following example demonstrate passing a REF CURSOR:

/*
connect scott/tiger@oracle
create table test (col1 number);
insert into test(col1) values (1);
commit;

create or replace package testPkg as type empCur is REF Cursor;
end testPkg;
/

create or replace procedure testSP(param1 IN testPkg.empCur, param2 OUT NUMBER)
as
begin
FETCH param1 into param2;
end;
/
*/

// C#

using System;
using Oracle.DataAccess.Client;
using System.Data;

class InRefCursorParameterSample
{
 static void Main()
 {
 OracleConnection conn = new OracleConnection
 ("User Id=scott; Password=tiger; Data Source=oracle");

 conn.Open(); // Open the connection to the database

 // Command text for getting the REF Cursor as OUT parameter
 String cmdTxt1 = "begin open :1 for select col1 from test; end;";

 // Command text to pass the REF Cursor as IN parameter
 String cmdTxt2 = "begin testSP (:1, :2); end;";

 // Create the command object for executing cmdTxt1 and cmdTxt2
 OracleCommand cmd = new OracleCommand(cmdTxt1, conn);

 // Bind the Ref cursor to the PL/SQL stored procedure
 OracleParameter outRefPrm = cmd.Parameters.Add("outRefPrm",
 OracleDbType.RefCursor, DBNull.Value, ParameterDirection.Output);

Chapter 3
PL/SQL REF CURSOR and OracleRefCursor

3-84

 cmd.ExecuteNonQuery(); // Execute the anonymous PL/SQL block

 // Reset the command object to execute another anonymous PL/SQL block
 cmd.Parameters.Clear();
 cmd.CommandText = cmdTxt2;

 // REF Cursor obtained from previous execution is passed to this
 // procedure as IN parameter
 OracleParameter inRefPrm = cmd.Parameters.Add("inRefPrm",
 OracleDbType.RefCursor, outRefPrm.Value, ParameterDirection.Input);

 // Bind another Number parameter to get the REF Cursor column value
 OracleParameter outNumPrm = cmd.Parameters.Add("outNumPrm",
 OracleDbType.Int32, DBNull.Value, ParameterDirection.Output);

 cmd.ExecuteNonQuery(); //Execute the stored procedure

 // Display the out parameter value
 Console.WriteLine("out parameter is: " + outNumPrm.Value.ToString());
 }
}

3.12 Implicit REF CURSOR Binding
ODP.NET enables applications to run stored procedures with REF CURSOR parameters
without using explicit binding for these parameters in the .NET code. ODP.NET
unmanaged and managed drivers support REF CURSOR implicit binding through
configuration done in .NET configuration files.

For a read-only result set, such as a REF CURSOR using OracleDataReader, REF CURSOR
schema information is retrieved automatically.

For some scenarios, such as when updateable REF CURSORs or Entity Framework is
used, developers need to define the REF CURSOR schema information so that the
application can bind the implicit REF CURSOR. Entity Framework applications use implicit
REF CURSOR binding to instantiate complex types from REF CURSOR data. Applications
must specify REF CURSOR bind and metadata information in the app.config, web.config,
or machine.config .NET configuration file.

The attributes supplied in the .NET configuration file are also used when the
application requests for schema information from the OracleDataReader object that
represents a REF CURSOR. This means that for REF CURSORs that are created using a
SELECT from a single table, the application can update that table through the use of
OracleDataAdapter and OracleCommandBuilder.

When using the Entity Framework, function imports can return an implicitly-bound REF
CURSOR. The REF CURSOR can be returned as a collection of complex types or entity
types. To return a complex type collection, the .NET configuration file needs to define
the REF CURSOR bind and metadata information. To return an entity type collection, only
the bind information needs to be defined in the .NET configuration file.

This section contains the following topics:

• Specifying REF CURSOR Bind and Metadata Information in the .NET
Configuration File

• Sample Configuration File and Application

• Usage Considerations

Chapter 3
Implicit REF CURSOR Binding

3-85

3.12.1 Specifying REF CURSOR Bind and Metadata Information in
the .NET Configuration File

Specify the REF CURSOR information in the oracle.dataacccess.client configuration
section of the .NET configuration file. Use an <add> element for each piece of
information. The add element uses name-value attributes to specify REF CURSOR
information. Use the following format to specify bind information:

<add
name="SchemaName.PackageName.StoredProcedureName.RefCursor.RefCursorParameterPosition
OrName"
value="implicitRefCursor bindinfo='mode=InputOutput|Output|ReturnValue'" />

Use the following format to specify metadata information:

<add
name="SchemaName.PackageName.StoredProcedureName.RefCursorMetaData.RefCursorParameter
PositionorName.Column.ColumnOrdinal"
value="implicitRefCursor metadata=AttributesList" />

Each REF CURSOR column needs to have an add element defined for it. For example, if
you have a REF CURSOR returning five columns, then you need to define five add
elements in the config file.

Each add element contains the name and value attributes. The value attribute must
begin with the word implicitRefCursor followed by the bindinfo or metadata attribute for
specifying bind or metadata information.

The bindinfo information is used by ODP.NET for binding REF CURSOR parameters. The
metadata information is used by ODP.NET to associate the schema information with
the appropriate REF CURSOR. The metadata comprises of an attributes list that includes
parameters together with their values.

The SchemaName, PackageName, and StoredProcedureName are case-sensitive. In order to
run a stored procedure with implicit REF CURSOR binding, the
SchemaName.PackageName.StoredProcedureName portion of the name attribute must exactly
match the name specified in the data dictionary for that stored procedure.

Note:

If the application uses implicit REF CURSOR binding feature outside of Entity
Framework, then the .NET configuration file and OracleCommand CommandText do
not require the schema name concatenated before the stored procedure name.

If any schema, package, or stored procedure name in the database contains
lowercase characters, then it must be enclosed within double quotation marks (") in
the config file to preserve the case. Double quotation marks are used within the name
attribute by using " when needed. For example, if the schema name is HrSchema,
the package name is HrPackage, and the stored procedure name is HrStoredProcedure
in the database, the config file should use the following:

Chapter 3
Implicit REF CURSOR Binding

3-86

<add
name=""HrSchema"."HrPackage"."HrStoredProcedure".RefCur
sorMetaData . . . />

By default, Oracle Database stores these names as uppercase characters. ODP.NET
assumes default behavior, and converts all names to uppercase characters unless you
explicitly preserve the case by using double quotation marks.

Note:

The SchemaName, PackageName, StoredProcedureName, or ParameterName cannot
contain a period (".") in the name. For example, P.0 is an unacceptable
parameter name.

Depending on whether the application uses bind-by-name or bind-by-position, the
RefCursorParameterPositionOrName portion of the name attribute must be set with the
correct parameter position (for bind by position) or parameter name (for bind by
name). For functions, the position is 0-based, where the position 0 represents the
return value. For procedures, the position is 1-based, as there are no return values for
procedures. For example, if a stored procedure accepts five parameters, returning only
two REF CURSORs in the third and fifth parameter positions, then the .NET config REF
CURSOR bind information should contain one entry for position 3 and one entry for
position 5.

If bind-by-name is used, the attribute name is used to identify the REF CURSOR
parameter. The name should use the same name and case as the one specified in the
data dictionary for that stored procedure.

For bindinfo, the mode specifies the parameter direction of the parameter. The mode
must be either InputOutput, Output, or ReturnValue.

Note:

Implicit REF CURSOR binding for an input REF CURSOR parameter is not supported.

An exception is thrown at runtime if the .NET configuration file contains an
entry for a REF CURSOR whose mode is set to Input.

For metadata, The AttributesList contains the list of parameters. Table 3-18 describes
the parameters that can be included in the AttributesList.

Example 3-1 shows a sample add element that uses bindinfo. Here, the schema name
is SCOTT and the stored procedure name is TESTPROC. The parameter name is
parameter1. The mode is output.

Example 3-2 shows a sample add element that uses metadata.

Chapter 3
Implicit REF CURSOR Binding

3-87

Table 3-18 Allowed Parameters in Attributes List

Name Type Required/Optional
for Entity
Framework

Description

ColumnName System.String Required The name of the column.

ProviderType Oracle.DataAcces
s.Client.OracleD
bType

Required The database column type
(OracleDbType) of the column

NativeDataType System.String Required The Oracle type. For example,
NCLOB.

BaseColumnName System.String Optional The name of the column in the
database if an alias is used for
the column.

BaseSchemaName System.String Optional The name of the schema in the
database that contains the
column.

BaseTableName System.String Optional The name of the table or view in
the database that contains the
column.

ColumnSize System.Int64 Optional The maximum possible length
of a value in the column

NumericPrecision System.Int16 Optional The maximum precision of the
column, if the column is a
numeric data type.

NumericScale System.Int16 Optional The maximum scale of the
column, if the column is a
numeric data type.

IsUnique System.Boolean Optional Indicates whether or not the
column is unique.

IsKey System.Boolean Optional Indicates whether or not the
column is a key column. For a
table to be updated with the REF
CURSOR information, at least one
of the columns in the REF
CURSOR metadata should have
this value set to true

IsRowID System.Boolean Optional true if the column is a ROWID,
otherwise false.

DataType System.RuntimeTy
pe

Optional Maps to the common language
runtime type.

AllowDBNull System.Boolean Optional true if null values are allowed,
otherwise false

IsAliased System.Boolean Optional true if the column is an alias;
otherwise false.

IsByteSemantic System.Boolean Optional IsByteSemantic is:

• true if the ColumnSize
value uses bytes semantics

• false if ColumnSize uses
character semantics

Chapter 3
Implicit REF CURSOR Binding

3-88

Table 3-18 (Cont.) Allowed Parameters in Attributes List

Name Type Required/Optional
for Entity
Framework

Description

IsExpression System.Boolean Optional true if the column is an
expression, else false.

IsHidden System.Boolean Optional true if the column is hidden,
else false.

IsReadOnly System.Boolean Optional true if the column is read-only,
else false

IsLong System.Boolean Optional true if the column is of LONG,
LONG RAW, BLOB, CLOB, or

BFILE type, else false.

UdtTypeName System.String Optional The type name of the UDT.

ProviderDBType System.Data.DbTy
pe

Optional System.Data.DbType

ObjectName System.String Optional Represents the name of the
object.

Some of the attributes, listed in Table 3-18, automatically have their values set using
the result set's metadata. Developers can override these default values by setting a
value explicitly.

You may have to explicitly define some attributes listed as optional for certain
operations. For example, updateable REF CURSOR requires the developer to define key
information.

Example 3-1 Using the add Element with bindinfo

<add name="SCOTT.TESTPROC.RefCursor.parameter1" value="implicitRefCursor
 bindinfo='mode=Output'" />

Example 3-2 Using the add Element with metadata

<add name="scott.TestProc.RefCursorMetaData.parameter1.Column.0"
value="implicitRefCursor metadata='ColumnName=EMPNO;BaseColumnName=EMPNO;
BaseSchemaName=SCOTT;BaseTableName=EMP;NativeDataType=number;
ProviderType=Int32;DataType=System.Int32;ColumnSize=4;AllowDBNull=false;
IsKey=true'" />

3.12.2 Sample Configuration File and Application
This section builds a sample application to illustrate implicit REF CURSOR binding. It
contains the following topics:

• Sample Stored Procedure and Function

• Sample Application Configuration File

• Sample Application That Uses the Configuration File

Chapter 3
Implicit REF CURSOR Binding

3-89

Sample Stored Procedure and Function

CREATE OR REPLACE FUNCTION GETEMP (
 EMPID IN NUMBER) return sys_refcursor is
 emp sys_refcursor;
BEGIN
 OPEN emp FOR SELECT empno, ename FROM emp where empno = EMPID;
 return emp;
END;
/

CREATE OR REPLACE PROCEDURE "GetEmpAndDept" (
 EMPS OUT sys_refcursor,
 DEPTS OUT sys_refcursor) AS
BEGIN
 OPEN EMPS for SELECT empno, ename from emp;
 OPEN DEPTS for SELECT deptno, dname from dept;
END;
/

Sample Application Configuration File

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <oracle.dataaccess.client>
 <settings>

 <!-- The following is for SCOTT.GETEMP -->
 <add name="SCOTT.GETEMP.RefCursor.0"
 value="implicitRefCursor bindinfo='mode=ReturnValue'" />

 <!-- The following is for SCOTT.GETEMP's REF CURSOR metadata -->
 <add name="SCOTT.GETEMP.RefCursorMetaData.0.Column.0"
 value="implicitRefCursor metadata='ColumnName=EMPNO;
 BaseColumnName=EMPNO;BaseSchemaName=SCOTT;BaseTableName=EMP;
 NativeDataType=number;ProviderType=Int32;ProviderDBType=Int32;
 DataType=System.Int32;ColumnSize=4;NumericPrecision=10;
 NumericScale=3;AllowDBNull=false;IsKey=true'" />

 <add name="SCOTT.GETEMP.RefCursorMetaData.0.Column.1"
 value="implicitRefCursor metadata='ColumnName=ENAME;
 BaseColumnName=ENAME;BaseSchemaName=SCOTT;BaseTableName=EMP;
 NativeDataType=varchar2;ProviderType=Varchar2;
 ProviderDBType=String;DataType=System.String;
 ColumnSize=10;AllowDBNull=true'" />

 <!-- The following is for "SCOTT"."GetEmpAndDept" -->
 <add name="SCOTT."GetEmpAndDept".RefCursor.EMPS"
 value="implicitRefCursor bindinfo='mode=Output'" />

 <!-- The following is for SCOTT.GETEMP's EMPS REF CURSOR metadata -->
 <add name="SCOTT."GetEmpAndDept"
 .RefCursorMetaData.EMPS.Column.0"
 value="implicitRefCursor metadata='ColumnName=EMPNO;
 BaseColumnName=EMPNO;BaseSchemaName=SCOTT;BaseTableName=EMP;
 NativeDataType=number;ProviderType=Int32;ProviderDBType=Int32;
 DataType=System.Int32;ColumnSize=4;NumericPrecision=10;
 NumericScale=3;AllowDBNull=false;IsKey=true'" />

 <add name="SCOTT."GetEmpAndDept"

Chapter 3
Implicit REF CURSOR Binding

3-90

 .RefCursorMetaData.EMPS.Column.1"
 value="implicitRefCursor metadata='ColumnName=ENAME;
 BaseColumnName=ENAME;BaseSchemaName=SCOTT;BaseTableName=EMP;
 NativeDataType=varchar2;ProviderType=Varchar2;
 ProviderDBType=String;DataType=System.String;
 ColumnSize=10;AllowDBNull=true'" />

 <!-- The following is for SCOTT.GETEMP's DEPTS REF CURSOR metadata -->
 <add name="SCOTT."GetEmpAndDept".RefCursor.DEPTS"
 value="implicitRefCursor bindinfo='mode=Output'" />

 <add name="SCOTT."GetEmpAndDept"
 .RefCursorMetaData.DEPTS.Column.0"
 value="implicitRefCursor metadata='ColumnName=DEPTNO;
 BaseColumnName=DEPTNO;BaseSchemaName=SCOTT;BaseTableName=DEPT;
 NativeDataType=number;ProviderType=Int32;ProviderDBType=Int32;
 DataType=System.Int32;ColumnSize=4;NumericPrecision=10;
 NumericScale=3;AllowDBNull=false;IsKey=true'" />

 <add name="SCOTT."GetEmpAndDept"
 .RefCursorMetaData.DEPTS.Column.1"
 value="implicitRefCursor metadata='ColumnName=DNAME;
 BaseColumnName=DNAME;BaseSchemaName=SCOTT;BaseTableName=DEPT;
 NativeDataType=varchar2;ProviderType=Varchar2;
 ProviderDBType=String;DataType=System.String;
 ColumnSize=10;AllowDBNull=true'" />
 </settings>
 </oracle.dataaccess.client>
</configuration>

Sample Application That Uses the Configuration File

using System;
using System.Data;
using Oracle.DataAccess.Client;

class Program
{
 static void Main(string[] args)
 {
 try
 {
 // Open a connection
 string constr =
 "User Id=scott;Password=tiger;Data Source=inst1";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Use implicit REF CURSOR binding
 // to execute SCOTT.GETEMP function
 // Use bind by position as configured
 // in app.config for SCOT.GETEMP
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "SCOTT.GETEMP";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.BindByName = false;
 OracleParameter empid = cmd.Parameters.Add("empid",
 OracleDbType.Int32, ParameterDirection.Input);
 empid.Value = 7654;

 // Populate the DataSet

Chapter 3
Implicit REF CURSOR Binding

3-91

 OracleDataAdapter adapter = new OracleDataAdapter(cmd);
 DataSet ds = new DataSet();
 adapter.Fill(ds);
 Console.WriteLine("Retrieved {0} row from EMP",
 ds.Tables[0].Rows.Count);

 // Use implicit REF CURSOR binding
 // to execute "SCOTT"."GetEmpAndDept" procedure
 // Use bind by name as configured
 // in app.config for "SCOTT"."GetEmpAndDept"
 cmd = con.CreateCommand();
 cmd.CommandText = "\"SCOTT\".\"GetEmpAndDept\"";
 cmd.CommandType = CommandType.StoredProcedure;
 cmd.BindByName = true;
 adapter = new OracleDataAdapter(cmd);
 adapter.Fill(ds);
 Console.WriteLine("Retrieved {0} rows from DEPT",
 ds.Tables[1].Rows.Count);
 }
 catch (Exception ex)
 {
 // Output the message
 Console.WriteLine(ex.Message);
 if (ex.InnerException != null)
 {
 // If any details are available regarding
 // errors in the app.config, print them out
 Console.WriteLine(ex.InnerException.Message);
 if (ex.InnerException.InnerException != null)
 {
 Console.WriteLine(
 ex.InnerException.InnerException.Message);
 }
 }
 }
 }
}

3.12.3 Usage Considerations
This section discusses the following usage considerations when using implicit REF
CURSOR:

• CommandText Property Considerations

• Bind Considerations

• Overloaded Stored Procedures

• Type Initialization Exceptions

• Using Stored Functions with Function Import

3.12.3.1 CommandText Property Considerations
ODP.NET applications should ensure that the stored procedure name and the
OracleCommand CommandText match exactly. Let's take a scenario where the stored
procedure name in the database is SCOTT.TESTPROC. Now, if the CommandText uses
TESTPROC, ODP.NET will look for entries matching TESTPROC only. The current schema

Chapter 3
Implicit REF CURSOR Binding

3-92

name will not be automatically appended to TESTPROC. So, the correct CommandText to
use in this scenario would be SCOTT.TESTPROC.

Also, the CommandText is case-sensitive and must use the same case as the stored
procedure name in the database. So if the stored procedure name in the database is
SCOTT.Testproc, then the CommandText must use SCOTT.Testproc.

3.12.3.2 Bind Considerations
If information about a REF CURSOR parameter has been added to the configuration file,
then applications should not try to explicitly bind the REF CURSOR parameter to
OracleCommand. ODP.NET automatically binds the REF CURSOR parameter at the
appropriate locations based on the information provided in the configuration file. If the
application stored procedure also has non-REF CURSOR parameters, then these
parameters must still be explicitly bound to OracleCommand.

If the information specified in the configuration file for a stored procedure identifies the
REF CURSOR parameter by name, then all the other non-REF CURSOR parameters should
also be bound by name. Also the BindByName property for the OracleCommand object
should be set to true in this case. Entity Framework always uses BindByName to run
stored procedures. Your .NET configuration file parameter names must use the same
case that was used when creating the stored procedure in the database.

If the OracleCommand BindByName property is set to false (default), then ODP.NET
assumes that the parameters have been bound based on their position, and all
parameters have been specified in the correct order. For such cases, the parameters
specified in the configuration file are bound in the same order in which they appear in
the configuration file.

3.12.3.3 Overloaded Stored Procedures
ODP.NET does not support multiple stored procedures with the same name inside the
configuration file. If an ODP.NET application uses an overloaded stored procedure, the
application can store only one overloaded stored procedure information in the
configuration file.

3.12.3.4 Type Initialization Exceptions
Type initialization exceptions can be caused by invalid .NET configuration file entries.
Evaluate the exception that is caught as well as its inner exceptions to determine
the .NET configuration file entry or the attribute setting that is causing the exception.

ODP.NET tracing logs the valid and invalid .NET configuration file entries that
ODP.NET has parsed. To look for .NET configuration file related entries, set the
TraceLevel to the Entry, exit, and SQL statement information level setting. Trace
entries related to implicit REF CURSOR binding have a (REFCURSOR) entry along with
(ERROR), if any errors are encountered.

3.12.3.5 Using Stored Functions with Function Import
Function Import only supports stored procedures, and does not support functions.
When using the Add Function Import dialog for the Entity Data Model that you have
created, the Get Column Information button does not return the metadata
information for the REF CURSOR that is being returned by a stored function, even if it is
configured properly in the .NET configuration file.

Chapter 3
Implicit REF CURSOR Binding

3-93

3.13 LOB Support
ODP.NET provides an easy and optimal way to access and manipulate large object
(LOB) data types.

Note:

SecureFiles can be used with existing ODP.NET LOB classes.

This section includes the following topics:

• Large Character and Large Binary Data Types

• Oracle Data Provider for .NET LOB Objects

• Updating LOBs Using a DataSet

• Updating LOBs Using OracleCommand and OracleParameter

• Updating LOBs Using ODP.NET LOB Objects

• Temporary LOBs

3.13.1 Large Character and Large Binary Data Types
Oracle Database supports large character and large binary data types.

Large Character Data Types

• CLOB - Character data can store up to 4 gigabytes.

• NCLOB - Unicode National character set data can store up to 4 gigabytes.

Large Binary Data Types

• BLOB - Unstructured binary data can store up to 4 gigabytes.

• BFILE - Binary data stored in external file can store up to 4 gigabytes.

Note:

LONG and LONG RAW data types are made available for backward compatibility
in Oracle9i, but should not be used in new applications.

3.13.2 Oracle Data Provider for .NET LOB Objects
ODP.NET provides three objects for manipulating LOB data: OracleBFile, OracleBlob,
and OracleClob.

Table 3-19 shows the proper ODP.NET object to use for a particular Oracle LOB type.

Chapter 3
LOB Support

3-94

Table 3-19 ODP.NET LOB Objects

Oracle LOB Type ODP.NET LOB Object

BFILE OracleBFile

BLOB OracleBlob

CLOB OracleClob

NCLOB OracleClob

The ODP.NET LOB objects can be obtained by calling the proper typed accessor on
the OracleDataReader object, or by calling the proper typed accessor as an output
parameter on a command execution with the proper bind type.

All ODP.NET LOB objects inherit from the .NET Stream class to provide generic Stream
operations. The LOB data (except for BFILE types) can be updated using the ODP.NET
LOB objects by using methods such as Write. Data is not cached in the LOB objects
when read and write operations are carried out. Therefore, each read or write request
incurs a database round-trip. The OracleClob object overloads the Read method,
providing two ways to read data from a CLOB. The Read method that takes a byte[] as
the buffer populates it with CLOB data as Unicode byte array. The Read method that
takes a char[] as the buffer populates it with Unicode characters.

Additional methods can also be found on the OracleBFile object. An OracleBFile object
must be explicitly opened using the OpenFile method before any data can be read from
it. To close a previously opened BFILE, use the CloseFile method.

Every ODP.NET LOB object is a connected object and requires a connection during its
lifetime. If the connection associated with a LOB object is closed, then the LOB object
is not usable and should be disposed of.

If an ODP.NET LOB object is obtained from an OracleDataReader object through a
typed accessor, then its Connection property is set with a reference to the same
OracleConnection object used by the OracleDataReader object. If a LOB object is
obtained as an output parameter, then its Connection property is set with a reference to
the same OracleConnection property used by the OracleCommand object. If a LOB object
is obtained by invoking an ODP.NET LOB object constructor to create a temporary
LOB, the Connection property is set with a reference to the OracleConnection object
provided in the constructor.

The ODP.NET LOB object Connection property is read-only and cannot be changed
during its lifetime. In addition, the ODP.NET LOB types object can be used only within
the context of the same OracleConnection referenced by the ODP.NET LOB object. For
example, the ODP.NET LOB Connection property must reference the same connection
as the OracleCommand object if the ODP.NET LOB object is a parameter of the
OracleCommand. If that is not the case, ODP.NET raises an exception when the
command is executed.

3.13.3 Updating LOBs Using a DataSet
BFILE and BLOB data are stored in the DataSet as byte arrays while CLOB and NCLOB data
are stored as strings. In a similar manner to other types, an OracleDataAdapter object
can be used to fill and update LOB data changes along with the use of the
OracleCommandBuilder object for automatically generating SQL.

Chapter 3
LOB Support

3-95

Note that an Oracle LOB column can store up to 4 GB of data. When the LOB data is
fetched into the DataSet, the actual amount of LOB data the DataSet can hold for a LOB
column is limited to the maximum size of a .NET string type, which is 2 GB. Therefore,
when fetching LOB data that is greater than 2 GB, ODP.NET LOB objects must be
used to avoid any data loss.

3.13.4 Updating LOBs Using OracleCommand and OracleParameter
To update LOB columns, LOB data can be bound as a parameter for SQL statements,
anonymous PL/SQL blocks, or stored procedures. The parameter value can be set as
a NET Framework type, ODP.NET type, or as an ODP.NET LOB object type. For
example, when inserting .NET string data into a LOB column in an Oracle9i database
or later, that parameter can be bound as OracleDbType.Varchar2. For a parameter
whose value is set to an OracleClob object, the parameter should be bound as
OracleDbType.Clob.

3.13.5 Updating LOBs Using ODP.NET LOB Objects
Oracle BFILEs cannot be updated; therefore, OracleBFile objects do not allow updates
to BFILE columns.

Two requirements must be met to update LOB data using ODP.NET LOB objects:

1. A transaction must be started before a LOB column is selected.

The transaction must be started using the BeginTransaction method on the
OracleConnection object before the command execution, so that the lock can be
released when the OracleTransaction Commit or Rollback method is invoked.

2. The row in which the LOB column resides must be locked; as part of an entire
result set, or on a row-by-row basis.

a. Locking the entire result set

Add the FOR UPDATE clause to the end of the SELECT statement. After execution
of the command, the entire result set is locked.

b. Locking the row - there are two options:

• Invoke one of the OracleDataReader typed accessors
(GetOracleClobForUpdate or GetOracleBlobForUpdate) on the
OracleDataReader object to obtain an ODP.NET LOB object, while also
locking the current row.

This approach requires a primary key, unique column(s), or a ROWID in the
result set because the OracleDataReader object must uniquely identify the
row to re-select it for locking.

• Execute an INSERT or an UPDATE statement that returns a LOB in the
RETURNING clause.

3.13.6 Temporary LOBs
Temporary LOBs can be instantiated for BLOB, CLOB, and NCLOB objects. To instantiate
an ODP.NET LOB object that represents a temporary LOB, the OracleClob or the
OracleBlob constructor can be used.

Temporary ODP.NET LOB objects can be used for the following purposes:

Chapter 3
LOB Support

3-96

• To initialize and populate a LOB column with empty or non-empty LOB data.

• To pass a LOB type as an input parameter to a SQL statement, an anonymous
PL/SQL block, or a stored procedure.

• To act as the source or the destination of data transfer between two LOB objects
as in the CopyTo operation.

Note:

Temporary LOBs are not transaction aware. Commit and rollback
operations do not affect the data referenced by a temporary LOB.

3.14 ODP.NET XML Support
ODP.NET allows the extraction of data from relational and object-relational tables and
views as XML documents. The use of XML documents for insert, update, and delete
operations to the database is also allowed. Oracle Database supports XML natively in
the database, through Oracle XML DB, a distinct group of technologies related to high-
performance XML storage and retrieval. Oracle XML DB is an evolution of the
database that encompasses both SQL and XML data models in a highly interoperable
manner, providing native XML support.

ODP.NET, Managed Driver follows XPath 1.0 specification and hence it does not
support default XML namespaces. XML namespaces must be explicitly added to
search or update nodes. This behavior differs from ODP.NET, Unmanaged Driver.

For samples related to ODP.NET XML support in ODAC installs, see the following
directory:

ORACLE_BASE\ORACLE_HOME\ODACsamples

This section includes these topics:

• Supported XML Features

• OracleXmlType and Connection Dependency

• Updating XMLType Data in the Database

• Updating XML Data in OracleXmlType

• Characters with Special Meaning in XML

• Retrieving Query Result Set as XML

• Data Manipulation Using XML

3.14.1 Supported XML Features
XML support in ODP.NET provides the ability to do the following:

• Store XML data natively in the database as the Oracle database native type,
XMLType.

• Access relational and object-relational data as XML data from an Oracle Database
instance into the Microsoft .NET environment, and process the XML using the
Microsoft .NET Framework.

Chapter 3
ODP.NET XML Support

3-97

• Save changes to the database using XML data.

• Execute XQuery statements.

For the .NET application developer, these features include the following:

• Enhancements to the OracleCommand, OracleConnection, and OracleDataReader
classes.

• The following XML-specific classes:

– OracleXmlType

OracleXmlType objects are used to retrieve Oracle native XMLType data.

– OracleXmlStream

OracleXmlStream objects are used to retrieve XML data from OracleXmlType
objects as a read-only .NET Stream object.

– OracleXmlQueryProperties

OracleXmlQueryProperties objects represent the XML properties used by the
OracleCommand class when the XmlCommandType property is Query.

– OracleXmlSaveProperties

OracleXmlSaveProperties objects represent the XML properties used by the
OracleCommand class when the XmlCommandType property is Insert, Update, or
Delete.

See Also:

– "XQuery Support"

– "OracleCommand Class"

– "OracleXmlType Class"

– "OracleXmlStream Class"

– "OracleXmlQueryProperties Class"

– "OracleXmlSaveProperties Class"

– Oracle XML DB Developer’s Guide

3.14.2 XQuery Support
ODP.NET supports the XQuery language through a native implementation of
SQL/XML functions, XMLQuery and XMLTable. When executing XQuery statements,
Oracle XML DB generally evaluates XQuery expressions by compiling them into the
same underlying structures as relational queries. Queries are optimized, leveraging
both relational-database and XQuery-specific optimization technologies, so that Oracle
XML DB serves as a native XQuery engine.The treatment of all XQuery expressions,
whether natively compiled or evaluated functionally, is transparent: programmers do
not need to change their code to take advantage of XQuery optimizations.

Chapter 3
ODP.NET XML Support

3-98

3.14.3 OracleXmlType and Connection Dependency
The read-only Connection property of the OracleXmlType class holds a reference to the
OracleConnection object used to instantiate the OracleXmlType class.

How the OracleXmlType object obtains a reference to an OracleConnection object
depends on how the OracleXmlType class is instantiated:

• Instantiated from an OracleDataReader class using the GetOracleXmlType,
GetOracleValue, or GetOracleValues method:

The Connection property is set with a reference to the same OracleConnection
object used by the OracleDataReader object.

• Instantiated by invoking an OracleXmlType constructor with one of the parameters
of type OracleConnection:

The Connection property is set with a reference to the same OracleConnection
object provided in the constructor.

• Instantiated by invoking an OracleXmlType(OracleClob) constructor:

The Connection property is set with a reference to the OracleConnection object used
by the OracleClob object.

An OracleXmlType object that is associated with one connection cannot be used with a
different connection. For example, if an OracleXmlType object is obtained using
OracleConnection A, that OracleXmlType object cannot be used as an input parameter of
a command that uses OracleConnection B. By checking the Connection property of the
OracleXmlType objects, the application can ensure that OracleXmlType objects are used
only within the context of the OracleConnection referenced by its connection property.
Otherwise, ODP.NET raises an exception.

3.14.4 Updating XMLType Data in the Database
Updating XMLType columns does not require a transaction. However, encapsulating the
entire database update process within a transaction is highly recommended. This
allows the updates to be rolled back if there are any errors.

XMLType columns in the database can be updated using Oracle Data Provider for .NET
in a few ways:

• Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder

• Updating with OracleCommand and OracleParameter

3.14.4.1 Updating with DataSet, OracleDataAdapter, and
OracleCommandBuilder

If the XMLType column is fetched into the DataSet, the XMLType data is represented as
a .NET String.

Modifying XMLType data in the DataSet does not require special treatment. XMLType data
can be modified in the same way as any data that is stored in the DataSet. When a
change is made and the OracleDataAdapter.Update method is invoked, the
OracleDataAdapter object ensures that the XMLType data is handled properly. The
OracleDataAdapter object uses any custom SQL INSERT, UPDATE, or DELETE statements

Chapter 3
ODP.NET XML Support

3-99

that are provided. Otherwise, valid SQL statements are generated by the
OracleCommandBuilder object as needed to flush the changes to the database.

3.14.4.2 Updating with OracleCommand and OracleParameter
The OracleCommand class provides a powerful way of updating XMLType data, especially
with the use of an OracleParameter object. To update columns in a database table, the
new value for the column can be passed as an input parameter of a command.

3.14.4.2.1 Input Binding
To update an XMLType column in the database, a SQL statement can be executed using
static values. In addition, input parameters can be bound to SQL statements,
anonymous PL/SQL blocks, or stored procedures to update XMLType columns. The
parameter value can be set as .NET Framework Types, ODP.NET Types, or
OracleXmlType objects.

While XMLType columns can be updated using an OracleXmlType object, having an
instance of an OracleXmlType class does not guarantee that the XMLType column in the
database can be updated.

3.14.4.2.2 Setting XMLType Column to NULL Value
Applications can set an XMLType column in the database to a NULL value, with or without
input binding, as follows:

• Setting NULL values in an XMLType column with input binding

To set the XMLType column to NULL, the application can bind an input parameter
whose value is DBNull.Value. This indicates to the OracleCommand object that a NULL
value is to be inserted.

Passing in a null OracleXmlType object as an input parameter does not insert a NULL
value into the XMLType column. In this case, the OracleCommand object raises an
exception.

• Setting NULL Values in an XMLType Column without input binding

The following example demonstrates setting NULL values in an XMLType column
without input binding:

// Create a table with an XMLType column in the database
CREATE TABLE XML_TABLE(NUM_COL number, XMLTYPE_COL xmltype);

An application can set a NULL value in the XMLType column by explicitly inserting a
NULL value or by not inserting anything into that column as in the following
examples:

insert into xml_table(xmltype_col) values(NULL);

update xml_table t set t.xmltype_col=NULL;

3.14.4.2.3 Setting XMLType Column to Empty XML Data
The XMLType column can be initialized with empty XML data, using a SQL statement:

// Create a table with an XMLType column in the database
CREATE TABLE XML_TABLE(NUM_COL number, XMLTYPE_COL xmltype);

Chapter 3
ODP.NET XML Support

3-100

INSERT INTO XML_TABLE (NUM_COL, XMLTYPE_COL) VALUES (4,
 XMLType.createxml('<DOC/>'));

3.14.5 Updating XML Data in OracleXmlType
The following are ways that XML data can be updated in an OracleXmlType object.

• The XML data can be updated by passing an XPATH expression and the new
value to the Update method on the OracleXmlType object.

• The XML data can be retrieved on the client side as the .NET Framework
XmlDocument object using the GetXmlDocument method on the OracleXmlType object.
This XML data can then be manipulated using suitable .NET Framework classes.
A new OracleXmlType can be created with the updated XML data from the .NET
Framework classes. This new OracleXmlType is bound as an input parameter to an
update or insert statement.

3.14.6 Characters with Special Meaning in XML
The following characters in Table 3-20 have special meaning in XML. For more
information, refer to the XML 1.0 specifications

Table 3-20 Characters with Special Meaning in XML

Character Meaning in XML Entity Encoding

< Begins an XML tag <

> Ends an XML tag >

" Quotation mark "

' Apostrophe or single quotation
mark

'

& Ampersand &

When these characters appear as data in an XML element, they are replaced with
their equivalent entity encoding.

Also certain characters are not valid in XML element names. When SQL identifiers
(such as column names) are mapped to XML element names, these characters are
converted to a sequence of hexadecimal digits, derived from the Unicode encoding of
the character, bracketed by an introductory underscore, a lowercase x and a trailing
underscore. A blank space is not a valid character in an XML element name. If a SQL
identifier contains a space character, then in the corresponding XML element name,
the space character is replaced by _x0020_, which is based on Unicode encoding of the
space character.

3.14.7 Retrieving Query Result Set as XML
This section discusses retrieving the result set from a SQL query as XML data.

3.14.7.1 Handling Date and Time Format
The generated XML DATE and TIMESTAMP formats are based on the standard XML
Schema formats.

Chapter 3
ODP.NET XML Support

3-101

3.14.7.2 Characters with Special Meaning in Column Data
If the data in any of the select list columns in the query contains any characters with
special meaning in XML (see Table 3-20), these characters are replaced with their
corresponding entity encoding in the result XML document.

The following examples demonstrate how ODP.NET handles the angle bracket
characters in the column data:

/* Database Setup
connect scott/tiger@oracle
drop table specialchars;
create table specialchars ("id" number, name varchar2(255));
insert into specialchars values (1, '<Jones>');
commit;
*/

// C#

using System;
using System.Data;
using System.Xml;
using Oracle.DataAccess.Client;

class QueryResultAsXMLSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();

 // Create the command
 OracleCommand cmd = new OracleCommand("", con);

 // Set the XML command type to query.
 cmd.XmlCommandType = OracleXmlCommandType.Query;

 // Set the SQL query
 cmd.CommandText = "select * from specialchars";

 // Set command properties that affect XML query behavior.
 cmd.BindByName = true;

 // Set the XML query properties
 cmd.XmlQueryProperties.MaxRows = -1;

 // Get the XML document as an XmlReader.
 XmlReader xmlReader = cmd.ExecuteXmlReader();
 XmlDocument xmlDocument = new XmlDocument();

 xmlDocument.PreserveWhitespace = true;
 xmlDocument.Load(xmlReader);
 Console.WriteLine(xmlDocument.OuterXml);

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();

Chapter 3
ODP.NET XML Support

3-102

 }
}

The following XML document is generated for that table: The XML entity encoding that
represents the angle brackets appears in bold.

<?xml version = '1.0'?>
<ROWSET>
 <ROW>
 <id>1</id >
 <NAME><Jones></NAME>
 </ROW>
</ROWSET>

3.14.7.3 Characters in Table or View Name
If a table or view name has any non-alphanumeric characters other than an
underscore (_), the table or view name must be enclosed in quotation marks.

For example, to select all entries from a table with the name test'ing, the CommandText
property of the OracleCommand object must be set to the following string:

"select * from \"test'ing\"";

3.14.7.4 Case-Sensitivity in Column Name to XML Element Name Mapping
The mapping of SQL identifiers (column names) to XML element names is case-
sensitive, and the element names are in exactly the same case as the column names
of the table or view.

However, the root tag and row tag names are case-insensitive. The following example
demonstrates case-sensitivity in this situation:

//Create the following table
create table casesensitive_table ("Id" number, NAME varchar2(255));

//insert name and id
insert into casesensitive_table values(1, 'Smith');

The following XML document is generated:

<?xml version = '1.0'?>
 <ROWSET>
 <ROW>
 <Id>1</Id>
 <NAME>Smith</NAME>
 </ROW>
 </ROWSET>

Note that the element name for the Id column matches the case of the column name.

3.14.7.5 Column Name to XML Element Name Mapping
For each row generated by the SQL query, the SQL identifier (column name) maps to
an XML element in the generated XML document, as shown in the following example:

Chapter 3
ODP.NET XML Support

3-103

// Create the following table
create table emp_table (EMPLOYEE_ID NUMBER(4), LAST_NAME varchar2(25));
// Insert some data
insert into emp_table values(205, 'Higgins');

The SQL query, SELECT * FROM EMP_TABLE, generates the following XML document:

<?XML version="1.0"?>
 <ROWSET>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Higgins</LAST_NAME>
 </ROW>
 </ROWSET>

The EMPLOYEE_ID and LAST_NAME database columns of the employees table map to the
EMPLOYEE_ID and LAST_NAME elements of the generated XML document.

This section demonstrates how Oracle database handles the mapping of SQL
identifiers to XML element names, when retrieving query results as XML from the
database. The demonstration uses the specialchars table involving the some id column.

// Create the specialchars table
create table specialchars ("some id" number, name varchar2(255));

Note that the specialchars table has a column named some id that contains a blank
space character. The space character is not allowed in an XML element name.

When retrieving the query results as XML, the SQL identifiers in the query select list
can contain characters that are not valid in XML element names. When these SQL
identifiers (such as column names) are mapped to XML element names, each of these
characters is converted to a sequence of hexadecimal digits, derived from the Unicode
encoding of the characters, bracketed by an introductory underscore, a lowercase x,
and a trailing underscore.

Thus, the SQL query in the following example can be used to get a result as an XML
document from the specialchars table:

select "some id", name from specialchars;

3.14.7.5.1 Improving Default Mapping
You can improve the default mapping of SQL identifiers to XML element names by
using the following techniques:

• Modify the source. Create an object-relational view over the source schema, and
make that view the new source.

• Use cursor subqueries and cast-multiset constructs in the SQL query.

• Create an alias for the column or attribute names in the SQL query. Prefix the
aliases with an at sign (@) to map them to XML attributes instead of XML
elements.

• Modify the XML document. Use Extensible Stylesheet Language Transformation
(XSLT) to transform the XML document. Specify the XSL document and
parameters. The transformation is done automatically after the XML document is
generated from the relational data. Note that this may have an impact on
performance.

Chapter 3
ODP.NET XML Support

3-104

• Specify the name of the root tag and row tag used in the XML document.

3.14.7.6 Object-Relational Data
ODP.NET can generate an XML document for data stored in object-relational columns,
tables, and views, as shown in the following example:

// Create the following tables and types
CREATE TYPE "EmployeeType" AS OBJECT (EMPNO NUMBER, ENAME VARCHAR2(20));
/
CREATE TYPE EmployeeListType AS TABLE OF "EmployeeType";
/
CREATE TABLE mydept (DEPTNO NUMBER, DEPTNAME VARCHAR2(20),
 EMPLIST EmployeeListType)
 NESTED TABLE EMPLIST STORE AS EMPLIST_TABLE;
INSERT INTO mydept VALUES (1, 'depta',
 EmployeeListType("EmployeeType"(1, 'empa')));

The following XML document is generated for the table:

<?xml version = "1.0"?>
<ROWSET>
 <ROW>
 <DEPTNO>1</DEPTNO>
 <DEPTNAME>depta</DEPTNAME>
 <EMPLIST>
 <EmployeeType>
 <EMPNO>1</EMPNO>
 <ENAME>empa</ENAME>
 </EmployeeType>
 </EMPLIST>
 </ROW>
</ROWSET>

ODP.NET encloses each item in a collection element, with the database type name of
the element in the collection. The mydept table has a collection in the EMPLIST database
column and each item in the collection is of type EmployeeType. Therefore, in the XML
document, each item in the collection is enclosed in the type name EmployeeType, which
appears in bold in the example.

3.14.7.7 NULL Values
If any database row has a column with a NULL value, then that column does not appear
for that row in the generated XML document.

3.14.8 Data Manipulation Using XML
This section discusses making changes to the database data using XML.

3.14.8.1 Handling Date and Time Format
The generated XML DATE and TIMESTAMP formats are based on the standard XML
Schema formats.

Chapter 3
ODP.NET XML Support

3-105

3.14.8.2 Saving Changes Using XML
Changes can be saved to database tables and views using XML data. However,
insert, update, and delete operations cannot be combined in a single XML document.
ODP.NET cannot accept a single XML document and determine which are insert,
update, or delete changes.

The insert change must be in an XML document containing only rows to be inserted,
the update changes only with rows to be updated, and the delete changes only with
rows to be deleted.

For example, using the employees table that comes with the HR sample schema, you
can specify the following query:

select employee_id, last_name from employees where employee_id = 205;

The following XML document is generated:

<?xml version = '1.0'?>
<ROWSET>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Higgins</LAST_NAME>
 </ROW>
</ROWSET>

To change the name of employee 205 from Higgins to Smith, specify the employees table
and the XML data containing the changes as follows:

<?xml version = '1.0'?>
<ROWSET>
 <ROW>
 <EMPLOYEE_ID>205</EMPLOYEE_ID>
 <LAST_NAME>Smith</LAST_NAME>
 </ROW>
</ROWSET>

3.14.8.3 Characters with Special Meaning in Column Data
If the data in any of the elements in the XML document contains characters that have
a special meaning in XML (see Table 3-20), these characters must be replaced with
appropriate entity encoding, or be preceded by an escape character in the XML
document, so that the data is stored correctly in the database table column. Otherwise,
ODP.NET throws an exception.

The following example demonstrates how ODP.NET handles the angle bracket special
characters in the column data, using entity encoding:

// Create the following table
create table specialchars ("id" number, name varchar2(255));

The following XML document can be used to insert values (1, '<Jones>') into the
specialchars table. The XML entity encoding that represents the angle brackets
appears in bold.

<?xml version = '1.0'?>
 <ROWSET>
 <ROW>
 <id>1</id >

Chapter 3
ODP.NET XML Support

3-106

 <NAME><Jones></NAME>
 </ROW>
 </ROWSET>

3.14.8.4 Characters with Special Meaning in Table or View Name
If a table or view name has any non-alphanumeric characters other than an
underscore (_), the table or view name must be enclosed in quotation marks.

For example, to save changes to a table with the name test'ing, the
OracleCommand.XmlSaveProperties.TableName property must be set to "\"test'ing\"".

3.14.8.5 Case-Sensitivity in XML Element Name to Column Name Mapping
For each XML element that represents a row of data in the XML document, the child
XML elements map to database column names. The mapping of the child element
name to the column name is always case-sensitive, but the root tag and row tag
names are case-insensitive. The following example demonstrates this case-sensitivity:

//Create the following table
create table casesensitive_table ("Id" number, NAME varchar2(255));

The following XML document can be used to insert values (1, Smith) into the
casesensitive_table:

<?xml version = '1.0'?>
 <ROWSET>
 <ROW>
 <Id>1</Id>
 <NAME>Smith</NAME>
 </ROW>
 </ROWSET>

Note that the element name for the Id column matches the case of the column name.

3.14.8.6 XML Element Name to Column Name Mapping
This section describes how Oracle database handles the mapping of XML element
names to column names when using XML for data manipulation in the database. The
following specialchars table involving the some id column demonstrates this handling.

// Create the specialchars table
create table specialchars ("some id" number, name varchar2(255));

Note that the specialchars table has a column named some id that contains a blank
space character. The space character is not allowed in an XML element name.

3.14.8.7 Saving Changes to a Table Using an XML Document
When an XML document is used to save changes to a table or view, the
OracleCommand.XmlSaveProperties.UpdateColumnsList property is used to specify the list
of columns to update or insert.

When an XML document is used to save changes to a column in a table or view, and
the corresponding column name contains any of the characters that are not valid in an
XML element name, the escaped column name must be specified in the
UpdateColumnsList property as in the following example.

Chapter 3
ODP.NET XML Support

3-107

The following XML document can be used to insert values (2, <Jones>) into the
specialchars table:

<?xml version = '1.0'?>
 <ROWSET>
 <ROW>
 <some_x0020_id>2</some_x0020_id>
 <NAME><Jones></NAME>
 </ROW>
 </ROWSET>

The following example specifies the list of columns to update or insert:

/* Database Setup
connect scott/tiger@oracle
drop table specialchars;
create table specialchars ("some id" number, name varchar2(255));
insert into specialchars values (1, '<Jones>');
commit;
*/

// C#

using System;
using System.Data;
using System.Xml;
using Oracle.DataAccess.Client;

class InsertUsingXmlDocSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();
 Console.WriteLine("Connected Successfully");

 // Create the command
 OracleCommand cmd = new OracleCommand("", con);

 // Set the XML command type to query.
 cmd.XmlCommandType = OracleXmlCommandType.Insert;

 // Set the XML document
 cmd.CommandText = "<?xml version = '1.0'?>\n" + "<ROWSET>\n" + "<ROW>\n" +
 "<some_x0020_id>2</some_x0020_id>\n" + "<NAME><Jones></NAME>\n" +
 "</ROW>\n" + "</ROWSET>\n";
 cmd.XmlSaveProperties.Table = "specialchars";

 string[] ucols = new string[2];

 ucols[0] = "some_x0020_id";
 ucols[1] = "NAME";
 cmd.XmlSaveProperties.UpdateColumnsList = ucols;

 // Insert rows
 int rows = cmd.ExecuteNonQuery();

 Console.WriteLine("Number of rows inserted successfully : {0} ", rows);

Chapter 3
ODP.NET XML Support

3-108

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

3.14.8.7.1 Improving Default Mapping
You can improve the default mapping by using the following techniques:

• Modify the target. Create an object-relational view over the target schema, and
make the view the new target.

• Modify the XML document. Use XSLT to transform the XML document. Specify the
XSL document and parameters. The transformation is done before the changes
are saved. Note that this is may have an impact on performance.

• Specify the name of the row tag used in the XML document.

3.14.8.8 Object-Relational Data
Changes in an XML document can also be saved to object-relational data. Each item
in a collection can be specified in one of the following ways in the XML document:

• By enclosing the database type name of the item as the XML element name.

• By enclosing the name of the database column holding the collection with _ITEM
appended as the XML element name.

3.14.8.9 Multiple Tables
Oracle Database does not save changes to multiple relational tables that have been
joined together. Oracle recommends that you create a view on those relational tables,
and then update that view. If the view cannot be updated, triggers can be used
instead.

3.14.8.10 Commit Transactions
When the changes in an XML document are made, either all the changes are
committed, or if an error occurs, all changes are rolled back.

3.15 Oracle User-Defined Types (UDTs) and .NET Custom
Types

ODP.NET has the ability to represent Oracle UDTs found in the database as custom
types in .NET applications. UDTs are useful in representing complex entities as a
single object that can be shared among applications. Oracle products, such as Oracle
Spatial and Oracle XML DB, use their own complex types frequently.

To represent Oracle UDTs as .NET custom types, applications must apply .NET
attributes to custom classes and structs, and to their public fields and properties.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-109

Note:

ODP.NET, Managed Driver does not support UDTs and .NET Custom Types

To convert between UDTs and custom types, ODP.NET uses custom interfaces.

This section discusses the following topics:

• Oracle User-Defined Types (UDTs)

• Custom Types

• Specifying Custom Type Mappings

• Converting Between Custom Types and Oracle UDTs

• Oracle UDT Attribute Mappings

• Oracle UDT Retrieval from OracleDataReader

• Oracle UDT Metadata Retrieval from OracleDataReader

• Oracle UDT Parameter Binding with OracleParameter

• Populating the DataSet with Oracle UDTs

• UDT Method Invocation

• Configuration Settings for Oracle UDTs

3.15.1 Oracle User-Defined Types (UDTs)
Oracle Data Provider for .NET supports Oracle object types or user-defined types
(UDTs), which are defined in the Oracle database.

There are two kinds of UDTs:

• Object types (Oracle Object)

• Collection types (which can be VARRAY types or nested table types)

Additionally, ODP.NET supports references (REF) to object types.

The term UDT is used interchangeably with Oracle object types and abstract data
types (ADTs).

The name of the Oracle UDT is case-sensitive and must be in the form
schema_name.type_name.

UDT samples are provided in the ORACLE_BASE\\ORACLE_HOME\ODP.NET\Samples\UDT
directory.

3.15.2 Custom Types
Oracle Data Provider for .NET supports UDTs by representing Oracle UDTs defined in
the database as .NET types, that is, custom types. For every Oracle UDT that the
application wishes to fetch and manipulate, one custom type factory and one custom
type are needed. The custom factory class is solely responsible for instantiating the
custom type. ODP.NET uses the interfaces implemented on the custom factory

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-110

classes to instantiate custom types at run time. Custom types define the mapping
between the Oracle UDT attributes or elements to the .NET members. ODP.NET uses
the interfaces implemented on the custom type instances to transfer values between
the Oracle UDT and the custom type at run time.

Custom types can be .NET classes or structures. They can represent either Oracle
Objects or Oracle Collections. Custom types can be implemented manually by the
application developer or generated through an ODP.NET code generation tool.

Once the factory class and the custom type are defined and meet the implementation
requirements, the application may set ODP.NET to automatically discover the mapping
between the Oracle UDT and the custom type. This discovery process is based on the
attribute that is applied on the custom factory class. Alternatively, the application can
provide an explicit mapping through a configuration file.

Oracle Collections can be represented as an array of .NET Types. For example, an
Oracle Collection type of NUMBER can be mapped to an int[]. Moreover, an Oracle
Collection type of an Oracle UDT can be mapped to an array of the custom type.

Custom types must adhere to certain requirements in order for ODP.NET to represent
Oracle UDTs as custom types. These requirements are as follows:

3.15.2.1 Required Custom Type Implementations
This section lists the required implementations for a custom .NET class or structure.

• Oracle.DataAcess.Types.IOracleCustomType interface implementation

This interface is used for conversions between custom types and Oracle UDTs.

The interface methods are implemented using the static methods of the OracleUdt
class.

• Custom Type Factories

A custom type factory is used to create an instance of a custom type. A custom
type factory is an implementation of either the IOracleCustomTypeFactory interface,
the IOracleArrayTypeFactory interface, or both interfaces, as follows:

– To create a custom type that represents an Oracle Object, the custom type or
a separate custom type factory class must implement the
Oracle.DataAccess.Types.IOracleCustomTypeFactory interface.

– To create a custom type that represents an Oracle Collection, the custom type
or a separate custom type factory class must implement the
Oracle.DataAccess.Types.IOracleCustomTypeFactory interface and the
Oracle.DataAccess.Types.IOracleArrayTypeFactory interface.

– To create an array type that represents an Oracle Collection, a custom type
factory class must implement the
Oracle.DataAccess.Types.IOracleArrayTypeFactory interface.

• Custom Type Member Mapping Attributes

The custom type member mapping attributes specify the mapping between custom
type members and either Oracle object attributes or Oracle collection elements.

There are two types of custom type member mapping attributes:

– OracleObjectMappingAttribute

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-111

This attribute specifies the mapping between custom type members and
Oracle object attributes for custom types that represent Oracle objects. This
attribute must be applied to each custom type member (either field or property)
that represents an Oracle Object attribute.

Note:

Not all Oracle object attributes need to be mapped to custom type
members. If there is no OracleObjectMappingAttribute for a particular
object attribute, ODP.NET ignores that object attribute when converting
between Oracle objects and custom types.

– OracleArrayMappingAttribute

This attribute specifies the custom type member that stores the elements of an
Oracle collection for custom types representing Oracle collections.The
attribute must be specified on only one of the custom type members.

• Oracle.DataAcess.Types.INullable interface implementation

This interface is used to determine if an instance of a custom type represents a
null UDT. The IsNull property of the interface enables applications and ODP.NET
to determine whether or not the UDT is null.

• Static Null field

The public static Null property is used to return a null UDT. This property returns a
custom type with an IsNull property that returns true.

3.15.2.2 Optional Custom Type Implementations
The following are optional:

• IXMLSerializable

The IXMLSerializable interface is used in the .NET 2.0 framework to enable
conversion between the custom type and its XML representation.This interface is
only used if the serialization and deserialization of a custom type is needed in the
DataSet.

• Static Parse and Public ToString methods

These methods enable conversion between the custom type and its string
representation.

These methods are invoked when a DataGrid control is used to accept changes
and display instance values.

• Type Inheritance

Type Inheritance refers to the process of deriving an Oracle UDT in the database
from a super type.

If the custom type represents an Oracle UDT that is derived from a super type, the
custom class should follow the same type hierarchy, that is, the custom class
should be derived from another custom class that represents the super type
defined in the database.

• OracleCustomTypeMappingAttribute

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-112

The OracleCustomTypeMappingAttribute object specifies the mapping between a
custom type (or an array type) and an Oracle UDT.

There must be a unique custom type factory for each Oracle UDT used by the
application as follows:

– Oracle Object Types:

The custom type factory must return a custom type that only represents the
specified Oracle Object Type.

– Oracle Collection Types:

The custom type factory may return a custom type that can be used by other
Oracle Collection Types. This is common when an array type is used to
represent an Oracle Collection, for example, when an int[] is used to
represent a collection of NUMBERs.

If the OracleCustomTypeMappingAttribute is not specified, then custom type
mappings must be specified through XML configuration files, that is,
machine.config, and either app.config for Windows applications or web.config for
web applications.

3.15.3 Specifying Custom Type Mappings
After creating a custom type, the application must specify a custom type mapping that
maps the custom type to an Oracle UDT in the database. This can be done using a
custom type factory or XML in configuration files.

Using XML to specify custom type mappings has priority, if both techniques have been
implemented. At run time, if ODP.NET finds custom type mappings specified in
configuration files, it ignores any custom type mappings specified through the
OracleCustomTypeMappingAttribute object. If a .NET application dynamically loads .NET
assemblies, which contain .NET classes that Oracle UDTs are mapped to, then the
mapping between .NET classes and Oracle UDTs must be configured using a .NET
config file.

Custom type mappings cannot be specified using synonyms, regardless of whether or
not the mapping is provided through the OracleCustomTypeMappingAttribute object or
the XML configuration file.

See Also:

Oracle Developer Tools for Visual Studio help sections on User-Defined Types
Node under Server Explorer in Visual Studio for further information on UDT
mapping.

This section contains these topics:

• "Using a Custom Type Factory to Specify Custom Type Mappings"

• "Using XML in Configuration Files to Specify Custom Type Mappings"

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-113

3.15.3.1 Using a Custom Type Factory to Specify Custom Type Mappings
The application can specify a custom type mapping using a custom type factory. The
application supplies the name of the Oracle UDT, in the format schema_name.type_name,
to an OracleCustomTypeMappingAttribute object and applies the name to the
corresponding custom type factory. A custom type factory is a class or struct that
implements either or both the IOracleCustomTypeFactory and IOracleArrayTypeFactory
interfaces.

Note that for each Oracle UDT used by the application, there must be a unique custom
type factory. Additionally, for Oracle Object Types, the custom type factory must return
a custom type that uniquely represents the specified Oracle Object Type. For Oracle
Collection Types, the custom type factory returns a custom type that can be used by
other Oracle Collection Types. This is common when an custom type that is an array
type represents an Oracle Collection, that is, when an int[] is used to represent a
collection of NUMBERs.

At run time, using reflection programming, ODP.NET discovers all the custom type
mappings specified by the application through the OracleCustomTypeMappingAttribute
object.

Note:

The UDT name that is specified in the OracleCustomTypeMappingAttribute may
not contain a period.

3.15.3.2 Using XML in Configuration Files to Specify Custom Type Mappings
The application can specify a custom type mapping with XML in configuration files, for
example: using machine.config, and either app.config for Windows applications or
web.config for web applications.

The custom type mappings must be specified in the oracle.dataaccess.client
configuration section group. Each custom type mapping must be added to the
collection of custom type mappings using the XML element <add>.

Each custom type mapping is consists of a name attribute and a value attribute. The
name attribute may be any user-specified name that represents the custom type
mapping. The value attribute must begin with udtMapping and be followed by the
required and optional attributes listed below.

3.15.3.2.1 Required Attributes

• factoryName

The case-sensitive assembly qualified name of the custom type factory class or
struct.

If the assembly that defines the custom type factory does not have a strong name,
then a partial assembly name consisting of just the assembly name is sufficient. In
the case of strongly named assemblies, a complete assembly name is required. It
must include the assembly name, the Version, Culture, PublicKeyToken.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-114

• typeName

The case-sensitive name of the UDT defined in the database. By default all UDTs
are created in the database with upper case names

• schemaName

The case-sensitive schema in which the UDT is defined in the database. By
default all schemas are created in the database with upper case names

3.15.3.2.2 Optional Attributes

• dataSource

If specified, indicates that the custom type mapping applies only to Oracle UDTs
defined in the database that the application connects to, as specified by the TNS
name alias.

The Data Source is case-insensitive.

The following is an example of the format of the XML that can be specified in the
configuration file for .NET 2.0:

 <oracle.dataaccess.client>
 <settings>
 <add name="Person" value="udtMapping factoryName='Sample.PersonFactory,
 Sample, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null'
 typeName='PERSON' schemaName='SCOTT' dataSource='oracle'"/>
 <add name="Student" value="udtMapping factoryName='Sample.StudentFactory,
 Sample, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null'
 typeName='STUDENT' schemaName='SCOTT'"/>
 </settings>
 </oracle.dataaccess.client>

3.15.3.3 Using Custom Type Mappings
During data retrieval, the application uses the custom type mappings to convert an
Oracle UDT to a custom type. When data is provided back to the database through an
input or input/output parameter, or by an update through an Oracle REF, the application
uses the mappings to convert the custom type to an Oracle UDT.

In the case of input and input/output parameters, the application must also set the
OracleParameter UdtTypeName property to the user-defined type name of the parameter.

In certain cases, where Oracle UDTs are part of a type hierarchy, the custom type
must be instantiated as a specific type in the type hierarchy. The Oracle UDT provided
by the custom type mapping must a subtype of the Oracle UDT specified by the
OracleParameter UdtTypeName property.

For example, the parameter for a stored procedure is of type, SCOTT.PERSON and has a
subtype, SCOTT.STUDENT. The application has a custom class instance that represents
SCOTT.STUDENT. The UdtTypeName is set to SCOTT.PERSON, but the custom type mapping
indicates that the custom class is mapped to SCOTT.STUDENT and overrides the
UdtTypeName when it instantiates the Oracle UDT. Thus, ODP.NET instantiates and
binds Oracle UDTs appropriately when the custom object represents an Oracle UDT
that is a subtype of the parameter type.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-115

3.15.4 Converting Between Custom Types and Oracle UDTs
ODP.NET can convert between Oracle UDTs and custom types, if the proper attribute
mappings are specified and the custom types are defined properly.

ODP.NET performs a conversion whenever an Oracle UDT is fetched as:

• In, out, in/out parameters bound for SQL or PL/SQL execution

The DbType property of OracleParameter must be set to DbType.Object or the
OracleDbType property must be set to OracleDbType.Object or OracleDbType.Array.

For parameters that are user-defined types, the UdtTypeName property of the
OracleParameter object must be always set to the parameter type.

Note: The UdtTypeName may differ from the Oracle UDT specified in the custom type
mapping. This is the case when the parameter type is a super type of the Oracle
UDT that the custom type represents.

• Column value retrieved from an OracleDataReader object

If the application requests for the value either through the GetValue, GetValues,
GetOracleValue, GetOracleValues, GetProviderSpecificValue, or
GetProviderSpecificValues methods or the Item[] property for a UDT column,
ODP.NET finds the corresponding custom type that represents the Oracle UDT
and carries out the proper conversion.

• Part of a Resultset that populates the DataSet

If the application populates the DataSet with a result that contains UDTs using the
Fill method on the OracleDataAdapter, the DataSet is populated with custom types
that represent Oracle UDTs. With ADO.NET 2.0, the DataSet is populated with
custom types for UDT columns regardless of whether the
ReturnProviderSpecificTypes on the OracleDataAdapter is set to true or false.

• A Object referenced through a REF

When an Object referenced by a REF is retrieved, the custom type that represents
the Oracle UDT is returned.

The application can use the OracleUdtFetchOption method to control the copy of
the Object that is returned as follows:

– If the OracleUdtFetchOption.Cache option is specified and a cached copy of the
object exists, the cached copy is immediately returned. If no cached copy
exists, the latest object copy from the database is cached and returned.

– If the OracleUdtFetchOption.Server option is specified, the latest object copy
from the database is cached and returned. If the object is already cached, the
latest object copy overwrites the existing one.

– If the OracleUdtFetchOption.TransactionCache option is specified, there are two
possibilities within the same transaction:

* If the object copy was previously retrieved using the Server or
TransactionCache option, the TransactionCache option behavior becomes
equivalent to the Cache option behavior.

* If the object copy was not previously retrieved using the Server or
TransactionCache option, the TransactionCache option behavior becomes
equivalent to the Server option behavior.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-116

3.15.5 Oracle UDT Attribute Mappings
Table 3-21 lists valid mappings of attributes (for objects) and elements (for
collections), between Oracle UDT types and custom object types which can be
either .NET types or Oracle provider-specific types (ODP.NET types).

Oracle collections do not have to map to a custom class. They can map to arrays of a
specific type. Table 3-21 indicates those collections with elements of a specified
Oracle type that can map to arrays of a .NET Type or a provider-specific type. For
example, if an Oracle Collection is a VARRAY of NUMBER(8), it can map to a typeof(int[]).
This eliminates the need to construct a class that only holds an int[].

For .NET 2.0, Oracle Collections can be mapped to Nullable types. This allows .NET
2.0 applications to obtain a nullable int[] which can hold null values in the int[].

Note that Oracle UDT attributes and elements cannot be mapped to object or
object[].

Table 3-21 Attribute Mappings Between UDTs and Custom Object Types

Type of UDT Attribute or Element .NET Type ODP.NET Type

BFILE #1 System.Byte[] OracleBFile

BINARY FLOAT System.Byte,
System.Int16,
System.Int32,
System.Int64,
System.Single,
System.Double,
System.Decimal

OracleDecimal

BINARY DOUBLE System.Byte,
System.Int16,
System.Int32,
System.Int64,
System.Single,
System.Double,
System.Decimal

OracleDecimal

BLOB System.Byte[] OracleBlob

CHAR System.Char[],
System.String

OracleString

CLOB System.Char[],
System.String

OracleClob

DATE System.DateTime OracleDate

INTERVAL DAY TO SECOND System.TimeSpan, OracleIntervalDS

INTERVAL YEAR TO MONTH System.Int64 OracleIntervalYM

LONG RAW System.Byte[] OracleBinary

NCHAR System.Char[],
System.String

OracleString

NCLOB System.Char[],
System.String

OracleClob

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-117

Table 3-21 (Cont.) Attribute Mappings Between UDTs and Custom Object
Types

Type of UDT Attribute or Element .NET Type ODP.NET Type

Nested Table custom type, .NET
type[], or custom
type[]

ODP Type[]

NUMBER System.Byte,
System.Int16,
System.Int32,
System.Int64,
System.Single,
System.Double,
System.Decimal

OracleDecimal

NVARCHAR2 System.Char[],
System.String

OracleString

Object Type custom type N/A

RAW System.Byte[] OracleBinary

REF System.String OracleRef

TIMESTAMP System.DateTime OracleTimeStamp

TIMESTAMP WITH LOCAL TIME ZONE System.DateTime OracleTimeStampLTZ

TIMESTAMP WITH TIME ZONE System.DateTime OracleTimeStampTZ

VARCHAR2 System.Char[],
System.String

OracleString

VARRAY custom type, .NET
type[], or custom
type[]

ODP Type[]

Notes:

1. Conversion from a System.Byte[] to a BFILE is not supported, and therefore,
System.Byte[] only represents a BFILE in read-only scenarios.

3.15.6 Oracle UDT Retrieval from OracleDataReader
In order to retrieve Oracle UDTs from the OracleDataReader, an application must
specify a custom type mapping that determines the type that will represent the Oracle
UDT. Once a custom type mapping has been specified and any necessary custom
types have been created, the application can retrieve Oracle UDTs.

Table 3-22 shows the type and value returned from an OracleDataReader object based
on the method invoked, the column type, and whether or not there is a valid Custom
type mapping.

Note:

PS Object refers to a provider-specific object.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-118

Table 3-22 Type and Value Returned from OracleDataReader Object

OracleDataReader method/
property invocation

Column Data
Type

Custom Type
Mapping

Value Returned for
Oracle UDT

NULL Value
Returned for
Oracle UDT

Item[index], Item[name],
GetValue(), GetValues()

Object,
Collection

none Exception thrown Exception thrown

Item[index], Item[name],
GetValue(), GetValues()

Object schema.type custom object DBNull.Value

Item[index], Item[name],
GetValue(), GetValues()

Collection schema.type custom object |
custom object[]
| .NET Type[] | PS
object[]

DBNull.Value

Item[index], Item[name],
GetValue(), GetValues()

REF none | schema.type string (HEX) DBNull.Value

GetString() REF none | schema.type string (HEX) Exception thrown

GetProviderSpecificValue(
),
GetProviderSpecificValue
s(), GetOracleValue(),
GetOracleValues()

Object,
Collection

schema.type custom object custom type.Null

GetProviderSpecificValue(
),
GetProviderSpecificValue
s(), GetOracleValue(),
GetOracleValues()

Collection schema.type custom object[]
| .NET Type[] | PS
object[]

null

GetProviderSpecificValue(
),
GetProviderSpecificValue
s(), GetOracleValue(),
GetOracleValues(),
GetOracleRef()

REF none | schema.type OracleRef OracleRef.Null

GetOracleString() REF none | schema.type OracleString (HEX) OracleString.Nul
l

3.15.7 Oracle UDT Metadata Retrieval from OracleDataReader
An OracleDataReader object can return metadata used to determine the custom type
that represents an Oracle UDT when a .NET Type or Provider-Specific Type accessor
is invoked. The same custom type is used when populating the DataSet using the
OracleDataAdapter.Fill method.

Table 3-23 shows the values returned from the OracleDataReader GetFieldType and
GetProviderSpecificFieldType methods that specify the .NET type of the column.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-119

Table 3-23 Values Returned from OracleDataReader Methods

OracleDataReader
Method/Property
invocation

Column Data
Type

Custom Type
Mapping

Return Value

GetFieldType(index) Object,
Collection

none Exception thrown

GetFieldType(index) Object schema.type typeof(custom type)

GetFieldType(index) Collection schema.type typeof(custom type) |
typeof(custom type[])) |
typeof(.NET type[])) |
typeof(PS type[])

GetFieldType(index) REF none |
schema.type

typeof(string)

GetProviderSpecificField
Type(index)

Object,
Collection

none Exception thrown

GetProviderSpecificField
Type(index)

Object, schema.type typeof(custom type)

GetProviderSpecificField
Type(index)

Collection schema.type typeof(custom type) |
typeof(custom type[])) |
typeof(.NET type[])) |
typeof(PS type[])

GetProviderSpecificField
Type(index)

REF none |
schema.type

typeof(OracleRef)

3.15.8 Oracle UDT Parameter Binding with OracleParameter
This section discusses using UDT output and input parameter bindings with an
OracleParameter object.

See Also:

"Parameter Binding"

This section contains these topics:

• Guidelines for Binding UDT Input and Output Parameters

• UDT Input Parameter Binding with OracleParameters

• UDT Output Parameter Binding with OracleParameters

3.15.8.1 Guidelines for Binding UDT Input and Output Parameters
Developers must consider the following when using UDT parameter bindings with an
OracleParameter object.

• The UdtTypeName property must be set. Binding is based on the UdtTypeName
property regardless of the parameter direction.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-120

Note:

The UdtTypeName may differ from the Oracle UDT specified in the custom
type mapping. This occurs when the parameter type is a super type of the
Oracle UDT that the custom type represents.

• In case of Input/Output binding, the behavior is the same as Input and Output
parameters.

• For Input parameter values, the bind value is converted to the UDT specified by
the custom type mapping.

• For Output parameters:

– If the value being returned is an Oracle Object or Collection, it is converted to
a custom type or array type as specified by the custom type mapping. The
value returned is always a custom type or an array type, regardless of whether
the property most recently set was DbType or OracleDbType.

– If the value being returned is a REF, then no custom type mapping is required.

3.15.8.2 UDT Input Parameter Binding with OracleParameters
Only certain combinations of these OracleParameter property values, DbType,
OracleDbType, and UdtTypeName, can exist on the OracleParameter object.
OracleParameter objects cannot be set to combinations that are not listed.

Table 3-24 describes the valid ways of binding input parameters for Oracle UDTs.

The last column indicates the Oracle type that ODP.NET converts the OracleParameter
value to before binding.

Table 3-24 Valid Ways to Bind Input Parameters for Oracle UDTs

OracleParameter.
Value

OracleParameter.
DbType or
OracleParameter.
OracleDbType

OracleParameter
. UdtTypeName

Custom Type
Mappings

Oracle Type converted to
before Binding

custom object |
custom object[]
|.NET object[] |
PS object[] |
String (HEX) |
OracleString(HEX
) | OracleRef

DbType.Object |
OracleDbType.Object |
OracleDbType.Array |
OracleDbType.Ref |

not set none |
schema.type

Exception thrown

custom object[]
|.NET object[] |
PS object[]

DbType.Object |
OracleDbType.Object |
OracleDbType.Array

schema.type none Exception thrown

custom object DbType.Object schema.type schema.type Specified UDT is
instantiated. Value is
bound as Object or
Collection, based on the
UdtTypeName property

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-121

Table 3-24 (Cont.) Valid Ways to Bind Input Parameters for Oracle UDTs

OracleParameter.
Value

OracleParameter.
DbType or
OracleParameter.
OracleDbType

OracleParameter
. UdtTypeName

Custom Type
Mappings

Oracle Type converted to
before Binding

custom object OracleDbType.Object schema.type schema.type Specified UDT is
instantiated. schema.type
must represent an object.

custom object OracleDbType.Array schema.type schema.type Specified UDT is
instantiated. schema.type
must represent a
collection.

.NET object[] |
PS object[] |
custom object[]

DbType.Object |
OracleDbType.Array

schema.type schema.type UDT specified by
OracleParameter.UdtType
Name is instantiated.

.NET object[] |
PS object[] |
custom object[]

OracleDbType.Object schema.type none |
schema.type

Exception thrown

custom object
|.NET object[] |
PS object[]
custom object[]

OracleDbType.Ref schema.type none |
schema.type

Exception thrown

String (HEX) |
OracleString
(HEX) | OracleRef

DbType.Object |
OracleDbType.Object |
OracleDbType.Array

schema.type none |
schema.type

Exception thrown

Char[] (HEX) |
String (HEX) |
OracleString
(HEX) | OracleRef

OracleDbType.Ref schema.type none |
schema.type

A REF

3.15.8.3 UDT Output Parameter Binding with OracleParameters
Only certain combinations of these OracleParameter property values, DbType,
OracleDbType, and UdtTypeName, can exist on the OracleParameter object.
OracleParameter objects cannot be set to combinations that are not listed.

Table 3-25 shows the supported ODP.NET output parameter bindings of Oracle
database objects.

The last column indicates the type that ODP.NET converts the OracleParameter value
to before binding.

Table 3-25 Valid Ways to Bind Output Parameters for Oracle UDTs

Type returned
from Oracle

OracleParameter. DbType OracleParame
ter.
UdtTypeName

Custom Type
Mappings

Type converted to

Object/
Collection/REF

DbType.Object |
OracleDbType.Object |
OracleDbType.Array |
OracleDbType.Ref

not set none | schema.type Exception thrown

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-122

Table 3-25 (Cont.) Valid Ways to Bind Output Parameters for Oracle UDTs

Type returned
from Oracle

OracleParameter. DbType OracleParame
ter.
UdtTypeName

Custom Type
Mappings

Type converted to

Object/
Collection

DbType.Object |
OracleDbType.Object |
OracleDbType.Array

schema.type none Exception thrown

Object DbType.Object |
OracleDbType.Object

schema.type schema.type custom object

Object OracleDbType.Array |
OracleDbType.Ref

schema.type none | schema.type Exception thrown

Collection OracleDbType.Array |
DbType.Object

schema.type schema.type custom object | custom
object[] | .NET
object[] | PS object[]

Collection OracleDbType.Ref |
OracleDbType.Object

schema.type none | schema.type Exception thrown

REF DbType.Object |
OracleDbType.Object |
OracleDbType.Array

schema.type none | schema.type Exception thrown

REF OracleDbType.Ref schema.type none | schema.type OracleRef

3.15.9 Populating the DataSet with Oracle UDTs
The DataSet is a disconnected result set. With ADO.NET 2.0, both .NET types and
provider-specific types can be used to populate the DataSet. This section describes the
types used to populate the DataSet when the column is an Oracle UDT.

Table 3-26 lists the types that populate the DataSet column, based on the Oracle
column type, the ReturnProviderSpecificTypes property of the DataAdapter, the
existence of a custom type mapping, the DataSet column type, the DataSet column
value, and the DataSet column null value.

Table 3-26 Types that Populate the DataSet with ADO.NET 2.0

Oracle
Column
Type

ReturnProvider-
SpecificTypes
Property

Custom Type
Mappings

DataSet Column Type DataSet Column
Value

DataSet
Column Null
Value

Object /
Collection

False/True none Exception thrown Exception thrown Exception
thrown

Object /
Collection

False schema.type typeof(custom type) custom object DbNull.Value

Object /
Collection

True schema.type typeof(custom type) custom object custom
object.Null

Collection False schema.type typeof(custom
type[])| typeof(.NET
type[]) | typeof(PS
type[])

.NET type[] | PS
object[] | custom
object[]

DbNull.Value

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-123

Table 3-26 (Cont.) Types that Populate the DataSet with ADO.NET 2.0

Oracle
Column
Type

ReturnProvider-
SpecificTypes
Property

Custom Type
Mappings

DataSet Column Type DataSet Column
Value

DataSet
Column Null
Value

Collection True schema.type typeof(custom
type[])| typeof(.NET
type[]) | typeof(PS
type[])

.NET type[] | PS
object[] | custom
object[]

null

REF False none |
schema.type

typeof(string) string/HEX DbNull.Value

REF True none |
schema.type

typeof(OracleRef) OracleRef OracleRef.Nu
ll

3.15.10 UDT Method Invocation
ODP.NET supports invocation of methods defined for a UDT on the database. This
can be accomplished by doing the following:

1. Set the CommandType as CommandType.StoredProcedure.

2. Set the CommandText as "type_name.procedure_name"

3. Execute the command using any of the Execute methods on the OracleCommand
object.

For instance functions, the parameters are as follows:

• The first parameter must be the return value.

• The second parameter must be the UDT instance on which the instance method is
invoked, which is the instance of the .NET custom object.

• Subsequent parameters are for the function.

For instance procedures, the first parameter must be the UDT instance.

For static methods, the UDT instance is not needed.

3.15.11 Configuration Settings for Oracle UDTs
ODP.NET exposes two configuration settings to determine how ODP.NET handles
Oracle UDTs.

• StatementCacheWithUdts

• UdtCacheSize

These configuration settings can be specified as machine-wide settings for a particular
version of ODP.NET, using the registry key with the name that exists under
HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE\ODP.NET\Assembly_Version. The configuration
settings specified in the registry can be overridden if an entry is created in the
machine.config for .NET framework-wide settings, or in the app.config or web.config for
application-specific settings.

Chapter 3
Oracle User-Defined Types (UDTs) and .NET Custom Types

3-124

3.15.11.1 StatementCacheWithUdts
StatementCacheWithUdts specifies whether or not ODP.NET caches Oracle UDTs
retrieved by a SELECT statement along with the statement when it is returned to the
statement cache. Possible values are 1 - Yes (the default) or 0 - No.

For the value of 1, the Oracle UDTs are cached along with the statements. Therefore,
the memory that contained the UDTs can be re-used; subsequent executions of the
same statement do not require additional memory. This may result in an overall higher
performance.

For the value of 0, ODP.NET frees the memory for the retrieved Oracle UDTs before
the statement is returned to the statement cache. This may result in poorer
performance because subsequent executions will require new memory allocations.

3.15.11.2 UdtCacheSize
UdtCacheSize specifies the size of the object cache for each connection that ODP.NET
uses when retrieving and manipulating Oracle UDTs. The value for this setting must
be specified in kilobytes (KB) with the default 4096KB, equivalent to 4 MB.

This configuration setting is used to determine how frequently the objects in the object
cache will be purged (using an LRU approach) as the limit of the object cache size
approaches.

3.16 Bulk Copy
ODP.NET provides a Bulk Copy feature which enables applications to efficiently load
large amounts of data from a table in one database to another table in the same or a
different database.

The ODP.NET Bulk Copy feature uses a direct path load approach, which is similar to,
but not the same as Oracle SQL*Loader. Using direct path load is faster than
conventional loading (using conventional SQL INSERT statements). Conventional
loading formats Oracle data blocks and writes the data blocks directly to the data files.
Bulk Copy eliminates considerable processing overhead.

The ODP.NET Bulk Copy feature can load data into older Oracle databases.

Note:

ODP.NET, Managed Driver does not support Bulk Copy.

The ODP.NET Bulk Copy feature is subject to the same basic restrictions and integrity
constraints for direct path loads, as discussed in the next few sections.

3.16.1 Data Types Supported by Bulk Copy
Bulk Copy supports the following Oracle database data types:

• NUMBER

Chapter 3
Bulk Copy

3-125

• BINARY_DOUBLE

• BINARY_FLOAT

• CHAR

• NCHAR

• VARCHAR2

• NVARCHAR2

• LONG

• CLOB

• BLOB

• DATE

• TIMESTAMP

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

Bulk copy does not support overwrites.

3.16.2 Restrictions on Oracle Bulk Copy of a Single Partition
• The table that contains the partition cannot have any global indexes defined on it.

• The tables that the partition is a member of cannot have referential and check
constraints enabled.

• Enabled triggers are not allowed.

3.16.3 Integrity Constraints Affecting Oracle Bulk Copy
During a Oracle bulk copy, some integrity constraints are automatically enabled or
disabled, as follows:

Enabled Constraints

During an Oracle bulk copy, the following constraints are automatically enabled by
default:

• NOT NULL

• UNIQUE

• PRIMARY KEY (unique-constraints on not-null columns)

NOT NULL constraints are checked at column array build time. Any row that violates the
NOT NULL constraint is rejected.

UNIQUE constraints are verified when indexes are rebuilt at the end of the load. The
index is left in an Index Unusable state if it violates a UNIQUE constraint.

Chapter 3
Bulk Copy

3-126

Disabled Constraints

During an Oracle bulk copy, the following constraints are automatically disabled by
default:

• CHECK constraints

• Referential constraints (FOREIGN KEY)

If the EVALUATE CHECK_CONSTRAINTS clause is specified, then CHECK constraints are not
automatically disabled. The CHECK constraints are evaluated during a direct path load
and any row that violates the CHECK constraint is rejected.

3.16.4 Database Insert Triggers
Table insert triggers are disabled when a direct path load begins. After the rows are
loaded and indexes rebuilt, any triggers that were disabled are automatically
reenabled. The log file lists all triggers that were disabled for the load. There should be
no errors reenabling triggers.

Unlike integrity constraints, insert triggers are not reapplied to the whole table when
they are enabled. As a result, insert triggers do not fire for any rows loaded on the
direct path. When using the direct path, the application must ensure that any behavior
associated with insert triggers is carried out for the new rows.

3.16.5 Field Defaults
Default column specifications defined in the database are not available with direct path
loading. Fields for which default values are desired must be specified with the
DEFAULTIF clause. If a DEFAULTIF clause is not specified and the field is NULL, then a null
value is inserted into the database.

3.17 Oracle Database Advanced Queuing Support
Oracle Database Advanced Queuing (AQ) provides database-integrated message
queuing functionality. Oracle Database AQ is built on top of Oracle Streams and
leverages the functions of Oracle Database so that messages can be stored
persistently, propagated between queues on different computers and databases, and
transmitted using Oracle Net Services and HTTP(S).

Note:

ODP.NET, Managed Driver does not support the AQ .NET classes.

As Oracle Database AQ is implemented in database tables, all operational benefits of
high availability, scalability, and reliability are also applicable to queue data. Oracle
Database AQ supports standard database features such as recovery, restart, and
security.

The following items discuss Oracle Database AQ concepts:

• Queues and Queue Tables

Chapter 3
Oracle Database Advanced Queuing Support

3-127

Messages enqueued in a queue are stored in a queue table. A queue table must
be created before creating a queue based on it. Use the DBMS_AQADM PL/SQL
package or Oracle Developer Tools for Visual Studio to create and administer
queue tables and queues.

Queues are represented by OracleAQQueue objects.

• Single-Consumer and Multiple-Consumer Queues

A single-consumer queue is created based on a single consumer queue table.
Messages enqueued in a single-consumer queue can be dequeued by only a
single consumer.

A multiple-consumer queue is based on a multiple-consumer queue table. This
queue supports queue subscribers and message recipients.

• Message Recipients

A message producer can submit a list of recipients when enqueuing a message.
This allows for a unique set of recipients for each message in the queue. The
recipient list associated with the message overrides the subscriber list, if any,
associated with the queue. The recipients need not be in the subscriber list.
However, recipients can be selected from among the subscribers.The Recipients
property of an OracleAQMessage can be used to specify the recipients to a specific
message in terms of OracleAQAgent objects.

• Enqueue

Messages are enqueued when producer applications push the messages into a
queue. This is accomplished by calling the Enqueue method on an OracleAQQueue
object. Multiple messages can be enqueued using the EnqueueArray method.

• Dequeue

Messages are dequeued when consumer applications pull the messages from a
queue. This is accomplished by calling the Dequeue method on an OracleAQQueue
object. Multiple messages can be dequeued using the DequeueArray method.

• Listen

Subscriber applications can use a Listen call to monitor multiple queues for
subscriptions on different queues. This is a more scalable solution for cases where
a subscriber application has subscribed to many queues and wishes to receive
messages that arrive in any of the queues.This is accomplished by calling the
Listen method of the OracleAQQueue class, passing the list of subscriptions in form
of an array.

• Notification

Subscriber applications can utilize the notification mechanism to get notifications
about message availability in a queue. The applications can decide to skip or
dequeue the message from the queue based on the information received.

A subscriber application must register for event notification on the queues from
which it wants to receive notifications. This is represented by the MessageAvailable
event on OracleAQQueue. The event is triggered when messages matching the
subscriptions arrive.

Notifications can be registered as regular or grouping notifications. A time out
value for these notifications can also be specified. Various notification options can
be set using the OracleAQQueue.Notification property. Notifications set on an
OracleAQQueue object gets cancelled automatically when the object gets disposed.

Chapter 3
Oracle Database Advanced Queuing Support

3-128

• Buffered Messaging

In buffered messaging, messages reside in a shared memory area. This makes it
faster than persistent messaging. The messages are written to disk only when the
total memory consumption of buffered messages approaches the available shared
memory limit. Buffered messaging is ideal for applications that do not require the
reliability and transaction support of Oracle Database AQ persistent messaging.

Buffered and persistent messages use the same single-consumer or multi-
consumer queues, and the same administrative and operational interfaces. They
are distinguished from each other by a delivery mode parameter. When an
application enqueues a message to an Oracle Database AQ queue, it sets the
delivery mode parameter as well.

The delivery mode parameter can be set on OracleAQMessage by modifying the
DeliveryMode property. Buffered messaging is supported in all queue tables
created with compatibility 8.1 or higher.

3.17.1 Using ODP.NET for Advanced Queuing
.NET applications can use ODP.NET to access all the operational features of AQ such
as Enqueuing, Dequeuing, Listen, and Notification.

Table 3-27 maps the AQ features to their corresponding ODP.NET implementation.

Table 3-27 Mapping AQ Features with their ODP.NET Implementation

Functionality ODP.NET Implementation

Create a Message Create an OracleAQMessage object

Enqueue a single message Specify the message as OracleAQMessage, queue as
OracleAQQueue and enqueue options on OracleAQQueue, call
OracleAQQueue.Enqueue

Enqueue multiple messages Specify the messages as an OracleAQMessage array in
OracleAQQueue.EnqueueArray

Dequeue a single message Specify dequeue options on OracleAQQueue and call
OracleAQQueue.Dequeue

Dequeue multiple messages Call OracleAQQueue.DequeueArray

Listen for messages on
Queue(s)

Call OracleAQQueue.Listen.To listen on multiple queues use
static Listen method of OracleAQQueue

Message Notifications Use OracleAQQueue.MessageAvailable Event along with the
NotificationConsumers property

Note:

AQ samples are provided in the ORACLE_BASE\ORACLE_HOME\ODP.NET\Samples
directory.

Chapter 3
Oracle Database Advanced Queuing Support

3-129

3.17.1.1 Enqueuing and Dequeuing Example
The following example demonstrates enqueuing and dequeuing messages using a
single consumer queue. The first part of the example performs the requisite database
setup for the database user, SCOTT. The second part of the example demonstrates
enqueuing and dequeuing messages.

-- Part I: Database setup required for this demo

--
-- SQL to grant appropriate privilege to database user, SCOTT
--
SQL> ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY Pwd4Sct;
User altered.
SQL> GRANT ALL ON DBMS_AQADM TO scott;

--
-- PL/SQL to create queue-table and queue and start queue for SCOTT
--
BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'scott.test_q_tab',
 queue_payload_type=>'RAW',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'scott.test_q',
 queue_table=>'scott.test_q_tab');

 DBMS_AQADM.START_QUEUE(queue_name=>'scott.test_q');
END;
/

--
-- PL/SQL to stop queue and drop queue & queue-table from SCOTT
--
BEGIN
 DBMS_AQADM.STOP_QUEUE('scott.test_q');

 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'scott.test_q',
 auto_commit => TRUE);

 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'scott.test_q_tab',
 force => FALSE,
 auto_commit => TRUE);
END;
/
-- End of Part I, database setup.

//Part II: Enqueuing and dequeuing messages
//C#
using System;
using System.Text;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

namespace ODPSample

Chapter 3
Oracle Database Advanced Queuing Support

3-130

{
 /// <summary>
 /// Demonstrates Enqueuing and Dequeuing raw message
 /// using a single consumer queue
 /// </summary>
 class EnqueueDequeue
 {
 static void Main(string[] args)
 {
 // Create connection
 string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
 OracleConnection con = new OracleConnection(constr);

 // Create queue
 OracleAQQueue queue = new OracleAQQueue("scott.test_q", con);

 try
 {
 // Open connection
 con.Open();

 // Begin txn for enqueue
 OracleTransaction txn = con.BeginTransaction();

 // Set message type for the queue
 queue.MessageType = OracleAQMessageType.Raw;

 // Prepare message and RAW payload
 OracleAQMessage enqMsg = new OracleAQMessage();
 byte[] bytePayload = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 enqMsg.Payload = bytePayload;

 // Prepare to Enqueue
 queue.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

 // Enqueue message
 queue.Enqueue(enqMsg);

 Console.WriteLine("Enqueued Message Payload : "
 + ByteArrayToString(enqMsg.Payload as byte[]));
 Console.WriteLine("MessageId of Enqueued Message : "
 + ByteArrayToString(enqMsg.MessageId));

 // Enqueue txn commit
 txn.Commit();

 // Begin txn for Dequeue
 txn = con.BeginTransaction();

 // Prepare to Dequeue
 queue.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 queue.DequeueOptions.Wait = 10;

 // Dequeue message
 OracleAQMessage deqMsg = queue.Dequeue();

 Console.WriteLine("Dequeued Message Payload : "
 + ByteArrayToString(deqMsg.Payload as byte[]));
 Console.WriteLine("MessageId of Dequeued Message : "
 + ByteArrayToString(deqMsg.MessageId));

Chapter 3
Oracle Database Advanced Queuing Support

3-131

 // Dequeue txn commit
 txn.Commit();
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 finally
 {
 // Close/Dispose objects
 queue.Dispose();
 con.Close();
 con.Dispose();
 }
 }

 // Function to convert byte[] to string
 static private string ByteArrayToString(byte[] byteArray)
 {
 StringBuilder sb = new StringBuilder();
 for (int n = 0; n < byteArray.Length; n++)
 {
 sb.Append((int.Parse(byteArray[n].ToString())).ToString("X"));
 }
 return sb.ToString();
 }
 }
}

3.18 Continuous Query Notification Support
Oracle Data Provider for .NET provides a notification framework that supports
Continuous Query Notification, enabling applications to receive client-side notifications
when there is a change in a query result set, schema objects, or the state of the
database, even if no Oracle Data Provider for .NET database connection exists. Using
Continuous Query Notification, an application can maintain the validity of the client-
side cache (for example, the ADO.NET DataSet) easily. Continuous Query Notification
was previously known as Database Change Notification.

Note:

Continuous Query Notification is not supported in a .NET stored procedure.

Using the notification framework, applications can specify a query result set as a
registered query for notification request on the database, and create this notification
registration to maintain the validity of the query result set. When there is a change on
the database that could affect the client-side cache's query results, the notification
framework notifies the application.

Chapter 3
Continuous Query Notification Support

3-132

Note:

The content of a change notification is referred to as an invalidation message. It
indicates that the query result set is now invalid and provides information about
the changes.

Based on the information provided by the invalidation message, the application can
then act accordingly. For example, the application might need to refresh its own copy
of the data for the registered query that is stored locally in the application.

Note:

If a registered object is dropped from the database and a new one is created
with the same name in the same schema, re-registration is required to receive
notifications for the newly created object.

See Also:

Firewalls, such as Windows Firewall, may be set up to block TCP network ports, which
blocks incoming database notifications. Ensure the firewall is configured so that
database applications can use the designated port for Continuous Query Notification.

Beginning with Oracle Database 11g and ODP.NET 11g (11.1), Continuous Query
Notification queries can be query-based (default) or object-based. The query-based
registrations allow ODP.NET to notify applications when the selected rows have
changed in the database. The object-based registrations allow ODP.NET to notify
applications for any changes that occur in the table(s) containing the selected rows.

Query-based registrations have two modes: guaranteed mode and best-effort mode. In
guaranteed mode, any continuous query notification ensures that a change occurred
to something contained in the queried result set. However, if a query is complex, then
it cannot be registered in guaranteed mode. Best-effort mode is used in such cases.

Best-effort mode simplifies the query for query-based registration. No notifications are
lost from the simplification. However, the simplification may cause false positives, as
the simpler version's query result could change when the original query result would
not.There still remain some restrictions on which queries can have best-effort mode
query-based registrations. In such cases, developers can use object-based
registrations, which can register most query types. Object-based registrations
generate notifications when the query object changes, even if the actual query result
does not. This also means that object-based registrations are more prone to false
positives than query-based registrations. Developers should be aware of the relative
strengths and weaknesses of each continuous query notification option and choose
the one that best suits their requirements.

If a large number of rows are modified at once, consuming significant shared pool
resources, the application will not receive any change notifications with specific row

Chapter 3
Continuous Query Notification Support

3-133

information that had undergone changes. Rather, it will receive a notification with
OracleNotificationEventArgs.Info property set to OracleNotificationInfo.Error.

This section contains the following topics:

• Continuous Query Notification Classes

• Supported Operations

• Requirements of Notification Registration

• Using Continuous Query Notification

• Best Practice Guidelines and Performance Considerations

3.18.1 Continuous Query Notification Classes
The following classes are associated with Continuous Query Notification Support:

• OracleDependency

Represents a dependency between an application and an Oracle database based
on the database events which the application is interested in. It contains
information about the dependency and provides the mechanism to notify the
application when specified database events occurs. The OracleDependency class is
also responsible for creating the notification listener to listen for database
notifications. There is only one database notification listener for each application
domain. This notification listener terminates when the application process
terminates.

The dependency between the application and the database is not established
when the OracleDependency object is created. The dependency is established when
the command that is associated with this OracleDependency object is executed. That
command execution creates a continuous query notification registration in the
database.

When a change has occurred in the database, the HasChanges property of the
OracleDependency object is set to true. Furthermore, if an event handler was
registered with the OnChange event of the OracleDependency object, the registered
event handler function will be invoked.

• OracleNotificationRequest

Represents a notification request to be registered in the database. It contains
information about the request and the properties of the notification.

• OracleNotificationEventArgs

Represents the invalidation message generated for a notification when a specified
database event occurs and contains details about that database event.

See Also:

– "OracleDependency Class"

– "OracleNotificationRequest Class"

– "OracleNotificationEventArgs Class"

Chapter 3
Continuous Query Notification Support

3-134

3.18.2 Supported Operations
The ODP.NET notification framework in conjunction with Continuous Query
Notification supports the following activities:

• Creating a notification registration by:

– Creating an OracleDependency instance and binding it to an OracleCommand
instance.

• Grouping multiple notification requests into one registration by:

– Using the OracleDependency.AddCommandDependency method.

– Setting the OracleCommand.Notification request using the same
OracleNotificationRequest instance.

• Registering for Continuous Query Notification by:

– Executing the OracleCommand. If either the notification property is null or
NotificationAutoEnlist is false, the notification will not be made.

• Removing notification registration by:

– Using the OracleDependency.RemoveRegistration method.

– Setting the Timeout property in the OracleNotificationRequest instance before
the registration is created.

– Setting the IsNotifiedOnce property to true in the OracleNotificationRequest
instance before the registration is created. The registration is removed once a
database notification is sent.

• Ensuring Change Notification Persistence by:

– Specifying whether or not the invalidation message is queued persistently in
the database before delivery. If an invalidation message is to be stored
persistently in the database, then the change notification is guaranteed to be
sent. If an invalidation message is stored in an in-memory queue, the change
notification can be received faster, however, it could be lost upon database
shutdown or crashes.

• Retrieving notification information including:

– The changed object name.

– The schema name of the changed object.

– Database events that cause the notification, such as insert, delete, and so on.

– The RowID of the modified object row.

In Oracle SQL, the ROWIDTOCHAR(ROWID) and ROWIDTONCHAR(ROWID) functions
convert a ROWID value to VARCHAR2 and NVARCHAR data types, respectively. If
these functions are used within a SQL statement, ROWIDs are not returned in
the OracleNotificationEventArgs object that is passed to the continuous query
notification callback.

• Defining the listener port number.

By default, the static OracleDependency.Port property is set to -1. This indicates that
the ODP.NET listens on a port that is randomly picked when ODP.NET registers a
continuous query notification request for the first time during the execution of an
application.

Chapter 3
Continuous Query Notification Support

3-135

ODP.NET creates only one listener that listens on one port within an application
domain. Once ODP.NET starts the listener, the port number cannot be changed;
Changes to the static OracleDependency.Port property will generate an error if a
listener has already been created.

3.18.3 Requirements of Notification Registration
The connected user must have the CHANGE NOTIFICATION privilege to create a notification
registration.

This SQL statement grants the CHANGE NOTIFICATION privilege:

grant change notification to user name

This SQL statement revokes the CHANGE NOTIFICATION privilege:

revoke change notification from user name

3.18.4 Using Continuous Query Notification
This section describes what the application should do, and the flow of the process,
when an application uses Continuous Query Notification to receive notifications for any
changes in the registered query result set.

3.18.4.1 Application Steps
The application should do the following:

1. Create an OracleDependency instance.

2. Assign an event handler to the OracleDependency.OnChange event property if the
application wishes to have an event handler invoked when database changes are
detected. Otherwise, the application can choose to poll on the HasChanges property
of the OracleDependency object. This event handler is invoked when the change
notification is received.

3. Set the port number for the listener to listen on. The application can specify the
port number for one notification listener to listen on. If the application does not
specify a port number, a random one is used by the listener.

4. Bind the OracleDependency instance to an OracleCommand instance that contains the
actual query to be executed. Internally, the Continuous Query Notification request
(an OracleNotificationRequest instance) is created and assigned to the
OracleCommand.Notification property.

3.18.4.2 Flow of Notification Process
1. When the command associated with the notification request is executed, the

notification registration is created in the database. The command execution must
return a result set, or contain one or more REF cursors for a PL/SQL stored
procedure.

2. ODP.NET starts the application listener on the first successful notification
registration.

3. When a change related to the registration occurs in the database, the application
is notified through the event delegate assigned to the OracleDependency.OnChange

Chapter 3
Continuous Query Notification Support

3-136

event property, or the application can poll the OracleDependency.HasChanges
property.

The following example demonstrates the continuous query notification feature.

// Database Setup
// NOTE: unless the following SQL command is executed,
// ORA-29972 will be obtained from running this sample
/*
grant change notification to scott;
*/
using System;
using System.Threading;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

//This sample shows the continuous query notification feature in ODP.NET.
//Application specifies to get a notification when emp table is updated.
//When emp table is updated, the application will get a notification
//through an event handler.
namespace NotificationSample
{
 public class MyNotificationSample
 {
 public static bool IsNotified = false;

 public static void Main(string[] args)
 {
 //To Run this sample, make sure that the change notification privilege
 //is granted to scott.
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = null;
 OracleDependency dep = null;

 try
 {
 con = new OracleConnection(constr);
 OracleCommand cmd = new OracleCommand("select * from emp", con);
 con.Open();

 // Set the port number for the listener to listen for the notification
 // request
 OracleDependency.Port = 1005;

 // Create an OracleDependency instance and bind it to an OracleCommand
 // instance.
 // When an OracleDependency instance is bound to an OracleCommand
 // instance, an OracleNotificationRequest is created and is set in the
 // OracleCommand's Notification property. This indicates subsequent
 // execution of command will register the notification.
 // By default, the notification request is using the Database Change
 // Notification.
 dep = new OracleDependency(cmd);

 // Add the event handler to handle the notification. The
 // OnMyNotification method will be invoked when a notification message
 // is received from the database
 dep.OnChange +=
 new OnChangeEventHandler(MyNotificationSample.OnMyNotificaton);

 // The notification registration is created and the query result sets

Chapter 3
Continuous Query Notification Support

3-137

 // associated with the command can be invalidated when there is a
 // change. When the first notification registration occurs, the
 // notification listener is started and the listener port number
 // will be 1005.
 cmd.ExecuteNonQuery();

 // Updating emp table so that a notification can be received when
 // the emp table is updated.
 // Start a transaction to update emp table
 OracleTransaction txn = con.BeginTransaction();
 // Create a new command which will update emp table
 string updateCmdText =
 "update emp set sal = sal + 10 where empno = 7782";
 OracleCommand updateCmd = new OracleCommand(updateCmdText, con);
 // Update the emp table
 updateCmd.ExecuteNonQuery();
 //When the transaction is committed, a notification will be sent from
 //the database
 txn.Commit();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }

 con.Close();
 // Loop while waiting for notification
 while(MyNotificationSample.IsNotified == false)
 {
 Thread.Sleep(100);
 }
 }

 public static void OnMyNotificaton(object src,
 OracleNotificationEventArgs arg)
 {
 Console.WriteLine("Notification Received");
 DataTable changeDetails = arg.Details;
 Console.WriteLine("Data has changed in {0}",
 changeDetails.Rows[0]["ResourceName"]);
 MyNotificationSample.IsNotified = true;
 }
 }
}

3.18.5 Best Practice Guidelines and Performance Considerations
This section provides guidelines for working with Continuous Query Notification and
the ODP.NET notification framework, and discusses the performance impacts.Every
change notification registration consumes database memory, storage or network
resources, or some combination thereof. The resource consumption further depends
on the volume and size of the invalidation message. In order to scale well with a large
number of mid-tier clients, Oracle recommends that the client implement these best
practices:

• Few and mostly read-only tables

There should be few registered objects, and these should be mostly read-only,
with very infrequent invalidations. If an object is extremely volatile, then a large
number of invalidation notifications are sent, potentially requiring a lot of space (in

Chapter 3
Continuous Query Notification Support

3-138

memory or on disk) in the invalidation queue. This is also true if a large number of
objects are registered.

• Few rows updated for each table

Transactions should update (or insert or delete) only a small number of rows within
the registered tables. Depending on database resources, a whole table could be
invalidated if too many rows are updated within a single transaction, for a given
table.

This policy helps to contain the size of a single invalidation message, and reduces
disk storage for the invalidation queue.

3.19 OracleDataAdapter Safe Type Mapping
The ODP.NET OracleDataAdapter class provides the Safe Type Mapping feature to
ensure that the following Oracle data types do not lose data when converted to their
closely related .NET types in the DataSet:

• NUMBER

• DATE

• TimeStamp (refers to all TimeStamp objects)

• INTERVAL DAY TO SECOND

Note:

ODP.NET, Managed Driver does not support Safe Type Mapping.

This section includes the following topics:

• Comparison Between Oracle Data Types and .NET Types

• SafeMapping Property

3.19.1 Comparison Between Oracle Data Types and .NET Types
The following sections provide more details about the differences between the Oracle
data types and the corresponding .NET types. In general, the Oracle data types allow
a greater degree of precision than the .NET types do.

Oracle NUMBER Type to .NET Decimal Type

The Oracle data type NUMBER can hold up to 38 precision, and the .NET Decimal type
can hold up to 28 precision. If a NUMBER data type that has more than 28 precision is
retrieved into a .NET Decimal type, it loses precision.

Table 3-28 lists the maximum and minimum values for Oracle NUMBER and .NET Decimal
types.

Chapter 3
OracleDataAdapter Safe Type Mapping

3-139

Table 3-28 Oracle NUMBER to .NET Decimal Comparisons

Value
Limits

Oracle NUMBER .NET Decimal

Maximum 9.99999999999999999999999999999999
99999 e125

79,228,162,514,264,337,593,543,950,
335

Minimum -9.9999999999999999999999999999999
999999 e125

-79,228,162,514,264,337,593,543,950,
335

Oracle Date Type to .NET DateTime Type

The Oracle data type DATE can represent dates in BC whereas the .NET DateTime type
cannot. If a DATE that goes to BC get retrieved into a .NET DateTime type, it loses data.

Table 3-29 lists the maximum and minimum values for Oracle Date and .NET DateTime
types.

Table 3-29 Oracle Date to .NET DateTime Comparisons

Value
Limits

Oracle Date .NET DateTime

Maximum Dec 31, 9999 AD Dec 31, 9999 AD 23:59:59.9999999

Minimum Jan 1, 4712 BC Jan 1, 0001 AD 00:00:00.0000000

Oracle TimeStamp Type to .NET DateTime Type

Similar to the DATE data type, the Oracle TimeStamp data type can represent a date in
BC, and a .NET DateTime type cannot. If a TimeStamp that goes to BC is retrieved into
a.NET DateTime type, it loses data. The Oracle TimeStamp type can represent values in
units of e-9; the .NET DateTime type can represent only values in units of e-7. The
Oracle TimeStamp with time zone data type can store time zone information, and
the .NET DateTime type cannot.

Table 3-30 lists the maximum and minimum values for Oracle TimeStamp and .NET
DateTime types.

Table 3-30 Oracle TimeStamp to .NET DateTime Comparisons

Value
Limits

Oracle TimeStamp .NET DateTime

Maximum Dec 31, 9999 AD 23:59:59.999999999 Dec 31, 9999 AD 23:59:59.9999999

Minimum Jan 1, 4712 BC 00:00:00.000000000 Jan 1, 0001 AD 00:00:00.0000000

Oracle INTERVAL DAY TO SECOND to .NET TimeSpan

The Oracle data type INTERVAL DAY TO SECOND can hold up to 9 precision, and the .NET
TimeSpan type can hold up to 7 precision. If an INTERVAL DAY TO SECOND data type that
has more than 7 precision is retrieved into a .NET TimeSpan type, it loses precision.
The Oracle INTERVAL DAY TO SECOND type can represent values in units of e-9, and
the .NET TimeSpan type can represent only values in units of e-7.

Chapter 3
OracleDataAdapter Safe Type Mapping

3-140

Table 3-31 lists the maximum and minimum values for Oracle INTERVAL DAY TO SECOND
and .NET DateTime types.

Table 3-31 Oracle INTERVAL DAY TO SECOND to .NET TimeSpan
Comparisons

Value
Limits

Oracle INTERVAL DAY TO SECOND .NET TmeSpan

Maximum +999999999 23:59:59.999999999 +10675199 02:48:05.4775807

Minimum -999999999 23:59:59.999999999 -10675199 02:48:05.4775808

3.19.2 SafeMapping Property
The OracleDataAdapter Safe Type Mapping feature prevents data loss when populating
Oracle data for any of these types into a .NET DataSet. By setting the SafeMapping
property appropriately, these types can be safely represented in the DataSet, as either
of the following:

• .NET byte[] in Oracle format

• .NET String

By default, Safe Type Mapping is disabled.

3.19.2.1 Using Safe Type Mapping
To use the Safe Type Mapping feature, the OracleDataAdapter.SafeMapping property
must be set with a hash table of key-value pairs. The key-value pairs must map
database table column names (of type string) to a .NET type (of type Type). ODP.NET
supports Safe Type Mapping to byte[] and String types. Any other type mapping
causes an exception.

In situations where the column names are not known at design time, an asterisk ("*")
can be used to map all occurrences of database types to a safe .NET type. If both the
valid column name and the asterisk are present, the column name is used.

Note:

• Database table column names are case-sensitive.

• Column names in the hash table that correspond to invalid column names
are ignored.

Safe Type Mapping as a string is more readable without further conversion.
Converting certain Oracle data types to a string requires extra conversion, which can
be slower than converting it to a byte[]. Conversion of .NET strings back to ODP.NET
types relies on the formatting information of the session.

SafeTyping Example

// C#

Chapter 3
OracleDataAdapter Safe Type Mapping

3-141

using System;
using System.Data;
using Oracle.DataAccess.Client;

class SafeMappingSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";

 // In this SELECT statement, EMPNO, HIREDATE and SALARY must be
 // preserved using safe type mapping.
 string cmdstr = "SELECT EMPNO, ENAME, HIREDATE, SAL FROM EMP";

 // Create the adapter with the selectCommand txt and the connection string
 OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

 // Get the connection from the adapter
 OracleConnection connection = adapter.SelectCommand.Connection;

 // Create the safe type mapping for the adapter
 // which can safely map column data to byte arrays, where
 // applicable. By executing the following statement, EMPNO, HIREDATE AND
 // SALARY columns will be mapped to byte[]
 adapter.SafeMapping.Add("*", typeof(byte[]));

 // Map HIREDATE to a string
 // If the column name in the EMP table is case-sensitive,
 // the safe type mapping column name must be case-sensitive.
 adapter.SafeMapping.Add("HIREDATE", typeof(string));

 // Map EMPNO to a string
 // If the column name in the EMP table is case-sensitive,
 // the safe type mapping column name must also be case-sensitive.
 adapter.SafeMapping.Add("EMPNO", typeof(string));
 adapter.SafeMapping.Add("SAL", typeof(string));

 // Create and fill the DataSet using the EMP
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "EMP");

 // Get the EMP table from the dataset
 DataTable table = dataset.Tables["EMP"];

 // Get the first row from the EMP table
 DataRow row = table.Rows[0];

 // Print out the row info
 Console.WriteLine("EMPNO Column: type = " + row["EMPNO"].GetType() +
 "; value = " + row["EMPNO"]);
 Console.WriteLine("ENAME Column: type = " + row["ENAME"].GetType() +
 "; value = " + row["ENAME"]);
 Console.WriteLine("HIREDATE Column: type = " + row["HIREDATE"].GetType()+
 "; value = " + row["HIREDATE"]);
 Console.WriteLine("SAL Column: type = " + row["SAL"].GetType() +
 "; value = " + row["SAL"]);
 }
}

Chapter 3
OracleDataAdapter Safe Type Mapping

3-142

3.20 OracleDataAdapter Requery Property
The OracleDataAdapter Requery property controls whether or not queries are reexecuted
for OracleDataAdapter Fill calls after the initial Fill call.

The OracleDataAdapter Fill method allows appending or refreshing data in the DataSet.
When appending the DataSet using the same query with subsequent Fill calls,
reexecuting the query may not be desirable.

When the Requery property is set to true, each subsequent Fill call reexecutes the
query and fills the DataSet. This is an expensive operation, and if the reexecution is not
required, set Requery to false. If any of the SelectCommand properties or associated
parameters must be changed, Requery must be set to true.

When the Requery property is set to false, the DataSet has all the data as a snapshot at
a particular time. The query is executed only for the first Fill call; subsequent Fill
calls fetch the data from a cursor opened with the first execution of the query. This
feature is supported only for forward-only fetches. Fill calls that try to fetch rows
before the last fetched row raise an exception. The connection used for the first Fill
call must be available for subsequent Fill calls.

When filling a DataSet with an OracleRefCursor object, the Requery property can be used
in a similar manner. When the Requery property is set to false, both the connection
used for the first Fill call and the OracleRefCursor object must be available for the
subsequent Fill calls.

3.21 Guaranteeing Uniqueness in Updating DataSet to
Database

This section describes how the OracleDataAdapter object configures the PrimaryKey and
Constraints properties of the DataTable object which guarantee uniqueness when the
OracleCommandBuilder object is updating DataSet changes to the database.

Using the OracleCommandBuilder object to dynamically generate DML statements to be
executed against the database is one of the ways to reconcile changes made in a
single DataTable object with the database.

In this process, the OracleCommandBuilder object must not be allowed to generate DML
statements that may affect (update or delete) more that a single row in the database
when reconciling a single DataRow change. Otherwise the OracleCommandBuilder could
corrupt data in the database.

To guarantee that each DataRow object change affects only a single row, there must be
a set of DataColumn objects in the DataTable for which all rows in the DataTable have a
unique set of values. The set of DataColumn objects indicated by the properties
DataTable.PrimaryKey and DataTable.Constraints meets this requirement. The
OracleCommandBuilder object determines uniqueness in the DataTable by checking if the
DataTable.PrimaryKey is not a null value or if there exists a UniqueConstraint object in
the DataTable.Constraints collection.

This discussion first explains what constitutes uniqueness in DataRow objects and then
explains how to maintain that uniqueness while updating, through the DataTable
property configuration.

Chapter 3
OracleDataAdapter Requery Property

3-143

This section includes the following topics:

• What Constitutes Uniqueness in DataRow Objects?

• Configuring PrimaryKey and Constraints Properties

• Updating Without PrimaryKey and Constraints Configuration

3.21.1 What Constitutes Uniqueness in DataRow Objects?
This section describes the minimal conditions that must be met to guarantee
uniqueness of DataRow objects. The condition of uniqueness must be guaranteed
before the DataTable.PrimaryKey and DataTable.Constraints properties can be
configured, as described in the next section.

Uniqueness is guaranteed in a DataTable object if any one of the following is true:

• All the columns of the primary key are in the select list of the
OracleDataAdapter.SelectCommand property.

• All the columns of a unique constraint are in the select list of the
OracleDataAdapter.SelectCommand property, with at least one involved column
having a NOT NULL constraint defined on it.

• All the columns of a unique index are in the select list of the
OracleDataAdapter.SelectCommand property, with at least one of the involved
columns having a NOT NULL constraint defined on it.

• A ROWID is present in the select list of the OracleDataAdapter.SelectCommand
property.

Note:

A set of columns, on which a unique constraint has been defined or a unique
index has been created, requires at least one column that cannot be null for the
following reason: if all the columns of the column set can be null, then multiple
rows could exist that have a NULL value for each column in the column set. This
would violate the uniqueness condition that each row has a unique set of
values for the column set.

3.21.2 Configuring PrimaryKey and Constraints Properties
If the minimal conditions described in "What Constitutes Uniqueness in DataRow
Objects?" are met, then the DataTable.PrimaryKey or DataTable.Constraints properties
can be set.

After these properties are set, the OracleCommandBuilder object can determine
uniqueness in the DataTable by checking the DataTable.PrimaryKey property or the
presence of a UniqueConstraint object in the DataTable.Constraints collection. Once
uniqueness is determined, the OracleCommandBuilder object can safely generate DML
statements to update the database.

The OracleDataAdapter.FillSchema method attempts to set these properties according
to this order of priority:

Chapter 3
Guaranteeing Uniqueness in Updating DataSet to Database

3-144

1. If the primary key is returned in the select list, it is set as the DataTable.PrimaryKey
property.

2. If a set of columns that meets the following criteria is returned in the select list, it is
set as the DataTable.PrimaryKey property.

Criteria: The set of columns has a unique constraint defined on it or a unique index
created on it, with each column having a NOT NULL constraint defined on it.

3. If a set of columns that meets the following criteria is returned in the select list, a
UniqueConstraint object is added to the DataTable.Constraints collection, but the
DataTable.PrimaryKey property is not set.

Criteria: The set of columns has a unique constraint defined on it or a unique index
created on it, with at least one column having a NOT NULL constraint defined on it.

4. If a ROWID is part of the select list, it is set as the DataTable.PrimaryKey property.

Additionally, the OracleDataAdapter.FillSchema method performs as follows:

• Setting the DataTable.PrimaryKey property implicitly creates a UniqueConstraint
object.

• If a column is part of the DataTable.PrimaryKey property or the UniqueConstraint
object, or both, it will be repeated for each occurrence of the column in the select
list.

3.21.3 Updating Without PrimaryKey and Constraints Configuration
If the DataTable.PrimaryKey or Constraints properties have not been configured, for
example, if the application has not called the OracleDataAdapter.FillSchema method,
the OracleCommandBuilder object directly checks the select list of the
OracleDataAdapter.SelectCommand property to determine if it guarantees uniqueness in
the DataTable. However this check results in a database round-trip to retrieve the
metadata for the SELECT statement of the OracleDataAdapter.SelectCommand.

Note that OracleCommandBuilder object cannot update a DataTable created from PL/SQL
statements because they do not return any key information in their metadata.

3.22 Globalization Support
ODP.NET globalization support enables applications to manipulate culture-sensitive
data appropriately. This feature ensures proper string format, date, time, monetary,
numeric, sort order, and calendar conventions depending on the Oracle globalization
settings.

Note:

• ODP.NET, Managed Driver is not NLS_LANG sensitive. It is only .NET locale
sensitive.

• ODP.NET, Managed Driver does not support thread-based globalization.

Chapter 3
Globalization Support

3-145

See Also:

"OracleGlobalization Class"

This section includes the following:

• Globalization Settings

• Globalization-Sensitive Operations

3.22.1 Globalization Settings
An OracleGlobalization object can be used to represent the following:

• Client Globalization Settings

• Session Globalization Settings

• Thread-Based Globalization Settings

3.22.1.1 Client Globalization Settings
Client globalization settings are derived from the Oracle globalization setting (NLS_LANG)
in the Windows registry of the local computer. The client globalization parameter
settings are read-only and remain constant throughout the lifetime of the application.
These settings can be obtained by calling the OracleGlobalization.GetClientInfo static
method.

The following example retrieves the client globalization settings:

// C#

using System;
using Oracle.DataAccess.Client;

class ClientGlobalizationSample
{
 static void Main()
 {
 OracleGlobalization ClientGlob = OracleGlobalization.GetClientInfo();

 Console.WriteLine("Client machine language: " + ClientGlob.Language);
 Console.WriteLine("Client characterset: " + ClientGlob.ClientCharacterSet);
 }
}

The properties of the OracleGlobalization object provide the Oracle globalization value
settings.

3.22.1.2 Session Globalization Settings
Session globalization parameters are initially identical to client globalization settings.
Unlike client settings, session globalization settings can be updated. However, they
can be obtained only after establishing a connection against the database. The
session globalization settings can be obtained by calling the GetSessionInfo method on
the OracleConnection object. Invoking this method returns an instance of an

Chapter 3
Globalization Support

3-146

OracleGlobalization class whose properties represent the globalization settings of the
session.

When the OracleConnection object establishes a connection, it implicitly opens a
session whose globalization parameters are initialized with those values specified by
the client computer's Oracle globalization (or (NLS)) registry settings. The session
settings can be updated and can change during its lifetime.

The following example changes the date format setting on the session:

// C#

using System;
using Oracle.DataAccess.Client;

class SessionGlobalizationSample
{
 static void Main()
 {
 OracleConnection con = new OracleConnection();

 con.ConnectionString = "User Id=scott;Password=tiger;Data Source=oracle;";
 con.Open();

 OracleGlobalization SessionGlob = con.GetSessionInfo();

 // SetSessionInfo updates the Session with the new value
 SessionGlob.DateFormat = "YYYY/MM/DD";
 con.SetSessionInfo(SessionGlob);
 Console.WriteLine("Date Format successfully changed for the session");

 // Close and Dispose OracleConnection object
 con.Close();
 con.Dispose();
 }
}

3.22.1.3 Thread-Based Globalization Settings
Thread-based globalization parameter settings are specific to each thread. Initially,
these settings are identical to the client globalization parameters, but they can be
changed as specified by the application. When ODP.NET Types are converted to and
from strings, the thread-based globalization parameters are used, if applicable.

Thread-based globalization parameter settings are obtained by invoking the
GetThreadInfo static method of the OracleGlobalization class. The SetThreadInfo static
method of the OracleGlobalization class can be called to set the thread's globalization
settings.

ODP.NET classes and structures rely solely on the OracleGlobalization settings when
manipulating culture-sensitive data. They do not use .NET thread culture information.
If the application uses only .NET types, OracleGlobalization settings have no effect.
However, when conversions are made between ODP.NET types and .NET types,
OracleGlobalization settings are used where applicable.

Chapter 3
Globalization Support

3-147

Note:

Changes to the System.Threading.Thread. CurrentThread.CurrentCulture
property do not impact the OracleGlobalization settings of the thread or the
session, or the reverse.

The following example shows how the thread's globalization settings are used by the
ODP.NET Types:

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ThreadBasedGlobalizationSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat for the OracleDate constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleDate from a string using the DateFormat specified.
 OracleDate date = new OracleDate("1999-DEC-01");

 // Set a different DateFormat for the thread
 info.DateFormat = "MM/DD/YYYY";
 OracleGlobalization.SetThreadInfo(info);

 // Print "12/01/1999"
 Console.WriteLine(date.ToString());
 }
}

The OracleGlobalization object validates property changes made to it. If an invalid
value is used to set a property, an exception is thrown. Note that changes made to the
Territory and Language properties change other properties of the OracleGlobalization
object implicitly.

3.22.2 Globalization-Sensitive Operations
This section lists ODP.NET types and operations that are dependent on or sensitive to
globalization settings.

3.22.2.1 Operations Dependent on Client Computer's Globalization Settings
The OracleString structure depends on the OracleGlobalization settings of the client
computer. The client character set of the local computer is used when it converts a
Unicode string to a byte[] in the GetNonUnicode method and when it converts a byte[]
of ANSI characters to Unicode in the OracleString constructor that accepts a byte[].

Chapter 3
Globalization Support

3-148

3.22.2.2 Operations Dependent on Thread Globalization Settings
The thread globalization settings are used by ODP.NET types whenever they are
converted to and from .NET string types, where applicable. Specific thread
globalization settings are used in most cases, depending on the ODP.NET type, by the
following:

• The ToString method

• The Parse static method

• Constructors that accept .NET string data

• Conversion operators to and from .NET strings

For example, the OracleDate type uses the DateFormat property of the thread
globalization settings when the ToString method is invoked on it. This returns a DATE as
a string in the format specified by the thread's settings.

The thread globalization settings also affect data that is retrieved into the DataSet as a
string using Safe Type Mapping. If the type is format-sensitive, the strings are always
in the format specified by the thread globalization settings.

For example, INTERVAL DAY TO SECOND data is not affected by thread settings because no
format is applicable for this type. However, the DateFormat and NumericCharacters
properties can impact the string representation of DATE and NUMBER types, respectively,
when they are retrieved as strings into the DataSet through Safe Type Mapping.

3.22.2.3 Operations Sensitive to Session Globalization Parameters
Session globalization settings affect any data that is retrieved from or sent to the
database as a string.

For example, if a DATE column is selected with the TO_CHAR function applied on it, the
DATE column data will be a string in the date format specified by the DateFormat property
of the session globalization settings. Transmitting data in the other direction, the string
data that is to be inserted into the DATE column, must be in the format specified by the
DateFormat property of the session globalization settings.

3.22.3 ODP.NET Managed and Unmanaged Drivers Differences
ODP.NET, Managed and Unmanaged Drivers set the default session time zone
differently. While the session time zone for unmanaged ODP.NET uses an hour offset,
managed ODP.NET uses the region identifier for setting its session time zone. As a
result, managed ODP.NET is sensitive to daylight savings in scenarios where the
timestamp LTZ values have to be converted from or to the session time zone.

There are two methods to resolve this difference if needed. For ODP.NET,
Unmanaged Driver, the application explicitly sets the region identifier with the
environment variable ORA_SDTZ. For example, set ORA_SDTZ = <Region ID>. If ORA_SDTZ
variable is set, Oracle Client considers this value as the session time zone. The
second method is to execute an alter session command to set the session time zone
property to the region identifier.

Chapter 3
Globalization Support

3-149

3.23 Debug Tracing
ODP.NET provides debug tracing support, which allows logging of all the ODP.NET
activities into a trace file. Different levels of tracing are available.

The provider can record the following information:

• Entry and exit information for the ODP.NET public methods

• User-provided SQL statements as well as SQL statements modified by the
provider

• Connection pooling statistics such as enlistment and delistment

• Thread ID (entry and exit)

• HA Events and Load Balancing information

• Distributed Transactions

• Self-tuning information

• User-mode dumps upon unmanaged exceptions

To enable ODP.NET for tracing, TraceFileLocation, TraceLevel, and TraceOption must
be set appropriately either in the Windows Registry or in an XML configuration file.
ODP.NET, Managed and Unmanaged Drivers support the XML configuration file.
Windows Registry settings are available for ODP.NET, Unmanaged Driver only.

In ODAC 12c Release 4, ODP.NET now uses new directories to write trace files to by
default.

• ODP.NET, Managed Driver: <Windows user temporary folder>\ODP.NET\managed
\trace

• ODP.NET, Unmanaged Driver: <Windows user temporary folder>\ODP.NET
\unmanaged\trace

The Windows user temporary folder is determined by your local Windows settings,
such as your Windows TMP or TEMP environment variable. Typically, it can be C:\temp or
C:\Users\<user name>\AppData\Local\Temp. ODP.NET will create an entry in the
Windows event log where the trace was created anytime it creates a trace file.

For ODP.NET, Unmanaged Driver specifically, TraceFileLocation is now supported
similar to ODP.NET, Managed Driver. TraceFileLocation defines the directory where
the trace files will be created. Neither TraceFileName nor TraceFileLocation will be
created by default in the Windows Registry.

3.24 Database Application Migration: SQL Translation
Framework

A key part of migrating non-Oracle database applications to an Oracle Database
requires converting non-Oracle SQL statements to SQL statements that can be
processed by an Oracle Database. SQL conversion is generally a manual and
laborious process. To minimize the effort, Oracle Database 12c introduces SQL
Translation Framework which takes non-Oracle SQL statements from client
applications and then translates them at run-time for the Oracle Database to execute.

Chapter 3
Debug Tracing

3-150

The SQL Translation Framework can be used to map non-Oracle stored procedure to
Oracle stored procedures to ensure successful execution of those stored procedures
when migrating to Oracle Database.

Currently, SQL Translation Framework is available for Sybase Adaptive Server
Enterprise and Microsoft SQL Server. There is limited support for IBM DB2.

Note:

SQL Translation Framework is only supported by ODP.NET, Unmanaged
Driver. ODP.NET, Managed Driver does not support this feature.

3.24.1 The SQL Translation Profile
The SQL Translation Profile is a database object that contains the set of captured non-
Oracle SQL statements, and their translations or translation errors. The SQL
Translation Profile is used to review, approve, and modify translations. A profile is
associated to a single translator. However, a translator can be used in one or more
SQL Translation Profiles. Typically, there is one SQL Translation Profile per
application, otherwise applications can share translated queries. You can export
profiles among various databases.

1. Configuring the SQL Translation Profile Name

The default translation profile name for SQL Translation Framework can be
configured through the app/web/machine .NET configuration file. If configured,
connections, by default will automatically be set to the specified profile when the
connection is initially created.

2. Changing the SQL Translation Profile Name

ODP.NET supports setting the profile name through the .NET config file, logon
trigger, or database service. ODP.NET does not support using ALTER SESSION from
an application to set the profile name.

3. Forcing Translation

Applications are strictly prohibited to execute the following SQL which forces
translation of all SQL's on the database:

ALTER SESSION SET events = '10601 trace name context forever, level 32'

4. Connection Related Error Mapping

Connection Related Error Mapping can be configured through the .NET
configuration file. Please note that this error mapping strictly applies to errors
which could be thrown before the connection is successfully established. Once the
database connection is established successfully, then these error mapping will be
completely ignored and further error translation will be provided through the error
mapping configured in the database.

The rules to choose an error mapping section in the configuration file are as
follows:

a. ODP.NET uses the error mapping section which matches the configured
userId, dataSource, and profile, where userId and dataSource matches the
corresponding values in the connection string and profile matches the
defaultProfile configuration setting.

Chapter 3
Database Application Migration: SQL Translation Framework

3-151

b. If no error mapping section is found from 4.a.), then ODP.NET uses the error
mapping section which matches the userId, dataSource, and profile similar to
4.a.), but with the profile that matches with the defaultErrorMappingProfile
configuration setting.

c. If still no error mapping section is found, then ODP.NET uses the global
mapping, that is, <ErrorMapping profile="*">, if configured.

5. Stored Procedure Mapping.

Application must map their native stored procedure names to the corresponding
Oracle stored procedure names on the translation profile in the database. The
following procedure can be used to setup the mapping in the database.

DBMS_SQL_TRANSLATOR.REGISTER_SQL_TRANSLATION(
 PROFILE_NAME VARCHAR2 IN
 SQL_TEXT CLOB IN
 TRANSLATED_TEXT CLOB IN DEFAULT
 ENABLE BOOLEAN IN DEFAULT)

Example of stored procedure mapping:

DBMS_SQL_TRANSLATOR.REGISTER_SQL_TRANSLATION('profile_name',
 'native_sp_name',
 'oracle_sp_name');

Chapter 3
Database Application Migration: SQL Translation Framework

3-152

4
ADO.NET Entity Framework and LINQ to
Entities

This section describes ADO.NET Entity Framework and LINQ to Entities. Entity
Framework is a framework for providing object-relational mapping service on data
models.

This section contains these topics:

• Overview of Entity Framework

• Language Integrated Query and Entity SQL

• Mapping Oracle Data Types to EDM Types

• Oracle Number Default Data Type Mapping and Customization

• Migrating Existing Entity Framework 5 Applications to Entity Framework 6

• Code First

• Unsupported Entity Framework Features

4.1 Overview of Entity Framework
ODP.NET 11.2.0.3.0 and higher includes support for the ADO.NET Entity Framework
and LINQ to Entities. ODP.NET also supports Entity SQL.

Entity Framework is a framework for providing object-relational mapping service on
data models. Entity Framework addresses the impedance mismatch between the
relational database format and the client's preferred object format.

Entity Framework and LINQ provides productivity benefits for the .NET developer. It
abstracts the database's data model from the application's data model. Working with
object-relational data becomes easier with Entity Framework's tools. Oracle's
integration with Entity Framework and LINQ enables Oracle .NET developers to take
advantage of all these productivity benefits.

Note:

• Entity Framework and LINQ to Entities support is included in ODP.NET
for .NET Framework 4. ODP.NET for .NET Framework 2.0 does not
support the ADO.NET Entity Framework and LINQ to Entities.

• Code First is supported starting with Entity Framework 6 and higher.

• Binding scalar parameters is supported with ODP.NET and Entity
Framework. In Entity Framework, parameter binding by name is supported.
Binding by position is not supported.

4-1

Entity data models can be generated from Oracle database schemas. Schemas can
be generated from entity data models. These Oracle entity data models can be
queried and manipulated using Visual Studio and ODP.NET. Oracle supports Code
First, Database First, and Model First modeling approaches. Specifying filters on the
Visual Studio Server Explorer data connection enables the Entity Data Model Wizard
to also filter Oracle database objects that are fetched and displayed.

LINQ to Entities can perform queries on the Oracle Database using ODP.NET,
including using LINQ to Entities built-in functions. INSERTs, UPDATEs, and DELETEs can be
executed using Oracle stored procedures, or by using the ObjectContext SaveChanges
method.

ODP.NET supports function import of Oracle stored procedures that Entity Framework
can then execute. These Oracle function imports can return a collection of scalar,
complex, and entity types, including returning an Oracle implicit result set as an entity
type. Implicit result set binding is supported using Oracle REF CURSOR.

4.2 Language Integrated Query and Entity SQL
Language Integrated Query (LINQ) defines a set of operators that can be used to
query, project, and filter data in arrays, enumerable classes, XML, relational
databases, and other data sources. One form of LINQ, LINQ to Entities, allows
querying of Entity Framework data sources. ODP.NET supports Entity Framework
such that the Oracle database can participate in object-relational modeling and LINQ
to Entities queries.

Entity SQL is a language that enables querying of Entity Framework conceptual
models. It allows querying Entity Framework entities and relationships in a format that
is similar to SQL. ODP.NET supports querying Oracle databases through Entity SQL.

LINQ and Entity SQL syntax are generally data source neutral.

4.3 Mapping Oracle Data Types to EDM Types
The ODP.NET manifest file describes the primitive types, such as VARCHAR2 and Number,
and the Entity Data Model (EDM) types, such as string and Int32, that they map to. It
also includes the facets for each EDM type.

ODP.NET does not support Time literals and canonical functions related to the Time
type.

Oracle considers both NULL and empty strings to be NULL strings and are considered to
be equal. Operations, such as Equals(), Length(), and Trim() on such strings will
result in a NULL string.

Table 4-1 maps the Oracle data types to their corresponding EDM types. The table
also includes details about provider type attributes and the EDM type facets
associated with each Oracle data type.

Chapter 4
Language Integrated Query and Entity SQL

4-2

Table 4-1 Mapping of Oracle Data Types and EDM Types

Oracle Data
Types

EDM Types
(Primitive-
TypeKind)

Provider Type Attributes:
Name and Value

EDM Type Facets

Bfile Binary • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets
for Bfile

Binary_Double Double • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Binary_Float Single • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Binary_Integer Int32 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Blob Binary • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets
for Blob

Char String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Char

Clob String • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets
for Clob

Date DateTime • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Date

Float Decimal • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Float

Int Int32 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Interval Day To
Second

Decimal • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Interval Day To
Second

Chapter 4
Mapping Oracle Data Types to EDM Types

4-3

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data
Types

EDM Types
(Primitive-
TypeKind)

Provider Type Attributes:
Name and Value

EDM Type Facets

Interval Year To
Month

Decimal • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Interval Year To
Month

Long String • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets
for Long

Long Raw Binary • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets
for Long Raw

NChar String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for NChar

NClob String • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets
for NClob

Nested Table Not Applicable Not Applicable and
Not Supported

Number(1,0)

Number(2,0)

Number(3,0)

Number(4,0)

Number(5,0)

Int16 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Number(6,0)

Number(7,0)

Number(8,0)

Number(9,0)

Number(10,0)

Int32 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Number(11,0)

Number(12,0)

Number(13,0)

Number(14,0)

Number(15,0)

Number(16,0)

Number(17,0)

Number(18,0)

Number(19,0)

Int64 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Chapter 4
Mapping Oracle Data Types to EDM Types

4-4

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data
Types

EDM Types
(Primitive-
TypeKind)

Provider Type Attributes:
Name and Value

EDM Type Facets

Number

(all other cases)

Decimal • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Number

NVarchar2 String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for NVarchar2

Object Not Applicable Not Applicable and
Not Supported

Raw Binary • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Raw

Raw(16) Guid • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Ref Not Applicable Not Applicable and
Not Supported

ROWID String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for ROWID

Smallint Int16 • Equal Comparable:
True

• Order Comparable:
True

Not Applicable

Timestamp DateTime • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Timestamp

Timestamp with

Local Time Zone

DateTime • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Timestamp with
Local Time Zone

Timestamp with

Time Zone

DateTimeOffset • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Timestamp with
Time Zone

UROWID

(size)

Binary • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for UROWID

Chapter 4
Mapping Oracle Data Types to EDM Types

4-5

Table 4-1 (Cont.) Mapping of Oracle Data Types and EDM Types

Oracle Data
Types

EDM Types
(Primitive-
TypeKind)

Provider Type Attributes:
Name and Value

EDM Type Facets

Varchar2 String • Equal Comparable:
True

• Order Comparable:
True

EDM Type Facets
for Varchar2

VArray Not Applicable Not Applicable and
Not Supported

XMLType String • Equal Comparable:
False

• Order Comparable:
False

EDM Type Facets
for XMLType

4.3.1 EDM Type Facets
The following sections enumerate the EDM type facets for the preceding Oracle data
types. The first column of each table displays the EDM type facet names for the Oracle
data type. Subsequent columns list the facet attribute names and displays their
respective values.

EDM Type Facets for Bfile

Table 4-2 EDM Type Facets for Bfile

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483648

Constant: True

FixedLength DefaultValue: False

Constant: True

EDM Type Facets for Blob

Table 4-3 EDM Type Facets for Blob

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483648

Constant: True

FixedLength DefaultValue: False

Constant: True

EDM Type Facets for Char

Chapter 4
Mapping Oracle Data Types to EDM Types

4-6

Table 4-4 EDM Type Facets for Char

Facet Name Attributes Name and Value

MaxLength Minimum: 1

Maximum: 2000

DefaultValue: 2000

Constant: False

Unicode DefaultValue: False

Constant: True

FixedLength DefaultValue: True

Constant: True

EDM Type Facets for Clob

Table 4-5 EDM Type Facets for Clob

Facet Name Attributes Name and Value

MaxLength DefaultValue: 2147483647

Constant: True

Unicode DefaultValue: False

Constant: True

FixedLength DefaultValue: False

Constant: True

EDM Type Facets for Date

Table 4-6 EDM Type Facets for Date

Facet Name Attributes Name and Value

Precision Constant: True

DefaultValue: 0

EDM Type Facets for Float

Table 4-7 EDM Type Facets for Float

Facet name Attributes Name and Value

Precision Minimum: 0

Maximum: 126

DefaultValue: 0

Constant: False

Chapter 4
Mapping Oracle Data Types to EDM Types

4-7

Table 4-7 (Cont.) EDM Type Facets for Float

Facet name Attributes Name and Value

Scale Minimum: 0

Maximum: 38

DefaultValue: 0

Constant: False

EDM Type Facets for Interval Day To Second

Table 4-8 EDM Type Facets for Interval Day To Second

Facet name Attributes Name and Value

Precision Minimum: 1

Maximum: 251

DefaultValue: 251

Constant: False

Scale Minimum: 0

Maximum: 9

DefaultValue: 0

Constant: False

Note:

EDM types do not support TimeSpan.

Use Decimal to represent the total number of seconds. An application can
obtain a TimeSpan by using the TimeSpan.FromSeconds static method.

EDM Type Facets for Interval Year To Month

Table 4-9 EDM Type Facets for Interval Year To Month

Facet name Attributes Name and Value

Precision Minimum: 1

Maximum: 250

DefaultValue: 250

Constant: False

Scale Minimum: 0

Maximum: 9

DefaultValue: 0

Constant: False

Chapter 4
Mapping Oracle Data Types to EDM Types

4-8

EDM Type Facets for Long

Table 4-10 EDM Type Facets for Long

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483647

Constant: True

Unicode DefaultValue: False

Constant: True

FixedLength DefaultValue: False

Constant: True

EDM Type Facets for Long Raw

Table 4-11 EDM Type Facets for Long Raw

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483647

Constant: True

FixedLength DefaultValue: False

Constant: True

EDM Type Facets for NChar

Table 4-12 EDM Type Facets for NChar

Facet name Attributes Name and Value

MaxLength Minimum: 1

Maximum: 1000

DefaultValue: 1000

Constant: False

Unicode DefaultValue: True

Constant: True

FixedLength DefaultValue: True

Constant: True

Chapter 4
Mapping Oracle Data Types to EDM Types

4-9

Note:

For NChar, the actual data is subject to the maximum byte limit of 2000.

The value of 1000 for Maximum and DefaultValue allows the EDM wizard to
display columns of NCHAR(1000), where 1000 is the maximum number of
characters allowed in DDL.

EDM Type Facets for NClob

Table 4-13 EDM Type Facets for NClob

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483647

Constant: True

Unicode DefaultValue: True

Constant: True

FixedLength DefaultValue: False

Constant: True

EDM Type Facets for Number

Table 4-14 EDM Type Facets for Number

Facet name Attributes Name and Value

Precision Minimum: 1

Maximum: 38

DefaultValue: 38

Constant: False

Scale Minimum: 0

Maximum: 38

DefaultValue: 0

Constant: False

EDM Type Facets for NVarchar2

Table 4-15 EDM Type Facets for NVarchar2

Facet name Attributes Name and Value

MaxLength Minimum: 1

Maximum: 2000

DefaultValue: 2000

Constant: False

Chapter 4
Mapping Oracle Data Types to EDM Types

4-10

Table 4-15 (Cont.) EDM Type Facets for NVarchar2

Facet name Attributes Name and Value

Unicode DefaultValue: True

Constant: True

FixedLength DefaultValue: False

Constant: True

Note:

For NVARCHAR2, the actual data is subject to the maximum byte limit of 4000.

The value of 2000 for Maximum and DefaultValue allows the EDM wizard to
display columns of NVARCHAR2(2000), where 2000 is the maximum number of
characters allowed in DDL.

EDM Type Facets for Raw

Table 4-16 EDM Type Facets for Raw

Facet name Attributes Name and Value

MaxLength Minimum: 1

Maximum: 2000

Constant: False

FixedLength DefaultValue: False

Constant: True

EDM Type Facets for ROWID

Table 4-17 EDM Type Facets for ROWID

Facet name Attributes Name and Value

MaxLength DefaultValue: 18

Constant: True

Unicode DefaultValue: False

Constant: True

FixedLength DefaultValue: True

Constant: True

EDM Type Facets for Timestamp

Chapter 4
Mapping Oracle Data Types to EDM Types

4-11

Table 4-18 EDM Type Facets for Timestamp

Facet name Attributes Name and Value

Precision Minimum: 0

Maximum: 9

DefaultValue: 6

Constant: False

EDM Type Facets for Timestamp with Local Time Zone

Table 4-19 EDM Type Facets for Timestamp with Local Time Zone

Facet name Attributes Name and Value

Precision Minimum: 0

Maximum: 9

DefaultValue: 6

Constant: False

EDM Type Facets for Timestamp with Time Zone

Table 4-20 EDM Type Facets for Timestamp with Time Zone

Facet name Attributes Name and Value

Precision Minimum: 0

Maximum: 9

DefaultValue: 6

Constant: False

EDM Type Facets for UROWID

Table 4-21 EDM Type Facets for UROWID

Facet name Attributes Name and Value

MaxLength DefaultValue: 4000

Constant: True

FixedLength DefaultValue: True

Constant: True

EDM Type Facets for Varchar2

Chapter 4
Mapping Oracle Data Types to EDM Types

4-12

Table 4-22 EDM Type Facets for Varchar2

Facet name Attributes Name and Value

MaxLength Minimum: 1

Maximum: 4000

DefaultValue: 4000

Constant: False

Unicode DefaultValue: False

Constant: True

FixedLength DefaultValue: False

Constant: True

EDM Type Facets for XMLType

Table 4-23 EDM Type Facets for XMLType

Facet name Attributes Name and Value

MaxLength DefaultValue: 2147483647

Constant: True

Unicode DefaultValue: True

Constant: True

FixedLength DefaultValue: False

Constant: True

4.4 Oracle Number Default Data Type Mapping and
Customization

This section describes the default number mapping behavior and how to customize it
for your application. You can configure a custom mapping in the .NET configuration file
to override the default mapping for each Oracle NUMBER(p,0), which represents integer
values.

Oracle NUMBER data types that represent integers do not have a matching .NET integer
data type with exactly the same range of acceptable values. ODP.NET uses a default
mapping that ensures any .NET integer type values can be stored within the Oracle
database without requiring custom data type mapping. However, it is possible that
Oracle NUMBER(p,0) column data can be larger than what a .NET data type can hold
when retrieving values from the database.

For example, in Entity Framework 6, Oracle NUMBER(3,0) has a default mapping
to .NET Byte. Oracle NUMBER(3,0) can store a value up to 999, while a .NET BYTE can
store up to the value of 255. If you expect the Oracle data to exceed 255, modify the
mapping to a larger numeric data type, such as a .NET Int16. Setting up this custom
mapping allows you to consume the data in .NET without encountering an error. When
such a custom mapping is used, be cautious not to insert a .NET Int16 value beyond
what an Oracle NUMBER(3,0) column can hold. Trying to insert Int16.MaxValue (i.e.
32,767) into a NUMBER(3,0) column will cause an Oracle Database error.

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-13

4.4.1 Entity Framework 5 and Earlier Mapping and Customization
Example 4-1 shows an ODP.NET, Unmanaged Driver sample app.config file that uses
custom mapping to map the Number(1,0) Oracle data type to the bool EDM type. For
example, Number(1,0), which is mapped to Int16 by default, can be custom mapped to
the .NET Bool or .NET Byte type. This example maps Number(3,0) to byte, and sets the
maximum precisions for the Int16, Int32, and Int64 data types to 4, 9, and 18
respectively.

Example 4-2 shows the same changes as Example 4-1, but using the traditional
ODP.NET, Unmanaged Driver app.config format.

Example 4-3 shows a ODP.NET, Managed Driver sample app.config file.

Example 4-1, Example 4-2, and Example 4-3 customizes the mappings as follows:

Oracle Type Default EDM Type Custom EDM Type

Number(1,0) Int16 bool

Number(2,0) to Number(3,0) Int16 byte

Number(4,0) Int16 Int16

Number(5,0) Int16 Int32

Number(6,0) to Number(9,0) Int32 Int32

Number(10,0) Int32 Int64

Number(11,0) to
Number(18,0)

Int64 Int64

Number(19,0) Int64 Decimal

Custom mapping configures the maximum precision of the Oracle Number type that
would map to the .NET/EDM type. So, for example, the preceding custom application
configuration file configures ODP.NET to map Number(10,0) through Number(18,0) to
Int64, as opposed to the default range of Number(11,0) through Number(19,0) for Int64.

Note:

• Custom mapping does not require you to map all the .NET/EDM types. For
example, if custom mapping is required just for Int16, then having a single
entry for Int16 is sufficient. Default mapping gets used for the other types.

• When using Model First, a Byte attribute is mapped to Number(3,0) by
default. However, when a model is generated for a Number(3,0) column, it
gets mapped to Int16 by default unless custom mapping for Byte is
specified.

You must make sure that your mappings allow the data to fit within the range of
the .NET/EDM type and the Number(p, s) type. If you select a .NET/EDM type with a
range too small for the Oracle Number data, then errors will occur during data retrieval.
Also, if you select a .NET/EDM type, and the corresponding data is too big for the

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-14

Oracle Number column, then INSERTs and UPDATEs to the Oracle database will error
out.

Example 4-1 First Sample ODP.NET, Unmanaged Driver Application
Configuration File to Custom Map the Number (p,0) Data Type

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.unmanageddataaccess.client>
 <version number="*">
 <edmMappings>
 <edmMapping dataType="number">
 <add name="bool" precision="1"/>
 <add name="byte" precision="3" />
 <add name="int16" precision="4" />
 <add name="int32" precision="9" />
 <add name="int64" precision="18" />
 </edmMapping>
 </edmMappings>
 </version>
 </oracle.unmanageddataaccess.client>
</configuration>

Example 4-2 Second Sample ODP.NET, Unmanaged Driver Application
Configuration File to Custom Map the Number (p,0) Data Type

<?xml version="1.0" encoding="utf-8"?>
<configuration>
 <connectionStrings>
 </connectionStrings>
 <oracle.dataaccess.client>
 <settings>
 <add name="bool" value="edmmapping number(1,0)" />
 <add name="byte" value="edmmapping number(3,0)" />
 <add name="int16" value="edmmapping number(4,0)" />
 <add name="int32" value="edmmapping number(9,0)" />
 <add name="int64" value="edmmapping number(18,0)" />
 </settings>
 </oracle.dataaccess.client>
</configuration>

Example 4-3 Sample ODP.NET, Managed Driver Application Configuration File
to Custom Map the Number Data Type

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <oracle.manageddataaccess.client>
 <version number="*">
 <edmMappings>
 <edmMapping dataType="number">
 <add name="bool" precision="1"/>
 <add name="byte" precision="3" />
 <add name="int16" precision="4" />
 <add name="int32" precision="9" />
 <add name="int64" precision="18" />
 </edmMapping>
 </edmMappings>
 </version>
 </oracle.manageddataaccess.client>
</configuration>

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-15

4.4.2 Entity Framework 6 Mapping and Customization
ODP.NET 12.1.0.2 introduces a new .NET configuration setting format for both
managed and unmanaged ODP.NET. This new setting format applies only for use with
Entity Framework 6 and Entity Data Model mappings, including Code First, Database
First, and Model First use cases. Developers can continue using the existing
ODP.NET format for non-Entity Framework 6 applications.

This new format unifies how ODP.NET, Managed and Unmanaged Drivers sets their
configuration values and supports auto-completion.

The following is an example of an edmMappings section for ODP.NET, Managed Driver:

<oracle.manageddataaccess.client>
 <version number="*">
 <edmMappings>
 <edmNumberMapping>
 <add NETType="bool" MinPrecision="1" MaxPrecision="1" DBType="Number" />
 <add NETType="byte" MinPrecision="2" MaxPrecision="3" DBType="Number" />
 <add NETType="int16" MinPrecision="4" MaxPrecision="5" DBType="Number" />
 <add NETType="int32" MinPrecision="6" MaxPrecision="10" DBType="Number" />
 <add NETType="int64" MinPrecision="11" MaxPrecision="19" DBType="Number" />
 </edmNumberMapping>
 </edmMappings>
 </version>
</oracle.manageddataaccess.client>

Where:

• DBType is the Oracle Database data type

• NETType is the .NET data type that the Oracle data type maps to

• MinPrecision is the minimum range the Oracle data type will map to the .NET type

• MaxPrecision is the maximum range the Oracle data type will map to the .NET type

The following is an example of an edmmappings section for ODP.NET, Unmanaged
Driver. It is exactly same format as the managed driver with the exception of the
opening and closing tags.

<oracle.unmanageddataaccess.client>
 <version number="*">
 <edmMappings>
 <edmNumberMapping>
 <add NETType="bool" MinPrecision="1" MaxPrecision="1" DBType="Number" />
 <add NETType="byte" MinPrecision="2" MaxPrecision="3" DBType="Number" />
 <add NETType="int16" MinPrecision="4" MaxPrecision="5" DBType="Number" />
 <add NETType="int32" MinPrecision="6" MaxPrecision="10" DBType="Number" />
 <add NETType="int64" MinPrecision="11" MaxPrecision="19" DBType="Number" />
 </edmNumberMapping>
 </edmMappings>
 </version>
</oracle.unmanageddataaccess.client>

4.4.2.1 New Default Mappings
For Entity Framework 6, ODP.NET 12.1.0.2 introduces new default mappings that
apply to Code First, Database First, and Model First scenarios. These changes were
necessary to support Code First interoperability.

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-16

• .NET Booleans map to Oracle Number(1,0) and vice-versa by default

• .NET Bytes map to Oracle Number(2,0) and Number(3,0) and vice-versa by default

This default behavior can be changed by providing an alternative data type mapping
by configuring the section of the .NET config file.

4.4.3 Data Type Mapping and Customization Process
To enable custom mapping, add the mapping information to the .NET config file prior
to EDM creation.

If the EDM was created already before providing the mapping information, then you
can modify the mappings either through the Visual Studio tools or manually. Using
Visual Studio, go to the EDM Model Browser page. Right-click on the table(s) requiring
new data type mapping and select Table Mapping from the pop-up menu. The
Mapping Details window will appear usually at the bottom of your screen. Update
Column Mappings as desired.

If you need to add or delete mappings, find the Type values in the CSDL mapping
section of your project's existing EDMX file. Add or delete those Type values to
the .NET data types you want the application to use. In the example below, the
property name types for BOOLCOL and BYTECOL are added to the CSDL and mapped to
Boolean and Byte, respectively.

Example Mapping Before CSDL Customization:

<Property Name="INT16COL" Type="Int16" Nullable="false" />

Example Mapping After CSDL Customization:

<Property Name="BOOLCOL" Type="Boolean" Nullable="false" />
<Property Name="BYTECOL" Type="Byte" Nullable="false" />
<Property Name="INT16COL" Type="Int16" Nullable="false" />

You can employ combinations of these customization possibilities depending on your
planned mapping changes. If many tables and many columns require mapping
changes, it is most efficient to delete the EDMX file and regenerate the data model. If
a few tables and many columns require changes, then delete the affected tables, save
the EDMX file, and select Update Model from Database... to include those tables
again. If only a single table and one or two columns require changes, then modify the
EDMX either manually or by using the Mapping Details window.

Note:

When using the EDM wizard to create a complex type from a function import,
any custom EDM type mappings specified will not be applied automatically.
The EDM wizard uses the default type mappings. Developers must then
manually edit the resulting complex type. Developers begin this process after
the complex type is generated. Any type declaration (field, property, constructor
parameter, etc.) in the complex object which has an undesired type mapping,
such as Decimal rather than Boolean, should be manually edited to the desired
type.

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-17

4.4.4 StoreGeneratedPattern Enumeration
The following sections describe the Identity attribute and the Virtual column.

4.4.4.1 Identity Attribute
Oracle Database 12c (12.1) and later versions support table or view Identity attribute
columns. Oracle has three Identity attribute types. When the EDM wizard generates a
data model from an Oracle Identity attribute-containing table or view, ODP.NET will set
the value of StoreGeneratedPattern to Identity in the .edmx file for any of three Oracle
Identity types. The Identity attribute-associated column will use the server-generated
value during INSERT: hence, application developers no longer need to create a
sequence nor trigger. If the .NET application attempts to set the Identity attribute itself,
this value will be ignored.

For Oracle Database 11g Release 2 (11.2) and earlier versions that do not support
Identity columns, application developers can manually set StoreGeneratedPattern to
Identity in columns through the entity model designer Properties after model
generation, then create an INSERT trigger. Depending on the data type, a sequence
may not be necessary if a server function, such as sys_guid(), can generate the value
for the column.

4.4.4.2 Virtual Column
Oracle Database 11g (11.1) and later versions can store expressions directly in base
tables as Virtual columns, also known as Generated columns. Virtual columns cannot
be inserted into or updated. ODP.NET will not automatically set StoreGeneratedPattern
to Computed in the EF model for Virtual columns. To avoid errors, application
developers need to add or change the value of StoreGeneratedPattern to Computed for
Virtual columns after the model generation. Once done, Virtual columns are excluded
from INSERTs and UPDATEs upon calling SaveChanges().

4.4.5 Resolving Compilation Errors When Using Custom Mapping
If the custom mapping in a .NET configuration file has changed, then regenerate the
data model to solve compilation errors introduced by the changes.

Under certain scenarios, custom mapping may cause compilation errors when a
project that uses custom mapping is loaded by Visual Studio. One specific scenario is
when Visual Studio opens a project with an existing custom mapping that now
generates errors when those errors did not exist before. You may use the following
workaround for such scenarios:

1. Open Visual Studio Help, About Microsoft Visual Studio. Click OK to exit the dialog
box.

Alternatively, open the to-be-used connection in Server Explorer.

2. Compile the project again to eliminate the compilation errors.

Chapter 4
Oracle Number Default Data Type Mapping and Customization

4-18

4.4.6 Mapping Boolean and Guid Parameters in Custom INSERT,
UPDATE, and DELETE Stored Procedures

When using your custom INSERT, UPDATE, or DELETE stored procedure in Stored
Procedure Mapping, the following error might occur:

Error 2042: Parameter Mapping specified is not valid.

This can happen if a Number parameter has been mapped to a Boolean attribute, or if a
RAW parameter has been mapped to a Guid attribute.

The solution is to manually add Precision="1" for the Number parameter, and
MaxLength="16" for the RAW parameter of your stored procedure in the SSDL.

4.5 Migrating Existing Entity Framework 5 Applications to
Entity Framework 6

To migrate existing Database First Entity Framework 5 applications to Entity
Framework 6, use the following instructions. The first four steps are generic to all
Entity Framework applications. The last four steps are specific to Oracle deployments.

1. Uninstall Entity Framework 5 in Visual Studio Package Manager Console. For
example,

Uninstall-Package EntityFramework

2. Install Entity Framework 6 in Package Manager Console. For example,

Install-Package EntityFramework -Version 6.0.2

This step adds Entity Framework 6 to the configSections entry and adds a new
section called entityFramework.

3. Delete the following namespaces from your application:

// C#
using System.Data.EntityClient;
using System.Data.Objects;

4. Add the following namespaces to your application:

// C#
using System.Data.Entity.Core.EntityClient;
using System.Data.Entity.Core.Objects;

5. Add the Oracle Entity Framework 6 provider configuration information to the .NET
config file in the providers section. Modify the ODP.NET version if using a version
besides 6.121.2.0. If you installed the ODP.NET NuGet package, you can skip this
step as the NuGet install has already added made this change.

<provider invariantName="Oracle.DataAccess.Client"
type="Oracle.DataAccess.EntityFramework.EFOracleProviderServices,Oracle.DataAcces
s.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

<provider invariantName="Oracle.ManagedDataAccess.Client"
type="Oracle.ManagedDataAccess.EntityFramework.EFOracleProviderServices,Oracle.Ma

Chapter 4
Migrating Existing Entity Framework 5 Applications to Entity Framework 6

4-19

nagedDataAccess.EntityFramework, Version=6.121.2.0, Culture=neutral,
PublicKeyToken=89b483f429c47342" />

6. Add the Oracle.ManagedDataAccess.EntityFramework or
Oracle.DataAccess.EntityFramework assembly as a reference to the project.

7. Modify the Oracle data type to .NET data type mappings as required by your
application. See "Entity Framework 6 Mapping and Customization" for more
details.

8. Rebuild the application.

4.6 Code First
Using the Entity Framework Code First modeling path, developers define the
application domain model using source code rather than working directly with a
designer or an XML-based configuration file. The classes defined within the source
code become the model. The Code First model path offers an alternative to the
existing Entity Framework Database First and Model First paths. Within Code First, the
classes defined in code that comprise the model are known as Plain Old CLR Objects
(POCOs). This name derives from the fact that these classes have no dependency
upon Entity Framework itself and are independent of it.

Oracle's support for the Code First modeling path enables .NET developers to take
advantage of Oracle Database benefits.

4.6.1 Mapping of .NET Types to Oracle Types
When using the Code First path, the model is defined by the application's classes and
properties. The property data types need to be mapped to the Oracle Database table
data types. The following table lists the default mapping of supported .NET types to
Oracle types as well as how to map a String property to non-default Oracle types:

Table 4-24 Mapping of .NET Data Types to Oracle Data Types

.NET Data Type Oracle Data Type Mapping Method

Boolean number(1, 0) Use EDM Mapping

Note: Requires use of EDM
Mapping configuration.
Reference the EDM Mapping
sections in the documentation
for additional information.

Byte number(3, 0) Use EDM Mapping

Note: Requires use of EDM
Mapping configuration.
Reference the EDM Mapping
sections in the documentation
for additional information.

Byte[] blob Default

Chapter 4
Code First

4-20

Table 4-24 (Cont.) Mapping of .NET Data Types to Oracle Data Types

.NET Data Type Oracle Data Type Mapping Method

Int16 number(5, 0) Default

Note: The default mapping of
integer types may be specified
in the EDM Mapping
configuration. Reference the
EDM Mapping sections in the
documentation for additional
information.

Int32 number(10, 0) Default

Note: The default mapping of
integer types may be specified
in the EDM Mapping
configuration. Reference the
EDM Mapping sections in the
documentation for additional
information.

Int64 number(19, 0) Default

Note: The default mapping of
integer types may be specified
in the EDM Mapping
configuration. Reference the
EDM Mapping sections in the
documentation for additional
information.

Decimal number(18, 2) Default

Single binary_float Default

Double binary_double Default

Guid raw(16) Default

DateTime date Default

DateTimeOffset timestamp with time zone Default

String nclob Default

String clob Set Unicode to false using
IsUnicode() fluent API

String nvarchar2 Set Max Length to <= 2000
using HasMaxLength() fluent
API or MaxLength data
annotation

String varchar2 Set Max Length to <= 4000
using HasMaxLength() fluent
API or MaxLength data
annotation and set Unicode to
false using IsUnicode() fluent
API

Chapter 4
Code First

4-21

Table 4-24 (Cont.) Mapping of .NET Data Types to Oracle Data Types

.NET Data Type Oracle Data Type Mapping Method

String nchar Set Max Length to <= 1000
using HasMaxLength() fluent
API or MaxLength annotation
and Set Column Type to NCHAR
using HasColumnType() fluent
API or Column data
annotation

String char Set Max Length to <= 2000
using HasMaxLength() fluent
API or MaxLength annotation
and Set Column Type to CHAR
using HasColumnType() fluent
API or Column data annotation

String Long Set Column Type to LONG
using HasColumnType() fluent
API or Column data annotation

Note: The long data type is
deprecated and not
recommended.

String rowid Set Column Type to ROWID
using HasColumnType() fluent
API or Column data annotation

String urowid Set Column Type to UROWID
using HasColumnType() fluent
API or Column data annotation

Note:

The character based columns, namely, CHAR, NCHAR, VARCHAR2, NVARCHAR2 will be
created using character semantics to be able to store the specified Max Length
amount of characters. However, due to the Oracle database limit, these
columns can store only up to 4000 bytes. As such, these columns may not be
able to store 4000 characters even if Max Length is set to 4000 characters since
one character may require multiple number of bytes of storage, depending on
the data and the database character set. If the character data can be longer
than 4000 bytes, it may be more appropriate to use CLOB or NCLOB column.

Influencing the Oracle Data Type Characteristics

The type mappings listed in the previous table represent the mappings that occur by
default or what is known as convention in Entity Framework. As illustrated with the
String type, you can influence the resulting Oracle Data Type for a property as well as
characteristics of that data type. There are two Entity Framework methods to influence
the resulting Oracle Data Type: Data Annotations and the Code First Fluent API. Data
Annotations permit you to explicitly mark a class property with one or more attributes,
whereas the Code First Fluent API permits you to use code rather than attributes to
achieve the same goal. For additional information regarding the use of Data

Chapter 4
Code First

4-22

Annotations and the Code First Fluent API refer to the MSDN Entity Framework
documentation.

The following table illustrates the available functionality:

Table 4-25 Mapping of Data Annotations and the Code First Fluent APIs

Data Annotation Fluent API Purpose Applies To

Key HasKey Set a property as the
Primary Key.

All Scalar Types

Required IsRequired Set the database
column as NOT NULL.

All

MaxLength HasMaxLength Specifies the
maximum length of
the property.

String

NotMapped Ignore Indicates the property
is not mapped to a
database column.

All

ConcurrencyCheck IsConcurrencyToken Indicates the column
should be used for
optimistic concurrency
checking.

Note: Do not use with
an unbounded (no
maximum length
specified) string
property as this will
create a LOB column.
Use of a LOB column
in the concurrency
check will result in an
ORA-00932:
inconsistent
datatypes error.

All

TimeStamp IsRowVersion Indicates to create the
column as a
rowversion column.

Not Supported

Column HasColumnType Indicates the provider-
specific type to use for
the database column.

Note: Must be a legal
compatible type. For
example a Date
property is not legal to
map to a number
column. Use the
TypeName property
with the Column Data
Annotation to specify
the type.

All

Chapter 4
Code First

4-23

Table 4-25 (Cont.) Mapping of Data Annotations and the Code First Fluent APIs

Data Annotation Fluent API Purpose Applies To

N/A IsUnicode Indicates to create the
column as an N-type,
that is, nvarchar2 or
nclob. Default is true.

Note: There is no Data
Annotation equivalent
for IsUnicode.

String

N/A HasPrecision Indicates the precision
and scale for a
decimal property.

Note: There is no Data
Annotation equivalent
for HasPrecision.

Decimal

4.6.2 Code First Migrations
The Oracle Data Provider for .NET supports Code First Migrations functionality. The
use of Code First Migrations with Oracle Database is supported through the Package
Manager Console window migrations commands. For information on these
commands, refer to the MSDN Code First Migrations documentation:

http://msdn.microsoft.com/en-us/data/jj591621.aspx

Code First Migrations utilizes a table known as the Migration History table for tracking
migration operations as well as model changes. ODP.NET creates this table, by
default, in the user schema specified in the context connection string. This table is
named __MigrationHistory.

This table can be created in another user schema besides the user specified in the
context connection string. This is accomplished through a process known as Migration
History Table Customization, which is described in the following MSDN
documentation.

http://msdn.microsoft.com/en-us/data/dn456841

Note:

• Changing the user schema for the table is the only supported
customization.

• Code First Automatic Migrations is limited to working with the dbo schema
only. Due to this limitation it is recommended to use code-based
migrations, that is, add explicit migrations through the Add-Migration
command.

Chapter 4
Code First

4-24

4.6.2.1 Code First Migrations With No Supporting Code Migration File
When using Code First Migrations with ODP.NET, the migration history table may be
dropped if no supporting code migration file existed prior to updating the database.
Developers should ensure the supporting code migration file has been added prior to
updating the database.

The following steps can remove the migration history table:

1. Execute application to create database objects

2. Enable-Migrations in the Package Manager Console

3. Make code change to POCO

4. Update-Database in the Package Manager Console

The following steps ensure the code migration file is created:

1. Execute application to create database objects

2. Enable-Migrations in the Package Manager Console

3. Make code change to POCO

4. Add-Migration in the Package Manager Console. This step will create the
necessary code migration file.

5. Update-Database in the Package Manager Console

4.6.3 Code First Database Initialization
ODP.NET supports the following Code First Database Initializer methods:

• CreateDatabaseIfNotExists (default if none specified)

• DropCreateDatabaseAlways

• DropCreateDatabaseIfModelChanges

• NullDatabaseInitializer

• MigrateDatabaseToLatestVersion

These methods are documented on MSDN.

Due to differences in how Oracle and SQL Server define a database, database
initialization actions work on all of the Oracle objects in the model. An Oracle
Database is not created or dropped, rather the objects that compose the model are
considered to be the database for these operations.

4.6.4 Oracle Database Object Creation
In order to support the client application, ODP.NET will create and maintain the
required database objects. The following are the database objects created and
maintained by the provider:

• Table

• Table Column

• Primary Key

Chapter 4
Code First

4-25

• Foreign Key

• Index

• Sequence

• Trigger

Note:

Sequences and triggers may be created in Oracle Database 11g Release 2
and earlier databases to support identity columns.

For objects which directly relate to a client application object, namely, a table which
represents an application class and a table column which represents a class property,
the object names used are those provided by the client. These object names must
conform to the object identifier length limits for Oracle Database. For example, if a
class name length exceeds the valid object identifier length in Oracle Database then
the ORA-00972: identifier is too long exception will be raised at object creation time.

For the remaining objects, ODP.NET utilizes a name generation algorithm if the
supplied name length exceeds the database identifier length limit. If the supplied name
length does not exceed the database limit the name is used as-is. In all cases, the
object name is created as a quoted identifier in order to preserve case and any special
characters which may be part of the identifier.

In cases where the provider generates a name to comply with database identifier
length limits, the name is composed of the following underscore separated elements:

• A substring of the original name (from the first character)

• A numeric suffix value calculated from the original name

The following example illustrates the results of the name generation algorithm using a
simple POCO in the client application:

public class LongSamplePocoTestClassName
{
 [Key]
 public int Id { get; set; }

 [MaxLength(64)]
 public string Name { get; set; }
}

The default name for the Primary Key for the resulting table will be:

PK_LongSamplePocoTestClassNames

As this name contains 31 characters (single byte per character), it violates the
database identifier restrictions. The rewritten Primary Key name will resemble the
following value:

PK_LongSamplePocoTes_730795129

The algorithm is designed to utilize as many characters as possible from the original
name such that the new name does not violate the identifier length restrictions.

Chapter 4
Code First

4-26

Controlling Table Name and Owner

Through the use of Data Annotations or the Entity Framework Fluent API you may
control the table name, as well as the table owner. For example, you may choose to
explicitly set the table name to conform to your organization's naming standards or if
you do not wish to, use the name Entity Framework provides. The Table Data
Annotation is used to control both the table name and the owner. When using the
Fluent API, the ToTable method is used to control the table name and the owner within
the OnModelCreating override in your class which derives from DbContext.

The following examples use an incomplete class definition to illustrate these actions.

Setting the table name using a Data Annotation:

[Table("Employee")]
public class Employee

Setting the table name using the Fluent API:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Entity<Employee>().ToTable("Employee");
}

Setting the table name and the owner using a Data Annotation:

[Table("Employee ", Schema="TESTUSER")]
public class Employee

Setting the table name and the owner using the Fluent API:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.Entity<Employee>().ToTable("Employee", "TESTUSER");
}

Note:

When using Data Annotations or the Fluent API as above to set the owner, it is
required to also set the name.

Setting the Default Table Owner

Rather than set the table owner for each user table, Entity Framework 6 and higher
allows you to set the default owner to be used. This is done by invoking the
HasDefaultSchema method within the OnModelCreating override in your class, which
derives from DbContext.

For example, the following code will cause all user tables to be created within the
TESTUSER schema by default:

protected override void OnModelCreating(DbModelBuilder modelBuilder)
{
 modelBuilder.HasDefaultSchema("TESTUSER");
}

Chapter 4
Code First

4-27

Note:

The owner name is case-sensitive.

4.6.5 Using the Default Connection Factory
The default connection factory allows ODP.NET connections to be created by
providing an Oracle connection string to the DbContext constructor. For example, the
following entry could be used to configure the ODP.NET, Managed Driver default
connection factory:

<defaultConnectionFactory
type="Oracle.ManagedDataAccess.EntityFramework.OracleConnectionFactory,
Oracle.ManagedDataAccess.EntityFramework,
Version=6.121.2.0,
Culture=neutral,
PublicKeyToken=89b483f429c47342" />

When using the default connection factory, the application supplies an Oracle
connection string to the DbContext base constructor as follows:

public class TestContext : DbContext
{
 public TestContext()
 : base("<connection string>")
 {
 }
}

Where <connection string> is the ODP.NET connection string. This allows the
application to connect to the database using code similar to the following:

using (var ctx = new TestContext())
{
 ...
}

For additional information please see the MSDN documentation for the
IDbConnectionFactory interface:

http://msdn.microsoft.com/en-us/library/

system.data.entity.infrastructure.idbconnectionfactory%28v=vs.113%29.aspx

4.7 Unsupported Entity Framework Features
The following items are not supported by the current release of the provider:

• Mapping Code First Insert, Update, Delete operations to Stored Procedures

• TimeStamp/RowVersion properties

• Custom Configuration

• Spatial Types

• Table-valued functions

Chapter 4
Unsupported Entity Framework Features

4-28

• Asynchronous Query and Save

• Connection Resiliency

• Oracle synonyms

Chapter 4
Unsupported Entity Framework Features

4-29

5
Oracle Data Provider for .NET Stored
Procedures

This section discusses server-side features provided by Oracle Data Provider
for .NET.

With the support for .NET stored procedures in Oracle Databases for Windows that
Oracle Database Extensions for .NET provides, ODP.NET can be used to access
Oracle data through the implicit database connection that is available from the context
of the .NET stored procedure execution. Explicit user connections can also be created
to establish connections to the database that hosts the .NET stored procedure or to
other Oracle Databases.

See Also:

Oracle Database Extensions for .NET Developer's Guide for Microsoft
Windows

This section contains these topics:

• Introducing .NET Stored Procedure Execution Using ODP.NET

• Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

• Porting Client Application to .NET Stored Procedure

5.1 Introducing .NET Stored Procedure Execution Using
ODP.NET

Oracle Data Provider for .NET classes and APIs provide data access to the Oracle
Database from a .NET client application and from .NET stored procedures and
functions.

However, some limitations and restrictions exist when Oracle Data Provider for .NET is
used within a .NET stored procedure. These are discussed in the next section.

The following is a simple .NET stored procedure example.

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

public class CLRLibrary1
{
 // .NET Stored Function returning the DEPTNO of the employee whose
 // EMPNO is 'empno'
 public static uint GetDeptNo(uint empno)
 {

5-1

 uint deptno = 0;

 // Create and open a context connection
 OracleConnection conn = new OracleConnection();
 if(OracleConnection.IsAvailable == true)
 {
 conn.ConnectionString = "context connection=true";
 }
 else
 {
 //set connection string for a normal client connection
 conn.ConnectionString = "user id=scott;password=tiger;" +
 "data source=oracle";
 }
 conn.Open();

 // Create and execute a command
 OracleCommand cmd = conn.CreateCommand();
 cmd.CommandText = "SELECT DEPTNO FROM EMP WHERE EMPNO = :1";
 cmd.Parameters.Add(":1",OracleDbType.Int32,empno,
 System.Data.ParameterDirection.Input);
 OracleDataReader rdr = cmd.ExecuteReader();
 if (rdr.Read())
 deptno = (uint)rdr.GetInt32(0);
 rdr.Close();
 cmd.Dispose();
 conn.Close();
 return deptno;
 } // GetDeptNo
} // CLRLibrary1

5.2 Limitations and Restrictions on ODP.NET Within .NET
Stored Procedure

This section covers important concepts that apply when Oracle Data Provider for .NET
is used within a .NET stored procedure.

Note:

ODP.NET, Managed Driver does not support .NET stored procedures.

5.2.1 Implicit Database Connection
Within a .NET stored procedure, an implicit database connection is available for use to
access Oracle data. This implicit database connection should be used rather than
establishing a user connection because the implicit database connection is already
established by the caller of the .NET stored procedure, thereby minimizing resource
usage.

To obtain an OracleConnection object in a .NET stored procedure that represents the
implicit database connection, set the ConnectionString property of the OracleConnection
object to "context connection=true" and invoke the Open method. No connection string

Chapter 5
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

5-2

attributes can be used with "context connection=true", except the Statement Cache Size
attribute.

The availability of the implicit database connection can be checked at run time through
the static OracleConnection.IsAvailable property. This property always returns true
when Oracle Data Provider for .NET is used within a .NET stored procedure.
Otherwise, false is returned.

Note:

DBLinks are not supported in .NET stored procedures.

Only one implicit database connection is available within a .NET stored procedure
invocation. To establish more connections in addition to the implicit database
connection, an explicit connection must be created. When the Close method is invoked
on the OracleConnection that represents the implicit database connection, the
connection is not actually closed. Therefore, the Open method of the same or another
OracleConnection object can be invoked to obtain the connection that represents the
implicit database connection.

The implicit database connection can only be acquired by the Open method invocation
by a native Oracle thread that initially invokes the .NET stored procedure. However,
threads spawned from the native Oracle thread can use implicit database connections
that are obtained by the native Oracle thread.

5.2.2 Transaction Support
The .NET stored procedure execution automatically inherits the current transaction on
the implicit database connection. No explicit transaction can be started, committed, or
rolled back inside a .NET stored procedure on a Context connection. However, explicit
transaction can be started, committed, or rolled back inside a .NET stored procedure
on a Client connection.

For example, OracleConnection.BeginTransaction is not allowed inside a .NET stored
procedure for a context connection, but is allowed for a client connection. .NET stored
procedures do not support distributed transactions. If you have enlisted a client
connection in a distributed transaction and call a .NET stored procedure or function, an
error occurs.

If a .NET stored procedure or function performs operations on the database that are
required to be part of a transaction, the transaction must be started prior to calling
the .NET stored procedure. Any desired commit or rollback must be performed after
returning from the .NET stored procedure or function.

The following example consists of a client application and a .NET stored procedure,
InsertRecordSP, that inserts an employee record into an EMP table.

Example (.NET Stored Procedure)

using System;
using System.Data;
using Oracle.DataAccess.Client;
// This class represents an Oracle .NET stored procedure that inserts
// an employee record into an EMP table of SCOTT schema.

Chapter 5
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

5-3

public class InsertRecordSP
{
 // This procedure will insert a row into the emp database
 // For simplicity we are using only two parameters, the rest are hard coded
 public static void InsertRecord(int EmpNo, string EmpName)
 {
 if(OracleConnection.IsAvailable == true)
 {
 OracleConnection conn = new OracleConnection(
 "context connection=true");
 conn.Open();
 // Create new command object from connection context
 OracleCommand Cmd = conn.CreateCommand();
 Cmd.CommandText = "INSERT INTO EMP(EMPNO, ENAME, JOB," +
 "MGR, HIREDATE, SAL, COMM, DEPTNO) " +
 "VALUES (:1, :2, 'ANALYST', 7566, " +
 "'06-DEC-04', 5000, 0, 20)";
 Cmd.Parameters.Add(":1", OracleDbType.Int32,
 EmpNo, ParameterDirection.Input);
 Cmd.Parameters.Add(":2", OracleDbType.Varchar2,
 EmpName, ParameterDirection.Input);
 Cmd.ExecuteNonQuery();
 }
 }
}

Example (Client Application)

The example enters new employee, Bernstein, employee number 7950, into the EMP
table.

// C#
// This sample demonstrates how to start the transaction with ODP.NET client
// application and execute an Oracle .NET stored procedure that performs
// a DML operation. Since .NET stored procedure inherits the current
// transaction from the implicit database connection, DML operation
// in .NET stored procedure will not be in auto-committed mode.
// Therefore, it is up to the client application to do a COMMIT or ROLLBACK
// after returning from .NET stored procedure
using System;
using System.Data;
using Oracle.DataAccess.Client;
// In this class we are starting a transaction on the client side and
// executing a .NET stored procedure, which inserts a record into EMP
// table and then verifies record count before and after COMMIT statement
class TransactionSample
{
 static void Main(string[] args)
 {
 OracleConnection Conn = null;
 OracleTransaction Txn = null;
 OracleCommand Cmd = null;
 try
 {
 Console.WriteLine("Sample: Open DB connection in non auto-committed "
 + "mode," +
 "DML operation performed by .NET stored " +
 "procedure doesn't have an effect before COMMIT " +
 "is called.");
 // Create and Open oracle connection
 Conn = new OracleConnection();

Chapter 5
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

5-4

 Conn.ConnectionString = "User Id=scott;Password=tiger;" +
 "Data Source=oracle;";
 Conn.Open();
 // Start transaction
 Txn = Conn.BeginTransaction(IsolationLevel.ReadCommitted);
 // Create command object
 Cmd = new OracleCommand();
 Cmd.Connection = Conn;
 Cmd.CommandType = CommandType.StoredProcedure;
 Cmd.CommandText = "InsertRecord"; // .NET Stored procedure
 // Parameter settings
 OracleParameter EmpNoPrm = Cmd.Parameters.Add(
 "empno", OracleDbType.Int32);
 EmpNoPrm.Direction = ParameterDirection.Input;
 EmpNoPrm.Value = 7950;
 OracleParameter EmpNamePrm = Cmd.Parameters.Add(
 "ename", OracleDbType.Varchar2, 10);
 EmpNamePrm.Direction = ParameterDirection.Input;
 EmpNamePrm.Value = "Bernstein";
 // Execute .NET stored procedure
 Cmd.ExecuteNonQuery();
 Console.WriteLine("Number of record(s) before COMMIT {0}",
 RecordCount());
 Txn.Commit();
 Console.WriteLine("Number of record(s) after COMMIT {0}",
 RecordCount());
 }
 catch(OracleException OE)
 {
 Console.WriteLine(OE.Message);
 }
 finally
 {
 // Cleanup objects
 if(null != Txn)
 Txn.Dispose();
 if(null != Cmd)
 Cmd.Dispose();
 if(null != Conn && Conn.State == ConnectionState.Open)
 Conn.Close();
 }
 }
 static int RecordCount()
 {
 int EmpCount = 0;
 OracleConnection Conn = null;
 OracleCommand Cmd = null;
 try
 {
 Conn = new OracleConnection("User Id=scott;Password=tiger;" +
 "Data Source=oracle;");
 Conn.Open();
 Cmd = new OracleCommand("SELECT COUNT(*) FROM EMP", Conn);
 Object o = Cmd.ExecuteScalar();
 EmpCount = Convert.ToInt32(o.ToString());
 }
 catch(OracleException OE)
 {
 Console.WriteLine(OE.Message);
 }
 finally

Chapter 5
Limitations and Restrictions on ODP.NET Within .NET Stored Procedure

5-5

 {
 if(null != Cmd)
 Cmd.Dispose();
 }
 return EmpCount;
 }
 }

5.2.3 Unsupported SQL Commands
Transaction controls commands such as COMMIT, ROLLBACK, and SAVEPOINT are not
supported in a .NET stored procedure.

Data definition commands such as CREATE and ALTER are not supported with an implicit
database connection, but they are supported with an explicit user connection in a .NET
stored procedure.

5.2.4 Oracle User-Defined Type (UDT) Support
UDTs are not supported within a context connection but they are supported with a
client connection. UDTs are not supported as parameters to .NET stored procedures.

5.3 Porting Client Application to .NET Stored Procedure
All classes and class members provide the same functionality for both client
applications and .NET stored procedures, unless it is otherwise stated.

Table 5-1 lists those classes or class members that have different behavior depending
on whether or not they are used in a client application or in a .NET stored procedure.

Column Headings

The column headings for this table are:

Client application: The client application.

Implicit connection: The implicit database connections in a .NET stored procedure.

Explicit connection: The explicit user connections in a .NET stored procedure.

Table 5-1 API Support Comparison Between Client Application and .NET
Stored Procedure

Class or Class Members Client Application Implicit Connection/Explicit
Connection

OnChangeEventHandler
Delegate

-all members

Yes No/No

OracleDependency Class

-all members

Yes No/No

OracleNotificationEventArgs
Class

-all members

Yes No/No

Chapter 5
Porting Client Application to .NET Stored Procedure

5-6

Table 5-1 (Cont.) API Support Comparison Between Client Application
and .NET Stored Procedure

Class or Class Members Client Application Implicit Connection/Explicit
Connection

OracleNotificationRequest
Class

-all members

Yes No/No

OracleFailoverEventArgs
Class

-all members

Yes No/No

OracleFailoverEventHandler
Delegate

-all members

Yes No/No

OracleTransaction Class

-all members

Yes No/No

OracleCommand Class

-Transaction Property

Yes No: Always returns null /No:
Always returns null.

OracleConnection Class

-ConnectionTimeout Property

-DataSource Property

-BeginTransaction Method

-ChangeDatabase Method

-Clone Method

-EnlistDistributedTransaction
Method

-OpenWithNewPassword
Method

-Failover Event

-OracleFailoverEventHandler
Delegate

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Yes: Implicit database
connection always returns
0/Yes

Yes: Implicit database
connection always returns an
empty string/Yes

No/Yes

No/No

No/Yes

No/No

No/Yes

No/No

No/No

ODP.NET Enumerations

-FailoverEvent Enumeration

-FailoverReturnCode
Enumeration

-FailoverType Enumeration

-OracleNotificationInfo
Enumeration

-OracleNotificationSource
Enumeration

-OracleNotificationType
Enumeration

Yes

Yes

Yes

Yes

Yes

Yes

No/No

No/No

No/No

No/No

No/No

No/No

Chapter 5
Porting Client Application to .NET Stored Procedure

5-7

6
Oracle Data Provider for .NET Classes

This chapter describes the following Oracle Data Provider for .NET classes.

• OracleClientFactory Class

• OracleCommand Class

• OracleCommandBuilder Class

• OracleConnection Class

• OracleConnectionStringBuilder Class

• OracleDataAdapter Class

• OracleDatabase Class

• OracleDataReader Class

• OracleDataSourceEnumerator Class

• OracleError Class

• OracleErrorCollection Class

• OracleException Class

• OracleInfoMessageEventArgs Class

• OracleInfoMessageEventHandler Delegate

• OracleLogicalTransaction Class

• OracleParameter Class

• OracleParameterCollection Class

• OraclePermission Class

• OraclePermissionAttribute Class

• OracleRowUpdatedEventArgs Class

• OracleRowUpdatedEventHandler Delegate

• OracleRowUpdatingEventArgs Class

• OracleRowUpdatingEventHandler Delegate

• OracleShardingKey Class

• OracleTransaction Class

• OracleConnectionType Enumeration

• OracleCollectionType Enumeration

• OracleDBShutdownMode Enumeration

• OracleDBStartupMode Enumeration

• OracleDbType Enumeration

• OracleIdentityType Enumeration

6-1

• OracleParameterStatus Enumeration

6.1 OracleClientFactory Class
An OracleClientFactory object allows applications to instantiate ODP.NET classes in a
generic way.

Class Inheritance

System.Object

 System.Data.Common.DbProviderFactory

 Oracle.DataAccess.Client.OracleClientFactory

Declaration

// C#
public sealed class OracleClientFactory : DbProviderFactory

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class FactorySample
{
 static void Main()
 {
 string constr = "user id=scott;password=tiger;data source=oracle";

 DbProviderFactory factory =
 DbProviderFactories.GetFactory("Oracle.DataAccess.Client");

 DbConnection conn = factory.CreateConnection();

 try
 {
 conn.ConnectionString = constr;
 conn.Open();

Chapter 6
OracleClientFactory Class

6-2

 DbCommand cmd = factory.CreateCommand();
 cmd.Connection = conn;
 cmd.CommandText = "select * from emp";

 DbDataReader reader = cmd.ExecuteReader();
 while (reader.Read())
 Console.WriteLine(reader["EMPNO"] + " : " + reader["ENAME"]);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
}

6.1.1 OracleClientFactory Members
OracleClientFactory members are listed in the following tables.

OracleClientFactory Field

The OracleClientFactory field is listed in Table 6-1

Table 6-1 OracleClientFactory Field

Property Description

Instance Gets an instance of the OracleClientFactory class

OracleClientFactory Constructor

The OracleClientFactory constructor is listed in Table 6-2

Table 6-2 OracleClientFactory Constructor

Property Description

OracleClientFactory Constructor Instantiates a new instance of OracleClientFactory
class

OracleClientFactory Public Properties

The OracleClientFactory public properties are listed in Table 6-3.

Table 6-3 OracleClientFactory Public Properties

Property Description

CanCreateDataSourceEnumerator Indicates whether or not the
CreateDataSourceEnumerator method is supported

OracleClientFactory Public Methods

OracleClientFactory Public Methods are listed in Table 6-4.

Chapter 6
OracleClientFactory Class

6-3

Table 6-4 OracleClientFactory Public Method

Method Description

CreateCommand Returns a DbCommand object that represents an
OracleCommand object

CreateCommandBuilder Returns a DbCommandBuilder object that represents
an OracleCommandBuilder object

CreateConnection Returns a DbConnection object that represents an
OracleConnection object

CreateConnectionStringBuilder Returns a DbConnectionStringBuilder object that
represents an OracleConnectionStringBuilder
object

CreateDataAdapter Returns a DbDataAdapter object that represents an
OracleDataAdapter object

CreateDataSourceEnumerator Returns a DbDataSourceEnumerator object that
represents an OracleDataSourceEnumerator object

CreateParameter Returns a DbParameter object that represents an
OracleParameter object

CreatePermission Returns a CodeAccessPermission object that
represents an OraclePermission object

6.1.2 OracleClientFactory Field
The OracleClientFactory field is listed in Table 6-5

Table 6-5 OracleClientFactory Field

Property Description

Instance Gets an instance of the OracleClientFactory class

6.1.2.1 Instance
The Instance field gets an instance of the OracleClientFactory class. This can be used
to retrieve strongly typed data objects.

Declaration

// C#
public static readonly OracleClientFactory Instance

6.1.3 OracleClientFactory Constructor
The OracleClientFactory constructor creates a new instances of the
OracleClientFactory class.

Chapter 6
OracleClientFactory Class

6-4

Declaration

// C#
public OracleClientFactory();

6.1.4 OracleClientFactory Public Properties
The OracleClientFactory public properties are listed in Table 6-6.

Table 6-6 OracleClientFactory Public Properties

Property Description

CanCreateDataSourceEnumerator Indicates whether or not the
CreateDataSourceEnumerator method is supported

6.1.4.1 CanCreateDataSourceEnumerator
This property indicates whether or not the CreateDataSourceEnumerator method is
supported.

Declaration

// C#
public override bool CanCreateDataSourceEnumerator { get; }

Property Value

Returns true.

Remarks

ODP.NET supports the OracleDataSourceEnumerator object.

6.1.5 OracleClientFactory Public Methods
The OracleClientFactory public method is listed in Table 6-7.

Table 6-7 OracleClientFactory Public Method

Method Description

CreateCommand Returns a DbCommand object that represents an
OracleCommand object

CreateCommandBuilder Returns a DbCommandBuilder object that represents
an OracleCommandBuilder object

CreateConnection Returns a DbConnection object that represents an
OracleConnection object

Chapter 6
OracleClientFactory Class

6-5

Table 6-7 (Cont.) OracleClientFactory Public Method

Method Description

CreateConnectionStringBuilder Returns a DbConnectionStringBuilder object that
represents an OracleConnectionStringBuilder
object

CreateDataAdapter Returns a DbDataAdapter object that represents an
OracleDataAdapter object

CreateDataSourceEnumerator Returns a DbDataSourceEnumerator object that
represents an OracleDataSourceEnumerator object

CreateParameter Returns a DbParameter object that represents an
OracleParameter object

CreatePermission Returns a CodeAccessPermission object that
represents an OraclePermission object

6.1.5.1 CreateCommand
This method returns a DbCommand object that represents an OracleCommand object.

Declaration

// C#
public override DbCommand CreateCommand();

Return Value

A DbCommand object that represents an OracleCommand object.

6.1.5.2 CreateCommandBuilder
This method returns a DbCommandBuilder object that represents an OracleCommandBuilder
object.

Declaration

// C#
public override DbCommandBuilder CreateCommandBuilder();

Return Value

A DbCommandBuilder object that represents an OracleCommandBuilder object.

6.1.5.3 CreateConnection
This method returns a DbConnection object that represents an OracleConnection object.

Chapter 6
OracleClientFactory Class

6-6

Declaration

// C#
public override DbConnection CreateConnection();

Return Value

A DbConnection object that represents an OracleConnection object.

6.1.5.4 CreateConnectionStringBuilder
This method returns a DbConnectionStringBuilder object that represents an
OracleConnectionStringBuilder object.

Declaration

// C#
public override DbConnectionStringBuilder CreateConnectionStringBuilder();

Return Value

A DbConnectionStringBuilder object that represents an OracleConnectionStringBuilder
object.

6.1.5.5 CreateDataAdapter
This method returns a DbDataAdapter object that represents an OracleDataAdapter
object.

Declaration

// C#
public override DbDataAdapter CreateDataAdapter();

Return Value

A DbDataAdapter object that represents an OracleDataAdapter object.

6.1.5.6 CreateDataSourceEnumerator
This method returns a DbDataSourceEnumerator object that represents an
OracleDataSourceEnumerator object.

Declaration

// C#
public override DbDataSourceEnumerator CreateDataSourceEnumerator();

Return Value

A DbDataSourceEnumerator object that represents an OracleDataSourceEnumerator object.

Chapter 6
OracleClientFactory Class

6-7

6.1.5.7 CreateParameter
This method returns a DbParameter object that represents an OracleParameter object.

Declaration

// C#
public override DbParameter CreateParameter();

Return Value

A DbParameter object that represents an OracleParameter object.

6.1.5.8 CreatePermission
This method returns a CodeAccessPermission object that represents an OraclePermission
object.

Declaration

// C#
public override System.Security.CodeAccessPermission CreatePermission(
 System.Security.Permissions.PermissionState state);

Parameter

• state

A PermissionState object.

Return Value

A CodeAccessPermission object that represents an OraclePermission object.

Remarks

This method enables users, writing provider-independent code, to get a
CodeAccessPermission instance that represents an OraclePermission object.

6.2 OracleCommand Class
An OracleCommand object represents a SQL command, a stored procedure, or a table
name. The OracleCommand object is responsible for formulating the request and passing
it to the database. If results are returned, OracleCommand is responsible for returning
results as an OracleDataReader, a .NET XmlReader, a .NET Stream, a scalar value, or as
output parameters.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.ComponentModel.Component

Chapter 6
OracleCommand Class

6-8

 System.Data.Common.DbCommand

 Oracle.DataAccess.Client.OracleCommand

Declaration

// C#
public sealed class OracleCommand : DbCommand, ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The execution of any transaction-related statements from an OracleCommand is not
recommended because it is not reflected in the state of the OracleTransaction object
represents the current local transaction, if one exists.

ExecuteXmlReader, ExecuteStream, and ExecuteToStream methods are only supported for
XML operations.

ExecuteReader and ExecuteScalar methods are not supported for XML operations.

To minimize the number of open server cursors, OracleCommand objects should be
explicitly disposed.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleCommandSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 string cmdQuery = "select ename, empno from emp";

 // Create the OracleCommand
 OracleCommand cmd = new OracleCommand(cmdQuery);

 cmd.Connection = con;
 cmd.CommandType = CommandType.Text;

Chapter 6
OracleCommand Class

6-9

 // Execute command, create OracleDataReader object
 OracleDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 // output Employee Name and Number
 Console.WriteLine("Employee Name : " + reader.GetString(0) + " , " +
 "Employee Number : " + reader.GetDecimal(1));
 }

 // Clean up
 reader.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

6.2.1 OracleCommand Members
OracleCommand members are listed in the following tables.

OracleCommand Constructors

OracleCommand constructors are listed in Table 6-8.

Table 6-8 OracleCommand Constructors

Constructor Description

OracleCommand Constructors Instantiates a new instance of OracleCommand class
(Overloaded)

OracleCommand Static Methods

The OracleCommand static method is listed in Table 6-9.

Table 6-9 OracleCommand Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleCommand Properties

OracleCommand properties are listed in Table 6-10.

Table 6-10 OracleCommand Properties

Property Description

AddRowid Adds the ROWID as part of the select list

AddToStatementCache Causes executed statements to be cached, when the
property is set to true and statement caching is enabled

Chapter 6
OracleCommand Class

6-10

Table 6-10 (Cont.) OracleCommand Properties

Property Description

ArrayBindCount Specifies if the array binding feature is to be used and
also specifies the maximum number of array elements to
be bound in the Value property

ArrayBindRowsAffected Returns the number of affected rows for each iteration
while executing a DML using array binding

BindByName Specifies the binding method in the collection

CommandText Specifies the SQL statement or stored procedure to run
against the Oracle database or the XML data used to
store changes to the Oracle database

CommandTimeout Specifies the number of seconds the command is
allowed to execute before terminating the execution with
an exception

CommandType Specifies the command type that indicates how the
CommandText property is to be interpreted

Connection Specifies the OracleConnection object that is used to
identify the connection to execute a command

Container Inherited from System.ComponentModel.Component

DesignTimeVisible Specifies whether or not the OracleCommand object is
visible on designer controls.

FetchSize Specifies the size of OracleDataReader's internal cache
to store result set data

ImplicitRefCursors Specifies an array of OracleRefCursors mapped to an
implicit resultset returned by the stored procedure.

Not available in the ODP.NET, Managed Driver

InitialLOBFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LOB columns

InitialLONGFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LONG and LONG RAW columns

Notification Indicates that there is a notification request for the
command

NotificationAutoEnlist Indicates whether or not to register for a continuous
query notification with the database automatically when
the command is executed

Parameters Specifies the parameters for the SQL statement or
stored procedure

RowSize Specifies the amount of memory needed by the
OracleDataReader internal cache to store one row of
data

Site Inherited from System.ComponentModel.Component

Transaction Specifies the OracleTransaction object in which the
OracleCommand executes

Not supported in a .NET stored procedure

Chapter 6
OracleCommand Class

6-11

Table 6-10 (Cont.) OracleCommand Properties

Property Description

UpdatedRowSource Specifies how query command results are applied to the
row being updated

Not supported in a .NET stored procedure

UseEdmMapping Indicates whether or not the command object utilizes the
Entity Data Model mapping configuration values

XmlCommandType Specifies the type of XML operation on the
OracleCommand

XmlQueryProperties Specifies the properties that are used when an XML
document is created from the result set of a SQL query
statement

XmlSaveProperties Specifies the properties that are used when an XML
document is used to save changes to the database

OracleCommand Public Methods

OracleCommand public methods are listed in Table 6-11.

Table 6-11 OracleCommand Public Methods

Public Method Description

Cancel Attempts to cancels a command that is currently
executing on a particular connection

Clone Creates a copy of OracleCommand object

CreateObjRef Inherited from System.MarshalByRefObject

CreateParameter Creates a new instance of OracleParameter class

Dispose Releases any resources or memory allocated by the
object

Equals Inherited from System.Object (Overloaded)

ExecuteNonQuery Executes a SQL statement or a command using the
XmlCommandType and CommandText properties and returns
the number of rows affected

ExecuteReader Executes a command (Overloaded)

ExecuteScalar Returns the first column of the first row in the result set
returned by the query

ExecuteStream Executes a command using the XmlCommandType and
CommandText properties and returns the results in a new
Stream object

ExecuteToStream Executes a command using the XmlCommandType and
CommandText properties and appends the results as an
XML document to the existing Stream

ExecuteXmlReader Executes a command using the XmlCommandType and
CommandText properties and returns the result as an XML
document in a .NET XmlTextReader object

GetHashCode Inherited from System.Object

Chapter 6
OracleCommand Class

6-12

Table 6-11 (Cont.) OracleCommand Public Methods

Public Method Description

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

Prepare This method is a no-op

ToString Inherited from System.Object

6.2.2 OracleCommand Constructors
OracleCommand constructors instantiate new instances of OracleCommand class.

Overload List:

• OracleCommand()

This constructor instantiates a new instance of OracleCommand class.

• OracleCommand(string)

This constructor instantiates a new instance of OracleCommand class using the
supplied SQL command or stored procedure, and connection to the Oracle
database.

• OracleCommand(string, OracleConnection)

This constructor instantiates a new instance of OracleCommand class using the
supplied SQL command or stored procedure, and connection to the Oracle
database.

6.2.2.1 OracleCommand()
This constructor instantiates a new instance of OracleCommand class.

Declaration

// C#
public OracleCommand();

Remarks

Default constructor.

6.2.2.2 OracleCommand(string)
This constructor instantiates a new instance of OracleCommand class using the supplied
SQL command or stored procedure, and connection to the Oracle database.

Declaration

// C#
public OracleCommand(string cmdText);

Chapter 6
OracleCommand Class

6-13

Parameters

• cmdText

The SQL command or stored procedure to be executed.

6.2.2.3 OracleCommand(string, OracleConnection)
This constructor instantiates a new instance of OracleCommand class using the supplied
SQL command or stored procedure, and connection to the Oracle database.

Declaration

// C#
public OracleCommand(string cmdText, OracleConnection OracleConnection);

Parameters

• cmdText

The SQL command or stored procedure to be executed.

• OracleConnection

The connection to the Oracle database.

6.2.3 OracleCommand Static Methods
The OracleCommand static method is listed in Table 6-12.

Table 6-12 OracleCommand Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.2.4 OracleCommand Properties
OracleCommand properties are listed in Table 6-13.

Table 6-13 OracleCommand Properties

Property Description

AddRowid Adds the ROWID as part of the select list

AddToStatementCache Causes executed statements to be cached, when the
property is set to true and statement caching is enabled

ArrayBindCount Specifies if the array binding feature is to be used and
also specifies the maximum number of array elements to
be bound in the Value property

ArrayBindRowsAffected Returns the number of affected rows for each iteration
while executing a DML using array binding

BindByName Specifies the binding method in the collection

Chapter 6
OracleCommand Class

6-14

Table 6-13 (Cont.) OracleCommand Properties

Property Description

CommandText Specifies the SQL statement or stored procedure to run
against the Oracle database or the XML data used to
store changes to the Oracle database

CommandTimeout Specifies the number of seconds the command is allowed
to execute before terminating the execution with an
exception

CommandType Specifies the command type that indicates how the
CommandText property is to be interpreted

Connection Specifies the OracleConnection object that is used to
identify the connection to execute a command

Container Inherited from System.ComponentModel.Component

DesignTimeVisible Specifies whether or not the OracleCommand object is
visible on designer controls.

FetchSize Specifies the size of OracleDataReader's internal cache to
store result set data

ImplicitRefCursors Specifies an array of OracleRefCursors mapped to an
implicit resultset returned by the stored procedure.

Not available in the ODP.NET, Managed Driver

InitialLOBFetchSize Specifies the amount of data that the OracleDataReader
initially fetches for LOB columns

InitialLONGFetchSize Specifies the amount that of data the OracleDataReader
initially fetches for LONG and LONG RAW columns

Notification Indicates that there is a notification request for the
command

NotificationAutoEnlist Indicates whether or not to register for a continuous query
notification with the database automatically when the
command is executed

Parameters Specifies the parameters for the SQL statement or stored
procedure

RowSize Specifies the amount of memory needed by the
OracleDataReader internal cache to store one row of data

Site Inherited from System.ComponentModel.Component

Transaction Specifies the OracleTransaction object in which the
OracleCommand executes

Not supported in a .NET stored procedure

UpdatedRowSource Specifies how query command results are applied to the
row being updated

Not supported in a .NET stored procedure

UseEdmMapping Indicates whether or not the command object utilizes the
Entity Data Model mapping configuration values

XmlCommandType Specifies the type of XML operation on the OracleCommand

XmlQueryProperties Specifies the properties that are used when an XML
document is created from the result set of a SQL query
statement

Chapter 6
OracleCommand Class

6-15

Table 6-13 (Cont.) OracleCommand Properties

Property Description

XmlSaveProperties Specifies the properties that are used when an XML
document is used to save changes to the database

6.2.4.1 AddRowid
This property adds the ROWID as part of the select list.

Declaration

// C#
public bool AddRowid {get; set;}

Property Value

bool

Remarks

Default is false.

This ROWID column is hidden and is not accessible by the application. To gain access to
the ROWIDs of a table, the ROWID must explicitly be added to the select list without the
use of this property.

6.2.4.2 AddToStatementCache
This property causes executed statements to be cached when the property is set to
true and statement caching is enabled. If statement caching is disabled or if this
property is set to false, the executed statement is not cached.

Declaration

// C#
public bool AddToStatementCache{get; set;}

Return Value

Returns bool value. A value of true indicates that statements are being added to the
cache, false indicates otherwise.

Property Value

A bool value that indicates that the statements will be cached when they are executed,
if statement caching is enabled.

Remarks

Default is true.

Chapter 6
OracleCommand Class

6-16

AddToStatementCache is ignored if statement caching is disabled. Statement caching is
enabled by setting the Statement Cache Size connection string attribute to a value
greater than 0.

When statement caching is enabled, however, this property provides a way to
selectively add statements to the cache.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class AddToStatementCacheSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle;" +
 "statement cache size=10";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand("select * from emp", con);

 if (cmd.AddToStatementCache)
 Console.WriteLine("Added to the statement cache:" + cmd.CommandText);
 else
 Console.WriteLine("Not added to the statement cache:" + cmd.CommandText);

 // The execution of "select * from emp" will be added to the statement cache
 // because statement cache size is greater than 0 and OracleCommand's
 // AddToStatementCache is true by default.
 OracleDataReader readerEmp = cmd.ExecuteReader();

 // Do not add "select * from dept" to the statement cache
 cmd.CommandText = "select * from dept";
 cmd.AddToStatementCache = false;

 if (cmd.AddToStatementCache)
 Console.WriteLine("Added to the statement cache:" + cmd.CommandText);
 else
 Console.WriteLine("Not added to the statement cache:" + cmd.CommandText);

 // The execution of "select * from dept" will not be added to the
 // statement cache because AddToStatementCache is set to false.
 OracleDataReader readerDept = cmd.ExecuteReader();

 // Clean up
 con.Dispose();
 }
}

6.2.4.3 ArrayBindCount
This property specifies if the array binding feature is to be used and also specifies the
number of array elements to be bound in the OracleParameter Value property.

Chapter 6
OracleCommand Class

6-17

Declaration

// C#
public int ArrayBindCount {get; set;}

Property Value

An int value that specifies number of array elements to be bound in the
OracleParameter Value property.

Exceptions

ArgumentException - The ArrayBindCount value specified is invalid.

Remarks

Default = 0.

If ArrayBindCount is equal to 0, array binding is not used; otherwise, array binding is
used and OracleParameter Value property is interpreted as an array of values. The
value of ArrayBindCount must be specified to use the array binding feature.

If neither DbType nor OracleDbType is set, it is strongly recommended that you set
ArrayBindCount before setting the OracleParameter Value property so that inference of
DbType and OracleDbType from Value can be correctly done.

Array binding is not used by default.

If the XmlCommandType property is set to any value other than None, this property is
ignored.

6.2.4.4 ArrayBindRowsAffected
This property returns the number of affected rows for each iteration while executing a
DML using array binding.

Declaration

// C#
public long[] ArrayBindRowsAffected ;

Property Value

A long type

6.2.4.5 BindByName
This property specifies the binding method in the collection.

Declaration

// C#
public bool BindByName {get; set;}

Chapter 6
OracleCommand Class

6-18

Property Value

Returns true if the parameters are bound by name; returns false if the parameters are
bound by position.

Remarks

Default = false.

BindByName is ignored under the following conditions:

• The value of the XmlCommandType property is Insert, Update, or Delete.

• The value of the XmlCommandType property is Query, but there are no parameters set
on the OracleCommand.

If the XmlCommandType property is OracleXmlCommandType.Query and any parameters are
set on the OracleCommand, the BindByName property must be set to true. Otherwise, the
following OracleCommand methods throw an InvalidOperationException.

• ExecuteNonQuery

• ExecuteXmlReader

• ExecuteStream

• ExecuteToStream

6.2.4.6 CommandText
This property specifies the SQL statement or stored procedure to run against the
Oracle database or the XML data used to store changes to the Oracle database.

Declaration

// C#
public override string CommandText {get; set;}

Property Value

A string.

Implements

IDbCommand

Remarks

The default is an empty string.

When the CommandType property is set to StoredProcedure, the CommandText property is
set to the name of the stored procedure. The command calls this stored procedure
when an Execute method is called.

The effects of XmlCommandType values on CommandText are:

• XmlCommandType = None.

CommandType property determines the contents of CommandText.

• XmlCommandType = Query.

Chapter 6
OracleCommand Class

6-19

CommandText must be a SQL query. The SQL query should be a select statement.
CommandType property is ignored.

• XmlCommandType property is Insert, Update, or Delete.

CommandText must be an XML document. CommandType property is ignored.

6.2.4.7 CommandTimeout
This property specifies the minimum number of seconds that the command is allowed
to execute before terminating with an exception.

Declaration

// C#
public override int CommandTimeout {get; set;}

Property Value

int

Implements

IDbCommand.CommandTimeout

Exceptions

InvalidArgument - The specified value is less than 0.

Remarks

Default is 0 seconds, which enforces no time limit.

When the specified timeout value expires before a command execution finishes, the
command attempts to cancel. If cancellation is successful, an exception is thrown with
the message of ORA-01013: user requested cancel of current operation. Other possible
exceptions thrown after a command timeout expiration occurs include ORA-00936 and
ORA-00604. If the command executed in time without any errors, no exceptions are
thrown.

In a situation where multiple OracleCommand objects use the same connection, the
timeout expiration on one of the OracleCommand objects may terminate any of the
executions on the single connection. To make the timeout expiration of a OracleCommand
cancel only its own command execution, simply use one OracleCommand for each
connection if that OracleCommand sets the CommandTimeout property to a value greater
than 0.

6.2.4.8 CommandType
This property specifies the command type that indicates how the CommandText property
is to be interpreted.

Declaration

// C#
public override CommandType CommandType {get; set;}

Chapter 6
OracleCommand Class

6-20

Property Value

A CommandType.

Exceptions

ArgumentException - The value is not a valid CommandType such as: CommandType.Text,
CommandType.StoredProcedure, CommandType.TableDirect.

Remarks

Default = CommandType.Text

If the value of the XmlCommandType property is not None, then the CommandType property is
ignored.

6.2.4.9 Connection
This property specifies the OracleConnection object that is used to identify the
connection to execute a command.

Declaration

// C#
public OracleConnection Connection {get; set;}

Property Value

An OracleConnection object.

Implements

IDbCommand

Remarks

Default = null

6.2.4.10 DesignTimeVisible
This property specifies whether or not the OracleCommand object is visible on designer
controls.

Declaration

// C#
public override bool DesignTimeVisible { get; set; }

Property Value

A value that indicate whether or not OracleCommand object is visible in a control. The
default is true.

Chapter 6
OracleCommand Class

6-21

Remarks

This property is used by developers to indicate whether or not OracleCommand object is
visible in a control.

6.2.4.11 FetchSize
This property specifies the size of OracleDataReader's internal cache to store result set
data.

Declaration

// C#
public long FetchSize {get; set;}

Property Value

A long that specifies the size (in bytes) of the OracleDataReader's internal cache.

Exceptions

ArgumentException - The FetchSize value specified is invalid.

Remarks

Default = 131072.

The FetchSize property is inherited by the OracleDataReader that is created by a
command execution returning a result set. The FetchSize property on the
OracleDataReader object determines the amount of data the OracleDataReader fetches
into its internal cache for each database round-trip.

If the XmlCommandType property is set to any value other than None, this property is
ignored.

The RowSize and FetchSize properties handle UDT and XMLType data differently than
other scalar data types. Because only a reference to the UDT and XMLType data is
stored in the ODP.NET's internal cache, the RowSize property accounts for only the
memory needed for the reference (which is very small) and not the actual size of the
UDT and XMLType data. Thus, applications can inadvertently fetch a large number of
UDT or XMLType instances from the database in a single database round-trip. This is
because the actual size of UDT and XMLType data do not count against the FetchSize,
and it would require numerous UDT and XMLType references to fill up the default cache
size of 131072 bytes. Therefore, when fetching UDT or XMLType data, the FetchSize
property must be appropriately configured to control the number of UDT and XMLType
instances that are to be fetched, rather than the amount of the actual UDT and XMLType
data to be fetched.

NOTE: For LOB and LONG data types, only the sizes specified in the
InitialLOBFetchSize and InitialLONGFetchSize properties are accounted for by the
RowSize property in addition to the metadata and reference information that is
maintained by the cache for each LOB in the select list.

Chapter 6
OracleCommand Class

6-22

6.2.4.12 ImplicitRefCursors
This property returns an array of OracleRefCursors, where each OracleRefCursor maps
to an implicit resultset returned by the stored procedure.

Declaration

// C#
public OracleRefCursor[] ImplicitRefCursors {get; set;}

Property Value

An array of OracleRefCursors.

Remarks

This property is populated only when the stored procedure is executed through
ExecuteNonQuery and it does not get populated in any other scenarios.

6.2.4.13 InitialLOBFetchSize
This property specifies the amount of data that the OracleDataReader initially fetches for
LOB columns.

Declaration

// C#
public int InitialLOBFetchSize {get; set;}

Property Value

An int specifying the number of characters or bytes to fetch initially.

Exceptions

ArgumentException - The InitialLOBFetchSize value specified is invalid.

Remarks

The value of InitialLOBFetchSize specifies the initial amount of LOB data that is
immediately fetched by the OracleDataReader. The property value specifies the number
of characters for CLOB and NCLOB data, and the number of bytes for BLOB data.

The InitialLOBFetchSize value is used to determine the length of the LOB column data
to fetch, if the LOB column is in the select list. If the select list does not contain a LOB
column, the InitialLOBFetchSize value is ignored.

When InitialLOBFetchSize is set to -1, the entire LOB data is prefetched and stored in
the fetch array.

Default = 0.

The maximum value supported for InitialLOBFetchSize is 2 GB.

GetOracleBlob and GetOracleClob methods can be used to retrieve any LOBs no matter
the InitialLOBFetchSize value.

Chapter 6
OracleCommand Class

6-23

6.2.4.14 InitialLONGFetchSize
This property specifies the amount of data that the OracleDataReader initially fetches for
LONG and LONG RAW columns.

Declaration

// C#
public int InitialLONGFetchSize {get; set;}

Property Value

An int specifying the amount.

Exceptions

ArgumentException - The InitialLONGFetchSize value specified is invalid.

Remarks

The maximum value supported for InitialLONGFetchSize is 32767. If this property is set
to a higher value, the provider resets it to 32767.

The value of InitialLONGFetchSize specifies the initial amount of LONG or LONG RAW data
that is immediately fetched by the OracleDataReader. The property value specifies the
number of characters for LONG data and the number of bytes for LONG RAW. To fetch more
than the specified InitialLONGFetchSize amount, one of the following must be in the
select list:

• Primary key

• ROWID

• Unique columns - (defined as a set of columns on which a unique constraint has
been defined or a unique index has been created, where at least one of the
columns in the set has a NOT NULL constraint defined on it)

The InitialLONGFetchSize value is used to determine the length of the LONG and LONG
RAW column data to fetch if one of the two is in the select list. If the select list does not
contain a LONG or a LONG RAW column, the InitialLONGFetchSize value is ignored.

When InitialLONGFetchSize is set to -1, the entire LONG or LONG RAW data is prefetched
and stored in the fetch array. Calls to GetString, GetChars, or GetBytes in
OracleDataReader allow retrieving the entire data.

Default = 0.

Setting this property to 0 defers the LONG and LONG RAW data retrieval entirely until the
application specifically requests it.

6.2.4.15 Notification
This instance property indicates that there is a notification request for the command.

Declaration

// C#
public OracleNotificationRequest Notification {set; get;}

Chapter 6
OracleCommand Class

6-24

Property Value

A notification request for the command.

Remarks

When a changed notification is first registered, the client listener is started in order to
receive any database notification. The listener uses the port number defined in the
OracleDependency.Port static field. Subsequent change notification registrations use the
same listener in the same client process and do not start another listener.

When Notification is set to an OracleNotificationRequest instance, a notification
registration is created (if it has not already been created) when the command is
executed. Once the registration is created, the properties of the
OracleNotificationRequest instance cannot be modified. If the notification registration
has already been created, the result set that is associated with the command is added
to the existing registration.

When Notification is set to null, subsequent command executions do not require a
notification request. If a notification request is not required, set the Notification
property to null, or set the NotificationAutoEnlist property to false.

For Continuous Query Notification, a notification request can be used for multiple
command executions. In that case, any query result set associated with different
commands can be invalidated within the same registration.

When the OracleDependency.OnChange event is fired, if the ROWID column is explicitly
included in the query (or AddRowid property is set to true), then the Rowid column
contains ROWID values in the DataTable referenced by the
OracleNotificationEventArgs.Details property. This behavior can be overridden by
explicitly requesting for an inclusion and exclusion of ROWID values in the
OracleNotificationEventArgs by setting the OracleDependency.RowidInfo to
OracleRowidInfo.Include or OracleRowidInfo.Exclude, respectively.

6.2.4.16 NotificationAutoEnlist
This instance property indicates whether or not to register for a continuous query
notification with the database automatically when the command is executed.

Declaration

// C#
public bool NotificationAutoEnlist {set; get;}

Property Value

A bool value indicating whether or not to make a continuous query notification request
automatically, when the command is executed. If NotificationAutoEnlist is set to true,
and the Notification property is set appropriately, a continuous query notification
request is registered automatically; otherwise, no continuous query notification
registration is made.

Default value: true

Chapter 6
OracleCommand Class

6-25

Remarks

A notification request can be used for multiple command executions using the same
OracleCommand instance. In that case, set the NotificationAutoEnlist property to true.

6.2.4.17 Parameters
This property specifies the parameters for the SQL statement or stored procedure.

Declaration

// C#
public OracleParameterCollection Parameters {get;}

Property Value

OracleParameterCollection

Implements

IDbCommand

Remarks

Default value = an empty collection

The number of the parameters in the collection must be equal to the number of
parameter placeholders within the command text, or an error is raised.

If the command text does not contain any parameter tokens (such as,:1,:2), the values
in the Parameters property are ignored.

6.2.4.18 RowSize
This property specifies the amount of memory needed by the OracleDataReader internal
cache to store one row of data.

Declaration

// C#
public long RowSize {get;}

Property Value

A long that indicates the amount of memory (in bytes) that an OracleDataReader needs
to store one row of data for the executed query.

Remarks

Default value = 0

The RowSize property is set to a nonzero value after the execution of a command that
returns a result set. This property can be used at design time or dynamically during
runtime, to set the FetchSize, based on number of rows. For example, to enable the
OracleDataReader to fetch N rows for each database round-trip, the OracleDataReader
FetchSize property can be set dynamically to RowSize * N. Note that for the FetchSize to

Chapter 6
OracleCommand Class

6-26

take effect appropriately, it must be set after OracleCommand.ExecuteReader() but before
OracleDataReader.Read().

ODP.NET now supports values up to 32K for VARCHAR2, NVARCHAR2 or RAW type columns
in its calculation of RowSize value.

6.2.4.19 Transaction
This property specifies the OracleTransaction object in which the OracleCommand
executes.

Declaration

// C#
public OracleTransaction Transaction {set; get;}

Property Value

OracleTransaction

Implements

IDbCommand

Remarks

Default value = null

Transaction returns a reference to the transaction object associated with the
OracleCommand connection object. Thus the command is executed in whatever
transaction context its connection is currently in.

Note:

When this property is accessed through an IDbCommand reference, its set
accessor method is not operational.

Remarks (.NET Stored Procedure)

Always returns null.

6.2.4.20 UpdatedRowSource
This property specifies how query command results are applied to the row to be
updated.

Declaration

// C#
public override UpdateRowSource UpdatedRowSource {get; set;}

Property Value

An UpdateRowSource.

Chapter 6
OracleCommand Class

6-27

Implements

IDbCommand

Exceptions

ArgumentException - The UpdateRowSource value specified is invalid.

Remarks

Always returns UpdateRowSource,

Set accessor throws an ArgumentException if the value is other than
UpdateRowSource.None.

6.2.4.21 UseEdmMapping
This property Indicates whether or not the OracleCommand object utilizes the Entity Data
Model mapping configuration values.

Declaration

// C#
public bool UseEdmMapping

Property Value

A bool.

Remarks

Default is false.

The UseEdmMapping property allows user to explicitly specify that the OracleCommand
object should use the Entity Data Model mapping configuration values. This enables
use of Entity Framework Multiple Result Sets feature.

6.2.4.22 XmlCommandType
This property specifies the type of XML operation on the OracleCommand.

Declaration

// C#
public OracleXmlCommandType XmlCommandType {get; set;}

Property Value

An OracleXmlCommandType.

Remarks

Default value is None.

XmlCommandType values and usage:

• None - The CommandType property specifies the type of operation.

Chapter 6
OracleCommand Class

6-28

• Query - CommandText property must be set to a SQL select statement. The query is
executed, and the results are returned as an XML document. The SQL select
statement in the CommandText and the properties specified by the
XmlQueryProperties property are used to perform the operation. The CommandType
property is ignored.

• Insert, Update, or Delete - CommandText property is an XML document containing the
changes to be made. The XML document in the CommandText and the properties
specified by the XmlSaveProperties property are used to perform the operation. The
CommandType property is ignored.

6.2.4.23 XmlQueryProperties
This property specifies the properties that are used when an XML document is created
from the result set of a SQL query statement.

Declaration

// C#
public OracleXmlQueryProperties XmlQueryProperties {get; set;}

Property Value

OracleXmlQueryProperties.

Remarks

When a new instance of OracleCommand is created, an instance of
OracleXmlQueryProperties is automatically available on the OracleCommand instance
through the OracleCommand.XmlQueryProperties property.

A new instance of OracleXmlQueryProperties can be assigned to an OracleCommand
instance. Assigning an instance of OracleXmlQueryProperties to the XmlQueryProperties
of an OracleCommand instance creates a new instance of the given
OracleXmlQueryProperties instance for the OracleCommand. This way each OracleCommand
instance has its own OracleXmlQueryProperties instance.

Use the default constructor to get a new instance of OracleXmlQueryProperties.

Use the OracleXmlQueryProperties.Clone() method to get a copy of an
OracleXmlQueryProperties instance.

6.2.4.24 XmlSaveProperties
This property specifies the properties that are used when an XML document is used to
save changes to the database.

Declaration

// C#
public OracleXmlSaveProperties XmlSaveProperties {get; set;}

Property Value

OracleXmlSaveProperties.

Chapter 6
OracleCommand Class

6-29

Remarks

When a new instance of OracleCommand is created, an instance of
OracleXmlSaveProperties is automatically available on the OracleCommand instance
through the OracleCommand.XmlSaveProperties property.

A new instance of OracleXmlSaveProperties can be assigned to an OracleCommand
instance. Assigning an instance of OracleXmlSaveProperties to the XmlSaveProperties of
an OracleCommand instance creates a new instance of the given OracleXmlSaveProperties
instance for the OracleCommand. This way each OracleCommand instance has its own
OracleXmlSaveProperties instance.

Use the default constructor to get a new instance of OracleXmlSaveProperties.

Use the OracleXmlSaveProperties.Clone() method to get a copy of an
OracleXmlSaveProperties instance.

6.2.5 OracleCommand Public Methods
OracleCommand public methods are listed in Table 6-14.

Table 6-14 OracleCommand Public Methods

Public Method Description

Cancel Attempts to cancels a command that is currently
executing on a particular connection

Clone Creates a copy of OracleCommand object

CreateObjRef Inherited from System.MarshalByRefObject

CreateParameter Creates a new instance of OracleParameter class

Dispose Releases any resources or memory allocated by the
object

Equals Inherited from System.Object (Overloaded)

ExecuteNonQuery Executes a SQL statement or a command using the
XmlCommandType and CommandText properties and
returns the number of rows affected

ExecuteReader Executes a command (Overloaded)

ExecuteScalar Returns the first column of the first row in the result
set returned by the query

ExecuteStream Executes a command using the XmlCommandType
and CommandText properties and returns the results
in a new Stream object

ExecuteToStream Executes a command using the XmlCommandType
and CommandText properties and appends the
results as an XML document to the existing Stream

ExecuteXmlReader Executes a command using the XmlCommandType
and CommandText properties and returns the result
as an XML document in a .NET XmlTextReader
object

GetHashCode Inherited from System.Object

Chapter 6
OracleCommand Class

6-30

Table 6-14 (Cont.) OracleCommand Public Methods

Public Method Description

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

Prepare This method is a no-op

ToString Inherited from System.Object

6.2.5.1 Cancel
This method attempts to cancel a command that is currently executing on a particular
connection.

Declaration

// C#
public override void Cancel();

Implements

IDbCommand.Cancel

Remarks

If cancellation of the command succeeds, an exception is thrown. If cancellation is not
successful, no exception is thrown. If there is no command being executed at the time
of the Cancel invocation, Cancel does nothing. Invoking the Cancel method does not
guarantee that the command executing at the time will always be cancelled. The
execution may complete before it can be terminated. In such cases, no exception is
thrown.

When multiple OracleCommand objects share the same connection, only one command
can be executed on that connection at any one time. When it is invoked, the Cancel
method attempts to cancel the statement currently running on the connection that the
OracleCommand object is using to execute the command. However, when multiple
OracleCommand objects execute statements on the same connection simultaneously,
issuing a Cancel method invocation may cancel any of the issued commands. This is
because the command designated for cancellation may complete before the Cancel
invocation is effective. If this happens, a command executed by a different
OracleCommand could be cancelled instead.

There are several ways to avoid this non-deterministic situation that the Cancel method
can cause:

• The application can create just one OracleCommand object for each connection.
Doing so assures that the Cancel invocation only cancels commands executed by
the OracleCommand object using a particular connection.

• Command executions in the application are synchronized between OracleCommand
objects that use the same connection.

These suggestions do not apply if Cancel is not used in the application.

Chapter 6
OracleCommand Class

6-31

Because the termination on the currently running execution is non-deterministic, it is
recommended that any non-atomic SQL or PL/SQL execution be started within a
transaction. When the command execution successfully terminates with an exception
of ORA-01013: user requested cancel of current operation, the transaction can be rolled
back for data integrity. Other possible exceptions thrown after a command cancellation
occurs include ORA-00936 and ORA-00604. Examples of non-atomic execution are
collections of DML command executions that are executed one-by-one and multiple
DML commands that are part of a PL/SQL stored procedure or function.

Example

// C#

// This example shows how command executions can be cancelled in a
// deterministic way even if multiple commands are executed on a single
// connection. This is accomplished by synchronizing threads through events.
// Since the Cancel method terminates the currently running operation on the
// connection, threads must be serialized if multiple threads are using the
// same connection to execute server round-trip incurring operations.
// Furthermore, the example shows how the execution and cancel threads should
// be synchronized so that nth iteration of the command execution does not
// inappropriately cancel the (n+1)th command executed by the same thread.

using System;
using System.Data;
using Oracle.DataAccess.Client;
using System.Threading;

class CancelSample
{
 private OracleCommand cmd;
 Thread t1, t2;
 // threads signal following events when assigned operations are completed

 private AutoResetEvent ExecuteEvent = new AutoResetEvent(false);
 private AutoResetEvent CancelEvent = new AutoResetEvent(false);
 private AutoResetEvent FinishedEvent = new AutoResetEvent(false);
 AutoResetEvent[] ExecuteAndCancel = new AutoResetEvent[2];

 // Default constructor
 CancelSample()
 {
 cmd = new OracleCommand("select * from all_objects",
 new OracleConnection("user id=scott;password=tiger;data source=oracle"));
 ExecuteAndCancel[0] = ExecuteEvent;
 ExecuteAndCancel[1] = CancelEvent;
 }

 // Constructor that takes a particular command and connection
 CancelSample(string command, OracleConnection con)
 {
 cmd = new OracleCommand(command, con);
 ExecuteAndCancel[0] = ExecuteEvent;
 ExecuteAndCancel[1] = CancelEvent;
 }

 // Execution of the command
 public void Execute()
 {
 OracleDataReader reader = null;

Chapter 6
OracleCommand Class

6-32

 try
 {
 Console.WriteLine("Execute.");
 reader = cmd.ExecuteReader();
 Console.WriteLine("Execute Done.");
 reader.Close();
 }
 catch(Exception e)
 {
 Console.WriteLine("The command has been cancelled.", e.Message);
 }
 Console.WriteLine("ExecuteEvent.Set()");
 ExecuteEvent.Set();
 }

 // Canceling of the command
 public void Cancel()
 {
 try
 {
 // cancel query if it takes longer than 100 ms to finish execution
 System.Threading.Thread.Sleep(100);
 Console.WriteLine("Cancel.");
 cmd.Cancel();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 Console.WriteLine("Cancel done.");
 Console.WriteLine("CancelEvent.Set()");
 CancelEvent.Set();
 }

 // Execution of the command with a potential of cancelling
 public void ExecuteWithinLimitedTime()
 {
 for (int i = 0; i < 5; i++)
 {
 Monitor.Enter(typeof(CancelSample));
 try
 {
 Console.WriteLine("Executing " + this.cmd.CommandText);
 ExecuteEvent.Reset();
 CancelEvent.Reset();
 t1 = new Thread(new ThreadStart(this.Execute));
 t2 = new Thread(new ThreadStart(this.Cancel));
 t1.Start();
 t2.Start();
 }
 finally
 {
 WaitHandle.WaitAll(ExecuteAndCancel);
 Monitor.Exit(typeof(CancelSample));
 }
 }
 FinishedEvent.Set();
 }
 [MTAThread]
 static void Main()
 {

Chapter 6
OracleCommand Class

6-33

 try
 {
 AutoResetEvent[] ExecutionCompleteEvents = new AutoResetEvent[3];

 // Create the connection that is to be used by three commands
 OracleConnection con = new OracleConnection("user id=scott;" +
 "password=tiger;data source=oracle");
 con.Open();

 // Create instances of CancelSample class
 CancelSample test1 = new CancelSample("select * from all_objects", con);
 CancelSample test2 = new CancelSample("select * from all_objects, emp",
 con);
 CancelSample test3 = new CancelSample("select * from all_objects, dept",
 con);

 // Create threads for each CancelSample object instance
 Thread t1 = new Thread(new ThreadStart(test1.ExecuteWithinLimitedTime));
 Thread t2 = new Thread(new ThreadStart(test2.ExecuteWithinLimitedTime));
 Thread t3 = new Thread(new ThreadStart(test3.ExecuteWithinLimitedTime));

 // Obtain a handle to an event from each object
 ExecutionCompleteEvents[0] = test1.FinishedEvent;
 ExecutionCompleteEvents[1] = test2.FinishedEvent;
 ExecutionCompleteEvents[2] = test3.FinishedEvent;

 // Start all threads to execute three commands using a single connection
 t1.Start();
 t2.Start();
 t3.Start();

 // Wait for all three commands to finish executing/canceling before
 //closing the connection
 WaitHandle.WaitAll(ExecutionCompleteEvents);
 con.Close();
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }
}

6.2.5.2 Clone
This method creates a copy of an OracleCommand object.

Declaration

// C#
public object Clone();

Return Value

An OracleCommand object.

Implements

ICloneable

Chapter 6
OracleCommand Class

6-34

Remarks

The cloned object has the same property values as that of the object being cloned.

6.2.5.3 CreateParameter
This method creates a new instance of OracleParameter class.

Declaration

// C#
public OracleParameter CreateParameter();

Return Value

A new OracleParameter with default values.

Implements

IDbCommand

6.2.5.4 Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The Dispose method also closes the OracleCommand object.

6.2.5.5 ExecuteNonQuery
This method executes a SQL statement or a command using the XmlCommandType and
CommandText properties and returns the number of rows affected.

Declaration

// C#
public override int ExecuteNonQuery();

Return Value

The number of rows affected.

Implements

IDbCommand

Chapter 6
OracleCommand Class

6-35

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

ExecuteNonQuery returns the number of rows affected, for the following:

• If the command is UPDATE, INSERT, or DELETE and the XmlCommandType property is set
to OracleXmlCommandType.None.

• If the XmlCommandType property is set to OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, OracleXmlCommandType.Delete.

For all other types of statements, the return value is -1.

ExecuteNonQuery is used for either of the following:

• Catalog operations (for example, querying the structure of a database or creating
database objects such as tables).

• Changing the data in a database without using a DataSet, by executing UPDATE,
INSERT, or DELETE statements.

• Changing the data in a database using an XML document.

Although ExecuteNonQuery does not return any rows, it populates any output
parameters or return values mapped to parameters with data.

If the XmlCommandType property is set to OracleXmlCommandType.Query then
ExecuteNonQuery executes the select statement in the CommandText property, and if
successful, returns -1. The XML document that is generated is discarded. This is
useful for determining if the operation completes successfully without getting the XML
document back as a result.

If the XmlCommandType property is set to OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, or OracleXmlCommandType.Delete, then the value of the
CommandText property is an XML document. ExecuteNonQuery saves the changes in that
XML document to the table or view that is specified in the XmlSaveProperties property.
The return value is the number of rows that are processed in the XML document. Also,
each row in the XML document could affect multiple rows in the database, but the
return value is still the number of rows in the XML document.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteNonQuerySample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand(
 "select sal from emp where empno=7934", con);

Chapter 6
OracleCommand Class

6-36

 object sal = cmd.ExecuteScalar();
 Console.WriteLine("Employee sal before update: " + sal);

 cmd.CommandText = "update emp set sal = sal + .01 where empno=7934";

 // Auto-commit changes
 int rowsUpdated = cmd.ExecuteNonQuery();

 if (rowsUpdated > 0)
 {
 cmd.CommandText = "select sal from emp where empno=7934";
 sal = cmd.ExecuteScalar();
 Console.WriteLine("Employee sal after update: " + sal);
 }

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

Requirements

For XML support, this method requires Oracle9i XML Developer's Kits (Oracle XDK) or
later, to be installed in the database. Oracle XDK can be downloaded from Oracle
Technology Network (OTN).

6.2.5.6 ExecuteReader

Overload List:

ExecuteReader executes a command specified in the CommandText.

• ExecuteReader()

This method executes a command specified in the CommandText and returns an
OracleDataReader object.

• ExecuteReader(CommandBehavior)

This method executes a command specified in the CommandText and returns an
OracleDataReader object, using the specified CommandBehavior value.

6.2.5.7 ExecuteReader()
This method executes a command specified in the CommandText and returns an
OracleDataReader object.

Declaration

// C#
public OracleDataReader ExecuteReader();

Return Value

An OracleDataReader.

Chapter 6
OracleCommand Class

6-37

Implements

IDbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

When the CommandType property is set to CommandType.StoredProcedure, the CommandText
property should be set to the name of the stored procedure.

The specified command executes this stored procedure when ExecuteReader is called.
If parameters for the stored procedure consist of REF CURSOR objects, behavior differs
depending on whether ExecuteReader() or ExecuteNonQuery() is called. If
ExecuteReader() is invoked, REF CURSOR objects can be accessed through the
OracleDataReader that is returned.If more than one REF CURSOR is returned from a single
execution, subsequent REF CURSOR objects can be accessed sequentially by the
NextResult method on the OracleDataReader. If the ExecuteNonQuery method is invoked,
the output parameter value can be cast to a OracleRefCursor type and the
OracleRefCursor object then can be used to either populate a DataSet or create an
OracleDataReader object from it. This approach provides random access to all the REF
CURSOR objects returned as output parameters.

The value of 100 is used for the FetchSize. If 0 is specified, no rows are fetched. For
further information, see "Obtaining LONG and LONG RAW Data".

If the value of the XmlCommandType property is set to OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, OracleXmlCommandType.Delete, or
OracleXmlCommandType.Query then the ExecuteReader method throws an
InvalidOperationException.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteReaderSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand("select ename from emp", con);

 OracleDataReader reader = cmd.ExecuteReader();

 while (reader.Read())
 {
 Console.WriteLine("Employee Name : " + reader.GetString(0));
 }

 // Clean up

Chapter 6
OracleCommand Class

6-38

 reader.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

6.2.5.8 ExecuteReader(CommandBehavior)
This method executes a command specified in the CommandText and returns an
OracleDataReader object, using the specified behavior.

Declaration

// C#
public OracleDataReader ExecuteReader(CommandBehavior behavior);

Parameters

• behavior

The expected behavior.

Return Value

An OracleDataReader.

Implements

IDbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

A description of the results and the effect on the database of the query command is
indicated by the supplied behavior that specifies command behavior.

For valid CommandBehavior values and for the command behavior of each
CommandBehavior enumerated type, read the .NET Framework documentation.

When the CommandType property is set to CommandType.StoredProcedure, the CommandText
property should be set to the name of the stored procedure. The command executes
this stored procedure when ExecuteReader() is called.

If the stored procedure returns stored REF CURSORs, read the section on
OracleRefCursors for more details. See "OracleRefCursor Class".

The value of 100 is used for the FetchSize. If 0 is specified, no rows are fetched. For
more information, see "Obtaining LONG and LONG RAW Data".

If the value of the XmlCommandType property is set to OracleXmlCommandType.Insert,
OracleXmlCommandType.Update, OracleXmlCommandType.Delete, or
OracleXmlCommandType.Query then the ExecuteReader method throws an
InvalidOperationException.

Chapter 6
OracleCommand Class

6-39

6.2.5.9 ExecuteScalar
This method executes the query using the connection, and returns the first column of
the first row in the result set returned by the query.

Declaration

// C#
public override object ExecuteScalar();

Return Value

An object which represents the value of the first row, first column.

Implements

IDbCommand

Exceptions

InvalidOperationException - The command cannot be executed.

Remarks

Extra columns or rows are ignored. ExecuteScalar retrieves a single value (for
example, an aggregate value) from a database. This requires less code than using the
ExecuteReader() method, and then performing the operations necessary to generate
the single value using the data returned by an OracleDataReader.

If the query does not return any row, it returns null.

The ExecuteScalar method throws an InvalidOperationException, if the value of the
XmlCommandType property is set to one of the following OracleXmlCommandType values:
Insert, Update, Delete, Query.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ExecuteScalarSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand("select count(*) from emp", con);

 object count = cmd.ExecuteScalar();

 Console.WriteLine("There are {0} rows in table emp", count);

 // Clean up
 cmd.Dispose();

Chapter 6
OracleCommand Class

6-40

 con.Dispose();
 }
}

6.2.5.10 ExecuteStream
This method executes a command using the XmlCommandType and CommandText
properties and returns the result as an XML document in a new Stream object.

Declaration

// C#
public Stream ExecuteStream();

Return Value

A Stream.

Remarks

The behavior of ExecuteStream varies depending on the XmlCommandType property value:

• XmlCommandType = OracleXmlCommandType.None

ExecuteStream throws an InvalidOperationException.

• XmlCommandType = OracleXmlCommandType.Query

ExecuteStream executes the select statement in the CommandText property, and if
successful, returns an OracleClob object containing the XML document that was
generated. OracleClob contains Unicode characters.

If the SQL query does not return any rows, then ExcecuteStream returns an
OracleClob object containing an empty XML document.

• XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update, or
OracleXmlCommandType.Delete.

The value of the CommandText property is an XML document. ExecuteStream saves
the data in that XML document to the table or view that is specified in the
XmlSaveProperties property and an empty OracleClob is returned.

6.2.5.11 ExecuteToStream
This method executes a command using the XmlCommandType and CommandText
properties and appends the result as an XML document to the existing Stream provided
by the application.

Declaration

// C#
public void ExecuteToStream(Stream outputStream);

Parameters

• outputStream

A Stream.

Chapter 6
OracleCommand Class

6-41

Remarks

The behavior of ExecuteToStream varies depending on the XmlCommandType property
value:

• XmlCommandType = OracleXmlCommandType.None

ExecuteToStream throws an InvalidOperationException.

• XmlCommandType = OracleXmlCommandType.Query

ExecuteToStream executes the select statement in the CommandText property, and if
successful, appends the XML document that was generated to the given Stream.

If the SQL query does not return any rows, then nothing is appended to the given
Stream. The character set of the appended data is Unicode.

• XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update, or
OracleXmlCommandType.Delete

The value of the CommandText property is an XML document. ExecuteToStream saves
the changes in that XML document to the table or view that is specified in the
XmlSaveProperties property. Nothing is appended to the given Stream.

6.2.5.12 ExecuteXmlReader
This method executes the command using the XmlCommandType and CommandText
properties and returns the result as an XML document in a .NET XmlTextReader object.

Declaration

// C#
public XmlReader ExecuteXmlReader();

Return Value

An XmlReader.

Remarks

The behavior of ExecuteXmlReader varies depending on the XmlCommandType property
value:

• XmlCommandType = OracleXmlCommandType.None

ExecuteStream throws an InvalidOperationException.

• XmlCommandType = OracleXmlCommandType.Query

ExecuteXmlReader executes the select statement in the CommandText property, and if
successful, returns a .NET XmlTextReader object containing the XML document that
was generated.

If the XML document is empty, which can happen if the SQL query does not return
any rows, then an empty .NET XmlTextReader object is returned.

• XmlCommandType = OracleXmlCommandType.Insert, OracleXmlCommandType.Update, or
OracleXmlCommandType.Delete.

Chapter 6
OracleCommand Class

6-42

The value of the CommandText property is an XML document, and ExecuteXmlReader
saves the changes in that XML document to the table or view that is specified in
the XmlSaveProperties property. An empty .NET XmlTextReader object is returned.

6.2.5.13 Prepare
This method is not supported.

6.3 OracleCommandBuilder Class
An OracleCommandBuilder object provides automatic SQL generation for the
OracleDataAdapter when updates are made to the database.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.ComponentModel.Component

 System.Data.Common.DbCommandBuilder

 OracleDataAccess.Client.OracleCommandBuilder

Declaration

// C#
public sealed class OracleCommandBuilder : DbCommandBuilder

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleCommandBuilder automatically generates SQL statements for single-table updates
when the SelectCommand property of the OracleDataAdapter is set. An exception is
thrown if the DataSet contains multiple tables. The OracleCommandBuilder registers itself
as a listener for RowUpdating events whenever its DataAdapter property is set. Only one
OracleDataAdapter object and one OracleCommandBuilder object can be associated with
each other at one time.

To generate INSERT, UPDATE, or DELETE statements, the OracleCommandBuilder uses
ExtendedProperties within the DataSet to retrieve a required set of metadata. If the

Chapter 6
OracleCommandBuilder Class

6-43

SelectCommand is changed after the metadata is retrieved (for example, after the first
update), the RefreshSchema method should be called to update the metadata.

OracleCommandBuilder first looks for the metadata from the ExtendedProperties of the
DataSet; if the metadata is not available, OracleCommandBuilder uses the SelectCommand
property of the OracleDataAdapter to retrieve the metadata.

Example

The following example performs an update on the EMP table. It uses the
OracleCommandBuilder object to create the UpdateCommand for the OracleDataAdapter
object when OracleDataAdapter.Update() is called.

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleCommandBuilderSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 string cmdstr = "SELECT empno, sal from emp";

 // Create the adapter with the selectCommand txt and the
 // connection string
 OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

 // Create the builder for the adapter to automatically generate
 // the Command when needed
 OracleCommandBuilder builder = new OracleCommandBuilder(adapter);

 // Create and fill the DataSet using the EMP
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "EMP");

 // Get the EMP table from the dataset
 DataTable table = dataset.Tables["EMP"];

 // Indicate DataColumn EMPNO is unique
 // This is required by the OracleCommandBuilder to update the EMP table
 table.Columns["EMPNO"].Unique = true;

 // Get the first row from the EMP table
 DataRow row = table.Rows[0];

 // Update the salary
 double sal = double.Parse(row["SAL"].ToString());
 row["SAL"] = sal + .01;

 // Now update the EMP using the adapter
 // The OracleCommandBuilder will create the UpdateCommand for the
 // adapter to update the EMP table
 adapter.Update(dataset, "EMP");

 Console.WriteLine("Row updated successfully");
 }
}

Chapter 6
OracleCommandBuilder Class

6-44

6.3.1 OracleCommandBuilder Members
OracleCommandBuilder members are listed in the following tables.

OracleCommandBuilder Constructors

OracleCommandBuilder constructors are listed in Table 6-15.

Table 6-15 OracleCommandBuilder Constructors

Constructor Description

OracleCommandBuilder
Constructors

Instantiates a new instance of OracleCommandBuilder
class (Overloaded)

OracleCommandBuilder Static Methods

OracleCommandBuilder static methods are listed in Table 6-16.

Table 6-16 OracleCommandBuilder Static Methods

Method Description

DeriveParameters Queries for the parameters of a stored procedure or
function, represented by a specified OracleCommand, and
populates the OracleParameterCollection of the
command with the return values

Equals Inherited from System.Object (Overloaded)

OracleCommandBuilder Properties

OracleCommandBuilder properties are listed in Table 6-17.

Table 6-17 OracleCommandBuilder Properties

Property Description

Container Inherited from System.ComponentModel.Component

CaseSensitive Indicates whether or not double quotes are used around Oracle object
names when generating SQL statements

CatalogLocation Not Supported

CatalogSeparator Not Supported

ConflictOption Not Supported

DataAdapter Indicates the OracleDataAdapter for which the SQL statements are
generated

QuotePrefix Specifies the beginning character or characters used to specify
database objects whose names contain special characters such as
spaces or reserved words

QuoteSuffix Specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or
reserved words

Chapter 6
OracleCommandBuilder Class

6-45

Table 6-17 (Cont.) OracleCommandBuilder Properties

Property Description

SchemaSeparator Specifies the character to be used for the separator between the
schema identifier and other identifiers

Site Inherited from System.ComponentModel.Component

OracleCommandBuilder Public Methods

OracleCommandBuilder public methods are listed in Table 6-18.

Table 6-18 OracleCommandBuilder Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel.Component

Equals Inherited from System.Object (Overloaded)

GetDeleteCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
deletions on the database (Overloaded)

GetHashCode Inherited from System.Object

GetInsertCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
insertions on the database (Overloaded)

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

GetUpdateCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
updates on the database (Overloaded)

InitializeLifetimeService Inherited from System.MarshalByRefObject

QuoteIdentifier Returns the correct quoted form of the provided unquoted
identifier, with any embedded quotes in the identifier
properly escaped

RefreshSchema Refreshes the database schema information used to
generate INSERT, UPDATE, or DELETE statements

UnquoteIdentifier Returns the correct unquoted form of the provided quoted
identifier, removing any escape notation for quotes
embedded in the identifier

ToString Inherited from System.Object

OracleCommandBuilder Events

The OracleCommandBuilder event is listed in Table 6-19.

Chapter 6
OracleCommandBuilder Class

6-46

Table 6-19 OracleCommandBuilder Events

Event Name Description

Disposed Inherited from System.ComponentModel.Component

6.3.2 OracleCommandBuilder Constructors
OracleCommandBuilder constructors create new instances of the OracleCommandBuilder
class.

Overload List:

• OracleCommandBuilder()

This constructor creates an instance of the OracleCommandBuilder class.

• OracleCommandBuilder(OracleDataAdapter)

This constructor creates an instance of the OracleCommandBuilder class and sets
the DataAdapter property to the provided OracleDataAdapter object.

6.3.2.1 OracleCommandBuilder()
This constructor creates an instance of the OracleCommandBuilder class.

Declaration

// C#
public OracleCommandBuilder();

Remarks

Default constructor.

6.3.2.2 OracleCommandBuilder(OracleDataAdapter)
This constructor creates an instance of the OracleCommandBuilder class and sets the
DataAdapter property to the provided OracleDataAdapter object.

Declaration

// C#
public OracleCommandBuilder(OracleDataAdapter da);

Parameters

• da

The OracleDataAdapter object provided.

6.3.3 OracleCommandBuilder Static Methods
OracleCommandBuilder static methods are listed in Table 6-20.

Chapter 6
OracleCommandBuilder Class

6-47

Table 6-20 OracleCommandBuilder Static Methods

Method Description

DeriveParameters Queries for the parameters of a stored procedure or function,
represented by a specified OracleCommand, and populates the
OracleParameterCollection of the command with the return
values

Equals Inherited from System.Object (Overloaded)

6.3.3.1 DeriveParameters
This method queries for the parameters of a stored procedure or function, represented
by a specified OracleCommand, and populates the OracleParameterCollection of the
command with the return values.

Declaration

// C#
public static void DeriveParameters(OracleCommand command);

Parameters

• command

The command that represents the stored procedure or function for which
parameters are to be derived.

Exceptions

InvalidOperationException - The CommandText is not a valid stored procedure or function
name, the CommandType is not CommandType.StoredProcedure, or the Connection.State is
not ConnectionState.Open.

Remarks

When DeriveParameters is used to populate the Parameter collection of an OracleCommand
Object that represents a stored function, the return value of the function is bound as
the first parameter (at position 0 of the OracleParameterCollection).

DeriveParameters can only be used for stored procedures or functions, not for
anonymous PL/SQL blocks.

DeriveParameters incurs a database round-trip to retrieve parameter metadata prior to
executing the stored procedure/function. It should only be used during design time. To
avoid unnecessary database round-trips in a production environment, the
DeriveParameters method itself should be replaced with the explicit parameter settings
that were returned by the DeriveParameters method at design time.

DeriveParameters can only preserve the case of the stored procedure or function name
if it is encapsulated by double-quotes. For example, if the stored procedure in the
database is named GetEmployees with mixed-case, the CommandText property on the
OracleCommand object must be set appropriately as in the following example:

cmd.CommandText = "\"GetEmployees\"";

Chapter 6
OracleCommandBuilder Class

6-48

Stored procedures and functions in a package must be provided in the following
format:

<package name>.<procedure or function name>

For example, to obtain parameters for a stored procedure named GetEmployees (mixed-
case) in a package named EmpProcedures (mixed-case), the name provided to the
OracleCommand is:

"\"EmpProcedures\".\"GetEmployees\""

DeriveParameters cannot be used for object type methods.

The derived parameters contain all the metadata information that is needed for the
stored procedure to execute properly. The application must provide the value of the
parameters before execution, if required. The application may also modify the
metadata information of the parameters before execution. For example, the Size
property of the OracleParameter may be modified for PL/SQL character and string types
to optimize the execution of the stored procedure.

The output values of derived parameters return as .NET Types by default. To obtain
output parameters as provider types, the OracleDbType property of the parameter must
be set explicitly by the application to override this default behavior. One quick way to
do this is to set the OracleDbType to itself for all output parameters that should be
returned as provider types.

The BindByName property of the supplied OracleCommand is left as is, but the application
can change its value.

If the specified stored procedure or function is overloaded, the first overload is used to
populate the parameters collection.

// Database Setup
/*
connect scott/tiger@oracle
CREATE OR REPLACE PROCEDURE MyOracleStoredProc (arg_in IN VARCHAR2,
 arg_out OUT VARCHAR2) IS
BEGIN
 arg_out := arg_in;
END;
/
*/

// C#
using System;
using System.Data;
using Oracle.DataAccess.Client;

class DeriveParametersSample
{
 static void Main()
 {
 // Create the PL/SQL Stored Procedure MyOracleStoredProc as indicated in
 // the preceding Database Setup

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand
 OracleCommand cmd = new OracleCommand("MyOracleStoredProc", con);

Chapter 6
OracleCommandBuilder Class

6-49

 cmd.CommandType = CommandType.StoredProcedure;

 // Derive Parameters
 OracleCommandBuilder.DeriveParameters(cmd);
 Console.WriteLine("Parameters Derived");

 // Prints "Number of Parameters for MyOracleStoredProc = 2"
 Console.WriteLine("Number of Parameters for MyOracleStoredProc = {0}",
 cmd.Parameters.Count);

 // The PL/SQL stored procedure MyOracleStoredProc has one IN and
 // one OUT parameter. Set the Value for the IN parameter.
 cmd.Parameters[0].Value = "MyText";

 // The application may modify the other OracleParameter properties also
 // This sample uses the default Size for the IN parameter and modifies
 // the Size for the OUT parameter

 // The default size for OUT VARCHAR2 is 4000
 // Prints "cmd.Parameters[1].Size = 4000"
 Console.WriteLine("cmd.Parameters[1].Size = " + cmd.Parameters[1].Size);

 // Set the Size for the OUT parameter
 cmd.Parameters[1].Size = 6;

 // Execute the command
 cmd.ExecuteNonQuery();

 // Prints "cmd.Parameters[1].Value = MyText"
 Console.WriteLine("cmd.Parameters[1].Value = " + cmd.Parameters[1].Value);

 con.Close();
 con.Dispose();
 }
}

Example

6.3.4 OracleCommandBuilder Properties
OracleCommandBuilder properties are listed in Table 6-21.

Table 6-21 OracleCommandBuilder Properties

Property Description

Container Inherited from System.ComponentModel.Component

CaseSensitive Indicates whether or not double quotes are used around Oracle object
names when generating SQL statements

CatalogLocation Not Supported

CatalogSeparator Not Supported

ConflictOption Not Supported

DataAdapter Indicates the OracleDataAdapter for which the SQL statements are
generated

Chapter 6
OracleCommandBuilder Class

6-50

Table 6-21 (Cont.) OracleCommandBuilder Properties

Property Description

QuotePrefix Specifies the beginning character or characters used to specify
database objects whose names contain special characters such as
spaces or reserved words

QuoteSuffix Specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or
reserved words

SchemaSeparator Specifies the character to be used for the separator between the
schema identifier and other identifiers

Site Inherited from System.ComponentModel.Component

6.3.4.1 CaseSensitive
This property indicates whether or not double quotes are used around Oracle object
names (for example, tables or columns) when generating SQL statements.

Declaration

// C#
bool CaseSensitive {get; set;}

Property Value

A bool that indicates whether or not double quotes are used.

Remarks

Default = false

6.3.4.2 CatalogLocation
This property is not supported.

Declaration

// C#
public override CatalogLocation CatalogLocation {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

6.3.4.3 CatalogSeparator
This property is not supported.

Chapter 6
OracleCommandBuilder Class

6-51

Declaration

// C#
public override string CatalogSeparator {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

6.3.4.4 ConflictOption
This property is not supported.

Declaration

// C#
public override string ConflictOption {get; set;}

Exceptions

NotSupportedException - This property is not supported.

Remarks

This property is not supported.

6.3.4.5 DataAdapter
This property indicates the OracleDataAdapter object for which the SQL statements are
generated.

Declaration

// C#
OracleDataAdapter DataAdapter{get; set;}

Property Value

An OracleDataAdapter object.

Remarks

Default = null

6.3.4.6 QuotePrefix
This property specifies the beginning character or characters used to specify database
objects whose names contain special characters such as spaces or reserved words.

Chapter 6
OracleCommandBuilder Class

6-52

Declaration

// C#
public override string QuotePrefix {get; set;}

Property Value

The beginning character or characters to use. The default value is "\"".

Remarks

This property is independent of any OracleConnection or OracleCommand objects.

6.3.4.7 QuoteSuffix
This property specifies the ending character or characters used to specify database
objects whose names contain special characters such as spaces or reserved words.

Declaration

// C#
public override string QuoteSuffix {get; set;}

Property Value

The ending character or characters to use. The default value is "\"".

Remarks

This property is independent of any OracleConnection or OracleCommand objects.

6.3.4.8 SchemaSeparator
This property specifies the character to be used for the separator between the schema
identifier and other identifiers.

Declaration

// C#
public override string SchemaSeparator {get; set; }

Property Value

The character to be used as the schema separator.

Exceptions

NotSupportedException - The input value is not a dot (.).

Remarks

The default schema separator is a dot (.). The only acceptable value for this property
is a dot (.).

This property is independent of any OracleConnection or OracleCommand objects.

Chapter 6
OracleCommandBuilder Class

6-53

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class SchemaSeperatorSample
{
 static void Main(string[] args)
 {
 try
 {
 OracleCommandBuilder cmdBuilder = new OracleCommandBuilder();

 //schemaSeparator is dot(.)
 Console.WriteLine("schemaSeparator is {0}",
 cmdBuilder.SchemaSeparator);

 //set the schemaseparator, only '.' is allowed.
 cmdBuilder.SchemaSeparator = ".";

 // the only acceptable value for this property is a dot (.)
 // Hence the following line will throw NotSupportedException
 cmdBuilder.SchemaSeparator = "!";
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
}

6.3.5 OracleCommandBuilder Public Methods
OracleCommandBuilder public methods are listed in Table 6-22.

Table 6-22 OracleCommandBuilder Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel.Component

Equals Inherited from System.Object (Overloaded)

GetDeleteCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
deletions on the database (Overloaded)

GetHashCode Inherited from System.Object

GetInsertCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
insertions on the database (Overloaded)

Chapter 6
OracleCommandBuilder Class

6-54

Table 6-22 (Cont.) OracleCommandBuilder Public Methods

Public Method Description

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

GetUpdateCommand Gets the automatically generated OracleCommand object
that has the SQL statement (CommandText) perform
updates on the database (Overloaded)

InitializeLifetimeService Inherited from System.MarshalByRefObject

QuoteIdentifier Returns the correct quoted form of the provided unquoted
identifier, with any embedded quotes in the identifier
properly escaped

RefreshSchema Refreshes the database schema information used to
generate INSERT, UPDATE, or DELETE statements

UnquoteIdentifier Returns the correct unquoted form of the provided quoted
identifier, removing any escape notation for quotes
embedded in the identifier

ToString Inherited from System.Object

6.3.5.1 GetDeleteCommand
Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform deletions on the database

Overload List

• GetDeleteCommand()

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform deletions on the database when an
application calls Update() on the OracleDataAdapter.

• GetDeleteCommand(bool)

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform deletions on the database when an
application calls Update() on the OracleDataAdapter.

6.3.5.2 GetDeleteCommand()
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform deletions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetDeleteCommand();

Return Value

An OracleCommand.

Chapter 6
OracleCommandBuilder Class

6-55

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

6.3.5.3 GetDeleteCommand(bool)
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform deletions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetDeleteCommand(bool useColumnsForParameterNames);

Parameters

• useColumnsForParameterNames

If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

6.3.5.4 GetInsertCommand
Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform insertions on the database

Overload List

• GetInsertCommand()

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform insertions on the database when an
application calls Update() on the OracleDataAdapter.

• GetInsertCommand(bool)

Chapter 6
OracleCommandBuilder Class

6-56

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform insertions on the database when an
application calls Update() on the OracleDataAdapter.

6.3.5.5 GetInsertCommand()
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform insertions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetInsertCommand();

Return Value

An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

6.3.5.6 GetInsertCommand(bool)
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform insertions on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetInsertCommand(bool useColumnsForParameterNames);

Parameters

• useColumnsForParameterNames

If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

Chapter 6
OracleCommandBuilder Class

6-57

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

6.3.5.7 GetUpdateCommand
Gets the automatically generated OracleCommand object that has the SQL statement
(CommandText) perform updates on the database

Overload List

• GetUpdateCommand()

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform updates on the database when an
application calls Update() on the OracleDataAdapter.

• GetUpdateCommand(bool)

This method gets the automatically generated OracleCommand object that has the
SQL statement (CommandText) perform updates on the database when an
application calls Update() on the OracleDataAdapter.

6.3.5.8 GetUpdateCommand()
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform updates on the database when an application calls
Update() on the OracleDataAdapter.

Declaration

// C#
public OracleCommand GetUpdateCommand();

Return Value

An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

6.3.5.9 GetUpdateCommand(bool)
This method gets the automatically generated OracleCommand object that has the SQL
statement (CommandText) perform updates on the database when an application calls
Update() on the OracleDataAdapter.

Chapter 6
OracleCommandBuilder Class

6-58

Declaration

// C#
public OracleCommand GetUpdateCommand(bool useColumnsForParameterNames);

Parameters

• useColumnsForParameterNames

If true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

Return Value

An OracleCommand.

Exceptions

ObjectDisposedException - The OracleCommandBuilder object is already disposed.

InvalidOperationException - Either the SelectCommand or the DataAdapter property is null,
or the primary key cannot be retrieved from the SelectCommand property of the
OracleDataAdapter.

Remarks

If the bool is true, the method generates parameter names matching column names if
possible. If false, the method binds parameters by position.

6.3.5.10 QuoteIdentifier
This method returns the correct quoted form of the provided unquoted identifier, with
any embedded quotes in the identifier properly escaped.

Declaration

// C#
public override string QuoteIdentifier(string unquotedIdentifier);

Parameters

• UnquotedIdentifier

An unquoted identifier string.

Return Value

The quoted version of the identifier. Embedded quotes within the identifier are properly
escaped.

Exceptions

ArgumentNullException - The input parameter is null.

Remarks

This method is independent of any OracleConnection or OracleCommand objects.

Chapter 6
OracleCommandBuilder Class

6-59

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class QuoteIdentifierSample
{
 static void Main(string[] args)
 {
 OracleCommandBuilder builder = new OracleCommandBuilder();
 string quoteIdentifier = builder.QuoteIdentifier("US\"ER");

 //quoteIdentifier for "US\"ER" is (\"US\"\"ER\")
 Console.WriteLine("quoteIdentifier is {0}" , quoteIdentifier);
 }
}

6.3.5.11 RefreshSchema
This method refreshes the database schema information used to generate INSERT,
UPDATE, or DELETE statements.

Declaration

// C#
public override void RefreshSchema();

Remarks

An application should call RefreshSchema whenever the SelectCommand value of the
OracleDataAdapter object changes.

6.3.5.12 UnquoteIdentifier
This method returns the correct unquoted form of the provided quoted identifier,
removing any escape notation for quotes embedded in the identifier.

Declaration

// C#
public override string UnquoteIdentifier(string quotedIdentifier);

Parameters

• quotedIdentifier

The quoted string identifier.

Return Value

The unquoted identifier, with escape notation for any embedded quotes removed.

Chapter 6
OracleCommandBuilder Class

6-60

Exceptions

ArgumentNullException - The input parameter is null.

ArgumentException - The input parameter is empty.

Remarks

This method is independent of any OracleConnection or OracleCommand objects.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class UnQuoteIdentifierSample
{
 static void Main(string[] args)
 {
 //create an OracleCommandBuilder object.
 OracleCommandBuilder builder = new OracleCommandBuilder();

 string identifier = "US\"ER";
 Console.WriteLine("Identifier is {0}", identifier);

 // quote the identifier
 string quoteIdentifier = builder.QuoteIdentifier(identifier);

 //quoteIdentifier of "US\"ER" is (\"US\"\"ER\")
 Console.WriteLine("QuotedIdentifier is {0}" , quoteIdentifier);
 string unquoteIdentifier = builder.UnquoteIdentifier(quoteIdentifier);

 //And its unquoteIdentifier is US\"ER
 Console.WriteLine("UnquotedIdentifier is {0}" , unquoteIdentifier);
 }
}

6.3.6 OracleCommandBuilder Events
The OracleCommandBuilder event is listed in Table 6-23.

Table 6-23 OracleCommandBuilder Event

Event Name Description

Disposed Inherited from System.ComponentModel.Component

6.4 OracleConnection Class
An OracleConnection object represents a connection to an Oracle database.

Chapter 6
OracleConnection Class

6-61

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.ComponentModel.Component

 System.Data.Common.DbConnection

 Oracle.DataAccess.Client.OracleConnection

Declaration

// C#
public sealed class OracleConnection : DbConnection, IDbConnection, ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleConnectionSample
{
 static void Main()
 {
 // Connect
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Execute a SQL SELECT
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select * from emp";
 OracleDataReader reader = cmd.ExecuteReader();

 // Print all employee numbers
 while (reader.Read())
 Console.WriteLine(reader.GetInt32(0));

 // Clean up
 reader.Dispose();
 cmd.Dispose();

Chapter 6
OracleConnection Class

6-62

 con.Dispose();
 }
}

6.4.1 OracleConnection Members
OracleConnection members are listed in the following tables.

OracleConnection Constructors

OracleConnection constructors are listed in Table 6-24.

Table 6-24 OracleConnection Constructors

Constructor Description

OracleConnection Constructors Instantiates a new instance of the
OracleConnection class (Overloaded)

OracleConnection Static Properties

The OracleConnection static property is listed in Table 6-26.

Table 6-25 OracleConnection Static Property

Property Description

IsAvailable Indicates whether or not the implicit database
connection is available for use

OracleConnection Static Methods

The OracleConnection static methods are listed in Table 6-26.

Table 6-26 OracleConnection Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

ClearPool Clears the connection pool that is associated with
the provided OracleConnection object.

Not supported in a .NET stored procedure

ClearAllPools Clears all connections from all the connection pools

Not supported in a .NET stored procedure

OracleConnection Properties

OracleConnection properties are listed in Table 6-27.

Chapter 6
OracleConnection Class

6-63

Table 6-27 OracleConnection Properties

Property Description

ActionName Specifies the action name for the connection

ClientId Specifies the client identifier for the connection

ClientInfo Specifies the client information for the connection

ConnectionString Specifies connection information used to connect to an Oracle
database

ConnectionTimeout Indicates the maximum amount of time that the Open method can
take to obtain a pooled connection before the request is terminated

ConnectionType Determines whether a particular connection object is associated with
a TimesTen database connection, an Oracle database connection, or
no physical connection

Not available in ODP.NET, Managed Driver

Container Inherited from System.ComponentModel.Component

Database Not Supported

DatabaseDomainName Specifies the name of the database domain to which the connection
is set

DatabaseName Specifies the name of the database to which the connection is set

DataSource Specifies the Oracle Net Services Name, Connect Descriptor, or an
easy connect naming that identifies the database to which to connect

HostName Specifies the name of the host to which the connection is set

InstanceName Specifies the name of the instance to which the connection is set

ModuleName Specifies the module name for the connection

ServerVersion Specifies the version number of the Oracle database to which the
OracleConnection has established a connection

ServiceName Specifies the name of the service to which the connection is set

Site Inherited from System.ComponentModel.Component

State Specifies the current state of the connection

StatementCacheSize Specifies the current size of the statement cache associated with this
connection

OracleConnection Public Methods

OracleConnection public methods are listed in Table 6-28.

Table 6-28 OracleConnection Public Methods

Public Method Description

BeginTransaction Begins a local transaction (Overloaded)

Not supported in a .NET stored procedure for context
connection

ChangeDatabase Not Supported

Clone Creates a copy of an OracleConnection object

Not supported in a .NET stored procedure

Chapter 6
OracleConnection Class

6-64

Table 6-28 (Cont.) OracleConnection Public Methods

Public Method Description

Close Closes the database connection

CreateCommand Creates and returns an OracleCommand object
associated with the OracleConnection object

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel.Component

EnlistDistributedTransaction Enables applications to explicitly enlist in a specified
distributed transaction

Not supported in a .NET stored procedure

EnlistTransaction Enables applications to enlist in a specified distributed
transaction

Not supported in a .NET stored procedure

Equals Inherited from System.Object (Overloaded)

FlushCache Flushes all updates and deletes made through REF
objects retrieved using this connection

Not available in ODP.NET, Managed Driver

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetSchema Returns schema information for the data source of the
OracleConnection

GetSessionInfo Returns or refreshes the property values of the
OracleGlobalization object that represents the
globalization settings of the session (Overloaded)

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

Open Opens a database connection with the property settings
specified by the ConnectionString

OpenWithNewPassword Opens a new connection with the new password

Not supported in a .NET stored procedure for context
connection

PurgeStatementCache Flushes the Statement Cache by closing all open
cursors on the database, when statement caching is
enabled

SetSessionInfo Alters the session's globalization settings with the
property values provided by the OracleGlobalization
object

SetShardingKey(OracleShardingKey,
OracleShardingKey)

Enables applications to set the sharding key and super
sharding key before requesting a connection

Not available in ODP.NET, Managed Driver

ToString Inherited from System.Object

OracleConnection Events

OracleConnection events are listed in Table 6-29.

Chapter 6
OracleConnection Class

6-65

Table 6-29 OracleConnection Events

Event Name Description

Disposed Inherited from System.ComponentModel.Component

Failover An event that is triggered when an Oracle failover
occurs

Not supported in a .NET stored procedure
Not Available in ODP.NET, Managed Driver

HAEvent An event that is triggered when an HA event occurs.

InfoMessage An event that is triggered for any message or
warning sent by the database

StateChange An event that is triggered when the connection state
changes

6.4.2 OracleConnection Constructors
OracleConnection constructors instantiate new instances of the OracleConnection class.

Overload List:

• OracleConnection()

This constructor instantiates a new instance of the OracleConnection class using
default property values.

• OracleConnection(String)

This constructor instantiates a new instance of the OracleConnection class with the
provided connection string.

6.4.2.1 OracleConnection()
This constructor instantiates a new instance of the OracleConnection class using default
property values.

Declaration

// C#
public OracleConnection();

Remarks

The properties for OracleConnection are set to the following default values:

• ConnectionString = empty string

• ConnectionTimeout = 15 (default value of 0 is used for the implicit database
connection)

• DataSource = empty string

• ServerVersion = empty string

Chapter 6
OracleConnection Class

6-66

6.4.2.2 OracleConnection(String)
This constructor instantiates a new instance of the OracleConnection class with the
provided connection string.

Declaration

// C#
public OracleConnection(String connectionString);

Parameters

• connectionString

The connection information used to connect to the Oracle database.

Remarks

The ConnectionString property is set to the supplied connectionString. The
ConnectionString property is parsed and an exception is thrown if it contains invalid
connection string attributes or attribute values.

The properties of the OracleConnection object default to the following values unless
they are set by the connection string:

• ConnectionString = empty string

• ConnectionTimeout = 15 (default value of 0 is used for the implicit database
connection)

• DataSource = empty string

• ServerVersion = empty string

6.4.3 OracleConnection Static Properties
The OracleConnection static property is listed in Table 6-30.

Table 6-30 OracleConnection Static Property

Property Description

IsAvailable Indicates whether or not the implicit database
connection is available for use

6.4.3.1 IsAvailable
This property indicates whether or the implicit database connection is available for
use.

Declaration

// C#
public static bool IsAvailable {get;}

Chapter 6
OracleConnection Class

6-67

Property Value

Returns true if the implicit database connection is available for use.

Remarks

The availability of the implicit database connection can be checked at runtime through
this static property. When Oracle Data Provider for .NET is used within a .NET stored
procedure, this property always returns true. Otherwise, false is returned.

To obtain an OracleConnection object in a .NET stored procedure that represents the
implicit database connection, set the ConnectionString property of the OracleConnection
object to "context connection=true" and invoke the Open method.

Note that not all features that are available for an explicit user connection are available
for an implicit database connection. See "Implicit Database Connection" for details.

Example

// C# (Library/DLL)
using System;
using Oracle.DataAccess.Client;

public class IsAvailableSample
{
 static void MyStoredProcedure()
 {
 OracleConnection con = new OracleConnection();
 if (OracleConnection.IsAvailable)
 {
 // This function is invoked as a stored procedure
 // Obtain the implicit database connection by setting
 // "context connection=true" in the connection string
 con.ConnectionString = "context connection=true";
 }
 else
 {
 // This function is not invoked as a stored procedure
 // Set the connection string for a normal client connection
 con.ConnectionString = "user id=scott;password=tiger;data source=oracle";
 }

 con.Open();
 Console.WriteLine("connected!");
 }
}

6.4.4 OracleConnection Static Methods
The OracleConnection static methods are listed in Table 6-31.

Table 6-31 OracleConnection Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

Chapter 6
OracleConnection Class

6-68

Table 6-31 (Cont.) OracleConnection Static Methods

Method Description

ClearPool Clears the connection pool that is associated with the provided
OracleConnection object.

Not supported in a .NET stored procedure

ClearAllPools Clears all connections from all the connection pools

Not supported in a .NET stored procedure

6.4.4.1 ClearPool
This method clears the connection pool that is associated with the provided
OracleConnection object.

Declaration

// C#
public static void ClearPool(OracleConnection connection);

Remarks

When this method is invoked, all idle connections are closed and freed from the pool.
Currently used connections are not discarded until they are returned to the pool.

Beginning with ODP.NET 12c Release 1 (12.1), ClearPool does not automatically
repopulate the pool with new connections. This prevents the pool from being
repopulated with invalid connections if client remains unable to connect with the
database server. Developers programmatically control when the pool is repopulated by
calling OracleConnection.Open(), which will repopulate the pool with at least the Min
Pool Size number of connections.

Connections created after this method invocation are not cleared unless another
invocation is made.

This method can be invoked with an OracleConnection object before opening the
connection as well as after, provided the ConnectionString is properly set.

Exceptions

InvalidOperationException – Either the connection pool cannot be found or the
provided connection string is invalid.

Example

// C#
// Sample demonstrating the use of ClearPool API in OracleConnection class

using System;
using Oracle.DataAccess.Client;

class ClearPoolSample
{
 static void Main()
 {
 Console.WriteLine("Running ClearPool sample...");

Chapter 6
OracleConnection Class

6-69

 // Set the connection string
 string strConn = "User Id=scott;Password=tiger;Data Source=oracle;" +
 "Min pool size=5;";
 OracleConnection conn = new OracleConnection(strConn);

 // Open the connection
 conn.Open();

 // Clears the connection pool associated with connection 'conn'
 OracleConnection.ClearPool (conn);

 // This connection will be placed back into the pool
 conn.Close ();

 // Open the connection again to create additional connections in the pool
 conn.Open();

 // Create a new connection object
 OracleConnection connNew = new OracleConnection(strConn);

 // Clears the pool associated with Connection 'connNew'
 // Since the same connection string is set for both the connections,
 // connNew and conn, they will be part of the same connection pool.
 // We need not do an Open() on the connection object before calling
 // ClearPool
 OracleConnection.ClearPool (connNew);

 // cleanup
 conn.Close();
 Console.WriteLine("Done!");
 }
}

6.4.4.2 ClearAllPools
This method clears all connections from all the connection pools.

Declaration

// C#
public static void ClearAllPools();

Remarks

This call is analogous to calling ClearPool for all the connection pools that are created
for the application.

Exceptions

InvalidOperationException – No connection pool could be found for the application.

Example

// C#
// Sample demonstrating the use of ClearAllPools API in OracleConnection class

using System;
using Oracle.DataAccess.Client;

Chapter 6
OracleConnection Class

6-70

class ClearAllPoolsSample
{
 static void Main()
 {
 Console.WriteLine("Running ClearAllPools sample...");
 // Set the connection string
 string strConn = "User Id=scott;Password=tiger;Data Source=oracle;" +
 "Min pool size=5;";
 OracleConnection conn = new OracleConnection(strConn);

 // Create another connection object with a different connection string
 string strConnNew = "User Id=scott;Password=tiger;Data Source=oracle;";
 OracleConnection connNew = new OracleConnection(strConnNew);

 // Open the connections. Separate pools are created for conn and connNew
 conn.Open();
 connNew.Open();

 // Clears the pools associated with conn and connNew
 OracleConnection.ClearAllPools ();

 // cleanup
 conn.Close();
 connNew.Close();
 Console.WriteLine("Done!");
 }
}

6.4.5 OracleConnection Properties
OracleConnection properties are listed in Table 6-32

Table 6-32 OracleConnection Properties

Property Description

ActionName Specifies the action name for the connection

ClientId Specifies the client identifier for the connection

ClientInfo Specifies the client information for the connection

ConnectionString Specifies connection information used to connect to an Oracle
database

ConnectionTimeout Indicates the maximum amount of time that the Open method can
take to obtain a pooled connection before the request is terminated

ConnectionType Determines whether a particular connection object is associated with
a TimesTen database connection, an Oracle database connection, or
no physical connection

Not available in ODP.NET, Managed Driver

Container Inherited from System.ComponentModel.Component

Database Not Supported

DatabaseDomainName Specifies the name of the database domain to which the connection
is set

DatabaseName Specifies the name of the database to which the connection is set

Chapter 6
OracleConnection Class

6-71

Table 6-32 (Cont.) OracleConnection Properties

Property Description

DataSource Specifies the Oracle Net Services Name, Connect Descriptor, or an
easy connect naming that identifies the database to which to connect

HostName Specifies the name of the host to which the connection is set

InstanceName Specifies the name of the instance to which the connection is set

ModuleName Specifies the module name for the connection

ServerVersion Specifies the version number of the Oracle database to which the
OracleConnection has established a connection

ServiceName Specifies the name of the service to which the connection is set

Site Inherited from System.ComponentModel.Component

State Specifies the current state of the connection

StatementCacheSize Specifies the current size of the statement cache associated with this
connection

6.4.5.1 ActionName
This property specifies the action name for the connection.

Declaration

// C#
public string ActionName {set;}

Property Value

The string to be used as the action name.

Remarks

The default value is null.

Using the ActionName property allows the application to set the action name in the
application context for a given OracleConnection object.

The ActionName property is reset to null when the Close or Dispose method is called on
the OracleConnection object.

6.4.5.2 ClientId
This property specifies the client identifier for the connection.

Declaration

// C#
public string ClientId {set;}

Property Value

The string to be used as the client identifier.

Chapter 6
OracleConnection Class

6-72

Remarks

The default value is null.

Using the ClientId property allows the application to set the client identifier in the
application context for a given OracleConnection object.

Setting ClientId to null resets the client identifier for the connection. ClientId is set to
null when the Close or Dispose method is called on the OracleConnection object.

6.4.5.3 ClientInfo
This property specifies the client information for the connection.

Declaration

// C#
public string ClientInfo {set;}

Property Value

The string to be used as the client information.

Remarks

The default value is null.

Using the ClientInfo property allows the application to set the client information in the
application context for a given OracleConnection object.

The ClientInfo property is reset to null when the Close or Dispose method is called on
the OracleConnection object.

6.4.5.4 ConnectionString
This property specifies connection information used to connect to an Oracle database.

Declaration

// C#
public override string ConnectionString{get; set;}

Property Value

If the connection string is supplied through the constructor, this property is set to that
string.

Implements

IDbConnection

Exceptions

ArgumentException - An invalid syntax is specified for the connection string.

InvalidOperationException - ConnectionString is being set while the connection is open.

Chapter 6
OracleConnection Class

6-73

Remarks

The default value is an empty string.

ConnectionString must be a string of attribute name and value pairings, separated by a
semi-colon, for example:

"User Id=scott;password=tiger;data source=oracle"

If the ConnectionString is not in a proper format, an exception is thrown. All spaces are
ignored unless they are within double quotes.

When the ConnectionString property is set, the OracleConnection object immediately
parses the string for errors. An ArgumentException is thrown if the ConnectionString
contains invalid attributes or invalid values. Attribute values for User Id, Password, Proxy
User Id, Proxy Password, and Data Source (if provided) are not validated until the Open
method is called.

The connection must be closed to set the ConnectionString property. When the
ConnectionString property is reset, all previously set values are reinitialized to their
default values before the new values are applied.

Starting with ODP.NET 11.1, password and proxy password connection string attribute
values are accepted as case-sensitive strings. Thus, they are passed to the database
for authentication in the case provided in the connection string. Therefore, if the
database is configured to support case-sensitive passwords, passwords must be
passed in the correct case.

If a connection string attribute is set more than once, the last setting takes effect and
no exceptions are thrown.

Boolean connection string attributes can be set to either true, false, yes, or no.

Remarks (.NET Stored Procedure)

To obtain an OracleConnection object in a .NET stored procedure that represents the
implicit database connection, set the ConnectionString property of the OracleConnection
object to "context connection=true" and invoke the Open method. Other connection
string attributes cannot be used in conjunction with "context connection" when it is set
to true.

Supported Connection String Attributes

Table 6-33 lists the supported connection string attributes.

Table 6-33 Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Application
Continuity

Enables database requests to automatically replay
transactional or non-transactional operations in a non-
disruptive and rapid manner in the event of a severed
database session, which results in a recoverable error.

Not available in ODP.NET, Managed Driver

true

Chapter 6
OracleConnection Class

6-74

Table 6-33 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Connection
Lifetime

Minimum life time (in seconds) of the connection.

This attribute specifies the lifetime of the connection in
seconds. Before the Connection is placed back into the
pool upon a Close() or Dispose() call, the lifetime of
the connection is checked. If the lifetime of the
connection exceeds this property value, then the
connection is destroyed. If this property value is 0, then
the connection lifetime is never checked.

0

Connection Timeout Minimum time (in seconds) to wait for a free connection
from the pool.

This attribute specifies the minimum amount of time (in
seconds) that the Open() method must take to obtain a
pooled connection before it terminates the request. This
value comes into effect only if no free connection is
available from the connection pool and the Max Pool
Size is reached. If a free connection is not available
within the specified time, an exception is thrown.
Connection Timeout does not limit the time required to
open new connections.

This attribute value takes effect for pooled connection
requests and not for new connection requests.

(The default value is 0 for the implicit database
connection in a .NET stored procedure.)

15

Context Connection Returns an implicit database connection if set to true.

An implicit database connection can only be obtained
from within a .NET stored procedure. Other connection
string attributes cannot be used in conjunction with
"context connection" when it is set to true.

Supported in a .NET stored procedure only

false

Data Source Oracle Net Services Name, Connect Descriptor, or an
easy connect naming that identifies the database to
which to connect.

empty string

DBA Privilege Administrative privileges SYSDBA or SYSOPER.

This connection string attribute only accepts SYSDBA or
SYSOPER as the attribute value. It is case-insensitive.

empty string

Decr Pool Size Number of connections that are closed when an
excessive amount of established connections are
unused.

This connection string attribute controls the maximum
number of unused connections that are closed when
the pool regulator makes periodic checks. The regulator
thread is spawned every 3 minutes and closes up to
Decr Pool Size amount of pooled connections if they
are not used. The pool regulator never takes the total
number of connections below the Min Pool Size by
closing pooled connections.

1

Chapter 6
OracleConnection Class

6-75

Table 6-33 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Enlist Controls the enlistment behavior and capabilities of a
connection in context of COM+ transactions or
System.Transactions.

If this attribute is set to true, the connection is
automatically enlisted in the thread's transaction
context. If this attribute is false, no enlistments are
made. If this attribute is set to dynamic, applications can
dynamically enlist in distributed transactions. This
attribute can be set to true, false, yes, no, or dynamic.

true

HA Events Enables ODP.NET connection pool to proactively
remove connections from the pool when an Oracle
database service, service member, or node goes down.

This feature can be used with Global Data Services,
including Oracle RAC, Data Guard, GoldenGate, and
single instance deployments. "pooling=true" must also
be set

This attribute can be set to true, false, yes, or no.

true

Load Balancing Enables ODP.NET connection pool to balance work
requests across Oracle database instances based on
the load balancing advisory and service goal.

This feature can be used with Global Data Services,
including Oracle RAC, Active Data Guard, and
GoldenGate. "pooling=true" must also be set.

This attribute can be set to true, false, yes, or no.

true

Incr Pool Size Number of new connections to be created when all
connections in the pool are in use.

This connection string attribute determines the number
of new connections that are established when a pooled
connection is requested, but no unused connections are
available and Max Pool Size is not reached. If new
connections have been created for a pool, the regulator
thread skips a cycle and does not have an opportunity
to close any connections for 6 minutes. Note, however,
that some connections can be still be closed during this
time if their lifetime has been exceeded.

5

Max Pool Size Maximum number of connections in a pool.

This attribute specifies the maximum number of
connections allowed in the particular pool used by that
OracleConnection. Simply changing this attribute in the
connection string does not change the Max Pool Size
restriction on a currently existing pool. Doing so simply
creates a new pool with a different Max Pool Size
restriction. This attribute must be set to a value greater
than the Min Pool Size. This value is ignored unless
Pooling is turned on.

100

Metadata Pooling Caches metadata information.

This attribute indicates whether or not metadata
information for executed queries are cached for
improved performance.

True

Chapter 6
OracleConnection Class

6-76

Table 6-33 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Min Pool Size Minimum number of connections in a pool.

This attribute specifies the minimum number of
connections to be maintained by the pool during its
entire lifetime. Simply changing this attribute in the
connection string does not change the Min Pool Size
restriction on a currently existing pool. Doing so simply
creates a new pool with a different Min Pool Size
restriction. This value is ignored unless Pooling is
turned on.

1

Password Password for the user specified by User Id.

This attribute specifies an Oracle user's password.
Password is case-sensitive by default for Oracle
Database 11g release 1 (11.1) and later.

empty string

Persist Security
Info

Retrieval of the password in the connection string.

If this attribute is set to false, the Password value
setting is not returned when the application requests the
ConnectionString after the connection is successfully
opened by the Open() method. This attribute can be set
to either true, false, yes, or no.

false

Pooling Connection pooling.

This attribute specifies whether or not connection
pooling is to be used. Pools are created using an
attribute value matching algorithm. This means that
connection strings which only differ in the number of
spaces in the connection string use the same pool. If
two connection strings are identical except that one sets
an attribute to a default value while the other does not
set that attribute, both requests obtain connections from
the same pool. This attribute can be set to either true,
false, yes, or no.

true

Promotable
Transaction

Promotable to distributed transaction or not.

If "promotable" is specified, the first and all subsequent
connections opened in the same TransactionScope
enlist in the same distributed transaction. If "local" is
specified, the first connection opened in the
TransactionScope uses a local transaction.

promotable

Proxy User Id User name of the proxy user.

This connection string attribute specifies the middle-tier
user, or the proxy user, who establishes a connection
on behalf of a client user specified by the User Id
attribute. ODP.NET attempts to establish a proxy
connection if either the Proxy User Id or the Proxy
Password attribute is set to a non-empty string.

For the proxy user to connect to an Oracle database
using operating system authentication, the Proxy User
Id must be set to "/". The Proxy Password is ignored in
this case. The User Id cannot be set to "/" when
establishing proxy connections. The case of this
attribute value is preserved.

empty string

Chapter 6
OracleConnection Class

6-77

Table 6-33 (Cont.) Supported Connection String Attributes

Connection String
Attribute

Description Default Value

Proxy Password Password of the proxy user.

This connection string attribute specifies the password
of the middle-tier user or the proxy user. This user
establishes a connection on behalf of a client user
specified by the User Id attribute. ODP.NET attempts to
establish a proxy connection if either the Proxy User Id
or the Proxy Password attribute is set to a non-empty
string.

The case of this attribute value is preserved if it is
surrounded by double quotes.

empty string

Statement Cache
Purge

Statement cache purged when the connection goes
back to the pool.

If statement caching is enabled, setting this attribute to
true purges the Statement Cache when the connection
goes back to the pool.

false

Statement Cache
Size

Statement cache enabled and cache size set size, that
is, the maximum number of statements that can be
cached.

A value greater than zero enables statement caching
and sets the cache size to itself. This value should not
be greater than the value of the OPEN_CURSORS
parameter set in the init.ora database configuration
file.

0

Self Tuning Enables or disables self-tuning for the connection.

If self-tuning is enabled, then the StatementCacheSize
settings in the registry, configuration files, and
connection string are ignored.

If self-tuning is disabled, then a StatementCacheSize
value of 0 is used unless StatementCachSize is
specified in the registry, configuration file, or connection
string.

true

User Id Oracle user name.

This attribute specifies the Oracle user name. The case
of this attribute value is preserved if it is surrounded by
double quotes. For the user to connect to an Oracle
database using operating system authentication, set the
User Id to "/". Any Password attribute setting is ignored
in this case.

empty string

Validate
Connection

Validation of connections coming from the pool.

Validation causes a round-trip to the database for each
connection. Therefore, it should only be used when
necessary.

false

6.4.5.5 ConnectionTimeout
This property indicates the minimum amount of time that the Open method can take to
obtain a pooled connection before the request is terminated.

Chapter 6
OracleConnection Class

6-78

Declaration

// C#
public override int ConnectionTimeout {get;}

Property Value

The minimum time allowed for a pooled connection request, in seconds.

Implements

IDbConnection

Remarks

This property indicates the connection timeout that has been set using the
ConnectionString attribute Connection TimeOut.

This property is read-only.

Remarks (.NET Stored Procedure)

There is no connection string specified by the application and a connection on the
implicit database is always available, therefore, this property is set to 0.

6.4.5.6 ConnectionType
This property enables an ODP.NET application to determine whether a particular
connection object is associated with an Oracle database connection, a TimesTen
database connection, or no physical connection at all.

Declaration

// C#
public OracleConnectionType ConnectionType {get;}

Property Value

The OracleConnectionType that this connection object is associated with.

6.4.5.7 Database
This property is not supported.

Declaration

// C#
public override string Database {get;}

Property Value

A string.

Implements

IDbConnection.Database

Chapter 6
OracleConnection Class

6-79

Remarks

This property is not supported. It always returns an empty string.

6.4.5.8 DatabaseDomainName
This property specifies the name of the database domain that this connection is
connected to.

Declaration

// C#
public string DatabaseDomainName {get;}

Property Value

The database domain that this connection is connected to.

6.4.5.9 DatabaseName
This property specifies the name of the database that this connection is connected to.

Declaration

// C#
public string DatabaseName {get;}

Property Value

The database that this connection is connected to.

6.4.5.10 DataSource
This property specifies the Oracle Net Services Name, Connect Descriptor, or an easy
connect naming that identifies the database to which to connect

Declaration

// C#
public override string DataSource {get;}

Property Value

Oracle Net Services Name, Connect Descriptor, or an easy connect naming that
identifies the database to which to connect.

Remarks (.NET Stored Procedure)

The value of this property is always an empty string for the implicit database
connection.

6.4.5.11 HostName
This property specifies the name of the host that this connection is connected to.

Chapter 6
OracleConnection Class

6-80

Declaration

// C#
public string HostName {get;}

Property Value

The host that this connection is connected to.

6.4.5.12 InstanceName
This property specifies the name of the instance that this connection is connected to.

Declaration

// C#
public string InstanceName {get;}

Property Value

The instance that this connection is connected to.

6.4.5.13 ModuleName
This property specifies the module name for the connection.

Declaration

// C#
public string ModuleName {set;}

Property Value

The string to be used as the module name.

Remarks

The default value is null.

Using the ModuleName property allows the application to set the module name in the
application context for a given OracleConnection object.

The ModuleName property is reset to null when the Close or Dispose method is called on
the OracleConnection object.

6.4.5.14 ServerVersion
This property specifies the version number of the Oracle database to which the
OracleConnection has established a connection.

Declaration

// C#
public override string ServerVersion {get;}

Chapter 6
OracleConnection Class

6-81

Property Value

The version of the Oracle database.

Exceptions

InvalidOperationException - The connection is closed.

Remarks

The default is an empty string.

6.4.5.15 ServiceName
This property specifies the name of the service that this connection is connected to.

Declaration

// C#
public string ServiceName {get;}

Property Value

The service that this connection is connected to.

6.4.5.16 State
This property specifies the current state of the connection.

Declaration

// C#
public override ConnectionState State {get;}

Property Value

The ConnectionState of the connection.

Implements

IDbConnection

Remarks

ODP.NET supports ConnectionState.Closed and ConnectionState.Open for this property.
The default value is ConnectionState.Closed.

6.4.5.17 StatementCacheSize
This property specifies the current size of the statement cache associated with this
connection.

Chapter 6
OracleConnection Class

6-82

Declaration

// C#
public int StatementCacheSize{get;}

Property Value

An integer value indicating the size of the statement cache.

Remarks

If self tuning is not enabled, then the default value of this property depends upon the
statement cache size specified in the connection string, application configuration file,
or the registry. If none of these values are specified, then a default value of 0 is used.

If self tuning is enabled, then the property value is adjusted automatically. Any values
specified in the connection string, application configuration file, or the registry are
ignored.

6.4.6 OracleConnection Public Methods
OracleConnection public methods are listed in Table 6-34.

Table 6-34 OracleConnection Public Methods

Public Method Description

BeginTransaction Begins a local transaction (Overloaded)

Not supported in a .NET stored procedure for context
connection

ChangeDatabase Not Supported

Clone Creates a copy of an OracleConnection object

Not supported in a .NET stored procedure

Close Closes the database connection

CreateCommand Creates and returns an OracleCommand object
associated with the OracleConnection object

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel.Component

EnlistDistributedTransaction Enables applications to explicitly enlist in a specified
distributed transaction

Not supported in a .NET stored procedure

EnlistTransaction Enables applications to enlist in a specified distributed
transaction

Not supported in a .NET stored procedure

Equals Inherited from System.Object (Overloaded)

FlushCache Flushes all updates and deletes made through REF
objects retrieved using this connection

Not available in ODP.NET, Managed Driver

GetHashCode Inherited from System.Object

Chapter 6
OracleConnection Class

6-83

Table 6-34 (Cont.) OracleConnection Public Methods

Public Method Description

GetLifetimeService Inherited from System.MarshalByRefObject

GetSchema Returns schema information for the data source of the
OracleConnection

GetSessionInfo Returns or refreshes the property values of the
OracleGlobalization object that represents the
globalization settings of the session (Overloaded)

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

Open Opens a database connection with the property settings
specified by the ConnectionString

OpenWithNewPassword Opens a new connection with the new password

Not supported in a .NET stored procedure for context
connection

PurgeStatementCache Flushes the Statement Cache by closing all open
cursors on the database, when statement caching is
enabled

SetSessionInfo Alters the session's globalization settings with the
property values provided by the OracleGlobalization
object

SetShardingKey(OracleShardingKey,
OracleShardingKey)

Enables applications to set the sharding key and super
sharding key before requesting a connection

Not available in ODP.NET, Managed Driver

ToString Inherited from System.Object

6.4.6.1 BeginTransaction
BeginTransaction methods begin local transactions.

Overload List

• BeginTransaction()

This method begins a local transaction.

• BeginTransaction(IsolationLevel)

This method begins a local transaction with the specified isolation level.

6.4.6.2 BeginTransaction()
This method begins a local transaction.

Declaration

// C#
public OracleTransaction BeginTransaction();

Chapter 6
OracleConnection Class

6-84

Return Value

An OracleTransaction object representing the new transaction.

Implements

IDbConnection

Exceptions

InvalidOperationException - A transaction has already been started.

Remarks

The transaction is created with its isolation level set to its default value of
IsolationLevel.ReadCommitted. All further operations related to the transaction must be
performed on the returned OracleTransaction object.

Remarks (.NET Stored Procedure)

Using this method in a .NET stored procedure for context connection causes a Not
Supported exception.

6.4.6.3 BeginTransaction(IsolationLevel)
This method begins a local transaction with the specified isolation level.

Declaration

// C#
public OracleTransaction BeginTransaction(IsolationLevel isolationLevel);

Parameters

• isolationLevel

The isolation level for the new transaction.

Return Value

An OracleTransaction object representing the new transaction.

Implements

IDbConnection

Exceptions

InvalidOperationException - A transaction has already been started.

ArgumentException - The isolationLevel specified is invalid.

Remarks

The following isolation levels are supported: IsolationLevel.ReadCommitted and
IsolationLevel.Serializable.

Chapter 6
OracleConnection Class

6-85

Although the BeginTransaction method supports the IsolationLevel.Serializable
isolation level, serializable transactions are not supported when using
System.Transactions and TransactionScope.

Requesting other isolation levels causes an exception.

Remarks (.NET Stored Procedure)

Using this method in a .NET stored procedure for context connection causes a Not
Supported exception.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class BeginTransactionSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(IsolationLevel.ReadCommitted);

 // Update EMP table
 cmd.CommandText = "update emp set sal = sal + 100";
 cmd.ExecuteNonQuery();

 // Rollback transaction
 txn.Rollback();
 Console.WriteLine("Transaction rolledback");

 // Clean up
 txn.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

6.4.6.4 ChangeDatabase
This method is not supported.

Declaration

// C#
public override void ChangeDatabase(string databaseName);

Chapter 6
OracleConnection Class

6-86

Parameters

• databaseName

The name of the database that replaces the current database name.

Implements

IDbConnection.ChangeDatabase

Exceptions

NotSupportedException - Method not supported.

Remarks

This method is not supported and throws a NotSupportedException if invoked.

6.4.6.5 Clone
This method creates a copy of an OracleConnection object.

Declaration

// C#
public object Clone();

Return Value

An OracleConnection object.

Implements

ICloneable

Remarks

The cloned object has the same property values as that of the object being cloned.

Remarks (.NET Stored Procedure)

This method is not supported for an implicit database connection.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class CloneSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Need a proper casting for the return value when cloned

Chapter 6
OracleConnection Class

6-87

 OracleConnection clonedCon = (OracleConnection)con.Clone();

 // Cloned connection is always closed, regardless of its source,
 // But the connection string should be identical
 clonedCon.Open();
 if (clonedCon.ConnectionString.Equals(con.ConnectionString))
 Console.WriteLine("The connection strings are the same.");
 else
 Console.WriteLine("The connection strings are different.");

 // Close and Dispose OracleConnection object
 clonedCon.Dispose();
 }
}

6.4.6.6 Close
This method closes the connection to the database.

Declaration

// C#
public override void Close();

Implements

IDbConnection

Remarks

Performs the following:

• Rolls back any pending local transactions that are not yet committed. Distributed
transactions will rely on the distributed transaction coordinator on whether roll back
is necessary.

• Places the connection to the connection pool if connection pooling is enabled.
Even if connection pooling is enabled, the connection can be closed if it exceeds
the connection lifetime specified in the connection string. If connection pooling is
disabled, the connection is closed.

• Closes the connection to the database.

The connection can be reopened using Open().

6.4.6.7 CreateCommand
This method creates and returns an OracleCommand object associated with the
OracleConnection object.

Declaration

// C#
public OracleCommand CreateCommand();

Return Value

The OracleCommand object.

Chapter 6
OracleConnection Class

6-88

Implements

IDbConnection

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class CreateCommandSample
{
 static void Main()
 {
 // Connect
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Execute a SQL SELECT
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select * from emp";
 OracleDataReader reader = cmd.ExecuteReader();

 // Print all employee numbers
 while (reader.Read())
 Console.WriteLine(reader.GetInt32(0));

 // Clean up
 reader.Dispose();
 cmd.Dispose();
 con.Dispose();
 }
}

6.4.6.8 EnlistDistributedTransaction
This method enables applications to explicitly enlist in a specific distributed transaction
after a connection has been opened.

Declaration

// C#
public void EnlistDistributedTransaction(ITransaction transaction);

Parameters

• transaction

An ITransaction interface.

Exceptions

InvalidOperationException - The connection is part of a local transaction or the
connection is closed.

Chapter 6
OracleConnection Class

6-89

Remarks

EnlistDistributedTransaction enables objects to enlist in a specific transaction that is
passed to the method. The ITransaction interface can be obtained by applying an
(ITransaction) cast to the ContexUtil.Transaction property within the component that
started the distributed transaction.

The connection must be open before calling this method or an
InvalidOperationException is thrown.

If a connection is part of a local transaction that was started implicitly or explicitly while
attempting to enlist in a distributed transaction, the local transaction is rolled back and
an exception is thrown.

By default, distributed transactions roll back, unless the method-level AutoComplete
declaration is set.

Invoking the commit on the ITranasction raises an exception.

Invoking the rollback on the ITransaction method and calling ContextUtil.SetComplete
on the same distributed transaction raises an exception.

Remarks (.NET Stored Procedure)

Using this method causes a Not Supported exception.

Example

Application:

// C#

/* This is the class that will utilize the Enterprise Services
 component. This module needs to be built as an executable.

 The Enterprise Services Component DLL must be built first
 before building this module.
 In addition, the DLL needs to be referenced appropriately
 when building this application.
*/

using System;
using System.EnterpriseServices;
using DistribTxnSample;

class DistribTxnSample_App
{
 static void Main()
 {
 DistribTxnSample_Comp comp = new DistribTxnSample_Comp();
 comp.DoWork();
 }
}

Component:

// C#

/* This module needs to be
 1) built as a component DLL/Library

Chapter 6
OracleConnection Class

6-90

 2) built with a strong name

 This library must be built first before the application is built.
*/

using System;
using System.Data;
using Oracle.DataAccess.Client;
using System.EnterpriseServices;

namespace DistribTxnSample
{
 [Transaction(TransactionOption.RequiresNew)]
 public class DistribTxnSample_Comp : ServicedComponent
 {
 public void DoWork()
 {
 string constr =
 "User Id=scott;Password=tiger;Data Source=oracle;enlist=false";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Enlist in a distrubuted transaction
 con.EnlistDistributedTransaction((ITransaction)ContextUtil.Transaction);

 // Update EMP table
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "UPDATE emp set sal = sal + .01";
 cmd.ExecuteNonQuery();

 // Commit
 ContextUtil.SetComplete();

 // Dispose OracleConnection object
 con.Dispose();
 }
 }
}

6.4.6.9 EnlistTransaction
This method enlists the connection to the specified transaction.

Declaration

// C#
public override void EnlistTransaction(Transaction transaction)

Parameters

• transaction

A System.Transactions.Transaction object.

Exceptions

InvalidOperationException - The connection is part of a local transaction or the
connection is closed.

Chapter 6
OracleConnection Class

6-91

Remarks

Invocation of this method immediately enlists the connection to a transaction that is
specified by the provided transaction parameter.

If OracleConnection is still associated with a distributed transaction that has not
completed from a previous EnlistTransaction method invocation, calling this method
will cause an exception to be thrown.

In general, for transaction enlistments to succeed, the "enlist" connection string
attribute must be set to "true" before invoking the Open method. Setting the "enlist"
connection string attribute to "true" will implicitly enlist the connection when the Open
method is called, if the connection is within a transaction context. The "enlist"
attribute should be set to "false" or "dynamic" only if the connection will never enlist in
a transaction.

6.4.6.10 FlushCache
This method flushes all updates and deletes made through REF objects retrieved using
this connection.

Declaration

// c#
public void FlushCache();

Exceptions

InvalidOperationException - The specified connection is not open.

Remarks

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection object.
This is because if the object being flushed has not already been locked by the
application, an exclusive lock is obtained implicitly for the object. The lock is only
released when the transaction commits or rollbacks.

6.4.6.11 GetSchema
GetSchema methods return schema information for the data source of the
OracleConnection.

Overload List

• GetSchema()

This method returns schema information for the data source of the
OracleConnection.

• GetSchema (string collectionName)

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name.

• GetSchema (string collectionName, string[] restrictions)

Chapter 6
OracleConnection Class

6-92

This method returns schema information for the data source of the
OracleConnection using the specified string for the collection name and the
specified string array for the restriction values.

6.4.6.12 GetSchema()
This method returns schema information for the data source of the OracleConnection.

Declaration

// C#
public override DataTable GetSchema();

Return Value

A DataTable object.

Exceptions

InvalidOperationException – The connection is closed.

Remarks

This method returns a DataTable object that contains a row for each metadata
collection available from the database.

The method is equivalent to specifying the String value "MetaDataCollections" when
using the GetSchema(String) method.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class GetSchemaSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
 string ProviderName = "Oracle.DataAccess.Client";

 DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

 using (DbConnection conn = factory.CreateConnection())
 {
 try
 {
 conn.ConnectionString = constr;
 conn.Open();

 //Get all the schema collections and write to an XML file.
 //The XML file name is Oracle.DataAccess.Client_Schema.xml
 DataTable dtSchema = conn.GetSchema();
 dtSchema.WriteXml(ProviderName + "_Schema.xml");

Chapter 6
OracleConnection Class

6-93

 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
 }
}

6.4.6.13 GetSchema (string collectionName)
This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name.

Declaration

// C#
public override DataTable GetSchema (string collectionName);

Parameters

collectionName

Name of the collection for which metadata is required.

Return Value

A DataTable object.

Exceptions

ArgumentException – The requested collection is not defined.

InvalidOperationException – The connection is closed.

InvalidOperationException – The requested collection is not supported by current
version of Oracle database.

InvalidOperationException – No population string is specified for requested collection.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class GetSchemaSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
 string ProviderName = "Oracle.DataAccess.Client";

 DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

 using (DbConnection conn = factory.CreateConnection())

Chapter 6
OracleConnection Class

6-94

 {
 try
 {
 conn.ConnectionString = constr;
 conn.Open();

 //Get MetaDataCollections and write to an XML file.
 //This is equivalent to GetSchema()
 DataTable dtMetadata =
 conn.GetSchema(DbMetaDataCollectionNames.MetaDataCollections);
 dtMetadata.WriteXml(ProviderName + "_MetaDataCollections.xml");

 //Get Restrictions and write to an XML file.
 DataTable dtRestrictions =
 conn.GetSchema(DbMetaDataCollectionNames.Restrictions);
 dtRestrictions.WriteXml(ProviderName + "_Restrictions.xml");

 //Get DataSourceInformation and write to an XML file.
 DataTable dtDataSrcInfo =
 conn.GetSchema(DbMetaDataCollectionNames.DataSourceInformation);
 dtDataSrcInfo.WriteXml(ProviderName + "_DataSourceInformation.xml");

 //data types and write to an XML file.
 DataTable dtDataTypes =
 conn.GetSchema(DbMetaDataCollectionNames.DataTypes);
 dtDataTypes.WriteXml(ProviderName + "_DataTypes.xml");

 //Get ReservedWords and write to an XML file.
 DataTable dtReservedWords =
 conn.GetSchema(DbMetaDataCollectionNames.ReservedWords);
 dtReservedWords.WriteXml(ProviderName + "_ReservedWords.xml");

 //Get all the tables and write to an XML file.
 DataTable dtTables = conn.GetSchema("Tables");
 dtTables.WriteXml(ProviderName + "_Tables.xml");

 //Get all the views and write to an XML file.
 DataTable dtViews = conn.GetSchema("Views");
 dtViews.WriteXml(ProviderName + "_Views.xml");

 //Get all the columns and write to an XML file.
 DataTable dtColumns = conn.GetSchema("Columns");
 dtColumns.WriteXml(ProviderName + "_Columns.xml");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
 }
}

6.4.6.14 GetSchema (string collectionName, string[] restrictions)
This method returns schema information for the data source of the OracleConnection
using the specified string for the collection name and the specified string array for the
restriction values.

Chapter 6
OracleConnection Class

6-95

Declaration

// C#
public override DataTable GetSchema (string collectionName,
 string[] restrictions);

Parameters

• collectionName

The name of the collection of metadata being retrieved.

• restrictions

An array of restrictions that apply to the metadata being retrieved.

Return Value

A DataTable object.

Exception

• ArgumentException – The requested collection is not defined.

• InvalidOperationException – One of the following conditions exist:

– The connection is closed.

– The requested collection is not supported by the current version of Oracle
database.

– More restrictions were provided than the requested collection supports.

– No population string is specified for requested collection.

Remarks

This method takes the name of a metadata collection and an array of String values
that specify the restrictions for filtering the rows in the returned DataTable. This returns
a DataTable that contains only rows from the specified metadata collection that match
the specified restrictions.

For example, if the Columns collection has three restrictions (owner, tablename, and
columnname), to retrieve all the columns for the EMP table regardless of schema, the
GetSchema method must pass in at least these values: null, EMP.

If no restriction value is passed in, default values are used for that restriction, which is
the same as passing in null. This differs from passing in an empty string for the
parameter value. In this case, the empty string ("") is considered the value for the
specified parameter.

collectionName is not case-sensitive, but restrictions (string values) are.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

Chapter 6
OracleConnection Class

6-96

class GetSchemaSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
 string ProviderName = "Oracle.DataAccess.Client";

 DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

 using (DbConnection conn = factory.CreateConnection())
 {
 try
 {
 conn.ConnectionString = constr;
 conn.Open();

 //Get Restrictions
 DataTable dtRestrictions =
 conn.GetSchema(DbMetaDataCollectionNames.Restrictions);

 DataView dv = dtRestrictions.DefaultView;

 dv.RowFilter = "CollectionName = 'Columns'";
 dv.Sort = "RestrictionNumber";

 for (int i = 0; i < dv.Count; i++)
 Console.WriteLine("{0} (default) {1}" ,
 dtRestrictions.Rows[i]["RestrictionName"],
 dtRestrictions.Rows[i]["RestrictionDefault"]);

 //Set restriction string array
 string[] restrictions = new string[3];

 //Get all columns from all tables owned by "SCOTT"
 restrictions[0] = "SCOTT";
 DataTable dtAllScottCols = conn.GetSchema("Columns", restrictions);

 // clear collection
 for (int i = 0; i < 3; i++)
 restrictions[i] = null;

 //Get all columns from all tables named "EMP" owned by any
 //owner/schema
 restrictions[1] = "EMP";
 DataTable dtAllEmpCols = conn.GetSchema("Columns", restrictions);

 // clear collection
 for (int i = 0; i < 3; i++)
 restrictions[i] = null;

 //Get columns named "EMPNO" from tables named "EMP",
 //owned by any owner/schema
 restrictions[1] = "EMP";
 restrictions[2] = "EMPNO";
 DataTable dtAllScottEmpCols = conn.GetSchema("Columns", restrictions);

 // clear collection
 for (int i = 0; i < 3; i++)
 restrictions[i] = null;

Chapter 6
OracleConnection Class

6-97

 //Get columns named "EMPNO" from all
 //tables, owned by any owner/schema
 restrictions[2] = "EMPNO";
 DataTable dtAllEmpNoCols = conn.GetSchema("Columns", restrictions);
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.Source);
 }
 }
 }
}

6.4.6.15 GetSessionInfo
GetSessionInfo returns or refreshes an OracleGlobalization object that represents the
globalization settings of the session.

Overload List:

• GetSessionInfo()

This method returns a new instance of the OracleGlobalization object that
represents the globalization settings of the session.

• GetSessionInfo(OracleGlobalization)

This method refreshes the provided OracleGlobalization object with the
globalization settings of the session.

6.4.6.16 GetSessionInfo()
This method returns a new instance of the OracleGlobalization object that represents
the globalization settings of the session.

Declaration

// C#
public OracleGlobalization GetSessionInfo();

Return Value

The newly created OracleGlobalization object.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetSessionInfoSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

Chapter 6
OracleConnection Class

6-98

 // Get session info from connection object
 OracleGlobalization info = con.GetSessionInfo();

 // Update session info
 info.DateFormat = "YYYY-MM-DD";
 con.SetSessionInfo(info);

 // Execute SQL SELECT
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select TO_CHAR(hiredate) from emp";
 Console.WriteLine("Hire Date ({0}): {1}",
 info.DateFormat, cmd.ExecuteScalar());

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

6.4.6.17 GetSessionInfo(OracleGlobalization)
This method refreshes the provided OracleGlobalization object with the globalization
settings of the session.

Declaration

// C#
public void GetSessionInfo(OracleGlobalization oraGlob);

Parameters

• oraGlob

The OracleGlobalization object to be updated.

6.4.6.18 Open
This method opens a connection to an Oracle database.

Declaration

// C#
public overide void Open();

Implements

IDbConnection

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The connection is already opened or the connection string
is null or empty.

Chapter 6
OracleConnection Class

6-99

Remarks

The connection is obtained from the pool if connection pooling is enabled. Otherwise,
a new connection is established.

It is possible that the pool does not contain any unused connections when the Open()
method is invoked. In this case, a new connection is established.

If no connections are available within the specified connection timeout value, when the
Max Pool Size is reached, an OracleException is thrown.

6.4.6.19 OpenWithNewPassword
This method opens a new connection with the new password.

Declaration

// C#
public void OpenWithNewPassword(string newPassword);

Parameters

• newPassword

A string that contains the new password.

Remarks

This method uses the ConnectionString property settings to establish a new
connection. The old password must be provided in the connection string as the
Password attribute value.

This method can only be called on an OracleConnection in the closed state.

Remarks (.NET Stored Procedure)

This method is not supported in a .NET stored procedure for context connection.

Note:

If connection pooling is enabled, then invoking the OpenWithNewPassword method
also clears the connection pool. This closes all idle connections created with
the old password.

6.4.6.20 PurgeStatementCache
This method flushes the statement cache by closing all open cursors on the database,
when statement caching is enabled.

Declaration

// C#
public void PurgeStatementCache();

Chapter 6
OracleConnection Class

6-100

Remarks

Flushing the statement cache repetitively results in decreased performance and may
negate the performance benefit gained by enabling the statement cache.

Statement caching remains enabled after the call to PurgeStatementCache.

Invocation of this method purges the cached cursors that are associated with the
OracleConnection. It does not purge all the cached cursors in the database.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class PurgeStatementCacheSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle;" +
 "Statement Cache Size=20";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand("select * from emp", con);
 cmd.CommandType = CommandType.Text;
 OracleDataReader reader = cmd.ExecuteReader();

 // Purge Statement Cache
 con.PurgeStatementCache();

 // Close and Dispose OracleConnection object
 Console.WriteLine("Statement Cache Flushed");
 con.Close();
 con.Dispose();
 }
}

6.4.6.21 SetSessionInfo
This method alters the session's globalization settings with all the property values
specified in the provided OracleGlobalization object.

Declaration

// C#
public void SetSessionInfo(OracleGlobalization oraGlob);

Parameters

• oraGlob

An OracleGlobalization object.

Chapter 6
OracleConnection Class

6-101

Remarks

Calling this method is equivalent to calling an ALTER SESSION SQL on the session.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class SetSessionInfoSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Get session info from connection object
 OracleGlobalization info = con.GetSessionInfo();

 // Execute SQL SELECT
 OracleCommand cmd = con.CreateCommand();
 cmd.CommandText = "select TO_CHAR(hiredate) from emp";
 Console.WriteLine("Hire Date ({0}): {1}",
 info.DateFormat, cmd.ExecuteScalar());

 // Update session info
 info.DateFormat = "MM-DD-RR";
 con.SetSessionInfo(info);

 // Execute SQL SELECT again
 Console.WriteLine("Hire Date ({0}): {1}",
 info.DateFormat, cmd.ExecuteScalar());

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

6.4.6.22 SetShardingKey(OracleShardingKey, OracleShardingKey)
This instance method enables applications to set the sharding key and the super
sharding key before requesting a connection.

Declaration

// C#
public void SetShardingKey(OracleShardingKey shardKey, OracleShardingKey
superShardingKey);

Exceptions

InvalidArgumentException – An invalid Oracle sharding key is supplied.

Chapter 6
OracleConnection Class

6-102

InvalidOperationException – The method is invoked when the connection is in an Open
state.

Remarks

This method sets the sharding key and the super sharding key that is to be used for
returning the proper connection upon the Open method invocation.

This method can only be invoked when the connection is in a Closed state.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection("user id=hr;password=hr;Data
Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

6.4.7 OracleConnection Events
OracleConnection events are listed in Table 6-35.

Table 6-35 OracleConnection Events

Event Name Description

Disposed Inherited from System.ComponentModel.Component

Failover An event that is triggered when an Oracle failover occurs

Not supported in a .NET stored procedure
Not available in ODP.NET, Managed Driver

HAEvent An event that is triggered when an HA event occurs.

InfoMessage An event that is triggered for any message or warning sent by the
database

StateChange An event that is triggered when the connection state changes

Chapter 6
OracleConnection Class

6-103

6.4.7.1 Failover
This event is triggered when an Oracle failover occurs.

Declaration

// C#
public event OracleFailoverEventHandler Failover;

Event Data

The event handler receives an OracleFailoverEventArgs object which exposes the
following properties containing information about the event.

• FailoverType

Indicates the type of the failover.

• FailoverEvent

Indicates the state of the failover.

Remarks

The Failover event is raised when a connection to an Oracle instance is unexpectedly
severed. The client should create an OracleFailoverEventHandler delegate to listen to
this event.

6.4.7.2 HAEvent
This event is triggered when an HA event occurs.

Declaration

// C#
public static event OracleHAEventHandler HAEvent;

Event Data

The event handler receives an OracleHAEventArgs object which exposes the following
properties containing information about the event.

• Source

Indicates the source of the event.

• Status

Indicates the status of the event.

• DatabaseName

Indicates the database name affected by this event.

• DatabaseDomainName

Indicates the database domain name affected by this event.

• HostName

Indicates the host name affected by this event.

Chapter 6
OracleConnection Class

6-104

• InstanceName

Indicates the instance name affected by this event.

• ServiceName

Indicates the service name affected by this event.

• Time

Indicates the time of the event.

Remarks

The HAEvent is static, which means that any HA Events that happen within the
application domain can trigger this event. Note that in order to receive HA event
notifications, OracleConnection objects that establish connections within the application
domain must have "ha events=true" in the application. Otherwise, the application
never receives any HA Events.

6.4.7.3 InfoMessage
This event is triggered for any message or warning sent by the database.

Declaration

// C#
public event OracleInfoMessageEventHandler InfoMessage;

Event Data

The event handler receives an OracleInfoMessageEventArgs object which exposes the
following properties containing information about the event.

• Errors

The collection of errors generated by the data source.

• Message

The error text generated by the data source.

• Source

The name of the object that generated the error.

Remarks

In order to respond to warnings and messages from the database, the client should
create an OracleInfoMessageEventHandler delegate to listen to this event.

6.4.7.4 StateChange
This event is triggered when the connection state changes.

Declaration

// C#
public override event StateChangeEventHandler StateChange;

Chapter 6
OracleConnection Class

6-105

Event Data

The event handler receives a StateChangeEventArgs object which exposes the following
properties containing information about the event.

• CurrentState

The new state of the connection.

• OriginalState

The original state of the connection.

Remarks

The StateChange event is raised after a connection changes state, whenever an explicit
call is made to Open, Close or Dispose.

6.5 OracleConnectionStringBuilder Class
An OracleConnectionStringBuilder object allows applications to create or modify
connection strings.

Class Inheritance

System.Object

 System.Data.Common.DbConnectionStringBuilder

 Oracle.DataAccess.Client.OracleConnectionStringBuilder

Declaration

// C#
public sealed class OracleConnectionStringBuilder : DbConnectionStringBuilder

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The following rules must be followed for setting values with reserved characters:

1. Values containing characters enclosed within single quotes

If the value contains characters that are enclosed within single quotation marks,
then the entire value must be enclosed within double quotation marks.

Chapter 6
OracleConnectionStringBuilder Class

6-106

For example, password = "'scoTT'" where the value is 'scoTT'.

2. Values containing characters enclosed within double quotes

Values should be enclosed in double quotation marks to preserve the case and to
avoid the upper casing of values.

If the value contains characters enclosed in double quotation marks, then it must
be enclosed in single quotation marks.

For example, password = '"scoTT"' where the value is "scoTT".

3. Values containing characters enclosed in both single and double quotes

If the value contains characters enclosed in both single and double quotation
marks, the quotation mark used to enclose the value must be doubled each time it
occurs within the value.

For example, password = '"sco''TT"' where the value is "sco'TT".

4. Values containing spaces

All leading and trailing spaces are ignored, but the spaces between the value are
recognized. If the value needs to have leading or trailing spaces then it must be
enclosed in double quotation marks.

For example, User ID = Sco TT where the value is <Sco TT>.

For example, User ID = "Sco TT " where the value is <Sco TT>.

5. Keywords occurring multiple times in a connection string

If a specific keyword occurs multiple times in a connection string, the last
occurrence listed is used in the value set.

For example, with "User ID = scott; password = tiger; User ID = david"
connection string, User ID value is david.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;
using System.Collections;

class ConnectionStringBuilderSample
{
static void Main(string[] args)
 {
 bool bRet = false;

 // Create an instance of OracleConnectionStringBuilder
 OracleConnectionStringBuilder connStrBuilder =
 new OracleConnectionStringBuilder();

 // Add new key/value pairs to the connection string
 connStrBuilder.Add("User Id", "scott");
 connStrBuilder.Add("Password", "tiger");
 connStrBuilder.Add("Data Source", "oracle");
 connStrBuilder.Add("pooling", false);

 // Modify the existing value

Chapter 6
OracleConnectionStringBuilder Class

6-107

 connStrBuilder["Data source"] = "inst1";

 // Remove an entry from the connection string
 bRet = connStrBuilder.Remove("pooling");

 //ContainsKey indicates whether or not the specific key exist
 //returns true even if the user has not specified it explicitly
 Console.WriteLine("Enlist exist: " +
 connStrBuilder.ContainsKey("Enlist"));

 //returns false
 connStrBuilder.ContainsKey("Invalid");

 // ShouldSerialize indicates whether or not a specific key
 // exists in connection string inherited from DbConnectionStringBuilder.
 // returns true if the key is explicitly added the user otherwise false;
 // this will return false as this key doesn't exists.
 connStrBuilder.ShouldSerialize("user");

 // returns false because this key is nott added by user explicitly.
 connStrBuilder.ShouldSerialize("Enlist");

 // IsFixedSize [read-only property]
 Console.WriteLine("Connection String is fixed size only: "
 + connStrBuilder.IsFixedSize);
 Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

 //adding a new key which is not supported by the provider
 //is not allowed.
 try
 {
 //this will throw an exception.
 connStrBuilder.Add("NewKey", "newValue");
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }

 Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

 //modifying a existing key is allowed.
 connStrBuilder.Add("Enlist", false);
 Console.WriteLine("Key/Value Pair Count: " + connStrBuilder.Count);

 // Get all the keys and values supported by the provider.
 ICollection keyCollection = connStrBuilder.Keys;
 ICollection valueCollection = connStrBuilder.Values;

 IEnumerator keys = keyCollection.GetEnumerator();
 IEnumerator values = valueCollection.GetEnumerator();

 while (keys.MoveNext())
 {
 values.MoveNext();
 Console.WriteLine("Key: {0} Value: {1} \n"
 ,keys.Current ,values.Current);
 }
 }
}

Chapter 6
OracleConnectionStringBuilder Class

6-108

6.5.1 OracleConnectionStringBuilder Members
OracleConnectionStringBuilder members are listed in the following tables.

OracleConnectionStringBuilder Constructors

OracleConnectionStringBuilder constructors are listed in Table 6-36.

Table 6-36 OracleConnectionStringBuilder Constructors

Constructor Description

OracleConnectionStringBuilder
Constructors

Instantiates a new instance of
OracleConnectionStringBuilder class (Overloaded)

OracleConnectionStringBuilder Public Properties

OracleConnectionStringBuilder instance properties are listed in Table 6-37.

Table 6-37 OracleConnectionStringBuilder Public Properties

Properties Description

BrowsableConnectionString Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionLifeTime Specifies the value corresponding to the Connection
Lifetime attribute in the ConnectionString property

ConnectionString Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionTimeout Specifies the value corresponding to the Connection
Timeout attribute in the ConnectionString property

ContextConnection Specifies the value corresponding to the Context
Connection attribute in the ConnectionString property

Count Inherited from
System.Data.Common.DbConnectionStringBuilder

DataSource Specifies the value corresponding to the Data Source
attribute in the ConnectionString property

DBAPrivilege Specifies the value corresponding to the DBA Privilege
attribute in the ConnectionString property

DecrPoolSize Specifies the value corresponding to the Decr Pool Size
attribute in the ConnectionString property

Enlist Specifies the value corresponding to the Enlist attribute
in the ConnectionString property

HAEvents Specifies the value corresponding to the HA Events
attribute in the ConnectionString property

IncrPoolSize Specifies the value corresponding to the Incr Pool Size
attribute in the ConnectionString property

IsFixedSize Indicates whether or not the Connection String Builder has
a fixed size

Chapter 6
OracleConnectionStringBuilder Class

6-109

Table 6-37 (Cont.) OracleConnectionStringBuilder Public Properties

Properties Description

IsReadOnly Inherited from
System.Data.Common.DbConnectionStringBuilder

Item Specifies the value associated with the specified attribute

Keys Specifies a collection of attributes contained in the
Connection String Builder

LoadBalancing Specifies the value corresponding to the Load Balancing
attribute in the ConnectionString property

MaxPoolSize Specifies the value corresponding to the Max Pool Size
attribute in the ConnectionString property

MetadataPooling Specifies the value that corresponds to the Metadata
Pooling attribute in the ConnectionString property

MinPoolSize Specifies the value corresponding to the Min Pool Size
attribute in the ConnectionString property

Password Specifies the value corresponding to the Password
attribute in the ConnectionString property

PersistSecurityInfo Specifies the value corresponding to the Persist
Security Info attribute in the ConnectionString property

Pooling Specifies the value corresponding to the Pooling attribute
in the ConnectionString property

PromotableTransaction Specifies the value corresponding to the
PromotableTransaction attribute in the
ConnectionString property

This property has been deprecated in 12.2.0.1. It will be
desupported in a future release.

ProxyPassword Specifies the value corresponding to the Proxy User Id
attribute in the ConnectionString property

ProxyUserId Specifies the value corresponding to the Proxy User Id
attribute in the ConnectionString property

SelfTuning Specifies the value corresponding to the Self Tuning
attribute in the ConnectionString property

StatementCachePurge Specifies the value corresponding to the Statement Cache
Purge attribute in the ConnectionString property

StatementCacheSize Specifies the value corresponding to the Statement Cache
Size attribute in the ConnectionString property

UserID Specifies the value corresponding to the User Id attribute
in the ConnectionString property

ValidateConnection Specifies the value corresponding to the Validate
Connection attribute in the ConnectionString property

Values Specifies a collection of values contained in the
Connection String Builder

OracleConnectionStringBuilder Public Methods

OracleConnectionStringBuilder instance methods are listed in Table 6-38.

Chapter 6
OracleConnectionStringBuilder Class

6-110

Table 6-38 OracleConnectionStringBuilder Public Methods

Methods Description

Add Inherited from
System.Data.Common.DbConnectionStringBuilder

Clear Clears the connection string contents

ContainsKey Indicates whether or not a specific attribute in the connection
string is supported by ODP.NET

EquivalentTo Inherited from
System.Data.Common.DbConnectionStringBuilder

Remove Removes the entry corresponding to the specified attribute
from the connection string

ShouldSerialize Inherited from
System.Data.Common.DbConnectionStringBuilder

ToString Inherited from
System.Data.Common.DbConnectionStringBuilder

TryGetValue Returns the value corresponding to the supplied attribute, as
an output parameter

6.5.2 OracleConnectionStringBuilder Constructors
OracleConnectionStringBuilder constructors instantiate new instances of the
OracleConnectionStringBuilder class.

Overload List:

• OracleConnectionStringBuilder()

This constructor instantiates a new instance of OracleConnectionStringBuilder
class.

• OracleConnectionStringBuilder(string)

This constructor instantiates a new instance of the OracleConnectionStringBuilder
class with the provided connection string.

6.5.2.1 OracleConnectionStringBuilder()
This constructor instantiates a new instance of the OracleConnectionStringBuilder
class.

Declaration

// C#
public OracleConnectionStringBuilder();

Remarks

The ConnectionString property is empty after the object is created.

Chapter 6
OracleConnectionStringBuilder Class

6-111

6.5.2.2 OracleConnectionStringBuilder(string)
This constructor instantiates a new instance of the OracleConnectionStringBuilder
class with the provided connection string.

Declaration

// C#
public OracleConnectionStringBuilder(string connectionString);

Parameters

• connectionString

The connection information.

Exceptions

ArgumentNullException - The connectionString parameter is null.

ArgumentException - The connectionString parameter is invalid.

Remarks

The ConnectionString property of this instance is set to the supplied connection string.

6.5.3 OracleConnectionStringBuilder Public Properties
OracleConnectionStringBuilder public properties are listed in Table 6-39.

Table 6-39 OracleConnectionStringBuilder Public Properties

Properties Description

BrowsableConnectionString Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionLifeTime Specifies the value corresponding to the Connection
Lifetime attribute in the ConnectionString property

ConnectionString Inherited from System.Data.Common.
DbConnectionStringBuilder

ConnectionTimeout Specifies the value corresponding to the Connection
Timeout attribute in the ConnectionString property

ContextConnection Specifies the value corresponding to the Context
Connection attribute in the ConnectionString property

Count Inherited from System.Data.Common.
DbConnectionStringBuilder

DataSource Specifies the value corresponding to the Data Source
attribute in the ConnectionString property

DBAPrivilege Specifies the value corresponding to the DBA Privilege
attribute in the ConnectionString property

DecrPoolSize Specifies the value corresponding to the Decr Pool Size
attribute in the ConnectionString property

Chapter 6
OracleConnectionStringBuilder Class

6-112

Table 6-39 (Cont.) OracleConnectionStringBuilder Public Properties

Properties Description

Enlist Specifies the value corresponding to the Enlist attribute
in the ConnectionString property

HAEvents Specifies the value corresponding to the HA Events
attribute in the ConnectionString property

IncrPoolSize Specifies the value corresponding to the Incr Pool Size
attribute in the ConnectionString property

IsFixedSize Indicates whether or not the Connection String Builder
has a fixed size

IsReadOnly Inherited from
System.Data.Common.DbConnectionStringBuilder

Item Specifies the value associated with the specified attribute

Keys Specifies a collection of attributes contained in the
Connection String Builder

LoadBalancing Specifies the value corresponding to the Load Balancing
attribute in the ConnectionString property

MaxPoolSize Specifies the value corresponding to the Max Pool Size
attribute in the ConnectionString property

MetadataPooling Specifies the value that corresponds to the Metadata
Pooling attribute in the ConnectionString property

MinPoolSize Specifies the value corresponding to the Min Pool Size
attribute in the ConnectionString property

Password Specifies the value corresponding to the Password
attribute in the ConnectionString property

PersistSecurityInfo Specifies the value corresponding to the Persist
Security Info attribute in the ConnectionString
property

Pooling Specifies the value corresponding to the Pooling
attribute in the ConnectionString property

PromotableTransaction Specifies the value corresponding to the
PromotableTransaction attribute in the
ConnectionString property

This property has been deprecated in 12.2.0.1. It will be
desupported in a future release.

ProxyPassword Specifies the value corresponding to the Proxy User Id
attribute in the ConnectionString property

ProxyUserId Specifies the value corresponding to the Proxy User Id
attribute in the ConnectionString property

SelfTuning Specifies the value corresponding to the Self Tuning
attribute in the ConnectionString property

StatementCachePurge Specifies the value corresponding to the Statement
Cache Purge attribute in the ConnectionString property

StatementCacheSize Specifies the value corresponding to the Statement
Cache Size attribute in the ConnectionString property

Chapter 6
OracleConnectionStringBuilder Class

6-113

Table 6-39 (Cont.) OracleConnectionStringBuilder Public Properties

Properties Description

UserID Specifies the value corresponding to the User Id attribute
in the ConnectionString property

ValidateConnection Specifies the value corresponding to the Validate
Connection attribute in the ConnectionString property

Values Specifies a collection of values contained in the
Connection String Builder

6.5.3.1 ConnectionLifeTime
This property specifies the value corresponding to the Connection LifeTime attribute in
the ConnectionString property.

Declaration

// C#
public int ConnectionLifeTime{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than zero.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.2 ConnectionTimeout
This property specifies the value corresponding to the Connection Timeout attribute in
the ConnectionString property.

Declaration

 // C#
 public int ConnectionTimeout{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than zero.

Chapter 6
OracleConnectionStringBuilder Class

6-114

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.3 ContextConnection
This property specifies the value corresponding to the Context Connection attribute in
the ConnectionString property.

Declaration

// C#
public bool ContextConnection {get; set;}

Property Value

A bool that represents the value of the supplied attribute.

6.5.3.4 DataSource
This property specifies the value corresponding to the Data Source attribute in the
ConnectionString property.

Declaration

// C#
public string DataSource{get; set;}

Property Value

A string that represents the value of the supplied attribute.

Exceptions

ArgumentNullException - The specified value is null.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.5 DBAPrivilege
This property specifies the value corresponding to the DBA Privilege attribute in the
ConnectionString property.

Declaration

// C#
 public string DBAPrivilege{get; set;}

Chapter 6
OracleConnectionStringBuilder Class

6-115

Property Value

A string that represents the value of the supplied attribute.

Possible values are SYSDBA or SYSOPER.

Exceptions

ArgumentNullException - The specified value is null.

OracleException - The specified value is invalid.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.6 DecrPoolSize
This property specifies the value corresponding to the Decr Pool Size attribute in the
ConnectionString property.

Declaration

 // C#
 public int DecrPoolSize{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than 1.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.7 Enlist
This property specifies the value corresponding to the Enlist attribute in the
ConnectionString property.

Declaration

 // C#
public string Enlist{get; set;};

Property Value

A string that represents the value of the supplied attribute. Values are case-insensitive.
Possible values are: dynamic, true, false, yes, and no.

Chapter 6
OracleConnectionStringBuilder Class

6-116

Exceptions

ArgumentNullException - The specified value is null.

OracleException - The supplied value is not one of following: dynamic, true, false, yes,
or no.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.8 HAEvents
This property specifies the value corresponding to the HA Events attribute in the
ConnectionString property.

Declaration

 // C#
 public bool HAEvents{get; set;}

Property Value

A bool that represents the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.9 IncrPoolSize
This property specifies the value corresponding to the Incr Pool Size attribute in the
ConnectionString property.

Declaration

// C#
public int IncrPoolSize{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than 1.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

Chapter 6
OracleConnectionStringBuilder Class

6-117

6.5.3.10 IsFixedSize
Indicates whether or not the Connection String Builder has a fixed size.

Declaration

// C#
public override bool IsFixedSize{get;}

Property Value

Returns true if the Connection String Builder has a fixed size; otherwise, returns false.

Remarks

Attributes cannot be added or removed. They can only be modified for connection
strings with a fixed size.

6.5.3.11 Item
This property specifies the value associated with the specified attribute.

Declaration

// C#
public override object this[string keyword]{get; set;}

Property Value

An object value corresponding to the attribute.

Exceptions

ArgumentNullException - The specified attribute is null.

OracleException - The specified attribute is not supported or the specified value is
invalid.

6.5.3.12 Keys
This property specifies a collection of attributes contained in the Connection String
Builder.

Declaration

// C#
public override ICollection Keys{get;}

Property Value

Returns an ICollection that represents the attributes in the Connection String Builder.

Chapter 6
OracleConnectionStringBuilder Class

6-118

6.5.3.13 LoadBalancing
This property specifies the value corresponding to the Load Balancing attribute in the
ConnectionString property.

Declaration

// C#
 public bool LoadBalancing {get; set;}

Property Value

A bool that contains the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.14 MaxPoolSize
This property specifies the value corresponding to the Max Pool Size attribute in the
ConnectionString property.

Declaration

// C#
public int MaxPoolSize{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than 1.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.15 MetadataPooling
This property specifies the value that corresponds to the Metadata Pooling attribute in
the ConnectionString property.

Declaration

// C#
public bool MetadataPooling{get; set;};

Property Value

A bool containing the value of the supplied attribute.

Chapter 6
OracleConnectionStringBuilder Class

6-119

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.16 MinPoolSize
This property specifies the value corresponding to the Min Pool Size attribute in the
ConnectionString property.

Declaration

 // C#
public int MinPoolSize{get; set;}

Property Value

An int that contains the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than 0.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.17 Password
This property specifies the value corresponding to the Password attribute in the
ConnectionString property.

Declaration

// C#
public string Password{get; set;}

Property Value

A string that contains the value of the supplied attribute.

Exception

ArgumentNullException - The specified value is null.

6.5.3.18 PersistSecurityInfo
This property specifies the value corresponding to the Persist Security Info attribute in
the ConnectionString property.

Declaration

// C#
public bool PersistSecurityInfo{get; set;}

Chapter 6
OracleConnectionStringBuilder Class

6-120

Property Value

A bool that represents the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property gets set to
the default value of the corresponding connection string attribute.

6.5.3.19 Pooling
This property specifies the value corresponding to the Pooling attribute in the
ConnectionString property.

Declaration

// C#
public bool Pooling {get; set;}

Property Value

A bool that represents the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.20 PromotableTransaction
This property specifies the value corresponding to the PromotableTransaction attribute
in the ConnectionString property.

Declaration

// C#
public string PromotableTransaction {get; set;}

Property Value

A string that represents the value of the supplied attribute

6.5.3.21 ProxyPassword
This property specifies the value corresponding to the Proxy Password attribute in the
ConnectionString property.

Declaration

// C#
public string ProxyPassword {get; set;}

Property Value

A string that represents the value of the supplied attribute.

Chapter 6
OracleConnectionStringBuilder Class

6-121

Exception

ArgumentNullException - The specified value is null.

6.5.3.22 ProxyUserId
This property specifies the value corresponding to the Proxy User Id attribute in the
ConnectionString property.

Declaration

// C#
public string ProxyUserId {get; set;}

Property Value

A string that represents the value of the supplied attribute.

Exception

ArgumentNullException - The specified value is null.

6.5.3.23 SelfTuning
This property specifies the value corresponding to the Self Tuning attribute in the
ConnectionString property.

Declaration

// C#
public bool SelfTuning {get; set;}

Property Value

A bool that represents the value of the supplied attribute.

6.5.3.24 StatementCachePurge
This property specifies the value corresponding to the Statement Cache Purge attribute in
the ConnectionString property.

Declaration

// C#
public bool StatementCachePurge {get; set;}

Property Value

A bool that represents the value of the supplied attribute.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

Chapter 6
OracleConnectionStringBuilder Class

6-122

6.5.3.25 StatementCacheSize
This property specifies the value corresponding to the Statement Cache Size attribute in
the ConnectionString property.

Declaration

// C#
public int StatementCacheSize{get; set;}

Property Value

An int that represents the value of the supplied attribute.

Exceptions

OracleException - The specified value is less than zero.

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.26 UserID
This property specifies the value corresponding to the User Id attribute in the
ConnectionString property.

Declaration

// C#
public string UserID{get; set;}

Property Value

A string that represents the value of the supplied attribute.

Exception

ArgumentNullException - The specified value is null.

6.5.3.27 ValidateConnection
This property specifies the value corresponding to the Validate Connection attribute in
the ConnectionString property.

Declaration

// C#
public bool ValidateConnection{get; set;}

Property Value

A bool that represents the value of the supplied attribute.

Chapter 6
OracleConnectionStringBuilder Class

6-123

Remarks

When an OracleConnectionStringBuilder instance is created, this property is set to the
default value of the corresponding connection string attribute.

6.5.3.28 Values
This property specifies a collection of values contained in the Connection String
Builder.

Declaration

// C#
public override ICollection Values{get;}

Property Value

Returns an ICollection that represents the values in the Connection String Builder.

Remarks

The order of the values in the ICollection is unspecified, but is the same as the
associated attributes in the ICollection returned by the Keys property.

6.5.4 OracleConnectionStringBuilder Public Methods
OracleConnectionStringBuilder public methods are listed in Table 6-40.

Table 6-40 OracleConnectionStringBuilder Public Methods

Methods Description

Add Inherited from
System.Data.Common.DbConnectionStringBuilder

Clear Clears the connection string contents

ContainsKey Indicates whether or not a specific attribute in the connection
string is supported by ODP.NET

EquivalentTo Inherited from
System.Data.Common.DbConnectionStringBuilder

Remove Removes the entry corresponding to the specified attribute
from the connection string

ShouldSerialize Inherited from
System.Data.Common.DbConnectionStringBuilder

ToString Inherited from
System.Data.Common.DbConnectionStringBuilder

TryGetValue Returns the value corresponding to the supplied attribute, as
an output parameter

Chapter 6
OracleConnectionStringBuilder Class

6-124

6.5.4.1 Clear
This method clears the connection string contents.

Declaration

// C#
public override void Clear();

Remarks

All key/value pairs are removed from the OracleConnectionStringBuilder object and the
ConnectionString property is set to Empty.

6.5.4.2 ContainsKey
This method indicates whether or not a specific attribute in the connection string is
supported by ODP.NET.

Declaration

// C#
public override bool ContainsKey(string keyword);

Parameters

• keyword

The attribute being verified.

Return Value

Returns true if the specified attribute exists; otherwise, returns false.

Exceptions

ArgumentNullException - The specified attribute is null.

Remarks

This method indicates if the attribute is part of the provider-supported attributes. It
does not indicate if the user added the attribute to the connection string.

6.5.4.3 Remove
This method removes the entry corresponding to the specified attribute from the
connection string.

Declaration

// C#
public override bool Remove(string keyword);

Parameters

• keyword

Chapter 6
OracleConnectionStringBuilder Class

6-125

The attribute that specifies the entry to be removed.

Return Value

Returns true if the attribute existed in the connection string and the corresponding
entry was removed; otherwise, returns false.

Exceptions

ArgumentNullException - The specified attribute is null.

6.5.4.4 TryGetValue
This method returns the value corresponding to the supplied attribute, as an output
parameter.

Declaration

// C#
public override bool TryGetValue(string keyword, out object value);

Parameters

• keyword

The attribute for which the value is being retrieved.

• value

The value of the supplied attribute.

Sets value to the default value if the attribute is not present in the connection
string.

Return Value

Returns true if the value that corresponds to the attribute has been successfully
retrieved; otherwise, returns false. If the attribute is not present in the connection
string, returns false and sets the value to null.

Exceptions

ArgumentNullException - The specified attribute is null.

Remarks

If the function returns false, sets value to null.

If the attribute is not present in the connection string, sets value to the default value.

6.6 OracleDataAdapter Class
An OracleDataAdapter object represents a data provider object that populates the
DataSet and updates changes in the DataSet to the Oracle database.

Class Inheritance

System.Object

Chapter 6
OracleDataAdapter Class

6-126

 System.MarshalByRefObject

 System.ComponentModel.Component

 System.Data.Common.DataAdapter

 System.Data.Common.DbDataAdapter

 Oracle.DataAccess.Client.OracleDataAdapter

Declaration

// C#
public sealed class OracleDataAdapter : DbDataAdapter, IDbDataAdapter

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

The following example uses the OracleDataAdapter and the dataset to update the EMP
table:

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleDataAdapterSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 string cmdstr = "SELECT empno, sal from emp";

 // Create the adapter with the selectCommand txt and the
 // connection string
 OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

 // Create the builder for the adapter to automatically generate
 // the Command when needed
 OracleCommandBuilder builder = new OracleCommandBuilder(adapter);

 // Create and fill the DataSet using the EMP
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "EMP");

 // Get the EMP table from the dataset
 DataTable table = dataset.Tables["EMP"];

Chapter 6
OracleDataAdapter Class

6-127

 // Indicate DataColumn EMPNO is unique
 // This is required by the OracleCommandBuilder to update the EMP table
 table.Columns["EMPNO"].Unique = true;

 // Get the first row from the EMP table
 DataRow row = table.Rows[0];

 // Update the salary
 double sal = double.Parse(row["SAL"].ToString());
 row["SAL"] = sal + .01;

 // Now update the EMP using the adapter
 // The OracleCommandBuilder will create the UpdateCommand for the
 // adapter to update the EMP table
 adapter.Update(dataset, "EMP");

 Console.WriteLine("Row updated successfully");
 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataAdapter Members

• OracleDataAdapter Constructors

• OracleDataAdapter Static Methods

• OracleDataAdapter Properties

• OracleDataAdapter Public Methods

• OracleDataAdapter Events

6.6.1 OracleDataAdapter Members
OracleDataAdapter members are listed in the following tables.

OracleDataAdapter Constructors

OracleDataAdapter constructors are listed in Table 6-41.

Table 6-41 OracleDataAdapter Constructors

Constructor Description

OracleDataAdapter Constructors Instantiates a new instance of OracleDataAdapter
class (Overloaded)

OracleDataAdapter Static Methods

The OracleDataAdapter static method is listed in Table 6-42.

Chapter 6
OracleDataAdapter Class

6-128

Table 6-42 OracleDataAdapter Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleDataAdapter Properties

OracleDataAdapter properties are listed in Table 6-43.

Table 6-43 OracleDataAdapter Properties

Property Description

AcceptChangesDuringFill Inherited from System.Data.Common.DataAdapter

Container Inherited from System.ComponentModel.Component

ContinueUpdateOnError Inherited from System.Data.Common.DataAdapter

DeleteCommand A SQL statement or stored procedure to delete rows
from an Oracle database

IdentityInsert Determines whether or not to insert identity column
values in the DataSet into the database when the
Update method is invoked.

Not available in the ODP.NET, Managed Driver

IdentityUpdate Determines whether or not to update identity column
values in the DataSet into the database when the
Update method is invoked.

Not available in the ODP.NET, Managed Driver

InsertCommand A SQL statement or stored procedure to insert new
rows into an Oracle database

MissingMappingAction Inherited from System.Data.Common.DataAdapter

MissingSchemaAction Inherited from System.Data.Common.DataAdapter

Requery Determines whether or not the SelectCommand is
reexecuted on the next call to Fill

ReturnProviderSpecificTypes Determines if the Fill method returns ODP.NET-
specific values or .NET common language specification
values

SafeMapping Creates a mapping between column names in the
result set to .NET types, to preserve the data

Not available in the ODP.NET, Managed Driver

SelectCommand A SQL statement or stored procedure that returns a
single or multiple result set

Site Inherited from System.ComponentModel.Component

TableMappings Inherited from System.Data.Common.DataAdapter

UpdateBatchSize Specifies a value that enables or disables batch
processing support, and specifies the number of SQL
statements that can be executed in a single round-trip
to the database

UpdateCommand A SQL statement or stored procedure to update rows
from the DataSet to an Oracle database

Chapter 6
OracleDataAdapter Class

6-129

OracleDataAdapter Public Methods

OracleDataAdapter public methods are listed in Table 6-44.

Table 6-44 OracleDataAdapter Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel.Component

Equals Inherited from System.Object (Overloaded)

Fill Adds or refreshes rows in the DataSet to match the
data in the Oracle database (Overloaded)

FillSchema Inherited from System.Data.Common.DbDataAdapter

GetFillParameters Inherited from System.Data.Common.DbDataAdapter

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

ToString Inherited from System.Object

Update Inherited from System.Data.Common.DbDataAdapter

OracleDataAdapter Events

OracleDataAdapter events are listed in Table 6-45.

Table 6-45 OracleDataAdapter Events

Event Name Description

Disposed Inherited from System.ComponentModel.Component

FillError Inherited from System.Data.Common.DbDataAdapter

RowUpdated This event is raised when row(s) have been updated by the Update()
method

RowUpdating This event is raised when row data are about to be updated to the
database

6.6.2 OracleDataAdapter Constructors
OracleDataAdapter constructors create new instances of an OracleDataAdapter class.

Overload List:

• OracleDataAdapter()

This constructor creates an instance of an OracleDataAdapter class.

• OracleDataAdapter(OracleCommand)

Chapter 6
OracleDataAdapter Class

6-130

This constructor creates an instance of an OracleDataAdapter class with the
provided OracleCommand as the SelectCommand.

• OracleDataAdapter(string, OracleConnection)

This constructor creates an instance of an OracleDataAdapter class with the
provided OracleConnection object and the command text for the SelectCommand.

• OracleDataAdapter(string, string)

This constructor creates an instance of an OracleDataAdapter class with the
provided connection string and the command text for the SelectCommand.

6.6.2.1 OracleDataAdapter()
This constructor creates an instance of an OracleDataAdapter class with no arguments.

Declaration

// C#
public OracleDataAdapter();

Remarks

Initial values are set for the following OracleDataAdapter properties as indicated:

• MissingMappingAction = MissingMappingAction.Passthrough

• MissingSchemaAction = MissingSchemaAction.Add

6.6.2.2 OracleDataAdapter(OracleCommand)
This constructor creates an instance of an OracleDataAdapter class with the provided
OracleCommand as the SelectCommand.

Declaration

// C#
public OracleDataAdapter(OracleCommand selectCommand);

Parameters

• selectCommand

The OracleCommand that is to be set as the SelectCommand property.

Remarks

Initial values are set for the following OracleDataAdapter properties as indicated:

• MissingMappingAction = MissingMappingAction.Passthrough

• MissingSchemaAction = MissingSchemaAction.Add

6.6.2.3 OracleDataAdapter(string, OracleConnection)
This constructor creates an instance of an OracleDataAdapter class with the provided
OracleConnection object and the command text for the SelectCommand.

Chapter 6
OracleDataAdapter Class

6-131

Declaration

// C#
public OracleDataAdapter(string selectCommandText, OracleConnection
 selectConnection);

Parameters

• selectCommandText

The string that is set as the CommandText of the SelectCommand property of the
OracleDataAdapter.

• selectConnection

The OracleConnection to connect to the Oracle database.

Remarks

The OracleDataAdapter opens and closes the connection, if it is not already open. If the
connection is open, it must be explicitly closed.

Initial values are set for the following OracleDataAdapter properties as indicated:

• MissingMappingAction = MissingMappingAction.Passthrough

• MissingSchemaAction = MissingSchemaAction.Add

6.6.2.4 OracleDataAdapter(string, string)
This constructor creates an instance of an OracleDataAdapter class with the provided
connection string and the command text for the SelectCommand.

Declaration

// C#
public OracleDataAdapter(string selectCommandText, string
 selectConnectionString);

Parameters

• selectCommandText

The string that is set as the CommandText of the SelectCommand property of the
OracleDataAdapter.

• selectConnectionString

The connection string.

Remarks

Initial values are set for the following OracleDataAdapter properties as indicated:

• MissingMappingAction = MissingMappingAction.Passthrough

• MissingSchemaAction = MissingSchemaAction.Add

Chapter 6
OracleDataAdapter Class

6-132

6.6.3 OracleDataAdapter Static Methods
The OracleDataAdapter static method is listed in Table 6-46.

Table 6-46 OracleDataAdapter Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.6.4 OracleDataAdapter Properties
OracleDataAdapter properties are listed in Table 6-47.

Table 6-47 OracleDataAdapter Properties

Property Description

AcceptChangesDuringFill Inherited from System.Data.Common.DataAdapter

Container Inherited from System.ComponentModel.Component

ContinueUpdateOnError Inherited from System.Data.Common.DataAdapter

DeleteCommand A SQL statement or stored procedure to delete rows
from an Oracle database

IdentityInsert Determines whether or not to insert identity column
values in the DataSet into the database when the
Update method is invoked.

Not available in the ODP.NET, Managed Driver

IdentityUpdate Determines whether or not to update identity column
values in the DataSet into the database when the
Update method is invoked.

Not available in the ODP.NET, Managed Driver

InsertCommand A SQL statement or stored procedure to insert new
rows into an Oracle database

MissingMappingAction Inherited from System.Data.Common.DataAdapter

MissingSchemaAction Inherited from System.Data.Common.DataAdapter

Requery Determines whether or not the SelectCommand is
reexecuted on the next call to Fill

ReturnProviderSpecificTypes Determines if the Fill method returns ODP.NET-
specific values or .NET common language specification
values

SafeMapping Creates a mapping between column names in the
result set to .NET types, to preserve the data

Not Available in ODP.NET, Managed Driver

SelectCommand A SQL statement or stored procedure that returns a
single or multiple result set

Site Inherited from System.ComponentModel.Component

TableMappings Inherited from System.Data.Common.DataAdapter

Chapter 6
OracleDataAdapter Class

6-133

Table 6-47 (Cont.) OracleDataAdapter Properties

Property Description

UpdateBatchSize Specifies a value that enables or disables batch
processing support, and specifies the number of SQL
statements that can be executed in a single round-trip
to the database

UpdateCommand A SQL statement or stored procedure to update rows
from the DataSet to an Oracle database

6.6.4.1 DeleteCommand
This property is a SQL statement or stored procedure to delete rows from an Oracle
database.

Declaration

// C#
public OracleCommand DeleteCommand {get; set;}

Property Value

An OracleCommand used during the Update call to delete rows from tables in the Oracle
database, corresponding to the deleted rows in the DataSet.

Remarks

Default = null

If there is primary key information in the DataSet, the DeleteCommand can be
automatically generated using the OracleCommandBuilder, if no command is provided for
this.

6.6.4.2 IdentityInsert
When inserting DataSet data into the database, this property indicates whether the
database generates the inserted row's identity column value or DataSet supplies this
value.

Declaration

// C#
public bool IdentityInsert {get; set;}

Property Value

When set to true, ODP.NET inserts DataSet identity column values into the database.
When set to false, the database determines the inserted identity column values.

Remarks

This property applies only to identity columns of type GENERATED BY DEFAULT and
GENERATED BY DEFAULT ON NULL. Identity column of type GENERATED ALWAYS will ignore this
property and will always use database generated values.

Chapter 6
OracleDataAdapter Class

6-134

When set to false, the server will generate an identity value for the row. That
generated identity value returns back to the client to update the DataSet value.

When this property is set to true for the GENERATED BY DEFAULT case and the application
attempts to insert a NULL value into the database's identity column, the NOT NULL
constraint is violated and an error occurs. ODP.NET will then allow the database to
generate the identity column value and return the generated value to the DataSet.

The default value for this property is false.

6.6.4.3 IdentityUpdate
When updating DataSet data into the database, this property indicates whether to
replace the database's identity column values with values of the DataSet or leave the
current values unchanged.

Declaration

// C#
public bool IdentityUpdate {get; set;}

Property Value

When set to true, ODP.NET updates the database identity column values with the
values of the DataSet. When set to false, the database identity columns are left
unchanged.

Remarks

This property applies only to identity columns of type GENERATED BY DEFAULT and
GENERATED BY DEFAULT ON NULL. In the case of type GENERATED ALWAYS, this property will
be ignored and the database will always retain its current identity values.

When set to false, the existing identity column value in the server is returned to the
DataSet.

When this property is set to true for the GENERATED BY DEFAULT and GENERATED BY DEFAULT
ON NULL cases and the application attempts to update the database's identity column
with a NULL value, the NOT NULL constraint is violated and an error occurs. ODP.NET
then does not update the identity column value and instead returns the existing identity
column value of the database to the DataSet.

The default value for this property is false.

6.6.4.4 InsertCommand
This property is a SQL statement or stored procedure to insert new rows into an
Oracle database.

Declaration

// C#
public OracleCommand InsertCommand {get; set;}

Chapter 6
OracleDataAdapter Class

6-135

Property Value

An OracleCommand used during the Update call to insert rows into a table, corresponding
to the inserted rows in the DataSet.

Remarks

Default = null

If there is primary key information in the DataSet, the InsertCommand can be
automatically generated using the OracleCommandBuilder, if no command is provided for
this property.

6.6.4.5 Requery
This property determines whether or not the SelectCommand is reexecuted on the next
call to Fill.

Declaration

// C#
public Boolean Requery {get; set;}

Property Value

Returns true if the SelectCommand is reexecuted on the next call to Fill; otherwise,
returns false.

6.6.4.6 ReturnProviderSpecificTypes
This property determines if the Fill method returns ODP.NET-specific values or .NET
common language specification compliant values.

Declaration

// C#
public Boolean ReturnProviderSpecificTypes {get; set;}

Property Value

A value that indicates whether or not the Fill method returns ODP.NET-specific
values.

Starting with ODP.NET 12.1.0.2, when set to true and LegacyEntireLOBFetch = 0
(default), BLOB and CLOB column values are represented in the DataTable as
OracleBlob and OracleClob, respectively.

A value of false indicates that the Fill method returns .NET common language
specification compliant values. The default is false.

6.6.4.7 SafeMapping
This property creates a mapping between column names in the result set to .NET
types that represent column values in the DataSet, to preserve the data.

Chapter 6
OracleDataAdapter Class

6-136

Declaration

// C#
public Hashtable SafeMapping {get; set;}

Property Value

A hash table.

Remarks

Default = null

The SafeMapping property is used, when necessary, to preserve data in the following
types:

• DATE

• TimeStamp (refers to all TimeStamp objects)

• INTERVAL DAY TO SECOND

• NUMBER

Example

See the example in "OracleDataAdapter Safe Type Mapping".

6.6.4.8 SelectCommand
This property is a SQL statement or stored procedure that returns single or multiple
result sets.

Declaration

// C#
public OracleCommand SelectCommand {get; set;}

Property Value

An OracleCommand used during the Fill call to populate the selected rows to the
DataSet.

Remarks

Default = null

If the SelectCommand does not return any rows, no tables are added to the dataset and
no exception is raised.

If the SELECT statement selects from a VIEW, no key information is retrieved when a
FillSchema() or a Fill() with MissingSchemaAction.AddWithKey is invoked.

6.6.4.9 UpdateBatchSize
This property specifies a value that enables or disables batch processing support, and
specifies the number of SQL statements that can be executed in a single round-trip to
the database.

Chapter 6
OracleDataAdapter Class

6-137

Declaration

// C#
public virtual int UpdateBatchSize {get; set;}

Property Value

An integer that returns the batch size.

Exceptions

ArgumentOutOfRangeException - The value is set to a number < 0.

Remarks

Update batches executed with large amounts of data may encounter an "PLS-00123:
Program too large" error. To avoid this error, reduce the size of UpdateBatchSize to a
smaller value.

For each row in the DataSet that has been modified, added, or deleted, one SQL
statement will be executed on the database.

Values are as follows:

• Value = 0

The data adapter executes all the SQL statements in a single database round-trip

• Value = 1 - Default value

This value disables batch updating and SQL statements are executed one at a
time.

• Value = n where n > 1

The data adapter updates n rows of data per database round-trip.

6.6.4.10 UpdateCommand
This property is a SQL statement or stored procedure to update rows from the DataSet
to an Oracle database.

Declaration

// C#
public OracleCommand UpdateCommand {get; set;}

Property Value

An OracleCommand used during the Update call to update rows in the Oracle database,
corresponding to the updated rows in the DataSet.

Remarks

Default = null

If there is primary key information in the DataSet, the UpdateCommand can be
automatically generated using the OracleCommandBuilder, if no command is provided for
this property.

Chapter 6
OracleDataAdapter Class

6-138

6.6.5 OracleDataAdapter Public Methods
OracleDataAdapter public methods are listed in Table 6-48.

Table 6-48 OracleDataAdapter Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Inherited from System.ComponentModel.Component

Equals Inherited from System.Object (Overloaded)

Fill Adds or refreshes rows in the DataSet to match the
data in the Oracle database (Overloaded)

FillSchema Inherited from System.Data.Common.DbDataAdapter

GetFillParameters Inherited from System.Data.Common.DbDataAdapter

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

ToString Inherited from System.Object

Update Inherited from System.Data.Common.DbDataAdapter

6.6.5.1 Fill
Fill populates or refreshes the specified DataTable or DataSet.

Overload List:

• Fill(DataTable, OracleRefCursor)

This method adds or refreshes rows in the specified DataTable to match those in
the provided OracleRefCursor object.

• Fill(DataSet, OracleRefCursor)

This method adds or refreshes rows in the DataSet to match those in the provided
OracleRefCursor object.

• Fill(DataSet, string, OracleRefCursor)

This method adds or refreshes rows in the specified source table of the DataSet to
match those in the provided OracleRefCursor object.

• Fill(DataSet, int, int, string, OracleRefCursor)

This method adds or refreshes rows in a specified range in the DataSet to match
rows in the provided OracleRefCursor object.

Chapter 6
OracleDataAdapter Class

6-139

6.6.5.2 Fill(DataTable, OracleRefCursor)
This method adds or refreshes rows in the specified DataTable to match those in the
provided OracleRefCursor object.

Declaration

// C#
public int Fill(DataTable dataTable, OracleRefCursor refCursor);

Parameters

• dataTable

The DataTable object being populated.

• refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

The number of rows added to or refreshed in the DataTable.

Exceptions

ArgumentNullException - The dataTable or refCursor parameter is null.

InvalidOperationException - The OracleRefCursor is already being used to fetch data.

NotSupportedException - The SafeMapping type is not supported.

Remarks

No schema or key information is provided, even if the Fill method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

6.6.5.3 Fill(DataSet, OracleRefCursor)
This method adds or refreshes rows in the DataSet to match those in the provided
OracleRefCursor object.

Declaration

// C#
public int Fill(DataSet dataSet, OracleRefCursor refCursor);

Parameters

• dataSet

The DataSet object being populated.

• refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

Returns the number of rows added or refreshed in the DataSet.

Chapter 6
OracleDataAdapter Class

6-140

Exceptions

ArgumentNullException - The dataSet or refCursor parameter is null.

InvalidOperationException - The OracleRefCursor is already being used to fetch data.

InvalidOperationException - The OracleRefCursor is ready to fetch data.

NotSupportedException - The SafeMapping type is not supported.

Remarks

If there is no DataTable to refresh, a new DataTable named Table is created and
populated using the provided OracleRefCursor object.

No schema or key information is provided, even if the Fill method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

6.6.5.4 Fill(DataSet, string, OracleRefCursor)
This method adds or refreshes rows in the specified source table of the DataSet to
match those in the provided OracleRefCursor object.

Declaration

// C#
public int Fill(DataSet dataSet, string srcTable, OracleRefCursor
 refCursor);

Parameters

• dataSet

The DataSet object being populated.

• srcTable

The name of the source table used in the table mapping.

• refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

Returns the number of rows added or refreshed into the DataSet.

Exceptions

ArgumentNullException - The dataSet or refCursor parameter is null.

InvalidOperationException - The OracleRefCursor is already being used to fetch data or
the source table name is invalid.

NotSupportedException - The SafeMapping type is not supported.

Remarks

No schema or key information is provided, even if the Fill method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

Chapter 6
OracleDataAdapter Class

6-141

6.6.5.5 Fill(DataSet, int, int, string, OracleRefCursor)
This method adds or refreshes rows in a specified range in the DataSet to match rows
in the provided OracleRefCursor object.

Declaration

// C#
public int Fill(DataSet dataSet, int startRecord, int maxRecords,
 string srcTable, OracleRefCursor refCursor);

Parameters

• dataSet

The DataSet object being populated.

• startRecord

The record number to start with.

• maxRecords

The maximum number of records to obtain.

• srcTable

The name of the source table used in the table mapping.

• refCursor

The OracleRefCursor that rows are being retrieved from.

Return Value

This method returns the number of rows added or refreshed in the DataSet. This does
not include rows affected by statements that do not return rows.

Exceptions

ArgumentNullException - The dataSet or refCursor parameter is null.

InvalidOperationException - The OracleRefCursor is already being used to fetch data or
the source table name is invalid.

NotSupportedException - The SafeMapping type is not supported.

Remarks

No schema or key information is provided, even if the Fill method is called with
MissingSchemaAction set to MissingSchemaAction.AddWithKey.

6.6.6 OracleDataAdapter Events
OracleDataAdapter events are listed in Table 6-49.

Chapter 6
OracleDataAdapter Class

6-142

Table 6-49 OracleDataAdapter Events

Event Name Description

Disposed Inherited from System.ComponentModel.Component

FillError Inherited from System.Data.Common.DbDataAdapter

RowUpdated This event is raised when row(s) have been updated by the Update()
method

RowUpdating This event is raised when row data are about to be updated to the
database

6.6.6.1 RowUpdated
This event is raised when row(s) have been updated by the Update() method.

Declaration

// C#
public event OracleRowUpdatedEventHandler RowUpdated;

Event Data

The event handler receives an OracleRowUpdatedEventArgs object which exposes the
following properties containing information about the event.

• Command

The OracleCommand executed during the Update.

• Errors (inherited from RowUpdatedEventArgs)

The exception, if any, is generated during the Update.

• RecordsAffected (inherited from RowUpdatedEventArgs)

The number of rows modified, inserted, or deleted by the execution of the Command.

• Row (inherited from RowUpdatedEventArgs)

The DataRow sent for Update.

• StatementType (inherited from RowUpdatedEventArgs)

The type of SQL statement executed.

• Status (inherited from RowUpdatedEventArgs)

The UpdateStatus of the Command.

• TableMapping (inherited from RowUpdatedEventArgs)

The DataTableMapping used during the Update.

Example

The following example shows how to use the RowUpdating and RowUpdated events.

// C#

using System;

Chapter 6
OracleDataAdapter Class

6-143

using System.Data;
using Oracle.DataAccess.Client;

class RowUpdatedSample
{
 // Event handler for RowUpdating event
 protected static void OnRowUpdating(object sender,
 OracleRowUpdatingEventArgs e)
 {
 Console.WriteLine("Row updating.....");
 Console.WriteLine("Event arguments:");
 Console.WriteLine("Command Text: " + e.Command.CommandText);
 Console.WriteLine("Command Type: " + e.StatementType);
 Console.WriteLine("Status: " + e.Status);
 }

 // Event handler for RowUpdated event
 protected static void OnRowUpdated(object sender,
 OracleRowUpdatedEventArgs e)
 {
 Console.WriteLine("Row updated.....");
 Console.WriteLine("Event arguments:");
 Console.WriteLine("Command Text: " + e.Command.CommandText);
 Console.WriteLine("Command Type: " + e.StatementType);
 Console.WriteLine("Status: " + e.Status);
 }

 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 string cmdstr = "SELECT EMPNO, ENAME, SAL FROM EMP";

 // Create the adapter with the selectCommand txt and the
 // connection string
 OracleDataAdapter adapter = new OracleDataAdapter(cmdstr, constr);

 // Create the builder for the adapter to automatically generate
 // the Command when needed
 OracleCommandBuilder builder = new OracleCommandBuilder(adapter);

 // Create and fill the DataSet using the EMP
 DataSet dataset = new DataSet();
 adapter.Fill(dataset, "EMP");

 // Get the EMP table from the dataset
 DataTable table = dataset.Tables["EMP"];

 // Indicate DataColumn EMPNO is unique
 // This is required by the OracleCommandBuilder to update the EMP table
 table.Columns["EMPNO"].Unique = true;

 // Get the first row from the EMP table
 DataRow row = table.Rows[0];

 // Update the salary
 double sal = double.Parse(row["SAL"].ToString());
 row["SAL"] = sal + .01;

 // Set the event handlers for the RowUpdated and the RowUpdating event
 // the OnRowUpdating() method will be triggered before the update, and
 // the OnRowUpdated() method will be triggered after the update

Chapter 6
OracleDataAdapter Class

6-144

 adapter.RowUpdating += new OracleRowUpdatingEventHandler(OnRowUpdating);
 adapter.RowUpdated += new OracleRowUpdatedEventHandler(OnRowUpdated);

 // Now update the EMP using the adapter
 // The OracleCommandBuilder will create the UpdateCommand for the
 // adapter to update the EMP table
 // The OnRowUpdating() and the OnRowUpdated() methods will be triggered
 adapter.Update(dataset, "EMP");
 }
}

6.6.6.2 RowUpdating
This event is raised when row data are about to be updated to the database.

Declaration

// C#
public event OracleRowUpdatingEventHandler RowUpdating;

Event Data

The event handler receives an OracleRowUpdatingEventArgs object which exposes the
following properties containing information about the event.

• Command

The OracleCommand executed during the Update.

• Errors (inherited from RowUpdatingEventArgs)

The exception, if any, is generated during the Update.

• Row (inherited from RowUpdatingEventArgs)

The DataRow sent for Update.

• StatementType (inherited from RowUpdatingEventArgs)

The type of SQL statement executed.

• Status (inherited from RowUpdatingEventArgs)

The UpdateStatus of the Command.

• TableMapping (inherited from RowUpdatingEventArgs)

The DataTableMapping used during the Update.

Example

The example for the RowUpdated event also shows how to use the RowUpdating event.
See RowUpdated event "Example".

6.7 OracleDatabase Class
An OracleDatabase object represents an Oracle Database instance.

Class Inheritance

System.Object

Chapter 6
OracleDatabase Class

6-145

 Oracle.DataAccess.Client.OracleDatabase

Declaration

// C#
public sealed class OracleDatabase : IDisposable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Client;

namespace Startup
{
 class Test
 {
 static void Main()
 {
 OracleConnection con = null;
 OracleDatabase db = null;
 string constring = "dba privilege=sysdba;user id=scott;password=tiger;data
source=oracle";

 try
 {
 // Open a connection to see if the DB is up
 con = new OracleConnection(constring);
 con.Open();

 Console.WriteLine("The Oracle database is already up.");
 }
 catch (OracleException ex)
 {
 // If the database is down, start up the DB
 if (ex.Number == 1034)
 {
 Console.WriteLine("The Oracle database is down.");

 // Create an instance of an OracleDatbase object
 db = new OracleDatabase(constring);

 // Start up the database
 db.Startup();

Chapter 6
OracleDatabase Class

6-146

 Console.WriteLine("The Oracle database is now up.");

 // Executing Startup() is the same as the following:
 // db.Startup(OracleDBStartupMode.NoRestriction, null, true);
 // which is also the same as:
 // db.Startup(OracleDBStartupMode.NoRestriction, null, false);
 // db.ExecuteNonQuery("ALTER DATABASE MOUNT");
 // db.ExecuteNonQuery("ALTER DATABASE OPEN");

 // Dispose the OracleDatabase object
 db.Dispose();
 }
 else
 {
 Console.WriteLine("Error: " + ex.Message);
 }
 }
 finally
 {
 // Dispose the OracleConnetion object
 con.Dispose();
 }
 }
 }
}

6.7.1 OracleDatabase Members
OracleDatabase members are listed in the following tables.

OracleDatabase Constructors

The OracleDatabase constructor is listed in Table 6-50.

Table 6-50 OracleDatabase Constructors

Constructor Description

OracleDatabase Constructor Instantiates a new instance of OracleDatabase class
using the supplied connection string

OracleDatabase Properties

The OracleDatabase properties are listed in Table 6-51.

Table 6-51 OracleDatabase Properties

Property Description

ServerVersion Specifies the database version number of the Oracle
Database instance to which the connection is made

OracleDatabase Public Methods

The OracleDatabase public methods are listed in Table 6-52.

Chapter 6
OracleDatabase Class

6-147

Table 6-52 OracleDatabase Public Methods

Public Method Description

Dispose Releases any resources or memory allocated by the
object.

ExecuteNonQuery Executes the supplied non-SELECT statement against the
database

Shutdown Shuts down the database (Overloaded)

Startup Starts up the database (Overloaded)

6.7.2 OracleDatabase Constructor
The OracleDatabase constructor instantiates a new instance of the OracleDatabase class
using the supplied connection string.

Declaration

// C#
public OracleDatabase(String connetionString);

Parameters

• connectionString

The connection information used to connect to the Oracle Database instance.

Remarks

The connectionString follows the same format used by the OracleConnection object.
However, the OracleDatabase constructor accepts only the user id, password, data
source, and dba privilege connection string attributes. All other attribute values are
ignored. The supplied connectionString must contain the dba privilege connection
string attribute that is set to either SYSDBA or SYSOPER.

The OracleDatabase object creates a connection upon construction and remains
connected throughout its lifetime. The connection is destroyed when the
OracleDatabase object is disposed. This connection is not pooled to be used by
another OracleDatabase object.

6.7.3 OracleDatabase Properties
The OracleDatabase properties are listed in Table 6-53.

Table 6-53 OracleDatabase Properties

Property Description

ServerVersion Specifies the database version number of the Oracle
Database instance to which the connection is made

Chapter 6
OracleDatabase Class

6-148

6.7.3.1 ServerVersion
This property returns the database version number of the Oracle Database instance to
which the connection is made.

Declaration

Public string ServerVersion {get;}

Property value

Returns the database version of the Oracle Database instance.

6.7.4 OracleDatabase Public Methods
The OracleDatabase public methods are listed in Table 6-54.

Table 6-54 OracleDatabase Public Methods

Public Method Description

Dispose Releases any resources or memory allocated by the
object.

ExecuteNonQuery Executes the supplied non-SELECT statement against the
database

Shutdown Shuts down the database (Overloaded)

Startup Starts up the database (Overloaded)

6.7.4.1 Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

6.7.4.2 ExecuteNonQuery
This method executes the supplied non-SELECT statement against the database.

Declaration

// C#
public void ExecuteNonQuery(string sql);

Chapter 6
OracleDatabase Class

6-149

Exceptions

OracleException - The command execution has failed.

Remarks

This method is meant for execution of DDL statements such as ALTER DATABASE
statements to OPEN and MOUNT the database, for example. This method should not be
used to execute SQL SELECT statements. This method does not support any parameter
binding.

6.7.4.3 Shutdown
Shutdown methods shut down a database instance.

Overload List

• Shutdown()

This method shuts down the database.

• Shutdown(OracleDBShutdownMode, bool)

This method shuts down the database using the specified mode.

6.7.4.4 Shutdown()
This method shuts down the database.

Declaration

// C#
public void Shutdown();

Exceptions

OracleException - The database shutdown request has failed.

Remarks

This method shuts down a database instance in the OracleDBShutdownMode.Default
mode. New connections are refused, and the method waits for the existing
connections to end.

Note:

As the shutdown is effected using the OracleDBShutdownMode.Default mode, the
shutdown request may remain pending if there are open connections other than
the connection created by the OracleDatabase object.

After the connections have closed, the method closes the database, dismounts the
database, and shuts down the instance using the OracleDBShutdownMode.Final mode.

Chapter 6
OracleDatabase Class

6-150

This method does not throw exceptions for cases where the database has been
already closed, dismounted, or shutdown appropriately. If other errors are
encountered, then an exception is thrown.

Invoking this method against an Oracle Real Application Clusters (Oracle RAC)
database shuts down only that database instance to which the OracleDatabase object is
connected.

6.7.4.5 Shutdown(OracleDBShutdownMode, bool)
This method shuts down the database instance using the specified mode.

Declaration

//C#
public void Shutdown(OracleDBShutdownMode shutdownMode, bool
bCloseDismountAndFinalize);

Parameters

• shutdownMode

A OracleDBShutdownMode enumeration value.

• bCloseDismountAndFinalize

A boolean signifying whether the database is to be closed, dismounted, and
finalized.

Exceptions

OracleException - The database shutdown request has failed.

Remarks

This method shuts down a database instance in the specified mode. If the
bCloseDismountAndFinalize parameter is true, then the method also closes the
database, dismounts the database, and shuts down the instance using the
OracleDBShutdownMode.Final mode.

If the bCloseDismountAndFinalize parameter is true, then this method does not throw
exceptions for cases where the database has been already closed, dismounted, or
shutdown appropriately. If other errors are encountered, then an exception is thrown.

If the bCloseDismountAndFinalize parameter is false, then the application needs to
explicitly close and dismount the database. The application can then reinvoke the
method using the OracleDBShutdownMode.Final mode to properly shut down the
database. For example, if db is an instance of the OracleDatabase class, then the
application invokes the following:

1. db.Shutdown(OracleDBShutdownMode.Default, false);

2. db.ExecuteNonQuery("ALTER DATABASE CLOSE NORMAL");

3. db.ExecuteNonQuery("ALTER DATABASE DISMOUNT");

4. db.Shutdown(OracleDBShutdownMode.Final);

Chapter 6
OracleDatabase Class

6-151

Note:

• The OracleDBShutdownMode.Final enumeration value should not be used as
the shutdownMode for the initial method invocation. The
OracleDBShutdownMode.Final mode should be used only if the database is
already closed and dismounted. Otherwise, the method might wait
indefinitely.

• If the specified shutdownMode is OracleDBShutdownMode.Final, then the value
of the bCloseDismountAndFinalize input parameter is ignored, as the
database should have been closed and dismounted already.

If the specified shutdownMode is OracleDBShutdownMode.Abort, then the value of the
bCloseDismountAndFinalize input parameter is ignored, as the Abort mode requires the
database to be closed, dismounted, and finalized.

Invoking this method against an Oracle Real Application Clusters (Oracle RAC)
database shuts down only that database instance to which the OracleDatabase object is
connected.

Example

using System;
using Oracle.DataAccess.Client;

namespace Shutdown
{
 class Test
 {
 static void Main()
 {
 OracleConnection con = null;
 OracleDatabase db = null;
 string constring = "user id=scott;password=tiger;data source=oracle;" +
 "pooling=false;dba privilege=sysdba";

 try
 {
 // Open a connection to see if the DB is up;
 con = new OracleConnection(constring);
 con.Open();

 Console.WriteLine("The Oracle database is currently up.");

 // If open succeeds, we know that the database is up.
 // We have to dispose the connection so that we can
 // shutdown the database.
 con.Dispose();

 // Shutdown the database
 db = new OracleDatabase(constring);
 db.Shutdown();

 Console.WriteLine("The Oracle database is shut down.");

 // Executing Shutdown() above is the same as the following:
 // db.Shutdown(OracleDBShutdownMode.Default, false);

Chapter 6
OracleDatabase Class

6-152

 // db.ExecuteNonQuery("ALTER DATABASE CLOSE NORMAL");
 // db.ExecuteNonQuery("ALTER DATABASE DISMOUNT");
 // db.Shutdown(OracleDBShutdownMode.Final);

 // Dispose the OracleDatabase object
 db.Dispose();
 }
 catch (OracleException ex)
 {
 Console.WriteLine("An error has occurred: {0}", ex.Message);
 }
 }
 }
}

6.7.4.6 Startup
Startup methods enable a user with database administrator privileges to start a
database instance.

Overload List

• Startup()

This method starts a database instance using the server-side parameter file.

• Startup(OracleDBStartupMode, string, bool)

This method starts a database instance using the client-side parameter file.

6.7.4.7 Startup()
This method starts up the database.

Declaration

// C#
public void Startup();

Exceptions

OracleException - The database startup request has failed.

Remarks

This method starts a database instance in the OracleDbStartupMode.Normal mode using
the server-side parameter file (spfile). After the database is successfully started, this
method also executes the ALTER DATABASE MOUNT and ALTER DATABASE OPEN statements.

This method does not throw exceptions for cases where the database is already
mounted, opened, or started appropriately. If other errors are encountered, then an
exception is thrown.

6.7.4.8 Startup(OracleDBStartupMode, string, bool)
This method starts up the database using the specified startup mode.

Chapter 6
OracleDatabase Class

6-153

Declaration

// C#
public void Startup(OracleDbStartupMode startupMode, string pfile, bool
bMountAndOpen);

Parameters

• startupMode

An OracleDBStartupMode enumeration value.

• pfile

The location and name of the client-side parameter file. For example, "c:\\admin\
\init.ora".

The name of the parameter file varies depending on the operating system. For
example, it can be in mixed case or lowercase, or it can have a logical name or a
variation of the name init.ora. The default location is usually ORACLE_HOME/dbs or
ORACLE_HOME\database.

• bMountAndOpen

A true/false value signifying whether the database is to be mounted and opened.

Exceptions

OracleException - The database startup request has failed.

Remarks

This method starts a database instance in the specified mode using the specified
client-side parameter file. After the database is successfully started, and if
bMountAndOpen input parameter is true, this method also executes the ALTER DATABASE
MOUNT and ALTER DATABASE OPEN statements.

If bMountAndOpen is true, then this method does not throw an exception for cases where
the database is already mounted, opened, or started appropriately. If other errors are
encountered, then an exception is thrown.

If bMountAndOpen is false, then the database must be mounted and opened explicitly by
the application. For example, if db is an instance of the OracleDatabase class, then the
application invokes the following:

1. db.Startup(OracleDBStartupMode.NoRestriction, null, false);

2. db.ExecuteNonQuery("ALTER DATABASE MOUNT");

3. db.ExecuteNonQuery("ALTER DATABASE OPEN");

6.8 OracleDataReader Class
An OracleDataReader object represents a forward-only, read-only, in-memory result set.

Unlike the DataSet, the OracleDataReader object stays connected and fetches one row
at a time.

The following section contain related information:

Chapter 6
OracleDataReader Class

6-154

• "Obtaining LONG and LONG RAW Data".

• "Obtaining Data from an OracleDataReader Object".

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.Data.Common.DataReader

 System.Data.Common.DbDataReader

 Oracle.DataAccess.Client.OracleDataReader

Declaration

// C#
public sealed class OracleDataReader : DbDataReader, IEnumerable,
 IDataReader, IDisposable, IDataRecord

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

An OracleDataReader instance is constructed by a call to the ExecuteReader method of
the OracleCommand object. The only properties that can be accessed after the DataReader
is closed or has been disposed, are IsClosed and RecordsAffected.

To minimize the number of open database cursors, OracleDataReader objects should be
explicitly disposed.

Example

The following OracleDataReader example retrieves the data from the EMP table:

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle
CREATE TABLE empInfo (
empno NUMBER(4) PRIMARY KEY,
empName VARCHAR2(20) NOT NULL,
hiredate DATE,
salary NUMBER(7,2),
jobDescription Clob,
byteCodes BLOB
);

Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values

Chapter 6
OracleDataReader Class

6-155

(1,'KING','SOFTWARE ENGR', '5657');
Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(2,'SCOTT','MANAGER', '5960');
commit;

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleDataReaderSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 string cmdstr = "SELECT * FROM EMPINFO";
 OracleConnection connection = new OracleConnection(constr);
 OracleCommand cmd = new OracleCommand(cmdstr, con);

 OracleDataReader reader = cmd.ExecuteReader();

 // Declare the variables to retrieve the data in EmpInfo
 short empNo;
 string empName;
 DateTime hireDate;
 double salary;
 string jobDesc;
 byte[] byteCodes = new byte[10];

 // Read the next row until end of row
 while (reader.Read())
 {
 empNo = reader.GetInt16(0);
 Console.WriteLine("Employee number: " + empNo);
 empName = reader.GetString(1);
 Console.WriteLine("Employee name: " + empName);

 // The following columns can have NULL value, so it
 // is important to call IsDBNull before getting the column data
 if (!reader.IsDBNull(2))
 {
 hireDate = reader.GetDateTime(2);
 Console.WriteLine("Hire date: " + hireDate);
 }

 if (!reader.IsDBNull(3))
 {
 salary = reader.GetDouble(3);
 Console.WriteLine("Salary: " + salary);
 }

 if (!reader.IsDBNull(4))
 {
 jobDesc = reader.GetString(4);
 Console.WriteLine("Job Description: " + jobDesc);

Chapter 6
OracleDataReader Class

6-156

 }

 if (!reader.IsDBNull(5))
 {
 long len = reader.GetBytes(5, 0, byteCodes, 0, 10);

 Console.Write("Byte codes: ");
 for (int i = 0; i < len; i++)
 Console.Write(byteCodes[i].ToString("x"));

 Console.WriteLine();
 }

 Console.WriteLine();
 }

 // Clean up
 reader.Dispose();
 con.Dispose();
 }
}

6.8.1 OracleDataReader Members
OracleDataReader members are listed in the following tables.

OracleDataReader Static Methods

The OracleDataReader static method is listed in Table 6-55.

Table 6-55 OracleDataReader Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleDataReader Properties

OracleDataReader properties are listed in Table 6-56.

Table 6-56 OracleDataReader Properties

Property Description

Depth Gets a value indicating the depth of nesting for the current
row

FetchSize Specifies the size of OracleDataReader's internal cache

FieldCount Gets the number of columns in the result set

HasRows Indicates whether the OracleDataReader has one or more
rows

HiddenFieldCount Gets the number of fields in the OracleDataReader that are
hidden

IsClosed Indicates whether or not the data reader is closed

Item Gets the value of the column (Overloaded)

Chapter 6
OracleDataReader Class

6-157

Table 6-56 (Cont.) OracleDataReader Properties

Property Description

InitialLOBFetchSize Specifies the amount that the OracleDataReader initially
fetches for LOB columns

InitialLONGFetchSize Specifies the amount that the OracleDataReader initially
fetches for LONG and LONG RAW columns

RecordsAffected Gets the number of rows changed, inserted, or deleted by
execution of the SQL statement

RowSize Gets the amount of memory the internal cache of the
OracleDataReader needs to store one row of data.

UseEdmMapping Indicates whether or not the OracleDataReader utilizes the
Entity Data Model mapping configuration when returning
values

VisibleFieldCount Gets the number of fields in the OracleDataReader that are
not hidden

OracleDataReader Public Methods

OracleDataReader public methods are listed in Table 6-57.

Table 6-57 OracleDataReader Public Methods

Public Method Description

Close Closes the OracleDataReader

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases any resources or memory allocated by the object

Equals Inherited from System.Object (Overloaded)

GetBoolean Not Supported

GetByte Returns the byte value of the specified column

GetBytes Populates the provided byte array with up to the maximum
number of bytes, from the specified offset (in bytes) of the
column

GetChar Not Supported

GetChars Populates the provided character array with up to the
maximum number of characters, from the specified offset (in
characters) of the column

GetData Not Supported

GetDataTypeName Returns the ODP.NET type name of the specified column

GetDateTime Returns the DateTime value of the specified column

GetDecimal Returns the decimal value of the specified NUMBER column

GetDouble Returns the double value of the specified NUMBER column or
BINARY_DOUBLE column

GetEnumerator Returns an IEnumerator that can be used to iterate through
the collection

Chapter 6
OracleDataReader Class

6-158

Table 6-57 (Cont.) OracleDataReader Public Methods

Public Method Description

GetFieldType Returns the Type of the specified column

GetFloat Returns the float value of the specified NUMBER column or
BINARY_FLOAT column

GetGuid Not Supported

GetHashCode Inherited from System.Object

GetInt16 Returns the Int16 value of the specified NUMBER column

GetInt32 Returns the Int32 value of the specified NUMBER column

GetInt64 Returns the Int64 value of the specified NUMBER column

GetLifetimeService Inherited by System.MarshalByRefObject

GetName Returns the name of the specified column

GetOracleBFile Returns an OracleBFile object of the specified BFILE
column

GetOracleBinary Returns an OracleBinary structure of the specified column

GetOracleBlob Returns an OracleBlob object of the specified BLOB column

GetOracleBlobForUpdate Returns an updatable OracleBlob object of the specified
BLOB column

GetOracleClob Returns an OracleClob object of the specified CLOB column

GetOracleClobForUpdate Returns an updatable OracleClob object of the specified
CLOB column

GetOracleDate Returns an OracleDate structure of the specified DATE
column

GetOracleDecimal Returns an OracleDecimal structure of the specified NUMBER
column

GetOracleIntervalDS Returns an OracleIntervalDS structure of the specified
INTERVAL DAY TO SECOND column

GetOracleIntervalYM Returns an OracleIntervalYM structure of the specified
INTERVAL YEAR TO MONTH column

GetOracleRef Returns an OracleRef object of the specified REF column

GetOracleString Returns an OracleString structure of the specified column

GetOracleTimeStamp Returns an OracleTimeStamp structure of the Oracle
TimeStamp column

GetOracleTimeStampLTZ Returns an OracleTimeStampLTZ structure of the specified
Oracle TimeStamp WITH LOCAL TIME ZONE column

GetOracleTimeStampTZ Returns an OracleTimeStampTZ structure of the specified
Oracle TimeStamp WITH TIME ZONE column

GetOracleXmlType Returns an OracleXmlType object of the specified XMLType
column

GetOracleValue Returns the specified column value as a ODP.NET type

GetOracleValues Gets all the column values as ODP.NET types

Chapter 6
OracleDataReader Class

6-159

Table 6-57 (Cont.) OracleDataReader Public Methods

Public Method Description

GetOrdinal Returns the 0-based ordinal (or index) of the specified
column name

GetProviderSpecificFieldType Returns the provider-specific type of the specified column

GetProviderSpecificValue Returns an object that represents the underlying provider-
specific value of the specified ordinal

GetProviderSpecificValues Returns an array of objects that represent the underlying
provider-specific values

GetSchemaTable Returns a DataTable that describes the column metadata of
the OracleDataReader

GetString Returns the string value of the specified column

GetTimeSpan Returns the TimeSpan value of the specified INTERVAL DAY
TO SECOND column

GetType Inherited from System.Object class

GetValue Returns the column value as a .NET type

GetValues Gets all the column values as .NET types

GetXmlReader Returns the value of an XMLType column as an instance of
an .NET XmlTextReader

IsDBNull Indicates whether or not the column value is null

NextResult Advances the data reader to the next result set when
reading the results

Read Reads the next row in the result set

ToString Inherited from System.Object

6.8.2 OracleDataReader Static Methods
The OracleDataReader static method is listed in Table 6-58.

Table 6-58 OracleDataReader Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.8.3 OracleDataReader Properties
OracleDataReader properties are listed in Table 6-59.

Chapter 6
OracleDataReader Class

6-160

Table 6-59 OracleDataReader Properties

Property Description

Depth Gets a value indicating the depth of nesting for the current
row

FetchSize Specifies the size of OracleDataReader's internal cache

FieldCount Gets the number of columns in the result set

HasRows Indicates whether the OracleDataReader has one or more
rows

HiddenFieldCount Gets the number of fields in the OracleDataReader that are
hidden

IsClosed Indicates whether or not the data reader is closed

Item Gets the value of the column (Overloaded)

InitialLOBFetchSize Specifies the amount that the OracleDataReader initially
fetches for LOB columns

InitialLONGFetchSize Specifies the amount that the OracleDataReader initially
fetches for LONG and LONG RAW columns

RecordsAffected Gets the number of rows changed, inserted, or deleted by
execution of the SQL statement

RowSize Gets the amount of memory the internal cache of the
OracleDataReader needs to store one row of data

UseEdmMapping Indicates whether or not the OracleDataReader utilizes the
Entity Data Model mapping configuration when returning
values

VisibleFieldCount Gets the number of fields in the OracleDataReader that are
not hidden

6.8.3.1 Depth
This property gets a value indicating the depth of nesting for the current row.

Declaration

// C#
public override int Depth {get;}

Property Value

The depth of nesting for the current row.

Implements

IDataReader

Exceptions

InvalidOperationException - The reader is closed.

Chapter 6
OracleDataReader Class

6-161

Remarks

Default = 0

This property always returns zero because Oracle does not support nesting.

6.8.3.2 FetchSize
This property specifies the size of OracleDataReader's internal cache.

Declaration

// C#
public long FetchSize {get; set;}

Property Value

A long that specifies the amount of memory (in bytes) that the OracleDataReader uses
for its internal cache.

Exceptions

ArgumentException - The FetchSize value specified is invalid.

Remarks

Default = The OracleCommand's FetchSize property value.

The FetchSize property is inherited by the OracleDataReader that is created by a
command execution returning a result set. The FetchSize property on the
OracleDataReader object determines the amount of data fetched into its internal cache
for each database round-trip.

The RowSize and FetchSize properties handle UDT and XMLType data differently than
other scalar data types. Because only a reference to the UDT and XMLType data is
stored in the ODP.NET's internal cache, the RowSize property accounts for only the
memory needed for the reference (which is very small) and not the actual size of the
UDT and XMLType data. Thus, applications can inadvertently fetch a large number of
UDT or XMLType instances from the database in a single database round-trip. This is
because the actual size of UDT and XMLType data does not count against the
FetchSize, and it would require numerous UDT and XMLType references to fill up the
default cache size of 131072 bytes. Therefore, when fetching UDT or XMLType data, the
FetchSize property must be appropriately configured to control the number of UDT and
XMLType instances that are to be fetched, rather than the amount of the actual UDT and
XMLType data to be fetched.

NOTE: For LOB and LONG data types, only the sizes specified in the
InitialLOBFetchSize and InitialLONGFetchSize properties are accounted for by the
RowSize property in addition to the metadata and reference information that is
maintained by the cache for each LOB in the select list.

6.8.3.3 FieldCount
This property returns the number of columns in the result set.

Chapter 6
OracleDataReader Class

6-162

Declaration

// C#
public override int FieldCount {get;}

Property Value

The number of columns in the result set if one exists, otherwise 0.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed.

Remarks

Default = 0

This property has a value of 0 for queries that do not return result sets.

6.8.3.4 HasRows
This property indicates whether the OracleDataReader has one or more rows.

Declaration

// C#
public override bool HasRows {get;}

Return Value

bool

Remarks

HasRows indicates whether or not the OracleDataReader has any rows.

The value of HasRows does not change based on the row position. For example, even if
the application has read all the rows from the result set and the next Read method
invocation will return false, the HasRows property still returns true since the result set
was not empty to begin with.

Rows are fetched to determine the emptiness of the OracleDataReader when HasRows
property is accessed for the first time after the creation of the OracleDataReader object.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class HasRowsSample
{
 static void Main()
 {

Chapter 6
OracleDataReader Class

6-163

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = new OracleCommand(
 "select * from emp where empno = 9999", con);

 OracleDataReader reader = cmd.ExecuteReader();

 if (!reader.HasRows)
 Console.WriteLine("The result set is empty.");
 else
 Console.WriteLine("The result set is not empty.");

 con.Dispose();
 }
}

6.8.3.5 HiddenFieldCount
This property gets the number of fields in the OracleDataReader that are hidden.

Declaration

// C#
public int HiddenFieldcount { get; }

Property Value

The number of fields in the OracleDataReader that are hidden.

Exceptions

InvalidOperationException - The reader is closed.

Remarks

OracleDataReader.FieldCount and OracleDataReader.VisibleFieldCount return the visible
field count.

6.8.3.6 IsClosed
This property indicates whether or not the data reader is closed.

Declaration

// C#
public override bool IsClosed {get;}

Property Value

If the OracleDataReader is in a closed state, returns true; otherwise, returns false.

Implements

IDataReader

Chapter 6
OracleDataReader Class

6-164

Remarks

Default = true

IsClosed and RecordsAffected are the only two properties that are accessible after the
OracleDataReader is closed.

6.8.3.7 Item
This property gets the value of the column in .NET data type.

Overload List:

• Item [index]

This property gets the .NET Value of the column specified by the column index.

• Item [string]

This property gets the .NET Value of the column specified by the column name.

6.8.3.8 Item [index]
This property gets the .NET Value of the column specified by the column index.

Declaration

// C#
public override object this[int index] {get;}

Parameters

• index

The zero-based index of the column.

Property Value

The .NET value of the specified column.

Implements

IDataRecord

Remarks

Default = Not Applicable

In C#, this property is the indexer for this class.

6.8.3.9 Item [string]
This property gets the .NET Value of the column specified by the column name.

Chapter 6
OracleDataReader Class

6-165

Declaration

// C#
public override object this[string columnName] {get;}

Parameters

• columnName

The name of the column.

Property Value

The .NET Value of the specified column.

Implements

IDataRecord

Remarks

Default = Not Applicable

A case-sensitive search is made to locate the specified column by its name. If this
fails, then a case-insensitive search is made.

In C#, this property is the indexer for this class.

6.8.3.10 InitialLOBFetchSize
This property specifies the amount that the OracleDataReader initially fetches for LOB
columns.

Declaration

// C#
public int InitialLOBFetchSize {get;}

Property Value

The size of the chunk to retrieve.

Exceptions

InvalidOperationException - The reader is closed.

Remarks

The maximum value supported for InitialLOBFetchSize is 2 GB.

Default is the OracleCommand.InitialLOBFetchSize, from which this value is inherited.

6.8.3.11 InitialLONGFetchSize
This property specifies the amount that the OracleDataReader initially fetches for LONG
and LONG RAW columns.

Chapter 6
OracleDataReader Class

6-166

Declaration

// C#
public long InitialLONGFetchSize {get;}

Property Value

The size of the chunk to retrieve. The default is 0.

Exceptions

InvalidOperationException - The reader is closed.

Remarks

The maximum value supported for InitialLONGFetchSize is 32767. If this property is set
to a higher value, the provider resets it to 32767.

Default is OracleCommand.InitialLONGFetchSize, from which this value is inherited.

This property is read-only for the OracleDataReader.

6.8.3.12 RecordsAffected
This property gets the number of rows changed, inserted, or deleted by execution of
the SQL statement.

Declaration

// C#
public int RecordsAffected {get;}

Property Value

The number of rows affected by execution of the SQL statement.

Implements

IDataReader

Remarks

Default = 0

The value of -1 is returned for SELECT statements.

IsClosed and RecordsAffected are the only two properties that are accessible after the
OracleDataReader is closed.

6.8.3.13 RowSize
This property gets the amount of memory the internal cache of the OracleDataReader
needs to store one row of data.

Chapter 6
OracleDataReader Class

6-167

Declaration

// C#
public long RowSize {get;}

Property Value

A long that indicates the amount of memory (in bytes) that an OracleDataReader needs
to store one row of data for the executed query.

Remarks

The RowSize property is set to a nonzero value when the OracleDataReader object is
created. This property can be used at design time or dynamically during runtime, to set
the FetchSize property, based on the number of rows. For example, to enable the
OracleDataReader object to fetch N rows for each database round-trip, the
OracleDataReader FetchSize property can be set dynamically to RowSize * N. Note that
for the FetchSize property to take effect appropriately, it must be set before the first
invocation of OracleDataReader.Read() for the particular result set.

ODP.NET now supports values up to 32K for VARCHAR2, NVARCHAR2 or RAW type columns
in its calculation of RowSize value

6.8.3.14 UseEdmMapping
This read-only property indicates whether or not the OracleDataReader utilizes the Entity
Data Model mapping configuration when returning values.

Declaration

// C#
public bool UseEdmMapping {get;}

Property Value

A boolean that indicates whether the OracleDataReader uses the Entity Data Model
mapping configuration for returning values.

Remarks

Default is false.

The value is inherited from the OracleCommand object.

6.8.3.15 VisibleFieldCount
This property gets the number of fields in the OracleDataReader that are not hidden.

Declaration

// C#
public override int VisibleFieldcount { get; }

Property Value

The number of fields that are not hidden.

Chapter 6
OracleDataReader Class

6-168

Exceptions

InvalidOperationException - The reader is closed.

Remarks

If an application sets the AddRowid property on an OracleCommand object to true, then the
application can access the RowId but it is not a visible field. If RowId is added in the
select statement list, then it is a visible field. OracleDataReader.VisibleFieldCount and
OracleDataReader.FieldCount always have the same value.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class VisibleFieldCountSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott; Password=tiger; Data Source=oracle;";
 DbProviderFactory factory =
 DbProviderFactories.GetFactory("Oracle.DataAccess.Client");

 using (DbConnection conn = factory.CreateConnection())
 {
 conn.ConnectionString = constr;
 try
 {
 conn.Open();
 OracleCommand cmd = (OracleCommand)factory.CreateCommand();
 cmd.Connection = (OracleConnection)conn;

 //to gain access to ROWIDs of the table
 cmd.AddRowid = true;
 cmd.CommandText = "select empno, ename from emp;";

 OracleDataReader reader = cmd.ExecuteReader();

 int visFC = reader.VisibleFieldCount; //Results in 2
 int hidFC = reader.HiddenFieldCount; // Results in 1

 Console.Write("Visible field count: " + visFC);
 Console.Write("Hidden field count: " + hidFC);

 reader.Dispose();
 cmd.Dispose();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 Console.WriteLine(ex.StackTrace);
 }
 }
 }
}

Chapter 6
OracleDataReader Class

6-169

6.8.4 OracleDataReader Public Methods
OracleDataReader public methods are listed in Table 6-60.

Table 6-60 OracleDataReader Public Methods

Public Method Description

Close Closes the OracleDataReader

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases any resources or memory allocated by the object

Equals Inherited from System.Object (Overloaded)

GetBoolean Not Supported

GetByte Returns the byte value of the specified column

GetBytes Populates the provided byte array with up to the maximum
number of bytes, from the specified offset (in bytes) of the
column

GetChar Not Supported

GetChars Populates the provided character array with up to the
maximum number of characters, from the specified offset (in
characters) of the column

GetData Not Supported

GetDataTypeName Returns the ODP.NET type name of the specified column

GetDateTime Returns the DateTime value of the specified column

GetDecimal Returns the decimal value of the specified NUMBER column

GetDouble Returns the double value of the specified NUMBER column or
BINARY_DOUBLE column

GetEnumerator Returns an IEnumerator that can be used to iterate through
the collection

GetFieldType Returns the Type of the specified column

GetFloat Returns the float value of the specified NUMBER column or
BINARY_FLOAT column

GetGuid Not Supported

GetHashCode Inherited from System.Object

GetInt16 Returns the Int16 value of the specified NUMBER column

GetInt32 Returns the Int32 value of the specified NUMBER column

GetInt64 Returns the Int64 value of the specified NUMBER column

GetLifetimeService Inherited by System.MarshalByRefObject

GetName Returns the name of the specified column

GetOracleBFile Returns an OracleBFile object of the specified BFILE
column

GetOracleBinary Returns an OracleBinary structure of the specified column

Chapter 6
OracleDataReader Class

6-170

Table 6-60 (Cont.) OracleDataReader Public Methods

Public Method Description

GetOracleBlob Returns an OracleBlob object of the specified BLOB column

GetOracleBlobForUpdate Returns an updatable OracleBlob object of the specified
BLOB column

Not Available in ODP.NET, Managed Driver

GetOracleClob Returns an OracleClob object of the specified CLOB column

GetOracleClobForUpdate Returns an updatable OracleClob object of the specified
CLOB column

Not Available in ODP.NET, Managed Driver

GetOracleDate Returns an OracleDate structure of the specified DATE
column

GetOracleDecimal Returns an OracleDecimal structure of the specified NUMBER
column

GetOracleIntervalDS Returns an OracleIntervalDS structure of the specified
INTERVAL DAY TO SECOND column

GetOracleIntervalYM Returns an OracleIntervalYM structure of the specified
INTERVAL YEAR TO MONTH column

GetOracleRef Returns an OracleRef object of the specified REF column

Not Available in ODP.NET, Managed Driver

GetOracleString Returns an OracleString structure of the specified column

GetOracleTimeStamp Returns an OracleTimeStamp structure of the Oracle
TimeStamp column

GetOracleTimeStampLTZ Returns an OracleTimeStampLTZ structure of the specified
Oracle TimeStamp WITH LOCAL TIME ZONE column

GetOracleTimeStampTZ Returns an OracleTimeStampTZ structure of the specified
Oracle TimeStamp WITH TIME ZONE column

GetOracleXmlType Returns an OracleXmlType object of the specified XMLType
column

Not Available in ODP.NET, Managed Driver

GetOracleValue Returns the specified column value as a ODP.NET type

GetOracleValues Gets all the column values as ODP.NET types

GetOrdinal Returns the 0-based ordinal (or index) of the specified
column name

GetProviderSpecificFieldType Returns the provider-specific type of the specified column

GetProviderSpecificValue Returns an object that represents the underlying provider-
specific value of the specified ordinal

GetProviderSpecificValues Returns an array of objects that represent the underlying
provider-specific values

GetSchemaTable Returns a DataTable that describes the column metadata of
the OracleDataReader

GetString Returns the string value of the specified column

GetTimeSpan Returns the TimeSpan value of the specified INTERVAL DAY
TO SECOND column

Chapter 6
OracleDataReader Class

6-171

Table 6-60 (Cont.) OracleDataReader Public Methods

Public Method Description

GetType Inherited from System.Object class

GetValue Returns the column value as a .NET type

GetValues Gets all the column values as .NET types

GetXmlReader Returns the value of an XMLType column as an instance of
an .NET XmlTextReader

IsDBNull Indicates whether or not the column value is null

NextResult Advances the data reader to the next result set when
reading the results

Read Reads the next row in the result set

ToString Inherited from System.Object

6.8.4.1 Close
This method closes the OracleDataReader.

Declaration

// C#
public override void Close();

Implements

IDataReader

Remarks

The Close method frees all resources associated with the OracleDataReader.

Example

The code example for the OracleDataReader class includes the Close method. See
OracleDataReader Overview "Example".

6.8.4.2 Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Chapter 6
OracleDataReader Class

6-172

Remarks

The Dispose method also closes the OracleDataReader.

6.8.4.3 GetBoolean
This method is not supported.

Declaration

// C#
public override bool GetBoolean(int index);

Parameters

• index

The zero-based column index.

Implements

IDataRecord

Exceptions

NotSupportedException - This property is not supported.

6.8.4.4 GetByte
This method returns the byte value of the specified column.

Declaration

// C#
public override byte GetByte(int index);

Parameters

• index

The zero-based column index.

Return Value

The value of the column as a byte.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Chapter 6
OracleDataReader Class

6-173

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.5 GetBytes
This method populates the provided byte array with up to the maximum number of
bytes, from the specified offset (in bytes) of the column.

Declaration

// C#
public override long GetBytes(int index, long fieldOffset, byte[] buffer,
 int bufferOffset, int length);

Parameters

• index

The zero-based column index.

• fieldOffset

The offset within the column from which reading begins (in bytes).

• buffer

The byte array that the data is read into.

• bufferOffset

The offset within the buffer to begin reading data into (in bytes).

• length

The maximum number of bytes to read (in bytes).

Return Value

The number of bytes read.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Chapter 6
OracleDataReader Class

6-174

Remarks

This method returns the number of bytes read into the buffer. This may be less than
the actual length of the field if the method has been called previously for the same
column.

If a null reference is passed for buffer, the length of the field in bytes is returned.

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.6 GetChar
This method is not supported.

Declaration

// C#
public override long GetChar(int index);

Parameters

• index

The zero based column index.

Implements

IDataRecord

Exceptions

NotSupportedException - This property is not supported.

6.8.4.7 GetChars
This method populates the provided character array with up to the maximum number
of characters, from the specified offset (in characters) of the column.

Declaration

// C#
public override long GetChars(int index, long fieldOffset, char[] buffer,
 int bufferOffset, int length);

Parameters

• index

The zero based column index.

• fieldOffset

The index within the column from which to begin reading (in characters).

• buffer

The character array that the data is read into.

• bufferOffset

Chapter 6
OracleDataReader Class

6-175

The index within the buffer to begin reading data into (in characters).

• length

The maximum number of characters to read (in characters).

Return Value

The number of characters read.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

This method returns the number of characters read into the buffer. This may be less
than the actual length of the field, if the method has been called previously for the
same column.

If a null reference is passed for buffer, the length of the field in characters is returned.

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.8 GetData
This method is not supported

6.8.4.9 GetDataTypeName
This method returns the ODP.NET type name of the specified column.

Declaration

// C#
public override string GetDataTypeName(int index);

Parameters

• index

The zero-based column index.

Return Value

The name of the ODP.NET type of the column.

Chapter 6
OracleDataReader Class

6-176

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed.

IndexOutOfRangeException - The column index is invalid.

6.8.4.10 GetDateTime
This method returns the DateTime value of the specified column.

Declaration

// C#
public override DateTime GetDateTime(int index);

Parameters

• index

The zero-based column index.

Return Value

The DateTime value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.11 GetDecimal
This method returns the decimal value of the specified NUMBER column.

Declaration

// C#
public override decimal GetDecimal(int index);

Chapter 6
OracleDataReader Class

6-177

Parameters

• index

The zero-based column index.

Return Value

The decimal value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.12 GetDouble
This method returns the double value of the specified NUMBER column or BINARY_DOUBLE
column.

Declaration

// C#
public override double GetDouble(int index);

Parameters

• index

The zero-based column index.

Return Value

The double value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Chapter 6
OracleDataReader Class

6-178

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

GetDouble now supports retrieval of data from BINARY_DOUBLE columns.

6.8.4.13 GetEnumerator
This method returns an IEnumerator that can be used to iterate through the collection
(record set).

Declaration

// C#
public override IEnumerator GetEnumerator();

Return Value

An IEnumerator that can be used to iterate through the collection (record set).

Exceptions

InvalidOperationException - The reader is closed.

6.8.4.14 GetFieldType
This method returns the type of the specified column.

Declaration

// C#
public override Type GetFieldType(int index);

Parameters

• index

The zero-based column index.

Return Value

The type of the default .NET type of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed, or the specified column is a UDT but
no registered custom type mapping exists for the UDT.

IndexOutOfRangeException - The column index is invalid.

Chapter 6
OracleDataReader Class

6-179

Remarks

GetFieldType returns a type that corresponds to the value that the application obtains
after invoking the GetValue accessor or Item property on the OracleDataReader. For
example, if the column is a string, this method returns a .NET Type object for a .NET
string.

If the attribute is a UDT, this method may return either of the following:

• A .NET Type of the custom type if a custom type mapping exists for the Oracle
object or collection.

• A .NET Type of string if the column is an Oracle REF.

6.8.4.15 GetFloat
This method returns the float value of the specified NUMBER column or BINARY_FLOAT
column.

Declaration

// C#
public override float GetFloat(int index);

Parameters

• index

The zero-based column index.

Return Value

The float value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

GetFloat now supports retrieval of data from BINARY_FLOAT columns.

6.8.4.16 GetGuid
This method is not supported.

Chapter 6
OracleDataReader Class

6-180

Declaration

// C#
public override Guid GetGuid(int index);

Parameters

• index

The zero-based column index.

Implements

IDataRecord

Exceptions

NotSupportedException - This property is not supported.

6.8.4.17 GetInt16
This method returns the Int16 value of the specified NUMBER column.

Note:

short is equivalent to Int16.

Declaration

// C#
public override short GetInt16(int index);

Parameters

• index

The zero-based column index.

Return Value

The Int16 value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Chapter 6
OracleDataReader Class

6-181

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.18 GetInt32
This method returns the Int32 value of the specified NUMBER column.

Note:

int is equivalent to Int32.

Declaration

// C#
public override int GetInt32(int index);

Parameters

• index

The zero-based column index.

Return Value

The Int32 value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.19 GetInt64
This method returns the Int64 value of the specified NUMBER column.

Chapter 6
OracleDataReader Class

6-182

Note:

long is equivalent to Int64.

Declaration

// C#
public override long GetInt64(int index);

Parameters

• index

The zero-based column index.

Return Value

The Int64 value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.20 GetName
This method returns the name of the specified column.

Declaration

// C#
public override string GetName(int index);

Parameters

• index

The zero-based column index.

Return Value

The name of the column.

Chapter 6
OracleDataReader Class

6-183

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed.

IndexOutOfRangeException - The column index is invalid.

6.8.4.21 GetOracleBFile
This method returns an OracleBFile object of the specified BFILE column.

Declaration

// C#
public OracleBFile GetOracleBFile(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleBFile value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.22 GetOracleBinary
This method returns an OracleBinary structure of the specified column.

Declaration

// C#
public OracleBinary GetOracleBinary(int index);

Parameters

• index

The zero-based column index.

Chapter 6
OracleDataReader Class

6-184

Return Value

The OracleBinary value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

GetOracleBinary is used on the following Oracle types:

• BFILE

• BLOB

• LONG RAW

• RAW

6.8.4.23 GetOracleBlob
This method returns an OracleBlob object of the specified BLOB column.

Declaration

// C#
public OracleBlob GetOracleBlob(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleBlob value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

Chapter 6
OracleDataReader Class

6-185

6.8.4.24 GetOracleBlobForUpdate
GetOracleBlobForUpdate returns an updatable OracleBlob object of the specified BLOB
column.

Overload List:

• GetOracleBlobForUpdate(int)

This method returns an updatable OracleBlob object of the specified BLOB column.

• GetOracleBlobForUpdate(int, int)

This method returns an updatable OracleBlob object of the specified BLOB column
using a WAIT clause.

6.8.4.25 GetOracleBlobForUpdate(int)
This method returns an updatable OracleBlob object of the specified BLOB column.

Declaration

// C#
public OracleBlob GetOracleBlobForUpdate(int index);

Parameters

• index

The zero-based column index.

Return Value

An updatable OracleBlob object.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

When the OracleCommand's ExecuteReader() method is invoked, all the data fetched by
the OracleDataReader is from a particular snapshot. Therefore, calling an accessor
method on the same column always returns the same value. However, the
GetOracleBlobForUpdate() method incurs a database round-trip to obtain a reference to
the current BLOB data while also locking the row using the FOR UPDATE clause. This
means that the OracleBlob obtained from GetOracleBlob() can have a different value
than the OracleBlob obtained from GetOracleBlobForUpdate() since it is not obtained
from the original snapshot.

The returned OracleBlob object can be used to safely update the BLOB because the BLOB
column has been locked after a call to this method.

Chapter 6
OracleDataReader Class

6-186

Invoking this method internally executes a SELECT..FOR UPDATE statement without a WAIT
clause. Therefore, the statement can wait indefinitely until a lock is acquired for that
row.

IsDBNull should be called to check for NULL values before calling this method.

Example

The following example gets the OracleBlob object for update from the reader, updates
the OracleBlob object, and then commits the transaction.

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle
CREATE TABLE empInfo (
empno NUMBER(4) PRIMARY KEY,
empName VARCHAR2(20) NOT NULL,
hiredate DATE,
salary NUMBER(7,2),
jobDescription Clob,
byteCodes BLOB
);

Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(1,'KING','SOFTWARE ENGR', '5657');
Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(2,'SCOTT','MANAGER', '5960');
commit;

*/
// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class GetOracleBlobForUpdateSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Get the ByteCodes for empno = 1
 string cmdstr = "SELECT BYTECODES, EMPNO FROM EMPINFO where EMPNO = 1";
 OracleCommand cmd = new OracleCommand(cmdstr, con);

 // Since we are going to update the OracleBlob object, we will
 //have to create a transaction
 OracleTransaction txn = con.BeginTransaction();

 // Get the reader
 OracleDataReader reader = cmd.ExecuteReader();

 // Declare the variables to retrieve the data in EmpInfo
 OracleBlob byteCodesBlob;

 // Read the first row
 reader.Read();
 if (!reader.IsDBNull(0))

Chapter 6
OracleDataReader Class

6-187

 {
 byteCodesBlob = reader.GetOracleBlobForUpdate(0);

 // Close the reader
 reader.Close();

 // Update the ByteCodes object
 byte[] addedBytes = new byte[2] {0, 0};
 byteCodesBlob.Append(addedBytes, 0, addedBytes.Length);

 // Now commit the transaction
 txn.Commit();
 Console.WriteLine("Blob Column successfully updated");
 }
 else
 reader.Dispose();

 // Close the connection
 con.Dispose();
 }
}

6.8.4.26 GetOracleBlobForUpdate(int, int)
This method returns an updatable OracleBlob object of the specified BLOB column using
a WAIT clause.

Declaration

// C#
public OracleBlob GetOracleBlobForUpdate(int index, int wait);

Parameters

• index

The zero-based column index.

• wait

The number of seconds the method waits to acquire a lock.

Return Value

An updatable OracleBlob object.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

When the OracleCommand's ExecuteReader() method is invoked, all the data fetched by
the OracleDataReader is from a particular snapshot. Therefore, calling an accessor

Chapter 6
OracleDataReader Class

6-188

method on the same column always returns the same value. However, the
GetOracleBlobForUpdate() method incurs a database round-trip to obtain a reference to
the current BLOB data while also locking the row using the FOR UPDATE clause. This
means that the OracleBlob obtained from GetOracleBlob() can have a different value
than the OracleBlob obtained from GetOracleBlobForUpdate() since it is not obtained
from the original snapshot.

IsDBNull should be called to check for NULL values before calling this method.

The returned OracleBlob object can be used to safely update the BLOB because the BLOB
column has been locked after a call to this method.

Invoking this method internally executes a SELECT..FOR UPDATE statement which locks
the row.

Different WAIT clauses are appended to the statement, depending on the wait value. If
the wait value is:

• 0

"NOWAIT" is appended at the end of a SELECT..FOR UPDATE statement. The statement
executes immediately whether the lock is acquired or not. If the lock is not
acquired, an exception is thrown.

• n

"WAIT n" is appended at the end of a SELECT..FOR UPDATE statement. The statement
executes as soon as the lock is acquired. However, if the lock cannot be acquired
by n seconds, this method call throws an exception.

The WAIT n" feature is only available for Oracle9i or later. For any version lower
than Oracle9i, n is implicitly treated as -1 and nothing is appended at the end of a
SELECT..FOR UPDATE statement.

• -1

Nothing is appended at the end of the SELECT..FOR UPDATE. The statement
execution waits indefinitely until a lock can be acquired.

Example

The GetOracleBlobForUpdate methods are comparable. See "Example" for a code
example demonstrating usage.

6.8.4.27 GetOracleClob
This method returns an OracleClob object of the specified CLOB column.

Declaration

// C#
public OracleClob GetOracleClob(int index);

Parameters

• index

The zero-based column index.

Chapter 6
OracleDataReader Class

6-189

Return Value

The OracleClob value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.28 GetOracleClobForUpdate
GetOracleClobForUpdate returns an updatable OracleClob object of the specified CLOB
column.

Overload List:

• GetOracleClobForUpdate(int)

This method returns an updatable OracleClob object of the specified CLOB column.

• GetOracleClobForUpdate(int, int)

This method returns an updatable OracleClob object of the specified CLOB column
using a WAIT clause.

6.8.4.29 GetOracleClobForUpdate(int)
This method returns an updatable OracleClob object of the specified CLOB column.

Declaration

// C#
public OracleClob GetOracleClobForUpdate(int index);

Parameters

• index

The zero-based column index.

Return Value

An updatable OracleClob.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Chapter 6
OracleDataReader Class

6-190

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

When the OracleCommand's ExecuteReader() method is invoked, all the data fetched by
the OracleDataReader is from a particular snapshot. Therefore, calling an accessor
method on the same column always returns the same value. However, the
GetOracleClobForUpdate() method incurs a database round-trip to obtain a reference to
the current CLOB data while also locking the row using the FOR UPDATE clause. This
means that the OracleClob obtained from GetOracleClob() can have a different value
than the OracleClob obtained from GetOracleClobForUpdate() since it is not obtained
from the original snapshot.

The returned OracleClob object can be used to safely update the CLOB because the CLOB
column is locked after a call to this method.

Invoking this method internally executes a SELECT..FOR UPDATE statement without a WAIT
clause. Therefore, the statement can wait indefinitely until a lock is acquired for that
row.

IsDBNull should be called to check for NULL values before calling this method.

Example

The following example gets the OracleClob object for update from the reader, updates
the OracleClob object, and then commits the transaction.

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle
CREATE TABLE empInfo (
empno NUMBER(4) PRIMARY KEY,
empName VARCHAR2(20) NOT NULL,
hiredate DATE,
salary NUMBER(7,2),
jobDescription Clob,
byteCodes BLOB
);

Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(1,'KING','SOFTWARE ENGR', '5657');
Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(2,'SCOTT','MANAGER', '5960');
commit;

*/
// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class GetOracleClobForUpdateSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

Chapter 6
OracleDataReader Class

6-191

 // Get the job description for empno = 1
 string cmdStr = "SELECT JOBDESCRIPTION, EMPNO FROM EMPINFO where EMPNO = 1";
 OracleCommand cmd = new OracleCommand(cmdStr, con);

 // Since we are going to update the OracleClob object, we will
 // have to create a transaction
 OracleTransaction txn = con.BeginTransaction();

 // Get the reader
 OracleDataReader reader = cmd.ExecuteReader();

 // Declare the variables to retrieve the data in EmpInfo
 OracleClob jobDescClob;

 // Read the first row
 reader.Read();

 if (!reader.IsDBNull(0))
 {
 jobDescClob = reader.GetOracleClobForUpdate(0);

 // Close the reader
 reader.Close();

 // Update the job description Clob object
 char[] jobDesc = "-SALES".ToCharArray();
 jobDescClob.Append(jobDesc, 0, jobDesc.Length);

 // Now commit the transaction
 txn.Commit();
 Console.WriteLine("Clob Column successfully updated");
 }
 else
 reader.Close();

 // Close the connection
 con.Close();
 }
}

6.8.4.30 GetOracleClobForUpdate(int, int)
This method returns an updatable OracleClob object of the specified CLOB column using
a WAIT clause.

Declaration

// C#
public OracleClob GetOracleClobForUpdate(int index, int wait);

Parameters

• index

The zero-based column index.

• wait

The number of seconds the method waits to acquire a lock.

Chapter 6
OracleDataReader Class

6-192

Return Value

An updatable OracleClob.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

When the OracleCommand's ExecuteReader() method is invoked, all the data fetched by
the OracleDataReader is from a particular snapshot. Therefore, calling an accessor
method on the same column always returns the same value. However, the
GetOracleClobForUpdate() method incurs a database round-trip to obtain a reference to
the current CLOB data while also locking the row using the FOR UPDATE clause. This
means that the OracleClob obtained from GetOracleClob() can have a different value
than the OracleClob obtained from GetOracleClobForUpdate() since it is not obtained
from the original snapshot.

Invoking this method internally executes a SELECT..FOR UPDATE statement which locks
the row.

The returned OracleClob object can be used to safely update the CLOB because the CLOB
column is locked after a call to this method.

Different WAIT clauses are appended to the statement, depending on the wait value. If
the wait value is:

• 0

"NOWAIT" is appended at the end of a SELECT..FOR UPDATE statement. The statement
executes immediately whether the lock is acquired or not. If the lock is not
acquired, an exception is thrown.

• n

"WAIT n" is appended at the end of a SELECT..FOR UPDATE statement. The statement
executes as soon as the lock is acquired. However, if the lock cannot be acquired
by n seconds, this method call throws an exception.

The WAIT n" feature is only available for Oracle9i or later. For any version lower
than Oracle9i, n is implicitly treated as -1 and nothing is appended at the end of a
SELECT..FOR UPDATE statement.

• -1

Nothing is appended at the end of the SELECT..FOR UPDATE. The statement
execution waits indefinitely until a lock can be acquired.

IsDBNull should be called to check for NULL values before calling this method.

Example

The GetOracleClobForUpdate methods are comparable. See "Example" for a code
example demonstrating usage.

Chapter 6
OracleDataReader Class

6-193

6.8.4.31 GetOracleDate
This method returns an OracleDate structure of the specified DATE column.

Declaration

// C#
public OracleDate GetOracleDate(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleDate value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.32 GetOracleDecimal
This method returns an OracleDecimal structure of the specified NUMBER column.

Declaration

// C#
public OracleDecimal GetOracleDecimal(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleDecimal value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Chapter 6
OracleDataReader Class

6-194

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.33 GetOracleIntervalDS
This method returns an OracleIntervalDS structure of the specified INTERVAL DAY TO
SECOND column.

Declaration

// C#
public OracleIntervalDS GetOracleIntervalDS(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleIntervalDS value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.34 GetOracleIntervalYM
This method returns an OracleIntervalYM structure of the specified INTERVAL YEAR TO
MONTH column.

Declaration

// C#
public OracleIntervalYM GetOracleIntervalYM(int index);

Parameters

• index

The zero-based column index.

Chapter 6
OracleDataReader Class

6-195

Return Value

The OracleIntervalYM value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.35 GetOracleRef
This method returns an OracleRef object of the specified REF column.

Declaration

// C#
public OracleRef GetOracleRef(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleRef object of the specified column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, the Read
method has not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type.

6.8.4.36 GetOracleString
This method returns an OracleString structure of the specified column.

Declaration

// C#
public OracleString GetOracleString(int index);

Parameters

• index

Chapter 6
OracleDataReader Class

6-196

The zero-based column index.

Return Value

The OracleString value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

If the column is an Oracle REF column, the string returned is a hexadecimal value that
represents the REF in the database.

6.8.4.37 GetOracleTimeStamp
This method returns an OracleTimeStamp structure of the Oracle TimeStamp column.

Declaration

// C#
public OracleTimeStamp GetOracleTimeStamp(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleTimeStamp value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

GetOracleTimeStamp is used with the Oracle Type TimeStamp.

IsDBNull should be called to check for NULL values before calling this method.

Chapter 6
OracleDataReader Class

6-197

6.8.4.38 GetOracleTimeStampLTZ
This method returns an OracleTimeStampLTZ structure of the specified Oracle TimeStamp
WITH LOCAL TIME ZONE column.

Declaration

// C#
public OracleTimeStampLTZ GetOracleTimeStampLTZ(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleTimeStampLTZ value of the column.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

GetOracleTimeStampLTZ is used with the Oracle Type TimeStamp with Local Time Zone
columns.

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.39 GetOracleTimeStampTZ
This method returns an OracleTimeStampTZ structure of the specified Oracle TimeStamp
WITH TIME ZONE column.

Declaration

// C#
public OracleTimeStampTZ GetOracleTimeStampTZ(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleTimeStampTZ value of the column.

Chapter 6
OracleDataReader Class

6-198

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

Used with the Oracle Type TimeStamp with Local Time Zone columns

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.40 GetOracleXmlType
This method returns an OracleXmlType object of the specified XMLType column.

Declaration

// C#
public OracleXmlType GetOracleXmlType(int index);

Parameters

• index

The zero-based column index.

Return Value

The OracleXmlType value of the column.

Exceptions

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.41 GetOracleValue
This method returns the specified column value as an ODP.NET type.

Declaration

// C#
public object GetOracleValue(int index);

Parameters

• index

The zero-based column index.

Chapter 6
OracleDataReader Class

6-199

Return Value

The value of the column as an ODP.NET type.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

Remarks

If the column is an Oracle object or Oracle collection column and a custom type
mapping exists, then a custom type is returned.

If the column is an Oracle REF column, then an OracleRef is returned.

6.8.4.42 GetOracleValues
This method gets all the column values as ODP.NET types.

Declaration

// C#
public int GetOracleValues(object[] values);

Parameters

• values

An array of objects to hold the ODP.NET types as the column values.

Return Value

The number of ODP.NET types in the values array.

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

Remarks

This method provides a way to retrieve all column values rather than retrieving each
column value individually.

The number of column values retrieved is the minimum of the length of the values
array and the number of columns in the result set.

6.8.4.43 GetOrdinal
This method returns the 0-based ordinal (or index) of the specified column name.

Chapter 6
OracleDataReader Class

6-200

Declaration

// C#
public override int GetOrdinal(string name);

Parameters

• name

The specified column name.

Return Value

The index of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed.

IndexOutOfRangeException - The column index is invalid.

Remarks

A case-sensitive search is made to locate the specified column by its name. If this
fails, then a case-insensitive search is made.

6.8.4.44 GetProviderSpecificFieldType
This method returns the provider-specific type of the specified column.

Declaration

// C#public override Type GetProviderSpecificFieldType(int index);

Parameters

• index

A zero-based column index.

Return Value

The provider-specific type of the specified column. This is a member of the
Oracle.DataAccess.Types namespace.

Exceptions

IndexOutOfRangeException - The column index is invalid.

InvalidOperationException - The reader is closed, or the specified column is a UDT but
no registered custom type mapping exists for the UDT.

Chapter 6
OracleDataReader Class

6-201

Remarks

GetProviderSpecficFieldType returns a type that corresponds to the value the
application obtains after invoking the GetProviderSpecificValue accessor on the
OracleDataReader. For example, if the column is a string, this method returns a .NET
Type object for an OracleString.

If the attribute is a UDT, this method may return any of the following:

• A .NET Type of the custom type, if the column is an Oracle object or Oracle
collection column and a custom type mapping exists.

• A .NET Type of OracleRef if the column is an Oracle REF.

6.8.4.45 GetProviderSpecificValue
This method returns an object that represents the underlying provider-specific value of
the specified ordinal.

Declaration

// C#
public override object GetProviderSpecificValue (int index);

Parameters

index

A zero-based column index.

Return Value

An Object that is a representation of the underlying provider-specific field type.

Exceptions

IndexOutOfRangeException - The column index is invalid.

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called or all rows have been read.

Remarks

If the column is an Oracle object or collection column, and a custom type mapping
exists, a custom type is returned.

If the column is an Oracle REF column, an OracleRef is returned.

6.8.4.46 GetProviderSpecificValues
This method returns an array of objects that represent the underlying provider-specific
values.

Declaration

// C#
public override int GetProviderSpecificValues(object [] values);

Chapter 6
OracleDataReader Class

6-202

Parameters

• values

An array of objects.

Return Value

The number of Object instances in the array.

Exceptions

InvalidOperationException - The reader is closed.

6.8.4.47 GetSchemaTable
This method returns a DataTable that describes the column metadata of the
OracleDataReader.

Declaration

// C#
public override DataTable GetSchemaTable();

Return Value

A DataTable that contains the metadata of the result set.

Implements

IDataReader

Exceptions

InvalidOperationException - The connection is closed or the reader is closed.

Remarks

The OracleDataReader.GetSchemaTable method returns the SchemaTable.

OracleDataReader SchemaTable

The OracleDataReader SchemaTable is a DataTable that describes the column metadata of
the OracleDataReader.

The value of ColumnSize can show value up to 32K depending on the definition of
VARCHAR2, NVARCHAR2, or RAW type columns in the table definition.

The columns of the SchemaTable are in the order shown.

Table 6-61 OracleDataReader SchemaTable

Name Name Type Description

ColumnName System.String The name of the column.

ColumnOrdinal System.Int32 The 0-based ordinal of the column.

Chapter 6
OracleDataReader Class

6-203

Table 6-61 (Cont.) OracleDataReader SchemaTable

Name Name Type Description

ColumnSize System.Int64 The maximum possible length of a value in the column.
ColumnSize value is determined as follows:

• CHAR and VARCHAR2 types:

in bytes - if IsByteSemantic boolean value is true

in characters - if IsByteSemantic boolean value is
false

• All other types:

in bytes
See "IsByteSemantic" for more information.

NumericPrecision System.Int16 The maximum precision of the column, if the column is a
numeric data type.

This column has valid values for Oracle NUMBER, Oracle
INTERVAL YEAR TO MONTH, and Oracle INTERVAL DAY TO
SECOND columns. For all other columns, the value is null.

NumericScale System.Int16 The scale of the column.

This column has valid values for Oracle NUMBER, Oracle
INTERVAL DAY TO SECOND, and the Oracle TIMESTAMP
columns. For all other columns, the value is null.

IsUnique System.Boolean Indicates whether or not the column is unique.

true if no two rows in the base table can have the same
value in this column, where the base table is the table
returned in BaseTableName.

IsUnique is guaranteed to be true if one of the following
applies in descending order of priority:

• the column constitutes a base table primary key by
itself and a NOT NULL constraint has been defined on
the column

• there is a unique constraint or a unique index that
applies only to this column and a NOT NULL constraint
has been defined on the column

• the column is an explicitly selected ROWID
IsUnique is false if the column can contain duplicate
values in the base table.

The default is false.

The value of this property is the same for each occurrence
of the base table column in the select list.

Chapter 6
OracleDataReader Class

6-204

Table 6-61 (Cont.) OracleDataReader SchemaTable

Name Name Type Description

IsKey System.Boolean Indicates whether or not the column is a key column.

true if the column is one of a set of columns in the rowset
that, taken together, uniquely identify the row. The set of
columns with IsKey set to true must uniquely identify a
row in the rowset. There is no requirement that this set of
columns is a minimal set of columns.

This set of columns can be generated from one of the
following in descending order of priority:

• A base table primary key with the following condition:
A NOT NULL constraint must be defined on the column
or on all of the columns, in the case of a composite
primary key.

• Any of the unique constraints or unique indexes with
the following condition: A NOT NULL constraint must be
defined on the column or on all of the columns, in the
case of a composite unique constraint or composite
unique index.

• A base table composite primary key with the following
condition: A NULL constraint must be defined on at
least one, but not all, of the columns.

• Any of the composite unique constraints or composite
unique indexes with the following condition: A NULL
constraint must be defined on at least one, but not all,
of the columns.

An explicitly selected ROWID. false if the column is not
required to uniquely identify the row. The value of this
property is the same for each occurrence of the base table
column in the select list.

IsRowID System.Boolean true if the column is a ROWID, otherwise false.

BaseColumnName System.String The name of the column in the database if an alias is used
for the column.

BaseSchemaName System.String The name of the schema in the database that contains the
column.

BaseTableName System.String The name of the table or view in the database that
contains the column.

DataType System.RuntimeType Maps to the common language runtime type.

ProviderType Oracle.DataAccess.
Client.OracleDbType

The database column type (OracleDbType) of the column.

AllowDBNull System.Boolean true if null values are allowed, otherwise false.

IsAliased System.Boolean true if the column is an alias; otherwise false.

IsByteSemantic System.Boolean IsByteSemantic is:

• true if the ColumnSize value uses bytes semantics
• false if ColumnSize uses character semantics
This value is always true when connected to a database
version earlier than Oracle9i.

IsExpression System.Boolean true if the column is an expression; otherwise false.

IsHidden System.Boolean true if the column is hidden; otherwise false.

Chapter 6
OracleDataReader Class

6-205

Table 6-61 (Cont.) OracleDataReader SchemaTable

Name Name Type Description

IsReadOnly System.Boolean true if the column is read-only; otherwise false.

IsLong System.Boolean true if the column is a LONG, LONG RAW, BLOB, CLOB, or
BFILE; otherwise false.

UdtTypeName System.String The type name of the UDT.

IsIdentity System.Boolean true if the column is an identity column; otherwise false.

IsAutoIncrement System.Boolean true if the column assigns values to new rows in fixed
increments; otherwise false.

Not Available in ODP.NET, Managed Driver

IdentityType OracleIdentityType An OracleIdentityType enumeration value that specifies
how the identity column values are generated; otherwise
DbNull.Value, if the column is not an identity column.

Not Available in ODP.NET, Managed Driver

Example

This example creates and uses the SchemaTable from the reader.

/* Database Setup, if you have not done so yet.
connect scott/tiger@oracle
CREATE TABLE empInfo (
empno NUMBER(4) PRIMARY KEY,
empName VARCHAR2(20) NOT NULL,
hiredate DATE,
salary NUMBER(7,2),
jobDescription Clob,
byteCodes BLOB
);

Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(1,'KING','SOFTWARE ENGR', '5657');
Insert into empInfo(EMPNO,EMPNAME,JOBDESCRIPTION,byteCodes) values
(2,'SCOTT','MANAGER', '5960');
commit;

*/
// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class GetSchemaTableSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 string cmdstr = "SELECT EMPNO,EMPNAME FROM EMPINFO where EMPNO = 1";

Chapter 6
OracleDataReader Class

6-206

 OracleCommand cmd = new OracleCommand(cmdstr, con);

 //get the reader
 OracleDataReader reader = cmd.ExecuteReader();

 //get the schema table
 DataTable schemaTable = reader.GetSchemaTable();

 //retrieve the first column info.
 DataRow row = schemaTable.Rows[0];

 //print out the column info
 Console.WriteLine("Column name: " + row["COLUMNNAME"]);
 Console.WriteLine("Precision: " + row["NUMERICPRECISION"]);
 Console.WriteLine("Scale: " + row["NUMERICSCALE"]);
 reader.Close();

 // Close the connection
 con.Close();
 }
}

6.8.4.48 GetString
This method returns the string value of the specified column.

Declaration

// C#
public override string GetString(int index);

Parameters

• index

The zero-based column index.

Return Value

The string value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

Call the IsDBNull method to check for null values before calling this method.

Chapter 6
OracleDataReader Class

6-207

If the column is an Oracle REF column, the string returned is a hexadecimal string that
represents the REF in the database.

6.8.4.49 GetTimeSpan
This method returns the TimeSpan value of the specified INTERVAL DAY TO SECOND column.

Declaration

// C#
public TimeSpan GetTimeSpan(int index);

Parameters

• index

The zero-based column index.

Return Value

The TimeSpan value of the column.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

IndexOutOfRangeException - The column index is invalid.

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.50 GetValue
This method returns the column value as a .NET type.

Declaration

// C#
public override object GetValue(int index);

Parameters

• index

The zero-based column index.

Return Value

The value of the column as a .NET type.

Chapter 6
OracleDataReader Class

6-208

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, all rows have been read, or no valid custom type mapping has been
specified for the Oracle Object or Oracle Collection column.

IndexOutOfRangeException - The column index is invalid.

Remarks

If the column is an Oracle Object or an Oracle Collection column, the .NET custom
type corresponding to the custom type mapping is returned.

If the column is an Oracle REF column, a hexidecimal value is returned as a .NET string
that represents the REF in the database.

If the UDT is NULL, DBNull.Value is returned

6.8.4.51 GetValues
This method gets all the column values as .NET types.

Declaration

// C#
public override int GetValues(object[] values);

Parameters

• values

An array of objects to hold the .NET types as the column values.

Return Value

The number of objects in the values array.

Implements

IDataRecord

Exceptions

InvalidOperationException - The connection is closed, the reader is closed, Read() has
not been called, or all rows have been read.

Remarks

This method provides a way to retrieve all column values rather than retrieving each
column value individually.

The number of column values retrieved is the minimum of the length of the values
array and the number of columns in the result set.

Chapter 6
OracleDataReader Class

6-209

6.8.4.52 GetXmlReader
This method returns the contents of an XMLType column as an instance of an .NET
XmlTextReader object.

Declaration

// C#
public XmlReader GetXmlReader(int index);

Parameters

• index

The zero-based column index.

Return Value

A .NET XmlTextReader.

Exceptions

InvalidCastException - The accessor method is invalid for this column type or the
column value is NULL.

Remarks

IsDBNull should be called to check for NULL values before calling this method.

6.8.4.53 IsDBNull
This method indicates whether or not the column value is NULL.

Declaration

// C#
public override bool IsDBNull(int index);

Parameters

• index

The zero-based column index.

Return Value

Returns true if the column is a NULL value; otherwise, returns false.

Implements

IDataRecord

Exceptions

InvalidOperationException - The reader is closed, Read() has not been called, or all
rows have been read.

IndexOutOfRangeException - The column index is invalid.

Chapter 6
OracleDataReader Class

6-210

Remarks

This method should be called to check for NULL values before calling the other
accessor methods.

Example

The code example for the OracleDataReader class includes the IsDBNull method. See
"Example".

6.8.4.54 NextResult
This method advances the data reader to the next result set.

Declaration

// C#
public override bool NextResult();

Return Value

Returns true if another result set exists; otherwise, returns false.

Implements

IDataReader

Exceptions

InvalidOperationException - The connection is closed or the reader is closed.

Remarks

NextResult is used when reading results from stored procedure execution that return
more than one result set.

6.8.4.55 Read
This method reads the next row in the result set.

Declaration

// C#
public override bool Read();

Return Value

Returns true if another row exists; otherwise, returns false.

Implements

IDataReader

Exceptions

InvalidOperationException - The connection is closed or the reader is closed.

Chapter 6
OracleDataReader Class

6-211

Remarks

The initial position of the data reader is before the first row. Therefore, the Read method
must be called to fetch the first row. The row that was just read is considered the
current row. If the OracleDataReader has no more rows to read, it returns false.

Example

The code example for the OracleDataReader class includes the Read method. See
"Example".

6.9 OracleDataSourceEnumerator Class
An OracleDataSourceEnumerator object allows applications to generically obtain a
collection of data sources to connect to.

Class Inheritance

System.Object

 System.DbDataSourceEnumerator

 Oracle.DataAccess.Client.OracleDataSourceEnumerator

Declaration

// C#
public sealed class OracleDataSourceEnumerator : DbDataSourceEnumerator

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using System.Data;
using System.Data.Common;
using Oracle.DataAccess.Client;

class DataSourceEnumSample
{
 static void Main()
 {
 string ProviderName = "Oracle.DataAccess.Client";

Chapter 6
OracleDataSourceEnumerator Class

6-212

 DbProviderFactory factory = DbProviderFactories.GetFactory(ProviderName);

 if (factory.CanCreateDataSourceEnumerator)
 {
 DbDataSourceEnumerator dsenum = factory.CreateDataSourceEnumerator();
 DataTable dt = dsenum.GetDataSources();

 // Print the first column/row entry in the DataTable
 Console.WriteLine(dt.Columns[0] + " : " + dt.Rows[0][0]);
 Console.WriteLine(dt.Columns[1] + " : " + dt.Rows[0][1]);
 Console.WriteLine(dt.Columns[2] + " : " + dt.Rows[0][2]);
 Console.WriteLine(dt.Columns[3] + " : " + dt.Rows[0][3]);
 Console.WriteLine(dt.Columns[4] + " : " + dt.Rows[0][4]);
 }
 else
 Console.Write("Data source enumeration is not supported by provider");
 }
}

6.9.1 OracleDataSourceEnumerator Members
OracleDataSourceEnumerator members are listed in the following tables.

OracleDataSourceEnumerator Constructor

OracleDataSourceEnumerator Public Methods are listed in Table 6-62.

Table 6-62 OracleDataSourceEnumerator Method

Method Description

OracleDataSourceEnumerator
Constructor

Instantiates a new instance of the
OracleDataSourceEnumerator class

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleDataSourceEnumerator Class

OracleDataSourceEnumerator Public Methods

OracleDataSourceEnumerator Public Methods are listed in Table 6-63.

Chapter 6
OracleDataSourceEnumerator Class

6-213

Table 6-63 OracleDataSourceEnumerator Method

Method Description

GetDataSources Returns a DataTable object with information on all
the TNS alias entries in the tnsnames.ora file and
entries retrieved from the LDAP servers configured
in ldap.ora if LDAP Naming is enabled

6.9.2 OracleDataSourceEnumerator Constructor
OracleDataSourceEnumerator constructor creates new instances of an
OracleDataSourceEnumerator class.

Declaration

// C#
public OracleDataSourceEnumerator();

6.9.3 OracleDataSourceEnumerator Public Methods
The OracleDataSourceEnumerator static method is listed in Table 6-64.

Table 6-64 OracleDataSourceEnumerator Method

Method Description

GetDataSources Returns a DataTable object with information on all
the TNS alias entries in the tnsnames.ora file

6.9.3.1 GetDataSources
This method returns a DataTable object with information on all the TNS alias entries in
the tnsnames.ora file and entries retrieved from the LDAP servers configured in
ldap.ora if LDAP naming is enabled.

Declaration

// C#
public override DataTable GetDataSources();

Return Value

A DataTable object.

Remarks

This method returns a DataTable object for each TNS alias entry that exists in the
tnsnames.ora file and each entry retrieved from the LDAP servers. If a tnsnames.ora file
is not found and LDAP Naming is not configured, then the returned DataTable object
will be empty.

Chapter 6
OracleDataSourceEnumerator Class

6-214

This method in ODP.NET, Managed Driver can fetch all the data source aliases from
an LDAP server, such as Oracle Internet Directory or Microsoft Active Directory. This
method in ODP.NET, Unmanaged Driver does not support retrieving data source
aliases from an LDAP server.

When Oracle Internet Directory (OID) is used for the TNS naming repository, there is a
limit of 1000 TNS entries retrieved.

The following columns are returned for each row, but only the InstanceName column is
populated.

• InstanceName (type: System.String)

• ServerName (type: System.String)

• ServiceName (type: System.String)

• Protocol (type: System.String)

• Port (type: System.String)

If the TNS and/or LDAP information changes for existing pooled connections, then
calling GetDataSources will not return these changes unless the pools have been
cleared.

6.10 OracleError Class
The OracleError class represents an error reported by Oracle.

Class Inheritance

System.Object

 Oracle.DataAccess.Client.OracleError

Declaration

// C#
public sealed class OracleError

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The OracleError class represents a warning or an error reported by Oracle.

If there are multiple errors, ODP.NET only returns the first error message on the stack.

Chapter 6
OracleError Class

6-215

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleErrorsSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 try
 {
 cmd.CommandText = "insert into notable values (99, 'MyText')";
 cmd.ExecuteNonQuery();
 }
 catch (OracleException ex)
 {
 Console.WriteLine("Record is not inserted into the database table.");

 foreach (OracleError error in ex.Errors)
 {
 Console.WriteLine("Error Message: " + error.Message);
 Console.WriteLine("Error Source: " + error.Source);
 }
 }
 }
}

6.10.1 OracleError Members
OracleError members are listed in the following tables.

OracleError Static Methods

The OracleError static method is listed in Table 6-65.

Table 6-65 OracleError Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleError Properties

OracleError properties are listed in Table 6-66.

Chapter 6
OracleError Class

6-216

Table 6-66 OracleError Properties

Property Description

ArrayBindIndex Specifies the row number of errors that occurred during the
Array Bind execution

DataSource Specifies the Oracle service name (TNS name) that identifies
the Oracle database

Message Specifies the message describing the error

Number Specifies the Oracle error number

Procedure Specifies the stored procedure that causes the error

Source Specifies the name of the data provider that generates the error

OracleError Methods

OracleError methods are listed in Table 6-67.

Table 6-67 OracleError Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Returns a string representation of the OracleError

6.10.2 OracleError Static Methods
The OracleError static method is listed in Table 6-68.

Table 6-68 OracleError Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.10.3 OracleError Properties
OracleError properties are listed in Table 6-69.

Table 6-69 OracleError Properties

Property Description

ArrayBindIndex Specifies the row number of errors that occurred during the Array Bind
execution

Chapter 6
OracleError Class

6-217

Table 6-69 (Cont.) OracleError Properties

Property Description

DataSource Specifies the Oracle service name (TNS name) that identifies the Oracle
database

Message Specifies the message describing the error

Number Specifies the Oracle error number

Procedure Specifies the stored procedure that causes the error

Source Specifies the name of the data provider that generates the error

6.10.3.1 ArrayBindIndex
This property specifies the row number of errors that occurred during the Array Bind
execution.

Declaration

// C#
public int ArrayBindIndex {get;}

Property Value

An int value that specifies the row number for errors that occurred during the Array
Bind execution.

Remarks

Default = 0.

This property is used for Array Bind operations only.

ArrayBindIndex represents the zero-based row number at which the error occurred
during an Array Bind operation. For example, if an array bind execution causes two
errors on the 2nd and 4th operations, two OracleError objects appear in the
OracleErrorCollection with the ArrayBindIndex property values 2 and 4 respectively.

6.10.3.2 DataSource
This property specifies the Oracle service name (TNS name) that identifies the Oracle
database.

Declaration

// C#
public string DataSource {get;}

Property Value

A string.

Chapter 6
OracleError Class

6-218

6.10.3.3 Message
This property specifies the message describing the error.

Declaration

// C#
public string Message {get;}

Property Value

A string.

6.10.3.4 Number
This property specifies the Oracle error number.

Declaration

// C#
public int Number {get;}

Property Value

An int.

6.10.3.5 Procedure
This property specifies the stored procedure that causes the error.

Declaration

// C#
public string Procedure {get;}

Property Value

The stored procedure name.

Remarks

Represents the stored procedure which creates this OracleError object.

6.10.3.6 Source
This property specifies the name of the data provider that generates the error.

Declaration

// C#
public string Source {get;}

Property Value

A string.

Chapter 6
OracleError Class

6-219

6.10.4 OracleError Methods
OracleError methods are listed in Table 6-70.

Table 6-70 OracleError Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Returns a string representation of the OracleError

6.10.4.1 ToString
Overrides Object

This method returns a string representation of the OracleError.

Declaration

// C#
public override string ToString();

Return Value

Returns a string with the format Ora- error number: Class.Method name error message
stack trace information.

Example

ORA-24333: zero iteration count

6.11 OracleErrorCollection Class
An OracleErrorCollection class represents a collection of all errors that are thrown by
the Oracle Data Provider for .NET.

Class Inheritance

System.Object

 System.ArrayList

 Oracle.DataAccess.Client.OracleErrorCollection

Declaration

// C#
public sealed class OracleErrorCollection : ArrayList

Chapter 6
OracleErrorCollection Class

6-220

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

A simple ArrayList that holds a list of OracleErrors.

If there are multiple errors, ODP.NET only returns the first error message on the stack.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleErrorCollectionSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 try
 {
 cmd.CommandText = "insert into notable values (99, 'MyText')";
 cmd.ExecuteNonQuery();
 }
 catch (OracleException ex)
 {
 Console.WriteLine("Record is not inserted into the database table.");

 foreach (OracleError error in ex.Errors)
 {
 Console.WriteLine("Error Message: " + error.Message);
 Console.WriteLine("Error Source: " + error.Source);
 }
 }
 }
}

Chapter 6
OracleErrorCollection Class

6-221

6.11.1 OracleErrorCollection Members
OracleErrorCollection members are listed in the following tables.

OracleErrorCollection Static Methods

OracleErrorCollection static methods are listed in Table 6-71.

Table 6-71 OracleErrorCollection Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleErrorCollection Properties

OracleErrorCollection properties are listed in Table 6-72.

Table 6-72 OracleErrorCollection Properties

Property Description

Capacity Inherited from System.Collections.ArrayList

Count Inherited from System.Collections.ArrayList

IsReadOnly Inherited from System.Collections.ArrayList

IsSynchronized Inherited from System.Collections.ArrayList

Item Inherited from System.Collections.ArrayList

OracleErrorCollection Public Methods

OracleErrorCollection public methods are listed in Table 6-73.

Table 6-73 OracleErrorCollection Public Methods

Public Method Description

CopyTo Inherited from System.Collections.ArrayList

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

6.11.2 OracleErrorCollection Static Methods
The OracleErrorCollection static method is listed in Table 6-74.

Chapter 6
OracleErrorCollection Class

6-222

Table 6-74 OracleErrorCollection Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.11.3 OracleErrorCollection Properties
OracleErrorCollection properties are listed in Table 6-75.

Table 6-75 OracleErrorCollection Properties

Property Description

Capacity Inherited from System.Collections.ArrayList

Count Inherited from System.Collections.ArrayList

IsReadOnly Inherited from System.Collections.ArrayList

IsSynchronized Inherited from System.Collections.ArrayList

Item Inherited from System.Collections.ArrayList

6.11.4 OracleErrorCollection Public Methods
OracleErrorCollection public methods are listed in Table 6-76.

Table 6-76 OracleErrorCollection Public Methods

Public Method Description

CopyTo Inherited from System.Collections.ArrayList

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

6.12 OracleException Class
The OracleException class represents an exception that is thrown when the Oracle
Data Provider for .NET encounters an error. Each OracleException object contains at
least one OracleError object in the Error property that describes the error or warning.

Class Inheritance

System.Object

 System.Exception

 System.SystemException

Chapter 6
OracleException Class

6-223

 System.Runtime.InteropServices.ExternalException

 System.Data.Common.DbException

 Oracle.DataAccess.Client.OracleException

Declaration

// C#
public sealed class OracleException : SystemException

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

If there are multiple errors, ODP.NET only returns the first error message on the stack.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleExceptionSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 try
 {
 cmd.CommandText = "insert into notable values (99, 'MyText')";
 cmd.ExecuteNonQuery();
 }
 catch (OracleException ex)
 {
 Console.WriteLine("Record is not inserted into the database table.");
 Console.WriteLine("Exception Message: " + ex.Message);
 Console.WriteLine("Exception Source: " + ex.Source);
 }

Chapter 6
OracleException Class

6-224

 }
}

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleException Members

• OracleException Methods

• OracleException Static Methods

• OracleException Static Methods

• OracleException Properties

• OracleException Methods

6.12.1 OracleException Members
OracleException members are listed in the following tables.

OracleException Static Methods

The OracleException static method is listed in Table 6-77.

Table 6-77 OracleException Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleException Properties

OracleException properties are listed in Table 6-78.

Table 6-78 OracleException Properties

Property Description

DataSource Specifies the TNS name that contains the information for
connecting to an Oracle instance

Errors Specifies a collection of one or more OracleError objects that
contain information about exceptions generated by the Oracle
database

HelpLink Inherited from System.Exception

InnerException Inherited from System.Exception

IsRecoverable Specifies whether the current operation producing this exception
can succeed if retried

Message Specifies the error messages that occur in the exception

Chapter 6
OracleException Class

6-225

Table 6-78 (Cont.) OracleException Properties

Property Description

Number Specifies the Oracle error number

OracleLogicalTransaction Returns an OracleLogicalTransaction object for a recoverable
error when using Transaction Guard

Procedure Specifies the stored procedure that cause the exception

Source Specifies the name of the data provider that generates the error

StackTrace Inherited from System.Exception

TargetSite Inherited from System.Exception

OracleException Methods

OracleException methods are listed in Table 6-79.

Table 6-79 OracleException Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.Exception

GetHashCode Inherited from System.Object

GetObjectData Sets the serializable info object with information about the
exception

GetType Inherited from System.Object

ToString Returns the fully qualified name of this exception

6.12.2 OracleException Static Methods
The OracleException static method is listed in Table 6-80.

Table 6-80 OracleException Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.12.3 OracleException Properties
OracleException properties are listed in Table 6-81.

Chapter 6
OracleException Class

6-226

Table 6-81 OracleException Properties

Property Description

DataSource Specifies the TNS name that contains the information for
connecting to an Oracle instance

Errors Specifies a collection of one or more OracleError objects that
contain information about exceptions generated by the Oracle
database

HelpLink Inherited from System.Exception

InnerException Inherited from System.Exception

IsRecoverable Specifies whether the current operation producing this exception
can succeed if retried

Message Specifies the error messages that occur in the exception

Number Specifies the Oracle error number

OracleLogicalTransaction Returns an OracleLogicalTransaction object for a recoverable
error when using Transaction Guard

Procedure Specifies the stored procedure that cause the exception

Source Specifies the name of the data provider that generates the error

StackTrace Inherited from System.Exception

TargetSite Inherited from System.Exception

6.12.3.1 DataSource
This property specifies the TNS name that contains the information for connecting to
an Oracle instance.

Declaration

// C#
public string DataSource {get;}

Property Value

The TNS name containing the connect information.

6.12.3.2 Errors
This property specifies a collection of one or more OracleError objects that contain
information about exceptions generated by the Oracle database.

Declaration

// C#
public OracleErrorCollection Errors {get;}

Property Value

An OracleErrorCollection.

Chapter 6
OracleException Class

6-227

Remarks

The Errors property contains at least one instance of OracleError objects.

6.12.3.3 IsRecoverable
This property specifies whether the current operation producing this exception can
succeed if retried.

Declaration

// C#
public bool IsRecoverable {get;}

Property Value

A bool.

Remarks

When a database outage occurs, such as during a network failure, the session
becomes unavailable and the client receives an error code. The client can have
difficulty determining whether the in-flight operation committed or needs to be
resubmitted. Oracle automatically determines whether an in-flight database operation
can be recovered or not using the IsRecoverable property. If IsRecoverable returns true
after an outage, then the application can retrieve the current operation status and
complete the transaction. If IsRecoverable returns false, then the application can
rollback the current operation and resubmit the transaction.

This property is often used in conjunction with Transaction Guard.

6.12.3.4 Message
Overrides Exception

This property specifies the error messages that occur in the exception.

Declaration

// C#
public override string Message {get;}

Property Value

A string.

Remarks

Message is a concatenation of all errors in the Errors collection. Each error message is
concatenated and is followed by a carriage return, except the last one.

6.12.3.5 Number
This property specifies the Oracle error number.

Chapter 6
OracleException Class

6-228

Declaration

// C#
public int Number {get;}

Property Value

The error number.

Remarks

This error number can be the topmost level of error generated by Oracle and can be a
provider-specific error number.

6.12.3.6 OracleLogicalTransaction
This property will returns an OracleLogicalTransaction object for a recoverable error
when using Transaction Guard.

Declaration

// C#
public OracleLogicalTransaction OracleLogicalTransaction {get;}

Property Value

An OracleLogicalTransaction.

Remarks

OracleLogicalTransaction is non-null when both of the following conditions are met:

• Transaction Guard is enabled on the service

• The exception is a recoverable error

OracleLogicalTransaction can be used to determine the transaction outcome by
looking at the two properties that it exposes: Committed and UserCallCompleted. If the
outcome is not known, then Committed and UserCallCompleted will be set to null.

If the outcome of a recoverable error could not be determined by ODP.NET and the
connection have not participated in a distributed transaction, then the
OracleLogicalTransactionId property of the OracleLogicalTransaction object will be
non-null and it can be used to determine the outcome by having the application
explicitly call the OracleLogicalTransaction.GetOutcome static method, if the database/
service is up.

6.12.3.7 Procedure
This property specifies the stored procedure that caused the exception.

Declaration

// C#
public string Procedure {get;}

Chapter 6
OracleException Class

6-229

Property Value

The stored procedure name.

6.12.3.8 Source
Overrides Exception

This property specifies the name of the data provider that generates the error.

Declaration

// C#
public override string Source {get;}

Property Value

The name of the data provider.

6.12.4 OracleException Methods
OracleException methods are listed in Table 6-82.

Table 6-82 OracleException Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.Exception

GetHashCode Inherited from System.Object

GetObjectData Sets the serializable info object with information about the
exception

GetType Inherited from System.Object

ToString Returns the fully qualified name of this exception

6.12.4.1 GetObjectData
Overrides Exception

This method sets the serializable info object with information about the exception.

Declaration

// C#
public override void GetObjectData(SerializationInfo info, StreamingContext
 context);

Parameters

• info

A SerializationInfo object.

Chapter 6
OracleException Class

6-230

• context

A StreamingContext object.

Remarks

The information includes DataSource, Message, Number, Procedure, Source, and
StackTrace.

6.12.4.2 ToString
Overrides Exception

This method returns the fully qualified name of this exception, the error message in
the Message property, the InnerException.ToString() message, and the stack trace.

Declaration

// C#
public override string ToString();

Return Value

The string representation of the exception.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class ToStringSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand object using the connection object
 OracleCommand cmd = con.CreateCommand();

 try
 {
 cmd.CommandText = "insert into notable values (99, 'MyText')";
 cmd.ExecuteNonQuery(); // This will throw an exception
 }
 catch (OracleException ex)
 {
 Console.WriteLine("Record is not inserted into the database table.");
 Console.WriteLine("ex.ToString() : " + ex.ToString());
 }
 }
}

Chapter 6
OracleException Class

6-231

6.13 OracleInfoMessageEventArgs Class
The OracleInfoMessageEventArgs class provides event data for the
OracleConnection.InfoMessage event. When any warning occurs in the database, the
OracleConnection.InfoMessage event is triggered along with the
OracleInfoMessageEventArgs object that stores the event data.

Class Inheritance

System.Object

 System.EventArgs

 Oracle.DataAccess.Client.OracleInfoMessageEventArgs

Declaration

// C#
public sealed class OracleInfoMessageEventArgs

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class InfoMessageSample
{
 public static void WarningHandler(object src,
 OracleInfoMessageEventArgs args)
 {
 Console.WriteLine("Source object is: " + src.GetType().Name);
 Console.WriteLine("InfoMessageArgs.Message is " + args.Message);
 Console.WriteLine("InfoMessageArgs.Source is " + args.Source);
 }
 static void Main()
 {
 OracleConnection con = new OracleConnection("User Id=scott;" +
 "Password=tiger;Data Source=oracle;");

Chapter 6
OracleInfoMessageEventArgs Class

6-232

 con.Open();

 OracleCommand cmd = con.CreateCommand();

 //Register to the InfoMessageHandler
 cmd.Connection.InfoMessage +=
 new OracleInfoMessageEventHandler(WarningHandler);

 cmd.CommandText =
 "create or replace procedure SelectWithNoInto(" +
 " empname in VARCHAR2) AS " +
 "BEGIN " +
 " select * from emp where ename = empname; " +
 "END SelectWithNoInto;";

 // Execute the statement that produces a warning
 cmd.ExecuteNonQuery();

 // Clean up
 cmd.Dispose();
 con.Dispose();
 }
}

6.13.1 OracleInfoMessageEventArgs Members
OracleInfoMessageEventArgs members are listed in the following tables.

OracleInfoMessageEventArgs Static Methods

The OracleInfoMessageEventArgs static methods is listed in Table 6-83.

Table 6-83 OracleInfoMessageEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleInfoMessageEventArgs Properties

The OracleInfoMessageEventArgs properties are listed in Table 6-84.

Table 6-84 OracleInfoMessageEventArgs Properties

Property Description

Errors Specifies the collection of errors generated by the data source

Message Specifies the error text generated by the data source

Source Specifies the name of the object that generated the error

OracleInfoMessageEventArgs Public Methods

The OracleInfoMessageEventArgs methods are listed in Table 6-85.

Chapter 6
OracleInfoMessageEventArgs Class

6-233

Table 6-85 OracleInfoMessageEventArgs Public Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Returns the string representation of the current instance

6.13.2 OracleInfoMessageEventArgs Static Methods
The OracleInfoMessageEventArgs static method is listed in Table 6-86.

Table 6-86 OracleInfoMessageEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.13.3 OracleInfoMessageEventArgs Properties
The OracleInfoMessageEventArgs properties are listed in Table 6-87.

Table 6-87 OracleInfoMessageEventArgs Properties

Property Description

Errors Specifies the collection of errors generated by the data source

Message Specifies the error text generated by the data source

Source Specifies the name of the object that generated the error

6.13.3.1 Errors
This property specifies the collection of errors generated by the data source.

Declaration

// C#
public OracleErrorCollection Errors {get;}

Property Value

The collection of errors.

6.13.3.2 Message
This property specifies the error text generated by the data source.

Chapter 6
OracleInfoMessageEventArgs Class

6-234

Declaration

// C#
public string Message {get;}

Property Value

The error text.

6.13.3.3 Source
This property specifies the name of the object that generated the error.

Declaration

// C#
public string Source {get;}

Property Value

The object that generated the error.

6.13.4 OracleInfoMessageEventArgs Public Methods
The OracleInfoMessageEventArgs methods are listed in Table 6-88.

Table 6-88 OracleInfoMessageEventArgs Public Methods

Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Returns the string representation of the current instance

6.13.4.1 ToString
Overrides Object

This method returns the string representation of the current instance.

Declaration

// C#
public override string ToString();

Return Value

Returns the OracleInfoMessageEventArgs value in a string representation.

Remarks

If the current instance has a null value, the returned string is null.

Chapter 6
OracleInfoMessageEventArgs Class

6-235

6.14 OracleInfoMessageEventHandler Delegate
The OracleInfoMessageEventHandler represents the signature of the method that
handles the OracleConnection.InfoMessage event.

Declaration

// C#
public delegate void OracleInfoMessageEventHandler(object sender,
 OracleInfoMessageEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Parameters

• sender

The source of the event.

• eventArgs

The OracleInfoMessageEventArgs object that contains the event data.

6.15 OracleLogicalTransaction Class
The OracleLogicalTransaction class provides detailed information about the logical
transaction status. Applications can conclusively determine the outcome of the running
transaction during the last database outage, then act accordingly to commit, complete,
or rollback the transaction.

Class Inheritance

System.Object

 System.MarshalByRefObject

 Oracle.DataAccess.Client.OracleLogicalTransaction

Declaration

// C#
public sealed class OracleLogicalTransaction

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

Chapter 6
OracleInfoMessageEventHandler Delegate

6-236

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

6.15.1 OracleLogicalTransaction Members
OracleLogicalTransaction members are listed in the following tables.

OracleLogicalTransaction Public Read-Only Properties

OracleLoigcalTransaction public read-only properties are listed in Table 6-89

Table 6-89 OracleLogicalTransaction Public Read-Only Properties

Property Description

Committed Specifies if the transaction was committed or not

ConnectionString Specifies a subset of the connection string used for the transaction
running during the last database outage

LogicalTransactionId The logical transaction id is used to determine the commit outcome of
the last transaction open in a database session following an outage.

UserCallCompleted Specifies if the transaction completed and that the information
returned may be incomplete and/or not all expected work was
completed

OracleLogicalTransaction Methods

OracleLoigcalTransaction methods are listed in Table 6-90

Table 6-90 OracleLogicalTransaction Methods

Property Description

Dispose This method releases any resources or memory allocated by the object

GetOutcome This method retrieves the transaction outcome from the database
server. The method will determine whether the transaction committed
and completed or not.

6.15.2 OracleLogicalTransaction Public Read-Only Properties
OracleLoigcalTransaction public read-only properties are listed in Table 6-91

Chapter 6
OracleLogicalTransaction Class

6-237

Table 6-91 OracleLogicalTransaction Public Read-Only Properties

Property Description

Committed Specifies if the transaction was committed or not

ConnectionString Specifies a subset of the connection string used for the transaction
running during the last database outage

LogicalTransactionId The logical transaction id is used to determine the commit outcome of
the last transaction open in a database session following an outage.

UserCallCompleted Specifies if the transaction completed and that the information
returned may be incomplete and/or not all expected work was
completed

6.15.2.1 Committed
This property specifies if the transaction was committed or not.

Declaration

// C#
public bool? Committed {get;}

Property Value

bool.

Remarks

If GetOutcome() is not called, the this property holds a null value.

Once GetOutcome() is called, then this property will hold either true or false.

Table 6-92 describes the possible outcomes of the Committed and UserCallCompleted
properties.

Table 6-92 Outcome of OracleLogicalTransaction Committed and
UserCallCompleted Properties

Committed Value UserCallCompleted Value Outcome

false false The call did not execute the commit.

true true The call did execute the commit and there
was no additional information to return and
no more work to do if that call was a
PL/SQL procedure.

Chapter 6
OracleLogicalTransaction Class

6-238

Table 6-92 (Cont.) Outcome of OracleLogicalTransaction Committed and
UserCallCompleted Properties

Committed Value UserCallCompleted Value Outcome

true false The transaction is committed, but the
information returned may be incomplete
and/or not all expected work was
completed. Examples of incomplete
information or incomplete work done
include: the number of rows modified when
using autocommit or commit on success,
parameter and function results when
calling PL/SQL procedures, or PL/SQL
procedures with more work to do after the
commit. In order to function correctly, .NET
applications that use data returned from
the commit must check the
UserCallCompleted value.

6.15.2.2 ConnectionString
This property specifies a subset of the connection string used for the transaction
running during the last database outage.

Declaration

// C#
public string ConnectionString {get;}

Property Value

The data source as a string.

Remarks

This connection string can be useful if the outcome is not known at the time the
exception is thrown due to a service that is down. In such a scenario, use the
connection string from this property along with the LogicalTransactionId to determine
the outcome of the logical transaction by invoking the static
OracleConnection.GetOutcome() method, once the database or service is back up.

The string returned by this property will contain only the following attributes: User Id,
Proxy user Id (if not null/empty), Data Source, and Pooling (which will be set to false).

6.15.2.3 LogicalTransactionId
The logical transaction id is used to determine the commit outcome of the last
transaction open in a database session following an outage.

Declaration

// C#
public byte LogicalTransactionId {get;}

Chapter 6
OracleLogicalTransaction Class

6-239

Property Value

byte[]

Remarks

This logical transaction id can be useful if the outcome is not known at the time the
exception is thrown due to a service that is down. In such a scenario, use the byte[]
returned from this property (along with the ConnectionString) to determine the outcome
of the logical transaction by invoking the static OracleConnection.GetOutcome() method,
once the database or service is back up.

This property will return a non-null value only when the outcome is not known. For
example when database or service is down, then the outcome is not known.

LogicalTransactionId property will return null if the connection has participated in a
distributed transaction.

6.15.2.4 UserCallCompleted
This property specifies if the transaction completed and that the information returned
may be incomplete and/or not all expected work was completed.

Declaration

// C#
public bool? UserCallCompleted {get;}

Property Value

bool

Remarks

If GetOutcome() is not called, the this property holds a null value.

Once GetOutcome() is called, then this property will hold either true or false.

Table 6-92 describes the possible outcomes of the Committed and UserCallCompleted
properties.

6.15.3 OracleLogicalTransaction Methods
OracleLoigcalTransaction methods are listed in Table 6-93

Table 6-93 OracleLogicalTransaction Methods

Property Description

Dispose This method releases any resources or memory allocated by the object

GetOutcome This method retrieves the transaction outcome from the database
server. The method will determine whether the transaction committed
and completed or not.

Chapter 6
OracleLogicalTransaction Class

6-240

6.15.3.1 Dispose
This method releases any resources or memory allocated by the object

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The Dispose method also closes the OracleLogicalTransaction object.

6.15.3.2 GetOutcome
The GetOutcome method retrieves the transaction outcome from the database server.
The method will determine whether the transaction committed and completed or not.

Overload List:

• GetOutcome(string constring, byte[] ltxid, out bool? bCommitted, out bool?
bUserCallCompleted)

The application can use this static method to determine the outcome if the
outcome was not known when the exception was raised.

The application will need to obtain the connection string and logical transaction
id from the OracleException.OracleLogicalTransaction object before calling this
method.

The supplied connection string will be used to establish a connection to the
database to determine the outcome of the provided logical transaction id.

ODP.NET implicitly calls GetOutcome under the following conditions:

– Transaction Guard is enabled on the service

– OracleException is raised

– The exception is a recoverable error

When all of the above is true, then the OracleException.OracleLogicalTransaction
property will be non-null.

If a connection is involved in a distributed transaction, then GetOutcome is not called
implicitly and the OracleException.OracleLogicalTransaction.LogicalTransactionId
property returns null.

Chapter 6
OracleLogicalTransaction Class

6-241

Note:

Once one server round-trip is incurred for the GetOutcome() invocation, the
PL/SQL ForceOutcome is never invoked again against the server for a given
OracleLogicalTransaction object.

6.16 OracleParameter Class
An OracleParameter object represents a parameter for an OracleCommand or a DataSet
column.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.Data.Common.DbParameter

 Oracle.DataAccess.Client.OracleParameter

Declaration

// C#
public sealed class OracleParameter : DbParameter, IDisposable, ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Exceptions

ArgumentException - The type binding is invalid.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleParameterSample
{

Chapter 6
OracleParameter Class

6-242

 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleParameter[] prm = new OracleParameter[3];

 // Create OracleParameter objects through OracleParameterCollection
 OracleCommand cmd = con.CreateCommand();

 cmd.CommandText = "select max(empno) from emp";
 int maxno = int.Parse(cmd.ExecuteScalar().ToString());

 prm[0] = cmd.Parameters.Add("paramEmpno", OracleDbType.Decimal,
 maxno + 10, ParameterDirection.Input);
 prm[1] = cmd.Parameters.Add("paramEname", OracleDbType.Varchar2,
 "Client", ParameterDirection.Input);
 prm[2] = cmd.Parameters.Add("paramDeptNo", OracleDbType.Decimal,
 10, ParameterDirection.Input);
 cmd.CommandText =
 "insert into emp(empno, ename, deptno) values(:1, :2, :3)";
 cmd.ExecuteNonQuery();

 Console.WriteLine("Record for employee id {0} has been inserted.",
 maxno + 10);
 }
}

6.16.1 OracleParameter Members
OracleParameter members are listed in the following tables.

OracleParameter Constructors

OracleParameter constructors are listed in Table 6-94.

Table 6-94 OracleParameter Constructors

Constructor Description

OracleParameter Constructors Instantiates a new instance of OracleParameter class
(Overloaded)

OracleParameter Static Methods

OracleParameter static methods are listed in Table 6-95.

Table 6-95 OracleParameter Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleParameter Properties

OracleParameter properties are listed in Table 6-96.

Chapter 6
OracleParameter Class

6-243

Table 6-96 OracleParameter Properties

Property Description

ArrayBindSize Specifies the input or output size of elements in Value property of a
parameter before or after an Array Bind or PL/SQL Associative Array
Bind execution

ArrayBindStatus Specifies the input or output status of elements in Value property of a
parameter before or after an Array Bind or PL/SQL Associative Array
Bind execution

CollectionType Specifies whether or not the OracleParameter represents a collection,
and if so, specifies the collection type

DbType Specifies the data type of the parameter using the Data.DbType
enumeration type

Direction Specifies whether the parameter is input-only, output-only, bi-
directional, or a stored function return value parameter

IsNullable Not supported

Offset Specifies the offset to the Value property or offset to the elements in the
Value property

OracleDbType Specifies the Oracle data type

OracleDbTypeEx Specifies the Oracle data type to bind the parameter as, but returns
a .NET type as output

ParameterName Specifies the name of the parameter

Precision Specifies the maximum number of digits used to represent the Value
property

Scale Specifies the number of decimal places to which Value property is
resolved

Size Specifies the maximum size, in bytes or characters, of the data
transmitted to or from the database. For PL/SQL Associative Array
Bind, Size specifies the maximum number of elements in PL/SQL
Associative Array

SourceColumn Specifies the name of the DataTable Column of the DataSet

SourceColumnNullM
apping

Specifies a value which indicates whether the source column is nullable

SourceVersion Specifies the DataRowVersion value to use when loading the Value
property of the parameter

Status Indicates the status of the execution related to the data in the Value
property

UdtTypeName Specifies the Oracle user-defined type name if the parameter is a user-
defined data type

Value Specifies the value of the Parameter

OracleParameter Public Methods

OracleParameter public methods are listed in Table 6-97.

Chapter 6
OracleParameter Class

6-244

Table 6-97 OracleParameter Public Methods

Public Method Description

Clone Creates a shallow copy of an OracleParameter object

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases allocated resources

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

ResetDbType Resets the type associated with the parameter so that
it can infer its type from the value passed in the
parameter

ResetOracleDbType Resets the type associated with the parameter so that
it can infer its type from the value passed in the
parameter

ToString Returns the string representation of the current
instance

6.16.2 OracleParameter Constructors
OracleParameter constructors instantiate new instances of the OracleParameter class.

Overload List:

• OracleParameter()

This constructor instantiates a new instance of OracleParameter class.

• OracleParameter(string, OracleDbType)

This constructor instantiates a new instance of OracleParameter class using the
supplied parameter name and Oracle data type.

• OracleParameter(string, object)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name and parameter value.

• OracleParameter(string, OracleDbType, ParameterDirection)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, and parameter direction.

• OracleParameter(string, OracleDbType, object, ParameterDirection)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, value, and direction.

• OracleParameter(string, OracleDbType, int)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, and size.

Chapter 6
OracleParameter Class

6-245

• OracleParameter(string, OracleDbType, int, string)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, size, and source column.

• OracleParameter(string, OracleDbType, int, ParameterDirection, bool, byte, byte,
string, DataRowVersion, object)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, size, direction, null indicator, precision, scale,
source column, source version and parameter value.

• OracleParameter(string, OracleDbType, int, object, ParameterDirection)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, size, value, and direction.

6.16.2.1 OracleParameter()
This constructor instantiates a new instance of OracleParameter class.

Declaration

// C#
public OracleParameter();

Remarks

Default Values:

• DbType - String

• ParameterDirection - Input

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0

• Size - 0

• SourceColumn - Empty string

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.2.2 OracleParameter(string, OracleDbType)
This constructor instantiates a new instance of OracleParameter class using the
supplied parameter name and Oracle data type.

Chapter 6
OracleParameter Class

6-246

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType oraType);

Parameters

• parameterName

The parameter name.

• oraType

The data type of the OracleParameter.

Remarks

Changing the DbType implicitly changes the OracleDbType.

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String

• ParameterDirection - Input

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0

• Size - 0

• SourceColumn - Empty string

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.2.3 OracleParameter(string, object)
This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name and parameter value.

Declaration

// C#
public OracleParameter(string parameterName, object obj);

Parameters

• parameterName

The parameter name.

Chapter 6
OracleParameter Class

6-247

• obj

The value of the OracleParameter.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String

• ParameterDirection - Input

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0

• Size - 0

• SourceColumn - Empty string

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.2.4 OracleParameter(string, OracleDbType, ParameterDirection)
This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, and parameter direction.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type,
 ParameterDirection direction);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• direction

The direction of the OracleParameter.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

Chapter 6
OracleParameter Class

6-248

• DbType - String

• ParameterDirection - Input

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0

• Size - 0

• SourceColumn - Empty string

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.2.5 OracleParameter(string, OracleDbType, object, ParameterDirection)
This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, value, and direction.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type, object obj,
 ParameterDirection direction);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• obj

The value of the OracleParameter.

• direction

The ParameterDirection value.

Remarks

Changing the DbType implicitly changes the OracleDbType.

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String

• ParameterDirection - Input

Chapter 6
OracleParameter Class

6-249

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0

• Size - 0

• SourceColumn - Empty string

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.2.6 OracleParameter(string, OracleDbType, int)
This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, and size.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type,
 int size);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• size

The size of the OracleParameter value.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String

• ParameterDirection - Input

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

Chapter 6
OracleParameter Class

6-250

• Precision - 0

• Size - 0

• SourceColumn - Empty string

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.2.7 OracleParameter(string, OracleDbType, int, string)
This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, size, and source column.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type, int size,
 string srcColumn);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• size

The size of the OracleParameter value.

• srcColumn

The name of the source column.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String

• ParameterDirection - Input

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0

• Size - 0

• SourceColumn - Empty string

Chapter 6
OracleParameter Class

6-251

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.2.8 OracleParameter(string, OracleDbType, int, ParameterDirection, bool,
byte, byte, string, DataRowVersion, object)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, size, direction, null indicator, precision, scale,
source column, source version and parameter value.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType oraType,
 int size, ParameterDirection direction, bool isNullable, byte
 precision, byte scale, string srcColumn, DataRowVersion srcVersion,
 object obj);

Parameters

• parameterName

The parameter name.

• oraType

The data type of the OracleParameter.

• size

The size of the OracleParameter value.

• direction

The ParameterDirection value.

• isNullable

An indicator that specifies if the parameter value can be null.

• precision

The precision of the parameter value.

• scale

The scale of the parameter value.

• srcColumn

The name of the source column.

• srcVersion

The DataRowVersion value.

• obj

The parameter value.

Chapter 6
OracleParameter Class

6-252

Exceptions

ArgumentException - The supplied value does not belong to the type of Value property in
any of the OracleTypes.

Remarks

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String

• ParameterDirection - Input

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0

• Size - 0

• SourceColumn - Empty string

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.2.9 OracleParameter(string, OracleDbType, int, object,
ParameterDirection)

This constructor instantiates a new instance of the OracleParameter class using the
supplied parameter name, data type, size, value, and direction.

Declaration

// C#
public OracleParameter(string parameterName, OracleDbType type, int size,
 object obj, ParameterDirection direction);

Parameters

• parameterName

The parameter name.

• type

The data type of the OracleParameter.

• size

The size of the OracleParameter value.

• obj

Chapter 6
OracleParameter Class

6-253

The value of the OracleParameter.

• direction

The ParameterDirection value.

Remarks

Changing the DbType implicitly changes the OracleDbType.

Unless explicitly set in the constructor, all the properties have the default values.

Default Values:

• DbType - String

• ParameterDirection - Input

• isNullable - true

• offset - 0

• OracleDbType - Varchar2

• ParameterAlias - Empty string

• ParameterName - Empty string

• Precision - 0

• Size - 0

• SourceColumn - Empty string

• SourceVersion - Current

• ArrayBindStatus - Success

• Value - null

6.16.3 OracleParameter Static Methods
The OracleParameter static method is listed in Table 6-98.

Table 6-98 OracleParameter Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.16.4 OracleParameter Properties
OracleParameter properties are listed in Table 6-99.

Chapter 6
OracleParameter Class

6-254

Table 6-99 OracleParameter Properties

Property Description

ArrayBindSize Specifies the input or output size of elements in Value property of a
parameter before or after an Array Bind or PL/SQL Associative Array
Bind execution

ArrayBindStatus Specifies the input or output status of elements in Value property of a
parameter before or after an Array Bind or PL/SQL Associative Array
Bind execution

CollectionType Specifies whether or not the OracleParameter represents a collection,
and if so, specifies the collection type

DbType Specifies the data type of the parameter using the Data.DbType
enumeration type

Direction Specifies whether the parameter is input-only, output-only, bi-
directional, or a stored function return value parameter

IsNullable Not supported

Offset Specifies the offset to the Value property or offset to the elements in the
Value property

OracleDbType Specifies the Oracle data type

OracleDbTypeEx Specifies the Oracle data type to bind the parameter as, but returns
a .NET type as output

ParameterName Specifies the name of the parameter

Precision Specifies the maximum number of digits used to represent the Value
property

Scale Specifies the number of decimal places to which Value property is
resolved

Size Specifies the maximum size, in bytes or characters, of the data
transmitted to or from the database. For PL/SQL Associative Array
Bind, Size specifies the maximum number of elements in PL/SQL
Associative Array

SourceColumn Specifies the name of the DataTable Column of the DataSet

SourceColumnNullM
apping

Specifies a value which indicates whether the source column is nullable

SourceVersion Specifies the DataRowVersion value to use when loading the Value
property of the parameter

Status Indicates the status of the execution related to the data in the Value
property

UdtTypeName Specifies the Oracle user-defined type name if the parameter is a user-
defined data type

Value Specifies the value of the Parameter

6.16.4.1 ArrayBindSize
This property specifies the maximum size, in bytes or characters, of the data for each
array element transmitted to or from the database. This property is used for Array Bind
or PL/SQL Associative Array execution.

Chapter 6
OracleParameter Class

6-255

Declaration

// C#
public int[] ArrayBindSize {get; set; }

Property Value

An array of int values specifying the size.

Remarks

Default = null.

This property is only used for variable size element types for an Array Bind or PL/SQL
Associative Array. For fixed size element types, this property is ignored.

Each element in the ArrayBindSize corresponds to the bind size of an element in the
Value property. Before execution, ArrayBindSize specifies the maximum size of each
element to be bound in the Value property. After execution, it contains the size of each
element returned in the Value property.

For binding a PL/SQL Associative Array, whose elements are of a variable-length
element type, as an InputOutput, Out, or ReturnValue parameter, this property must be
set properly. The number of elements in ArrayBindSize must be equal to the value
specified in the OracleParameter.Size property.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class ArrayBindSizeSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleParameter[] prm = new OracleParameter[3];

 // Create OracleParameter objects through OracleParameterCollection
 OracleCommand cmd = con.CreateCommand();

 cmd.CommandText = "select max(empno) from emp";
 int maxno = int.Parse(cmd.ExecuteScalar().ToString());

 // Set the ArrayBindCount for Array Binding
 cmd.ArrayBindCount = 2;

 prm[0] = cmd.Parameters.Add("paramEmpno", OracleDbType.Decimal,
 new int[2] {maxno + 10, maxno + 11}, ParameterDirection.Input);
 prm[1] = cmd.Parameters.Add("paramEname", OracleDbType.Varchar2,
 new string[2] {"Client1xxx", "Client2xxx"}, ParameterDirection.Input);
 prm[2] = cmd.Parameters.Add("paramDeptNo", OracleDbType.Decimal,
 new int[2] {10, 10}, ParameterDirection.Input);

Chapter 6
OracleParameter Class

6-256

 // Set the ArrayBindSize for prm[1]
 // These sizes indicate the maximum size of the elements in Value property
 prm[1].ArrayBindSize = new int[2];
 prm[1].ArrayBindSize[0] = 7; // Set ename = "Client1"
 prm[1].ArrayBindSize[1] = 7; // Set ename = "Client2"

 cmd.CommandText =
 "insert into emp(empno, ename, deptno) values(:1, :2, :3)";

 cmd.ExecuteNonQuery();

 Console.WriteLine("Record for employee id {0} has been inserted.",
 maxno + 10);
 Console.WriteLine("Record for employee id {0} has been inserted.",
 maxno + 11);

 prm[0].Dispose();
 prm[1].Dispose();
 prm[2].Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

6.16.4.2 ArrayBindStatus
This property specifies the input or output status of each element in the Value property
before or after an Array Bind or PL/SQL Associative Array execution.

Declaration

// C#
public OracleParameterStatus[] ArrayBindStatus { get; set; }

Property Value

An array of OracleParameterStatus enumerated values.

Exceptions

ArgumentOutofRangeException - The Status value specified is invalid.

Remarks

Default = null.

ArrayBindStatus is used for Array Bind and PL/SQL Associative Array execution only.

Before execution, ArrayBindStatus indicates the bind status of each element in the
Value property. After execution, it contains the execution status of each element in the
Value property.

6.16.4.3 CollectionType
This property specifies whether or not the OracleParameter represents a collection, and
if so, specifies the collection type.

Chapter 6
OracleParameter Class

6-257

Declaration

// C#
public OracleCollectionType CollectionType { get; set; }

Property Value

An OracleCollectionType enumerated value.

Exceptions

ArgumentException - The OracleCollectionType value specified is invalid.

Remarks

Default = OracleCollectionType.None. If OracleParameter is used to bind a PL/SQL
Associative Array, then CollectionType must be set to
OracleCollectionType.PLSQLAssociativeArray.

6.16.4.4 DbType
This property specifies the data type of the parameter using the Data.DbType
enumeration type.

Declaration

// C#
public override DbType DbType {get; set; }

Property Value

A DbType enumerated value.

Implements

IDataParameter

Exceptions

ArgumentException - The DbType value specified is invalid.

Remarks

Default = DbType.String

DbType is the data type of each element in the array if the OracleParameter object is
used for Array Bind or PL/SQL Associative Array Bind execution.

Due to the link between DbType and OracleDbType properties, if the DbType property is
set, the OracleDbType property is inferred from DbType.

6.16.4.5 Direction
This property specifies whether the parameter is input-only, output-only, bi-directional,
or a stored function return value parameter.

Chapter 6
OracleParameter Class

6-258

Declaration

// C#
public override ParameterDirection Direction { get; set; }

Property Value

A ParameterDirection enumerated value.

Implements

IDataParameter

Exceptions

ArgumentOutOfRangeException - The ParameterDirection value specified is invalid.

Remarks

Default = ParameterDirection.Input

Possible values: Input, InputOutput, Output, and ReturnValue.

6.16.4.6 IsNullable
This property is not supported.

Declaration

// C#
public override bool IsNullable { get; set; }

Implements

IDataParameter

Property Value

This property is not supported.

6.16.4.7 Offset
This property specifies the offset to the Value property.

Declaration

// C#
public int Offset { get; set; }

Property Value

An int that specifies the offset.

Exceptions

ArgumentOutOfRangeException - The Offset value specified is invalid.

Chapter 6
OracleParameter Class

6-259

Remarks

Default = 0

For Array Bind and PL/SQL Associative Array Bind, Offset applies to every element in
the Value property.

The Offset property is used for binary and string data types. The Offset property
represents the number of bytes for binary types and the number of characters for
strings. The count for strings does not include the terminating character if a null is
referenced. The Offset property is used by parameters of the following types:

• OracleDbType.BFile

• OracleDbType.Blob

• OracleDbType.LongRaw

• OracleDbType.Raw

• OracleDbType.Char

• OracleDbType.Clob

• OracleDbType.NClob

• OracleDbType.NChar

• OracleDbType.NVarchar2

• OracleDbType.Varchar2

6.16.4.8 OracleDbType
This property specifies the Oracle data type.

Declaration

// C#
public OracleDbType OracleDbType { get; set; }

Property Value

An OracleDbType enumerated value.

Remarks

Default = OracleDbType.Varchar2

If the OracleParameter object is used for Array Bind or PL/SQL Associative Array Bind
execution, OracleDbType is the data type of each element in the array.

The OracleDbType property and DbType property are linked. Therefore, setting the
OracleDbType property changes the DbType property to a supporting DbType.

6.16.4.9 OracleDbTypeEx
This property specifies the Oracle data type to bind the parameter as, but returns
a .NET type as output.

Chapter 6
OracleParameter Class

6-260

Declaration

// C#
public OracleDbType OracleDbTypeEx { get; set; }

Property Value

An OracleDbType enumerated value.

Remarks

This property is used by applications that need to bind a parameter value as an Oracle
type, but need a .NET type back for output. This property should be used with an
output or input/output parameter. For an input parameter, using OracleDbTypeEx has the
same affect as using OracleDbType. The .NET type that is returned for the output is
the .NET type that the Oracle type closely maps to.

6.16.4.10 ParameterName
This property specifies the name of the parameter.

Declaration

// C#
public override string ParameterName { get; set; }

Property Value

String

Implements

IDataParameter

Remarks

Default = null

Oracle supports ParameterName up to 30 characters.

6.16.4.11 Precision
This property specifies the maximum number of digits used to represent the Value
property.

Declaration

// C#
Public byte Precision { get; set; }

Property Value

byte

Remarks

Default = 0

Chapter 6
OracleParameter Class

6-261

The Precision property is used by parameters of type OracleDbType.Decimal.

Oracle supports Precision range from 0 to 38.

For Array Bind and PL/SQL Associative Array Bind, Precision applies to each element
in the Value property.

6.16.4.12 Scale
This property specifies the number of decimal places to which Value property is
resolved.

Declaration

// C#
public byte Scale { get; set; }

Property Value

byte

Remarks

Default = 0.

Scale is used by parameters of type OracleDbType.Decimal.

Oracle supports Scale between -84 and 127.

For Array Bind and PL/SQL Associative Array Bind, Scale applies to each element in
the Value property.

6.16.4.13 Size
This property specifies the maximum size, in bytes or characters, of the data
transmitted to or from the database.

Declaration

// C#
public override int Size { get; set;}

Property Value

int

Exceptions

ArgumentOutOfRangeException - The Size value specified is invalid.

InvalidOperationException - The Size = 0 when the OracleParameter object is used to
bind a PL/SQL Associative Array.

Remarks

For PL/SQL Associative Array Bind, Size specifies the maximum number of elements
in PL/SQL Associative Array.

Chapter 6
OracleParameter Class

6-262

If Size is not explicitly set, it is inferred from the actual size of the specified parameter
value when binding only for input parameters. Output parameters must have their size
defined explicitly.

The default value is 0.

Before execution, this property specifies the maximum size to be bound in the Value
property. After execution, it contains the size of the type in the Value property.

Size is used for parameters of the following types:

• OracleDbType.Blob

• OracleDbType.Char

• OracleDbType.Clob

• OracleDbType.LongRaw

• OracleDbType.NChar

• OracleDbType.NClob

• OracleDbType.NVarchar2

• OracleDbType.Raw

• OracleDbType.Varchar2

The value of Size is handled as follows:

• Fixed length data types: ignored

• Variable length data types: describes the maximum amount of data transmitted to
or from the database. For character data, Size is in number of characters and for
binary data, it is in number of bytes.

If the Size is not explicitly set, it is inferred from the actual size of the specified
parameter value when binding.

Note:

Size does not include the null terminating character for the string data.

If the OracleParameter object is used to bind a PL/SQL Associative Array, Size specifies
the maximum number of elements in the PL/SQL Associative Array. Before the
execution, this property specifies the maximum number of elements in the PL/SQL
Associative Array. After the execution, it specifies the current number of elements
returned in the PL/SQL Associative Array. For Output and InputOutput parameters and
return values, Size specifies the maximum number of elements in the PL/SQL
Associative Array.

ODP.NET does not support binding an empty PL/SQL Associative Array. Therefore,
Size cannot be set to 0 when the OracleParameter object is used to bind a PL/SQL
Associative Array.

6.16.4.14 SourceColumn
This property specifies the name of the DataTable Column of the DataSet.

Chapter 6
OracleParameter Class

6-263

Declaration

// C#
public override string SourceColumn { get; set; }

Property Value

A string.

Implements

IDataParameter

Remarks

Default = empty string

6.16.4.15 SourceColumnNullMapping
This property specifies a value which indicates whether the source column is nullable.

Declaration

// C#
public bool SourceColumnNullMapping { get; set; }

Property Value

Returns true if the source column can be nullified; otherwise, returns false.

Remarks

The default value is false.

6.16.4.16 SourceVersion
This property specifies the DataRowVersion value to use when loading the Value
property of the parameter.

Declaration

// C#
public override DataRowVersion SourceVersion { get; set; }

Property Value

DataRowVersion

Implements

IDataParameter

Exceptions

ArgumentOutOfRangeException - The DataRowVersion value specified is invalid.

Chapter 6
OracleParameter Class

6-264

Remarks

Default = DataRowVersion.Current

SourceVersion is used by the OracleDataAdapter.UpdateCommand() during the
OracleDataAdapter.Update to determine whether the original or current value is used for
a parameter value. This allows primary keys to be updated. This property is ignored by
the OracleDataAdapter.InsertCommand() and the OracleDataAdapter.DeleteCommand().

6.16.4.17 Status
This property indicates the status of the execution related to the data in the Value
property.

Declaration

// C#
public OracleParameterStatus Status { get; set; }

Property Value

An OracleParameterStatus enumerated value.

Exceptions

ArgumentOutOfRangeException - The Status value specified is invalid.

Remarks

Default = OracleParameterStatus.Success

Before execution, this property indicates the bind status related to the Value property.
After execution, it returns the status of the execution.

Status indicates if:

• A NULL is fetched from a column.

• Truncation has occurred during the fetch; then Value was not big enough to hold
the data.

• A NULL is to be inserted into a database column; then Value is ignored, and a NULL
is inserted into a database column.

This property is ignored for Array Bind and PL/SQL Associative Array Bind.
Instead, ArrayBindStatus property is used.

6.16.4.18 UdtTypeName
This property specifies the Oracle user-defined type name if the parameter is a user-
defined data type.

Declaration

// C#
public string UdtTypeName {get; set;}

Chapter 6
OracleParameter Class

6-265

Property Value

Name of the Oracle UDT.

Remarks

The UdtTypeName property corresponds to the user-defined type name of the parameter.
This property must always be specified if the parameter is a user-defined type. Note
that when a custom object is provided as an input parameter value, it is converted to
the Oracle UDT that is specified by the custom type mapping on the connection used
to execute the command.The Oracle UDT specified by the custom type mapping and
by the OracleParamter.UdtTypeName property differs if the application binds a custom
object that represents a subtype of the parameter type.

6.16.4.19 Value
This property specifies the value of the Parameter.

Declaration

// C#
public override object Value { get; set; }

Property Value

An object.

Implements

IDataParameter

Exceptions

ArgumentException - The Value property specified is invalid.

InvalidArgumentException- The Value property specified is invalid.

Remarks

Default = null

If the OracleParameter object is used for Array Bind or PL/SQL Associative Array, Value
is an array of parameter values.

The Value property can be overwritten by OracleDataAdapter.Update().

The provider attempts to convert any type of value if it supports the IConvertible
interface. Conversion errors occur if the specified type is not compatible with the value.

When sending a null parameter value to the database, the user must specify DBNull,
not null. The null value in the system is an empty object that has no value. DBNull is
used to represent null values. The user can also specify a null value by setting Status
to OracleParameterStatus.NullValue. In this case, the provider sends a null value to the
database.

If neither OracleDbType nor DbType are set, their values can be inferred by Value. Please
see the following for related information:

Chapter 6
OracleParameter Class

6-266

• Tables in section "Inference of DbType and OracleDbType from Value"

• "ArrayBindCount "

• "ArrayBindSize "

• "ArrayBindStatus "

• "OracleDbType Enumeration"

For input parameters the value is:

• Bound to the OracleCommand that is sent to the database.

• Converted to the data type specified in OracleDbType or DbType when the provider
sends the data to the database.

For output parameters the value is:

• Set on completion of the OracleCommand (true for return value parameters also).

• Set to the data from the database, to the data type specified in OracleDbType or
DbType.

When array binding is used with:

• Input parameter - Value should be set to an array of values.
OracleCommand.ArrayBindCount should be set to a value that is greater than zero to
indicate the number of elements to be bound.

The number of elements in the array should be equal to the
OracleCommand.ArrayBindCount property; otherwise, their minimum value is used to
bind the elements in the array.

• Output parameter - OracleCommand.ArrayBindCount should be set to a value that is
greater than zero to indicate the number of elements to be retrieved (for SELECT
statements).

When PL/SQL Associative Array binding is used with:

• Input parameter – Value should be set to an array of values. CollectionType should
be set to OracleCollection.PLSQLAssociativeArray.Size should be set to specify the
possible maximum number of array elements in the PL/SQL Associative Array. If
Size is smaller than the number of elements in Value, then Size specifies the
number of elements in the Value property to be bound.

• Output parameter - CollectionType should be set to
OracleCollection.PLSQLAssociativeArray. Size should be set to specify the
maximum number of array elements in PL/SQL Associative Array.

Each parameter should have a value. To bind a parameter with a null value, set Value
to DBNull.Value, or set Status to OracleParameterStatus. NullInsert.

6.16.5 OracleParameter Public Methods
OracleParameter public methods are listed in Table 6-100.

Table 6-100 OracleParameter Public Methods

Public Method Description

Clone Creates a shallow copy of an OracleParameter object

Chapter 6
OracleParameter Class

6-267

Table 6-100 (Cont.) OracleParameter Public Methods

Public Method Description

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases allocated resources

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

ResetDbType Resets the type associated with the parameter so that
it can infer its type from the value passed in the
parameter

ResetOracleDbType Resets the type associated with the parameter so that
it can infer its type from the value passed in the
parameter

ToString Returns the string representation of the current
instance

6.16.5.1 Clone
This method creates a shallow copy of an OracleParameter object.

Declaration

// C#
public object Clone();

Return Value

An OracleParameter object.

Implements

ICloneable

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class CloneSample
{
 static void Main()
 {

Chapter 6
OracleParameter Class

6-268

 OracleParameter prm1 = new OracleParameter();

 // Prints "prm1.ParameterName = "
 Console.WriteLine("prm1.ParameterName = " + prm1.ParameterName);

 // Set the ParameterName before cloning
 prm1.ParameterName = "MyParam";

 // Clone the OracleParameter
 OracleParameter prm2 = (OracleParameter) prm1.Clone();

 // Prints "prm2.ParameterName = MyParam"
 Console.WriteLine("prm2.ParameterName = " + prm2.ParameterName);

 prm1.Dispose();
 prm2.Dispose();
 }
}

6.16.5.2 Dispose
This method releases resources allocated for an OracleParameter object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

6.16.5.3 ResetDbType
This method resets the type associated with the parameter so that it can infer its type
from the value passed in the parameter.

Declaration

// C#
public override void ResetDbType();

Remarks

If an application does not set the DbType or OracleDbType properties of an
OracleParameter object, then these values are inferred from the value set by the
application to that OracleParameter object. Calling ResetDbType method resets these
properties so that OracleParameter can again infer its type from the value passed into
the OracleParameter. Calling this method affects both the DbType and OracleDbType
properties of the OracleParameter object.

6.16.5.4 ResetOracleDbType
This method resets the type associated with the parameter so that it can infer its type
from the value passed in the parameter.

Chapter 6
OracleParameter Class

6-269

Declaration

// C#
public override void ResetOracleDbType();

Remarks

If an application does not set the DbType or OracleDbType properties of an
OracleParameter object, then these values are inferred from the value set by the
application to that OracleParameter object. Calling the ResetOracleDbType method resets
these properties so that OracleParameter can again infer its type from the value passed
into the OracleParameter. Calling this method affects both the DbType and OracleDbType
properties of the OracleParameter object.

6.16.5.5 ToString
Overrides Object

This method returns the string representation of the current instance.

Declaration

// C#
public override string ToString();

Return Value

Returns the OracleParameter value in a string representation.

Remarks

If the current instance has a null value, the returned string is null.

6.17 OracleParameterCollection Class
An OracleParameterCollection class represents a collection of all parameters relevant
to an OracleCommand object and their mappings to DataSet columns.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.Data.Common.DbParameterCollection

 Oracle.DataAccess.Client.OracleParameterCollection

Declaration

// C#
public sealed class OracleParameterCollection : DbParameterCollection,
 IDataParameterCollection, IList, ICollection, IEnumerable

Chapter 6
OracleParameterCollection Class

6-270

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The position of an OracleParameter added into the OracleParameterCollection is the
binding position in the SQL statement. Position is 0-based and is used only for
positional binding. If named binding is used, the position of an OracleParameter in the
OracleParameterCollection is ignored.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleParameterCollectionSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleParameter[] prm = new OracleParameter[3];

 // Create OracleParameter objects through OracleParameterCollection
 OracleCommand cmd = con.CreateCommand();

 cmd.CommandText = "select max(empno) from emp";
 int maxno = int.Parse(cmd.ExecuteScalar().ToString());

 prm[0] = cmd.Parameters.Add("paramEmpno", OracleDbType.Decimal,
 maxno + 10, ParameterDirection.Input);
 prm[1] = cmd.Parameters.Add("paramEname", OracleDbType.Varchar2,
 "Client", ParameterDirection.Input);
 prm[2] = cmd.Parameters.Add("paramDeptNo", OracleDbType.Decimal,
 10, ParameterDirection.Input);
 cmd.CommandText =
 "insert into emp(empno, ename, deptno) values(:1, :2, :3)";
 cmd.ExecuteNonQuery();

 Console.WriteLine("Record for employee id {0} has been inserted.",
 maxno + 10);

 // Remove all parameters from OracleParameterCollection

Chapter 6
OracleParameterCollection Class

6-271

 cmd.Parameters.Clear();

 prm[0].Dispose();
 prm[1].Dispose();
 prm[2].Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

6.17.1 OracleParameterCollection Members
OracleParameterCollection members are listed in the following tables.

OracleParameterCollection Static Methods

OracleParameterCollection static methods are listed in Table 6-101.

Table 6-101 OracleParameterCollection Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleParameterCollection Properties

OracleParameterCollection properties are listed in Table 6-102.

Table 6-102 OracleParameterCollection Properties

Property Description

Count Specifies the number of OracleParameters in the
collection

Item Gets and sets the OracleParameter object
(Overloaded)

IsFixedSize Gets a value that indicates whether the
OracleParameterCollection has a fixed size

IsReadOnly Gets a value that indicates whether the
OracleParameterCollection is read-only

IsSynchronized Gets a value that indicates whether the
OracleParameterCollection is synchronized.

SyncRoot Gets an object that can be used to synchronize access
to the OracleParameterCollection

OracleParameterCollection Public Methods

OracleParameterCollection public methods are listed in Table 6-103.

Chapter 6
OracleParameterCollection Class

6-272

Table 6-103 OracleParameterCollection Public Methods

Public Method Description

Add Adds objects to the collection (Overloaded)

AddRange Adds elements to the end of the
OracleParameterCollection

Clear Removes all the OracleParameter objects from the
collection

Contains Indicates whether or not objects exist in the collection
(Overloaded)

CopyTo Copies OracleParameter objects from the collection,
starting with the supplied index to the supplied array

CreateObjRef Inherited from System.MarshalByRefObject

Equals Inherited from System.Object (Overloaded)

GetEnumerator Returns an enumerator that iterates through the
OracleParameterCollection

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

IndexOf Returns the index of the objects in the collection
(Overloaded)

Insert Inserts the supplied OracleParameter to the collection
at the specified index

Remove Removes objects from the collection

RemoveAt Removes objects from the collection by location
(Overloaded)

ToString Inherited from System.Object

6.17.2 OracleParameterCollection Static Methods
The OracleParameterCollection static method is listed in Table 6-104.

Table 6-104 OracleParameterCollection Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.17.3 OracleParameterCollection Properties
OracleParameterCollection properties are listed in Table 6-105.

Chapter 6
OracleParameterCollection Class

6-273

Table 6-105 OracleParameterCollection Properties

Property Description

Count Specifies the number of OracleParameters in the
collection

Item Gets and sets the OracleParameter object (Overloaded)

IsFixedSize Gets a value that indicates whether the
OracleParameterCollection has a fixed size

IsReadOnly Gets a value that indicates whether the
OracleParameterCollection is read-only

IsSynchronized Gets a value that indicates whether the
OracleParameterCollection is synchronized.

SyncRoot Gets an object that can be used to synchronize access to
the OracleParameterCollection

6.17.3.1 Count
This property specifies the number of OracleParameter objects in the collection.

Declaration

// C#
public override int Count {get;}

Property Value

The number of OracleParameter objects.

Implements

ICollection

Remarks

Default = 0

6.17.3.2 Item
Item gets and sets the OracleParameter object.

Overload List:

• Item[int]

This property gets and sets the OracleParameter object at the index specified by the
supplied parameterIndex.

• Item[string]

This property gets and sets the OracleParameter object using the parameter name
specified by the supplied parameterName.

Chapter 6
OracleParameterCollection Class

6-274

6.17.3.3 Item[int]
This property gets and sets the OracleParameter object at the index specified by the
supplied parameterIndex.

Declaration

// C#
public object Item[int parameterIndex] {get; set;}

Property Value

An object.

Implements

IList

Exceptions

IndexOutOfRangeException - The supplied index does not exist.

Remarks

The OracleParameterCollection class is a zero-based index.

6.17.3.4 Item[string]
This property gets and sets the OracleParameter object using the parameter name
specified by the supplied parameterName.

Declaration

// C#
public OracleParameter Item[string parameterName] {get; set;};

Property Value

An OracleParameter.

Implements

IDataParameterCollection

Exceptions

IndexOutOfRangeException - The supplied parameter name does not exist.

6.17.3.5 IsFixedSize
IsFixedSize gets a value that indicates whether the OracleParameterCollection has a
fixed size.

Chapter 6
OracleParameterCollection Class

6-275

Declaration

// C#
public override bool IsFixedSize { get; };

Property Value

Returns true if the OracleParameterCollection has a fixed size; otherwise false.

Implements

IList

6.17.3.6 IsReadOnly
IsReadOnly gets a value that indicates whether the OracleParameterCollection is read-
only.

Declaration

// C#
public override bool IsReadOnly { get; };

Property Value

Returns true if the OracleParameterCollection is read only; otherwise false.

Implements

IList

6.17.3.7 IsSynchronized
IsSynchronized gets a value that indicates whether the OracleParameterCollection is
synchronized.

Declaration

// C#
public override bool IsSynchronized { get; };

Property Value

Returns true if the OracleParameterCollection is synchronized; otherwise false.

Implements

ICollection

6.17.3.8 SyncRoot
SyncRoot gets an object that can be used to synchronize access to the
OracleParameterCollection.

Chapter 6
OracleParameterCollection Class

6-276

Declaration

// C#
public override Object SyncRoot { get; };

Property Value

An object that can be used to synchronize access to the OracleParameterCollection.

Implements

ICollection

6.17.4 OracleParameterCollection Public Methods
OracleParameterCollection public methods are listed in Table 6-106.

Table 6-106 OracleParameterCollection Public Methods

Public Method Description

Add Adds objects to the collection (Overloaded)

AddRange Adds elements to the end of the
OracleParameterCollection

Clear Removes all the OracleParameter objects from the
collection

Contains Indicates whether or not objects exist in the collection
(Overloaded)

CopyTo Copies OracleParameter objects from the collection,
starting with the supplied index to the supplied array

CreateObjRef Inherited from System.MarshalByRefObject

Equals Inherited from System.Object (Overloaded)

GetEnumerator Returns an enumerator that iterates through the
OracleParameterCollection

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

IndexOf Returns the index of the objects in the collection
(Overloaded)

Insert Inserts the supplied OracleParameter to the collection
at the specified index

Remove Removes objects from the collection

RemoveAt Removes objects from the collection by location
(Overloaded)

ToString Inherited from System.Object

Chapter 6
OracleParameterCollection Class

6-277

6.17.4.1 Add
Add adds objects to the collection.

Overload List:

• Add(object)

This method adds the supplied object to the collection.

• Add(OracleParameter)

This method adds the supplied OracleParameter object to the collection.

• Add(string, object)

This method adds an OracleParameter object to the collection using the supplied
name and object value.

• Add(string, OracleDbType)

This method adds an OracleParameter object to the collection using the supplied
name and database type.

• Add(string, OracleDbType, ParameterDirection)

This method adds an OracleParameter object to the collection using the supplied
name, database type, and direction.

• Add(string, OracleDbType, object, ParameterDirection)

This method adds an OracleParameter object to the collection using the supplied
name, database type, parameter value, and direction.

• Add(string, OracleDbType, int, object, ParameterDirection)

This method adds an OracleParameter object to the collection using the supplied
name, database type, size, parameter value, and direction.

• Add(string, OracleDbType, int)

This method adds an OracleParameter object to the collection using the supplied
name, database type, and size.

• Add (string, OracleDbType, int, string)

This method adds an OracleParameter object to the collection using the supplied
name, database type, size, and source column.

• Add(string, OracleDbType, int, ParameterDirection, bool, byte, byte, string,
DataRowVersion, object)

This method adds an OracleParameter object to the collection using the supplied
name, database type, size, direction, null indicator, precision, scale, source
column, source version, and parameter value.

Chapter 6
OracleParameterCollection Class

6-278

See Also:

– "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

– OracleParameterCollection Class

– OracleParameterCollection Members

6.17.4.2 Add(object)
This method adds the supplied object to the collection.

Declaration

// C#
public override int Add(object obj);

Parameters

• obj

The supplied object.

Return Value

The index at which the new OracleParameter is added.

Implements

IList

Remarks

InvalidCastException - The supplied obj cannot be cast to an OracleParameter object.

6.17.4.3 Add(OracleParameter)
This method adds the supplied OracleParameter object to the collection.

Declaration

// C#
public OracleParameter Add(OracleParameter paramObj);

Parameters

• paramObj

The supplied OracleParameter object.

Return Value

The newly created OracleParameter object which was added to the collection.

Chapter 6
OracleParameterCollection Class

6-279

6.17.4.4 Add(string, object)
This method adds an OracleParameter object to the collection using the supplied name
and object value

Declaration

// C#
public OracleParameter Add(string name, object val);

Parameters

• name

The parameter name.

• val

The OracleParameter value.

Return Value

The newly created OracleParameter object which was added to the collection.

6.17.4.5 Add(string, OracleDbType)
This method adds an OracleParameter object to the collection using the supplied name
and database type.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

Return Value

The newly created OracleParameter object which was added to the collection.

6.17.4.6 Add(string, OracleDbType, ParameterDirection)
This method adds an OracleParameter object to the collection using the supplied name,
database type, and direction.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType,
 ParameterDirection direction);

Chapter 6
OracleParameterCollection Class

6-280

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• direction

The OracleParameter direction.

Return Value

The newly created OracleParameter object which was added to the collection.

6.17.4.7 Add(string, OracleDbType, object, ParameterDirection)
This method adds an OracleParameter object to the collection using the supplied name,
database type, parameter value, and direction.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, object val,
 ParameterDirection dir);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• val

The OracleParameter value.

• dir

The ParameterDirection value.

Return Value

The newly created OracleParameter object which was added to the collection.

Example

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class AddSample
{
 static void Main()

Chapter 6
OracleParameterCollection Class

6-281

 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm = cmd.Parameters.Add(
 "MyParam", OracleDbType.Decimal, 1, ParameterDirection.Input);

 // Prints "cmd.Parameters.Count = 1"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 prm.Dispose();
 cmd.Dispose();
 }
}

6.17.4.8 Add(string, OracleDbType, int, object, ParameterDirection)
This method adds an OracleParameter object to the collection using the supplied name,
database type, size, parameter value, and direction.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, int size,
 object val, ParameterDirection dir;

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• size

The size of OracleParameter.

• val

The OracleParameter value.

• dir

The ParameterDirection value.

Return Value

The newly created OracleParameter object which was added to the collection.

6.17.4.9 Add(string, OracleDbType, int)
This method adds an OracleParameter object to the collection using the supplied name,
database type, and size.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, int size);

Chapter 6
OracleParameterCollection Class

6-282

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• size

The size of OracleParameter.

Return Value

The newly created OracleParameter object which was added to the collection.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class AddSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm = cmd.Parameters.Add(
 "MyParam", OracleDbType.Varchar2, 10);

 // Prints "cmd.Parameters.Count = 1"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 prm.Dispose();
 cmd.Dispose();
 }
}

6.17.4.10 Add (string, OracleDbType, int, string)
This method adds an OracleParameter object to the collection using the supplied name,
database type, size, and source column.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, int size,
 string srcColumn);

Parameters

• name

The parameter name.

• dbType

Chapter 6
OracleParameterCollection Class

6-283

The data type of the OracleParameter.

• size

The size of OracleParameter.

• srcColumn

The name of the source column.

Return Value

An OracleParameter.

6.17.4.11 Add(string, OracleDbType, int, ParameterDirection, bool, byte, byte,
string, DataRowVersion, object)

This method adds an OracleParameter object to the collection using the supplied name,
database type, size, direction, null indicator, precision, scale, source column, source
version, and parameter value.

Declaration

// C#
public OracleParameter Add(string name, OracleDbType dbType, int size,
 ParameterDirection dir, bool isNullable, byte precision,
 byte scale, string srcColumn, DataRowVersion version, object val);

Parameters

• name

The parameter name.

• dbType

The data type of the OracleParameter.

• size

The size of OracleParameter.

• dir

The ParameterDirection value.

• isNullable

An indicator that specifies if the parameter value can be null.

• precision

The precision of the parameter value.

• scale

The scale of the parameter value.

• srcColumn

The name of the source column.

• version

The DataRowVersion value.

Chapter 6
OracleParameterCollection Class

6-284

• val

The parameter value.

Return Value

The newly created OracleParameter object which was added to the collection.

Exceptions

ArgumentException - The type of supplied val does not belong to the type of Value
property in any of the ODP.NET Types.

6.17.4.12 AddRange
This method adds elements to the end of the OracleParameterCollection.

Declaration

// C#
public override void AddRange(Array paramArray);

Parameters

paramArray

An array of OracleParameter objects.

Exceptions

ArgumentNullException - The input parameter is null.

6.17.4.13 Clear
This method removes all the OracleParameter objects from the collection.

Declaration

// C#
public override void Clear();

Implements

IList

Example

// C#

using System;
using Oracle.DataAccess.Client;

class ClearSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

Chapter 6
OracleParameterCollection Class

6-285

 // Add parameter to the OracleParameterCollection
 OracleParameter prm = cmd.Parameters.Add("MyParam", OracleDbType.Decimal);

 // Prints "cmd.Parameters.Count = 1"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 // Clear all parameters in the OracleParameterCollection
 cmd.Parameters.Clear();

 // Prints "cmd.Parameters.Count = 0"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 prm.Dispose();
 cmd.Dispose();
 }
}

6.17.4.14 Contains
Contains indicates whether or not the supplied object exists in the collection.

Overload List:

• Contains(object)

This method indicates whether or not the supplied object exists in the collection.

• Contains(string)

This method indicates whether or not an OracleParameter object exists in the
collection using the supplied string.

6.17.4.15 Contains(object)
This method indicates whether or not the supplied object exists in the collection.

Declaration

// C#
public override bool Contains(object obj)

Parameters

• obj

The object.

Return Value

A bool that indicates whether or not the OracleParameter specified is inside the
collection.

Implements

IList

Exceptions

InvalidCastException - The supplied obj is not an OracleParameter object.

Chapter 6
OracleParameterCollection Class

6-286

Remarks

Returns true if the collection contains the OracleParameter object; otherwise, returns
false.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class ContainsSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm1 = cmd.Parameters.Add("MyParam", OracleDbType.Decimal);

 // Check if the OracleParameterCollection contains prm1
 bool bContains = cmd.Parameters.Contains(prm1);

 // Prints "bContains = True"
 Console.WriteLine("bContains = " + bContains);

 OracleParameter prm2 = new OracleParameter();

 // Check if the OracleParameterCollection contains prm2
 bContains = cmd.Parameters.Contains(prm2);

 // Prints "bContains = False"
 Console.WriteLine("bContains = " + bContains);

 prm1.Dispose();
 prm2.Dispose();
 cmd.Dispose();
 }
}

6.17.4.16 Contains(string)
This method indicates whether or not an OracleParameter object exists in the collection
using the supplied string.

Declaration

// C#
public override bool Contains(string name);

Parameters

• name

The name of OracleParameter object.

Chapter 6
OracleParameterCollection Class

6-287

Return Value

Returns true if the collection contains the OracleParameter object with the specified
parameter name; otherwise, returns false.

Implements

IDataParameterCollection

Example

// C#

using System;
using Oracle.DataAccess.Client;

class ContainsSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add parameter to the OracleParameterCollection
 OracleParameter prm = cmd.Parameters.Add("MyParam", OracleDbType.Decimal);

 // Check if the OracleParameterCollection contains "MyParam"
 bool bContains = cmd.Parameters.Contains("MyParam");

 // Prints "bContains = True"
 Console.WriteLine("bContains = " + bContains);

 // Check if the OracleParameterCollection contains "NoParam"
 bContains = cmd.Parameters.Contains("NoParam");

 // Prints "bContains = False"
 Console.WriteLine("bContains = " + bContains);

 prm.Dispose();
 cmd.Dispose();
 }
}

6.17.4.17 CopyTo
This method copies OracleParameter objects from the collection, starting with the
supplied index to the supplied array.

Declaration

// C#
public override void CopyTo(Array array, int index);

Parameters

• array

The specified array.

• index

Chapter 6
OracleParameterCollection Class

6-288

The array index.

Implements

ICollection

6.17.4.18 GetEnumerator
GetEnumerator returns an enumerator that iterates through the
OracleParameterCollection.

Declaration

// C#
public override IEnumerator GetEnumerator();

Implements

IEnumerable

6.17.4.19 IndexOf
IndexOf returns the index of the OracleParameter object in the collection.

Overload List:

• IndexOf(object)

This method returns the index of the OracleParameter object in the collection.

• IndexOf(String)

This method returns the index of the OracleParameter object with the specified
name in the collection.

6.17.4.20 IndexOf(object)
This method returns the index of the OracleParameter object in the collection.

Declaration

// C#
public override int IndexOf(object obj);

Parameters

• obj

The specified object.

Return Value

Returns the index of the OracleParameter object in the collection.

Implements

IList

Chapter 6
OracleParameterCollection Class

6-289

Exceptions

InvalidCastException - The supplied obj cannot be cast to an OracleParameter object.

Remarks

Returns the index of the supplied OracleParameter obj in the collection.

6.17.4.21 IndexOf(String)
This method returns the index of the OracleParameter object with the specified name in
the collection.

Declaration

// C#
public override int IndexOf(String name);

Parameters

• name

The name of parameter.

Return Value

Returns the index of the supplied OracleParameter in the collection.

Implements

IDataParameterCollection

6.17.4.22 Insert
This method inserts the supplied OracleParameter object to the collection at the
specified index.

Declaration

// C#
public override void Insert(int index, object obj);

Parameters

• index

The specified index.

• obj

The OracleParameter object.

Implements

IList

Chapter 6
OracleParameterCollection Class

6-290

Remarks

An InvalidCastException is thrown if the supplied obj cannot be cast to an
OracleParameter object.

6.17.4.23 Remove
This method removes the supplied OracleParameter from the collection.

Declaration

// C#
public override void Remove(object obj);

Parameters

• obj

The specified object to remove.

Implements

IList

Exceptions

InvalidCastException - The supplied obj cannot be cast to an OracleParameter object.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class RemoveSample
{
 static void Main()
 {
 OracleCommand cmd = new OracleCommand();

 // Add 2 parameters to the OracleParameterCollection
 OracleParameter prm1 = cmd.Parameters.Add("MyParam1", OracleDbType.Decimal);
 OracleParameter prm2 = cmd.Parameters.Add("MyParam2", OracleDbType.Decimal);

 // Prints "cmd.Parameters.Count = 2"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 // Remove the 1st parameter from the OracleParameterCollection
 cmd.Parameters.Remove(prm1);

 // Prints "cmd.Parameters.Count = 1"
 Console.WriteLine("cmd.Parameters.Count = " + cmd.Parameters.Count);

 // Prints "cmd.Parameters[0].ParameterName = MyParam2"
 Console.WriteLine("cmd.Parameters[0].ParameterName = " +
 cmd.Parameters[0].ParameterName);

 prm1.Dispose();

Chapter 6
OracleParameterCollection Class

6-291

 prm2.Dispose();
 cmd.Dispose();
 }
}

6.17.4.24 RemoveAt
RemoveAt removes the OracleParameter object from the collection by location.

Overload List:

• RemoveAt(int)

This method removes from the collection the OracleParameter object located at the
index specified by the supplied index.

• RemoveAt(String)

This method removes from the collection the OracleParameter object specified by
the supplied name.

6.17.4.25 RemoveAt(int)
This method removes from the collection the OracleParameter object located at the
index specified by the supplied index.

Declaration

// C#
public override void RemoveAt(int index);

Parameters

• index

The specified index from which the OracleParameter is to be removed.

Implements

IList

6.17.4.26 RemoveAt(String)
This method removes from the collection the OracleParameter object specified by the
supplied name.

Declaration

// C#
public override void RemoveAt(String name);

Parameters

• name

The name of the OracleParameter object to be removed from the collection.

Chapter 6
OracleParameterCollection Class

6-292

Implements

IDataParameterCollection

6.18 OraclePermission Class
An OraclePermission object enables ODP.NET to enforce imperative security and helps
ensure that a user has a security level adequate for accessing data.

Class Inheritance

 System.Object

 System.Security.CodeAccessPermission

 System.Data.Common.DBDataPermission

 Oracle.DataAccess.Client.OraclePermission

Declaration

// C#
public class OraclePermission: DBDataPermission

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

6.18.1 OraclePermission Members
OraclePermission members are listed in the following tables.

OraclePermission Constructors

The OraclePermission constructor is listed in Table 6-107.

Table 6-107 OraclePermission Constructor

Constructor Description

OraclePermission Constructor Instantiates a new instance of the OraclePermission
class.

Chapter 6
OraclePermission Class

6-293

OraclePermission Static Methods

The OraclePermission static methods are listed in Table 6-108.

Table 6-108 OraclePermission Static Methods

Static Method Description

Equals Inherited from System.Object

ReferenceEquals Inherited from System.Object

RevertAll Inherited from CodeAccessPermission

RevertAssert Inherited from CodeAccessPermission

RevertDeny Inherited from CodeAccessPermission

RevertPermitOnly Inherited from CodeAccessPermission

OraclePermission Public Properties

The OraclePermission public methods are listed in Table 6-112.

Table 6-109 OraclePermission Public Properties

Public Properties Description

AllowBlankPassword Inherited from DBDataPermission

OraclePermission does not support this property.

OraclePermission Public Methods

The OraclePermission public methods are listed in Table 6-110.

Table 6-110 OraclePermission Public Methods

Public Method Description

Add Adds a new connection string fragment and a list of
restricted keywords to the OraclePermission object

Assert Inherited from CodeAccessPermission

Copy Returns a copy of the current permission object

Demand Inherited from CodeAccessPermission

Deny Inherited from CodeAccessPermission

Equals Inherited from CodeAccessPermission

FromXml Inherited from DBDataPermission

GetHashCode Inherited from CodeAccessPermission

GetType Inherited from System.Object

Intersect Inherited from DBDataPermission

IsSubsetOf Returns a boolean value that indicates whether or
not the current permission is a subset of the target
permission

Chapter 6
OraclePermission Class

6-294

Table 6-110 (Cont.) OraclePermission Public Methods

Public Method Description

IsUnrestricted Inherited from DBDataPermission

PermitOnly Inherited from CodeAccessPermission

ToString Inherited from CodeAccessPermission

ToXml Inherited from DBDataPermission

Union Inherited from DBDataPermission

6.18.2 OraclePermission Constructor
The OraclePermission constructor instantiates a new instance of the OraclePermission
class.

Declaration

// C#
public OraclePermission (PermissionState state);

Parameters

• state

The state parameter takes one of the following two values: PermissionState.None
or PermissionState.Unrestricted.

Exceptions

ArgumentException - The PermissionState value is invalid.

6.18.3 OraclePermission Static Methods
The OraclePermission static methods are listed in Table 6-111.

Table 6-111 OraclePermission Static Methods

Static Method Description

Equals Inherited from System.Object

ReferenceEquals Inherited from System.Object

RevertAll Inherited from CodeAccessPermission

RevertAssert Inherited from CodeAccessPermission

RevertDeny Inherited from CodeAccessPermission

RevertPermitOnly Inherited from CodeAccessPermission

Chapter 6
OraclePermission Class

6-295

6.18.4 OraclePermission Public Properties
The OraclePermission public methods are listed in Table 6-112.

Table 6-112 OraclePermission Public Properties

Public Properties Description

AllowBlankPassword Inherited from DBDataPermission

OraclePermission ignores the value of this property.
Any value set for this property, for an
OraclePermission object, is ignored.

6.18.5 OraclePermission Public Methods
The OraclePermission public methods are listed in Table 6-113.

Table 6-113 OraclePermission Public Methods

Public Method Description

Add Adds a new connection string fragment and a list of
restricted keywords to the OraclePermission object

Assert Inherited from CodeAccessPermission

Copy Returns a copy of the current permission object

Demand Inherited from CodeAccessPermission

Deny Inherited from CodeAccessPermission

Equals Inherited from CodeAccessPermission

FromXml Inherited from DBDataPermission

GetHashCode Inherited from CodeAccessPermission

GetType Inherited from System.Object

Intersect Inherited from DBDataPermission

IsSubsetOf Returns a boolean value that indicates whether or
not the current permission is a subset of the target
permission

IsUnrestricted Inherited from DBDataPermission

PermitOnly Inherited from CodeAccessPermission

ToString Inherited from CodeAccessPermission

ToXml Inherited from DBDataPermission

Union Inherited from DBDataPermission

6.18.5.1 Add
This method adds a new connection string fragment and a list of restricted keywords to
the OraclePermission object.

Chapter 6
OraclePermission Class

6-296

Declaration

// C#
public void Add(string connStr, string keyRestrict,
 KeyRestrictionBehavior behavior);

Parameters

• connStr

The connection string fragment.

• keyRestrict

The key restrictions.

• behavior

One of the following KeyRestrictionBehavior enumerations:

– AllowOnly

– PreventUsage

Exceptions

ArgumentException - The KeyRestrictionBehavior value or the format of the connStr or
keyRestict string is invalid.

Remarks

The Add method configures the connection strings allowed or disallowed by the
permission object.

Opening an OracleConnection is allowed or denied based upon the connection string
fragment, key restrictions combination, and the key restriction behavior.

In the following example, KeyRestrictionBehavior.AllowOnly allows connection strings
that use orcl as the Data Source with any User Id and Password combination but no
other connection string keywords. Connection string keywords other than User Id and
Password cause security exceptions.

orclPermission.Add("Data Source=orcl;","User Id=;Password=;",
 KeyRestrictionBehavior.AllowOnly);

In the next example, KeyRestrictionBehavior.PreventUsage restricts connection strings
that use the keyword Pooling. Use of the Pooling keyword causes an exception.

orclPermission.Add("Data Source=orcl;","Pooling=;",
 KeyRestrictionBehavior.PreventUsage)

As a general rule, in an unrestricted environment, any connection string that is not
allowed is restricted and throws a security exception.

If a connection string fragment contains key-value pairs for the password and proxy
password attributes, then values for these attributes are ignored. However, the
presence of the attributes themselves is still checked. This means that the connection
is allowed only if the password and proxy attributes keywords are allowed in the
connection string.

Chapter 6
OraclePermission Class

6-297

6.18.5.2 Copy
This method returns a copy of the current permission object.

Declaration

// C#
public override IPermission Copy();

Return Value

A copy of the OraclePermission object.

6.18.5.3 IsSubsetOf
This method returns a boolean value that indicates whether or not the current
permission is a subset of the target permission.

Declaration

// C#
public override bool IsSubsetOf(IPermission target);

Parameters

• target

A permission that must be of type OraclePermission.

Return Value

A bool value that indicates whether or not the current permission is a subset of the
target permission.

Exceptions

ArgumentException - The permission is not of the OraclePermission type.

Remarks

The AllowBlankPassword property is ignored when evaluating whether or not the current
permission is a subset of the target permission.

6.19 OraclePermissionAttribute Class
An OraclePermissionAttribute object enables ODP.NET to enforce declarative security
and helps ensure that a user has a security level adequate for accessing data.

Class Inheritance

 System.Object

 System.Attribute

 System.Security.Permissions.SecurityAttribute

Chapter 6
OraclePermissionAttribute Class

6-298

 System.Security.Permissions.CodeAccessSecurityAttribute

 System.Data.Common.DBDataPermissionAttribute

 Oracle.DataAccess.Client.OraclePermissionAttribute

Declaration

// C#
[Serializable, AttributeUsage(AttributeTargets.Method |
AttributeTargets.Constructor | AttributeTargets.Class | AttributeTargets.Struct |
AttributeTargets.Assembly, AllowMultiple = true, Inherited = false)]
public sealed class OraclePermissionAttribute: DBDataPermissionAttribute

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

6.19.1 OraclePermissionAttribute Members
OraclePermissionAttribute members are listed in the following tables.

OraclePermissionAttribute Constructor

The OraclePermissionAttribute constructor is listed in Table 6-114.

Table 6-114 OraclePermission Constructor

Constructor Description

OraclePermissionAttribute
Constructor

Instantiates a new instance of the
OraclePermissionAttribute class.

OraclePermissionAttribute Static Methods

The OraclePermissionAttribute static methods are listed in Table 6-115.

Table 6-115 OraclePermissionAttribute Static Methods

Static Methods Description

GetCustomAttribute Inherited from System.Attribute (Overloaded)

GetCustomAttributes Inherited from System.Attribute(Overloaded)

IsDefined Inherited from System.Attribute(Overloaded)

ReferenceEquals Inherited from System.Object

Chapter 6
OraclePermissionAttribute Class

6-299

OraclePermissionAttribute Public Properties

The OraclePermissionAttribute public properties are listed in Table 6-116.

Table 6-116 OraclePermissionAttribute Public Properties

Public Properties Description

Action Inherited from SecurityAttribute

AllowBlankPassword Inherited from DBDataPermissionAttribute.

OraclePermissionAttribute ignores this property.
Any value set for this property, for an
OraclePermissionAttribute object, is ignored.

ConnectionString Inherited from DBDataPermissionAttribute

KeyRestrictionBehavior Inherited from DBDataPermissionAttribute

KeyRestrictions Inherited from DBDataPermissionAttribute

TypeId Inherited from System.Attribute

Unrestricted Inherited from SecurityAttribute

OraclePermissionAttribute Public Methods

The OraclePermissionAttribute public methods are listed in Table 6-117.

Table 6-117 OraclePermissionAttribute Public Methods

Public Methods Description

CreatePermission Returns a new OraclePermissionAttribute
object that is configured based on the attributes
set

Equals Inherited from System.Attribute

GetHashCode Inherited from System.Attribute

GetType Inherited from System.Attribute

IsDefaultAttribute Inherited from System.Attribute

Match Inherited from System.Attribute

ShouldSerializeConnectionString Inherited from DBDataPermissionAttribute

ShouldSerializeKeyRestrictions Inherited from DBDataPermissionAttribute

ToString Inherited from System.Object

6.19.2 OraclePermissionAttribute Constructor
The OraclePermissionAttribute constructor instantiates new instances of the
OraclePermissionAttribute class.

Declaration

// C#
public OraclePermissionAttribute (SecurityAction action);

Chapter 6
OraclePermissionAttribute Class

6-300

Parameters

• action

A System.Security.Permissions.SecurityAction value representing an action that
can be performed using declarative security.

6.19.3 OraclePermissionAttribute Static Methods
The OraclePermissionAttribute static methods are listed in Table 6-118.

Table 6-118 OraclePermissionAttribute Static Methods

Static Methods Description

GetCustomAttribute Inherited from System.Attribute (Overloaded)

GetCustomAttributes Inherited from System.Attribute(Overloaded)

IsDefined Inherited from System.Attribute(Overloaded)

ReferenceEquals Inherited from System.Object

6.19.4 OraclePermissionAttribute Public Properties
The OraclePermissionAttribute public properties are listed in Table 6-119.

Table 6-119 OraclePermissionAttribute Public Properties

Public Properties Description

Action Inherited from SecurityAttribute

AllowBlankPassword Inherited from DBDataPermissionAttribute.

OraclePermissionAttribute ignores this property.
Any value set for this property, for an
OraclePermissionAttribute object, is ignored.

ConnectionString Inherited from DBDataPermissionAttribute

KeyRestrictionBehavior Inherited from DBDataPermissionAttribute

KeyRestrictions Inherited from DBDataPermissionAttribute

TypeId Inherited from System.Attribute

Unrestricted Inherited from SecurityAttribute

6.19.5 OraclePermissionAttribute Public Methods
The OraclePermissionAttribute public methods are listed in Table 6-120.

Chapter 6
OraclePermissionAttribute Class

6-301

Table 6-120 OraclePermissionAttribute Public Methods

Public Methods Description

CreatePermission Returns a new OraclePermissionAttribute
object that is configured based on the attributes
set

Equals Inherited from System.Attribute

GetHashCode Inherited from System.Attribute

GetType Inherited from System.Attribute

IsDefaultAttribute Inherited from System.Attribute

Match Inherited from System.Attribute

ShouldSerializeConnectionString Inherited from DBDataPermissionAttribute

ShouldSerializeKeyRestrictions Inherited from DBDataPermissionAttribute

ToString Inherited from System.Object

6.19.5.1 CreatePermission
This method returns a new OraclePermissionAttribute object that is configured based
on the attributes set.

Declaration

// C#
public override IPermission CreatePermission();

Return Value

An OraclePermission object.

6.20 OracleRowUpdatedEventArgs Class
The OracleRowUpdatedEventArgs class provides event data for the
OracleDataAdapter.RowUpdated event.

Class Inheritance

System.Object

 System.EventArgs

 System.RowUpdatedEventArgs

 System.OracleRowUpdatedEventArgs

Declaration

// C#
public sealed class OracleRowUpdatedEventArgs : RowUpdatedEventArgs

Chapter 6
OracleRowUpdatedEventArgs Class

6-302

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

The example for the RowUpdated event shows how to use OracleRowUpdatedEventArgs.
See RowUpdated event "Example".

6.20.1 OracleRowUpdatedEventArgs Members
OracleRowUpdatedEventArgs members are listed in the following tables.

OracleRowUpdatedEventArgs Constructors

OracleRowUpdatedEventArgs constructors are listed in Table 6-121.

Table 6-121 OracleRowUpdatedEventArgs Constructors

Constructor Description

OracleRowUpdatedEventArgs
Constructor

Instantiates a new instance of
OracleRowUpdatedEventArgs class

OracleRowUpdatedEventArgs Static Methods

The OracleRowUpdatedEventArgs static method is listed in Table 6-122.

Table 6-122 OracleRowUpdatedEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleRowUpdatedEventArgs Properties

The OracleRowUpdatedEventArgs properties are listed in Table 6-123.

Table 6-123 OracleRowUpdatedEventArgs Properties

Property Description

Command Specifies the OracleCommand that is used when
OracleDataAdapter.Update() is called

Chapter 6
OracleRowUpdatedEventArgs Class

6-303

Table 6-123 (Cont.) OracleRowUpdatedEventArgs Properties

Property Description

Errors Inherited from
System.Data.Common.RowUpdatedEventArgs

RecordsAffected Inherited from
System.Data.Common.RowUpdatedEventArgs

Row Inherited from
System.Data.Common.RowUpdatedEventArgs

StatementType Inherited from
System.Data.Common.RowUpdatedEventArgs

Status Inherited from
System.Data.Common.RowUpdatedEventArgs

TableMapping Inherited from
System.Data.Common.RowUpdatedEventArgs

OracleRowUpdatedEventArgs Public Methods

The OracleRowUpdatedEventArgs properties are listed in Table 6-124.

Table 6-124 OracleRowUpdatedEventArgs Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

6.20.2 OracleRowUpdatedEventArgs Constructor
The OracleRowUpdatedEventArgs constructor creates a new OracleRowUpdatedEventArgs
instance.

Declaration

// C#
public OracleRowUpdatedEventArgs(DataRow row,IDbCommand command,
 StatementType statementType, DataTableMapping tableMapping);

Parameters

• row

The DataRow sent for Update.

• command

The IDbCommand executed during the Update.

• statementType

Chapter 6
OracleRowUpdatedEventArgs Class

6-304

The StatementType Enumeration value indicating the type of SQL statement
executed.

• tableMapping

The DataTableMapping used for the Update.

6.20.3 OracleRowUpdatedEventArgs Static Methods
The OracleRowUpdatedEventArgs static method is listed in Table 6-125.

Table 6-125 OracleRowUpdatedEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.20.4 OracleRowUpdatedEventArgs Properties
The OracleRowUpdatedEventArgs properties are listed in Table 6-126.

Table 6-126 OracleRowUpdatedEventArgs Properties

Property Description

Command Specifies the OracleCommand that is used when
OracleDataAdapter.Update() is called

Errors Inherited from System.Data.Common.RowUpdatedEventArgs

RecordsAffected Inherited from System.Data.Common.RowUpdatedEventArgs

Row Inherited from System.Data.Common.RowUpdatedEventArgs

StatementType Inherited from System.Data.Common.RowUpdatedEventArgs

Status Inherited from System.Data.Common.RowUpdatedEventArgs

TableMapping Inherited from System.Data.Common.RowUpdatedEventArgs

6.20.4.1 Command
This property specifies the OracleCommand that is used when OracleDataAdapter.Update()
is called.

Declaration

// C#
public new OracleCommand Command {get;}

Property Value

The OracleCommand executed when Update is called.

Chapter 6
OracleRowUpdatedEventArgs Class

6-305

6.20.5 OracleRowUpdatedEventArgs Public Methods
The OracleRowUpdatedEventArgs properties are listed in Table 6-127.

Table 6-127 OracleRowUpdatedEventArgs Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

6.21 OracleRowUpdatedEventHandler Delegate
The OracleRowUpdatedEventHandler delegate represents the signature of the method
that handles the OracleDataAdapter.RowUpdated event.

Declaration

// C#
public delegate void OracleRowUpdatedEventHandler(object sender,
 OracleRowUpdatedEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Parameters

• sender

The source of the event.

• eventArgs

The OracleRowUpdatedEventArgs object that contains the event data.

Remarks

Event callbacks can be registered through this event delegate for applications that
wish to be notified after a row is updated.

In the .NET framework, the convention of an event delegate requires two parameters:
the object that raises the event and the event data.

Chapter 6
OracleRowUpdatedEventHandler Delegate

6-306

6.22 OracleRowUpdatingEventArgs Class
The OracleRowUpdatingEventArgs class provides event data for the
OracleDataAdapter.RowUpdating event.

Class Inheritance

System.Object

 System.EventArgs

 System.RowUpdatingEventArgs

 System.OracleRowUpdatingEventArgs

Declaration

// C#
public sealed class OracleRowUpdatingEventArgs : RowUpdatingEventArgs

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

The example for the RowUpdated event shows how to use OracleRowUpdatingEventArgs.
See RowUpdated event "Example".

6.22.1 OracleRowUpdatingEventArgs Members
OracleRowUpdatingEventArgs members are listed in the following tables.

OracleRowUpdatingEventArgs Constructors

OracleRowUpdatingEventArgs constructors are listed in Table 6-128.

Table 6-128 OracleRowUpdatingEventArgs Constructors

Constructor Description

OracleRowUpdatingEventArgs
Constructor

Instantiates a new instance of
OracleRowUpdatingEventArgs class (Overloaded)

Chapter 6
OracleRowUpdatingEventArgs Class

6-307

OracleRowUpdatingEventArgs Static Methods

The OracleRowUpdatingEventArgs static methods are listed in Table 6-129.

Table 6-129 OracleRowUpdatingEventArgs Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleRowUpdatingEventArgs Properties

The OracleRowUpdatingEventArgs properties are listed in Table 6-130.

Table 6-130 OracleRowUpdatingEventArgs Properties

Property Description

Command Specifies the OracleCommand that is used when the
OracleDataAdapter.Update() is called

Errors Inherited from
System.Data.Common.RowUpdatingEventArgs

Row Inherited from
System.Data.Common.RowUpdatingEventArgs

StatementType Inherited from
System.Data.Common.RowUpdatingEventArgs

Status Inherited from
System.Data.Common.RowUpdatingEventArgs

TableMapping Inherited from
System.Data.Common.RowUpdatingEventArgs

OracleRowUpdatingEventArgs Public Methods

The OracleRowUpdatingEventArgs public methods are listed in Table 6-131.

Table 6-131 OracleRowUpdatingEventArgs Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

6.22.2 OracleRowUpdatingEventArgs Constructor
The OracleRowUpdatingEventArgs constructor creates a new instance of the
OracleRowUpdatingEventArgs class using the supplied data row, IDbCommand, type of SQL
statement, and table mapping.

Chapter 6
OracleRowUpdatingEventArgs Class

6-308

Declaration

// C#
public OracleRowUpdatingEventArgs(DataRow row, IDbCommand command,
 StatementType statementType, DataTableMapping tableMapping);

Parameters

• row

The DataRow sent for Update.

• command

The IDbCommand executed during the Update.

• statementType

The StatementType enumeration value indicating the type of SQL statement
executed.

• tableMapping

The DataTableMapping used for the Update.

6.22.3 OracleRowUpdatingEventArgs Static Methods
The OracleRowUpdatingEventArgs static method is listed in Table 6-132.

Table 6-132 OracleRowUpdatingEventArgs Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.22.4 OracleRowUpdatingEventArgs Properties
The OracleRowUpdatingEventArgs properties are listed in Table 6-133.

Table 6-133 OracleRowUpdatingEventArgs Properties

Property Description

Command Specifies the OracleCommand that is used when the
OracleDataAdapter.Update() is called

Errors Inherited from System.Data.Common.RowUpdatingEventArgs

Row Inherited from System.Data.Common.RowUpdatingEventArgs

StatementType Inherited from System.Data.Common.RowUpdatingEventArgs

Status Inherited from System.Data.Common.RowUpdatingEventArgs

TableMapping Inherited from System.Data.Common.RowUpdatingEventArgs

Chapter 6
OracleRowUpdatingEventArgs Class

6-309

6.22.4.1 Command
This property specifies the OracleCommand that is used when the
OracleDataAdapter.Update() is called.

Declaration

// C#
public new OracleCommand Command {get; set;}

Property Value

The OracleCommand executed when Update is called.

6.22.5 OracleRowUpdatingEventArgs Public Methods
The OracleRowUpdatingEventArgs public methods are listed in Table 6-134.

Table 6-134 OracleRowUpdatingEventArgs Public Methods

Public Method Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• OracleRowUpdatingEventArgs Class

• OracleRowUpdatingEventArgs Members

6.23 OracleRowUpdatingEventHandler Delegate
The OracleRowUpdatingEventHandler delegate represents the signature of the method
that handles the OracleDataAdapter.RowUpdating event.

Declaration

// C#
public delegate void OracleRowUpdatingEventHandler (object sender,
 OracleRowUpdatingEventArgs eventArgs);

Chapter 6
OracleRowUpdatingEventHandler Delegate

6-310

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Parameters

• sender

The source of the event.

• eventArgs

The OracleRowUpdatingEventArgs object that contains the event data.

Remarks

Event callbacks can be registered through this event delegate for applications that
wish to be notified after a row is updated.

In the .NET framework, the convention of an event delegate requires two parameters:
the object that raises the event and the event data.

See Also:

• "Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
Namespaces"

• "RowUpdating"

6.24 OracleShardingKey Class
An OracleShardingKey object can represent either a sharding key or a super sharding
key.

Class Inheritance

System.Object

 Oracle.DataAccess.Client.OracleShardingKey

Declaration

// C#
public class OracleShardingKey : IDisposable

Chapter 6
OracleShardingKey Class

6-311

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Example

// C#

using System;
using Oracle.DataAccess.Client;

class Sharding
{
 static void Main()
 {
 OracleConnection con = new OracleConnection("user id=hr;password=hr;Data
Source=orcl;");
 //Setting a shard key
 OracleShardingKey shardingKey = new OracleShardingKey(OracleDbType.Int32, 123);
 //Setting a second shard key value for a composite key
 shardingKey.SetShardingKey(OracleDbType.Varchar2, "gold");
 //Creating and setting the super shard key
 OracleShardingKey superShardingKey = new OracleShardingKey();
 superShardingKey.SetShardingKey(OracleDbType.Int32, 1000);

 //Setting super sharding key and sharding key on the connection
 con.SetShardingKey(shardingKey, superShardingKey);
 con.Open();

 //perform SQL query
 }
}

6.24.1 OracleShardingKey Members
OracleShardingKey members are listed in the following tables.

OracleShardingKey Constructors

OracleShardingKey constructors are listed in Table 6-135.

Table 6-135 OracleShardingKey Constructors

Constructor Description

OracleShardingKey Constructors Instantiates a new instance of OracleShardingKey
class (Overloaded)

OracleShardingKey Instance Methods

OracleShardingKey instance methods are listed in Table 6-136.

Chapter 6
OracleShardingKey Class

6-312

Table 6-136 OracleShardingKey Instance Methods

Method Description

SetShardingKey(OracleDbType,
object)

Enables applications to set a key within the
OracleShardingKey object

Dispose Enables applications to explicitly dispose the
OracleShardingKey object

6.24.2 OracleShardingKey Constructors
OracleShardingKey constructors instantiate new instances of the OracleShardingKey
class.

Overload List:

• OracleShardingKey()

This constructor instantiates a new instance of OracleShardingKey class.

• OracleShardingKey(OracleDbType, object)

This constructor instantiates a new instance of the OracleShardingKey class using
the supplied data type and key.

6.24.2.1 OracleShardingKey()
This constructor enables applications to construct the OracleShardingKey object.

Declaration

// C#
public OracleShardingKey();

Exceptions

None

Remarks

This constructs an OracleShardingKey without any keys set.

6.24.2.2 OracleShardingKey(OracleDbType, object)
This constructor enables applications to construct the OracleShardingKey object with
the supplied key.

Declaration

// C#
public OracleShardingKey(OracleDbType type, object key);

Exceptions

InvalidArgumentException – The supplied argument is invalid

Chapter 6
OracleShardingKey Class

6-313

Remarks

This constructs an OracleShardingKey with the supplied key set.

Acceptable OracleDbType enumeration values are Byte, Decimal, Double, Int16, In32,
Int64, Single, Varchar2, String, Date, TimeStamp, and Raw.

6.24.3 OracleShardingKey Instance Methods
OracleShardingKey instance methods are listed in Table 6-137.

Table 6-137 OracleShardingKey Instance Methods

Instance Method Description

SetShardingKey(OracleD
bType, object)

Enables applications to set a key within the OracleShardingKey
object

Dispose Enables applications to explicitly dispose the OracleShardingKey
object

6.24.3.1 SetShardingKey(OracleDbType, object)
This instance method enables applications to set a key within the OracleShardingKey
object.

Declaration

// C#
public void SetShardingKey(OracleDbType type, object key);

Exceptions

InvalidArgumentException – The supplied argument is invalid

Remarks

This method sets a key within the OracleShardingKey object.

Acceptable OracleDbType enumeration values are Byte, Decimal, Double, Int16, In32,
Int64, Single, Varchar2, String, Date, TimeStamp, and Raw.

This can be called multiple times to construct a composite key.

6.24.3.2 Dispose
This instance method enables applications to explicitly dispose the OracleShardingKey
object.

Declaration

// C#
public void Dispose();

Chapter 6
OracleShardingKey Class

6-314

Exceptions

None

Remarks

This method disposes the OracleShardingKey object.

6.25 OracleTransaction Class
An OracleTransaction object represents a local transaction.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.Data.Common.DbTransaction

 Oracle.DataAccess.Client.OracleTransaction

Declaration

// C#
public sealed class OracleTransaction : DbTransaction

// C#
public sealed class OracleTransaction : MarshalByRefObject,
 IDbTransaction, IDisposable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The application calls BeginTransaction on the OracleConnection object to create an
OracleTransaction object. The OracleTransaction object can be created in Read
Committed mode only. Any other mode results in an exception.

The execution of a DDL statement in the context of a transaction is not recommended
since it results in an implicit commit that is not reflected in the state of the
OracleTransaction object.

Chapter 6
OracleTransaction Class

6-315

All operations related to savepoints pertain to the current local transaction. Operations
like commit and rollback performed on the transaction have no effect on data in any
existing DataSet.

Example

// Database Setup, if you have not done so yet.
/*
connect scott/tiger@oracle
DROP TABLE MyTable;
CREATE TABLE MyTable (MyColumn NUMBER);
--CREATE TABLE MyTable (MyColumn NUMBER PRIMARY KEY);

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class OracleTransactionSample
{
 static void Main()
 {
 // Drop & Create MyTable as indicated Database Setup, at beginning

 // This sample starts a transaction and inserts two records with the same
 // value for MyColumn into MyTable.
 // If MyColumn is not a primary key, the transaction will commit.
 // If MyColumn is a primary key, the second insert will violate the
 // unique constraint and the transaction will rollback.

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = con.CreateCommand();

 // Check the number of rows in MyTable before transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 int myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Print the number of rows in MyTable
 Console.WriteLine("myTableCount = " + myTableCount);

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(
 IsolationLevel.ReadCommitted);

 try
 {
 // Insert the same row twice into MyTable
 cmd.CommandText = "INSERT INTO MyTable VALUES (1)";
 cmd.ExecuteNonQuery();
 cmd.ExecuteNonQuery(); // This may throw an exception
 txn.Commit();
 }
 catch (Exception e)
 {

Chapter 6
OracleTransaction Class

6-316

 // Print the exception message
 Console.WriteLine("e.Message = " + e.Message);

 // Rollback the transaction
 txn.Rollback();
 }

 // Check the number of rows in MyTable after transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Prints the number of rows
 // If MyColumn is not a PRIMARY KEY, the value should increase by two.
 // If MyColumn is a PRIMARY KEY, the value should remain same.
 Console.WriteLine("myTableCount = " + myTableCount);

 txn.Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

Not supported in a .NET stored procedure

6.25.1 OracleTransaction Members
OracleTransaction members are listed in the following tables.

OracleTransaction Static Methods

The OracleTransaction static method is listed in Table 6-138.

Table 6-138 OracleTransaction Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

OracleTransaction Properties

OracleTransaction properties are listed in Table 6-139.

Table 6-139 OracleTransaction Properties

Property Description

IsolationLevel Specifies the isolation level for the transaction

Connection Specifies the connection that is associated with the
transaction

OracleTransaction Public Methods

OracleTransaction public methods are listed in Table 6-140.

Chapter 6
OracleTransaction Class

6-317

Table 6-140 OracleTransaction Public Methods

Public Method Description

Commit Commits the database transaction

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Frees the resources used by the OracleTransaction
object

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

Rollback Rolls back a database transaction (Overloaded)

Save Creates a savepoint within the current transaction

ToString Inherited from System.Object

6.25.2 OracleTransaction Static Methods
The OracleTransaction static method is listed in Table 6-141.

Table 6-141 OracleTransaction Static Method

Method Description

Equals Inherited from System.Object (Overloaded)

6.25.3 OracleTransaction Properties
OracleTransaction properties are listed in Table 6-142.

Table 6-142 OracleTransaction Properties

Property Description

IsolationLevel Specifies the isolation level for the transaction

Connection Specifies the connection that is associated with the transaction

6.25.3.1 IsolationLevel
This property specifies the isolation level for the transaction.

Declaration

// C#
public override IsolationLevel IsolationLevel {get;}

Chapter 6
OracleTransaction Class

6-318

Property Value

IsolationLevel

Implements

IDbTransaction

Exceptions

InvalidOperationException - The transaction has already completed.

Remarks

Default = IsolationLevel.ReadCommitted

6.25.3.2 Connection
This property specifies the connection that is associated with the transaction.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

Connection

Implements

IDbTransaction

Remarks

This property indicates the OracleConnection object that is associated with the
transaction.

6.25.4 OracleTransaction Public Methods
OracleTransaction public methods are listed in Table 6-143.

Table 6-143 OracleTransaction Public Methods

Public Method Description

Commit Commits the database transaction

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Frees the resources used by the OracleTransaction
object

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

Chapter 6
OracleTransaction Class

6-319

Table 6-143 (Cont.) OracleTransaction Public Methods

Public Method Description

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

Rollback Rolls back a database transaction (Overloaded)

Save Creates a savepoint within the current transaction

ToString Inherited from System.Object

6.25.4.1 Commit
This method commits the database transaction.

Declaration

// C#
public override void Commit();

Implements

IDbTransaction

Exceptions

InvalidOperationException - The transaction has already been completed successfully,
has been rolled back, or the associated connection is closed.

Remarks

Upon a successful commit, the transaction enters a completed state.

Example

// Database Setup, if you have not done so yet
/*
connect scott/tiger@oracle
DROP TABLE MyTable;
CREATE TABLE MyTable (MyColumn NUMBER);
--CREATE TABLE MyTable (MyColumn NUMBER PRIMARY KEY);

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class CommitSample
{
 static void Main()
 {
 // Drop & Create MyTable as indicated in Database Setup, at beginning

Chapter 6
OracleTransaction Class

6-320

 // This sample starts a transaction and inserts two records with the same
 // value for MyColumn into MyTable.
 // If MyColumn is not a primary key, the transaction will commit.
 // If MyColumn is a primary key, the second insert will violate the
 // unique constraint and the transaction will rollback.

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = con.CreateCommand();

 // Check the number of rows in MyTable before transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 int myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Print the number of rows in MyTable
 Console.WriteLine("myTableCount = " + myTableCount);

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(
 IsolationLevel.ReadCommitted);

 try
 {
 // Insert the same row twice into MyTable
 cmd.CommandText = "INSERT INTO MyTable VALUES (1)";
 cmd.ExecuteNonQuery();
 cmd.ExecuteNonQuery(); // This may throw an exception
 txn.Commit();
 }
 catch (Exception e)
 {
 // Print the exception message
 Console.WriteLine("e.Message = " + e.Message);

 // Rollback the transaction
 txn.Rollback();
 }

 // Check the number of rows in MyTable after transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Prints the number of rows
 // If MyColumn is not a PRIMARY KEY, the value should increase by two.
 // If MyColumn is a PRIMARY KEY, the value should remain same.
 Console.WriteLine("myTableCount = " + myTableCount);

 txn.Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 6
OracleTransaction Class

6-321

6.25.4.2 Dispose
This method frees the resources used by the OracleTransaction object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

This method releases both the managed and unmanaged resources held by the
OracleTransaction object. If the transaction is not in a completed state, an attempt to
rollback the transaction is made.

6.25.4.3 Rollback
Rollback rolls back a database transaction.

Overload List:

• Rollback()

This method rolls back a database transaction.

• Rollback(string)

This method rolls back a database transaction to a savepoint within the current
transaction.

6.25.4.4 Rollback()
This method rolls back a database transaction.

Declaration

// C#
public override void Rollback();

Implements

IDbTransaction

Exceptions

InvalidOperationException - The transaction has already been completed successfully,
has been rolled back, or the associated connection is closed.

Remarks

After a Rollback(), the OracleTransaction object can no longer be used because the
Rollback ends the transaction.

Chapter 6
OracleTransaction Class

6-322

Example

// Database Setup, if you have not done so yet.
/*
connect scott/tiger@oracle
DROP TABLE MyTable;
CREATE TABLE MyTable (MyColumn NUMBER);

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class RollbackSample
{
 static void Main()
 {
 // Drop & Create MyTable as indicated previously in Database Setup

 // This sample starts a transaction and inserts one record into MyTable.
 // It then rollsback the transaction, the number of rows remains the same

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = con.CreateCommand();

 // Check the number of rows in MyTable before transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 int myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Print the number of rows in MyTable
 Console.WriteLine("myTableCount = " + myTableCount);

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(
 IsolationLevel.ReadCommitted);

 // Insert a row into MyTable
 cmd.CommandText = "INSERT INTO MyTable VALUES (1)";
 cmd.ExecuteNonQuery();

 // Rollback the transaction
 txn.Rollback();

 // Check the number of rows in MyTable after transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Prints the number of rows, should remain the same
 Console.WriteLine("myTableCount = " + myTableCount);

 txn.Dispose();
 cmd.Dispose();

 con.Close();

Chapter 6
OracleTransaction Class

6-323

 con.Dispose();
 }
}

6.25.4.5 Rollback(string)
This method rolls back a database transaction to a savepoint within the current
transaction.

Declaration

// C#
public override void Rollback(string savepointName);

Parameters

• savepointName

The name of the savepoint to rollback to, in the current transaction.

Exceptions

InvalidOperationException - The transaction has already been completed successfully,
has been rolled back, or the associated connection is closed.

Remarks

After a rollback to a savepoint, the current transaction remains active and can be used
for further operations.

The savepointName specified does not have to match the case of the savepointName
created using the Save method, since savepoints are created in the database in a
case-insensitive manner.

6.25.4.6 Save
This method creates a savepoint within the current transaction.

Declaration

// C#
public void Save(string savepointName);

Parameters

• savepointName

The name of the savepoint being created in the current transaction.

Exceptions

InvalidOperationException - The transaction has already been completed.

Remarks

After creating a savepoint, the transaction does not enter a completed state and can
be used for further operations.

Chapter 6
OracleTransaction Class

6-324

The savepointName specified is created in the database in a case-insensitive manner.
Calling the Rollback method rolls back to savepointName. This allows portions of a
transaction to be rolled back, instead of the entire transaction.

Example

// Database Setup, if you have not done so yet.
/*
connect scott/tiger@oracle
DROP TABLE MyTable;
CREATE TABLE MyTable (MyColumn NUMBER);

*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;

class SaveSample
{
 static void Main()
 {
 // Drop & Create MyTable as indicated in Database Setup, at beginning

 // This sample starts a transaction and creates a savepoint after
 // inserting one record into MyTable.
 // After inserting the second record it rollsback to the savepoint
 // and commits the transaction. Only the first record will be inserted

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleCommand cmd = con.CreateCommand();

 // Check the number of rows in MyTable before transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 int myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Print the number of rows in MyTable
 Console.WriteLine("myTableCount = " + myTableCount);

 // Start a transaction
 OracleTransaction txn = con.BeginTransaction(
 IsolationLevel.ReadCommitted);

 // Insert a row into MyTable
 cmd.CommandText = "INSERT INTO MyTable VALUES (1)";
 cmd.ExecuteNonQuery();

 // Create a savepoint
 txn.Save("MySavePoint");

 // Insert another row into MyTable
 cmd.CommandText = "insert into mytable values (2)";
 cmd.ExecuteNonQuery();

 // Rollback to the savepoint
 txn.Rollback("MySavePoint");

Chapter 6
OracleTransaction Class

6-325

 // Commit the transaction
 txn.Commit();

 // Check the number of rows in MyTable after transaction
 cmd.CommandText = "SELECT COUNT(*) FROM MyTable";
 myTableCount = int.Parse(cmd.ExecuteScalar().ToString());

 // Prints the number of rows, should have increased by 1
 Console.WriteLine("myTableCount = " + myTableCount);

 txn.Dispose();
 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

6.26 OracleConnectionType Enumeration
OracleConnectionType enumerated values specify whether a particular connection
object is associated with an Oracle database connection, a TimesTen database
connection, or no physical connection at all.

Table 6-144 lists all the OracleConnectionType enumeration values with a description of
each enumerated value.

Table 6-144 OracleConnectionType Enumeration Values

Member Name Description

Undefined No connection is associated with the OracleConnection
object.

Oracle The OracleConnection object is associated with an Oracle
database.

TimesTen The OracleConnection object is associated with a TimesTen
database.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

6.27 OracleCollectionType Enumeration
OracleCollectionType enumerated values specify whether or not the OracleParameter
object represents a collection, and if so, specifies the collection type.

Chapter 6
OracleConnectionType Enumeration

6-326

Table 6-145 lists all the OracleCollectionType enumeration values with a description of
each enumerated value.

Table 6-145 OracleCollectionType Enumeration Values

Member Name Description

None Is not a collection type

PLSQLAssociativeArray Indicates that the collection type is a PL/SQL Associative
Array (or PL/SQL Index-By Table)

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

6.28 OracleDBShutdownMode Enumeration
OracleDBShutdownMode enumerated values specify the database shutdown options.

Table 6-147 lists all the OracleDBShutdownMode enumeration values with a description of
each enumerated value.

Table 6-146 OracleDBShutdownMode Enumeration Values

Member Name Description

Default Refuses new connections and waits for existing connections
to end.

Transactional Refuses new connections and does not allow any new
transactions. Waits for active transactions to commit.

TransactionalLocal Refuses new connections and does not allow any new
transactions. Waits for only local transactions to commit.

Immediate Does not wait for current calls to complete or users to
disconnect from the database. All uncommitted transactions
are terminated and rolled back.

Final Shuts down the database. Used in the second call for
shutdown after the database has been closed and
dismounted.

Abort Does not wait for current calls to complete or users to
disconnect from the database. All uncommitted transactions
are terminated and are not rolled back.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Chapter 6
OracleDBShutdownMode Enumeration

6-327

Provider ODP.NET, Unmanaged Driver

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

6.29 OracleDBStartupMode Enumeration
OracleDBStartupMode enumerated values specify the database startup options.

Table 6-147 lists all the OracleDBStartupMode enumeration values with a description of
each enumerated value.

Table 6-147 OracleDBStartupMode Enumeration Values

Member Name Description

NoRestriction Starts the database and allows access to all users.

Restrict Starts the database and allows database access only to users
having the CREATE SESSION and RESTRICTED SESSION
privileges. These privileges are normally assigned to
database administrators.

Force Shuts down a running instance in abort mode and starts a
new instance.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

6.30 OracleDbType Enumeration
OracleDbType enumerated values are used to explicitly specify the OracleDbType of an
OracleParameter.

Table 6-148 lists all the OracleDbType enumeration values with a description of each
enumerated value.

Table 6-148 OracleDbType Enumeration Values

Member Name Description

Array Oracle Collection (VArray or Nested Table)

Not Available in ODP.NET, Managed Driver

BFile Oracle BFILE type

BinaryFloat Oracle BINARY_FLOAT type

Chapter 6
OracleDBStartupMode Enumeration

6-328

Table 6-148 (Cont.) OracleDbType Enumeration Values

Member Name Description

BinaryDouble Oracle BINARY_DOUBLE type

Blob Oracle BLOB type

Boolean Oracle BOOLEAN type

Byte byte type

Char Oracle CHAR type

Clob Oracle CLOB type

Date Oracle DATE type

Decimal Oracle NUMBER type

Double 8-byte FLOAT type

Int16 2-byte INTEGER type

Int32 4-byte INTEGER type

Int64 8-byte INTEGER type

IntervalDS Oracle INTERVAL DAY TO SECOND type

IntervalYM Oracle INTERVAL YEAR TO MONTH type

Long Oracle LONG type

LongRaw Oracle LONG RAW type

NChar Oracle NCHAR type

NClob Oracle NCLOB type

NVarchar2 Oracle NVARCHAR2 type

Object Oracle Object

Not Available in ODP.NET, Managed Driver

Raw Oracle RAW type

Ref Oracle REF

Not Available in ODP.NET, Managed Driver

RefCursor Oracle REF CURSOR type

Single 4-byte FLOAT type, supports 6 precisions

TimeStamp Oracle TIMESTAMP type

TimeStampLTZ Oracle TIMESTAMP WITH LOCAL TIME ZONE type

TimeStampTZ Oracle TIMESTAMP WITH TIME ZONE type

Varchar2 Oracle VARCHAR2 type

XmlType Oracle XMLType type

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Chapter 6
OracleDbType Enumeration

6-329

6.31 OracleIdentityType Enumeration
The OracleIdentityType enumeration specifies how Oracle identity column values are
generated.

Table 6-149 lists all the OracleIdentityType enumeration values with a description of
each enumerated value.

Table 6-149 OracleIdentityType Members

Member Name Description

GeneratedAlways Indicates that unique values are generated for every insertion.
No updates or inserts are allowed for this identity column.

GeneratedByDefault Indicates that the values are generated only if no explicit value is
provided for the identity column. Null values are not allowed for
this identity column.

GeneratedByDefaultOnNull Indicates that the values are generated only if no explicit value is
provided or a NULL is inserted for the identity column.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

6.32 OracleParameterStatus Enumeration
The OracleParameterStatus enumeration type indicates whether a NULL value is fetched
from a column, or truncation has occurred during the fetch, or a NULL value is to be
inserted into a database column.

Table 6-150 lists all the OracleParameterStatus enumeration values with a description
of each enumerated value.

Table 6-150 OracleParameterStatus Members

Member Name Description

Success Indicates that (for input parameters) the input value has been
assigned to the column. For output parameter, it indicates that the
provider assigned an intact value to the parameter.

NullFetched Indicates that a NULL value has been fetched from a column or an
OUT parameter.

NullInsert Indicates that a NULL value is to be inserted into a column.

Truncation Indicates that truncation has occurred when fetching the data from
the column.

Chapter 6
OracleIdentityType Enumeration

6-330

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Chapter 6
OracleParameterStatus Enumeration

6-331

7
Oracle Data Provider for .NET XML-
Related Classes

This chapter describes ODP.NET XML-related classes and enumerations.

This chapter contains these topics:

• OracleXmlCommandType Enumeration

• OracleXmlQueryProperties Class

• OracleXmlSaveProperties Class

• OracleXmlStream Class

• OracleXmlType Class

All offsets are 0-based for OracleXmlStream object parameters.

7.1 OracleXmlCommandType Enumeration
The OracleXmlCommandType enumeration specifies the values that are allowed for the
XmlCommandType property of the OracleCommand class. It is used to specify the type of
XML operation.

Table 7-1 lists all the OracleXmlCommandType enumeration values with a description of
each enumerated value.

Table 7-1 OracleXmlCommandType Members

Member Name Description

None No XML operation is desired

Query The command text is a SQL query and the result of the query is
an XML document. The SQL query needs to be a select statement

Insert The command text is an XML document containing rows to insert.

Update The command text is an XML document containing rows to
update.

Delete The command text is an XML document containing rows to delete.

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

7-1

7.2 OracleXmlQueryProperties Class
An OracleXmlQueryProperties object represents the XML properties used by the
OracleCommand class when the XmlCommandType property is Query.

Class Inheritance

System.Object

 System.OracleXmlQueryProperties

Declaration

public sealed class OracleXmlQueryProperties : ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleXmlQueryProperties can be accessed, and modified using the XmlQueryProperties
property of the OracleCommand class. Each OracleCommand object has its own instance of
the OracleXmlQueryProperties class in the XmlQueryProperties property.

Use the default constructor to get a new instance of the OracleXmlQueryProperties. Use
the OracleXmlQueryProperties.Clone() method to get a copy of an
OracleXmlQueryProperties instance.

Example

This example retrieves relational data as XML.

// C#

using System;
using System.IO;
using System.Data;
using System.Xml;
using System.Text;
using Oracle.DataAccess.Client;

class OracleXmlQueryPropertiesSample
{
 static void Main()
 {
 int rows = 0;
 StreamReader sr = null;

Chapter 7
OracleXmlQueryProperties Class

7-2

 // Define the XSL document for doing the transform.
 string xslstr = "<?xml version='1.0'?>\n" +
 "<xsl:stylesheet version=\"1.0\"" +
 " xmlns:xsl=\"http://www.w3.org/1999/XSL/Transform\">\n" +
 " <xsl:output encoding=\"utf-8\"/>\n" +
 " <xsl:template match=\"/\">\n" +
 " <EMPLOYEES>\n" +
 " <xsl:apply-templates select=\"ROWSET\"/>\n" +
 " </EMPLOYEES>\n" +
 " </xsl:template>\n" +
 " <xsl:template match=\"ROWSET\">\n" +
 " <xsl:apply-templates select=\"ROW\"/>\n" +
 " </xsl:template>\n" +
 " <xsl:template match=\"ROW\">\n" +
 " <EMPLOYEE>\n" +
 " <EMPLOYEE_ID>\n" +
 " <xsl:apply-templates select=\"EMPNO\"/>\n" +
 " </EMPLOYEE_ID>\n" +
 " <EMPLOYEE_NAME>\n" +
 " <xsl:apply-templates select=\"ENAME\"/>\n" +
 " </EMPLOYEE_NAME>\n" +
 " <HIRE_DATE>\n" +
 " <xsl:apply-templates select=\"HIREDATE\"/>\n" +
 " </HIRE_DATE>\n" +
 " <JOB_TITLE>\n" +
 " <xsl:apply-templates select=\"JOB\"/>\n" +
 " </JOB_TITLE>\n" +
 " </EMPLOYEE>\n" +
 " </xsl:template>\n" +
 "</xsl:stylesheet>\n";

 // Create the connection.
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Set the date, and timestamp formats for Oracle 9i Release 2, or later.
 // This is just needed for queries.
 if (!con.ServerVersion.StartsWith("9.0") &&
 !con.ServerVersion.StartsWith("8.1"))
 {
 OracleGlobalization sessionParams = con.GetSessionInfo();
 sessionParams.DateFormat = "YYYY-MM-DD\"T\"HH24:MI:SS";
 sessionParams.TimeStampFormat = "YYYY-MM-DD\"T\"HH24:MI:SS.FF3";
 sessionParams.TimeStampTZFormat = "YYYY-MM-DD\"T\"HH24:MI:SS.FF3";
 con.SetSessionInfo(sessionParams);
 }

 // Create the command.
 OracleCommand cmd = new OracleCommand("", con);

 // Set the XML command type to query.
 cmd.XmlCommandType = OracleXmlCommandType.Query;

 // Set the SQL query.
 cmd.CommandText = "select * from emp e where e.empno = :empno";

 // Set command properties that affect XML query behaviour.
 cmd.BindByName = true;

Chapter 7
OracleXmlQueryProperties Class

7-3

 // Bind values to the parameters in the SQL query.
 Int32 empNum = 7369;
 cmd.Parameters.Add("empno", OracleDbType.Int32, empNum,
 ParameterDirection.Input);

 // Set the XML query properties.
 cmd.XmlQueryProperties.MaxRows = 1;
 cmd.XmlQueryProperties.RootTag = "ROWSET";
 cmd.XmlQueryProperties.RowTag = "ROW";
 cmd.XmlQueryProperties.Xslt = xslstr;

 // Test query execution without returning a result.
 Console.WriteLine("SQL query: select * from emp e where e.empno = 7369");
 Console.WriteLine("Maximum rows: all rows (-1)");
 Console.WriteLine("Return Value from OracleCommand.ExecuteNonQuery():");
 rows = cmd.ExecuteNonQuery();
 Console.WriteLine(rows);
 Console.WriteLine("\n");

 // Get the XML document as an XmlReader.
 Console.WriteLine("SQL query: select * from emp e where e.empno = 7369");
 Console.WriteLine("Maximum rows: all rows (-1)");
 Console.WriteLine("XML Document from OracleCommand.ExecuteXmlReader():");

 XmlReader xmlReader = cmd.ExecuteXmlReader();
 XmlDocument xmlDocument = new XmlDocument();
 xmlDocument.PreserveWhitespace = true;
 xmlDocument.Load(xmlReader);
 Console.WriteLine(xmlDocument.OuterXml);
 Console.WriteLine("\n");

 // Change the SQL query, and set the maximum number of rows to 2.
 cmd.CommandText = "select * from emp e";
 cmd.Parameters.Clear();
 cmd.XmlQueryProperties.MaxRows = 2;

 // Get the XML document as a Stream.
 Console.WriteLine("SQL query: select * from emp e");
 Console.WriteLine("Maximum rows: 2");
 Console.WriteLine("XML Document from OracleCommand.ExecuteStream():");
 Stream stream = cmd.ExecuteStream();
 sr = new StreamReader(stream, Encoding.Unicode);
 Console.WriteLine(sr.ReadToEnd());
 Console.WriteLine("\n");

 // Get all the rows.
 cmd.XmlQueryProperties.MaxRows = -1;

 // Append the XML document to an existing Stream.
 Console.WriteLine("SQL query: select * from emp e");
 Console.WriteLine("Maximum rows: all rows (-1)");
 Console.WriteLine("XML Document from OracleCommand.ExecuteToStream():");
 MemoryStream mstream = new MemoryStream(32);
 cmd.ExecuteToStream(mstream);
 mstream.Seek(0, SeekOrigin.Begin);
 sr = new StreamReader(mstream, Encoding.Unicode);
 Console.WriteLine(sr.ReadToEnd());
 Console.WriteLine("\n");

 // Clean up.
 cmd.Dispose();

Chapter 7
OracleXmlQueryProperties Class

7-4

 con.Close();
 con.Dispose();
 }
}

7.2.1 OracleXmlQueryProperties Members
OracleXmlQueryProperties members are listed in the following tables.

OracleXmlQueryProperties Constructors

The OracleXmlQueryProperties constructors are listed in Table 7-2.

Table 7-2 OracleXmlQueryProperties Constructors

Constructor Description

OracleXmlQueryProperties
Constructor

Instantiates a new instance of the
OracleXmlQueryProperties class

OracleXmlQueryProperties Properties

The OracleXmlQueryProperties properties are listed in Table 7-3.

Table 7-3 OracleXmlQueryProperties Properties

Name Description

MaxRows Specifies the maximum number of rows from the result
set of the query that can be represented in the result
XML document

RootTag Specifies the root element of the result XML document

RowTag Specifies the value of the XML element which identifies a
row of data from the result set in an XML document

Xslt Specifies the XSL document used for XML
transformation using XSLT

XsltParams Specifies parameters for the XSL document

OracleXmlQueryProperties Public Methods

The OracleXmlQueryProperties public methods are listed in Table 7-4.

Table 7-4 OracleXmlQueryProperties Public Methods

Name Description

Clone Creates a copy of an OracleXmlQueryProperties object

7.2.2 OracleXmlQueryProperties Constructor
The OracleXmlQueryProperties constructor instantiates a new instance of the
OracleXmlQueryProperties class.

Chapter 7
OracleXmlQueryProperties Class

7-5

Declaration

// C#
public OracleXmlQueryProperties();

7.2.3 OracleXmlQueryProperties Properties
The OracleXmlQueryProperties properties are listed in Table 7-5.

Table 7-5 OracleXmlQueryProperties Properties

Name Description

MaxRows Specifies the maximum number of rows from the result set of the
query that can be represented in the result XML document

RootTag Specifies the root element of the result XML document

RowTag Specifies the value of the XML element which identifies a row of data
from the result set in an XML document

Xslt Specifies the XSL document used for XML transformation using XSLT

XsltParams Specifies parameters for the XSL document

7.2.3.1 MaxRows
This property specifies the maximum number of rows from the result set of the query
that can be represented in the result XML document.

Declaration

// C#
public int MaxRows {get; set;}

Property Value

The maximum number of rows.

Exceptions

ArgumentException - The new value for MaxRows is not valid.

Remarks

Default value is -1.

Possible values are:

• -1 (all rows).

• A number greater than or equal to 0.

7.2.3.2 RootTag
This property specifies the root element of the result XML document.

Chapter 7
OracleXmlQueryProperties Class

7-6

Declaration

// C#
public string RootTag {get; set;}

Property Value

The root element of the result XML document.

Remarks

The default root tag is ROWSET.

To indicate that no root tag is be used in the result XML document, set this property to
null or "" or String.Empty.

If both RootTag and RowTag are set to null, an XML document is returned only if the
result set returns one row and one column.

7.2.3.3 RowTag
This property specifies the value of the XML element which identifies a row of data
from the result set in an XML document.

Declaration

// C#
public string RowTag {get; set;}

Property Value

The value of the XML element.

Remarks

The default is ROW.

To indicate that no row tag is be used in the result XML document, set this property to
null or "" or String.Empty.

If both RootTag and RowTag are set to null, an XML document is returned only if the
result set returns one row and one column.

7.2.3.4 Xslt
This property specifies the XSL document used for XML transformation using XSLT.

Declaration

// C#
public string Xslt {get; set;}

Property Value

The XSL document used for XML transformation.

Chapter 7
OracleXmlQueryProperties Class

7-7

Remarks

Default value is null.

The XSL document is used for XML transformation of the XML document generated
from the result set of the query.

7.2.3.5 XsltParams
This property specifies parameters for the XSL document.

Declaration

// C#
public string XsltParams {get; set;}

Property Value

The parameters for the XSL document.

Remarks

Default value is null.

The parameters are specified as a string of "name=value" pairs of the form
"param1=value1; param2=value2;..." delimited by semicolons.

7.2.4 OracleXmlQueryProperties Public Methods
The OracleXmlQueryProperties public methods are listed in Table 7-6.

Table 7-6 OracleXmlQueryProperties Public Methods

Name Description

Clone Creates a copy of an OracleXmlQueryProperties object

7.2.4.1 Clone
This method creates a copy of an OracleXmlQueryProperties object.

Declaration

// C#
public object Clone();

Return Value

An OracleXmlQueryProperties object

Implements

ICloneable

Chapter 7
OracleXmlQueryProperties Class

7-8

7.3 OracleXmlSaveProperties Class
An OracleXmlSaveProperties object represents the XML properties used by the
OracleCommand class when the XmlCommandType property is Insert, Update, or Delete.

Class Inheritance

System.Object

 System.OracleXmlSaveProperties

Declaration

public sealed class OracleXmlSaveProperties : ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleXmlSaveProperties can be accessed and modified using the XmlSaveProperties
property of the OracleCommand class. Each OracleCommand object has its own instance of
the OracleXmlSaveProperties class in the XmlSaveProperties property.

Use the default constructor to get a new instance of OracleXmlSaveProperties. Use the
OracleXmlSaveProperties.Clone() method to get a copy of an OracleXmlSaveProperties
instance.

Example

This sample demonstrates how to do inserts, updates, and deletes to a relational table
or view using an XML document.

// C#
/* -- If HR account is being locked, you need to log on as a DBA
 -- to unlock the account first. Unlock a locked users account:

 ALTER USER hr ACCOUNT UNLOCK;
*/

using System;
using Oracle.DataAccess.Client;

class OracleXmlSavePropertiesSample
{
 static void Main()
 {

Chapter 7
OracleXmlSaveProperties Class

7-9

 string[] KeyColumnsList = null;
 string[] UpdateColumnsList = null;
 int rows = 0;

 // Create the connection.
 string constr = "User Id=hr;Password=hr;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create the command.
 OracleCommand cmd = new OracleCommand("", con);

 // Set the XML command type to insert.
 cmd.XmlCommandType = OracleXmlCommandType.Insert;

 // Set the XML document.
 cmd.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<ROWSET>\n" +
 " <MYROW num = \"1\">\n" +
 " <EMPLOYEE_ID>1234</EMPLOYEE_ID>\n" +
 " <LAST_NAME>Smith</LAST_NAME>\n" +
 " <EMAIL>Smith@Oracle.com</EMAIL>\n" +
 " <HIRE_DATE>1982-01-23T00:00:00.000</HIRE_DATE>\n" +
 " <JOB_ID>IT_PROG</JOB_ID>\n" +
 " </MYROW>\n" +
 " <MYROW num = \"2\">\n" +
 " <EMPLOYEE_ID>1235</EMPLOYEE_ID>\n" +
 " <LAST_NAME>Barney</LAST_NAME>\n" +
 " <EMAIL>Barney@Oracle.com</EMAIL>\n" +
 " <HIRE_DATE>1982-01-23T00:00:00.000</HIRE_DATE>\n" +
 " <JOB_ID>IT_PROG</JOB_ID>\n" +
 " </MYROW>\n" +
 "</ROWSET>\n";

 // Set the XML save properties.
 KeyColumnsList = new string[1];
 KeyColumnsList[0] = "EMPLOYEE_ID";
 UpdateColumnsList = new string[5];
 UpdateColumnsList[0] = "EMPLOYEE_ID";
 UpdateColumnsList[1] = "LAST_NAME";
 UpdateColumnsList[2] = "EMAIL";
 UpdateColumnsList[3] = "HIRE_DATE";
 UpdateColumnsList[4] = "JOB_ID";
 cmd.XmlSaveProperties.KeyColumnsList = KeyColumnsList;
 cmd.XmlSaveProperties.RowTag = "MYROW";
 cmd.XmlSaveProperties.Table = "employees";
 cmd.XmlSaveProperties.UpdateColumnsList = UpdateColumnsList;
 cmd.XmlSaveProperties.Xslt = null;
 cmd.XmlSaveProperties.XsltParams = null;

 // Do the inserts.
 rows = cmd.ExecuteNonQuery();
 Console.WriteLine("rows: " + rows);

 // Set the XML command type to update.
 cmd.XmlCommandType = OracleXmlCommandType.Update;

 // Set the XML document.
 cmd.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<ROWSET>\n" +
 " <MYROW num = \"1\">\n" +

Chapter 7
OracleXmlSaveProperties Class

7-10

 " <EMPLOYEE_ID>1234</EMPLOYEE_ID>\n" +
 " <LAST_NAME>Adams</LAST_NAME>\n" +
 " </MYROW>\n" +
 "</ROWSET>\n";

 // Set the XML save properties.
 KeyColumnsList = new string[1];
 KeyColumnsList[0] = "EMPLOYEE_ID";
 UpdateColumnsList = new string[1];
 UpdateColumnsList[0] = "LAST_NAME";
 cmd.XmlSaveProperties.KeyColumnsList = KeyColumnsList;
 cmd.XmlSaveProperties.UpdateColumnsList = UpdateColumnsList;
 rows = cmd.ExecuteNonQuery();
 Console.WriteLine("rows: " + rows);

 // Set the XML command type to delete.
 cmd.XmlCommandType = OracleXmlCommandType.Delete;

 // Set the XML document.
 cmd.CommandText = "<?xml version=\"1.0\"?>\n" +
 "<ROWSET>\n" +
 " <MYROW num = \"1\">\n" +
 " <EMPLOYEE_ID>1234</EMPLOYEE_ID>\n" +
 " </MYROW>\n" +
 " <MYROW num = \"2\">\n" +
 " <EMPLOYEE_ID>1235</EMPLOYEE_ID>\n" +
 " </MYROW>\n" +
 "</ROWSET>\n";

 // Set the XML save properties.
 KeyColumnsList = new string[1];
 KeyColumnsList[0] = "EMPLOYEE_ID";
 cmd.XmlSaveProperties.KeyColumnsList = KeyColumnsList;
 cmd.XmlSaveProperties.UpdateColumnsList = null;

 // Do the deletes.
 rows = cmd.ExecuteNonQuery();
 Console.WriteLine("rows: " + rows);

 // Clean up.
 cmd.Dispose();
 con.Close();
 con.Dispose();
 }
}

7.3.1 OracleXmlSaveProperties Members
OracleXmlSaveProperties members are listed in the following tables.

OracleXmlSaveProperties Constructor

OracleXmlSaveProperties constructors are listed in Table 7-7

Chapter 7
OracleXmlSaveProperties Class

7-11

Table 7-7 OracleXmlSaveProperties Constructor

Constructor Description

OracleXmlSaveProperties
Constructor

Instantiates a new instance of the
OracleXmlSaveProperties class

OracleXmlSaveProperties Properties

The OracleXmlSaveProperties properties are listed in Table 7-8.

Table 7-8 OracleXmlSaveProperties Properties

Name Description

KeyColumnsList Specifies the list of columns used as a key to locate
existing rows for update or delete using an XML
document

RowTag Specifies the value for the XML element that identifies a
row of data in an XML document

Table Specifies the name of the table or view to which changes
are saved

UpdateColumnsList Specifies the list of columns to update or insert

Xslt Specifies the XSL document used for XML
transformation using XSLT

XsltParams Specifies the parameters for the XSLT document
specified in the Xslt property

OracleXmlSaveProperties Public Methods

The OracleXmlSaveProperties public methods are listed in Table 7-9.

Table 7-9 OracleXmlSaveProperties Public Methods

Name Description

Clone Creates a copy of an OracleXmlSaveProperties object

7.3.2 OracleXmlSaveProperties Constructor
The OracleXmlSaveProperties constructor instantiates a new instance of
OracleXmlSaveProperties class.

Declaration

// C#
public OracleXmlSaveProperties;

7.3.3 OracleXmlSaveProperties Properties
The OracleXmlSaveProperties properties are listed in Table 7-10.

Chapter 7
OracleXmlSaveProperties Class

7-12

Table 7-10 OracleXmlSaveProperties Properties

Name Description

KeyColumnsList Specifies the list of columns used as a key to locate existing rows for
update or delete using an XML document

RowTag Specifies the value for the XML element that identifies a row of data
in an XML document

Table Specifies the name of the table or view to which changes are saved

UpdateColumnsList Specifies the list of columns to update or insert

Xslt Specifies the XSL document used for XML transformation using
XSLT

XsltParams Specifies the parameters for the XSLT document specified in the Xslt
property

7.3.3.1 KeyColumnsList
This property specifies the list of columns used as a key to locate existing rows for
update or delete using an XML document.

Declaration

// C#
public string[] KeyColumnsList {get; set;}

Property Value

The list of columns.

Remarks

Default value is null.

The first null value (if any) terminates the list.

KeyColumnsList usage with XMLCommandType property values:

• Insert - KeyColumnsList is ignored and can be null.

• Update - KeyColumnsList must be specified; it identifies the columns to use to find
the rows to be updated.

• Delete - If KeyColumnsList is null, all the column values in each row element in the
XML document are used to locate the rows to delete. Otherwise, KeyColumnsList
specifies the columns used to identify the rows to delete.

7.3.3.2 RowTag
This property specifies the value for the XML element that identifies a row of data in an
XML document.

Chapter 7
OracleXmlSaveProperties Class

7-13

Declaration

// C#
public string RowTag {get; set;}

Property Value

An XML element name.

Remarks

The default value is ROW.

Each element in the XML document identifies one row in a table or view.

If RowTag is set to "" or null, no row tag is used in the XML document. In this case, the
XML document is assumed to contain only one row.

7.3.3.3 Table
This property specifies the name of the table or view to which changes are saved.

Declaration

// C#
public string Table {get; set;}

Property Value

A table name.

Remarks

Default value is null.

The property must be set to a valid table or view name.

7.3.3.4 UpdateColumnsList
This property specifies the list of columns to update or insert.

Declaration

// C#
public string[] UpdateColumnsList {get; set;}

Property Value

A list of columns.

Remarks

Default value is null.

The first null value (if any) terminates the list.

UpdateColumnList usage with XMLCommandType property values:

Chapter 7
OracleXmlSaveProperties Class

7-14

• Insert - UpdateColumnList indicates which columns are assigned values when a
new row is created. If UpdateColumnList is null, then all columns are assigned
values. If a column is on the UpdateColumnList, but no value is specified for the row
in the XML file, then NULL is used. If a column is not on the UpdateColumnList, then
the default value for that column is used.

• Update - UpdateColumnList specifies columns to modify for each row of data in the
XML document. If UpdateColumnList is null, all the values in each XML element in
the XML document are used to modify the columns.

• Delete - UpdateColumnsList is ignored and can be null.

7.3.3.5 Xslt
This property specifies the XSL document used for XML transformation using XSLT.

Declaration

// C#
public string Xslt {get; set;}

Property Value

The XSL document used for XML transformation.

Remarks

Default = null.

The XSL document is used for XSLT transformation of a given XML document. The
transformed XML document is used to save changes to the table or view.

7.3.3.6 XsltParams
This property specifies the parameters for the XSLT document specified in the Xslt
property.

Declaration

// C#
public string XsltParams {get; set;}

Property Value

The parameters for the XSLT document.

Remarks

Default is null.

This property is a string delimited by semicolons in "name=value" pairs of the form
"param1=value1; param2=value2; …".

7.3.4 OracleXmlSaveProperties Public Methods
The OracleXmlSaveProperties public methods are listed in Table 7-11.

Chapter 7
OracleXmlSaveProperties Class

7-15

Table 7-11 OracleXmlSaveProperties Public Methods

Name Description

Clone Creates a copy of an OracleXmlSaveProperties object

7.3.4.1 Clone
This method creates a copy of an OracleXmlSaveProperties object.

Declaration

// C#
public object Clone();

Return Value

An OracleXmlSaveProperties object

Implements

ICloneable

7.4 OracleXmlStream Class
An OracleXmlStream object represents a read-only stream of XML data stored in an
OracleXmlType object.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.Stream

 System.OracleXmlStream

Declaration

// C#
public sealed class OracleXmlStream : IDisposable, ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 7
OracleXmlStream Class

7-16

7.4.1 OracleXmlStream Members
OracleXmlStream members are listed in the following tables.

OracleXmlStream Constructors

The OracleXmlStream constructors are listed in Table 7-12.

Table 7-12 OracleXmlStream Constructors

Constructor Description

OracleXmlStream
Constructor

Creates an instance of an OracleXmlStream object which provides a
Stream representation of the XML data stored in an OracleXmlType

OracleXmlStream Static Methods

The OracleXmlStream static methods are listed in Table 7-13.

Table 7-13 OracleXmlStream Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleXmlStream Instance Properties

The OracleXmlStream instance properties are listed in Table 7-14.

Table 7-14 OracleXmlStream Instance Properties

Properties Description

CanRead Indicates whether or not the XML stream can be read

CanSeek Indicates whether or not forward and backward seek operation
can be performed

CanWrite Not Supported

Connection Indicates the OracleConnection that is used to retrieve the XML
data

Length Indicates the number of bytes in the XML stream

Position Gets or sets the byte position within the stream

Value Returns the XML data, starting from the first character in the
stream as a string

OracleXmlStream Instance Methods

The OracleXmlStream instance methods are listed in Table 7-15.

Chapter 7
OracleXmlStream Class

7-17

Table 7-15 OracleXmlStream Instance Methods

Methods Description

BeginRead Inherited from System.IO.Stream

BeginWrite Inherited from System.IO.Stream

Clone Creates a copy of an OracleXmlStream object

Close Closes the current stream and releases any resources
associated with it

Dispose Releases resources allocated by this object

EndRead Inherited from System.IO.Stream

EndWrite Inherited from System.IO.Stream

Equals Inherited from System.Object

Flush Not Supported

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

Read Reads a specified amount from the current stream
instance and populates the array buffer (Overloaded)

ReadByte Inherited from System.IO.Stream

Seek Sets the position within the current stream and returns the
new position within the current stream

SetLength Not Supported

ToString Inherited from System.Object

Write Not Supported

WriteByte Not Supported

WriteLine Not Supported

7.4.2 OracleXmlStream Constructor
This constructor creates an instance of an OracleXmlStream object which provides a
Stream representation of the XML data stored in an OracleXmlType object.

Declaration

// C#
public OracleXmlStream(OracleXmlType xmlType);

Parameters

• xmlType

The OracleXmlType object.

Chapter 7
OracleXmlStream Class

7-18

Remarks

The OracleXmlStream implicitly uses the OracleConnection object from the OracleXmlType
object from which it was constructed.

7.4.3 OracleXmlStream Static Methods
The OracleXmlStream static methods are listed in Table 7-16.

Table 7-16 OracleXmlStream Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

7.4.4 OracleXmlStream Instance Properties
The OracleXmlStream instance properties are listed in Table 7-17.

Table 7-17 OracleXmlStream Instance Properties

Properties Description

CanRead Indicates whether or not the XML stream can be read

CanSeek Indicates whether or not forward and backward seek operation
can be performed

CanWrite Not Supported

Connection Indicates the OracleConnection that is used to retrieve the XML
data

Length Indicates the number of bytes in the XML stream

Position Gets or sets the byte position within the stream

Value Returns the XML data, starting from the first character in the
stream as a string

7.4.4.1 CanRead
Overrides Stream

This property indicates whether or not the XML stream can be read.

Declaration

// C#
public override bool CanRead{get;}

Property Value

If the XML stream is can be read, returns true; otherwise, returns false.

Chapter 7
OracleXmlStream Class

7-19

7.4.4.2 CanSeek
Overrides Stream

This property indicates whether or not forward and backward seek operation can be
performed.

Declaration

// C#
public override bool CanSeek{get;}

Property Value

If forward and backward seek operations can be performed, this property returns true.
Otherwise, returns false.

7.4.4.3 Connection
This instance property indicates the OracleConnection that is used to retrieve the XML
data.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

7.4.4.4 Length
Overrides Stream

This property indicates the number of bytes in the XML stream.

Declaration

// C#
public override Int64 Length{get;}

Property Value

An Int64 value representing the number of bytes in the XML stream. An empty stream
has a length of 0 bytes.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 7
OracleXmlStream Class

7-20

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.4.4.5 Position
Overrides Stream

This property gets or sets the byte position within the stream.

Declaration

// C#
public override Int64 Position{get; set;}

Property Value

An Int64 that indicates the current position in the stream.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The Position is less than 0.

Remarks

The beginning of the stream is represented by position 0. Seeking to any location
beyond the length of the stream is supported.

7.4.4.6 Value
This property returns the XML data, starting from the first character of the stream as a
string.

Declaration

// C#
public string Value{get; set;}

Property Value

A string.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The value of Position is neither used nor changed by using this property.

The maximum length of the string that can be returned by this property is 2 GB.

Chapter 7
OracleXmlStream Class

7-21

7.4.5 OracleXmlStream Instance Methods
The OracleXmlStream instance methods are listed in Table 7-18.

Table 7-18 OracleXmlStream Instance Methods

Methods Description

BeginRead Inherited from System.IO.Stream

BeginWrite Inherited from System.IO.Stream

Clone Creates a copy of an OracleXmlStream object

Close Closes the current stream and releases any resources
associated with it

Dispose Releases resources allocated by this object

EndRead Inherited from System.IO.Stream

EndWrite Inherited from System.IO.Stream

Equals Inherited from System.Object

Flush Not Supported

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

Read Reads a specified amount from the current XML stream
instance and populates the array buffer (Overloaded)

ReadByte Inherited from System.IO.Stream

Seek Sets the position within the current stream and returns the
new position within the current stream

SetLength Not Supported

ToString Inherited from System.Object

Write Not Supported

WriteByte Not Supported

WriteLine Not Supported

7.4.5.1 Clone
This method creates a copy of an OracleXmlStream object.

Declaration

// C#
public object Clone();

Return Value

An OracleXmlStream object.

Chapter 7
OracleXmlStream Class

7-22

Implements

ICloneable

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The cloned object has the same property values as that of the object being cloned.

7.4.5.2 Close
Overrides Stream

This method closes the current stream and releases any resources associated with it.

Declaration

// C#
public override void Close();

7.4.5.3 Dispose
This public method releases resources allocated by this object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The object cannot be reused after being disposed. Although some properties can still
be accessed, their values cannot be accountable. Since resources are freed, method
calls can lead to exceptions.

7.4.5.4 Flush
This method is not supported.

7.4.5.5 Read
This method reads a specified amount from the current XML stream instance and
populates the array buffer.

Chapter 7
OracleXmlStream Class

7-23

Overload List:

• Read(byte[], int, int)

This method reads a specified amount of unicode bytes from the current instance,
advances the position within the stream, and populates the byte array buffer.

• Read(char[], int, int)

This method reads a specified amount of characters from the current instance,
advances the position within the stream, and populates the character array buffer.

7.4.5.6 Read(byte[], int, int)
Overrides Stream

This method reads a specified amount of unicode bytes from the current instance,
advances the position within the stream, and populates the byte array buffer.

Declaration

// C#
public override int Read(byte[] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer that is populated.

• offset

The zero-based offset (in bytes) at which the buffer is populated.

• count

The maximum amount of bytes to be read.

Return Value

The number of unicode bytes read into the given byte[] buffer or 0 if the end of the
stream has been reached.

Remarks

This method reads a maximum of count bytes from the current stream and stores them
in buffer beginning at offset. The current position within the stream is advanced by the
number of bytes read. However, if an exception occurs, the current position within the
stream remains unchanged.

The XML data is read starting from the position specified by the Position property.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 7
OracleXmlStream Class

7-24

7.4.5.7 Read(char[], int, int)
Overrides Stream

This method reads a specified amount of characters from the current instance,
advances the position within the stream, and populates the character array buffer.

Declaration

// C#
public override int Read(char[] buffer, int offset, int count);

Parameters

• buffer

The character array buffer to be populated.

• offset

The zero-based offset (in characters) in the buffer at which the buffer is populated.

• count

The maximum amount of characters to be read from the stream.

Return Value

The return value indicates the number of characters read from the stream or 0 if the
end of the stream has been reached.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

This method requires that the Position on the stream instance be zero or an even
number.

The XML data is read starting from the position specified by the Position property.

7.4.5.8 Seek
Overrides Stream.

This method sets the position within the current stream and returns the new position
within the current stream.

Declaration

// C#
public long Seek(long offset, SeekOrigin origin);

Chapter 7
OracleXmlStream Class

7-25

Parameters

• offset

A byte offset relative to origin.

– If offset is negative, the new position precedes the position specified by
origin by the number of bytes specified by offset.

– If offset is zero, the new position is the position specified by origin.

– If offset is positive, the new position follows the position specified by origin by
the number of bytes specified by offset.

• origin

A value of type SeekOrigin indicating the reference point used to obtain the new
position.

Return Value

The new Position within the current stream.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object

Remarks

Use the CanSeek property to determine whether or not the current instance supports
seeking. Seeking to any location beyond the length of the stream is supported.

7.4.5.9 SetLength
This method is not supported.

7.4.5.10 Write
This method is not supported.

7.4.5.11 WriteLine
This method is not supported.

7.5 OracleXmlType Class
An OracleXmlType object represents an Oracle XMLType instance.

Class Inheritance

System.Object

Chapter 7
OracleXmlType Class

7-26

 System.OracleXmlType

Declaration

// C#
public sealed class OracleXmlType : IDisposable, INullable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleXmlType objects can be used for well-formed XML documents with or without
XML schemas or XML fragments.

7.5.1 OracleXmlType Members
OracleXmlType members are listed in the following tables.

OracleXmlType Constructors

The OracleXmlType constructors are listed in Table 7-19.

Table 7-19 OracleXmlType Constructors

Constructor Description

OracleXmlType Constructors Creates an instance of the OracleXmlType class (Overloaded)

OracleXmlType Static Methods

The OracleXmlType static methods are listed in Table 7-20.

Table 7-20 OracleXmlType Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleXmlType Static Fields

The OracleXmlType static field is listed in Table 7-21.

Chapter 7
OracleXmlType Class

7-27

Table 7-21 OracleXmlType Static Field

Static Field Description

Null Represents a null value that can be assigned to an
OracleXmlType instance

OracleXmlType Instance Properties

The OracleXmlType instance properties are listed in Table 7-22.

Table 7-22 OracleXmlType Instance Properties

Properties Description

Connection Indicates the OracleConnection that is used to retrieve and
store XML data in the OracleXmlType

IsEmpty Indicates whether or not the OracleXmlType is empty

IsFragment Indicates whether the XML data is a collection of XML elements
or a well-formed XML document

IsNull Indicates whether or not the OracleXmlType is null

IsSchemaBased Indicates whether or not the XML data represented by the
OracleXmlType is based on an XML schema

RootElement Represents the name of the top-level element of the schema-
based XML data contained in the OracleXmlType

Schema Represents the XML schema of the XML data contained in the
OracleXmlType

SchemaUrl Represents in the database for the XML schema of the XML
data contained in the OracleXmlType.

Value Returns the XML data starting from the first character in the
current instance as a string

OracleXmlType Instance Methods

The OracleXmlType instance methods are listed in Table 7-23.

Table 7-23 OracleXmlType Instance Methods

Methods Description

Clone Creates a copy of the OracleXmlType instance

Dispose Releases the resources allocated by this OracleXmlType object

Equals Inherited from System.Object

Extract Extracts a subset from the XML data using the given XPath
expression (Overloaded)

GetHashCode Inherited from System.Object

GetStream Returns an instance of OracleXmlStream which provides a read-
only stream of the XML data stored in this OracleXmlType
instance

Chapter 7
OracleXmlType Class

7-28

Table 7-23 (Cont.) OracleXmlType Instance Methods

Methods Description

GetType Inherited from System.Object

GetXmlDocument Returns a XmlDocument object containing the XML data stored in
this OracleXmlType instance

GetXmlReader Returns a XmlTextReader object that can be used to manipulate
XML data directly using the .NET Framework classes and
methods

IsExists Checks for the existence of a particular set of nodes identified by
the given XPath expression in the XMLdata (Overloaded)

ToString Inherited from System.Object

Transform Transforms the OracleXmlType into another OracleXmlType
instance using the given XSL document (Overloaded)

Update Updates the XML node or fragment identified by the given XPath
expression in the current OracleXmlType instance (Overloaded)

Validate Validates whether or not the XML data in the OracleXmlType
object conforms to the given XML schema.

7.5.2 OracleXmlType Constructors
OracleXmlType constructors create instances of the OracleXmlType class.

Overload List:

• OracleXmlType(OracleClob)

This constructor creates an instance of the OracleXmlType class using the XML
data contained in an OracleClob object.

• OracleXmlType(OracleConnection, string)

This constructor creates an instance of the OracleXmlType class using the XML
data contained in the .NET String.

• OracleXmlType(OracleConnection, XmlReader)

This constructor creates an instance of the OracleXmlType class using the contents
of the .NET XmlReader object.

• OracleXmlType(OracleConnection, XmlDocument)

This constructor creates an instance of the OracleXmlType object using the contents
of the XML DOM document in the .NET XmlDocument object.

7.5.2.1 OracleXmlType(OracleClob)
This constructor creates an instance of the OracleXmlType class using the XML data
contained in an OracleClob object.

Chapter 7
OracleXmlType Class

7-29

Declaration

// C#
public OracleXmlType(OracleClob oraClob);

Parameters

• oraClob

An OracleClob object.

Exceptions

ArgumentNullException - The OracleClob object is null.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The CLOB data depends on a valid connection object and the new OracleXMLType uses
the OracleConnection in the OracleClob object to store data for the current instance.

7.5.2.2 OracleXmlType(OracleConnection, string)
This constructor creates an instance of the OracleXmlType class using the XML data
contained in the .NET String.

Declaration

// C#
public OracleXmlType(OracleConnection con, string xmlData);

Parameters

• con

An OracleConnection object.

• xmlData

A string containing the XML data.

Exceptions

ArgumentNullException - The OracleConnection object is null.

ArgumentException - The xmlData argument is an empty string.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The new OracleXmlType uses the given OracleConnection object to store data for the
current instance.

Chapter 7
OracleXmlType Class

7-30

7.5.2.3 OracleXmlType(OracleConnection, XmlReader)
This constructor creates an instance of the OracleXmlType class using the contents of
the .NET XmlReader object.

Declaration

// C#
public OracleXmlType(OracleConnection con, XmlReader reader);

Parameters

• con

An OracleConnection object.

• reader

An XmlReader object.

Exceptions

ArgumentNullException - The OracleConnection object is null.

ArgumentException - The reader argument contains no data.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The new OracleXMLType uses the given OracleConnection object to store data for the
current instance.

7.5.2.4 OracleXmlType(OracleConnection, XmlDocument)
This constructor creates an instance of the OracleXmlType object using the contents of
the XML DOM document in the .NET XmlDocument object.

Declaration

// C#
public OracleXmlType(OracleConnection con, XmlDocument domDoc);

Parameters

• con

An OracleConnection object.

• domDoc

An XML document.

Exceptions

ArgumentNullException - The OracleConnection object is null.

ArgumentException - The domDoc argument contains no data.

Chapter 7
OracleXmlType Class

7-31

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The new OracleXMLType uses the given OracleConnection object to store data for the
current instance.

7.5.3 OracleXmlType Static Methods
The OracleXmlType static methods are listed in Table 7-24.

Table 7-24 OracleXmlType Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

7.5.4 OracleXmlType Static Fields
The OracleXmlType static field is listed in Table 7-25.

Table 7-25 OracleXmlType Static Field

Static Field Description

Null Represents a null value that can be assigned to an
OracleXmlType instance

7.5.4.1 Null
This static field represents a null value that can be assigned to an OracleXmlType
instance.

Declaration

// C#
public static readonly OracleXmlType Null;

7.5.5 OracleXmlType Instance Properties
The OracleXmlType instance properties are listed in Table 7-26.

Table 7-26 OracleXmlType Instance Properties

Properties Description

Connection Indicates the OracleConnection that is used to retrieve and
store XML data in the OracleXmlType

IsEmpty Indicates whether or not the OracleXmlType is empty

Chapter 7
OracleXmlType Class

7-32

Table 7-26 (Cont.) OracleXmlType Instance Properties

Properties Description

IsFragment Indicates whether the XML data is a collection of XML elements
or a well-formed XML document

IsNull Indicates whether or not the OracleXmlType is null

IsSchemaBased Indicates whether or not the XML data represented by the
OracleXmlType is based on an XML schema

Null Represents a null value that can be assigned to an
OracleXmlType instance

RootElement Represents the name of the top-level element of the schema-
based XML data contained in the OracleXmlType

Schema Represents the XML schema of the XML data contained in the
OracleXmlType

SchemaUrl Represents URL in the database for the XML schema of the
XML data contained in the OracleXmlType

Value Returns the XML data starting from the first character in the
current instance as a string

7.5.5.1 Connection
This property indicates the OracleConnection that is used to retrieve and store XML
data in the OracleXmlType.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An OracleConnection object.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The connection must explicitly be opened by the user before creating or using
OracleXmlType.

7.5.5.2 IsEmpty
This property indicates whether or not the OracleXmlType is empty.

Declaration

// C#
public bool IsEmpty {get;}

Chapter 7
OracleXmlType Class

7-33

Property Value

Returns true if the OracleXmlType represents an empty XML document. Returns false
otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.5.5.3 IsFragment
This property indicates whether the XML data is a collection of XML elements or a
well-formed XML document.

Declaration

// C#
public bool IsFragment {get;}

Property Value

Returns true if the XML data contained in the OracleXmlType object is a collection of
XML elements with no root element. Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

7.5.5.4 IsNull
This property indicates whether or not the OracleXmlType is null.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the OracleXmlType represents a null value. Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.5.5.5 IsSchemaBased
This property indicates whether or not the XML data represented by the OracleXmlType
is based on an XML schema.

Chapter 7
OracleXmlType Class

7-34

Declaration

// C#
public bool IsSchemaBased {get;}

Property Value

Returns true if the XML data represented by the OracleXmlType is based on an XML
schema. Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

7.5.5.6 RootElement
This property represents the name of the top-level or root element of the schema-
based XML data contained in the OracleXmlType.

Declaration

// C#
public string RootElement{get;}

Property Value

A string that represents the name of the top-level or root element of the XML data
contained in the OracleXmlType.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

If the OracleXmlType instance contains non-schema based XML data, this property
returns an empty string.

7.5.5.7 Schema
This property represents the XML schema for the XML data contained in the
OracleXmlType.

Declaration

// C#
public OracleXmlType Schema {get;}

Property Value

An OracleXmlType instance that represents the XML schema for the XML data
contained in the OracleXmlType.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 7
OracleXmlType Class

7-35

Remarks

If the OracleXmlType instance contains non-schema based XML data, this property
returns an OracleXmlType instance representing an empty XML document.

7.5.5.8 SchemaUrl
This property represents the XML schema in the database for the XML schema of the
XML data contained in the OracleXmlType.

Declaration

// C#
public string SchemaUrl {get;}

Property Value

A string that represents the URL in the database for the XML schema of the XML data.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

If the OracleXmlType instance contains non-schema based XML data, this property
returns an empty string.

7.5.5.9 Value
This property returns the XML data starting from the first character in the current
instance as a string.

Declaration

// C#
public string Value{get;}

Property Value

The entire XML data as a string.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.5.6 OracleXmlType Instance Methods
The OracleXmlType instance methods are listed in Table 7-27.

Chapter 7
OracleXmlType Class

7-36

Table 7-27 OracleXmlType Instance Methods

Methods Description

Clone Creates a copy of the OracleXmlType instance

Dispose Releases the resources allocated by this OracleXmlType object

Equals Inherited from System.Object

Extract Extracts a subset from the XML data using the given XPath
expression (Overloaded)

GetHashCode Inherited from System.Object

GetStream Returns an instance of OracleXmlStream which provides a read-
only stream of the XML data stored in this OracleXmlType
instance

GetType Inherited from System.Object

GetXmlDocument Returns a XmlDocument object containing the XML data stored in
this OracleXmlType instance

GetXmlReader Returns a XmlTextReader object that can be used to manipulate
XML data directly using the .NET Framework classes and
methods

IsExists Checks for the existence of a particular set of nodes identified by
the given XPath expression in the XMLdata (Overloaded)

ToString Inherited from System.Object

Transform Transforms the OracleXmlType into another OracleXmlType
instance using the given XSL document (Overloaded)

Update Updates the XML node or fragment identified by the given XPath
expression in the current OracleXmlType instance (Overloaded)

Validate Validates whether or not the XML data in the OracleXmlType
object conforms to the given XML schema.

7.5.6.1 Clone
This method creates a copy of this OracleXmlType instance.

Declaration

// C#
public object Clone();

Implements

ICloneable

Return Value

An OracleXmlType object.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 7
OracleXmlType Class

7-37

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.5.6.2 Dispose
This method releases the resources allocated by this object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

7.5.6.3 Extract
This method extracts a subset from the XML data using the given XPath expression.

Overload List:

• Extract(string, string)

This method extracts a subset from the XML data represented by the
OracleXmlType object using the given XPath expression and a string parameter for
namespace resolution.

• Extract(string, XmlNameSpaceManager)

This method extracts a subset from the XML data represented by the
OracleXmlType object, using the given XPath expression and a .NET
XmlNameSpaceManager object for namespace resolution.

7.5.6.4 Extract(string, string)
This method extracts a subset from the XML data represented by the OracleXmlType
object using the given XPath expression and a string parameter for namespace
resolution.

Declaration

// C#
public OracleXmlType Extract(string xpathExpr, string nsMap);

Parameters

• xpathExpr

The XPath expression.

• nsMap

The string parameter used for namespace resolution of the XPath expression.
nsMap has zero or more namespaces separated by spaces. nsMap can be null. For
example:

 xmlns:nsi"=http://www.company1.com" xmlns:nsz="http://www.company2.com"

Chapter 7
OracleXmlType Class

7-38

Return Value

An OracleXmlType object.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.5.6.5 Extract(string, XmlNameSpaceManager)
This public method extracts a subset from the XML data represented by the
OracleXmlType object, using the given XPath expression and a .NET
XmlNameSpaceManager object for namespace resolution.

Declaration

// C#
public OracleXmlType Extract(string xpathExpr, XmlNameSpaceManager nsMgr);

Parameters

• xpathExpr

The XPath expression.

• nsMgr

The .NET XmlNameSpaceManager object used for namespace resolution of the XPath
expression. nsMgr can be null.

Return Value

An OracleXmlType.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

7.5.6.6 GetStream
This public method returns an instance of OracleXmlStream which provides a read-only
stream of the XML data stored in this OracleXmlType instance.

Chapter 7
OracleXmlType Class

7-39

Declaration

// C#
public Stream GetStream();

Return Value

A Stream object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.5.6.7 GetXmlDocument
This public method returns a XmlDocument object containing the XML data stored in this
OracleXmlType instance.

Declaration

// C#
public XmlDocument GetXmlDocument();

Return Value

An XmlDocument object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The XML data in the XmlDocument object is a copy of the XML data in the OracleXmlType
instance and modifying it does not automatically modify the XML data in the
OracleXmlType instance. The XmlDocument instance returned has the PreserveWhitespace
property set to true.

7.5.6.8 GetXmlReader
This public method returns a XmlTextReader object that can be used to manipulate XML
data directly using the .NET Framework classes and methods.

Declaration

// C#
public XmlTextReader GetXmlReader();

Return Value

An XmlTextReader object.

Chapter 7
OracleXmlType Class

7-40

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The XmlTextReader is a read-only, forward-only representation of the XML data stored
in the OracleXmlType instance.

7.5.6.9 IsExists
IsExists checks for the existence of a particular set of nodes identified by the XPath
expression in the XML data.

Overload List:

• IsExists(string, string)

This method checks for the existence of a particular set of nodes identified by the
XPath expression in the XML data represented by the current OracleXmlType
instance using a string parameter for namespace resolution.

• IsExists(string, XmlNameSpaceManager)

This method checks for the existence of a particular set of nodes identified by the
XPath expression in the XML document represented by the current OracleXmlType
instance using a .NET XmlNameSpaceManager object for namespace resolution.

7.5.6.10 IsExists(string, string)
This method checks for the existence of a particular set of nodes identified by the
XPath expression in the XML data represented by the current OracleXmlType instance
using a string parameter for namespace resolution.

Declaration

// C#
public bool IsExists(string xpathExpr, string nsMap);

Parameters

• xpathExpr

The XPath expression.

• nsMap

The string parameter used for namespace resolution of the XPath expression.
nsMap has zero or more namespaces separated by spaces. nsMap can be null.

Return Value

Returns true if the required set of nodes exists; otherwise, returns false.

Chapter 7
OracleXmlType Class

7-41

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

7.5.6.11 IsExists(string, XmlNameSpaceManager)
This method checks the existence of a particular set of nodes identified by the XPath
expression in the XML document represented by the current OracleXmlType instance
using a .NET XmlNameSpaceManager object for namespace resolution.

Declaration

// C#
public bool IsExists(string xpathExpr, XmlNameSpaceManager nsMgr);

Parameters

• xpathExpr

The XPath expression.

• nsMgr

The .NET XmlNameSpaceManager object used for namespace resolution of the XPath
expression. nsMgr can be null.

Return Value

Returns true if the required set of nodes exists; otherwise, returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

7.5.6.12 Transform
This method transforms the OracleXmlType into another OracleXmlType instance using
the given XSL document.

Chapter 7
OracleXmlType Class

7-42

Overload List:

• Transform(OracleXmlType, string)

This method transforms the current OracleXmlType instance into another
OracleXmlType instance using the given XSL document (as an OracleXmlType object)
and a string of XSLT parameters.

• Transform(string, string)

This public method transforms the current OracleXmlType instance into another
OracleXmlType instance using the given XSL document and a string of XSLT
parameters.

7.5.6.13 Transform(OracleXmlType, string)
This method transforms the current OracleXmlType instance into another OracleXmlType
instance using the given XSL document and a string of XSLT parameters.

Declaration

// C#
public OracleXmlType Transform(OracleXmlType xsldoc, string paramMap);

Parameters

• xsldoc

The XSL document as an OracleXmlType object.

• paramMap

A string which provides the parameters for the XSL document.

For this release, paramMap is ignored.

Return Value

An OracleXmlType object containing the transformed XML document.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xsldoc parameter is null.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.5.6.14 Transform(string, string)
This method transforms the current OracleXmlType instance into another OracleXmlType
instance using the given XSL document and a string of XSLT parameters.

Declaration

// C#
public OracleXmlType Transform(string xsldoc, string paramMap);

Chapter 7
OracleXmlType Class

7-43

Parameters

• xsldoc

The XSL document to be used for XSLT.

• paramMap

A string which provides the parameters for the XSL document.

For this release, paramMap is ignored.

Return Value

An OracleXmlType object containing the transformed XML document.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xsldoc parameter is null.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

7.5.6.15 Update
This method updates the XML node or fragment identified by the given XPath
expression in the current OracleXmlType instance.

Overload List:

• Update(string, string, string)

This method updates the XML nodes identified by the given XPath expression with
the given string value and a string parameter for namespace resolution.

• Update(string, XmlNameSpaceManager, string)

This method updates the XML nodes identified by the given XPath expression with
the given string value and a .NET XmlNameSpaceManager object for namespace
resolution.

• Update(string, string, OracleXmlType)

This method updates the XML nodes identified by the given XPath expression with
the XML data stored in the given OracleXmlType value and a string parameter for
namespace resolution.

• Update(string, XmlNameSpaceManager, OracleXmlType)

This method updates the XML nodes identified by the given XPath expression with
the XML data stored in the given OracleXmlType value and a .NET
XmlNameSpaceManager object for namespace resolution.

7.5.6.16 Update(string, string, string)
This method updates the XML nodes identified by the given XPath expression with the
given string value and a string parameter for namespace resolution.

Chapter 7
OracleXmlType Class

7-44

Declaration

// C#
public void Update(string xpathExpr, string nsMap, string value);

Parameters

• xpathExpr

The XPath expression that identifies the nodes to update.

• nsMap

The string parameter used for namespace resolution of the XPath expression.
nsMap has zero or more namespaces separated by spaces. nsMap can be null. For
example:

xmlns:nsi"=http://www.company1.com" xmlns:nsz="http://www.company2.com"

• value

The new value as a string.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

7.5.6.17 Update(string, XmlNameSpaceManager, string)
This method updates the XML nodes identified by the given XPath expression with the
given string value and a .NET XmlNameSpaceManager object for namespace resolution.

Declaration

// C#
public void Update(string xpathExpr, XmlNameSpaceManager nsMgr, string
 value);

Parameters

• xpathExpr

The XPath expression that identifies the nodes to update.

• nsMgr

The .NET XmlNameSpaceManager object used for namespace resolution of the XPath
expression. nsMgr can be null.

• value

The new value as a string.

Chapter 7
OracleXmlType Class

7-45

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

7.5.6.18 Update(string, string, OracleXmlType)
This method updates the XML nodes identified by the given XPath expression with the
XML data stored in the given OracleXmlType value and a string parameter for
namespace resolution.

Declaration

// C#
public void Update(string xpathExpr, string nsMap, OracleXmlType value);

Parameters

• xpathExpr

The XPath expression that identifies the nodes to update.

• nsMap

The string parameter used for namespace resolution of the XPath expression.
nsMap has zero or more namespaces separated by spaces. nsMap can be null.

• value

The new value as an OracleXmlType object.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

7.5.6.19 Update(string, XmlNameSpaceManager, OracleXmlType)
This method updates the XML nodes identified by the given XPath expression with the
XML data stored in the given OracleXmlType value and a .NET XmlNameSpaceManager
object for namespace resolution.

Chapter 7
OracleXmlType Class

7-46

Declaration

// C#
public void Update(string xpathExpr, XmlNameSpaceManager nsMgr, OracleXmlType
value);

Parameters

• xpathExpr

The XPath expression that identifies the nodes to update.

• nsMgr

The .NET XmlNameSpaceManager object used for namespace resolution of the XPath
expression. nsMgr can be null.

• value

The new value as an OracleXmlType object.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentNullException - The xpathExpr is null or zero-length.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The default namespace is ignored if its value is an empty string.

7.5.6.20 Validate
This methods validates whether or not the XML data in the OracleXmlType object
conforms to the given XML schema.

Declaration

// C#
public bool Validate(String schemaUrl);

Parameters

• schemaUrl

A string representing the URL in the database of the XML schema.

Return Value

Returns true if the XML data conforms to the XML schema; otherwise, returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 7
OracleXmlType Class

7-47

ArgumentNullException - The schemaUrl argument is null or an empty string.

Chapter 7
OracleXmlType Class

7-48

8
Oracle Data Provider for .NET HA Event
Classes

This chapter describes the following ODP.NET HA event class and enumerations:

• OracleHAEventArgs Class

• OracleHAEventHandler Delegate

• OracleHAEventSource Enumeration

• OracleHAEventStatus Enumeration

8.1 OracleHAEventArgs Class
The OracleHAEventArgs class provides event data for the OracleConnection.HAEvent
event.

Class Inheritance

 System.Object

 System.EventArgs

 Oracle.DataAccess.Client.OracleHAEventArgs

Declaration

// C#
public sealed class OracleHAEventArgs

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

When any HA event occurs for a service, service member, host, node, or instance that
an OracleConnection object is set to with "ha events=true", the
OracleConnection.HAEvent is triggered and passes an instance of OracleHAEventArgs to
all the delegates that have registered with the event.

8-1

8.1.1 OracleHAEventArgs Members
OracleHAEventArgs members are listed in the following table.

OracleHAEventArgs Properties

The OracleHAEventArgs properties are listed in Table 8-2.

Table 8-1 OracleHAEventArgs Properties

Name Description

DatabaseDomainName Specifies the domain name of the database affected by the HAevent

DatabaseName Specifies the database affected by the HAevent

HostName Specifies the host that triggered the event

InstanceName Specifies the instance that triggered the event

Reason Specifies the reason for which the HA event was sent by the server

ServiceName Specifies the service that triggered the event

Source Specifies the source that triggered the event

Status Specifies the status of the source that triggered the event

Time Specifies the time when the event was triggered on the server

8.1.2 OracleHAEventArgs Properties
The OracleHAEventArgs properties are listed in Table 8-2.

Table 8-2 OracleHAEventArgs Properties

Name Description

DatabaseDomainName Specifies the domain name of the database affected by the HAevent

DatabaseName Specifies the database affected by the HAevent

HostName Specifies the host that triggered the event

InstanceName Specifies the instance that triggered the event

Reason Specifies the reason for which the HA event was sent by the server

ServiceName Specifies the service that triggered the event

Source Specifies the source that triggered the event

Status Specifies the status of the source that triggered the event

Time Specifies the time when the event was triggered on the server

8.1.2.1 DatabaseDomainName
This property specifies the domain name of the database that is affected by the HA
event.

Chapter 8
OracleHAEventArgs Class

8-2

Declaration

// C#
public string DatabaseDomainName {get;}

Property Value

The domain name of the database that is affected by the HA Event.

8.1.2.2 DatabaseName
This property specifies the database that is affected by the HA event.

Declaration

// C#
public string DatabaseName {get;}

Property Value

This property specifies the database name that is affected by the HA event.

8.1.2.3 HostName
This property specifies the host that triggered the HA event.

Declaration

// C#
public string HostName {get;}

Property Value

The host that is affected by the HA Event.

8.1.2.4 InstanceName
This property specifies the instance that triggered the HA event.

Declaration

// C#
public string InstanceName {get;}

Property Value

The instance that is affected by the HA Event.

8.1.2.5 Reason
This property specifies reason for which the HA event was sent by the server.

Chapter 8
OracleHAEventArgs Class

8-3

Declaration

// C#
public string Reason {get;}

Property Value

The reason the HA Event was triggered. Possible values include Data_Guard_Failover,
Failure, Dependency, User, Autostart, and Restart.

The value User is indicative of a planned outage. All other values are indicative of an
unplanned outage.

8.1.2.6 ServiceName
This property specifies the service that triggered the HA event.

Declaration

// C#
public string ServiceName {get;}

Property Value

The service that is affected by the HA Event.

8.1.2.7 Source
This property specifies the source that triggered the HA event.

Declaration

// C#
public OracleHAEventSource Source {get;}

Property Value

The source that triggered the HA Event.

8.1.2.8 Status
This property specifies the status of the source that triggered the HA event.

Declaration

// C#
public OracleHAEventStatus Status {get;}

Property Value

The status of the source that triggered the HA Event.

Chapter 8
OracleHAEventArgs Class

8-4

8.1.2.9 Time
This property specifies the time when the HA event was triggered on the server.

Declaration

// C#
public DateTime Time {get;}

Property Value

The time that the HA Event was triggered.

8.2 OracleHAEventHandler Delegate
The OracleHAEventHandler delegate represents the signature of the method that
handles the OracleConnection.HAEvent event.

Declaration

// C#
public delegate void OracleHAEventHandler(OracleHAEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Parameters

• sender

The source of the event.

• EventArgs

The OracleHAEventArgs object that contains the event data.

8.3 OracleHAEventSource Enumeration
The OracleHAEventSource enumeration indicates the source of the HA event.

Table 8-3 lists all the OracleHAEventSource enumeration values with a description of
each enumerated value.

Table 8-3 OracleHAEventSource Enumeration Member Values

Member Name Description

Service The source of the HA Event is a service.

Chapter 8
OracleHAEventHandler Delegate

8-5

Table 8-3 (Cont.) OracleHAEventSource Enumeration Member Values

Member Name Description

ServiceMember The source of the HA Event is a service member.

Database The source of the HA Event is a database.

Host The source of the HA Event is a host.

Instance The source of the HA Event is an instance.

Node The source of the HA Event is a node.

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

8.4 OracleHAEventStatus Enumeration
The OracleHAEventStatus enumeration indicates the status of the HA event source.

Table 8-4 lists all the OracleHAEventStatus enumeration values with a description of
each enumerated value.

Table 8-4 OracleHAEventStatus Enumeration Values

Member Name Description

Up The source of the HA Event is up.

Down The source of the HA Event is down.

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Chapter 8
OracleHAEventStatus Enumeration

8-6

9
Continuous Query Notification Classes

This chapter describes Oracle Data Provider for .NET Continuous Query Notification
Classes, Event Delegates, and Enumerations.

See Also:

"Continuous Query Notification Support "

This chapter contains these topics:

• OracleDependency Class

• OracleNotificationRequest Class

• OracleNotificationEventArgs Class

• OnChangeEventHandler Delegate

• OracleRowidInfo Enumeration

• OracleNotificationType Enumeration

• OracleNotificationSource Enumeration

• OracleNotificationInfo Enumeration

9.1 OracleDependency Class
An OracleDependency class represents a dependency between an application and an
Oracle database, enabling the application to get notifications whenever the data of
interest or the state of the Oracle database changes.

Class Inheritance

System.Object

 Oracle.DataAccess.Client.OracleDependency

Declaration

// C#
public sealed class OracleDependency

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

9-1

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Not supported in a .NET stored procedure

Thread Safety

All public static methods are thread-safe, although methods do not guarantee thread
safety.

9.1.1 OracleDependency Members
OracleDependency members are listed in the following tables.

OracleDependency Constructors

OracleDependency constructors are listed in Table 9-1.

Table 9-1 OracleDependency Constructors

Constructors Description

OracleDependency Constructors Instantiates a new instance of OracleDependency class
(Overloaded)

OracleDependency Static Fields

The OracleDependency static field is listed in Table 9-2.

Table 9-2 OracleDependency Static Field

Static Field Description

Port Indicates the port number that the notification listener listens on,
for database notifications

OracleDependency Static Methods

OracleDependency static methods are listed in Table 9-3.

Table 9-3 OracleDependency Static Methods

Static Methods Description

Equals Inherited from System.Object

GetOracleDependency Returns an OracleDependency instance based on the specified
unique identifier

OracleDependency Properties

OracleDependency properties are listed in Table 9-4.

Chapter 9
OracleDependency Class

9-2

Table 9-4 OracleDependency Properties

Properties Description

DataSource Indicates the data source associated with the OracleDependency
instance

HasChanges Indicates whether or not there is any change in the database
associated with this dependency

Id Represents the unique identifier for the OracleDependency
instance

IsEnabled Specifies whether or not the dependency is enabled between
the application and the database

QueryBasedNotification Specifies whether the change notification registration is object-
based or query-based

RegisteredQueryIDs Provides a list of CHANGE_NOTIFICATION_QUERY_IDs

RegisteredResources Indicates the database resources that are registered in the
notification registration

RowidInfo Specifies whether or not ROWID information is part of change
notification events fired whenever data changes on the database

UserName Indicates the database user name associated with the
OracleDependency instance

OracleDependency Methods

OracleDependency methods are listed in Table 9-5.

Table 9-5 OracleDependency Methods

Methods Description

AddCommandDependency Binds the OracleDependency instance to the specified
OracleCommand instance

Equals Inherited from System.Object

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

RemoveRegistration Removes the specified dependency between the application and
the database

ToString Inherited from System.Object

OracleDependency Events

The OracleDependency event is listed in Table 9-6.

Table 9-6 OracleDependency Events

Event Description

OnChange An event that is sent when a database notification associated
with the dependency is received from the database

Chapter 9
OracleDependency Class

9-3

9.1.2 OracleDependency Constructors
OracleDependency constructors create instances of the OracleDependency class.

Overload List:

• OracleDependency ()

This constructor creates an instance of the OracleDependency class.

• OracleDependency(OracleCommand)

This constructor creates an instance of the OracleDependency class and binds it to
the specified OracleCommand instance.

• OracleDependency(OracleCommand, bool, int, bool)

This constructor creates an instance of the OracleDependency class and binds it to
the specified OracleCommand instance, specifying whether or not a notification is to
be removed upon notification, the timeout value of the notification registration, and
the persistence of the notification.

9.1.2.1 OracleDependency ()
This constructor creates an instance of the OracleDependency class.

Declaration

// C#
public OracleDependency ()

Remarks

Using this constructor does not bind any OracleCommand to the newly constructed
OracleDependency. Use the AddCommandDependency method to do so.

Note:

The dependency between the application and the database is not established
when the OracleDependency instance is created. The dependency is established
when the command that is associated with this dependency is executed.

9.1.2.2 OracleDependency(OracleCommand)
This constructor creates an instance of the OracleDependency class and binds it to an
OracleCommand instance.

Declaration

// C#
public OracleDependency (OracleCommand cmd)

Chapter 9
OracleDependency Class

9-4

Parameters

• cmd

The command that the OracleDependecy object binds to.

Exceptions

ArgumentNullException - The cmd parameter is null.

InvalidOperationException - The specified OracleCommand instance already contains a
notification request.

Remarks

When this OracleDependency constructor binds the OracleCommand instance to an
OracleDependency instance, it causes the creation of an OracleNotificationRequest
instance and then sets that OracleNotificationRequest instance to the
OracleCommand.Notification property.

The Continuous Query Notification is registered with the database, when the
command is executed. Any of the command execution methods (for example,
ExecuteNonQuery, ExecuteReader, and so on) will register the notification request. An
OracleDependency may be bound to more than one OracleCommand. When one of these
OracleCommand object statements is executed, the statement is registered with the
associated OracleCommand. Although the registration happens on each OracleCommand
separately, one OracleDependency can be responsible for detecting and sending
notifications that occur for all OracleCommand objects that the OracleDependency is
associated with. The OnChangeEventArgs that is passed to the application for the
OnChange event provides information on what has changed in the database.

The OracleNotificationRequest instance that is created by this constructor has the
following default property values:

• IsNotifiedOnce is set to the value True.

• Timeout is set to 50,000 seconds.

• IsPersistent is set to the value False, that is, the invalidation message is not
persistent, but is stored in an in-memory queue before delivery.

9.1.2.3 OracleDependency(OracleCommand, bool, int, bool)
This constructor creates an instance of the OracleDependency class and binds it to the
specified OracleCommand instance, while specifying whether or not a registration is to be
removed upon notification, the timeout value of the notification registration, and the
persistence of the notification.

Declaration

// C#
public OracleDependency (OracleCommand cmd, bool isNotifiedOnce, long timeout,
 bool isPersistent)

Parameters

• cmd

Chapter 9
OracleDependency Class

9-5

The command associated with the Continuous Query Notification request.

• isNotifiedOnce

An indicator that specifies whether or not the registration is removed automatically
once the notification occurs.

• timeout

The amount of time, in seconds, that the registration stays active. When timeout is
set to 0, the registration never expires. The valid values for timeout are between 0
and 4294967295.

• isPersistent

Indicates whether or not the invalidation message should be queued persistently in
the database before delivery. If the isPersistent parameter is set to True, the
message is queued persistently in the database and cannot be lost upon database
failures or shutdowns. If the isPersistent property is set to False, the message is
stored in an in-memory queue before delivery and might be lost.

Database performance is faster if the message is stored in an in-memory queue
rather than in the database queue.

Exceptions

ArgumentNullException - The cmd parameter is null.

ArgumentOutOfRangeException - The specified timeout is invalid.

InvalidOperationException - The specified OracleCommand instance already contains a
notification request.

Remarks

When this OracleDependency constructor binds the OracleCommand instance to an
OracleDependency instance, it causes the creation of an OracleNotificationRequest
instance and then sets that OracleNotificationRequest instance to the
OracleCommand.Notification property.

The Continuous Query Notification is registered with the database, when the
command is executed. Any of the command execution methods (for example,
ExecuteNonQuery, ExecuteReader, and so on) will register the notification request. An
OracleDependency may be bound to more than one OracleCommand. When one of these
OracleCommand object statements is executed, the statement is registered with the
associated OracleCommand. Although the registration happens on each OracleCommand
separately, one OracleDependency can be responsible for detecting and sending
notifications that occur for all OracleCommand objects that the OracleDependency is
associated with. The OnChangeEventArgs that is passed to the application for the
OnChange event provides information on what has changed in the database.

The OracleNotificationRequest instance that is created by this constructor has the
following default property values:

• IsNotifiedOnce is set to the specified value.

• Timeout is set to the specified value.

• IsPersistent is set to the specified value.

Chapter 9
OracleDependency Class

9-6

9.1.3 OracleDependency Static Fields
The OracleDependency static field is listed in Table 9-7.

Table 9-7 OracleDependency Static Field

Static Field Description

Port Indicates the port number that the notification listener listens on,
for database notifications

9.1.3.1 Port
This static field indicates the port number that the notification listener listens on, for
database notifications.

Declaration

// C#
public static int Port{get; set}

Property Value

An int value that represents the number of the port that listens for the database
notifications. If the port number is set to -1, a random port number is assigned for the
listener when the listener is started. Otherwise, the specified port number is used to
start the listener.

Exceptions

ArgumentOutOfRangeException - The port number is set to a negative value.

InvalidOperationException - The port number is being changed after the listener has
started.

Remarks

The port number specified by the OracleDependency.Port static field is used by the
notification listener that runs within the same application domain as ODP.NET. This
port number receives Continuous Query Notifications from the database. One
notification listener is capable of listening to all Continuous Query Notifications and
therefore, only one notification listener is created for each application domain.

The notification listener is created when a command associated with an
OracleDependency object is executed for the first time during the application domain
lifetime. The port number specified for the OracleDependency.Port static field is used by
the listener for its lifetime. The OracleDependency.Port static field can be changed after
the creation of the notification listener, but doing so does not affect the actual port
number that the notification listener listens on.

9.1.4 OracleDependency Static Methods
OracleDependency static methods are listed in Table 9-8.

Chapter 9
OracleDependency Class

9-7

Table 9-8 OracleDependency Static Methods

Static Methods Description

Equals Inherited from System.Object

GetOracleDependency Returns an OracleDependency instance based on the specified
unique identifier

9.1.4.1 GetOracleDependency
This static method returns an OracleDependency instance based on the specified unique
identifier.

Declaration

// C#
public static OracleDependency GetOracleDependency(string guid)

Parameters

• guid

The string representation of the unique identifier of an OracleDependency instance.

Exceptions

ArgumentException - The specified unique identifier cannot locate an OracleDependency
instance.

Return Value

An OracleDependency instance that has the specified guid parameter.

9.1.5 OracleDependency Properties
OracleDependency properties are listed in Table 9-9.

Table 9-9 OracleDependency Properties

Properties Description

DataSource Indicates the data source associated with the OracleDependency
instance

HasChanges Indicates whether or not there is any change in the database
associated with this dependency

Id Represents the unique identifier for the OracleDependency
instance

IsEnabled Specifies whether or not the dependency is enabled between
the application and the database

QueryBasedNotification Specifies whether the change notification registration is object-
based or query-based

RegisteredQueryIDs Provides a list of CHANGE_NOTIFICATION_QUERY_IDs

Chapter 9
OracleDependency Class

9-8

Table 9-9 (Cont.) OracleDependency Properties

Properties Description

RegisteredResources Indicates the database resources that are registered in the
notification registration

RowidInfo Specifies whether or not ROWID information is part of change
notification events fired whenever data changes on the database

UserName Indicates the database user name associated with the
OracleDependency instance

9.1.5.1 DataSource
This property indicates the data source associated with the OracleDependency instance.

Declaration

// C#
public string DataSource{get;}

Property Value

A string that indicates the data source associated with the OracleDependency instance.

Remarks

The DataSource property is populated with the data source once the OracleCommand
associated with the OracleDependency executes and registers for the notification
successfully.

9.1.5.2 HasChanges
This property indicates whether or not there is any change in the database associated
with this dependency.

Declaration

// C#
public bool HasChanges{get;}

Property Value

A bool value that returns True if the database has detected changes that are
associated with this dependency; otherwise, returns False.

Remarks

As an alternative to using the OnChange event, applications can check the HasChanges
property to determine if there are any changes in the database associated with this
dependency.

Once the HasChanges property is accessed, its value is reset to False so that the next
notification can then be acknowledged.

Chapter 9
OracleDependency Class

9-9

9.1.5.3 Id
This property represents the unique identifier for the OracleDependency instance.

Declaration

// C#
public string Id{get;}

Property Value

A string that represents the unique identifier that was generated for the
OracleDependency instance when it was created.

Remarks

This property is set when the OracleDependency instance is created.

9.1.5.4 IsEnabled
This property specifies whether or not the dependency is enabled between the
application and the database.

Declaration

// C#
public bool IsEnabled {get;}

Property Value

A bool value that specifies whether or not dependency is enabled between the
application and the database.

Remarks

The dependency between the application and the database is not established when
the OracleDependency instance is created. The dependency is established when the
command that is associated with this dependency is executed, at which time the
notification request is registered with the database. The dependency ends when the
notification registration is removed from the database or when it times out.

9.1.5.5 QueryBasedNotification
This instance property specifies whether the change notification registration is object-
based or query-based.

Declaration

// C#
public bool QueryBasedNotification{get; set;}

Property Value

Specifies whether the change notification registration is object-based or not.

Chapter 9
OracleDependency Class

9-10

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property value will be ignored if it is set after the command execution that
registers the command for change notification.

By default, this property is true.

ODP.NET developers can register their queries on the row level, not just the object
level, beginning with Oracle Data Provider for .NET release 11.1 and Oracle Database
11g release 1 (11.1). The application only receives notification when the selected row
or rows change. Query-based notifications provide developers more granularity for
using client-side cached data, as they can be more specific about what changes the
application needs to be notified of.

OracleNotificationType enumeration is set to Query for query-based notifications.

9.1.5.6 RegisteredQueryIDs
This instance property provides a list of CHANGE_NOTIFICATION_QUERY_IDs.

Declaration

// C#
public ArrayList RegisteredQueryIDs {get;}

Property Value

This property is an ArrayList of CHANGE_NOTIFICATION_QUERY_IDs.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property provides a list of CHANGE_NOTIFICATION_QUERY_IDs that uniquely identify the
query that has been registered for change notification. The notification returned from
the database will also contain these IDs, allowing applications to determine the query
that the notifications are for.

The QueryId at index n in RegisteredQueryIDs is for the statement at index n the
RegisteredResources at index n.

9.1.5.7 RegisteredResources
This property indicates the database resources that are registered in the notification
registration.

Declaration

// C#
public ArrayList RegisteredResources{get;}

Chapter 9
OracleDependency Class

9-11

Property Value

The registered resources in the notification registration.

Remarks

The ArrayList contains all the command statement or statements that are registered
for notification through this OracleDependency object. It is appropriately updated when
the Continuous Query Notification is registered by a command execution.

9.1.5.8 RowidInfo
This property specifies whether or not ROWID information is part of change notification
events fired whenever data changes on the database.

Declaration

// C#
public OracleRowidInfo RowidInfo {get; set;};

Property Value

An OracleRowidInfo enumeration type that determines the inclusion of ROWID in the
change notification event.

Remarks

There are three OracleRowidInfo enumeration types that are valid for this property:

• Default includes ROWID information in the change notification event only if
OracleCommand.AddRowid property is set to true or if ROWID is in the select list of the
query that is registered for change notification.

• Include includes ROWID information regardless of whether or not ROWID is in the
select-list for the query.

• Exclude excludes ROWID information regardless of whether or not ROWID is in the
select-list.

For change notification registrations that involve stored procedure executions, change
notification events related to the REF CURSOR contain ROWID information only if RowidInfo
property is set to OracleRowidInfo.Include.

9.1.5.9 UserName
This property indicates the database user name associated with the OracleDependency
instance.

Declaration

// C#
public string UserName{get;}

Chapter 9
OracleDependency Class

9-12

Property Value

A string that indicates the database user name associated with the OracleDependency
instance. This database user registers the Continuous Query Notification request with
the database.

Remarks

The UserName property is populated with the user name once the OracleCommand
associated with the OracleDependency executes and registers for the notification
successfully. Only the database user who creates the notification registration, or the
database system administrator, can remove the registration.

The user specified by this property must have the CHANGE NOTIFICATION privilege to
register successfully for the Continuous Query Notification with the database.

9.1.6 OracleDependency Methods
OracleDependency methods are listed in Table 9-10.

Table 9-10 OracleDependency Methods

Methods Description

AddCommandDependency Binds the OracleDependency instance to the specified
OracleCommand instance

Equals Inherited from System.Object

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

RemoveRegistration Removes the specified dependency between the application and
the database

ToString Inherited from System.Object

9.1.6.1 AddCommandDependency
This instance method binds the OracleDependency instance to the specified
OracleCommand instance.

Declaration

// C#
Public void AddCommandDependency (OracleCommand cmd);

Parameters

• cmd

The command that is to be bound to the OracleDependency object.

Exceptions

ArgumentNullException - The cmd parameter is null.

Chapter 9
OracleDependency Class

9-13

InvalidOperationException - The specified OracleCommand instance already contains a
notification request.

Remarks

An OracleDependency instance can bind to multiple OracleCommand instances.

While it binds an existing OracleDependency instance to an OracleCommand instance, the
AddCommandDependency method creates an OracleNotificationRequest instance, and sets
it to the specified OracleCommand.Notification property.

When this method creates an OracleNotificationRequest instance, the following
OracleNotificationRequest properties are set:

• IsNotifiedOnce is set to the value True.

• Timeout is set to 50,000 seconds.

• IsPersistent is set to the value False, indicating that the invalidation message is
stored in an in-memory queue before delivery.

With this method, multiple commands can be associated with a single Continuous
Query Notification registration request. Furthermore, the OracleNotificationRequest
attribute values assigned to the OracleCommand can be changed once the association
between the OracleCommand and the OracleDependency is established.

However, when multiple OracleCommand objects are associated with a single
OracleDependency object, the OracleNotificationRequest attributes (Timeout,
IsPersistent, and IsNotifiedOnce) of the first executed OracleCommand object are used
for registration, the attributes associated with subsequent OracleCommand executions will
be ignored.

Furthermore, once a command associated with an OracleDependency is executed and
registered, all other subsequent command executions and registration associated with
the same OracleDependency must use a connection with the same "User Id" and "Data
Source" connection string attribute value settings.

Otherwise, an exception will be thrown.

9.1.6.2 RemoveRegistration
This instance method removes the specified dependency between the application and
the database. Once the registration of the dependency is removed from the database,
the OracleDependency is no longer able to detect any changes that the database
undergoes.

Declaration

// C#
public void RemoveRegistration(OracleConnection con)

Parameters

• con

The connection associated with the OracleDependency instance.

Chapter 9
OracleDependency Class

9-14

Exceptions

InvalidOperationException - The associated connection is not open.

Remarks

The notification registration associated with the OracleDependency instance is removed
from the database.

The OracleConnection parameter must be in an opened state. This instance method
does not open the connection implicitly for the application.

An exception is thrown if the dependency is not valid.

9.1.7 OracleDependency Events
The OracleDependency event is listed in Table 9-11.

Table 9-11 OracleDependency Event

Event Description

OnChange An event that is sent when a database notification associated
with the dependency is received from the database

9.1.7.1 OnChange
The OnChange event is sent when a database notification associated with the
dependency is received from the database. The information related to the notification
is stored in the OracleChangeNotificationEventArgs class.

Declaration

// C#
public event OnChangeEventHandler OnChange;

Remarks

The OnChange event occurs if any result set associated with the dependency changes.
For objects that are part of a Transaction, notifications will be received for each
modified object. This event also occurs for other actions related to database or
registration status, such as database shutdowns and startups, or registration timeouts.

9.2 OracleNotificationRequest Class
An OracleNotificationRequest class represents a notification request to be subscribed
in the database. It contains information about the request and the characteristics of the
notification. Using the OracleNotificationRequest class, Oracle Data Provider for .NET
can create the notification registration in the database.

Class Inheritance

System.Object

Chapter 9
OracleNotificationRequest Class

9-15

 Oracle.DataAccess.Client.OracleNotificationRequest

Declaration

// C#
public sealed class OracleNotificationRequest

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Not supported in a .NET stored procedure

Thread Safety

All public static methods are thread-safe, although methods do not guarantee thread
safety.

9.2.1 OracleNotificationRequest Members
OracleNotificationRequest members are listed in the following tables.

OracleNotificationRequest Static Method

The OracleNotificationRequest static method is listed in Table 9-12.

Table 9-12 OracleNotificationRequest Static Method

Static Method Description

Equals Inherited from System.Object

OracleNotificationRequest Properties

OracleNotificationRequest properties are listed in Table 9-13.

Table 9-13 OracleNotificationRequest Properties

Properties Description

IsNotifiedOnce Indicates whether or not the registration is to be removed upon
notification

IsPersistent Indicates whether or not the notification message should be
queued persistently in the database before delivery

Timeout Specifies the time that the registration remains alive

GroupingNotificationEnabled Specifies whether grouping notification is enabled or not

GroupingType Specifies the type of grouping notification

GroupingInterval Specifies the interval between grouping notifications, in
seconds

Chapter 9
OracleNotificationRequest Class

9-16

OracleNotificationRequest Methods

OracleNotificationRequest methods are listed in Table 9-14.

Table 9-14 OracleNotificationRequest Methods

Methods Description

Equals Inherited from System.Object

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

9.2.2 OracleNotificationRequest Static Methods
The OracleNotificationRequest static method is listed in Table 9-15.

Table 9-15 OracleNotificationRequest Static Method

Static Method Description

Equals Inherited from System.Object

9.2.3 OracleNotificationRequest Properties
The OracleNotificationRequest properties are listed in Table 9-16.

Table 9-16 OracleNotificationRequest Properties

Properties Description

IsNotifiedOnce Indicates whether or not the registration is to be removed
upon notification

IsPersistent Indicates whether or not the notification message should be
queued persistently in the database before delivery

Timeout Specifies the time that the registration remains alive

GroupingNotificationEnabled Specifies whether grouping notification is enabled or not

GroupingType Specifies the type of grouping notification

GroupingInterval Specifies the interval between grouping notifications, in
seconds

9.2.3.1 IsNotifiedOnce
This property indicates whether or not the registration is to be removed upon
notification.

Chapter 9
OracleNotificationRequest Class

9-17

Declaration

// C#
public bool IsNotifiedOnce{get; set;}

Property Value

A bool value that indicates whether or not the registration is to be removed upon
notification.

Remarks

The default value is false for AQ. This is different from change notification where the
default value is true.

Modifying this property after the completion of a successful registration has no effect.

9.2.3.2 IsPersistent
This property indicates whether or not the notification message should be queued
persistently in the database until delivery.

Declaration

// C#
public bool IsPersistent{get; set;}

Property Value

A bool value that indicates whether or not the notifications should be stored
persistently in the database until delivery.

When the IsPersistent property is set to True, the message is queued persistently in
the database and cannot be lost upon database failures or shutdowns. When the
IsPersistent property is set to False, the message is stored in an in-memory queue
before delivery and could be lost.

This property does not apply to NotificationRegistration which is always persistent.

This property only applies to the notification message after it has been sent.

Remarks

The default value is false.

The database performs faster if the message is stored in an in-memory queue rather
than a database queue.

Modifying this property after the completion of a successful registration has no effect.

This property is ignored for grouping notifications.

9.2.3.3 Timeout
This property specifies the time, in seconds, that the registration remains alive.

Chapter 9
OracleNotificationRequest Class

9-18

Declaration

// C#
public long Timeout{get; set}

Property Value

A long value that specifies the time, in seconds, that the registration remains alive. The
valid values for the Timeout property are between 0 and 4294967295.

Exceptions

ArgumentOutOfRangeException - The specified Timeout is invalid.

Remarks

The default value is 0 (infinite) for AQ and 50000 for change notification. If the Timeout
property is set to 0, then the registration does not expire.

If the registration is removed because the Timeout value has been reached, then the
database sends a notification indicating the expiration.

Modifying this property after the completion of a successful registration has no effect.

9.2.3.4 GroupingNotificationEnabled
This property specifies whether grouping notification is enabled or not.

Declaration

// C#
public bool GroupingNotificationEnabled {get; set}

Property Value

A true value indicates that grouping notification is enabled. A false value indicates that
grouping notification is disabled.

Remarks

The default value is false.

Modifying this property after the completion of a successful registration has no effect.

9.2.3.5 GroupingType
This property specifies the type of grouping notification.

Declaration

// C#
public OracleAQNotificationGroupingType GroupingType {get; set}

Property Value

An OracleAQNotificationGroupingType enum value

Chapter 9
OracleNotificationRequest Class

9-19

Remarks

The default value is OracleAQNotificationGroupingType.Summary.

Modifying this property after the completion of a successful registration has no effect.

9.2.3.6 GroupingInterval
This property specifies the interval of grouping notification in seconds. The group
notifications are delivered at intervals specified by this property.

Declaration

// C#
public int GroupingInterval {get; set}

Property Value

An integer specifying the grouping interval in seconds.

Remarks

The default value is 600 seconds.

The range of GroupingInterval is from 0 to Int32.MaxValue.

Modifying this property after the completion of a successful registration has no effect.

9.2.4 OracleNotificationRequest Methods
OracleNotificationRequest methods are listed in Table 9-17.

Table 9-17 OracleNotificationRequest Methods

Methods Description

Equals Inherited from System.Object

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

9.3 OracleNotificationEventArgs Class
The OracleNotificationEventArgs class provides event data for a notification.

Class Inheritance

System.Object

 System.EventArgs

 Oracle.DataAccess.Client.OracleNotificationEventArgs

Chapter 9
OracleNotificationEventArgs Class

9-20

Declaration

// C#
public sealed class OracleNotificationEventArgs

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Not supported in a .NET stored procedure

Thread Safety

All public static methods are thread-safe, although methods do not guarantee thread
safety.

9.3.1 OracleNotificationEventArgs Members
OracleNotificationEventArgs members are listed in the following tables.

OracleNotificationEventArgs Static Fields

The OracleNotificationEventArgs static field is listed in Table 9-18.

Table 9-18 OracleNotificationEventArgs Static Field

Static Field Description

Empty Inherited from System.EventArgs

OracleNotificationEventArgs Static Methods

The OracleNotificationEventArgs static method is listed in Table 9-19.

Table 9-19 OracleNotificationEventArgs Static Method

Static Method Description

Equals Inherited from System.Object

OracleNotificationEventArgs Properties

OracleNotificationEventArgs properties are listed in Table 9-20.

Table 9-20 OracleNotificationEventArgs Properties

Properties Description

Details Contains detailed information about the current notification

Chapter 9
OracleNotificationEventArgs Class

9-21

Table 9-20 (Cont.) OracleNotificationEventArgs Properties

Properties Description

Info Indicates the database events for the notification

ResourceNames Indicates the database resources related to the current
notification

Source Returns the database event source for the notification

Type Returns the database event type for the notification

OracleNotificationEventArgs Methods

OracleNotificationEventArgs methods are listed in Table 9-21.

Table 9-21 OracleNotificationEventArgs Methods

Methods Description

Equals Inherited from System.Object

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

9.3.2 OracleNotificationEventArgs Static Fields
The OracleNotificationEventArgs static field is listed in Table 9-22.

Table 9-22 OracleNotificationEventArgs Static Field

Static Field Description

Empty Inherited from System.EventArgs

9.3.3 OracleNotificationEventArgs Static Methods
The OracleNotificationEventArgs static method is listed in Table 9-23.

Table 9-23 OracleNotificationEventArgs Static Method

Static Method Description

Equals Inherited from System.Object

9.3.4 OracleNotificationEventArgs Properties
OracleNotificationEventArgs properties are listed in Table 9-24.

Chapter 9
OracleNotificationEventArgs Class

9-22

Table 9-24 OracleNotificationEventArgs Properties

Properties Description

Details Contains detailed information about the current notification

Info Indicates the database events for the notification

ResourceNames Indicates the database resources related to the current
notification

Source Returns the database event source for the notification

Type Returns the database event type for the notification

9.3.4.1 Details
This property contains detailed information about the current notification.

Declaration

// C#
Public DataTable Details{get;}

Property Value

A DataTable instance that contains detailed information about the current notification.

Remarks

The returned DataTable object contains column data about the current notification in
order as shown in Table 9-25.

Table 9-25 DataTable Object Column Data

Name Type Description

ResourceName System.String The resource name of the invalidated
object in the format
<Schema_name>.<object_name>

Info OracleNotificationInfo The information about the database event
that occurs on a resource

Rowid System.String The rowid for the invalidated table row

QueryId Int32 The CHANGE_NOTIFICATION_QUERY_ID

The QueryId column contains the CHANGE_NOTIFICATION_QUERY_ID that corresponds to the
pseudo-column that may have been retrieved by a SELECT statement at the time of
the query-based notification. Also, the OracleDependency object maintains all the
CHANGE_NOTIFICATION_QUERY_IDs that are registered with it.

For Continuous Query Notification:

• The Details property indicates changes for each invalidated object in the
notification in the data table.

• If ROWID information is requested, then the ROWID information is populated into the
Rowid column. However, if many rows are modified in a table, then the whole table

Chapter 9
OracleNotificationEventArgs Class

9-23

is invalidated, and ROWID information is not provided. Therefore, the Rowid column
contains all Null values.

• If the database event is related to a DDL change of the table or a table drop, then
the Rowid column is set to Null.

9.3.4.2 Info
This property indicates the database events for the notification.

Declaration

// C#
public OracleNotificationInfo Info{get;}

Property Value

An OracleNotificationInfo value that indicates the database event for the notification.

Remarks

The OracleNotificationInfo value is an enumeration type. If several events are
received from the invalidation message, the Info property is set to one of the
OracleNotificationInfo enumeration values associated with the database events. For
example, if a table has been altered and a new row has been inserted into another
table, the Info property is set to either OracleNotificationInfo.Altered or
OracleNotificationInfo.Insert.

To obtain more detailed information from the invalidation message, use the Details
and the ResourceNames properties.

9.3.4.3 ResourceNames
This property indicates the database resources related to the current notification.

Declaration

// C#
public string[] ResourceNames{get;}

Property Value

A string array that indicates the database resources related to the current notification.

Remarks

For Continuous Query Notification, the ResourceNames property contains information
about the invalidated object names in the format <schema_name>.<object _name>. To
obtain more detailed information about the changes for invalidated objects, use the
Details property.

9.3.4.4 Source
This property returns the database event source for the notification.

Chapter 9
OracleNotificationEventArgs Class

9-24

Declaration

// C#
public OracleNotificationSource Source{get;}

Property Value

The OracleNotificationSource value for the notification.

Remarks

The OracleNotificationSource value is an enumeration type. If several event sources
are received from the notification message, the Source property is set to one of the
OracleNotificationSource enumeration values related to the database event source.
For example, if a table has been altered (by the ALTER TABLE command) and a new row
has been inserted into the same table, the Source property is set to either
OracleNotificationSource.Object or OracleNotificationSource.Data.

For Continuous Query Notification:

• When the Source property is set to OracleNotificationSource.Data:

– The Info property is set to one of the following:

* OracleNotificationInfo.Insert

* OracleNotificationInfo.Delete

* OracleNotificationInfo.Update

– The ResourceNames property is set, and the elements are set to the invalidated
object names.

– The Details property contains detailed information on the change of each
invalidated table.

• When the Source property is set to OracleNotificationSource.Database:

– The Info property is set to one of the following:

* OracleNotificationInfo.Startup

* OracleNotificationInfo.Shutdown

* OracleNotificationInfo.Shutdown_Any

* OracleNotificationInfo.Dropped

• When the Source property is set to OracleNotificationSource.Object:

– The Info property is set to either OracleNotificationInfo.Altered or
OracleNotificationInfo.Dropped.

– The ResourceNames property is set, and the array elements of the ResourceNames
property are set to the object names that have been altered or dropped.

– The Details property contains detailed information on the changes of the
object.

• When the Source property is set to OracleNotificationSource.Subscription:

– The Info property is set to the following:

* OracleNotificationInfo.End

Chapter 9
OracleNotificationEventArgs Class

9-25

9.3.4.5 Type
This property returns the database event type for the notification.

Declaration

// C#
public OracleNotificationType Type{get;}

Property Value

An OracleNotificationType enumeration value that represents the type of the database
event notification.

Remarks

The OracleNotificationType value is an enumeration type. If several event types are
received from the notification message, then the Type property is set to one of the
OracleNotificationType enumeration values related to the database event type.

9.3.5 OracleNotificationEventArgs Methods
OracleNotificationEventArgs methods are listed in Table 9-26.

Table 9-26 OracleNotificationEventArgs Methods

Methods Description

Equals Inherited from System.Object

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

9.4 OnChangeEventHandler Delegate
The OnChangeEventHandler delegate represents the signature of the method that
handles the notification.

Declaration

// C#
public delegate void OnChangeEventHandler(object sender,
 OracleNotificationEventArgs args);

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Chapter 9
OnChangeEventHandler Delegate

9-26

Not supported in a .NET stored procedure

Parameters

• sender

The source of the event.

• args

The OracleNotificationEventArgs instance that contains the event data.

9.5 OracleRowidInfo Enumeration
OracleRowidInfo enumeration values specify whether ROWID information is included as
part of the ChangeNotificationEventArgs or not.

Table 9-28 lists all the OracleRowidInfoenumeration values with a description of each
enumerated value.

Table 9-27 OracleRowidInfo Members

Member Name Description

Default ROWID information is included only if OracleCommand.AddRowid
property is set to true or if ROWID column is explicitly included in
the query.

Include ROWID information is included regardless of whether ROWID is
included in the select-list of the query or not.

Exclude ROWID information is not included regardless of whether ROWID is
included in the select-list of the query or not.

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

9.6 OracleNotificationType Enumeration
OracleNotificationType enumerated values specify the different types that cause the
notification.

Table 9-28 lists all the OracleNotificationType enumeration values with a description of
each enumerated value.

Table 9-28 OracleNotificationType Members

Member Name Description

Change A change occurs in the database.

Chapter 9
OracleRowidInfo Enumeration

9-27

Table 9-28 (Cont.) OracleNotificationType Members

Member Name Description

Subscribe A change occurs in the subscription.

Query A query-based change occurs in the database.

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

9.7 OracleNotificationSource Enumeration
OracleNotificationSource enumerated values specify the different sources that cause
notification.

Table 9-29 lists all the OracleNotificationSource enumeration values with a description
of each enumerated value.

Table 9-29 OracleNotificationSource Members

Member Name Description

Data The data in a table has changed.

Database A database event such as a database startup or shutdown
occurs.

Object A database object is altered or dropped.

Subscription The subscription is changed.

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

9.8 OracleNotificationInfo Enumeration
OracleNotificationInfo enumerated values specify the database event that causes the
notification.

Table 9-30 lists all the OracleNotificationInfo enumeration values with a description of
each enumerated value.

Chapter 9
OracleNotificationSource Enumeration

9-28

Table 9-30 OracleNotificationInfo Members

Member Name Description

Insert A row is inserted.

Delete A row is deleted.

Update A row is updated.

Startup A database starts.

Shutdown A database shuts down.

Shutdown_any A database instance in a Real Application Cluster (Oracle RAC)
environment shuts down.

Alter An object is altered.

Drop An object or database is dropped.

End A registration is removed.

Error A notification error occurs.

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Chapter 9
OracleNotificationInfo Enumeration

9-29

10
Oracle Data Provider for .NET
Globalization Classes

This chapter describes the ODP.NET globalization classes.

This chapter contains these topics:

• OracleGlobalization Class

10.1 OracleGlobalization Class
The OracleGlobalization class is used to obtain and set the Oracle globalization
settings of the session, thread, and local computer (read-only).

Class Inheritance

System.Object

 Oracle.DataAccess.Client.OracleGlobalization

Declaration

public sealed class OracleGlobalization : ICloneable, IDisposable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Client Oracle.ManagedDataAccess.Client

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

An exception is thrown for invalid property values. All newly set property values are
validated, except the TimeZone property.

Changing the OracleGlobalization object properties does not change the globalization
settings of the session or the thread. Either the SetSessionInfo method of the
OracleConnection object or the SetThreadInfo method of the OracleGlobalization object
must be called to alter the session's and thread's globalization settings, respectively.

10-1

Example

// C#

using System;
using Oracle.DataAccess.Client;

class OracleGlobalizationSample
{
 static void Main()
 {
 // Get thread's globalization info
 OracleGlobalization glob = OracleGlobalization.GetThreadInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 // Set language on thread's globalization info
 glob.Language = "FRENCH";
 OracleGlobalization.SetThreadInfo(glob);
 OracleGlobalization.GetThreadInfo(glob);

 // Prints "glob.Language = FRENCH"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
 }
}

10.1.1 OracleGlobalization Members
OracleGlobalization members are listed in the following tables.

OracleGlobalization Static Methods

The OracleGlobalization static methods are listed in Table 10-1.

Table 10-1 OracleGlobalization Static Methods

Name Description

GetClientInfo Returns an OracleGlobalization object that represents the
Oracle globalization settings of the local computer (Overloaded)

Not Available in ODP.NET, Managed Driver

GetThreadInfo Returns or refreshes an OracleGlobalization instance that
represents Oracle globalization settings of the current thread
(Overloaded)

Not Available in ODP.NET, Managed Driver

SetThreadInfo Sets Oracle globalization parameters to the current thread

Not Available in ODP.NET, Managed Driver

OracleGlobalization Properties

The OracleGlobalization properties are listed in Table 10-2.

Chapter 10
OracleGlobalization Class

10-2

Table 10-2 OracleGlobalization Properties

Name Description

Calendar Specifies the calendar system

ClientCharacterSet Specifies a client character set

Not Available in ODP.NET, Managed Driver

Comparison Specifies a method of comparison for WHERE clauses and
comparison in PL/SQL blocks

Currency Specifies the string to use as a local currency symbol for the
L number format element

DateFormat Specifies the date format for Oracle Date type as a string

DateLanguage Specifies the language used to spell day and month names
and date abbreviations

DualCurrency Specifies the dual currency symbol, such as Euro, for the U
number format element

ISOCurrency Specifies the string to use as an international currency
symbol for the C number format element

Language Specifies the default language of the database

LengthSemantics Enables creation of CHAR and VARCHAR2 columns using
either byte or character (default) length semantics

NCharConversionException Determines whether or not data loss during an implicit or
explicit character type conversion reports an error

NumericCharacters Specifies the characters used for the decimal character and
the group separator character for numeric values in strings

Sort Specifies the collating sequence for ORDER by clause

Territory Specifies the name of the territory

TimeStampFormat Specifies the string format for TimeStamp types

TimeStampTZFormat Specifies the string format for TimeStampTZ types

TimeZone Specifies the time zone region name

OracleGlobalization Public Methods

OracleGlobalization public methods are listed in Table 10-3.

Table 10-3 OracleGlobalization Public Methods

Public Method Description

Clone Creates a copy of an OracleGlobalization object

Dispose Releases any resources or memory allocated by the
object

10.1.2 OracleGlobalization Static Methods
The OracleGlobalization static methods are listed in Table 10-4.

Chapter 10
OracleGlobalization Class

10-3

Table 10-4 OracleGlobalization Static Methods

Name Description

GetClientInfo Returns an OracleGlobalization object that represents the
Oracle globalization settings of the local computer (Overloaded)

Not Available in ODP.NET, Managed Driver

GetThreadInfo Returns or refreshes an OracleGlobalization instance that
represents Oracle globalization settings of the current thread
(Overloaded)

Not Available in ODP.NET, Managed Driver

SetThreadInfo Sets Oracle globalization parameters to the current thread

Not Available in ODP.NET, Managed Driver

10.1.2.1 GetClientInfo
GetClientInfo returns an OracleGlobalization object instance that represents the
Oracle globalization settings of the local computer.

Overload List:

• GetClientInfo()

This method returns an OracleGlobalization instance that represents the
globalization settings of the local computer.

• GetClientInfo(OracleGlobalization)

This method refreshes the provided OracleGlobalization object with the
globalization settings of the local computer.

10.1.2.2 GetClientInfo()
This method returns an OracleGlobalization instance that represents the globalization
settings of the local computer.

Declaration

// C#
public static OracleGlobalization GetClientInfo();

Return Value

An OracleGlobalization instance.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetClientInfoSample
{
 static void Main()

Chapter 10
OracleGlobalization Class

10-4

 {
 // Get client's globalization info
 OracleGlobalization glob = OracleGlobalization.GetClientInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
 }
}

10.1.2.3 GetClientInfo(OracleGlobalization)
This method refreshes the provided OracleGlobalization object with the globalization
settings of the local computer.

Declaration

// C#
public static void GetClientInfo(OracleGlobalization oraGlob);

Parameters

• oraGlob

The OracleGlobalization object being updated.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetClientInfoSample
{
static void Main()
{
 // Get client's globalization info
 OracleGlobalization glob = OracleGlobalization.GetClientInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 // Get client's globalization info using overload
 OracleGlobalization.GetClientInfo(glob);

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
}
}

10.1.2.4 GetThreadInfo
GetThreadInfo returns or refreshes an OracleGlobalization instance.

Chapter 10
OracleGlobalization Class

10-5

Overload List:

• GetThreadInfo()

This method returns an OracleGlobalization object instance of the current thread.

• GetThreadInfo(OracleGlobalization)

This method refreshes the OracleGlobalization object instance with the
globalization settings of the current thread.

10.1.2.5 GetThreadInfo()
This method returns an OracleGlobalization instance of the current thread.

Declaration

// C#
public static OracleGlobalization GetThreadInfo();

Return Value

An OracleGlobalization instance.

Remarks

Initially, GetThreadInfo() returns an OracleGlobalization object that has the same
property values as that returned by GetClientInfo(), unless the application changes it
by invoking SetThreadInfo().

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetThreadInfoSample
{
 static void Main()
 {
 // Get thread's globalization info
 OracleGlobalization glob = OracleGlobalization.GetThreadInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 // Get thread's globalization info using overloaded
 OracleGlobalization.GetThreadInfo(glob);

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
 }
}

Chapter 10
OracleGlobalization Class

10-6

10.1.2.6 GetThreadInfo(OracleGlobalization)
This method refreshes the OracleGlobalization object with the globalization settings of
the current thread.

Declaration

// C#
public static void GetThreadInfo(OracleGlobalization oraGlob);

Parameters

• oraGlob

The OracleGlobalization object being updated.

Remarks

Initially GetThreadInfo() returns an OracleGlobalization object that has the same
property values as that returned by GetClientInfo(), unless the application changes it
by invoking SetThreadInfo().

Example

// C#

using System;
using Oracle.DataAccess.Client;

class GetThreadInfoSample
{
 static void Main()
 {
 // Get thread's globalization info
 OracleGlobalization glob = OracleGlobalization.GetThreadInfo();

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 // Get thread's globalization info using overloaded
 OracleGlobalization.GetThreadInfo(glob);

 // Prints "glob.Language = AMERICAN"
 Console.WriteLine("glob.Language = " + glob.Language);

 glob.Dispose();
 }
}

10.1.2.7 SetThreadInfo
This method sets Oracle globalization parameters to the current thread.

Declaration

// C#
public static void SetThreadInfo(OracleGlobalization oraGlob);

Chapter 10
OracleGlobalization Class

10-7

Parameters

• oraGlob

An OracleGlobalization object.

Remarks

Any .NET string conversions to and from ODP.NET Types, as well as ODP.NET Type
constructors, use the globalization property values where applicable. For example,
when constructing an OracleDate structure from a .NET string, that string is expected to
be in the format specified by the OracleGlobalization.DateFormat property of the thread.

Example

// C#

using System;
using Oracle.DataAccess.Client;

class SetThreadInfoSample
{
 static void Main()
 {
 // Get thread's globalization info
 OracleGlobalization glob1 = OracleGlobalization.GetThreadInfo();

 // Prints "glob1.Language = AMERICAN"
 Console.WriteLine("glob1.Language = " + glob1.Language);

 // Set language on thread's globalization info
 glob1.Language = "FRENCH";
 OracleGlobalization.SetThreadInfo(glob1);
 OracleGlobalization glob2 = OracleGlobalization.GetThreadInfo();

 // Prints "glob2.Language = FRENCH"
 Console.WriteLine("glob2.Language = " + glob2.Language);

 glob1.Dispose();
 glob2.Dispose();
 }
}

10.1.3 OracleGlobalization Properties
The OracleGlobalization properties are listed in Table 10-5.

Table 10-5 OracleGlobalization Properties

Name Description

Calendar Specifies the calendar system

ClientCharacterSet Specifies a client character set

Not Available in ODP.NET, Managed Driver

Comparison Specifies a method of comparison for WHERE clauses
and comparison in PL/SQL blocks

Chapter 10
OracleGlobalization Class

10-8

Table 10-5 (Cont.) OracleGlobalization Properties

Name Description

Currency Specifies the string to use as a local currency symbol
for the L number format element

DateFormat Specifies the date format for Oracle Date type as a
string

DateLanguage Specifies the language used to spell day and month
names and date abbreviations

DualCurrency Specifies the dual currency symbol, such as Euro, for
the U number format element

ISOCurrency Specifies the string to use as an international currency
symbol for the C number format element

Language Specifies the default language of the database

LengthSemantics Enables creation of CHAR and VARCHAR2 columns using
either byte or character (default) length semantics

NCharConversionException Determines whether or not data loss during an implicit
or explicit character type conversion reports an error

NumericCharacters Specifies the characters used for the decimal character
and the group separator character for numeric values in
strings

Sort Specifies the collating sequence for ORDER by clause

Territory Specifies the name of the territory

TimeStampFormat Specifies the string format for TimeStamp types

TimeStampTZFormat Specifies the string format for TimeStampTZ types

TimeZone Specifies the time zone region name

10.1.3.1 Calendar
This property specifies the calendar system.

Declaration

// C#
public string Calendar {get; set;}

Property Value

A string representing the Calendar.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_CALENDAR setting of the local computer. This value is the
same regardless of whether or not the OracleGlobalization object represents the
settings of the client, thread, or session.

Chapter 10
OracleGlobalization Class

10-9

10.1.3.2 ClientCharacterSet
This property specifies a client character set.

Declaration

// C#
public string ClientCharacterSet {get;}

Property Value

A string that the provides the name of the character set of the local computer.

Remarks

The default value is the character set of the local computer.

10.1.3.3 Comparison
This property represents a method of comparison for WHERE clauses and comparison in
PL/SQL blocks.

Declaration

// C#
public string Comparison {get; set;}

Property Value

A string that provides the name of the method of comparison.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_COMP setting of the local computer.

10.1.3.4 Currency
This property specifies the string to use as a local currency symbol for the L number
format element.

Declaration

// C#
public string Currency {get; set;}

Property Value

The string to use as a local currency symbol for the L number format element.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 10
OracleGlobalization Class

10-10

Remarks

The default value is the NLS_CURRENCY setting of the local computer.

10.1.3.5 DateFormat
This property specifies the date format for Oracle Date type as a string.

Declaration

// C#
public string DateFormat {get; set;}

Property Value

The date format for Oracle Date type as a string

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_DATE_FORMAT setting of the local computer.

10.1.3.6 DateLanguage
This property specifies the language used to spell names of days and months, and
date abbreviations (for example: a.m., p.m., AD, BC).

Declaration

// C#
public string DateLanguage {get; set;}

Property Value

A string specifying the language.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_DATE_LANGUAGE setting of the local computer.

10.1.3.7 DualCurrency
This property specifies the dual currency symbol, such as Euro, for the U number
format element.

Chapter 10
OracleGlobalization Class

10-11

Declaration

// C#
public string DualCurrency {get; set;}

Property Value

A string that provides the dual currency symbol.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_DUAL_CURRENCY setting of the local computer.

10.1.3.8 ISOCurrency
This property specifies the string to use as an international currency symbol for the C
number format element.

Declaration

// C#
public string ISOCurrency {get; set;}

Property Value

The string used as an international currency symbol.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_ISO_CURRENCY setting of the local computer.

10.1.3.9 Language
This property specifies the default language of the database.

Declaration

// C#
public string Language {get; set;}

Property Value

The default language of the database.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 10
OracleGlobalization Class

10-12

Remarks

The default value is the NLS_LANGUAGE setting of the local computer.

Language is used for messages, day and month names, and sorting algorithms. It also
determines NLS_DATE_LANGUAGE and NLS_SORT parameter values.

10.1.3.10 LengthSemantics
This property indicates whether or not CHAR and VARCHAR2 columns use byte or
character (default) length semantics.

Declaration

// C#
public string LengthSemantics {get; set;}

Property Value

A string that indicates either byte or character length semantics.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_LENGTH_SEMANTICS setting of the local computer.

10.1.3.11 NCharConversionException
This property determines whether or not data loss during an implicit or explicit
character type conversion reports an error.

Declaration

// C#
public bool NCharConversionException {get; set;}

Property Value

A string that indicates whether or not a character type conversion causes an error
message.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value of NLS_NCHAR_CONV_EXCP is False, unless it is overridden by a setting in
the INIT.ORA file.

Chapter 10
OracleGlobalization Class

10-13

10.1.3.12 NumericCharacters
This property specifies the characters used for the decimal character and the group
separator character for numeric values in strings.

Declaration

// C#
public string NumericCharacters {get; set;}

Property Value

A string that represents the characters used.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_NUMERIC_CHARACTERS setting of the local computer.

10.1.3.13 Sort
This property specifies the collating sequence for ORDER by clause.

Declaration

// C#
public string Sort {get; set;}

Property Value

A string that indicates the collating sequence.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_SORT setting of the local computer.

10.1.3.14 Territory
This property specifies the name of the territory.

Declaration

// C#
public string Territory {get; set;}

Property Value

A string that provides the name of the territory.

Chapter 10
OracleGlobalization Class

10-14

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_TERRITORY setting of the local computer.

Changing this property changes other globalization properties.

10.1.3.15 TimeStampFormat
This property specifies the string format for TimeStamp types.

Declaration

// C#
public string TimeStampFormat {get; set;}

Property Value

The string format for TimeStamp types.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_TIMESTAMP_FORMAT setting of the local computer.

10.1.3.16 TimeStampTZFormat
This property specifies the string format for TimeStampTZ types.

Declaration

// C#
public string TimeStampTZFormat {get; set;}

Property Value

The string format for TimeStampTZ types.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the NLS_TIMESTAMP_TZ_FORMAT setting of the local computer.

10.1.3.17 TimeZone
This property specifies the time zone region name or hour offset.

Chapter 10
OracleGlobalization Class

10-15

Declaration

// C#
public string TimeZone {get; set;}

Property Value

The string represents the time zone region name or the time zone offset.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is the time zone region name of the local computer

TimeZone is only used when the thread constructs one of the TimeStamp structures.
TimeZone has no effect on the session.

TimeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

Note:

PST is a time zone region name as well as a time zone abbreviation; therefore
it is accepted by OracleGlobalization.

This property returns an empty string if the OracleGlobalization object is obtained
using GetSessionInfo() or GetSessionInfo(OracleGlobalization). Initially, by default, the
time zone of the session is identical to the time zone of the thread. Therefore, given
that the session time zone is not changed by invoking ALTER SESSION calls, the session
time zone can be fetched from the client's globalization settings.

10.1.4 OracleGlobalization Public Methods
OracleGlobalization public methods are listed in Table 10-6.

Table 10-6 OracleGlobalization Public Methods

Public Method Description

Clone Creates a copy of an OracleGlobalization object

Dispose Releases any resources or memory allocated by the
object

10.1.4.1 Clone
This method creates a copy of an OracleGlobalization object.

Chapter 10
OracleGlobalization Class

10-16

Declaration

// C#
public object Clone();

Return Value

An OracleGlobalization object.

Implements

ICloneable

Remarks

The cloned object has the same property values as that of the object being cloned.

10.1.4.2 Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The Dispose method also closes the OracleGlobalization object.

Chapter 10
OracleGlobalization Class

10-17

11
Oracle Data Provider for .NET Failover
Classes

This chapter describes the ODP.NET failover classes and enumerations.

This chapter contains these topics:

• OracleFailoverEventArgs Class

• OracleFailoverEventHandler Delegate

• FailoverEvent Enumeration

• FailoverReturnCode Enumeration

• FailoverType Enumeration

11.1 OracleFailoverEventArgs Class
The OracleFailoverEventArgs class provides event data for the
OracleConnection.Failover event. When database failover occurs, the
OracleConnection.Failover event is triggered along with the OracleFailoverEventArgs
object that stores the event data.

Class Inheritance

System.Object

 System.EventArgs

 Oracle.DataAccess.Client.OracleFailoverEventArgs

Declaration

// C#
public sealed class OracleFailoverEventArgs

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Not supported in a .NET stored procedure

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

11-1

Example (Oracle.DataAccess.Client only)

// Transparent Application Failover (TAF) Setup
// Refer Oracle® Database Net Services Administrator's Guide

// C#

using System;
using System.Threading;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class FailoverSample
{
 static void Main(string[] args)
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Register the event handler OnFailover
 con.Failover += new OracleFailoverEventHandler(OnFailover);

 Console.WriteLine("Wait for a failover for 5 seconds");
 Thread.Sleep(5000);

 con.Close();
 con.Dispose();
 }

 // TAF callback function
 static FailoverReturnCode OnFailover(object sender,
 OracleFailoverEventArgs eventArgs)
 {
 switch (eventArgs.FailoverEvent)
 {
 case FailoverEvent.Begin:
 {
 Console.WriteLine("FailoverEvent.Begin - Failover is starting");
 Console.WriteLine("FailoverType = " + eventArgs.FailoverType);
 break;
 }
 case FailoverEvent.End:
 {
 Console.WriteLine("FailoverEvent.End - Failover was successful");
 break;
 }
 case FailoverEvent.Reauth:
 {
 Console.WriteLine("FailoverEvent.Reauth - User reauthenticated");
 break;
 }
 case FailoverEvent.Error:
 {
 Console.WriteLine("FailoverEvent.Error - Failover was unsuccessful");

 // Sleep for 3 sec and Retry
 Thread.Sleep(3000);
 return FailoverReturnCode.Retry;
 }

Chapter 11
OracleFailoverEventArgs Class

11-2

 case FailoverEvent.Abort:
 {
 Console.WriteLine("FailoverEvent.Abort - Failover was unsuccessful");
 break;
 }
 default:
 {
 Console.WriteLine("Invalid FailoverEvent : " + eventArgs.FailoverEvent);
 break;
 }
 }
 return FailoverReturnCode.Success;
 }
}

11.1.1 OracleFailoverEventArgs Members
OracleFailoverEventArgs members are listed in the following tables.

OracleFailoverEventArgs Static Methods

The OracleFailoverEventArgs static methods are listed in Table 11-1.

Table 11-1 OracleFailoverEventArgs Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleFailoverEventArgs Properties

The OracleFailoverEventArgs properties are listed in Table 11-2.

Table 11-2 OracleFailoverEventArgs Properties

Name Description

FailoverType Specifies the type of failover the client has requested

FailoverEvent Indicates the state of the failover

OracleFailoverEventArgs Public Methods

The OracleFailoverEventArgs public methods are listed in Table 11-3.

Table 11-3 OracleFailoverEventArgs Public Methods

Name Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

Chapter 11
OracleFailoverEventArgs Class

11-3

11.1.2 OracleFailoverEventArgs Static Methods
The OracleFailoverEventArgs static methods are listed in Table 11-1.

Table 11-4 OracleFailoverEventArgs Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

11.1.3 OracleFailoverEventArgs Properties
The OracleFailoverEventArgs properties are listed in Table 11-5.

Table 11-5 OracleFailoverEventArgs Properties

Name Description

FailoverType Specifies the type of failover the client has requested

FailoverEvent Indicates the state of the failover

11.1.3.1 FailoverType
This property indicates the state of the failover.

Declaration

// C#
public FailoverType FailoverType {get;}

Property Value

A FailoverType enumeration value.

11.1.3.2 FailoverEvent
This property indicates the state of the failover.

Declaration

// C#
public FailoverEvent FailoverEvent {get;}

Property Value

A FailoverEvent enumerated value.

11.1.4 OracleFailoverEventArgs Public Methods
The OracleFailoverEventArgs public methods are listed in Table 11-6.

Chapter 11
OracleFailoverEventArgs Class

11-4

Table 11-6 OracleFailoverEventArgs Public Methods

Name Description

Equals Inherited from System.Object (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

11.2 OracleFailoverEventHandler Delegate
The OracleFailoverEventHandler represents the signature of the method that handles
the OracleConnection.Failover event.

Declaration

// C#
public delegate FailoverReturnCode OracleFailoverEventHandler(object sender,
 OracleFailoverEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Not supported in a .NET stored procedure

Parameter

• sender

The source of the event.

• eventArgs

The OracleFailoverEventArgs object that contains the event data.

Return Type

An int.

Remarks

To receive failover notifications, a callback function can be registered as follows:

ConObj.Failover += new OracleFailoverEventHandler(OnFailover);

The definition of the callback function OnFailover can be as follows:

public FailoverReturnCode OnFailover(object sender, OracleFailoverEventArgs
eventArgs)

Chapter 11
OracleFailoverEventHandler Delegate

11-5

11.3 FailoverEvent Enumeration
FailoverEvent enumerated values are used to specify the state of the failover.

Table 11-7 lists all the FailoverEvent enumeration values with a description of each
enumerated value.

Table 11-7 FailoverEvent Enumeration Values

Member Names Description

FailoverEvent.Begin Indicates that failover has detected a lost connection and that
failover is starting.

FailoverEvent.End Indicates successful completion of failover.

FailoverEvent.Abort Indicates that failover was unsuccessful, and there is no option of
retrying.

FailoverEvent.Error Indicates that failover was unsuccessful, and it gives the
application the opportunity to handle the error and retry failover.
The application can retry failover by returning
FailoverReturnCode.Retry for the event notification.

FailoverEvent.Reauth Indicates that a user handle has been reauthenticated. This
applies to the situation where a client has multiple user sessions
on a single server connection. During the initial failover, only the
active user session is failed over. Other sessions are failed over
when the application tries to use them. This is the value passed to
the callback during these subsequent failovers.

No significant database operation should occur immediately after a
FailoverEvent.Begin event. SQL and major database operations should wait until the
FailoverEvent.End event. FailoverEvent.Begin is primarily used to reject failover or to
trace it. FailoverEvent.Begin can also be used for non-database application operations,
such as informing the end user a failover is in progress and to wait until it completes
before proceeding. Transactions can be used in the FailoverEvent.End callback phase,
such as to file fault tickets or audit. These transactions must be committed before the
callback completes.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

11.4 FailoverReturnCode Enumeration
FailoverReturnCode enumerated values are passed back by the application to the
ODP.NET provider to request a retry in case of a failover error, or to continue in case
of a successful failover.

Chapter 11
FailoverEvent Enumeration

11-6

Table 11-8 lists the FailoverReturnCode enumeration values with a description of each
enumerated value.

Table 11-8 FailoverReturnCode Enumeration Values

Member Names Description

FailoverReturnCode.Retry Requests ODP.NET to retry failover in case
FailoverEvent.Error is passed to the application

FailoverReturnCode.Success Requests ODP.NET to proceed so that the application
receive more notifications, if any

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

11.5 FailoverType Enumeration
FailoverType enumerated values are used to indicate the type of failover event that
was raised.

Table 11-9 lists all the FailoverType enumeration values with a description of each
enumerated value.

Table 11-9 FailoverType Enumeration Values

Member Names Description

FailoverType.Session Indicates that the user has requested only session failover.

FailoverType.Select Indicates that the user has requested select and session failover.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Chapter 11
FailoverType Enumeration

11-7

12
Oracle Database Advanced Queuing
Classes

This chapter describes the following Oracle Data Provider for .NET classes:

• OracleAQAgent Class

• OracleAQDequeueOptions Class

• OracleAQEnqueueOptions Class

• OracleAQMessage Class

• OracleAQMessageAvailableEventArgs Class

• OracleAQMessageAvailableEventHandler Delegate

• OracleAQQueue Class

• OracleAQDequeueMode Enumeration

• OracleAQMessageDeliveryMode Enumeration

• OracleAQMessageState Enumeration

• OracleAQMessageType Enumeration

• OracleAQNavigationMode Enumeration

• OracleAQNotificationGroupingType Enumeration

• OracleAQNotificationType Enumeration

• OracleAQVisibilityMode Enumeration

12.1 OracleAQAgent Class
The OracleAQAgent class represents agents that may be senders or recipients of a
message.

Class Inheritance

System.Object

 OracleAQAgent

Declaration

// C#
public sealed class OracleAQAgent

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

12-1

Provider ODP.NET, Unmanaged Driver

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

An agent may be a consumer, another queue, or a consumer of another queue. The
queue may be either local or remote. A remote queue is specified through a database
link.

12.1.1 OracleAQAgent Members
OracleAQAgent members are listed in the following tables.

OracleAQAgent Constructors

OracleAQAgent constructors are listed in Table 12-1.

Table 12-1 OracleAQAgent Constructors

Constructor Description

OracleAQAgent Constructors Instantiates a new instance of the OracleAQAgent class
(Overloaded).

OracleAQAgent Properties

OracleAQAgent properties are listed in Table 12-2.

Table 12-2 OracleAQAgent Properties

Property Description

Address Specifies the address of the agent.

Name Specifies the name of the agent.

12.1.2 OracleAQAgent Constructors
OracleAQAgent constructors instantiate new instances of the OracleAQAgent class.

Overload List:

• OracleAQAgent (string)

This constructor instantiates the OracleAQAgent class using the specified name.

• OracleAQAgent (string, string)

Chapter 12
OracleAQAgent Class

12-2

This constructor instantiates the OracleAQAgent class using the specified name and
address.

12.1.2.1 OracleAQAgent (string)
This constructor instantiates the OracleAQAgent class using the specified name.

Declaration

// C#
public OracleAQAgent(string name);

Parameters

• name

The name of the agent.

Exceptions

ArgumentNullException - The name parameter is null.

ArgumentException - The name parameter is empty.

Remarks

The agent name signifies the name of a producer or consumer of a message. In the
context of functionality exposed by Listen, an agent name corresponds to the name of
a consumer for which a message is expected on a multiconsumer queue. It may also
be set on a message to signify sender identification or intended recipients of the
message.

12.1.2.2 OracleAQAgent (string, string)
This constructor instantiates the OracleAQAgent class using the specified name and
address.

Declaration

// C#
public OracleAQAgent(string name, string address);

Parameters

• name

The name of the agent.

• address

The address is of the form [schema.]queue[@dblink].

Exceptions

ArgumentNullException - The address parameter is null.

ArgumentException - The address parameter is empty.

Chapter 12
OracleAQAgent Class

12-3

Remarks

The agent name signifies the name of a producer or consumer of a message. In the
context of functionality exposed by Listen, an agent name corresponds to the name of
a consumer for which a message is expected on a multiconsumer queue.

The name parameter can be specified as null in this constructor. In such a scenario, the
agent only has an address.

The address parameter signifies the name of the queue against which this agent listens
for new messages. The address represents a queue at a local or remote database.The
validity of the address is not checked implicitly. The exceptions due to wrong address
are thrown only during database operations such as Listen.

12.1.3 OracleAQAgent Properties
OracleAQAgent properties are listed in Table 12-3.

Table 12-3 OracleAQAgent Properties

Property Description

Address Specifies the address of the agent.

Name Specifies the name of the agent.

12.1.3.1 Address
This instance property specifies the address of the agent.

Declaration

// C#
public string Address {get; }

Property Value

A string that specifies the agent address.

Remarks

The address represents a queue at a local or remote database. The default value is
null. The address of the agent is of the form [schema.]queue[@dblink]. The string length
can be up to 128 characters.

12.1.3.2 Name
This instance property specifies the name of the agent.

Declaration

// C#
public string Name {get; }

Chapter 12
OracleAQAgent Class

12-4

Property Value

A string.

Remarks

The default is null. The string length can be up to 30 characters. A non-null value
implies that this agent name either corresponds to a consumer name in a
multiconsumer queue, or a recipient as specified in message properties.

12.2 OracleAQDequeueOptions Class
An OracleAQDequeueOptions object represents the options available when dequeuing a
message from an OracleAQQueue object.

Class Inheritance

System.Object

 OracleAQDequeueOptions

Declaration

// C#
public sealed class OracleAQDequeueOptions : ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

12.2.1 OracleAQDequeueOptions Members
OracleAQDequeueOptions members are listed in the following tables.

OracleAQDequeueOptions Constructor

The OracleAQDequeueOptions constructor is listed in Table 12-4.

Table 12-4 OracleAQDequeueOptions Constructor

Constructor Description

OracleAQDequeueOptions
Constructor

Instantiates a new instance of the
OracleAQDequeueOptions class

Chapter 12
OracleAQDequeueOptions Class

12-5

OracleAQDequeueOptions Properties

OracleAQDequeueOptions properties are listed in Table 12-5.

Table 12-5 OracleAQDequeueOptions Properties

Property Description

ConsumerName Specifies the consumer name for which to dequeue the
message

Correlation Specifies the correlation identifier of the message to be
dequeued

DeliveryMode Specifies the expected delivery mode of the message
being dequeued

DequeueMode Specifies the locking behavior associated with the
dequeue operation

MessageId Specifies the message identifier of the message to be
dequeued

NavigationMode Specifies the position of the message that will be retrieved

ProviderSpecificType Specifies whether the payload of a dequeued message is
provided as an ODP.NET specific type or a .NET type

Visibility Specifies whether or not the new message is dequeued
as part of the current transaction

Wait Specifies the wait time, in seconds, for a message that
matches the search criteria

OracleAQDequeueOptions Public Methods

OracleAQDequeueOptions public methods are listed in Table 12-6.

Table 12-6 OracleAQDequeueOptions Public Methods

Public Method Description

Clone Creates a copy of an OracleAQDequeueOptions
object.

12.2.2 OracleAQDequeueOptions Constructor
The OracleAQDequeueOptions constructor creates an instance of the
OracleAQDequeueOptions class and sets all its properties to their default values.

Declaration

// C#
public OracleAQDequeueOptions();

12.2.3 OracleAQDequeueOptions Properties
OracleAQDequeueOptions properties are listed in Table 12-7.

Chapter 12
OracleAQDequeueOptions Class

12-6

Table 12-7 OracleAQDequeueOptions Properties

Property Description

ConsumerName Specifies the consumer name for which to dequeue the
message

Correlation Specifies the correlation identifier of the message to be
dequeued

DeliveryMode Specifies the expected delivery mode of the message
being dequeued

DequeueMode Specifies the locking behavior associated with the
dequeue operation

MessageId Specifies the message identifier of the message to be
dequeued

NavigationMode Specifies the position of the message that will be retrieved

ProviderSpecificType Specifies whether the payload of a dequeued message is
provided as an ODP.NET specific type or a .NET type

Visibility Specifies whether or not the new message is dequeued
as part of the current transaction

Wait Specifies the wait time, in seconds, for a message that
matches the search criteria

12.2.3.1 ConsumerName
This instance property specifies the consumer name for which to dequeue the
message.

Declaration

// C#
public string ConsumerName {get;set;}

Property Value

A string.

Remarks

The ConsumerName property only accesses those messages that match the consumer
name. If a queue is not set up for multiple consumers, then this field should be set to
null.

12.2.3.2 Correlation
This instance property specifies the correlation identifier of the message to be
dequeued.

Declaration

// C#
public string Correlation {get;set;}

Chapter 12
OracleAQDequeueOptions Class

12-7

Property Value

A string.

Remarks

This property specifies the identification of the message to be dequeued. Special
pattern matching characters, such as the percent sign (%) and the underscore (_) can
be used. If more than one message satisfies the pattern, then the order of dequeuing
is undetermined.

The maximum length of Correlation is 128.

MessageId and Correlation are two independent identifiers. While MessageId is unique
for a message, a group of messages can be assigned the same Correlation. Also,
pattern matching is possible only with Correlation.

12.2.3.3 DeliveryMode
This instance property specifies the expected delivery mode of the message being
dequeued.

Declaration

// C#
public OracleAQMessageDeliveryMode DeliveryMode {get;set;}

Property Value

An OracleAQMessageDeliveryMode enumerated value.

Remarks

This property specifies the type of messages to be dequeued. It can be set to dequeue
either persistent or buffered messages, or both from a queue. The following values are
valid:

• OracleAQMessageDeliveryMode.Persistent

• OracleAQMessageDeliveryMode.Buffered

• OracleAQMessageDeliveryMode.PersistentOrBuffered

The default value is OracleAQMessageDeliveryMode.Persistent.

Buffered messaging is supported in all queue tables created with a database
compatibility level of 8.1 or higher.

12.2.3.4 DequeueMode
This instance property specifies the locking behavior associated with the dequeue
operation.

Declaration

// C#
public OracleAQDequeueMode DequeueMode {get;set;}

Chapter 12
OracleAQDequeueOptions Class

12-8

Property Value

An OracleAQDequeueMode enumerated value.

Exceptions

ArgumentOutOfRangeException - The specified DequeueMode value is invalid.

Remarks

The default value is OracleAQDequeueMode.Remove.

12.2.3.5 MessageId
This instance property specifies the message identifier of the message to be
dequeued.

Declaration

// C#
public byte[] MessageId {get;set;}

Property Value

A byte[].

Remarks

The dequeue operation succeeds only if the message ID of the message being
dequeued matches with the message ID specified.

12.2.3.6 NavigationMode
This instance property specifies the position of the message that will be retrieved.

Declaration

// C#
public OracleAQNavigationMode NavigationMode {get;set;}

Property Value

An OracleAQNavigationMode enumerated value.

Exceptions

ArgumentOutOfRangeException - The specified NavigationMode value is invalid.

Remarks

The default value is OracleAQNavigationMode.NextMessage.

Chapter 12
OracleAQDequeueOptions Class

12-9

12.2.3.7 ProviderSpecificType
This property specifies whether the payload of a dequeued message is provided as an
ODP.NET specific type or a .NET type.

Declaration

// C#
public bool ProviderSpecificType {get;set;}

Property Value

A bool.

Remarks

The default value of this property is false. For a discussion of how this property affects
payload type, refer to "MessageType" under the OracleAQQueue class.

12.2.3.8 Visibility
This instance property specifies whether or not the new message is dequeued as part
of the current transaction.

Declaration

// C#
public OracleAQVisibilityMode Visibility {get;set;}

Property Value

An OracleAQVisibilityMode enumerated value.

Exceptions

ArgumentOutOfRangeException - The Visibility value specified is invalid.

Remarks

The default value is OracleAQVisibilityMode.OnCommit. You must use transactions when
using the default value for this property. This ensures that applications do not lose
messages and the messages are appropriately removed from the queue after the
dequeue operation is successful. If transactions are not used when using the default
visibility mode of OracleAQVisibilityMode.OnCommit, then messages are not removed
from the queue.

Using the alternative visibility mode value, OracleAQVisibilityMode.Immediate can
eliminate the need to create, commit, and rollback a transaction. However, if an error
occurs during the dequeue operation, then the message may be lost.

The visibility parameter is ignored when DequeueMode is set to
OracleAQDequeueMode.Browse.

Chapter 12
OracleAQDequeueOptions Class

12-10

12.2.3.9 Wait
This instance property specifies the wait time, in seconds, for a message that matches
the search criteria.

Declaration

// C#
public int Wait {get;set;}

Property Value

Any positive integer value or 0 or -1.

Exceptions

ArgumentOutOfRangeException - The specified Wait value is invalid.

Remarks

The default value is -1, which implies an infinite wait. The following values are valid:

• Positive integer: Wait time in seconds.

• -1: Wait forever.

• 0: Do not wait.

A value of less than -1 raises an ArgumentOutOfRangeException.

This parameter is ignored if messages in the same group are being dequeued.

12.2.4 OracleAQDequeueOptions Public Methods
The OracleAQDequeueOptions public method is listed in Table 12-8.

Table 12-8 OracleAQDequeueOptions Public Methods

Public Method Description

Clone Creates a copy of an OracleAQDequeueOptions
object

12.2.4.1 Clone
This method creates a copy of an OracleAQDequeueOptions object.

Declaration

// C#
public object Clone();

Return Value

An OracleAQDequeueOptions object.

Chapter 12
OracleAQDequeueOptions Class

12-11

Implements

ICloneable.

Remarks

The cloned object has the same property values as the object being cloned.

12.3 OracleAQEnqueueOptions Class
The OracleAQEnqueueOptions class represents the options available when enqueuing a
message to an OracleAQQueue.

Class Inheritance

System.Object

 OracleAQEnqueueOptions

Declaration

// C#
public sealed class OracleAQEnqueueOptions : ICloneable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

12.3.1 OracleAQEnqueueOptions Members
The OracleAQEnqueueOptions members are listed in the following tables.

OracleAQEnqueueOptions Constructor

OracleAQEnqueueOptions constructor is listed in Table 12-9.

Table 12-9 OracleAQEnqueueOptions Constructor

Constructor Description

OracleAQEnqueueOptions
Constructor

Instantiates a new instance of the
OracleAQEnqueueOptions class.

Chapter 12
OracleAQEnqueueOptions Class

12-12

OracleAQEnqueueOptions Properties

OracleAQEnqueueOptions properties are listed in Table 12-10.

Table 12-10 OracleAQEnqueueOptions Properties

Property Description

DeliveryMode Specifies the delivery mode of the message being
enqueued.

Visibility Specifies whether or not the new message is enqueued
as part of the current transaction.

OracleAQEnqueueOptions Public Methods

The OracleAQEnqueueOptions public method is listed in Table 12-11.

Table 12-11 OracleAQEnqueueOptions Public Methods

Public Method Description

Clone Creates a copy of an OracleAQEnqueueOptions
object.

12.3.2 OracleAQEnqueueOptions Constructor
This constructor creates an instance of the OracleAQEnqueueOptions class with default
property values.

Declaration

// C#
public OracleAQEnqueueOptions();

12.3.3 OracleAQEnqueueOptions Properties
OracleAQEnqueueOptions properties are listed in Table 12-12.

Table 12-12 OracleAQEnqueueOptions Properties

Property Description

DeliveryMode Specifies the delivery mode of the message being
enqueued.

Visibility Specifies whether or not the new message is enqueued
as part of the current transaction.

12.3.3.1 DeliveryMode
This instance property specifies the delivery mode of the message being enqueued.

Chapter 12
OracleAQEnqueueOptions Class

12-13

Declaration

// C#
public OracleAQMessageDeliveryMode DeliveryMode {get;set;}

Exceptions

ArgumentOutOfRangeException - The specified Visibility value is invalid.

Remarks

The valid values can be any of the following enumerated values:

• OracleAQMessageDeliveryMode.Persistent

• OracleAQMessageDeliveryMode.Buffered

The default is OracleAQMessageDeliveryMode.Persistent.

OracleAQMessageDeliveryMode.PersistentOrBuffered cannot be set on this property.

12.3.3.2 Visibility
This instance property specifies whether or not the new message is enqueued as part
of the current transaction.

Declaration

// C#
public OracleAQVisibilityMode Visibility {get;set;}

Property Value

An OracleAQVisibilityMode enumerated value.

Exceptions

ArgumentOutOfRangeException - The specified Visibility value is invalid.

Remarks

The default value is OracleAQVisibilityMode.OnCommit. You must use transactions when
using the default value. If transactions are not used when using the default visibility
mode of OracleAQVisibilityMode.OnCommit, then messages are not enqueued to the
queue.

Using the alternative visibility mode value, OracleAQVisibilityMode.Immediate
eliminates the need to use a transaction. The queue is not affected in case the
enqueue operation fails. The message does not get enqueued to the queue for such
cases.

12.3.4 OracleAQEnqueueOptions Public Methods
OracleAQEnqueueOptions public method is listed in Table 12-13.

Chapter 12
OracleAQEnqueueOptions Class

12-14

Table 12-13 OracleAQEnqueueOptions Public Methods

Public Method Description

Clone Creates a copy of an OracleAQEnqueueOptions
object.

12.3.4.1 Clone
This method creates a copy of an OracleAQEnqueueOptions object.

Declaration

// C#
public object Clone();

Return Value

An OracleAQEnqueueOptions object.

Implements

ICloneable.

Remarks

The cloned object has the same property values as that of the object being cloned.

12.4 OracleAQMessage Class
An OracleAQMessage object represents a message to be enqueued and dequeued.

Class Inheritance

System.Object

 OracleAQMessage

Declaration

// C#
public sealed class OracleAQMessage

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Chapter 12
OracleAQMessage Class

12-15

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

An OracleAQMessage object consists of control information (metadata) and Payload
(data). The control information is exposed by various properties on the OracleAQMessage
object and is used by Oracle Streams Advanced Queuing to manage messages. The
payload is the information stored in the queue.

Note:

An instance of OracleAQMessage cannot be re-used across multiple operations of
OracleAQQueue public method Enqueue() or EnqueueArray(), if the payload is an
XmlReader. This is a direct consequence of the forward-only semantics of the
XmlReader, as an Enqueue() or EnqueueArray() operation internally invokes a
read operation on the XmlReader to extract the data to be enqueued.

12.4.1 OracleAQMessage Members
OracleAQMessage members are listed in the following tables.

OracleAQMessage Constructor

OracleAQMessage constructors are listed in Table 12-14.

Table 12-14 OracleAQMessage Constructors

Constructor Description

OracleAQMessage Constructors Instantiates a new instance of the OracleAQMessage
class (Overloaded).

OracleAQMessage Properties

OracleAQMessage properties are listed in Table 12-15.

Table 12-15 OracleAQMessage Properties

Property Description

Correlation Specifies an identification for the message.

Delay Specifies the duration, in seconds, after which an
enqueued message is available for dequeuing.

DeliveryMode Specifies the delivery mode of the dequeued message.

DequeueAttempts Returns the number of attempts that have been made to
dequeue the message.

Chapter 12
OracleAQMessage Class

12-16

Table 12-15 (Cont.) OracleAQMessage Properties

Property Description

EnqueueTime Specifies the time when the message was enqueued.

ExceptionQueue Specifies the name of the queue that the message should
be moved to if it cannot be processed successfully.

Expiration Specifies the duration, in seconds, for which an enqueued
message is available for dequeuing.

MessageId Returns the message identifier.

OriginalMessageId Specifies the identifier of the message in the last queue
that generated this message.

Payload Specifies the payload of the message.

Priority Specifies the priority of the message.

Recipients Specifies the list of recipients that overrides the default
queue subscribers.

SenderId Identifies the original sender of the message.

State Specifies the state of the message at the time of dequeue.

TransactionGroup Specifies the transaction group for the dequeued
message.

12.4.2 OracleAQMessage Constructors
OracleAQMessage constructors create new instances of the OracleAQMessage class.

Overload List:

• OracleAQMessage()

This constructor instantiates the OracleAQMessage class.

• OracleAQMessage(Object)

This constructor instantiates the OracleAQMessage class using the object provided
as the payload.

12.4.2.1 OracleAQMessage()
This constructor instantiates the OracleAQMessage class.

Declaration

// C#
public OracleAQMessage();

12.4.2.2 OracleAQMessage(Object)
This constructor instantiates the OracleAQMessage class using the Object provided as
the payload.

Chapter 12
OracleAQMessage Class

12-17

Declaration

// C#
public OracleAQMessage(Object payload);

Parameters

• payload

An Object specifying payload. It can be one of the following types:

– byte[]

– IOracleCustomType

– OracleBinary

– OracleXmlType

– String

– XmlReader

Exceptions

ArgumentException - The specified payload value is of invalid type.

Remarks

The ODP.NET AQ implementation currently does not support user defined types with
LOB attributes. It also does not support other variants of user defined types such as
VARRAY and nested tables, as Oracle Streams AQ does not support them inherently.

12.4.3 OracleAQMessage Properties
OracleAQMessage properties are listed in Table 12-16.

Table 12-16 OracleAQMessage Properties

Property Description

Correlation Specifies an identification for the message.

Delay Specifies the duration, in seconds, after which an
enqueued message is available for dequeuing.

DeliveryMode Specifies the delivery mode of the dequeued message.

DequeueAttempts Returns the number of attempts that have been made to
dequeue the message.

EnqueueTime Specifies the time when the message was enqueued.

ExceptionQueue Specifies the name of the queue that the message should
be moved to if it cannot be processed successfully.

Expiration Specifies the duration, in seconds, for which an enqueued
message is available for dequeuing.

MessageId Returns the message identifier.

OriginalMessageId Specifies the identifier of the message in the last queue
that generated this message.

Chapter 12
OracleAQMessage Class

12-18

Table 12-16 (Cont.) OracleAQMessage Properties

Property Description

Payload Specifies the payload of the message.

Priority Specifies the priority of the message.

Recipients Specifies the list of recipients that overrides the default
queue subscribers.

SenderId Identifies the original sender of the message.

State Specifies the state of the message at the time of dequeue.

TransactionGroup Specifies the transaction group for the dequeued
message.

12.4.3.1 Correlation
This instance property specifies an identification for the message.

Declaration

// C#
public string Correlation {get;set;}

Property Value

A string that specifies the identification for the message.

Remarks

The producer of a message can set this property at the time of enqueuing. The
consumer can then use this identification to dequeue specific messages by setting the
Correlation property of an OracleAQDequeueOptions object. For more information
regarding dequeuing messages based on Correlation, refer to "Correlation" under the
OracleAQDequeueOptions class.

12.4.3.2 Delay
This instance property specifies the duration, in seconds, after which an enqueued
message is available for dequeuing.

Declaration

// C#
public int Delay {get;set;}

Property Value

An integer that indicates the number of seconds after which an enqueued message is
available for dequeuing.

Exceptions

ArgumentException - The value specified is less than 0.

Chapter 12
OracleAQMessage Class

12-19

Remarks

This property delays the immediate consumption of an enqueued message. The
following are valid values for this property:

• Positive integer - Indicates the delay in seconds.

• 0 - indicates that the message is immediately available for dequeuing.

The default value is 0. The Delay property is not supported with buffered messaging.

12.4.3.3 DeliveryMode
This instance property specifies the delivery mode of the dequeued message.

Declaration

// C#
public OracleAQMessageDeliveryMode DeliveryMode {get;}

Property Value

An OracleAQMessageDeliveryMode enumerated value
(OracleAQMessageDeliveryMode.Persistent or OracleAQMessageDeliveryMode.Buffered).

12.4.3.4 DequeueAttempts
This instance property returns the number of attempts that have been made to
dequeue the message.

Declaration

// C#
public int DequeueAttempts {get;}

Property Value

An integer that indicates the number of dequeue attempts.

Remarks

This property is available in an OracleAQMessage after the message has been dequeued
from a queue.

12.4.3.5 EnqueueTime
This instance property specifies the time when the message was enqueued.

Declaration

// C#
public DateTime EnqueueTime {get;}

Property Value

A DateTime object.

Chapter 12
OracleAQMessage Class

12-20

Remarks

This property is available after the message is dequeued. It provides the enqueue time
of a dequeued message.

12.4.3.6 ExceptionQueue
This instance property specifies the name of the queue that the message should be
moved to if it cannot be processed successfully.

Declaration

// C#
public string ExceptionQueue {get;set;}

Property Value

The name of the queue that a message should be moved to if it cannot be processed
successfully. The default value is null.

Remarks

This property specifies the queue that a message should be moved to if the message
has expired or if the number of unsuccessful dequeue attempts have exceeded the
max_retries value for the queue.

If this property is not set or the specified exception queue name does not exist, then
the default exception queue associated with the queue table is used.

12.4.3.7 Expiration
This instance property specifies the duration, in seconds, for which an enqueued
message is available for dequeuing.

Declaration

// C#
public int Expiration {get;set;}

Property Value

An integer that specifies the number of seconds an enqueued message is available
for dequeuing.

Exceptions

ArgumentException - The value specified is less than -1.

Remarks

The value specified is an offset from the value specified in the Delay property.

The following are valid values for the property:

• Positive integer - Indicates the expiration in seconds.

• -1 - Indicates that the message never expires.

Chapter 12
OracleAQMessage Class

12-21

The default value is -1. When a message expires, the message moves from the READY
state to the EXPIRED state.

12.4.3.8 MessageId
This instance property returns the message identifier.

Declaration

// C#
public byte[] MessageId {get;}

Property Value

A byte[] that specifies the message identifier.

Remarks

This property is available after an enqueue or dequeue operation. Dequeued buffered
messages have a null value for MessageId.

12.4.3.9 OriginalMessageId
This instance property specifies the identifier of the message in the last queue that
generated this message.

Declaration

// C#
public byte[] OriginalMessageId {get;}

Property Value

A byte[] that specifies the original message identifier.

12.4.3.10 Payload
This instance property specifies the payload of the message.

Declaration

// C#
public Object Payload {get;set;}

Property Value

An Object that specifies the payload of the message.

Exceptions

ArgumentException - The specified object is not one of the allowed types.

Remarks

For a complete discussion of various payload types, refer to "MessageType" under the
OracleAQQueue class.

Chapter 12
OracleAQMessage Class

12-22

12.4.3.11 Priority
This instance property specifies the priority of the message.

Declaration

// C#
public int Priority {get;set;}

Property Value

An integer that specifies the priority of the message.

Remarks

The default value is 0. In order to take effect, this property must be set prior to
enqueuing the message.

Smaller values indicate higher priority for the message. Negative values may also be
used.

The priority of an enqueued message is useful for priority-based dequeuing.

12.4.3.12 Recipients
This instance property specifies the list of recipients that overrides the default queue
subscribers.

Declaration

// C#
public OracleAQAgent[] Recipients {get; set}

Property Value

An OracleAQAgent[].

Remarks

This recipient list is valid only for messages being enqueued to multiconsumer queues.
The list of recipients is not returned with the message at the time of dequeuing.

12.4.3.13 SenderId
This instance property identifies the original sender of the message.

Declaration

// C#
public OracleAQAgent SenderId {get; set}

Property Value

An OracleAQAgent object.

Chapter 12
OracleAQMessage Class

12-23

Remarks

Sender identification is supported in all queue tables created with a database
compatibility level of 8.1 or higher.

12.4.3.14 State
This instance property specifies the state of the message at the time of dequeue.

Declaration

// C#
public OracleAQMessageState State {get;}

Property Value

An OracleAQMessageState enumerated value.

Remarks

This property is available after the message is dequeued.

The state of buffered messages dequeued by specifying Correlation under dequeue
options is always OracleAQMessageState.Ready.

12.4.3.15 TransactionGroup
This instance property specifies the transaction group for the dequeued message.

Declaration

// C#
public string TransactionGroup {get;}

Property Value

A string that specifies the transaction group.

Remarks

This property is set only after the call to DequeueArray. This property is supported only
when using Oracle Database 10g database or higher.

Messages belonging to one queue can be grouped to form a set that can only be
consumed by one user at a time. This requires that the queue be created in a queue
table that is enabled for message grouping. All messages belonging to a group must
be created in the same transaction. Also, all messages created in one transaction
belong to the same group.

12.5 OracleAQMessageAvailableEventArgs Class
The OracleAQMessageAvailableEventArgs class provides event data for the
OracleAQQueue.MessageAvailable event.

Chapter 12
OracleAQMessageAvailableEventArgs Class

12-24

Class Inheritance

System.Object

 System.EventArgs

 Oracle.DataAccess.Client.OracleAQMessageAvailableEventArgs

Declaration

// C#
public sealed class OracleAQMessageAvailableEventArgs

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

This class cannot be inherited.

For detailed information on all the inherited properties and methods, please read the
documentation provided by Microsoft's .NET Documentation.

12.5.1 OracleAQMessageAvailableEventArgs Members
OracleAQMessageAvailableEventArgs members are listed in the following tables.

OracleAQMessageAvailableEventArgs Constructor

OracleAQMessageAvailableEventArgs properties are listed in Table 12-17

Table 12-17 OracleAQMessageAvailableEventArgs Constructor

Property Description

OracleAQMessageAvailableEventArg
s Constructor

Instantiates a new instance of the
OracleAQMessageAvailableEventArgs class.

OracleAQMessageAvailableEventArgs Properties

OracleAQMessageAvailableEventArgs properties are listed in Table 12-18.

Chapter 12
OracleAQMessageAvailableEventArgs Class

12-25

Table 12-18 OracleAQMessageAvailableEventArgs Properties

Property Description

AvailableMessages Specifies the number of messages that raised this
notification.

ConsumerName Provides the name of the consumer for which the
message is available for dequeuing.

Correlation Provides the name of the consumer for which the
message is available for dequeuing.

Delay Specifies the duration, in seconds, after which an
enqueued message is available for dequeuing.

DeliveryMode Specifies the delivery mode of the message.

EnqueueTime Specifies the time when the message was enqueued.

ExceptionQueue Specifies the name of the queue that the message is
moved to if it cannot be processed successfully.

Expiration Specifies the duration, in seconds, for which an enqueued
message is available for dequeuing before expiring.

MessageId Returns an array of message identifiers.

NotificationType Indicates the type of notification such as regular, grouping,
or timeout.

OriginalMessageId Specifies the ID of the message, in the last queue, that
generated this message.

Priority Specifies the priority of the message.

QueueName Indicates the name of the queue that contains the
message to be dequeued.

SenderId Identifies the original sender of the message.

State Specifies the state of the message.

12.5.2 OracleAQMessageAvailableEventArgs Constructor
This constructor creates an instance of the OracleAQMessageAvailableEventArgs class
with default property values.

Declaration

// C#
public OracleAQMessageAvailableEventArgs();

12.5.3 OracleAQMessageAvailableEventArgs Properties
OracleAQMessageAvailableEventArgs properties are listed in Table 12-19.

Chapter 12
OracleAQMessageAvailableEventArgs Class

12-26

Table 12-19 OracleAQMessageAvailableEventArgs Properties

Property Description

AvailableMessages Specifies the number of messages that raised this
notification.

ConsumerName Provides the name of the consumer for which the
message is available for dequeuing.

Correlation Provides the name of the consumer for which the
message is available for dequeuing.

Delay Specifies the duration, in seconds, after which an
enqueued message is available for dequeuing.

DeliveryMode Specifies the delivery mode of the message.

EnqueueTime Specifies the time when the message was enqueued.

ExceptionQueue Specifies the name of the queue that the message is
moved to if it cannot be processed successfully.

Expiration Specifies the duration, in seconds, for which an enqueued
message is available for dequeuing before expiring.

MessageId Returns an array of message identifiers.

NotificationType Indicates the type of notification such as regular, grouping,
or timeout.

OriginalMessageId Specifies the ID of the message, in the last queue, that
generated this message.

Priority Specifies the priority of the message.

QueueName Indicates the name of the queue that contains the
message to be dequeued.

SenderId Identifies the original sender of the message.

State Specifies the state of the message.

12.5.3.1 AvailableMessages
This instance property specifies the number of messages that raised this notification.

Declaration

// C#
public int AvailableMessages{get;}

Property Value

An integer indicating the number of messages that raised this notification.

Remarks

The property value is 1 for a regular notification type. The notification type can be
specified using the OracleAQQueue.Notification property.

This property is not relevant if the NotificationType is
OracleAQNotificationType.Timeout.

Chapter 12
OracleAQMessageAvailableEventArgs Class

12-27

12.5.3.2 ConsumerName
This property provides the name of the consumer for which the message is available
for dequeuing.

Declaration

// C#
public string ConsumerName {get;}

Property Value

A string that identifies the name of the consumer.

12.5.3.3 Correlation
This instance property specifies the identification for the message.

Declaration

// C#
public string Correlation {get;}

Property Value

A string that specifies the identification for the message.

Remarks

This property specifies the correlation of the message for which the notification is
raised. The consumer can then use this identification to dequeue specific messages
by setting the "Correlation" property of the OracleAQDequeueOptions object.

12.5.3.4 Delay
This instance property specifies the duration, in seconds, after which an enqueued
message is available for dequeuing.

Declaration

// C#
public int Delay {get;}

Property Value

An integer that indicates the duration, in seconds, after which an enqueued message
is available for dequeuing.

12.5.3.5 DeliveryMode
This instance property specifies the delivery mode of the message.

Chapter 12
OracleAQMessageAvailableEventArgs Class

12-28

Declaration

// C#
public OracleAQMessageDeliveryMode DeliveryMode {get;}

Property Value

An OracleAQMessageDeliveryMode enumerated value.

12.5.3.6 EnqueueTime
This instance property specifies the time when the message was enqueued.

Declaration

// C#
public DateTime EnqueueTime {get;}

Property Value

A DateTime object.

12.5.3.7 ExceptionQueue
This instance property specifies the name of the queue that the message is moved to
if it cannot be processed successfully.

Declaration

// C#
public string ExceptionQueue {get;}

Property Value

The name of the queue that a message to is moved if it cannot be processed
successfully.

12.5.3.8 Expiration
This instance property specifies the duration, in seconds, for which an enqueued
message is available for dequeuing before expiring.

Declaration

// C#
public int Expiration {get;}

Property Value

An integer that specifies the duration, in seconds, for which an enqueued message is
available for dequeuing.

Chapter 12
OracleAQMessageAvailableEventArgs Class

12-29

12.5.3.9 MessageId
This instance property returns an array of message identifiers.

Declaration

// C#
public byte[][] MessageId{get;}

Property Value

A byte[][] that specifies the message identifiers received as part of the notification.

Remarks

This property specifies the message identifiers of the messages that raise the
notification.

The size of the MessageId array is 1 for regular notifications. The size of the MessageId
array is 1 for grouping notifications if the notification grouping type is
OracleAQNotificationGroupingType.Last. This property is not relevant if the
NotificationType is OracleAQNotificationType.Timeout.

12.5.3.10 NotificationType
This property indicates the type of notification such as regular, grouping, or timeout.

Declaration

// C#
public OracleAQNotificationType NotificationType {get;}

Property Value

An OracleAQNotificationType enum value.

12.5.3.11 OriginalMessageId
This property specifies the ID of the message, in the last queue, that generated this
message.

Declaration

// C#
public byte[] OriginalMessageId {get;}

Property Value

A byte[] that specifies the original message ID.

12.5.3.12 Priority
This instance property specifies the priority of the message.

Chapter 12
OracleAQMessageAvailableEventArgs Class

12-30

Declaration

// C#
public int Priority {get;}

Property Value

An integer that specifies the priority of the message.

12.5.3.13 QueueName
This property indicates the name of the queue that contains the message to be
dequeued.

Declaration

// C#
public string QueueName {get;}

Property Value

A string.

12.5.3.14 SenderId
This property identifies the original sender of the message.

Declaration

// C#
public OracleAQAgent SenderId {get;}

Property Value

An OracleAQAgent object.

12.5.3.15 State
This instance property specifies the state of the message.

Declaration

// C#
public OracleAQMessageState State {get;}

Property Value

An OracleAQMessageState enumerated value.

12.6 OracleAQMessageAvailableEventHandler Delegate
The OracleAQMessageAvailableEventHandler delegate represents the signature of the
method that handles the OracleAQQueue.MessageAvailable event.

Chapter 12
OracleAQMessageAvailableEventHandler Delegate

12-31

Declaration

// C#
public delegate void OracleAQMessageAvailableEventHandler (object
 sender,OracleAQMessageAvailableEventArg eventArgs);

Parameters

• sender

The source of the event.

• eventArgs

The OracleAQMessageAvailableEventArgs object that contains the event data.

12.7 OracleAQQueue Class
An OracleAQQueue object represents a queue.

Class Inheritance

System.Object

 OracleAQQueue

Declaration

// C#
public class OracleAQQueue : IDisposable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

A queue is a repository of messages and may either be a user queue, or an exception
queue. A user queue is for normal message processing. A message is moved from a
user queue to an exception queue if it cannot be retrieved and processed for some
reason.

12.7.1 OracleAQQueue Members
OracleAQQueue members are listed in the following tables.

Chapter 12
OracleAQQueue Class

12-32

OracleAQQueue Constructors

OracleAQQueue constructors are listed in Table 12-20.

Table 12-20 OracleAQQueue Constructors

Constructor Description

OracleAQQueue Constructors Instantiate a new instance of the OracleAQQueue class
(Overloaded).

OracleAQQueue Static Methods

The OracleAQQueue static method is listed in Table 12-21.

Table 12-21 OracleAQQueue Static Methods

Static Method Description

Listen Listens for messages on one or more queues for
one or more consumers, as specified in the array of
OracleAQAgent objects (Overloaded).

OracleAQQueue Properties

OracleAQQueue properties are listed in Table 12-22.

Table 12-22 OracleAQQueue Properties

Property Description

Connection Specifies the OracleConnection object associated with
the queue.

DequeueOptions Specifies the dequeueing options to use when dequeuing
a message from a queue.

EnqueueOptions Specifies the enqueueing options used to enqueue a
message to a queue.

MessageType Specifies the type of queue table associated with this
queue.

Name Returns the name of the queue.

Notification Specifies the various notification options for notifications
that are registered using the MessageAvailable event.

NotificationConsumers Specifies the array of consumers, for a multiconsumer
queue, that are to be notified asynchronously for any
incoming messages on the queue.

UdtTypeName Specifies the type name on which the queue and the
corresponding queue table is based if the MessageType is
OracleAQMessageType.UDT.

OracleAQQueue Public Methods

The OracleAQQueue public methods are listed in Table 12-23.

Chapter 12
OracleAQQueue Class

12-33

Table 12-23 OracleAQQueue Public Methods

Public Method Description

Dequeue Dequeues messages from queues (Overloaded).

DequeueArray Dequeues multiple messages from queues
(Overloaded).

Dispose Releases any resources or memory allocated by the
object

Enqueue Enqueues messages to queues (Overloaded).

EnqueueArray Enqueues multiple messages to a queue
(Overloaded).

Listen Listens for messages on the queue on behalf of
listenConsumers (Overloaded).

OracleAQQueue Events

The OracleAQQueue event is listed in Table 12-24.

Table 12-24 OracleAQQueue Events

Event Name Description

MessageAvailable Event Notifies when a message is available in the queue for
NotificationConsumers.

12.7.2 OracleAQQueue Constructors
OracleAQQueue constructors create new instances of the OracleAQQueue class.

Overload List:

• OracleAQQueue(string)

This constructor takes a queue name to initialize a queue object.

• OracleAQQueue(string, OracleConnection)

This constructor takes a queue name and connection to initialize a queue object.
The connection does not need be open during the queue object construction.

• OracleAQQueue(string, OracleConnection, OracleAQMessageType)

This constructor takes a queue name, connection, and message type enumeration
to initialize a queue object.

• OracleAQQueue(string, OracleConnection, OracleAQMessageType, string)

This constructor takes a queue name, connection, message type enumeration,
and UDT type name to initialize a queue object.

12.7.2.1 OracleAQQueue(string)
This constructor takes a queue name to initialize a queue object.

Chapter 12
OracleAQQueue Class

12-34

Declaration

// C#
public OracleAQQueue(string name);

Parameters

• name

The name of the queue as specified in the database.

Exceptions

ArgumentNullException - The queue name is null.

ArgumentException - The queue name is empty.

Remarks

The operation of creating an OracleAQQueue object does not involve checking for the
existence of the queue in the database.

12.7.2.2 OracleAQQueue(string, OracleConnection)
This constructor takes a queue name and connection to initialize a queue object. The
connection does not need to be open during the queue object construction.

Declaration

// C#
public OracleAQQueue(string name, OracleConnection con);

Parameters

• name

Name of the queue as specified in the database.

• con

An OracleConnection object that connects to the queue.

Exceptions

ArgumentNullException - Either the connection is null or queue name is null.

ArgumentException - Queue name is empty.

Remarks

The connection can be accessed using the Connection property, and it must be opened
before calling any operational APIs such as Enqueue and Dequeue.

Creating an OracleAQQueue object does not check for the existence of the queue in the
database.

Chapter 12
OracleAQQueue Class

12-35

12.7.2.3 OracleAQQueue(string, OracleConnection, OracleAQMessageType)
This constructor takes a queue name, connection and message type enumeration to
initialize a queue object. The connection does not need to be open during the queue
object construction.

Declaration

// C#
public OracleAQQueue(string name, OracleConnection con, OracleAQMessageType
 messageType);

Parameters

• name

The name of the queue as specified in the database.

• con

An OracleConnection object that is used to connect to the queue.

• messageType

An OracleAQMessageType enumeration specifying the type of the message that is
enqueued or dequeued from this queue.

Exceptions

ArgumentNullException - Either the connection is null or queue name is null.

ArgumentException - Queue name is empty or the specified message type is not valid.

Remarks

Creating an OracleAQQueue object does not check for the existence of the queue in the
database.

You need to set the UdtTypeName property before using the queue object if the
messageType is a UDT. Another approach is to create a queue using the other
constructor overload by supplying the udtTypeName.

12.7.2.4 OracleAQQueue(string, OracleConnection, OracleAQMessageType,
string)

This constructor takes a queue name, connection, message type enumeration, and
UDT type name to initialize a queue object. The connection does not need to be open
during the queue object construction.

Declaration

// C#
public OracleAQQueue(string name, OracleConnection con, OracleAQMessageType
 messageType, string udtTypeName);

Parameters

• name

Chapter 12
OracleAQQueue Class

12-36

The name of the queue as specified in the database.

• con

An OracleConnection object that is used to connect to the queue.

• messageType

An OracleAQMessageType enumeration specifying the type of the message that is
enqueued or dequeued from this queue.

• udtTypeName

The name of the database object type used if the messageType is UDT. The
udtTypeName parameter represents the type on which the queue is based.

Exceptions

ArgumentNullException - The connection is null or the queue name is null.

ArgumentException - The queue name is empty or the specified messageType is not valid.

Remarks

Creating an OracleAQQueue object does not check for the existence of the queue in the
database.

12.7.3 OracleAQQueue Static Methods
OracleAQQueue static methods are listed in Table 12-25.

Table 12-25 OracleAQQueue Static Methods

Static Method Description

Listen Listens for messages on one or more queues for
one or more consumers, as specified in the array of
OracleAQAgent objects (Overloaded).

12.7.3.1 Listen
Listen methods listen for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects.

Overload list

• Listen(OracleConnection, OracleAQAgent[])

This static method listens for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects.

• Listen(OracleConnection, OracleAQAgent[], int)

This static method listens for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects. It also specifies a
wait time.

Chapter 12
OracleAQQueue Class

12-37

12.7.3.2 Listen(OracleConnection, OracleAQAgent[])
This static method listens for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects.

Declaration

// C#
public static OracleAQAgent Listen(OracleConnection con, OracleAQAgent[]
 listenConsumers);

Parameters

• con

An OracleConnection instance.

• listenConsumers

The array of consumers being listened for. The name of the OracleAQAgent object
must be null or empty for single consumer queues.

Return Value

An OracleAQAgent object.

Exceptions

ArgumentNullException - The con or listenConsumers parameter is null.

InvalidOperationException - The connection is not open.

Remarks

Listen is useful in situations where one needs to monitor multiple queues until a
message is available for a consumer in one of the queues. The Name property of the
OracleAQAgent object represents the name of the consumer and the Address property
represents the name of the queue.

This call blocks the calling thread until there is a message ready for consumption for a
consumer in the list. It returns an OracleAQAgent object which specifies the consumer
and queue for which a message is ready to be dequeued.

12.7.3.3 Listen(OracleConnection, OracleAQAgent[], int)
This static method listens for messages on one or more queues for one or more
consumers as specified in the array of OracleAQAgent objects. The Name property of the
OracleAQAgent object represents the name of the consumer and the Address property of
the OracleAQAgent object represents the name of the queue.

In case of timeout, this method returns null.

Declaration

// C#
public static OracleAQAgent Listen(OracleConnection con, OracleAQAgent[]
 listenConsumers, int waitTime);

Chapter 12
OracleAQQueue Class

12-38

Parameters

• con

An OracleConnection instance.

• listenConsumers

The array of consumers being listened for. The name of the OracleAQAgent object
must be null or empty for single consumer queues.

• waitTime

Wait time in seconds.

Return Value

An OracleAQAgent object.

Exceptions

ArgumentNullException - The con or listenConsumers parameter is null.

InvalidOperationException - The connection is not open.

ArgumentException - waitTime is less than -1.

Remarks

Listen is useful in situations where one needs to monitor multiple queues until a
message is available for a consumer in one of the queues. The Name property of the
OracleAQAgent object represents the name of the consumer and the Address property of
the OracleAQAgent object represents the name of the queue.

A waitTime of -1 implies an infinite wait time.

This call blocks the calling thread until there is a message ready for consumption for a
consumer in the list. It returns an OracleAQAgent object which specifies the consumer
and queue for which a message is ready to be dequeued.

12.7.4 OracleAQQueue Properties
OracleAQQueue properties are listed in Table 12-26.

Table 12-26 OracleAQQueue Properties

Property Description

Connection Specifies the OracleConnection object associated with
the queue.

DequeueOptions Specifies the dequeueing options to use when dequeuing
a message from a queue.

EnqueueOptions Specifies the enqueueing options used to enqueue a
message to a queue.

MessageType Specifies the type of queue table associated with this
queue.

Name Returns the name of the queue.

Chapter 12
OracleAQQueue Class

12-39

Table 12-26 (Cont.) OracleAQQueue Properties

Property Description

Notification Specifies the various notification options for notifications
that are registered using the MessageAvailable event.

NotificationConsumers Specifies the array of consumers, for a multiconsumer
queue, that are to be notified asynchronously for any
incoming messages on the queue.

UdtTypeName Specifies the type name on which the queue and the
corresponding queue table is based if the MessageType is
OracleAQMessageType.UDT.

12.7.4.1 Connection
This property specifies the OracleConnection object associated with the queue.

Declaration

// C#
public OracleConnection Connection {get; set;}

Property Value

An OracleConnection object that indicates the connection associated with the queue.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This connection must be opened before calling methods like Enqueue and Dequeue.

12.7.4.2 DequeueOptions
This instance property specifies the dequeueing options to use when dequeuing a
message from a queue.

Declaration

// C#
public OracleAQDequeueOptions DequeueOptions {get; set}

Property Value

An OracleAQDequeueOptions object.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 12
OracleAQQueue Class

12-40

Remarks

The default value is an OracleAQDequeueOptions object with default property values.
Setting this property to null resets all dequeue options to their default values.

12.7.4.3 EnqueueOptions
This instance property specifies the enqueueing options used to enqueue a message
to a queue.

Declaration

// C#
public OracleAQEnqueueOptions EnqueueOptions {get; set}

Property Value

An OracleAQEnqueueOptions object.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The default value is an OracleAQEnqueueOptions object with default property values.
Setting this property to null resets all enqueue options to their default values.

12.7.4.4 MessageType
This instance property specifies the type of queue table associated with this queue.

Declaration

// C#
public OracleAQMessageType MessageType {get; set;}

Property Value

An OracleAQMessageType enumerated value.

Exceptions

ArgumentOutOfRangeException - The type value specified is invalid.

ObjectDisposedException - The object is already disposed.

Remarks

The MessageType property also dictates the type of message payloads that are
enqueued or dequeued from the queue. It is possible to enqueue a variety of payloads
depending on the MessageType.

Table 12-27 lists the allowed payload types for various message types.

Chapter 12
OracleAQQueue Class

12-41

Table 12-27 Message Types and Payloads

OracleAQQueue.MessageType Allowed OracleAQMessage.Payload type to
Enqueue

OracleAQMessageType.Raw OracleBinary, byte[]

OracleAQMessageType.Xml OracleXmlType, XmlReader, String (well-formed XML,
else exception is raised)

OracleAQMessageType.UDT UDT Custom Object

Table 12-28 lists the payload types for dequeued messages.

Table 12-28 Payload Types for Dequeued Messages

OracleAQQueue.MessageType DequeueOptions.Pro
viderSpecificType

OracleAQMessage.Payload of
dequeued message

OracleAQMessageType.Xml true OracleXmlType

OracleAQMessageType.Xml false XmlReader

OracleAQMessageType.Raw true OracleBinary

OracleAQMessageType.Raw false Byte[]

OracleAQMessageType.UDT N.A. UDT Custom Object

12.7.4.5 Name
This instance property returns the name of the queue.

Declaration

// C#
public string Name {get;}

Property Value

A string that indicates the name of the queue.

Exceptions

ObjectDisposedException - The object is already disposed.

12.7.4.6 Notification
This instance property specifies the various notification options for notifications that
are registered using the MessageAvailable event.

Declaration

// C#
public OracleNotificationRequest Notification {get;}

Chapter 12
OracleAQQueue Class

12-42

Property Value

Specifies an OracleNotificationRequest object whose properties can be changed to
alter the notification behavior.

Remarks

This property can be used to change various notification options. The notification
options must be changed before registering with the MessageAvailable event. This
property can be modified again only after unregistering from the MessageAvailable
event.

12.7.4.7 NotificationConsumers
This instance property specifies the array of consumers, for a multiconsumer queue,
that are to be notified asynchronously for any incoming messages on the queue.

Declaration

// C#
public string[] NotificationConsumers {get; set;}

Property Value

Specifies an array of consumer name strings for which the notifications are delivered.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - MessageAvailable registration is active.

Remarks

The consumer names must be in uppercase. This functionality only supports queues
with uppercase names.

The list of consumers is used in the MessageAvailable event. The list must be set
before registering for the event. This property cannot be modified after registering for
the MessageAvailable event. This property can be modified again only after
unregistering from MessageAvailable event.

12.7.4.8 UdtTypeName
This instance property specifies the type name on which the queue and the
corresponding queue table is based if the MessageType is OracleAQMessageType.UDT.

Declaration

// C#
public string UdtTypeName {get; set;}

Property Value

Specifies the Oracle user-defined type name if the MessageType is
OracleAQMessageType.UDT.

Chapter 12
OracleAQQueue Class

12-43

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The UdtTypeName property corresponds to the user-defined type name of the payload.
This property must always be specified if the payload is a user-defined type. This
property need not be set for other payload types.

12.7.5 OracleAQQueue Public Methods
OracleAQQueue public methods are listed in Table 12-29.

Table 12-29 OracleAQQueue Public Methods

Public Method Description

Dequeue Dequeues messages from queues (Overloaded).

DequeueArray Dequeues multiple messages from queues
(Overloaded).

Dispose Releases any resources or memory allocated by the
object

Enqueue Enqueues messages to queues (Overloaded).

EnqueueArray Enqueues multiple messages to a queue
(Overloaded).

Listen Listens for messages on the queue on behalf of
listenConsumers (Overloaded).

12.7.5.1 Dequeue
Dequeue methods dequeue messages from queues.

Overload List

• Dequeue()

This instance method dequeues messages from a queue using the DequeueOptions
for the instance.

• Dequeue(OracleAQDequeueOptions)

This instance method dequeues messages from a queue using the supplied
dequeue options.

12.7.5.2 Dequeue()
This instance method is used to dequeue a message from a queue using the
DequeueOptions for the instance.

Chapter 12
OracleAQQueue Class

12-44

Declaration

// C#
public OracleAQMessage Dequeue();

Return Value

An OracleAQMessage instance representing the dequeued message.

Exceptions

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

OracleException - In case of timeout, an exception is thrown with the message,
ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.Timeout
may happen if DequeueOptions.Wait is set to a value other than -1.

Remarks

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also be
set.

Dequeued buffered messages always have null MessageId values.

12.7.5.3 Dequeue(OracleAQDequeueOptions)
This instance method dequeues messages from a queue using the supplied dequeue
options.

Declaration

// C#
public OracleAQMessage Dequeue(OracleAQDequeueOptions dequeueOptions);

Parameters

• dequeueOptions

An OracleAQDequeueOptions object.

Return Value

An OracleAQMessage instance representing the dequeued message.

Exceptions

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

OracleException - In case of timeout, an exception is thrown with the message,
ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.

Timeout may happen if DequeueOptions.Wait is set to a value other than -1.

Chapter 12
OracleAQQueue Class

12-45

Remarks

If the supplied dequeueOptions object is null, then the dequeue options default values
are used. The queue object's DequeueOptions property is ignored for this operation.

Calling this method does not change the DequeueOptions property of the queue.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also be
set.

Dequeued buffered messages always have null MessageId values.

12.7.5.4 DequeueArray
DequeueArray methods dequeue multiple messages from queues.

Overload List

• DequeueArray(int)

This instance method dequeues multiple messages from a queue using the
DequeueOptions of the instance.

• DequeueArray(int, OracleAQDequeueOptions)

This instance method dequeues multiple messages from a queue using the
supplied dequeue options.

12.7.5.5 DequeueArray(int)
This instance method dequeues multiple messages from a queue using the
DequeueOptions of the instance.

Declaration

// C#
public OracleAQMessage[] DequeueArray(int dequeueCount);

Parameters

• dequeueCount

An integer specifying the numbers of messages to dequeue.

Return Value

An array of OracleAQMessage instances representing the dequeued messages.

Exceptions

ArgumentOutOfRangeException - dequeueCount is less than or equal to 0.

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

Chapter 12
OracleAQQueue Class

12-46

OracleException - In case of timeout, an exception is thrown with the message,
ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.

Timeout may happen if DequeueOptions.Wait is set to a value other than -1.

Remarks

This method is supported for Oracle Database 10g and higher releases.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must be set as
well.

The size of the returned array may be less than the dequeueCount. It depends on the
actual number of messages present in the queue.

For database versions earlier than Oracle Database 12c Release 2 (12.2), the
MessageId property of persistent OracleAQMessage objects retrieved using DequeueArray is
always null.

Dequeued buffered messages always have null MessageId values irrespective of the
database version.

12.7.5.6 DequeueArray(int, OracleAQDequeueOptions)
This instance method dequeues multiple messages from a queue using the supplied
dequeue options.

Declaration

// C#
public OracleAQMessage[] DequeueArray(int dequeueCount, OracleAQDequeueOptions
dequeueOptions);

Parameters

• dequeueCount

An integer specifying the numbers of messages to dequeue.

• dequeueOptions

An OracleAQDequeueOptions object.

Return Value

An array of OracleAQMessage instances representing the dequeued messages.

Exceptions

ArgumentOutOfRangeException - dequeueCount is less than or equal to 0.

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

OracleException - In case of timeout, an exception is thrown with the message,
ORA-25228: timeout or end-of-fetch during message dequeue from queue_name.

Timeout may happen if DequeueOptions.Wait is set to a value other than -1.

Chapter 12
OracleAQQueue Class

12-47

Remarks

This method is supported for Oracle Database 10g Release 1 (10.1) and higher
releases. Calling this method does not change the DequeueOptions property of the
queue.

If the supplied dequeueOptions object is null, then the dequeue options default values
are used. The DequeueOptions property of the queue object is ignored in this operation.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must be set as
well.

The size of the returned array may be less than the dequeueCount. It dependes on the
actual number of messages present in the queue.

For database versions earlier than Oracle Database 12c Release 2 (12.2), the
MessageId property of persistent OracleAQMessage objects retrieved using DequeueArray is
always null.

Dequeued buffered messages always have null MessageId values irrespective of the
database version.

12.7.5.7 Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable.

12.7.5.8 Enqueue
Enqueue instance methods enqueue messages to queues.

Overload List

• Enqueue(OracleAQMessage)

This instance method enqueues messages to a queue using the EnqueueOptions of
the instance.

• Enqueue(OracleAQMessage, OracleAQEnqueueOptions)

This instance method enqueues messages to a queue using the supplied enqueue
options.

12.7.5.9 Enqueue(OracleAQMessage)
This instance method enqueues messages to a queue using the EnqueueOptions of the
instance.

Chapter 12
OracleAQQueue Class

12-48

Declaration

// C#
public void Enqueue(OracleAQMessage message);

Parameters

• message

An OracleAQMessage object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The connection is not open.

ArgumentNullException - The message parameter is null.

ArgumentException - The message payload is OracleXmlType and the connection used to
create OracleXmlType is different from the queue's connection.

Remarks

MessageId of the enqueued message is populated after the call to Enqueue completes.
Enqueued buffered messages always have null MessageId values.

The MessageType property needs to be set appropriately before calling this function. If
the MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must be set
as well.

12.7.5.10 Enqueue(OracleAQMessage, OracleAQEnqueueOptions)
This instance method enqueues messages to a queue using the supplied enqueue
options.

Declaration

// C#
public void Enqueue(OracleAQMessage message, OracleAQEnqueueOptions enqueueOptions);

Parameters

• message

An OracleAQMessage object.

• enqueueOptions

An OracleAQEnqueueOptions object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The connection is not open.

ArgumentNullException - The message parameter is null.

ArgumentException - The message payload is OracleXmlType and the connection used to
create OracleXmlType is different from the queue's connection.

Chapter 12
OracleAQQueue Class

12-49

Remarks

If the supplied enqueueOptions object is null, then the enqueue options default values
are used. The EnqueueOptions property of the queue object is ignored in this operation.

The MessageId of the enqueued message is populated after the call to Enqueue
completes. Enqueued buffered messages always have null MessageId values. Calling
this method does not change the EnqueueOptions property of the queue.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also be
set.

12.7.5.11 EnqueueArray
EnqueueArray instance methods enqueue multiple messages to a queue.

Overload List

• EnqueueArray(OracleAQMessage[])

This instance method enqueues multiple messages to a queue using the
EnqueueOptions of the instance.

• EnqueueArray(OracleAQMessage[], OracleAQEnqueueOptions)

This instance method enqueues multiple messages to a queue using the supplied
enqueue options.

12.7.5.12 EnqueueArray(OracleAQMessage[])
This instance method enqueues multiple messages to a queue using the
EnqueueOptions of the instance.

Declaration

// C#
public int EnqueueArray(OracleAQMessage[] messages);

Parameters

• messages

An array of OracleAQMessage objects.

Return Value

An integer representing the number of messages actually enqueued.

Exceptions

ArgumentNullException - The message parameter is null.

ArgumentException - At least one of the OracleAQMessage[] elements is null, or at least
one of the OracleAQMessage[] elements has a payload of OracleXmlType, which is
created using a connection that is different from the queue's connection.

Chapter 12
OracleAQQueue Class

12-50

InvalidOperationException - The OracleAQMessage array is empty or the connection is
not open.

ObjectDisposedException - The object is already disposed.

Remarks

This method is supported by Oracle Database 10g and higher releases. The MessageId
properties of the enqueued messages are populated after the call to Enqueue
completes. Enqueued buffered messages always have null MessageId values.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also be
set.

12.7.5.13 EnqueueArray(OracleAQMessage[], OracleAQEnqueueOptions)
This instance method enqueues multiple messages to a queue using the supplied
enqueue options.

Declaration

// C#
public int EnqueueArray(OracleAQMessage[] messages, OracleAQEnqueueOptions
 enqueueOptions);

Parameters

• messages

An array of OracleAQMessage objects.

• enqueueOptions

An OracleAQEnqueueOptions object.

Return Value

An integer representing the number of messages actually enqueued.

Exceptions

ArgumentNullException - The message parameter is null.

ArgumentException - At least one of the OracleAQMessage[] elements is null, or at least
one of the OracleAQMessage[] elements has a payload of OracleXmlType, which is
created using a connection that is different from the queue's connection.

InvalidOperationException - The OracleAQMessage array is empty or the connection is
not open.

ObjectDisposedException - The object is already disposed.

Remarks

This method is supported by Oracle Database 10g and higher releases. MessageId
properties of the enqueued messages are populated after the call to Enqueue
completes. Enqueued buffered messages always have null MessageId values. Calling
this method does not change the EnqueueOptions property of the queue.

Chapter 12
OracleAQQueue Class

12-51

If the supplied enqueueOptions object is null, then the enqueue options default values
are used. The EnqueueOptions property of the queue object is ignored in this operation.

The MessageType property must be set appropriately before calling this function. If the
MessageType is OracleAQMessageType.UDT, then the UdtTypeName property must also be
set.

12.7.5.14 Listen
Listen methods listen for messages on the queue on behalf of listenConsumers.

Overload List

• Listen(string[])

This method listens for messages on the queue on behalf of listenConsumers.

• Listen (string[], int)

This method listens for messages on behalf of listenConsumers for a specified time.

12.7.5.15 Listen(string[])
This method listens for messages on the queue on behalf of listenConsumers.

Declaration

// C#
public string Listen(string[] listenConsumers);

Parameters

• listenConsumers

An array of consumers to listen for on this queue. This parameter should be null in
case of single consumer queues.

Return Value

A string.

Exceptions

InvalidOperationException - The connection is not open.

ObjectDisposedException - The object is already disposed.

Remarks

This call blocks the calling thread until there is a message ready for consumption for a
consumer in the listenConsumers array. It returns a string representing the consumer
name for which the message is ready.

Listen is useful in situations that require waiting until a message is available in the
queue for consumers whose names are specified in listenConsumers.

Chapter 12
OracleAQQueue Class

12-52

Example

The following example demonstrates using the Listen method. The first part of the
example performs the requisite database setup for the database user, SCOTT. The
second part of the example demonstrates how a thread can listen and wait until a
message is enqueued.

-- Part I: Database setup required for this demo

--
-- SQL to grant appropriate privilege to database user, SCOTT
--
SQL> ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY Pwd4Sct;
User altered.
GRANT ALL ON DBMS_AQADM TO scott;

--
-- PLSQL to create queue-table and queue and start queue for SCOTT
--
BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'scott.test_q_tab',
 queue_payload_type=>'RAW',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'scott.test_q',
 queue_table=>'scott.test_q_tab');

 DBMS_AQADM.START_QUEUE(queue_name=>'scott.test_q');
END;
/

--
-- PLSQL to stop queue and drop queue & queue-table from SCOTT
--
BEGIN
 DBMS_AQADM.STOP_QUEUE('scott.test_q');

 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'scott.test_q',
 auto_commit => TRUE);

 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'scott.test_q_tab',
 force => FALSE,
 auto_commit => TRUE);
END;
/
-- End of Part I, database setup.

//Part II: Demonstrates using the Listen method
//C#
using System;
using System.Text;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;
using System.Threading;

namespace ODPSample

Chapter 12
OracleAQQueue Class

12-53

{
 /// <summary>
 /// Demonstrates how a thread can listen and wait until a message is enqueued.
 /// Once a message is enqueued, the listening thread returns from the
 /// blocked Listen() method invocation and dequeues the message.
 /// </summary>
 class EnqueueDequeue
 {
 static bool s_bListenReturned = false;

 static void Main(string[] args)
 {
 // Create connection
 string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
 OracleConnection con = new OracleConnection(constr);

 // Create queue
 OracleAQQueue queue = new OracleAQQueue("scott.test_q", con);

 try
 {
 // Open connection
 con.Open();

 // Set message type for the queue
 queue.MessageType = OracleAQMessageType.Raw;

 // Spawning a thread which will listen for a message
 ThreadStart ts = new ThreadStart(TestListen);
 Thread t = new Thread(ts);
 t.Start();

 System.Threading.Thread.Sleep(2000);

 // Begin transaction for enqueue
 OracleTransaction txn = con.BeginTransaction();

 // Prepare message and RAW payload
 OracleAQMessage enqMsg = new OracleAQMessage();
 byte[] bytePayload = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 enqMsg.Payload = bytePayload;

 // Prepare to Enqueue
 queue.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

 Console.WriteLine("[Main Thread] Enqueuing a message...");
 Console.WriteLine("[Main Thread] Enqueued Message Payload : "
 + ByteArrayToString(enqMsg.Payload as byte[]));
 Console.WriteLine();

 // Enqueue message
 queue.Enqueue(enqMsg);

 // Enqueue transaction commit
 txn.Commit();

 // Loop till Listen returns
 while (!s_bListenReturned)
 System.Threading.Thread.Sleep(1000);
 }
 catch (Exception e)

Chapter 12
OracleAQQueue Class

12-54

 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 finally
 {
 // Close/Dispose objects
 queue.Dispose();
 con.Close();
 con.Dispose();
 }
 }

 static void TestListen()
 {
 // Create connection
 string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
 OracleConnection conListen = new OracleConnection(constr);

 // Create queue
 OracleAQQueue queueListen = new OracleAQQueue("scott.test_q", conListen);

 try
 {
 // Open the connection for Listen thread.
 // Connection blocked on Listen thread can not be used for other DB
 // operations
 conListen.Open();

 // Set message type for the queue
 queueListen.MessageType = OracleAQMessageType.Raw;

 // Listen
 queueListen.Listen(null);

 Console.WriteLine("[Listen Thread] Listen returned... Dequeuing...");

 // Begin txn for Dequeue
 OracleTransaction txn = conListen.BeginTransaction();

 // Prepare to Dequeue
 queueListen.DequeueOptions.Visibility = OracleAQVisibilityMode.OnCommit;
 queueListen.DequeueOptions.Wait = 10;

 // Dequeue message
 OracleAQMessage deqMsg = queueListen.Dequeue();
 Console.WriteLine("[Listen Thread] Dequeued Message Payload : "
 + ByteArrayToString(deqMsg.Payload as byte[]));

 // Dequeue txn commit
 txn.Commit();

 // Allow the main thread to exit
 s_bListenReturned = true;
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 finally
 {
 // Close/Dispose objects

Chapter 12
OracleAQQueue Class

12-55

 queueListen.Dispose();
 conListen.Close();
 conListen.Dispose();
 }
 }

 // Function to convert byte[] to string
 static private string ByteArrayToString(byte[] byteArray)
 {
 StringBuilder sb = new StringBuilder();
 for (int n = 0; n < byteArray.Length; n++)
 {
 sb.Append((int.Parse(byteArray[n].ToString())).ToString("X"));
 }
 return sb.ToString();
 }
 }
}

12.7.5.16 Listen (string[], int)
This method listens for messages on behalf of listenConsumers for a specified time.

Declaration

// C#
public string Listen(string[] listenConsumers, int waitTime);

Parameters

• listenConsumers

Array of consumers for which to listen on this queue.

• waitTime

Wait time in seconds.

Return Value

A string

Exceptions

InvalidOperationException - The connection is not open.

ArgumentException - waitTime is less than -1.

ObjectDisposedException - The object is already disposed.

Remarks

Listen is useful in situations that require waiting until a message is available in the
queue for consumers whose names are specified in listenConsumers.

This call blocks the calling thread until there is a message ready for consumption for a
consumer in the listenConsumers array. It returns a string representing the consumer
name for which the message is ready.The method returns null if a timeout occurs.

Chapter 12
OracleAQQueue Class

12-56

The listenConsumers parameter should be null for single consumer queues. An empty
string is returned in such cases.

A waitTime of -1 implies infinite wait time.

12.7.6 OracleAQQueue Events
The OracleAQQueue event is listed in Table 12-30.

Table 12-30 OracleAQQueue Events

Event Name Description

MessageAvailable Event Notifies when a message is available in the queue for
NotificationConsumers.

12.7.6.1 MessageAvailable Event
This event is notified when a message is available in the queue for
NotificationConsumers.

Declaration

// C#
public event OracleAQMessageAvailableEventHandler MessageAvailable;

Event Data

The event handler receives an OracleAQMessageAvailableEventArgs object.

Exceptions

InvalidOperationException - The connection is not open.

Remarks

Asynchronous notification is supported in all queue tables created with a database
compatibility level of 8.1 or higher.

In order to receive the notification about message availability, the client must create an
OracleAQMessageAvailableEventHandler delegate to listen to this event. The delegate
should be added to this event only after setting the NotificationConsumers and
Notification properties.

The notification registration takes place after the first delegate is added to the event.
The notification is unregistered when the last delegate is removed from the event.
Notifications set on an OracleAQQueue object get cancelled automatically when the
object gets disposed.

Oracle Data Provider for .NET opens a port to listen for notifications. HA events, load
balancing, and continuous query notification features also share the same port. This
port can be configured centrally by setting the database notification port in an
application or Web configuration file. The following example code specifies a port
number of 1200:

Chapter 12
OracleAQQueue Class

12-57

<configuration>
 <oracle.dataaccess.client>
 <settings>
 <add name="DbNotificationPort" value="1200"/>
 </settings>
 </oracle.dataaccess.client>
</configuration>

If the configuration file does not exist or the db notification port is not specified, then
ODP.NET uses a valid and random port number. The configuration file may also
request for a random port number by specifying a db notification port value of -1.

The notification listener, which runs in the same application domain as ODP.NET,
uses the specified port number to listen to notifications from the database. A
notification listener gets created when the application registers with
OracleAQQueue.MessageAvailable event. One notification listener can listen to all
notification types. Only one notification listener is created for each application domain.

Example

The following example demonstrates application notification. The first part of the
example performs the requisite database setup for the database user, SCOTT. The
second part of the example demonstrates how an application is notified when a
message is available in the queue.

-- Part I: Database setup required for this demo

--
-- SQL to grant appropriate privilege to database user, SCOTT
--
SQL> ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY Pwd4Sct;
User altered.
SQL> GRANT ALL ON DBMS_AQADM TO scott;

--
-- PLSQL to create queue-table and queue and start queue for SCOTT
--
BEGIN
 DBMS_AQADM.CREATE_QUEUE_TABLE(
 queue_table=>'scott.test_q_tab',
 queue_payload_type=>'RAW',
 multiple_consumers=>FALSE);

 DBMS_AQADM.CREATE_QUEUE(
 queue_name=>'scott.test_q',
 queue_table=>'scott.test_q_tab');

 DBMS_AQADM.START_QUEUE(queue_name=>'scott.test_q');
END;
/

--
-- PLSQL to stop queue and drop queue & queue-table from SCOTT
--
BEGIN
 DBMS_AQADM.STOP_QUEUE('scott.test_q');

 DBMS_AQADM.DROP_QUEUE(
 queue_name => 'scott.test_q',
 auto_commit => TRUE);

Chapter 12
OracleAQQueue Class

12-58

 DBMS_AQADM.DROP_QUEUE_TABLE(
 queue_table => 'scott.test_q_tab',
 force => FALSE,
 auto_commit => TRUE);
END;
/
-- End of Part I, database setup.

//Part II: Demonstrates application notification
//C#
using System;
using System.Text;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

namespace ODPSample
{
 /// <summary>
 /// Demonstrates how the application can be notified when a message is
 /// available in a queue.
 /// </summary>
 class Notification
 {
 static bool isNotified = false;

 static void Main(string[] args)
 {
 // Create connection
 string constr = "user id=scott;password=Pwd4Sct;data source=oracle";
 OracleConnection con = new OracleConnection(constr);

 // Create queue
 OracleAQQueue queue = new OracleAQQueue("scott.test_q", con);

 try
 {
 // Open connection
 con.Open();

 // Set message type for the queue
 queue.MessageType = OracleAQMessageType.Raw;

 // Add the event handler to handle the notification. The
 // MsgReceived method will be invoked when a message is enqueued
 queue.MessageAvailable +=
 new OracleAQMessageAvailableEventHandler(Notification.MsgReceived);

 Console.WriteLine("Notification registered...");

 // Begin txn for enqueue
 OracleTransaction txn = con.BeginTransaction();

 Console.WriteLine("Now enqueuing message...");

 // Prepare message and RAW payload
 OracleAQMessage enqMsg = new OracleAQMessage();
 byte[] bytePayload = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };
 enqMsg.Payload = bytePayload;

 // Prepare to Enqueue

Chapter 12
OracleAQQueue Class

12-59

 queue.EnqueueOptions.Visibility = OracleAQVisibilityMode.OnCommit;

 // Enqueue message
 queue.Enqueue(enqMsg);

 Console.WriteLine("Enqueued Message Payload : "
 + ByteArrayToString(enqMsg.Payload as byte[]));
 Console.WriteLine("MessageId of Enqueued Message : "
 + ByteArrayToString(enqMsg.MessageId));
 Console.WriteLine();

 // Enqueue txn commit
 txn.Commit();

 // Loop while waiting for notification
 while (isNotified == false)
 {
 System.Threading.Thread.Sleep(2000);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 finally
 {
 // Close/Dispose objects
 queue.Dispose();
 con.Close();
 con.Dispose();
 }
 }

 static void MsgReceived(object src, OracleAQMessageAvailableEventArgs arg)
 {
 try
 {
 Console.WriteLine("Notification Received...");
 Console.WriteLine("QueueName : {0}", arg.QueueName);
 Console.WriteLine("Notification Type : {0}", arg.NotificationType);

 //following type-cast to "byte[]" is required only for .NET 1.x
 byte[] notifiedMsgId = (byte[]) arg.MessageId[0];
 Console.WriteLine("MessageId of Notified Message : "
 + ByteArrayToString(notifiedMsgId));
 isNotified = true;
 }
 catch (Exception e)
 {
 Console.WriteLine("Error: {0}", e.Message);
 }
 }

 // Function to convert byte[] to string
 static private string ByteArrayToString(byte[] byteArray)
 {
 StringBuilder sb = new StringBuilder();
 for (int n = 0; n < byteArray.Length; n++)
 {
 sb.Append((int.Parse(byteArray[n].ToString())).ToString("X"));
 }

Chapter 12
OracleAQQueue Class

12-60

 return sb.ToString();
 }
 }
}

12.8 OracleAQDequeueMode Enumeration
Table 12-31 lists all the OracleAQDequeueMode enumeration values with a description of
each enumerated value.

Table 12-31 OracleAQDequeueMode Members

Member Name Description

Browse Reads the message without acquiring any lock on the message.
This is equivalent to a SELECT statement.

Locked Reads and obtains a write lock on the message. The lock lasts for
the duration of the transaction. This is equivalent to a SELECT FOR
UPDATE statement.

Remove Reads the message and updates or deletes it. This is the default.

The message can be retained in the queue table based on the
retention properties

RemoveNoData Confirms receipt of the message but does not deliver the actual
message content.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

12.9 OracleAQMessageDeliveryMode Enumeration
The OracleAQMessageDeliveryMode enumeration type specifies the delivery mode of the
message.

Table 12-32 lists all the OracleAQMessageDeliveryMode enumeration values with a
description of each enumerated value.

Chapter 12
OracleAQDequeueMode Enumeration

12-61

Table 12-32 OracleAQMessageDeliveryMode Members

Member Name Description

Buffered Indicates a buffered message.

Both enqueue and dequeue buffered messaging operations must
be in IMMEDIATE visibility mode. This means that these operations
cannot be part of another transaction. You cannot specify delay
when enqueuing buffered messages.

Dequeuing applications can choose to dequeue persistent
messages only, buffered messages only, or both types.

Buffered messages can be queried using the
AQ$Queue_Table_Name view. These messages appear with states,
IN-MEMORY or SPILLED.

Transaction grouping queues and array enqueues are not
supported for buffered messages in Oracle Database 11g release
1 (11.1) . One can still use the array enqueue procedure to
enqueue buffered messages, but the array size must be set to 1.
Array dequeue is not supported for buffered messaging, but one
can still use the array dequeue procedure by setting array size to
1.

Buffered messaging is faster than persistent messaging. Use
buffered messaging for applications that do not require the
reliability and transaction support of Oracle Streams AQ persistent
messaging.

Persistent Indicates a persistent message.

Persistent messaging ensures reliability and support transactions.
It is slower than buffered messaging.

PersistentOrBuffered Indicates a persistent or buffered message.

This is used with Dequeue() when a consumer wants to dequeue
a message irrespective of whether it is Persistent or Buffered.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

12.10 OracleAQMessageState Enumeration
The OracleAQMessageState enumeration type identifies the state of the message at the
time of dequeue.

Table 12-33 lists all the OracleAQMessageState enumeration values with a description of
each enumerated value.

Chapter 12
OracleAQMessageState Enumeration

12-62

Table 12-33 OracleAQMessageState Members

Member Name Description

Expired Indicates that the message has been moved to the exception
queue.

Processed Indicates that the message has been processed and retained.

Ready Indicates that the message is ready to be processed.

Waiting Indicates that the message delay has not been reached.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

12.11 OracleAQMessageType Enumeration
The OracleAQMessageType enumeration type specifies the message payload type.

Table 12-34 lists all the OracleAQMessageType enumeration values with a description of
each enumerated value.

Table 12-34 OracleAQMessageType Members

Member Name Description

Raw Indicates the Raw message type.

The data type of the payload must be either OracleBinary or
byte[] to enqueue the message.

Udt Indicates the Oracle UDT message type.

The ODP.NET AQ implementation currently does not support user
defined types with LOB attributes. It also does not support other
variants of user defined types such as VARRAY and nested
tables, as Oracle Streams AQ does not support them inherently.

Xml Indicates the XML message type.

The data type of the payload must be OracleXmlType, XmlReader,
or String in order to enqueue the message. If the data type is
String, it must be well-formed XML, else an exception is raised
when enqueuing the message.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

Chapter 12
OracleAQMessageType Enumeration

12-63

Provider ODP.NET, Unmanaged Driver

.NET Framework 3.5, 4.5, 4.6

12.12 OracleAQNavigationMode Enumeration
Table 12-35 lists all the OracleAQNavigationMode enumeration values with a description
of each enumerated value.

Table 12-35 OracleAQNavigationMode Members

Member Name Description

FirstMessage Retrieves the first message that is available and matches the
search criteria. This resets the position to the beginning of the
queue.

FirstMessageMultiGroup Indicates that a call to DequeueArray resets the position to the
beginning of the queue, and dequeues messages that are
available and match the search criteria. Messages are
dequeued till the dequeueCount limit is reached. The dequeued
messages can belong to different transaction groups.

You can use the OracleAQMessage.TransactionGroup
property to distinguish between messages from different
transaction groups. All messages from the same transaction
group have the same value for the
OracleAQMessage.TransactionGroup property.

NextMessage Retrieves the next message that is available and matches the
search criteria. If the previous message belongs to a message
group, AQ retrieves the next available message that matches
the search criteria and belongs to the message group.

NextMessageMultiGroup Indicates that a call to DequeueArray dequeues the next set of
messages that are available and match the search criteria.
Messages are dequeued till the dequeueCount limit is reached.
The dequeued messages can belong to different transaction
groups.

You can use the OracleAQMessage.TransactionGroup
property to distinguish between messages from different
transaction groups. All messages from the same transaction
group have the same value for the
OracleAQMessage.TransactionGroup property.

NextTransaction Skips the remainder of the current transaction group (if any)
and retrieves the first message of the next transaction group.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Chapter 12
OracleAQNavigationMode Enumeration

12-64

12.13 OracleAQNotificationGroupingType Enumeration
The OracleAQNotificationGroupingType enumeration type specifies the notification
grouping type.

Table 12-36 lists all the OracleAQNotificationGroupingType enumeration values with a
description of each enumerated value.

Table 12-36 OracleAQNotificationGroupingType Members

Member Name Description

Last Indicates that only details of the last message in the notification
group are provided.

Summary Indicates that the Summary of all messages in the notification group
is provided.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

12.14 OracleAQNotificationType Enumeration
The OracleAQNotificationType enumeration type specifies the notification type of the
received notification.

Table 12-37 lists all the OracleAQNotificationType enumeration values with a
description of each enumerated value.

Table 12-37 OracleAQNotificationType Members

Member Name Description

Group Indicates that the received notification is a grouping notification.

Regular Indicates that the received notification is a regular notification.

Timeout Indicates that the received notification is raised due to a timeout.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Chapter 12
OracleAQNotificationGroupingType Enumeration

12-65

12.15 OracleAQVisibilityMode Enumeration
Table 12-38 lists all the OracleAQVisibilityMode enumeration values with a description
of each enumerated value.

Table 12-38 OracleAQVisibilityMode Members

Member Name Description

Immediate Indicates that the enqueue or dequeue operation is not part of the
current transaction. The operation constitutes a transaction of its
own.

OnCommit Indicates that the enqueue or dequeue operation is part of the
current transaction. This is the default case.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Chapter 12
OracleAQVisibilityMode Enumeration

12-66

13
Oracle Data Provider for .NET
Types Classes

This chapter describes the large object and REF CURSOR objects provided by Oracle Data
Provider for .NET.

This chapter contains these topics:

• ODP.NET Types (ODP.NET LOB objects) consisting of these object classes:

– OracleBFile Class

– OracleBlob Class

– OracleClob Class

• OracleRefCursor Class

All offsets are 0-based for all ODP.NET LOB object parameters.

13.1 OracleBFile Class
An OracleBFile is an object that has a reference to BFILE data. It provides methods for
performing operations on BFILEs.

Note:

OracleBFile is supported for applications running against Oracle8.x and later.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.IO.Stream

 Oracle.DataAccess.Types.OracleBFile

Declaration

// C#
public sealed class OracleBFile : Stream, ICloneable, INullable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

13-1

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleBFile is supported for applications running against Oracle8.x and later.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleBFileSample
{
static void Main()
{
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile.OpenFile();

 // Read 7 bytes into readBuffer, starting at buffer offset 0
 byte[] readBuffer = new byte[7];
 int bytesRead = bFile.Read(readBuffer, 0, 7);

 // Prints "bytesRead = 7"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 65666768656667"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }

Chapter 13
OracleBFile Class

13-2

 Console.WriteLine();

 // Search for the 2nd occurrence of a byte pattern {66,67}
 // starting from byte offset 1 in the OracleBFile
 byte[] pattern = new byte[2] {66, 67};
 long posFound = bFile.Search(pattern, 1, 2);

 // Prints "posFound = 6"
 Console.WriteLine("posFound = " + posFound);

 // Close the OracleBFile
 bFile.CloseFile();

 bFile.Close();
 bFile.Dispose();

 con.Close();
 con.Dispose();
}
}

13.1.1 OracleBFile Members
OracleBFile members are listed in the following tables.

OracleBFile Constructors

OracleBFile constructors are listed in Table 13-1.

Table 13-1 OracleBFile Constructors

Constructor Description

OracleBFile Constructors Creates an instance of the OracleBFile class
(Overloaded)

OracleBFile Static Fields

OracleBFile static fields are listed in Table 13-2.

Table 13-2 OracleBFile Static Fields

Field Description

MaxSize The static field holds the maximum number of bytes
a BFILE can hold, which is 4,294,967,295 (2^32 - 1)
bytes

Null Represents a null value that can be assigned to the
value of an OracleBFile instance

OracleBFile Static Methods

OracleBFile static methods are listed in Table 13-3.

Chapter 13
OracleBFile Class

13-3

Table 13-3 OracleBFile Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleBFile Instance Properties

OracleBFile instance properties are listed in Table 13-4.

Table 13-4 OracleBFile Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be
read

CanSeek Indicates whether or not forward and backward seek
operations can be performed

CanWrite Indicates whether or not the LOB object supports
writing

Connection Indicates the connection used to read from a BFILE

DirectoryName Indicates the directory alias of the BFILE

FileExists Indicates whether or not the specified BFILE exists

FileName Indicates the name of the BFILE

IsEmpty Indicates whether the BFILE is empty or not

IsNull Indicates whether or not the current instance has a
null value

IsOpen Indicates whether the BFILE has been opened by
this instance or not

Length Indicates the size of the BFILE data in bytes

Position Indicates the current read position in the LOB
stream

Value Returns the data, starting from the first byte in
BFILE, as a byte array

OracleBFile Instance Methods

OracleBFile instance methods are listed in Table 13-5.

Table 13-5 OracleBFile Instance Methods

Methods Description

BeginRead Inherited from System.IO.Stream

BeginWrite Not Supported

Clone Creates a copy of an OracleBFile object

Close Closes the current stream and releases any
resources associated with the stream

Chapter 13
OracleBFile Class

13-4

Table 13-5 (Cont.) OracleBFile Instance Methods

Methods Description

CloseFile Closes the BFILE referenced by the current BFILE
instance

Compare Compares data referenced by the two OracleBFiles

CreateObjRef Inherited from System.MarshalByRefObject

CopyTo Copies data as specified (Overloaded)

Dispose Releases resources allocated by this object

EndRead Inherited from System.IO.Stream

EndWrite Not Supported

Equals Inherited from System.Object (Overloaded)

Flush Not Supported

FlushAsync Not Supported

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

IsEqual Compares the LOB references

OpenFile Opens the BFILE specified by the FileName and
DirectoryName

Read Reads a specified amount of bytes from the
OracleBFile instance and populates the buffer

ReadByte Inherited from System.IO.Stream

Search Searches for a binary pattern in the current instance
of an OracleBFile

Seek Sets the position on the current LOB stream

SetLength Not Supported

ToString Inherited from System.Object

Write Not Supported

WriteByte Not Supported

13.1.2 OracleBFile Constructors
OracleBFile constructors create new instances of the OracleBFile class.

Overload List:

• OracleBFile(OracleConnection)

This constructor creates an instance of the OracleBFile class with an
OracleConnection object.

• OracleBFile(OracleConnection, string, string)

Chapter 13
OracleBFile Class

13-5

This constructor creates an instance of the OracleBFile class with an
OracleConnection object, the location of the BFILE, and the name of the BFILE.

13.1.2.1 OracleBFile(OracleConnection)
This constructor creates an instance of the OracleBFile class with an OracleConnection
object.

Declaration

// C#
public OracleBFile(OracleConnection con);

Parameters

• con

The OracleConnection object.

Exceptions

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The connection must be opened explicitly by the application. OracleBFile does not
open the connection implicitly.

13.1.2.2 OracleBFile(OracleConnection, string, string)
This constructor creates an instance of the OracleBFile class with an OracleConnection
object, the location of the BFILE, and the name of the BFILE.

Declaration

// C#
public OracleBFile(OracleConnection con, string directoryName, string
 fileName);

Parameters

• con

The OracleConnection object.

• directoryName

The directory alias created by the CREATE DIRECTORY SQL statement.

• fileName

The name of the external LOB.

Exceptions

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 13
OracleBFile Class

13-6

Remarks

The OracleConnection must be opened explicitly by the application. OracleBFile does
not open the connection implicitly.

To initialize a BFILE column using an OracleBFile instance as an input parameter of a
SQL INSERT statement, directoryName and fileName must be properly set.

13.1.3 OracleBFile Static Fields
OracleBFile static fields are listed in Table 13-6.

Table 13-6 OracleBFile Static Fields

Field Description

MaxSize The static field holds the maximum number of bytes a BFILE can hold,
which is 4,294,967,295 (2^32 - 1) bytes

Null Represents a null value that can be assigned to the value of an
OracleBFile instance

13.1.3.1 MaxSize
This static field holds the maximum number of bytes a BFILE can hold, which is
4,294,967,295 (2^32 - 1) bytes.

Declaration

// C#
public static readonly Int64 MaxSize = 4294967295;

Remarks

This field is useful in code that checks whether or not the operation exceeds the
maximum length allowed.

13.1.3.2 Null
This static field represents a null value that can be assigned to the value of an
OracleBFile instance.

Declaration

// C#
public static readonly OracleBFile Null;

13.1.4 OracleBFile Static Methods
OracleBFile static methods are listed in Table 13-7.

Chapter 13
OracleBFile Class

13-7

Table 13-7 OracleBFile Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

13.1.5 OracleBFile Instance Properties
OracleBFile instance properties are listed in Table 13-8.

Table 13-8 OracleBFile Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be read

CanSeek Indicates whether or not forward and backward seek operations can be
performed

CanWrite Indicates whether or not the LOB object supports writing

Connection Indicates the connection used to read from a BFILE

DirectoryName Indicates the directory alias of the BFILE

FileExists Indicates whether or not the specified BFILE exists

FileName Indicates the name of the BFILE

IsEmpty Indicates whether the BFILE is empty or not

IsNull Indicates whether or not the current instance has a null value

IsOpen Indicates whether the BFILE has been opened by this instance or not

Length Indicates the size of the BFILE data in bytes

Position Indicates the current read position in the LOB stream

Value Returns the data, starting from the first byte in BFILE, as a byte array

13.1.5.1 CanRead
Overrides Stream

This instance property indicates whether or not the LOB stream can be read.

Declaration

// C#
public override bool CanRead{get;}

Property Value

If the LOB stream can be read, returns true; otherwise, returns false.

13.1.5.2 CanSeek
Overrides Stream

Chapter 13
OracleBFile Class

13-8

This instance property indicates whether or not forward and backward seek operations
can be performed.

Declaration

// C#
public override bool CanSeek{get;}

Property Value

If forward and backward seek operations can be performed, returns true; otherwise,
returns false.

13.1.5.3 CanWrite
Overrides Stream

This instance property indicates whether or not the LOB object supports writing.

Declaration

// C#
public override bool CanWrite{get;}

Property Value

BFILE is read only.

Remarks

BFILE is read-only, therefore, the boolean value is always false.

13.1.5.4 Connection
This instance property indicates the connection used to read from a BFILE.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An object of OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

13.1.5.5 DirectoryName
This instance property indicates the directory alias of the BFILE.

Chapter 13
OracleBFile Class

13-9

Declaration

// C#
public string DirectoryName {get;set;}

Property Value

A string.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The value of the DirectoryName changed while the BFILE is
open.

Remarks

The maximum length of a DirectoryName is 30 bytes.

13.1.5.6 FileExists
This instance property indicates whether or not the BFILE specified by the
DirectoryName and FileName exists.

Declaration

// C#
public bool FileExists {get;}

Property Value

bool

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

Unless a connection, file name, and directory name are provided, this property is set to
false by default.

13.1.5.7 FileName
This instance property indicates the name of the BFILE.

Declaration

// C#
public string FileName {get;set}

Chapter 13
OracleBFile Class

13-10

Property Value

A string that contains the BFILE name.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The value of the DirectoryName changed while the BFILE is
open.

Remarks

The maximum length of a FileName is 255 bytes.

Changing the FileName property while the BFILE object is opened causes an exception.

13.1.5.8 IsEmpty
This instance property indicates whether the BFILE is empty or not.

Declaration

// C#
public bool IsEmpty {get;}

Property Value

bool

Exceptions

ObjectDisposedException - The object is already disposed.

13.1.5.9 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

13.1.5.10 IsOpen
This instance property indicates whether the BFILE has been opened by this instance
or not.

Declaration

// C#
public bool IsOpen {get;}

Chapter 13
OracleBFile Class

13-11

Property Value

A bool.

13.1.5.11 Length
Overrides Stream

This instance property indicates the size of the BFILE data in bytes.

Declaration

// C#
public override Int64 Length {get;}

Property Value

Int64

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

13.1.5.12 Position
Overrides Stream

This instance property indicates the current read position in the LOB stream.

Declaration

// C#
public override Int64 Position{get; set;}

Property Value

An Int64 value that indicates the read position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The value is less than 0.

13.1.5.13 Value
This instance property returns the data, starting from the first byte in BFILE, as a byte
array.

Chapter 13
OracleBFile Class

13-12

Declaration

// C#
public byte[] Value{get;}

Property Value

A byte array.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The length of data is bound by the maximum length of the byte array. The current
value of the Position property is not used or changed.

13.1.6 OracleBFile Instance Methods
OracleBFile instance methods are listed in Table 13-9.

Table 13-9 OracleBFile Instance Methods

Methods Description

BeginRead Inherited from System.IO.Stream

BeginWrite Not Supported

Clone Creates a copy of an OracleBFile object

Close Closes the current stream and releases any
resources associated with the stream

CloseFile Closes the BFILE referenced by the current BFILE
instance

Compare Compares data referenced by the two OracleBFiles

CreateObjRef Inherited from System.MarshalByRefObject

CopyTo Copies data as specified (Overloaded)

Dispose Releases resources allocated by this object

EndRead Inherited from System.IO.Stream

EndWrite Not Supported

Equals Inherited from System.Object (Overloaded)

Flush Not Supported

FlushAsync Not Supported

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

Chapter 13
OracleBFile Class

13-13

Table 13-9 (Cont.) OracleBFile Instance Methods

Methods Description

InitializeLifetimeService Inherited from System.MarshalByRefObject

IsEqual Compares the LOB references

OpenFile Opens the BFILE specified by the FileName and
DirectoryName

Read Reads a specified amount of bytes from the
OracleBFile instance and populates the buffer

ReadByte Inherited from System.IO.Stream

Search Searches for a binary pattern in the current instance
of an OracleBFile

Seek Sets the position on the current LOB stream

SetLength Not Supported

ToString Inherited from System.Object

Write Not Supported

WriteByte Not Supported

13.1.6.1 Clone
This instance method creates a copy of an OracleBFile object.

Declaration

// C#
public object Clone();

Return Value

An OracleBFile object.

Implements

ICloneable

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

Chapter 13
OracleBFile Class

13-14

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CloneSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated above and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile1 = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile1.OpenFile();

 // Prints "bFile1.Position = 0"
 Console.WriteLine("bFile1.Position = " + bFile1.Position);

 // Set the Position before calling Clone()
 bFile1.Position = 1;

 // Clone the OracleBFile
 OracleBFile bFile2 = (OracleBFile) bFile1.Clone();

 // Open the OracleBFile
 bFile2.OpenFile();

 // Prints "bFile2.Position = 1"
 Console.WriteLine("bFile2.Position = " + bFile2.Position);

 // Close the OracleBFile
 bFile1.CloseFile();

 bFile1.Close();
 bFile1.Dispose();

 // Close the Cloned OracleBFile
 bFile2.CloseFile();

 bFile2.Close();
 bFile2.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 13
OracleBFile Class

13-15

13.1.6.2 Close
Overrides Stream

This instance method closes the current stream and releases any resources
associated with it.

Declaration

// C#
public override void Close();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

13.1.6.3 CloseFile
This instance method closes the BFILE referenced by the current BFILE instance.

Declaration

// C#
public void CloseFile();

Remarks

No error is returned if the BFILE exists, but is not opened.

13.1.6.4 Compare
This instance method compares data referenced by the two OracleBFiles.

Declaration

// C#
public int Compare(Int64 src_offset, OracleBFile obj, Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset of the current instance.

• obj

The provided OracleBFile object.

• dst_offset

The offset of the OracleBFile object.

• amount

The number of bytes to compare.

Chapter 13
OracleBFile Class

13-16

Return Value

Returns a number that is:

• Less than zero: if the BFILE data of the current instance is less than that of the
provided BFILE data.

• Zero: if both the BFILEs store the same data.

• Greater than zero: if the BFILE data of the current instance is greater than that of
the provided BFILE data.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount is less than
0.

Remarks

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

The BFILE needs to be opened using OpenFile before the operation.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CompareSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile1 = new OracleBFile(con, "MYDIR", "MyFile.txt");
 OracleBFile bFile2 = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFiles
 bFile1.OpenFile();

Chapter 13
OracleBFile Class

13-17

 bFile2.OpenFile();

 // Compare 2 bytes from the 1st byte of bFile1 and
 // the 5th byte of bFile2 onwards
 int result = bFile1.Compare(1, bFile2, 5, 2);

 // Prints "result = 0" (Indicates the data is identical)
 Console.WriteLine("result = " + result);

 // Close the OracleBFiles
 bFile1.CloseFile();
 bFile2.CloseFile();

 bFile1.Close();
 bFile1.Dispose();

 bFile2.Close();
 bFile2.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.1.6.5 CopyTo
CopyTo copies data from the current instance to the provided object.

Overload List:

• CopyTo(OracleBlob)

This instance method copies data from the current instance to the provided
OracleBlob object.

• CopyTo(OracleBlob, Int64)

This instance method copies data from the current OracleBFile instance to the
provided OracleBlob object with the specified destination offset.

• CopyTo(Int64, OracleBlob, Int64, Int64)

This instance method copies data from the current OracleBFile instance to the
provided OracleBlob object with the specified source offset, destination offset, and
character amounts.

• CopyTo(OracleClob)

This instance method copies data from the current OracleBFile instance to the
provided OracleClob object.

• CopyTo(OracleClob, Int64)

This instance method copies data from the current OracleBFile instance to the
provided OracleClob object with the specified destination offset.

• CopyTo(Int64, OracleClob, Int64, Int64)

This instance method copies data from the current OracleBFile instance to the
provided OracleClob object with the specified source offset, destination offset, and
amount of characters.

Chapter 13
OracleBFile Class

13-18

13.1.6.6 CopyTo(OracleBlob)
This instance method copies data from the current instance to the provided OracleBlob
object.

Declaration

// C#
public Int64 CopyTo(OracleBlob obj);

Parameters

• obj

The OracleBlob object to which the data is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.1.6.7 CopyTo(OracleBlob, Int64)
This instance method copies data from the current OracleBFile instance to the
provided OracleBlob object with the specified destination offset.

Declaration

// C#
public Int64 CopyTo(OracleBlob obj, Int64 dst_offset);

Parameters

• obj

The OracleBlob object to which the data is copied.

• dst_offset

The offset (in bytes) at which the OracleBlob object is copied.

Chapter 13
OracleBFile Class

13-19

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The dst_offset is less than 0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleBlob data, spaces are written into the
OracleBlob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.1.6.8 CopyTo(Int64, OracleBlob, Int64, Int64)
This instance method copies data from the current OracleBFile instance to the
provided OracleBlob object with the specified source offset, destination offset, and
character amounts.

Declaration

// C#
public Int64 CopyTo(Int64 src_offset,OracleBlob obj,Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset (in bytes) in the current instance, from which the data is read.

• obj

An OracleBlob object to which the data is copied.

• dst_offset

The offset (in bytes) to which the OracleBlob object is copied.

• amount

The amount of data to be copied.

Return Value

The return value is the amount copied.

Chapter 13
OracleBFile Class

13-20

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount is less than
0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleBlob data, spaces are written into the
OracleBlob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.1.6.9 CopyTo(OracleClob)
This instance method copies data from the current OracleBFile instance to the
provided OracleClob object.

Declaration

// C#
public Int64 CopyTo(OracleClob obj);

Parameters

• obj

The OracleClob object to which the data is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Chapter 13
OracleBFile Class

13-21

Remarks

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

13.1.6.10 CopyTo(OracleClob, Int64)
This instance method copies data from the current OracleBFile instance to the
provided OracleClob object with the specified destination offset.

Declaration

// C#
public Int64 CopyTo(OracleClob obj, Int64 dst_offset);

Parameters

• obj

The OracleClob object that the data is copied to.

• dst_offset

The offset (in characters) at which the OracleClob object is copied to.

Return Value

The amount copied.

Exceptions

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The dst_offset is less than 0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleClob data, spaces are written into the
OracleClob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

Chapter 13
OracleBFile Class

13-22

13.1.6.11 CopyTo(Int64, OracleClob, Int64, Int64)
This instance method copies data from the current OracleBFile instance to the
provided OracleClob object with the specified source offset, destination offset, and
amount of characters.

Declaration

// C#
public Int64 CopyTo(Int64 src_offset,OracleClob obj,Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset (in characters) in the current instance, from which the data is read.

• obj

An OracleClob object that the data is copied to.

• dst_offset

The offset (in characters) at which the OracleClob object is copied to.

• amount

The amount of data to be copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount is less than
0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the current OracleClob data, spaces are written
into the OracleClob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

Chapter 13
OracleBFile Class

13-23

13.1.6.12 Dispose
This instance method releases resources allocated by this object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

Although some properties can still be accessed, their values may not be accountable.
Since resources are freed, method calls may lead to exceptions. The object cannot be
reused after being disposed.

13.1.6.13 Flush
This method is not supported.

13.1.6.14 FlushAsync
This method is not supported.

13.1.6.15 IsEqual
This instance method compares the LOB references.

Declaration

// C#
public bool IsEqual(OracleBFile obj);

Parameters

• obj

The provided OracleBFile object.

Return Value

Returns true if the current OracleBFile and the provided OracleBFile object refer to the
same external LOB. Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 13
OracleBFile Class

13-24

Remarks

Note that this method can return true even if the two OracleBFile objects return false
for == or Equals() since two different OracleBFile instances can refer to the same
external LOB.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.1.6.16 OpenFile
This instance method opens the BFILE specified by the FileName and DirectoryName.

Declaration

// C#
public void OpenFile();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

Many operations, such as Compare(), CopyTo(), Read(), and Search() require that the
BFILE be opened using OpenFile before the operation.

Calling OpenFile on an opened BFILE is not operational.

13.1.6.17 Read
Overrides Stream

This instance method reads a specified amount of bytes from the OracleBFile instance
and populates the buffer.

Declaration

// C#
public override int Read(byte[] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer to be populated.

• offset

The offset of the byte array buffer to be populated.

• count

The amount of bytes to read.

Chapter 13
OracleBFile Class

13-25

Return Value

The return value indicates the number of bytes read from the BFILE, that is, the
external LOB.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - Either the offset or the count parameter is less than 0 or
the offset is greater than or equal to the buffer.Length or the offset and the count
together are greater than buffer.Length.

Remarks

The LOB data is read starting from the position specified by the Position property.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ReadSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile.OpenFile();

 // Read 7 bytes into readBuffer, starting at buffer offset 0
 byte[] readBuffer = new byte[7];
 int bytesRead = bFile.Read(readBuffer, 0, 7);

 // Prints "bytesRead = 7"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 65666768656667"

Chapter 13
OracleBFile Class

13-26

 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 // Close the OracleBFile
 bFile.CloseFile();

 bFile.Close();
 bFile.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.1.6.18 Search
This instance method searches for a binary pattern in the current instance of an
OracleBFile.

Declaration

// C#
public int Search(byte[] val, Int64 offset, Int64 nth);

Parameters

• val

The binary pattern being searched for.

• offset

The 0-based offset (in bytes) starting from which the OracleBFile is searched.

• nth

The specific occurrence (1-based) of the match for which the offset is returned.

Return Value

Returns the absolute offset of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0 is returned.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - Either the offset is less than 0 or nth is less than or
equal to 0 or val.Length is greater than 16383 or nth is greater than or equal to
OracleBFile.MaxSize or offset is greater than or equal to OracleBFile.MaxSize.

Remarks

The limit of the search pattern is 16383 bytes.

Chapter 13
OracleBFile Class

13-27

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class SearchSample
{
 static void Main()
 {
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile.OpenFile();

 // Search for the 2nd occurrence of a byte pattern {66,67}
 // starting from byte offset 1 in the OracleBFile
 byte[] pattern = new byte[2] {66, 67};
 long posFound = bFile.Search(pattern, 1, 2);

 // Prints "posFound = 6"
 Console.WriteLine("posFound = " + posFound);

 // Close the OracleBFile
 bFile.CloseFile();

 bFile.Close();
 bFile.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.1.6.19 Seek
Overrides Stream

This instance method sets the position on the current LOB stream.

Chapter 13
OracleBFile Class

13-28

Declaration

// C#
public override Int64 Seek(Int64 offset, SeekOrigin origin);

Parameters

• offset

A byte offset relative to origin.

• origin

A value of type System.IO.SeekOrigin indicating the reference point used to obtain
the new position.

Return Value

Returns an Int64 that indicates the position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

If offset is negative, the new position precedes the position specified by origin by the
number of bytes specified by offset.

If offset is zero, the new position is the position specified by origin.

If offset is positive, the new position follows the position specified by origin by the
number of bytes specified by offset.

SeekOrigin.Begin specifies the beginning of a stream.

SeekOrigin.Current specifies the current position within a stream.

SeekOrigin.End specifies the end of a stream.

Example

// Database Setup, if you have not done so yet.
/* Log on as DBA (SYS or SYSTEM) that has CREATE ANY DIRECTORY privilege.

CREATE OR REPLACE DIRECTORY MYDIR AS 'C:\TEMP';

*/

// C#

using System;
using System.IO;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class SeekSample
{

Chapter 13
OracleBFile Class

13-29

 static void Main()
 {
 // Create MYDIR directory object as indicated previously and create a file
 // MyFile.txt with the text ABCDABC under C:\TEMP directory.
 // Note that the byte representation of the ABCDABC is 65666768656667

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBFile bFile = new OracleBFile(con, "MYDIR", "MyFile.txt");

 // Open the OracleBFile
 bFile.OpenFile();

 // Set the Position to 2 with respect to SeekOrigin.Begin
 long newPosition = bFile.Seek(2, SeekOrigin.Begin);

 // Prints "newPosition = 2"
 Console.WriteLine("newPosition = " + newPosition);

 // Prints "bFile.Position = 2"
 Console.WriteLine("bFile.Position = " + bFile.Position);

 // Read 2 bytes into readBuffer, starting at buffer offset 1
 byte[] readBuffer = new byte[4];
 int bytesRead = bFile.Read(readBuffer, 1, 2);

 // Prints "bytesRead = 2"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 067680"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 // Close the OracleBFile
 bFile.CloseFile();

 bFile.Close();
 bFile.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.1.6.20 SetLength
This method is not supported.

13.1.6.21 Write
This method is not supported.

Chapter 13
OracleBFile Class

13-30

13.2 OracleBlob Class
An OracleBlob object is an object that has a reference to BLOB data. It provides methods
for performing operations on BLOBs.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.IO.Stream

 Oracle.DataAccess.Types.OracleBlob

Declaration

// C#
public sealed class OracleBlob : Stream, ICloneable, INullable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleBlobSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Write 4 bytes from writeBuffer, starting at buffer offset 0
 byte[] writeBuffer = new byte[4] {1, 2, 3, 4};
 blob.Write(writeBuffer, 0, 4);

 // Append first 2 bytes from writeBuffer {1, 2} to the oracleBlob
 blob.Append(writeBuffer, 0, 2);

Chapter 13
OracleBlob Class

13-31

 // Prints "blob.Length = 6"
 Console.WriteLine("blob.Length = " + blob.Length);

 // Reset the Position for the Read
 blob.Position = 0;

 // Read 6 bytes into readBuffer, starting at buffer offset 0
 byte[] readBuffer = new byte[6];
 int bytesRead = blob.Read(readBuffer, 0, 6);

 // Prints "bytesRead = 6"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 123412"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 // Search for the 2nd occurrence of a byte pattern '12'
 // starting from byte offset 0 in the OracleBlob
 byte[] pattern = new byte[2] {1, 2};
 long posFound = blob.Search(pattern, 0, 2);

 // Prints "posFound = 5"
 Console.WriteLine("posFound = " + posFound);

 // Erase 4 bytes of data starting at byte offset 1
 // Sets bytes to zero
 blob.Erase(1, 4);

 byte[] erasedBuffer = blob.Value;

 //Prints "erasedBuffer = 100002"
 Console.Write("erasedBuffer = ");
 for(int index = 0; index < erasedBuffer.Length; index++)
 {
 Console.Write(erasedBuffer[index]);
 }
 Console.WriteLine();

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.2.1 OracleBlob Members
OracleBlob members are listed in the following tables.

OracleBlob Constructors

OracleBlob constructors are listed in Table 13-10.

Chapter 13
OracleBlob Class

13-32

Table 13-10 OracleBlob Constructors

Constructor Description

OracleBlob Constructors Creates an instance of the OracleBlob class
(Overloaded)

OracleBlob Static Fields

OracleBlob static fields are listed in Table 13-11.

Table 13-11 OracleBlob Static Fields

Field Description

MaxSize Holds the maximum number of bytes a BLOB can
hold, which is 4,294,967,295 (2^32 - 1) bytes

Null Represents a null value that can be assigned to the
value of an OracleBlob instance

OracleBlob Static Methods

OracleBlob static methods are listed in Table 13-12.

Table 13-12 OracleBlob Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleBlob Instance Properties

OracleBlob instance properties are listed in Table 13-13.

Table 13-13 OracleBlob Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be
read

CanSeek Indicates whether or not forward and backward seek
operations be performed

CanWrite Indicates whether or not the LOB object supports
writing

Connection Indicates the OracleConnection that is used to
retrieve and write BLOB data

IsEmpty Indicates whether the BLOB is empty or not

IsInChunkWriteMode Indicates whether or not the BLOB has been opened
to defer index updates

IsNull Indicates whether or not the current instance has a
null value

Chapter 13
OracleBlob Class

13-33

Table 13-13 (Cont.) OracleBlob Instance Properties

Properties Description

IsTemporary Indicates whether or not the current instance is
bound to a temporary BLOB

Length Indicates the size of the BLOB data

OptimumChunkSize Indicates the optimal data buffer length (or multiples
thereof) that read and write operations should use to
improve performance

Position Indicates the current read or write position in the
LOB stream

Value Returns the data, starting from the first byte in BLOB,
as a byte array

OracleBlob Instance Methods

OracleBlob instance methods are listed in Table 13-14.

Table 13-14 OracleBlob Instance Methods

Methods Description

Append Appends the supplied data to the current
OracleBlob instance (Overloaded)

BeginChunkWrite Opens the BLOB

BeginRead Inherited from System.IO.Stream

BeginWrite Inherited from System.IO.Stream

Clone Creates a copy of an OracleBlob object

Close Closes the current stream and releases any
resources associated with it

Compare Compares data referenced by the current instance
and that of the supplied object

CopyTo Copies from the current OracleBlob instance to an
OracleBlob object (Overloaded)

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases resources allocated by this object

EndChunkWrite Closes the BLOB referenced by the current
OracleBlob instance

EndRead Inherited from System.IO.Stream

EndWrite Inherited from System.IO.Stream

Equals Inherited from System.Object (Overloaded)

Erase Erases data (Overloaded)

Flush Not supported

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

Chapter 13
OracleBlob Class

13-34

Table 13-14 (Cont.) OracleBlob Instance Methods

Methods Description

GetType Inherited from System.Object

InitializedLifetimeService Inherited from System.MarshalByRefObject

IsEqual Compares the LOB data referenced by the two
OracleBlobs

Read Reads a specified amount of bytes from the
ODP.NET LOB Type instance and populates the
buffer

ReadByte Inherited from System.IO.Stream

Search Searches for a binary pattern in the current instance
of an OracleBlob

Seek Sets the position in the current LOB stream

SetLength Trims or truncates the BLOB value to the specified
length

ToString Inherited from System.Object

Write Writes the supplied buffer into the OracleBlob

WriteByte Inherited from System.IO.Stream

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleBlob Members

13.2.2 OracleBlob Constructors
OracleBlob constructors are listed in Table 13-10.

Overload List:

• OracleBlob(OracleConnection)

This constructor creates an instance of the OracleBlob class bound to a temporary
BLOB with an OracleConnection object.

• OracleBlob(OracleConnection, bool)

This constructor creates an instance of the OracleBlob class bound to a temporary
BLOB with an OracleConnection object and a boolean value for caching.

Chapter 13
OracleBlob Class

13-35

13.2.2.1 OracleBlob(OracleConnection)
This constructor creates an instance of the OracleBlob class bound to a temporary BLOB
with an OracleConnection object.

Declaration

// C#
public OracleBlob(OracleConnection con);

Parameters

• con

The OracleConnection object.

Exceptions

InvalidOperationException - The OracleConnection is not opened.

Remarks

The connection must be opened explicitly by the application. OracleBlob does not open
the connection implicitly.

The temporary BLOB utilizes the provided connection to store BLOB data. Caching is not
turned on by this constructor.

13.2.2.2 OracleBlob(OracleConnection, bool)
This constructor creates an instance of the OracleBlob class bound to a temporary BLOB
with an OracleConnection object and a boolean value for caching.

Declaration

// C#
public OracleBlob(OracleConnection con, bool bCaching);

Parameters

• con

The OracleConnection object.

• bCaching

A flag for enabling or disabling server-side caching.

Exceptions

InvalidOperationException - The OracleConnection is not opened.

Remarks

The connection must be opened explicitly by the application. OracleBlob does not open
the connection implicitly.

The temporary BLOB uses the provided connection to store BLOB data. The bCaching
input parameter determines whether or not server-side caching is used.

Chapter 13
OracleBlob Class

13-36

13.2.3 OracleBlob Static Fields
OracleBlob static fields are listed in Table 13-15.

Table 13-15 OracleBlob Static Fields

Field Description

MaxSize Holds the maximum number of bytes a BLOB can hold, which is
4,294,967,295 (2^32 - 1) bytes

Null Represents a null value that can be assigned to the value of an OracleBlob
instance

13.2.3.1 MaxSize
The MaxSize field holds the maximum number of bytes a BLOB can hold, which is
4,294,967,295 (2^32 - 1) bytes.

Declaration

// C#
public static readonly Int64 MaxSize = 4294967295;

Remarks

This field can be useful in code that checks whether or not the operation exceeds the
maximum length allowed.

13.2.3.2 Null
This static field represents a null value that can be assigned to the value of an
OracleBlob instance.

Declaration

// C#
public static readonly OracleBlob Null;

13.2.4 OracleBlob Static Methods
OracleBlob static methods are listed in Table 13-16.

Table 13-16 OracleBlob Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

Chapter 13
OracleBlob Class

13-37

13.2.5 OracleBlob Instance Properties
OracleBlob instance properties are listed in Table 13-17.

Table 13-17 OracleBlob Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be read

CanSeek Indicates whether or not forward and backward seek operations be
performed

CanWrite Indicates whether or not the LOB object supports writing

Connection Indicates the OracleConnection that is used to retrieve and write
BLOB data

IsEmpty Indicates whether the BLOB is empty or not

IsInChunkWriteMode Indicates whether or not the BLOB has been opened to defer index
updates

IsNull Indicates whether or not the current instance has a null value

IsTemporary Indicates whether or not the current instance is bound to a
temporary BLOB

Length Indicates the size of the BLOB data

OptimumChunkSize Indicates the optimal data buffer length (or multiples thereof) that
read and write operations should use to improve performance

Position Indicates the current read or write position in the LOB stream

Value Returns the data, starting from the first byte in BLOB, as a byte array

13.2.5.1 CanRead
Overrides Stream

This instance property indicates whether or not the LOB stream can be read.

Declaration

// C#
public override bool CanRead{get;}

Property Value

If the LOB stream can be read, returns true; otherwise, returns false.

13.2.5.2 CanSeek
Overrides Stream

This instance property indicates whether or not forward and backward seek operations
can be performed.

Chapter 13
OracleBlob Class

13-38

Declaration

// C#
public override bool CanSeek{get;}

Property Value

If forward and backward seek operations can be performed, returns true; otherwise,
returns false.

13.2.5.3 CanWrite
Overrides Stream

This instance property indicates whether or not the LOB object supports writing.

Declaration

// C#
public override bool CanWrite{get;}

Property Value

If the LOB stream can be written, returns true; otherwise, returns false.

13.2.5.4 Connection
This instance property indicates the OracleConnection that is used to retrieve and write
BLOB data.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An object of OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

13.2.5.5 IsEmpty
This instance property indicates whether the BLOB is empty or not.

Declaration

// C#
public bool IsEmpty {get;}

Property Value

A bool that indicates whether or not the BLOB is empty.

Chapter 13
OracleBlob Class

13-39

Exceptions

ObjectDisposedException - The object is already disposed.

13.2.5.6 IsInChunkWriteMode
This instance property indicates whether or not the BLOB has been opened to defer
index updates.

Declaration

// C#
public bool IsInChunkWriteMode{get;}

Property Value

If the BLOB has been opened, returns true; otherwise, returns false.

13.2.5.7 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

13.2.5.8 IsTemporary
This instance property indicates whether or not the current instance is bound to a
temporary BLOB.

Declaration

// C#
public bool IsTemporary {get;}

Property Value

bool

13.2.5.9 Length
Overrides Stream

This instance property indicates the size of the BLOB data in bytes.

Chapter 13
OracleBlob Class

13-40

Declaration

// C#
public override Int64 Length {get;}

Property Value

A number indicating the size of the BLOB data in bytes.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

13.2.5.10 OptimumChunkSize
This instance property indicates the optimal data buffer length (or multiples thereof)
that read and write operations should use to improve performance.

Declaration

// C#
public int OptimumChunkSize{get;}

Property Value

A number representing the minimum bytes to retrieve or send.

Exceptions

ObjectDisposedException - The object is already disposed.

13.2.5.11 Position
Overrides Stream

This instance property indicates the current read or write position in the LOB stream.

Declaration

// C#
public override Int64 Position{get; set;}

Property Value

An Int64 that indicates the read or write position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The Position is less than 0.

Chapter 13
OracleBlob Class

13-41

13.2.5.12 Value
This instance property returns the data, starting from the first byte in the BLOB, as a
byte array.

Declaration

// C#
public Byte[] Value{get;}

Property Value

A byte array.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The Value is less than 0.

Remarks

The value of Position is not used or changed by using this property. 2 GB is the
maximum byte array length that can be returned by this property.

13.2.6 OracleBlob Instance Methods
OracleBlob instance methods are listed in Table 13-18.

Table 13-18 OracleBlob Instance Methods

Methods Description

Append Appends the supplied data to the current OracleBlob
instance (Overloaded)

BeginChunkWrite Opens the BLOB

BeginRead Inherited from System.IO.Stream

BeginWrite Inherited from System.IO.Stream

Clone Creates a copy of an OracleBlob object

Close Closes the current stream and releases any resources
associated with it

Compare Compares data referenced by the current instance and
that of the supplied object

CopyTo Copies from the current OracleBlob instance to an
OracleBlob object (Overloaded)

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases resources allocated by this object

Chapter 13
OracleBlob Class

13-42

Table 13-18 (Cont.) OracleBlob Instance Methods

Methods Description

EndChunkWrite Closes the BLOB referenced by the current OracleBlob
instance

EndRead Inherited from System.IO.Stream

EndWrite Inherited from System.IO.Stream

Equals Inherited from System.Object (Overloaded)

Erase Erases data (Overloaded)

Flush Not supported

GetHashCode Inherited from System.Object

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializedLifetimeService Inherited from System.MarshalByRefObject

IsEqual Compares the LOB data referenced by the two
OracleBlobs

Read Reads a specified amount of bytes from the ODP.NET
LOB Type instance and populates the buffer

ReadByte Inherited from System.IO.Stream

Search Searches for a binary pattern in the current instance of
an OracleBlob

Seek Sets the position in the current LOB stream

SetLength Trims or truncates the BLOB value to the specified length

ToString Inherited from System.Object

Write Writes the supplied buffer into the OracleBlob

WriteByte Inherited from System.IO.Stream

13.2.6.1 Append
Append appends the supplied data to the end of the current OracleBlob instance.

Overload List:

• Append(OracleBlob)

This instance method appends the BLOB data referenced by the provided
OracleBlob object to the current OracleBlob instance.

• Append(byte[], int, int)

This instance method appends data from the supplied byte array buffer to the end
of the current OracleBlob instance.

Chapter 13
OracleBlob Class

13-43

13.2.6.2 Append(OracleBlob)
This instance method appends the BLOB data referenced by the provided OracleBlob
object to the current OracleBlob instance.

Declaration

// C#
public void Append(OracleBlob obj);

Parameters

• obj

An object of OracleBlob.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the object,
OracleConnection is not opened, or OracleConnection has been reopened.

Remarks

No character set conversions are made.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.2.6.3 Append(byte[], int, int)
This instance method appends data from the supplied byte array buffer to the end of
the current OracleBlob instance.

Declaration

// C#
public void Append(byte[] buffer, int offset, int count);

Parameters

• buffer

An array of bytes.

• offset

The zero-based byte offset in the buffer from which data is read.

• count

The number of bytes to be appended.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 13
OracleBlob Class

13-44

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class AppendSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Append 2 bytes {4, 5} to the OracleBlob
 byte[] buffer = new byte[3] {4, 5, 6};
 blob.Append(buffer, 0, 2);

 byte[] appendBuffer = blob.Value;

 // Prints "appendBuffer = 45"
 Console.Write("appendBuffer = ");
 for(int index = 0; index < appendBuffer.Length; index++)
 {
 Console.Write(appendBuffer[index]);
 }
 Console.WriteLine();

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.2.6.4 BeginChunkWrite
This instance method opens the BLOB.

Declaration

// C#
public void BeginChunkWrite();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 13
OracleBlob Class

13-45

Remarks

BeginChunkWrite does not need to be called before manipulating the BLOB data. This is
provided for performance reasons.

After this method is called, write operations do not cause the domain or function-based
index on the column to be updated. Index updates occur only once after EndChunkWrite
is called.

13.2.6.5 Clone
This instance method creates a copy of an OracleBlob object.

Declaration

// C#
public object Clone();

Return Value

An OracleBlob object.

Implements

ICloneable

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CloneSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob1 = new OracleBlob(con);

 // Prints "blob1.Position = 0"
 Console.WriteLine("blob1.Position = " + blob1.Position);

Chapter 13
OracleBlob Class

13-46

 // Set the Position before calling Clone()
 blob1.Position = 1;

 // Clone the OracleBlob
 OracleBlob blob2 = (OracleBlob)blob1.Clone();

 // Prints "blob2.Position = 1"
 Console.WriteLine("blob2.Position = " + blob2.Position);

 blob1.Close();
 blob1.Dispose();

 blob2.Close();
 blob2.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.2.6.6 Close
Overrides Stream

This instance method closes the current stream and releases any resources
associated with it.

Declaration

// C#
public override void Close();

13.2.6.7 Compare
This instance method compares data referenced by the current instance and that of
the supplied object.

Declaration

// C#
public int Compare(Int64 src_offset, OracleBlob obj, Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The comparison starting point (in bytes) for the current instance.

• obj

The provided OracleBlob object.

• dst_offset

The comparison starting point (in bytes) for the provided OracleBlob.

• amount

The number of bytes to compare.

Chapter 13
OracleBlob Class

13-47

Return Value

Returns a value that is:

• Less than zero: if the data referenced by the current instance is less than that of
the supplied instance

• Zero: if both objects reference the same data

• Greater than zero: if the data referenced by the current instance is greater than
that of the supplied instance

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the object,
OracleConnection is not opened, or OracleConnection has been reopened.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount parameter
is less than 0.

Remarks

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

13.2.6.8 CopyTo
CopyTo copies data from the current instance to the provided OracleBlob object.

Overload List:

• CopyTo(OracleBlob)

This instance method copies data from the current instance to the provided
OracleBlob object.

• CopyTo(OracleBlob, Int64)

This instance method copies data from the current OracleBlob instance to the
provided OracleBlob object with the specified destination offset.

• CopyTo(Int64, OracleBlob, Int64, Int64)

This instance method copies data from the current OracleBlob instance to the
provided OracleBlob object with the specified source offset, destination offset, and
character amounts.

13.2.6.9 CopyTo(OracleBlob)
This instance method copies data from the current instance to the provided OracleBlob
object.

Declaration

// C#
public Int64 CopyTo(OracleBlob obj);

Chapter 13
OracleBlob Class

13-48

Parameters

• obj

The OracleBlob object to which the data is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.2.6.10 CopyTo(OracleBlob, Int64)
This instance method copies data from the current OracleBlob instance to the provided
OracleBlob object with the specified destination offset.

Declaration

// C#
public Int64 CopyTo(OracleBlob obj, Int64 dst_offset);

Parameters

• obj

The OracleBlob object to which the data is copied.

• dst_offset

The offset (in bytes) at which the OracleBlob object is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The dst_offset is less than 0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

Chapter 13
OracleBlob Class

13-49

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleBlob data, spaces are written into the
OracleBlob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.2.6.11 CopyTo(Int64, OracleBlob, Int64, Int64)
This instance method copies data from the current OracleBlob instance to the provided
OracleBlob object with the specified source offset, destination offset, and character
amounts.

Declaration

// C#
public Int64 CopyTo(Int64 src_offset,OracleBlob obj,Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The offset (in bytes) in the current instance, from which the data is read.

• obj

The OracleBlob object to which the data is copied.

• dst_offset

The offset (in bytes) at which the OracleBlob object is copied.

• amount

The amount of data to be copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the object,
OracleConnection is not opened, or OracleConnection has been reopened.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount parameter
is less than 0.

Chapter 13
OracleBlob Class

13-50

Remarks

If the dst_offset is beyond the end of the OracleBlob data, spaces are written into the
OracleBlob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CopyToSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob1 = new OracleBlob(con);
 OracleBlob blob2 = new OracleBlob(con);

 // Write 4 bytes, starting at buffer offset 0
 byte[] buffer = new byte[4] {1, 2, 3, 4};
 blob1.Write(buffer, 0, 4);

 // Copy 2 bytes from byte 0 of blob1 to byte 1 of blob2
 blob1.CopyTo(0, blob2, 1, 2);

 byte[] copyBuffer = blob2.Value;

 //Prints "Value = 012"
 Console.Write("Value = ");
 for(int index = 0; index < copyBuffer.Length; index++)
 {
 Console.Write(copyBuffer[index]);
 }
 Console.WriteLine();

 blob1.Close();
 blob1.Dispose();

 blob2.Close();
 blob2.Dispose();

 con.Close();
 con.Dispose();
 }
}

Chapter 13
OracleBlob Class

13-51

13.2.6.12 Dispose
This instance method releases resources allocated by this object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

Once Dispose() is called, the object of OracleBlob is in an uninitialized state.

Although some properties can still be accessed, their values may not be accountable.
Since resources are freed, method calls may lead to exceptions. The object cannot be
reused after being disposed.

13.2.6.13 EndChunkWrite
This instance method closes the BLOB referenced by the current OracleBlob instance.

Declaration

// C#
public void EndChunkWrite();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

Index updates occur immediately if there is write operation(s) deferred by the
BeginChunkWrite method.

13.2.6.14 Erase
Erase erases a portion or all data.

Overload List:

• Erase()

This instance method erases all data.

• Erase(Int64, Int64)

This instance method erases a specified portion of data.

Chapter 13
OracleBlob Class

13-52

13.2.6.15 Erase()
This instance method erases all data.

Declaration

// C#
public Int64 Erase();

Return Value

The number of bytes erased.

Remarks

Erase() replaces all data with zero-byte fillers.

13.2.6.16 Erase(Int64, Int64)
This instance method erases a specified portion of data.

Declaration

// C#
public Int64 Erase(Int64 offset, Int64 amount);

Parameters

• offset

The offset from which to erase.

• amount

The quantity (in bytes) to erase.

Return Value

The number of bytes erased.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The offset or amount parameter is less than 0.

Remarks

Replaces the specified amount of data with zero-byte fillers.

13.2.6.17 Flush
This method is not supported.

Chapter 13
OracleBlob Class

13-53

13.2.6.18 IsEqual
This instance method compares the LOB data referenced by the two OracleBlobs.

Declaration

// C#
public bool IsEqual(OracleBlob obj);

Parameters

• obj

An OracleBlob object.

Return Value

If the current OracleBlob and the provided OracleBlob refer to the same LOB, returns
true. Returns false otherwise.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

Note that this method can return true even if the two OracleBlob objects return false
for == or Equals() because two different OracleBlob instances can refer to the same
LOB.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

13.2.6.19 Read
Overrides Stream

This instance method reads a specified amount of bytes from the ODP.NET LOB
instance and populates the buffer.

Declaration

// C#
public override int Read(byte[] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer to be populated.

• offset

The starting offset (in bytes) at which the buffer is populated.

• count

Chapter 13
OracleBlob Class

13-54

The amount of bytes to read.

Return Value

The return value indicates the number of bytes read from the LOB.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset or the count parameter is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than the buffer.Length.

Remarks

The LOB data is read starting from the position specified by the Position property.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ReadSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Write 3 bytes, starting at buffer offset 1
 byte[] writeBuffer = new byte[4] {1, 2, 3, 4};
 blob.Write(writeBuffer, 1, 3);

 // Reset the Position for Read
 blob.Position = 1;

 // Read 2 bytes into buffer starting at buffer offset 1
 byte[] readBuffer = new byte[4];
 int bytesRead = blob.Read(readBuffer, 1, 2);

 // Prints "bytesRead = 2"
 Console.WriteLine("bytesRead = " + bytesRead);

 // Prints "readBuffer = 0340"
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {

Chapter 13
OracleBlob Class

13-55

 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.2.6.20 Search
This instance method searches for a binary pattern in the current instance of an
OracleBlob.

Declaration

// C#
public Int64 Search(byte[] val, int64 offset, int64 nth);

Parameters

• val

The binary pattern being searched for.

• offset

The 0-based offset (in bytes) starting from which the OracleBlob is searched.

• nth

The specific occurrence (1-based) of the match for which the absolute offset (in
bytes) is returned.

Return Value

Returns the absolute offset of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0 is returned.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset is less than 0.

• The nth is less than or equal to 0.

• The val.Length is greater than 16383.

• The nth is greater than or equal to OracleBlob.MaxSize.

• The offset is greater than or equal to OracleBlob.MaxSize.

Chapter 13
OracleBlob Class

13-56

Remarks

The limit of the search pattern is 16383 bytes.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class SearchSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

 // Write 7 bytes, starting at buffer offset 0
 byte[] buffer = new byte[7] {1, 2, 3, 4, 1, 2, 3};
 blob.Write(buffer, 0, 7);

 // Search for the 2nd occurrence of a byte pattern '23'
 // starting at offset 1 in the OracleBlob
 byte[] pattern = new byte[2] {2 ,3};
 long posFound = blob.Search(pattern, 1, 2);

 // Prints "posFound = 6"
 Console.WriteLine("posFound = " + posFound);

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.2.6.21 Seek
Overrides Stream

This instance method sets the position on the current LOB stream.

Declaration

// C#
public override Int64 Seek(Int64 offset, SeekOrigin origin);

Parameters

• offset

A byte offset relative to origin.

Chapter 13
OracleBlob Class

13-57

• origin

A value of type System.IO.SeekOrigin indicating the reference point used to obtain
the new position.

Return Value

Returns Int64 for the position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

If offset is negative, the new position precedes the position specified by origin by the
number of bytes specified by offset.

If offset is zero, the new position is the position specified by origin.

If offset is positive, the new position follows the position specified by origin by the
number of bytes specified by offset.

SeekOrigin.Begin specifies the beginning of a stream.

SeekOrigin.Current specifies the current position within a stream.

SeekOrigin.End specifies the end of a stream.

13.2.6.22 SetLength
Overrides Stream

This instance method trims or truncates the BLOB value to the specified length (in
bytes).

Declaration

// C#
public override void SetLength(Int64 newlen);

Parameters

• newlen

The desired length of the current stream in bytes.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The newlen parameter is less than 0.

Chapter 13
OracleBlob Class

13-58

13.2.6.23 Write
Overrides Stream

This instance method writes the supplied buffer into the OracleBlob.

Declaration

// C#
public override void Write(byte[] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer that provides the data.

• offset

The 0-based offset (in bytes) from which the buffer is read.

• count

The amount of data (in bytes) that is to be written into the OracleBlob.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset or the count is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than buffer.Length.

Remarks

Destination offset in the OracleBlob can be specified by the Position property.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class WriteSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleBlob blob = new OracleBlob(con);

Chapter 13
OracleBlob Class

13-59

 // Set the Position for the Write
 blob.Position = 0;

 // Begin ChunkWrite to improve performance
 // Index updates occur only once after EndChunkWrite
 blob.BeginChunkWrite();

 // Write to the OracleBlob in 5 chunks of 2 bytes each
 byte[] b = new byte[2] {1, 2};
 for(int index = 0; index < 5; index++)
 {
 blob.Write(b, 0, b.Length);
 }
 blob.EndChunkWrite();

 byte[] chunkBuffer = blob.Value;

 // Prints "chunkBuffer = 1212121212"
 Console.Write("chunkBuffer = ");
 for(int index = 0; index < chunkBuffer.Length; index++)
 {
 Console.Write(chunkBuffer[index]);
 }
 Console.WriteLine();

 blob.Close();
 blob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.3 OracleClob Class
An OracleClob is an object that has a reference to CLOB data. It provides methods for
performing operations on CLOBs.

Note:

The OracleClob object uses the client side character set when retrieving or
writing CLOB data using a .NET Framework byte array.

Class Inheritance

System.Object

 System.MarshalByRefObject

 System.IO.Stream

 Oracle.DataAccess.Types.OracleClob

Chapter 13
OracleClob Class

13-60

Declaration

// C#
public sealed class OracleClob : Stream, ICloneable, INullable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleClobSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob = new OracleClob(con);

 // Write 4 chars from writeBuffer, starting at buffer offset 0
 char[] writeBuffer = new char[4] {'a', 'b', 'c', 'd'};
 clob.Write(writeBuffer, 0, 4);

 // Append first 2 chars from writeBuffer {'a', 'b'} to the oracleClob
 clob.Append(writeBuffer, 0, 2);

 // Prints "clob.Length = 12"
 Console.WriteLine("clob.Length = " + clob.Length);

 // Reset the Position for the Read
 clob.Position = 0;

 // Read 6 chars into readBuffer, starting at buffer offset 0
 char[] readBuffer = new char[6];
 int charsRead = clob.Read(readBuffer, 0, 6);

 // Prints "charsRead = 6"
 Console.WriteLine("charsRead = " + charsRead);

 // Prints "readBuffer = abcdab"
 Console.Write("readBuffer = ");

Chapter 13
OracleClob Class

13-61

 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 // Search for the 2nd occurrence of a char pattern 'ab'
 // starting from char offset 0 in the OracleClob
 char[] pattern = new char[2] {'a', 'b'};
 long posFound = clob.Search(pattern, 0, 2);

 // Prints "posFound = 5"
 Console.WriteLine("posFound = " + posFound);

 // Erase 4 chars of data starting at char offset 1
 // Sets chars to ''
 clob.Erase(1, 4);

 //Prints "clob.Value = a b"
 Console.WriteLine("clob.Value = " + clob.Value);

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.3.1 OracleClob Members
OracleClob members are listed in the following tables.

OracleClob Constructors

OracleClob constructors are listed in Table 13-19.

Table 13-19 OracleClob Constructors

Constructor Description

OracleClob Constructors Creates an instance of the OracleClob class bound
to a temporary CLOB (Overloaded)

OracleClob Static Fields

OracleClob static fields are listed in Table 13-20.

Table 13-20 OracleClob Static Fields

Field Description

MaxSize Holds the maximum number of bytes a CLOB can
hold, which is 4,294,967,295 (2^32 - 1) bytes

Null Represents a null value that can be assigned to the
value of an OracleClob instance

Chapter 13
OracleClob Class

13-62

OracleClob Static Methods

OracleClob static methods are listed in Table 13-21.

Table 13-21 OracleClob Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleClob Instance Properties

OracleClob instance properties are listed in Table 13-22.

Table 13-22 OracleClob Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be
read

CanSeek Indicates whether or not forward and backward seek
operations can be performed

CanWrite Indicates whether or not the LOB stream can be
written

Connection Indicates the OracleConnection that is used to
retrieve and write CLOB data

IsEmpty Indicates whether the CLOB is empty or not

IsInChunkWriteMode Indicates whether or not the CLOB has been opened

IsNClob Indicates whether or not the OracleClob object
represents an NCLOB.

IsNull Indicates whether or not the current instance has a
null value

IsTemporary Indicates whether or not the current instance is
bound to a temporary CLOB

Length Indicates the size of the CLOB data in bytes

OptimumChunkSize Indicates the minimum number of bytes to retrieve
or send from the database during a read or write
operation

Position Indicates the current read or write position in the
LOB stream in bytes

Value Returns the data, starting from the first character in
the CLOB or NCLOB, as a string

OracleClob Instance Methods

The OracleClob instance methods are listed in Table 13-23.

Chapter 13
OracleClob Class

13-63

Table 13-23 OracleClob Instance Methods

Methods Description

Append Appends data to the current OracleClob instance
(Overloaded)

BeginChunkWrite Opens the CLOB

BeginRead Inherited from System.IO.Stream

BeginWrite Inherited from System.IO.Stream

Clone Creates a copy of an OracleClob object

Close Closes the current stream and releases resources
associated with it

Compare Compares data referenced by the current instance to
that of the supplied object

CopyTo Copies the data to an OracleClob (Overloaded)

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases resources allocated by this object

EndChunkWrite Closes the CLOB referenced by the current
OracleClob instance

EndRead Inherited from System.IO.Stream

EndWrite Inherited from System.IO.Stream

Equals Inherited from System.Object (Overloaded)

Erase Erases the specified amount of data (Overloaded)

Flush Not supported

GetHashCode Returns a hash code for the current instance

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

IsEqual Compares the LOB data referenced by two
OracleClobs

Read Reads from the current instance (Overloaded)

ReadByte Inherited from System.IO.Stream

Search Searches for a character pattern in the current
instance of OracleClob (Overloaded)

Seek Sets the position in the current LOB stream

SetLength Trims or truncates the CLOB value

ToString Inherited from System.Object

Write Writes the provided buffer into the OracleClob
(Overloaded)

WriteByte Inherited from System.IO.Stream

Chapter 13
OracleClob Class

13-64

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleClob Class

13.3.2 OracleClob Constructors
OracleClob constructors create instances of the OracleClob class bound to a temporary
CLOB.

Overload List:

• OracleClob(OracleConnection)

This constructor creates an instance of the OracleClob class bound to a temporary
CLOB with an OracleConnection object.

• OracleClob(OracleConnection, bool, bool)

This constructor creates an instance of the OracleClob class that is bound to a
temporary CLOB, with an OracleConnection object, a boolean value for caching, and
a boolean value for NCLOB.

13.3.2.1 OracleClob(OracleConnection)
This constructor creates an instance of the OracleClob class bound to a temporary CLOB
with an OracleConnection object.

Declaration

// C#
public OracleClob(OracleConnection con);

Parameters

• con

The OracleConnection object.

Exceptions

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The connection must be opened explicitly by the application. OracleClob does not open
the connection implicitly. The temporary CLOB utilizes the provided connection to store
CLOB data. Caching is not enabled by default.

Chapter 13
OracleClob Class

13-65

13.3.2.2 OracleClob(OracleConnection, bool, bool)
This constructor creates an instance of the OracleClob class that is bound to a
temporary CLOB, with an OracleConnection object, a boolean value for caching, and a
boolean value for NCLOB.

Declaration

// C#
public OracleClob(OracleConnection con, bool bCaching, bool bNCLOB);

Parameters

• con

The OracleConnection object connection.

• bCaching

A flag that indicates whether or not server-side caching is enabled.

• bNCLOB

A flag that is set to true if the instance is a NCLOB or false if it is a CLOB.

Exceptions

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The connection must be opened explicitly by the application. OracleClob does not open
the connection implicitly. The temporary CLOB or NCLOB uses the provided connection to
store CLOB data.

13.3.3 OracleClob Static Fields
OracleClob static fields are listed in Table 13-24.

Table 13-24 OracleClob Static Fields

Field Description

MaxSize Holds the maximum number of bytes a CLOB can hold, which is 4,294,967,295
(2^32 - 1) bytes

Null Represents a null value that can be assigned to the value of an OracleClob
instance

13.3.3.1 MaxSize
The MaxSize field holds the maximum number of bytes a CLOB can hold, which is
4,294,967,295 (2^32 - 1) bytes.

Chapter 13
OracleClob Class

13-66

Declaration

// C#
public static readonly Int64 MaxSize = 4294967295;

Remarks

This field is useful in code that checks whether or not your operation exceeds the
maximum length (in bytes) allowed.

13.3.3.2 Null
This static field represents a null value that can be assigned to the value of an
OracleClob instance.

Declaration

// C#
public static readonly OracleClob Null;

13.3.4 OracleClob Static Methods
OracleClob static methods are listed in Table 13-25.

Table 13-25 OracleClob Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

13.3.5 OracleClob Instance Properties
OracleClob instance properties are listed in Table 13-26.

Table 13-26 OracleClob Instance Properties

Properties Description

CanRead Indicates whether or not the LOB stream can be read

CanSeek Indicates whether or not forward and backward seek operations can
be performed

CanWrite Indicates whether or not the LOB stream can be written

Connection Indicates the OracleConnection that is used to retrieve and write
CLOB data

IsEmpty Indicates whether the CLOB is empty or not

IsInChunkWriteMode Indicates whether or not the CLOB has been opened

IsNClob Indicates whether or not the OracleClob object represents an
NCLOB.

IsNull Indicates whether or not the current instance has a null value

Chapter 13
OracleClob Class

13-67

Table 13-26 (Cont.) OracleClob Instance Properties

Properties Description

IsTemporary Indicates whether or not the current instance is bound to a
temporary CLOB

Length Indicates the size of the CLOB data in bytes

OptimumChunkSize Indicates the minimum number of bytes to retrieve or send from the
database during a read or write operation

Position Indicates the current read or write position in the LOB stream in
bytes

Value Returns the data, starting from the first character in the CLOB or
NCLOB, as a string

13.3.5.1 CanRead
Overrides Stream

This instance property indicates whether or not the LOB stream can be read.

Declaration

// C#
public override bool CanRead{get;}

Property Value

If the LOB stream can be read, returns true; otherwise, returns false.

13.3.5.2 CanSeek
Overrides Stream

This instance property indicates whether or not forward and backward seek operations
can be performed.

Declaration

// C#
public override bool CanSeek{get;}

Property Value

If forward and backward seek operations can be performed, returns true; otherwise,
returns false.

13.3.5.3 CanWrite
Overrides Stream

This instance property indicates whether or not the LOB object supports writing.

Chapter 13
OracleClob Class

13-68

Declaration

// C#
public override bool CanWrite{get;}

Property Value

If the LOB stream can be written, returns true; otherwise, returns false.

13.3.5.4 Connection
This instance property indicates the OracleConnection that is used to retrieve and write
CLOB data.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

13.3.5.5 IsEmpty
This instance property indicates whether the CLOB is empty or not.

Declaration

// C#
public bool IsEmpty {get;}

Property Value

A bool.

Exceptions

ObjectDisposedException - The object is already disposed.

13.3.5.6 IsInChunkWriteMode
This instance property indicates whether or not the CLOB has been opened to defer
index updates.

Declaration

// C#
public bool IsInChunkWriteMode{get;}

Chapter 13
OracleClob Class

13-69

Property Value

If the CLOB has been opened, returns true; otherwise, returns false.

13.3.5.7 IsNClob
This instance property indicates whether or not the OracleClob object represents an
NClob.

Declaration

// C#
public bool IsNClob {get;}

Property Value

A bool.

13.3.5.8 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

13.3.5.9 IsTemporary
This instance property indicates whether or not the current instance is bound to a
temporary CLOB.

Declaration

// C#
public bool IsTemporary {get;}

Property Value

A bool.

13.3.5.10 Length
Overrides Stream

This instance property indicates the size of the CLOB data in bytes.

Chapter 13
OracleClob Class

13-70

Declaration

// C#
public override Int64 Length {get;}

Property Value

An Int64 that indicates the size of the CLOB in bytes.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

13.3.5.11 OptimumChunkSize
This instance property indicates the minimum number of bytes to retrieve or send from
the database during a read or write operation.

Declaration

// C#
public int OptimumChunkSize{get;}

Property Value

A number representing the minimum bytes to retrieve or send.

Exceptions

ObjectDisposedException - The object is already disposed.

13.3.5.12 Position
Overrides Stream

This instance property indicates the current read or write position in the LOB stream in
bytes.

Declaration

// C#
public override Int64 Position{get; set;}

Property Value

An Int64 that indicates the read or write position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 13
OracleClob Class

13-71

ArgumentOutOfRangeException - The Position is less than 0.

13.3.5.13 Value
This instance property returns the data, starting from the first character in the CLOB or
NCLOB, as a string.

Declaration

// C#
public string Value{get;}

Property Value

A string.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The Value is less than 0.

Remarks

The value of Position is neither used nor changed by using this property.

The maximum string length that can be returned by this property is 2 GB.

13.3.6 OracleClob Instance Methods
The OracleClob instance methods are listed in Table 13-27.

Table 13-27 OracleClob Instance Methods

Methods Description

Append Appends data to the current OracleClob instance
(Overloaded)

BeginChunkWrite Opens the CLOB

BeginRead Inherited from System.IO.Stream

BeginWrite Inherited from System.IO.Stream

Clone Creates a copy of an OracleClob object

Close Closes the current stream and releases resources
associated with it

Compare Compares data referenced by the current instance to that
of the supplied object

CopyTo Copies the data to an OracleClob (Overloaded)

CreateObjRef Inherited from System.MarshalByRefObject

Dispose Releases resources allocated by this object

Chapter 13
OracleClob Class

13-72

Table 13-27 (Cont.) OracleClob Instance Methods

Methods Description

EndChunkWrite Closes the CLOB referenced by the current OracleClob
instance

EndRead Inherited from System.IO.Stream

EndWrite Inherited from System.IO.Stream

Equals Inherited from System.Object (Overloaded)

Erase Erases the specified amount of data (Overloaded)

Flush Not supported

GetHashCode Returns a hash code for the current instance

GetLifetimeService Inherited from System.MarshalByRefObject

GetType Inherited from System.Object

InitializeLifetimeService Inherited from System.MarshalByRefObject

IsEqual Compares the LOB data referenced by two OracleClobs

Read Reads from the current instance (Overloaded)

ReadByte Inherited from System.IO.Stream

Search Searches for a character pattern in the current instance of
OracleClob (Overloaded)

Seek Sets the position in the current LOB stream

SetLength Trims or truncates the CLOB value

ToString Inherited from System.Object

Write Writes the provided buffer into the OracleClob
(Overloaded)

WriteByte Inherited from System.IO.Stream

13.3.6.1 Append
This instance method appends data to the current OracleClob instance.

Overload List:

• Append(OracleClob)

This instance method appends the CLOB data referenced by the provided
OracleClob object to the current OracleClob instance.

• Append(byte [], int, int)

This instance method appends data at the end of the CLOB, from the supplied byte
array buffer, starting from offset (in bytes) of the supplied byte array buffer.

• Append(char [], int, int)

This instance method appends data from the supplied character array buffer to the
end of the current OracleClob instance, starting at the offset (in characters) of the
supplied character buffer.

Chapter 13
OracleClob Class

13-73

13.3.6.2 Append(OracleClob)
This instance method appends the CLOB data referenced by the provided OracleClob
object to the current OracleClob instance.

Declaration

// C#
public void Append(OracleClob obj);

Parameters

• obj

An OracleClob object.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the object,
OracleConnection is not opened, or OracleConnection has been reopened.

Remarks

No character set conversions are made.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.3.6.3 Append(byte [], int, int)
This instance method appends data at the end of the CLOB, from the supplied byte
array buffer, starting from offset (in bytes) of the supplied byte array buffer.

Declaration

// C#
public int Append(byte[] buffer, int offset, int count);

Parameters

• buffer

An array of bytes, representing a Unicode string.

• offset

The zero-based byte offset in the buffer from which data is read.

• count

The number of bytes to be appended.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 13
OracleClob Class

13-74

ArgumentOutOfRangeException - Either the offset or the count parameter is not even.

Remarks

Both offset and count must be even numbers for CLOB and NCLOB because every two
bytes represent a Unicode character.

13.3.6.4 Append(char [], int, int)
This instance method appends data from the supplied character array buffer to the end
of the current OracleClob instance, starting at the offset (in characters) of the supplied
character buffer.

Declaration

// C#
public void Append(char[] buffer, int offset, int count);

Parameters

• buffer

An array of characters.

• offset

The zero-based offset (in characters) in the buffer from which data is read.

• count

The number of characters to be appended.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class AppendSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob = new OracleClob(con);

 // Append 2 chars {'d', 'e'} to the OracleClob
 char[] buffer = new char[3] {'d', 'e', 'f'};
 clob.Append(buffer, 0, 2);

Chapter 13
OracleClob Class

13-75

 // Prints "clob.Value = de"
 Console.WriteLine("clob.Value = " + clob.Value);

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.3.6.5 BeginChunkWrite
This instance method opens the CLOB.

Declaration

// C#
public void BeginChunkWrite();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

BeginChunkWrite does not need to be called before manipulating the CLOB data. This is
provided for performance reasons.

After this method is called, write operations do not cause the domain or function-based
index on the column to be updated. Index updates occur only once after EndChunkWrite
is called.

13.3.6.6 Clone
This instance method creates a copy of an OracleClob object.

Declaration

// C#
public object Clone();

Return Value

An OracleClob object.

Implements

ICloneable

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 13
OracleClob Class

13-76

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CloneSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob1 = new OracleClob(con);

 // Prints "clob1.Position = 0"
 Console.WriteLine("clob1.Position = " + clob1.Position);

 // Set the Position before calling Clone()
 clob1.Position = 1;

 // Clone the OracleClob
 OracleClob clob2 = (OracleClob)clob1.Clone();

 // Prints "clob2.Position = 1"
 Console.WriteLine("clob2.Position = " + clob2.Position);

 clob1.Close();
 clob1.Dispose();

 clob2.Close();
 clob2.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.3.6.7 Close
Overrides Stream

This instance method closes the current stream and releases resources associated
with it.

Declaration

// C#
public override void Close();

Chapter 13
OracleClob Class

13-77

13.3.6.8 Compare
This instance method compares data referenced by the current instance to that of the
supplied object.

Declaration

// C#
public int Compare(Int64 src_offset, OracleClob obj, Int64 dst_offset,
 Int64 amount);

Parameters

• src_offset

The comparison starting point (in characters) for the current instance.

• obj

The provided OracleClob object.

• dst_offset

The comparison starting point (in characters) for the provided OracleClob.

• amount

The number of characters to compare.

Return Value

The method returns a value that is:

• Less than zero: if the data referenced by the current instance is less than that of
the supplied instance.

• Zero: if both objects reference the same data.

• Greater than zero: if the data referenced by the current instance is greater than
that of the supplied instance.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the object,
OracleConnection is not opened, or OracleConnection has been reopened.

ArgumentOutOfRangeException - Either the src_offset, dst_offset, or amount parameter is
less than 0.

Remarks

The character set of the two OracleClob objects being compared should be the same
for a meaningful comparison.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

Chapter 13
OracleClob Class

13-78

13.3.6.9 CopyTo
CopyTo copies data from the current instance to the provided OracleClob object.

Overload List:

• CopyTo(OracleClob)

This instance method copies data from the current instance to the provided
OracleClob object.

• CopyTo(OracleClob, Int64)

This instance method copies data from the current OracleClob instance to the
provided OracleClob object with the specified destination offset.

• CopyTo(Int64, OracleClob, Int64, Int64)

This instance method copies data from the current OracleClob instance to the
provided OracleClob object with the specified source offset, destination offset, and
character amounts.

13.3.6.10 CopyTo(OracleClob)
This instance method copies data from the current instance to the provided OracleClob
object.

Declaration

// C#
public Int64 CopyTo(OracleClob obj);

Parameters

• obj

The OracleClob object to which the data is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

Chapter 13
OracleClob Class

13-79

13.3.6.11 CopyTo(OracleClob, Int64)
This instance method copies data from the current OracleClob instance to the provided
OracleClob object with the specified destination offset.

Declaration

// C#
public Int64 CopyTo(OracleClob obj, Int64 dst_offset);

Parameters

• obj

The OracleClob object to which the data is copied.

• dst_offset

The offset (in characters) at which the OracleClob object is copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

ArgumentOutOfRangeException - The dst_offset is less than 0.

InvalidOperationException - This exception is thrown if any of the following conditions
exist:

• The OracleConnection is not open or has been closed during the lifetime of the
object.

• The LOB object parameter has a different connection than the object.

Remarks

If the dst_offset is beyond the end of the OracleClob data, spaces are written into the
OracleClob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection; that
is, the same OracleConnection object.

13.3.6.12 CopyTo(Int64, OracleClob, Int64, Int64)
This instance method copies data from the current OracleClob instance to the provided
OracleClob object with the specified source offset, destination offset, and character
amounts.

Declaration

// C#
public Int64 CopyTo(Int64 src_offset,OracleClob obj,Int64 dst_offset,
 Int64 amount);

Chapter 13
OracleClob Class

13-80

Parameters

• src_offset

The offset (in characters) in the current instance, from which the data is read.

• obj

The OracleClob object to which the data is copied.

• dst_offset

The offset (in characters) at which the OracleClob object is copied.

• amount

The amount of data to be copied.

Return Value

The return value is the amount copied.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The parameter has a different connection than the object,
OracleConnection is not opened, or OracleConnection has been reopened.

ArgumentOutOfRangeException - The src_offset, the dst_offset, or the amount parameter
is less than 0.

Remarks

If the dst_offset is beyond the end of the OracleClob data, spaces are written into the
OracleClob until the dst_offset is met.

The offsets are 0-based. No character conversion is performed by this operation.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class CopyToSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob1 = new OracleClob(con);
 OracleClob clob2 = new OracleClob(con);

 // Write 4 chars, starting at buffer offset 0

Chapter 13
OracleClob Class

13-81

 char[] buffer = new char[4] {'a', 'b', 'c', 'd'};
 clob1.Write(buffer, 0, 4);

 // Copy 2 chars from char 0 of clob1 to char 1 of clob2
 clob1.CopyTo(0, clob2, 1, 2);

 //Prints "clob2.Value = ab"
 Console.WriteLine("clob2.Value = " + clob2.Value);

 clob1.Close();
 clob1.Dispose();

 clob2.Close();
 clob2.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.3.6.13 Dispose
This instance method releases resources allocated by this object.

Declaration

public void Dispose();

Implements

IDisposable

Remarks

The object cannot be reused after being disposed. Although some properties can still
be accessed, their values cannot be accountable. Since resources are freed, method
calls can lead to exceptions.

13.3.6.14 EndChunkWrite
This instance method closes the CLOB referenced by the current OracleClob instance.

Declaration

// C#
public void EndChunkWrite();

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 13
OracleClob Class

13-82

Remarks

Index updates occur immediately if write operation(s) are deferred by the
BeginChunkWrite method.

13.3.6.15 Erase
Erase erases part or all data.

Overload List:

• Erase()

This instance method erases all data.

• Erase(Int64, Int64)

This instance method replaces the specified amount of data (in characters) starting
from the specified offset with zero-byte fillers (in characters).

13.3.6.16 Erase()
This instance method erases all data.

Declaration

// C#
public Int64 Erase();

Return Value

The number of characters erased.

13.3.6.17 Erase(Int64, Int64)
This instance method replaces the specified amount of data (in characters) starting from
the specified offset with zero-byte fillers (in characters).

Declaration

// C#
public Int64 Erase(Int64 offset, Int64 amount);

Parameters

• offset

The offset.

• amount

The amount of data.

Return Value

The actual number of characters erased.

Chapter 13
OracleClob Class

13-83

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The offset or amount parameter is less than 0.

13.3.6.18 Flush
This method is not supported.

13.3.6.19 GetHashCode
Overrides Object

This method returns a hash code for the current instance.

Declaration

// C#
public override int GetHashCode();

Return Value

An int representing a hash code.

13.3.6.20 IsEqual
This instance method compares the LOB data referenced by two OracleClobs.

Declaration

// C#
public bool IsEqual(OracleClob obj);

Parameters

• obj

An OracleClob object.

Return Value

Returns true if the current OracleClob and the provided OracleClob refer to the same
LOB. Otherwise, returns false.

Remarks

Note that this method can return true even if the two OracleClob objects returns false
for == or Equals() because two different OracleClob instances can refer to the same
LOB.

The provided object and the current instance must be using the same connection, that
is, the same OracleConnection object.

Chapter 13
OracleClob Class

13-84

13.3.6.21 Read
Read reads a specified amount from the current instance and populates the array
buffer.

Overload List:

• Read(byte [], int, int)

This instance method reads a specified amount of bytes from the current instance
and populates the byte array buffer.

• Read(char [], int, int)

This instance method reads a specified amount of characters from the current
instance and populates the character array buffer.

13.3.6.22 Read(byte [], int, int)
Overrides Stream

This instance method reads a specified amount of bytes from the current instance and
populates the byte array buffer.

Declaration

// C#
public override int Read(byte [] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer that is populated.

• offset

The offset (in bytes) at which the buffer is populated.

• count

The amount of bytes to be read.

Return Value

The number of bytes read from the CLOB.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Remarks

Both offset and count must be even numbers for CLOB and NCLOB because every two
bytes represent a Unicode character.

Chapter 13
OracleClob Class

13-85

The LOB data is read starting from the position specified by the Position property,
which must also be an even number.

OracleClob is free to return fewer bytes than requested, even if the end of the stream
has not been reached.

13.3.6.23 Read(char [], int, int)
This instance method reads a specified amount of characters from the current instance
and populates the character array buffer.

Declaration

// C#
public int Read(char[] buffer, int offset, int count);

Parameters

• buffer

The character array buffer that is populated.

• offset

The offset (in characters) at which the buffer is populated.

• count

The amount of characters to be read.

Return Value

The return value indicates the number of characters read from the CLOB.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset or the count is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than buffer.Length.

Remarks

Handles all CLOB and NCLOB data as Unicode.

The LOB data is read starting from the position specified by the Position property.

Example

// C#

using System;
using Oracle.DataAccess.Client;

Chapter 13
OracleClob Class

13-86

using Oracle.DataAccess.Types;

class ReadSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob = new OracleClob(con);

 // Write 3 chars, starting at buffer offset 1
 char[] writeBuffer = new char[4] {'a', 'b', 'c', 'd'};
 clob.Write(writeBuffer, 1, 3);

 // Reset the Position (in bytes) for Read
 clob.Position = 2;

 // Read 2 chars into buffer starting at buffer offset 1
 char[] readBuffer = new char[4];
 int charsRead = clob.Read(readBuffer, 1, 2);

 // Prints "charsRead = 2"
 Console.WriteLine("charsRead = " + charsRead);

 // Prints "readBuffer = cd "
 Console.Write("readBuffer = ");
 for(int index = 0; index < readBuffer.Length; index++)
 {
 Console.Write(readBuffer[index]);
 }
 Console.WriteLine();

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.3.6.24 Search
Search searches for a character pattern in the current instance of OracleClob.

Overload List:

• Search(byte[], Int64, Int64)

This instance method searches for a character pattern, represented by the byte
array, in the current instance of OracleClob.

• Search(char[], Int64, Int64)

This instance method searches for a character pattern in the current instance of
OracleClob.

Chapter 13
OracleClob Class

13-87

13.3.6.25 Search(byte[], Int64, Int64)
This instance method searches for a character pattern, represented by the byte array,
in the current instance of OracleClob.

Declaration

// C#
public int Search(byte[] val, Int64 offset, Int64 nth);

Parameters

• val

A Unicode byte array.

• offset

The 0-based offset (in characters) starting from which the OracleClob is searched.

• nth

The specific occurrence (1-based) of the match for which the absolute offset (in
characters) is returned.

Return Value

Returns the absolute offset of the start of the matched pattern (in bytes) for the nth
occurrence of the match. Otherwise, 0 is returned.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset is less than 0.

• The nth is less than or equal to 0.

• The nth is greater than or equal to OracleClob.MaxSize.

• The offset is greater than or equal to OracleClob.MaxSize.

Remarks

The byte[] is converted to Unicode before the search is made.

The limit of the search pattern is 16383 bytes.

13.3.6.26 Search(char[], Int64, Int64)
This instance method searches for a character pattern in the current instance of
OracleClob.

Chapter 13
OracleClob Class

13-88

Declaration

// C#
public Int64 Search(char [] val, Int64 offset, Int64 nth);

Parameters

• val

The Unicode string being searched for.

• offset

The 0-based offset (in characters) starting from which the OracleClob is searched.

• nth

The specific occurrence (1-based) of the match for which the absolute offset (in
characters) is returned.

Return Value

Returns the absolute offset of the start of the matched pattern (in characters) for the
nth occurrence of the match. Otherwise, 0 is returned.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset is less than 0.

• The nth is less than or equal to 0.

• The val.Length doubled is greater than 16383.

• The nth is greater than or equal to OracleClob.MaxSize.

• The offset is greater than or equal to OracleClob.MaxSize.

Remarks

The limit of the search pattern is 16383 bytes.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class SearchSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);

Chapter 13
OracleClob Class

13-89

 con.Open();

 OracleClob clob = new OracleClob(con);

 // Write 7 chars, starting at buffer offset 0
 char[] buffer = new char[7] {'a', 'b', 'c', 'd', 'a', 'b', 'c'};
 clob.Write(buffer, 0, 7);

 // Search for the 2nd occurrence of a char pattern 'bc'
 // starting at offset 1 in the OracleBlob
 char[] pattern = new char[2] {'b', 'c'};
 long posFound = clob.Search(pattern, 1, 2);

 // Prints "posFound = 6"
 Console.WriteLine("posFound = " + posFound);

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.3.6.27 Seek
Overrides Stream

This instance method sets the position on the current LOB stream.

Declaration

// C#
public override Int64 Seek(Int64 offset, SeekOrigin origin);

Parameters

• offset

A byte offset relative to origin.

• origin

A value of type System.IO.SeekOrigin indicating the reference point used to obtain
the new position.

Return Value

Returns an Int64 that indicates the position.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

Chapter 13
OracleClob Class

13-90

Remarks

If offset is negative, the new position precedes the position specified by origin by the
number of characters specified by offset.

If offset is zero, the new position is the position specified by origin.

If offset is positive, the new position follows the position specified by origin by the
number of characters specified by offset.

SeekOrigin.Begin specifies the beginning of a stream.

SeekOrigin.Current specifies the current position within a stream.

SeekOrigin.End specifies the end of a stream.

13.3.6.28 SetLength
Overrides Stream

This instance method trims or truncates the CLOB value to the specified length (in
characters).

Declaration

// C#
public override void SetLength(Int64 newlen);

Parameters

• newlen

The desired length of the current stream in characters.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - The newlen parameter is greater than 0.

13.3.6.29 Write
This instance method writes data from the provided array buffer into the OracleClob.

Overload List:

• Write(byte[], int, int)

This instance method writes data from the provided byte array buffer into the
OracleClob.

• Write(char[], int, int)

This instance method writes data from the provided character array buffer into the
OracleClob.

Chapter 13
OracleClob Class

13-91

13.3.6.30 Write(byte[], int, int)
Overrides Stream

This instance method writes data from the provided byte array buffer into the
OracleClob.

Declaration

// C#
public override void Write(byte[] buffer, int offset, int count);

Parameters

• buffer

The byte array buffer that represents a Unicode string.

• offset

The offset (in bytes) from which the buffer is read.

• count

The amount of data (in bytes) from the buffer to be written into the OracleClob.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset or the count is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than the buffer.Length.

• The offset, the count, or the Position is not even.

Remarks

Both offset and count must be even numbers for CLOB and NCLOB because every two
bytes represent a Unicode character.

The LOB data is read starting from the position specified by the Position property. The
Position property must be an even number.

If necessary, proper data conversion is carried out from the client character set to the
database character set.

13.3.6.31 Write(char[], int, int)
This instance method writes data from the provided character array buffer into the
OracleClob.

Chapter 13
OracleClob Class

13-92

Declaration

// C#
public void Write(char[] buffer, int offset, int count);

Parameters

• buffer

The character array buffer that is written to the OracleClob.

• offset

The offset (in characters) from which the buffer is read.

• count

The amount (in characters) from the buffer that is to be written into the OracleClob.

Exceptions

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

ArgumentOutOfRangeException - This exception is thrown if any of the following
conditions exist:

• The offset or the count is less than 0.

• The offset is greater than or equal to the buffer.Length.

• The offset and the count together are greater than buffer.Length.

• The Position is not even.

Remarks

Handles all CLOB and NCLOB data as Unicode.

The LOB data is read starting from the position specified by the Position property.

If necessary, proper data conversion is carried out from the client character set to the
database character set.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class WriteSample
{
 static void Main()
 {
 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 OracleClob clob = new OracleClob(con);

Chapter 13
OracleClob Class

13-93

 // Set the Position for the Write;
 clob.Position = 0;

 // Begin ChunkWrite to improve performance
 // Index updates occur only once after EndChunkWrite
 clob.BeginChunkWrite();

 // Write to the OracleClob in 5 chunks of 2 chars each
 char[] c = new char[2] {'a', 'b'};
 for (int index = 0; index < 5; index++)
 {
 clob.Write(c, 0, c.Length);
 }
 clob.EndChunkWrite();

 // Prints "clob.Value = ababababab"
 Console.WriteLine("clob.Value = " + clob.Value);

 clob.Close();
 clob.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.4 OracleRefCursor Class
An OracleRefCursor object represents an Oracle REF CURSOR..

Class Inheritance

System.Object

 System.MarshalRefByObject

 Oracle.DataAccess.Types.OracleRefCursor

Declaration

// C#
public sealed class OracleRefCursor : MarshalByRefObject, IDisposable, INullable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 13
OracleRefCursor Class

13-94

Remarks

To minimize the number of open server cursors, OracleRefReader objects should be
explicitly disposed.

Example

// Database Setup
/*
connect scott/tiger@oracle
CREATE OR REPLACE FUNCTION MyFunc(refcur_out OUT SYS_REFCURSOR)
 RETURN SYS_REFCURSOR IS refcur_ret SYS_REFCURSOR;
BEGIN
 OPEN refcur_ret FOR SELECT * FROM EMP;
 OPEN refcur_out FOR SELECT * FROM DEPT;
 RETURN refcur_ret;
END MyFunc;
/
*/

// C#

using System;
using System.Data;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleRefCursorSample
{
 static void Main()
 {
 // Example demonstrates how to use REF CURSORs returned from
 // PL/SQL Stored Procedures or Functions
 // Create the PL/SQL Function MyFunc as defined previously

 string constr = "User Id=scott;Password=tiger;Data Source=oracle";
 OracleConnection con = new OracleConnection(constr);
 con.Open();

 // Create an OracleCommand
 OracleCommand cmd = new OracleCommand("MyFunc", con);
 cmd.CommandType = CommandType.StoredProcedure;

 // Bind the parameters
 // p1 is the RETURN REF CURSOR bound to SELECT * FROM EMP;
 OracleParameter p1 =
 cmd.Parameters.Add("refcur_ret", OracleDbType.RefCursor);
 p1.Direction = ParameterDirection.ReturnValue;

 // p2 is the OUT REF CURSOR bound to SELECT * FROM DEPT
 OracleParameter p2 =
 cmd.Parameters.Add("refcur_out", OracleDbType.RefCursor);
 p2.Direction = ParameterDirection.Output;

 // Execute the command
 cmd.ExecuteNonQuery();

 // Construct an OracleDataReader from the REF CURSOR
 OracleDataReader reader1 = ((OracleRefCursor)p1.Value).GetDataReader();

Chapter 13
OracleRefCursor Class

13-95

 // Prints "reader1.GetName(0) = EMPNO"
 Console.WriteLine("reader1.GetName(0) = " + reader1.GetName(0));

 // Construct an OracleDataReader from the REF CURSOR
 OracleDataReader reader2 = ((OracleRefCursor)p2.Value).GetDataReader();

 // Prints "reader2.GetName(0) = DEPTNO"
 Console.WriteLine("reader2.GetName(0) = " + reader2.GetName(0));

 reader1.Close();
 reader1.Dispose();

 reader2.Close();
 reader2.Dispose();

 p1.Dispose();
 p2.Dispose();

 cmd.Dispose();

 con.Close();
 con.Dispose();
 }
}

13.4.1 OracleRefCursor Members
OracleRefCursor members are listed in the following tables.

OracleRefCursor Static Methods

OracleRefCursor static methods are listed in Table 13-28.

Table 13-28 OracleRefCursor Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleRefCursor Static Fields

OracleRefCursor static field is listed in Table 13-29.

Table 13-29 OracleRefCursor Static Field

Methods Description

Null Represents a null value that can be assigned to an
OracleRefCursor instance

OracleRefCursor Properties

OracleRefCursor properties are listed in Table 13-30.

Chapter 13
OracleRefCursor Class

13-96

Table 13-30 OracleRefCursor Properties

Properties Description

Connection A reference to the OracleConnection used to fetch
the REF CURSOR data

FetchSize Specifies the size that the OracleDataReader
internal cache needs to store result set data

IsNull Indicates whether or not the OracleRefCursor is null

RowSize Specifies the amount of memory the
OracleRefcursor internal cache needs to store one
row of data

OracleRefCursor Instance Methods

OracleRefCursor instance methods are listed in Table 13-31.

Table 13-31 OracleRefCursor Instance Methods

Methods Description

Dispose Disposes the resources allocated by the
OracleRefCursor object

Equals Inherited from System.Object (Overloaded)

GetDataReader Returns an OracleDataReader object for the REF
CURSOR

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

13.4.2 OracleRefCursor Static Methods
OracleRefCursor static methods are listed in Table 13-32.

Table 13-32 OracleRefCursor Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

13.4.3 OracleRefCursor Static Fields
OracleRefCursor static field is listed in Table 13-32.

Chapter 13
OracleRefCursor Class

13-97

Table 13-33 OracleRefCursor Static Field

Methods Description

Null Represents a null value that can be assigned to an
OracleRefCursor instance

13.4.3.1 Null
This static field represents a null value that can be assigned to an OracleRefCursor
instance.

Declaration

// C#
public static readonly OracleRefCursor Null;

13.4.4 OracleRefCursor Properties
OracleRefCursor properties are listed in Table 13-34.

Table 13-34 OracleRefCursor Properties

Properties Description

Connection A reference to the OracleConnection used to fetch the REF CURSOR data

FetchSize Specifies the size that the OracleDataReader internal cache needs to
store result set data

IsNull Indicates whether or not the OracleRefCursor is null

RowSize Specifies the amount of memory the OracleRefcursor internal cache
needs to store one row of data

13.4.4.1 Connection
This property refers to the OracleConnection used to fetch the REF CURSOR data.

Declaration

// C#
public OracleConnection Connection {get;}

Property Value

An OracleConnection.

Exceptions

ObjectDisposedException - The object is already disposed.

Chapter 13
OracleRefCursor Class

13-98

Remarks

This property is bound to a REF CURSOR once it is set. After the OracleRefCursor object is
created by the constructor, this property is initially null. An OracleRefCursor object can
be bound to a REF CURSOR after a command execution.

If the connection is closed or returned to the connection pool, the OracleRefCursor is
placed in an uninitialized state and no operation can be carried out from it. However,
the uninitialized OracleRefCursor can be reassigned to another REF CURSOR.

13.4.4.2 FetchSize
This property specifies the size that the OracleDataReader internal cache needs to store
result set data.

Declaration

// C#
public long FetchSize {get; set;}

Property Value

A long that specifies the size (in bytes) of the OracleRefCursor internal cache.

Exceptions

ArgumentException - The FetchSize value specified is invalid.

Remarks

Default = 131072.

The FetchSize property value is inherited by the OracleCommand that created the
OracleRefCursor object. The FetchSize property on the OracleDataReader object
determines the amount of data the OracleRefCursor fetches into its internal cache for
each database round-trip.

This property is useful if the OracleRefCursor is explicitly used to fill the DataSet or
DataTable through the OracleDataAdapter, because it can provide control on how the
data of the REF CURSOR is fetched.

If an OracleDataReader object is created from the OracleRefCursor, the resulting
OracleDataReader object inherits the FetchSize value of the OracleDataReader object.
However, the inherited value can be overridden, if it is set before the first invocation of
the OracleDataReader Read method for the given result set, by setting the
OracleDataReader FetchSize property.

The RowSize and FetchSize properties handle UDT and XMLType data differently than
other scalar data types. Because only a reference to the UDT and XMLType data is
stored in the ODP.NET's internal cache, the RowSize property accounts for only the
memory needed for the reference (which is very small) and not the actual size of the
UDT and XMLType data. Thus, applications can inadvertently fetch a large number of
UDT or XMLType instances from the database in a single database round-trip. This is
because the actual size of UDT and XMLType data does not count against the
FetchSize, and it would require numerous UDT and XMLType references to fill up the
default cache size of 131072 bytes. Therefore, when fetching UDT or XMLType data, the

Chapter 13
OracleRefCursor Class

13-99

FetchSize property must be appropriately configured to control the number of UDT and
XMLType instances that are to be fetched, rather than the amount of the actual UDT and
XMLType data to be fetched.

NOTE: For LOB and LONG data types, only the sizes specified in the
InitialLOBFetchSize and InitialLONGFetchSize properties are accounted for by the
RowSize property in addition to the metadata and reference information that is
maintained by the cache for each LOB in the select list.

13.4.4.3 IsNull
This property indicates whether or not the OracleRefCursor is null.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the OracleRefCursor represents a null value. Returns false otherwise.

Exception

ObjectDisposedException - The object is already disposed.

InvalidOperationException - The OracleConnection is not open or has been closed
during the lifetime of the object.

13.4.4.4 RowSize
This property specifies the amount of memory the OracleRefcursor internal cache
needs to store one row of data.

Declaration

// C#
public long RowSize {get;}

Property Value

A long that indicates the amount of memory (in bytes) that an OracleRefcursor needs to
store one row of data for the executed query.

Remarks

The RowSize property is set to a nonzero value when the OracleRefcursor object is
created. This property can be used at design time or dynamically during run time, to
set the FetchSize, based on number of rows. For example, to enable the
OracleRefcursor to fetch N rows for each database round-trip, the OracleRefcursor
FetchSize property can be set dynamically to RowSize * N. Note that for the FetchSize to
take effect appropriately, it must be set before the it is used to fill the DataSet/DataTable
using OracleDataAdapter.

If an OracleDataReader is obtained from the OracleRefCursor through the GetDataReader
method, the resulting OracleDataReader will have its FetchSize property set to the
FetchSize value of the OracleRefCursor.

Chapter 13
OracleRefCursor Class

13-100

13.4.5 OracleRefCursor Instance Methods
OracleRefCursor instance methods are listed in Table 13-35.

Table 13-35 OracleRefCursor Instance Methods

Methods Description

Dispose Disposes the resources allocated by the OracleRefCursor object

Equals Inherited from System.Object (Overloaded)

GetDataReader Returns an OracleDataReader object for the REF CURSOR

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

ToString Inherited from System.Object

13.4.5.1 Dispose
This instance method disposes of the resources allocated by the OracleRefCursor
object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The object cannot be reused after being disposed.

Once Dispose() is called, the object of OracleRefCursor is in an uninitialized state.
Although some properties can still be accessed, their values may not be accountable.
Since resources are freed, method calls can lead to exceptions.

13.4.5.2 GetDataReader
This instance method returns an OracleDataReader object for the REF CURSOR.

Declaration

// C#
public OracleDataReader GetDataReader();

Return Value

OracleDataReader

Chapter 13
OracleRefCursor Class

13-101

Remarks

Using the OracleDataReader, rows can be fetched from the REF CURSOR.

Chapter 13
OracleRefCursor Class

13-102

14
Oracle Data Provider for .NET Types
Structures

This chapter describes the ODP.NET Types structures.

This chapter contains these topics:

• OracleBinary Structure

• OracleBoolean Structure

• OracleDate Structure

• OracleDecimal Structure

• OracleIntervalDS Structure

• OracleIntervalYM Structure

• OracleString Structure

• OracleTimeStamp Structure

• OracleTimeStampLTZ Structure

• OracleTimeStampTZ Structure

• INullable Interface

14.1 OracleBinary Structure
The OracleBinary structure represents a variable-length stream of binary data to be
stored in or retrieved from a database.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleBinary

Declaration

// C#
public struct OracleBinary : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

14-1

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleBinarySample
{
 static void Main(string[] args)
 {
 // Initialize the OracleBinary structures
 OracleBinary binary1= new OracleBinary(new byte[] {1,2,3,4,5});
 OracleBinary binary2 = new OracleBinary(new byte[] {1,2,3});
 OracleBinary binary3 = new OracleBinary(new byte[] {4,5});
 OracleBinary binary4 = binary2 + binary3;

 // Compare binary1 and binary4; they're equal
 if (binary1 == binary4)
 Console.WriteLine("The two OracleBinary structs are equal");
 else
 Console.WriteLine("The two OracleBinary structs are different");
 }
}

14.1.1 OracleBinary Members
OracleBinary members are listed in the following tables:

OracleBinary Constructors

OracleBinary constructors are listed in Table 14-1

Table 14-1 OracleBinary Constructors

Constructor Description

OracleBinary Constructor Instantiates a new instance of OracleBinary
structure

OracleBinary Static Fields

The OracleBinary static fields are listed in Table 14-2.

Table 14-2 OracleBinary Static Fields

Field Description

Null Represents a null value that can be assigned to an
instance of the OracleBinary structure

Chapter 14
OracleBinary Structure

14-2

OracleBinary Static Methods

The OracleBinary static methods are listed in Table 14-3.

Table 14-3 OracleBinary Static Methods

Methods Description

Concat Returns the concatenation of two OracleBinary
structures

Equals Determines if two OracleBinary values are equal
(Overloaded)

GetXsdType Returns the XML Schema definition language (XSD)
of the specified XmlSchemaSet

GreaterThan Determines if the first of two OracleBinary values is
greater than the second

GreaterThanOrEqual Determines if the first of two OracleBinary values is
greater than or equal to the second

LessThan Determines if the first of two OracleBinary values is
less than the second

LessThanOrEqual Determines if the first of two OracleBinary values is
less than or equal to the second

NotEquals Determines if two OracleBinary values are not
equal

OracleBinary Static Operators

The OracleBinary static operators are listed in Table 14-4.

Table 14-4 OracleBinary Static Operators

Operator Description

operator + Concatenates two OracleBinary values

operator == Determines if two OracleBinary values are equal

operator > Determines if the first of two OracleBinary values is greater
than the second

operator >= Determines if the first of two OracleBinary values is greater
than or equal to the second

operator != Determines if two OracleBinary values are not equal

operator < Determines if the first of two OracleBinary value is less than
the second

operator <= Determines if the first of two OracleBinary value is less than
or equal to the second

OracleBinary Static Type Conversion Operators

The OracleBinary static type conversion operators are listed in Table 14-5.

Chapter 14
OracleBinary Structure

14-3

Table 14-5 OracleBinary Static Type Conversion Operators

Operator Description

explicit operator byte[] Converts an instance value to a byte array

implicit operator OracleBinary Converts an instance value to an OracleBinary
structure

OracleBinary Properties

The OracleBinary properties are listed in Table 14-6.

Table 14-6 OracleBinary Properties

Properties Description

IsNull Indicates whether or not the current instance has a null value

Item Obtains the particular byte in an OracleBinary structure using an index

Length Returns the length of the binary data

Value Returns the binary data that is stored in an OracleBinary structure

OracleBinary Instance Methods

The OracleBinary instance methods are listed in Table 14-7.

Table 14-7 OracleBinary Instance Methods

Methods Description

CompareTo Compares the current instance to an object and returns an integer
that represents their relative values

Equals Determines if two objects contain the same binary data
(Overloaded)

GetHashCode Returns a hash code for the current instance

GetType Inherited from System.Object

ToString Converts the current OracleBinary structure to a string

14.1.2 OracleBinary Constructor
The OracleBinary constructor instantiates a new instance of the OracleBinary structure
and sets its value to the provided array of bytes.

Declaration

// C#
public OracleBinary(byte[] bytes);

Parameters

• bytes

Chapter 14
OracleBinary Structure

14-4

A byte array.

14.1.3 OracleBinary Static Fields
The OracleBinary static fields are listed in Table 14-8.

Table 14-8 OracleBinary Static Fields

Field Description

Null Represents a null value that can be assigned to an instance of the
OracleBinary structure

14.1.3.1 Null
This static field represents a null value that can be assigned to an instance of the
OracleBinary structure.

Declaration

// C#
public static readonly OracleBinary Null;

14.1.4 OracleBinary Static Methods
The OracleBinary static methods are listed in Table 14-9.

Table 14-9 OracleBinary Static Methods

Methods Description

Concat Returns the concatenation of two OracleBinary structures

Equals Determines if two OracleBinary values are equal (Overloaded)

GetXsdType Returns the XML Schema definition language (XSD) of the
specified XmlSchemaSet

GreaterThan Determines if the first of two OracleBinary values is greater
than the second

GreaterThanOrEqual Determines if the first of two OracleBinary values is greater
than or equal to the second

LessThan Determines if the first of two OracleBinary values is less than
the second

LessThanOrEqual Determines if the first of two OracleBinary values is less than or
equal to the second

NotEquals Determines if two OracleBinary values are not equal

14.1.4.1 Concat
This method returns the concatenation of two OracleBinary structures.

Chapter 14
OracleBinary Structure

14-5

Declaration

// C#
public static OracleBinary Concat(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

An OracleBinary.

Remarks

If either argument has a null value, the returned OracleBinary structure has a null
value.

14.1.4.2 Equals
This method determines if two OracleBinary values are equal.

Declaration

// C#
public static bool Equals(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if two OracleBinary values are equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Chapter 14
OracleBinary Structure

14-6

14.1.4.3 GetXsdType
This method returns the XML Schema definition language (XSD) of the specified
XmlSchemaSet.

Declaration

// C#
public static XmlQualifiedName GetXsdType(XmlSchemaSet schemaSet);

Parameters

• schemaSet

An XmlSchemaSet.

Return Value

Returns a string that indicates the XSD of the specified XmlSchemaSet.

14.1.4.4 GreaterThan
This method determines whether or not the first of two OracleBinary values is greater
than the second.

Declaration

// C#
public static bool GreaterThan(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is greater than the second;
otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Example

// C#

using System;

Chapter 14
OracleBinary Structure

14-7

using Oracle.DataAccess.Types;

class GreaterThanSample
{
 static void Main(string[] args)
 {
 OracleBinary binary1 = OracleBinary.Null;
 OracleBinary binary2 = new OracleBinary(new byte[] {1});

 // Compare two OracleBinary structs; binary1 < binary2
 if (OracleBinary.GreaterThan(binary1, binary2))
 Console.WriteLine("binary1 > binary2");
 else
 Console.WriteLine("binary1 < binary2");
 }
}

14.1.4.5 GreaterThanOrEqual
This method determines whether or not the first of two OracleBinary values is greater
than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is greater than or equal to the
second; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

14.1.4.6 LessThan
This method determines whether or not the first of two OracleBinary values is less than
the second.

Chapter 14
OracleBinary Structure

14-8

Declaration

// C#
public static bool LessThan(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is less than the second; otherwise
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

14.1.4.7 LessThanOrEqual
This method determines whether or not the first of two OracleBinary values is less than
or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is less than or equal to the second;
otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

Chapter 14
OracleBinary Structure

14-9

• Two OracleBinarys that contain a null value are equal.

14.1.4.8 NotEquals
This method determines whether or not two OracleBinary values are not equal.

Declaration

// C#
public static bool NotEquals(OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if two OracleBinary values are not equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

14.1.5 OracleBinary Static Operators
The OracleBinary static operators are listed in Table 14-10.

Table 14-10 OracleBinary Static Operators

Operator Description

operator + Concatenates two OracleBinary values

operator == Determines if two OracleBinary values are equal

operator > Determines if the first of two OracleBinary values is greater than
the second

operator >= Determines if the first of two OracleBinary values is greater than
or equal to the second

operator != Determines if two OracleBinary values are not equal

operator < Determines if the first of two OracleBinary value is less than the
second

operator <= Determines if the first of two OracleBinary value is less than or
equal to the second

Chapter 14
OracleBinary Structure

14-10

14.1.5.2 operator ==
This method determines if two OracleBinary values are equal.

Declaration

// C#
public static bool operator == (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if they are the same; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

14.1.5.3 operator >
This method determines if the first of two OracleBinary values is greater than the
second.

Declaration

// C#
public static bool operator > (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

Chapter 14
OracleBinary Structure

14-11

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OperatorSample
{
 static void Main(string[] args)
 {
 OracleBinary binary1 = OracleBinary.Null;
 OracleBinary binary2 = new OracleBinary(new byte[] {1});

 // Compare two OracleBinary structs; binary1 < binary2
 if (binary1 > binary2)
 Console.WriteLine("binary1 > binary2");
 else
 Console.WriteLine("binary1 < binary2");
 }
}

14.1.5.4 operator >=
This method determines if the first of two OracleBinary values is greater than or equal
to the second.

Declaration

// C#
public static bool operator >= (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Chapter 14
OracleBinary Structure

14-12

14.1.5.5 operator !=
This method determines if two OracleBinary values are not equal.

Declaration

// C#
public static bool operator != (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the two OracleBinary values are not equal; otherwise, returns false.

14.1.5.6 operator <
This method determines if the first of two OracleBinary values is less than the second.

Declaration

// C#
public static bool operator < (OracleBinary value1, OracleBinary value2);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is less than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Chapter 14
OracleBinary Structure

14-13

14.1.5.7 operator <=
This method determines if the first of two OracleBinary values is less than or equal to
the second.

Declaration

// C#
public static bool operator <= (OracleBinary value1, OracleBinary value1);

Parameters

• value1

The first OracleBinary.

• value2

The second OracleBinary.

Return Value

Returns true if the first of two OracleBinary values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

14.1.6 OracleBinary Static Type Conversion Operators
The OracleBinary static type conversion operators are listed in Table 14-11.

Table 14-11 OracleBinary Static Type Conversion Operators

Operator Description

explicit operator byte[] Converts an instance value to a byte array

implicit operator OracleBinary Converts an instance value to an OracleBinary
structure

14.1.6.1 explicit operator byte[]
This method converts an OracleBinary value to a byte array.

Declaration

// C#
public static explicit operator byte[] (OracleBinary val);

Chapter 14
OracleBinary Structure

14-14

Parameters

• val

An OracleBinary.

Return Value

A byte array.

Exceptions

OracleNullValueException - The OracleBinary structure has a null value.

14.1.6.2 implicit operator OracleBinary
This method converts a byte array to an OracleBinary structure.

Declaration

// C#
public static implicit operator OracleBinary(byte[] bytes);

Parameters

• bytes

A byte array.

Return Value

OracleBinary

14.1.7 OracleBinary Properties
The OracleBinary properties are listed in Table 14-12.

Table 14-12 OracleBinary Properties

Properties Description

IsNull Indicates whether or not the current instance has a null value

Item Obtains the particular byte in an OracleBinary structure using an index

Length Returns the length of the binary data

Value Returns the binary data that is stored in an OracleBinary structure

14.1.7.1 IsNull
This property indicates whether or not the current instance has a null value.

Chapter 14
OracleBinary Structure

14-15

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the current instance has a null value; otherwise returns false.

14.1.7.2 Item
This property obtains the particular byte in an OracleBinary structure using an index.

Declaration

// C#
public byte this[int index] {get;}

Property Value

A byte in the specified index.

Exceptions

OracleNullValueException - The current instance has a null value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class ItemSample
{
 static void Main(string[] args)
 {
 OracleBinary binary = new OracleBinary(new byte[] {1,2,3,4});

 // Prints the value 4
 Console.WriteLine(binary[binary.Length - 1]);
 }
}

14.1.7.3 Length
This property returns the length of the binary data.

Declaration

// C#
public int length {get;}

Property Value

Length of the binary data.

Chapter 14
OracleBinary Structure

14-16

Exceptions

OracleNullValueException - The current instance has a null value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class LengthSample
{
 static void Main(string[] args)
 {
 OracleBinary binary = new OracleBinary(new byte[] {1,2,3,4});

 // Prints the value 4
 Console.WriteLine(binary.Length);
 }
}

14.1.7.4 Value
This property returns the binary data that is stored in the OracleBinary structure.

Declaration

// C#
public byte[] Value {get;}

Property Value

Binary data.

Exceptions

OracleNullValueException - The current instance has a null value.

14.1.8 OracleBinary Instance Methods
The OracleBinary instance methods are listed in Table 14-13.

Table 14-13 OracleBinary Instance Methods

Methods Description

CompareTo Compares the current instance to an object and returns an
integer that represents their relative values

Equals Determines if two objects contain the same binary data
(Overloaded)

GetHashCode Returns a hash code for the current instance

GetType Inherited from System.Object

ToString Converts the current OracleBinary structure to a string

Chapter 14
OracleBinary Structure

14-17

14.1.8.1 CompareTo
This method compares the current instance to an object and returns an integer that
represents their relative values

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared.

Return Value

The method returns a number that is:

• Less than zero: if the current OracleBinary instance value is less than obj.

• Zero: if the current OracleBinary instance and obj values have the same binary
data.

• Greater than zero: if the current OracleBinary instance value is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The parameter is not of type OracleBinary.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleBinarys. For example, comparing an
OracleBinary instance with an OracleTimeStamp instance is not allowed. When an
OracleBinary is compared with a different type, an ArgumentException is thrown.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class CompareToSample
{
 static void Main(string[] args)
 {
 OracleBinary binary1 = new OracleBinary(new byte[] {1,2,3});
 OracleBinary binary2 = new OracleBinary(new byte[] {1,2,3,4});

Chapter 14
OracleBinary Structure

14-18

 // Compare
 if (binary1.CompareTo(binary2) == 0)
 Console.WriteLine("binary1 is the same as binary2");
 else
 Console.WriteLine("binary1 is different from binary2");
 }
}

14.1.8.2 Equals
This method determines whether or not an object is an instance of OracleBinary, and
has the same binary data as the current instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The object being compared.

Return Value

Returns true if obj is an instance of OracleBinary, and has the same binary data as the
current instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBinary that has a value is greater than an OracleBinary that has a null
value.

• Two OracleBinarys that contain a null value are equal.

14.1.8.3 GetHashCode
Overrides Object

This method returns a hash code for the OracleBinary instance.

Declaration

// C#
public override int GetHashCode();

Return Value

An int that represents the hash.

14.1.8.4 ToString
Overrides Object

Chapter 14
OracleBinary Structure

14-19

This method converts an OracleBinary instance to a string instance.

Declaration

// C#
public override string ToString();

Return Value

string

Remarks

If the current OracleBinary instance has a null value, the returned string "null".

14.2 OracleBoolean Structure
The OracleBoolean structure represents a logical value that is either TRUE or FALSE.

ODP.NET, Unmanaged Driver can access Oracle Database PL/SQL Booleans in
Oracle Database Release 12.1 and later. ODP.NET, Managed Driver can access
Oracle Database PL/SQL Booleans in Oracle Database Release 12.2 and later.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleBoolean

Declaration

// C#
public struct OracleBoolean : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

A OracleBoolean structure represents three possible values: TRUE, FALSE, and NULL. A
non-zero value is interpreted as TRUE.

Chapter 14
OracleBoolean Structure

14-20

Example

// C#
using System;
using System.Data;
using Oracle.DataAccess.Types; // for use with ODP.NET, Unmanaged Driver
// using Oracle.ManagedDataAccess.Types; // for use with ODP.NET, Managed Driver

 class OracleBooleanSample
 {
 static void Main(string[] args)
 {
 OracleBoolean oracleBoolean1 = new OracleBoolean(true);
 OracleBoolean oracleBoolean2 = new OracleBoolean(0);

 Console.WriteLine("oracleBoolean1 : " + oracleBoolean1);
 Console.WriteLine("oracleBoolean2 : " + oracleBoolean2);
 }
 }

14.2.1 OracleBoolean Members
OracleBoolean members are listed in the following tables:

OracleBoolean Constructors

OracleBoolean constructors are listed in Table 14-14

Table 14-14 OracleBoolean Constructors

Constructor Description

OracleBoolean
Constructors

Instantiates a new instance of OracleBoolean structure
(Overloaded)

OracleBoolean Static Fields

The OracleBoolean static fields are listed in Table 14-15.

Table 14-15 OracleBoolean Static Fields

Field Description

False Represents a false value that can be assigned to an
OracleBoolean instance

Null Represents a null value that can be assigned to an
OracleBoolean instance

One Indicates a constant representing the positive one value

True Represents a true value that can be assigned to an
OracleBoolean instance

Zero Indicates a constant representing the zero value

Chapter 14
OracleBoolean Structure

14-21

OracleBoolean Static Methods

OracleBoolean static methods are listed in Table 14-16

Table 14-16 OracleBoolean Static Methods

Methods Description

And Returns the result of bitwise AND operation of two OracleBoolean
instances

Equals Determines whether or not the two OracleBoolean values are
equal

GreaterThan Determines whether or not the first of two OracleBoolean values
is greater than the second

GreaterThanOrEquals Determines whether or not the first of two OracleBoolean values
is greater than or equal to the second

LessThan Determines whether or not the first of two OracleBoolean values
is less than the second

LessThanOrEquals Determines whether or not the first of two OracleBoolean values
is less than or equal to the second

NotEquals Determines whether or not two OracleBoolean values are not
equal

OnesComplement Returns the result of a one's complement operation on the
specified OracleBoolean value

Or Returns the result of bitwise OR operation of two OracleBoolean
instances

Parse Returns an OracleBoolean structure and sets its value using a
string

Xor Returns the result of a bitwise exclusive OR operation of two
OracleBoolean instances

OracleBoolean Static Operators

The OracleBoolean static operators are listed in Table 14-17.

Table 14-17 OracleBoolean Static Operators

Field Description

operator > Determines whether or not the first of two OracleBoolean values
is greater than the second

operator >= Determines whether or not the first of two OracleBoolean values
is greater than or equal to the second

operator < Determines whether or not the first of two OracleBoolean values
is less than the second

operator <= Dtermines whether or not the first of two OracleBoolean values is
less than or equal to the second

operator == Indicates whether or not the two OracleBoolean instances are
equal

Chapter 14
OracleBoolean Structure

14-22

Table 14-17 (Cont.) OracleBoolean Static Operators

Field Description

operator != Determines whether or not two OracleBoolean values are not
equal

operator ! Determines the result of a NOT operation on a OracleBoolean

operator ~ Returns the result of a one's complement operation on the
specified OracleBoolean value

operator false Determines whether or not the specified OracleBoolean value is
false

operator true Determines whether or not the specified OracleBoolean value is
true

operator & Returns the result of bitwise AND operation of two OracleBoolean
instances

operator | Returns the result of bitwise OR operation of two OracleBoolean
instances

operator ^ Returns the result of bitwise exclusive OR operation of two
OracleBoolean instances

The OracleBoolean Static Type conversions

The OracleBoolean static type conversions are listed in Table 14-18

Table 14-18 OracleBoolean Static Type Conversions

Field Description

implicit operator
OracleBoolean

Returns the OracleBoolean representation of a boolean value

explicit operator bool Returns the boolean representation of the OracleBoolean value

explicit operator
OracleBoolean

Converts a structure to an OracleBoolean structure (Overloaded)

OracleBoolean Properties

The OracleBoolean properties are listed in Table 14-25.

Table 14-19 OracleBoolean Properties

Properties Description

ByteValue Returns a byte that represents the OracleBoolean structure

IsFalse Indicates whether or not the value of the current instance is false

IsNull Indicates whether or not the current instance has a null value

IsTrue Indicates whether or not the value of the current instance is true

Value Returns a boolean value that represents the current instance

Chapter 14
OracleBoolean Structure

14-23

OracleBoolean Instance Methods

The OracleBoolean instance methods are listed in Table 14-20.

Table 14-20 OracleBoolean Instance Methods

Method Description

CompareTo Compares the current instance to the supplied object and returns
an integer that represents their relative values

Equals Determines whether or not an object is an instance of
OracleBoolean, and whether or not the value of the object is
equal to the current instance

GetHashCode Returns a hash code for the current instance

ToString Returns the string representation of the current instance

14.2.2 OracleBoolean Constructors
The OracleBoolean constructors instantiates a new instance of the OracleBoolean
structure.

Overload List:

• OracleBoolean(bool)

This constructor creates a new instance of the OracleBoolean structure and sets its
value to the supplied Boolean value.

• OracleBoolean(int)

This constructor creates a new instance of the OracleBoolean structure and sets its
value to the supplied Int32 value.

14.2.2.1 OracleBoolean(bool)
This constructor creates a new instance of the OracleBoolean structure and sets its
value to the supplied Boolean value.

Declaration

// C#
public OracleBoolean(bool value) ;

Parameters

• value

The provided Boolean value.

14.2.2.2 OracleBoolean(int)
This constructor creates a new instance of the OracleBoolean structure and sets its
value to the supplied Int32 value.

Chapter 14
OracleBoolean Structure

14-24

Declaration

// C#
public OracleBoolean(int value)

Parameters

• value

The provided Int32 value.

14.2.3 OracleBoolean Static Fields
The OracleBoolean static fields are listed in Table 14-21.

Table 14-21 OracleBoolean Static Fields

Field Description

False Represents a false value that can be assigned to an
OracleBoolean instance

Null Represents a null value that can be assigned to an
OracleBoolean instance

One Indicates a constant representing the positive one value

True Represents a true value that can be assigned to an
OracleBoolean instance

Zero Indicates a constant representing the zero value

14.2.3.1 False
This static field represents a false value that can be assigned to an OracleBoolean
instance.

Declaration

// C#
public static readonly OracleBoolean False;

14.2.3.2 Null
This static field represents a null value that can be assigned to an OracleBoolean
instance.

Declaration

// C#
public static readonly OracleBoolean Null;

14.2.3.3 One
This static field indicates a constant representing the positive one value.

Chapter 14
OracleBoolean Structure

14-25

Declaration

// C#
public static readonly OracleBoolean One;

14.2.3.4 True
This static field represents a true value that can be assigned to an OracleBoolean
instance.

Declaration

// C#
public static readonly OracleBoolean True;

14.2.3.5 Zero
This static field indicates a constant representing the zero value.

Declaration

// C#
public static readonly OracleBoolean Zero;

14.2.4 OracleBoolean Static Methods
OracleBoolean static methods are listed in Table 14-22

Table 14-22 OracleBoolean Static Methods

Methods Description

And Returns the result of bitwise AND operation of two OracleBoolean
instances

Equals Determines whether or not the two OracleBoolean values are
equal

GreaterThan Determines whether or not the first of two OracleBoolean values
is greater than the second

GreaterThanOrEquals Determines whether or not the first of two OracleBoolean values
is greater than or equal to the second

LessThan Determines whether or not the first of two OracleBoolean values
is less than the second

LessThanOrEquals Determines whether or not the first of two OracleBoolean values
is less than or equal to the second

NotEquals Determines whether or not two OracleBoolean values are not
equal

OnesComplement Returns the result of a one's complement operation on the
specified OracleBoolean value

Or Returns the result of bitwise OR operation of two OracleBoolean
instances

Chapter 14
OracleBoolean Structure

14-26

Table 14-22 (Cont.) OracleBoolean Static Methods

Methods Description

Parse Returns an OracleBoolean structure and sets its value using a
string

Xor Returns the result of a bitwise exclusive OR operation of two
OracleBoolean instances

14.2.4.1 And
This method returns the result of bitwise AND operation of two OracleBoolean instances.

Declaration

// C#
public static OracleBoolean And(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise AND operation of two
OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.4.2 Equals
This method returns an OracleBoolean that indicates whether or not the two
OracleBoolean instances are equal.

Declaration

// C#
public static OracleBoolean Equal(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Chapter 14
OracleBoolean Structure

14-27

Return Value

An OracleBoolean that is true if the specified two OracleBoolean instances are equal;
otherwise, returns an OracleBoolean that is false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.4.3 GreaterThan
This method determines if the first of two OracleBoolean values is greater than the
second.

Declaration

// C#
public static OracleBoolean GreaterThan(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

The first OracleBoolean

• value2

The second OracleBoolean

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is greater than the
second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.4.4 GreaterThanOrEquals
This method determines if the first of two OracleBoolean values is greater than or equal
to the second.

Declaration

// C#
public static OracleBoolean GreaterThanOrEquals(OracleBoolean value1, OracleBoolean
value2);

Parameters

• value1

The first OracleBoolean

• value2

Chapter 14
OracleBoolean Structure

14-28

The second OracleBoolean

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is greater than or
equal to the second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.4.5 LessThan
This method determines if the first of two OracleBoolean values is less than the second.

Declaration

// C#
public static OracleBoolean LessThan(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

The first OracleBoolean

• value2

The second OracleBoolean

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is less than the
second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.4.6 LessThanOrEquals
This method determines if the first of two OracleBoolean values is less or equal than the
second.

Declaration

// C#
public static OracleBoolean LessThanOrEquals(OracleBoolean value1, OracleBoolean
value2);

Parameters

• value1

The first OracleBoolean

• value2

Chapter 14
OracleBoolean Structure

14-29

The second OracleBoolean

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is less than or
equal to the second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.4.7 NotEquals
This method determines if two OracleBoolean values are not equal.

Declaration

// C#
public static OracleBoolean NotEquals(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

The first OracleBoolean

• value2

The second OracleBoolean

Return Value

An OracleBoolean that is true if two OracleBoolean values are not equal; otherwise,
returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.4.8 OnesComplement
This method returns the result of a one's complement operation on the specified
OracleBoolean value.

Declaration

// C#
public static OracleBoolean OnesComplement(OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Chapter 14
OracleBoolean Structure

14-30

Return Value

An OracleBoolean that contains the value of the result of a one's complement operation
on the specified OracleBoolean value.

Remarks

If the specified OracleBoolean instance is null, an OracleBoolean with a null value will be
returned.

14.2.4.9 Or
This method returns the result of bitwise OR operation of two OracleBoolean instances.

Declaration

// C#
public static OracleBoolean Or(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise OR operation of two
OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.4.10 Parse
This method converts a string to an OracleBoolean.

Declaration

// C#
public static OracleBoolean Parse(string str);

Parameters

• str

The string being converted.

Return Value

A new OracleBoolean structure.

Chapter 14
OracleBoolean Structure

14-31

Exceptions

ArgumentNullException – The str parameter is null.

IndexOutOfRangeException – The str parameter is an empty string.

14.2.4.11 Xor
This method returns the result of a bitwise exclusive OR operation of two OracleBoolean
instances.

Declaration

// C#
public static OracleBoolean Xor(OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise exclusive OR operation
of two OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.5 OracleBoolean Static Operators
The OracleBoolean static operators are listed in Table 14-23.

Table 14-23 OracleBoolean Static Operators

Field Description

operator > Determines whether or not the first of two OracleBoolean values
is greater than the second

operator >= Determines whether or not the first of two OracleBoolean values
is greater than or equal to the second

operator < Determines whether or not the first of two OracleBoolean values
is less than the second

operator <= Dtermines whether or not the first of two OracleBoolean values is
less than or equal to the second

operator == Indicates whether or not the two OracleBoolean instances are
equal

Chapter 14
OracleBoolean Structure

14-32

Table 14-23 (Cont.) OracleBoolean Static Operators

Field Description

operator != Determines whether or not two OracleBoolean values are not
equal

operator ! Determines the result of a NOT operation on a OracleBoolean

operator ~ Returns the result of a one's complement operation on the
specified OracleBoolean value

operator false Determines whether or not the specified OracleBoolean value is
false

operator true Determines whether or not the specified OracleBoolean value is
true

operator & Returns the result of bitwise AND operation of two OracleBoolean
instances

operator | Returns the result of bitwise OR operation of two OracleBoolean
instances

operator ^ Returns the result of bitwise exclusive OR operation of two
OracleBoolean instances

14.2.5.1 operator >
This method determines whether or not the first of two OracleBoolean values is greater
than the second.

Declaration

// C#
public static operator > (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is greater than the
second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

Chapter 14
OracleBoolean Structure

14-33

14.2.5.2 operator >=
This method determines whether or not the first of two OracleBoolean values is greater
than or equal to the second.

Declaration

// C#
public static operator >= (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is greater than or
equal to the second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.5.3 operator <
This method determines whether or not the first of two OracleBoolean values is less
than the second.

Declaration

// C#
public static operator < (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is less than the
second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

Chapter 14
OracleBoolean Structure

14-34

14.2.5.4 operator <=
This method determines whether or not the first of two OracleBoolean values is less
than or equal to the second.

Declaration

// C#
public static operator <= (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the first of two OracleBoolean values is less than or
equal to the second; otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.5.5 operator ==
This method returns an OracleBoolean that indicates whether or not the two
OracleBoolean instances are equal.

Declaration

// C#
public static operator == (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the specified two OracleBoolean instances are equal;
otherwise, returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

Chapter 14
OracleBoolean Structure

14-35

14.2.5.6 operator !=
This method determines whether or not two OracleBoolean values are not equal.

Declaration

// C#
public static operator != (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that is true if two OracleBoolean values are not equal; otherwise,
returns false.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.5.7 operator !
This method determines the result of a NOT operation on a OracleBoolean.

Declaration

// C#
public static operator ! (OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that is true if the specified OracleBoolean value is true; otherwise,
returns false.

Remarks

If the specified OracleBoolean instance is null, an OracleBoolean with a null value will be
returned.

Chapter 14
OracleBoolean Structure

14-36

14.2.5.8 operator ~
This method returns the result of a one's complement operation on the specified
OracleBoolean value.

Declaration

// C#
public static operator ~ (OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of a one's complement operation
on the specified OracleBoolean value.

Remarks

If the specified OracleBoolean instance is null, an OracleBoolean with a null value will be
returned.

14.2.5.9 operator false
This method determines whether or not the specified OracleBoolean value is false.

Declaration

// C#
public static operator false (OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that is true if specified OracleBoolean value is false; otherwise,
returns false.

Remarks

This property will return false if the current instance is null.

14.2.5.10 operator true
This method determines whether or not the specified OracleBoolean value is true.

Chapter 14
OracleBoolean Structure

14-37

Declaration

// C#
public static operator true (OracleBoolean value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean that is true if specified OracleBoolean value is true; otherwise, returns
false.

Remarks

This property will return false if the current instance is null.

14.2.5.11 operator &
This method returns the result of bitwise AND operation of two OracleBoolean instances.

Declaration

// C#
public static operator & (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise AND operation of two
OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.5.12 operator |
This method returns the result of bitwise OR operation of two OracleBoolean instances.

Declaration

// C#
public static operator | (OracleBoolean value1, OracleBoolean value2);

Chapter 14
OracleBoolean Structure

14-38

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise OR operation of two
OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.5.13 operator ^
This method returns the result of bitwise exclusive OR operation of two OracleBoolean
instances.

Declaration

// C#
public static operator ^ (OracleBoolean value1, OracleBoolean value2);

Parameters

• value1

An OracleBoolean instance

• value2

An OracleBoolean instance

Return Value

An OracleBoolean that contains the value of the result of bitwise exclusive OR operation
of two OracleBoolean instances.

Remarks

If either of the specified OracleBoolean instances is null, an OracleBoolean with a null
value will be returned.

14.2.6 OracleBoolean Static Type Conversions
The OracleBoolean static type conversions are listed in Table 14-24

Chapter 14
OracleBoolean Structure

14-39

Table 14-24 OracleBoolean Static Type Conversions

Field Description

implicit operator
OracleBoolean

Returns the OracleBoolean representation of a boolean value

explicit operator bool Returns the boolean representation of the OracleBoolean value

explicit operator
OracleBoolean

Converts a structure to an OracleBoolean structure (Overloaded)

14.2.6.1 implicit operator OracleBoolean
This method returns the OracleBoolean representation of a boolean value.

Declaration

// C#
public static implicit operator OracleBoolean(bool value1);

Parameters

• value1

An OracleBoolean instance

Return Value

An OracleBoolean.

14.2.6.2 explicit operator bool
This method returns the boolean representation of the OracleBoolean value.

Declaration

// C#
public static explicit operator bool(OracleBoolean value1);

Parameters

• value1

An OracleBoolean structure

Return Value

A boolean

Exception

OracleNullValueException – OracleBoolean has a null value.

Chapter 14
OracleBoolean Structure

14-40

14.2.6.3 explicit operator OracleBoolean
explicit operator OracleBoolean converts the provided structure to an OracleBoolean
structure.

Overload List

• explicit operator OracleBoolean(byte)

This method converts the supplied byte to an OracleBoolean structure.

• explicit operator OracleBoolean(Decimal)

This method converts the supplied Decimal to an OracleBoolean structure.

• explicit operator OracleBoolean(Double)

This method converts the supplied Double to an OracleBoolean structure.

• explicit operator OracleBoolean(Int16)

This method converts the supplied Int16 to an OracleBoolean structure.

• explicit operator OracleBoolean(int)

This method converts the supplied int to an OracleBoolean structure.

• explicit operator OracleBoolean(Int64)

This method converts the supplied Int64 to an OracleBoolean structure.

• explicit operator OracleBoolean(Single)

This method converts the supplied Single to an OracleBoolean structure.

• explicit operator OracleBoolean(String)

This method converts the supplied String to an OracleBoolean structure.

14.2.6.4 explicit operator OracleBoolean(byte)
This method converts the supplied byte to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(byte value1);

Parameters

• value1

A byte

Return Value

An OracleBoolean structure.

14.2.6.5 explicit operator OracleBoolean(Decimal)
This method converts the supplied Decimal to an OracleBoolean structure.

Chapter 14
OracleBoolean Structure

14-41

Declaration

// C#
public static explicit operator OracleBoolean(Decimal value1);

Parameters

• value1

A Decimal

Return Value

An OracleBoolean structure.

14.2.6.6 explicit operator OracleBoolean(Double)
This method converts the supplied Double to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(Double value1);

Parameters

• value1

A Double

Return Value

An OracleBoolean structure.

14.2.6.7 explicit operator OracleBoolean(Int16)
This method converts the supplied Int16 to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(Int16 value1);

Parameters

• value1

An Int16

Return Value

An OracleBoolean structure.

14.2.6.8 explicit operator OracleBoolean(int)
This method converts the supplied int to an OracleBoolean structure.

Chapter 14
OracleBoolean Structure

14-42

Declaration

// C#
public static explicit operator OracleBoolean(int value1);

Parameters

• value1

An int

Return Value

An OracleBoolean structure.

14.2.6.9 explicit operator OracleBoolean(Int64)
This method converts the supplied Int64 to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(Int64 value1);

Parameters

• value1

An Int64

Return Value

An OracleBoolean structure.

14.2.6.10 explicit operator OracleBoolean(Single)
This method converts the supplied Single to an OracleBoolean structure.

Declaration

// C#
public static explicit operator OracleBoolean(Single value1);

Parameters

• value1

A Single

Return Value

An OracleBoolean structure.

14.2.6.11 explicit operator OracleBoolean(String)
This method converts the supplied String to an OracleBoolean structure.

Chapter 14
OracleBoolean Structure

14-43

Declaration

// C#
public static explicit operator OracleBoolean(String value1);

Parameters

• value1

A String

Return Value

An OracleBoolean structure.

14.2.7 OracleBoolean Properties
The OracleBoolean properties are listed in Table 14-25.

Table 14-25 OracleBoolean Properties

Properties Description

ByteValue Returns a byte that represents the OracleBoolean structure

IsFalse Indicates whether or not the value of the current instance is false

IsNull Indicates whether or not the current instance has a null value

IsTrue Indicates whether or not the value of the current instance is true

Value Returns a boolean value that represents the current instance

14.2.7.1 ByteValue
This property returns a byte that represents the OracleBoolean structure.

Declaration

// C#
public byte ByteValue {get;}

Property Value

A byte that represents the value of OracleBoolean structure.

Exceptions

OracleNullValueException – The current instance has a null value.

14.2.7.2 IsFalse
This property indicates whether or not the value of the current instance is false.

Chapter 14
OracleBoolean Structure

14-44

Declaration

// C#
public bool IsFalse {get;}

Property Value

A bool value that returns true if the current instance is false; otherwise, returns false.

Remarks

This property will return false if the current instance is null.

14.2.7.3 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

A bool value that returns true if the current instance has a null value; otherwise,
returns false.

14.2.7.4 IsTrue
This property indicates whether or not the value of the current instance is true.

Declaration

// C#
public bool IsTrue {get;}

Property Value

A bool value that returns true if the current instance is true; otherwise, returns false.

Remarks

This property will return false if the current instance is null.

14.2.7.5 Value
This property returns a boolean value that represents the current instance.

Declaration

// C#
public bool Value {get;}

Property Value

A bool value that returns true if the current instance is true; otherwise, returns false.

Chapter 14
OracleBoolean Structure

14-45

Exceptions

OracleNullValueException – The current instance has a null value.

14.2.8 OracleBoolean Instance Methods
The OracleBoolean instance methods are listed in Table 14-26.

Table 14-26 OracleBoolean Instance Methods

Method Description

CompareTo Compares the current instance to the supplied object and returns
an integer that represents their relative values

Equals Determines whether or not an object is an instance of
OracleBoolean, and whether or not the value of the object is
equal to the current instance

GetHashCode Returns a hash code for the current instance

ToString Returns the string representation of the current instance

14.2.8.1 CompareTo
This method compares the current instance to the supplied object and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameter

• obj

The supplied instance.

Return Value

The method returns a number:

• Less than zero: if the value of the current instance is less than obj.

• Zero: if the value of the current instance is equal to obj.

• Greater than zero: if the value of the current instance is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The parameter is not of type OracleBoolean.

Chapter 14
OracleBoolean Structure

14-46

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleBoolean. For example, comparing an
OracleBoolean instance with an OracleBinary instance is not allowed. When an
OracleBoolean is compared with a different type, an ArgumentException is thrown.

• Any OracleBoolean that has a value compares greater than an OracleBoolean that
has a null value.

• Two OracleBoolean that contain a null value are equal.

14.2.8.2 Equals
Overrides Object

This method determines whether or not an object is an instance of OracleBoolean, and
whether or not the value of the object is equal to the current instance.

Declaration

// C#
public override bool Equals(object obj);

Parameter

• obj

An OracleBoolean instance.

Return Value

Returns true if obj is an instance of OracleBoolean, and the value of obj is equal to the
current instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleBoolean that has a value compares greater than an OracleBoolean that
has a null value.

• Two OracleBooleans that contain a null value are equal.

14.2.8.3 GetHashCode
Overrides Object

This method returns a hash code for the current instance.

Declaration

// C#
public override int GetHashCode();

Return Value

Returns a hash code.

Chapter 14
OracleBoolean Structure

14-47

14.2.8.4 ToString
Overrides Object

This method returns the string representation of the current instance.

Declaration

// C#
public override string ToString();

Return Value

Returns the OracleBoolean value in a string representation.

Remarks

If the current instance has a null value, the returned string is null.

14.3 OracleDate Structure
The OracleDate structure represents the Oracle DATE data type to be stored in or
retrieved from a database. Each OracleDate stores the following information: year,
month, day, hour, minute, and second.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleDate

Declaration

// C#
public struct OracleDate : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;

Chapter 14
OracleDate Structure

14-48

using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleDateSample
{
 static void Main(string[] args)
 {
 // Initialize the dates to the lower and upper boundaries
 OracleDate date1 = OracleDate.MinValue;
 OracleDate date2 = OracleDate.MaxValue;
 OracleDate date3 = new OracleDate(DateTime.MinValue);
 OracleDate date4 = new OracleDate(DateTime.MaxValue);

 // Set the thread's DateFormat for output
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "DD-MON-YYYY BC";
 OracleGlobalization.SetThreadInfo(info);

 // Print the lower and upper boundaries
 Console.WriteLine("OracleDate ranges from\n{0}\nto\n{1}\n",
 date1, date2);
 Console.WriteLine(".NET DateTime ranges from\n{0}\nto\n{1}\n",
 date3, date4);
 }
}

14.3.1 OracleDate Members
OracleDate members are listed in the following tables:

OracleDate Constructors

OracleDate constructors are listed in Table 14-27

Table 14-27 OracleDate Constructors

Constructor Description

OracleDate Constructors Instantiates a new instance of OracleDate structure (Overloaded)

OracleDate Static Fields

The OracleDate static fields are listed in Table 14-28.

Table 14-28 OracleDate Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleDate structure,
which is December 31, 9999 23:59:59

MinValue Represents the minimum valid date for an OracleDate structure,
which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to the value of an
OracleDate structure instance

Chapter 14
OracleDate Structure

14-49

OracleDate Static Methods

The OracleDate static methods are listed in Table 14-29.

Table 14-29 OracleDate Static Methods

Methods Description

Equals Determines if two OracleDate values are equal (Overloaded)

GreaterThan Determines if the first of two OracleDate values is greater than
the second

GreaterThanOrEqual Determines if the first of two OracleDate values is greater than or
equal to the second

LessThan Determines if the first of two OracleDate values is less than the
second

LessThanOrEqual Determines if the first of two OracleDate values is less than or
equal to the second

NotEquals Determines if two OracleDate values are not equal

GetSysDate Returns an OracleDate structure that represents the current date
and time

Parse Returns an OracleDate structure and sets its value using a string

OracleDate Static Operators

The OracleDate static operators are listed in Table 14-30.

Table 14-30 OracleDate Static Operators

Operator Description

operator == Determines if two OracleDate values are the same

operator > Determines if the first of two OracleDate values is greater than
the second

operator >= Determines if the first of two OracleDate values is greater than or
equal to the second

operator != Determines if the two OracleDate values are not equal

operator < Determines if the first of two OracleDate values is less than the
second

operator <= Determines if the first of two OracleDate values is less than or
equal to the second

OracleDate Static Type Conversions

The OracleDate static type conversions are listed in Table 14-31.

Table 14-31 OracleDate Static Type Conversions

Operator Description

explicit operator DateTime Converts a structure to a DateTime structure

Chapter 14
OracleDate Structure

14-50

Table 14-31 (Cont.) OracleDate Static Type Conversions

Operator Description

explicit operator OracleDate Converts a structure to an OracleDate structure
(Overloaded)

OracleDate Properties

The OracleDate properties are listed in Table 14-32.

Table 14-32 OracleDate Properties

Properties Description

BinData Gets an array of bytes that represents an Oracle DATE in Oracle
internal format

Day Gets the day component of an OracleDate method

IsNull Indicates whether or not the current instance has a null value

Hour Gets the hour component of an OracleDate

Minute Gets the minute component of an OracleDate

Month Gets the month component of an OracleDate

Second Gets the second component of an OracleDate

Value Gets the date and time that is stored in the OracleDate structure

Year Gets the year component of an OracleDate

OracleDate Methods

The OracleDate methods are listed in Table 14-33.

Table 14-33 OracleDate Methods

Methods Description

CompareTo Compares the current OracleDate instance to an object, and
returns an integer that represents their relative values

Equals Determines whether or not an object has the same date and time
as the current OracleDate instance (Overloaded)

GetHashCode Returns a hash code for the OracleDate instance

GetDaysBetween Calculates the number of days between the current OracleDate
instance and an OracleDate structure

GetType Inherited from System.Object

ToOracleTimeStamp Converts the current OracleDate structure to an
OracleTimeStamp structure

ToString Converts the current OracleDate structure to a string

Chapter 14
OracleDate Structure

14-51

14.3.2 OracleDate Constructors
The OracleDate constructors instantiates a new instance of the OracleDate structure.

Overload List:

• OracleDate(DateTime)

This constructor creates a new instance of the OracleDate structure and sets its
value for date and time using the supplied DateTime value.

• OracleDate(string)

This constructor creates a new instance of the OracleDate structure and sets its
value using the supplied string.

• OracleDate(int, int, int)

This constructor creates a new instance of the OracleDate structure and set its
value for date using the supplied year, month, and day.

• OracleDate(int, int, int, int, int, int)

This constructor creates a new instance of the OracleDate structure and set its
value for time using the supplied year, month, day, hour, minute, and second.

• OracleDate(byte [])

This constructor creates a new instance of the OracleDate structure and sets its
value to the provided byte array, which is in the internal Oracle DATE format.

14.3.2.1 OracleDate(DateTime)
This constructor creates a new instance of the OracleDate structure and sets its value
for date and time using the supplied DateTime value.

Declaration

// C#
public OracleDate (DateTime dt);

Parameters

• dt

The provided DateTime value.

Remarks

The OracleDate structure only supports up to a second precision. The time value in the
provided DateTime structure that has a precision smaller than second is ignored.

14.3.2.2 OracleDate(string)
This constructor creates a new instance of the OracleDate structure and sets its value
using the supplied string.

Chapter 14
OracleDate Structure

14-52

Declaration

// C#
public OracleDate (string dateStr);

Parameters

• dateStr

A string that represents an Oracle DATE.

Exceptions

ArgumentException - The dateStr is an invalid string representation of an Oracle DATE or
the dateStr is not in the date format specified by the thread's
OracleGlobalization.DateFormat property, which represents the Oracle NLS_DATE_FORMAT
parameter.

ArgumentNullException - The dateStr is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleDateSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat for the OracleDate constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleDate from a string using the DateFormat specified.
 OracleDate date = new OracleDate("1999-DEC-01");

 // Set a different DateFormat for the thread
 info.DateFormat = "MM/DD/YYYY";
 OracleGlobalization.SetThreadInfo(info);

 // Print "12/01/1999"
 Console.WriteLine(date.ToString());
 }
}

Chapter 14
OracleDate Structure

14-53

14.3.2.3 OracleDate(int, int, int)
This constructor creates a new instance of the OracleDate structure and set its value
for date using the supplied year, month, and day.

Declaration

// C#
public OracleDate (int year, int month, int day);

Parameters

• year

The supplied year. Range of year is (-4712 to 9999).

• month

The supplied month. Range of month is (1 to 12).

• day

The supplied day. Range of day is (1 to 31).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleDate (that is, the day is out of range for the month).

14.3.2.4 OracleDate(int, int, int, int, int, int)
This constructor creates a new instance of the OracleDate structure and set its value
for time using the supplied year, month, day, hour, minute, and second.

Declaration

// C#
public OracleDate (int year, int month, int day, int hour, int minute, int second);

Parameters

• year

The supplied year. Range of year is (-4712 to 9999).

• month

The supplied month. Range of month is (1 to 12).

• day

The supplied day. Range of day is (1 to 31).

• hour

The supplied hour. Range of hour is (0 to 23).

• minute

Chapter 14
OracleDate Structure

14-54

The supplied minute. Range of minute is (0 to 59).

• second

The supplied second. Range of second is (0 to 59).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleDate (that is, the day is out of range for the month).

14.3.2.5 OracleDate(byte [])
This constructor creates a new instance of the OracleDate structure and sets its value
to the provided byte array, which is in the internal Oracle DATE format.

Declaration

// C#
public OracleDate(byte [] bytes);

Parameters

• bytes

A byte array that represents Oracle DATE in the internal Oracle DATE format.

Exceptions

ArgumentException - bytes is null or bytes is not in internal Oracle DATE format or bytes is
not a valid Oracle DATE.

14.3.3 OracleDate Static Fields
The OracleDate static fields are listed in Table 14-34.

Table 14-34 OracleDate Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleDate structure,
which is December 31, 9999 23:59:59

MinValue Represents the minimum valid date for an OracleDate structure,
which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to the value of an
OracleDate structure instance

14.3.3.1 MaxValue
This static field represents the maximum valid date for an OracleDate structure, which
is December 31, 9999 23:59:59.

Chapter 14
OracleDate Structure

14-55

Declaration

// C#
public static readonly OracleDate MaxValue;

14.3.3.2 MinValue
This static field represents the minimum valid date for an OracleDate structure, which is
January 1, -4712.

Declaration

// C#
public static readonly OracleDate MinValue;

14.3.3.3 Null
This static field represents a null value that can be assigned to the value of an
OracleDate instance.

Declaration

// C#
public static readonly OracleDate Null;

14.3.4 OracleDate Static Methods
The OracleDate static methods are listed in Table 14-35.

Table 14-35 OracleDate Static Methods

Methods Description

Equals Determines if two OracleDate values are equal (Overloaded)

GreaterThan Determines if the first of two OracleDate values is greater than
the second

GreaterThanOrEqual Determines if the first of two OracleDate values is greater than or
equal to the second

LessThan Determines if the first of two OracleDate values is less than the
second

LessThanOrEqual Determines if the first of two OracleDate values is less than or
equal to the second

NotEquals Determines if two OracleDate values are not equal

GetSysDate Returns an OracleDate structure that represents the current date
and time

Parse Returns an OracleDate structure and sets its value using a string

Chapter 14
OracleDate Structure

14-56

14.3.4.1 Equals
Overloads Object

This method determines if two OracleDate values are equal.

Declaration

// C#
public static bool Equals(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if two OracleDate values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.4.2 GreaterThan
This method determines if the first of two OracleDate values is greater than the second.

Declaration

// C#
public static bool GreaterThan(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is greater than the second; otherwise,
returns false.

Chapter 14
OracleDate Structure

14-57

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.4.3 GreaterThanOrEqual
This method determines if the first of two OracleDate values is greater than or equal to
the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.4.4 LessThan
This method determines if the first of two OracleDate values is less than the second.

Declaration

// C#
public static bool LessThan(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

Chapter 14
OracleDate Structure

14-58

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is less than the second. Otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.4.5 LessThanOrEqual
This method determines if the first of two OracleDate values is less than or equal to the
second.

Declaration

// C#
public static bool LessThanOrEqual(OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.4.6 NotEquals
This method determines if two OracleDate values are not equal.

Declaration

// C#
public static bool NotEquals(OracleDate value1, OracleDate value2);

Chapter 14
OracleDate Structure

14-59

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if two OracleDate values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.4.7 GetSysDate
This method gets an OracleDate structure that represents the current date and time.

Declaration

// C#
public static OracleDate GetSysDate ();

Return Value

An OracleDate structure that represents the current date and time.

14.3.4.8 Parse
This method gets an OracleDate structure and sets its value for date and time using the
supplied string.

Declaration

// C#
public static OracleDate Parse (string dateStr);

Parameters

• dateStr

A string that represents an Oracle DATE.

Return Value

An OracleDate structure.

Chapter 14
OracleDate Structure

14-60

Exceptions

ArgumentException - The dateStr is an invalid string representation of an Oracle DATE or
the dateStr is not in the date format specified by the thread's
OracleGlobalization.DateFormat property, which represents the Oracle NLS_DATE_FORMAT
parameter.

ArgumentNullException - The dateStr is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ParseSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat for the OracleDate constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // Construct OracleDate from a string using the DateFormat specified
 OracleDate date = OracleDate.Parse("1999-DEC-01");

 // Set a different DateFormat on the thread for ToString()
 info.DateFormat = "MM-DD-YY";
 OracleGlobalization.SetThreadInfo(info);

 // Print "12-01-1999"
 Console.WriteLine(date.ToString());
 }
}

14.3.5 OracleDate Static Operators
The OracleDate static operators are listed in Table 14-36.

Table 14-36 OracleDate Static Operators

Operator Description

operator == Determines if two OracleDate values are the same

operator > Determines if the first of two OracleDate values is greater than the
second

Chapter 14
OracleDate Structure

14-61

Table 14-36 (Cont.) OracleDate Static Operators

Operator Description

operator >= Determines if the first of two OracleDate values is greater than or equal
to the second

operator != Determines if the two OracleDate values are not equal

operator < Determines if the first of two OracleDate values is less than the second

operator <= Determines if the first of two OracleDate values is less than or equal to
the second

14.3.5.1 operator ==
This method determines if two OracleDate values are the same.

Declaration

// C#
public static bool operator == (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if they are the same; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.5.2 operator >
This method determines if the first of two OracleDate values is greater than the second.

Declaration

// C#
public static bool operator > (OracleDate value1, OracleDate value2);

Parameters

• value1

Chapter 14
OracleDate Structure

14-62

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.5.3 operator >=
This method determines if the first of two OracleDate values is greater than or equal to
the second.

Declaration

// C#
public static bool operator >= (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.5.4 operator !=
This method determines if the two OracleDate values are not equal.

Chapter 14
OracleDate Structure

14-63

Declaration

// C#
public static bool operator != (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the two OracleDate values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.5.5 operator <
This method determines if the first of two OracleDate values is less than the second.

Declaration

// C#
public static bool operator < (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is less than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

Chapter 14
OracleDate Structure

14-64

14.3.5.6 operator <=
This method determines if the first of two OracleDate values is less than or equal to the
second.

Declaration

// C#
public static bool operator <= (OracleDate value1, OracleDate value2);

Parameters

• value1

The first OracleDate.

• value2

The second OracleDate.

Return Value

Returns true if the first of two OracleDate values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.6 OracleDate Static Type Conversions
The OracleDate static type conversions are listed in Table 14-37.

Table 14-37 OracleDate Static Type Conversions

Operator Description

explicit operator DateTime Converts a structure to a DateTime structure

explicit operator OracleDate Converts a structure to an OracleDate structure
(Overloaded)

14.3.6.1 explicit operator DateTime
This method converts an OracleDate structure to a DateTime structure.

Declaration

// C#
public static explicit operator DateTime(OracleDate val);

Chapter 14
OracleDate Structure

14-65

Parameters

• val

An OracleDate structure.

Return Value

A DateTime structure.

14.3.6.2 explicit operator OracleDate
explicit operator OracleDate converts the provided structure to an OracleDate
structure.

Overload List:

• explicit operator OracleDate(DateTime)

This method converts a DateTime structure to an OracleDate structure.

• explicit operator OracleDate(OracleTimeStamp)

This method converts an OracleTimeStamp structure to an OracleDate structure.

• explicit operator OracleDate(string)

This method converts the supplied string to an OracleDate structure.

14.3.6.3 explicit operator OracleDate(DateTime)
This method converts a DateTime structure to an OracleDate structure.

Declaration

// C#
public static explicit operator OracleDate(DateTime dt);

Parameters

• dt

A DateTime structure.

Return Value

An OracleDate structure.

14.3.6.4 explicit operator OracleDate(OracleTimeStamp)
This method converts an OracleTimeStamp structure to an OracleDate structure.

Declaration

// C#
public explicit operator OracleDate(OracleTimeStamp ts);

Chapter 14
OracleDate Structure

14-66

Parameters

• ts

OracleTimeStamp

Return Value

The returned OracleDate structure contains the date and time in the OracleTimeStamp
structure.

Remarks

The precision of the OracleTimeStamp value can be lost during the conversion.

If the OracleTimeStamp structure has a null value, the returned OracleDate structure also
has a null value.

14.3.6.5 explicit operator OracleDate(string)
This method converts the supplied string to an OracleDate structure.

Declaration

// C#
public explicit operator OracleDate (string dateStr);

Parameters

• dateStr

A string representation of an Oracle DATE.

Return Value

The returned OracleDate structure contains the date and time in the string dateStr.

Exceptions

ArgumentNullException - The dateStr is null.

ArgumentException - This exception is thrown if any of the following conditions exist:

• The dateStr is an invalid string representation of an Oracle DATE.

• The dateStr is not in the date format specified by the thread's
OracleGlobalization.DateFormat property, which represents the Oracle
NLS_DATE_FORMAT parameter.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Chapter 14
OracleDate Structure

14-67

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleDateSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat to a specific format
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // Construct OracleDate from a string using the DateFormat specified
 OracleDate date = (OracleDate)"1999-DEC-01";

 // Set a different DateFormat on the thread for ToString()
 info.DateFormat = "MON DD YY";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "DEC 01 99"
 Console.WriteLine(date.ToString());
 }
}

14.3.7 OracleDate Properties
The OracleDate properties are listed in Table 14-38.

Table 14-38 OracleDate Properties

Properties Description

BinData Gets an array of bytes that represents an Oracle DATE in Oracle internal
format

Day Gets the day component of an OracleDate method

IsNull Indicates whether or not the current instance has a null value

Hour Gets the hour component of an OracleDate

Minute Gets the minute component of an OracleDate

Month Gets the month component of an OracleDate

Second Gets the second component of an OracleDate

Value Gets the date and time that is stored in the OracleDate structure

Year Gets the year component of an OracleDate

Chapter 14
OracleDate Structure

14-68

14.3.7.1 BinData
This property gets a array of bytes that represents an Oracle DATE in Oracle internal
format.

Declaration

// C#
public byte[] BinData{get;}

Property Value

An array of bytes.

Exceptions

OracleNullValueException - OracleDate has a null value.

14.3.7.2 Day
This property gets the day component of an OracleDate.

Declaration

// C#
public int Day{get;}

Property Value

A number that represents the day. Range of Day is (1 to 31).

Exceptions

OracleNullValueException - OracleDate has a null value.

14.3.7.3 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

14.3.7.4 Hour
This property gets the hour component of an OracleDate.

Chapter 14
OracleDate Structure

14-69

Declaration

// C#
public int Hour {get;}

Property Value

A number that represents Hour. Range of Hour is (0 to 23).

Exceptions

OracleNullValueException - OracleDate has a null value.

14.3.7.5 Minute
This property gets the minute component of an OracleDate.

Declaration

// C#
public int Minute {get;}

Property Value

A number that represents Minute. Range of Minute is (0 to 59).

Exceptions

OracleNullValueException - OracleDate has a null value.

14.3.7.6 Month
This property gets the month component of an OracleDate.

Declaration

// C#
public int Month {get;}

Property Value

A number that represents Month. Range of Month is (1 to 12).

Exceptions

OracleNullValueException - OracleDate has a null value.

14.3.7.7 Second
This property gets the second component of an OracleDate.

Declaration

// C#
public int Second {get;}

Chapter 14
OracleDate Structure

14-70

Property Value

A number that represents Second. Range of Second is (0 to 59).

Exceptions

OracleNullValueException - OracleDate has a null value.

14.3.7.8 Value
This property specifies the date and time that is stored in the OracleDate structure.

Declaration

// C#
public DateTime Value {get;}

Property Value

A DateTime.

Exceptions

OracleNullValueException - OracleDate has a null value.

14.3.7.9 Year
This property gets the year component of an OracleDate.

Declaration

// C#
public int Year {get;}

Property Value

A number that represents Year. Range of Year is (-4712 to 9999).

Exceptions

OracleNullValueException - OracleDate has a null value.

14.3.8 OracleDate Methods
The OracleDate methods are listed in Table 14-39.

Table 14-39 OracleDate Methods

Methods Description

CompareTo Compares the current OracleDate instance to an object, and
returns an integer that represents their relative values

Equals Determines whether or not an object has the same date and time
as the current OracleDate instance (Overloaded)

Chapter 14
OracleDate Structure

14-71

Table 14-39 (Cont.) OracleDate Methods

Methods Description

GetHashCode Returns a hash code for the OracleDate instance

GetDaysBetween Calculates the number of days between the current OracleDate
instance and an OracleDate structure

GetType Inherited from System.Object

ToOracleTimeStamp Converts the current OracleDate structure to an
OracleTimeStamp structure

ToString Converts the current OracleDate structure to a string

14.3.8.1 CompareTo
This method compares the current OracleDate instance to an object, and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

An object.

Return Value

The method returns:

• Less than zero: if the current OracleDate instance value is less than that of obj.

• Zero: if the current OracleDate instance and obj values are equal.

• Greater than zero: if the current OracleDate instance value is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not an instance of OracleDate.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleDates. For example, comparing an
OracleDate instance with an OracleBinary instance is not allowed. When an
OracleDate is compared with a different type, an ArgumentException is thrown.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

Chapter 14
OracleDate Structure

14-72

• Two OracleDates that contain a null value are equal.

14.3.8.2 Equals
This method determines whether or not an object has the same date and time as the
current OracleDate instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

An object.

Return Value

Returns true if obj has the same type as the current instance and represents the same
date and time; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDate that has a value compares greater than an OracleDate that has a
null value.

• Two OracleDates that contain a null value are equal.

14.3.8.3 GetHashCode
Overrides Object

This method returns a hash code for the OracleDate instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

14.3.8.4 GetDaysBetween
This method calculates the number of days between the current OracleDate instance
and the supplied OracleDate structure.

Declaration

// C#
public int GetDaysBetween (OracleDate val);

Chapter 14
OracleDate Structure

14-73

Parameters

• val

An OracleDate structure.

Return Value

The number of days between the current OracleDate instance and the OracleDate
structure.

Exceptions

OracleNullValueException - The current instance or the supplied OracleDate structure
has a null value.

14.3.8.5 ToOracleTimeStamp
This method converts the current OracleDate structure to an OracleTimeStamp structure.

Declaration

// C#
public OracleTimeStamp ToOracleTimeStamp();

Return Value

An OracleTimeStamp structure.

Remarks

The returned OracleTimeStamp structure has date and time in the current instance.

If the OracleDate instance has a null value, the returned OracleTimeStamp structure has
a null value.

14.3.8.6 ToString
Overrides ValueType

This method converts the current OracleDate structure to a string.

Declaration

// C#
public override string ToString();

Return Value

A string.

Remarks

The returned value is a string representation of the OracleDate in the format specified
by the thread's OracleGlobalization.DateFormat property. The names and abbreviations
used for months and days are in the language specified by the thread's
OracleGlobalization.DateLanguage and OracleGlobalization.Calendar properties. If any

Chapter 14
OracleDate Structure

14-74

of the thread's globalization properties are set to null or an empty string, the client
computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ToStringSample
{
 static void Main(string[] args)
 {
 // Set the thread's DateFormat to a specific format
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.DateFormat = "YYYY-MON-DD";
 OracleGlobalization.SetThreadInfo(info);

 // Construct OracleDate from a string using the DateFormat specified
 OracleDate date = (OracleDate)"1999-DEC-01";

 // Set a different DateFormat on the thread for ToString()
 info.DateFormat = "YYYY/MM/DD";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999/12/01"
 Console.WriteLine(date.ToString());
 }
}

14.4 OracleDecimal Structure
The OracleDecimal structure represents an Oracle NUMBER in the database or any Oracle
numeric value.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleDecimal

Declaration

// C#
 public struct OracleDecimal : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Chapter 14
OracleDecimal Structure

14-75

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

OracleDecimal can store up to 38 precision, while the .NET Decimal data type can only
hold up to 28 precision. When accessing the OracleDecimal.Value property from an
OracleDecimal that has a value greater than 28 precision, an exception is thrown. To
retrieve the actual value of OracleDecimal, use the OracleDecimal.ToString() method.
Another approach is to obtain the OracleDecimal value as a byte array in an internal
Oracle NUMBER format through the BinData property.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleDecimalSample
{
 static void Main(string[] args)
 {
 // Illustrates the range of OracleDecimal vs. .NET decimal
 OracleDecimal decimal1 = OracleDecimal.MinValue;
 OracleDecimal decimal2 = OracleDecimal.MaxValue;
 OracleDecimal decimal3 = new OracleDecimal(decimal.MinValue);
 OracleDecimal decimal4 = new OracleDecimal(decimal.MaxValue);

 // Print the ranges
 Console.WriteLine("OracleDecimal can range from\n{0}\nto\n{1}\n",
 decimal1, decimal2);
 Console.WriteLine(".NET decimal can range from\n{0}\nto\n{1}",
 decimal3, decimal4);
 }
}

Chapter 14
OracleDecimal Structure

14-76

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleDecimal Members

• OracleDecimal Constructors

• OracleDecimal Static Fields

• OracleDecimal Static (Comparison) Methods

• OracleDecimal Static (Manipulation) Methods

• OracleDecimal Static (Logarithmic) Methods

• OracleDecimal Static (Trigonometric) Methods

• OracleDecimal Static (Comparison) Operators

• OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

• OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)

• OracleDecimal Properties

• OracleDecimal Instance Methods

14.4.1 OracleDecimal Members
OracleDecimal members are listed in the following tables:

OracleDecimal Constructors

OracleDecimal constructors are listed in Table 14-40

Table 14-40 OracleDecimal Constructors

Constructor Description

OracleDecimal
Constructors

Instantiates a new instance of OracleDecimal structure
(Overloaded)

OracleDecimal Static Fields

The OracleDecimal static fields are listed in Table 14-41.

Table 14-41 OracleDecimal Static Fields

Field Description

MaxPrecision A constant representing the maximum precision, which is 38

MaxScale A constant representing the maximum scale, which is 127

Chapter 14
OracleDecimal Structure

14-77

Table 14-41 (Cont.) OracleDecimal Static Fields

Field Description

MaxValue A constant representing the maximum value for this structure,
which is 9.9…9 x 10125

MinScale A constant representing the minimum scale, which is -84

MinValue A constant representing the minimum value for this structure,
which is -1.0 x 10130

NegativeOne A constant representing the negative one value

Null Represents a null value that can be assigned to an
OracleDecimal instance

One A constant representing the positive one value

Pi A constant representing the numeric Pi value

Zero A constant representing the zero value

OracleDecimal Static (Comparison) Methods

The OracleDecimal static (comparison) methods are listed in Table 14-42.

Table 14-42 OracleDecimal Static (Comparison) Methods

Methods Description

Equals Determines if two OracleDecimal values are equal (Overloaded)

GreaterThan Determines if the first of two OracleDecimal values is greater
than the second

GreaterThanOrEqual Determines if the first of two OracleDecimal values is greater
than or equal to the second

LessThan Determines if the first of two OracleDecimal values is less than
the second

LessThanOrEqual Determines if the first of two OracleDecimal values is less than
or equal to the second.

NotEquals Determines if two OracleDecimal values are not equal

OracleDecimal Static (Manipulation) Methods

The OracleDecimal static (manipulation) methods are listed in Table 14-43.

Table 14-43 OracleDecimal Static (Manipulation) Methods

Methods Description

Abs Returns the absolute value of an OracleDecimal

Add Adds two OracleDecimal structures

AdjustScale Returns a new OracleDecimal with the specified number of digits
and indicates whether or not to round or truncate the number if
the scale is less than original

Chapter 14
OracleDecimal Structure

14-78

Table 14-43 (Cont.) OracleDecimal Static (Manipulation) Methods

Methods Description

Ceiling Returns a new OracleDecimal structure with its value set to the
ceiling of an OracleDecimal structure

ConvertToPrecScale Returns a new OracleDecimal structure with a new precision and
scale

Divide Divides one OracleDecimal value by another

Floor Returns a new OracleDecimal structure with its value set to the
floor of an OracleDecimal structure

Max Returns the maximum value of the two supplied OracleDecimal
structures

Min Returns the minimum value of the two supplied OracleDecimal
structures

Mod Returns a new OracleDecimal structure with its value set to the
modulus of two OracleDecimal structures

Multiply Returns a new OracleDecimal structure with its value set to the
result of multiplying two OracleDecimal structures

Negate Returns a new OracleDecimal structure with its value set to the
negation of the supplied OracleDecimal structure

Parse Converts a string to an OracleDecimal

Round Returns a new OracleDecimal structure with its value set to that
of the supplied OracleDecimal structure and rounded off to the
specified place

SetPrecision Returns a new OracleDecimal structure with a new specified
precision.

Shift Returns a new OracleDecimal structure with its value set to that
of the supplied OracleDecimal structure, and its decimal place
shifted to the specified number of places to the right

Sign Determines the sign of an OracleDecimal structure

Sqrt Returns a new OracleDecimal structure with its value set to the
square root of the supplied OracleDecimal structure

Subtract Returns a new OracleDecimal structure with its value set to
result of subtracting one OracleDecimal structure from another

Truncate Truncates the OracleDecimal at a specified position

OracleDecimal Static (Logarithmic) Methods

The OracleDecimal static (logarithmic) methods are listed in Table 14-44.

Table 14-44 OracleDecimal Static (Logarithmic) Methods

Methods Description

Exp Returns a new OracleDecimal structure with its value set to e
raised to the supplied power

Chapter 14
OracleDecimal Structure

14-79

Table 14-44 (Cont.) OracleDecimal Static (Logarithmic) Methods

Methods Description

Log Returns the supplied OracleDecimal structure with its value set
to the logarithm of the supplied OracleDecimal structure
(Overloaded)

Pow Returns a new OracleDecimal structure with its value set to the
supplied OracleDecimal structure raised to the supplied power
(Overloaded)

OracleDecimal Static (Trigonometric) Methods

The OracleDecimal static (trigonometric) methods are listed in Table 14-45.

Table 14-45 OracleDecimal Static (Trigonometric) Methods

Methods Description

Acos Returns an angle in radians whose cosine is the supplied
OracleDecimal structure

Asin Returns an angle in radians whose sine is the supplied
OracleDecimal structure

Atan Returns an angle in radians whose tangent is the supplied
OracleDecimal structure

Atan2 Returns an angle in radians whose tangent is the quotient of the
two supplied OracleDecimal structures

Cos Returns the cosine of the supplied angle in radians

Sin Returns the sine of the supplied angle in radians

Tan Returns the tangent of the supplied angle in radians

Cosh Returns the hyperbolic cosine of the supplied angle in radians

Sinh Returns the hyperbolic sine of the supplied angle in radians

Tanh Returns the hyperbolic tangent of the supplied angle in radians

OracleDecimal Static (Comparison) Operators

The OracleDecimal static (comparison) operators are listed in Table 14-46.

Table 14-46 OracleDecimal Static (Comparison) Operators

Operator Description

operator + Adds two OracleDecimal values

operator / Divides one OracleDecimal value by another

operator == Determines if the two OracleDecimal values are equal

operator > Determines if the first of two OracleDecimal values is greater
than the second

operator >= Determines if the first of two OracleDecimal values is greater
than or equal to the second

Chapter 14
OracleDecimal Structure

14-80

Table 14-46 (Cont.) OracleDecimal Static (Comparison) Operators

Operator Description

operator != Determines if the two OracleDecimal values are not equal

operator < Determines if the first of two OracleDecimal values is less than
the second

operator <= Determines if the first of two OracleDecimal values is less than
or equal to the second

operator * Multiplies two OracleDecimal structures

operator - Subtracts one OracleDecimal structure from another

operator - Negates an OracleDecimal structure

operator% Returns a new OracleDecimal structure with its value set to the
modulus of two OracleDecimal structures.

OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)

The OracleDecimal static operators (Conversion from .NET Type to OracleDecimal) are
listed in Table 14-47.

Table 14-47 OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

Operator Description

implicit operator
OracleDecimal

Converts an instance value to an OracleDecimal structure
(Overloaded)

explicit operator
OracleDecimal

Converts an instance value to an OracleDecimal structure
(Overloaded)

OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)

The OracleDecimal static operators (Conversion from OracleDecimal to .NET) are listed
in Table 14-48.

Table 14-48 OracleDecimal Static Operators (Conversion from OracleDecimal
to .NET)

Operator Description

explicit operator byte Returns the byte representation of the OracleDecimal value

explicit operator decimal Returns the decimal representation of the OracleDecimal value

explicit operator double Returns the double representation of the OracleDecimal value

explicit operator short Returns the short representation of the OracleDecimal value

explicit operator int Returns the int representation of the OracleDecimal value

explicit operator long Returns the long representation of the OracleDecimal value

explicit operator float Returns the float representation of the OracleDecimal value

Chapter 14
OracleDecimal Structure

14-81

OracleDecimal Properties

The OracleDecimal properties are listed in Table 14-49.

Table 14-49 OracleDecimal Properties

Properties Description

BinData Returns a byte array that represents the Oracle NUMBER in Oracle
internal format

Format Specifies the format for ToString()

IsInt Indicates whether or not the current instance is an integer

IsNull Indicates whether or not the current instance has a null value

IsPositive Indicates whether or not the current instance is greater than 0

IsZero Indicates whether or not the current instance has a zero value

Value Returns a decimal value

OracleDecimal Instance Methods

The OracleDecimal instance methods are listed in Table 14-50.

Table 14-50 OracleDecimal Instance Methods

Method Description

CompareTo Compares the current instance to the supplied object and returns
an integer that represents their relative values

Equals Determines whether or not an object is an instance of
OracleDecimal, and whether or not the value of the object is
equal to the current instance (Overloaded)

GetHashCode Returns a hash code for the current instance

GetType Inherited from System.Object

ToByte Returns the byte representation of the current instance

ToDouble Returns the double representation of the current instance

ToInt16 Returns the Int16 representation of the current instance

ToInt32 Returns the Int32 representation of the current instance

ToInt64 Returns the Int64 representation of the current instance

ToSingle Returns the Single representation of the current instance

ToString Overloads Object.ToString()

Returns the string representation of the current instance

14.4.2 OracleDecimal Constructors
The OracleDecimal constructors instantiate a new instance of the OracleDecimal
structure.

Chapter 14
OracleDecimal Structure

14-82

Overload List:

• OracleDecimal(byte [])

This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied byte array, which is in an Oracle NUMBER format.

• OracleDecimal(decimal)

This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Decimal value.

• OracleDecimal(double)

This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied double value.

• OracleDecimal(int)

This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Int32 value.

• OracleDecimal(float)

This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Single value.

• OracleDecimal(long)

This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Int64 value.

• OracleDecimal(string)

This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied string value.

• OracleDecimal(string, string)

This constructor creates a new instance of the OracleDecimal structure with the
supplied string value and number format.

14.4.2.1 OracleDecimal(byte [])
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied byte array, which is in an Oracle NUMBER format.

Declaration

// C#
public OracleDecimal(byte [] bytes);

Parameters

• bytes

A byte array that represents an Oracle NUMBER in an internal Oracle format.

Exceptions

ArgumentException - The bytes parameter is not in a internal Oracle NUMBER format or
bytes has an invalid value.

Chapter 14
OracleDecimal Structure

14-83

ArgumentNullException - The bytes parameter is null.

14.4.2.2 OracleDecimal(decimal)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Decimal value.

Declaration

// C#
public OracleDecimal(decimal decX);

Parameters

• decX

The provided Decimal value.

14.4.2.3 OracleDecimal(double)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied double value.

Declaration

// C#
public OracleDecimal(double doubleX)

Parameters

• doubleX

The provided double value.

Exceptions

OverFlowException - The value of the supplied double is greater than the maximum
value or less than the minimum value of OracleDecimal.

Remarks

OracleDecimal contains the following values depending on the provided double value:

• double.PositiveInfinity: positive infinity value

• double.NegativeInfinity: negative infinity value.

• double.NaN: null value

14.4.2.4 OracleDecimal(int)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Int32 value.

Declaration

// C#
public OracleDecimal(int intX);

Chapter 14
OracleDecimal Structure

14-84

Parameters

• intX

The provided Int32 value.

14.4.2.5 OracleDecimal(float)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Single value.

Declaration

// C#
public OracleDecimal(float floatX);

Parameters

• floatX

The provided float value.

Remarks

OracleDecimal contains the following values depending on the provided float value:

float.PositiveInfinity: positive infinity value

float.NegativeInfinity: negative infinity value

float.NaN: null value

14.4.2.6 OracleDecimal(long)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied Int64 value.

Declaration

// C#
public OracleDecimal(long longX);

Parameters

• longX

The provided Int64 value.

14.4.2.7 OracleDecimal(string)
This constructor creates a new instance of the OracleDecimal structure and sets its
value to the supplied string value.

Declaration

// C#
public OracleDecimal(string numStr);

Chapter 14
OracleDecimal Structure

14-85

Parameters

• numStr

The provided string value.

Exceptions

ArgumentException - The numStr parameter is an invalid string representation of an
OracleDecimal.

ArgumentNullException - The numStr parameter is null.

OverFlowException - The value of numStr is greater than the maximum value or less
than the minimum value of OracleDecimal.

input string format is incorrect - The locale's numeric separator is a comma(,).

14.4.2.8 OracleDecimal(string, string)
This constructor creates a new instance of the OracleDecimal structure with the
supplied string value and number format.

Declaration

// C#
public OracleDecimal(string numStr, string format);

Parameters

• numStr

The provided string value.

• format

The provided number format.

Exceptions

ArgumentException - The numStr parameter is an invalid string representation of an
OracleDecimal or the numStr is not in the numeric format specified by format.

ArgumentNullException - The numStr parameter is null.

OverFlowException - The value of numStr parameter is greater than the maximum value
or less than the minimum value of OracleDecimal.

Remarks

If the numeric format includes decimal and group separators, then the provided string
must use those characters defined by the OracleGlobalization.NumericCharacters of the
thread.

If the numeric format includes the currency symbol, ISO currency symbol, or the dual
currency symbol, then the provided string must use those symbols defined by the
OracleGlobalization.Currency, OracleGlobalization.ISOCurrency, and
OracleGlobalization.DualCurrency properties respectively.

Chapter 14
OracleDecimal Structure

14-86

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleDecimalSample
{
 static void Main(string[] args)
 {
 // Set the nls parameters related to currency
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.Currency = "$";
 info.NumericCharacters = ".,";
 OracleGlobalization.SetThreadInfo(info);

 // Construct an OracleDecimal using a valid numeric format
 OracleDecimal dec = new OracleDecimal("$2,222.22","L9G999D99");

 // Print "$2,222.22"
 Console.WriteLine(dec.ToString());
 }
}

14.4.3 OracleDecimal Static Fields
The OracleDecimal static fields are listed in Table 14-51.

Table 14-51 OracleDecimal Static Fields

Field Description

MaxPrecision A constant representing the maximum precision, which is 38

MaxScale A constant representing the maximum scale, which is 127

MaxValue A constant representing the maximum value for this structure, which is
9.9…9 x 10125

MinScale A constant representing the minimum scale, which is -84

MinValue A constant representing the minimum value for this structure, which is
-1.0 x 10130

NegativeOne A constant representing the negative one value

Null Represents a null value that can be assigned to an OracleDecimal
instance

One A constant representing the positive one value

Pi A constant representing the numeric Pi value

Zero A constant representing the zero value

14.4.3.1 MaxPrecision
This static field represents the maximum precision, which is 38.

Chapter 14
OracleDecimal Structure

14-87

Declaration

// C#
public static readonly byte MaxPrecision;

14.4.3.2 MaxScale
This static field a constant representing the maximum scale, which is 127.

Declaration

// C#
public static readonly byte MaxScale;

14.4.3.3 MaxValue
This static field indicates a constant representing the maximum value for this structure,
which is 9.9…9 x 10125 (38 nines followed by 88 zeroes).

Declaration

// C#
public static readonly OracleDecimal MaxValue;

14.4.3.4 MinScale
This static field indicates a constant representing the maximum scale, which is -84.

Declaration

// C#
public static readonly int MinScale;

14.4.3.5 MinValue
This static field indicates a constant representing the minimum value for this structure,
which is -1.0 x 10130.

Declaration

// C#
public static readonly OracleDecimal MinValue;

14.4.3.6 NegativeOne
This static field indicates a constant representing the negative one value.

Declaration

// C#
public static readonly OracleDecimal NegativeOne;

Chapter 14
OracleDecimal Structure

14-88

14.4.3.7 Null
This static field represents a null value that can be assigned to an OracleDecimal
instance.

Declaration

// C#
public static readonly OracleDecimal Null;

14.4.3.8 One
This static field indicates a constant representing the positive one value.

Declaration

// C#
public static readonly OracleDecimal One;

14.4.3.9 Pi
This static field indicates a constant representing the numeric Pi value.

Declaration

// C#
public static readonly OracleDecimal Pi;

14.4.3.10 Zero
This static field indicates a constant representing the zero value.

Declaration

// C#
public static readonly OracleDecimal Zero;

14.4.4 OracleDecimal Static (Comparison) Methods
The OracleDecimal static (comparison) methods are listed in Table 14-52.

Table 14-52 OracleDecimal Static (Comparison) Methods

Methods Description

Equals Determines if two OracleDecimal values are equal (Overloaded)

GreaterThan Determines if the first of two OracleDecimal values is greater
than the second

GreaterThanOrEqual Determines if the first of two OracleDecimal values is greater
than or equal to the second

Chapter 14
OracleDecimal Structure

14-89

Table 14-52 (Cont.) OracleDecimal Static (Comparison) Methods

Methods Description

LessThan Determines if the first of two OracleDecimal values is less than
the second

LessThanOrEqual Determines if the first of two OracleDecimal values is less than
or equal to the second.

NotEquals Determines if two OracleDecimal values are not equal

14.4.4.1 Equals
This method determines if two OracleDecimal values are equal.

Declaration

// C#
public static bool Equals(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if two OracleDecimal values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.4.2 GreaterThan
This method determines if the first of two OracleDecimal values is greater than the
second.

Declaration

// C#
public static bool GreaterThan(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

Chapter 14
OracleDecimal Structure

14-90

• value2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.4.3 GreaterThanOrEqual
This method determines if the first of two OracleDecimal values is greater than or equal
to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.4.4 LessThan
This method determines if the first of two OracleDecimal values is less than the second.

Declaration

// C#
public static bool LessThan(OracleDecimal value1, OracleDecimal value2);

Chapter 14
OracleDecimal Structure

14-91

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is less than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.4.5 LessThanOrEqual
This method determines if the first of two OracleDecimal values is less than or equal to
the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

Chapter 14
OracleDecimal Structure

14-92

14.4.4.6 NotEquals
This method determines if two OracleDecimal values are not equal.

Declaration

// C#
public static bool NotEquals(OracleDecimal value1, OracleDecimal value2);

Parameters

• value1

The first OracleDecimal.

• value2

The second OracleDecimal.

Return Value

Returns true if two OracleDecimal values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.5 OracleDecimal Static (Manipulation) Methods
The OracleDecimal static (manipulation) methods are listed in Table 14-53.

Table 14-53 OracleDecimal Static (Manipulation) Methods

Methods Description

Abs Returns the absolute value of an OracleDecimal

Add Adds two OracleDecimal structures

AdjustScale Returns a new OracleDecimal with the specified number of digits
and indicates whether or not to round or truncate the number if
the scale is less than original

Ceiling Returns a new OracleDecimal structure with its value set to the
ceiling of an OracleDecimal structure

ConvertToPrecScale Returns a new OracleDecimal structure with a new precision and
scale

Divide Divides one OracleDecimal value by another

Floor Returns a new OracleDecimal structure with its value set to the
floor of an OracleDecimal structure

Max Returns the maximum value of the two supplied OracleDecimal
structures

Chapter 14
OracleDecimal Structure

14-93

Table 14-53 (Cont.) OracleDecimal Static (Manipulation) Methods

Methods Description

Min Returns the minimum value of the two supplied OracleDecimal
structures

Mod Returns a new OracleDecimal structure with its value set to the
modulus of two OracleDecimal structures

Multiply Returns a new OracleDecimal structure with its value set to the
result of multiplying two OracleDecimal structures

Negate Returns a new OracleDecimal structure with its value set to the
negation of the supplied OracleDecimal structure

Parse Converts a string to an OracleDecimal

Round Returns a new OracleDecimal structure with its value set to that
of the supplied OracleDecimal structure and rounded off to the
specified place

SetPrecision Returns a new OracleDecimal structure with a new specified
precision.

Shift Returns a new OracleDecimal structure with its value set to that
of the supplied OracleDecimal structure, and its decimal place
shifted to the specified number of places to the right

Sign Determines the sign of an OracleDecimal structure

Sqrt Returns a new OracleDecimal structure with its value set to the
square root of the supplied OracleDecimal structure

Subtract Returns a new OracleDecimal structure with its value set to
result of subtracting one OracleDecimal structure from another

Truncate Truncates the OracleDecimal at a specified position

14.4.5.1 Abs
This method returns the absolute value of an OracleDecimal.

Declaration

// C#
public static OracleDecimal Abs(OracleDecimal val);

Parameters

• val

An OracleDecimal.

Return Value

The absolute value of an OracleDecimal.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 14
OracleDecimal Structure

14-94

14.4.5.2 Add
This method adds two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Add(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns an OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.5.3 AdjustScale
This method returns a new OracleDecimal with the specified number of digits and
indicates whether or not to round or truncate the number if the scale is less than the
original.

Declaration

// C#
public static OracleDecimal AdjustScale(OracleDecimal val, int digits,
 bool fRound);

Parameters

• val

An OracleDecimal.

• digits

The number of digits.

• fRound

Indicates whether or not to round or truncate the number. Setting it to true rounds
the number and setting it to false truncates the number.

Return Value

An OracleDecimal.

Chapter 14
OracleDecimal Structure

14-95

Remarks

If the supplied OracleDecimal has a null value, the returned OracleDecimal has a null
value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class AdjustScaleSample
{
 static void Main(string[] args)
 {
 OracleDecimal dec1 = new OracleDecimal(5.555);

 // Adjust Scale to 2 with rounding off
 OracleDecimal dec2 = OracleDecimal.AdjustScale(dec1, 2, true);

 // Prints 5.56
 Console.WriteLine(dec2.ToString());

 // Adjust Scale to 2 with truncation
 OracleDecimal dec3 = OracleDecimal.AdjustScale(dec1, 2, false);

 // Prints 5.55
 Console.WriteLine(dec3.ToString());
 }
}

14.4.5.4 Ceiling
This method returns a new OracleDecimal structure with its value set to the ceiling of
the supplied OracleDecimal.

Declaration

// C#
public static OracleDecimal Ceiling(OracleDecimal val);

Parameters

• val

An OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 14
OracleDecimal Structure

14-96

14.4.5.5 ConvertToPrecScale
This method returns a new OracleDecimal structure with a new precision and scale.

Declaration

// C#
public static OracleDecimal ConvertToPrecScale(OracleDecimal val
 int precision, int scale);

Parameters

• val

An OracleDecimal structure.

• precision

The precision. Range of precision is 1 to 38.

• scale

The number of digits to the right of the decimal point. Range of scale is -84 to 127.

Return Value

A new OracleDecimal structure.

Remarks

If the supplied OracleDecimal has a null value, the returned OracleDecimal has a null
value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class ConvertToPrecScaleSample
{
 static void Main(string[] args)
 {
 OracleDecimal dec1 = new OracleDecimal(555.6666);

 // Set the precision of od to 5 and scale to 2
 OracleDecimal dec2 = OracleDecimal.ConvertToPrecScale(dec1,5,2);

 // Prints 555.67
 Console.WriteLine(dec2.ToString());

 // Set the precision of od to 3 and scale to 0
 OracleDecimal dec3 = OracleDecimal.ConvertToPrecScale(dec1,3,0);

 // Prints 556
 Console.WriteLine(dec3.ToString());
 }
}

Chapter 14
OracleDecimal Structure

14-97

14.4.5.6 Divide
This method divides one OracleDecimal value by another.

Declaration

// C#
public static OracleDecimal Divide(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal.

• val2

An OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.5.7 Floor
This method returns a new OracleDecimal structure with its value set to the floor of the
supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal Floor(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A new OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.5.8 Max
This method returns the maximum value of the two supplied OracleDecimal structures.

Chapter 14
OracleDecimal Structure

14-98

Declaration

// C#
public static OracleDecimal Max(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure.

• val2

An OracleDecimal structure.

Return Value

An OracleDecimal structure that has the greater value.

14.4.5.9 Min
This method returns the minimum value of the two supplied OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Min(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure.

• val2

An OracleDecimal structure.

Return Value

An OracleDecimal structure that has the smaller value.

14.4.5.10 Mod
This method returns a new OracleDecimal structure with its value set to the modulus of
two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Mod(OracleDecimal val1, OracleDecimal divider);

Parameters

• val1

An OracleDecimal structure.

• divider

Chapter 14
OracleDecimal Structure

14-99

An OracleDecimal structure.

Return Value

An OracleDecimal.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.5.11 Multiply
This method returns a new OracleDecimal structure with its value set to the result of
multiplying two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Multiply(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure.

• val2

An OracleDecimal structure.

Return Value

A new OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.5.12 Negate
This method returns a new OracleDecimal structure with its value set to the negation of
the supplied OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Negate(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A new OracleDecimal structure.

Chapter 14
OracleDecimal Structure

14-100

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.5.13 Parse
This method converts a string to an OracleDecimal.

Declaration

// C#
public static OracleDecimal Parse (string str);

Parameters

• str

The string being converted.

Return Value

A new OracleDecimal structure.

Exceptions

ArgumentException - The numStr parameter is an invalid string representation of an
OracleDecimal.

ArgumentNullException - The numStr parameter is null.

OverFlowException - The value of numStr is greater than the maximum value or less
than the minimum value of OracleDecimal.

14.4.5.14 Round
This method returns a new OracleDecimal structure with its value set to that of the
supplied OracleDecimal structure and rounded off to the specified place.

Declaration

// C#
public static OracleDecimal Round(OracleDecimal val, int decplace);

Parameters

• val

An OracleDecimal structure.

• decplace

The specified decimal place. If the value is positive, the function rounds the
OracleDecimal structure to the right of the decimal point. If the value is negative,
the function rounds to the left of the decimal point.

Return Value

An OracleDecimal structure.

Chapter 14
OracleDecimal Structure

14-101

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has
a null value.

14.4.5.15 SetPrecision
This method returns a new OracleDecimal structure with a new specified precision.

Declaration

// C#
public static OracleDecimal SetPrecision(OracleDecimal val, int precision);

Parameters

• val

An OracleDecimal structure.

• precision

The specified precision. Range of precision is 1 to 38.

Return Value

An OracleDecimal structure.

Remarks

The returned OracleDecimal is rounded off if the specified precision is smaller than the
precision of val.

If val has a null value, the returned OracleDecimal has a null value.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class SetPrecisionSample
{
 static void Main(string[] args)
 {
 OracleDecimal dec1 = new OracleDecimal(555.6666);

 // Set the precision of dec1 to 3
 OracleDecimal dec2 = OracleDecimal.SetPrecision(dec1, 3);

 // Prints 556
 Console.WriteLine(dec2.ToString());

 // Set the precision of dec1 to 4
 OracleDecimal dec3 = OracleDecimal.SetPrecision(dec1, 4);

 // Prints 555.7
 Console.WriteLine(dec3.ToString());

Chapter 14
OracleDecimal Structure

14-102

 }
}

14.4.5.16 Shift
This method returns a new OracleDecimal structure with its value set to that of the
supplied OracleDecimal structure, and its decimal place shifted to the specified number
of places to the right.

Declaration

// C#
public static OracleDecimal Shift(OracleDecimal val, int decplaces);

Parameters

• val

An OracleDecimal structure.

• decplaces

The specified number of places to be shifted.

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has
a null value.

If decplaces is negative, the shift is to the left.

14.4.5.17 Sign
This method determines the sign of an OracleDecimal structure.

Declaration

// C#
public static int Sign(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

• -1: if the supplied OracleDecimal < 0

• 0: if the supplied OracleDecimal == 0

• 1: if the supplied OracleDecimal > 0

Chapter 14
OracleDecimal Structure

14-103

Exceptions

OracleNullValueException - The argument has a null value.

14.4.5.18 Sqrt
This method returns a new OracleDecimal structure with its value set to the square root
of the supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal Sqrt(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

An OracleDecimal structure.

Exceptions

ArgumentOutOfRangeException - The provided OracleDecimal structure is less than zero.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.5.19 Subtract
This method returns a new OracleDecimal structure with its value set to result of
subtracting one OracleDecimal structure from another.

Declaration

// C#
public static OracleDecimal Subtract(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure.

• val2

An OracleDecimal structure.

Return Value

An OracleDecimal structure.

Chapter 14
OracleDecimal Structure

14-104

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.5.20 Truncate
This method truncates the OracleDecimal at a specified position.

Declaration

// C#
public static OracleDecimal Truncate(OracleDecimal val, int pos);

Parameters

• val

An OracleDecimal structure.

• pos

The specified position. If the value is positive, the function truncates the
OracleDecimal structure to the right of the decimal point. If the value is negative, it
truncates the OracleDecimal structure to the left of the decimal point.

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has
a null value.

14.4.6 OracleDecimal Static (Logarithmic) Methods
The OracleDecimal static (logarithmic) methods are listed in Table 14-54.

Table 14-54 OracleDecimal Static (Logarithmic) Methods

Methods Description

Exp Returns a new OracleDecimal structure with its value set to e raised to the
supplied power

Log Returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure (Overloaded)

Pow Returns a new OracleDecimal structure with its value set to the supplied
OracleDecimal structure raised to the supplied power (Overloaded)

14.4.6.1 Exp
This method returns a new OracleDecimal structure with its value set to e raised to the
supplied OracleDecimal.

Chapter 14
OracleDecimal Structure

14-105

Declaration

// C#
public static OracleDecimal Exp(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

An OracleDecimal structure.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.6.2 Log
Log returns the supplied OracleDecimal structure with its value set to the logarithm of
the supplied OracleDecimal structure.

Overload List:

• Log(OracleDecimal)

This method returns a new OracleDecimal structure with its value set to the natural
logarithm (base e) of the supplied OracleDecimal structure.

• Log(OracleDecimal, int)

This method returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure in the supplied base.

• Log(OracleDecimal, OracleDecimal)

This method returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure in the supplied base.

14.4.6.3 Log(OracleDecimal)
This method returns a new OracleDecimal structure with its value set to the natural
logarithm (base e) of the supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal Log(OracleDecimal val);

Parameters

• val

An OracleDecimal structure whose logarithm is to be calculated.

Chapter 14
OracleDecimal Structure

14-106

Return Value

Returns a new OracleDecimal structure with its value set to the natural logarithm (base
e) of val.

Exceptions

ArgumentOutOfRangeException - The supplied OracleDecimal value is less than zero.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has
a null value.

If the supplied OracleDecimal structure has zero value, the result is undefined, and the
returned OracleDecimal structure has a null value.

14.4.6.4 Log(OracleDecimal, int)
This method returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure in the supplied base.

Declaration

// C#
public static OracleDecimal Log(OracleDecimal val, int logBase);

Parameters

• val

An OracleDecimal structure whose logarithm is to be calculated.

• logBase

An int that specifies the base of the logarithm.

Return Value

A new OracleDecimal structure with its value set to the logarithm of val in the supplied
base.

Exceptions

ArgumentOutOfRangeException - Either argument is less than zero.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

If both arguments have zero value, the result is undefined, and the returned
OracleDecimal structure has a null value.

14.4.6.5 Log(OracleDecimal, OracleDecimal)
This method returns the supplied OracleDecimal structure with its value set to the
logarithm of the supplied OracleDecimal structure in the supplied base.

Chapter 14
OracleDecimal Structure

14-107

Declaration

// C#
public static OracleDecimal Log(OracleDecimal val, OracleDecimal logBase);

Parameters

• val

An OracleDecimal structure whose logarithm is to be calculated.

• logBase

An OracleDecimal structure that specifies the base of the logarithm.

Return Value

Returns the logarithm of val in the supplied base.

Exceptions

ArgumentOutOfRangeException - Either the val or logBase parameter is less than zero.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

If both arguments have zero value, the result is undefined, and the returned
OracleDecimal structure has a null value.

14.4.6.6 Pow
Pow returns a new OracleDecimal structure with its value set to the supplied
OracleDecimal structure raised to the supplied power.

Overload List:

• Pow(OracleDecimal, int)

This method returns a new OracleDecimal structure with its value set to the
supplied OracleDecimal value raised to the supplied Int32 power.

• Pow(OracleDecimal, OracleDecimal)

This method returns a new OracleDecimal structure with its value set to the
supplied OracleDecimal structure raised to the supplied OracleDecimal power.

14.4.6.7 Pow(OracleDecimal, int)
This method returns a new OracleDecimal structure with its value set to the supplied
OracleDecimal value raised to the supplied Int32 power.

Declaration

// C#
public static OracleDecimal Pow(OracleDecimal val, int power);

Chapter 14
OracleDecimal Structure

14-108

Parameters

• val

An OracleDecimal structure.

• power

An int value that specifies the power.

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has
a null value.

14.4.6.8 Pow(OracleDecimal, OracleDecimal)
This method returns a new OracleDecimal structure with its value set to the supplied
OracleDecimal structure raised to the supplied OracleDecimal power.

Declaration

// C#
public static OracleDecimal Pow(OracleDecimal val, OracleDecimal power);

Parameters

• val

An OracleDecimal structure.

• power

An OracleDecimal structure that specifies the power.

Return Value

An OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has
a null value.

14.4.7 OracleDecimal Static (Trigonometric) Methods
The OracleDecimal static (trigonometric) methods are listed in Table 14-55.

Chapter 14
OracleDecimal Structure

14-109

Table 14-55 OracleDecimal Static (Trigonometric) Methods

Methods Description

Acos Returns an angle in radians whose cosine is the supplied
OracleDecimal structure

Asin Returns an angle in radians whose sine is the supplied
OracleDecimal structure

Atan Returns an angle in radians whose tangent is the supplied
OracleDecimal structure

Atan2 Returns an angle in radians whose tangent is the quotient of the
two supplied OracleDecimal structures

Cos Returns the cosine of the supplied angle in radians

Sin Returns the sine of the supplied angle in radians

Tan Returns the tangent of the supplied angle in radians

Cosh Returns the hyperbolic cosine of the supplied angle in radians

Sinh Returns the hyperbolic sine of the supplied angle in radians

Tanh Returns the hyperbolic tangent of the supplied angle in radians

14.4.7.1 Acos
This method returns an angle in radians whose cosine is the supplied OracleDecimal
structure.

Declaration

// C#
public static OracleDecimal Acos(OracleDecimal val);

Parameters

• val

An OracleDecimal structure. Range is (-1 to 1).

Return Value

An OracleDecimal structure that represents an angle in radians.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.7.2 Asin
This method returns an angle in radians whose sine is the supplied OracleDecimal
structure.

Chapter 14
OracleDecimal Structure

14-110

Declaration

// C#
public static OracleDecimal Asin(OracleDecimal val);

Parameters

• val

An OracleDecimal structure. Range is (-1 to 1).

Return Value

An OracleDecimal structure that represents an angle in radians.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.7.3 Atan
This method returns an angle in radians whose tangent is the supplied OracleDecimal
structure

Declaration

// C#
public static OracleDecimal Atan(OracleDecimal val);

Parameters

• val

An OracleDecimal.

Return Value

An OracleDecimal structure that represents an angle in radians.

Remarks

If the argument has a null value, the returned OracleDecimal has a null value.

14.4.7.4 Atan2
This method returns an angle in radians whose tangent is the quotient of the two
supplied OracleDecimal structures.

Declaration

// C#
public static OracleDecimal Atan2(OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

An OracleDecimal structure that represents the y-coordinate.

Chapter 14
OracleDecimal Structure

14-111

• val2

An OracleDecimal structure that represents the x-coordinate.

Return Value

An OracleDecimal structure that represents an angle in radians.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.7.5 Cos
This method returns the cosine of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Cos(OracleDecimal val);

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Exceptions

ArgumentOutOfRangeException - The val parameter is positive or negative infinity.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.7.6 Sin
This method returns the sine of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Sin(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

An OracleDecimal structure that represents an angle in radians.

Chapter 14
OracleDecimal Structure

14-112

Exceptions

ArgumentOutOfRangeException - The val parameter is positive or negative infinity.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.7.7 Tan
This method returns the tangent of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Tan(OracleDecimal val);

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Exceptions

ArgumentOutOfRangeException - The val parameter is positive or negative infinity.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.7.8 Cosh
This method returns the hyperbolic cosine of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Cosh(OracleDecimal val);

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

Chapter 14
OracleDecimal Structure

14-113

14.4.7.9 Sinh
This method returns the hyperbolic sine of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Sinh(OracleDecimal val);

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.7.10 Tanh
This method returns the hyperbolic tangent of the supplied angle in radians.

Declaration

// C#
public static OracleDecimal Tanh(OracleDecimal val);

Parameters

• val

An OracleDecimal structure that represents an angle in radians.

Return Value

An OracleDecimal instance.

Remarks

If either argument has a null value, the returned OracleDecimal has a null value.

14.4.8 OracleDecimal Static (Comparison) Operators
The OracleDecimal static (comparison) operators are listed in Table 14-56.

Table 14-56 OracleDecimal Static (Comparison) Operators

Operator Description

operator + Adds two OracleDecimal values

Chapter 14
OracleDecimal Structure

14-114

Table 14-56 (Cont.) OracleDecimal Static (Comparison) Operators

Operator Description

operator / Divides one OracleDecimal value by another

operator == Determines if the two OracleDecimal values are equal

operator > Determines if the first of two OracleDecimal values is greater than
the second

operator >= Determines if the first of two OracleDecimal values is greater than
or equal to the second

operator != Determines if the two OracleDecimal values are not equal

operator < Determines if the first of two OracleDecimal values is less than the
second

operator <= Determines if the first of two OracleDecimal values is less than or
equal to the second

operator * Multiplies two OracleDecimal structures

operator - Subtracts one OracleDecimal structure from another

operator - Negates an OracleDecimal structure

operator% Returns a new OracleDecimal structure with its value set to the
modulus of two OracleDecimal structures.

14.4.8.1 operator +
This method adds two OracleDecimal values.

Declaration

// C#
public static OracleDecimal operator + (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

An OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

14.4.8.2 operator /
This method divides one OracleDecimal value by another.

Chapter 14
OracleDecimal Structure

14-115

Declaration

/ C#
public static OracleDecimal operator / (OracleDecimal val1, OracleDecimal val2)

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

An OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

14.4.8.3 operator ==
This method determines if two OracleDecimal values are equal.

Declaration

// C#
public static bool operator == (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if their values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.8.4 operator >
This method determines if the first of two OracleDecimal values is greater than the
second.

Chapter 14
OracleDecimal Structure

14-116

Declaration

// C#
public static bool operator > (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the two OracleDecimal values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.8.5 operator >=
This method determines if the first of two OracleDecimal values is greater than or equal
to the second.

Declaration

// C#
public static bool operator >= (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

Chapter 14
OracleDecimal Structure

14-117

14.4.8.6 operator !=
This method determines if the first of two OracleDecimal values are not equal.

Declaration

// C#
public static bool operator != (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the two OracleDecimal values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.8.7 operator <
This method determines if the first of two OracleDecimal values is less than the second.

Declaration

// C#
public static bool operator < (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is less than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

Chapter 14
OracleDecimal Structure

14-118

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.8.8 operator <=
This method determines if the first of two OracleDecimal values is less than or equal to
the second.

Declaration

// C#
public static bool operator <= (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

Returns true if the first of two OracleDecimal values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.8.9 operator *
This method multiplies two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal operator * (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

A new OracleDecimal structure.

Chapter 14
OracleDecimal Structure

14-119

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

14.4.8.10 operator -
This method subtracts one OracleDecimal structure from another.

Declaration

// C#
public static OracleDecimal operator - (OracleDecimal val1, OracleDecimal val2);

Parameters

• val1

The first OracleDecimal.

• val2

The second OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

14.4.8.11 operator -
This method negates the supplied OracleDecimal structure.

Declaration

// C#
public static OracleDecimal operator - (OracleDecimal val);

Parameters

• val

An OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If the supplied OracleDecimal structure has a null value, the returned OracleDecimal has
a null value.

Chapter 14
OracleDecimal Structure

14-120

14.4.8.12 operator%
This method returns a new OracleDecimal structure with its value set to the modulus of
two OracleDecimal structures.

Declaration

// C#
public static OracleDecimal operator % (OracleDecimal val,
 OracleDecimal divider);

Parameters

• val

An OracleDecimal.

• divider

An OracleDecimal.

Return Value

A new OracleDecimal structure.

Remarks

If either operand has a null value, the returned OracleDecimal has a null value.

14.4.9 OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

The OracleDecimal static operators (Conversion from .NET Type to OracleDecimal) are
listed in Table 14-57.

Table 14-57 OracleDecimal Static Operators (Conversion from .NET Type to
OracleDecimal)

Operator Description

implicit operator OracleDecimal Converts an instance value to an OracleDecimal
structure (Overloaded)

explicit operator OracleDecimal Converts an instance value to an OracleDecimal
structure (Overloaded)

14.4.9.1 implicit operator OracleDecimal
implicit operator OracleDecimal returns the OracleDecimal representation of a value.

Overload List:

• implicit operator OracleDecimal(decimal)

This method returns the OracleDecimal representation of a decimal value.

Chapter 14
OracleDecimal Structure

14-121

• implicit operator OracleDecimal(int)

This method returns the OracleDecimal representation of an int value.

• implicit operator OracleDecimal(long)

This method returns the OracleDecimal representation of a long value.

14.4.9.2 implicit operator OracleDecimal(decimal)
This method returns the OracleDecimal representation of a decimal value.

Declaration

// C#
public static implicit operator OracleDecimal(decimal val);

Parameters

• val

A decimal value.

Return Value

An OracleDecimal.

14.4.9.3 implicit operator OracleDecimal(int)
This method returns the OracleDecimal representation of an int value.

Declaration

// C#
public static implicit operator OracleDecimal(int val);

Parameters

• val

An int value.

Return Value

An OracleDecimal.

14.4.9.4 implicit operator OracleDecimal(long)
This method returns the OracleDecimal representation of a long value.

Declaration

// C#
public static implicit operator OracleDecimal(long val);

Parameters

• val

Chapter 14
OracleDecimal Structure

14-122

A long value.

Return Value

An OracleDecimal.

14.4.9.5 explicit operator OracleDecimal
OracleDecimal returns the OracleDecimal representation of a value.

Overload List:

• explicit operator OracleDecimal(double)

This method returns the OracleDecimal representation of a double.

• explicit operator OracleDecimal(string)

This method returns the OracleDecimal representation of a string.

14.4.9.6 explicit operator OracleDecimal(double)
This method returns the OracleDecimal representation of a double.

Declaration

// C#
public static explicit operator OracleDecimal(double val);

Parameters

• val

A double.

Return Value

An OracleDecimal.

Exceptions

OverFlowException - The value of the supplied double is greater than the maximum
value of OracleDecimal or less than the minimum value of OracleDecimal.

Remarks

OracleDecimal contains the following values depending on the provided double value:

• double.PositiveInfinity: positive infinity value

• double.NegativeInfinity: negative infinity value.

• double.NaN: null value

14.4.9.7 explicit operator OracleDecimal(string)
This method returns the OracleDecimal representation of a string.

Chapter 14
OracleDecimal Structure

14-123

Declaration

// C#
public static explicit operator OracleDecimal(string numStr);

Parameters

• numStr

A string that represents a numeric value.

Return Value

An OracleDecimal.

Exceptions

ArgumentException - The numStr parameter is an invalid string representation of an
OracleDecimal.

14.4.10 OracleDecimal Static Operators (Conversion from
OracleDecimal to .NET)

The OracleDecimal static operators (Conversion from OracleDecimal to .NET) are listed
in Table 14-58.

Table 14-58 OracleDecimal Static Operators (Conversion from OracleDecimal
to .NET)

Operator Description

explicit operator byte Returns the byte representation of the OracleDecimal
value

explicit operator decimal Returns the decimal representation of the
OracleDecimal value

explicit operator double Returns the double representation of the
OracleDecimal value

explicit operator short Returns the short representation of the OracleDecimal
value

explicit operator int Returns the int representation of the OracleDecimal
value

explicit operator long Returns the long representation of the OracleDecimal
value

explicit operator float Returns the float representation of the OracleDecimal
value

14.4.10.1 explicit operator byte
This method returns the byte representation of the OracleDecimal value.

Chapter 14
OracleDecimal Structure

14-124

Declaration

// C#
public static explicit operator byte(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A byte.

Exceptions

OracleNullValueException - OracleDecimal has a null value.

OverFlowException- The byte cannot represent the supplied OracleDecimal structure.

14.4.10.2 explicit operator decimal
This method returns the decimal representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator decimal(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A decimal.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The decimal cannot represent the supplied OracleDecimal structure.

14.4.10.3 explicit operator double
This method returns the double representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator double(OracleDecimal val);

Parameters

• val

Chapter 14
OracleDecimal Structure

14-125

An OracleDecimal structure.

Return Value

A double.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The double cannot represent the supplied OracleDecimal structure.

14.4.10.4 explicit operator short
This method returns the short representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator short(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A short.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The short cannot represent the supplied OracleDecimal structure.

14.4.10.5 explicit operator int
This method returns the int representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator int(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

An int.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

Chapter 14
OracleDecimal Structure

14-126

OverFlowException - The int cannot represent the supplied OracleDecimal structure.

14.4.10.6 explicit operator long
This method returns the long representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator long(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A long.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The long cannot represent the supplied OracleDecimal structure.

14.4.10.7 explicit operator float
This method returns the float representation of the OracleDecimal value.

Declaration

// C#
public static explicit operator float(OracleDecimal val);

Parameters

• val

An OracleDecimal structure.

Return Value

A float.

Exceptions

OracleNullValueException - The OracleDecimal has a null value.

OverFlowException - The float cannot represent the supplied OracleDecimal structure.

14.4.11 OracleDecimal Properties
The OracleDecimal properties are listed in Table 14-59.

Chapter 14
OracleDecimal Structure

14-127

Table 14-59 OracleDecimal Properties

Properties Description

BinData Returns a byte array that represents the Oracle NUMBER in Oracle
internal format

Format Specifies the format for ToString()

IsInt Indicates whether or not the current instance is an integer

IsNull Indicates whether or not the current instance has a null value

IsPositive Indicates whether or not the current instance is greater than 0

IsZero Indicates whether or not the current instance has a zero value

Value Returns a decimal value

14.4.11.1 BinData
This property returns a byte array that represents the Oracle NUMBER in an internal
Oracle format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

A byte array that represents the Oracle NUMBER in an internal Oracle format.

Exceptions

OracleNullValueException - The current instance has a null value.

14.4.11.2 Format
This property specifies the format for ToString().

Declaration

// C#
public string Format {get; set;}

Property Value

The string which specifies the format.

Remarks

Format is used when ToString() is called on an instance of an OracleDecimal. It is useful
if the ToString() method needs a specific currency symbol, group, or decimal
separator as part of a string.

By default, this property is null which indicates that no special formatting is used.

Chapter 14
OracleDecimal Structure

14-128

The decimal and group separator characters are specified by the thread's
OracleGlobalization.NumericCharacters.

The currency symbols are specified by the following thread properties:

• OracleGlobalization.Currency

• OracleGlobalization.ISOCurrency

• OracleGlobalization.DualCurrency

14.4.11.3 IsInt
This property indicates whether or not the current instance is an integer value.

Declaration

// C#
public bool IsInt {get;}

Property Value

A bool value that returns true if the current instance is an integer value; otherwise,
returns false.

Exceptions

OracleNullValueException - The current instance has a null value.

14.4.11.4 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

A bool value that returns true if the current instance has a null value; otherwise,
returns false.

14.4.11.5 IsPositive
This property indicates whether or not the value of the current instance is greater than
0.

Declaration

// C#
public bool IsPositive {get;}

Property Value

A bool value that returns true if the current instance is greater than 0; otherwise,
returns false.

Chapter 14
OracleDecimal Structure

14-129

Exceptions

OracleNullValueException - The current instance has a null value.

14.4.11.6 IsZero
This property indicates whether or not the current instance has a zero value.

Declaration

// C#
public bool IsZero{get;}

Property Value

A bool value that returns true if the current instance has a zero value; otherwise,
returns false.

Exceptions

OracleNullValueException - The current instance has a null value.

14.4.11.7 Value
This method returns a decimal value.

Declaration

// C#
public decimal Value {get;}

Property Value

A decimal value.

Exceptions

OracleNullValueException - The current instance has a null value.

OverFlowException - The decimal cannot represent the supplied OracleDecimal structure.

Remarks

Precision can be lost when the decimal value is obtained from an OracleDecimal. See
Remarks under "OracleDecimal Structure" for further information.

14.4.12 OracleDecimal Instance Methods
The OracleDecimal instance methods are listed in Table 14-60.

Chapter 14
OracleDecimal Structure

14-130

Table 14-60 OracleDecimal Instance Methods

Method Description

CompareTo Compares the current instance to the supplied object and returns
an integer that represents their relative values

Equals Determines whether or not an object is an instance of
OracleDecimal, and whether or not the value of the object is
equal to the current instance (Overloaded)

GetHashCode Returns a hash code for the current instance

GetType Inherited from System.Object

ToByte Returns the byte representation of the current instance

ToDouble Returns the double representation of the current instance

ToInt16 Returns the Int16 representation of the current instance

ToInt32 Returns the Int32 representation of the current instance

ToInt64 Returns the Int64 representation of the current instance

ToSingle Returns the Single representation of the current instance

ToString Overloads Object.ToString()

Returns the string representation of the current instance

14.4.12.1 CompareTo
This method compares the current instance to the supplied object and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The supplied instance.

Return Value

The method returns a number:

• Less than zero: if the value of the current instance is less than obj.

• Zero: if the value of the current instance is equal to obj.

• Greater than zero: if the value of the current instance is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The parameter is not of type OracleDecimal.

Chapter 14
OracleDecimal Structure

14-131

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleDecimals. For example, comparing an
OracleDecimal instance with an OracleBinary instance is not allowed. When an
OracleDecimal is compared with a different type, an ArgumentException is thrown.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.12.2 Equals
Overrides Object

This method determines whether or not an object is an instance of OracleDecimal, and
whether or not the value of the object is equal to the current instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

An OracleDecimal instance.

Return Value

Returns true if obj is an instance of OracleDecimal, and the value of obj is equal to the
current instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleDecimal that has a value compares greater than an OracleDecimal that
has a null value.

• Two OracleDecimals that contain a null value are equal.

14.4.12.3 GetHashCode
Overrides Object

This method returns a hash code for the current instance.

Declaration

// C#
public override int GetHashCode();

Return Value

Returns a hash code.

Chapter 14
OracleDecimal Structure

14-132

14.4.12.4 ToByte
This method returns the byte representation of the current instance.

Declaration

// C#
public byte ToByte();

Return Value

A byte.

Exceptions

OverFlowException - The byte cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

14.4.12.5 ToDouble
This method returns the double representation of the current instance.

Declaration

// C#
public double ToDouble();

Return Value

A double.

Exceptions

OverFlowException - The double cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

14.4.12.6 ToInt16
This method returns the Int16 representation of the current instance.

Declaration

// C#
public short ToInt16();

Return Value

A short.

Exceptions

OverFlowException - The short cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

Chapter 14
OracleDecimal Structure

14-133

14.4.12.7 ToInt32
This method returns the Int32 representation of the current instance.

Declaration

// C#
public int ToInt32();

Return Value

An int.

Exceptions

OverFlowException - The int cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

14.4.12.8 ToInt64
This method returns the Int64 representation of the current instance.

Declaration

// C#
public long ToInt64();

Return Value

A long.

Exceptions

OverFlowException - The long cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

14.4.12.9 ToSingle
This method returns the Single representation of the current instance.

Declaration

// C#
public float ToSingle();

Return Value

A float.

Exceptions

OverFlowException - The float cannot represent the current instance.

OracleNullValueException - The current instance has a null value.

Chapter 14
OracleDecimal Structure

14-134

14.4.12.10 ToString
Overrides Object

This method returns the string representation of the current instance.

Declaration

// C#
public override string ToString();

Return Value

Returns the number in a string returns and a period (.) as a numeric separator.

Remarks

If the current instance has a null value, the returned string is "null".

The returned value is a string representation of an OracleDecimal in the numeric format
specified by the Format property.

The decimal and group separator characters are specified by the thread's
OracleGlobalization.NumericCharacters.

The currency symbols are specified by the following thread properties:

• OracleGlobalization.Currency

• OracleGlobalization.ISOCurrency

• OracleGlobalization.DualCurrency

If the numeric format is not specified, an Oracle default value is used.

14.5 OracleIntervalDS Structure
The OracleIntervalDS structure represents the Oracle INTERVAL DAY TO SECOND data type
to be stored in or retrieved from a database. Each OracleIntervalDS stores a period of
time in term of days, hours, minutes, seconds, and fractional seconds.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleIntervalDS

Declaration

// C#
public struct OracleIntervalDS : IComparable, INullable, IXmlSerializable

Chapter 14
OracleIntervalDS Structure

14-135

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleIntervalDSSample
{
 static void Main()
 {
 OracleIntervalDS iDSMax = OracleIntervalDS.MaxValue;
 double totalDays = iDSMax.TotalDays;

 totalDays -= 1;
 OracleIntervalDS iDSMax_1 = new OracleIntervalDS(totalDays);

 // Calculate the difference
 OracleIntervalDS iDSDiff = iDSMax - iDSMax_1;

 // Prints "iDSDiff.ToString() = +000000000 23:59:59.999999999"
 Console.WriteLine("iDSDiff.ToString() = " + iDSDiff.ToString());
 }
}

Chapter 14
OracleIntervalDS Structure

14-136

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleIntervalDS Members

• OracleIntervalDS Constructors

• OracleIntervalDS Static Fields

• OracleIntervalDS Static Methods

• OracleIntervalDS Static Operators

• OracleIntervalDS Type Conversions

• OracleIntervalDS Properties

• OracleIntervalDS Methods

14.5.1 OracleIntervalDS Members
OracleIntervalDS members are listed in the following tables:

OracleIntervalDS Constructors

OracleIntervalDS constructors are listed in Table 14-61

Table 14-61 OracleIntervalDS Constructors

Constructor Description

OracleIntervalDS Constructors Instantiates a new instance of OracleIntervalDS
structure (Overloaded)

OracleIntervalDS Static Fields

The OracleIntervalDS static fields are listed in Table 14-62.

Table 14-62 OracleIntervalDS Static Fields

Field Description

MaxValue Represents the maximum valid time interval for an
OracleIntervalDS structure

MinValue Represents the minimum valid time interval for an
OracleIntervalDS structure

Null Represents a null value that can be assigned to an
OracleIntervalDS instance

Zero Represents a zero value for an OracleIntervalDS
structure

Chapter 14
OracleIntervalDS Structure

14-137

OracleIntervalDS Static Methods

The OracleIntervalDS static methods are listed in Table 14-63.

Table 14-63 OracleIntervalDS Static Methods

Methods Description

Equals Determines whether or not two OracleIntervalDS
values are equal (Overloaded)

GreaterThan Determines whether or not one OracleIntervalDS
value is greater than another

GreaterThanOrEqual Determines whether or not one OracleIntervalDS
value is greater than or equal to another

LessThan Determines whether or not one OracleIntervalDS
value is less than another

LessThanOrEqual Determines whether or not one OracleIntervalDS
value is less than or equal to another

NotEquals Determines whether or not two OracleIntervalDS
values are not equal

Parse Returns an OracleIntervalDS structure and sets
its value for time interval using a string

SetPrecision Returns a new instance of an OracleIntervalDS
with the specified day precision and fractional
second precision

OracleIntervalDS Static Operators

The OracleIntervalDS static operators are listed in Table 14-64.

Table 14-64 OracleIntervalDS Static Operators

Operator Description

operator + Adds two OracleIntervalDS values

operator == Determines whether or not two OracleIntervalDS
values are equal

operator > Determines whether or not one OracleIntervalDS
value is greater than another

operator >= Determines whether or not one OracleIntervalDS
value is greater than or equal to another

operator != Determines whether or not two OracleIntervalDS
values are not equal

operator < Determines whether or not one OracleIntervalDS
value is less than another

operator <= Determines whether or not one OracleIntervalDS
value is less than or equal to another

operator - Subtracts one OracleIntervalDS value from
another

operator - Negates an OracleIntervalDS structure

Chapter 14
OracleIntervalDS Structure

14-138

Table 14-64 (Cont.) OracleIntervalDS Static Operators

Operator Description

operator * Multiplies an OracleIntervalDS value by a number

operator / Divides an OracleIntervalDS value by a number

OracleIntervalDS Type Conversions

The OracleIntervalDS type conversions are listed in Table 14-65.

Table 14-65 OracleIntervalDS Type Conversions

Operator Description

explicit operator TimeSpan Converts an OracleIntervalDS structure to a
TimeSpan structure

explicit operator OracleIntervalDS Converts a string to an OracleIntervalDS
structure

implicit operator OracleIntervalDS Converts a TimeSpan structure to an
OracleIntervalDS structure

OracleIntervalDS Properties

The OracleIntervalDS properties are listed in Table 14-66.

Table 14-66 OracleIntervalDS Properties

Properties Description

BinData Returns an array of bytes that represents the
Oracle INTERVAL DAY TO SECOND in Oracle internal
format

Days Gets the days component of an OracleIntervalDS

Hours Gets the hours component of an
OracleIntervalDS

IsNull Indicates whether or not the current instance has a
null value

Milliseconds Gets the milliseconds component of an
OracleIntervalDS

Minutes Gets the minutes component of an
OracleIntervalDS

Nanoseconds Gets the nanoseconds component of an
OracleIntervalDS

Seconds Gets the seconds component of an
OracleIntervalDS

TotalDays Returns the total number, in days, that represent
the time period in the OracleIntervalDS structure

Value Specifies the time interval that is stored in the
OracleIntervalDS structure

Chapter 14
OracleIntervalDS Structure

14-139

OracleIntervalDS Methods

The OracleIntervalDS methods are listed in Table 14-67.

Table 14-67 OracleIntervalDS Methods

Methods Description

CompareTo Compares the current OracleIntervalDS instance
to an object, and returns an integer that represents
their relative values

Equals Determines whether or not the specified object
has the same time interval as the current instance
(Overloaded)

GetHashCode Returns a hash code for the OracleIntervalDS
instance

GetType Inherited from System.Object

ToString Converts the current OracleIntervalDS structure
to a string

14.5.2 OracleIntervalDS Constructors
OracleIntervalDS constructors create a new instance of the OracleIntervalDS structure.

Overload List:

• OracleIntervalDS(TimeSpan)

This constructor creates a new instance of the OracleIntervalDS structure and sets
its value using a TimeSpan structure.

• OracleIntervalDS(string)

This constructor creates a new instance of the OracleIntervalDS structure and sets
its value using a string that indicates a period of time.

• OracleIntervalDS(double)

This constructor creates a new instance of the OracleIntervalDS structure and sets
its value using the total number of days.

• OracleIntervalDS(int, int, int, int, double)

This constructor creates a new instance of the OracleIntervalDS structure and sets
its value using the supplied days, hours, minutes, seconds and milliseconds.

• OracleIntervalDS(int, int, int, int, int)

This constructor creates a new instance of the OracleIntervalDS structure and sets
its value using the supplied days, hours, minutes, seconds, and nanoseconds.

• OracleIntervalDS(byte[])

This constructor creates a new instance of the OracleIntervalDS structure and sets
its value to the provided byte array, which is in an internal Oracle INTERVAL DAY TO
SECOND format.

Chapter 14
OracleIntervalDS Structure

14-140

14.5.2.1 OracleIntervalDS(TimeSpan)
This constructor creates a new instance of the OracleIntervalDS structure and sets its
value using a TimeSpan structure.

Declaration

// C#
public OracleIntervalDS(TimeSpan ts);

Parameters

• ts

A TimeSpan structure.

14.5.2.2 OracleIntervalDS(string)
This constructor creates a new instance of the OracleIntervalDS structure and sets its
value using a string that indicates a period of time.

Declaration

// C#
public OracleIntervalDS(string intervalStr);

Parameters

• intervalStr

A string representing the Oracle INTERVAL DAY TO SECOND.

Exceptions

ArgumentException - The intervalStr parameter is not in the valid format or has an
invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The value specified in the supplied intervalStr must be in Day HH:MI:SSxFF format.

Example

"1 2:3:4.99" means 1 day, 2 hours, 3 minutes, 4 seconds, and 990 milliseconds or 1
day, 2 hours, 3 minutes, 4 seconds, and 990000000 nanoseconds.

14.5.2.3 OracleIntervalDS(double)
This constructor creates a new instance of the OracleIntervalDS structure and sets its
value using the total number of days.

Declaration

// C#
public OracleIntervalDS(double totalDays);

Chapter 14
OracleIntervalDS Structure

14-141

Parameters

• totalDays

The supplied total number of days for a time interval. Range of days is
-1000,000,000 < totalDays < 1000,000,000.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleIntervalDS.

14.5.2.4 OracleIntervalDS(int, int, int, int, double)
This constructor creates a new instance of the OracleIntervalDS structure and sets its
value using the supplied days, hours, minutes, seconds, and milliseconds.

Declaration

// C#
public OracleIntervalDS (int days, int hours, int minutes, int seconds,
 double milliSeconds);

Parameters

• days

The days provided. Range of day is (-999,999,999 to 999,999,999).

• hours

The hours provided. Range of hour is (-23 to 23).

• minutes

The minutes provided. Range of minute is (-59 to 59).

• seconds

The seconds provided. Range of second is (-59 to 59).

• milliSeconds

The milliseconds provided. Range of millisecond is (- 999.999999 to 999.999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleIntervalDS.

Remarks

The sign of all the arguments must be the same.

Chapter 14
OracleIntervalDS Structure

14-142

14.5.2.5 OracleIntervalDS(int, int, int, int, int)
This constructor creates a new instance of the OracleIntervalDS structure and sets its
value using the supplied days, hours, minutes, seconds, and nanoseconds.

Declaration

// C#
public OracleIntervalDS (int days, int hours, int minutes, int seconds,
 int nanoseconds);

Parameters

• days

The days provided. Range of day is (-999,999,999 to 999,999,999).

• hours

The hours provided. Range of hour is (-23 to 23).

• minutes

The minutes provided. Range of minute is (-59 to 59).

• seconds

The seconds provided. Range of second is (-59 to 59).

• nanoseconds

The nanoseconds provided. Range of nanosecond is (-999,999,999 to
999,999,999)

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleIntervalDS.

Remarks

The sign of all the arguments must be the same.

14.5.2.6 OracleIntervalDS(byte[])
This constructor creates a new instance of the OracleIntervalDS structure and sets its
value to the provided byte array, which is in an internal Oracle INTERVAL DAY TO SECOND
format.

Declaration

// C#
public OracleIntervalDS (byte[] bytes);

Parameters

• bytes

Chapter 14
OracleIntervalDS Structure

14-143

A byte array that is in an internal Oracle INTERVAL DAY TO SECOND format.

Exceptions

ArgumentException - bytes is not in internal Oracle INTERVAL DAY TO SECOND format, or
bytes is not a valid Oracle INTERVAL DAY TO SECOND.

ArgumentNullException - bytes is null.

14.5.3 OracleIntervalDS Static Fields
The OracleIntervalDS static fields are listed in Table 14-68.

Table 14-68 OracleIntervalDS Static Fields

Field Description

MaxValue Represents the maximum valid time interval for an OracleIntervalDS
structure

MinValue Represents the minimum valid time interval for an OracleIntervalDS
structure

Null Represents a null value that can be assigned to an OracleIntervalDS
instance

Zero Represents a zero value for an OracleIntervalDS structure

14.5.3.1 MaxValue
This static field represents the maximum value for an OracleIntervalDS structure.

Declaration

// C#
public static readonly OracleIntervalDS MaxValue;

Remarks

Maximum values:

• Day: 999999999

• hour: 23

• minute is 59

• second: 59

• nanosecond: 999999999

14.5.3.2 MinValue
This static field represents the minimum value for an OracleIntervalDS structure.

Chapter 14
OracleIntervalDS Structure

14-144

Declaration

// C#
public static readonly OracleIntervalDS MinValue;

Remarks

Minimum values:

• Day: -999999999

• hour: -23

• minute: -59

• second: -59

• nanosecond: -999999999

14.5.3.3 Null
This static field represents a null value that can be assigned to an OracleIntervalDS
instance.

Declaration

// C#
public static readonly OracleIntervalDS Null;

14.5.3.4 Zero
This static field represents a zero value for an OracleIntervalDS structure.

Declaration

// C#
public static readonly OracleIntervalDS Zero;

14.5.4 OracleIntervalDS Static Methods
The OracleIntervalDS static methods are listed in Table 14-69.

Table 14-69 OracleIntervalDS Static Methods

Methods Description

Equals Determines whether or not two OracleIntervalDS values are
equal (Overloaded)

GreaterThan Determines whether or not one OracleIntervalDS value is
greater than another

GreaterThanOrEqual Determines whether or not one OracleIntervalDS value is
greater than or equal to another

LessThan Determines whether or not one OracleIntervalDS value is less
than another

Chapter 14
OracleIntervalDS Structure

14-145

Table 14-69 (Cont.) OracleIntervalDS Static Methods

Methods Description

LessThanOrEqual Determines whether or not one OracleIntervalDS value is less
than or equal to another

NotEquals Determines whether or not two OracleIntervalDS values are not
equal

Parse Returns an OracleIntervalDS structure and sets its value for
time interval using a string

SetPrecision Returns a new instance of an OracleIntervalDS with the
specified day precision and fractional second precision

14.5.4.1 Equals
This static method determines whether or not two OracleIntervalDS values are equal.

Declaration

// C#
public static bool Equals(OracleIntervalDS val1, OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

If the two OracleIntervalDS structures represent the same time interval, returns true;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.4.2 GreaterThan
This static method determines whether or not the first of two OracleIntervalDS values is
greater than the second.

Declaration

// C#
public static bool GreaterThan(OracleIntervalDS val1, OracleIntervalDS
 val2);

Chapter 14
OracleIntervalDS Structure

14-146

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.4.3 GreaterThanOrEqual
This static method determines whether or not the first of two OracleIntervalDS values is
greater than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

Chapter 14
OracleIntervalDS Structure

14-147

14.5.4.4 LessThan
This static method determines whether or not the first of two OracleIntervalDS values is
less than the second.

Declaration

// C#
public static bool LessThan(OracleIntervalDS val1, OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is less than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.4.5 LessThanOrEqual
This static method determines whether or not the first of two OracleIntervalDS values is
less than or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleIntervalDS val1, OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is less than or equal to the
second; otherwise, returns false.

Chapter 14
OracleIntervalDS Structure

14-148

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.4.6 NotEquals
This static method determines whether or not two OracleIntervalDS values are not
equal.

Declaration

// C#
public static bool NotEquals(OracleIntervalDS val1, OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if two OracleIntervalDS values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.4.7 Parse
This static method returns an OracleIntervalDS instance and sets its value for time
interval using a string.

Declaration

// C#
public static OracleIntervalDS Parse(string intervalStr);

Parameters

• intervalStr

A string representing the Oracle INTERVAL DAY TO SECOND.

Chapter 14
OracleIntervalDS Structure

14-149

Return Value

Returns an OracleIntervalDS instance representing the time interval from the supplied
string.

Exceptions

ArgumentException - The intervalStr parameter is not in the valid format or intervalStr
has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The value specified in intervalStr must be in Day HH:MI:SSxFF format.

Example

"1 2:3:4.99" means 1 day, 2 hours, 3 minutes, 4 seconds, and 990 milliseconds or 1
day, 2 hours, 3 minutes, 4 seconds, and 990000000 nanoseconds.

14.5.4.8 SetPrecision
This static method returns a new instance of an OracleIntervalDS with the specified
day precision and fractional second precision.

Declaration

// C#
public static OracleIntervalDS SetPrecision(OracleIntervalDS value1,
 int dayPrecision, int fracSecPrecision);

Parameters

• value1

An OracleIntervalDS structure.

• dayPrecision

The day precision provided. Range of day precision is (0 to 9).

• fracSecPrecision

The fractional second precision provided. Range of fractional second precision is
(0 to 9).

Return Value

An OracleIntervalDS instance.

Exceptions

ArgumentOutOfRangeException - An argument value is out of the specified range.

Remarks

Depending on the value specified in the supplied dayPrecision, 0 or more leading
zeros are displayed in the string returned by ToString().

Chapter 14
OracleIntervalDS Structure

14-150

The value specified in the supplied fracSecPrecision is used to perform a rounding off
operation on the supplied OracleIntervalDS value. Depending on this value, 0 or more
trailing zeros are displayed in the string returned by ToString().

Example

The OracleIntervalDS with a value of "1 2:3:4.99" results in the string "001 2:3:4.99000"
when SetPrecision() is called, with the day precision set to 3 and fractional second
precision set to 5.

14.5.5 OracleIntervalDS Static Operators
The OracleIntervalDS static operators are listed in Table 14-70.

Table 14-70 OracleIntervalDS Static Operators

Operator Description

operator + Adds two OracleIntervalDS values

operator == Determines whether or not two OracleIntervalDS values are
equal

operator > Determines whether or not one OracleIntervalDS value is
greater than another

operator >= Determines whether or not one OracleIntervalDS value is
greater than or equal to another

operator != Determines whether or not two OracleIntervalDS values are not
equal

operator < Determines whether or not one OracleIntervalDS value is less
than another

operator <= Determines whether or not one OracleIntervalDS value is less
than or equal to another

operator - Subtracts one OracleIntervalDS value from another

operator - Negates an OracleIntervalDS structure

operator * Multiplies an OracleIntervalDS value by a number

operator / Divides an OracleIntervalDS value by a number

14.5.5.1 operator +
This static operator adds two OracleIntervalDS values.

Declaration

// C#
public static OracleIntervalDS operator + (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

Chapter 14
OracleIntervalDS Structure

14-151

• val2

The second OracleIntervalDS.

Return Value

An OracleIntervalDS.

Remarks

If either argument has a null value, the returned OracleIntervalDS structure has a null
value.

14.5.5.2 operator ==
This static operator determines if two OracleIntervalDS values are equal.

Declaration

// C#
public static bool operator == (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the two OracleIntervalDS values are the same; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.5.3 operator >
This static operator determines if the first of two OracleIntervalDS values is greater
than the second.

Declaration

// C#
public static bool operator > (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

Chapter 14
OracleIntervalDS Structure

14-152

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if one OracleIntervalDS value is greater than another; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.5.4 operator >=
This static operator determines if the first of two OracleIntervalDS values is greater
than or equal to the second.

Declaration

// C#
public static bool operator >= (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.5.5 operator !=
This static operator determines if the two OracleIntervalDS values are not equal.

Chapter 14
OracleIntervalDS Structure

14-153

Declaration

// C#
public static bool operator != (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the two OracleIntervalDS values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.5.6 operator <
This static operator determines if the first of two OracleIntervalDS values is less than
the second.

Declaration

// C#
public static bool operator < (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is less than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

Chapter 14
OracleIntervalDS Structure

14-154

• Two OracleIntervalDSs that contain a null value are equal.

14.5.5.7 operator <=
This static operator determines if the first of two OracleIntervalDS values is less than or
equal to the second.

Declaration

// C#
public static bool operator <= (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

Returns true if the first of two OracleIntervalDS values is less than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.5.8 operator -
This static operator subtracts one OracleIntervalDS structure from another.

Declaration

// C#
public static OracleIntervalDS operator - (OracleIntervalDS val1,
 OracleIntervalDS val2);

Parameters

• val1

The first OracleIntervalDS.

• val2

The second OracleIntervalDS.

Return Value

An OracleIntervalDS structure.

Chapter 14
OracleIntervalDS Structure

14-155

Remarks

If either argument has a null value, the returned OracleIntervalDS structure has a null
value.

14.5.5.9 operator -
This static operator negates the supplied OracleIntervalDS structure.

Declaration

// C#
public static OracleIntervalDS operator - (OracleIntervalDS val);

Parameters

• val

An OracleIntervalDS.

Return Value

An OracleIntervalDS structure.

Remarks

If the supplied OracleIntervalDS structure has a null value, the returned
OracleIntervalDS structure has a null value.

14.5.5.10 operator *
This static operator multiplies an OracleIntervalDS value by a number.

Declaration

// C#
public static OracleIntervalDS operator * (OracleIntervalDS val1,
 int multiplier);

Parameters

• val1

The first OracleIntervalDS.

• multiplier

A multiplier.

Return Value

A new OracleIntervalDS instance.

Remarks

If the OracleIntervalDS structure has a null value, the returned OracleIntervalDS
structure has a null value.

Chapter 14
OracleIntervalDS Structure

14-156

14.5.5.11 operator /
This static operator divides an OracleIntervalDS value by a number.

Declaration

// C#
public static OracleIntervalDS operator / (OracleIntervalDS val1,
 int divisor);

Parameters

• val1

The first OracleIntervalDS.

• divisor

A divisor.

Return Value

An OracleIntervalDS structure.

Remarks

If the OracleIntervalDS structure has a null value, the returned OracleIntervalDS
structure has a null value.

14.5.6 OracleIntervalDS Type Conversions
The OracleIntervalDS type conversions are listed in Table 14-71.

Table 14-71 OracleIntervalDS Type Conversions

Operator Description

explicit operator TimeSpan Converts an OracleIntervalDS structure to a
TimeSpan structure

explicit operator OracleIntervalDS Converts a string to an OracleIntervalDS
structure

implicit operator OracleIntervalDS Converts a TimeSpan structure to an
OracleIntervalDS structure

14.5.6.1 explicit operator TimeSpan
This type conversion operator converts an OracleIntervalDS structure to a TimeSpan
structure.

Declaration

// C#
public static explicit operator TimeSpan(OracleIntervalDS val);

Chapter 14
OracleIntervalDS Structure

14-157

Parameters

• val

An OracleIntervalDS instance.

Return Value

A TimeSpan structure.

Exceptions

OracleNullValueException - The OracleIntervalDS structure has a null value.

Remarks

14.5.6.2 explicit operator OracleIntervalDS
This type conversion operator converts a string to an OracleIntervalDS structure.

Declaration

// C#
public static explicit operator OracleIntervalDS (string intervalStr);

Parameters

• intervalStr

A string representation of an Oracle INTERVAL DAY TO SECOND.

Return Value

An OracleIntervalDS structure.

Exceptions

ArgumentException - The supplied intervalStr parameter is not in the correct format or
has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The returned OracleIntervalDS structure contains the same time interval represented
by the supplied intervalStr. The value specified in the supplied intervalStr must be in
Day HH:MI:SSxFF format.

Example

"1 2:3:4.99" means 1 day, 2 hours, 3 minutes 4 seconds and 990 milliseconds or 1
day, 2 hours, 3 minutes 4 seconds and 990000000 nanoseconds.

14.5.6.3 implicit operator OracleIntervalDS
This type conversion operator converts a TimeSpan structure to an OracleIntervalDS
structure.

Chapter 14
OracleIntervalDS Structure

14-158

Declaration

// C#
public static implicit operator OracleIntervalDS(TimeSpan val);

Parameters

• val

A TimeSpan instance.

Return Value

An OracleIntervalDS structure.

Remarks

The returned OracleIntervalDS structure contains the same days, hours, seconds, and
milliseconds as the supplied TimeSpan val.

14.5.7 OracleIntervalDS Properties
The OracleIntervalDS properties are listed in Table 14-72.

Table 14-72 OracleIntervalDS Properties

Properties Description

BinData Returns an array of bytes that represents the Oracle INTERVAL DAY TO
SECOND in Oracle internal format

Days Gets the days component of an OracleIntervalDS

Hours Gets the hours component of an OracleIntervalDS

IsNull Indicates whether or not the current instance has a null value

Milliseconds Gets the milliseconds component of an OracleIntervalDS

Minutes Gets the minutes component of an OracleIntervalDS

Nanoseconds Gets the nanoseconds component of an OracleIntervalDS

Seconds Gets the seconds component of an OracleIntervalDS

TotalDays Returns the total number, in days, that represent the time period in the
OracleIntervalDS structure

Value Specifies the time interval that is stored in the OracleIntervalDS
structure

14.5.7.1 BinData
This property returns an array of bytes that represents the Oracle INTERVAL DAY TO
SECOND in Oracle internal format.

Declaration

// C#
public byte[] BinData {get;}

Chapter 14
OracleIntervalDS Structure

14-159

Property Value

A byte array that represents an Oracle INTERVAL DAY TO SECOND in Oracle internal format.

Exceptions

OracleNullValueException - The current instance has a null value.

Remarks

14.5.7.2 Days
This property gets the days component of an OracleIntervalDS.

Declaration

// C#
public int Days {get;}

Property Value

An int representing the days component.

Exceptions

OracleNullValueException - The current instance has a null value.

14.5.7.3 Hours
This property gets the hours component of an OracleIntervalDS.

Declaration

// C#
public int Hours {get;}

Property Value

An int representing the hours component.

Exceptions

OracleNullValueException - The current instance has a null value.

14.5.7.4 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull {get;}

Chapter 14
OracleIntervalDS Structure

14-160

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

14.5.7.5 Milliseconds
This property gets the milliseconds component of an OracleIntervalDS.

Declaration

// C#
public double Milliseconds {get;}

Property Value

A double that represents milliseconds component.

Exceptions

OracleNullValueException - The current instance has a null value.

14.5.7.6 Minutes
This property gets the minutes component of an OracleIntervalDS.

Declaration

// C#
public int Minutes {get;}

Property Value

A int that represents minutes component.

Exceptions

OracleNullValueException - The current instance has a null value.

14.5.7.7 Nanoseconds
This property gets the nanoseconds component of an OracleIntervalDS.

Declaration

// C#
public int Nanoseconds {get;}

Property Value

An int that represents nanoseconds component.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 14
OracleIntervalDS Structure

14-161

14.5.7.8 Seconds
This property gets the seconds component of an OracleIntervalDS.

Declaration

// C#
public int Seconds {get;}

Property Value

An int that represents seconds component.

Exceptions

OracleNullValueException - The current instance has a null value.

14.5.7.9 TotalDays
This property returns the total number, in days, that represent the time period in the
OracleIntervalDS structure.

Declaration

// C#
public double TotalDays {get;}

Property Value

A double that represents the total number of days.

Exceptions

OracleNullValueException - The current instance has a null value.

14.5.7.10 Value
This property specifies the time interval that is stored in the OracleIntervalDS structure.

Declaration

// C#
public TimeSpan Value {get;}

Property Value

A time interval.

Exceptions

OracleNullValueException - The current instance has a null value.

14.5.8 OracleIntervalDS Methods
The OracleIntervalDS methods are listed in Table 14-73.

Chapter 14
OracleIntervalDS Structure

14-162

Table 14-73 OracleIntervalDS Methods

Methods Description

CompareTo Compares the current OracleIntervalDS instance to an object,
and returns an integer that represents their relative values

Equals Determines whether or not the specified object has the same
time interval as the current instance (Overloaded)

GetHashCode Returns a hash code for the OracleIntervalDS instance

GetType Inherited from System.Object

ToString Converts the current OracleIntervalDS structure to a string

14.5.8.1 CompareTo
This method compares the current OracleIntervalDS instance to an object, and returns
an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared to.

Return Value

The method returns:

• Less than zero: if the current OracleIntervalDS represents a shorter time interval
than obj.

• Zero: if the current OracleIntervalDS and obj represent the same time interval.

• Greater than zero: if the current OracleIntervalDS represents a longer time interval
than obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleIntervalDS.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleIntervalDSs. For example, comparing an
OracleIntervalDS instance with an OracleBinary instance is not allowed. When an
OracleIntervalDS is compared with a different type, an ArgumentException is thrown.

Chapter 14
OracleIntervalDS Structure

14-163

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.8.2 Equals
This method determines whether or not the specified object has the same time interval
as the current instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The specified object.

Return Value

Returns true if obj is of type OracleIntervalDS and has the same time interval as the
current instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalDS that has a value compares greater than an OracleIntervalDS
that has a null value.

• Two OracleIntervalDSs that contain a null value are equal.

14.5.8.3 GetHashCode
Overrides Object

This method returns a hash code for the OracleIntervalDS instance.

Declaration

// C#
public override int GetHashCode();

14.5.8.4 ToString
Overrides Object

This method converts the current OracleIntervalDS structure to a string.

Declaration

// C#
public override string ToString();

Chapter 14
OracleIntervalDS Structure

14-164

Return Value

Returns a string.

Remarks

If the current instance has a null value, the returned string contains "null".

14.6 OracleIntervalYM Structure
The OracleIntervalYM structure represents the Oracle INTERVAL YEAR TO MONTH data type
to be stored in or retrieved from a database. Each OracleIntervalYM stores a period of
time in years and months.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleIntervalYM

Declaration

// C#
public struct OracleIntervalYM : IComparable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleIntervalYMSample
{
 static void Main()
 {
 OracleIntervalYM iYMMax = OracleIntervalYM.MaxValue;
 double totalYears = iYMMax.TotalYears;

 totalYears -= 1;
 OracleIntervalYM iYMMax_1 = new OracleIntervalYM(totalYears);

Chapter 14
OracleIntervalYM Structure

14-165

 // Calculate the difference
 OracleIntervalYM iYMDiff = iYMMax - iYMMax_1;

 // Prints "iYMDiff.ToString() = +000000001-00"
 Console.WriteLine("iYMDiff.ToString() = " + iYMDiff.ToString());
 }
}

14.6.1 OracleIntervalYM Members
OracleIntervalYM members are listed in the following tables:

OracleIntervalYM Constructors

OracleIntervalYM constructors are listed in Table 14-74

Table 14-74 OracleIntervalYM Constructors

Constructor Description

OracleIntervalYM Constructors Instantiates a new instance of OracleIntervalYM
structure (Overloaded)

OracleIntervalYM Static Fields

The OracleIntervalYM static fields are listed in Table 14-75.

Table 14-75 OracleIntervalYM Static Fields

Field Description

MaxValue Represents the maximum value for an
OracleIntervalYM structure

MinValue Represents the minimum value for an
OracleIntervalYM structure

Null Represents a null value that can be assigned to an
OracleIntervalYM instance

Zero Represents a zero value for an OracleIntervalYM
structure

OracleIntervalYM Static Methods

The OracleIntervalYM static methods are listed in Table 14-76.

Table 14-76 OracleIntervalYM Static Methods

Methods Description

Equals Determines whether or not two OracleIntervalYM
values are equal (Overloaded)

GreaterThan Determines whether or not one OracleIntervalYM
value is greater than another

Chapter 14
OracleIntervalYM Structure

14-166

Table 14-76 (Cont.) OracleIntervalYM Static Methods

Methods Description

GreaterThanOrEqual Determines whether or not one OracleIntervalYM
value is greater than or equal to another

LessThan Determines whether or not one OracleIntervalYM
value is less than another

LessThanOrEqual Determines whether or not one OracleIntervalYM
value is less than or equal to another

NotEquals Determines whether two OracleIntervalYM values
are not equal

Parse Returns an OracleIntervalYM structure and sets
its value for time interval using a string

SetPrecision Returns a new instance of an OracleIntervalYM
with the specified year precision.

OracleIntervalYM Static Operators

The OracleIntervalYM static operators are listed in Table 14-77.

Table 14-77 OracleIntervalYM Static Operators

Operator Description

operator + Adds two OracleIntervalYM values

operator == Determines whether or not two OracleIntervalYM
values are equal

operator > Determines whether or not one OracleIntervalYM
value is greater than another

operator >= Determines whether or not one OracleIntervalYM
value is greater than or equal to another

operator != Determines whether two OracleIntervalYM values
are not equal

operator < Determines whether or not one OracleIntervalYM
value is less than another

operator <= Determines whether or not one OracleIntervalYM
value is less than or equal to another

operator - Subtracts one OracleIntervalYM value from
another

operator - Negates an OracleIntervalYM structure

operator * Multiplies an OracleIntervalYM value by a number

operator / Divides an OracleIntervalYM value by a number

OracleIntervalYM Type Conversions

The OracleIntervalYM conversions are listed in Table 14-78.

Chapter 14
OracleIntervalYM Structure

14-167

Table 14-78 OracleIntervalYM Type Conversions

Operator Description

explicit operator long Converts an OracleIntervalYM structure to a
number

explicit operator OracleIntervalYM Converts a string to an OracleIntervalYM
structure

implicit operator OracleIntervalYM Converts the number of months to an
OracleIntervalYM structure

OracleIntervalYM Properties

The OracleIntervalYM properties are listed in Table 14-79.

Table 14-79 OracleIntervalYM Properties

Properties Description

BinData Returns an array of bytes that represents the
Oracle INTERVAL YEAR TO MONTH in an Oracle
internal format

IsNull Indicates whether or not the current instance has a
null value

Months Gets the months component of an
OracleIntervalYM

TotalYears Returns the total number, in years, that represents
the period of time in the current OracleIntervalYM
structure

Value Specifies the total number of months that is stored
in the OracleIntervalYM structure

Years Gets the years component of an
OracleIntervalYM

OracleIntervalYM Methods

The OracleIntervalYM methods are listed in Table 14-80.

Table 14-80 OracleIntervalYM Methods

Methods Description

CompareTo Compares the current OracleIntervalYM instance
to the supplied object, and returns an integer that
represents their relative values

Equals Determines whether or not the specified object
has the same time interval as the current instance
(Overloaded)

GetHashCode Returns a hash code for the OracleIntervalYM
instance

GetType Inherited from System.Object

Chapter 14
OracleIntervalYM Structure

14-168

Table 14-80 (Cont.) OracleIntervalYM Methods

Methods Description

ToString Converts the current OracleIntervalYM structure
to a string

14.6.2 OracleIntervalYM Constructors
The OracleIntervalYM constructors creates a new instance of the OracleIntervalYM
structure.

Overload List:

• OracleIntervalYM(long)

This method creates a new instance of the OracleIntervalYM structure using the
supplied total number of months for a period of time.

• OracleIntervalYM(string)

This method creates a new instance of the OracleIntervalYM structure and sets its
value using the supplied string.

• OracleIntervalYM(double)

This method creates a new instance of the OracleIntervalYM structure and sets its
value using the total number of years.

• OracleIntervalYM(int, int)

This method creates a new instance of the OracleIntervalYM structure and sets its
value using years and months.

• OracleIntervalYM(byte[])

This method creates a new instance of the OracleIntervalYM structure and sets its
value to the provided byte array, which is in an internal Oracle INTERVAL DAY TO
SECOND format.

14.6.2.1 OracleIntervalYM(long)
This method creates a new instance of the OracleIntervalYM structure using the
supplied total number of months for a period of time.

Declaration

// C#
public OracleIntervalYM (long totalMonths);

Parameters

• totalMonths

The number of total months for a time interval. Range is -12,000,000,000 <
totalMonths < 12,000,000,000.

Chapter 14
OracleIntervalYM Structure

14-169

Exceptions

ArgumentOutOfRangeException - The totalMonths parameter is out of the specified range.

14.6.2.2 OracleIntervalYM(string)
This method creates a new instance of the OracleIntervalYM structure and sets its
value using the supplied string.

Declaration

// C#
public OracleIntervalYM (string intervalStr);

Parameters

• intervalStr

A string representing the Oracle INTERVAL YEAR TO MONTH.

Remarks

The value specified in the supplied intervalStr must be in Year-Month format.

Exceptions

ArgumentException - The intervalStr parameter is not in the valid format or intervalStr
has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Example

"1-2" means 1 year and 2 months.

14.6.2.3 OracleIntervalYM(double)
This method creates a new instance of the OracleIntervalYM structure and sets its
value using the total number of years.

Declaration

// C#
public OracleIntervalYM (double totalYears);

Parameters

• totalYears

Number of total years. Range is -1,000,000,000 < totalYears > 1,000,000,000.

Exceptions

ArgumentOutOfRangeException - The totalYears parameter is out of the specified range.

ArgumentException - The totalYears parameter cannot be used to construct a valid
OracleIntervalYM.

Chapter 14
OracleIntervalYM Structure

14-170

14.6.2.4 OracleIntervalYM(int, int)
This method creates a new instance of the OracleIntervalYM structure and sets its
value using years and months.

Declaration

// C#
public OracleIntervalYM (int years, int months);

Parameters

• years

Number of years. Range of year is (-999,999,999 to 999,999,999).

• months

Number of months. Range of month is (-11 to 11).

Remarks

The sign of all the arguments must be the same.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleIntervalYM.

14.6.2.5 OracleIntervalYM(byte[])
This method creates a new instance of the OracleIntervalYM structure and sets its
value to the provided byte array, which is in an internal Oracle INTERVAL DAY TO SECOND
format.

Declaration

// C#
public OracleIntervalYM (byte[] bytes);

Parameters

• bytes

A byte array that is in an internal Oracle INTERVAL YEAR TO MONTH format.

Exceptions

ArgumentException - The supplied byte array is not in an internal Oracle INTERVAL YEAR
TO MONTH format or the supplied byte array has an invalid value.

ArgumentNullException - bytes is null.

Remarks

The supplied byte array must be in an internal Oracle INTERVAL YEAR TO MONTH format.

Chapter 14
OracleIntervalYM Structure

14-171

14.6.3 OracleIntervalYM Static Fields
The OracleIntervalYM static fields are listed in Table 14-81.

Table 14-81 OracleIntervalYM Static Fields

Field Description

MaxValue Represents the maximum value for an OracleIntervalYM structure

MinValue Represents the minimum value for an OracleIntervalYM structure

Null Represents a null value that can be assigned to an OracleIntervalYM
instance

Zero Represents a zero value for an OracleIntervalYM structure

14.6.3.1 MaxValue
This static field represents the maximum value for an OracleIntervalYM structure.

Declaration

// C#
public static readonly OracleIntervalYM MaxValue;

Remarks

Year is 999999999 and Month is 11.

14.6.3.2 MinValue
This static field represents the minimum value for an OracleIntervalYM structure.

Declaration

// C#
public static readonly OracleIntervalYM MinValue;

Remarks

Year is -999999999 and Month is -11.

14.6.3.3 Null
This static field represents a null value that can be assigned to an OracleIntervalYM
instance.

Declaration

// C#
public static readonly OracleIntervalYM Null;

Chapter 14
OracleIntervalYM Structure

14-172

14.6.3.4 Zero
This static field represents a zero value for an OracleIntervalYM structure.

Declaration

// C#
public static readonly OracleIntervalDS Zero;

14.6.4 OracleIntervalYM Static Methods
The OracleIntervalYM static methods are listed in Table 14-82.

Table 14-82 OracleIntervalYM Static Methods

Methods Description

Equals Determines whether or not two OracleIntervalYM values are
equal (Overloaded)

GreaterThan Determines whether or not one OracleIntervalYM value is
greater than another

GreaterThanOrEqual Determines whether or not one OracleIntervalYM value is
greater than or equal to another

LessThan Determines whether or not one OracleIntervalYM value is less
than another

LessThanOrEqual Determines whether or not one OracleIntervalYM value is less
than or equal to another

NotEquals Determines whether two OracleIntervalYM values are not equal

Parse Returns an OracleIntervalYM structure and sets its value for
time interval using a string

SetPrecision Returns a new instance of an OracleIntervalYM with the
specified year precision.

14.6.4.1 Equals
This static method determines whether or not two OracleIntervalYM values are equal.

Declaration

// C#
public static bool Equals(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

An OracleIntervalYM structure.

• val2

An OracleIntervalYM structure.

Chapter 14
OracleIntervalYM Structure

14-173

Return Value

Returns true if two OracleIntervalYM values represent the same time interval,
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.4.2 GreaterThan
This static method determines whether or not the first of two OracleIntervalYM values is
greater than the second.

Declaration

// C#
public static bool GreaterThan(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.4.3 GreaterThanOrEqual
This static method determines whether or not the first of two OracleIntervalYM values is
greater than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleIntervalYM val1,
 OracleIntervalYM val2);

Chapter 14
OracleIntervalYM Structure

14-174

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is greater than or equal to the
second; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.4.4 LessThan
This static method determines whether or not the first of two OracleIntervalYM values is
less than the second.

Declaration

// C#
public static bool LessThan(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is less than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

Chapter 14
OracleIntervalYM Structure

14-175

14.6.4.5 LessThanOrEqual
This static method determines whether or not the first of two OracleIntervalYM values is
less than or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is less than or equal to the
second. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.4.6 NotEquals
This static method determines whether two OracleIntervalYM values are not equal.

Declaration

// C#
public static bool NotEquals(OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if two OracleIntervalYM values are not equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

Chapter 14
OracleIntervalYM Structure

14-176

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.4.7 Parse
This static method returns an OracleIntervalYM structure and sets its value for time
interval using a string.

Declaration

// C#
public static OracleIntervalYM Parse (string intervalStr);

Parameters

• intervalStr

A string representing the Oracle INTERVAL YEAR TO MONTH.

Return Value

Returns an OracleIntervalYM structure.

Exceptions

ArgumentException - The intervalStr parameter is not in the valid format or intervalStr
has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The value specified in the supplied intervalStr must be in the Year-Month format.

Example

"1-2" means 1 year and 2 months.

14.6.4.8 SetPrecision
This static method returns a new instance of an OracleIntervalYM with the specified
year precision.

Declaration

// C#
public static OracleIntervalYM SetPrecision(OracleIntervalYM value1,
 int yearPrecision);

Parameters

• value1

An OracleIntervalYM structure.

• yearPrecision

Chapter 14
OracleIntervalYM Structure

14-177

The year precision provided. Range of year precision is (0 to 9).

Return Value

An OracleIntervalDS instance.

Exceptions

ArgumentOutOfRangeException - yearPrecision is out of the specified range.

Remarks

Depending on the value specified in the supplied yearPrecision, 0 or more leading
zeros are displayed in the string returned by ToString().

Example

An OracleIntervalYM with a value of "1-2" results in the string "001-2" when
SetPrecision() is called with the year precision set to 3.

14.6.5 OracleIntervalYM Static Operators
The OracleIntervalYM static operators are listed in Table 14-83.

Table 14-83 OracleIntervalYM Static Operators

Operator Description

operator + Adds two OracleIntervalYM values

operator == Determines whether or not two OracleIntervalYM values are
equal

operator > Determines whether or not one OracleIntervalYM value is
greater than another

operator >= Determines whether or not one OracleIntervalYM value is
greater than or equal to another

operator != Determines whether two OracleIntervalYM values are not equal

operator < Determines whether or not one OracleIntervalYM value is less
than another

operator <= Determines whether or not one OracleIntervalYM value is less
than or equal to another

operator - Subtracts one OracleIntervalYM value from another

operator - Negates an OracleIntervalYM structure

operator * Multiplies an OracleIntervalYM value by a number

operator / Divides an OracleIntervalYM value by a number

14.6.5.1 operator +
This static operator adds two OracleIntervalYM values.

Chapter 14
OracleIntervalYM Structure

14-178

Declaration

// C#
public static OracleIntervalYM operator + (OracleIntervalYM val1,
 OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

OracleIntervalYM

Remarks

If either argument has a null value, the returned OracleIntervalYM structure has a null
value.

14.6.5.2 operator ==
This static operator determines if two OracleIntervalYM values are equal.

Declaration

// C#
public static bool operator == (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if they are equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

Chapter 14
OracleIntervalYM Structure

14-179

14.6.5.3 operator >
This static operator determines if the first of two OracleIntervalYM values is greater
than the second.

Declaration

// C#
public static bool operator > (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if one OracleIntervalYM value is greater than another; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.5.4 operator >=
This static operator determines if the first of two OracleIntervalYM values is greater
than or equal to the second.

Declaration

// C#
public static bool operator >= (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if one OracleIntervalYM value is greater than or equal to another;
otherwise, returns false.

Chapter 14
OracleIntervalYM Structure

14-180

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.5.5 operator !=
This static operator determines whether two OracleIntervalYM values are not equal.

Declaration

// C#
public static bool operator != (OracleIntervalYM val1, OracleIntervalYM val2)

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if two OracleIntervalYM values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.5.6 operator <
This static operator determines if the first of two OracleIntervalYM values is less than
the second.

Declaration

// C#
public static bool operator < (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Chapter 14
OracleIntervalYM Structure

14-181

Return Value

Returns true if the first of two OracleIntervalYM values is less than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.5.7 operator <=
This static operator determines if the first of two OracleIntervalYM values is less than or
equal to the second.

Declaration

// C#
public static bool operator <= (OracleIntervalYM val1, OracleIntervalYM val2);

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

Returns true if the first of two OracleIntervalYM values is less than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.5.8 operator -
This static operator subtracts one OracleIntervalYM structure from another.

Declaration

// C#
public static OracleIntervalYM operator - (OracleIntervalYM val1, OracleIntervalYM
val2);

Chapter 14
OracleIntervalYM Structure

14-182

Parameters

• val1

The first OracleIntervalYM.

• val2

The second OracleIntervalYM.

Return Value

An OracleIntervalYM structure.

Remarks

If either argument has a null value, the returned OracleIntervalYM structure has a null
value.

14.6.5.9 operator -
This static operator negates an OracleIntervalYM structure.

Declaration

// C#
public static OracleIntervalYM operator - (OracleIntervalYM val);

Parameters

• val

An OracleIntervalYM.

Return Value

An OracleIntervalYM structure.

Remarks

If the supplied OracleIntervalYM structure has a null value, the returned
OracleIntervalYM structure has a null value.

14.6.5.10 operator *
This static operator multiplies an OracleIntervalYM value by a number.

Declaration

// C#
public static OracleIntervalYM operator * (OracleIntervalYM val1, int multiplier);

Parameters

• val1

The first OracleIntervalYM.

• multiplier

Chapter 14
OracleIntervalYM Structure

14-183

A multiplier.

Return Value

An OracleIntervalYM structure.

Remarks

If the supplied OracleIntervalYM structure has a null value, the returned
OracleIntervalYM structure has a null value.

14.6.5.11 operator /
This static operator divides an OracleIntervalYM value by a number.

Declaration

// C#
public static OracleIntervalYM operator / (OracleIntervalYM val1, int divisor);

Parameters

• val1

The first OracleIntervalYM.

• divisor

A divisor.

Return Value

An OracleIntervalYM structure.

Remarks

If the supplied OracleIntervalYM structure has a null value, the returned
OracleIntervalYM structure has a null value.

14.6.6 OracleIntervalYM Type Conversions
The OracleIntervalYM conversions are listed in Table 14-84.

Table 14-84 OracleIntervalYM Type Conversions

Operator Description

explicit operator long Converts an OracleIntervalYM structure to a
number

explicit operator OracleIntervalYM Converts a string to an OracleIntervalYM
structure

implicit operator OracleIntervalYM Converts the number of months to an
OracleIntervalYM structure

Chapter 14
OracleIntervalYM Structure

14-184

14.6.6.1 explicit operator long
This type conversion operator converts an OracleIntervalYM to a number that
represents the number of months in the time interval.

Declaration

// C#
public static explicit operator long (OracleIntervalYM val);

Parameters

• val

An OracleIntervalYM structure.

Return Value

A long number in months.

Exceptions

OracleNullValueException - The OracleIntervalYM structure has a null value.

14.6.6.2 explicit operator OracleIntervalYM
This type conversion operator converts the string intervalStr to an OracleIntervalYM
structure.

Declaration

// C#
public static explicit operator OracleIntervalYM (string intervalStr);

Parameters

• intervalStr

A string representation of an Oracle INTERVAL YEAR TO MONTH.

Return Value

An OracleIntervalYM structure.

Exceptions

ArgumentException - The supplied intervalStr parameter is not in the correct format or
has an invalid value.

ArgumentNullException - The intervalStr parameter is null.

Remarks

The returned OracleIntervalDS structure contains the same time interval represented
by the supplied intervalStr. The value specified in the supplied intervalStr must be in
Year-Month format.

Chapter 14
OracleIntervalYM Structure

14-185

14.6.6.3 implicit operator OracleIntervalYM
This type conversion operator converts the total number of months as time interval to
an OracleIntervalYM structure.

Declaration

// C#
public static implicit operator OracleIntervalYM (long months);

Parameters

• months

The number of months to be converted. Range is (-999,999,999 * 12)-11 <= months
<= (999,999,999 * 12)+11.

Return Value

An OracleIntervalYM structure.

Exceptions

ArgumentOutOfRangeException - The months parameter is out of the specified range.

14.6.7 OracleIntervalYM Properties
The OracleIntervalYM properties are listed in Table 14-85.

Table 14-85 OracleIntervalYM Properties

Properties Description

BinData Returns an array of bytes that represents the Oracle INTERVAL YEAR TO
MONTH in an Oracle internal format

IsNull Indicates whether or not the current instance has a null value

Months Gets the months component of an OracleIntervalYM

TotalYears Returns the total number, in years, that represents the period of time in the
current OracleIntervalYM structure

Value Specifies the total number of months that is stored in the OracleIntervalYM
structure

Years Gets the years component of an OracleIntervalYM

14.6.7.1 BinData
This property returns an array of bytes that represents the Oracle INTERVAL YEAR TO
MONTH in Oracle internal format.

Declaration

// C#
public byte[] BinData {get;}

Chapter 14
OracleIntervalYM Structure

14-186

Property Value

A byte array that represents an Oracle INTERVAL YEAR TO MONTH in Oracle internal format.

Exceptions

OracleNullValueException - The current instance has a null value.

14.6.7.2 IsNull
This property indicates whether or not the value has a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if value has a null value; otherwise, returns false.

14.6.7.3 Months
This property gets the months component of an OracleIntervalYM.

Declaration

// C#
public int Months {get;}

Property Value

An int representing the months component.

Exceptions

OracleNullValueException - The current instance has a null value.

14.6.7.4 TotalYears
This property returns the total number, in years, that represents the period of time in
the current OracleIntervalYM structure.

Declaration

// C#
public double TotalYears {get;}

Property Value

A double representing the total number of years.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 14
OracleIntervalYM Structure

14-187

14.6.7.5 Value
This property gets the total number of months that is stored in the OracleIntervalYM
structure.

Declaration

// C#
public long Value {get;}

Property Value

The total number of months representing the time interval.

Exceptions

OracleNullValueException - The current instance has a null value.

14.6.7.6 Years
This property gets the years component of an OracleIntervalYM.

Declaration

// C#
public int Years {get;}

Property Value

An int representing the years component.

Exceptions

OracleNullValueException - The current instance has a null value.

14.6.8 OracleIntervalYM Methods
The OracleIntervalYM methods are listed in Table 14-86.

Table 14-86 OracleIntervalYM Methods

Methods Description

CompareTo Compares the current OracleIntervalYM instance to the
supplied object, and returns an integer that represents their
relative values

Equals Determines whether or not the specified object has the same
time interval as the current instance (Overloaded)

GetHashCode Returns a hash code for the OracleIntervalYM instance

GetType Inherited from System.Object

ToString Converts the current OracleIntervalYM structure to a string

Chapter 14
OracleIntervalYM Structure

14-188

14.6.8.1 CompareTo
This method compares the current OracleIntervalYM instance to the supplied object,
and returns an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The supplied object.

Return Value

The method returns a number:

Less than zero: if the current OracleIntervalYM represents a shorter time interval than
obj.

Zero: if the current OracleIntervalYM and obj represent the same time interval.

Greater than zero: if the current OracleIntervalYM represents a longer time interval
than obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleIntervalYM.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleIntervalYMs. For example, comparing an
OracleIntervalYM instance with an OracleBinary instance is not allowed. When an
OracleIntervalYM is compared with a different type, an ArgumentException is thrown.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.8.2 Equals
Overrides Object

This method determines whether or not the specified object has the same time interval
as the current instance.

Chapter 14
OracleIntervalYM Structure

14-189

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The supplied object.

Return Value

Returns true if the specified object instance is of type OracleIntervalYM and has the
same time interval; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleIntervalYM that has a value compares greater than an OracleIntervalYM
that has a null value.

• Two OracleIntervalYMs that contain a null value are equal.

14.6.8.3 GetHashCode
Overrides Object

This method returns a hash code for the OracleIntervalYM instance.

Declaration

// C#
public override int GetHashCode();

Return Value

An int representing a hash code.

14.6.8.4 ToString
Overrides Object

This method converts the current OracleIntervalYM structure to a string.

Declaration

// C#
public override string ToString();

Return Value

A string that represents the current OracleIntervalYM structure.

Remarks

If the current instance has a null value, the returned string contain "null".

Chapter 14
OracleIntervalYM Structure

14-190

14.7 OracleString Structure
The OracleString structure represents a variable-length stream of characters to be
stored in or retrieved from a database.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleString

Declaration

// C#
public struct OracleString : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleStringSample
{
 static void Main()
 {
 // Initialize OracleString structs
 OracleString string1 = new OracleString("AAA");

 // Display the string "AAA"
 Console.WriteLine("{0} has length of {1}", string1, string1.Length);

 // Contatenate characters to string1 until the length is 5
 while (string1.Length < 5)
 string1 = OracleString.Concat(string1,"a");

 // Display the string of "AAAaa"
 Console.WriteLine("{0} has length of {1}", string1, string1.Length);
 }
}

Chapter 14
OracleString Structure

14-191

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleString Members

• OracleString Constructors

• OracleString Static Fields

• OracleString Static Methods

• OracleString Static Operators

• OracleString Type Conversions

• OracleString Properties

• OracleString Methods

14.7.1 OracleString Members
OracleString members are listed in the following tables:

OracleString Constructors

OracleString constructors are listed in Table 14-87

Table 14-87 OracleString Constructors

Constructor Description

OracleString Constructors Instantiates a new instance of OracleString
structure (Overloaded)

OracleString Static Fields

The OracleString static fields are listed in Table 14-88.

Table 14-88 OracleString Static Fields

Field Description

Null Represents a null value that can be assigned to an
instance of the OracleString structure

OracleString Static Methods

The OracleString static methods are listed in Table 14-89.

Chapter 14
OracleString Structure

14-192

Table 14-89 OracleString Static Methods

Methods Description

Concat Concatenates two OracleString instances and
returns a new OracleString instance that
represents the result

Equals Determines if two OracleString values are equal
(Overloaded)

GreaterThan Determines whether or not the first of two
OracleString values is greater than the second

GreaterThanOrEqual Determines whether or not the first of two
OracleString values is greater than or equal to the
second

LessThan Determines whether or not the first of two
OracleString values is less than the second

LessThanOrEqual Determines whether or not the first of two
OracleString values is less than or equal to the
second

NotEquals Determines whether two OracleString values are
not equal

OracleString Static Operators

The OracleString static operators are listed in Table 14-90.

Table 14-90 OracleString Static Operators

Operator Description

operator + Concatenates two OracleString values

operator == Determines if two OracleString values are equal

operator > Determines if the first of two OracleString values
is greater than the second

operator >= Determines if the first of two OracleString values
is greater than or equal to the second

operator != Determines if the two OracleString values are not
equal

operator < Determines if the first of two OracleString values
is less than the second

operator <= Determines if two OracleString values are not
equal

OracleString Type Conversions

The OracleString type conversions are listed in Table 14-91.

Chapter 14
OracleString Structure

14-193

Table 14-91 OracleString Type Conversions

Operator Description

explicit operator string Converts the supplied OracleString to a string
instance

implicit operator OracleString Converts the supplied string to an OracleString
instance

OracleString Properties

The OracleString properties are listed in Table 14-92.

Table 14-92 OracleString Properties

Properties Description

IsCaseIgnored Indicates whether or not case should be ignored
when performing string comparison

IsNull Indicates whether or not the current instance has a
null value

Item Obtains the particular character in an
OracleString using an index.

Length Returns the length of the OracleString

Value Returns the string data that is stored in the
OracleString structure.

OracleString Methods

The OracleString methods are listed in Table 14-93.

Table 14-93 OracleString Methods

Methods Description

Clone Returns a copy of the current OracleString
instance

CompareTo Compares the current OracleString instance to
the supplied object, and returns an integer that
represents their relative values

Equals Determines whether or not an object has the same
string value as the current OracleString structure
(Overloaded)

GetHashCode Returns a hash code for the OracleString
instance

GetNonUnicodeBytes Returns an array of bytes, containing the contents
of the OracleString, in the client character set
format

GetType Inherited from System.Object

GetUnicodeBytes Returns an array of bytes, containing the contents
of the OracleString, in Unicode format

Chapter 14
OracleString Structure

14-194

Table 14-93 (Cont.) OracleString Methods

Methods Description

ToString Converts the current OracleString instance to a
string

14.7.2 OracleString Constructors
The OracleString constructors create new instances of the OracleString structure.

Overload List:

• OracleString(string)

This constructor creates a new instance of the OracleString structure and sets its
value using a string.

• OracleString(string, bool)

This constructor creates a new instance of the OracleString structure and sets its
value using a string and specifies if case is ignored in comparison.

• OracleString(byte [], bool)

This constructor creates a new instance of the OracleString structure and sets its
value using a byte array and specifies if the supplied byte array is Unicode
encoded.

• OracleString(byte [], bool, bool)

This constructor creates a new instance of the OracleString structure and sets its
value using a byte array and specifies the following: if the supplied byte array is
Unicode encoded and if case is ignored in comparison.

• OracleString(byte [], int, int, bool)

This constructor creates a new instance of the OracleString structure and sets its
value using a byte array, and specifies the following: the starting index in the byte
array, the number of bytes to copy from the byte array, and if the supplied byte
array is Unicode encoded.

• OracleString(byte [], int, int, bool, bool)

This constructor creates a new instance of the OracleString structure and sets its
value using a byte array, and specifies the following: the starting index in the byte
array, the number of bytes to copy from the byte array, if the supplied byte array is
Unicode encoded, and if case is ignored in comparison.

14.7.2.1 OracleString(string)
This constructor creates a new instance of the OracleString structure and sets its
value using a string.

Declaration

// C#
public OracleString(string data);

Chapter 14
OracleString Structure

14-195

Parameters

• data

A string value.

14.7.2.2 OracleString(string, bool)
This constructor creates a new instance of the OracleString structure and sets its
value using a string and specifies if case is ignored in comparison.

Declaration

// C#
public OracleString(string data, bool isCaseIgnored);

Parameters

• data

A string value.

• isCaseIgnored

Specifies if case is ignored in comparison. Specifies true if case is to be ignored;
otherwise, specifies false.

14.7.2.3 OracleString(byte [], bool)
This constructor creates a new instance of the OracleString structure and sets its
value using a byte array and specifies if the supplied byte array is Unicode encoded.

Declaration

// C#
public OracleString(byte[] data, bool fUnicode);

Parameters

• data

Byte array data for the new OracleString.

• fUnicode

Specifies if the supplied data is Unicode encoded. Specifies true if Unicode
encoded; otherwise, false.

Exceptions

ArgumentNullException - The data parameter is null.

14.7.2.4 OracleString(byte [], bool, bool)
This constructor creates a new instance of the OracleString structure and sets its
value using a byte array and specifies the following: if the supplied byte array is
Unicode encoded and if case is ignored in comparison.

Chapter 14
OracleString Structure

14-196

Declaration

// C#
public OracleString(byte[] data, bool fUnicode, bool isCaseIgnored);

Parameters

• data

Byte array data for the new OracleString.

• fUnicode

Specifies if the supplied data is Unicode encoded. Specifies true if Unicode
encoded; otherwise, false.

• isCaseIgnored

Specifies if case is ignored in comparison. Specifies true if case is to be ignored;
otherwise, specifies false.

Exceptions

ArgumentNullException - The data parameter is null.

14.7.2.5 OracleString(byte [], int, int, bool)
This constructor creates a new instance of the OracleString structure and sets its
value using a byte array, and specifies the following: the starting index in the byte
array, the number of bytes to copy from the byte array, and if the supplied byte array is
Unicode encoded.

Declaration

// C#
public OracleString(byte[] data, int index, int count, bool fUnicode);

Parameters

• data

Byte array data for the new OracleString.

• index

The starting index to copy from data.

• count

The number of bytes to copy.

• fUnicode

Specifies if the supplied data is Unicode encoded. Specifies true if Unicode
encoded; otherwise, false.

Exceptions

ArgumentNullException - The data parameter is null.

ArgumentOutOfRangeException - The count parameter is less than zero.

Chapter 14
OracleString Structure

14-197

IndexOutOfRangeException - The index parameter is greater than or equal to the length
of data or less than zero.

14.7.2.6 OracleString(byte [], int, int, bool, bool)
This constructor creates a new instance of the OracleString structure and sets its
value using a byte array, and specifies the following: the starting index in the byte
array, the number of bytes to copy from the byte array, if the supplied byte array is
Unicode encoded, and if case is ignored in comparison.

Declaration

// C#
public OracleString(byte[] data, int index, int count, bool fUnicode,
 bool isCaseIgnored);

Parameters

• data

Byte array data for the new OracleString.

• index

The starting index to copy from data.

• count

The number of bytes to copy.

• fUnicode

Specifies if the supplied data is Unicode encoded. Specifies true if Unicode
encoded; otherwise, false.

• isCaseIgnored

Specifies if case is ignored in comparison. Specifies true if case is to be ignored;
otherwise, specifies false.

Exceptions

ArgumentNullException - The data parameter is null.

ArgumentOutOfRangeException - The count parameter is less than zero.

IndexOutOfRangeException - The index parameter is greater than or equal to the length
of data or less than zero.

14.7.3 OracleString Static Fields
The OracleString static fields are listed in Table 14-94.

Table 14-94 OracleString Static Fields

Field Description

Null Represents a null value that can be assigned to an instance of the OracleString
structure

Chapter 14
OracleString Structure

14-198

14.7.3.1 Null
This static field represents a null value that can be assigned to an instance of the
OracleString structure.

Declaration

// C#
public static readonly OracleString Null;

14.7.4 OracleString Static Methods
The OracleString static methods are listed in Table 14-95.

Table 14-95 OracleString Static Methods

Methods Description

Concat Concatenates two OracleString instances and returns a new
OracleString instance that represents the result

Equals Determines if two OracleString values are equal (Overloaded)

GreaterThan Determines whether or not the first of two OracleString values is
greater than the second

GreaterThanOrEqual Determines whether or not the first of two OracleString values is
greater than or equal to the second

LessThan Determines whether or not the first of two OracleString values is
less than the second

LessThanOrEqual Determines whether or not the first of two OracleString values is
less than or equal to the second

NotEquals Determines whether two OracleString values are not equal

14.7.4.1 Concat
This static method concatenates two OracleString instances and returns a new
OracleString instance that represents the result.

Declaration

// C#
public static OracleString Concat(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.

• str2

The second OracleString.

Chapter 14
OracleString Structure

14-199

Return Value

An OracleString.

Remarks

If either argument has a null value, the returned OracleString structure has a null
value.

14.7.4.2 Equals
Overloads Object

This static method determines whether or not the two OracleStrings being compared
are equal.

Declaration

// C#
public static bool Equals(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.

• str2

The second OracleString.

Return Value

Returns true if the two OracleStrings being compared are equal; returns false
otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.4.3 GreaterThan
This static method determines whether or not the first of two OracleString values is
greater than the second.

Declaration

// C#
public static bool GreaterThan(OracleString str1, OracleString str2);

Parameters

• str1

Chapter 14
OracleString Structure

14-200

The first OracleString.

• str2

The second OracleString.

Return Value

Returns true if the first of two OracleStrings is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.4.4 GreaterThanOrEqual
This static method determines whether or not the first of two OracleString values is
greater than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleString str1,
 OracleString str2);

Parameters

• str1

The first OracleString.

• str2

The second OracleString.

Return Value

Returns true if the first of two OracleStrings is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.4.5 LessThan
This static method determines whether or not the first of two OracleString values is
less than the second.

Chapter 14
OracleString Structure

14-201

Declaration

// C#
public static bool LessThan(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.

• str2

The second OracleString.

Return Value

Returns true if the first is less than the second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.4.6 LessThanOrEqual
This static method determines whether or not the first of two OracleString values is
less than or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.

• str2

The second OracleString.

Return Value

Returns true if the first is less than or equal to the second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

Chapter 14
OracleString Structure

14-202

14.7.4.7 NotEquals
This static method determines whether two OracleString values are not equal.

Declaration

// C#
public static bool NotEquals(OracleString str1, OracleString str2);

Parameters

• str1

The first OracleString.

• str2

The second OracleString.

Return Value

Returns true if the two OracleString instances are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.5 OracleString Static Operators
The OracleString static operators are listed in Table 14-96.

Table 14-96 OracleString Static Operators

Operator Description

operator + Concatenates two OracleString values

operator == Determines if two OracleString values are equal

operator > Determines if the first of two OracleString values is greater than
the second

operator >= Determines if the first of two OracleString values is greater than
or equal to the second

operator != Determines if the two OracleString values are not equal

operator < Determines if the first of two OracleString values is less than
the second

operator <= Determines if two OracleString values are not equal

Chapter 14
OracleString Structure

14-203

14.7.5.1 operator +
This static operator concatenates two OracleString values.

Declaration

// C#
public static OracleString operator + (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

An OracleString.

Remarks

If either argument has a null value, the returned OracleString structure has a null
value.

14.7.5.2 operator ==
This static operator determines if two OracleString values are equal.

Declaration

// C#
public static bool operator == (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if two OracleString values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

Chapter 14
OracleString Structure

14-204

14.7.5.3 operator >
This static operator determines if the first of two OracleString values is greater than the
second.

Declaration

// C#
public static bool operator > (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if the first of two OracleString values is greater than the second;
otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.5.4 operator >=
This static operator determines if the first of two OracleString values is greater than or
equal to the second.

Declaration

// C#
public static bool operator >= (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if the first of two OracleString values is greater than or equal to the
second; otherwise, returns false.

Chapter 14
OracleString Structure

14-205

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.5.5 operator !=
This static operator determines if two OracleString values are not equal.

Declaration

// C#
public static bool operator != (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if two OracleString values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.5.6 operator <
This static operator determines if the first of two OracleStrings is less than the second.

Declaration

// C#
public static bool operator < (OracleString value1, OracleString value2);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Chapter 14
OracleString Structure

14-206

Return Value

Returns true if the first of two OracleStrings is less than the second; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString has a null value.

• Two OracleStrings that contain a null value are equal.

14.7.5.7 operator <=
This static operator determines if the first of two OracleString values is less than or
equal to the second.

Declaration

// C#
public static bool operator <= (OracleString value1, OracleString value1);

Parameters

• value1

The first OracleString.

• value2

The second OracleString.

Return Value

Returns true if the first of two OracleString values is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.6 OracleString Type Conversions
The OracleString type conversions are listed in Table 14-97.

Table 14-97 OracleString Type Conversions

Operator Description

explicit operator string Converts the supplied OracleString to a string
instance

Chapter 14
OracleString Structure

14-207

Table 14-97 (Cont.) OracleString Type Conversions

Operator Description

implicit operator OracleString Converts the supplied string to an OracleString
instance

14.7.6.1 explicit operator string
This type conversion operator converts the supplied OracleString to a string.

Declaration

//C#
public static explicit operator string (OracleString value1);

Parameters

• value1

The supplied OracleString.

Return Value

string

Exceptions

OracleNullValueException - The OracleString structure has a null value.

14.7.6.2 implicit operator OracleString
This type conversion operator converts the supplied string to an OracleString.

Declaration

// C#
public static implicit operator OracleString (string value1);

Parameters

• value1

The supplied string.

Return Value

An OracleString.

14.7.7 OracleString Properties
The OracleString properties are listed in Table 14-98.

Chapter 14
OracleString Structure

14-208

Table 14-98 OracleString Properties

Properties Description

IsCaseIgnored Indicates whether or not case should be ignored when performing
string comparison

IsNull Indicates whether or not the current instance has a null value

Item Obtains the particular character in an OracleString using an index.

Length Returns the length of the OracleString

Value Returns the string data that is stored in the OracleString structure.

14.7.7.1 IsCaseIgnored
This property indicates whether or not case should be ignored when performing string
comparison.

Declaration

//C#
public bool IsCaseIgnored {get;set;}

Property Value

Returns true if string comparison must ignore case; otherwise false.

Remarks

Default value is true.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class IsCaseIgnoredSample
{
 static void Main()
 {
 OracleString string1 = new OracleString("aAaAa");
 OracleString string2 = new OracleString("AaAaA");

 // Ignore case for comparisons
 string1.IsCaseIgnored = true;
 string2.IsCaseIgnored = true;

 // Same; Prints 0
 Console.WriteLine(string1.CompareTo(string2));

 // Make comparisons case sensitive
 // Note that IsCaseIgnored must be set to false for both
 // OracleStrings; otherwise an exception is thrown
 string1.IsCaseIgnored = false;
 string2.IsCaseIgnored = false;

Chapter 14
OracleString Structure

14-209

 // Different; Prints nonzero value
 Console.WriteLine(string1.CompareTo(string2));
 }
}

14.7.7.2 IsNull
This property indicates whether or not the current instance contains a null value.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the current instance contains has a null value; otherwise, returns false.

14.7.7.3 Item
This property obtains the particular character in an OracleString using an index.

Declaration

// C#
public char Item {get;}

Property Value

A char value.

Exceptions

OracleNullValueException - The current instance has a null value.

14.7.7.4 Length
This property returns the length of the OracleString.

Declaration

// C#
public int Length {get;}

Property Value

A int value.

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 14
OracleString Structure

14-210

14.7.7.5 Value
This property returns the string data that is stored in the OracleString.

Declaration

// C#
public string Value {get;}

Property Value

The stored string value

Exceptions

OracleNullValueException - The current instance has a null value.

14.7.8 OracleString Methods
The OracleString methods are listed in Table 14-99.

Table 14-99 OracleString Methods

Methods Description

Clone Returns a copy of the current OracleString instance

CompareTo Compares the current OracleString instance to the supplied
object, and returns an integer that represents their relative values

Equals Determines whether or not an object has the same string value
as the current OracleString structure (Overloaded)

GetHashCode Returns a hash code for the OracleString instance

GetNonUnicodeBytes Returns an array of bytes, containing the contents of the
OracleString, in the client character set format

GetType Inherited from System.Object

GetUnicodeBytes Returns an array of bytes, containing the contents of the
OracleString, in Unicode format

ToString Converts the current OracleString instance to a string

14.7.8.1 Clone
This method creates a copy of an OracleString instance.

Declaration

// C#
public OracleString Clone();

Return Value

An OracleString structure.

Chapter 14
OracleString Structure

14-211

Remarks

The cloned object has the same property values as that of the object being cloned.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class CloneSample
{
 static void Main()
 {
 OracleString str1 = new OracleString("aAaAa");
 OracleString str2 = str1.Clone();

 // The OracleStrings are same; Prints 0
 Console.WriteLine(str1.CompareTo(str2));
 }
}

14.7.8.2 CompareTo
This method compares the current OracleString instance to the supplied object, and
returns an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared to the current instance.

Return Value

The method returns a number that is:

• Less than zero: if the current OracleString value is less than obj.

• Zero: if the current OracleString value is equal to obj.

• Greater than zero: if the current OracleString value is greater than obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleString.

Chapter 14
OracleString Structure

14-212

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleStrings. For example, comparing an
OracleString instance with an OracleBinary instance is not allowed. When an
OracleString is compared with a different type, an ArgumentException is thrown.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.8.3 Equals
This method determines whether or not supplied object is an instance of OracleString
and has the same values as the current OracleString instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

An object being compared.

Return Value

Returns true if the supplied object is an instance of OracleString and has the same
values as the current OracleString instance; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleString that has a value is greater than an OracleString that has a null
value.

• Two OracleStrings that contain a null value are equal.

14.7.8.4 GetHashCode
Overrides Object

This method returns a hash code for the OracleString instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

Chapter 14
OracleString Structure

14-213

14.7.8.5 GetNonUnicodeBytes
This method returns an array of bytes, containing the contents of the OracleString, in
the client character set format.

Declaration

// C#
public byte[] GetNonUnicodeBytes();

Return Value

A byte array that contains the contents of the OracleString in the client character set
format.

Remarks

If the current instance has a null value, an OracleNullValueException is thrown.

14.7.8.6 GetUnicodeBytes
This method returns an array of bytes, containing the contents of the OracleString in
Unicode format.

Declaration

// C#
public byte[] GetUnicodeBytes();

Return Value

A byte array that contains the contents of the OracleString in Unicode format.

Remarks

If the current instance has a null value, an OracleNullValueException is thrown.

14.7.8.7 ToString
Overrides Object

This method converts the current OracleString instance to a string.

Declaration

// C#
public override string ToString();

Return Value

A string.

Remarks

If the current OracleString instance has a null value, the string contains "null".

Chapter 14
OracleString Structure

14-214

14.8 OracleTimeStamp Structure
The OracleTimeStamp structure represents the Oracle TIMESTAMP data type to be stored
in or retrieved from a database. Each OracleTimeStamp stores the following information:
year, month, day, hour, minute, second, and nanosecond.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleTimeStamp

Declaration

 // C#public struct OracleTimeStamp : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;

class OracleTimeStampSample
{
 static void Main()
 {
 OracleTimeStamp tsCurrent1 = OracleTimeStamp.GetSysDate();
 OracleTimeStamp tsCurrent2 = DateTime.Now;

 // Calculate the difference between tsCurrent1 and tsCurrent2
 OracleIntervalDS idsDiff = tsCurrent2.GetDaysBetween(tsCurrent1);

 // Calculate the difference using AddNanoseconds()
 int nanoDiff = 0;
 while (tsCurrent2 > tsCurrent1)
 {
 nanoDiff += 10;
 tsCurrent1 = tsCurrent1.AddNanoseconds(10);
 }
 Console.WriteLine("idsDiff.Nanoseconds = " + idsDiff.Nanoseconds);
 Console.WriteLine("nanoDiff = " + nanoDiff);

Chapter 14
OracleTimeStamp Structure

14-215

 }
}

14.8.1 OracleTimeStamp Members
OracleTimeStamp members are listed in the following tables:

OracleTimeStamp Constructors

OracleTimeStamp constructors are listed in Table 14-100

Table 14-100 OracleTimeStamp Constructors

Constructor Description

OracleTimeStamp Constructors Instantiates a new instance of OracleTimeStamp
structure (Overloaded)

OracleTimeStamp Static Fields

The OracleTimeStamp static fields are listed in Table 14-101.

Table 14-101 OracleTimeStamp Static Fields

Field Description

MaxValue Represents the maximum valid date for an
OracleTimeStamp structure, which is December 31,
9999 23:59:59.999999999

MinValue Represents the minimum valid date for an
OracleTimeStamp structure, which is January 1,
-4712 0:0:0

Null Represents a null value that can be assigned to an
instance of the OracleTimeStamp structure

OracleTimeStamp Static Methods

The OracleTimeStamp static methods are listed in Table 14-102.

Table 14-102 OracleTimeStamp Static Methods

Methods Description

Equals Determines if two OracleTimeStamp values are
equal (Overloaded)

GreaterThan Determines if the first of two OracleTimeStamp
values is greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStamp
values is greater than or equal to the second

LessThan Determines if the first of two OracleTimeStamp
values is less than the second

LessThanOrEqual Determines if the first of two OracleTimeStamp
values is less than or equal to the second

Chapter 14
OracleTimeStamp Structure

14-216

Table 14-102 (Cont.) OracleTimeStamp Static Methods

Methods Description

NotEquals Determines if two OracleTimeStamp values are not
equal

GetSysDate Gets an OracleTimeStamp structure that represents
the current date and time

Parse Gets an OracleTimeStamp structure and sets its
value using the supplied string

SetPrecision Returns a new instance of an OracleTimeStamp
with the specified fractional second precision

OracleTimeStamp Static Operators

The OracleTimeStamp static operators are listed in Table 14-103.

Table 14-103 OracleTimeStamp Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStamp and returns a new
OracleTimeStamp structure (Overloaded)

operator == Determines if two OracleTimeStamp values are
equal

operator > Determines if the first of two OracleTimeStamp
values is greater than the second

operator >= Determines if the first of two OracleTimeStamp
values is greater than or equal to the second

operator != Determines if the two OracleTimeStamp values are
not equal

operator < Determines if the first of two OracleTimeStamp
values is less than the second

operator <= Determines if the first of two OracleTimeStamp
values is less than or equal to the second

operator - Subtracts the supplied instance value from the
supplied OracleTimeStamp and returns a new
OracleTimeStamp structure (Overloaded)

OracleTimeStamp Static Type Conversions

The OracleTimeStamp static type conversions are listed in Table 14-104.

Table 14-104 OracleTimeStamp Static Type Conversions

Operator Description

explicit operator OracleTimeStamp Converts an instance value to an OracleTimeStamp
structure (Overloaded)

Chapter 14
OracleTimeStamp Structure

14-217

Table 14-104 (Cont.) OracleTimeStamp Static Type Conversions

Operator Description

implicit operator OracleTimeStamp Converts an instance value to an OracleTimeStamp
structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStamp value to a DateTime
structure

OracleTimeStamp Properties

The OracleTimeStamp properties are listed in Table 14-105.

Table 14-105 OracleTimeStamp Properties

Properties Description

BinData Returns an array of bytes that represents an
Oracle TIMESTAMP in Oracle internal format

Day Specifies the day component of an
OracleTimeStamp

IsNull Indicates whether or not the OracleTimeStamp
instance has a null value

Hour Specifies the hour component of an
OracleTimeStamp

Millisecond Specifies the millisecond component of an
OracleTimeStamp

Minute Specifies the minute component of an
OracleTimeStamp

Month Specifies the month component of an
OracleTimeStamp

Nanosecond Specifies the nanosecond component of an
OracleTimeStamp

Second Specifies the second component of an
OracleTimeStamp

Value Specifies the date and time that is stored in the
OracleTimeStamp structure

Year Specifies the year component of an
OracleTimeStamp

OracleTimeStamp Methods

The OracleTimeStamp methods are listed in Table 14-106.

Table 14-106 OracleTimeStamp Methods

Methods Description

AddDays Adds the supplied number of days to the current
instance

Chapter 14
OracleTimeStamp Structure

14-218

Table 14-106 (Cont.) OracleTimeStamp Methods

Methods Description

AddHours Adds the supplied number of hours to the current
instance

AddMilliseconds Adds the supplied number of milliseconds to the
current instance

AddMinutes Adds the supplied number of minutes to the current
instance

AddMonths Adds the supplied number of months to the current
instance

AddNanoseconds Adds the supplied number of nanoseconds to the
current instance

AddSeconds Adds the supplied number of seconds to the
current instance

AddYears Adds the supplied number of years to the current
instance

CompareTo Compares the current OracleTimeStamp instance
to an object, and returns an integer that represents
their relative values

Equals Determines whether or not an object has the same
date and time as the current OracleTimeStamp
instance (Overloaded)

GetHashCode Returns a hash code for the OracleTimeStamp
instance

GetDaysBetween Subtracts an OracleTimeStamp value from the
current instance and returns an OracleIntervalDS
that represents the time difference between the
supplied OracleTimeStamp and the current
instance

GetYearsBetween Subtracts value1 from the current instance and
returns an OracleIntervalYM that represents the
difference between value1 and the current
instance using OracleIntervalYM

GetType Inherited from System.Object

ToOracleDate Converts the current OracleTimeStamp structure to
an OracleDate structure

ToOracleTimeStampLTZ Converts the current OracleTimeStamp structure to
an OracleTimeStampLTZ structure

ToOracleTimeStampTZ Converts the current OracleTimeStamp structure to
an OracleTimeStampTZ structure

ToString Converts the current OracleTimeStamp structure to
a string

Chapter 14
OracleTimeStamp Structure

14-219

14.8.2 OracleTimeStamp Constructors
The OracleTimeStamp constructors create new instances of the OracleTimeStamp
structure.

Overload List:

• OracleTimeStamp(DateTime)

This constructor creates a new instance of the OracleTimeStamp structure and sets
its value for date and time using the supplied DateTime value.

• OracleTimeStamp(string)

This constructor creates a new instance of the OracleTimeStamp structure and sets
its value using the supplied string.

• OracleTimeStamp(int, int, int)

This constructor creates a new instance of the OracleTimeStamp structure and sets
its value for date using year, month, and day.

• OracleTimeStamp(int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStamp structure and sets
its value for date and time using year, month, day, hour, minute, and second.

• OracleTimeStamp(int, int, int, int, int, int, double)

This constructor creates a new instance of the OracleTimeStamp structure and sets
its value for date and time using year, month, day, hour, minute, second, and
millisecond.

• OracleTimeStamp(int, int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStamp structure and sets
its value for date and time using year, month, day, hour, minute, second, and
nanosecond.

• OracleTimeStamp(byte [])

This constructor creates a new instance of the OracleTimeStamp structure and sets
its value to the provided byte array, which is in the internal Oracle TIMESTAMP
format.

14.8.2.1 OracleTimeStamp(DateTime)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using the supplied DateTime value.

Declaration

// C#
public OracleTimeStamp (DateTime dt);

Parameters

• dt

The supplied DateTime value.

Chapter 14
OracleTimeStamp Structure

14-220

Exceptions

ArgumentException - The dt parameter cannot be used to construct a valid
OracleTimeStamp.

14.8.2.2 OracleTimeStamp(string)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value using the supplied string.

Declaration

// C#
public OracleTimeStamp (string tsStr);

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP.

Exceptions

ArgumentException - The tsStr value is an invalid string representation of an Oracle
TIMESTAMP or the supplied tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampFormat property of the thread, which represents the
Oracle NLS_TIMESTAMP_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleTimeStampSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStamp(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStamp from a string using the format specified.
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");

Chapter 14
OracleTimeStamp Structure

14-221

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

14.8.2.3 OracleTimeStamp(int, int, int)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date using year, month, and day.

Declaration

// C#
public OracleTimeStamp(int year, int month, int day);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStamp (that is, the day is out of range for the month).

14.8.2.4 OracleTimeStamp(int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using year, month, day, hour, minute, and second.

Declaration

// C#
public OracleTimeStamp (int year, int month, int day, int hour,
 int minute, int second);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

Chapter 14
OracleTimeStamp Structure

14-222

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStamp (that is, the day is out of range for the month).

14.8.2.5 OracleTimeStamp(int, int, int, int, int, int, double)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using year, month, day, hour, minute, second, and millisecond.

Declaration

// C#
public OracleTimeStamp(int year, int month, int day, int hour,
 int minute, int second, double millisecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• milliSeconds

Chapter 14
OracleTimeStamp Structure

14-223

The milliseconds provided. Range of millisecond is (0 to 999.999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStamp (that is, the day is out of range for the month).

14.8.2.6 OracleTimeStamp(int, int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value for date and time using year, month, day, hour, minute, second, and
nanosecond.

Declaration

// C#
public OracleTimeStamp (int year, int month, int day, int hour,
 int minute, int second, int nanosecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• nanosecond

The nanosecond provided. Range of nanosecond is (0 to 999999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStamp (that is, the day is out of range for the month).

Chapter 14
OracleTimeStamp Structure

14-224

14.8.2.7 OracleTimeStamp(byte [])
This constructor creates a new instance of the OracleTimeStamp structure and sets its
value to the provided byte array, which is in the internal Oracle TIMESTAMP format.

Declaration

// C#
public OracleTimeStamp (byte[] bytes);

Parameters

• bytes

A byte array that represents an Oracle TIMESTAMP in Oracle internal format.

Exceptions

ArgumentException - bytes is not in an internal Oracle TIMESTAMP format or bytes is not a
valid Oracle TIMESTAMP.

ArgumentNullException - bytes is null.

14.8.3 OracleTimeStamp Static Fields
The OracleTimeStamp static fields are listed in Table 14-107.

Table 14-107 OracleTimeStamp Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleTimeStamp structure,
which is December 31, 9999 23:59:59.999999999

MinValue Represents the minimum valid date for an OracleTimeStamp structure,
which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to an instance of the
OracleTimeStamp structure

14.8.3.1 MaxValue
This static field represents the maximum valid date and time for an OracleTimeStamp
structure, which is December 31, 9999 23:59:59.999999999.

Declaration

// C#
public static readonly OraTimestamp MaxValue;

14.8.3.2 MinValue
This static field represents the minimum valid date and time for an OracleTimeStamp
structure, which is January 1, -4712 0:0:0.

Chapter 14
OracleTimeStamp Structure

14-225

Declaration

// C#
public static readonly OracleTimeStamp MinValue;

14.8.3.3 Null
This static field represents a null value that can be assigned to an instance of the
OracleTimeStamp structure.

Declaration

// C#
public static readonly OracleTimeStamp Null;

14.8.4 OracleTimeStamp Static Methods
The OracleTimeStamp static methods are listed in NOT_SUPPORTED.

NOT_SUPPORTED

Methods Description

Equals Determines if two OracleTimeStamp values are equal
(Overloaded)

GreaterThan Determines if the first of two OracleTimeStamp values is greater
than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStamp values is greater
than or equal to the second

LessThan Determines if the first of two OracleTimeStamp values is less than
the second

LessThanOrEqual Determines if the first of two OracleTimeStamp values is less than
or equal to the second

NotEquals Determines if two OracleTimeStamp values are not equal

GetSysDate Gets an OracleTimeStamp structure that represents the current
date and time

Parse Gets an OracleTimeStamp structure and sets its value using the
supplied string

SetPrecision Returns a new instance of an OracleTimeStamp with the specified
fractional second precision

14.8.4.1 Equals
This static method determines if two OracleTimeStamp values are equal.

Declaration

// C#
public static bool Equals(OracleTimeStamp value1, OracleTimeStamp value2);

Chapter 14
OracleTimeStamp Structure

14-226

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if two OracleTimeStamp values are equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.4.2 GreaterThan
This static method determines if the first of two OracleTimeStamp values is greater than
the second.

Declaration

// C#
public static bool GreaterThan(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first of two OracleTimeStamp values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

Chapter 14
OracleTimeStamp Structure

14-227

14.8.4.3 GreaterThanOrEqual
This static method determines if the first of two OracleTimeStamp values is greater than
or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first of two OracleTimeStamp values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.4.4 LessThan
This static method determines if the first of two OracleTimeStamp values is less than the
second.

Declaration

// C#
public static bool LessThan(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first of two OracleTimeStamp values is less than the second. Returns
false otherwise.

Chapter 14
OracleTimeStamp Structure

14-228

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.4.5 LessThanOrEqual
This static method determines if the first of two OracleTimeStamp values is less than or
equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first of two OracleTimeStamp values is less than or equal to the
second. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.4.6 NotEquals
This static method determines if two OracleTimeStamp values are not equal.

Declaration

// C#
public static bool NotEquals(OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

Chapter 14
OracleTimeStamp Structure

14-229

• value2

The second OracleTimeStamp.

Return Value

Returns true if two OracleTimeStamp values are not equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.4.7 GetSysDate
This static method gets an OracleTimeStamp structure that represents the current date
and time.

Declaration

// C#
public static OracleTimeStamp GetSysDate();

Return Value

An OracleTimeStamp structure that represents the current date and time.

14.8.4.8 Parse
This static method gets an OracleTimeStamp structure and sets its value using the
supplied string.

Declaration

// C#
public static OracleTimeStamp Parse(string datetime);

Parameters

• datetime

A string that represents an Oracle TIMESTAMP.

Return Value

An OracleTimeStamp structure.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle TIMESTAMP
or the supplied tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampFormat property of the thread, which represents the
Oracle NLS_TIMESTAMP_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Chapter 14
OracleTimeStamp Structure

14-230

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ParseSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the Parse() method
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStamp from a string using the format specified.
 OracleTimeStamp ts =
 OracleTimeStamp.Parse("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

14.8.4.9 SetPrecision
This static method returns a new instance of an OracleTimeStamp with the specified
fractional second precision.

Declaration

// C#
public static OracleTimeStamp SetPrecision(OracleTimeStamp value1,
 int fracSecPrecision);

Parameters

• value1

The provided OracleTimeStamp object.

• fracSecPrecision

The fractional second precision provided. Range of fractional second precision is
(0 to 9).

Chapter 14
OracleTimeStamp Structure

14-231

Return Value

An OracleTimeStamp structure with the specified fractional second precision.

Exceptions

ArgumentOutOfRangeException - fracSecPrecision is out of the specified range.

Remarks

The value specified in the supplied fracSecPrecision is used to perform a rounding off
operation on the supplied OracleTimeStamp value. Depending on this value, 0 or more
trailing zeros are displayed in the string returned by ToString().

Example

The OracleTimeStamp with a value of "December 31, 9999 23:59:59.99" results in the string
"December 31, 9999 23:59:59.99000" when SetPrecision() is called with the fractional
second precision set to 5.

14.8.5 OracleTimeStamp Static Operators
The OracleTimeStamp static operators are listed in Table 14-109.

Table 14-109 OracleTimeStamp Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStamp and returns a new OracleTimeStamp structure
(Overloaded)

operator == Determines if two OracleTimeStamp values are equal

operator > Determines if the first of two OracleTimeStamp values is greater
than the second

operator >= Determines if the first of two OracleTimeStamp values is greater
than or equal to the second

operator != Determines if the two OracleTimeStamp values are not equal

operator < Determines if the first of two OracleTimeStamp values is less than
the second

operator <= Determines if the first of two OracleTimeStamp values is less than
or equal to the second

operator - Subtracts the supplied instance value from the supplied
OracleTimeStamp and returns a new OracleTimeStamp structure
(Overloaded)

14.8.5.1 operator +
operator+ adds the supplied object to the OracleTimeStamp and returns a new
OracleTimeStamp structure.

Chapter 14
OracleTimeStamp Structure

14-232

Overload List:

• operator + (OracleTimeStamp, OracleIntervalDS)

This static operator adds the supplied OracleIntervalDS to the OracleTimeStamp and
returns a new OracleTimeStamp structure.

• operator + (OracleTimeStamp, OracleIntervalYM)

This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStamp and returns a new OracleTimeStamp structure.

• operator + (OracleTimeStamp, TimeSpan)

This static operator adds the supplied TimeSpan to the supplied OracleTimeStamp and
returns a new OracleTimeStamp structure.

14.8.5.2 operator + (OracleTimeStamp, OracleIntervalDS)
This static operator adds the supplied OracleIntervalDS to the OracleTimeStamp and
returns a new OracleTimeStamp structure.

Declaration

// C#
public static operator + (OracleTimeStamp value1, OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStamp.

• value2

An OracleIntervalDS.

Return Value

An OracleTimeStamp.

Remarks

If either parameter has a null value, the returned OracleTimeStamp has a null value.

14.8.5.3 operator + (OracleTimeStamp, OracleIntervalYM)
This static operator adds the supplied OracleIntervalYM to the supplied OracleTimeStamp
and returns a new OracleTimeStamp structure.

Declaration

// C#
public static operator + (OracleTimeStamp value1, OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStamp.

Chapter 14
OracleTimeStamp Structure

14-233

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStamp.

Remarks

If either parameter has a null value, the returned OracleTimeStamp has a null value.

14.8.5.4 operator + (OracleTimeStamp, TimeSpan)
This static operator adds the supplied TimeSpan to the supplied OracleTimeStamp and
returns a new OracleTimeStamp structure.

Declaration

// C#
public static operator + (OracleTimeStamp value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStamp.

• value2

A TimeSpan.

Return Value

An OracleTimeStamp.

Remarks

If the OracleTimeStamp instance has a null value, the returned OracleTimeStamp has a
null value.

14.8.5.5 operator ==
This static operator determines if two OracleTimeStamp values are equal.

Declaration

// C#
public static bool operator == (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Chapter 14
OracleTimeStamp Structure

14-234

Return Value

Returns true if they are the same; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.5.6 operator >
This static operator determines if the first of two OracleTimeStamp values is greater than
the second.

Declaration

// C#
public static bool operator > (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first OracleTimeStamp value is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.5.7 operator >=
This static operator determines if the first of two OracleTimeStamp values is greater than
or equal to the second.

Declaration

// C#
public static bool operator >= (OracleTimeStamp value1,
 OracleTimeStamp value2);

Chapter 14
OracleTimeStamp Structure

14-235

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first OracleTimeStamp is greater than or equal to the second;
otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.5.8 operator !=
This static operator determines if two OracleTimeStamp values are not equal.

Declaration

// C#
public static bool operator != (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if two OracleTimeStamp values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

Chapter 14
OracleTimeStamp Structure

14-236

14.8.5.9 operator <
This static operator determines if the first of two OracleTimeStamp values is less than the
second.

Declaration

// C#
public static bool operator < (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first OracleTimeStamp is less than the second; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.5.10 operator <=
This static operator determines if the first of two OracleTimeStamp values is less than or
equal to the second.

Declaration

// C#
public static bool operator <= (OracleTimeStamp value1,
 OracleTimeStamp value2);

Parameters

• value1

The first OracleTimeStamp.

• value2

The second OracleTimeStamp.

Return Value

Returns true if the first OracleTimeStamp is less than or equal to the second; otherwise,
returns false.

Chapter 14
OracleTimeStamp Structure

14-237

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.5.11 operator -
operator- subtracts the supplied value, from the supplied OracleTimeStamp value, and
returns a new OracleTimeStamp structure.

Overload List:

• operator - (OracleTimeStamp, OracleIntervalDS)

This static operator subtracts the supplied OracleIntervalDS value, from the
supplied OracleTimeStamp value, and return a new OracleTimeStamp structure.

• operator - (OracleTimeStamp, OracleIntervalYM)

This static operator subtracts the supplied OracleIntervalYM value, from the
supplied OracleTimeStamp value, and returns a new OracleTimeStamp structure.

• operator - (OracleTimeStamp, TimeSpan)

This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStamp value, and returns a new OracleTimeStamp structure.

14.8.5.12 operator - (OracleTimeStamp, OracleIntervalDS)
This static operator subtracts the supplied OracleIntervalDS value, from the supplied
OracleTimeStamp value, and return a new OracleTimeStamp structure.

Declaration

// C#
public static operator - (OracleTimeStamp value1, OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStamp.

• value2

An OracleIntervalDS instance.

Return Value

An OracleTimeStamp structure.

Remarks

If either parameter has a null value, the returned OracleTimeStamp has a null value.

Chapter 14
OracleTimeStamp Structure

14-238

14.8.5.13 operator - (OracleTimeStamp, OracleIntervalYM)
This static operator subtracts the supplied OracleIntervalYM value, from the supplied
OracleTimeStamp value, and returns a new OracleTimeStamp structure.

Declaration

// C#
public static operator - (OracleTimeStamp value1, OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStamp.

• value2

An OracleIntervalYM instance.

Return Value

An OracleTimeStamp structure.

Remarks

If either parameter has a null value, the returned OracleTimeStamp has a null value.

14.8.5.14 operator - (OracleTimeStamp, TimeSpan)
This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStamp value, and returns a new OracleTimeStamp structure.

Declaration

// C#
public static operator - (OracleTimeStamp value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStamp.

• value2

A TimeSpan instance.

Return Value

An OracleTimeStamp structure.

Remarks

If the OracleTimeStamp instance has a null value, the returned OracleTimeStamp structure
has a null value.

Chapter 14
OracleTimeStamp Structure

14-239

14.8.6 OracleTimeStamp Static Type Conversions
The OracleTimeStamp static type conversions are listed in Table 14-110.

Table 14-110 OracleTimeStamp Static Type Conversions

Operator Description

explicit operator OracleTimeStamp Converts an instance value to an
OracleTimeStamp structure (Overloaded)

implicit operator OracleTimeStamp Converts an instance value to an
OracleTimeStamp structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStamp value to a
DateTime structure

14.8.6.1 explicit operator OracleTimeStamp
explicit operator OracleTimeStamp converts the supplied value to an OracleTimeStamp
structure

Overload List:

• explicit operator OracleTimeStamp(OracleTimeStampLTZ)

This static type conversion operator converts an OracleTimeStampLTZ value to an
OracleTimeStamp structure.

• explicit operator OracleTimeStamp(OracleTimeStampTZ)

This static type conversion operator converts an OracleTimeStampTZ value to an
OracleTimeStamp structure.

• explicit operator OracleTimeStamp(string)

This static type conversion operator converts the supplied string to an
OracleTimeStamp structure.

14.8.6.2 explicit operator OracleTimeStamp(OracleTimeStampLTZ)
This static type conversion operator converts an OracleTimeStampLTZ value to an
OracleTimeStamp structure.

Declaration

// C#
public static explicit operator OracleTimeStamp(OracleTimeStampLTZ value1);

Parameters

• value1

An OracleTimeStampLTZ instance.

Chapter 14
OracleTimeStamp Structure

14-240

Return Value

The returned OracleTimeStamp contains the date and time of the OracleTimeStampLTZ
structure.

Remarks

If the OracleTimeStampLTZ structure has a null value, the returned OracleTimeStamp
structure also has a null value.

14.8.6.3 explicit operator OracleTimeStamp(OracleTimeStampTZ)
This static type conversion operator converts an OracleTimeStampTZ value to an
OracleTimeStamp structure.

Declaration

// C#
public static explicit operator OracleTimeStamp(OracleTimeStampTZ value1);

Parameters

• value1

An OracleTimeStampTZ instance.

Return Value

The returned OracleTimeStamp contains the date and time information from value1, but
the time zone information from value1 is truncated.

Remarks

If the OracleTimeStampTZ structure has a null value, the returned OracleTimeStamp
structure also has a null value.

14.8.6.4 explicit operator OracleTimeStamp(string)
This static type conversion operator converts the supplied string to an OracleTimeStamp
structure.

Declaration

// C#
public static explicit operator OracleTimeStamp(string tsStr);

Parameters

• tsStr

A string representation of an Oracle TIMESTAMP.

Return Value

An OracleTimeStamp.

Chapter 14
OracleTimeStamp Structure

14-241

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle TIMESTAMP
or the tsStr is not in the timestamp format specified by the thread's
OracleGlobalization.TimeStampFormat property, which represents the Oracle
NLS_TIMESTAMP_FORMAT parameter.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleTimeStampSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the explicit
 // operator OracleTimeStamp(string)
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStamp from a string using the format specified.
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

14.8.6.5 implicit operator OracleTimeStamp
This static type conversion operator converts a value to an OracleTimeStamp structure.

Overload List:

• implicit operator OracleTimeStamp(OracleDate)

This static type conversion operator converts an OracleDate value to an
OracleTimeStamp structure.

• implicit operator OracleTimeStamp(DateTime)

Chapter 14
OracleTimeStamp Structure

14-242

This static type conversion operator converts a DateTime value to an
OracleTimeStamp structure.

14.8.6.6 implicit operator OracleTimeStamp(OracleDate)
This static type conversion operator converts an OracleDate value to an
OracleTimeStamp structure.

Declaration

// C#
public static implicit operator OracleTimeStamp (OracleDate value1);

Parameters

• value1

An OracleDate instance.

Return Value

An OracleTimeStamp structure that contains the date and time of the OracleDate
structure, value1.

Remarks

If the OracleDate structure has a null value, the returned OracleTimeStamp structure also
has a null value.

14.8.6.7 implicit operator OracleTimeStamp(DateTime)
This static type conversion operator converts a DateTime value to an OracleTimeStamp
structure.

Declaration

// C#
public static implicit operator OracleTimeStamp(DateTime value);

Parameters

• value

A DateTime instance.

Return Value

An OracleTimeStamp structure.

14.8.6.8 explicit operator DateTime
This static type conversion operator converts an OracleTimeStamp value to a DateTime
structure.

Chapter 14
OracleTimeStamp Structure

14-243

Declaration

// C#
public static explicit operator DateTime(OracleTimeStamp value1);

Parameters

• value1

An OracleTimeStamp instance.

Return Value

A DateTime containing the date and time in the current instance.

Exceptions

OracleNullValueException - The OracleTimeStamp structure has a null value.

Remarks

The precision of the OracleTimeStamp can be lost during the conversion.

14.8.7 OracleTimeStamp Properties
The OracleTimeStamp properties are listed in Table 14-111.

Table 14-111 OracleTimeStamp Properties

Properties Description

BinData Returns an array of bytes that represents an Oracle TIMESTAMP in
Oracle internal format

Day Specifies the day component of an OracleTimeStamp

IsNull Indicates whether or not the OracleTimeStamp instance has a null value

Hour Specifies the hour component of an OracleTimeStamp

Millisecond Specifies the millisecond component of an OracleTimeStamp

Minute Specifies the minute component of an OracleTimeStamp

Month Specifies the month component of an OracleTimeStamp

Nanosecond Specifies the nanosecond component of an OracleTimeStamp

Second Specifies the second component of an OracleTimeStamp

Value Specifies the date and time that is stored in the OracleTimeStamp
structure

Year Specifies the year component of an OracleTimeStamp

14.8.7.1 BinData
This property returns an array of bytes that represents an Oracle TIMESTAMP in Oracle
internal format.

Chapter 14
OracleTimeStamp Structure

14-244

Declaration

// C#
public byte[] BinData {get;}

Property Value

A byte array that represents an Oracle TIMESTAMP in an internal format.

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.7.2 Day
This property specifies the day component of an OracleTimeStamp.

Declaration

// C#
public int Day{get;}

Property Value

A number that represents the day. Range of Day is (1 to 31).

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.7.3 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value; otherwise, returns false.

14.8.7.4 Hour
This property specifies the hour component of an OracleTimeStamp.

Declaration

// C#
public int Hour{get;}

Property Value

A number that represents the hour. Range of hour is (0 to 23).

Chapter 14
OracleTimeStamp Structure

14-245

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.7.5 Millisecond
This property gets the millisecond component of an OracleTimeStamp.

Declaration

// C#
public double Millisecond{get;}

Property Value

A number that represents a millisecond. Range of Millisecond is (0 to 999.999999).

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.7.6 Minute
This property gets the minute component of an OracleTimeStamp.

Declaration

// C#
public int Minute{get;}

Property Value

A number that represent a minute. Range of Minute is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.7.7 Month
This property gets the month component of an OracleTimeStamp.

Declaration

// C#
public int Month{get;}

Property Value

A number that represents a month. Range of Month is (1 to 12).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 14
OracleTimeStamp Structure

14-246

14.8.7.8 Nanosecond
This property gets the nanosecond component of an OracleTimeStamp.

Declaration

// C#
public int Nanosecond{get;}

Property Value

A number that represents a nanosecond. Range of Nanosecond is (0 to 999999999).

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.7.9 Second
This property gets the second component of an OracleTimeStamp.

Declaration

// C#
public int Second{get;}

Property Value

A number that represents a second. Range of Second is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.7.10 Value
This property specifies the date and time that is stored in the OracleTimeStamp
structure.

Declaration

// C#
public DateTime Value{get;}

Property Value

A DateTime.

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.7.11 Year
This property gets the year component of an OracleTimeStamp.

Chapter 14
OracleTimeStamp Structure

14-247

Declaration

// C#
public int Year{get;}

Property Value

A number that represents a year. The range of Year is (-4712 to 9999).

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.8 OracleTimeStamp Methods
The OracleTimeStamp methods are listed in Table 14-112.

Table 14-112 OracleTimeStamp Methods

Methods Description

AddDays Adds the supplied number of days to the current instance

AddHours Adds the supplied number of hours to the current instance

AddMilliseconds Adds the supplied number of milliseconds to the current
instance

AddMinutes Adds the supplied number of minutes to the current instance

AddMonths Adds the supplied number of months to the current instance

AddNanoseconds Adds the supplied number of nanoseconds to the current
instance

AddSeconds Adds the supplied number of seconds to the current instance

AddYears Adds the supplied number of years to the current instance

CompareTo Compares the current OracleTimeStamp instance to an object,
and returns an integer that represents their relative values

Equals Determines whether or not an object has the same date and
time as the current OracleTimeStamp instance (Overloaded)

GetHashCode Returns a hash code for the OracleTimeStamp instance

GetDaysBetween Subtracts an OracleTimeStamp value from the current
instance and returns an OracleIntervalDS that represents
the time difference between the supplied OracleTimeStamp
and the current instance

GetYearsBetween Subtracts value1 from the current instance and returns an
OracleIntervalYM that represents the difference between
value1 and the current instance using OracleIntervalYM

GetType Inherited from System.Object

ToOracleDate Converts the current OracleTimeStamp structure to an
OracleDate structure

ToOracleTimeStampLTZ Converts the current OracleTimeStamp structure to an
OracleTimeStampLTZ structure

Chapter 14
OracleTimeStamp Structure

14-248

Table 14-112 (Cont.) OracleTimeStamp Methods

Methods Description

ToOracleTimeStampTZ Converts the current OracleTimeStamp structure to an
OracleTimeStampTZ structure

ToString Converts the current OracleTimeStamp structure to a string

14.8.8.1 AddDays
This method adds the supplied number of days to the current instance.

Declaration

// C#
public OracleTimeStamp AddDays(double days);

Parameters

• days

The supplied number of days. Range is (-1,000,000,000 < days < 1,000,000,000)

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

14.8.8.2 AddHours
This method adds the supplied number of hours to the current instance.

Declaration

// C#
public OracleTimeStamp AddHours(double hours);

Parameters

• hours

The supplied number of hours. Range is (-24,000,000,000 < hours <
24,000,000,000).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

Chapter 14
OracleTimeStamp Structure

14-249

OracleNullValueException - The current instance has a null value.

14.8.8.3 AddMilliseconds
This method adds the supplied number of milliseconds to the current instance.

Declaration

// C#
public OracleTimeStamp AddMilliseconds(double milliseconds);

Parameters

• milliseconds

The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds < 8.64
* 1016).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

14.8.8.4 AddMinutes
This method adds the supplied number of minutes to the current instance.

Declaration

// C#
public OracleTimeStamp AddMinutes(double minutes);

Parameters

• minutes

The supplied number of minutes. Range is (-1,440,000,000,000 < minutes <
1,440,000,000,000).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

14.8.8.5 AddMonths
This method adds the supplied number of months to the current instance.

Chapter 14
OracleTimeStamp Structure

14-250

Declaration

// C#
public OracleTimeStamp AddMonths(long months);

Parameters

• months

The supplied number of months. Range is (-12,000,000,000 < months <
12,000,000,000).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

14.8.8.6 AddNanoseconds
This method adds the supplied number of nanoseconds to the current instance.

Declaration

// C#
public OracleTimeStamp AddNanoseconds(long nanoseconds);

Parameters

• nanoseconds

The supplied number of nanoseconds.

Return Value

An OracleTimeStamp.

Exceptions

OracleNullValueException - The current instance has a null value.

14.8.8.7 AddSeconds
This method adds the supplied number of seconds to the current instance.

Declaration

// C#
public OracleTimeStamp AddSeconds(double seconds);

Parameters

• seconds

Chapter 14
OracleTimeStamp Structure

14-251

The supplied number of seconds. Range is (-8.64 * 1013< seconds < 8.64 * 1013).

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

14.8.8.8 AddYears
This method adds the supplied number of years to the current instance.

Declaration

// C#
public OracleTimeStamp AddYears(int years);

Parameters

• years

The supplied number of years. Range is (-999,999,999 <= years < = 999,999,999)

Return Value

An OracleTimeStamp.

Exceptions

ArgumentOutofRangeException - The argument value is out of the specified range.

OracleNullValueException - The current instance has a null value.

14.8.8.9 CompareTo
This method compares the current OracleTimeStamp instance to an object, and returns
an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStamp instance.

Return Value

The method returns a number that is:

Less than zero: if the current OracleTimeStamp instance value is less than that of obj.

Chapter 14
OracleTimeStamp Structure

14-252

Zero: if the current OracleTimeStamp instance and obj values are equal.

Greater than zero: if the current OracleTimeStamp instance value is greater than that of
obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleTimeStamp.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleTimeStamps. For example, comparing an
OracleTimeStamp instance with an OracleBinary instance is not allowed. When an
OracleTimeStamp is compared with a different type, an ArgumentException is thrown.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

14.8.8.10 Equals
Overrides Object

This method determines whether or not an object has the same date and time as the
current OracleTimeStamp instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStamp instance.

Return Value

Returns true if the obj is of type OracleTimeStamp and represents the same date and
time; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStamp that has a value is greater than an OracleTimeStamp that has a
null value.

• Two OracleTimeStamps that contain a null value are equal.

Chapter 14
OracleTimeStamp Structure

14-253

14.8.8.11 GetHashCode
Overrides Object

This method returns a hash code for the OracleTimeStamp instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

14.8.8.12 GetDaysBetween
This method subtracts an OracleTimeStamp value from the current instance and returns
an OracleIntervalDS that represents the time difference between the supplied
OracleTimeStamp structure and the current instance.

Declaration

// C#
public OracleIntervalDS GetDaysBetween(OracleTimeStamp value1);

Parameters

• value1

The OracleTimeStamp value being subtracted.

Return Value

An OracleIntervalDS that represents the interval between two OracleTimeStamp values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalDS has a null value.

14.8.8.13 GetYearsBetween
This method subtracts an OracleTimeStamp value from the current instance and returns
an OracleIntervalYM that represents the time difference between the OracleTimeStamp
value and the current instance.

Declaration

// C#
public OracleIntervalYM GetYearsBetween(OracleTimeStamp value1);

Parameters

• value1

The OracleTimeStamp value being subtracted.

Chapter 14
OracleTimeStamp Structure

14-254

Return Value

An OracleIntervalYM that represents the interval between two OracleTimeStamp values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalYM has a null value.

14.8.8.14 ToOracleDate
This method converts the current OracleTimeStamp structure to an OracleDate structure.

Declaration

// C#
public OracleDate ToOracleDate();

Return Value

The returned OracleDate contains the date and time in the current instance.

Remarks

The precision of the OracleTimeStamp value can be lost during the conversion.

If the value of the OracleTimeStamp has a null value, the value of the returned
OracleDate structure has a null value.

14.8.8.15 ToOracleTimeStampLTZ
This method converts the current OracleTimeStamp structure to an OracleTimeStampLTZ
structure.

Declaration

// C#
public OracleTimeStampLTZ ToOracleTimeStampLTZ();

Return Value

The returned OracleTimeStampLTZ contains date and time in the current instance.

Remarks

If the value of the current instance has a null value, the value of the returned
OracleTimeStampLTZ structure has a null value.

14.8.8.16 ToOracleTimeStampTZ
This method converts the current OracleTimeStamp structure to an OracleTimeStampTZ
structure.

Chapter 14
OracleTimeStamp Structure

14-255

Declaration

// C#
public OracleTimeStampTZ ToOracleTimeStampTZ();

Return Value

The returned OracleTimeStampTZ contains the date and time from the OracleTimeStamp
and the time zone from the OracleGlobalization.TimeZone of the thread.

Remarks

If the value of the current instance has a null value, the value of the returned
OracleTimeStampTZ structure has a null value.

14.8.8.17 ToString
Overrides Object

This method converts the current OracleTimeStamp structure to a string.

Declaration

// C#
public override string ToString();

Return Value

A string that represents the same date and time as the current OracleTimeStamp
structure.

Remarks

The returned value is a string representation of an OracleTimeStamp in the format
specified by the OracleGlobalization.TimeStampFormat property of the thread.

The names and abbreviations used for months and days are in the language specified
by the OracleGlobalization's DateLanguage and Calendar properties of the thread. If any
of the thread's globalization properties are set to null or an empty string, the client
computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ToStringSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStamp(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

Chapter 14
OracleTimeStamp Structure

14-256

 // construct OracleTimeStamp from a string using the format specified.
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

14.9 OracleTimeStampLTZ Structure
The OracleTimeStampLTZ structure represents the Oracle TIMESTAMP WITH LOCAL TIME ZONE
data type to be stored in or retrieved from a database. Each OracleTimeStampLTZ stores
the following information: year, month, day, hour, minute, second, and nanosecond.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleTimeStampLTZ

Declaration

// C#
public struct OracleTimeStampLTZ : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleTimeStampLTZSample
{
 static void Main()
 {

Chapter 14
OracleTimeStampLTZ Structure

14-257

 // Illustrates usage of OracleTimeStampLTZ
 // Display Local Time Zone Name
 Console.WriteLine("Local Time Zone Name = " +
 OracleTimeStampLTZ.GetLocalTimeZoneName());
 OracleTimeStampLTZ tsLocal1 = OracleTimeStampLTZ.GetSysDate();
 OracleTimeStampLTZ tsLocal2 = DateTime.Now;

 // Calculate the difference between tsLocal1 and tsLocal2
 OracleIntervalDS idsDiff = tsLocal2.GetDaysBetween(tsLocal1);

 // Calculate the difference using AddNanoseconds()
 int nanoDiff = 0;
 while (tsLocal2 > tsLocal1)
 {
 nanoDiff += 10;
 tsLocal1 = tsLocal1.AddNanoseconds(10);
 }
 Console.WriteLine("idsDiff.Nanoseconds = " + idsDiff.Nanoseconds);
 Console.WriteLine("nanoDiff = " + nanoDiff);
 }
}

14.9.1 OracleTimeStampLTZ Members
OracleTimeStampLTZ members are listed in the following tables:

OracleTimeStampLTZ Constructors

OracleTimeStampLTZ constructors are listed in Table 14-113

Table 14-113 OracleTimeStampLTZConstructors

Constructor Description

OracleTimeStampLTZ Constructors Instantiates a new instance of
OracleTimeStampLTZ structure (Overloaded)

OracleTimeStampLTZ Static Fields

The OracleTimeStampLTZ static fields are listed in Table 14-114.

Table 14-114 OracleTimeStampLTZ Static Fields

Field Description

MaxValue Represents the maximum valid date for an
OracleTimeStampLTZ structure, which is December
31, 9999 23:59:59.999999999

MinValue Represents the minimum valid date for an
OracleTimeStampLTZ structure, which is January
1, -4712 0:0:0

Null Represents a null value that can be assigned to an
instance of the OracleTimeStampLTZ structure

Chapter 14
OracleTimeStampLTZ Structure

14-258

OracleTimeStampLTZ Static Methods

The OracleTimeStampLTZ static methods are listed in Table 14-115.

Table 14-115 OracleTimeStampLTZ Static Methods

Methods Description

Equals Determines if two OracleTimeStampLTZ values are
equal (Overloaded)

GetLocalTimeZoneName Gets the client's local time zone name

GetLocalTimeZoneOffset Gets the client's local time zone offset relative to
UTC

GetSysDate Gets an OracleTimeStampLTZ structure that
represents the current date and time

GreaterThan Determines if the first of two OracleTimeStampLTZ
values is greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStampLTZ
values is greater than or equal to the second

LessThan Determines if the first of two OracleTimeStampLTZ
values is less than the second

LessThanOrEqual Determines if the first of two OracleTimeStampLTZ
values is less than or equal to the second

NotEquals Determines if two OracleTimeStampLTZ values are
not equal

Parse Gets an OracleTimeStampLTZ structure and sets its
value for date and time using the supplied string

SetPrecision Returns a new instance of an OracleTimeStampLTZ
with the specified fractional second precision

OracleTimeStampLTZ Static Operators

The OracleTimeStampLTZ static operators are listed in Table 14-116.

Table 14-116 OracleTimeStampLTZ Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStampLTZ and returns a new
OracleTimeStampLTZ structure (Overloaded)

operator == Determines if two OracleTimeStampLTZ values are
equal

operator > Determines if the first of two OracleTimeStampLTZ
values is greater than the second

operator >= Determines if the first of two OracleTimeStampLTZ
values is greater than or equal to the second

operator != Determines if two OracleTimeStampLTZ values are
not equal

Chapter 14
OracleTimeStampLTZ Structure

14-259

Table 14-116 (Cont.) OracleTimeStampLTZ Static Operators

Operator Description

operator < Determines if the first of two OracleTimeStampLTZ
values is less than the second

operator <= Determines if the first of two OracleTimeStampLTZ
values is less than or equal to the second

operator - Subtracts the supplied instance value from the
supplied OracleTimeStampLTZ and returns a new
OracleTimeStampLTZ structure (Overloaded)

OracleTimeStampLTZ Static Type Conversions

The OracleTimeStampLTZ static type conversions are listed in Table 14-117.

Table 14-117 OracleTimeStampLTZ Static Type Conversions

Operator Description

explicit operator OracleTimeStampLTZ Converts an instance value to an
OracleTimeStampLTZ structure (Overloaded)

implicit operator OracleTimeStampLTZ Converts an instance value to an
OracleTimeStampLTZ structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStampLTZ value to a
DateTime structure

OracleTimeStampLTZ Properties

The OracleTimeStampLTZ properties are listed in Table 14-118.

Table 14-118 OracleTimeStampLTZ Properties

Properties Description

BinData Returns an array of bytes that represents an
Oracle TIMESTAMP WITH LOCAL TIME ZONE in
Oracle internal format

Day Specifies the day component of an
OracleTimeStampLTZ

IsNull Indicates whether or not the OracleTimeStampLTZ
instance has a null value

Hour Specifies the hour component of an
OracleTimeStampLTZ

Millisecond Specifies the millisecond component of an
OracleTimeStampLTZ

Minute Specifies the minute component of an
OracleTimeStampLTZ

Month Specifies the month component of an
OracleTimeStampLTZ

Chapter 14
OracleTimeStampLTZ Structure

14-260

Table 14-118 (Cont.) OracleTimeStampLTZ Properties

Properties Description

Nanosecond Specifies the nanosecond component of an
OracleTimeStampLTZ

Second Specifies the second component of an
OracleTimeStampLTZ

Value Specifies the date and time that is stored in the
OracleTimeStampLTZ structure

Year Specifies the year component of an
OracleTimeStampLTZ

OracleTimeStampLTZ Methods

The OracleTimeStampLTZ methods are listed in Table 14-119.

Table 14-119 OracleTimeStampLTZ Methods

Methods Description

AddDays Adds the supplied number of days to the current
instance

AddHours Adds the supplied number of hours to the current
instance

AddMilliseconds Adds the supplied number of milliseconds to the
current instance

AddMinutes Adds the supplied number of minutes to the current
instance

AddMonths Adds the supplied number of months to the current
instance

AddNanoseconds Adds the supplied number of nanoseconds to the
current instance

AddSeconds Adds the supplied number of seconds to the
current instance

AddYears Adds the supplied number of years to the current
instance

CompareTo Compares the current OracleTimeStampLTZ
instance to an object and returns an integer that
represents their relative values

Equals Determines whether or not an object has the same
date and time as the current OracleTimeStampLTZ
instance (Overloaded)

GetHashCode Returns a hash code for the OracleTimeStampLTZ
instance

GetDaysBetween Subtracts an OracleTimeStampLTZ from the current
instance and returns an OracleIntervalDS that
represents the difference

Chapter 14
OracleTimeStampLTZ Structure

14-261

Table 14-119 (Cont.) OracleTimeStampLTZ Methods

Methods Description

GetYearsBetween Subtracts an OracleTimeStampLTZ from the current
instance and returns an OracleIntervalYM that
represents the difference

GetType Inherited from System.Object

ToOracleDate Converts the current OracleTimeStampLTZ
structure to an OracleDate structure

ToOracleTimeStamp Converts the current OracleTimeStampLTZ
structure to an OracleTimeStamp structure

ToOracleTimeStampTZ Converts the current OracleTimeStampLTZ
structure to an OracleTimeStampTZ structure

ToString Converts the current OracleTimeStampLTZ
structure to a string

ToUniversalTime Converts the current local time to Coordinated
Universal Time (UTC)

14.9.2 OracleTimeStampLTZ Constructors
The OracleTimeStampLTZ constructors create new instances of the OracleTimeStampLTZ
structure.

Overload List:

• OracleTimeStampLTZ(DateTime)

This constructor creates a new instance of the OracleTimeStampLTZ structure and
sets its value for date and time using the supplied DateTime value.

• OracleTimeStampLTZ(string)

This constructor creates a new instance of the OracleTimeStampLTZ structure and
sets its value for date and time using the supplied string.

• OracleTimeStampLTZ(int, int, int)

This constructor creates a new instance of the OracleTimeStampLTZ structure and
sets its value for date using year, month, and day.

• OracleTimeStampLTZ(int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStampLTZ structure and
sets its value for date and time using year, month, day, hour, minute, and second.

• OracleTimeStampLTZ(int, int, int, int, int, int, double)

This constructor creates a new instance of the OracleTimeStampLTZ structure and
sets its value for date and time using year, month, day, hour, minute, second, and
millisecond.

• OracleTimeStampLTZ(int, int, int, int, int, int, int)

Chapter 14
OracleTimeStampLTZ Structure

14-262

This constructor creates a new instance of the OracleTimeStampLTZ structure and
sets its value for date and time using year, month, day, hour, minute, second, and
nanosecond.

• OracleTimeStampLTZ(byte [])

This constructor creates a new instance of the OracleTimeStampLTZ structure and
sets its value to the provided byte array, which is in the internal Oracle TIMESTAMP
WITH LOCAL TIME ZONE format.

14.9.2.1 OracleTimeStampLTZ(DateTime)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date and time using the supplied DateTime value.

Declaration

// C#
public OracleTimeStampLTZ (DateTime dt);

Parameters

• dt

The supplied DateTime value.

Exceptions

ArgumentException - The dt parameter cannot be used to construct a valid
OracleTimeStampLTZ.

14.9.2.2 OracleTimeStampLTZ(string)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date and time using the supplied string.

Declaration

// C#
public OracleTimeStampLTZ(string tsStr);

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP WITH LOCAL TIME ZONE.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle TIMESTAMP
WITH LOCAL TIME ZONE or the supplied tsStr is not in the timestamp format specified by
the OracleGlobalization.TimeStampFormat property of the thread, which represents the
Oracle NLS_TIMESTAMP_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Chapter 14
OracleTimeStampLTZ Structure

14-263

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleTimeStampLTZSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStampLTZ(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampLTZ from a string using the format
 // specified.
 OracleTimeStampLTZ ts =
 new OracleTimeStampLTZ("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

14.9.2.3 OracleTimeStampLTZ(int, int, int)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date using year, month, and day.

Declaration

// C#
public OracleTimeStampLTZ(int year, int month, int day);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

Chapter 14
OracleTimeStampLTZ Structure

14-264

• day

The day provided. Range of day is (1 to 31).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampLTZ (that is, the day is out of range for the month).

14.9.2.4 OracleTimeStampLTZ(int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date and time using year, month, day, hour, minute, and second.

Declaration

// C#
public OracleTimeStampLTZ (int year, int month, int day, int hour,
 int minute, int second);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampLTZ (that is, the day is out of range for the month).

Chapter 14
OracleTimeStampLTZ Structure

14-265

14.9.2.5 OracleTimeStampLTZ(int, int, int, int, int, int, double)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date and time using year, month, day, hour, minute, second, and
millisecond.

Declaration

// C#
public OracleTimeStampLTZ(int year, int month, int day, int hour, int minute, int
second, double millisecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• milliSeconds

The milliseconds provided. Range of millisecond is (0 to 999.999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampLTZ (that is, the day is out of range for the month).

14.9.2.6 OracleTimeStampLTZ(int, int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value for date and time using year, month, day, hour, minute, second, and
nanosecond.

Declaration

// C#
public OracleTimeStampLTZ (int year, int month, int day, int hour,
 int minute, int second, int nanosecond);

Chapter 14
OracleTimeStampLTZ Structure

14-266

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• nanosecond

The nanosecond provided. Range of nanosecond is (0 to 999999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampLTZ (that is, the day is out of range for the month).

14.9.2.7 OracleTimeStampLTZ(byte [])
This constructor creates a new instance of the OracleTimeStampLTZ structure and sets
its value to the provided byte array, which is in the internal Oracle TIMESTAMP WITH LOCAL
TIME ZONE format.

Declaration

// C#
public OracleTimeStampLTZ (byte[] bytes);

Parameters

• bytes

A byte array that represents an Oracle TIMESTAMP WITH LOCAL TIME ZONE in Oracle
internal format.

Exceptions

ArgumentException - bytes is not in an internal Oracle TIMESTAMP WITH LOCAL TIME ZONE
format or bytes is not a valid Oracle TIMESTAMP WITH LOCAL TIME ZONE.

ArgumentNullException - bytes is null.

Chapter 14
OracleTimeStampLTZ Structure

14-267

14.9.3 OracleTimeStampLTZ Static Fields
The OracleTimeStampLTZ static fields are listed in Table 14-120.

Table 14-120 OracleTimeStampLTZ Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleTimeStampLTZ structure,
which is December 31, 9999 23:59:59.999999999

MinValue Represents the minimum valid date for an OracleTimeStampLTZ structure,
which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to an instance of the
OracleTimeStampLTZ structure

14.9.3.1 MaxValue
This static field represents the maximum valid date for an OracleTimeStampLTZ structure,
which is December 31, 9999 23:59:59.999999999.

Declaration

// C#
public static readonly OracleTimeStampLTZ MaxValue;

Remarks

This value is the maximum date and time in the client time zone.

14.9.3.2 MinValue
This static field represents the minimum valid date for an OracleTimeStampLTZ structure,
which is January 1, -4712 0:0:0.

Declaration

// C#
public static readonly OracleTimeStampLTZ MinValue;

Remarks

This value is the minimum date and time in the client time zone.

14.9.3.3 Null
This static field represents a null value that can be assigned to an instance of the
OracleTimeStampLTZ structure.

Declaration

// C#
public static readonly OracleTimeStampLTZ Null;

Chapter 14
OracleTimeStampLTZ Structure

14-268

14.9.4 OracleTimeStampLTZ Static Methods
The OracleTimeStampLTZ static methods are listed in Table 14-121.

Table 14-121 OracleTimeStampLTZ Static Methods

Methods Description

Equals Determines if two OracleTimeStampLTZ values are equal
(Overloaded)

GetLocalTimeZoneName Gets the client's local time zone name

GetLocalTimeZoneOffset Gets the client's local time zone offset relative to UTC

GetSysDate Gets an OracleTimeStampLTZ structure that represents the
current date and time

GreaterThan Determines if the first of two OracleTimeStampLTZ values is
greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStampLTZ values is
greater than or equal to the second

LessThan Determines if the first of two OracleTimeStampLTZ values is
less than the second

LessThanOrEqual Determines if the first of two OracleTimeStampLTZ values is
less than or equal to the second

NotEquals Determines if two OracleTimeStampLTZ values are not equal

Parse Gets an OracleTimeStampLTZ structure and sets its value for
date and time using the supplied string

SetPrecision Returns a new instance of an OracleTimeStampLTZ with the
specified fractional second precision

14.9.4.1 Equals
This static method determines if two OracleTimeStampLTZ values are equal.

Declaration

// C#
public static bool Equals(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if two OracleTimeStampLTZ values are equal. Returns false otherwise.

Chapter 14
OracleTimeStampLTZ Structure

14-269

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.4.2 GetLocalTimeZoneName
This static method gets the client's local time zone name.

Declaration

// C#
public static string GetLocalTimeZoneName();

Return Value

A string containing the local time zone.

14.9.4.3 GetLocalTimeZoneOffset
This static method gets the client's local time zone offset relative to Coordinated
Universal Time (UTC).

Declaration

// C#
public static TimeSpan GetLocalTimeZoneOffset();

Return Value

A TimeSpan structure containing the local time zone hours and time zone minutes.

14.9.4.4 GetSysDate
This static method gets an OracleTimeStampLTZ structure that represents the current
date and time.

Declaration

// C#
public static OracleTimeStampLTZ GetSysDate();

Return Value

An OracleTimeStampLTZ structure that represents the current date and time.

14.9.4.5 GreaterThan
This static method determines if the first of two OracleTimeStampLTZ values is greater
than the second.

Chapter 14
OracleTimeStampLTZ Structure

14-270

Declaration

// C#
public static bool GreaterThan(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first of two OracleTimeStampLTZ values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.4.6 GreaterThanOrEqual
This static method determines if the first of two OracleTimeStampLTZ values is greater
than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first of two OracleTimeStampLTZ values is greater than or equal to the
second; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

Chapter 14
OracleTimeStampLTZ Structure

14-271

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.4.7 LessThan
This static method determines if the first of two OracleTimeStampLTZ values is less than
the second.

Declaration

// C#
public static bool LessThan(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first of two OracleTimeStampLTZ values is less than the second.
Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.4.8 LessThanOrEqual
This static method determines if the first of two OracleTimeStampLTZ values is less than
or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Chapter 14
OracleTimeStampLTZ Structure

14-272

Return Value

Returns true if the first of two OracleTimeStampLTZ values is less than or equal to the
second. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.4.9 NotEquals
This static method determines if two OracleTimeStampLTZ values are not equal.

Declaration

// C#
public static bool NotEquals(OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if two OracleTimeStampLTZ values are not equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.4.10 Parse
This static method creates an OracleTimeStampLTZ structure and sets its value using the
supplied string.

Declaration

// C#
public static OracleTimeStampLTZ Parse(string tsStr);

Chapter 14
OracleTimeStampLTZ Structure

14-273

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP WITH LOCAL TIME ZONE.

Return Value

An OracleTimeStampLTZ structure.

Exceptions

ArgumentException - The tsStr parameter is an invalid string representation of an
Oracle TIMESTAMP WITH LOCAL TIME ZONE or the tsStr is not in the timestamp format
specified by the OracleGlobalization.TimeStampFormat property of the thread, which
represents the Oracle NLS_TIMESTAMP_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ParseSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the Parse() method
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampLTZ from a string using the format specified.
 OracleTimeStampLTZ ts =
 OracleTimeStampLTZ.Parse("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

Chapter 14
OracleTimeStampLTZ Structure

14-274

14.9.4.11 SetPrecision
This static method returns a new instance of an OracleTimeStampLTZ with the specified
fractional second precision.

Declaration

// C#
public static OracleTimeStampLTZ SetPrecision(OracleTimeStampLTZ value1,
 int fracSecPrecision);

Parameters

• value1

The provided OracleTimeStampLTZ object.

• fracSecPrecision

The fractional second precision provided. Range of fractional second precision is
(0 to 9).

Return Value

An OracleTimeStampLTZ structure with the specified fractional second precision

Exceptions

ArgumentOutOfRangeException - fracSecPrecision is out of the specified range.

Remarks

The value specified in the supplied fracSecPrecision parameter is used to perform a
rounding off operation on the supplied OracleTimeStampLTZ value. Depending on this
value, 0 or more trailing zeros are displayed in the string returned by ToString().

Example

The OracleTimeStampLTZ with a value of "December 31, 9999 23:59:59.99" results in the
string "December 31, 9999 23:59:59.99000" when SetPrecision() is called with the
fractional second precision set to 5.

14.9.5 OracleTimeStampLTZ Static Operators
The OracleTimeStampLTZ static operators are listed in Table 14-122.

Table 14-122 OracleTimeStampLTZ Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ
structure (Overloaded)

operator == Determines if two OracleTimeStampLTZ values are equal

operator > Determines if the first of two OracleTimeStampLTZ values is
greater than the second

Chapter 14
OracleTimeStampLTZ Structure

14-275

Table 14-122 (Cont.) OracleTimeStampLTZ Static Operators

Operator Description

operator >= Determines if the first of two OracleTimeStampLTZ values is
greater than or equal to the second

operator != Determines if two OracleTimeStampLTZ values are not equal

operator < Determines if the first of two OracleTimeStampLTZ values is less
than the second

operator <= Determines if the first of two OracleTimeStampLTZ values is less
than or equal to the second

operator - Subtracts the supplied instance value from the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ
structure (Overloaded)

14.9.5.1 operator +
operator + adds the supplied value to the supplied OracleTimeStampLTZ and returns a
new OracleTimeStampLTZ structure.

Overload List:

• operator + (OracleTimeStampLTZ, OracleIntervalDS)

This static operator adds the supplied OracleIntervalDS to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

• operator + (OracleTimeStampLTZ, OracleIntervalYM)

This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

• operator + (OracleTimeStampLTZ, TimeSpan)

This static operator adds the supplied TimeSpan to the supplied OracleTimeStampLTZ
and returns a new OracleTimeStampLTZ structure.

14.9.5.2 operator + (OracleTimeStampLTZ, OracleIntervalDS)
This static operator adds the supplied OracleIntervalDS to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampLTZ value1,
 OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

Chapter 14
OracleTimeStampLTZ Structure

14-276

An OracleIntervalDS.

Return Value

An OracleTimeStampLTZ.

Remarks

If either parameter has a null value, the returned OracleTimeStampLTZ has a null value.

14.9.5.3 operator + (OracleTimeStampLTZ, OracleIntervalYM)
This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStampLTZ and returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampLTZ value1,
 OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStampLTZ.

Remarks

If either parameter has a null value, the returned OracleTimeStampLTZ has a null value.

14.9.5.4 operator + (OracleTimeStampLTZ, TimeSpan)
This static operator adds the supplied TimeSpan to the supplied OracleTimeStampLTZ and
returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampLTZ value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

A TimeSpan.

Chapter 14
OracleTimeStampLTZ Structure

14-277

Return Value

An OracleTimeStampLTZ.

Remarks

If the OracleTimeStampLTZ instance has a null value, the returned OracleTimeStampLTZ
has a null value.

14.9.5.5 operator ==
This static operator determines if two OracleTimeStampLTZ values are equal.

Declaration

// C#
public static bool operator == (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if they are the same; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.5.6 operator >
This static operator determines if the first of two OracleTimeStampLTZ values is greater
than the second.

Declaration

// C#
public static bool operator > (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

Chapter 14
OracleTimeStampLTZ Structure

14-278

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first OracleTimeStampLTZ value is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.5.7 operator >=
This static operator determines if the first of two OracleTimeStampLTZ values is greater
than or equal to the second.

Declaration

// C#
public static bool operator >= (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first OracleTimeStampLTZ is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.5.8 operator !=
This static operator determines if two OracleTimeStampLTZ values are not equal.

Chapter 14
OracleTimeStampLTZ Structure

14-279

Declaration

// C#
public static bool operator != (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if two OracleTimeStampLTZ values are not equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.5.9 operator <
This static operator determines if the first of two OracleTimeStampLTZ values is less than
the second.

Declaration

// C#
public static bool operator < (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first OracleTimeStampLTZ is less than the second; otherwise, returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

Chapter 14
OracleTimeStampLTZ Structure

14-280

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.5.10 operator <=
This static operator determines if the first of two OracleTimeStampLTZ values is less than
or equal to the second.

Declaration

// C#
public static bool operator <= (OracleTimeStampLTZ value1,
 OracleTimeStampLTZ value2);

Parameters

• value1

The first OracleTimeStampLTZ.

• value2

The second OracleTimeStampLTZ.

Return Value

Returns true if the first OracleTimeStampLTZ is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.5.11 operator -
operator- subtracts the supplied value, from the supplied OracleTimeStampLTZ value,
and returns a new OracleTimeStampLTZ structure.

Overload List:

• operator - (OracleTimeStampLTZ, OracleIntervalDS)

This static operator subtracts the supplied OracleIntervalDS value, from the
supplied OracleTimeStampLTZ value, and return a new OracleTimeStampLTZ structure.

• operator - (OracleTimeStampLTZ, OracleIntervalYM)

This static operator subtracts the supplied OracleIntervalYM value, from the
supplied OracleTimeStampLTZ value, and returns a new OracleTimeStampLTZ
structure.

• operator - (OracleTimeStampLTZ, TimeSpan)

This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStampLTZ value, and returns a new OracleTimeStampLTZ structure.

Chapter 14
OracleTimeStampLTZ Structure

14-281

14.9.5.12 operator - (OracleTimeStampLTZ, OracleIntervalDS)
This static operator subtracts the supplied OracleIntervalDS value, from the supplied
OracleTimeStampLTZ value, and return a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampLTZ value1,
 OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

An OracleIntervalDS instance.

Return Value

An OracleTimeStampLTZ structure.

Remarks

If either parameter has a null value, the returned OracleTimeStampLTZ has a null value.

14.9.5.13 operator - (OracleTimeStampLTZ, OracleIntervalYM)
This static operator subtracts the supplied OracleIntervalYM value, from the supplied
OracleTimeStampLTZ value, and returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampLTZ value1,
 OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStampLTZ structure.

Remarks

If either parameter has a null value, the returned OracleTimeStampLTZ has a null value.

Chapter 14
OracleTimeStampLTZ Structure

14-282

14.9.5.14 operator - (OracleTimeStampLTZ, TimeSpan)
This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStampLTZ value, and returns a new OracleTimeStampLTZ structure.

Declaration

// C#
public static operator -(OracleTimeStampLTZ value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStampLTZ.

• value2

A TimeSpan.

Return Value

An OracleTimeStampLTZ structure.

Remarks

If the OracleTimeStampLTZ instance has a null value, the returned OracleTimeStampLTZ
structure has a null value.

14.9.6 OracleTimeStampLTZ Static Type Conversions
The OracleTimeStampLTZ static type conversions are listed in Table 14-123.

Table 14-123 OracleTimeStampLTZ Static Type Conversions

Operator Description

explicit operator OracleTimeStampLTZ Converts an instance value to an
OracleTimeStampLTZ structure (Overloaded)

implicit operator OracleTimeStampLTZ Converts an instance value to an
OracleTimeStampLTZ structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStampLTZ value to a
DateTime structure

14.9.6.1 explicit operator OracleTimeStampLTZ
explicit operator OracleTimeStampLTZ converts the supplied value to an
OracleTimeStampLTZ structure.

Overload List:

• explicit operator OracleTimeStampLTZ(OracleTimeStamp)

This static type conversion operator converts an OracleTimeStamp value to an
OracleTimeStampLTZ structure.

Chapter 14
OracleTimeStampLTZ Structure

14-283

• explicit operator OracleTimeStampLTZ(OracleTimeStampTZ)

This static type conversion operator converts an OracleTimeStampTZ value to an
OracleTimeStampLTZ structure.

• explicit operator OracleTimeStampLTZ(string)

This static type conversion operator converts the supplied string to an
OracleTimeStampLTZ structure.

14.9.6.2 explicit operator OracleTimeStampLTZ(OracleTimeStamp)
This static type conversion operator converts an OracleTimeStamp value to an
OracleTimeStampLTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampLTZ (OracleTimeStamp value1);

Parameters

• value1

An OracleTimeStamp.

Return Value

The OracleTimeStampLTZ structure contains the date and time of the OracleTimeStampTZ
structure.

Remarks

If the OracleTimeStamp structure has a null value, the returned OracleTimeStampLTZ
structure also has a null value.

14.9.6.3 explicit operator OracleTimeStampLTZ(OracleTimeStampTZ)
This static type conversion operator converts an OracleTimeStampTZ value to an
OracleTimeStampLTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampLTZ
 (OracleTimeStampTZ value1);

Parameters

• value1

An OracleTimeStampTZ instance.

Return Value

The OracleTimeStampLTZ structure contains the date and time in the OracleTimeStampTZ
structure (which is normalized to the client local time zone).

Chapter 14
OracleTimeStampLTZ Structure

14-284

Remarks

If the OracleTimeStampTZ structure has a null value, the returned OracleTimeStampLTZ
structure also has a null value.

14.9.6.4 explicit operator OracleTimeStampLTZ(string)
This static type conversion operator converts the supplied string to an
OracleTimeStampLTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampLTZ (string tsStr);

Parameters

• tsStr

A string representation of an Oracle TIMESTAMP WITH LOCAL TIME ZONE.

Return Value

A OracleTimeStampLTZ.

Exceptions

ArgumentException - ThetsStr parameter is an invalid string representation of an Oracle
TIMESTAMP WITH LOCAL TIME ZONE or the tsStr is not in the timestamp format specified by
the thread's OracleGlobalization.TimeStampFormat property, which represents the
Oracle NLS_TIMESTAMP_FORMAT parameter.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class OracleTimeStampLTZSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStampLTZ(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampLTZ from a string using the format specified.

Chapter 14
OracleTimeStampLTZ Structure

14-285

 OracleTimeStampLTZ ts =
 new OracleTimeStampLTZ("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

14.9.6.5 implicit operator OracleTimeStampLTZ
implicit operator OracleTimeStampLTZ converts the supplied structure to an
OracleTimeStampLTZ structure.

Overload List:

• implicit operator OracleTimeStampLTZ(OracleDate)

This static type conversion operator converts an OracleDate value to an
OracleTimeStampLTZ structure.

• implicit operator OracleTimeStampLTZ(DateTime)

This static type conversion operator converts a DateTime structure to an
OracleTimeStampLTZ structure.

14.9.6.6 implicit operator OracleTimeStampLTZ(OracleDate)
This static type conversion operator converts an OracleDate value to an
OracleTimeStampLTZ structure.

Declaration

// C#
public static implicit operator OracleTimeStampLTZ(OracleDate value1);

Parameters

• value1

An OracleDate.

Return Value

The returned OracleTimeStampLTZ structure contains the date and time in the OracleDate
structure.

Remarks

If the OracleDate structure has a null value, the returned OracleTimeStampLTZ structure
also has a null value.

Chapter 14
OracleTimeStampLTZ Structure

14-286

14.9.6.7 implicit operator OracleTimeStampLTZ(DateTime)
This static type conversion operator converts a DateTime structure to an
OracleTimeStampLTZ structure.

Declaration

// C#
public static implicit operator OracleTimeStampLTZ(DateTime value1);

Parameters

• value1

A DateTime structure.

Return Value

An OracleTimeStampLTZ structure.

14.9.6.8 explicit operator DateTime
This static type conversion operator converts an OracleTimeStampLTZ value to a
DateTime structure.

Declaration

// C#
public static explicit operator DateTime(OracleTimeStampLTZ value1);

Parameters

• value1

An OracleTimeStampLTZ instance.

Return Value

A DateTime that contains the date and time in the current instance.

Exceptions

OracleNullValueException - The OracleTimeStampLTZ structure has a null value.

Remarks

The precision of the OracleTimeStampLTZ value can be lost during the conversion.

14.9.7 OracleTimeStampLTZ Properties
The OracleTimeStampLTZ properties are listed in Table 14-124.

Chapter 14
OracleTimeStampLTZ Structure

14-287

Table 14-124 OracleTimeStampLTZ Properties

Properties Description

BinData Returns an array of bytes that represents an Oracle TIMESTAMP WITH
LOCAL TIME ZONE in Oracle internal format

Day Specifies the day component of an OracleTimeStampLTZ

IsNull Indicates whether or not the OracleTimeStampLTZ instance has a null
value

Hour Specifies the hour component of an OracleTimeStampLTZ

Millisecond Specifies the millisecond component of an OracleTimeStampLTZ

Minute Specifies the minute component of an OracleTimeStampLTZ

Month Specifies the month component of an OracleTimeStampLTZ

Nanosecond Specifies the nanosecond component of an OracleTimeStampLTZ

Second Specifies the second component of an OracleTimeStampLTZ

Value Specifies the date and time that is stored in the OracleTimeStampLTZ
structure

Year Specifies the year component of an OracleTimeStampLTZ

14.9.7.1 BinData
This property returns an array of bytes that represents an Oracle TIMESTAMP WITH LOCAL
TIME ZONE in Oracle internal format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

A byte array that represents an Oracle TIMESTAMP WITH LOCAL TIME ZONE internal format.

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.2 Day
This property specifies the day component of an OracleTimeStampLTZ.

Declaration

// C#
public int Day{get;}

Property Value

A number that represents the day. Range of Day is (1 to 31).

Chapter 14
OracleTimeStampLTZ Structure

14-288

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.3 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance contains a null value; otherwise, returns false.

14.9.7.4 Hour
This property specifies the hour component of an OracleTimeStampLTZ.

Declaration

// C#
public int Hour{get;}

Property Value

A number that represents the hour. Range of Hour is (0 to 23).

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.5 Millisecond
This property gets the millisecond component of an OracleTimeStampLTZ.

Declaration

// C#
public double Millisecond{get;}

Property Value

A number that represents a millisecond. Range of Millisecond is (0 to 999.999999)

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.6 Minute
This property gets the minute component of an OracleTimeStampLTZ.

Chapter 14
OracleTimeStampLTZ Structure

14-289

Declaration

// C#
public int Minute{get;}

Property Value

A number that represent a minute. Range of Minute is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.7 Month
This property gets the month component of an OracleTimeStampLTZ.

Declaration

// C#
public int Month{get;}

Property Value

A number that represents a month. Range of Month is (1 to 12).

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.8 Nanosecond
This property gets the nanosecond component of an OracleTimeStampLTZ.

Declaration

// C#
public int Nanosecond{get;}

Property Value

A number that represents a nanosecond. Range of Nanosecond is (0 to 999999999).

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.9 Second
This property gets the second component of an OracleTimeStampLTZ.

Declaration

// C#
public int Second{get;}

Chapter 14
OracleTimeStampLTZ Structure

14-290

Property Value

A number that represents a second. Range of Second is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.10 Value
This property specifies the date and time that is stored in the OracleTimeStampLTZ
structure.

Declaration

// C#
public DateTime Value{get;}

Property Value

A DateTime.

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.7.11 Year
This property gets the year component of an OracleTimeStampLTZ.

Declaration

// C#
public int Year{get;}

Property Value

A number that represents a year. The range of Year is (-4712 to 9999).

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.8 OracleTimeStampLTZ Methods
The OracleTimeStampLTZ methods are listed in Table 14-125.

Table 14-125 OracleTimeStampLTZ Methods

Methods Description

AddDays Adds the supplied number of days to the current instance

AddHours Adds the supplied number of hours to the current instance

Chapter 14
OracleTimeStampLTZ Structure

14-291

Table 14-125 (Cont.) OracleTimeStampLTZ Methods

Methods Description

AddMilliseconds Adds the supplied number of milliseconds to the current
instance

AddMinutes Adds the supplied number of minutes to the current instance

AddMonths Adds the supplied number of months to the current instance

AddNanoseconds Adds the supplied number of nanoseconds to the current
instance

AddSeconds Adds the supplied number of seconds to the current instance

AddYears Adds the supplied number of years to the current instance

CompareTo Compares the current OracleTimeStampLTZ instance to an
object and returns an integer that represents their relative
values

Equals Determines whether or not an object has the same date and
time as the current OracleTimeStampLTZ instance
(Overloaded)

GetHashCode Returns a hash code for the OracleTimeStampLTZ instance

GetDaysBetween Subtracts an OracleTimeStampLTZ from the current instance
and returns an OracleIntervalDS that represents the
difference

GetYearsBetween Subtracts an OracleTimeStampLTZ from the current instance
and returns an OracleIntervalYM that represents the
difference

GetType Inherited from System.Object

ToOracleDate Converts the current OracleTimeStampLTZ structure to an
OracleDate structure

ToOracleTimeStamp Converts the current OracleTimeStampLTZ structure to an
OracleTimeStamp structure

ToOracleTimeStampTZ Converts the current OracleTimeStampLTZ structure to an
OracleTimeStampTZ structure

ToString Converts the current OracleTimeStampLTZ structure to a string

ToUniversalTime Converts the current local time to Coordinated Universal Time
(UTC)

14.9.8.1 AddDays
This method adds the supplied number of days to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddDays(double days);

Parameters

• days

Chapter 14
OracleTimeStampLTZ Structure

14-292

The supplied number of days. Range is (-1,000,000,000 < days < 1,000,000,000)

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.9.8.2 AddHours
This method adds the supplied number of hours to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddHours(double hours);

Parameters

• hours

The supplied number of hours. Range is (-24,000,000,000 < hours <
24,000,000,000).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.9.8.3 AddMilliseconds
This method adds the supplied number of milliseconds to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddMilliseconds(double milliseconds);

Parameters

• milliseconds

The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds < 8.64
* 1016).

Return Value

An OracleTimeStampLTZ.

Chapter 14
OracleTimeStampLTZ Structure

14-293

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.9.8.4 AddMinutes
This method adds the supplied number of minutes to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddMinutes(double minutes);

Parameters

• minutes

The supplied number of minutes. Range is (-1,440,000,000,000 < minutes <
1,440,000,000,000).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.9.8.5 AddMonths
This method adds the supplied number of months to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddMonths(long months);

Parameters

• months

The supplied number of months. Range is (-12,000,000,000 < months <
12,000,000,000).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

Chapter 14
OracleTimeStampLTZ Structure

14-294

14.9.8.6 AddNanoseconds
This method adds the supplied number of nanoseconds to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddNanoseconds(long nanoseconds);

Parameters

• nanoseconds

The supplied number of nanoseconds.

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

14.9.8.7 AddSeconds
This method adds the supplied number of seconds to the current instance.

Declaration

// C#
public OracleTimeStampLTZ AddSeconds(double seconds);

Parameters

• seconds

The supplied number of seconds. Range is (-8.64 * 1013< seconds < 8.64 * 1013).

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.9.8.8 AddYears
This method adds the supplied number of years to the current instance

Declaration

// C#
public OracleTimeStampLTZ AddYears(int years);

Chapter 14
OracleTimeStampLTZ Structure

14-295

Parameters

• years

The supplied number of years. Range is (-999,999,999 <= years < = 999,999,999)

Return Value

An OracleTimeStampLTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.9.8.9 CompareTo
This method compares the current OracleTimeStampLTZ instance to an object, and
returns an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStampLTZ instance.

Return Value

The method returns a number that is:

• Less than zero: if the current OracleTimeStampLTZ instance value is less than that of
obj.

• Zero: if the current OracleTimeStampLTZ instance and obj values are equal.

• Greater than zero: if the current OracleTimeStampLTZ instance value is greater than
that of obj.

Implements

IComparable

Exceptions

ArgumentException - The obj parameter is not of type OracleTimeStampLTZ.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleTimeStampLTZs. For example, comparing
an OracleTimeStampLTZ instance with an OracleBinary instance is not allowed. When

Chapter 14
OracleTimeStampLTZ Structure

14-296

an OracleTimeStampLTZ is compared with a different type, an ArgumentException is
thrown.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.8.10 Equals
Overrides Object

This method determines whether or not an object has the same date and time as the
current OracleTimeStampLTZ instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStampLTZ instance.

Return Value

Returns true if the obj is of type OracleTimeStampLTZ and represents the same date and
time; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampLTZ that has a value is greater than an OracleTimeStampLTZ that
has a null value.

• Two OracleTimeStampLTZs that contain a null value are equal.

14.9.8.11 GetHashCode
Overrides Object

This method returns a hash code for the OracleTimeStampLTZ instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

Chapter 14
OracleTimeStampLTZ Structure

14-297

14.9.8.12 GetDaysBetween
This method subtracts an OracleTimeStampLTZ value from the current instance and
returns an OracleIntervalDS that represents the difference.

Declaration

// C#
public OracleIntervalDS GetDaysBetween(OracleTimeStampLTZ value1);

Parameters

• value1

The OracleTimeStampLTZ value being subtracted.

Return Value

An OracleIntervalDS that represents the interval between two OracleTimeStampLTZ
values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalDS has a null value.

14.9.8.13 GetYearsBetween
This method subtracts an OracleTimeStampLTZ value from the current instance and
returns an OracleIntervalYM that represents the time interval.

Declaration

// C#
public OracleIntervalYM GetYearsBetween(OracleTimeStampLTZ value1);

Parameters

• value1

The OracleTimeStampLTZ value being subtracted.

Return Value

An OracleIntervalYM that represents the interval between two OracleTimeStampLTZ
values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalYM has a null value.

14.9.8.14 ToOracleDate
This method converts the current OracleTimeStampLTZ structure to an OracleDate
structure.

Chapter 14
OracleTimeStampLTZ Structure

14-298

Declaration

// C#
public OracleDate ToOracleDate();

Return Value

The returned OracleDate structure contains the date and time in the current instance.

Remarks

The precision of the OracleTimeStampLTZ value can be lost during the conversion.

If the current instance has a null value, the value of the returned OracleDate structure
has a null value.

14.9.8.15 ToOracleTimeStamp
This method converts the current OracleTimeStampLTZ structure to an OracleTimeStamp
structure.

Declaration

// C#
public OracleTimeStamp ToOracleTimeStamp();

Return Value

The returned OracleTimeStamp contains the date and time in the current instance.

Remarks

If the current instance has a null value, the value of the returned OracleTimeStamp
structure has a null value.

14.9.8.16 ToOracleTimeStampTZ
This method converts the current OracleTimeStampLTZ structure to an OracleTimeStampTZ
structure.

Declaration

// C#
public OracleTimeStampTZ ToOracleTimeStampTZ();

Return Value

The returned OracleTimeStampTZ contains the date and time of the current instance,
with the time zone set to the OracleGlobalization.TimeZone from the thread.

Remarks

If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.

Chapter 14
OracleTimeStampLTZ Structure

14-299

14.9.8.17 ToString
Overrides Object

This method converts the current OracleTimeStampLTZ structure to a string.

Declaration

// C#
public override string ToString();

Return Value

A string that represents the same date and time as the current OracleTimeStampLTZ
structure.

Remarks

The returned value is a string representation of the OracleTimeStampLTZ in the format
specified by the OracleGlobalization.TimeStampFormat property of the thread.

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Types;
using Oracle.DataAccess.Client;

class ToStringSample
{
 static void Main()
 {
 // Set the nls_timestamp_format for the OracleTimeStampLTZ(string)
 // constructor
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampLTZ from a string using the format
 // specified.
 OracleTimeStampLTZ ts =
 new OracleTimeStampLTZ("11-NOV-1999 11:02:33.444 AM");

 // Set the nls_timestamp_format for the ToString() method
 info.TimeStampFormat = "YYYY-MON-DD HH:MI:SS.FF AM";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM"
 Console.WriteLine(ts.ToString());
 }
}

Chapter 14
OracleTimeStampLTZ Structure

14-300

14.9.8.18 ToUniversalTime
This method converts the current local time to Coordinated Universal Time (UTC).

Declaration

// C#
public OracleTimeStampTZ ToUniversalTime();

Return Value

An OracleTimeStampTZ structure.

Remarks

If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.

14.10 OracleTimeStampTZ Structure
The OracleTimeStampTZ structure represents the Oracle TIMESTAMP WITH TIME ZONE data
type to be stored in or retrieved from a database. Each OracleTimeStampTZ stores the
following information: year, month, day, hour, minute, second, nanosecond, and time
zone.

Class Inheritance

System.Object

 System.ValueType

 Oracle.DataAccess.Types.OracleTimeStampTZ

Declaration

// C#
public struct OracleTimeStampTZ : IComparable, INullable, IXmlSerializable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Example

// C#

Chapter 14
OracleTimeStampTZ Structure

14-301

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleTimeStampTZSample
{
 static void Main()
 {
 // Set the nls parameters for the current thread
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeZone = "US/Eastern";
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // Create an OracleTimeStampTZ in US/Pacific time zone
 OracleTimeStampTZ tstz1=new OracleTimeStampTZ("11-NOV-1999 "+
 "11:02:33.444 AM US/Pacific");

 // Note that ToOracleTimeStampTZ uses the thread's time zone region,
 // "US/Eastern"
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");
 OracleTimeStampTZ tstz2 = ts.ToOracleTimeStampTZ();

 // Calculate the difference between tstz1 and tstz2
 OracleIntervalDS idsDiff = tstz1.GetDaysBetween(tstz2);

 // Display information
 Console.WriteLine("tstz1.TimeZone = " + tstz1.TimeZone);

 // Prints "US/Pacific"
 Console.WriteLine("tstz2.TimeZone = " + tstz2.TimeZone);

 // Prints "US/Eastern"
 Console.WriteLine("idsDiff.Hours = " + idsDiff.Hours); // Prints 3
 Console.WriteLine("idsDiff.Minutes = " + idsDiff.Minutes); // Prints 0
 }
}

See Also:

• "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

• OracleTimeStampTZ Members

• OracleTimeStampTZ Constructors

• OracleTimeStampTZ Static Fields

• OracleTimeStampTZ Static Methods

• OracleTimeStampTZ Static Operators

• OracleTimeStampTZ Static Type Conversions

• OracleTimeStampTZ Properties

• OracleTimeStampTZ Methods

Chapter 14
OracleTimeStampTZ Structure

14-302

14.10.1 OracleTimeStampTZ Members
OracleTimeStampTZ members are listed in the following tables:

OracleTimeStampTZ Constructors

OracleTimeStampTZ constructors are listed in Table 14-126

Table 14-126 OracleTimeStampTZ Constructors

Constructor Description

OracleTimeStampTZ Constructors Instantiates a new instance of OracleTimeStampTZ
structure (Overloaded)

OracleTimeStampTZ Static Fields

The OracleTimeStampTZ static fields are listed in Table 14-127.

Table 14-127 OracleTimeStampTZ Static Fields

Field Description

MaxValue Represents the maximum valid date for an
OracleTimeStampTZ structure in UTC, which is
December 31, 999923:59:59.999999999

MinValue Represents the minimum valid date for an
OracleTimeStampTZ structure in UTC, which is
January 1, -4712 0:0:0

Null Represents a null value that can be assigned to an
instance of the OracleTimeStampTZ structure

OracleTimeStampTZ Static Methods

The OracleTimeStampTZ static methods are listed in Table 14-128.

Table 14-128 OracleTimeStampTZ Static Methods

Methods Description

Equals Determines if two OracleTimeStampTZ values are
equal (Overloaded)

GetSysDate Gets an OracleTimeStampTZ structure that
represents the current date and time

GreaterThan Determines if the first of two OracleTimeStampTZ
values is greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStampTZ
values is greater than or equal to the second

LessThan Determines if the first of two OracleTimeStampTZ
values is less than the second

LessThanOrEqual Determines if the first of two OracleTimeStampTZ
values is less than or equal to the second

Chapter 14
OracleTimeStampTZ Structure

14-303

Table 14-128 (Cont.) OracleTimeStampTZ Static Methods

Methods Description

NotEquals Determines if two OracleTimeStampTZ values are
not equal

Parse Gets an OracleTimeStampTZ structure and sets its
value for date and time using the supplied string

SetPrecision Returns a new instance of an OracleTimeStampTZ
with the specified fractional second precision

OracleTimeStampTZ Static Operators

The OracleTimeStampTZ static operators are listed in Table 14-129.

Table 14-129 OracleTimeStampTZ Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStampTZ and returns a new
OracleTimeStampTZ structure (Overloaded)

operator == Determines if two OracleTimeStampTZ values are
equal

operator > Determines if the first of two OracleTimeStampTZ
values is greater than the second

operator >= Determines if the first of two OracleTimeStampTZ
values is greater than or equal to the second

operator != Determines if two OracleTimeStampTZ values are
not equal

operator < Determines if the first of two OracleTimeStampTZ
values is less than the second

operator <= Determines if the first of two OracleTimeStampTZ
values is less than or equal to the second

operator - Subtracts the supplied instance value from the
supplied OracleTimeStampTZ and returns a new
OracleTimeStampTZ structure (Overloaded)

OracleTimeStampTZ Static Type Conversions

The OracleTimeStampTZ static type conversions are listed in Table 14-130.

Table 14-130 OracleTimeStampTZ Static Type Conversions

Operator Description

explicit operator OracleTimeStampTZ Converts an instance value to an
OracleTimeStampTZ structure (Overloaded)

implicit operator OracleTimeStampTZ Converts an instance value to an
OracleTimeStampTZ structure (Overloaded)

Chapter 14
OracleTimeStampTZ Structure

14-304

Table 14-130 (Cont.) OracleTimeStampTZ Static Type Conversions

Operator Description

explicit operator DateTime Converts an OracleTimeStampTZ value to a
DateTime structure

OracleTimeStampTZ Properties

The OracleTimeStampTZ properties are listed in Table 14-131.

Table 14-131 OracleTimeStampTZ Properties

Properties Description

BinData Returns an array of bytes that represents an
Oracle TIMESTAMP WITH TIME ZONE in Oracle internal
format

Day Specifies the day component of an
OracleTimeStampTZ in the current time zone

IsNull Indicates whether or not the current instance has a
null value

Hour Specifies the hour component of an
OracleTimeStampTZ in the current time zone

Millisecond Specifies the millisecond component of an
OracleTimeStampTZ in the current time zone

Minute Specifies the minute component of an
OracleTimeStampTZ in the current time zone

Month Specifies the month component of an
OracleTimeStampTZ in the current time zone

Nanosecond Specifies the nanosecond component of an
OracleTimeStampTZ in the current time zone

Second Specifies the second component of an
OracleTimeStampTZ in the current time zone

TimeZone Returns the time zone of the OracleTimeStampTZ
instance

Value Returns the date and time that is stored in the
OracleTimeStampTZ structure in the current time
zone

Year Specifies the year component of an
OracleTimeStampTZ

OracleTimeStampTZ Methods

The OracleTimeStampTZ methods are listed in Table 14-132.

Chapter 14
OracleTimeStampTZ Structure

14-305

Table 14-132 OracleTimeStampTZ Methods

Methods Description

AddDays Adds the supplied number of days to the current
instance

AddHours Adds the supplied number of hours to the current
instance

AddMilliseconds Adds the supplied number of milliseconds to the
current instance

AddMinutes Adds the supplied number of minutes to the current
instance

AddMonths Adds the supplied number of months to the current
instance

AddNanoseconds Adds the supplied number of nanoseconds to the
current instance

AddSeconds Adds the supplied number of seconds to the
current instance

AddYears Adds the supplied number of years to the current
instance

CompareTo Compares the current OracleTimeStampTZ instance
to an object, and returns an integer that represents
their relative values

Equals Determines whether or not an object has the same
date and time as the current OracleTimeStampTZ
instance

GetDaysBetween Subtracts an OracleTimeStampTZ from the current
instance and returns an OracleIntervalDS that
represents the time interval

GetHashCode Returns a hash code for the OracleTimeStampTZ
instance

GetTimeZoneOffset Gets the time zone information in hours and
minutes of the current OracleTimeStampTZ

GetYearsBetween Subtracts an OracleTimeStampTZ from the current
instance and returns an OracleIntervalYM that
represents the time interval

GetType Inherited from System.Object

ToLocalTime Converts the current OracleTimeStampTZ instance
to local time

ToOracleDate Converts the current OracleTimeStampTZ structure
to an OracleDate structure

ToOracleTimeStampLTZ Converts the current OracleTimeStampTZ structure
to an OracleTimeStampLTZ structure

ToOracleTimeStamp Converts the current OracleTimeStampTZ structure
to an OracleTimeStamp structure

ToString Converts the current OracleTimeStampTZ structure
to a string

Chapter 14
OracleTimeStampTZ Structure

14-306

Table 14-132 (Cont.) OracleTimeStampTZ Methods

Methods Description

ToUniversalTime Converts the current datetime to Coordinated
Universal Time (UTC)

14.10.2 OracleTimeStampTZ Constructors
The OracleTimeStampTZ constructors create new instances of the OracleTimeStampTZ
structure.

Overload List:

• OracleTimeStampTZ(DateTime)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using the supplied DateTime value.

• OracleTimeStampTZ(DateTime, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using the supplied DateTime value and the supplied
time zone data.

• OracleTimeStampTZ(string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using the supplied string.

• OracleTimeStampTZ(int, int, int)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, and day.

• OracleTimeStampTZ(int, int, int, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, and time zone data.

• OracleTimeStampTZ(int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, hour, minute, and second.

• OracleTimeStampTZ(int, int, int, int, int, int, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, hour, minute, second, and
time zone data.

• OracleTimeStampTZ(int, int, int, int, int, int, double)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, hour, minute, second, and
millisecond.

• OracleTimeStampTZ(int, int, int, int, int, int, double, string)

Chapter 14
OracleTimeStampTZ Structure

14-307

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, hour, minute, second,
millisecond, and time zone data.

• OracleTimeStampTZ(int, int, int, int, int, int, int)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, hour, minute, second, and
nanosecond.

• OracleTimeStampTZ(int, int, int, int, int, int, int, string)

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value for date and time using year, month, day, hour, minute, second,
nanosecond, and time zone data.

• OracleTimeStampTZ(byte [])

This constructor creates a new instance of the OracleTimeStampTZ structure and
sets its value to the provided byte array, that represents the internal Oracle
TIMESTAMP WITH TIME ZONE format.

14.10.2.1 OracleTimeStampTZ(DateTime)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using the supplied DateTime value.

Declaration

// C#
public OracleTimeStampTZ (DateTime dt);

Parameters

• dt

The supplied DateTime value.

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

Exceptions

ArgumentException - The dt parameter cannot be used to construct a valid
OracleTimeStampTZ.

14.10.2.2 OracleTimeStampTZ(DateTime, string)
This constructor creates a new instance of the OracleTimeStampTZ structure with the
supplied DateTime value and the time zone data.

Declaration

// C#
public OracleTimeStampTZ (DateTime value1, string timeZone);

Chapter 14
OracleTimeStampTZ Structure

14-308

Parameters

• value1

The supplied DateTime value.

• timeZone

The time zone data provided.

Exceptions

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ.

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Note:

PST is a time zone region name as well as a time zone abbreviation; therefore
it is accepted by OracleTimeStampTZ.

14.10.2.3 OracleTimeStampTZ(string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using the supplied string.

Declaration

// C#
public OracleTimeStampTZ (string tsStr);

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP WITH TIME ZONE.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle TIMESTAMP
WITH TIME ZONE or the tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampTZFormat property of the thread.

ArgumentNullException - The tsStr value is null.

Chapter 14
OracleTimeStampTZ Structure

14-309

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleTimeStampTZSample
{
 static void Main()
 {
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampTZ from a string using the format specified.
 OracleTimeStampTZ tstz = new OracleTimeStampTZ("11-NOV-1999" +
 "11:02:33.444 AM US/Pacific");

 // Set the nls_timestamp_tz_format for the ToString() method
 info.TimeStampTZFormat = "YYYY-MON-DD HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM US/Pacific"
 Console.WriteLine(tstz.ToString());
 }
}

14.10.2.4 OracleTimeStampTZ(int, int, int)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, and day.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

Chapter 14
OracleTimeStampTZ Structure

14-310

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range for the month).

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

14.10.2.5 OracleTimeStampTZ(int, int, int, string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, and time zone data.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day,
 string timeZone);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• timeZone

The time zone data provided.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range for the month or the
time zone is invalid).

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Chapter 14
OracleTimeStampTZ Structure

14-311

Note:

PST is a time zone region name as well as a time zone abbreviation; therefore
it is accepted by OracleTimeStampTZ.

14.10.2.6 OracleTimeStampTZ(int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, and second.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range for the month).

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

Chapter 14
OracleTimeStampTZ Structure

14-312

14.10.2.7 OracleTimeStampTZ(int, int, int, int, int, int, string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and time zone
data.

Declaration

// C#
public OracleTimeStampTZ (int year, int month, int day, int hour,
 int minute, int second, string timeZone);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• timeZone

The time zone data provided.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range of the month or the
time zone is invalid).

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Chapter 14
OracleTimeStampTZ Structure

14-313

Note:

PST is a time zone region name as well as a time zone abbreviation; therefore
it is accepted by OracleTimeStampTZ.

14.10.2.8 OracleTimeStampTZ(int, int, int, int, int, int, double)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and millisecond.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second, double millisecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• millisecond

The millisecond provided. Range of millisecond is (0 to 999.999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range for the month).

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

Chapter 14
OracleTimeStampTZ Structure

14-314

14.10.2.9 OracleTimeStampTZ(int, int, int, int, int, int, double, string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, millisecond, and
time zone data.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second, double millisecond, string timeZone);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• millisecond

The millisecond provided. Range of millisecond is (0 to 999.999999).

• timeZone

The time zone data provided.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range for the month or the
time zone is invalid).

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Chapter 14
OracleTimeStampTZ Structure

14-315

Note:

PST is a time zone region name as well as a time zone abbreviation; therefore
it is accepted by OracleTimeStampTZ.

14.10.2.10 OracleTimeStampTZ(int, int, int, int, int, int, int)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, and
nanosecond.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second, int nanosecond);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• nanosecond

The nanosecond provided. Range of nanosecond is (0 to 999999999).

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range for the month).

Remarks

The time zone is set to the OracleGlobalization.TimeZone of the thread.

Chapter 14
OracleTimeStampTZ Structure

14-316

14.10.2.11 OracleTimeStampTZ(int, int, int, int, int, int, int, string)
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value for date and time using year, month, day, hour, minute, second, nanosecond,
and time zone data.

Declaration

// C#
public OracleTimeStampTZ(int year, int month, int day, int hour,
 int minute, int second, int nanosecond, string timeZone);

Parameters

• year

The year provided. Range of year is (-4712 to 9999).

• month

The month provided. Range of month is (1 to 12).

• day

The day provided. Range of day is (1 to 31).

• hour

The hour provided. Range of hour is (0 to 23).

• minute

The minute provided. Range of minute is (0 to 59).

• second

The second provided. Range of second is (0 to 59).

• nanosecond

The nanosecond provided. Range of nanosecond is (0 to 999999999).

• timeZone

The time zone data provided.

Exceptions

ArgumentOutOfRangeException - The argument value for one or more of the parameters
is out of the specified range.

ArgumentException - The argument values of the parameters cannot be used to
construct a valid OracleTimeStampTZ (that is, the day is out of range for the month or the
time zone is invalid).

Remarks

timeZone can be either an hour offset, for example, 7:00, or a valid time zone region
name that is provided in V$TIMEZONE_NAMES, such as US/Pacific. Time zone
abbreviations are not supported.

If time zone is null, the OracleGlobalization.TimeZone of the thread is used.

Chapter 14
OracleTimeStampTZ Structure

14-317

Note:

PST is a time zone region name as well as a time zone abbreviation; therefore
it is accepted by OracleTimeStampTZ.

14.10.2.12 OracleTimeStampTZ(byte [])
This constructor creates a new instance of the OracleTimeStampTZ structure and sets its
value to the provided byte array, that represents the internal Oracle TIMESTAMP WITH
TIME ZONE format.

Declaration

// C#
public OracleTimeStampLTZ (byte[] bytes);

Parameters

• bytes

The provided byte array that represents an Oracle TIMESTAMP WITH TIME ZONE in
Oracle internal format.

Exceptions

ArgumentException - bytes is not in internal Oracle TIMESTAMP WITH TIME ZONE format or
bytes is not a valid Oracle TIMESTAMP WITH TIME ZONE.

ArgumentNullException - bytes is null.

14.10.3 OracleTimeStampTZ Static Fields
The OracleTimeStampTZ static fields are listed in Table 14-133.

Table 14-133 OracleTimeStampTZ Static Fields

Field Description

MaxValue Represents the maximum valid date for an OracleTimeStampTZ structure
in UTC, which is December 31, 999923:59:59.999999999

MinValue Represents the minimum valid date for an OracleTimeStampTZ structure in
UTC, which is January 1, -4712 0:0:0

Null Represents a null value that can be assigned to an instance of the
OracleTimeStampTZ structure

14.10.3.1 MaxValue
This static field represents the maximum valid datetime time for an OracleTimeStampTZ
structure in UTC, which is December 31, 999923:59:59.999999999.

Chapter 14
OracleTimeStampTZ Structure

14-318

Declaration

// C#
public static readonly OracleTimeStampTZ MaxValue;

14.10.3.2 MinValue
This static field represents the minimum valid datetime for an OracleTimeStampTZ
structure in UTC, which is January 1, -4712 0:0:0.

Declaration

// C#
public static readonly OracleTimeStampTZ MinValue;

14.10.3.3 Null
This static field represents a null value that can be assigned to an instance of the
OracleTimeStampTZ structure.

Declaration

// C#
public static readonly OracleTimeStampTZ Null;

14.10.4 OracleTimeStampTZ Static Methods
The OracleTimeStampTZ static methods are listed in Table 14-134.

Table 14-134 OracleTimeStampTZ Static Methods

Methods Description

Equals Determines if two OracleTimeStampTZ values are equal
(Overloaded)

GetSysDate Gets an OracleTimeStampTZ structure that represents the current
date and time

GreaterThan Determines if the first of two OracleTimeStampTZ values is
greater than the second

GreaterThanOrEqual Determines if the first of two OracleTimeStampTZ values is
greater than or equal to the second

LessThan Determines if the first of two OracleTimeStampTZ values is less
than the second

LessThanOrEqual Determines if the first of two OracleTimeStampTZ values is less
than or equal to the second

NotEquals Determines if two OracleTimeStampTZ values are not equal

Parse Gets an OracleTimeStampTZ structure and sets its value for date
and time using the supplied string

Chapter 14
OracleTimeStampTZ Structure

14-319

Table 14-134 (Cont.) OracleTimeStampTZ Static Methods

Methods Description

SetPrecision Returns a new instance of an OracleTimeStampTZ with the
specified fractional second precision

14.10.4.1 Equals
This static method determines if two OracleTimeStampTZ values are equal.

Declaration

// C#
public static bool Equals(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if two OracleTimeStampTZ values are equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.4.2 GetSysDate
This static method gets an OracleTimeStampTZ structure that represents the current date
and time.

Declaration

// C#
public static OracleTimeStampTZ GetSysDate();

Return Value

An OracleTimeStampTZ structure that represents the current date and time.

Chapter 14
OracleTimeStampTZ Structure

14-320

14.10.4.3 GreaterThan
This static method determines if the first of two OracleTimeStampTZ values is greater
than the second.

Declaration

// C#
public static bool GreaterThan(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first of two OracleTimeStampTZ values is greater than the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.4.4 GreaterThanOrEqual
This static method determines if the first of two OracleTimeStampTZ values is greater
than or equal to the second.

Declaration

// C#
public static bool GreaterThanOrEqual(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first of two OracleTimeStampTZ values is greater than or equal to the
second; otherwise, returns false.

Chapter 14
OracleTimeStampTZ Structure

14-321

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.4.5 LessThan
This static method determines if the first of two OracleTimeStampTZ values is less than
the second.

Declaration

// C#
public static bool LessThan(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first of two OracleTimeStampTZ values is less than the second.
Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.4.6 LessThanOrEqual
This static method determines if the first of two OracleTimeStampTZ values is less than
or equal to the second.

Declaration

// C#
public static bool LessThanOrEqual(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

Chapter 14
OracleTimeStampTZ Structure

14-322

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first of two OracleTimeStampTZ values is less than or equal to the
second. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.4.7 NotEquals
This static method determines if two OracleTimeStampTZ values are not equal.

Declaration

// C#
public static bool NotEquals(OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if two OracleTimeStampTZ values are not equal. Returns false otherwise.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.4.8 Parse
This static method returns an OracleTimeStampTZ structure and sets its value for date
and time using the supplied string.

Chapter 14
OracleTimeStampTZ Structure

14-323

Declaration

// C#
public static OracleTimeStampTZ Parse(string tsStr);

Parameters

• tsStr

A string that represents an Oracle TIMESTAMP WITH TIME ZONE.

Return Value

An OracleTimeStampTZ structure.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle TIMESTAMP
WITH TIME ZONE or the tsStr is not in the timestamp format specified by the
OracleGlobalization.TimeStampTZFormat property of the thread, which represents the
Oracle NLS_TIMESTAMP_TZ_FORMAT parameter.

ArgumentNullException - The tsStr value is null.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ParseSample
{
 static void Main()
 {
 // Set the nls_timestamp_tz_format for the Parse() method
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampTZ from a string using the format specified.
 OracleTimeStampTZ tstz = OracleTimeStampTZ.Parse("11-NOV-1999 " +
 "11:02:33.444 AM US/Pacific");

 // Set the nls_timestamp_tz_format for the ToString() method
 info.TimeStampTZFormat = "YYYY-MON-DD HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // Prints "1999-NOV-11 11:02:33.444000000 AM US/Pacific"
 Console.WriteLine(tstz.ToString());
 }
}

Chapter 14
OracleTimeStampTZ Structure

14-324

14.10.4.9 SetPrecision
This static method returns a new instance of an OracleTimeStampTZ with the specified
fractional second precision.

Declaration

// C#
public static OracleTimeStampTZ SetPrecision(OracleTimeStampTZ value1,
 int fracSecPrecision);

Parameters

• value1

The provided OracleTimeStampTZ object.

• fracSecPrecision

The fractional second precision provided. Range of fractional second precision is
(0 to 9).

Return Value

An OracleTimeStampTZ structure with the specified fractional second precision

Exceptions

ArgumentOutOfRangeException - fracSecPrecision is out of the specified range.

Remarks

The value specified in the supplied fracSecPrecision is used to perform a rounding off
operation on the supplied OracleTimeStampTZ value. Depending on this value, 0 or more
trailing zeros are displayed in the string returned by ToString().

Example

The OracleTimeStampTZ with a value of "December 31, 9999 23:59:59.99 US/Pacific"
results in the string "December 31, 9999 23:59:59.99000 US/Pacific" when SetPrecision()
is called with the fractional second precision set to 5.

14.10.5 OracleTimeStampTZ Static Operators
The OracleTimeStampTZ static operators are listed in Table 14-135.

Table 14-135 OracleTimeStampTZ Static Operators

Operator Description

operator + Adds the supplied instance value to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ
structure (Overloaded)

operator == Determines if two OracleTimeStampTZ values are equal

operator > Determines if the first of two OracleTimeStampTZ values is
greater than the second

Chapter 14
OracleTimeStampTZ Structure

14-325

Table 14-135 (Cont.) OracleTimeStampTZ Static Operators

Operator Description

operator >= Determines if the first of two OracleTimeStampTZ values is
greater than or equal to the second

operator != Determines if two OracleTimeStampTZ values are not equal

operator < Determines if the first of two OracleTimeStampTZ values is less
than the second

operator <= Determines if the first of two OracleTimeStampTZ values is less
than or equal to the second

operator - Subtracts the supplied instance value from the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ
structure (Overloaded)

14.10.5.1 operator +
operator+ adds the supplied structure to the supplied OracleTimeStampTZ and returns a
new OracleTimeStampTZ structure.

Overload List:

• operator +(OracleTimeStampTZ, OracleIntervalDS)

This static operator adds the supplied OracleIntervalDS to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ structure.

• operator +(OracleTimeStampTZ, OracleIntervalYM)

This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ structure.

• operator +(OracleTimeStampTZ, TimeSpan)

This static operator adds the supplied TimeSpan to the supplied OracleTimeStampTZ
and returns a new OracleTimeStampTZ structure.

14.10.5.2 operator +(OracleTimeStampTZ, OracleIntervalDS)
This static operator adds the supplied OracleIntervalDS to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampTZ value1,
 OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

Chapter 14
OracleTimeStampTZ Structure

14-326

An OracleIntervalDS.

Return Value

An OracleTimeStampTZ.

Remarks

If either parameter has a null value, the returned OracleTimeStampTZ has a null value.

14.10.5.3 operator +(OracleTimeStampTZ, OracleIntervalYM)
This static operator adds the supplied OracleIntervalYM to the supplied
OracleTimeStampTZ and returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampTZ value1,
 OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStampTZ.

Remarks

If either parameter has a null value, the returned OracleTimeStampTZ has a null value.

14.10.5.4 operator +(OracleTimeStampTZ, TimeSpan)
This static operator adds the supplied TimeSpan to the supplied OracleTimeStampTZ and
returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator +(OracleTimeStampTZ value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

A TimeSpan.

Chapter 14
OracleTimeStampTZ Structure

14-327

Return Value

An OracleTimeStampTZ.

Remarks

If the OracleTimeStampTZ instance has a null value, the returned OracleTimeStampTZ has
a null value.

14.10.5.5 operator ==
This static operator determines if two OracleTimeStampTZ values are equal.

Declaration

// C#
public static bool operator == (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if they are equal; otherwise returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.5.6 operator >
This static operator determines if the first of two OracleTimeStampTZ values is greater
than the second.

Declaration

// C#
public static bool operator > (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

Chapter 14
OracleTimeStampTZ Structure

14-328

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first OracleTimeStampTZ value is greater than the second; otherwise,
returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.5.7 operator >=
This static operator determines if the first of two OracleTimeStampTZ values is greater
than or equal to the second.

Declaration

// C#
public static bool operator >= (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first OracleTimeStampTZ is greater than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.5.8 operator !=
This static operator determines if two OracleTimeStampTZ values are not equal.

Chapter 14
OracleTimeStampTZ Structure

14-329

Declaration

// C#
public static bool operator != (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if two OracleTimeStampTZ values are not equal; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.5.9 operator <
This static operator determines if the first of two OracleTimeStampTZ values is less than
the second.

Declaration

// C#
public static bool operator < (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first OracleTimeStampTZ is less than the second; otherwise returns
false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

Chapter 14
OracleTimeStampTZ Structure

14-330

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.5.10 operator <=
This static operator determines if the first of two OracleTimeStampTZ values is less than
or equal to the second.

Declaration

// C#
public static bool operator <= (OracleTimeStampTZ value1,
 OracleTimeStampTZ value2);

Parameters

• value1

The first OracleTimeStampTZ.

• value2

The second OracleTimeStampTZ.

Return Value

Returns true if the first OracleTimeStampTZ is less than or equal to the second;
otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.5.11 operator -
operator- subtracts the supplied value, from the supplied OracleTimeStampTZ value, and
returns a new OracleTimeStampTZ structure.

Overload List:

• operator - (OracleTimeStampTZ, OracleIntervalDS)

This static operator subtracts the supplied OracleIntervalDS value, from the
supplied OracleTimeStampTZ value, and return a new OracleTimeStampTZ structure.

• operator - (OracleTimeStampTZ, OracleIntervalYM)

This static operator subtracts the supplied OracleIntervalYM value, from the
supplied OracleTimeStampTZ value, and returns a new OracleTimeStampTZ structure.

• operator - (OracleTimeStampTZ value1, TimeSpan value2)

This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStampTZ value, and returns a new OracleTimeStampTZ structure.

Chapter 14
OracleTimeStampTZ Structure

14-331

14.10.5.12 operator - (OracleTimeStampTZ, OracleIntervalDS)
This static operator subtracts the supplied OracleIntervalDS value, from the supplied
OracleTimeStampTZ value, and return a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampTZ value1,
 OracleIntervalDS value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

An OracleIntervalDS.

Return Value

An OracleTimeStampTZ structure.

Remarks

If either parameter has a null value, the returned OracleTimeStampTZ has a null value.

14.10.5.13 operator - (OracleTimeStampTZ, OracleIntervalYM)
This static operator subtracts the supplied OracleIntervalYM value, from the supplied
OracleTimeStampTZ value, and returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampTZ value1,
 OracleIntervalYM value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

An OracleIntervalYM.

Return Value

An OracleTimeStampTZ structure.

Remarks

If either parameter has a null value, the returned OracleTimeStampTZ has a null value.

Chapter 14
OracleTimeStampTZ Structure

14-332

14.10.5.14 operator - (OracleTimeStampTZ value1, TimeSpan value2)
This static operator subtracts the supplied TimeSpan value, from the supplied
OracleTimeStampTZ value, and returns a new OracleTimeStampTZ structure.

Declaration

// C#
public static operator - (OracleTimeStampTZ value1, TimeSpan value2);

Parameters

• value1

An OracleTimeStampTZ.

• value2

A TimeSpan.

Return Value

An OracleTimeStampTZ structure.

Remarks

If the OracleTimeStampTZ instance has a null value, the returned OracleTimeStampTZ
structure has a null value.

14.10.6 OracleTimeStampTZ Static Type Conversions
The OracleTimeStampTZ static type conversions are listed in Table 14-136.

Table 14-136 OracleTimeStampTZ Static Type Conversions

Operator Description

explicit operator OracleTimeStampTZ Converts an instance value to an
OracleTimeStampTZ structure (Overloaded)

implicit operator OracleTimeStampTZ Converts an instance value to an
OracleTimeStampTZ structure (Overloaded)

explicit operator DateTime Converts an OracleTimeStampTZ value to a
DateTime structure in the current time zone

14.10.6.1 explicit operator OracleTimeStampTZ
explicit operator OracleTimeStampTZ converts an instance value to an
OracleTimeStampTZ structure.

Overload List:

• explicit operator OracleTimeStampTZ(OracleTimeStamp)

This static type conversion operator converts an OracleTimeStamp value to an
OracleTimeStampTZ structure.

Chapter 14
OracleTimeStampTZ Structure

14-333

• explicit operator OracleTimeStampTZ(OracleTimeStampLTZ)

This static type conversion operator converts an OracleTimeStampLTZ value to an
OracleTimeStampTZ structure.

• explicit operator OracleTimeStampTZ(string)

This static type conversion operator converts the supplied string value to an
OracleTimeStampTZ structure.

14.10.6.2 explicit operator OracleTimeStampTZ(OracleTimeStamp)
This static type conversion operator converts an OracleTimeStamp value to an
OracleTimeStampTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampTZ(OracleTimeStamp value1);

Parameters

• value1

An OracleTimeStamp.

Return Value

The returned OracleTimeStampTZ contains the date and time from the OracleTimeStamp
and the time zone from the OracleGlobalization.TimeZone of the thread.

Remarks

The OracleGlobalization.TimeZone of the thread is used to convert from an
OracleTimeStamp structure to an OracleTimeStampTZ structure.

If the OracleTimeStamp structure has a null value, the returned OracleTimeStampTZ
structure also has a null value.

14.10.6.3 explicit operator OracleTimeStampTZ(OracleTimeStampLTZ)
This static type conversion operator converts an OracleTimeStampLTZ value to an
OracleTimeStampTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampTZ(OracleTimeStampLTZ value1);

Parameters

• value1

An OracleTimeStampLTZ.

Chapter 14
OracleTimeStampTZ Structure

14-334

Return Value

The returned OracleTimeStampTZ contains the date and time from the
OracleTimeStampLTZ and the time zone from the OracleGlobalization.TimeZone of the
thread.

Remarks

If the OracleTimeStampLTZ structure has a null value, the returned OracleTimeStampTZ
structure also has a null value.

14.10.6.4 explicit operator OracleTimeStampTZ(string)
This static type conversion operator converts the supplied string value to an
OracleTimeStampTZ structure.

Declaration

// C#
public static explicit operator OracleTimeStampTZ(string tsStr);

Parameters

• tsStr

A string representation of an Oracle TIMESTAMP WITH TIME ZONE.

Return Value

An OracleTimeStampTZ value.

Exceptions

ArgumentException - The tsStr is an invalid string representation of an Oracle TIMESTAMP
WITH TIME ZONE. or the tsStr is not in the timestamp format specified by the thread's
OracleGlobalization.TimeStampTZFormat property, which represents the Oracle
NLS_TIMESTAMP_TZ_FORMAT parameter.

Remarks

The names and abbreviations used for months and days are in the language specified
by the DateLanguage and Calendar properties of the thread's OracleGlobalization object.
If any of the thread's globalization properties are set to null or an empty string, the
client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class OracleTimeStampTZSample
{
 static void Main()
 {
 // Set the nls_timestamp_tz_format for the explicit operator

Chapter 14
OracleTimeStampTZ Structure

14-335

 // OracleTimeStampTZ(string)
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // construct OracleTimeStampTZ from a string using the format specified.
 OracleTimeStampTZ tstz = new OracleTimeStampTZ("11-NOV-1999" +
 "11:02:33.444 AM US/Pacific");

 // Set the nls_timestamp_tz_format for the ToString() method
 info.TimeStampTZFormat = "YYYY-MON-DD HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);
 Console.WriteLine(tstz.ToString());
 }
}

14.10.6.5 implicit operator OracleTimeStampTZ
implicit operator OracleTimeStampTZ converts a DateTime structure to an
OracleTimeStampTZ structure.

Overload List:

• implicit operator OracleTimeStampTZ(OracleDate)

This static type conversion operator converts an OracleDate value to an
OracleTimeStampTZ structure.

• implicit operator OracleTimeStampTZ(DateTime)

This static type conversion operator converts a DateTime structure to an
OracleTimeStampTZ structure.

14.10.6.6 implicit operator OracleTimeStampTZ(OracleDate)
This static type conversion operator converts an OracleDate value to an
OracleTimeStampTZ structure.

Declaration

// C#
public static implicit operator OracleTimeStampTZ(OracleDate value1);

Parameters

• value1

An OracleDate.

Return Value

The returned OracleTimeStampTZ contains the date and time from the OracleDate and the
time zone from the OracleGlobalization.TimeZone of the thread.

Chapter 14
OracleTimeStampTZ Structure

14-336

Remarks

The OracleGlobalization.TimeZone of the thread is used to convert from an OracleDate
to an OracleTimeStampTZ structure. If the OracleDate structure has a null value, the
returned OracleTimeStampTZ structure also has a null value.

14.10.6.7 implicit operator OracleTimeStampTZ(DateTime)
This static type conversion operator converts a DateTime structure to an
OracleTimeStampTZ structure.

Declaration

// C#
public static implicit operator OracleTimeStampTZ (DateTime value1);

Parameters

• value1

A DateTime structure.

Return Value

The returned OracleTimeStampTZ contains the date and time from the DateTime and the
time zone from the OracleGlobalization.TimeZone of the thread.

Remarks

The OracleGlobalization.TimeZone of the thread is used to convert from a DateTime to
an Oracle TimeStampTZ structure.

14.10.6.8 explicit operator DateTime
This static type conversion operator converts an OracleTimeStampTZ value to a DateTime
structure and truncates the time zone information.

Declaration

// C#
public static explicit operator DateTime(OracleTimeStampTZ value1);

Parameters

• value1

An OracleTimeStampTZ.

Return Value

A DateTime containing the date and time in the current instance, but with the time zone
information in the current instance truncated.

Exceptions

OracleNullValueException - The OracleTimeStampTZ structure has a null value.

Chapter 14
OracleTimeStampTZ Structure

14-337

Remarks

The precision of the OracleTimeStampTZ value can be lost during the conversion, and
the time zone information in the current instance is truncated

14.10.7 OracleTimeStampTZ Properties
The OracleTimeStampTZ properties are listed in Table 14-137.

Table 14-137 OracleTimeStampTZ Properties

Properties Description

BinData Returns an array of bytes that represents an Oracle TIMESTAMP WITH
TIME ZONE in Oracle internal format

Day Specifies the day component of an OracleTimeStampTZ in the current
time zone

IsNull Indicates whether or not the current instance has a null value

Hour Specifies the hour component of an OracleTimeStampTZ in the current
time zone

Millisecond Specifies the millisecond component of an OracleTimeStampTZ in the
current time zone

Minute Specifies the minute component of an OracleTimeStampTZ in the
current time zone

Month Specifies the month component of an OracleTimeStampTZ in the current
time zone

Nanosecond Specifies the nanosecond component of an OracleTimeStampTZ in the
current time zone

Second Specifies the second component of an OracleTimeStampTZ in the
current time zone

TimeZone Returns the time zone of the OracleTimeStampTZ instance

Value Returns the date and time that is stored in the OracleTimeStampTZ
structure in the current time zone

Year Specifies the year component of an OracleTimeStampTZ

14.10.7.1 BinData
This property returns an array of bytes that represents an Oracle TIMESTAMP WITH TIME
ZONE in Oracle internal format.

Declaration

// C#
public byte[] BinData {get;}

Property Value

The provided byte array that represents an Oracle TIMESTAMP WITH TIME ZONE in Oracle
internal format.

Chapter 14
OracleTimeStampTZ Structure

14-338

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.7.2 Day
This property specifies the day component of an OracleTimeStampTZ in the current time
zone.

Declaration

// C#
public int Day{get;}

Property Value

A number that represents the day. Range of Day is (1 to 31).

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.7.3 IsNull
This property indicates whether or not the current instance has a null value.

Declaration

// C#
public bool IsNull{get;}

Property Value

Returns true if the current instance has a null value. Otherwise, returns false.

14.10.7.4 Hour
This property specifies the hour component of an OracleTimeStampTZ in the current time
zone.

Declaration

// C#
public int Hour{get;}

Property Value

A number that represents the hour. Range of Hour is (0 to 23).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 14
OracleTimeStampTZ Structure

14-339

14.10.7.5 Millisecond
This property gets the millisecond component of an OracleTimeStampTZ in the current
time zone.

Declaration

// C#
public double Millisecond{get;}

Property Value

A number that represents a millisecond. Range of Millisecond is (0 to 999.999999)

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.7.6 Minute
This property gets the minute component of an OracleTimeStampTZ in the current time
zone.

Declaration

// C#
public int Minute{get;}

Property Value

A number that represent a minute. Range of Minute is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.7.7 Month
This property gets the month component of an OracleTimeStampTZ in the current time
zone

Declaration

// C#
public int Month{get;}

Property Value

A number that represents a month. Range of Month is (1 to 12).

Exceptions

OracleNullValueException - The current instance has a null value.

Chapter 14
OracleTimeStampTZ Structure

14-340

14.10.7.8 Nanosecond
This property gets the nanosecond component of an OracleTimeStampTZ in the current
time zone.

Declaration

// C#
public int Nanosecond{get;}

Property Value

A number that represents a nanosecond. Range of Nanosecond is (0 to 999999999).

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.7.9 Second
This property gets the second component of an OracleTimeStampTZ in the current time
zone.

Declaration

// C#
public int Second{get;}

Property Value

A number that represents a second. Range of Second is (0 to 59).

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.7.10 TimeZone
This property returns the time zone of the OracleTimeStampTZ instance.

Declaration

// C#
public string TimeZone{get;}

Property Value

A string that represents the time zone.

Remarks

If no time zone is specified in the constructor, this property is set to the thread's
OracleGlobalization.TimeZone by default

Chapter 14
OracleTimeStampTZ Structure

14-341

14.10.7.11 Value
This property returns the date and time that is stored in the OracleTimeStampTZ structure
in the current time zone.

Declaration

// C#
public DateTime Value{get;}

Property Value

A DateTime in the current time zone.

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.7.12 Year
This property sets the year component of an OracleTimeStampTZ in the current time
zone.

Declaration

// C#
public int Year{get;}

Property Value

A number that represents a year. The range of Year is (-4712 to 9999).

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.8 OracleTimeStampTZ Methods
The OracleTimeStampTZ methods are listed in Table 14-138.

Table 14-138 OracleTimeStampTZ Methods

Methods Description

AddDays Adds the supplied number of days to the current instance

AddHours Adds the supplied number of hours to the current instance

AddMilliseconds Adds the supplied number of milliseconds to the current
instance

AddMinutes Adds the supplied number of minutes to the current instance

AddMonths Adds the supplied number of months to the current instance

AddNanoseconds Adds the supplied number of nanoseconds to the current
instance

Chapter 14
OracleTimeStampTZ Structure

14-342

Table 14-138 (Cont.) OracleTimeStampTZ Methods

Methods Description

AddSeconds Adds the supplied number of seconds to the current instance

AddYears Adds the supplied number of years to the current instance

CompareTo Compares the current OracleTimeStampTZ instance to an
object, and returns an integer that represents their relative
values

Equals Determines whether or not an object has the same date and
time as the current OracleTimeStampTZ instance (Overloaded)

GetDaysBetween Subtracts an OracleTimeStampTZ from the current instance and
returns an OracleIntervalDS that represents the time interval

GetHashCode Returns a hash code for the OracleTimeStampTZ instance

GetTimeZoneOffset Gets the time zone information in hours and minutes of the
current OracleTimeStampTZ

GetYearsBetween Subtracts an OracleTimeStampTZ from the current instance and
returns an OracleIntervalYM that represents the time interval

GetType Inherited from System.Object

ToLocalTime Converts the current OracleTimeStampTZ instance to local time

ToOracleDate Converts the current OracleTimeStampTZ structure to an
OracleDate structure

ToOracleTimeStampLTZ Converts the current OracleTimeStampTZ structure to an
OracleTimeStampLTZ structure

ToOracleTimeStamp Converts the current OracleTimeStampTZ structure to an
OracleTimeStamp structure

ToString Converts the current OracleTimeStampTZ structure to a string

ToUniversalTime Converts the current datetime to Coordinated Universal Time
(UTC)

14.10.8.1 AddDays
This method adds the supplied number of days to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddDays(double days);

Parameters

• days

The supplied number of days. Range is (-1,000,000,000 < days < 1,000,000,000)

Return Value

An OracleTimeStampTZ.

Chapter 14
OracleTimeStampTZ Structure

14-343

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.10.8.2 AddHours
This method adds the supplied number of hours to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddHours(double hours);

Parameters

• hours

The supplied number of hours. Range is (-24,000,000,000 < hours <
24,000,000,000).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.10.8.3 AddMilliseconds
This method adds the supplied number of milliseconds to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddMilliseconds(double milliseconds);

Parameters

• milliseconds

The supplied number of milliseconds. Range is (-8.64 * 1016< milliseconds < 8.64
* 1016).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

Chapter 14
OracleTimeStampTZ Structure

14-344

14.10.8.4 AddMinutes
This method adds the supplied number of minutes to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddMinutes(double minutes);

Parameters

• minutes

The supplied number of minutes. Range is (-1,440,000,000,000 < minutes <
1,440,000,000,000).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.10.8.5 AddMonths
This method adds the supplied number of months to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddMonths(long months);

Parameters

• months

The supplied number of months. Range is (-12,000,000,000 < months <
12,000,000,000).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.10.8.6 AddNanoseconds
This method adds the supplied number of nanoseconds to the current instance.

Chapter 14
OracleTimeStampTZ Structure

14-345

Declaration

// C#
public OracleTimeStampTZ AddNanoseconds(long nanoseconds);

Parameters

• nanoseconds

The supplied number of nanoseconds.

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.8.7 AddSeconds
This method adds the supplied number of seconds to the current instance.

Declaration

// C#
public OracleTimeStampTZ AddSeconds(double seconds);

Parameters

• seconds

The supplied number of seconds. Range is (-8.64 * 1013< seconds < 8.64 * 1013).

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.10.8.8 AddYears
This method adds the supplied number of years to the current instance

Declaration

// C#
public OracleTimeStampTZ AddYears(int years);

Parameters

• years

The supplied number of years. Range is (-999,999,999 <= years < = 999,999,999).

Chapter 14
OracleTimeStampTZ Structure

14-346

Return Value

An OracleTimeStampTZ.

Exceptions

OracleNullValueException - The current instance has a null value.

ArgumentOutofRangeException - The argument value is out of the specified range.

14.10.8.9 CompareTo
This method compares the current OracleTimeStampTZ instance to an object, and
returns an integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStampTZ instance.

Return Value

The method returns a number that is:

Less than zero: if the current OracleTimeStampTZ instance value is less than that of obj.

Zero: if the current OracleTimeStampTZ instance and obj values are equal.

Greater than zero: if the current OracleTimeStampTZ instance value is greater than that
of obj.

Implements

IComparable

Exceptions

ArgumentException - The obj is not of type OracleTimeStampTZ.

Remarks

The following rules apply to the behavior of this method.

• The comparison must be between OracleTimeStampTZs. For example, comparing an
OracleTimeStampTZ instance with an OracleBinary instance is not allowed. When an
OracleTimeStampTZ is compared with a different type, an ArgumentException is
thrown.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

Chapter 14
OracleTimeStampTZ Structure

14-347

14.10.8.10 Equals
Overrides Object

This method determines whether or not an object has the same date and time as the
current OracleTimeStampTZ instance.

Declaration

// C#
public override bool Equals(object obj);

Parameters

• obj

The object being compared to the current OracleTimeStampTZ instance.

Return Value

Returns true if the obj is of type OracleTimeStampTZ and represents the same date and
time; otherwise, returns false.

Remarks

The following rules apply to the behavior of this method.

• Any OracleTimeStampTZ that has a value is greater than an OracleTimeStampTZ that
has a null value.

• Two OracleTimeStampTZs that contain a null value are equal.

14.10.8.11 GetDaysBetween
This method subtracts an OracleTimeStampTZ value from the current instance and
returns an OracleIntervalDS that represents the time interval.

Declaration

// C#
public OracleIntervalDS GetDaysBetween(OracleTimeStampTZ value1);

Parameters

• value1

The OracleTimeStampTZ value being subtracted.

Return Value

An OracleIntervalDS that represents the interval between two OracleTimeStampTZ
values.

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalDS has a null value.

Chapter 14
OracleTimeStampTZ Structure

14-348

14.10.8.12 GetHashCode
Overrides Object

This method returns a hash code for the OracleTimeStampTZ instance.

Declaration

// C#
public override int GetHashCode();

Return Value

A number that represents the hash code.

14.10.8.13 GetTimeZoneOffset
This method gets the time zone portion in hours and minutes of the current
OracleTimeStampTZ.

Declaration

// C#
public TimeSpan GetTimeZoneOffset();

Return Value

A TimeSpan.

Exceptions

OracleNullValueException - The current instance has a null value.

14.10.8.14 GetYearsBetween
This method subtracts an OracleTimeStampTZ value from the current instance and
returns an OracleIntervalYM that represents the time interval.

Declaration

// C#
public OracleIntervalYM GetYearsBetween(OracleTimeStampTZ val);

Parameters

• val

The OracleTimeStampTZ value being subtracted.

Return Value

An OracleIntervalYM that represents the interval between two OracleTimeStampTZ
values.

Chapter 14
OracleTimeStampTZ Structure

14-349

Remarks

If either the current instance or the parameter has a null value, the returned
OracleIntervalYM has a null value.

14.10.8.15 ToLocalTime
This method converts the current OracleTimeStampTZ instance to local time.

Declaration

// C#
public OracleTimeStampLTZ ToLocalTime();

Return Value

An OracleTimeStampLTZ that contains the date and time, which is normalized to the
client local time zone, in the current instance.

Remarks

If the current instance has a null value, the returned OracleTimeStampLTZ has a null
value.

14.10.8.16 ToOracleDate
This method converts the current OracleTimeStampTZ structure to an OracleDate
structure.

Declaration

// C#
public OracleDate ToOracleDate();

Return Value

The returned OracleDate contains the date and time in the current instance, but the
time zone information in the current instance is truncated

Remarks

The precision of the OracleTimeStampTZ value can be lost during the conversion, and
the time zone information in the current instance is truncated.

If the current instance has a null value, the value of the returned OracleDate structure
has a null value.

14.10.8.17 ToOracleTimeStampLTZ
This method converts the current OracleTimeStampTZ structure to an OracleTimeStampLTZ
structure.

Chapter 14
OracleTimeStampTZ Structure

14-350

Declaration

// C#
public OracleTimeStampLTZ ToOracleTimeStampLTZ();

Return Value

The returned OracleTimeStampLTZ structure contains the date and time, which is
normalized to the client local time zone, in the current instance.

Remarks

If the value of the current instance has a null value, the value of the returned
OracleTimeStampLTZ structure has a null value.

14.10.8.18 ToOracleTimeStamp
This method converts the current OracleTimeStampTZ structure to an OracleTimeStamp
structure.

Declaration

// C#
public OracleTimeStamp ToOracleTimeStamp();

Return Value

The returned OracleTimeStamp contains the date and time in the current instance, but
the time zone information is truncated.

Remarks

If the value of the current instance has a null value, the value of the returned
OracleTimeStamp structure has a null value.

14.10.8.19 ToString
Overrides Object

This method converts the current OracleTimeStampTZ structure to a string.

Declaration

// C#
public override string ToString();

Return Value

A string that represents the same date and time as the current OracleTimeStampTZ
structure.

Remarks

The returned value is a string representation of an OracleTimeStampTZ in the format
specified by the OracleGlobalization.TimeStampTZFormat property of the thread. The
names and abbreviations used for months and days are in the language specified by

Chapter 14
OracleTimeStampTZ Structure

14-351

the OracleGlobalization.DateLanguage and the OracleGlobalization.Calendar properties
of the thread. If any of the thread's globalization properties are set to null or an empty
string, the client computer's settings are used.

Example

// C#

using System;
using Oracle.DataAccess.Client;
using Oracle.DataAccess.Types;

class ToStringSample
{
 static void Main()
 {
 // Set the nls parameters for the current thread
 OracleGlobalization info = OracleGlobalization.GetClientInfo();
 info.TimeZone = "US/Eastern";
 info.TimeStampFormat = "DD-MON-YYYY HH:MI:SS.FF AM";
 info.TimeStampTZFormat = "DD-MON-YYYY HH:MI:SS.FF AM TZR";
 OracleGlobalization.SetThreadInfo(info);

 // Create an OracleTimeStampTZ in US/Pacific time zone
 OracleTimeStampTZ tstz1=new OracleTimeStampTZ("11-NOV-1999 "+
 "11:02:33.444 AM US/Pacific");

 // Note that ToOracleTimeStampTZ uses the thread's time zone region,
 // "US/Eastern"
 OracleTimeStamp ts = new OracleTimeStamp("11-NOV-1999 11:02:33.444 AM");
 OracleTimeStampTZ tstz2 = ts.ToOracleTimeStampTZ();

 // Calculate the difference between tstz1 and tstz2
 OracleIntervalDS idsDiff = tstz1.GetDaysBetween(tstz2);

 // Prints "US/Pacific"
 Console.WriteLine("tstz1.TimeZone = " + tstz1.TimeZone);

 // Prints "US/Eastern"
 Console.WriteLine("tstz2.TimeZone = " + tstz2.TimeZone);

 // Prints 3
 Console.WriteLine("idsDiff.Hours = " + idsDiff.Hours);

 // Prints 0
 Console.WriteLine("idsDiff.Minutes = " + idsDiff.Minutes);
 }
}

14.10.8.20 ToUniversalTime
This method converts the current datetime to Coordinated Universal Time (UTC).

Declaration

// C#
public OracleTimeStampTZ ToUniversalTime();

Chapter 14
OracleTimeStampTZ Structure

14-352

Return Value

An OracleTimeStampTZ structure.

Remarks

If the current instance has a null value, the value of the returned OracleTimeStampTZ
structure has a null value.

14.11 INullable Interface
The INullable interface is used to determine whether or not an ODP.NET type has a
NULL value.

Declaration

// C#
public interface INullable

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

14.11.1 INullable Interface Members
INullable members are listed in the following tables.

INullable Interface Properties

INullable interface properties are listed in Table 14-139.

Table 14-139 INullable Interface Properties

Public Property Description

IsNull Indicates whether or not the ODP.NET type has a NULL value

14.11.2 INullable Interface Properties
INullable interface properties are listed in Table 14-139.

Chapter 14
INullable Interface

14-353

Table 14-140 INullable Interface Properties

Public Property Description

IsNull Indicates whether or not the ODP.NET type has a NULL value

14.11.2.1 IsNull
This property indicates whether or not the ODP.NET type has a NULL value.

Declaration

// C#
bool IsNull {get;}

Property Value

Returns true if the ODP.NET type has a NULL value; otherwise, returns false.

Chapter 14
INullable Interface

14-354

15
Oracle Data Provider for .NET Types
Exceptions

This section covers the ODP.NET Types exceptions.

This chapter contains these topics:

• OracleTypeException Class

• OracleNullValueException Class

• OracleTruncateException Class

15.1 OracleTypeException Class
The OracleTypeException is the base exception class for handling exceptions that occur
in the ODP.NET Types classes.

Class Inheritance

System.Object

 System.Exception

 System.SystemException

 Oracle.DataAccess.Types.OracleTypeException

Declaration

// C#
public class OracleTypeException : SystemException

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

15.1.1 OracleTypeException Members
OracleTypeException members are listed in the following tables.

15-1

OracleTypeException Constructors

The OracleTypeException constructors are listed in Table 15-1.

Table 15-1 OracleTypeException Constructor

Constructor Description

OracleTypeException Constructors Creates a new instance of the
OracleTypeException class (Overloaded)

OracleTypeException Static Methods

The OracleTypeException static methods are listed in Table 15-2.

Table 15-2 OracleTypeException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleTypeException Properties

The OracleTypeException properties are listed in Table 15-3.

Table 15-3 OracleTypeException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception

InnerException Inherited from System.SystemException.Exception

Message Specifies the error messages that occur in the
exception

Number Specifies the error number that occurs in the
exception

Source Specifies the name of the data provider that
generates the error

StackTrace Inherited from System.SystemException.Exception

TargetSite Inherited from System.SystemException.Exception

OracleTypeException Methods

The OracleTypeException methods are listed in Table 15-4.

Table 15-4 OracleTypeException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception

GetHashCode Inherited from System.Object

Chapter 15
OracleTypeException Class

15-2

Table 15-4 (Cont.) OracleTypeException Methods

Methods Description

GetObjectData Inherited from System.SystemException.Exception

GetType Inherited from System.Object

ToString Returns the fully qualified name of this exception

15.1.2 OracleTypeException Constructors
The OracleTypeException constructors create new instances of the OracleTypeException
class.

Overload List:

• OracleTypeException(string)

This constructor creates a new instance of the OracleTypeException class with the
specified error message, errMessage.

• OracleTypeException(SerializationInfo, StreamingContext)

This constructor creates a new instance of the OracleTypeException class with the
specified serialization information, si, and the specified streaming context, sc.

15.1.2.1 OracleTypeException(string)
This constructor creates a new instance of the OracleTypeException class with the
specified error message, errMessage.

Declaration

// C#
public OracleTypeException (string errMessage);

Parameters

• errMessage

The specified error message.

15.1.2.2 OracleTypeException(SerializationInfo, StreamingContext)
This constructor creates a new instance of the OracleTypeException class with the
specified serialization information, si, and the specified streaming context, sc.

Declaration

// C#
protected OracleTypeException (SerializationInfo si, StreamingContext sc);

Parameters

• si

Chapter 15
OracleTypeException Class

15-3

The specified serialization information.

• sc

The specified streaming context.

15.1.3 OracleTypeException Static Methods
The OracleTypeException static methods are listed in Table 15-5.

Table 15-5 OracleTypeException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

15.1.4 OracleTypeException Properties
The OracleTypeException properties are listed in Table 15-6.

Table 15-6 OracleTypeException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception

InnerException Inherited from System.SystemException.Exception

Message Specifies the error messages that occur in the exception

Number Specifies the error number that occurs in the exception

Source Specifies the name of the data provider that generates the
error

StackTrace Inherited from System.SystemException.Exception

TargetSite Inherited from System.SystemException.Exception

15.1.4.1 Message
Overrides Exception

This property specifies the error messages that occur in the exception.

Declaration

// C#
public override string Message {get;}

Property Value

An error message.

Chapter 15
OracleTypeException Class

15-4

15.1.4.2 Number
Overrides Exception

This property specifies the error number that occurs in the exception

Declaration

// C#
public override int Number {get;}

Property Value

An error number

15.1.4.3 Source
Overrides Exception

This property specifies the name of the data provider that generates the error.

Declaration

// C#
public override string Source {get;}

Property Value

Oracle Data Provider for .NET.

15.1.5 OracleTypeException Methods
The OracleTypeException methods are listed in Table 15-7.

Table 15-7 OracleTypeException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception

GetHashCode Inherited from System.Object

GetObjectData Inherited from System.SystemException.Exception

GetType Inherited from System.Object

ToString Returns the fully qualified name of this exception

15.1.5.1 ToString
Overrides Exception

This method returns the fully qualified name of this exception, the error message in the
Message property, the InnerException.ToString() message, and the stack trace.

Chapter 15
OracleTypeException Class

15-5

Declaration

// C#
public override string ToString();

Return Value

The fully qualified name of this exception.

15.2 OracleNullValueException Class
The OracleNullValueException represents an exception that is thrown when trying to
access an ODP.NET Types structure that has a null value.

Class Inheritance

System.Object

 System.Exception

 System.SystemException

 System.OracleTypeException

 Oracle.DataAccess.Types.OracleNullValueException

Declaration

// C#
public sealed class OracleNullValueException : OracleTypeException

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

15.2.1 OracleNullValueException Members
OracleNullValueException members are listed in the following tables.

OracleNullValueException Constructors

The OracleNullValueException constructors are listed in Table 15-8.

Chapter 15
OracleNullValueException Class

15-6

Table 15-8 OracleNullValueException Constructors

Constructor Description

OracleNullValueException Constructors Creates a new instance of the
OracleNullValueException class (Overloaded)

OracleNullValueException Static Methods

The OracleNullValueException static methods are listed in Table 15-9.

Table 15-9 OracleNullValueException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleNullValueException Properties

The OracleNullValueException properties are listed in Table 15-10.

Table 15-10 OracleNullValueException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception

InnerException Inherited from System.SystemException.Exception

Message Inherited from OracleTypeException

Source Inherited from OracleTypeException

StackTrace Inherited from System.SystemException.Exception

TargetSite Inherited from System.SystemException.Exception

OracleNullValueException Methods

The OracleNullValueException methods are listed in Table 15-11.

Table 15-11 OracleNullValueException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception

GetHashCode Inherited from System.Object

GetObjectData Inherited from System.SystemException.Exception

GetType Inherited from System.Object

ToString Inherited from OracleTypeException

Chapter 15
OracleNullValueException Class

15-7

15.2.2 OracleNullValueException Constructors
The OracleNullValueException constructors create new instances of the
OracleNullValueException class.

Overload List:

• OracleNullValueException()

This constructor creates a new instance of the OracleNullValueException class with
its default properties.

• OracleNullValueException(string)

This constructor creates a new instance of the OracleNullValueException class with
the specified error message, errMessage.

15.2.2.1 OracleNullValueException()
This constructor creates a new instance of the OracleNullValueException class with its
default properties.

Declaration

// C#
public OracleNullValueException();

15.2.2.2 OracleNullValueException(string)
This constructor creates a new instance of the OracleNullValueException class with the
specified error message, errMessage.

Declaration

// C#
public OracleNullValueException (string errMessage);

Parameters

• errMessage

The specified error message.

15.2.3 OracleNullValueException Static Methods
The OracleNullValueException static methods are listed in Table 15-12.

Table 15-12 OracleNullValueException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

Chapter 15
OracleNullValueException Class

15-8

15.2.4 OracleNullValueException Properties
The OracleNullValueException properties are listed in Table 15-13.

Table 15-13 OracleNullValueException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception

InnerException Inherited from System.SystemException.Exception

Message Inherited from OracleTypeException

Source Inherited from OracleTypeException

StackTrace Inherited from System.SystemException.Exception

TargetSite Inherited from System.SystemException.Exception

15.2.5 OracleNullValueException Methods
The OracleNullValueException methods are listed in Table 15-14.

Table 15-14 OracleNullValueException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception

GetHashCode Inherited from System.Object

GetObjectData Inherited from System.SystemException.Exception

GetType Inherited from System.Object

ToString Inherited from OracleTypeException

15.3 OracleTruncateException Class
The OracleTruncateException class represents an exception that is thrown when
truncation in a ODP.NET Types class occurs.

Class Inheritance

System.Object

 System.Exception

 System.SystemException

 System.OracleTypeException

 Oracle.DataAccess.Types.OracleTruncateException

Chapter 15
OracleTruncateException Class

15-9

Declaration

// C#
public sealed class OracleTruncateException : OracleTypeException

Requirements

Provider ODP.NET, Unmanaged Driver ODP.NET, Managed Driver

Assembly Oracle.DataAccess.dll Oracle.ManagedDataAccess.dll

Namespace Oracle.DataAccess.Types Oracle.ManagedDataAccess.Types

.NET Framework 3.5, 4.5, 4.6 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

15.3.1 OracleTruncateException Members
OracleTruncateException members are listed in the following tables.

OracleTruncateException Constructors

The OracleTruncateException constructors are listed in Table 15-15.

Table 15-15 OracleTruncateException Constructors

Constructor Description

OracleTruncateException Constructors Creates a new instance of the
OracleTruncateException class (Overloaded)

OracleTruncateException Static Methods

The OracleTruncateException static methods are listed in Table 15-16.

Table 15-16 OracleTruncateException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

OracleTruncateException Properties

The OracleTruncateException properties are listed in Table 15-17.

Table 15-17 OracleTruncateException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception

InnerException Inherited from System.SystemException.Exception

Chapter 15
OracleTruncateException Class

15-10

Table 15-17 (Cont.) OracleTruncateException Properties

Properties Description

Message Inherited from OracleTypeException

Source Inherited from OracleTypeException

StackTrace Inherited from System.SystemException.Exception

TargetSite Inherited from System.SystemException.Exception

OracleTruncateException Methods

The OracleTruncateException methods are listed in Table 15-18.

Table 15-18 OracleTruncateException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception

GetHashCode Inherited from System.Object

GetObjectData Inherited from System.SystemException.Exception

GetType Inherited from System.Object

ToString Inherited from OracleTypeException

15.3.2 OracleTruncateException Constructors
The OracleTruncateException constructors create new instances of the
OracleTruncateException class

Overload List:

• OracleTruncateException()

This constructor creates a new instance of the OracleTruncateException class with
its default properties.

• OracleTruncateException(string)

This constructor creates a new instance of the OracleTruncateException class with
the specified error message, errMessage.

15.3.2.1 OracleTruncateException()
This constructor creates a new instance of the OracleTruncateException class with its
default properties.

Declaration

// C#
public OracleTruncateException();

Chapter 15
OracleTruncateException Class

15-11

15.3.2.2 OracleTruncateException(string)
This constructor creates a new instance of the OracleTruncateException class with the
specified error message, errMessage.

Declaration

// C#
public OracleTruncateException (string errMessage);

Parameters

• errMessage

The specified error message.

15.3.3 OracleTruncateException Static Methods
The OracleTruncateException static methods are listed in Table 15-19.

Table 15-19 OracleTruncateException Static Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

15.3.4 OracleTruncateException Properties
The OracleTruncateException properties are listed in Table 15-20.

Table 15-20 OracleTruncateException Properties

Properties Description

HelpLink Inherited from System.SystemException.Exception

InnerException Inherited from System.SystemException.Exception

Message Inherited from OracleTypeException

Source Inherited from OracleTypeException

StackTrace Inherited from System.SystemException.Exception

TargetSite Inherited from System.SystemException.Exception

15.3.5 OracleTruncateException Methods
The OracleTruncateException methods are listed in Table 15-21.

Chapter 15
OracleTruncateException Class

15-12

Table 15-21 OracleTruncateException Methods

Methods Description

Equals Inherited from System.Object (Overloaded)

GetBaseException Inherited from System.SystemException.Exception

GetHashCode Inherited from System.Object

GetObjectData Inherited from System.SystemException.Exception

GetType Inherited from System.Object

ToString Inherited from OracleTypeException

Chapter 15
OracleTruncateException Class

15-13

16
Oracle Data Provider for .NET UDT-
Related Classes

This chapter describes the object-related classes and interfaces in the Oracle Data
Provider for .NET that provide support for Oracle user-defined data types (UDT).

Samples are provided in the ORACLE_BASE\ORACLE_HOME\ODP.NET\Samples\UDT directory.

See Also:

"Oracle User-Defined Types (UDTs) and .NET Custom Types"

• OracleCustomTypeMappingAttribute Class

• OracleObjectMappingAttribute Class

• OracleArrayMappingAttribute Class

• IOracleCustomType Interface

• IOracleCustomTypeFactory Interface

• IOracleArrayTypeFactory Interface

• OracleUdt Class

• OracleRef Class

• OracleUdtFetchOption Enumeration

• OracleUdtStatus Enumeration

16.1 OracleCustomTypeMappingAttribute Class
The OracleCustomTypeMappingAttribute class is used to mark a custom type factory
class or struct with information that is used by ODP.NET when a custom type is used
to represent an Oracle UDT.

Class Inheritance

System.Object

System.Attribute

System.OracleCustomTypeMappingAttribute

Declaration

// C#
[AttributeUsageAttribute(AttributeTargets.Class|AttributeTargets.Struct,
 AllowMultiple=false, Inherited=true)]
public sealed class OracleCustomTypeMappingAttribute : Attribute

16-1

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Types

.NET Framework 3.5, 4.5, 4.6

Remarks

The OracleCustomTypeMapping attribute must be specified on the custom type factory
class to indicate the Oracle UDT that the corresponding custom type represents. The
Oracle UDT may be specified in the form schema_name.type_name.

For each Oracle UDT that the application uses, there must be a unique custom type
factory, as follows:

• Oracle Object Types

The custom type factory must return a custom type that cannot be used to
represent any other Oracle Object Type.

• Oracle Collection Types

The custom type factory may return a custom type that can be used by other
Oracle Collection Types. This is common when an array type is used to represent
an Oracle Collection, that is, when an int[] is used to represent a collection of
NUMBERs.

If the OracleCustomTypeMappingAttribute is not specified, then custom type mappings
must be specified through an XML configuration file, for example, app.config for
Windows applications or the web.config for web applications, and the machine.config

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

16.1.1 OracleCustomTypeMappingAttribute Members
OracleCustomTypeMappingAttribute members are listed in the following tables.

OracleCustomTypeMappingAttribute Constructors

OracleCustomTypeMappingAttribute constructors are listed in Table 16-1.

Table 16-1 OracleCustomTypeMappingAttribute Constructors

Constructor Description

OracleCustomTypeMappingAttribu
te Constructors

Instantiates a new instance of
OracleCustomTypeMappingAttribute class

OracleCustomTypeMappingAttribute Static Methods

OracleCustomTypeMappingAttribute static methods are listed in Table 16-2.

Chapter 16
OracleCustomTypeMappingAttribute Class

16-2

Table 16-2 OracleCustomTypeMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute

GetCustomAttribute Inherited from System.Attribute

GetCustomAttributes Inherited from System.Attribute

IsDefined Inherited from System.Attribute

ReferenceEquals Inherited from System.Attribute

OracleCustomTypeMappingAttribute Properties

OracleCustomTypeMappingAttribute properties are listed in Table 16-3.

Table 16-3 OracleCustomTypeMappingAttribute Properties

Property Description

UdtTypeName Specifies the Oracle user-defined type name that the
custom class maps to

TypeId Inherited from System.Attribute

OracleCustomTypeMappingAttribute Methods

OracleCustomTypeMappingAttribute methods are listed in Table 16-4.

Table 16-4 OracleCustomTypeMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute

GetHashCode Inherited from System.Attribute

GetType Inherited from System.Attribute

IsDefaultAttribute Inherited from System.Attribute

Match Inherited from System.Attribute

ToString Inherited from System.Attribute

16.1.2 OracleCustomTypeMappingAttribute Constructors
OracleCustomTypeMappingAttribute constructors create new instances of the
OracleCustomTypeMappingAttribute class.

Overload List:

• OracleCustomTypeMappingAttribute(string)

This constructor creates and initializes an OracleCustomTypeMappingAttribute using
the specified Oracle user-defined type name.

Chapter 16
OracleCustomTypeMappingAttribute Class

16-3

16.1.2.1 OracleCustomTypeMappingAttribute(string)
This constructor creates and initializes an OracleCustomTypeMappingAttribute using the
specified Oracle user-defined type name.

Declaration

// C#
public OracleCustomTypeMappingAttribute(string udtTypeName)

Parameters

• udtTypeName

The Oracle user-defined type name that the custom class maps to.

Remarks

The udtTypeName parameter is case-sensitive. The udtTypeName is specified in the form
of schema_name.type_name.

16.1.3 OracleCustomTypeMappingAttribute Static Methods
OracleCustomTypeMappingAttribute static methods are listed in Table 16-5.

Table 16-5 OracleCustomTypeMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute

GetCustomAttribute Inherited from System.Attribute

GetCustomAttributes Inherited from System.Attribute

IsDefined Inherited from System.Attribute

ReferenceEquals Inherited from System.Attribute

16.1.4 OracleCustomTypeMappingAttribute Properties
OracleCustomTypeMappingAttribute properties are listed in Table 16-6.

Table 16-6 OracleCustomTypeMappingAttribute Properties

Property Description

UdtTypeName Specifies the Oracle user-defined type name that the
custom class maps to

TypeId Inherited from System.Attribute

Chapter 16
OracleCustomTypeMappingAttribute Class

16-4

16.1.4.1 UdtTypeName
This property specifies the Oracle user-defined type name that the custom class maps
to.

Declaration

// C#
public string UdtTypeName {get; set;}

Property Value

A string that represents an Oracle user-defined type name.

Remarks

UdtTypeName is case-sensitive. It is specified in the form of schema_name.type_name.

16.1.5 OracleCustomTypeMappingAttribute Methods
OracleCustomTypeMappingAttribute methods are listed in Table 16-7.

Table 16-7 OracleCustomTypeMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute

GetHashCode Inherited from System.Attribute

GetType Inherited from System.Attribute

IsDefaultAttribute Inherited from System.Attribute

Match Inherited from System.Attribute

ToString Inherited from System.Attribute

16.2 OracleObjectMappingAttribute Class
The OracleObjectMappingAttribute class marks custom class fields or properties with
information that ODP.NET uses when a custom type represents an Oracle Object
type.

Class Inheritance

System.Object

 System.Attribute

 System.OracleObjectMappingAttribute

Declaration

// C#
[AttributeUsageAttribute(AttributeTargets.Field|AttributeTargets.Property,
AllowMultiple=false, Inherited=true)]

Chapter 16
OracleObjectMappingAttribute Class

16-5

public sealed class OracleObjectMappingAttribute : Attribute

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Types

.NET Framework 3.5, 4.5, 4.6

Remarks

The OracleObjectMappingAttribute is specified on members of a custom type that
represent an Oracle object type. This attribute must specify the name or zero-based
index of the attribute in the Oracle object that the custom class field or property maps
to. This also allows the custom type to declare field or property names which differ
from the Oracle Object type.

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

16.2.1 OracleObjectMappingAttribute Members
OracleObjectMappingAttribute members are listed in the following tables.

OracleObjectMappingAttribute Constructors

OracleObjectMappingAttribute constructors are listed in Table 16-8.

Table 16-8 OracleObjectMappingAttribute Constructors

Constructor Description

OracleObjectMappingAttribute
Constructors

Instantiates a new instance of
OracleObjectMappingAttribute class (Overloaded)

OracleObjectMappingAttribute Static Methods

OracleObjectMappingAttribute static methods are listed in Table 16-9.

Table 16-9 OracleObjectMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute

GetCustomAttribute Inherited from System.Attribute

GetCustomAttributes Inherited from System.Attribute

IsDefined Inherited from System.Attribute

ReferenceEquals Inherited from System.Attribute

Chapter 16
OracleObjectMappingAttribute Class

16-6

OracleObjectMappingAttribute Properties

OracleObjectMappingAttribute properties are listed in Table 16-10.

Table 16-10 OracleObjectMappingAttribute Properties

Property Description

AttributeIndex Specifies the index of the Oracle Object attribute that
must be retrieved

AttributeName Specifies the name of Oracle Object attribute that must
be retrieved

TypeId Inherited from System.Attribute

OracleObjectMappingAttribute Methods

OracleObjectMappingAttribute methods are listed in Table 16-11.

Table 16-11 OracleObjectMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute

GetHashCode Inherited from System.Attribute

GetType Inherited from System.Attribute

IsDefaultAttribute Inherited from System.Attribute

Match Inherited from System.Attribute

ToString Inherited from System.Attribute

16.2.2 OracleObjectMappingAttribute Constructors
OracleObjectMappingAttribute constructors create new instances of the
OracleObjectMappingAttribute class.

Overload List:

• OracleObjectMappingAttribute(string)

This constructor creates and initializes an OracleObjectMappingAttribute object
with the specified Oracle Object attribute name.

• OracleObjectMappingAttribute(int)

This constructor creates and initializes an OracleObjectMappingAttribute with the
specified Oracle Object attribute index.

16.2.2.1 OracleObjectMappingAttribute(string)
This constructor creates and initializes an OracleObjectMappingAttribute object with the
specified Oracle Object attribute name.

Chapter 16
OracleObjectMappingAttribute Class

16-7

Declaration

// C#
public OracleObjectMappingAttribute(string attrName);

Parameters

• attrName

The name of the Oracle Object attribute to map to.

Remarks

The attrName parameter is case-sensitive.

16.2.2.2 OracleObjectMappingAttribute(int)
This constructor creates and initializes an OracleObjectMappingAttribute object with the
specified Oracle Object attribute index.

Declaration

// C#
public OracleObjectMappingAttribute(int attrIndex);

Parameters

• attrIndex

The zero-based index of the Oracle Object attribute to map to.

16.2.3 OracleObjectMappingAttribute Static Methods
OracleObjectMappingAttribute static methods are listed in Table 16-12.

Table 16-12 OracleObjectMappingAttribute Static Method

Method Description

Equals Inherited from System.Attribute

GetCustomAttribute Inherited from System.Attribute

GetCustomAttributes Inherited from System.Attribute

IsDefined Inherited from System.Attribute

ReferenceEquals Inherited from System.Attribute

16.2.4 OracleObjectMappingAttribute Properties
OracleObjectMappingAttribute properties are listed in Table 16-13.

Chapter 16
OracleObjectMappingAttribute Class

16-8

Table 16-13 OracleObjectMappingAttribute Properties

Property Description

AttributeIndex Specifies the index of the Oracle Object attribute that
must be retrieved

AttributeName Specifies the name of the Oracle Object attribute that
must be retrieved

TypeId Inherited from System.Attribute

16.2.4.1 AttributeIndex
This property specifies the index of the Oracle Object attribute that must be retrieved.

Declaration

// C#
public int AttributeIndex {get;}

Property Value

The zero-based index of an Oracle Object type attribute.

Remarks

The AttributeIndex property specifies the index of the Oracle Object type attribute that
the custom class field or property maps to. This allows the custom class to declare
fields or property names that differ from the Oracle object.

16.2.4.2 AttributeName
This property specifies the name of the Oracle Object attribute that must be retrieved.

Declaration

// C#
public string AttributeName {get;}

Property Value

The name of an attribute of an Oracle Object type.

Remarks

The AttributeName property specifies name of the attribute in the Oracle Object type
that the custom class field or property maps to. This allows the custom class to declare
field or property names that differ from the Oracle object.

The specified attribute name is case-sensitive.

16.2.5 OracleObjectMappingAttribute Methods
OracleObjectMappingAttribute methods are listed in Table 16-14.

Chapter 16
OracleObjectMappingAttribute Class

16-9

Table 16-14 OracleObjectMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute

GetHashCode Inherited from System.Attribute

GetType Inherited from System.Attribute

IsDefaultAttribute Inherited from System.Attribute

Match Inherited from System.Attribute

ToString Inherited from System.Attribute

16.3 OracleArrayMappingAttribute Class
The OracleArrayMappingAttribute class is required to mark a custom class field or
property with information that ODP.NET uses when a custom type represents an
Oracle Collection type.

Class Inheritance

System.Object

 System.Attribute

 System.OracleArrayMappingAttribute

Declaration

[AttributeUsageAttribute(AttributeTargets.Field|AttributeTargets.Property,
AllowMultiple=false, Inherited=true)]

// C#
public sealed class OracleArrayMappingAttribute : Attribute

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Types

.NET Framework 3.5, 4.5, 4.6

Remarks

An OracleArrayMappingAttribute object must be specified when a custom type
represents an Oracle Collection. This attribute is applied only to the custom class
member that stores the collection elements.

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 16
OracleArrayMappingAttribute Class

16-10

16.3.1 OracleArrayMappingAttribute Members
OracleArrayMappingAttribute members are listed in the following tables.

OracleArrayMappingAttribute Constructors

OracleArrayMappingAttribute constructors are listed in Table 16-15.

Table 16-15 OracleArrayMappingAttribute Constructors

Constructor Description

OracleArrayMappingAttribute
Constructors

Instantiates a new instance of
OracleArrayMappingAttribute class (Overloaded)

OracleArrayMappingAttribute Static Methods

OracleArrayMappingAttribute static methods are listed in Table 16-16.

Table 16-16 OracleArrayMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute

GetCustomAttribute Inherited from System.Attribute

GetCustomAttributes Inherited from System.Attribute

IsDefined Inherited from System.Attribute

ReferenceEquals Inherited from System.Attribute

OracleArrayMappingAttribute Properties

OracleArrayMappingAttribute properties are listed in Table 16-17.

Table 16-17 OracleArrayMappingAttribute Properties

Property Description

TypeId Inherited from System.Attribute

OracleArrayMappingAttribute Methods

OracleArrayMappingAttribute methods are listed in Table 16-18.

Table 16-18 OracleArrayMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute

GetHashCode Inherited from System.Attribute

GetType Inherited from System.Attribute

IsDefaultAttribute Inherited from System.Attribute

Chapter 16
OracleArrayMappingAttribute Class

16-11

Table 16-18 (Cont.) OracleArrayMappingAttribute Methods

Method Description

Match Inherited from System.Attribute

ToString Inherited from System.Attribute

16.3.2 OracleArrayMappingAttribute Constructors
OracleArrayMappingAttribute constructors create new instances of the
OracleArrayMappingAttribute class.

Overload List:

• OracleArrayMappingAttribute()

This constructor creates and initializes an OracleArrayMappingAttribute object.

16.3.2.1 OracleArrayMappingAttribute()
This constructor creates and initializes an OracleArrayMappingAttribute object.

Declaration

// C#
public OracleArrayMappingAttribute();

Remarks

An OracleArrayMappingAttribute object must be applied when a custom class
represents an Oracle Collection type, to specify the custom class field or property that
stores the collection elements.

The OracleArrayMappingAttribute can be applied to only one field or property in the
custom class.

16.3.3 OracleArrayMappingAttribute Static Methods
OracleArrayMappingAttribute static methods are listed in Table 16-19.

Table 16-19 OracleArrayMappingAttribute Static Methods

Method Description

Equals Inherited from System.Attribute

GetCustomAttribute Inherited from System.Attribute

GetCustomAttributes Inherited from System.Attribute

IsDefined Inherited from System.Attribute

ReferenceEquals Inherited from System.Attribute

Chapter 16
OracleArrayMappingAttribute Class

16-12

16.3.4 OracleArrayMappingAttribute Properties
OracleArrayMappingAttribute properties are listed in Table 16-20.

Table 16-20 OracleArrayMappingAttribute Properties

Property Description

TypeId Inherited from System.Attribute

16.3.5 OracleArrayMappingAttribute Methods
OracleArrayMappingAttribute methods are listed in Table 16-21.

Table 16-21 OracleArrayMappingAttribute Methods

Method Description

Equals Inherited from System.Attribute

GetHashCode Inherited from System.Attribute

GetType Inherited from System.Attribute

IsDefaultAttribute Inherited from System.Attribute

Match Inherited from System.Attribute

ToString Inherited from System.Attribute

16.4 IOracleCustomType Interface
IOracleCustomType is an interface for converting between a Custom Type and an
Oracle Object or Collection Type.

Declaration

// C#
public interface IOracleCustomType

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Types

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Chapter 16
IOracleCustomType Interface

16-13

16.4.1 IOracleCustomType Members
IOracleCustomType members are listed in the following tables.

IOracleCustomType Interface Methods

IOracleCustomType interface methods are listed in Table 16-22.

Table 16-22 IOracleCustomType Interface Methods

Interface Method Description

FromCustomObject Returns the values that set the Oracle Object attributes

ToCustomObject Provides the Oracle Object with the attribute values to set on the
custom type

16.4.2 IOracleCustomType Interface Methods
IOracleCustomType Interface methods are listed in Table 16-23.

Table 16-23 IOracleCustomType Interface Methods

Interface Method Description

FromCustomObject Returns the values that set the Oracle Object attributes

ToCustomObject Provides the Oracle Object with the attribute values to set on the
custom type

16.4.2.1 FromCustomObject
This interface method creates an Oracle Object or Collection by setting the attribute or
element values respectively on the specified Oracle UDT.

Declaration

// C#
void FromCustomObject(OracleConnection con, IntPtr pUdt);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to the Oracle Object or Collection to be created.

Remarks

The FromCustomObject method is used to build an Oracle Object or Collection from a
custom object by setting attribute or element values respectively through the
OracleUdt.SetValue method.

Chapter 16
IOracleCustomType Interface

16-14

The OracleUdt.SetValue method is invoked as follows:

• Oracle Object Type

For a custom type that represents an Oracle Object Type, the OracleUdt.SetValue
method must be invoked for each non-NULL attribute value that needs to be set.

• Oracle Collection Type

For a custom type that represents an Oracle Collection Type, a single call to
OracleUdt.SetValue method specifies the collection element values.

16.4.2.2 ToCustomObject
This interface initializes a custom object using the specified Oracle UDT.

Declaration

// C#
void ToCustomObject (OracleConnection con, IntPtr pUdt);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to the Oracle UDT.

Remarks

The ToCustomObject method is used to initialize a custom object from the specified
Oracle Object or Collection by retrieving attribute or element values respectively
through the OracleUdt.GetValue method.

The OracleUdt.GetValue method is invoked as follows:

• Oracle Object Type

For a custom type that represents an Oracle Object Type, the OracleUdt.GetValue
method must be invoked for each attribute value to be retrieved.

• For a custom type that represents an Oracle Collection Type, a single call to
OracleUdt.GetValue method retrieves the collection element values.

16.5 IOracleCustomTypeFactory Interface
The IOracleCustomTypeFactory interface is used by ODP.NET to create custom objects
that represent Oracle Objects or Collections.

Declaration

// C#
public interface IOracleCustomTypeFactory

Chapter 16
IOracleCustomTypeFactory Interface

16-15

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Types

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

16.5.1 IOracleCustomTypeFactory Members
IOracleCustomTypeFactory members are listed in the following tables.

IOracleCustomTypeFactory Interface Methods

IOracleCustomTypeFactory interface methods are listed in Table 16-24.

Table 16-24 IOracleCustomTypeFactory Interface Methods

Public Method Description

CreateObject Returns a new custom object to represent an Oracle Object or
Collection

16.5.2 IOracleCustomTypeFactory Interface Methods
IOracleCustomTypeFactory Interface methods are listed in Table 16-25.

Table 16-25 IOracleCustomTypeFactory Interface Methods

Public Method Description

CreateObject Returns a new custom object to represent an Oracle Object or
Collection

16.5.2.1 CreateObject
This interface method returns a new custom object to represent an Oracle Object or
Collection.

Declaration

// C#
IOracleCustomType CreateObject();

Chapter 16
IOracleCustomTypeFactory Interface

16-16

Return Value

An IOracleCustomType object.

Remarks

The CreateObject method is used to create a new instance of a custom object to
represent an Oracle Object or Collection.

16.6 IOracleArrayTypeFactory Interface
The IOracleArrayTypeFactory interface is used by ODP.NET to create arrays that
represent Oracle Collections.

Declaration

// C#
public interface IOracleArrayTypeFactory

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Types

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

16.6.1 IOracleArrayTypeFactory Members
IOracleArrayTypeFactory members are listed in the following tables.

IOracleArrayTypeFactory Interface Methods

IOracleArrayTypeFactory interface methods are listed in Table 16-26.

Table 16-26 IOracleArrayTypeFactory Interface Methods

Public Method Description

CreateArray Returns a new array of the specified length to store Oracle
Collection elements

CreateStatusArray Returns a newly allocated OracleUdtStatus array of the
specified length that will be used to store the null status of the
collection elements

Chapter 16
IOracleArrayTypeFactory Interface

16-17

16.6.2 IOracleArrayTypeFactory Interface Methods
IOracleArrayTypeFactory Interface methods are listed in Table 16-27.

Table 16-27 IOracleArrayTypeFactory Interface Methods

Public Method Description

CreateArray Returns a new array of the specified length to store Oracle
Collection elements

CreateStatusArray Returns a newly allocated OracleUdtStatus array of the
specified length that will be used to store the null status of the
collection elements

16.6.2.1 CreateArray
This interface method returns a new array of the specified length to store Oracle
Collection elements.

Declaration

// C#
Array CreateArray(int numElems);

Parameters

• numElems

The number of collection elements to be returned.

Return Value

A System.Array object.

Remarks

An Oracle Collection Type may be represented in either of the following ways:

• As an array of the appropriate type. The type must be able to represent a
collection element.

• As a Custom Type that contains an array of the appropriate type.

In both cases, the CreateArray method creates an array of the specified length to store
the collection elements.

16.6.2.2 CreateStatusArray
This method returns a newly allocated OracleUdtStatus array of the specified length
that will be used to store the null status of the collection elements.

Declaration

// C#
Array CreateStatusArray(int numElems);

Chapter 16
IOracleArrayTypeFactory Interface

16-18

Parameters

• numElems

The number of collection elements to be returned.

Return Value

A multi-dimensional OracleUdtStatus array as a System.Array.

Remarks

An Oracle Collection Type can be represented in the following ways:

• As an array of the appropriate type. The type must be able to represent a
collection element.

• As a Custom Type that contains an array of the appropriate type.

In both cases, the CreateStatusArray method creates an OracleUdtStatus array of the
specified length that stores the null status of the collection elements.

16.7 OracleUdt Class
The OracleUdt class defines static methods that are used when converting between
Custom Types and Oracle UDTs and vice-versa.

Class Inheritance

System.Object

 System.OracleUdt

Declaration

public sealed class OracleUdt

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Types

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

16.7.1 OracleUdt Members
OracleUdt static methods are listed in Table 16-28.

Chapter 16
OracleUdt Class

16-19

Table 16-28 OracleUdt Static Methods

Static Method Description

Equals Inherited from System.Object

GetValue Gets the attributes or elements from the specified Oracle UDT
(Overloaded)

IsDBNull Indicates whether or not the specified attribute being retrieved is
NULL (Overloaded)

SetValue Sets the attributes or elements on the specified Oracle UDT
(Overloaded)

16.7.2 OracleUDT Static Methods
OracleUDT methods are listed in Table 16-29.

Table 16-29 OracleUdt Static Methods

Static Method Description

Equals Inherited from System.Object

GetValue Gets the attributes or elements from the specified Oracle UDT
(Overloaded)

IsDBNull Indicates whether or not the specified attribute being retrieved is
NULL (Overloaded)

SetValue Sets the attributes or elements on the specified Oracle UDT
(Overloaded)

16.7.2.1 GetValue
GetValue methods get the attributes or elements from the specified Oracle UDT.

Overload List:

• GetValue(OracleConnection, IntPtr, string)

This method gets the attributes or elements from the specified Oracle UDT, using
the specified attribute name.

• GetValue(OracleConnection, IntPtr, int)

This method gets the attribute or elements from the specified Oracle UDT, using
the specified index.

• GetValue(OracleConnection, IntPtr, string, out object)

This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

• GetValue(OracleConnection, IntPtr, int, out object)

This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

Chapter 16
OracleUdt Class

16-20

16.7.2.2 GetValue(OracleConnection, IntPtr, string)
This method gets the attributes or elements from the specified Oracle UDT, using the
specified attribute name.

Declaration

public static object GetValue(OracleConnection con, IntPtr pUdt, string attrName);

Parameters

• con

An OracleConnection instance.

• pUdt

A pointer to an Oracle UDT.

• attrName

The case-sensitive name of the attribute to be retrieved. Null is specified for
retrieving collection elements from a Custom Type that represents an Oracle
Collection.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue method
passing it the con and pUdt parameters. The OracleUdt.GetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is
the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and
Provider Specific Types, the static Null property of the type is returned. For attributes
that are represented as Nullable types, for example, System.String and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32 and
DateTime DBNull.Value is returned.

Chapter 16
OracleUdt Class

16-21

16.7.2.3 GetValue(OracleConnection, IntPtr, int)
This method gets the attribute or elements from the specified Oracle UDT, using the
specified index.

Declaration

// C#
public static object GetValue(OracleConnection con, IntPtr pUdt, int attrIndex,);

Parameters

• con

An OracleConnection instance.

• pUdt

A pointer to an Oracle UDT.

• attrIndex

The zero-based index of the attribute to be retrieved. For retrieving collection
elements from a Custom Type that represents an Oracle Collection, zero must be
specified.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue method
passing it the con and pUdt parameters. The OracleUdt.GetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute index is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is
the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and
Provider Specific Types, the static Null property of the type is returned. For attributes
that are represented as Nullable types, for example, System.String and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32 and
DateTime DBNull.Value is returned.

Chapter 16
OracleUdt Class

16-22

16.7.2.4 GetValue(OracleConnection, IntPtr, string, out object)
This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

Declaration

// C#
public static object GetValue(OracleConnection con, IntPtr pUdt, string attrName,
 out object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrName

The case-sensitive name of the attribute to be retrieved. Null must specified for
retrieving collection elements from a Custom Type that represents an Oracle
Collection.

• statusArray - The OracleUdtStatus array which returns the null status for the
retrieved collection elements.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue method
passing it the con and pUdt parameters. The OracleUdt.GetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is
the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and
Provider Specific Types, the static Null property of the type is returned. For attributes
that are represented as Nullable types, for example, System.String and System.Array

Chapter 16
OracleUdt Class

16-23

Types, null is returned, and for all other remaining built-in types such as Int32 and
DateTime DBNull.Value is returned.

If the collection being returned is not NULL, the output statusArray parameter is
populated with the null status for each of the collection elements.

16.7.2.5 GetValue(OracleConnection, IntPtr, int, out object)
This method returns either the elements of the specified collection attribute of the
specified Oracle Object or the elements of the specified Oracle Collection.

Declaration

// C#
public static object GetValue(OracleConnection con, IntPtr pUdt, int attrIndex,
 out object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrIndex

The zero-based index of the attribute to be retrieved. For retrieving collection
elements from a Custom Type that represents an Oracle Collection, 0 is specified.

• statusArray

The OracleUdtStatus array which returns the null status for the retrieved collection
elements.

Return Value

An object representing the returned attribute or collection elements.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index.

Remarks

The IOracleCustomType.ToCustomObject method invokes OracleUdt.GetValue method
passing it the con and pUdt parameters. The OracleUdt.GetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type returned for a
specified attribute index is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type returned is
the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

Chapter 16
OracleUdt Class

16-24

In the case of NULL attribute values, the appropriate null representation of the type is
returned. For example, for attributes that are represented as Custom Types and
Provider Specific Types, the static Null property of the type is returned. For attributes
that are represented as Nullable types, for example, System.String and System.Array
Types, null is returned, and for all other remaining built-in types such as Int32 and
DateTime DBNull.Value is returned.

If the collection being returned is not NULL, the output statusArray parameter is
populated with the null status for each of the collection elements.

16.7.2.6 IsDBNull
IsDBNull methods indicate whether or not the specified attribute being retrieved is NULL.

Overload List:

• IsDBNull(OracleConnection, IntPtr, string)

This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, pointer, and attribute name, is NULL.

• IsDBNull(OracleConnection, IntPtr, int)

This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, pointer, and attribute index, is NULL.

16.7.2.7 IsDBNull(OracleConnection, IntPtr, string)
This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, pointer, and attribute name, is NULL.

Declaration

// C#
public static bool IsDBNull(OracleConnection con, IntPtr pUdt, string attrName);

Parameters

• con

An OracleConnection instance.

• pUdt

A pointer to an Oracle UDT.

• attrName

The case-sensitive name of the attribute.

Return Value

True if the specified attribute is NULL; otherwise, false.

Exceptions

ArgumentException - The specified name is not a valid attribute name.

Chapter 16
OracleUdt Class

16-25

Remarks

This method is invoked from the IOracleCustomType.ToCustomObject method. The con
and pUdt parameter is passed from the IOracleCustomType.ToCustomObject method to
the OracleUdt.IsDBNull method. The attrName parameter is case-sensitive.

16.7.2.8 IsDBNull(OracleConnection, IntPtr, int)
This method indicates whether or not the attribute being retrieved, specified by
OracleConnection, pointer, and attribute index, is NULL.

Declaration

// C#
public static bool IsDBNull(OracleConnection con, IntPtr pUdt, int attrIndex);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrIndex

The zero-based index of the attribute.

Return Value

True if the specified attribute is NULL; otherwise, false.

Exceptions

ArgumentOutOfRangeException - The specified index is not a valid attribute index

Remarks

This method is invoked from the IOracleCustomType.ToCustomObject method. The con
and pUdt parameter is passed from the IOracleCustomType.ToCustomObject method to
the OracleUdt.IsDBNull method.

16.7.2.9 SetValue
SetValue methods set the attributes or elements on the specified Oracle UDT.

Overload List:

• SetValue(OracleConnection, IntPtr, string, object)

This method sets the attribute or elements on the specified Oracle UDT, using the
specified attribute name and value.

• SetValue(OracleConnection, IntPtr, int, object)

Chapter 16
OracleUdt Class

16-26

This method sets the attribute or elements on the specified Oracle UDT, using the
specified index and value.

• SetValue(OracleConnection, IntPtr, string, object, object)

This method sets either the specified collection attribute of the specified Oracle
Object or elements of the specified Oracle Collection, to the specified value using
the supplied null status of the collection elements.

• SetValue(OracleConnection, IntPtr, int, object, object)

This method sets either the specified collection attribute of the specified Oracle
Object or elements of the specified Oracle Collection, to the specified value using
the supplied null status of the collection elements.

16.7.2.10 SetValue(OracleConnection, IntPtr, string, object)
This method sets the attribute or elements on the specified Oracle UDT, using the
specified attribute name and value.

Declaration

// C#
public static void SetValue(OracleConnection con, IntPtr pUdt, string attrName,
 object value);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrName

The name of the attribute to be set. Specify null for setting collection elements
from a Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and pUdt parameters. The OracleUdt.SetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

Chapter 16
OracleUdt Class

16-27

For a Custom Type that represents an Oracle Collection Type, the type accepted
is the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

16.7.2.11 SetValue(OracleConnection, IntPtr, int, object)
This method sets the attribute or elements on the specified Oracle UDT, using the
specified index and value.

Declaration

// C#
public static void SetValue(OracleConnection con, IntPtr pUdt, int attrIndex, object
value);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrIndex

The index of the attribute to be set. Specify 0 for setting collection elements from a
Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and pUdt parameters. The OracleUdt.SetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute index is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted
is the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

Chapter 16
OracleUdt Class

16-28

16.7.2.12 SetValue(OracleConnection, IntPtr, string, object, object)
This method sets either the specified collection attribute of the specified Oracle Object
or elements of the specified Oracle Collection, to the specified value using the
supplied null status of the collection elements.

Declaration

// C#
public static void SetValue(OracleConnection con, IntPtr pUdt, string attrName,
 object value, object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrName

The name of the attribute to be set. Specify null for setting collection elements
from a Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

• statusArray

The null status for the collection elements.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and pUdt parameters. The OracleUdt.SetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute name is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted
is the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

Chapter 16
OracleUdt Class

16-29

16.7.2.13 SetValue(OracleConnection, IntPtr, int, object, object)
This method sets either the specified collection attribute of the specified Oracle Object
or elements of the specified Oracle Collection, to the specified value using the
supplied null status of the collection elements.

Declaration

// C#
public static void SetValue(OracleConnection con, IntPtr pUdt, int attrIndex,
 object value, object statusArray);

Parameters

• con

An OracleConnection instance.

• pUdt

An opaque pointer to an Oracle UDT.

• attrIndex

The index of the attribute to be set. Specify 0 for setting collection elements from a
Custom Type that represents an Oracle Collection.

• value

The attribute or collection value to be set.

• statusArray

The null status for the collection elements.

Exceptions

ArgumentException - The specified value is not of the appropriate type.

Remarks

The IOracleCustomType.FromCustomObject method invokes OracleUdt.SetValue method
passing it the con and pUdt parameters. The OracleUdt.SetValue method returns these
types of object:

• Oracle Object Type

For a Custom Type that represents an Oracle Object Type, the type accepted for a
specified attribute index is the type of the member in the custom class or struct
that is mapped to the attribute using the OracleObjectMappingAttribute object.

• Oracle Collection Type

For a Custom Type that represents an Oracle Collection Type, the type accepted
is the type of the member in the custom class or struct to which the
OracleArrayMappingAttribute object is applied.

Chapter 16
OracleUdt Class

16-30

16.8 OracleRef Class
An OracleRef instance represents an Oracle REF, which references a persistent,
standalone, referenceable object that resides in the database. The OracleRef object
provides methods to insert, update, and delete the Oracle REF.

Class Inheritance

System.Object

 System.MarshalByRefObject

 Oracle.DataAccess.Types.OracleRef

Declaration

// C#
public sealed class OracleRef : MarshalByRefObject,ICloneable, IDisposable,
 INullable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Types

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

If two or more OracleRef objects that refer to the same Oracle object in the database
are retrieved through the same OracleConnection, then their operations on the
referenced object must be synchronized.

16.8.1 OracleRef Members
OracleRef members are listed in the following tables.

OracleRef Constructors

OracleRef constructors are listed in Table 16-30.

Table 16-30 OracleRef Constructors

Constructor Description

OracleRef Constructors Instantiates a new instance of OracleRef class
(Overloaded)

Chapter 16
OracleRef Class

16-31

OracleRef Static Fields

OracleRef static methods are listed in Table 16-31

Table 16-31 OracleRef Static Fields

Static Field Description

Null Represents a null value that can be assigned to an OracleRef
instance

OracleRef Static Methods

OracleRef static methods are listed in Table 16-32.

Table 16-32 OracleRef Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

OracleRef Instance Properties

OracleRef instance properties are listed in Table 16-33.

Table 16-33 OracleRef Instance Properties

Property Description

Connection References the connection used by the OracleRef

HasChanges References the connection used by the OracleRef

IsLocked Indicates whether or not the REF is locked

IsNull Indicates whether or not the Oracle REF is NULL

ObjectTableName Returns the fully qualified object table name that is
associated with the REF

Value Returns a .NET representation of this Oracle REF

OracleRef Instance Methods

OracleRef instance methods are listed in Table 16-34.

Table 16-34 OracleRef Instance Methods

Method Description

Clone Clones the REF

Delete Deletes the referenced object from the database

Dispose Releases resources allocated for the OracleRef instance

Equals Inherited from System.Object

Flush Flushes changes made on the REF object to the database

Chapter 16
OracleRef Class

16-32

Table 16-34 (Cont.) OracleRef Instance Methods

Method Description

GetCustomObject Returns the object that the specified REF references as a
custom type (Overloaded)

GetCustomObjectForUpdate Returns the object that the specified REF references as a
custom type (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

IsEqual Compares two OracleREF objects

Lock Locks the REF in the database

ToString Inherited from System.Object

Update Updates the object referenced by the specified REF in the
database using the specified custom object

16.8.2 OracleRef Constructors
OracleRef constructors instantiate new instances of OracleRef class.

Overload List:

• OracleRef(OracleConnection, string)

This constructor creates an instance of the OracleRef class with a connection and
a HEX string that represents an REF instance in the database.

• OracleRef(OracleConnection, string, string)

This constructor creates an instance of the OracleRef class using the specified
OracleConnection object, user-defined type name, and an object table name

16.8.2.1 OracleRef(OracleConnection, string)
This constructor creates an instance of the OracleRef class with a connection and a
HEX string that represents an REF instance in the database.

Declaration

// C#
public OracleRef(OracleConnection con, string hexStr);

Parameters

• con

An OracleConnection instance.

• hexStr

A HEX string that represents an REF instance in the database.

Chapter 16
OracleRef Class

16-33

Exceptions

ArgumentException - The HEX string does not represent a valid REF in the database.

ArgumentNullException - The connection or HEX string is null.

InvalidOperationException - The OracleConnection object is not open.

Remarks

When an OracleRef instance is created, it is referenced to a specific table in the
database.

The connection must be opened explicitly by the application. OracleRef does not open
the connection implicitly.

16.8.2.2 OracleRef(OracleConnection, string, string)
This constructor creates an instance of the OracleRef class using the specified
OracleConnection object, user-defined type name, and an object table name.

Declaration

// C#
public OracleRef(OracleConnection con, string udtTypeName, string objTabName);

Parameters

• con

An OracleConnection instance.

• udtTypeName

A user-defined type name.

• objTabName

An object table name.

Exceptions

ArgumentException - The object type name or the object table name is not valid.

ArgumentNullException - The object type name or the table name is null.

InvalidOperationException - The OracleConnection object is not open.

Remarks

When an OracleRef instance is created, this OracleRef instance is associated with the
specific table in the database. In other words, it represents a persistent REF.

This constructor creates a reference to the object table. However, it does not cause
any entries to be made in database tables until the object is flushed to the database,
that is, until the OracleRef.Flush or the OracleConnection.FlushCache method is called
on the OracleRef Connection. Therefore, any operation that attempts to operate on the
database copy of the object before flushing the object, such as, lock the object or fetch
the latest copy of the object from the database, results in an OracleException.

Chapter 16
OracleRef Class

16-34

The connection must be opened explicitly by the application. OracleRef does not open
the connection implicitly.

16.8.3 OracleRef Static Fields
OracleRef static fields are listed in Table 16-35.

Table 16-35 OracleRef Static Fields

Static Field Description

Null Represents a null value that can be assigned to an OracleRef
instance

16.8.3.1 Null
This static field represents a null value that can be assigned to an OracleRef instance.

Declaration

// C#
public static readonly OracleRef Null;

16.8.4 OracleRef Static Methods
OracleRef static methods are listed in Table 16-36.

Table 16-36 OracleRef Static Methods

Method Description

Equals Inherited from System.Object (Overloaded)

16.8.5 OracleRef Instance Properties
OracleRef instance properties are listed in Table 16-37.

Table 16-37 OracleRef Instance Properties

Property Description

Connection References the connection used by the OracleRef

HasChanges References the connection used by the OracleRef

IsLocked Indicates whether or not the REF is locked

IsNull Indicates whether or not the Oracle REF is NULL

ObjectTableName Returns the fully qualified object table name that is
associated with the REF

Value Returns a .NET representation of this Oracle REF

Chapter 16
OracleRef Class

16-35

16.8.5.1 Connection
This instance property references the connection used by the OracleRef.

Declaration

// C#
public OracleConnection Connection{get;}

Property Value

An OracleConnection object associated with the REF.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

Once the Dispose method is invoked, this property is set to null.

16.8.5.2 HasChanges
This instance property indicates whether or not the object referenced by the Oracle REF
in the object cache has any changes that can be flushed to the database.

Declaration

// C#
public bool HasChanges {get;}

Property Value

Returns true if the object referenced by the Oracle REF in the object cache has any
changes that can be flushed to the database; otherwise, returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property returns true if a copy of the referenced object in the object cache is
updated or deleted.

If there is no copy of the referenced object in the object cache, the latest copy of the
referenced object in the database is cached in the object cache and false is returned.

16.8.5.3 IsLocked
This instance property indicates whether or not the REF is locked.

Chapter 16
OracleRef Class

16-36

Declaration

// C#
public bool IsLocked {get;}

Property Value

Returns true if the REF is locked; otherwise returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

16.8.5.4 IsNull
This instance property indicates whether or not the Oracle REF is NULL.

Declaration

// C#
public bool IsNull {get;}

Property Value

Returns true if the REF is NULL; otherwise, returns false.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

If the Oracle REF is NULL, this property returns true. Otherwise, it returns false.

16.8.5.5 ObjectTableName
This instance property returns the fully-qualified object table name that is associated
with the REF.

Declaration

// C#
public string ObjectTableName{get;}

Property Value

A fully-qualified object table name that is associated with the REF.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

The object table name is in the form schema_Name.Table_Name.

Chapter 16
OracleRef Class

16-37

16.8.5.6 Value
This instance property returns a .NET representation of this Oracle REF.

Declaration

// C#
public string Value{get;}

Property Value

A .NET representation of the Oracle REF.

Exceptions

ObjectDisposedException - The object is already disposed.

Remarks

This property returns a HEX string that represents the REF.

The returned string can be used to create a new OracleRef instance by using the
OracleRef(OracleConnection, string) constructor.

16.8.6 Oracle Ref Instance Methods
OracleRef instance methods are listed in Table 16-38.

Table 16-38 OracleRef Instance Methods

Method Description

Clone Clones the REF

Delete Deletes the referenced object from the database

Dispose Releases resources allocated for the OracleRef instance

Equals Inherited from System.Object

Flush Flushes changes made on the REF object to the database

GetCustomObject Returns the object that the specified REF references as a
custom type (Overloaded)

GetCustomObjectForUpdate Returns the object that the specified REF references as a
custom type (Overloaded)

GetHashCode Inherited from System.Object

GetType Inherited from System.Object

IsEqual Compares two OracleREF objects

Lock Locks the REF in the database

ToString Inherited from System.Object

Update Updates the object referenced by the specified REF in the
database using the specified custom object

Chapter 16
OracleRef Class

16-38

16.8.6.1 Clone
This instance method clones the REF.

Declaration

// C#
public OracleRef Clone();

Return Value

A clone of the current instance.

Implements

ICloneable

Exceptions

InvalidOperationException - The associated connection is not open.

16.8.6.2 Delete
This method deletes the referenced object from the database.

Declaration

// C#
public void Delete(bool bFlush);

Parameters

• bFlush

A bool that specifies whether or not the REF is flushed immediately.

Remarks

This method marks the specified REF for deletion.

Depending on whether the value of bFlush is set to true or false, the following occurs:

• True

The object referenced by the specified REF is deleted immediately from the
database.

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection
object. This is because if the object being flushed has not already been locked by
the application, an exclusive lock is obtained implicitly for the object. The lock is
only released when the transaction commits or rollbacks.

• False

The object referenced by the REF is not deleted immediately from the database, but
only when a subsequent Flush method is invoked for the specified REF or the
FlushCache method is invoked on the OracleRef or the FlushCache method is invoked
on the OracleRef connection.

Chapter 16
OracleRef Class

16-39

16.8.6.3 Dispose
This instance method releases resources allocated for the OracleRef instance.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

The object cannot be reused after it is disposed. Although some properties can still be
accessed, their values may not be up-to-date.

16.8.6.4 Flush
This instance method flushes changes made on the REF object to the database, such
as updates or deletes.

Declaration

// C#
public void Flush();

Exceptions

InvalidOperationException - The associated connection is not open.

Remarks

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection object.
This is because if the object being flushed has not already been locked by the
application, an exclusive lock is obtained implicitly for the object. The lock is only
released when the transaction commits or rollbacks.

16.8.6.5 GetCustomObject
GetCustomObject methods return the object that the specified REF references as a
custom type.

Overload List

• GetCustomObject(OracleUdtFetchOption)

This method returns the object that the specified REF references as a custom type
using the specified fetch option.

• GetCustomObject(OracleUdtFetchOption, int)

This method returns the object that the specified REF references as a custom type
using the specified fetch option and depth level.

Chapter 16
OracleRef Class

16-40

16.8.6.6 GetCustomObject(OracleUdtFetchOption)
This method returns the object that the specified REF references, as a custom type,
using the specified fetch option.

Declaration

// C#
public object GetCustomObject(OracleUdtFetchOption fetchOption);

Parameters

• fetchOption

An OracleUdtFetchOption value.

Return Value

A custom object that represents the object that the specified REF references.

Exceptions

InvalidOperationException - The specified connection is not open, or a valid custom
type has not been registered for the type of the referenced object.

Remarks

This method returns a custom type determined by the UDT mappings on the specified
connection.

The connection must be opened explicitly by the application. This method does not
open the connection implicitly.

The application can use the OracleUdtFetchOption method to control the copy of the
Object that is returned according to the specified option:

• OracleUdtFetchOption.Cache option

If this option is specified, and there is a copy of the referenced object in the object
cache, it is returned immediately. If no cached copy exists, the latest copy of the
referenced object in the database is cached in the object cache and returned.

• OracleUdtFetchOption.Server option

If this option is specified, the latest copy of the referenced object from the
database is cached in the object cache and returned. If a copy of the referenced
object already exists in the cache, the latest copy overwrites the existing one.

• OracleUdtFetchOption.TransactionCache option

If this option is specified, and a copy of the referenced object is cached in the
current transaction, the copy is returned. Otherwise, the latest copy of the
referenced object from the database is cached in the object cache and returned. If
a copy of the referenced object already exists in the cache, the latest copy
overwrites the existing one.

Note that if a cached copy of the referenced object was modified before the
current transaction began, that is, if the OracleRef.HasChanges property returns
true, then the Recent option returns the cached copy of the referenced object.
Outside of a transaction, the Recent option behaves like the Any option.

Chapter 16
OracleRef Class

16-41

16.8.6.7 GetCustomObject(OracleUdtFetchOption, int)
This method returns the object that the specified REF references, as a custom type,
using the specified fetch option and depth level.

Declaration

// C#
public object GetCustomObject(OracleUdtFetchOption fetchOption, int depthLevel);

Parameters

• fetchOption

An OracleUdtFetchOption value.

• depthLevel

The number of levels to be fetched for nested REF attributes.

Return Value

A custom object that represents the object that the specified REF references.

Exceptions

InvalidOperationException - The specified connection is not open, or a valid custom
type has not been registered for the type of the referenced object.

Remarks

This method returns a custom type determined by the UDT mappings on the specified
connection.

If the object that the REF references contains nested REF attributes, the depthLevel can
be specified to optimize the subsequent object retrieval. The value of depthLevel
determines the number of levels that are optimized.

For example, if the depthLevel is specified as two, the optimization is applied to all top-
level nested REF attributes in the object being fetched and also to all nested REF
attributes within the objects referenced by the top-level nested REF attributes.

The connection must be opened explicitly by the application. This method does not
open the connection implicitly.

The application can use the OracleUdtFetchOption method to control the copy of the
Object that is returned according to the specified option:

• OracleUdtFetchOption.Cache option

If this option is specified, and there is a copy of the referenced object in the object
cache, it is returned immediately. If no cached copy exists, the latest copy of the
referenced object in the database is cached in the object cache and returned.

• OracleUdtFetchOption.Server option

If this option is specified, the latest copy of the referenced object from the
database is cached in the object cache and returned. If a copy of the referenced
object already exists in the cache, the latest copy overwrites the existing one.

• OracleUdtFetchOption.TransactionCache option

Chapter 16
OracleRef Class

16-42

If this option is specified, and a copy of the referenced object is cached in the
current transaction, the copy is returned. Otherwise, the latest copy of the
referenced object from the database is cached in the object cache and returned. If
a copy of the referenced object already exists in the cache, the latest copy
overwrites the existing one.

Note that if a cached copy of the referenced object was modified before the
current transaction began, that is, if the OracleRef.HasChanges property returns
true, then the Recent option returns the cached copy of the referenced object.
Outside of a transaction, the Recent option behaves like the Any option.

16.8.6.8 GetCustomObjectForUpdate
GetCustomObjectForUpdate methods return the object that the specified REF references
as a custom type.

• GetCustomObjectForUpdate(bool)

This method locks the specified REF in the database and returns the object that the
specified REF references as a custom type using the specified wait option.

• GetCustomObjectForUpdate(bool, int)

This method locks the specified REF in the database and returns the object that the
specified REF references as a custom type using the specified wait option and
depth level.

See Also:

– "Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types
Namespaces"

– OracleRef Class

– OracleRef Members

16.8.6.9 GetCustomObjectForUpdate(bool)
This method locks the specified REF in the database and returns the object that the
specified REF references, as a custom type, using the specified wait option.

Declaration

// C#
public object GetCustomObjectForUpdate(bool bWait);

Parameters

• bWait

Specifies if the REF is to be locked with the no-wait option. If wait is set to true, this
method invocation does not return until the REF is locked.

Return Value

A custom object that represents the object that the specified REF references.

Chapter 16
OracleRef Class

16-43

Exceptions

InvalidOperationException - The specified connection is not open, or a valid custom
type has not been registered for type of the referenced object.

OracleException - bWait is set to false, and the lock cannot be acquired.

Remarks

This method returns the latest copy of the referenced object, as a custom type,
determined by the custom types registered on the OracleRef connection.

To be able to release the lock on the REF appropriately after flushing the REF using the
Flush method on the OracleRef or FlushCache method on the OracleConnection, the
application must commit or rollback the transaction. Therefore, it is required that,
before invoking this method, a transaction is explicitly started by executing the
BeginTransaction method on the OracleConnection object.

This method makes a network round-trip to lock the REF in the database. After this call,
programmers can modify the associated row object exclusively. Then a call to the
Flush method on the OracleRef or FlushCache method on the OracleConnection flushes
the changes to the database.

If true is passed, this method blocks until the lock can be acquired. If false is passed,
this method immediately returns. If the lock cannot be acquired, an OracleException is
thrown.

The connection must be opened explicitly by the application. This method does not
open the connection implicitly.

16.8.6.10 GetCustomObjectForUpdate(bool, int)
This method locks the specified REF in the database and returns the object that the
specified REF references, as a custom type, using the specified wait option and depth
level

Declaration

public object GetCustomObjectForUpdate(bool bWait, int depthlevel);

Parameters

• bWait

A boolean value that specifies if the REF is to be locked with the no-wait option. If
wait is set to true, this method invocation does not return until the REF is locked.

• depthLevel

The number of levels to be fetched for nested REF attributes.

Return Value

A custom object that represents the object that the specified REF references.

Chapter 16
OracleRef Class

16-44

Exceptions

InvalidOperationException - The specified connection is not open, or a valid custom
type has not been registered for type of the referenced object.

OracleException - bWait is set to false, and the lock cannot be acquired.

Remarks

This method returns the latest copy of the referenced object, as a custom type,
determined by the custom types registered on the OracleRef connection.

To be able to release the lock on the REF appropriately after flushing the REF using the
Flush method on the OracleRef or FlushCache method on the OracleConnection, the
application must commit or rollback the transaction. Therefore, it is required that,
before invoking this method, a transaction is explicitly started by executing the
BeginTransaction method on the OracleConnection object.

This method makes a network round-trip to lock the REF in the database. After this call,
programmers can modify the associated row object exclusively. Then a call to the
Flush method on the OracleRef or FlushCache method on the OracleConnection flushes
the changes to the database.

If true is passed, this method blocks until the lock can be acquired. If false is passed,
this method immediately returns. If the lock cannot be acquired, an OracleException is
thrown.

If the object that the REF references contains nested REF attributes, the depthLevel can
be specified to optimize the subsequent object retrieval. The value of depthLevel
determines the number of levels that are optimized.

For example, if the depthLevel is specified as 2, the optimization is applied to all top-
level nested REF attributes in the object being fetched and also to all nested REF
attributes within the objects referenced by the top-level nested REF attributes.

The connection must be opened explicitly by the application. This method does not
open the connection implicitly.

16.8.6.11 IsEqual
This instance method compares two OracleREF objects.

Declaration

// C#
public bool IsEqual(OracleRef oraRef);

Parameters

• oraRef

The provided OracleRef object.

Return Value

bool

Chapter 16
OracleRef Class

16-45

Remarks

This instance method returns true if the OracleRef instance and the OracleRef
parameter both reference the same object. Otherwise, it returns false.

16.8.6.12 Lock
This instance method locks the REF in the database.

Declaration

// C#
public bool Lock(bool bWait);

Parameters

• bWait

Specifies if the lock is set to the no-wait option. If bWait is set to true, the method
invocation does not return until the REF is locked.

Return Value

A boolean value that indicates whether or not the lock has been acquired.

Exceptions

InvalidOperationException - The associated connection is not open.

ObjectDisposedException - The object is already disposed.

Remarks

In order for the application to release the lock on the REF appropriately after the Flush
invocation on the OracleRef or FlushCache methods, the application must commit or
rollback the transaction. Therefore, it is required that, before invoking a lock on an
OracleRef object, a transaction is explicitly started by executing the BeginTransaction
method on the OracleConnection object.

This instance method makes a network round-trip to lock the REF in the database. After
this call, programmers can modify the attribute values of the associated row object
exclusively. Then a call to the Flush instance method on the OracleRef or FlushCache
method on the OracleConnection flushes the changes to the database.

If true is passed, this method blocks, that is, does not return, until the lock is acquired.
Consequently, the return value is always true.

If false is passed, this method immediately returns. The return value indicates true if
the lock is acquired, and false if it is not.

16.8.6.13 Update
This method updates the object referenced by the specified REF in the database using
the specified custom object.

Chapter 16
OracleRef Class

16-46

Declaration

// C#
public void Update(object customObject, bool bFlush);

Parameters

• customObject

The custom object used to update the referenced object.

• bFlush

A boolean that specifies if the changes must be flushed immediately. If bFlush is
set to true, this method invocation flushes the changes immediately.

Exceptions

InvalidOperationException - The specified connection is not open or the custom object
does not map to the type of referenced object.

Remarks

This method marks the specified REF for update. Depending on whether the value of
bFlush is set to true or false, the following occurs:

• True

The object referenced by the specified REF is updated immediately in the database.

Before flushing objects, it is required that the application has explicitly started a
transaction by executing the BeginTransaction method on the OracleConnection
object. This is because if the object being flushed has not already been locked by
the application, an exclusive lock is obtained implicitly for the object. The lock is
only released when the transaction commits or rollbacks.

• False

The object referenced by the REF is not updated immediately in the database, but
only when a subsequent Flush method is invoked for the specified REF or the
FlushCache method is invoked for the specified connection.

The connection must be opened explicitly by the application. This method does not
open the connection implicitly.

16.9 OracleUdtFetchOption Enumeration
OracleUdtFetchOption enumeration values specify how to retrieve a copy of the
referenceable object.

Table 16-39 lists all the OracleUdtFetchOption enumeration values with a description of
each enumerated value.

Chapter 16
OracleUdtFetchOption Enumeration

16-47

Table 16-39 OracleUdtFetchOption Enumeration Values

Member Name Description

Cache If there is a copy of the referenced object in the object cache, it
is returned immediately. If no cached copy exists, the latest copy
of the referenced object in the database is cached in the object
cache and returned.

Server The latest copy of the referenced object from the database is
cached in the object cache and returned. If a copy of the
referenced object already exists in the cache, the latest copy
overwrites the existing one.

TransactionCache If a copy of the referenced object is cached in the current
transaction, the copy is returned. Otherwise, the latest copy of
the referenced object from the database is cached in the object
cache and returned. If a copy of the referenced object already
exists in the cache, the latest copy overwrites the existing one.

Note that if a cached copy of the referenced object was modified
before the current transaction began, that is, if the
OracleRef.HasChanges property returns true, then the Recent
option returns the cached copy of the referenced object. Outside
of a transaction, the Recent option behaves like the Any option.

16.10 OracleUdtStatus Enumeration
OracleUdtStatus enumeration values specify the status of an object attribute or
collection element. An object attribute or a collection element can be a valid value or a
null value.

Table 16-40 lists all the OracleUdtStatus enumeration values with a description of each
enumerated value:

Table 16-40 OracleUdtStatus Enumeration Values

Member Name Description

Null Indicates that an object attribute or collection element is NULL.

NotNull Indicates that a non-NULL value exists for the object attribute or
collection element.

Chapter 16
OracleUdtStatus Enumeration

16-48

17
Oracle Data Provider for .NET Bulk Copy
Classes

This chapter describes Oracle Data Provider for .NET support for Bulk Copy
operations.

Note:

Oracle Data Provider for .NET bulk copy operations do not support loading of
UDT type columns.

This chapter includes the following topics:

• OracleBulkCopy Class

• OracleBulkCopyColumnMapping Class

• OracleBulkCopyColumnMappingCollection Class

• OracleBulkCopyOptions Enumeration

• OracleRowsCopiedEventHandler Delegate

• OracleRowsCopiedEventArgs Class

17.1 OracleBulkCopy Class
An OracleBulkCopy object efficiently bulk loads or copies data into an Oracle table from
another data source.

Class Inheritance

System.Object

 System.OracleBulkCopy

Declaration

// C#
public sealed class OracleBulkCopy : IDisposable

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

17-1

Provider ODP.NET, Unmanaged Driver

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

The OracleBulkCopy class can be used to write data to Oracle database tables only.
However, the data source is not limited to Oracle databases; any data source can be
used, as long as the data can be loaded to a DataTable instance or read with an
IDataReader instance.

Bulk copy of string data to destination number column is currently not supported.

17.1.1 OracleBulkCopy Members
OracleBulkCopy members are listed in the following tables.

OracleBulkCopy Constructors

OracleBulkCopy constructors are listed in Table 17-1.

Table 17-1 OracleBulkCopy Constructors

Constructor Description

OracleBulkCopy
Constructors

OracleBulkCopy constructors create new instances of the
OracleBulkCopy class

OracleBulkCopy Properties

OracleBulkCopy properties are listed in Table 17-2.

Table 17-2 OracleBulkCopy Properties

Property Description

BatchSize Specifies the number of rows to be sent as a batch to the
database

BulkCopyOptions Specifies the OracleBulkCopyOptions enumeration value that
determines the behavior of the bulk copy operation

BulkCopyTimeout Specifies the number of seconds allowed for the bulk copy
operation to complete before it is aborted

ColumnMappings Specifies the column mappings between the data source and
destination table

Connection Specifies the OracleConnection object that the Oracle database
uses to perform the bulk copy operation

DestinationPartitionName Specifies the database partition that the data is loaded into

Chapter 17
OracleBulkCopy Class

17-2

Table 17-2 (Cont.) OracleBulkCopy Properties

Property Description

DestinationTableName Specifies the database table that the data is loaded in

NotifyAfter Defines the number of rows to be processed before a notification
event is generated

OracleBulkCopy Public Methods

OracleBulkCopy public methods are listed in Table 17-3.

Table 17-3 OracleBulkCopy Public Methods

Method Description

Close Closes the OracleBulkCopy instance

Dispose Releases any resources or memory allocated by the object

WriteToServer Copies rows to a destination table

OracleBulkCopy Events

OracleBulkCopy events are listed in Table 17-4.

Table 17-4 OracleBulkCopy Events

Event Description

OracleRowsCopied Triggered every time the number of rows specified by the
OracleBulkCopy.NotifyAfter property has been processed

17.1.2 OracleBulkCopy Constructors
OracleBulkCopy constructors create new instances of the OracleBulkCopy class.

Overload List:

• OracleBulkCopy(OracleConnection)

This constructor instantiates a new instance of OracleBulkCopy class using the
specified connection and default value for OracleBulkCopyOptions.

• OracleBulkCopy(string)

This constructor instantiates a new instance of OracleBulkCopy based on the
supplied connectionString and default value for OracleBulkCopyOptions.

• OracleBulkCopy(OracleConnection, OracleBulkCopyOptions)

This constructor instantiates a new instance of OracleBulkCopy using the specified
connection object and OracleBulkCopyOptions value.

• OracleBulkCopy(string, OracleBulkCopyOptions)

Chapter 17
OracleBulkCopy Class

17-3

This constructor instantiates a new instance of OracleConnection based on the
supplied connectionString and OracleBulkCopyOptions value.

17.1.2.1 OracleBulkCopy(OracleConnection)
This constructor instantiates a new instance of OracleBulkCopy class using the
specified connection and default OracleBulkCopyOptions enumeration values.

Declaration

// C#
public OracleBulkCopy(OracleConnection connection);

Parameters

• connection

The open instance of OracleConnection that performs the bulk copy operation.

Exceptions

ArgumentNullException - The connection parameter is null.

InvalidOperationException - The connection is not in the open state.

Remarks

The connection object passed to this constructor must be open. It remains open after
the OracleBulkCopy instance is closed.

This constructor uses the default enumeration value OracleBulkCopyOptions.Default.

The Connection property is set to the supplied connection.

17.1.2.2 OracleBulkCopy(string)
This constructor instantiates a new instance of the OracleBulkCopy class by first
creating an OracleConnection object based on the supplied connectionString , then
initializing the new OracleBulkCopy object with the OracleConnection object and
OracleBulkCopyOptions default value.

Declaration

// C#
public OracleBulkCopy(string connectionString);

Parameters

• connectionString

The connection information used to connect to the Oracle database and perform
the bulk copy operation.

Exception

ArgumentNullException - The connectionString parameter is null.

ArgumentException - The connectionString parameter is empty.

Chapter 17
OracleBulkCopy Class

17-4

Remarks

The WriteToServer method opens the connection, if it is not already opened. The
connection is automatically closed when the OracleBulkCopy instance is closed.

This constructor uses the default enumeration value OracleBulkCopyOptions.Default.

The Connection property is set to the OracleConnection object initialized using the
supplied connectionString.

17.1.2.3 OracleBulkCopy(OracleConnection, OracleBulkCopyOptions)
This constructor instantiates a new instance of OracleBulkCopy using the specified
connection object and OracleBulkCopyOptions value.

Declaration

// C#
public OracleBulkCopy(OracleConnection connection, OracleBulkCopyOptions
 copyOptions);

Parameters

• connection

The open instance of an OracleConnection object that performs the bulk copy
operation.

• copyOptions

The combination of OracleBulkCopyOptions enumeration values that determine the
behavior of the OracleBulkCopy object.

Exceptions

ArgumentNullException - The connection parameter is null.

InvalidOperationException - The connection is not in the open state.

Remarks

The connection passed to this constructor must be open. It remains open after the
OracleBulkCopy instance is closed.

The Connection property is set to the supplied connection.

17.1.2.4 OracleBulkCopy(string, OracleBulkCopyOptions)
This constructor instantiates a new instance of the OracleBulkCopy class by first
creating an OracleConnection object based on the supplied connectionString, then
initializing the new OracleBulkCopy object with the OracleConnection object and the
supplied OracleBulkCopyOptions enumeration values.

Declaration

// C#
public OracleBulkCopy(string connectionString, OracleBulkCopyOptions copyOptions);

Chapter 17
OracleBulkCopy Class

17-5

Parameters

• connectionString

The connection information used to connect to the Oracle database to perform the
bulk copy operation.

• copyOptions

The combination of OracleBulkCopyOptions enumeration values that determine the
behavior of the bulk copy operation.

Exceptions

ArgumentNullException - The connectionString is null.

ArgumentException - The connectionString parameter is empty.

Remarks

The constructor uses the new instance of the OracleConnection class to initialize a new
instance of the OracleBulkCopy class. The OracleBulkCopy instance behaves according
to options supplied in the copyOptions parameter.

The connection is automatically closed when the OracleBulkCopy instance is closed.

The Connection property is set to an OracleConnection object initialized using the
supplied connectionString.

17.1.3 OracleBulkCopy Properties
OracleBulkCopy properties are listed in Table 17-5.

Table 17-5 OracleBulkCopy Properties

Property Description

BatchSize Specifies the number of rows to be sent as a batch to the
database

BulkCopyOptions Specifies the OracleBulkCopyOptions enumeration value that
determines the behavior of the bulk copy operation

BulkCopyTimeout Specifies the number of seconds allowed for the bulk copy
operation to complete before it is aborted

ColumnMappings Specifies the column mappings between the data source and
destination table

Connection Specifies the OracleConnection object that the Oracle database
uses to perform the bulk copy operation

DestinationPartitionName Specifies the database partition that the data is loaded into

DestinationTableName Specifies the database table that the data is loaded in

NotifyAfter Defines the number of rows to be processed before a notification
event is generated

Chapter 17
OracleBulkCopy Class

17-6

17.1.3.1 BatchSize
This property specifies the number of rows to be sent as a batch to the database.

Declaration

// C#
public int BatchSize {get; set;}

Property Value

An integer value for the number of rows to be sent to the database as a batch.

Exceptions

ArgumentOutOfRangeException - The batch size is less than zero.

Remarks

The default value is zero, indicating that the rows are not sent to the database in
batches. The entire set of rows are sent in one single batch.

A large batch size reduces database round trips, but it can also consume large
amounts of client side memory. Excessive memory consumption slows down overall
machine performance and leads to errors if the process runs out of accessible
memory. It is recommended that client side memory is not consumed in excess. This
can be done by reducing the batch size.

A batch is complete when BatchSize number of rows have been processed or there are
no more rows to send to the database.

• If BatchSize > 0 and the UseInternalTransaction bulk copy option is specified, each
batch of the bulk copy operation occurs within a transaction. If the connection used
to perform the bulk copy operation is already part of a transaction, an
InvalidOperationException exception is raised.

• If BatchSize > 0 and the UseInternalTransaction option is not specified, rows are
sent to the database in batches of size BatchSize, but no transaction-related action
is taken.

The BatchSize property can be set at any time. If a bulk copy is already in progress, the
current batch size is determined by the previous batch size. Subsequent batches use
the new batch size.

If the BatchSize property is initially zero and changes while a WriteToServer operation is
in progress, that operation loads the data as a single batch. Any subsequent
WriteToServer operations on the same OracleBulkCopy instance use the new BatchSize.

17.1.3.2 BulkCopyOptions
This property specifies the OracleBulkCopyOptions enumeration value that determines
the behavior of the bulk copy option.

Declaration

// C#
public OracleBulkCopyOptions BulkCopyOptions {get; set;}

Chapter 17
OracleBulkCopy Class

17-7

Property Value

The OracleBulkCopyOptions enumeration object that defines the behavior of the bulk
copy operation.

Exceptions

ArgumentNullException - The bulk copy options set is null.

Remarks

The default value of this property is OracleBulkCopyOptions.Default value. This property
can be used to change the bulk copy options between the batches of a bulk copy
operation.

17.1.3.3 BulkCopyTimeout
This property specifies the number of seconds allowed for the bulk copy operation to
complete before it is aborted.

Declaration

// C#
public int BulkCopyTimeout {get; set;}

Property Value

An integer value for the number of seconds after which the bulk copy operation times
out.

Exceptions

ArgumentOutOfRangeException - The timeout value is set to less than zero.

Remarks

The default value is 30 seconds.

If BatchSize>0, rows that were sent to the database in the previous batches remain
committed. The rows that are processed in the current batch are not sent to the
database. If BatchSize=0, no rows are sent to the database.

17.1.3.4 ColumnMappings
This property specifies the column mappings between the data source and destination
table.

Declaration

// C#
public OracleBulkCopyColumnMappingCollection ColumnMappings {get;}

Property Value

The OracleBulkCopyColumnMappingCollection object that defines the column mapping
between the source and destination table.

Chapter 17
OracleBulkCopy Class

17-8

Remarks

The ColumnMappings collection is unnecessary if the data source and the destination
table have the same number of columns, and the ordinal position of each source
column matches the ordinal position of the corresponding destination column.
However, if the column counts differ, or the ordinal positions are not consistent, the
ColumnMappings collection must be used to ensure that data is copied into the correct
columns.

During the execution of a bulk copy operation, this collection can be accessed, but it
cannot be changed.

By default, this property specifies an empty collection of column mappings.

17.1.3.5 Connection
This property specifies the OracleConnection object that the Oracle database uses to
perform the bulk copy operation.

Declaration

// C#
public OracleConnection Connection {get; }

Property Value

The OracleConnection object used for the bulk copy operations.

Remarks

This property gets the connection constructed by the OracleBulkCopy, if the
OracleBulkCopy object is initialized using a connection string.

17.1.3.6 DestinationPartitionName
This property specifies the database partition that the data is loaded into.

Declaration

// C#
public string DestinationPartitionName {get; set;}

Property Value

A string value that identifies the destination partition name.

Remarks

If DestinationPartitionName is modified while a WriteToServer operation is running, the
change does not affect the current operation. The new DestinationPartitionName value
is used the next time a WriteToServer method is called.

17.1.3.7 DestinationTableName
This property specifies the database table that the data is loaded into.

Chapter 17
OracleBulkCopy Class

17-9

Declaration

// C#
public string DestinationTableName {get; set;}

Property Value

A string value that identifies the destination table name.

Exceptions

ArgumentNullException - The destination table name set is null.

ArgumentException - The destination table name is empty.

Remarks

If DestinationTableName is modified while a WriteToServer operation is running, the
change does not affect the current operation. The new DestinationTableName value is
used the next time a WriteToServer method is called.

17.1.3.8 NotifyAfter
This property defines the number of rows to be processed before a notification event is
generated.

Declaration

// C#
public int NotifyAfter {get; set;}

Property Value

An integer value that specifies the number of rows to be processed before the
notification event is raised.

Exceptions

ArgumentOutOfRangeException - The property value is set to a number less than zero.

Remarks

The default value for this property is zero, to specify that no notifications events are to
be generated.

This property can be retrieved in user interface components to display the progress of
a bulk copy operation. The NotifyAfter property can be set at anytime, even during a
bulk copy operation. The changes take effect for the next notification and any
subsequent operations on the same instance.

17.1.4 OracleBulkCopy Public Methods
OracleBulkCopy methods are listed in Table 17-6.

Chapter 17
OracleBulkCopy Class

17-10

Table 17-6 OracleBulkCopy Public Methods

Method Description

Close Closes the OracleBulkCopy instance

Dispose Releases any resources or memory allocated by the object

WriteToServer Copies rows to a destination table

17.1.4.1 Close
This method closes the OracleBulkCopy instance.

Declaration

// C#
public void Close();

Exceptions

InvalidOperationException - The Close method was called from a OracleRowsCopied
event.

Remarks

After the Close method is called on a OracleBulkCopy object, no other operation can
succeed. Calls to the WriteToServer method throw an InvalidOperationException. The
Close method closes the connection if the connection was opened by the
OracleBulkCopy object, that is, if the OracleBulkCopy object was created by a constructor
that takes a connection string.

17.1.4.2 Dispose
This method releases any resources or memory allocated by the object.

Declaration

// C#
public void Dispose();

Implements

IDisposable

Remarks

After the Dispose method is called on the OracleBulkCopy object, no other operation can
succeed. The connection is closed if the connection was opened by the OracleBulkCopy
object, that is, if a constructor that takes a connection string created the OracleBulkCopy
object.

17.1.4.3 WriteToServer
WriteToServer copies rows to a destination table.

Chapter 17
OracleBulkCopy Class

17-11

Overload List:

• WriteToServer(DataRow[])

This method copies all rows from the supplied DataRow array to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

• WriteToServer(DataTable)

This method copies all rows in the supplied DataTable to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

• WriteToServer(IDataReader)

This method copies all rows in the supplied IDataReader to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

• WriteToServer(DataTable, DataRowState)

This method copies rows that match the supplied row state in the supplied
DataTable to a destination table specified by the DestinationTableName property of
the OracleBulkCopy object.

• WriteToServer(OracleRefCursor)

This method copies all rows from the specified OracleRefCursor to a destination
table specified by the DestinationTableName property of the OracleBulkCopy object.

17.1.4.4 WriteToServer(DataRow[])
This method copies all rows from the supplied DataRow array to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

Declaration

// C#
public void WriteToServer(DataRow[] rows);

Parameters

• rows

An array of DataRow objects to be copied to the destination table.

Exceptions

ArgumentNullException - The rows parameter is null.

InvalidOperationException - The connection is not in an open state.

Remarks

The ColumnMappings collection maps from the DataRow columns to the destination
database table.

17.1.4.5 WriteToServer(DataTable)
This method copies all rows in the supplied DataTable to a destination table specified
by the DestinationTableName property of the OracleBulkCopy object.

Chapter 17
OracleBulkCopy Class

17-12

Declaration

// C#
public void WriteToServer(DataTable table);

Parameters

• table

The source DataTable containing rows to be copied to the destination table.

Exceptions

ArgumentNullException - The table parameter is null.

InvalidOperationException - The connection is not in an open state.

Remarks

All rows in the DataTable are copied to the destination table except those that have
been deleted.

The ColumnMappings collection maps from the DataTable columns to the destination
database table.

17.1.4.6 WriteToServer(IDataReader)
This method copies all rows in the supplied IDataReader to a destination table specified
by the DestinationTableName property of the OracleBulkCopy object.

Declaration

// C#
public void WriteToServer(IDataReader reader);

Parameters

• reader

A IDataReader instance containing rows to be copied to the destination table.

Exceptions

ArgumentNullException - The reader parameter is null.

InvalidOperationException - The connection is not in an open state.

Remarks

The bulk copy operation starts with the next available row of the data reader. Typically,
the reader returned by a call to the ExecuteReader method is passed to the
WriteToServer method so that the next row becomes the first row. To copy multiple
result sets, the application must call NextResult on the reader and then call the
WriteToServer method again.

This WriteToServer method changes the state of the reader as it calls reader.Read
internally to get the source rows. Thus, at the end of the WriteToServer operation, the
reader is at the end of the result set.

Chapter 17
OracleBulkCopy Class

17-13

The ColumnMappings collection maps from the data reader columns to the destination
database table.

17.1.4.7 WriteToServer(DataTable, DataRowState)
This method copies rows that match the supplied row state in the supplied DataTable to
a destination table specified by the DestinationTableName property of the
OracleBulkCopy object.

Declaration

// C#
public void WriteToServer(DataTable table, DataRowState rowState);

Parameters

• table

A DataTable containing rows to be copied to the destination table.

• rowState

The DataRowState enumeration value. Only rows matching the row state are copied
to the destination.

Exceptions

ArgumentNullException - The table or rowState parameter is null.

InvalidOperationException - The connection is not in an open state.

Remarks

Only rows in the DataTable that are in the state indicated in the rowState argument and
have not been deleted are copied to the destination table.

The ColumnMappings collection maps from the DataTable columns to the destination
database table.

DataRowState.Deleted is not supported and the behavior would be that all the rows
except the deleted ones are copied.

17.1.4.8 WriteToServer(OracleRefCursor)
This method copies all rows from the specified OracleRefCursor to a destination table
specified by the DestinationTableName property of the OracleBulkCopy object.

Declaration

// C#
public void WriteToServer(OracleRefCursor refCursor);

Parameters

• refCursor

An OracleRefCursor object containing rows to be copied to the destination table.

Chapter 17
OracleBulkCopy Class

17-14

Exceptions

ArgumentNullException - The refCursor parameter is null

InvalidOperationException - The connection is not in an open state.

Remarks

The ColumnMappings collection maps from the OracleRefCursor columns to the
destination database table.

17.1.5 OracleBulkCopy Events
OracleBulkCopy events are listed in Table 17-7.

Table 17-7 OracleBulkCopy Events

Event Description

OracleRowsCopied Triggered every time the number of rows specified by the
OracleBulkCopy.NotifyAfter property has been processed

17.1.5.1 OracleRowsCopied
This event is triggered every time the number of rows specified by the
OracleBulkCopy.NotifyAfter property has been processed.

Declaration

// C#
public event OracleRowsCopiedEventHandler OracleRowsCopied;

Exceptions

InvalidOperationException - The Close method is called inside this event.

Remarks

This event is raised when the number of rows specified by the NotifyAfter property
has been processed. It does not imply that the rows have been sent to the database or
committed.

To cancel the operation from this event, use the Abort property of
OracleRowsCopiedEventArgs class.

17.2 OracleBulkCopyColumnMapping Class
The OracleBulkCopyColumnMapping class defines the mapping between a column in the
data source and a column in the destination database table.

Class Inheritance

System.Object

Chapter 17
OracleBulkCopyColumnMapping Class

17-15

 System.OracleBulkCopyColumnMapping

Declaration

// C#
public sealed class OracleBulkCopyColumnMapping

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

Column mappings define the mapping between data source and the target table.

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on the
ordinal position. This succeeds only if the source and destination table schema match.
If there is a mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round-trips to the database
to determine the column name if the mapping is specified by ordinal position.
To avoid this performance overhead, specify the mapping by column name.

Example

// C#

17.2.1 OracleBulkCopyColumnMapping Members
OracleBulkCopyColumnMapping members are listed in the following tables.

OracleBulkCopyColumnMapping Constructors

The OracleBulkCopyColumnMapping constructors are listed in Table 17-8.

Chapter 17
OracleBulkCopyColumnMapping Class

17-16

Table 17-8 OracleBulkCopyColumnMapping Constructors

Constructor Description

OracleBulkCopyColumnMap
ping Constructors

Instantiates new instances of the
OracleBulkCopyColumnMapping class

OracleBulkCopyColumnMapping Methods

The OracleBulkCopyColumnMapping method is listed in Table 17-9.

Table 17-9 OracleBulkCopyColumnMapping Method

Constructor Description

CompareTo Compares the current instance to the supplied object and
returns an integer that represents their relative values

OracleBulkCopyColumnMapping Properties

The OracleBulkCopyColumnMapping properties are listed in Table 17-10.

Table 17-10 OracleBulkCopyColumnMapping Properties

Property Description

DestinationColumn Specifies the column name of the destination table that is being
mapped

DestinationOrdinal Specifies the column ordinal value of the destination table that is
being mapped

SourceColumn Specifies the column name of the data source that is being
mapped

SourceOrdinal Specifies the column ordinal value of the data source that is
being mapped

17.2.2 OracleBulkCopyColumnMapping Constructors
OracleBulkCopyColumnMapping constructors instantiates new instances of the
OracleBulkCopyColumnMapping class.

Overload List:

• OracleBulkCopyColumnMapping()

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class

• OracleBulkCopyColumnMapping(int, int)

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column ordinal and destination column ordinal.

• OracleBulkCopyColumnMapping(int, string)

Chapter 17
OracleBulkCopyColumnMapping Class

17-17

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column ordinal and destination column name.

• OracleBulkCopyColumnMapping(string, int)

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column name and destination column ordinal.

• OracleBulkCopyColumnMapping(string, string)

This constructor instantiates a new instance of the OracleBulkCopyColumnMapping
class using the provided source column name and destination column name.

17.2.2.1 OracleBulkCopyColumnMapping()
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class.

Declaration

// C#
public OracleBulkCopyColumnMapping();

Remarks

Applications that use this constructor must define the source for the mapping using the
SourceColumn or SourceOrdinal property, and must define the destination for the
mapping using the DestinationColumn or DestinationOrdinal property.

17.2.2.2 OracleBulkCopyColumnMapping(int, int)
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source and destination column ordinal positions.

Declaration

// C#
public OracleBulkCopyColumnMapping(int sourceColumnOrdinal,
 int destinationOrdinal);

Parameters

• sourceColumnOrdinal

The ordinal position of the source column within the data source.

• destinationOrdinal

The ordinal position of the destination column within the destination table.

17.2.2.3 OracleBulkCopyColumnMapping(int, string)
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source column ordinal and destination column name.

Declaration

// C#
public OracleBulkCopyColumnMapping(int sourceColumnOrdinal,
 string destinationColumn);

Chapter 17
OracleBulkCopyColumnMapping Class

17-18

Parameters

• sourceColumnOrdinal

The ordinal position of the source column within the data source.

• destinationColumn

The name of the destination column within the destination table.

17.2.2.4 OracleBulkCopyColumnMapping(string, int)
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source column name and destination column ordinal.

Declaration

// C#
public OracleBulkCopyColumnMapping(string sourceColumn, int destinationOrdinal);

Parameters

• sourceColumn

The name of the source column within the data source.

• destinationOrdinal

The ordinal position of the destination column within the destination table.

17.2.2.5 OracleBulkCopyColumnMapping(string, string)
This constructor instantiates a new instance of the OracleBulkCopyColumnMapping class
using the provided source and destination column names.

Declaration

// C#
public OracleBulkCopyColumnMapping(string sourceColumn, string destinationColumn);

Parameters

• sourceColumn

The name of the source column within the data source.

• destinationColumn

The name of the destination column within the destination table.

17.2.3 OracleBulkCopyColumnMapping Methods
The OracleBulkCopyColumnMapping method is listed in Table 17-11.

Chapter 17
OracleBulkCopyColumnMapping Class

17-19

Table 17-11 OracleBulkCopyColumnMapping Method

Property Description

CompareTo Compares the current instance to the supplied object and
returns an integer that represents their relative values

17.2.3.1 CompareTo
This method compares the current instance to the supplied object and returns an
integer that represents their relative values.

Declaration

// C#
public int CompareTo(object obj);

Parameters

obj - The supplied instance.

Return Value

Less than zero: if the value of the current instance is less than obj.

Zero: if the value of the current instance is equal to obj.

Greater than zero: if the value of the current instance is greater than obj.

Implements

IComparable

17.2.4 OracleBulkCopyColumnMapping Properties
The OracleBulkCopyColumnMapping properties are listed in Table 17-12.

Table 17-12 OracleBulkCopyColumnMapping Properties

Property Description

DestinationColumn Specifies the column name of the destination table that is being
mapped

DestinationOrdinal Specifies the column ordinal value of the destination table that is
being mapped

SourceColumn Specifies the column name of the data source that is being
mapped

SourceOrdinal Specifies the column ordinal value of the data source that is
being mapped

Chapter 17
OracleBulkCopyColumnMapping Class

17-20

17.2.4.1 DestinationColumn
This property specifies the column name of the destination table that is being mapped.

Declaration

// C#
public string DestinationColumn {get; set;}

Property Value

A string value that represents the destination column name of the mapping.

Remarks

The DestinationColumn and DestinationOrdinal properties are mutually exclusive. The
last value set takes precedence.

17.2.4.2 DestinationOrdinal
This property specifies the column ordinal value of the destination table that is being
mapped.

Declaration

// C#
public int DestinationOrdinal {get; set;}

Property Value

An integer value that represents the destination column ordinal of the mapping.

Exceptions

IndexOutOfRangeException - The destination ordinal is invalid.

Remarks

The DestinationOrdinal and DestinationColumn properties are mutually exclusive. The
last value set takes precedence.

17.2.4.3 SourceColumn
This property specifies the column name of the data source that is being mapped.

Declaration

// C#
public string SourceColumn {get; set;}

Property Value

A string value that represents the source column name of the mapping.

Chapter 17
OracleBulkCopyColumnMapping Class

17-21

Remarks

The SourceColumn and SourceOrdinal properties are mutually exclusive. The last value
set takes precedence.

17.2.4.4 SourceOrdinal
This property specifies the column ordinal value of the data source that is being
mapped.

Declaration

// C#
public int SourceOrdinal {get; set;}

Property Value

An integer value that represents the source column ordinal of the mapping.

Exceptions

IndexOutOfRangeException - The source ordinal is invalid.

Remarks

The SourceOrdinal and SourceColumn properties are mutually exclusive. The last value
set takes precedence.

17.3 OracleBulkCopyColumnMappingCollection Class
The OracleBulkCopyColumnMappingCollection class represents a collection of
OracleBulkCopyColumnMapping objects that are used to map columns in the data source
to columns in a destination table.

Class Inheritance

System.Object

 System.CollectionBase

 System.OracleBulkCopyColumnMappingCollection

Declaration

// C#
public sealed class OracleBulkCopyColumnMappingCollection : CollectionBase

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-22

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

Column mappings define the mapping between data source and the target table.

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on the
ordinal position. This succeeds only if the source and destination table schema match.
If there is a mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round-trips to the database
to determine the column name if the mapping is specified by ordinal position.
To avoid this performance overhead, specify the mapping by column name.

Example

// C#

17.3.1 OracleBulkCopyColumnMappingCollection Members
OracleBulkCopyColumnMappingCollection members are listed in the following tables.

OracleBulkCopyColumnMappingCollection Properties

The OracleBulkCopyColumnMappingCollection properties are listed in Table 17-13.

Table 17-13 OracleBulkCopyColumnMappingCollection Properties

Property Description

Item[index] Gets or sets the OracleBulkCopyColumnMappingCollection
object at the specified index

OracleBulkCopyColumnMappingCollection Public Methods

The OracleBulkCopyColumnMappingCollection public methods are listed in Table 17-14.

Table 17-14 OracleBulkCopyColumnMappingCollection Public Methods

Public Method Description

Add Adds objects to the collection

Clear Clears the contents of the collection

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-23

Table 17-14 (Cont.) OracleBulkCopyColumnMappingCollection Public Methods

Public Method Description

Contains Returns a value indicating whether or not a specified
OracleBulkCopyColumnMapping object exists in the collection

CopyTo Copies the elements of the
OracleBulkCopyColumnMappingCollection to an array of
OracleBulkCopyColumnMapping items, starting at a specified
index

IndexOf Returns the index of the specified
OracleBulkCopyColumnMapping object

Insert Inserts a new OracleBulkCopyColumnMapping object in the
collection, at the index specified.

Remove Removes the specified OracleBulkCopyColumnMapping element
from the OracleBulkCopyColumnMappingCollection.

RemoveAt Removes the mapping from the collection at the specified index.

17.3.2 OracleBulkCopyColumnMappingCollection Properties
The OracleBulkCopyColumnMappingCollection properties are listed in Table 17-15.

Table 17-15 OracleBulkCopyColumnMappingCollection Properties

Property Description

Item[index] Gets or sets the OracleBulkCopyColumnMappingCollection object
at the specified index

17.3.2.1 Item[index]
This property gets or sets the OracleBulkCopyColumnMapping object at the specified
index.

Declaration

// C#
public OracleBulkCopyColumnMapping this[int index] {get;set;}

Parameters

• index

The zero-based index of the OracleBulkCopyColumnMapping being set or retrieved.

Property Value

An OracleBulkCopyColumnMapping object at the specified index.

Exceptions

IndexOutOfRangeException - The specified index does not exist.

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-24

17.3.3 OracleBulkCopyColumnMappingCollection Public Methods
The OracleBulkCopyColumnMappingCollection public methods are listed in Table 17-16.

Table 17-16 OracleBulkCopyColumnMappingCollection Public Methods

Public Method Description

Add Adds objects to the collection

Clear Clears the contents of the collection

Contains Returns a value indicating whether or not a specified
OracleBulkCopyColumnMapping object exists in the collection

CopyTo Copies the elements of the
OracleBulkCopyColumnMappingCollection to an array of
OracleBulkCopyColumnMapping items, starting at a specified
index

IndexOf Returns the index of the specified
OracleBulkCopyColumnMapping object

Insert Inserts a new OracleBulkCopyColumnMapping object in the
collection, at the index specified.

Remove Removes the specified OracleBulkCopyColumnMapping element
from the OracleBulkCopyColumnMappingCollection.

RemoveAt Removes the mapping from the collection at the specified index.

17.3.3.1 Add
Add methods add objects to the collection.

Overload List:

• Add(OracleBulkCopyColumnMapping)

This method adds the supplied OracleBulkCopyColumnMapping object to the
collection.

• Add(int, int)

This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source and destination column ordinal positions.

• Add(int, string)

This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source column ordinal and destination column name.

• Add(string, int)

This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source column name and destination column ordinal.

• Add(string, string)

This method creates and adds an OracleBulkCopyColumnMapping object to the
collection using the supplied source and destination column names.

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-25

17.3.3.2 Add(OracleBulkCopyColumnMapping)
This method adds the supplied OracleBulkCopyColumnMapping object to the collection.

Declaration

// C#
public OracleBulkCopyColumnMapping Add(OracleBulkCopyColumnMapping
 bulkCopyColumnMapping);

Parameters

• bulkCopyColumnMapping

The OracleBulkCopyColumnMapping object that describes the mapping to be added to
the collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

17.3.3.3 Add(int, int)
This method creates and adds an OracleBulkCopyColumnMapping object to the collection
using the supplied source and destination column ordinal positions.

Declaration

// C#
public OracleBulkCopyColumnMapping Add(int sourceColumnIndex,
 int destinationColumnIndex);

Parameters

• sourceColumnIndex

The ordinal position of the source column within the data source.

• destinationColumnIndex

The ordinal position of the destination column within the destination table.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Return Value

The newly created OracleBulkCopyColumnMapping object that was added to the
collection.

Remarks

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on the
ordinal position. This succeeds only if the source and destination table schema match.
If there is a mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-26

Note:

Oracle Data Provider for .NET makes one or more round-trips to the database
to determine the column name if the mapping is specified by ordinal position.
To avoid this performance overhead, specify the mapping by column name.

17.3.3.4 Add(int, string)
This method creates and adds an OracleBulkCopyColumnMapping object to the collection
using the supplied source column ordinal and destination column name.

Declaration

// C#
public OracleBulkCopyColumnMapping Add(int sourceColumnIndex,
 string destinationColumn);

Parameters

• sourceColumnIndex

The ordinal position of the source column within the data source.

• destinationColumn

The name of the destination column within the destination table.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Return Value

The newly created OracleBulkCopyColumnMapping object that was added to the
collection.

Remarks

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on the
ordinal position. This succeeds only if the source and destination table schema match.
If there is a mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round trips to the database
to determine the column names if the mapping is specified by ordinal resulting
in a performance overhead. Therefore, it is recommended to specify the
mapping by column names.

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-27

17.3.3.5 Add(string, int)
This method creates and adds an OracleBulkCopyColumnMapping object to the collection
using the supplied source column name and destination column ordinal.

Declaration

// C#
public OracleBulkCopyColumnMapping Add(string sourceColumn,
 int destinationColumnIndex);

Parameters

• sourceColumn

The name of the source column within the data source.

• destinationColumnIndex

The ordinal position of the destination column within the destination table.

Return Value

The newly created OracleBulkCopyColumnMapping object that was added to the
collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Remarks

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on the
ordinal position. This succeeds only if the source and destination table schema match.
If there is a mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round trips to the database
to determine the column names if the mapping is specified by ordinal resulting
in a performance overhead. Therefore, it is recommended to specify the
mapping by column names.

17.3.3.6 Add(string, string)
This method creates and adds an OracleBulkCopyColumnMapping object to the collection
using the supplied source and destination column names.

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-28

Declaration

// C#
public OracleBulkCopyColumnMapping Add(string sourceColumn,
 string destinationColumn);

Parameters

• sourceColumn

The name of the source column within the data source.

• destinationColumn

The name of the destination column within the destination table.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Return Value

The newly created OracleBulkCopyColumnMapping object that was added to the
collection.

Remarks

It is not necessary to specify column mappings for all the columns in the data source.
If a ColumnMapping is not specified, then, by default, columns are mapped based on the
ordinal position. This succeeds only if the source and destination table schema match.
If there is a mismatch, an InvalidOperationException is thrown.

All the mappings in a mapping collection must be by name or ordinal position.

Note:

Oracle Data Provider for .NET makes one or more round-trips to the database
to determine the column name if the mapping is specified by ordinal position.
To avoid this performance overhead, specify the mapping by column name.

17.3.3.7 Clear
This method clears the contents of the collection.

Declaration

// C#
public void Clear();

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-29

Remarks

The Clear method is most commonly used when an application uses a single
OracleBulkCopy instance to process more than one bulk copy operation. If column
mappings are created for one bulk copy operation, the
OracleBulkCopyColumnMappingCollection must be cleared after the WriteToServer
method invocation and before the next bulk copy is processed.

It is usually more efficient to perform several bulk copies using the same
OracleBulkCopy instance than to use a separate OracleBulkCopy for each operation.

17.3.3.8 Contains
This method returns a value indicating whether or not a specified
OracleBulkCopyColumnMapping object exists in the collection.

Declaration

// C#
public bool Contains(OracleBulkCopyColumnMapping value);

Parameters

• value

A valid OracleBulkCopyColumnMapping object.

Return Value

Returns true if the specified mapping exists in the collection; otherwise, returns false.

17.3.3.9 CopyTo
This method copies the elements of the OracleBulkCopyColumnMappingCollection to an
array of OracleBulkCopyColumnMapping items, starting at a specified index.

Declaration

// C#
public void CopyTo(OracleBulkCopyColumnMapping[] array, int index);

Parameters

• array

The one-dimensional OracleBulkCopyColumnMapping array that is the destination for
the elements copied from the OracleBulkCopyColumnMappingCollection object. The
array must have zero-based indexing.

• index

The zero-based array index at which copying begins.

17.3.3.10 IndexOf
This method returns the index of the specified OracleBulkCopyColumnMapping object.

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-30

Declaration

// C#
public int IndexOf(OracleBulkCopyColumnMapping value);

Parameters

• value

The OracleBulkCopyColumnMapping object that is being returned.

Return Value

The zero-based index of the column mapping or -1 if the column mapping is not found
in the collection.

17.3.3.11 Insert
This method inserts a new OracleBulkCopyColumnMapping object in the collection, at the
index specified.

Declaration

// C#
public void Insert(int index, OracleBulkCopyColumnMapping value);

Parameters

• index

The integer value of the location within the OracleBulkCopyColumnMappingCollection
at which the new OracleBulkCopyColumnMapping is inserted.

• value

The OracleBulkCopyColumnMapping object to be inserted in the collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

17.3.3.12 Remove
This method removes the specified OracleBulkCopyColumnMapping element from the
OracleBulkCopyColumnMappingCollection.

Declaration

// C#
public void Remove(OracleBulkCopyColumnMapping value);

Parameters

• value

The OracleBulkCopyColumnMapping object to be removed from the collection.

Chapter 17
OracleBulkCopyColumnMappingCollection Class

17-31

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Remarks

The Remove method is most commonly used when a single OracleBulkCopy instance
processes more than one bulk copy operation. If column mappings are created for one
bulk copy operation, mappings that no longer apply must be removed after the
WriteToServer method invocation and before mappings are defined for the next bulk
copy. The Clear method can clear the entire collection, and the Remove and the RemoveAt
methods can remove mappings individually.

It is usually more efficient to perform several bulk copies using the same
OracleBulkCopy instance than to use a separate OracleBulkCopy for each operation.

17.3.3.13 RemoveAt
This method removes the mapping from the collection at the specified index.

Declaration

// C#
public void RemoveAt(int index);

Parameters

• index

The zero-based index of the OracleBulkCopyColumnMapping object to be removed
from the collection.

Exceptions

InvalidOperationException - The bulk copy operation is in progress.

Remarks

The RemoveAt method is most commonly used when a single OracleBulkCopy instance is
used to process more than one bulk copy operation. If column mappings are created
for one bulk copy operation, mappings that no longer apply must be removed after the
WriteToServer method invocation and before the mappings for the next bulk copy are
defined. The Clear method can clear the entire collection, and the Remove and the
RemoveAt methods can remove mappings individually.

It is usually more efficient to perform several bulk copies using the same
OracleBulkCopy instance than to use a separate OracleBulkCopy for each operation.

17.4 OracleBulkCopyOptions Enumeration
The OracleBulkCopyOptions enumeration specifies the values that can be combined
with an instance of the OracleBulkCopy class and used as options to determine its
behavior and the behavior of the WriteToServer methods for that instance.

Chapter 17
OracleBulkCopyOptions Enumeration

17-32

Table 17-17 lists all the OracleBulkCopyOptions enumeration values with a description
of each enumerated value.

Table 17-17 OracleBulkCopyOptions Enumeration Members

Member Name Description

Default Indicates that the default value for all options are to be used

UseInternalTransaction Indicates that each batch of the bulk copy operation occurs
within a transaction. If the connection used to perform the
bulk copy operation is already part of a transaction, an
InvalidOperationException exception is raised.

If this member is not specified, BatchSize number of rows
are sent to the database, without any transaction-related
activity.

Note:

All bulk copy operations are agnostic of any local or distributed transaction
created by the application.

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

17.5 OracleRowsCopiedEventHandler Delegate
The OracleRowsCopiedEventHandler delegate represents the method that handles the
OracleRowsCopied event of an OracleBulkCopy object.

Declaration

// C#
public delegate void OracleRowsCopiedEventHandler (object sender,
 OracleRowsCopiedEventArgs eventArgs);

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Chapter 17
OracleRowsCopiedEventHandler Delegate

17-33

Parameters

• sender

The source of the event.

• eventArgs

The OracleRowsCopiedEventArgs object that contains the event data.

Remarks

Event callbacks can be registered through this event delegate for applications that
wish to be notified every time the number of rows specified by the
OracleBulkCopy.NotifyAfter property has been processed.

If the event handler calls the OracleBulkCopy.Close method, an exception is generated,
and the OracleBulkCopy object state does not change.

The event handler can also set the OracleRowsCopiedEventArgs.Abort property to true to
indicate that the bulk copy operation must be aborted. If the bulk copy operation is part
of an external transaction, an exception is generated and the transaction is not rolled
back. The application is responsible for either committing or rolling back the external
transaction.

If there is no external transaction, the internal transaction for the current batch of rows
is automatically rolled back. However the previous batches of imported rows are
unaffected, as their transactions have already been committed.

17.6 OracleRowsCopiedEventArgs Class
The OracleRowsCopiedEventArgs class represents the set of arguments passed as part
of event data for the OracleRowsCopied event.

Class Inheritance

System.Object

 System.EventArgs

 System.OracleRowsCopiedEventArgs

Declaration

// C#
public class OracleRowsCopiedEventArgs : EventArgs

Requirements

Provider ODP.NET, Unmanaged Driver

Assembly Oracle.DataAccess.dll

Namespace Oracle.DataAccess.Client

.NET Framework 3.5, 4.5, 4.6

Chapter 17
OracleRowsCopiedEventArgs Class

17-34

Thread Safety

All public static methods are thread-safe, although instance methods do not guarantee
thread safety.

Remarks

Each time the number of rows represented by the OracleBulkCopy.NotifyAfter property
is processed, the OracleBulkCopy.OracleRowsCopied event is raised, providing an
OracleRowsCopiedEventArgs object that stores the event data.

17.6.1 OracleRowsCopiedEventArgs Members
OracleRowsCopiedEventArgs members are listed in the following tables.

OracleRowsCopiedEventArgs Constructors

OracleRowsCopiedEventArgs constructors are listed in Table 17-18.

Table 17-18 OracleRowsCopiedEventArgs Constructors

Constructor Description

OracleRowsCopiedEventAr
gs Constructors.

OracleRowsCopiedEventArgs creates new instances of the
OracleRowsCopiedEventArgs class

OracleRowsCopiedEventArgs Properties

OracleRowsCopiedEventArgs properties are listed in Table 17-19.

Table 17-19 OracleRowsCopiedEventArgs Properties

Property Description

Abort Retrieves or sets a value that indicates whether or not the bulk
copy operation is aborted

RowsCopied Retrieves a value that represents the number of rows copied
during the current bulk copy operation

17.6.2 OracleRowsCopiedEventArgs Constructors
OracleRowsCopiedEventArgs creates new instances of the OracleRowsCopiedEventArgs
class.

Overload List:

• OracleRowsCopiedEventArgs(long)

This constructor creates a new instance of the OracleRowsCopiedEventArgs object.

Chapter 17
OracleRowsCopiedEventArgs Class

17-35

17.6.2.1 OracleRowsCopiedEventArgs(long)
This constructor creates a new instance of the OracleRowsCopiedEventArgs object.

Declaration

// C#
public OracleRowsCopiedEventArgs(long rowsCopied);

Parameters

• rowsCopied

An Int64 value that indicates the number of rows copied during the current bulk
copy operation.

Remarks

The value in the rowsCopied parameter is reset by each call to a WriteToServer method.

17.6.3 OracleRowsCopiedEventArgs Properties
OracleRowsCopiedEventArgs properties are listed in Table 17-20.

Table 17-20 OracleRowsCopiedEventArgs Properties

Property Description

Abort Retrieves or sets a value that indicates whether or not the bulk
copy operation is aborted

RowsCopied Retrieves a value that represents the number of rows copied
during the current bulk copy operation

17.6.3.1 Abort
This property retrieves or sets a value that indicates whether or not the bulk copy
operation is aborted.

Declaration

// C#
public bool Abort{get; set;}

Property Value

Returns true if the bulk copy operation is to be aborted; otherwise, returns false.

Remarks

Set the Abort property to true to cancel the bulk copy operation.

If the Close method is called from OracleRowsCopied, an exception is generated, and the
OracleBulkCopy object state does not change.

Chapter 17
OracleRowsCopiedEventArgs Class

17-36

If the application does not create a transaction, the internal transaction corresponding
to the current batch is automatically rolled back. However, changes related to previous
batches within the bulk copy operation are retained, because the transactions in those
batches are committed. This case is applicable only when UseInternalTransaction bulk
copy option is chosen.

17.6.3.2 RowsCopied
This property retrieves a value that represents the number of rows copied during the
current bulk copy operation.

Declaration

// C#
public long RowsCopied {get;}

Property Value

An Int64 value that returns the number of rows copied.

Remarks

The value in the RowsCopied property is reset by each call to a WriteToServer method.

Chapter 17
OracleRowsCopiedEventArgs Class

17-37

A
Oracle Schema Collections

ODP.NET provides standard metadata collections as well as various Oracle database-
specific metadata collections that can be retrieved through the
OracleConnection.GetSchema API.

See Also:

• "Schema Discovery"

• "GetSchema"

This appendix contains the following topics:

• Common Schema Collections

• ODP.NET-Specific Schema Collection

A.1 Common Schema Collections
The common schema collections are available for all .NET Framework managed
providers. ODP.NET supports the same common schema collections.

• MetaDataCollections

• DataSourceInformation

• DataTypes

• Restrictions

• ReservedWords

A.1.1 MetaDataCollections
Table A-1 is a list of metadata collections that is available from the data source, such
as tables, columns, indexes, and stored procedures.

Table A-1 MetaDataCollections

Column Name Data Type Description

CollectionName string The name of the collection passed to the
GetSchema method for retrieval.

NumberOfRestrictions int Number of restrictions specified for the named
collection.

NumberOfIdentifierParts int Number of parts in the composite identifier/
database object name.

A-1

A.1.2 DataSourceInformation
Table A-2 lists DataSourceInformation information which may include these columns
and possibly others.

Table A-2 DataSource Information

Columns Data Type Description

CompositeIdentifierSeparatorPattern string Separator for multipart names: @ | \ .

DataSourceProductName string Database name: Oracle

DataSourceProductVersion string Database version. Note that this is the
version of the database instance currently
being accessed by DbConnection.

DataSourceProductVersionNormalized string A normalized DataSource version for
easier comparison between different
versions. For example:

DataSource Version: 10.2.0.1.0

Normalized DataSource Version:
10.02.00.01.00

GroupByBehavior GroupByBehavior An enumeration that indicates the
relationship between the columns in a
GROUP BY clause and the non-aggregated
columns in a select list.

IdentifierPattern string Format for a valid identifier.

IdentifierCase IdentifierCase An enumeration that specifies whether or
not to treat non-quoted identifiers as case
sensitive.

OrderByColumnsInSelect bool A boolean that indicates whether or not
the select list must contain the columns in
an ORDER BY clause.

ParameterMarkerFormat string A string indicating whether or not
parameter markers begin with a special
character.

ParameterMarkerPattern string The format of a parameter marker.

ParameterNameMaxLength int Maximum length of a parameter.

ParameterNamePattern string The format for a valid parameter name.

QuotedIdentifierPattern string The format of a quoted identifier.

QuotedIdentifierCase IdentifierCase An enumeration that specifies whether or
not to treat quote identifiers as case
sensitive.

StringLiteralPattern string The format for a string literal.

SupportedJoinOperators SupportedJoin
Operators

An enumeration indicating the types of
SQL join statements supported by the
data source.

Appendix A
Common Schema Collections

A-2

A.1.3 DataTypes
Table A-3 lists DataTypes Collection information which may include these columns
and possibly others.

Note:

As an example, the description column includes complete information for the
TIMESTAMP WITH LOCAL TIME ZONE data type.

Table A-3 Data Types

ColumnName Data Type Description

TypeName string The provider-specific data
type name.

Example: TIMESTAMP WITH
LOCAL TIME ZONE

ProviderDbType int The provider-specific type
value.

Example: 124

ColumnSize long The length of a non-numeric
column or parameter.

Example:27

CreateFormat string A format string that indicates
how to add this column to a
DDL statement.

Example: TIMESTAMP({0} WITH
LOCAL TIME ZONE)

CreateParameters string The parameters specified to
create a column of this data
type.

Example: 8

DataType string The .NET type for the data
type.

Example: System.DateTime

IsAutoIncrementable bool A boolean value that indicates
whether or not this data type
can be auto-incremented.

Example: false

IsBestMatch bool A boolean value that indicates
whether or not this data type is
the best match to values in the
DataType column.

Example: false

Appendix A
Common Schema Collections

A-3

Table A-3 (Cont.) Data Types

ColumnName Data Type Description

IsCaseSensitive bool A boolean value that indicates
whether or not this data type is
case-sensitive.

Example: false

IsFixedLength bool A boolean value that indicates
whether or not this data type
has a fixed length.

Example: true

IsFixedPrecisionScale bool A boolean value that indicates
whether or not this data type
has a fixed precision and
scale.

Example: false

IsLong bool A boolean value that indicates
whether or not this data type
contains very long data.

Example: false

IsNullable bool A boolean value that indicates
whether or not this data type is
nullable.

Example: true

IsSearchable bool A boolean value that indicates
whether or not the data type
can be used in a WHERE clause
with any operator, except the
LIKE predicate.

Example: true

IsSearchableWithLike bool A boolean value that indicates
whether or not this data type
can be used with the LIKE
predicate.

Example: false

IsUnsigned bool A boolean value that indicates
whether or not the data type is
unsigned.

MaximumScale short The maximum number of
digits allowed to the right of
the decimal point.

MinimumScale short The minimum number of digits
allowed to the right of the
decimal point.

IsConcurrencyType bool A boolean value that indicates
whether or not the database
updates the data type every
time the row is changed and
the value of the column differs
from all previous values.

Example: false

Appendix A
Common Schema Collections

A-4

Table A-3 (Cont.) Data Types

ColumnName Data Type Description

MinimumVersion String The earliest version of the
database that can be used.

Example:09.00.00.00.00

IsLiteralSupported bool A boolean value that indicates
whether or not the data type
can be expressed as a literal.

Example: true

LiteralPrefix string The prefix of a specified literal.

Example: TO_TIMESTAMP_TZ('

LiteralSuffix string The suffix of a specified literal.

Example: ','YYYY-MM-DD
HH24:MI:SS.FF')

A.1.4 Restrictions
Table A-4 lists Restrictions, including the following columns.

Table A-4 Restrictions

ColumnName Data Type Description

CollectionName string The collection that the restrictions apply to.

RestrictionName string The restriction name.

RestrictionNumber int A number that indicates the location of the
restriction.

A.1.5 ReservedWords
The ReservedWords collection exposes information about the words that are reserved by
the database currently connected to ODP.NET.

Table A-5 lists the ReservedWords Collection.

Table A-5 ReservedWords

ColumnName Data Type Description

ReservedWord string Provider-specific reserved words

A.2 ODP.NET-Specific Schema Collection
Oracle Data Provider for .NET supports both the common schema collections
described previously and the following Oracle-specific schema collections:

• Tables

• Columns

Appendix A
ODP.NET-Specific Schema Collection

A-5

• Views

• XMLSchema

• Users

• Synonyms

• Sequences

• Functions

• Procedures

• ProcedureParameters

• Arguments

• Packages

• PackageBodies

• JavaClasses

• Indexes

• IndexColumns

• PrimaryKeys

• ForeignKeys

• ForeignKeyColumns

• UniqueKeys

A.2.1 Tables
Table A-6 lists the column name, data type, and description of the Tables Schema
Schema Collection.

Table A-6 Tables

Column Name Data Type Description

OWNER String Owner of the Table.

TABLE_NAME String Name of the Table.

TYPE String Type of Table, for example, System or User.

A.2.2 Columns
Table A-7 lists the column name, data type, and description of the Columns Schema
Collection .

Table A-7 Columns

ColumnName Data Type Description

OWNER String Owner of the table or view.

TABLE_NAME String Name of the table or view.

COLUMN_NAME String Name of the column.

Appendix A
ODP.NET-Specific Schema Collection

A-6

Table A-7 (Cont.) Columns

ColumnName Data Type Description

ID Decimal Sequence number of the column as created.

DATATYPE String Data type of the column.

LENGTH Decimal Length of the column in bytes.

PRECISION Decimal Decimal precision for NUMBER data type; binary
precision for FLOAT data type, null for all other data
types.

Scale Decimal Digits to right of decimal point in a number.

NULLABLE String Specifies whether or not a column allows NULLs.

CHAR_USED String Indicates whether the column uses BYTE length
semantics (B) or CHAR length semantics (C).

LengthInChars Decimal Length of the column in characters.

This value only applies to CHAR, VARCHAR2, NCHAR,
and NVARCHAR2.

A.2.3 Views
Table A-8 lists the column name, data type, and description of the Views Schema
Collection.

Table A-8 Views

Column Name Data Type Description

OWNER String Owner of the view.

VIEW_NAME String Name of the view.

TEXT_LENGTH Decimal Length of the view text.

TEXT String View text.

TYPE_TEXT_LENGTH Decimal Length of the type clause of the typed view.

TYPE_TEXT String Type clause of the typed view.

OID_TEXT_LENGTH Decimal Length of the WITH OID clause of the typed view.

OID_TEXT String WITH OID clause of the typed view.

VIEW_TYPE_OWNER String Owner of the view type if the view is a typed view.

VIEW_TYPE String Type of the view if the view is a typed view.

SUPERVIEW_NAME String Name of the superview.

(Oracle9i or later)

A.2.4 XMLSchema
Table A-9 lists the column name, data type and description of the XMLSchema
Schema Collection.

Appendix A
ODP.NET-Specific Schema Collection

A-7

Note:

This collection is only available with Oracle Database 10g and later.

Table A-9 XMLSchema

Column Name Data Type Description

OWNER String Owner of the XML schema.

SCHEMA_URL String Schema URL of the XML schema.

LOCAL String Indicates whether the XML schema is local
(YES) or global (NO).

SCHEMA String XML schema document.

INT_OBJNAME String Internal database object name for the
schema.

QUAL_SCHEMA_URL String Fully qualified schema URL.

HIER_TYPE String Hierarchy type for the schema.

A.2.5 Users
Table A-10 lists the column name, data type and description of the Users Schema
Collection.

Table A-10 Users

Column Name Data Type Description

NAME String Name of the user.

ID Decimal ID number of the user.

CREATEDATE DateTime User creation date.

A.2.6 Synonyms
Table A-11 lists the column name, data type and description of the Synonyms Schema
Collection.

Table A-11 Synonyms

Column Name Data Type Description

OWNER String Owner of the synonym.

SYNONYM_NAME String Name of the synonym.

TABLE_OWNER String Owner of the object referenced by the synonym.
Although the column is called TABLE_OWNER, the
object owned is not necessarily a table. It can be any
general object such as a view, sequence, stored
procedure, synonym, and so on.

Appendix A
ODP.NET-Specific Schema Collection

A-8

Table A-11 (Cont.) Synonyms

Column Name Data Type Description

TABLE_NAME String Name of the object referenced by the synonym.
Although the column is called TABLE_NAME, the object
does not necessarily have to be a table. It can be
any general object such as a view, sequence, stored
procedure, synonym, and so on.

DB_LINK String Name of the database link referenced, if any.

A.2.7 Sequences
Table A-12 lists the column name, data type, and description of the Sequences
Schema Collection.

Table A-12 Sequences

Column Name Data Type Description

SEQUENCE_OWNER String Name of the owner of the sequence.

SEQUENCE_NAME String Sequence name.

MIN_VALUE Decimal Minimum value of the sequence.

MAX_VALUE Decimal Maximum value of the sequence.

INCREMENT_BY Decimal Value by which sequence is incremented.

CYCLE_FLAG String Indicates if sequence wraps around on reaching
limit.

ORDER_FLAG String Indicates if sequence numbers are generated in
order.

CACHE_SIZE Decimal Number of sequence numbers to cache.

LAST_NUMBER Decimal Last sequence number written to disk. If a sequence
uses caching, the number written to disk is the last
number placed in the sequence cache. This number
is likely to be greater than the last sequence number
that was used.

A.2.8 Functions
Table A-13 lists the column name, data type, and description of the Functions Schema
Collection.

Table A-13 Functions

Column Name Data Type Description

OWNER String Owner of the function.

OBJECT_NAME String Name of the function.

SUBOBJECT_NAME String Name of the subobject (for example, partition).

OBJECT_ID Decimal Dictionary object number of the function.

Appendix A
ODP.NET-Specific Schema Collection

A-9

Table A-13 (Cont.) Functions

Column Name Data Type Description

DATA_OBJECT_ID Decimal Dictionary object number of the segment that
contains the function.

CREATED DateTime Timestamp for the creation of the function.

LAST_DDL_TIME DateTime Timestamp for the last modification of the
function resulting from a DDL statement
(including grants and revokes).

TIMESTAMP String Timestamp for the specification of the function
(character data).

STATUS String Status of the function (VALID, INVALID, or N/A).

TEMPORARY String Whether or not the function is temporary (the
current session can see only data that it
placed in this object itself).

GENERATED String Indicates whether the name of this function is
system generated (Y) or not (N).

SECONDARY String Whether or not this is a secondary object
created by the ODCIIndexCreate method of the
Oracle Data Cartridge (Y | N).

A.2.9 Procedures
Table A-14 lists the column name, data type, and description of the Procedures
Schema Collection.

Table A-14 Procedures

Column Name Data Type Description

OWNER String Owner of the procedure.

OBJECT_NAME String Name of the procedure.

SUBOBJECT_NAME String Name of the subobject (for example, partition).

OBJECT_ID Decimal Dictionary object number of the procedure.

DATA_OBJECT_ID Decimal Dictionary object number of the segment that
contains the procedure.

CREATED DateTime Timestamp for the creation of the procedure.

LAST_DDL_TIME Decimal Timestamp for the last modification of the procedure
resulting from a DDL statement (including grants and
revokes).

TIMESTAMP String Timestamp for the specification of the procedure
(character data).

STATUS String Status of the procedure (VALID, INVALID, or N/A).

TEMPORARY String Whether or not the procedure is temporary (the
current session can see only data that it placed in
this object itself).

GENERATED String Indicates whether the name of this procedure is
system generated (Y) or not (N).

Appendix A
ODP.NET-Specific Schema Collection

A-10

Table A-14 (Cont.) Procedures

Column Name Data Type Description

SECONDARY String Whether or not this is a secondary object created by
the ODCIIndexCreate method of the Oracle Data
Cartridge (Y | N).

A.2.10 ProcedureParameters
Table A-15 lists the column name, data type and description of the
ProcedureParameters Schema Collection.

Table A-15 ProcedureParameters

Column Name Data Type Description

OWNER String Owner of the object.

OBJECT_NAME String Name of the procedure or function.

PACKAGE_NAME String Name of the package.

OBJECT_ID Decimal Object number of the object.

OVERLOAD String Indicates the nth overloading ordered by its
appearance in the source; otherwise, it is NULL.

SUBPROGRAM_ID Decimal Subprogram id for the procedure or function

ARGUMENT_NAME String If the argument is a scalar type, then the argument
name is the name of the argument. A null argument
name is used to denote a function return value.

POSITION Decimal If DATA_LEVEL is zero, then this column holds the
position of this item in the argument list, or zero for a
function return value.

SEQUENCE Decimal Defines the sequential order of the argument.
Argument sequence starts from 1.

DATA_LEVEL Decimal Nesting depth of the argument for composite types.

DATA_TYPE String Data type of the argument.

DEFAULT_VALUE String Default value for the argument.

DEFAULT_LENGTH Decimal Length of the default value for the argument.

IN_OUT String Direction of the argument: [IN] [OUT] [IN/OUT].

DATA_LENGTH Decimal Length of the column (in bytes).

DATA_PRECISION Decimal Length in decimal digits (NUMBER) or binary digits
(FLOAT).

DATA_SCALE Decimal Digits to the right of the decimal point in a number.

RADIX Decimal Argument radix for a number.

CHARACTER_SET_NAME String Character set name for the argument.

TYPE_OWNER String Owner of the type of the argument.

Appendix A
ODP.NET-Specific Schema Collection

A-11

Table A-15 (Cont.) ProcedureParameters

Column Name Data Type Description

TYPE_NAME String Name of the type of the argument. If the type is a
package local type (that is, it is declared in a
package specification), then this column displays the
name of the package.

TYPE_SUBNAME String Displays the name of the type declared in the
package identified in the TYPE_NAME column.

Relevant only for package local types.

TYPE_LINK String Displays the database link that refers to the remote
package.

Relevant only for package local types when the
package identified in the TYPE_NAME column is a
remote package.

PLS_TYPE String For numeric arguments, the name of the PL/SQL
type of the argument. Otherwise, Null.

CHAR_LENGTH Decimal Character limit for string data types.

CHAR_USED String Indicates whether the byte limit (B) or character limit
(C) is official for the string.

A.2.11 Arguments
Table A-16 lists the column name, data type, and description of the Arguments
Schema Collection.

Table A-16 Arguments

Column Name Data Type Description

OWNER String Owner of the object.

PACKAGE_NAME String Name of the package.

OBJECT_NAME String Name of the procedure or function.

ARGUMENT_NAME String If the argument is a scalar type, then the argument
name is the name of the argument. A null argument
name is used to denote a function return value.

POSITION Decimal If DATA_LEVEL is zero, then this column holds the
position of this item in the argument list, or zero for a
function return value.

SEQUENCE Decimal Defines the sequential order of the argument.
Argument sequence starts from 1.

DEFAULT_VALUE String Default value for the argument.

DEFAULT_LENGTH Decimal Length of the default value for the argument.

IN_OUT String Direction of the argument: [IN] [OUT] [IN/OUT].

DATA_LENGTH Decimal Length of the column (in bytes).

DATA_PRECISION Decimal Length in decimal digits (NUMBER) or binary digits
(FLOAT).

DATA_SCALE Decimal Digits to the right of the decimal point in a number.

Appendix A
ODP.NET-Specific Schema Collection

A-12

Table A-16 (Cont.) Arguments

Column Name Data Type Description

DATA_TYPE String Data type of the argument.

CHAR_USED String Indicates whether the column uses BYTE length
semantics (B) or CHAR length semantics (C).

A.2.12 Packages
Table A-17 lists the column name, data type, and description of the Packages Schema
Collection.

Table A-17 Packages

Column Name Data Type Description

OWNER String Owner of the package.

OBJECT_NAME String Name of the package.

SUBOBJECT_NAME String Name of the subobject (for example, partition).

OBJECT_ID Decimal Dictionary object number of the package.

DATA_OBJECT_ID Decimal Dictionary object number of the segment that
contains the package.

CREATED DateTime Timestamp for the creation of the package.

LAST_DDL_TIME DateTime Timestamp for the last modification of the package
resulting from a DDL statement (including grants
and revokes).

TIMESTAMP String Timestamp for the specification of the package
(character data).

STATUS String Status of the package (VALID, INVALID, or N/A).

TEMPORARY String Whether or not the package is temporary (the
current session can see only data that it placed in
this object itself).

GENERATED String Indicates whether the name of this package was
system generated (Y) or not (N).

SECONDARY String Whether or not this is a secondary object created by
the ODCIIndexCreate method of the Oracle Data
Cartridge (Y | N).

A.2.13 PackageBodies
Table A-18 lists the column name, data type, and description of the PackageBodies
Schema Collection.

Table A-18 PackageBodies

Column Name Data Type Description

OWNER String Owner of the package body.

Appendix A
ODP.NET-Specific Schema Collection

A-13

Table A-18 (Cont.) PackageBodies

Column Name Data Type Description

OBJECT_NAME String Name of the package body.

SUBOBJECT_NAME String Name of the subobject (for example, partition).

OBJECT_ID Decimal Dictionary object number of the package body.

DATA_OBJECT_ID Decimal Dictionary object number of the segment that
contains the package body.

CREATED DateTime Timestamp for the creation of the package body.

LAST_DDL_TIME DateTime Timestamp for the last modification of the package
body resulting from a DDL statement (including
grants and revokes).

TIMESTAMP String Timestamp for the specification of the package body
(character data).

STATUS String Status of the package body (VALID, INVALID, or
N/A).

TEMPORARY String Whether the package body is temporary (the current
session can see only data that it placed in this object
itself).

GENERATED String Indicates whether the name of this package body is
system generated (Y) or not (N).

SECONDARY String Whether or not this is a secondary object created by
the ODCIIndexCreate method of the Oracle Data
Cartridge (Y | N).

A.2.14 JavaClasses
Table A-19 lists the column name, data type, and description of the JavaClasses
Schema Collection.

Table A-19 JavaClasses

Column Name Data Type Description

OWNER String Owner of the Java class.

NAME String Name of the Java class.

MAJOR Decimal Major version number of the Java class, as defined
in the JVM specification.

MINOR Decimal Minor version number of the Java class, as defined
in the JVM specification.

KIND String Indicates whether the stored object is a Java class
(CLASS) or a Java interface (INTERFACE).

ACCESSIBILITY String Accessibility of the Java class.

IS_INNER String Indicates whether this Java class is an inner class
(YES) or not (NO).

IS_ABSTRACT String Indicates whether this Java class is an abstract
class (YES) or not (NO).

Appendix A
ODP.NET-Specific Schema Collection

A-14

Table A-19 (Cont.) JavaClasses

Column Name Data Type Description

IS_FINAL String Indicates whether this Java class is a final class
(YES) or not (NO).

IS_DEBUG String Indicates whether this Java class contains debug
information (YES) or not (NO).

SOURCE String Source designation of the Java class.

SUPER String Super class of this Java class.

OUTER String Outer class of this Java class if this Java class is an
inner class.

A.2.15 Indexes
Table A-20 lists the column name, data type, and description of the Indexes Schema
Collection.

Table A-20 Indexes

Column Name Data Type Description

OWNER String Owner of the index.

INDEX_NAME String Name of the index.

INDEX_TYPE String Type of the index:

• NORMAL

• BITMAP

• FUNCTION-BASED NORMAL

• FUNCTION-BASED BITMAP

• DOMAIN

TABLE_OWNER String Owner of the indexed object.

TABLE_NAME String Name of the indexed object.

TABLE_TYPE String Type of the indexed object (for example, TABLE or
CLUSTER).

UNIQUENESS String Indicates whether the index is UNIQUE or NONUNIQUE.

COMPRESSION String Indicates whether index compression is enabled
(ENABLED) or not (DISABLED).

PREFIX_LENGTH Decimal Number of columns in the prefix of the compression
key.

TABLESPACE_NAME String Name of the tablespace containing the index.

INI_TRANS Decimal Initial number of transactions.

MAX_TRANS Decimal Maximum number of transactions.

INITIAL_EXTENT Decimal Size of the initial extent.

NEXT_EXTENT Decimal Size of secondary extents.

MIN_EXTENTS Decimal Minimum number of extents allowed in the segment.

MAX_EXTENTS Decimal Maximum number of extents allowed in the segment.

Appendix A
ODP.NET-Specific Schema Collection

A-15

Table A-20 (Cont.) Indexes

Column Name Data Type Description

PCT_INCREASE Decimal Percentage increase in extent size.

PCT_THRESHOLD Decimal Threshold percentage of block space allowed per
index entry.

INCLUDE_COLUMN Decimal Column ID of the last column to be included in index-
organized table primary key (non-overflow) index.
This column maps to the COLUMN_ID column of the
*_TAB_COLUMNS data dictionary views.

FREELISTS Decimal Number of process freelists allocated to this
segment.

FREELIST_GROUPS Decimal Number of freelist groups allocated to this segment.

PCT_FREE Decimal Minimum percentage of free space in a block.

LOGGING String Logging information.

BLEVEL Decimal B*-Tree level: depth of the index from its root block
to its leaf blocks. A depth of 0 indicates that the root
block and leaf block are the same.

LEAF_BLOCKS Decimal Number of leaf blocks in the index.

DISTINCT_KEYS Decimal Number of distinct indexed values. For indexes that
enforce UNIQUE and PRIMARY KEY constraints, this
value is the same as the number of rows in the table
(USER_TABLES.NUM_ROWS).

AVG_LEAF_BLOCKS_PER
_KEY

Decimal Average number of leaf blocks in which each distinct
value in the index appears, rounded to the nearest
integer. For indexes that enforce UNIQUE and
PRIMARY KEY constraints, this value is always 1.

AVG_DATA_BLOCKS_PER
_KEY

Decimal Average number of data blocks in the table that are
pointed to by a distinct value in the index, rounded to
the nearest integer. This statistic is the average
number of data blocks that contain rows that contain
a given value for the indexed columns.

CLUSTERING_FACTOR Decimal Indicates the amount of order of the rows in the table
based on the values of the index.

STATUS String Indicates whether a nonpartitioned index is VALID or
UNUSABLE.

NUM_ROWS Decimal Number of rows in the index.

SAMPLE_SIZE Decimal Size of the sample used to analyze the index.

LAST_ANALYZED Date Date on which this index was most recently
analyzed.

DEGREE String Number of threads per instance for scanning the
index.

INSTANCES String Number of instances across which the indexes to be
scanned.

PARTITIONED String Indicates whether the index is partitioned (YES) or not
(NO).

TEMPORARY String Indicates whether or not the index is on a temporary
table.

Appendix A
ODP.NET-Specific Schema Collection

A-16

Table A-20 (Cont.) Indexes

Column Name Data Type Description

GENERATED String Indicates whether the name of the index is system
generated (Y) or not (N).

SECONDARY String Indicates whether the index is a secondary object
created by the ODCIIndexCreate method of the
Oracle Data Cartridge (Y) or not (N).

BUFFER_POOL String Name of the default buffer pool to be used for the
index blocks.

USER_STATS String Indicates whether statistics were entered directly by
the user (YES) or not (NO).

DURATION String Indicates the duration of a temporary table.

PCT_DIRECT_ACCESS Decimal For a secondary index on an index-organized table,
the percentage of rows with VALID guess.

ITYP_OWNER String For a domain index, the owner of the index type.

ITYP_NAME String For a domain index, the name of the index type.

PARAMETERS String For a domain index, the parameter string.

GLOBAL_STATS String For partitioned indexes, indicates whether statistics
are collected by analyzing the index as a whole (YES)
or estimated from statistics on underlying index
partitions and subpartitions (NO).

DOMIDX_STATUS String Status of the domain index:

• NULL - Index is not a domain index.
• VALID - Index is a valid domain index.
• IDXTYP_INVLD - Indextype of the domain index is

invalid.

DOMIDX_OPSTATUS String Status of the operation on the domain index:

• NULL - Index is not a domain index.
• VALID - Operation performed without errors.
• FAILED - Operation failed with an error.

FUNCIDX_STATUS String Status of a function-based index:

• NULL - Index is not a function-based index.
• ENABLED - Function-based index is enabled.
• DISABLED - Function-based index is disabled.

JOIN_INDEX String Indicates whether the index is a join index (YES) or
not (NO).

IOT_REDUNDANT_PKEY_
ELIM

String Indicates whether redundant primary key columns
are eliminated from secondary indexes on index-
organized tables (YES) or not (NO).

DROPPED String Indicates whether the index has been dropped and is
in the recycle bin (YES) or not (NO); null for partitioned
tables.

A.2.16 IndexColumns
Table A-21 lists the column name, data type, and description of the IndexColumns
Schema Collection.

Appendix A
ODP.NET-Specific Schema Collection

A-17

Table A-21 IndexColumns

Column Name Data Type Description

INDEX_OWNER String Owner of the index.

INDEX_NAME String Name of the index.

TABLE_OWNER String Owner of the table or cluster.

TABLE_NAME String Name of the table or cluster.

COLUMN_NAME String Column name or attribute of object type column.

COLUMN_POSITION Decimal Position of column or attribute within the index.

COLUMN_LENGTH Decimal Indexed length of the column.

DESCEND String Whether the column is sorted in descending order
(Y/N).

CHAR_LENGTH Decimal Maximum codepoint length of the column.

(Oracle9i or later)

A.2.17 PrimaryKeys
Table A-22 lists the column name, data type, and description of the PrimaryKeys
Schema Collection.

Table A-22 PrimaryKeys

Column Name Data Type Description

OWNER String Owner of the constraint definition.

CONSTRAINT_NAME String Name of the constraint definition.

TABLE_NAME String Name associated with the table (or view) with
constraint definition.

SEARCH_CONDITION String Text of search condition for a check constraint.

R_OWNER String Owner of table referred to in a referential
constraint.

R_CONSTRAINT_NAME String Name of the unique constraint definition for
referenced table.

DELETE_RULE String Delete rule for a referential constraint (CASCADE or
NO ACTION).

STATUS String Enforcement status of constraint (ENABLED or
DISABLED).

DEFERRABLE String Whether or not the constraint is deferrable.

VALIDATED String Whether all data obeys the constraint (VALIDATED
or NOT VALIDATED).

GENERATED String Whether the name of the constraint is user or
system generated.

Appendix A
ODP.NET-Specific Schema Collection

A-18

Table A-22 (Cont.) PrimaryKeys

Column Name Data Type Description

BAD String Indicates that this constraint specifies a century in
an ambiguous manner. (Yes| No)

To avoid errors resulting from this ambiguity,
rewrite the constraint using the TO_DATE function
with a four-digit year.

RELY String Whether an enabled constraint is enforced or
unenforced.

LAST_CHANGE DateTime When the constraint was last enabled or disabled.

INDEX_OWNER String Name of the user owning the index.

(Oracle9i or later)

INDEX_NAME String Name of the index (only shown for unique and
primary-key constraints).

(Oracle9i or later)

A.2.18 ForeignKeys
Table A-23 lists the column name, data type, and description of the ForeignKeys
Schema Collection.

Table A-23 ForeignKeys

Column Name Data Type Description

PRIMARY_KEY_CONSTRA
INT_NAME

String Name of the constraint definition.

PRIMARY_KEY_OWNER String Owner of the constraint definition.

PRIMARY_KEY_TABLE_N
AME

String Name associated with the table (or view) with
constraint definition.

FOREIGN_KEY_OWNER String Owner of the constraint definition.

FOREIGN_KEY_CONSTRA
INT_NAME

String Name of the constraint definition.

FOREIGN_KEY_TABLE_N
AME

String Name associated with the table (or view) with
constraint definition.

SEARCH_CONDITION String Text of search condition for a check constraint

R_OWNER String Owner of table referred to, in a referential constraint.

R_CONSTRAINT_NAME String Name of the unique constraint definition for
referenced table.

DELETE_RULE String Delete rule for a referential constraint (CASCADE or NO
ACTION).

STATUS String Enforcement status of constraint (ENABLED or
DISABLED).

VALIDATED String Whether or not all data obeys the constraint
(VALIDATED or NOT VALIDATED).

Appendix A
ODP.NET-Specific Schema Collection

A-19

Table A-23 (Cont.) ForeignKeys

Column Name Data Type Description

GENERATED String Whether the name of the constraint is user or
system generated.

RELY String Whether an enabled constraint is enforced or
unenforced.

LAST_CHANGE DateTime When the constraint was last enabled or disabled.

INDEX_OWNER String Name of the user owning the index.

(Oracle9i or later)

INDEX_NAME String Name of the index.

(Oracle9i or later)

A.2.19 ForeignKeyColumns
Table A-24 lists the column name, data type, and description of the
ForeignKeyColumns Schema Collection.

Table A-24 ForeignKeyColumns

Column Name Data Type Description

OWNER String Owner of the constraint definition.

CONSTRAINT_NAME String Name of the constraint definition.

TABLE_NAME String Name of the table with constraint definition.

COLUMN_NAME String Name of the column or attribute of the object type
column specified in the constraint definition.

POSITION String Original position of column or attribute in the
definition of the object.

A.2.20 UniqueKeys
Table A-25 lists the column name, data type, and description of the UniqueKeys
Schema Collection.

Table A-25 UniqueKeys

Column Name Data Type Description

OWNER String Owner of the constraint definition.

CONSTRAINT_NAME String Name of the constraint definition.

TABLE_NAME String Name associated with the table (or view) with
constraint definition.

SEARCH_CONDITION String Text of search condition for a check constraint.

R_OWNER String Owner of table referred to in a referential constraint.

R_CONSTRAINT_NAME String Name of the unique constraint definition for
referenced table.

Appendix A
ODP.NET-Specific Schema Collection

A-20

Table A-25 (Cont.) UniqueKeys

Column Name Data Type Description

DELETE_RULE String Delete rule for a referential constraint (CASCADE or NO
ACTION).

STATUS String Enforcement status of constraint (ENABLED or
DISABLED).

DEFERRABLE String Whether or not the constraint is deferrable.

VALIDATED String Whether all data obeys the constraint (VALIDATED or
NOT VALIDATED).

GENERATED String Whether the name of the constraint is user or
system generated.

BAD String Indicates that this constraint specifies a century in an
ambiguous manner. (Yes| No)

To avoid errors resulting from this ambiguity, rewrite
the constraint using the TO_DATE function with a four-
digit year.

RELY String Whether an enabled constraint is enforced or not.

LAST_CHANGE String When the constraint was last enabled or disabled.

INDEX_OWNER String Name of the user owning the index.

(Oracle9i or later)

INDEX_NAME String Name of the index (only shown for unique and
primary-key constraints).

(Oracle9i or later)

Appendix A
ODP.NET-Specific Schema Collection

A-21

B
Mapping LINQ Canonical Functions and
Oracle Functions

This appendix lists the Entity Framework canonical functions and the corresponding
ODP.NET provider functions to which they map.

Aggregate Canonical Functions

Table B-1 Mapping of Aggregate Canonical Functions and Oracle Functions

Canonical Function Oracle Function

Avg (expression) AVG(expression)

BigCount (expression) COUNT(expression)

Count (expression) COUNT(expression)

Max (expression) MAX(expression)

Min (expression) MIN(expression)

StDev (expression) STDDEV(expression)

StDevP(expression) STDEVP(expression)

Sum (expression) SUM (expression)

Var(expression) VAR(expression)

VarP(expression) VARP(expression)

Math Canonical Functions

Table B-2 Mapping of Math Canonical Functions and Oracle Functions

Canonical Function Oracle Function

Abs (value) ABS (value)

Ceiling (value) CEIL(value)

Floor (value) FLOOR(value)

Power(value, exponent) POWER(value, exponent)

Round (value) ROUND(value)

Round (value, digits) ROUND(value, digits)

Truncate(value, digits) TRUNC(value, digits)

B-1

String Canonical Functions

Table B-3 Mapping of String Canonical Functions and Oracle Functions

Canonical Function Oracle Function

Concat (string1, string2) CONCAT(string1, string2)

or

((string1) || (string2))

Contains(string, target) INSTR(string, target)

EndsWith(string, target) INSTR(REVERSE(string), REVERSE(target))

Comparison operators

(<, <=, >, >=, <>, !=)

Comparison operators

(<, <=, >, >=, <>, !=)

IndexOf(target, string) INSTR(string2, target)

Left (string1, length) SUBSTR(string1, length)

Length (string) LENGTH(string)

LTrim(string) LTRIM(string)

Replace (string1, string2,
string3)

REPLACE(string1, string2, string3)

Reverse (string) REVERSE(string)

Right (string, length) (CASE WHEN LENGTH(string) >= (length) THEN SUBSTR
(string) ,-(length), length) ELSE string END)

RTrim(string) RTRIM(string)

Substring (string, start,
length)

SUBSTR((string, start, length)

StartsWith(string, target) INSTR(string, target)

ToLower (string) LOWER(string)

ToUpper(string) UPPER

Trim (string) LTRIM(RTRIM(string))

Date And Time Canonical Functions

Table B-4 Mapping of Date And Time Canonical Functions and Oracle
Functions

Canonical Function Oracle Function

AddNanoseconds(expression,
number)

(expression) + INTERVAL

AddMicroseconds(expression,
number)

(expression) + INTERVAL

AddMilliseconds(expression,
number)

(expression) + INTERVAL

AddSeconds(expression, number) (expression) + INTERVAL

AddMinutes(expression, number) (expression) + INTERVAL

AddHours(expression, number) (expression) + INTERVAL

Appendix B

B-2

Table B-4 (Cont.) Mapping of Date And Time Canonical Functions and Oracle
Functions

Canonical Function Oracle Function

AddDays(expression, number) (expression) + INTERVAL

AddMonths(expression, number) (expression) + INTERVAL

AddYears(expression, number) (expression) + INTERVAL

CreateDateTime(year, month, day,
hour, minute, second)

TO_TIMESTAMP

CreateDateTimeOffset(year,
month, day, hour, minute, second,
tzoffset)

TO_TIMESTAMP_TZ

CreateTime(hour, minute, second) Time literals are not supported in Oracle

CurrentDateTime() LOCALTIMESTAMP

CurrentDateTimeOffset() SYSTIMESTAMP

CurrentUtcDateTime() SYS_EXTRACT_UTC

(LOCALTIMESTAMP)

Day(expression) EXTRACT(DAY FROM expression)

DayOfYear(expression) TO_NUMBER(TO_CHAR(CAST(expression AS TIMESTAMP),
'DDD'))

DiffNanoseconds(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffMilliseconds(startExpression
, endExpression)

EXTRACT and arithmetic operations

DiffMicroseconds(startExpression
, endExpression)

EXTRACT and arithmetic operations

DiffSeconds(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffMinutes(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffHours(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffDays(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffMonths(startExpression,
endExpression)

EXTRACT and arithmetic operations

DiffYears(startExpression,
endExpression

)

EXTRACT and arithmetic operations

Comparison operators

(<, <=, >, >=, <>, !=)

<, <=, >, >=, <>, != operators

GetTotalOffsetMinutes
(datetimeoffset)

(EXTRACT(TIMEZONE_HOUR FROM (expression))) * 60
+ EXTRACT (TIMEZONE_MINUTE FROM(expression))

(Require multiple operations.)

Hour (expression) EXTRACT(HOUR FROM expression)

Appendix B

B-3

Table B-4 (Cont.) Mapping of Date And Time Canonical Functions and Oracle
Functions

Canonical Function Oracle Function

Millisecond(expression) NVL(TO_NUMBER(SUBSTR(TO_CHAR(CAST(expression AS
TIMESTAMP), 'DD-

MON-RR HH24:MI:SSXFF'), 20, 3)), 0)

Minute(expression) EXTRACT(MINUTE FROM expression)

Month (expression) EXTRACT(MONTH FROM expression)

Second(expression) EXTRACT (SECOND FROM expression)

TruncateDate(expression) TRUNC(expression)

Year(expression) EXTRACT(YEAR FROM expression)

Bitwise Canonical Functions

Table B-5 Mapping of Bitwise Canonical Functions and Oracle Functions

Canonical Function Oracle Function

BitWiseAnd (value1 , value2) BITAND(value1, value2)

BitWiseNot (value) (0 - value) - 1

BitWiseOr (value1 , value2) Value1 - BITAND(value1, value2) + value2

BitWiseXor (value1 , value2) Value1 - 2 * BITAND(value1, value2) + value2

Other Canonical Functions

Table B-6 Mapping of Other Canonical Functions and Oracle Functions

Canonical Function Oracle Function

NewGuid() SYS_GUID

Appendix B

B-4

Glossary

assembly
Assembly is Microsoft's term for the module that is created when a DLL or .EXE is
complied by a .NET compiler.

BFILES
External binary files that exist outside the database tablespaces residing in the
operating system. BFILES are referenced from the database semantics, and are also
known as external LOBs.

Binary Large Object (BLOB)
A large object data type whose content consists of binary data. Additionally, this data
is considered raw as its structure is not recognized by the database.

Character Large Object (CLOB)
The LOB data type whose value is composed of character data corresponding to the
database character set. A CLOB may be indexed and searched by the Oracle Text
search engine.

data provider
As the term is used with Oracle Data Provider for .NET, a data provider is the
connected component in the ADO.NET model and transfers data between a data
source and the DataSet.

DataSet
A DataSet is an in-memory copy of database data. The DataSet exists in memory
without an active connection to the database.

dirty writes
Dirty writes means writing uncommitted or dirty data.

DDL
DDL refers to data definition language, which includes statements defining or changing
data structure.

DOM
Document Object Model (DOM) is an application program interface (API) for HTML
and XML documents. It defines the logical structure of documents and the way that a
document is accessed and manipulated.

Glossary-1

Extensible Stylesheet Language Transformation (XSLT)
The XSL W3C standard specification that defines a transformation language to convert
one XML document into another.

flush
Flush or flushing refers to recording changes (that is, sending modified data) to the
database.

Global Assembly Cache (GAC)
A cache for .NET assemblies.

goodness
The degree of load in the Oracle database. The lighter load is better and vice versa.

implicit database connection
The connection that is implicitly available from the context of the .NET stored
procedure execution.

instantiate
A term used in object-based languages such as C# to refer to the creation of an object
of a specific class.

invalidation message
The content of a change notification which indicates that the cache is now invalid

Large Object (LOB)
The class of SQL data type that is further divided into internal LOBs and external
LOBs. Internal LOBs include BLOBs, CLOBs, and NCLOBs while external LOBs include
BFILEs.

Microsoft .NET Framework Class Library
The Microsoft .NET Framework Class Library provides the classes for the .NET
framework model.

namespace

• .NET:

A namespace is naming device for grouping related types. More than one
namespace can be contained in an assembly.

• XML Documents:

A namespace describes a set of related element names or attributes within an
XML document.

National Character Large Object (NCLOB)
The LOB data type whose value is composed of character data corresponding to the
database national character set.

Glossary

Glossary-2

Oracle Net Services
The Oracle client/server communication software that offers transparent operation to
Oracle tools or databases over any type of network protocol and operating system.

OracleDataReader
An OracleDataReader is a read-only, forward-only result set.

Oracle XML DB
Oracle XML DB is the name for a distinct group of technologies related to high-
performance XML storage and retrieval that are available within the Oracle database.
Oracle XML DB is not a separate server.

Oracle XML DB is based on the W3C XML data model.

PL/SQL
The Oracle procedural language extension to SQL.

primary key
The column or set of columns included in the definition of a table's PRIMARY KEY
constraint.

reference semantics
Reference semantics indicates that assignment is to a reference (an address such as
a pointer) rather than to a value. See value semantics.

REF
A data type that encapsulates references to row objects of a specified object type.

result set
The output of a SQL query, consisting of one or more rows of data.

Safe Type Mapping
Safe Type Mapping allows the OracleDataAdapter to populate a DataSet with .NET type
representations of Oracle data without any data or precision loss.

savepoint
A point in the workspace to which operations can be rolled back.

stored procedure
A stored procedure is a PL/SQL block that Oracle stores in the database and can be
executed from an application.

Transparent Application Failover (TAF)
Transparent Application Failover is a runtime failover for high-availability
environments. It enables client applications to automatically reconnect to the database
if the connection fails. This reconnect happens automatically from within the Oracle
Call Interface (OCI) library.

Glossary

Glossary-3

Unicode
Unicode is a universal encoded character set that enables information from any
language to be stored using a single character set.

URL
URL (Universal Resource Locator).

value semantics
Value semantics indicates that assignment copies the value, not the reference or
address (such as a pointer). See reference semantics.

XPath
XML Path Language (XPath), based on a W3C recommendation, is a language for
addressing parts of an XML document. It is designed to be used by both XSLT and
XPointer. It can be used as a searching or query language as well as in hypertext
linking.

Glossary

Glossary-4

Index

Symbols
.NET custom types, 3-109
.NET Framework datatype, 3-70
.NET languages, 1-1, 1-2
.NET products and documentation, 1-1
.NET stored procedures and functions, 5-1
.NET Stream class, 3-95
.NET type accessors, 3-71
.NET Types

inference, 3-55

A
abstract data types, 3-109
ADO, 1-3
ADO.NET, 1-3, 3-123
ADO.NET 1.x, 2-1
ADO.NET 2.0, 2-5

base or DbCommon classes, 3-1
ADO.NET 2.x, 2-1
ADTs, 3-109
app.config

setting performance counters, 3-27
app.config file, 3-8
AppDomain, 3-27
application config, 2-11
array bind

OracleParameter, 3-63
array bind operations, 3-62

ArrayBindCount, 6-17
ArrayBindIndex, 6-218
ArrayBindSize, 6-238, 6-240, 6-255
ArrayBindStatus, 6-257
error handling, 3-64

array binding, 3-62
ArrayBindCount property, 6-17
ArrayBindIndex property, 6-218
ArrayBindSize property, 3-59, 3-63, 6-255
ArrayBindStatus property, 3-59, 3-63, 6-257
ASP.NET, 1-2
assembly, 1-4

ODP.NET, 1-4

B
batch processing, 3-65
BatchUpdate

Microsoft Hotfix, 3-65
behavior of ExecuteScalar method for REF

CURSOR, 3-83
BFILE, 3-94
binding, 3-53

PL/SQL Associative Array, 3-59
BLOB, 3-94
bulk copy constraints, 3-125
bulk copy feature, 3-125

restrictions, 3-125

C
C#, Visual Basic .NET, C++ .NET, 1-1
caching ODP.NET parameter contexts, c
callback support, 3-35
case-sensitivity

column name mapping, 3-107
change notification

ODP.NET support, 3-135
change notification, Continuous Query

Notification, 9-1
characters with special meaning

in column data, 3-106
in table or view, 3-107

characters with special meaning in XML, 3-101
client applications, 1-1
client globalization settings, 3-146, 3-148
client identifier, 3-34
CLOB, 3-94
close calls, 2-48
CLR, 1-2
collection types, 3-110
CollectionType property, 3-59
column data

special characters in, 3-106
CommandBehavior.SequentialAccess, 3-75
commit transactions

changes to XML data, 3-109
CommittableTransaction, 3-49
Committed property, 6-238

Index-1

configuration settings
UDTs, 3-124

connect descriptor, 3-8
connection dependency, 3-99
connection pool

performance counters, 3-26
connection pooling, 3-23

example, 3-23
management, 3-25

ConnectionString attributes, 3-23
Connection Lifetime, 3-6, 3-23, 3-24
Connection Timeout, 3-6, 3-23, 3-24
Data Source, 3-6
DBA Privilege, 3-6
Decr Pool Size, 3-6, 3-23, 3-24
Enlist, 3-6
HA Events, 3-6, 3-23
Incr Pool Size, 3-6, 3-23, 3-24
Load Balancing, 3-6, 3-23
Max Pool Size, 3-6, 3-23, 3-24
Metadata Pooling, 3-6
Min Pool Size, 3-6, 3-23, 3-24
Password, 3-6
Persist Security Info, 3-6
Pooling, 3-6, 3-23, 3-24
Proxy Password, 3-6, 3-33
Proxy User Id, 3-6, 3-33
Statement Cache Purge, 3-6
Statement Cache Size, 3-6
User Id, 3-6
Validate Connection, 3-6, 3-23, 3-24

ConnectionString property, 3-23, 3-24, 6-73
Constraints property, 3-143

configuring, 3-144
context connection, 5-2
continuous query notification, 2-47, 3-134

ODP.NET support, 3-135
Continuous Query Notification, 3-132

best practices, 3-138
performance considerations, 3-138

controlling query reexecution, 3-143
custom classes, 3-110
custom type factories, 3-110
custom type factory, 3-114
custom type implementations

optional, 3-112
custom type mapping, 3-114
custom type mappings

specifying, 3-113
specifying with custom type factories, 3-113
specifying with XML, 3-113
using, 3-115

custom types
converting to Oracle UDTS, 3-116
requirements, 3-111

custom UDT classes, 3-110

D
Data Guard, 3-37
data loss, 3-139
data manipulation

using XML, 3-105
data source attribute, 3-8
data source enumerators, 3-10
database

changes to, 3-105
database notification

port to listen, 2-47
DataSet, 3-95

populating, 3-82
populating from a REF CURSOR, 3-82
populating with generic and custom objects,

3-123
updating, 3-83
updating to database, 3-143

DataTable, 3-144
Datatable properties, 3-143
DBlinks, 5-2
DbProviderFactories class, 2-5, 2-7, 3-1
DbType

inference, 3-55
debug tracing, 3-150
default mapping

improving, 3-109
dependent unmanaged DLL mismatch, 2-7
direct path load, 3-125
dispose calls, 2-48
distributed transactions, 3-49
documentation

.NET, 1-1
Dynamic Enlistment, 3-34
dynamic help, 1-1, 2-5, 2-7

E
Easy Connect naming method, 3-9
EDM type facets, 4-6
EDM types, 4-2

and Oracle data types, 4-2
end-to-end tracing, 3-34
EnlistDistributedTransaction method, 3-34
Entity Framework, xciii, 4-1
enumeration type

OracleDbType, 3-54
error handling, 3-64
example

connection pooling, 3-23
examples

documentation

Index

Index-2

examples (continued)
documentation (continued)
readme file, 2-6, 2-10

ExecuteNonQuery method, 3-83
ExecuteScalar method, 3-83
explicit user connections, 5-1
EZCONNECT, 3-9

F
failover, 3-35

registering an event handler, 3-35
FailoverEvent Enumeration

description, 11-6
FailoverReturnCode Enumeration

description, 11-6
FailoverType Enumeration

description, 11-7
Fast Application Notification (FAN), 3-38
Fast Connection Failover (FCF), 3-39
FCF, 3-40
features, 3-1
FetchSize property

fine-tuning, 3-80
setting at design time, 3-81
setting at run time, 3-81
using, 3-80

file locations, 2-6, 2-10

G
garbage collection, 2-48
GDS, 3-37
geographic data, 3-109
Global Assembly Cache (GAC), 2-5, 2-7
Global Data Services, 3-39
Global Data Services (GDS), 3-37
globalization settings, 3-145, 3-146

client, 3-146
session, 3-146
thread-based, 3-147

globalization support, 3-145
globalization-sensitive operations, 3-148
GoldenGate, 3-37
GUI access to ODP.NET, 1-2

H
HA events, 2-47
HA Events, 3-6
handling date and time format

manipulating data in XML, 3-105
retrieving queries in XML, 3-101

high availability, 3-37

I
implicit database connection, 5-1–5-3, 6-79
implicit REF CURSOR, xciv, 3-85

bind and metadata, 3-86
bindinfo, 3-86
configuration, 3-89
examples, 3-89
usage, 3-92

improving default mapping, 3-109
inference of DbType and OracleDbType from

Value, 3-57
inference of DbType from OracleDbType, 3-56
inference of OracleDbType from DbType, 3-57
inference of types, 3-55
InitialLOBFetchSize property, 3-76
InitialLONGFetchSize property, 3-75
input binding

XMLType column, 3-100
insert triggers, 3-127
installation, 2-5, 2-7

Oracle Data Provider for .NET, 2-5
Oracle Data Provider for .NET, Manager

Provider, 2-7
XCopy class, 2-5, 2-7

integrated help, 2-5, 2-7
interference in OracleParameter class, 3-55
introduction, overview, 1-3
INullable Interface

interface description, 14-353
interface members, 14-353
interface properties, 14-353

invalidation message, 3-134
ensuring persistency of, 3-135

IOracleArrayTypeFactory Interface
interface description, 16-17
interface members, 16-17
interface methods, 16-18

IOracleCustomType Interface
interface description, 16-13
interface members, 16-14
interface methods, 16-14

IOracleCustomTypeFactory Interface
interface description, 16-15
interface members, 16-16
interface methods, 16-16

L
large binary datatypes, 3-94
large character datatypes, 3-94
limitations and restrictions, 5-2
LINQ to Entities, xciii, 4-1
load balancing, 2-47
Load Balancing, 3-6

Index

3

LOB retrieval, c
LOBs

temporary, 3-96
updating, 3-96

LOBs updating, 3-95
local transactions, 3-49
location data, 3-109
logical transaction ID (LTXID), 3-42
LONG and LONG RAW datatypes, 3-94
LTXID, 3-42

M
machine.config, 2-11
machine.config file, 2-5, 2-7
metadata, 3-145
method invocation

UDT, 3-124
Microsoft .NET Framework, 2-1
Microsoft .NET Framework Class Library, 1-3
Microsoft Common Language Runtime (CLR),

1-2
Microsoft Hotfix

BatchUpdate, 3-65
multiple notification requests, 3-135
multiple tables

changes to, 3-109

N
namespace

Oracle.DataAccess.Types, 1-14
native XML support, 3-97
NCLOB, 3-94
nested table types, 3-110
notification framework, 3-134
notification information

retrieving, 3-135
notification process

flow, 3-136
notification registration, 3-135

requirements of, 3-136
NULL values

retrieving from column, 3-105
number of rows fetched in round-trip

controlling, 3-80

O
object data type support, 3-109
object types, 3-110
object-relational data, 3-105

saving changes from XML data, 3-109
obtaining a REF CURSOR, 3-82
obtaining an OracleRefCursor, 3-82

obtaining data from an OracleDataReader, 3-71
obtaining LOB data

InitialLOBFetchSize property, 3-76
obtaining LONG and LONG RAW Data, 3-75
OCI

statement caching, 3-66
OData, xciv
ODP.NET

installing, 2-5
ODP.NET Configuration, 2-11
ODP.NET LOB classes, 3-94
ODP.NET Type accessors, 3-74
ODP.NET Type classes, 3-70
ODP.NET Type exceptions, 15-1
ODP.NET Type structures, 3-70, 14-1
ODP.NET Types, 3-70

overview, 3-70
ODP.NET within a .NET stored procedure

limitations and restrictions, 5-2
transaction support, 5-3
unsupported SQL commands, 5-6

ODP.NET XML Support, 3-97
OnChangedEventArgs Class

instance properties, 9-22
members, 9-21
static fields, 9-22
static methods, 9-22

OnChangeEventHandler Delegate
description, 9-26

operating system authentication, 3-30
Oracle Call Interface

statement caching, 3-66
Oracle Data Provider for .NET

installing, 2-5
system requirements, 2-1

Oracle Data Provider for .NET assembly, 1-4
Oracle Data Provider for .NET, Managed Driver

installing, 2-7
Oracle data types, 4-2

and EDM types, 4-2
mapping and customizing, 4-13

Oracle Database Extensions for .NET, 1-2, 5-1
Oracle Developer Tools for Visual Studio, 1-2
Oracle Label Security, 3-34
Oracle native types, 3-70

supported by ODP.NET, 3-71
Oracle Providers for ASP.NET, 1-2
Oracle RAC, 3-37
Oracle Real Application Clusters (Oracle RAC),

3-37
Oracle UDT attribute mappings, 3-117
Oracle Universal Installer (OUI), 2-5, 2-7
Oracle user-defined types, 3-109
Oracle User-Defined Types (UDTs), 3-110
Oracle Virtual Private Database (VPD), 3-34

Index

Index-4

Oracle XML DB, 3-98
Oracle.DataAccess.Client namespace, 1-4
Oracle.DataAccess.dll, 1-4
Oracle.DataAccess.Types namespace, 1-4, 1-14
OracleAQAgent

constructors, 12-2
OracleAQAgent Class

constructors, 12-2
description, 12-1
members, 12-2, 12-25
properties, 12-4, 12-6

OracleAQDequeueMode Enumeration
description, 12-61

OracleAQDequeueOptions Class
constructor, 12-6
description, 12-5
members, 12-5
properties, 12-6
public methods, 12-11

OracleAQEnqueueOptions Class
constructor, 12-13
description, 12-12
members, 12-12
properties, 12-13
public methods, 12-14

OracleAQMessage Class
constructors, 12-17
description, 12-15
members, 12-16
properties, 12-18

OracleAQMessageAvailableEventArgs Class
description, 12-24
members, 12-25
properties, 12-26

OracleAQMessageAvailableEventHandler
Delegate

description, 12-31
OracleAQMessageDeliveryMode Enumeration

description, 12-61
OracleAQMessageState Enumeration

description, 12-62
OracleAQMessageType Enumeration

description, 12-63
OracleAQNavigationMode Enumeration

description, 12-64
OracleAQNotificationGroupingType Enumeration

description, 12-65
OracleAQNotificationType Enumeration

description, 12-65
OracleAQQueue Class

constructors, 12-34
description, 12-32
events, 12-57
members, 12-32
properties, 12-39

OracleAQQueue Class (continued)
public methods, 12-44
static methods, 12-34

OracleAQVisibilityMode Enumeration
description, 12-66

OracleArrayMappingAttribute Class
constructors, 16-12
description, 16-10
members, 16-11
methods, 16-13
properties, 16-13
static methods, 16-12

OracleBFile Class
class description, 13-1
constructors, 13-5
instance methods, 13-13
instance properties, 13-8
members, 13-3
static fields, 13-7
static methods, 13-7

OracleBinary Structure
constructor, 14-4
description, 14-1
instance methods, 14-17
members, 14-2
properties, 14-15
static fields, 14-5
static methods, 14-5
static operators, 14-10
static type conversion operators, 14-14

OracleBlob Class
class description, 13-31
constructors, 13-35
instance methods, 13-42
instance properties, 13-38
members, 13-32
static fields, 13-37
static methods, 13-37

OracleBulkCopy Class
class description, 17-1
constructors, 17-3
events, 17-15
members, 17-2
properties, 17-6
public methods, 17-10

OracleBulkCopyColumnMapping Class
class description, 17-15
constructors, 17-17
members, 17-16
properties, 17-19, 17-20

OracleBulkCopyColumnMappingCollection Class
class description, 17-22
members, 17-23
properties, 17-24
public methods, 17-25

Index

5

OracleBulkCopyOptions Enumeration
description, 17-32

OracleClientFactory, 2-5, 2-7
OracleClientFactory class

instantiating, 3-1
OracleClientFactory Class

class description, 6-2
class members, 6-3
public methods, 6-5
public properties, 6-5

OracleClob Class
class description, 13-60
constructors, 13-65
instance methods, 13-72
instance properties, 13-67
members, 13-62
static fields, 13-66
static methods, 13-67

OracleCollectionType Enumeration, 6-326
OracleCommand

constructors, 6-13
InitialLOBFetchSize property, 3-76
InitialLONGFetchSize property, 3-75
Transaction property, 3-48

OracleCommand Class
ArrayBindCount, 6-17
class description, 6-8
ExecuteScalar method, 3-83
FetchSize property, 3-80
members, 6-10
properties, 6-14
public methods, 6-30, 12-11
RowSize property, 3-80
static methods, 6-14

OracleCommand object, 3-48
OracleCommand properties

ArrayBindCount, 3-62
OracleCommand Transaction object, 3-49
OracleCommandBuilder Class, 3-145

class description, 6-43
constructors, 6-47
events, 6-61
members, 6-45
properties, 6-50
public methods, 6-54
static methods, 6-47
updating dataset, 3-143

OracleConnection
ClearAllPools property, 3-25
ClearPool property, 3-25
ClientId property, 3-34
events, 6-103

OracleConnection class
GetSchema methods, 3-22

OracleConnection Class

OracleConnection Class (continued)
class description, 6-61
constructors, 6-66
members, 6-63
obtaining a reference, 3-99
properties, 6-71
static methods, 6-68

OracleConnectionStringBuilder class
using, 3-8

OracleConnectionStringBuilder Class
class description, 6-106
class members, 6-109
constructors, 6-111
public methods, 6-124
public properties, 6-112

OracleConnectionType Enumeration
description, 6-326

OracleCustomTypeMappingAttribute Class
constructors, 16-3
description, 16-1
members, 16-2
methods, 16-5
properties, 16-4
static methods, 16-4

OracleDataAdapter, 3-139
constructors, 6-130
members, 6-128
SafeMapping Property, 3-141
SelectCommand property, 3-82

OracleDataAdapter class
FillSchema method, 3-144
Requery property, 3-143
SelectCommand property, 3-144

OracleDataAdapter Class, 6-126
events, 6-142
FillSchema method, 3-145
properties, 6-133
public methods, 6-139
SelectCommand property, 3-145
static methods, 6-133

OracleDataAdapter Safe Type Mapping, 3-139
OracleDatabase Class

class description, 6-145
constructor, 6-148
members, 6-147
properties, 6-148
public methods, 6-149
Shutdown method, 6-150
Startup method, 6-153

OracleDataReader, 3-71, 3-75
members, 6-157
retrieving UDTs from, 3-118
typed accessors, 3-71

OracleDataReader Class
class description, 6-154

Index

Index-6

OracleDataReader Class (continued)
FetchSize property, 3-80
populating, 3-82
properties, 6-160
public methods, 6-170
static methods, 6-160

OracleDataReader Class SchemaTable, 6-203
OracleDataSource Enumerator class

using, 3-10
OracleDataSourceEnumerator Class

class description, 6-212
class members, 6-213
public methods, 6-214

OracleDate Structure
constructors, 14-52
description, 14-48
members, 14-49
methods, 14-71
properties, 14-68
static fields, 14-55
static methods, 14-56
static operators, 14-61
static type conversions, 14-65

OracleDBShutdownMode Enumeration
description, 6-327

OracleDBStartupMode Enumeration
description, 6-328

OracleDbType
inference, 3-55

OracleDbType enumeration, 3-55
OracleDbType Enumeration

description, 6-328
OracleDbType enumeration type, 3-54, 6-328
OracleDecimal Structure

constructors, 14-82
description, 14-75
instance methods, 14-130
members, 14-77
properties, 14-127
static comparison methods, 14-89
static comparison operators, 14-114
static logarithmic methods, 14-105
static manipulation methods, 14-93
static operators, .NET Type to

OracleDecimal, 14-121
static operators, OracleDecimal to .NET,

14-124
static trignonmetric methods, 14-109

OracleDependency Class
change notification, 3-134
class description, 9-1
constructors, 9-4
Continuous Query Notification, 3-132
events, 9-15
instance methods, 9-13

OracleDependency Class (continued)
instance properties, 9-8
members, 9-2
static fields, 9-7
static methods, 9-7

OracleError Class
ArrayBindIndex, 6-218
class description, 6-215
members, 6-216
methods, 6-220
properties, 6-217
static methods, 6-217

OracleErrorCollection
members, 6-222
properties, 6-223
public methods, 6-223
static methods, 6-222

OracleErrorCollection Class, 6-220
OracleException

members, 6-225
methods, 6-230
properties, 6-226
static methods, 6-226

OracleException Class, 6-223
OracleFailoverEventArgs

members, 11-3
properties, 11-4
public methods, 11-4

OracleFailoverEventHandler Delegate
description, 11-5

OracleGlobalization Class
class description, 10-1
members, 10-2
properties, 10-8
public methods, 10-16

OracleHAEventArgs Class
description, 8-1
members, 8-2
properties, 8-2

OracleHAEventHandler Delegate
description, 8-5

OracleHAEventSource Enumeration
description, 8-5

OracleHAEventStatus Enumeration
description, 8-6

OracleIdentityType Enumeration
description, 6-330

OracleInfoMessageEventArgs
members, 6-233
properties, 6-234
public methods, 6-235
static methods, 6-234

OracleInfoMessageEventHandler Delegate,
6-236

OracleIntervalDS Structure

Index

7

OracleIntervalDS Structure (continued)
constructors, 14-140
description, 14-135
members, 14-137
methods, 14-162
properties, 14-159
static methods, 14-145
static operators, 14-151
type conversions, 14-157

OracleIntervalYM Structure
constructors, 14-169
description, 14-165
members, 14-166
methods, 14-173, 14-188
properties, 14-186
static fields, 14-172
static operators, 14-178
type conversions, 14-184

OracleNotificationEventArgs Class
change notification, 3-134
class description, 9-20
instance methods, 9-26

OracleNotificationInfo Enumeration
description, 9-28

OracleNotificationRequest Class
change notification, 3-134
class description, 9-15
Continuous Query Notification, 3-132
instance methods, 9-20
instance properties, 9-17
members, 9-16
static methods, 9-17

OracleNotificationSource Enumeration
description, 9-28

OracleNotificationType Enumeration
description, 9-27

OracleNullValueException Class
class description, 15-6
constructors, 15-8
members, 15-6
methods, 15-8, 15-9
properties, 15-9

OracleObjectMappingAttribute Class
constructors, 16-7
description, 16-5
members, 16-6
methods, 16-9
properties, 16-8
static methods, 16-8

OracleParameter
array bind properties, 3-63
ArrayBindSize property, 3-63, 6-238, 6-240,

6-255
ArrayBindStatus property, 3-63, 6-257
constructors, 6-245

OracleParameter (continued)
inferences of types, 3-55
members, 6-243
properties, 6-254
public methods, 6-267
static methods, 6-254

OracleParameter array bind feature, 3-62
OracleParameter Class, 6-242
OracleParameter object, 3-53

OracleDbType enumerated values, 3-54
OracleParameter property

ArrayBindSize, 3-59
ArrayBindStatus, 3-59
CollectionType, 3-59
Size, 3-59
Value, 3-60

OracleParameterCollection
members, 6-272
public methods, 6-277
static methods, 6-273

OracleParameterCollection Class, 6-270
OracleParameterStatus Enumeration

description, 6-330
OracleParameterStatus enumeration type, 3-65,

6-330
Oraclepermission Class

description, 6-293
OraclePermission Class

constructor, 6-295
members, 6-293
public methods, 6-296
public properties, 6-296
static methods, 6-295

OraclePermissionAttribute Class
constructor, 6-300
description, 6-298
members, 6-299
public methods, 6-301
public properties, 6-301
static methods, 6-301

OracleRef Class
class description, 16-31
class members, 16-31
constructors, 16-33
instance methods, 16-38
instance properties, 16-35
static fields, 16-35
static methods, 16-35

OracleRefCursor, 3-81
OracleRefCursor Class

class description, 13-94
instance methods, 13-101
members, 13-96
populating from a REF CURSOR, 3-83
properties, 13-98

Index

Index-8

OracleRefCursor Class (continued)
static methods, 13-97

OracleRowsCopiedEventArgs Class
class description, 17-34
constructors, 17-35
members, 17-35
properties, 17-36

OracleRowsCopiedEventHandler Delegate
description, 17-33

OracleRowUpdatedEventArgs
constructor, 6-304
members, 6-303
properties, 6-305
public methods, 6-306
static methods, 6-305

OracleRowUpdatedEventArgs Class, 6-302
OracleRowUpdatedEventHandler Delegate,

6-306
OracleRowUpdatingEventArgs

constructor, 6-308
members, 6-307
properties, 6-309
public methods, 6-310
static methods, 6-309

OracleRowUpdatingEventArgs Class, 6-307
OracleRowUpdatingEventHandler Delegate,

6-310
OracleShardingKey

constructors, 6-313
members, 6-312

OracleShardingKey Class, 6-311
instance methods, 6-314

OracleString Structure
constructors, 14-195
description, 14-191
members, 14-192
methods, 14-211
properties, 14-208
static fields, 14-198
static methods, 14-199
static operators, 14-203
type conversions, 14-207

OracleTimeStamp Structure
constructors, 14-220
description, 14-215
members, 14-216
methods, 14-248
properties, 14-244
static methods, 14-226
static operators, 14-232
static type conversions, 14-240

OracleTimeStampLTZ Structure
constructors, 14-262
description, 14-257
members, 14-258

OracleTimeStampLTZ Structure (continued)
methods, 14-291
properties, 14-287
static fields, 14-268
static methods, 14-269
static operators, 14-275
static type conversions, 14-283

OracleTimeStampTZ Structure
constructors, 14-307
description, 14-301
members, 14-303
methods, 14-342
properties, 14-338
static fields, 14-318
static methods, 14-319
static operators, 14-325
static type conversions, 14-333

OracleTransaction
members, 6-317
properties, 6-318
public methods, 6-319
static methods, 6-318

OracleTransaction Class
class description, 6-315

OracleTruncateException Class
class description, 15-9
constructors, 15-11
members, 15-10
methods, 15-12
properties, 15-12
static methods, 15-12

OracleTypeException Class
class description, 15-1
constructors, 15-3
members, 15-1
properties, 15-4
static methods, 15-4

OracleUdt Class
description, 16-19
members, 16-19
static methods, 16-20

OracleUdtFetchOption Enumeration
description, 16-47

OracleUdtStatus Enumeration
description, 16-48

OracleXmlCommandType Enumeration, 7-1
OracleXmlQueryProperties Class

class description, 7-2
constructors, 7-5
members, 7-5
properties, 7-6
public methods, 7-8

OracleXmlSaveProperties Class, 7-9
constructors, 7-12
members, 7-11

Index

9

OracleXmlSaveProperties Class (continued)
properties, 7-12
public methods, 7-15

OracleXmlStream Class
class description, 7-16
constructors, 7-18
instance methods, 7-22
instance properties, 7-19
members, 7-17
static methods, 7-19

OracleXmlType Class, 3-99
class description, 7-26
constructors, 7-29
instance methods, 7-36
instance properties, 7-32
members, 7-27
static methods, 7-32

outages, 3-40

P
parameter binding, 3-53
parameter binding with OracleParameter, 3-120
parameter context caching, c
password expiration, 3-32
passwords in code examples, lxxx
performance, 3-37, 3-66

array binding, 3-62
connection pooling, 3-23
fine-tuning FetchSize, 3-80
number of rows fetched, 3-80
Obtaining LOB Data, 3-76

performance counters
connection pool, 3-26
instance names of, 3-27
publishing, 3-26
using .NET Configuration Entry, 3-27

PL/SQL Associative Array binding, 3-59
PL/SQL Index-By Tables, 3-59
PL/SQL language, 3-81
PL/SQL REF CURSOR, 3-81
PL/SQL REF CURSOR and OracleRefCursor,

3-81
planned outage, 3-40
PLSQLAssociativeArray, 6-327
pool size attributes

Oracle RAC, 3-42
populating an OracleDataReader from a REF

CURSOR, 3-82
populating an OracleRefCursor from a REF

CURSOR, 3-83
populating the DataSet from a REF CURSOR,

3-82
populating the DataSet with generic and custom

objects, 3-123

port
listen for database notifications, 2-47

port number
defining listener, 3-135

porting
client application to .NET stored procedure,

5-6
preventing data loss, 3-139, 3-141
preventing logical corruption, 3-42
PrimaryKey property, 3-143

configuring, 3-144
privileged connections, 3-31
promotable transactions, 3-49
properties

ClientId property, 3-34
provider factory classes, 3-1
proxy authentication, 3-33

Q
query result set

retrieving as XML, 3-101

R
REF CURSOR, xciv, 3-85

behavior of ExecuteScalar method, 3-83
implicit, xciv, 3-85
obtaining, 3-82
passing to stored procedure, 3-84
populating DataSet from, 3-82
populating from OracleDataReader, 3-82

registry entries, 2-11
release Oracle8i (8.1.7), 3-105
release Oracle9i(9.0.x), 3-105
Requery property, 3-143
round-trip, 3-62
RowSize property, 3-80
runtime connection load balancing, 3-39

S
Safe Type Mapping, 3-139
SafeMapping Property, 3-141
samples, 2-6, 2-10

UDT, 16-1
Samples, 1-21
saving change using an XML document, 3-107
saving changes

using XML data, 3-106
schema metadata

customizing metadata, 3-22
SchemaTable, 6-203
search order

Index

Index-10

search order (continued)
unmanaged DLLs, 2-6

SecureFiles, c, 3-94
SelectCommand property, 3-82
session globalization parameters, 3-149
session globalization settings, 3-146
Shutdown method, 6-150
simple application, 1-20
Size property, 3-59
SQL commands

unsupported, 5-6
Startup method, 6-153
Statement Caching

connection string attributes, 3-66
methods and properties, 3-67
Statement Cache Purge, 3-66
Statement Cache Size, 3-66

StatementCacheWithUdts, 3-124
stored procedures and functions, 3-84, 5-1
Stream class, 3-95
support comparison

client application versus .NET stored
procedure, 5-6

SYSDBA privileges, 3-31
SYSOPER privileges, 3-31
system requirements

Oracle Data Provider for .NET, 2-1
System.Transactions support, 3-49

T
table or view

special characters in, 3-107
TAF, 3-35
TAF callback support, 3-35
Temporary LOBs, 3-96
thread globalization settings, 3-149
thread-based globalization settings, 3-147
Thread.Abort method, 2-48
tips for ODP.NET, 2-48
TNS alias, 3-8
tracing attributes, 3-34
Transaction Guard, 3-42
Transaction object, 3-49
Transaction property, 3-48
transaction support, 5-3
transactions

commit, 3-109
TransactionScope, 3-49
Transparent Application Failover (TAF), 3-35
triggers, 3-127

insert triggers, 3-127
troubleshooting, 3-150
typed OracleDataReader accessors, 3-71

U
UDT

method invocation, 3-124
UDT metadata retrieval from OracleDataReader,

3-119
UdtCacheSize, 3-124
UDTs, 3-109

collection types, 3-110
configuration settings, 3-124
object types, 3-110
parameter binding with OracleParameter,

3-120
retrieving from OracleDataReader, 3-118
samples, 16-1

UDTs (Oracle User-Defined Types), 3-110
UdtTypeName property, 3-120
unique columns, 3-75, 3-76
unique constraint, 3-75, 3-76
unique index, 3-75, 3-76
UniqueConstraint, 3-144
uniqueness

in updating DataSet to database, 3-143
uniqueness in DataRows, 3-144
unmanaged DLLs

mismatch, 2-7
search order, 2-6

unmanged DLLs
config support, 2-6

unsupported SQL commands, 5-6
updating

LOBs, 3-95
updating a DataSet obtained from a REF

CURSOR, 3-83
updating LOBs using a DataSet, 3-95
updating LOBs using ODP.NET LOB objects,

3-96
updating LOBs using OracleCommand and

OracleParameter, 3-96
updating without PrimaryKey and Constraints,

3-145
user-defined types, 3-109
UserCallCompleted public read-only property,

6-240
using FetchSize property, 3-80

V
Value property, 3-60
VARRAY types, 3-110
Virtual Private Database(VPD), 3-34
Visual Studio

documentation, 2-5, 2-7

Index

11

W
WCF Data Services, xciv
web.config, 2-11
Windows registry, 2-22

X
XML

characters with special meaning, 3-101
data manipulation using, 3-105

XML data
saving changes using, 3-106
updating in OracleXmlType, 3-101

XML Database, 3-97
XML DB, 3-97, 3-98
XML element name

case-sensitivity in, 3-107

XML element name (continued)
XML Element Name to Column Name Mapping,

3-107
XML related classes, 7-1
XML related enumerations, 7-1
XML Support, 3-97
XML to specify custom type mappings, 3-114
XMLQuery, 3-98
XMLTable, 3-98
XMLType column

as a .NET String, 3-99
fetching into the DataSet, 3-99
updating with OracleCommand, 3-100

XMLType columns
setting to NULL, 3-100

XQuery
support, 3-98

XQUERY, 3-98
XQuery language, 3-98

Index

Index-12

	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Passwords in Code Examples
	Conventions

	Changes in This Release for Oracle Data Provider for .NET
	Changes in Oracle Data Provider for .NET Release 12.2.0.1
	New Features
	Desupported Features

	Changes in Oracle Data Provider for .NET in ODAC 12c Release 4
	New Features

	Changes in Oracle Data Provider for .NET in ODAC 12c Release 3
	New Features

	Changes in Oracle Data Provider for .NET Release 12.1.0.2
	New Features

	Changes in Oracle Data Provider for .NET in ODAC 12c Release 2
	New Features

	Changes in Oracle Data Provider for .NET in ODAC 12c Release 1
	New Features

	Changes in Oracle Data Provider for .NET Release 12.1
	New Features

	Changes in Oracle Data Provider for .NET Release 11.2.0.3.20
	New Features

	Changes in Oracle Data Provider for .NET Release 11.2.0.3
	New Features

	Changes in Oracle Data Provider for .NET Release 11.2.0.2
	New Features

	Changes in Oracle Data Provider for .NET Release 11.2.0.1.2
	New Features

	Changes in Oracle Data Provider for .NET Release 11.2
	New Features

	Changes in Oracle Data Provider for .NET Release 11.1.0.7.20
	New Features

	Changes in Oracle Data Provider for .NET Release 11.1.0.6.20
	New Features

	Changes in Oracle Data Provider for .NET Release 11.1
	New Features

	1 Introducing Oracle Data Provider for .NET
	1.1 .NET Data Access in Oracle: Products and Documentation
	1.1.1 Oracle Data Provider for .NET (ODP.NET)
	1.1.2 Oracle Developer Tools for Visual Studio
	1.1.3 Oracle Database Extensions for .NET
	1.1.4 Oracle Providers for ASP.NET
	1.1.5 Oracle Services for Microsoft Transaction Server
	1.1.6 Oracle TimesTen In-Memory Database

	1.2 Overview of Oracle Data Provider for .NET (ODP.NET)
	1.3 Oracle Data Provider for .NET Assemblies
	1.3.1 Oracle Data Provider for .NET, Unmanaged Driver Assemblies
	1.3.2 Oracle Data Provider for .NET, Managed Driver Assemblies
	1.3.3 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Namespaces
	1.3.3.1 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client
	1.3.3.2 Oracle.DataAccess.Client and Oracle.ManagedDataAccess.Client Enumerations

	1.3.4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Namespaces
	1.3.4.1 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Structures
	1.3.4.2 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Exceptions
	1.3.4.3 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Classes
	1.3.4.4 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Interfaces
	1.3.4.5 Oracle.DataAccess.Types and Oracle.ManagedDataAccess.Types Enumerations

	1.4 Differences between the ODP.NET Managed Driver and Unmanaged Driver
	1.5 Using ODP.NET Client Provider in a Simple Application

	2 Installing and Configuring Oracle Data Provider for .NET
	2.1 System Requirements
	2.2 Entity Framework Requirements
	2.2.1 Entity Framework Database First and Model First Requirements
	2.2.2 Entity Framework Code First Requirements

	2.3 Oracle Data Provider for .NET Versioning Scheme
	2.4 Installing Oracle Data Provider for .NET, Unmanaged Driver
	2.4.1 File Locations After Installation
	2.4.2 Search Order for Unmanaged DLLs
	2.4.2.1 ODP.NET and Dependent Unmanaged DLL Mismatch

	2.5 Installing Oracle Data Provider for .NET, Managed Driver
	2.5.1 Platform-Dependent Assemblies and Their Search Order
	2.5.2 File Locations After Installation

	2.6 Entity Framework Code First Assemblies and File Location
	2.7 Configuring Oracle Data Provider for .NET
	2.7.1 Oracle Client Configuration File Automated Setup During Installation
	2.7.2 Oracle Client Configuration File Settings
	2.7.3 Machine-Wide Configuration Option

	2.8 Oracle Data Provider for .NET, Unmanaged Driver Configuration
	2.8.1 Supported Configuration Settings
	2.8.2 Windows Registry
	2.8.3 Configuration File Support
	2.8.3.1 SQL Translation Framework Configuration
	2.8.3.2 Specifying UDT Mappings with Unified Configuration for Unmanaged ODP.NET

	2.9 Oracle Data Provider for .NET, Managed Driver Configuration
	2.9.1 version Section
	2.9.2 dataSources Section
	2.9.3 settings section
	2.9.4 LDAPsettings section
	2.9.5 Lightweight Directory Access Protocol
	2.9.6 implicitRefCursor section
	2.9.7 distributedTransaction section
	2.9.8 edmMappings section
	2.9.9 onsConfig section
	2.9.10 Client Side ONS Daemon Configuration
	2.9.11 Relative Windows Path and Windows Environment Variable Configuration Settings

	2.10 Distributed Transactions
	2.10.1 Oracle Services for Microsoft Transaction Server
	2.10.2 ODP.NET, Managed Driver Setup
	2.10.3 ODP.NET, Unmanaged Driver Setup

	2.11 Configuration differences between ODP.NET, Managed Driver and ODP.NET, Unmanaged Driver
	2.12 Configuring for Entity Framework Code First
	2.12.1 Entity Framework 6 Code-Based Registration

	2.13 Migrating from ODP.NET, Unmanaged Driver to ODP.NET, Managed Driver
	2.14 Configuring a Port to Listen for Database Notifications
	2.15 General .NET Programming Recommendations and Tips for ODP.NET

	3 Features of Oracle Data Provider for .NET
	3.1 Base Classes and Provider Factory Classes
	3.2 Code Access Security
	3.2.1 Configuring OraclePermission
	3.2.2 Configuring OraclePermission for Web Applications with High or Medium Trust Levels
	3.2.3 Configuring OraclePermission for Windows Applications Running in a Partial Trust Environment

	3.3 Connecting to Oracle Database
	3.3.1 Connecting to Oracle Database Exadata Express Cloud Service
	3.3.2 Connection String Attributes
	3.3.3 Connection String Builder
	3.3.4 Specifying the Data Source Attribute
	3.3.4.1 Using the TNS Alias
	3.3.4.2 Using the Connect Descriptor
	3.3.4.3 Using Easy Connect Naming Method
	3.3.4.4 Using LDAP
	3.3.4.5 Data Source Enumerator

	3.3.5 Using Transport Layer Security and Secure Sockets Layer
	3.3.5.1 Secure Sockets Layer and Transport Layer Security Differences
	3.3.5.2 ODP.NET Secure Sockets Layer Configuration
	3.3.5.3 Troubleshooting TLS/SSL Setup

	3.3.6 Using Secure External Password Store
	3.3.6.1 Configuring Secure External Password Store (SEPS)

	3.3.7 Using Kerberos
	3.3.7.1 File Based Credential Cache and MSLSA
	3.3.7.2 ODP.NET, Managed Driver Dependency on MIT Kerberos
	3.3.7.3 Configuring Kerberos Authentication with ODP.NET

	3.3.8 Using Windows Native Authentication (NTS)
	3.3.8.1 Configuring Windows Native Authentication (NTS) for the ODP.NET Client

	3.3.9 Network Data Encryption and Integrity
	3.3.9.1 Using Data Encryption
	3.3.9.2 Using Data Integrity

	3.3.10 Schema Discovery
	3.3.10.1 User Customization of Metadata

	3.3.11 Connection Pooling
	3.3.11.1 Using Connection Pooling

	3.3.12 Connection Pool Management
	3.3.13 Connection Pool Performance Counters
	3.3.13.1 Publishing Performance Counters
	3.3.13.2 Setting Performance Counters Using .NET Configuration Entry
	3.3.13.3 Instance Names of Performance Counters

	3.3.14 Pluggable Databases
	3.3.15 Edition-Based Redefinition
	3.3.16 Operating System Authentication
	3.3.17 Privileged Connections
	3.3.18 Password Expiration
	3.3.19 Proxy Authentication
	3.3.20 Dynamic Distributed Transaction Enlistment
	3.3.21 Client Identifier and End-to-End Tracing
	3.3.22 Transparent Application Failover (TAF) Callback Support
	3.3.22.1 TAF Notification
	3.3.22.2 When Failover Occurs
	3.3.22.3 Registering an Event Handler for Failover

	3.4 Real Application Clusters and Global Data Services
	3.4.1 Fast Application Notification
	3.4.2 Runtime Connection Load Balancing
	3.4.3 Fast Connection Failover (FCF)
	3.4.4 Using FCF Planned Outage to Minimize Service Disruption
	3.4.5 Pool Behavior in an Oracle RAC Database

	3.5 Using Transaction Guard to Prevent Logical Corruption
	3.5.1 ODP.NET and Transaction Guard

	3.6 Application Continuity
	3.6.1 ODP.NET and Application Continuity

	3.7 Database Sharding
	3.7.1 ODP.NET Sharding

	3.8 OracleCommand Object
	3.8.1 Transactions
	3.8.2 System.Transactions and Promotable Transactions
	3.8.2.1 Implicit Transaction Enlistment Using TransactionScope
	3.8.2.2 Explicit Transaction Enlistment Using CommittableTransaction
	3.8.2.3 Local Transaction Support for Older Databases

	3.8.3 Parameter Binding
	3.8.3.1 Command Timeouts
	3.8.3.2 OracleDbType Enumeration Type
	3.8.3.3 Inference of DbType, OracleDbType, and .NET Types
	3.8.3.3.1 Inference of DbType from OracleDbType
	3.8.3.3.2 Inference of OracleDbType from DbType
	3.8.3.3.3 Inference of DbType and OracleDbType from Value

	3.8.3.4 PL/SQL Associative Array Binding
	3.8.3.5 Array Binding
	3.8.3.5.1 OracleParameter Array Bind Properties
	3.8.3.5.2 Error Handling for Array Binding
	3.8.3.5.3 OracleParameterStatus Enumeration Types

	3.8.4 Batch Processing
	3.8.5 Statement Caching
	3.8.5.1 Statement Caching Connection String Attributes
	3.8.5.2 Enabling Statement Caching through the Registry
	3.8.5.3 Statement Caching Methods and Properties
	3.8.5.4 Connections and Statement Caching
	3.8.5.5 Pooling and Statement Caching

	3.8.6 Self-Tuning
	3.8.6.1 Self-Tuning Statement Caching
	3.8.6.2 Enabling or Disabling Self-Tuning for Applications
	3.8.6.3 Tracing Optimization Changes

	3.9 ODP.NET Types Overview
	3.10 Obtaining Data from an OracleDataReader Object
	3.10.1 Typed OracleDataReader Accessors
	3.10.1.1 .NET Type Accessors
	3.10.1.2 ODP.NET Type Accessors

	3.10.2 Obtaining LONG and LONG RAW Data
	3.10.2.1 Setting InitialLONGFetchSize to Zero or a Value Greater than Zero
	3.10.2.2 Setting InitialLONGFetchSize to -1

	3.10.3 Obtaining LOB Data
	3.10.3.1 Setting InitialLOBFetchSize to Zero
	3.10.3.2 Setting InitialLOBFetchSize to a Value Greater than Zero
	3.10.3.3 Setting InitialLOBFetchSize to -1
	3.10.3.3.1 Methods Supported for InitialLOBFetchSize of -1 and LegacyEntireLobFetch of 1

	3.10.3.4 Performance Considerations Related to the InitialLOBFetchSize Property

	3.10.4 Controlling the Number of Rows Fetched in One Database Round-Trip
	3.10.4.1 Use of FetchSize
	3.10.4.2 Fine-Tuning FetchSize
	3.10.4.3 Using the RowSize Property
	3.10.4.3.1 Setting FetchSize Value in the Registry
	3.10.4.3.2 Setting FetchSize Value at Design Time
	3.10.4.3.3 Setting FetchSize Value at Run Time

	3.11 PL/SQL REF CURSOR and OracleRefCursor
	3.11.1 Obtaining an OracleRefCursor Object
	3.11.2 Obtaining a REF CURSOR Data Type
	3.11.3 Populating an OracleDataReader from a REF CURSOR
	3.11.4 Populating the DataSet from a REF CURSOR
	3.11.5 Populating an OracleRefCursor from a REF CURSOR
	3.11.6 Updating a DataSet Obtained from a REF CURSOR
	3.11.7 Behavior of ExecuteScalar Method for REF CURSOR
	3.11.8 Passing a REF CURSOR to a Stored Procedure

	3.12 Implicit REF CURSOR Binding
	3.12.1 Specifying REF CURSOR Bind and Metadata Information in the .NET Configuration File
	3.12.2 Sample Configuration File and Application
	3.12.3 Usage Considerations
	3.12.3.1 CommandText Property Considerations
	3.12.3.2 Bind Considerations
	3.12.3.3 Overloaded Stored Procedures
	3.12.3.4 Type Initialization Exceptions
	3.12.3.5 Using Stored Functions with Function Import

	3.13 LOB Support
	3.13.1 Large Character and Large Binary Data Types
	3.13.2 Oracle Data Provider for .NET LOB Objects
	3.13.3 Updating LOBs Using a DataSet
	3.13.4 Updating LOBs Using OracleCommand and OracleParameter
	3.13.5 Updating LOBs Using ODP.NET LOB Objects
	3.13.6 Temporary LOBs

	3.14 ODP.NET XML Support
	3.14.1 Supported XML Features
	3.14.2 XQuery Support
	3.14.3 OracleXmlType and Connection Dependency
	3.14.4 Updating XMLType Data in the Database
	3.14.4.1 Updating with DataSet, OracleDataAdapter, and OracleCommandBuilder
	3.14.4.2 Updating with OracleCommand and OracleParameter
	3.14.4.2.1 Input Binding
	3.14.4.2.2 Setting XMLType Column to NULL Value
	3.14.4.2.3 Setting XMLType Column to Empty XML Data

	3.14.5 Updating XML Data in OracleXmlType
	3.14.6 Characters with Special Meaning in XML
	3.14.7 Retrieving Query Result Set as XML
	3.14.7.1 Handling Date and Time Format
	3.14.7.2 Characters with Special Meaning in Column Data
	3.14.7.3 Characters in Table or View Name
	3.14.7.4 Case-Sensitivity in Column Name to XML Element Name Mapping
	3.14.7.5 Column Name to XML Element Name Mapping
	3.14.7.5.1 Improving Default Mapping

	3.14.7.6 Object-Relational Data
	3.14.7.7 NULL Values

	3.14.8 Data Manipulation Using XML
	3.14.8.1 Handling Date and Time Format
	3.14.8.2 Saving Changes Using XML
	3.14.8.3 Characters with Special Meaning in Column Data
	3.14.8.4 Characters with Special Meaning in Table or View Name
	3.14.8.5 Case-Sensitivity in XML Element Name to Column Name Mapping
	3.14.8.6 XML Element Name to Column Name Mapping
	3.14.8.7 Saving Changes to a Table Using an XML Document
	3.14.8.7.1 Improving Default Mapping

	3.14.8.8 Object-Relational Data
	3.14.8.9 Multiple Tables
	3.14.8.10 Commit Transactions

	3.15 Oracle User-Defined Types (UDTs) and .NET Custom Types
	3.15.1 Oracle User-Defined Types (UDTs)
	3.15.2 Custom Types
	3.15.2.1 Required Custom Type Implementations
	3.15.2.2 Optional Custom Type Implementations

	3.15.3 Specifying Custom Type Mappings
	3.15.3.1 Using a Custom Type Factory to Specify Custom Type Mappings
	3.15.3.2 Using XML in Configuration Files to Specify Custom Type Mappings
	3.15.3.2.1 Required Attributes
	3.15.3.2.2 Optional Attributes

	3.15.3.3 Using Custom Type Mappings

	3.15.4 Converting Between Custom Types and Oracle UDTs
	3.15.5 Oracle UDT Attribute Mappings
	3.15.6 Oracle UDT Retrieval from OracleDataReader
	3.15.7 Oracle UDT Metadata Retrieval from OracleDataReader
	3.15.8 Oracle UDT Parameter Binding with OracleParameter
	3.15.8.1 Guidelines for Binding UDT Input and Output Parameters
	3.15.8.2 UDT Input Parameter Binding with OracleParameters
	3.15.8.3 UDT Output Parameter Binding with OracleParameters

	3.15.9 Populating the DataSet with Oracle UDTs
	3.15.10 UDT Method Invocation
	3.15.11 Configuration Settings for Oracle UDTs
	3.15.11.1 StatementCacheWithUdts
	3.15.11.2 UdtCacheSize

	3.16 Bulk Copy
	3.16.1 Data Types Supported by Bulk Copy
	3.16.2 Restrictions on Oracle Bulk Copy of a Single Partition
	3.16.3 Integrity Constraints Affecting Oracle Bulk Copy
	3.16.4 Database Insert Triggers
	3.16.5 Field Defaults

	3.17 Oracle Database Advanced Queuing Support
	3.17.1 Using ODP.NET for Advanced Queuing
	3.17.1.1 Enqueuing and Dequeuing Example

	3.18 Continuous Query Notification Support
	3.18.1 Continuous Query Notification Classes
	3.18.2 Supported Operations
	3.18.3 Requirements of Notification Registration
	3.18.4 Using Continuous Query Notification
	3.18.4.1 Application Steps
	3.18.4.2 Flow of Notification Process

	3.18.5 Best Practice Guidelines and Performance Considerations

	3.19 OracleDataAdapter Safe Type Mapping
	3.19.1 Comparison Between Oracle Data Types and .NET Types
	3.19.2 SafeMapping Property
	3.19.2.1 Using Safe Type Mapping

	3.20 OracleDataAdapter Requery Property
	3.21 Guaranteeing Uniqueness in Updating DataSet to Database
	3.21.1 What Constitutes Uniqueness in DataRow Objects?
	3.21.2 Configuring PrimaryKey and Constraints Properties
	3.21.3 Updating Without PrimaryKey and Constraints Configuration

	3.22 Globalization Support
	3.22.1 Globalization Settings
	3.22.1.1 Client Globalization Settings
	3.22.1.2 Session Globalization Settings
	3.22.1.3 Thread-Based Globalization Settings

	3.22.2 Globalization-Sensitive Operations
	3.22.2.1 Operations Dependent on Client Computer's Globalization Settings
	3.22.2.2 Operations Dependent on Thread Globalization Settings
	3.22.2.3 Operations Sensitive to Session Globalization Parameters

	3.22.3 ODP.NET Managed and Unmanaged Drivers Differences

	3.23 Debug Tracing
	3.24 Database Application Migration: SQL Translation Framework
	3.24.1 The SQL Translation Profile

	4 ADO.NET Entity Framework and LINQ to Entities
	4.1 Overview of Entity Framework
	4.2 Language Integrated Query and Entity SQL
	4.3 Mapping Oracle Data Types to EDM Types
	4.3.1 EDM Type Facets

	4.4 Oracle Number Default Data Type Mapping and Customization
	4.4.1 Entity Framework 5 and Earlier Mapping and Customization
	4.4.2 Entity Framework 6 Mapping and Customization
	4.4.2.1 New Default Mappings

	4.4.3 Data Type Mapping and Customization Process
	4.4.4 StoreGeneratedPattern Enumeration
	4.4.4.1 Identity Attribute
	4.4.4.2 Virtual Column

	4.4.5 Resolving Compilation Errors When Using Custom Mapping
	4.4.6 Mapping Boolean and Guid Parameters in Custom INSERT, UPDATE, and DELETE Stored Procedures

	4.5 Migrating Existing Entity Framework 5 Applications to Entity Framework 6
	4.6 Code First
	4.6.1 Mapping of .NET Types to Oracle Types
	4.6.2 Code First Migrations
	4.6.2.1 Code First Migrations With No Supporting Code Migration File

	4.6.3 Code First Database Initialization
	4.6.4 Oracle Database Object Creation
	4.6.5 Using the Default Connection Factory

	4.7 Unsupported Entity Framework Features

	5 Oracle Data Provider for .NET Stored Procedures
	5.1 Introducing .NET Stored Procedure Execution Using ODP.NET
	5.2 Limitations and Restrictions on ODP.NET Within .NET Stored Procedure
	5.2.1 Implicit Database Connection
	5.2.2 Transaction Support
	5.2.3 Unsupported SQL Commands
	5.2.4 Oracle User-Defined Type (UDT) Support

	5.3 Porting Client Application to .NET Stored Procedure

	6 Oracle Data Provider for .NET Classes
	6.1 OracleClientFactory Class
	6.1.1 OracleClientFactory Members
	6.1.2 OracleClientFactory Field
	6.1.2.1 Instance

	6.1.3 OracleClientFactory Constructor
	6.1.4 OracleClientFactory Public Properties
	6.1.4.1 CanCreateDataSourceEnumerator

	6.1.5 OracleClientFactory Public Methods
	6.1.5.1 CreateCommand
	6.1.5.2 CreateCommandBuilder
	6.1.5.3 CreateConnection
	6.1.5.4 CreateConnectionStringBuilder
	6.1.5.5 CreateDataAdapter
	6.1.5.6 CreateDataSourceEnumerator
	6.1.5.7 CreateParameter
	6.1.5.8 CreatePermission

	6.2 OracleCommand Class
	6.2.1 OracleCommand Members
	6.2.2 OracleCommand Constructors
	6.2.2.1 OracleCommand()
	6.2.2.2 OracleCommand(string)
	6.2.2.3 OracleCommand(string, OracleConnection)

	6.2.3 OracleCommand Static Methods
	6.2.4 OracleCommand Properties
	6.2.4.1 AddRowid
	6.2.4.2 AddToStatementCache
	6.2.4.3 ArrayBindCount
	6.2.4.4 ArrayBindRowsAffected
	6.2.4.5 BindByName
	6.2.4.6 CommandText
	6.2.4.7 CommandTimeout
	6.2.4.8 CommandType
	6.2.4.9 Connection
	6.2.4.10 DesignTimeVisible
	6.2.4.11 FetchSize
	6.2.4.12 ImplicitRefCursors
	6.2.4.13 InitialLOBFetchSize
	6.2.4.14 InitialLONGFetchSize
	6.2.4.15 Notification
	6.2.4.16 NotificationAutoEnlist
	6.2.4.17 Parameters
	6.2.4.18 RowSize
	6.2.4.19 Transaction
	6.2.4.20 UpdatedRowSource
	6.2.4.21 UseEdmMapping
	6.2.4.22 XmlCommandType
	6.2.4.23 XmlQueryProperties
	6.2.4.24 XmlSaveProperties

	6.2.5 OracleCommand Public Methods
	6.2.5.1 Cancel
	6.2.5.2 Clone
	6.2.5.3 CreateParameter
	6.2.5.4 Dispose
	6.2.5.5 ExecuteNonQuery
	6.2.5.6 ExecuteReader
	6.2.5.7 ExecuteReader()
	6.2.5.8 ExecuteReader(CommandBehavior)
	6.2.5.9 ExecuteScalar
	6.2.5.10 ExecuteStream
	6.2.5.11 ExecuteToStream
	6.2.5.12 ExecuteXmlReader
	6.2.5.13 Prepare

	6.3 OracleCommandBuilder Class
	6.3.1 OracleCommandBuilder Members
	6.3.2 OracleCommandBuilder Constructors
	6.3.2.1 OracleCommandBuilder()
	6.3.2.2 OracleCommandBuilder(OracleDataAdapter)

	6.3.3 OracleCommandBuilder Static Methods
	6.3.3.1 DeriveParameters

	6.3.4 OracleCommandBuilder Properties
	6.3.4.1 CaseSensitive
	6.3.4.2 CatalogLocation
	6.3.4.3 CatalogSeparator
	6.3.4.4 ConflictOption
	6.3.4.5 DataAdapter
	6.3.4.6 QuotePrefix
	6.3.4.7 QuoteSuffix
	6.3.4.8 SchemaSeparator

	6.3.5 OracleCommandBuilder Public Methods
	6.3.5.1 GetDeleteCommand
	6.3.5.2 GetDeleteCommand()
	6.3.5.3 GetDeleteCommand(bool)
	6.3.5.4 GetInsertCommand
	6.3.5.5 GetInsertCommand()
	6.3.5.6 GetInsertCommand(bool)
	6.3.5.7 GetUpdateCommand
	6.3.5.8 GetUpdateCommand()
	6.3.5.9 GetUpdateCommand(bool)
	6.3.5.10 QuoteIdentifier
	6.3.5.11 RefreshSchema
	6.3.5.12 UnquoteIdentifier

	6.3.6 OracleCommandBuilder Events

	6.4 OracleConnection Class
	6.4.1 OracleConnection Members
	6.4.2 OracleConnection Constructors
	6.4.2.1 OracleConnection()
	6.4.2.2 OracleConnection(String)

	6.4.3 OracleConnection Static Properties
	6.4.3.1 IsAvailable

	6.4.4 OracleConnection Static Methods
	6.4.4.1 ClearPool
	6.4.4.2 ClearAllPools

	6.4.5 OracleConnection Properties
	6.4.5.1 ActionName
	6.4.5.2 ClientId
	6.4.5.3 ClientInfo
	6.4.5.4 ConnectionString
	6.4.5.5 ConnectionTimeout
	6.4.5.6 ConnectionType
	6.4.5.7 Database
	6.4.5.8 DatabaseDomainName
	6.4.5.9 DatabaseName
	6.4.5.10 DataSource
	6.4.5.11 HostName
	6.4.5.12 InstanceName
	6.4.5.13 ModuleName
	6.4.5.14 ServerVersion
	6.4.5.15 ServiceName
	6.4.5.16 State
	6.4.5.17 StatementCacheSize

	6.4.6 OracleConnection Public Methods
	6.4.6.1 BeginTransaction
	6.4.6.2 BeginTransaction()
	6.4.6.3 BeginTransaction(IsolationLevel)
	6.4.6.4 ChangeDatabase
	6.4.6.5 Clone
	6.4.6.6 Close
	6.4.6.7 CreateCommand
	6.4.6.8 EnlistDistributedTransaction
	6.4.6.9 EnlistTransaction
	6.4.6.10 FlushCache
	6.4.6.11 GetSchema
	6.4.6.12 GetSchema()
	6.4.6.13 GetSchema (string collectionName)
	6.4.6.14 GetSchema (string collectionName, string[] restrictions)
	6.4.6.15 GetSessionInfo
	6.4.6.16 GetSessionInfo()
	6.4.6.17 GetSessionInfo(OracleGlobalization)
	6.4.6.18 Open
	6.4.6.19 OpenWithNewPassword
	6.4.6.20 PurgeStatementCache
	6.4.6.21 SetSessionInfo
	6.4.6.22 SetShardingKey(OracleShardingKey, OracleShardingKey)

	6.4.7 OracleConnection Events
	6.4.7.1 Failover
	6.4.7.2 HAEvent
	6.4.7.3 InfoMessage
	6.4.7.4 StateChange

	6.5 OracleConnectionStringBuilder Class
	6.5.1 OracleConnectionStringBuilder Members
	6.5.2 OracleConnectionStringBuilder Constructors
	6.5.2.1 OracleConnectionStringBuilder()
	6.5.2.2 OracleConnectionStringBuilder(string)

	6.5.3 OracleConnectionStringBuilder Public Properties
	6.5.3.1 ConnectionLifeTime
	6.5.3.2 ConnectionTimeout
	6.5.3.3 ContextConnection
	6.5.3.4 DataSource
	6.5.3.5 DBAPrivilege
	6.5.3.6 DecrPoolSize
	6.5.3.7 Enlist
	6.5.3.8 HAEvents
	6.5.3.9 IncrPoolSize
	6.5.3.10 IsFixedSize
	6.5.3.11 Item
	6.5.3.12 Keys
	6.5.3.13 LoadBalancing
	6.5.3.14 MaxPoolSize
	6.5.3.15 MetadataPooling
	6.5.3.16 MinPoolSize
	6.5.3.17 Password
	6.5.3.18 PersistSecurityInfo
	6.5.3.19 Pooling
	6.5.3.20 PromotableTransaction
	6.5.3.21 ProxyPassword
	6.5.3.22 ProxyUserId
	6.5.3.23 SelfTuning
	6.5.3.24 StatementCachePurge
	6.5.3.25 StatementCacheSize
	6.5.3.26 UserID
	6.5.3.27 ValidateConnection
	6.5.3.28 Values

	6.5.4 OracleConnectionStringBuilder Public Methods
	6.5.4.1 Clear
	6.5.4.2 ContainsKey
	6.5.4.3 Remove
	6.5.4.4 TryGetValue

	6.6 OracleDataAdapter Class
	6.6.1 OracleDataAdapter Members
	6.6.2 OracleDataAdapter Constructors
	6.6.2.1 OracleDataAdapter()
	6.6.2.2 OracleDataAdapter(OracleCommand)
	6.6.2.3 OracleDataAdapter(string, OracleConnection)
	6.6.2.4 OracleDataAdapter(string, string)

	6.6.3 OracleDataAdapter Static Methods
	6.6.4 OracleDataAdapter Properties
	6.6.4.1 DeleteCommand
	6.6.4.2 IdentityInsert
	6.6.4.3 IdentityUpdate
	6.6.4.4 InsertCommand
	6.6.4.5 Requery
	6.6.4.6 ReturnProviderSpecificTypes
	6.6.4.7 SafeMapping
	6.6.4.8 SelectCommand
	6.6.4.9 UpdateBatchSize
	6.6.4.10 UpdateCommand

	6.6.5 OracleDataAdapter Public Methods
	6.6.5.1 Fill
	6.6.5.2 Fill(DataTable, OracleRefCursor)
	6.6.5.3 Fill(DataSet, OracleRefCursor)
	6.6.5.4 Fill(DataSet, string, OracleRefCursor)
	6.6.5.5 Fill(DataSet, int, int, string, OracleRefCursor)

	6.6.6 OracleDataAdapter Events
	6.6.6.1 RowUpdated
	6.6.6.2 RowUpdating

	6.7 OracleDatabase Class
	6.7.1 OracleDatabase Members
	6.7.2 OracleDatabase Constructor
	6.7.3 OracleDatabase Properties
	6.7.3.1 ServerVersion

	6.7.4 OracleDatabase Public Methods
	6.7.4.1 Dispose
	6.7.4.2 ExecuteNonQuery
	6.7.4.3 Shutdown
	6.7.4.4 Shutdown()
	6.7.4.5 Shutdown(OracleDBShutdownMode, bool)
	6.7.4.6 Startup
	6.7.4.7 Startup()
	6.7.4.8 Startup(OracleDBStartupMode, string, bool)

	6.8 OracleDataReader Class
	6.8.1 OracleDataReader Members
	6.8.2 OracleDataReader Static Methods
	6.8.3 OracleDataReader Properties
	6.8.3.1 Depth
	6.8.3.2 FetchSize
	6.8.3.3 FieldCount
	6.8.3.4 HasRows
	6.8.3.5 HiddenFieldCount
	6.8.3.6 IsClosed
	6.8.3.7 Item
	6.8.3.8 Item [index]
	6.8.3.9 Item [string]
	6.8.3.10 InitialLOBFetchSize
	6.8.3.11 InitialLONGFetchSize
	6.8.3.12 RecordsAffected
	6.8.3.13 RowSize
	6.8.3.14 UseEdmMapping
	6.8.3.15 VisibleFieldCount

	6.8.4 OracleDataReader Public Methods
	6.8.4.1 Close
	6.8.4.2 Dispose
	6.8.4.3 GetBoolean
	6.8.4.4 GetByte
	6.8.4.5 GetBytes
	6.8.4.6 GetChar
	6.8.4.7 GetChars
	6.8.4.8 GetData
	6.8.4.9 GetDataTypeName
	6.8.4.10 GetDateTime
	6.8.4.11 GetDecimal
	6.8.4.12 GetDouble
	6.8.4.13 GetEnumerator
	6.8.4.14 GetFieldType
	6.8.4.15 GetFloat
	6.8.4.16 GetGuid
	6.8.4.17 GetInt16
	6.8.4.18 GetInt32
	6.8.4.19 GetInt64
	6.8.4.20 GetName
	6.8.4.21 GetOracleBFile
	6.8.4.22 GetOracleBinary
	6.8.4.23 GetOracleBlob
	6.8.4.24 GetOracleBlobForUpdate
	6.8.4.25 GetOracleBlobForUpdate(int)
	6.8.4.26 GetOracleBlobForUpdate(int, int)
	6.8.4.27 GetOracleClob
	6.8.4.28 GetOracleClobForUpdate
	6.8.4.29 GetOracleClobForUpdate(int)
	6.8.4.30 GetOracleClobForUpdate(int, int)
	6.8.4.31 GetOracleDate
	6.8.4.32 GetOracleDecimal
	6.8.4.33 GetOracleIntervalDS
	6.8.4.34 GetOracleIntervalYM
	6.8.4.35 GetOracleRef
	6.8.4.36 GetOracleString
	6.8.4.37 GetOracleTimeStamp
	6.8.4.38 GetOracleTimeStampLTZ
	6.8.4.39 GetOracleTimeStampTZ
	6.8.4.40 GetOracleXmlType
	6.8.4.41 GetOracleValue
	6.8.4.42 GetOracleValues
	6.8.4.43 GetOrdinal
	6.8.4.44 GetProviderSpecificFieldType
	6.8.4.45 GetProviderSpecificValue
	6.8.4.46 GetProviderSpecificValues
	6.8.4.47 GetSchemaTable
	6.8.4.48 GetString
	6.8.4.49 GetTimeSpan
	6.8.4.50 GetValue
	6.8.4.51 GetValues
	6.8.4.52 GetXmlReader
	6.8.4.53 IsDBNull
	6.8.4.54 NextResult
	6.8.4.55 Read

	6.9 OracleDataSourceEnumerator Class
	6.9.1 OracleDataSourceEnumerator Members
	6.9.2 OracleDataSourceEnumerator Constructor
	6.9.3 OracleDataSourceEnumerator Public Methods
	6.9.3.1 GetDataSources

	6.10 OracleError Class
	6.10.1 OracleError Members
	6.10.2 OracleError Static Methods
	6.10.3 OracleError Properties
	6.10.3.1 ArrayBindIndex
	6.10.3.2 DataSource
	6.10.3.3 Message
	6.10.3.4 Number
	6.10.3.5 Procedure
	6.10.3.6 Source

	6.10.4 OracleError Methods
	6.10.4.1 ToString

	6.11 OracleErrorCollection Class
	6.11.1 OracleErrorCollection Members
	6.11.2 OracleErrorCollection Static Methods
	6.11.3 OracleErrorCollection Properties
	6.11.4 OracleErrorCollection Public Methods

	6.12 OracleException Class
	6.12.1 OracleException Members
	6.12.2 OracleException Static Methods
	6.12.3 OracleException Properties
	6.12.3.1 DataSource
	6.12.3.2 Errors
	6.12.3.3 IsRecoverable
	6.12.3.4 Message
	6.12.3.5 Number
	6.12.3.6 OracleLogicalTransaction
	6.12.3.7 Procedure
	6.12.3.8 Source

	6.12.4 OracleException Methods
	6.12.4.1 GetObjectData
	6.12.4.2 ToString

	6.13 OracleInfoMessageEventArgs Class
	6.13.1 OracleInfoMessageEventArgs Members
	6.13.2 OracleInfoMessageEventArgs Static Methods
	6.13.3 OracleInfoMessageEventArgs Properties
	6.13.3.1 Errors
	6.13.3.2 Message
	6.13.3.3 Source

	6.13.4 OracleInfoMessageEventArgs Public Methods
	6.13.4.1 ToString

	6.14 OracleInfoMessageEventHandler Delegate
	6.15 OracleLogicalTransaction Class
	6.15.1 OracleLogicalTransaction Members
	6.15.2 OracleLogicalTransaction Public Read-Only Properties
	6.15.2.1 Committed
	6.15.2.2 ConnectionString
	6.15.2.3 LogicalTransactionId
	6.15.2.4 UserCallCompleted

	6.15.3 OracleLogicalTransaction Methods
	6.15.3.1 Dispose
	6.15.3.2 GetOutcome

	6.16 OracleParameter Class
	6.16.1 OracleParameter Members
	6.16.2 OracleParameter Constructors
	6.16.2.1 OracleParameter()
	6.16.2.2 OracleParameter(string, OracleDbType)
	6.16.2.3 OracleParameter(string, object)
	6.16.2.4 OracleParameter(string, OracleDbType, ParameterDirection)
	6.16.2.5 OracleParameter(string, OracleDbType, object, ParameterDirection)
	6.16.2.6 OracleParameter(string, OracleDbType, int)
	6.16.2.7 OracleParameter(string, OracleDbType, int, string)
	6.16.2.8 OracleParameter(string, OracleDbType, int, ParameterDirection, bool, byte, byte, string, DataRowVersion, object)
	6.16.2.9 OracleParameter(string, OracleDbType, int, object, ParameterDirection)

	6.16.3 OracleParameter Static Methods
	6.16.4 OracleParameter Properties
	6.16.4.1 ArrayBindSize
	6.16.4.2 ArrayBindStatus
	6.16.4.3 CollectionType
	6.16.4.4 DbType
	6.16.4.5 Direction
	6.16.4.6 IsNullable
	6.16.4.7 Offset
	6.16.4.8 OracleDbType
	6.16.4.9 OracleDbTypeEx
	6.16.4.10 ParameterName
	6.16.4.11 Precision
	6.16.4.12 Scale
	6.16.4.13 Size
	6.16.4.14 SourceColumn
	6.16.4.15 SourceColumnNullMapping
	6.16.4.16 SourceVersion
	6.16.4.17 Status
	6.16.4.18 UdtTypeName
	6.16.4.19 Value

	6.16.5 OracleParameter Public Methods
	6.16.5.1 Clone
	6.16.5.2 Dispose
	6.16.5.3 ResetDbType
	6.16.5.4 ResetOracleDbType
	6.16.5.5 ToString

	6.17 OracleParameterCollection Class
	6.17.1 OracleParameterCollection Members
	6.17.2 OracleParameterCollection Static Methods
	6.17.3 OracleParameterCollection Properties
	6.17.3.1 Count
	6.17.3.2 Item
	6.17.3.3 Item[int]
	6.17.3.4 Item[string]
	6.17.3.5 IsFixedSize
	6.17.3.6 IsReadOnly
	6.17.3.7 IsSynchronized
	6.17.3.8 SyncRoot

	6.17.4 OracleParameterCollection Public Methods
	6.17.4.1 Add
	6.17.4.2 Add(object)
	6.17.4.3 Add(OracleParameter)
	6.17.4.4 Add(string, object)
	6.17.4.5 Add(string, OracleDbType)
	6.17.4.6 Add(string, OracleDbType, ParameterDirection)
	6.17.4.7 Add(string, OracleDbType, object, ParameterDirection)
	6.17.4.8 Add(string, OracleDbType, int, object, ParameterDirection)
	6.17.4.9 Add(string, OracleDbType, int)
	6.17.4.10 Add (string, OracleDbType, int, string)
	6.17.4.11 Add(string, OracleDbType, int, ParameterDirection, bool, byte, byte, string, DataRowVersion, object)
	6.17.4.12 AddRange
	6.17.4.13 Clear
	6.17.4.14 Contains
	6.17.4.15 Contains(object)
	6.17.4.16 Contains(string)
	6.17.4.17 CopyTo
	6.17.4.18 GetEnumerator
	6.17.4.19 IndexOf
	6.17.4.20 IndexOf(object)
	6.17.4.21 IndexOf(String)
	6.17.4.22 Insert
	6.17.4.23 Remove
	6.17.4.24 RemoveAt
	6.17.4.25 RemoveAt(int)
	6.17.4.26 RemoveAt(String)

	6.18 OraclePermission Class
	6.18.1 OraclePermission Members
	6.18.2 OraclePermission Constructor
	6.18.3 OraclePermission Static Methods
	6.18.4 OraclePermission Public Properties
	6.18.5 OraclePermission Public Methods
	6.18.5.1 Add
	6.18.5.2 Copy
	6.18.5.3 IsSubsetOf

	6.19 OraclePermissionAttribute Class
	6.19.1 OraclePermissionAttribute Members
	6.19.2 OraclePermissionAttribute Constructor
	6.19.3 OraclePermissionAttribute Static Methods
	6.19.4 OraclePermissionAttribute Public Properties
	6.19.5 OraclePermissionAttribute Public Methods
	6.19.5.1 CreatePermission

	6.20 OracleRowUpdatedEventArgs Class
	6.20.1 OracleRowUpdatedEventArgs Members
	6.20.2 OracleRowUpdatedEventArgs Constructor
	6.20.3 OracleRowUpdatedEventArgs Static Methods
	6.20.4 OracleRowUpdatedEventArgs Properties
	6.20.4.1 Command

	6.20.5 OracleRowUpdatedEventArgs Public Methods

	6.21 OracleRowUpdatedEventHandler Delegate
	6.22 OracleRowUpdatingEventArgs Class
	6.22.1 OracleRowUpdatingEventArgs Members
	6.22.2 OracleRowUpdatingEventArgs Constructor
	6.22.3 OracleRowUpdatingEventArgs Static Methods
	6.22.4 OracleRowUpdatingEventArgs Properties
	6.22.4.1 Command

	6.22.5 OracleRowUpdatingEventArgs Public Methods

	6.23 OracleRowUpdatingEventHandler Delegate
	6.24 OracleShardingKey Class
	6.24.1 OracleShardingKey Members
	6.24.2 OracleShardingKey Constructors
	6.24.2.1 OracleShardingKey()
	6.24.2.2 OracleShardingKey(OracleDbType, object)

	6.24.3 OracleShardingKey Instance Methods
	6.24.3.1 SetShardingKey(OracleDbType, object)
	6.24.3.2 Dispose

	6.25 OracleTransaction Class
	6.25.1 OracleTransaction Members
	6.25.2 OracleTransaction Static Methods
	6.25.3 OracleTransaction Properties
	6.25.3.1 IsolationLevel
	6.25.3.2 Connection

	6.25.4 OracleTransaction Public Methods
	6.25.4.1 Commit
	6.25.4.2 Dispose
	6.25.4.3 Rollback
	6.25.4.4 Rollback()
	6.25.4.5 Rollback(string)
	6.25.4.6 Save

	6.26 OracleConnectionType Enumeration
	6.27 OracleCollectionType Enumeration
	6.28 OracleDBShutdownMode Enumeration
	6.29 OracleDBStartupMode Enumeration
	6.30 OracleDbType Enumeration
	6.31 OracleIdentityType Enumeration
	6.32 OracleParameterStatus Enumeration

	7 Oracle Data Provider for .NET XML-Related Classes
	7.1 OracleXmlCommandType Enumeration
	7.2 OracleXmlQueryProperties Class
	7.2.1 OracleXmlQueryProperties Members
	7.2.2 OracleXmlQueryProperties Constructor
	7.2.3 OracleXmlQueryProperties Properties
	7.2.3.1 MaxRows
	7.2.3.2 RootTag
	7.2.3.3 RowTag
	7.2.3.4 Xslt
	7.2.3.5 XsltParams

	7.2.4 OracleXmlQueryProperties Public Methods
	7.2.4.1 Clone

	7.3 OracleXmlSaveProperties Class
	7.3.1 OracleXmlSaveProperties Members
	7.3.2 OracleXmlSaveProperties Constructor
	7.3.3 OracleXmlSaveProperties Properties
	7.3.3.1 KeyColumnsList
	7.3.3.2 RowTag
	7.3.3.3 Table
	7.3.3.4 UpdateColumnsList
	7.3.3.5 Xslt
	7.3.3.6 XsltParams

	7.3.4 OracleXmlSaveProperties Public Methods
	7.3.4.1 Clone

	7.4 OracleXmlStream Class
	7.4.1 OracleXmlStream Members
	7.4.2 OracleXmlStream Constructor
	7.4.3 OracleXmlStream Static Methods
	7.4.4 OracleXmlStream Instance Properties
	7.4.4.1 CanRead
	7.4.4.2 CanSeek
	7.4.4.3 Connection
	7.4.4.4 Length
	7.4.4.5 Position
	7.4.4.6 Value

	7.4.5 OracleXmlStream Instance Methods
	7.4.5.1 Clone
	7.4.5.2 Close
	7.4.5.3 Dispose
	7.4.5.4 Flush
	7.4.5.5 Read
	7.4.5.6 Read(byte[], int, int)
	7.4.5.7 Read(char[], int, int)
	7.4.5.8 Seek
	7.4.5.9 SetLength
	7.4.5.10 Write
	7.4.5.11 WriteLine

	7.5 OracleXmlType Class
	7.5.1 OracleXmlType Members
	7.5.2 OracleXmlType Constructors
	7.5.2.1 OracleXmlType(OracleClob)
	7.5.2.2 OracleXmlType(OracleConnection, string)
	7.5.2.3 OracleXmlType(OracleConnection, XmlReader)
	7.5.2.4 OracleXmlType(OracleConnection, XmlDocument)

	7.5.3 OracleXmlType Static Methods
	7.5.4 OracleXmlType Static Fields
	7.5.4.1 Null

	7.5.5 OracleXmlType Instance Properties
	7.5.5.1 Connection
	7.5.5.2 IsEmpty
	7.5.5.3 IsFragment
	7.5.5.4 IsNull
	7.5.5.5 IsSchemaBased
	7.5.5.6 RootElement
	7.5.5.7 Schema
	7.5.5.8 SchemaUrl
	7.5.5.9 Value

	7.5.6 OracleXmlType Instance Methods
	7.5.6.1 Clone
	7.5.6.2 Dispose
	7.5.6.3 Extract
	7.5.6.4 Extract(string, string)
	7.5.6.5 Extract(string, XmlNameSpaceManager)
	7.5.6.6 GetStream
	7.5.6.7 GetXmlDocument
	7.5.6.8 GetXmlReader
	7.5.6.9 IsExists
	7.5.6.10 IsExists(string, string)
	7.5.6.11 IsExists(string, XmlNameSpaceManager)
	7.5.6.12 Transform
	7.5.6.13 Transform(OracleXmlType, string)
	7.5.6.14 Transform(string, string)
	7.5.6.15 Update
	7.5.6.16 Update(string, string, string)
	7.5.6.17 Update(string, XmlNameSpaceManager, string)
	7.5.6.18 Update(string, string, OracleXmlType)
	7.5.6.19 Update(string, XmlNameSpaceManager, OracleXmlType)
	7.5.6.20 Validate

	8 Oracle Data Provider for .NET HA Event Classes
	8.1 OracleHAEventArgs Class
	8.1.1 OracleHAEventArgs Members
	8.1.2 OracleHAEventArgs Properties
	8.1.2.1 DatabaseDomainName
	8.1.2.2 DatabaseName
	8.1.2.3 HostName
	8.1.2.4 InstanceName
	8.1.2.5 Reason
	8.1.2.6 ServiceName
	8.1.2.7 Source
	8.1.2.8 Status
	8.1.2.9 Time

	8.2 OracleHAEventHandler Delegate
	8.3 OracleHAEventSource Enumeration
	8.4 OracleHAEventStatus Enumeration

	9 Continuous Query Notification Classes
	9.1 OracleDependency Class
	9.1.1 OracleDependency Members
	9.1.2 OracleDependency Constructors
	9.1.2.1 OracleDependency ()
	9.1.2.2 OracleDependency(OracleCommand)
	9.1.2.3 OracleDependency(OracleCommand, bool, int, bool)

	9.1.3 OracleDependency Static Fields
	9.1.3.1 Port

	9.1.4 OracleDependency Static Methods
	9.1.4.1 GetOracleDependency

	9.1.5 OracleDependency Properties
	9.1.5.1 DataSource
	9.1.5.2 HasChanges
	9.1.5.3 Id
	9.1.5.4 IsEnabled
	9.1.5.5 QueryBasedNotification
	9.1.5.6 RegisteredQueryIDs
	9.1.5.7 RegisteredResources
	9.1.5.8 RowidInfo
	9.1.5.9 UserName

	9.1.6 OracleDependency Methods
	9.1.6.1 AddCommandDependency
	9.1.6.2 RemoveRegistration

	9.1.7 OracleDependency Events
	9.1.7.1 OnChange

	9.2 OracleNotificationRequest Class
	9.2.1 OracleNotificationRequest Members
	9.2.2 OracleNotificationRequest Static Methods
	9.2.3 OracleNotificationRequest Properties
	9.2.3.1 IsNotifiedOnce
	9.2.3.2 IsPersistent
	9.2.3.3 Timeout
	9.2.3.4 GroupingNotificationEnabled
	9.2.3.5 GroupingType
	9.2.3.6 GroupingInterval

	9.2.4 OracleNotificationRequest Methods

	9.3 OracleNotificationEventArgs Class
	9.3.1 OracleNotificationEventArgs Members
	9.3.2 OracleNotificationEventArgs Static Fields
	9.3.3 OracleNotificationEventArgs Static Methods
	9.3.4 OracleNotificationEventArgs Properties
	9.3.4.1 Details
	9.3.4.2 Info
	9.3.4.3 ResourceNames
	9.3.4.4 Source
	9.3.4.5 Type

	9.3.5 OracleNotificationEventArgs Methods

	9.4 OnChangeEventHandler Delegate
	9.5 OracleRowidInfo Enumeration
	9.6 OracleNotificationType Enumeration
	9.7 OracleNotificationSource Enumeration
	9.8 OracleNotificationInfo Enumeration

	10 Oracle Data Provider for .NET Globalization Classes
	10.1 OracleGlobalization Class
	10.1.1 OracleGlobalization Members
	10.1.2 OracleGlobalization Static Methods
	10.1.2.1 GetClientInfo
	10.1.2.2 GetClientInfo()
	10.1.2.3 GetClientInfo(OracleGlobalization)
	10.1.2.4 GetThreadInfo
	10.1.2.5 GetThreadInfo()
	10.1.2.6 GetThreadInfo(OracleGlobalization)
	10.1.2.7 SetThreadInfo

	10.1.3 OracleGlobalization Properties
	10.1.3.1 Calendar
	10.1.3.2 ClientCharacterSet
	10.1.3.3 Comparison
	10.1.3.4 Currency
	10.1.3.5 DateFormat
	10.1.3.6 DateLanguage
	10.1.3.7 DualCurrency
	10.1.3.8 ISOCurrency
	10.1.3.9 Language
	10.1.3.10 LengthSemantics
	10.1.3.11 NCharConversionException
	10.1.3.12 NumericCharacters
	10.1.3.13 Sort
	10.1.3.14 Territory
	10.1.3.15 TimeStampFormat
	10.1.3.16 TimeStampTZFormat
	10.1.3.17 TimeZone

	10.1.4 OracleGlobalization Public Methods
	10.1.4.1 Clone
	10.1.4.2 Dispose

	11 Oracle Data Provider for .NET Failover Classes
	11.1 OracleFailoverEventArgs Class
	11.1.1 OracleFailoverEventArgs Members
	11.1.2 OracleFailoverEventArgs Static Methods
	11.1.3 OracleFailoverEventArgs Properties
	11.1.3.1 FailoverType
	11.1.3.2 FailoverEvent

	11.1.4 OracleFailoverEventArgs Public Methods

	11.2 OracleFailoverEventHandler Delegate
	11.3 FailoverEvent Enumeration
	11.4 FailoverReturnCode Enumeration
	11.5 FailoverType Enumeration

	12 Oracle Database Advanced Queuing Classes
	12.1 OracleAQAgent Class
	12.1.1 OracleAQAgent Members
	12.1.2 OracleAQAgent Constructors
	12.1.2.1 OracleAQAgent (string)
	12.1.2.2 OracleAQAgent (string, string)

	12.1.3 OracleAQAgent Properties
	12.1.3.1 Address
	12.1.3.2 Name

	12.2 OracleAQDequeueOptions Class
	12.2.1 OracleAQDequeueOptions Members
	12.2.2 OracleAQDequeueOptions Constructor
	12.2.3 OracleAQDequeueOptions Properties
	12.2.3.1 ConsumerName
	12.2.3.2 Correlation
	12.2.3.3 DeliveryMode
	12.2.3.4 DequeueMode
	12.2.3.5 MessageId
	12.2.3.6 NavigationMode
	12.2.3.7 ProviderSpecificType
	12.2.3.8 Visibility
	12.2.3.9 Wait

	12.2.4 OracleAQDequeueOptions Public Methods
	12.2.4.1 Clone

	12.3 OracleAQEnqueueOptions Class
	12.3.1 OracleAQEnqueueOptions Members
	12.3.2 OracleAQEnqueueOptions Constructor
	12.3.3 OracleAQEnqueueOptions Properties
	12.3.3.1 DeliveryMode
	12.3.3.2 Visibility

	12.3.4 OracleAQEnqueueOptions Public Methods
	12.3.4.1 Clone

	12.4 OracleAQMessage Class
	12.4.1 OracleAQMessage Members
	12.4.2 OracleAQMessage Constructors
	12.4.2.1 OracleAQMessage()
	12.4.2.2 OracleAQMessage(Object)

	12.4.3 OracleAQMessage Properties
	12.4.3.1 Correlation
	12.4.3.2 Delay
	12.4.3.3 DeliveryMode
	12.4.3.4 DequeueAttempts
	12.4.3.5 EnqueueTime
	12.4.3.6 ExceptionQueue
	12.4.3.7 Expiration
	12.4.3.8 MessageId
	12.4.3.9 OriginalMessageId
	12.4.3.10 Payload
	12.4.3.11 Priority
	12.4.3.12 Recipients
	12.4.3.13 SenderId
	12.4.3.14 State
	12.4.3.15 TransactionGroup

	12.5 OracleAQMessageAvailableEventArgs Class
	12.5.1 OracleAQMessageAvailableEventArgs Members
	12.5.2 OracleAQMessageAvailableEventArgs Constructor
	12.5.3 OracleAQMessageAvailableEventArgs Properties
	12.5.3.1 AvailableMessages
	12.5.3.2 ConsumerName
	12.5.3.3 Correlation
	12.5.3.4 Delay
	12.5.3.5 DeliveryMode
	12.5.3.6 EnqueueTime
	12.5.3.7 ExceptionQueue
	12.5.3.8 Expiration
	12.5.3.9 MessageId
	12.5.3.10 NotificationType
	12.5.3.11 OriginalMessageId
	12.5.3.12 Priority
	12.5.3.13 QueueName
	12.5.3.14 SenderId
	12.5.3.15 State

	12.6 OracleAQMessageAvailableEventHandler Delegate
	12.7 OracleAQQueue Class
	12.7.1 OracleAQQueue Members
	12.7.2 OracleAQQueue Constructors
	12.7.2.1 OracleAQQueue(string)
	12.7.2.2 OracleAQQueue(string, OracleConnection)
	12.7.2.3 OracleAQQueue(string, OracleConnection, OracleAQMessageType)
	12.7.2.4 OracleAQQueue(string, OracleConnection, OracleAQMessageType, string)

	12.7.3 OracleAQQueue Static Methods
	12.7.3.1 Listen
	12.7.3.2 Listen(OracleConnection, OracleAQAgent[])
	12.7.3.3 Listen(OracleConnection, OracleAQAgent[], int)

	12.7.4 OracleAQQueue Properties
	12.7.4.1 Connection
	12.7.4.2 DequeueOptions
	12.7.4.3 EnqueueOptions
	12.7.4.4 MessageType
	12.7.4.5 Name
	12.7.4.6 Notification
	12.7.4.7 NotificationConsumers
	12.7.4.8 UdtTypeName

	12.7.5 OracleAQQueue Public Methods
	12.7.5.1 Dequeue
	12.7.5.2 Dequeue()
	12.7.5.3 Dequeue(OracleAQDequeueOptions)
	12.7.5.4 DequeueArray
	12.7.5.5 DequeueArray(int)
	12.7.5.6 DequeueArray(int, OracleAQDequeueOptions)
	12.7.5.7 Dispose
	12.7.5.8 Enqueue
	12.7.5.9 Enqueue(OracleAQMessage)
	12.7.5.10 Enqueue(OracleAQMessage, OracleAQEnqueueOptions)
	12.7.5.11 EnqueueArray
	12.7.5.12 EnqueueArray(OracleAQMessage[])
	12.7.5.13 EnqueueArray(OracleAQMessage[], OracleAQEnqueueOptions)
	12.7.5.14 Listen
	12.7.5.15 Listen(string[])
	12.7.5.16 Listen (string[], int)

	12.7.6 OracleAQQueue Events
	12.7.6.1 MessageAvailable Event

	12.8 OracleAQDequeueMode Enumeration
	12.9 OracleAQMessageDeliveryMode Enumeration
	12.10 OracleAQMessageState Enumeration
	12.11 OracleAQMessageType Enumeration
	12.12 OracleAQNavigationMode Enumeration
	12.13 OracleAQNotificationGroupingType Enumeration
	12.14 OracleAQNotificationType Enumeration
	12.15 OracleAQVisibilityMode Enumeration

	13 Oracle Data Provider for .NET Types Classes
	13.1 OracleBFile Class
	13.1.1 OracleBFile Members
	13.1.2 OracleBFile Constructors
	13.1.2.1 OracleBFile(OracleConnection)
	13.1.2.2 OracleBFile(OracleConnection, string, string)

	13.1.3 OracleBFile Static Fields
	13.1.3.1 MaxSize
	13.1.3.2 Null

	13.1.4 OracleBFile Static Methods
	13.1.5 OracleBFile Instance Properties
	13.1.5.1 CanRead
	13.1.5.2 CanSeek
	13.1.5.3 CanWrite
	13.1.5.4 Connection
	13.1.5.5 DirectoryName
	13.1.5.6 FileExists
	13.1.5.7 FileName
	13.1.5.8 IsEmpty
	13.1.5.9 IsNull
	13.1.5.10 IsOpen
	13.1.5.11 Length
	13.1.5.12 Position
	13.1.5.13 Value

	13.1.6 OracleBFile Instance Methods
	13.1.6.1 Clone
	13.1.6.2 Close
	13.1.6.3 CloseFile
	13.1.6.4 Compare
	13.1.6.5 CopyTo
	13.1.6.6 CopyTo(OracleBlob)
	13.1.6.7 CopyTo(OracleBlob, Int64)
	13.1.6.8 CopyTo(Int64, OracleBlob, Int64, Int64)
	13.1.6.9 CopyTo(OracleClob)
	13.1.6.10 CopyTo(OracleClob, Int64)
	13.1.6.11 CopyTo(Int64, OracleClob, Int64, Int64)
	13.1.6.12 Dispose
	13.1.6.13 Flush
	13.1.6.14 FlushAsync
	13.1.6.15 IsEqual
	13.1.6.16 OpenFile
	13.1.6.17 Read
	13.1.6.18 Search
	13.1.6.19 Seek
	13.1.6.20 SetLength
	13.1.6.21 Write

	13.2 OracleBlob Class
	13.2.1 OracleBlob Members
	13.2.2 OracleBlob Constructors
	13.2.2.1 OracleBlob(OracleConnection)
	13.2.2.2 OracleBlob(OracleConnection, bool)

	13.2.3 OracleBlob Static Fields
	13.2.3.1 MaxSize
	13.2.3.2 Null

	13.2.4 OracleBlob Static Methods
	13.2.5 OracleBlob Instance Properties
	13.2.5.1 CanRead
	13.2.5.2 CanSeek
	13.2.5.3 CanWrite
	13.2.5.4 Connection
	13.2.5.5 IsEmpty
	13.2.5.6 IsInChunkWriteMode
	13.2.5.7 IsNull
	13.2.5.8 IsTemporary
	13.2.5.9 Length
	13.2.5.10 OptimumChunkSize
	13.2.5.11 Position
	13.2.5.12 Value

	13.2.6 OracleBlob Instance Methods
	13.2.6.1 Append
	13.2.6.2 Append(OracleBlob)
	13.2.6.3 Append(byte[], int, int)
	13.2.6.4 BeginChunkWrite
	13.2.6.5 Clone
	13.2.6.6 Close
	13.2.6.7 Compare
	13.2.6.8 CopyTo
	13.2.6.9 CopyTo(OracleBlob)
	13.2.6.10 CopyTo(OracleBlob, Int64)
	13.2.6.11 CopyTo(Int64, OracleBlob, Int64, Int64)
	13.2.6.12 Dispose
	13.2.6.13 EndChunkWrite
	13.2.6.14 Erase
	13.2.6.15 Erase()
	13.2.6.16 Erase(Int64, Int64)
	13.2.6.17 Flush
	13.2.6.18 IsEqual
	13.2.6.19 Read
	13.2.6.20 Search
	13.2.6.21 Seek
	13.2.6.22 SetLength
	13.2.6.23 Write

	13.3 OracleClob Class
	13.3.1 OracleClob Members
	13.3.2 OracleClob Constructors
	13.3.2.1 OracleClob(OracleConnection)
	13.3.2.2 OracleClob(OracleConnection, bool, bool)

	13.3.3 OracleClob Static Fields
	13.3.3.1 MaxSize
	13.3.3.2 Null

	13.3.4 OracleClob Static Methods
	13.3.5 OracleClob Instance Properties
	13.3.5.1 CanRead
	13.3.5.2 CanSeek
	13.3.5.3 CanWrite
	13.3.5.4 Connection
	13.3.5.5 IsEmpty
	13.3.5.6 IsInChunkWriteMode
	13.3.5.7 IsNClob
	13.3.5.8 IsNull
	13.3.5.9 IsTemporary
	13.3.5.10 Length
	13.3.5.11 OptimumChunkSize
	13.3.5.12 Position
	13.3.5.13 Value

	13.3.6 OracleClob Instance Methods
	13.3.6.1 Append
	13.3.6.2 Append(OracleClob)
	13.3.6.3 Append(byte [], int, int)
	13.3.6.4 Append(char [], int, int)
	13.3.6.5 BeginChunkWrite
	13.3.6.6 Clone
	13.3.6.7 Close
	13.3.6.8 Compare
	13.3.6.9 CopyTo
	13.3.6.10 CopyTo(OracleClob)
	13.3.6.11 CopyTo(OracleClob, Int64)
	13.3.6.12 CopyTo(Int64, OracleClob, Int64, Int64)
	13.3.6.13 Dispose
	13.3.6.14 EndChunkWrite
	13.3.6.15 Erase
	13.3.6.16 Erase()
	13.3.6.17 Erase(Int64, Int64)
	13.3.6.18 Flush
	13.3.6.19 GetHashCode
	13.3.6.20 IsEqual
	13.3.6.21 Read
	13.3.6.22 Read(byte [], int, int)
	13.3.6.23 Read(char [], int, int)
	13.3.6.24 Search
	13.3.6.25 Search(byte[], Int64, Int64)
	13.3.6.26 Search(char[], Int64, Int64)
	13.3.6.27 Seek
	13.3.6.28 SetLength
	13.3.6.29 Write
	13.3.6.30 Write(byte[], int, int)
	13.3.6.31 Write(char[], int, int)

	13.4 OracleRefCursor Class
	13.4.1 OracleRefCursor Members
	13.4.2 OracleRefCursor Static Methods
	13.4.3 OracleRefCursor Static Fields
	13.4.3.1 Null

	13.4.4 OracleRefCursor Properties
	13.4.4.1 Connection
	13.4.4.2 FetchSize
	13.4.4.3 IsNull
	13.4.4.4 RowSize

	13.4.5 OracleRefCursor Instance Methods
	13.4.5.1 Dispose
	13.4.5.2 GetDataReader

	14 Oracle Data Provider for .NET Types Structures
	14.1 OracleBinary Structure
	14.1.1 OracleBinary Members
	14.1.2 OracleBinary Constructor
	14.1.3 OracleBinary Static Fields
	14.1.3.1 Null

	14.1.4 OracleBinary Static Methods
	14.1.4.1 Concat
	14.1.4.2 Equals
	14.1.4.3 GetXsdType
	14.1.4.4 GreaterThan
	14.1.4.5 GreaterThanOrEqual
	14.1.4.6 LessThan
	14.1.4.7 LessThanOrEqual
	14.1.4.8 NotEquals

	14.1.5 OracleBinary Static Operators
	14.1.5.2 operator ==
	14.1.5.3 operator >
	14.1.5.4 operator >=
	14.1.5.5 operator !=
	14.1.5.6 operator <
	14.1.5.7 operator <=

	14.1.6 OracleBinary Static Type Conversion Operators
	14.1.6.1 explicit operator byte[]
	14.1.6.2 implicit operator OracleBinary

	14.1.7 OracleBinary Properties
	14.1.7.1 IsNull
	14.1.7.2 Item
	14.1.7.3 Length
	14.1.7.4 Value

	14.1.8 OracleBinary Instance Methods
	14.1.8.1 CompareTo
	14.1.8.2 Equals
	14.1.8.3 GetHashCode
	14.1.8.4 ToString

	14.2 OracleBoolean Structure
	14.2.1 OracleBoolean Members
	14.2.2 OracleBoolean Constructors
	14.2.2.1 OracleBoolean(bool)
	14.2.2.2 OracleBoolean(int)

	14.2.3 OracleBoolean Static Fields
	14.2.3.1 False
	14.2.3.2 Null
	14.2.3.3 One
	14.2.3.4 True
	14.2.3.5 Zero

	14.2.4 OracleBoolean Static Methods
	14.2.4.1 And
	14.2.4.2 Equals
	14.2.4.3 GreaterThan
	14.2.4.4 GreaterThanOrEquals
	14.2.4.5 LessThan
	14.2.4.6 LessThanOrEquals
	14.2.4.7 NotEquals
	14.2.4.8 OnesComplement
	14.2.4.9 Or
	14.2.4.10 Parse
	14.2.4.11 Xor

	14.2.5 OracleBoolean Static Operators
	14.2.5.1 operator >
	14.2.5.2 operator >=
	14.2.5.3 operator <
	14.2.5.4 operator <=
	14.2.5.5 operator ==
	14.2.5.6 operator !=
	14.2.5.7 operator !
	14.2.5.8 operator ~
	14.2.5.9 operator false
	14.2.5.10 operator true
	14.2.5.11 operator &
	14.2.5.12 operator |
	14.2.5.13 operator ^

	14.2.6 OracleBoolean Static Type Conversions
	14.2.6.1 implicit operator OracleBoolean
	14.2.6.2 explicit operator bool
	14.2.6.3 explicit operator OracleBoolean
	14.2.6.4 explicit operator OracleBoolean(byte)
	14.2.6.5 explicit operator OracleBoolean(Decimal)
	14.2.6.6 explicit operator OracleBoolean(Double)
	14.2.6.7 explicit operator OracleBoolean(Int16)
	14.2.6.8 explicit operator OracleBoolean(int)
	14.2.6.9 explicit operator OracleBoolean(Int64)
	14.2.6.10 explicit operator OracleBoolean(Single)
	14.2.6.11 explicit operator OracleBoolean(String)

	14.2.7 OracleBoolean Properties
	14.2.7.1 ByteValue
	14.2.7.2 IsFalse
	14.2.7.3 IsNull
	14.2.7.4 IsTrue
	14.2.7.5 Value

	14.2.8 OracleBoolean Instance Methods
	14.2.8.1 CompareTo
	14.2.8.2 Equals
	14.2.8.3 GetHashCode
	14.2.8.4 ToString

	14.3 OracleDate Structure
	14.3.1 OracleDate Members
	14.3.2 OracleDate Constructors
	14.3.2.1 OracleDate(DateTime)
	14.3.2.2 OracleDate(string)
	14.3.2.3 OracleDate(int, int, int)
	14.3.2.4 OracleDate(int, int, int, int, int, int)
	14.3.2.5 OracleDate(byte [])

	14.3.3 OracleDate Static Fields
	14.3.3.1 MaxValue
	14.3.3.2 MinValue
	14.3.3.3 Null

	14.3.4 OracleDate Static Methods
	14.3.4.1 Equals
	14.3.4.2 GreaterThan
	14.3.4.3 GreaterThanOrEqual
	14.3.4.4 LessThan
	14.3.4.5 LessThanOrEqual
	14.3.4.6 NotEquals
	14.3.4.7 GetSysDate
	14.3.4.8 Parse

	14.3.5 OracleDate Static Operators
	14.3.5.1 operator ==
	14.3.5.2 operator >
	14.3.5.3 operator >=
	14.3.5.4 operator !=
	14.3.5.5 operator <
	14.3.5.6 operator <=

	14.3.6 OracleDate Static Type Conversions
	14.3.6.1 explicit operator DateTime
	14.3.6.2 explicit operator OracleDate
	14.3.6.3 explicit operator OracleDate(DateTime)
	14.3.6.4 explicit operator OracleDate(OracleTimeStamp)
	14.3.6.5 explicit operator OracleDate(string)

	14.3.7 OracleDate Properties
	14.3.7.1 BinData
	14.3.7.2 Day
	14.3.7.3 IsNull
	14.3.7.4 Hour
	14.3.7.5 Minute
	14.3.7.6 Month
	14.3.7.7 Second
	14.3.7.8 Value
	14.3.7.9 Year

	14.3.8 OracleDate Methods
	14.3.8.1 CompareTo
	14.3.8.2 Equals
	14.3.8.3 GetHashCode
	14.3.8.4 GetDaysBetween
	14.3.8.5 ToOracleTimeStamp
	14.3.8.6 ToString

	14.4 OracleDecimal Structure
	14.4.1 OracleDecimal Members
	14.4.2 OracleDecimal Constructors
	14.4.2.1 OracleDecimal(byte [])
	14.4.2.2 OracleDecimal(decimal)
	14.4.2.3 OracleDecimal(double)
	14.4.2.4 OracleDecimal(int)
	14.4.2.5 OracleDecimal(float)
	14.4.2.6 OracleDecimal(long)
	14.4.2.7 OracleDecimal(string)
	14.4.2.8 OracleDecimal(string, string)

	14.4.3 OracleDecimal Static Fields
	14.4.3.1 MaxPrecision
	14.4.3.2 MaxScale
	14.4.3.3 MaxValue
	14.4.3.4 MinScale
	14.4.3.5 MinValue
	14.4.3.6 NegativeOne
	14.4.3.7 Null
	14.4.3.8 One
	14.4.3.9 Pi
	14.4.3.10 Zero

	14.4.4 OracleDecimal Static (Comparison) Methods
	14.4.4.1 Equals
	14.4.4.2 GreaterThan
	14.4.4.3 GreaterThanOrEqual
	14.4.4.4 LessThan
	14.4.4.5 LessThanOrEqual
	14.4.4.6 NotEquals

	14.4.5 OracleDecimal Static (Manipulation) Methods
	14.4.5.1 Abs
	14.4.5.2 Add
	14.4.5.3 AdjustScale
	14.4.5.4 Ceiling
	14.4.5.5 ConvertToPrecScale
	14.4.5.6 Divide
	14.4.5.7 Floor
	14.4.5.8 Max
	14.4.5.9 Min
	14.4.5.10 Mod
	14.4.5.11 Multiply
	14.4.5.12 Negate
	14.4.5.13 Parse
	14.4.5.14 Round
	14.4.5.15 SetPrecision
	14.4.5.16 Shift
	14.4.5.17 Sign
	14.4.5.18 Sqrt
	14.4.5.19 Subtract
	14.4.5.20 Truncate

	14.4.6 OracleDecimal Static (Logarithmic) Methods
	14.4.6.1 Exp
	14.4.6.2 Log
	14.4.6.3 Log(OracleDecimal)
	14.4.6.4 Log(OracleDecimal, int)
	14.4.6.5 Log(OracleDecimal, OracleDecimal)
	14.4.6.6 Pow
	14.4.6.7 Pow(OracleDecimal, int)
	14.4.6.8 Pow(OracleDecimal, OracleDecimal)

	14.4.7 OracleDecimal Static (Trigonometric) Methods
	14.4.7.1 Acos
	14.4.7.2 Asin
	14.4.7.3 Atan
	14.4.7.4 Atan2
	14.4.7.5 Cos
	14.4.7.6 Sin
	14.4.7.7 Tan
	14.4.7.8 Cosh
	14.4.7.9 Sinh
	14.4.7.10 Tanh

	14.4.8 OracleDecimal Static (Comparison) Operators
	14.4.8.1 operator +
	14.4.8.2 operator /
	14.4.8.3 operator ==
	14.4.8.4 operator >
	14.4.8.5 operator >=
	14.4.8.6 operator !=
	14.4.8.7 operator <
	14.4.8.8 operator <=
	14.4.8.9 operator *
	14.4.8.10 operator -
	14.4.8.11 operator -
	14.4.8.12 operator%

	14.4.9 OracleDecimal Static Operators (Conversion from .NET Type to OracleDecimal)
	14.4.9.1 implicit operator OracleDecimal
	14.4.9.2 implicit operator OracleDecimal(decimal)
	14.4.9.3 implicit operator OracleDecimal(int)
	14.4.9.4 implicit operator OracleDecimal(long)
	14.4.9.5 explicit operator OracleDecimal
	14.4.9.6 explicit operator OracleDecimal(double)
	14.4.9.7 explicit operator OracleDecimal(string)

	14.4.10 OracleDecimal Static Operators (Conversion from OracleDecimal to .NET)
	14.4.10.1 explicit operator byte
	14.4.10.2 explicit operator decimal
	14.4.10.3 explicit operator double
	14.4.10.4 explicit operator short
	14.4.10.5 explicit operator int
	14.4.10.6 explicit operator long
	14.4.10.7 explicit operator float

	14.4.11 OracleDecimal Properties
	14.4.11.1 BinData
	14.4.11.2 Format
	14.4.11.3 IsInt
	14.4.11.4 IsNull
	14.4.11.5 IsPositive
	14.4.11.6 IsZero
	14.4.11.7 Value

	14.4.12 OracleDecimal Instance Methods
	14.4.12.1 CompareTo
	14.4.12.2 Equals
	14.4.12.3 GetHashCode
	14.4.12.4 ToByte
	14.4.12.5 ToDouble
	14.4.12.6 ToInt16
	14.4.12.7 ToInt32
	14.4.12.8 ToInt64
	14.4.12.9 ToSingle
	14.4.12.10 ToString

	14.5 OracleIntervalDS Structure
	14.5.1 OracleIntervalDS Members
	14.5.2 OracleIntervalDS Constructors
	14.5.2.1 OracleIntervalDS(TimeSpan)
	14.5.2.2 OracleIntervalDS(string)
	14.5.2.3 OracleIntervalDS(double)
	14.5.2.4 OracleIntervalDS(int, int, int, int, double)
	14.5.2.5 OracleIntervalDS(int, int, int, int, int)
	14.5.2.6 OracleIntervalDS(byte[])

	14.5.3 OracleIntervalDS Static Fields
	14.5.3.1 MaxValue
	14.5.3.2 MinValue
	14.5.3.3 Null
	14.5.3.4 Zero

	14.5.4 OracleIntervalDS Static Methods
	14.5.4.1 Equals
	14.5.4.2 GreaterThan
	14.5.4.3 GreaterThanOrEqual
	14.5.4.4 LessThan
	14.5.4.5 LessThanOrEqual
	14.5.4.6 NotEquals
	14.5.4.7 Parse
	14.5.4.8 SetPrecision

	14.5.5 OracleIntervalDS Static Operators
	14.5.5.1 operator +
	14.5.5.2 operator ==
	14.5.5.3 operator >
	14.5.5.4 operator >=
	14.5.5.5 operator !=
	14.5.5.6 operator <
	14.5.5.7 operator <=
	14.5.5.8 operator -
	14.5.5.9 operator -
	14.5.5.10 operator *
	14.5.5.11 operator /

	14.5.6 OracleIntervalDS Type Conversions
	14.5.6.1 explicit operator TimeSpan
	14.5.6.2 explicit operator OracleIntervalDS
	14.5.6.3 implicit operator OracleIntervalDS

	14.5.7 OracleIntervalDS Properties
	14.5.7.1 BinData
	14.5.7.2 Days
	14.5.7.3 Hours
	14.5.7.4 IsNull
	14.5.7.5 Milliseconds
	14.5.7.6 Minutes
	14.5.7.7 Nanoseconds
	14.5.7.8 Seconds
	14.5.7.9 TotalDays
	14.5.7.10 Value

	14.5.8 OracleIntervalDS Methods
	14.5.8.1 CompareTo
	14.5.8.2 Equals
	14.5.8.3 GetHashCode
	14.5.8.4 ToString

	14.6 OracleIntervalYM Structure
	14.6.1 OracleIntervalYM Members
	14.6.2 OracleIntervalYM Constructors
	14.6.2.1 OracleIntervalYM(long)
	14.6.2.2 OracleIntervalYM(string)
	14.6.2.3 OracleIntervalYM(double)
	14.6.2.4 OracleIntervalYM(int, int)
	14.6.2.5 OracleIntervalYM(byte[])

	14.6.3 OracleIntervalYM Static Fields
	14.6.3.1 MaxValue
	14.6.3.2 MinValue
	14.6.3.3 Null
	14.6.3.4 Zero

	14.6.4 OracleIntervalYM Static Methods
	14.6.4.1 Equals
	14.6.4.2 GreaterThan
	14.6.4.3 GreaterThanOrEqual
	14.6.4.4 LessThan
	14.6.4.5 LessThanOrEqual
	14.6.4.6 NotEquals
	14.6.4.7 Parse
	14.6.4.8 SetPrecision

	14.6.5 OracleIntervalYM Static Operators
	14.6.5.1 operator +
	14.6.5.2 operator ==
	14.6.5.3 operator >
	14.6.5.4 operator >=
	14.6.5.5 operator !=
	14.6.5.6 operator <
	14.6.5.7 operator <=
	14.6.5.8 operator -
	14.6.5.9 operator -
	14.6.5.10 operator *
	14.6.5.11 operator /

	14.6.6 OracleIntervalYM Type Conversions
	14.6.6.1 explicit operator long
	14.6.6.2 explicit operator OracleIntervalYM
	14.6.6.3 implicit operator OracleIntervalYM

	14.6.7 OracleIntervalYM Properties
	14.6.7.1 BinData
	14.6.7.2 IsNull
	14.6.7.3 Months
	14.6.7.4 TotalYears
	14.6.7.5 Value
	14.6.7.6 Years

	14.6.8 OracleIntervalYM Methods
	14.6.8.1 CompareTo
	14.6.8.2 Equals
	14.6.8.3 GetHashCode
	14.6.8.4 ToString

	14.7 OracleString Structure
	14.7.1 OracleString Members
	14.7.2 OracleString Constructors
	14.7.2.1 OracleString(string)
	14.7.2.2 OracleString(string, bool)
	14.7.2.3 OracleString(byte [], bool)
	14.7.2.4 OracleString(byte [], bool, bool)
	14.7.2.5 OracleString(byte [], int, int, bool)
	14.7.2.6 OracleString(byte [], int, int, bool, bool)

	14.7.3 OracleString Static Fields
	14.7.3.1 Null

	14.7.4 OracleString Static Methods
	14.7.4.1 Concat
	14.7.4.2 Equals
	14.7.4.3 GreaterThan
	14.7.4.4 GreaterThanOrEqual
	14.7.4.5 LessThan
	14.7.4.6 LessThanOrEqual
	14.7.4.7 NotEquals

	14.7.5 OracleString Static Operators
	14.7.5.1 operator +
	14.7.5.2 operator ==
	14.7.5.3 operator >
	14.7.5.4 operator >=
	14.7.5.5 operator !=
	14.7.5.6 operator <
	14.7.5.7 operator <=

	14.7.6 OracleString Type Conversions
	14.7.6.1 explicit operator string
	14.7.6.2 implicit operator OracleString

	14.7.7 OracleString Properties
	14.7.7.1 IsCaseIgnored
	14.7.7.2 IsNull
	14.7.7.3 Item
	14.7.7.4 Length
	14.7.7.5 Value

	14.7.8 OracleString Methods
	14.7.8.1 Clone
	14.7.8.2 CompareTo
	14.7.8.3 Equals
	14.7.8.4 GetHashCode
	14.7.8.5 GetNonUnicodeBytes
	14.7.8.6 GetUnicodeBytes
	14.7.8.7 ToString

	14.8 OracleTimeStamp Structure
	14.8.1 OracleTimeStamp Members
	14.8.2 OracleTimeStamp Constructors
	14.8.2.1 OracleTimeStamp(DateTime)
	14.8.2.2 OracleTimeStamp(string)
	14.8.2.3 OracleTimeStamp(int, int, int)
	14.8.2.4 OracleTimeStamp(int, int, int, int, int, int)
	14.8.2.5 OracleTimeStamp(int, int, int, int, int, int, double)
	14.8.2.6 OracleTimeStamp(int, int, int, int, int, int, int)
	14.8.2.7 OracleTimeStamp(byte [])

	14.8.3 OracleTimeStamp Static Fields
	14.8.3.1 MaxValue
	14.8.3.2 MinValue
	14.8.3.3 Null

	14.8.4 OracleTimeStamp Static Methods
	14.8.4.1 Equals
	14.8.4.2 GreaterThan
	14.8.4.3 GreaterThanOrEqual
	14.8.4.4 LessThan
	14.8.4.5 LessThanOrEqual
	14.8.4.6 NotEquals
	14.8.4.7 GetSysDate
	14.8.4.8 Parse
	14.8.4.9 SetPrecision

	14.8.5 OracleTimeStamp Static Operators
	14.8.5.1 operator +
	14.8.5.2 operator + (OracleTimeStamp, OracleIntervalDS)
	14.8.5.3 operator + (OracleTimeStamp, OracleIntervalYM)
	14.8.5.4 operator + (OracleTimeStamp, TimeSpan)
	14.8.5.5 operator ==
	14.8.5.6 operator >
	14.8.5.7 operator >=
	14.8.5.8 operator !=
	14.8.5.9 operator <
	14.8.5.10 operator <=
	14.8.5.11 operator -
	14.8.5.12 operator - (OracleTimeStamp, OracleIntervalDS)
	14.8.5.13 operator - (OracleTimeStamp, OracleIntervalYM)
	14.8.5.14 operator - (OracleTimeStamp, TimeSpan)

	14.8.6 OracleTimeStamp Static Type Conversions
	14.8.6.1 explicit operator OracleTimeStamp
	14.8.6.2 explicit operator OracleTimeStamp(OracleTimeStampLTZ)
	14.8.6.3 explicit operator OracleTimeStamp(OracleTimeStampTZ)
	14.8.6.4 explicit operator OracleTimeStamp(string)
	14.8.6.5 implicit operator OracleTimeStamp
	14.8.6.6 implicit operator OracleTimeStamp(OracleDate)
	14.8.6.7 implicit operator OracleTimeStamp(DateTime)
	14.8.6.8 explicit operator DateTime

	14.8.7 OracleTimeStamp Properties
	14.8.7.1 BinData
	14.8.7.2 Day
	14.8.7.3 IsNull
	14.8.7.4 Hour
	14.8.7.5 Millisecond
	14.8.7.6 Minute
	14.8.7.7 Month
	14.8.7.8 Nanosecond
	14.8.7.9 Second
	14.8.7.10 Value
	14.8.7.11 Year

	14.8.8 OracleTimeStamp Methods
	14.8.8.1 AddDays
	14.8.8.2 AddHours
	14.8.8.3 AddMilliseconds
	14.8.8.4 AddMinutes
	14.8.8.5 AddMonths
	14.8.8.6 AddNanoseconds
	14.8.8.7 AddSeconds
	14.8.8.8 AddYears
	14.8.8.9 CompareTo
	14.8.8.10 Equals
	14.8.8.11 GetHashCode
	14.8.8.12 GetDaysBetween
	14.8.8.13 GetYearsBetween
	14.8.8.14 ToOracleDate
	14.8.8.15 ToOracleTimeStampLTZ
	14.8.8.16 ToOracleTimeStampTZ
	14.8.8.17 ToString

	14.9 OracleTimeStampLTZ Structure
	14.9.1 OracleTimeStampLTZ Members
	14.9.2 OracleTimeStampLTZ Constructors
	14.9.2.1 OracleTimeStampLTZ(DateTime)
	14.9.2.2 OracleTimeStampLTZ(string)
	14.9.2.3 OracleTimeStampLTZ(int, int, int)
	14.9.2.4 OracleTimeStampLTZ(int, int, int, int, int, int)
	14.9.2.5 OracleTimeStampLTZ(int, int, int, int, int, int, double)
	14.9.2.6 OracleTimeStampLTZ(int, int, int, int, int, int, int)
	14.9.2.7 OracleTimeStampLTZ(byte [])

	14.9.3 OracleTimeStampLTZ Static Fields
	14.9.3.1 MaxValue
	14.9.3.2 MinValue
	14.9.3.3 Null

	14.9.4 OracleTimeStampLTZ Static Methods
	14.9.4.1 Equals
	14.9.4.2 GetLocalTimeZoneName
	14.9.4.3 GetLocalTimeZoneOffset
	14.9.4.4 GetSysDate
	14.9.4.5 GreaterThan
	14.9.4.6 GreaterThanOrEqual
	14.9.4.7 LessThan
	14.9.4.8 LessThanOrEqual
	14.9.4.9 NotEquals
	14.9.4.10 Parse
	14.9.4.11 SetPrecision

	14.9.5 OracleTimeStampLTZ Static Operators
	14.9.5.1 operator +
	14.9.5.2 operator + (OracleTimeStampLTZ, OracleIntervalDS)
	14.9.5.3 operator + (OracleTimeStampLTZ, OracleIntervalYM)
	14.9.5.4 operator + (OracleTimeStampLTZ, TimeSpan)
	14.9.5.5 operator ==
	14.9.5.6 operator >
	14.9.5.7 operator >=
	14.9.5.8 operator !=
	14.9.5.9 operator <
	14.9.5.10 operator <=
	14.9.5.11 operator -
	14.9.5.12 operator - (OracleTimeStampLTZ, OracleIntervalDS)
	14.9.5.13 operator - (OracleTimeStampLTZ, OracleIntervalYM)
	14.9.5.14 operator - (OracleTimeStampLTZ, TimeSpan)

	14.9.6 OracleTimeStampLTZ Static Type Conversions
	14.9.6.1 explicit operator OracleTimeStampLTZ
	14.9.6.2 explicit operator OracleTimeStampLTZ(OracleTimeStamp)
	14.9.6.3 explicit operator OracleTimeStampLTZ(OracleTimeStampTZ)
	14.9.6.4 explicit operator OracleTimeStampLTZ(string)
	14.9.6.5 implicit operator OracleTimeStampLTZ
	14.9.6.6 implicit operator OracleTimeStampLTZ(OracleDate)
	14.9.6.7 implicit operator OracleTimeStampLTZ(DateTime)
	14.9.6.8 explicit operator DateTime

	14.9.7 OracleTimeStampLTZ Properties
	14.9.7.1 BinData
	14.9.7.2 Day
	14.9.7.3 IsNull
	14.9.7.4 Hour
	14.9.7.5 Millisecond
	14.9.7.6 Minute
	14.9.7.7 Month
	14.9.7.8 Nanosecond
	14.9.7.9 Second
	14.9.7.10 Value
	14.9.7.11 Year

	14.9.8 OracleTimeStampLTZ Methods
	14.9.8.1 AddDays
	14.9.8.2 AddHours
	14.9.8.3 AddMilliseconds
	14.9.8.4 AddMinutes
	14.9.8.5 AddMonths
	14.9.8.6 AddNanoseconds
	14.9.8.7 AddSeconds
	14.9.8.8 AddYears
	14.9.8.9 CompareTo
	14.9.8.10 Equals
	14.9.8.11 GetHashCode
	14.9.8.12 GetDaysBetween
	14.9.8.13 GetYearsBetween
	14.9.8.14 ToOracleDate
	14.9.8.15 ToOracleTimeStamp
	14.9.8.16 ToOracleTimeStampTZ
	14.9.8.17 ToString
	14.9.8.18 ToUniversalTime

	14.10 OracleTimeStampTZ Structure
	14.10.1 OracleTimeStampTZ Members
	14.10.2 OracleTimeStampTZ Constructors
	14.10.2.1 OracleTimeStampTZ(DateTime)
	14.10.2.2 OracleTimeStampTZ(DateTime, string)
	14.10.2.3 OracleTimeStampTZ(string)
	14.10.2.4 OracleTimeStampTZ(int, int, int)
	14.10.2.5 OracleTimeStampTZ(int, int, int, string)
	14.10.2.6 OracleTimeStampTZ(int, int, int, int, int, int)
	14.10.2.7 OracleTimeStampTZ(int, int, int, int, int, int, string)
	14.10.2.8 OracleTimeStampTZ(int, int, int, int, int, int, double)
	14.10.2.9 OracleTimeStampTZ(int, int, int, int, int, int, double, string)
	14.10.2.10 OracleTimeStampTZ(int, int, int, int, int, int, int)
	14.10.2.11 OracleTimeStampTZ(int, int, int, int, int, int, int, string)
	14.10.2.12 OracleTimeStampTZ(byte [])

	14.10.3 OracleTimeStampTZ Static Fields
	14.10.3.1 MaxValue
	14.10.3.2 MinValue
	14.10.3.3 Null

	14.10.4 OracleTimeStampTZ Static Methods
	14.10.4.1 Equals
	14.10.4.2 GetSysDate
	14.10.4.3 GreaterThan
	14.10.4.4 GreaterThanOrEqual
	14.10.4.5 LessThan
	14.10.4.6 LessThanOrEqual
	14.10.4.7 NotEquals
	14.10.4.8 Parse
	14.10.4.9 SetPrecision

	14.10.5 OracleTimeStampTZ Static Operators
	14.10.5.1 operator +
	14.10.5.2 operator +(OracleTimeStampTZ, OracleIntervalDS)
	14.10.5.3 operator +(OracleTimeStampTZ, OracleIntervalYM)
	14.10.5.4 operator +(OracleTimeStampTZ, TimeSpan)
	14.10.5.5 operator ==
	14.10.5.6 operator >
	14.10.5.7 operator >=
	14.10.5.8 operator !=
	14.10.5.9 operator <
	14.10.5.10 operator <=
	14.10.5.11 operator -
	14.10.5.12 operator - (OracleTimeStampTZ, OracleIntervalDS)
	14.10.5.13 operator - (OracleTimeStampTZ, OracleIntervalYM)
	14.10.5.14 operator - (OracleTimeStampTZ value1, TimeSpan value2)

	14.10.6 OracleTimeStampTZ Static Type Conversions
	14.10.6.1 explicit operator OracleTimeStampTZ
	14.10.6.2 explicit operator OracleTimeStampTZ(OracleTimeStamp)
	14.10.6.3 explicit operator OracleTimeStampTZ(OracleTimeStampLTZ)
	14.10.6.4 explicit operator OracleTimeStampTZ(string)
	14.10.6.5 implicit operator OracleTimeStampTZ
	14.10.6.6 implicit operator OracleTimeStampTZ(OracleDate)
	14.10.6.7 implicit operator OracleTimeStampTZ(DateTime)
	14.10.6.8 explicit operator DateTime

	14.10.7 OracleTimeStampTZ Properties
	14.10.7.1 BinData
	14.10.7.2 Day
	14.10.7.3 IsNull
	14.10.7.4 Hour
	14.10.7.5 Millisecond
	14.10.7.6 Minute
	14.10.7.7 Month
	14.10.7.8 Nanosecond
	14.10.7.9 Second
	14.10.7.10 TimeZone
	14.10.7.11 Value
	14.10.7.12 Year

	14.10.8 OracleTimeStampTZ Methods
	14.10.8.1 AddDays
	14.10.8.2 AddHours
	14.10.8.3 AddMilliseconds
	14.10.8.4 AddMinutes
	14.10.8.5 AddMonths
	14.10.8.6 AddNanoseconds
	14.10.8.7 AddSeconds
	14.10.8.8 AddYears
	14.10.8.9 CompareTo
	14.10.8.10 Equals
	14.10.8.11 GetDaysBetween
	14.10.8.12 GetHashCode
	14.10.8.13 GetTimeZoneOffset
	14.10.8.14 GetYearsBetween
	14.10.8.15 ToLocalTime
	14.10.8.16 ToOracleDate
	14.10.8.17 ToOracleTimeStampLTZ
	14.10.8.18 ToOracleTimeStamp
	14.10.8.19 ToString
	14.10.8.20 ToUniversalTime

	14.11 INullable Interface
	14.11.1 INullable Interface Members
	14.11.2 INullable Interface Properties
	14.11.2.1 IsNull

	15 Oracle Data Provider for .NET Types Exceptions
	15.1 OracleTypeException Class
	15.1.1 OracleTypeException Members
	15.1.2 OracleTypeException Constructors
	15.1.2.1 OracleTypeException(string)
	15.1.2.2 OracleTypeException(SerializationInfo, StreamingContext)

	15.1.3 OracleTypeException Static Methods
	15.1.4 OracleTypeException Properties
	15.1.4.1 Message
	15.1.4.2 Number
	15.1.4.3 Source

	15.1.5 OracleTypeException Methods
	15.1.5.1 ToString

	15.2 OracleNullValueException Class
	15.2.1 OracleNullValueException Members
	15.2.2 OracleNullValueException Constructors
	15.2.2.1 OracleNullValueException()
	15.2.2.2 OracleNullValueException(string)

	15.2.3 OracleNullValueException Static Methods
	15.2.4 OracleNullValueException Properties
	15.2.5 OracleNullValueException Methods

	15.3 OracleTruncateException Class
	15.3.1 OracleTruncateException Members
	15.3.2 OracleTruncateException Constructors
	15.3.2.1 OracleTruncateException()
	15.3.2.2 OracleTruncateException(string)

	15.3.3 OracleTruncateException Static Methods
	15.3.4 OracleTruncateException Properties
	15.3.5 OracleTruncateException Methods

	16 Oracle Data Provider for .NET UDT-Related Classes
	16.1 OracleCustomTypeMappingAttribute Class
	16.1.1 OracleCustomTypeMappingAttribute Members
	16.1.2 OracleCustomTypeMappingAttribute Constructors
	16.1.2.1 OracleCustomTypeMappingAttribute(string)

	16.1.3 OracleCustomTypeMappingAttribute Static Methods
	16.1.4 OracleCustomTypeMappingAttribute Properties
	16.1.4.1 UdtTypeName

	16.1.5 OracleCustomTypeMappingAttribute Methods

	16.2 OracleObjectMappingAttribute Class
	16.2.1 OracleObjectMappingAttribute Members
	16.2.2 OracleObjectMappingAttribute Constructors
	16.2.2.1 OracleObjectMappingAttribute(string)
	16.2.2.2 OracleObjectMappingAttribute(int)

	16.2.3 OracleObjectMappingAttribute Static Methods
	16.2.4 OracleObjectMappingAttribute Properties
	16.2.4.1 AttributeIndex
	16.2.4.2 AttributeName

	16.2.5 OracleObjectMappingAttribute Methods

	16.3 OracleArrayMappingAttribute Class
	16.3.1 OracleArrayMappingAttribute Members
	16.3.2 OracleArrayMappingAttribute Constructors
	16.3.2.1 OracleArrayMappingAttribute()

	16.3.3 OracleArrayMappingAttribute Static Methods
	16.3.4 OracleArrayMappingAttribute Properties
	16.3.5 OracleArrayMappingAttribute Methods

	16.4 IOracleCustomType Interface
	16.4.1 IOracleCustomType Members
	16.4.2 IOracleCustomType Interface Methods
	16.4.2.1 FromCustomObject
	16.4.2.2 ToCustomObject

	16.5 IOracleCustomTypeFactory Interface
	16.5.1 IOracleCustomTypeFactory Members
	16.5.2 IOracleCustomTypeFactory Interface Methods
	16.5.2.1 CreateObject

	16.6 IOracleArrayTypeFactory Interface
	16.6.1 IOracleArrayTypeFactory Members
	16.6.2 IOracleArrayTypeFactory Interface Methods
	16.6.2.1 CreateArray
	16.6.2.2 CreateStatusArray

	16.7 OracleUdt Class
	16.7.1 OracleUdt Members
	16.7.2 OracleUDT Static Methods
	16.7.2.1 GetValue
	16.7.2.2 GetValue(OracleConnection, IntPtr, string)
	16.7.2.3 GetValue(OracleConnection, IntPtr, int)
	16.7.2.4 GetValue(OracleConnection, IntPtr, string, out object)
	16.7.2.5 GetValue(OracleConnection, IntPtr, int, out object)
	16.7.2.6 IsDBNull
	16.7.2.7 IsDBNull(OracleConnection, IntPtr, string)
	16.7.2.8 IsDBNull(OracleConnection, IntPtr, int)
	16.7.2.9 SetValue
	16.7.2.10 SetValue(OracleConnection, IntPtr, string, object)
	16.7.2.11 SetValue(OracleConnection, IntPtr, int, object)
	16.7.2.12 SetValue(OracleConnection, IntPtr, string, object, object)
	16.7.2.13 SetValue(OracleConnection, IntPtr, int, object, object)

	16.8 OracleRef Class
	16.8.1 OracleRef Members
	16.8.2 OracleRef Constructors
	16.8.2.1 OracleRef(OracleConnection, string)
	16.8.2.2 OracleRef(OracleConnection, string, string)

	16.8.3 OracleRef Static Fields
	16.8.3.1 Null

	16.8.4 OracleRef Static Methods
	16.8.5 OracleRef Instance Properties
	16.8.5.1 Connection
	16.8.5.2 HasChanges
	16.8.5.3 IsLocked
	16.8.5.4 IsNull
	16.8.5.5 ObjectTableName
	16.8.5.6 Value

	16.8.6 Oracle Ref Instance Methods
	16.8.6.1 Clone
	16.8.6.2 Delete
	16.8.6.3 Dispose
	16.8.6.4 Flush
	16.8.6.5 GetCustomObject
	16.8.6.6 GetCustomObject(OracleUdtFetchOption)
	16.8.6.7 GetCustomObject(OracleUdtFetchOption, int)
	16.8.6.8 GetCustomObjectForUpdate
	16.8.6.9 GetCustomObjectForUpdate(bool)
	16.8.6.10 GetCustomObjectForUpdate(bool, int)
	16.8.6.11 IsEqual
	16.8.6.12 Lock
	16.8.6.13 Update

	16.9 OracleUdtFetchOption Enumeration
	16.10 OracleUdtStatus Enumeration

	17 Oracle Data Provider for .NET Bulk Copy Classes
	17.1 OracleBulkCopy Class
	17.1.1 OracleBulkCopy Members
	17.1.2 OracleBulkCopy Constructors
	17.1.2.1 OracleBulkCopy(OracleConnection)
	17.1.2.2 OracleBulkCopy(string)
	17.1.2.3 OracleBulkCopy(OracleConnection, OracleBulkCopyOptions)
	17.1.2.4 OracleBulkCopy(string, OracleBulkCopyOptions)

	17.1.3 OracleBulkCopy Properties
	17.1.3.1 BatchSize
	17.1.3.2 BulkCopyOptions
	17.1.3.3 BulkCopyTimeout
	17.1.3.4 ColumnMappings
	17.1.3.5 Connection
	17.1.3.6 DestinationPartitionName
	17.1.3.7 DestinationTableName
	17.1.3.8 NotifyAfter

	17.1.4 OracleBulkCopy Public Methods
	17.1.4.1 Close
	17.1.4.2 Dispose
	17.1.4.3 WriteToServer
	17.1.4.4 WriteToServer(DataRow[])
	17.1.4.5 WriteToServer(DataTable)
	17.1.4.6 WriteToServer(IDataReader)
	17.1.4.7 WriteToServer(DataTable, DataRowState)
	17.1.4.8 WriteToServer(OracleRefCursor)

	17.1.5 OracleBulkCopy Events
	17.1.5.1 OracleRowsCopied

	17.2 OracleBulkCopyColumnMapping Class
	17.2.1 OracleBulkCopyColumnMapping Members
	17.2.2 OracleBulkCopyColumnMapping Constructors
	17.2.2.1 OracleBulkCopyColumnMapping()
	17.2.2.2 OracleBulkCopyColumnMapping(int, int)
	17.2.2.3 OracleBulkCopyColumnMapping(int, string)
	17.2.2.4 OracleBulkCopyColumnMapping(string, int)
	17.2.2.5 OracleBulkCopyColumnMapping(string, string)

	17.2.3 OracleBulkCopyColumnMapping Methods
	17.2.3.1 CompareTo

	17.2.4 OracleBulkCopyColumnMapping Properties
	17.2.4.1 DestinationColumn
	17.2.4.2 DestinationOrdinal
	17.2.4.3 SourceColumn
	17.2.4.4 SourceOrdinal

	17.3 OracleBulkCopyColumnMappingCollection Class
	17.3.1 OracleBulkCopyColumnMappingCollection Members
	17.3.2 OracleBulkCopyColumnMappingCollection Properties
	17.3.2.1 Item[index]

	17.3.3 OracleBulkCopyColumnMappingCollection Public Methods
	17.3.3.1 Add
	17.3.3.2 Add(OracleBulkCopyColumnMapping)
	17.3.3.3 Add(int, int)
	17.3.3.4 Add(int, string)
	17.3.3.5 Add(string, int)
	17.3.3.6 Add(string, string)
	17.3.3.7 Clear
	17.3.3.8 Contains
	17.3.3.9 CopyTo
	17.3.3.10 IndexOf
	17.3.3.11 Insert
	17.3.3.12 Remove
	17.3.3.13 RemoveAt

	17.4 OracleBulkCopyOptions Enumeration
	17.5 OracleRowsCopiedEventHandler Delegate
	17.6 OracleRowsCopiedEventArgs Class
	17.6.1 OracleRowsCopiedEventArgs Members
	17.6.2 OracleRowsCopiedEventArgs Constructors
	17.6.2.1 OracleRowsCopiedEventArgs(long)

	17.6.3 OracleRowsCopiedEventArgs Properties
	17.6.3.1 Abort
	17.6.3.2 RowsCopied

	A Oracle Schema Collections
	A.1 Common Schema Collections
	A.1.1 MetaDataCollections
	A.1.2 DataSourceInformation
	A.1.3 DataTypes
	A.1.4 Restrictions
	A.1.5 ReservedWords

	A.2 ODP.NET-Specific Schema Collection
	A.2.1 Tables
	A.2.2 Columns
	A.2.3 Views
	A.2.4 XMLSchema
	A.2.5 Users
	A.2.6 Synonyms
	A.2.7 Sequences
	A.2.8 Functions
	A.2.9 Procedures
	A.2.10 ProcedureParameters
	A.2.11 Arguments
	A.2.12 Packages
	A.2.13 PackageBodies
	A.2.14 JavaClasses
	A.2.15 Indexes
	A.2.16 IndexColumns
	A.2.17 PrimaryKeys
	A.2.18 ForeignKeys
	A.2.19 ForeignKeyColumns
	A.2.20 UniqueKeys

	B Mapping LINQ Canonical Functions and Oracle Functions
	Glossary
	assembly
	BFILES
	Binary Large Object (BLOB)
	Character Large Object (CLOB)
	data provider
	DataSet
	dirty writes
	DDL
	DOM
	Extensible Stylesheet Language Transformation (XSLT)
	flush
	Global Assembly Cache (GAC)
	goodness
	implicit database connection
	instantiate
	invalidation message
	Large Object (LOB)
	Microsoft .NET Framework Class Library
	namespace
	National Character Large Object (NCLOB)
	Oracle Net Services
	OracleDataReader
	Oracle XML DB
	PL/SQL
	primary key
	reference semantics
	REF
	result set
	Safe Type Mapping
	savepoint
	stored procedure
	Transparent Application Failover (TAF)
	Unicode
	URL
	value semantics
	XPath

	Index

