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Preface

Oracle Spatial and Graph RDF Semantic Graph Developer's Guide provides usage
and reference information about Oracle Database Enterprise Edition support for
semantic technologies, including storage, inference, and query capabilities for data
and ontologies based on Resource Description Framework (RDF), RDF Schema
(RDFS), and Web Ontology Language (OWL). The RDF Semantic Graph feature is
licensed with the Oracle Spatial and Graph option to Oracle Database Enterprise
Edition, and it requires the Oracle Partitioning option to Oracle Database Enterprise
Edition.

Note:

You must perform certain actions and meet prerequisites before you can use
any types, synonyms, or PL/SQL packages related to RDF Semantic Graph
support. These actions and prerequisites are explained in Enabling RDF
Semantic Graph Support.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This guide is intended for those who need to use semantic technology to store,
manage, and query semantic data in the database.

You should be familiar with at least the main concepts and techniques for the
Resource Description Framework (RDF) and the Web Ontology Language (OWL).

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
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lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For an excellent explanation of RDF concepts, see the World Wide Web Consortium
(W3C) RDF Primer at http://www.w3.org/TR/rdf-primer/.

For information about OWL, see the OWL Web Ontology Language Reference at 
http://www.w3.org/TR/owl-ref/.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
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Changes in This Release for Oracle Spatial
and Graph RDF Semantic Graph
Developer's Guide

This topic contains the following.

• Changes in Oracle Database 12c Release 2 (12.2)

• Changes in Oracle Database 12c Release 1 (12.1.0.2)

• Changes in Oracle Database 12c Release 1 (12.1.0.1)

• Changes for RDF Semantic Graph Support for Apache Jena

Changes in Oracle Database 12c Release 2 (12.2)
The following are changes in Oracle Spatial and Graph RDF Semantic Graph
Developer's Guide for Oracle Database 12c Release 2 (12.2).

• Required: Migrate Existing Semantic Data

• SPARQL Update Operations on a Semantic Model

• RDF ORDER BY Query Enhancement and Option

• Integration with Property Graph Data Stored in Oracle Database

• SEM_APIS.SPARQL_TO_SQL Function

• New SPARQL Query Functions

• Enhanced GeoSPARQL Support

• Support for Flashback Query

• Desupport for Workspace Manager and Virtual Private Database with RDF

Required: Migrate Existing Semantic Data
If you have any semantic data created using Oracle Database 11.1. 11.2, or 12.1, then
before you use it in an Oracle Database 12.2 environment, you must migrate this data.

For an explanation, see Required Migration of Pre-12.2 Semantic Data.

SPARQL Update Operations on a Semantic Model
You can now perform SPARQL Update operations on a semantic model. The W3C
SPARQL 1.1 Update is supported in Oracle Database semantic technologies through
the new SEM_APIS.UPDATE_MODEL procedure.
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For more information, see Support for SPARQL Update Operations on a Semantic
Model.

RDF ORDER BY Query Enhancement and Option
Queries on RDF data that use SPARQL ORDER BY semantics are by default now
processed more efficiently than in previous releases. This internal efficiency involves
the use of the ORDER_TYPE, ORDER_NUM, and ORDER_DATE columns in the
MDSYS.RDF_VALUE$ metadata table (documented in Statements). However, if for
any reason you want to disable this feature, you can do so by specifying the
DISABLE_ORDER_COL option in the SEM_MATCH query.

For an explanation, see Enhanced RDF ORDER BY Query Processing.

Integration with Property Graph Data Stored in Oracle Database
Property graph data stored in Oracle Database can be integrated with RDF data
through the use of RDF views. A convenient PL/SQL API is provided for creating and
maintaining RDF views of property graph data. RDF views of property graphs behave
the same way as RDF views of relational data and can be queried with SPARQL or
materialized as native RDF data.

For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

SEM_APIS.SPARQL_TO_SQL Function
A new SPARQL_TO_SQL PL/SQL procedure has been added to the SEM_APIS
package. This procedure allows you to obtain the SQL translation of a SPARQL query.
The resulting SQL string can be executed just like any other SQL string (for example,
using JDBC from Java or using EXECUTE IMMEDIATE from PL/SQL). In addition,
SPARQL_TO_SQL supports read only databases, long SPARQL query strings, and
JDBC and PL/SQL bind variables.

For more information, see Using the SEM_APIS.SPARQL_TO_SQL Function to Query
Semantic Data.

New SPARQL Query Functions
New Oracle-specific SPARQL query functions are available:

• orardf:like(RDF term, pattern)

• orardf:sameCanonTerm(RDF term, RDF term)

• orardf:textScore(invocation id)

For information, see the table of Oracle-Specific Query Functions in Graph Patterns:
Support for Curly Brace Syntax, and OPTIONAL, FILTER, UNION, and GRAPH
Keywords.

Enhanced GeoSPARQL Support
GeoSPARQL support has been enhanced for increased functionality and performance.

Changes in This Release for Oracle Spatial and Graph RDF Semantic Graph Developer's Guide
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• Support for standard EPSG SRID URIs, ogc:gmlLiteral geometry serialization,
and 3-dimensional geometries has been added.

• Query performance has increased up to 10 times by adding a materialized
SDO_GEOMETRY column to MDSYS.RDF_VALUE$.

• New utility functions have been added to the SEM_APIS package
(SEM_APIS.VALIDATE_GEOMETRIES, 
SEM_APIS.CONVERT_TO_WKT_LITERAL, 
SEM_APIS.CONVERT_TO_GML311_LITERAL).

• New SPARQL query operators have been added for spatial joins (orageo:sdoJoin, 
orageo:sdoDistJoin).

• New SPARQL query operators for spatial aggregates have been added
(orageo:aggrCentroid, orageo:aggrConvexHull, orageo:aggrMBR, 
orageo:aggrUnion ).

Support for Flashback Query
Oracle Flashback Query is now supported for RDF data. You can use SEM_MATCH
or SEM_APIS.SPARQL_TO_SQL to query an RDF model as it existed at an earlier
time through an AS_OF hint that specifies a target system change number (SCN) or
timestamp.

For more information, see Flashback Query Support.

Desupport for Workspace Manager and Virtual Private Database with
RDF

Workspace Manager Support for RDF Data and Virtual Private Database Support in
RDF Semantic Graph are desupported in Oracle Database 12c Release 2 (12.2).
Information about such support has been removed from this guide.

If you have an existing semantic network that contains Workspace Manager (WM) or
Virtual Private Database (VPD) data, see Workspace Manager and Virtual Private
Database Desupport before you upgrade,

Changes in Oracle Database 12c Release 1 (12.1.0.2)
The following are changes in Oracle Spatial and Graph RDF Semantic Graph
Developer's Guide for Oracle Database 12c Release 1 (12.1.0.2).

• Support for SPARQL 1.1 Federated Query

• Combining Native Triple Data with Virtual RDB2RDF Triple Data

Support for SPARQL 1.1 Federated Query
SEM_MATCH supports SPARQL 1.1 Federated Query. The SERVICE construct can
be used to retrieve results from a specified SPARQL endpoint URL. With this
capability, you can combine local RDF data (native RDF data or RDF views of
relational data) with other, possibly remote, RDF data served by a W3C standards-
compliant SPARQL endpoint.

Changes in This Release for Oracle Spatial and Graph RDF Semantic Graph Developer's Guide
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For information about support for SPARQL 1.1 Federated Query, see Graph Patterns:
Support for SPARQL 1.1 Federated Query.

Combining Native Triple Data with Virtual RDB2RDF Triple Data
A new section (Combining Native RDF Data with Virtual RDB2RDF Data) explains
how you can combine native triple data with virtual RDB2RDF triple data in a single
SEM_MATCH query by means of the SERVICE keyword.

Changes in Oracle Database 12c Release 1 (12.1.0.1)
The following are changes in Oracle Spatial and Graph RDF Semantic Graph
Developer's Guide for Oracle Database 12c Release 1 (12.1.0.1).

• New Features

• Deprecated Features

• Desupported Features

New Features
The following features are new in this release.

• Enhanced Support for SPARQL 1.1 Constructs

• Enhanced Support for Virtual Models

• Support for User-Defined Inferencing and Querying

• OWL 2 EL Support

• OGC GeoSPARQL Support

• Ladder-Based Inference

• RDF Views

• Data Pump Support for Exporting and Importing a Semantic Network

Enhanced Support for SPARQL 1.1 Constructs
SEM_MATCH supports the following SPARQL 1.1 constructs, as explained in Graph
Patterns: Support for SPARQL 1.1 Constructs:

• An expanded set of functions

• Expressions in the SELECT Clause

• Subqueries

• Grouping and Aggregation

• Negation

• Value Assignment

• Property Paths

Changes in This Release for Oracle Spatial and Graph RDF Semantic Graph Developer's Guide

xxiv



Enhanced Support for Virtual Models
Virtual models can now be created with arbitrary combinations of models and/or
entailments, as explained in Virtual Models. Previously, virtual models were required to
have at least one model and were limited to at most one entailment.

Virtual models can now be replaced without first being dropped. A new REPLACE=T
option for the SEM_APIS.CREATE_VIRTUAL_MODEL procedure lets you maintain
access privileges for a virtual model while changing its definition. (The REPLACE=T
option is analogous to using CREATE OR REPLACE VIEW with a view.)

Support for User-Defined Inferencing and Querying
New RDF Semantic Graph extension architectures enable the addition of user-defined
capabilities:

• The inference extension architecture enables you to add user-defined inferencing
to the presupplied inferencing support.

• The query extension architecture enables you to add user-defined functions and
aggregates to be used in SPARQL queries, both through the SEM_MATCH table
function and through the support for Apache Jena.

For information about these features, see User-Defined Inferencing and Querying .

OWL 2 EL Support
The OWL 2 EL profile is supported by the addition of the system-defined rulebase
OWL2EL, as explained in Supported OWL Subsets.

OGC GeoSPARQL Support
The OGC GeoSPARQL standard for representing and querying spatial data is now
supported, as explained in OGC GeoSPARQL Support.

Ladder-Based Inference
Ladder-based inference is available as a convenient option for fine-grained triple-level
security, as explained in Fine-Grained Security for Inferred Data and Ladder-Based
Inference (LBI).

RDF Views
You can create and use RDF views over relational data. Mapping relational data to
RDF triples enables you to perform semantic operations conveniently, and without
having to store RDF triples corresponding to the relational data. For information, see 
RDF Views: Relational Data as RDF .

Data Pump Support for Exporting and Importing a Semantic Network
Effective with Oracle Database Release 12.1, you can export and import a semantic
network using the full database export and import features of the Oracle Data Pump
utility, as explained in Exporting or Importing a Semantic Network Using Oracle Data
Pump.
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Deprecated Features
Support for the following in RDF Semantic Graph is deprecated in this release, and
may be desupported in a future release:

• Virtual Private Database (VPD)

• Version-enabled (Workspace Manager) models

Desupported Features
Some features previously described in this document are desupported in Oracle
Database 12c Release 1 (12.1). See Oracle Database Upgrade Guide for a list of
desupported features.

Changes for RDF Semantic Graph Support for Apache Jena
RDF Semantic Graph support for Apache Jena supports Apache Jena 2.11.1,
including jena-core-2.11.1 and jena-arq-2.11.1. This support includes the following
features (most of which were included when support was added for Apache Jena
2.7.2).

For information about using the support for Apache Jena, see RDF Semantic Graph
Support for Apache Jena .

• Support for Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-
Based Query Results

• Protege Plugin for Oracle Database

• Support for Customized Data Source Name

• Support for SPARQL Queries with Translated SQL Text Larger Than 29000 Bytes

• Support for Oracle Database in Read-Only Mode

• Less Verbose Joseki Output

• Java APIs for Managing the Table Responsible for Terminating Long-Running
SPARQL Queries

• Support for Apache Tomcat and JBoss Application Server

• Support for Fuseki 1.0.1
Support is provided for using Fuseki 1.0.1 to serve RDF data over HTTP.

Support for Retrieving User-Friendly Java Objects from SEM_MATCH
or SQL-Based Query Results

With support for retrieving user-friendly Java objects from SEM_MATCH or SQL-
based graph query results, you no longer need to parse and understand the subtle
details embedded in projected columns like $RDFVTYP, $RDFLTYP, $RDFLANG,
and $RDFCLOB; or their corresponding columns in MDSYS.RDF_VALUE$ including
VALUE_TYPE, LITERAL_TYPE, LANGUAGE_TYPE, LONG_VALUE, and
VALUE_NAME.
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For an explanation and examples, see Retrieving User-Friendly Java Objects from
SEM_MATCH or SQL-Based Query Results.

Protege Plugin for Oracle Database
This plugin allows an easy integration of the Protege 4.1 visual ontology editing
functions with the robust semantic data management capabilities provided by Oracle
Database.

The plugin .jar file and installation document are under the protege_plugin/ directory
of the release zip file.

Support for Customized Data Source Name
In previous releases, a fixed data source name OracleSemDS was required in the
Joseki deployment. This release allows you to customize the data source name
through the oracle:dataSourceName setting in the Joseki configuration.

You can also customize the data source name used for establishing database
connections to terminate long-running SPARQL queries using query ID (see 
Terminating Long-Running SPARQL Queries for details). To change the default data
source name, edit the following JVM property:

-Doracle.spatial.rdf.client.jena.dsNameForQueryMgt=OracleSemDS

Support for SPARQL Queries with Translated SQL Text Larger Than
29000 Bytes

The S2S feature has been enhanced such that it now supports very long SPARQL
queries that have translated SQL texts that are hundreds of thousands of bytes long.
However, Oracle still recommends the use of simpler (and shorter) SPARQL queries
whenever possible, because simpler SPARQL queries are easier for users and
application developers to understand, and they tend to be more efficient for Oracle
Database to execute.

Support for Oracle Database in Read-Only Mode
The Joseki web service endpoint can now work with an Oracle Database opened in
read-only mode. Queries can be answered without problems.

S2S must be used for queries to work with a read-only Oracle Database.

Less Verbose Joseki Output
This release reduces the amount of Joseki logging output. You can, however, set the
trace level to 1 or higher to get more trace output for debugging purpose. For example:

-Doracle.spatial.rdf.client.jena.josekiTraceLevel=1

Java APIs for Managing the Table Responsible for Terminating Long-
Running SPARQL Queries

When a request to terminate a SPARQL query is sent using the following servlet:
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http://<hostname>:7001/joseki/querymgt?abortqid=8761

the request (query ID and a timestamp) is recorded in a table named
ORACLE_ORARDF_QUERY_MGT_TAB in user's schema.

The following methods have been added to the class
oracle.spatial.rdf.client.jena.OracleQueryProgressMonitor to allow users to
query, add, and remove entries in the ORACLE_ORARDF_QUERY_MGT_TAB table.
Details of these methods are explained in the Javadoc (javadoc.zip is under the
javadoc/ directory of the release zip file):

addQuery
deleteAllQueries
deleteQuery
listQueries

Support for Apache Tomcat and JBoss Application Server
Support is provided for Joseki deployment in Apache Tomcat and JBoss, in addition to
Oracle WebLogic Server. For information, see Deploying Joseki in Apache Tomcat or
JBoss.

Support for Fuseki 1.0.1
Support is provided for using Fuseki 1.0.1 to serve RDF data over HTTP.

For information, see Configuring the Fuseki-Based SPARQL Service.
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Part I
Conceptual and Usage Information

This document has the following parts:

• Part I provides conceptual and usage information about RDF Semantic Graph.

• Reference and Supplementary Information provides reference information about
RDF Semantic Graph subprograms; it also provides supplementary information in
appendixes and a glossary.

Part I contains the following chapters:

• RDF Semantic Graph Overview
Oracle Spatial and Graph support for semantic technologies consists mainly of
Resource Description Framework (RDF) and a subset of the Web Ontology
Language (OWL). These capabilities are referred to as the RDF Semantic Graph
feature of Oracle Spatial and Graph.

• OWL Concepts
You should understand key concepts related to the support for a subset of the
Web Ontology Language (OWL).

• Simple Knowledge Organization System (SKOS) Support
You can perform inferencing based on a core subset of the Simple Knowledge
Organization System (SKOS) data model, which is especially useful for
representing thesauri, classification schemes, taxonomies, and other types of
controlled vocabulary.

• Semantic Indexing for Documents
Information extractors locate and extract meaningful information from unstructured
documents. The ability to search for documents based on this extracted
information is a significant improvement over the keyword-based searches
supported by the full-text search engines.

• Fine-Grained Access Control for RDF Data
The default control of access to the Oracle Database semantic data store is at the
model level: the owner of a model can grant select, delete, and insert privileges on
the model to other users by granting appropriate privileges on the view named
RDFM_<model_name>. However, for applications with stringent security
requirements, you can enforce a fine-grained access control mechanism by using
the Oracle Label Security option of Oracle Database.

• RDF Semantic Graph Support for Apache Jena
RDF Semantic Graph support for Apache Jena (also referred to here as support
for Apache Jena) provides a Java-based interface to Oracle Spatial and Graph
RDF Semantic Graph by implementing the well-known Jena Graph, Model, and
DatasetGraph APIs.

• User-Defined Inferencing and Querying
RDF Semantic Graph extension architectures enable the addition of user-defined
capabilities.

• RDF Views: Relational Data as RDF
You can create and use RDF views over relational data in Oracle Spatial and
Graph RDF Semantic Graph.



• RDF Integration with Property Graph Data Stored in Oracle Database
The property graph data model is supported in Oracle Spatial and Graph. Oracle
Spatial and Graph provides built-in support for RDF views of property graph data
stored in Oracle Database.



1
RDF Semantic Graph Overview

Oracle Spatial and Graph support for semantic technologies consists mainly of
Resource Description Framework (RDF) and a subset of the Web Ontology Language
(OWL). These capabilities are referred to as the RDF Semantic Graph feature of
Oracle Spatial and Graph.

This chapter assumes that you are familiar with the major concepts associated with
RDF and OWL, such as {subject, predicate, object} triples, URIs, blank nodes, plain
and typed literals, and ontologies. It does not explain these concepts in detail, but
focuses instead on how the concepts are implemented in Oracle.

• For an excellent explanation of RDF concepts, see the World Wide Web
Consortium (W3C) RDF Primer at http://www.w3.org/TR/rdf-primer/.

• For information about OWL, see the OWL Web Ontology Language Reference at 
http://www.w3.org/TR/owl-ref/.

The PL/SQL subprograms for working with semantic data are in the SEM_APIS
package, which is documented in SEM_APIS Package Subprograms.

The RDF and OWL support are features of Oracle Spatial and Graph, which must be
installed for these features to be used. However, the use of RDF and OWL is not
restricted to spatial data.

Note:

If you have any semantic data created using an Oracle Database release
before 12.2, see Required Migration of Pre-12.2 Semantic Data.

For information about OWL concepts and the Oracle Database support for OWL
capabilities, see OWL Concepts .

Note:

Before performing any operations described in this guide, you must enable
RDF Semantic Graph support in the database and meet other prerequisites,
as explained in Enabling RDF Semantic Graph Support.

• Introduction to Oracle Semantic Technologies Support
Oracle Database enables you to store semantic data and ontologies, to query
semantic data and to perform ontology-assisted query of enterprise relational data,
and to use supplied or user-defined inferencing to expand the power of querying
on semantic data.

1-1
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• Semantic Data Modeling
In addition to its formal semantics, semantic data has a simple data structure that
is effectively modeled using a directed graph.

• Semantic Data in the Database
There is one universe for all semantic data stored in the database.

• Semantic Metadata Tables and Views
Oracle Database maintains several tables and views in the MDSYS schema to
hold metadata related to semantic data.

• Semantic Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE object type represents semantic data in triple format, and
the SDO_RDF_TRIPLE_S object type (the _S for storage) stores persistent
semantic data in the database.

• Using the SEM_MATCH Table Function to Query Semantic Data
To query semantic data, use the SEM_MATCH table function.

• Using the SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data
You can use the SEM_APIS.SPARQL_TO_SQL function as an alternative to the
SEM_MATCH table function to query semantic data.

• Loading and Exporting Semantic Data
You can load semantic data into a model in the database and export that data
from the database into a staging table.

• Using Semantic Network Indexes
Semantic network indexes are nonunique B-tree indexes that you can add, alter,
and drop for use with models and entailments in a semantic network.

• Using Data Type Indexes
Data type indexes are indexes on the values of typed literals stored in a semantic
network.

• Managing Statistics for Semantic Models and the Semantic Network
Statistics are critical to the performance of SPARQL queries and OWL inference
against semantic data stored in an Oracle database.

• Support for SPARQL Update Operations on a Semantic Model
Effective with Oracle Database Release 12.2, you can perform SPARQL Update
operations on a semantic model.

• Enhanced RDF ORDER BY Query Processing
Effective with Oracle Database Release 12.2, queries on RDF data that use
SPARQL ORDER BY semantics are processed more efficiently than in previous
releases.

• Quick Start for Using Semantic Data
To work with semantic data in an Oracle database, follow these general steps.

• Semantic Data Examples (PL/SQL and Java)
PL/SQL examples are provided in this guide.

• Software Naming Changes Since Release 11.1
Because the support for semantic data has been expanded beyond the original
focus on RDF, the names of many software objects (PL/SQL packages, functions
and procedures, system tables and views, and so on) have been changed as of
Oracle Database Release 11.1.

• For More Information About RDF Semantic Graph
More information is available about RDF Semantic Graph support and related
topics.

Chapter 1
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• Required Migration of Pre-12.2 Semantic Data
If you have any semantic data created using Oracle Database 11.1. 11.2, or 12.1,
then before you use it in an Oracle Database 12.2 environment, you must migrate
this data.

1.1 Introduction to Oracle Semantic Technologies Support
Oracle Database enables you to store semantic data and ontologies, to query
semantic data and to perform ontology-assisted query of enterprise relational data,
and to use supplied or user-defined inferencing to expand the power of querying on
semantic data.

Figure 1-1 shows how these capabilities interact.

Figure 1-1    Oracle Semantic Capabilities
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As shown in Figure 1-1, the database contains semantic data and ontologies
(RDF/OWL models), as well as traditional relational data. To load semantic data, bulk
loading is the most efficient approach, although you can load data incrementally using
transactional INSERT statements.

Note:

If you want to use existing semantic data from a release before Oracle
Database 11.1, the data must be upgraded as described in Enabling RDF
Semantic Graph Support.

You can query semantic data and ontologies, and you can also perform ontology-
assisted queries of semantic and traditional relational data to find semantic
relationships. To perform ontology-assisted queries, use the SEM_RELATED
operator, which is described in Using Semantic Operators to Query Relational Data.

You can expand the power of queries on semantic data by using inferencing, which
uses rules in rulebases. Inferencing enables you to make logical deductions based on

Chapter 1
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the data and the rules. For information about using rules and rulebases for inferencing,
see Inferencing: Rules and Rulebases.

1.2 Semantic Data Modeling
In addition to its formal semantics, semantic data has a simple data structure that is
effectively modeled using a directed graph.

The metadata statements are represented as triples: nodes are used to represent two
parts of the triple, and the third part is represented by a directed link that describes the
relationship between the nodes. The triples are stored in a semantic data network. In
addition, information is maintained about specific semantic data models created by
database users. A user-created model has a model name, and refers to triples stored
in a specified table column.

Statements are expressed in triples: {subject or resource, predicate or property, object
or value}. In this manual, {subject, property, object} is used to describe a triple, and the
terms statement and triple may sometimes be used interchangeably. Each triple is a
complete and unique fact about a specific domain, and can be represented by a link in
a directed graph.

1.3 Semantic Data in the Database
There is one universe for all semantic data stored in the database.

All triples are parsed and stored in the system as entries in tables under the MDSYS
schema. A triple {subject, property, object} is treated as one database object. As a
result, a single document containing multiple triples results in multiple database
objects.

All the subjects and objects of triples are mapped to nodes in a semantic data network,
and properties are mapped to network links that have their start node and end node as
subject and object, respectively. The possible node types are blank nodes, URIs, plain
literals, and typed literals.

The following requirements apply to the specifications of URIs and the storage of
semantic data in the database:

• A subject must be a URI or a blank node.

• A property must be a URI.

• An object can be any type, such as a URI, a blank node, or a literal. (However, null
values and null strings are not supported.)

• Metadata for Models

• Statements

• Subjects and Objects

• Blank Nodes

• Properties

• Inferencing: Rules and Rulebases

• Entailments (Rules Indexes)

• Virtual Models

Chapter 1
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• Named Graphs

• Semantic Data Security Considerations

1.3.1 Metadata for Models
The MDSYS.SEM_MODEL$ view contains information about all models defined in the
database. When you create a model using the SEM_APIS.CREATE_SEM_MODEL
procedure, you specify a name for the model, as well as a table and column to hold
references to the semantic data, and the system automatically generates a model ID.

Oracle maintains the MDSYS.SEM_MODEL$ view automatically when you create and
drop models. Users should never modify this view directly. For example, do not use
SQL INSERT, UPDATE, or DELETE statements with this view.

The MDSYS.SEM_MODEL$ view contains the columns shown in Table 1-1.

Table 1-1    MDSYS.SEM_MODEL$ View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the model.

MODEL_ID NUMBER Unique model ID number, automatically generated.

MODEL_NAME VARCHAR2(25) Name of the model.

TABLE_NAME VARCHAR2(30) Name of the table to hold references to semantic data
for the model.

COLUMN_NAME VARCHAR2(30) Name of the column of type SDO_RDF_TRIPLE_S in
the table to hold references to semantic data for the
model.

MODEL_TABLES
PACE_NAME

VARCHAR2(30) Name of the tablespace to be used for storing the
triples for this model.

MODEL_TYPE VARCHAR2(40) A value indicating the type of RDF model: M for regular
model; V for virtual model; X for model created to store
the contents of the semantic index; or D for model
created on relational data.

When you create a model, a view for the triples associated with the model is also
created under the MDSYS schema. This view has a name in the format
SEMM_model-name, and it is visible only to the owner of the model and to users with
suitable privileges. Each MDSYS.SEMM_model-name view contains a row for each
triple (stored as a link in a network), and it has the columns shown in Table 1-2.

Table 1-2    MDSYS.SEMM_model-name View Columns

Column Name Data Type Description

P_VALUE_ID NUMBER The VALUE_ID for the text value of the predicate
of the triple. Part of the primary key.

START_NODE_ID NUMBER The VALUE_ID for the text value of the subject of
the triple. Also part of the primary key.

CANON_END_NOD
E_ID

NUMBER The VALUE_ID for the text value of the canonical
form of the object of the triple. Also part of the
primary key.

Chapter 1
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Table 1-2    (Cont.) MDSYS.SEMM_model-name View Columns

Column Name Data Type Description

END_NODE_ID NUMBER The VALUE_ID for the text value of the object of
the triple

MODEL_ID NUMBER The ID for the RDF model to which the triple
belongs.

COST NUMBER (Reserved for future use)

CTXT1 NUMBER (Reserved column; can be used for fine-grained
access control)

CTXT2 VARCHAR2(4000) (Reserved for future use)

DISTANCE NUMBER (Reserved for future use)

EXPLAIN VARCHAR2(4000) (Reserved for future use)

PATH VARCHAR2(4000) (Reserved for future use)

G_ID NUMBER The VALUE_ID for the text value of the graph
name for the triple. Null indicates the default
graph (see Named Graphs).

LINK_ID VARCHAR2(71) Unique triple identifier value. (It is currently a
computed column, and its definition may change
in a future release.)

Note:

In Table 1-2, for columns P_VALUE_ID, START_NODE_ID,
END_NODE_ID, CANON_END_NODE_ID, and G_ID, the actual ID values
are computed from the corresponding lexical values. However, a lexical
value may not always map to the same ID value.

1.3.2 Statements
The MDSYS.RDF_VALUE$ table contains information about the subjects, properties,
and objects used to represent RDF statements. It uniquely stores the text values (URIs
or literals) for these three pieces of information, using a separate row for each part of
each triple.

Oracle maintains the MDSYS.RDF_VALUE$ table automatically. Users should never
modify this view directly. For example, do not use SQL INSERT, UPDATE, or DELETE
statements with this view.

The RDF_VALUE$ table contains the columns shown in Table 1-3.

Table 1-3    MDSYS.RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_ID NUMBER Unique value ID number, automatically generated.

Chapter 1
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Table 1-3    (Cont.) MDSYS.RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_TYPE VARCHAR2(10) The type of text information stored in the
VALUE_NAME column. Possible values: UR for URI,
BN for blank node, PL for plain literal, PL@ for plain
literal with a language tag, PLL for plain long literal,
PLL@ for plain long literal with a language tag, TL for
typed literal, or TLL for typed long literal. A long literal
is a literal with more than 4000 bytes.

VNAME_PREFIX VARCHAR2(4000) If the length of the lexical value is 4000 bytes or less,
this column stores a prefix of a portion of the lexical
value. The SEM_APIS.VALUE_NAME_PREFIX
function can be used for prefix computation. For
example, the prefix for the portion of the lexical value
<http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> without the angle brackets is http://
www.w3.org/1999/02/22-rdf-syntax-ns#.

VNAME_SUFFIX VARCHAR2(512) If the length of the lexical value is 4000 bytes or less,
this column stores a suffix of a portion of the lexical
value. The SEM_APIS.VALUE_NAME_SUFFIX
function can be used for suffix computation. For the
lexical value mentioned in the description of the
VNAME_PREFIX column, the suffix is type.

LITERAL_TYPE VARCHAR2(4000) For typed literals, the type information; otherwise, null.
For example, for a row representing a creation date of
1999-08-16, the VALUE_TYPE column can contain TL,
and the LITERAL_TYPE column can contain http://
www.w3.org/2001/XMLSchema#date.

LANGUAGE_TYP
E

VARCHAR2(80) Language tag (for example, fr for French) for a literal
with a language tag (that is, if VALUE_TYPE is PL@ or
PLL@). Otherwise, this column has a null value.

CANON_ID NUMBER The ID for the canonical lexical value for the current
lexical value. (The use of this column may change in a
future release.)

COLLISION_EXT VARCHAR2(64) Used for collision handling for the lexical value. (The
use of this column may change in a future release.)

CANON_COLLISI
ON_EXT

VARCHAR2(64) Used for collision handling for the canonical lexical
value. (The use of this column may change in a future
release.)

ORDER_TYPE NUMBER Represents order based on data type. Used to improve
performance on ORDER BY queries.

ORDER_NUM NUMBER Represents order for number type. Used to improve
performance on ORDER BY queries.

ORDER_DATE TIMESTAMP
WITH TIME ZONE

Represents order based on date type Used to improve
performance on ORDER BY queries.

LONG_VALUE CLOB The character string if the length of the lexical value is
greater than 4000 bytes. Otherwise, this column has a
null value.

GEOM SDO_GEOMETR
Y

A geometry value when a spatial index is defined.

Chapter 1
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Table 1-3    (Cont.) MDSYS.RDF_VALUE$ Table Columns

Column Name Data Type Description

VALUE_NAME VARCHAR2(4000) This is a computed column. If length of the lexical
value is 4000 bytes or less, the value of this column is
the concatenation of the values of VNAME_PREFIX
column and the VNAME_SUFFIX column.

• Triple Uniqueness and Data Types for Literals

1.3.2.1 Triple Uniqueness and Data Types for Literals
Duplicate triples are not stored in the database. To check if a triple is a duplicate of an
existing triple, the subject, property, and object of the incoming triple are checked
against triple values in the specified model. If the incoming subject, property, and
object are all URIs, an exact match of their values determines a duplicate. However, if
the object of incoming triple is a literal, an exact match of the subject and property, and
a value (canonical) match of the object, determine a duplicate. For example, the
following two triples are duplicates:

<eg:a> <eg:b> <"123"^^http://www.w3.org/2001/XMLSchema#int>
<eg:a> <eg:b> <"123"^^http://www.w3.org/2001/XMLSchema#unsignedByte>

The second triple is treated as a duplicate of the first, because "123"^^<http://
www.w3.org/2001/XMLSchema#int> has an equivalent value (is canonically equivalent)
to "123"^^<http://www.w3.org/2001/XMLSchema#unsignedByte>. Two entities are
canonically equivalent if they can be reduced to the same value.

To use a non-RDF example, A*(B-C), A*B-C*A, (B-C)*A, and -A*C+A*B all convert into
the same canonical form.

Note:

Although duplicate triples and quads are not stored in the underlying table
partition for the MDSYS.RDFM_<model> view, it is possible to have
duplicate rows in an application table. For example, if a triple is inserted
multiple times into an application table, it will appear once in the
MDSYS.RDFM_<model> view, but will occupy multiple rows in the
application table.

Value-based matching of lexical forms is supported for the following data types:

• STRING: plain literal, xsd:string and some of its XML Schema subtypes

• NUMERIC: xsd:decimal and its XML Schema subtypes, xsd:float, and xsd:double.
(Support is not provided for float/double INF, -INF, and NaN values.)

• DATETIME: xsd:datetime, with support for time zone. (Without time zone there are
still multiple representations for a single value, for example,
"2004-02-18T15:12:54" and "2004-02-18T15:12:54.0000".)

• DATE: xsd:date, with or without time zone

Chapter 1
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• OTHER: Everything else. (No attempt is made to match different representations).

Canonicalization is performed when the time zone is present for literals of type
xsd:time and xsd:dateTime.

The following namespace definition is used: xmlns:xsd="http://www.w3.org/2001/
XMLSchema"

The first occurrence of a literal in the RDF_VALUE$ table is taken as the canonical
form and given the VALUE_TYPE value of CPL, CPL@, CTL, CPLL, CPLL@, or CTLL as
appropriate; that is, a C for canonical is prefixed to the actual value type. If a literal with
the same canonical form (but a different lexical representation) as a previously
inserted literal is inserted into the RDF_VALUE$ table, the VALUE_TYPE value
assigned to the new insert is PL, PL@, TL, PLL, PLL@, or TLL as appropriate.

Canonically equivalent text values having different lexical representations are thus
stored in the RDF_VALUE$ table; however, canonically equivalent triples are not
stored in the database.

1.3.3 Subjects and Objects
RDF subjects and objects are mapped to nodes in a semantic data network. Subject
nodes are the start nodes of links, and object nodes are the end nodes of links. Non-
literal nodes (that is, URIs and blank nodes) can be used as both subject and object
nodes. Literals can be used only as object nodes.

1.3.4 Blank Nodes
Blank nodes can be used as subject and object nodes in the semantic network. Blank
node identifiers are different from URIs in that they are scoped within a semantic
model. Thus, although multiple occurrences of the same blank node identifier within a
single semantic model necessarily refer to the same resource, occurrences of the
same blank node identifier in two different semantic models do not refer to the same
resource.

In an Oracle semantic network, this behavior is modeled by requiring that blank nodes
are always reused (that is, are used to represent the same resource if the same blank
node identifier is used) within a semantic model, and never reused between two
different models. Thus, when inserting triples involving blank nodes into a model, you
must use the SDO_RDF_TRIPLE_S constructor that supports reuse of blank nodes.

1.3.5 Properties
Properties are mapped to links that have their start node and end node as subjects
and objects, respectively. Therefore, a link represents a complete triple.

When a triple is inserted into a model, the subject, property, and object text values are
checked to see if they already exist in the database. If they already exist (due to
previous statements in other models), no new entries are made; if they do not exist,
three new rows are inserted into the RDF_VALUE$ table (described in Statements).

1.3.6 Inferencing: Rules and Rulebases
Inferencing is the ability to make logical deductions based on rules. Inferencing
enables you to construct queries that perform semantic matching based on meaningful
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relationships among pieces of data, as opposed to just syntactic matching based on
string or other values. Inferencing involves the use of rules, either supplied by Oracle
or user-defined, placed in rulebases.

Figure 1-2 shows triple sets being inferred from model data and the application of rules
in one or more rulebases. In this illustration, the database can have any number of
semantic models, rulebases, and inferred triple sets, and an inferred triple set can be
derived using rules in one or more rulebases.

Figure 1-2    Inferencing
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A rule is an object that can be applied to draw inferences from semantic data. A rule is
identified by a name and consists of:

• An IF side pattern for the antecedents

• An optional filter condition that further restricts the subgraphs matched by the IF
side pattern

• A THEN side pattern for the consequents

For example, the rule that a chairperson of a conference is also a reviewer of the
conference could be represented as follows:

('chairpersonRule', -- rule name
 '(?r :ChairPersonOf ?c)', -- IF side pattern
 NULL,  -- filter condition
 '(?r :ReviewerOf ?c)', -- THEN side pattern
 SEM_ALIASES (SEM_ALIAS('', 'http://some.org/test/'))
)

In this case, the rule does not have a filter condition, so that component of the
representation is NULL. For best performance, use a single-triple pattern on the THEN
side of the rule. If a rule has multiple triple patterns on the THEN side, you can easily
break it into multiple rules, each with a single-triple pattern, on the THEN side.

A rulebase is an object that contains rules. The following Oracle-supplied rulebases
are provided:

• RDFS

• RDF (a subset of RDFS)

• OWLSIF (empty)

• RDFS++ (empty)
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• OWL2RL (empty)

• OWLPrime (empty)

• SKOSCORE (empty)

The RDFS and RDF rulebases are created when you call the 
SEM_APIS.CREATE_SEM_NETWORK procedure to add RDF support to the
database. The RDFS rulebase implements the RDFS entailment rules, as described in
the World Wide Web Consortium (W3C) RDF Semantics document at http://
www.w3.org/TR/rdf-mt/. The RDF rulebase represents the RDF entailment rules,
which are a subset of the RDFS entailment rules. You can see the contents of these
rulebases by examining the MDSYS.SEMR_RDFS and MDSYS.SEMR_RDF views.

You can also create user-defined rulebases using the 
SEM_APIS.CREATE_RULEBASE procedure. User-defined rulebases enable you to
provide additional specialized inferencing capabilities.

For each rulebase, a system table is created to hold rules in the rulebase, along with a
system view with a name in the format MDSYS.SEMR_rulebase-name (for example,
MDSYS.SEMR_FAMILY_RB for a rulebase named FAMILY_RB). You must use this
view to insert, delete, and modify rules in the rulebase. Each
MDSYS.SEMR_rulebase-name view has the columns shown in Table 1-4.

Table 1-4    MDSYS.SEMR_rulebase-name View Columns

Column Name Data Type Description

RULE_NAME VARCHAR2(30) Name of the rule

ANTECEDENTS VARCHAR2(4000) IF side pattern for the antecedents

FILTER VARCHAR2(4000) Filter condition that further restricts the subgraphs
matched by the IF side pattern. Null indicates no filter
condition is to be applied.

CONSEQUENTS VARCHAR2(4000) THEN side pattern for the consequents

ALIASES SEM_ALIASES One or more namespaces to be used. (The
SEM_ALIASES data type is described in Using the
SEM_MATCH Table Function to Query Semantic
Data.)

Information about all rulebases is maintained in the MDSYS.SEM_RULEBASE_INFO
view, which has the columns shown in Table 1-5 and one row for each rulebase.

Table 1-5    MDSYS.SEM_RULEBASE_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the rulebase

RULEBASE_NAM
E

VARCHAR2(25) Name of the rulebase

RULEBASE_VIE
W_NAME

VARCHAR2(30) Name of the view that you must use for any SQL
statements that insert, delete, or modify rules in the
rulebase

STATUS VARCHAR2(30) Contains VALID if the rulebase is valid, INPROGRESS if
the rulebase is being created, or FAILED if a system
failure occurred during the creation of the rulebase.
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Example 1-1    Inserting a Rule into a Rulebase

Example 1-1 creates a rulebase named family_rb, and then inserts a rule named
grandparent_rule into the family_rb rulebase. This rule says that if a person is the
parent of a child who is the parent of a child, that person is a grandparent of (that is,
has the grandParentOf relationship with respect to) his or her child's child. It also
specifies a namespace to be used. (This example is an excerpt from Example 1-110 in 
Example: Family Information.)

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');

INSERT INTO mdsys.semr_family_rb VALUES(
  'grandparent_rule',
  '(?x :parentOf ?y) (?y :parentOf ?z)',
  NULL,
  '(?x :grandParentOf ?z)', 
  SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));

Note that the kind of grandparent rule shown in Example 1-1 can be implemented
using the OWL 2 property chain construct. For information about property chain
handling, see Property Chain Handling.

Example 1-2    Using Rulebases for Inferencing

You can specify one or more rulebases when calling the SEM_MATCH table function
(described in Using the SEM_MATCH Table Function to Query Semantic Data), to
control the behavior of queries against semantic data. Example 1-2 refers to the
family_rb rulebase and to the grandParentOf relationship created in Example 1-1, to
find all grandfathers (grandparents who are male) and their grandchildren. (This
example is an excerpt from Example 1-110 in Example: Family Information.)

-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x grandfather, y grandchild
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

For information about support for native OWL inferencing, see Using OWL Inferencing.

1.3.7 Entailments (Rules Indexes)
An entailment (rules index) is an object containing precomputed triples that can be
inferred from applying a specified set of rulebases to a specified set of models. If a
SEM_MATCH query refers to any rulebases, an entailment must exist for each
rulebase-model combination in the query.

To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure. To
drop (delete) an entailment, use the SEM_APIS.DROP_ENTAILMENT procedure.

When you create an entailment, a view for the triples associated with the entailment is
also created under the MDSYS schema. This view has a name in the format
SEMI_entailment-name, and it is visible only to the owner of the entailment and to
users with suitable privileges. Each MDSYS.SEMI_entailment-name view contains a
row for each triple (stored as a link in a network), and it has the same columns as the
SEMM_model-name view, which is described in Table 1-2 in Metadata for Models.
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Information about all entailments is maintained in the
MDSYS.SEM_RULES_INDEX_INFO view, which has the columns shown in Table 1-6
and one row for each entailment.

Table 1-6    MDSYS.SEM_RULES_INDEX_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the entailment

INDEX_NAME VARCHAR2(25) Name of the entailment

INDEX_VIEW_NA
ME

VARCHAR2(30) Name of the view that you must use for any SQL
statements that insert, delete, or modify rules in the
entailment

STATUS VARCHAR2(30) Contains VALID if the entailment is valid, INVALID if
the entailment is not valid, INCOMPLETE if the
entailment is incomplete (similar to INVALID but
requiring less time to re-create), INPROGRESS if the
entailment is being created, or FAILED if a system
failure occurred during the creation of the entailment.

MODEL_COUNT NUMBER Number of models included in the entailment

RULEBASE_COU
NT

NUMBER Number of rulebases included in the entailment

Information about all database objects, such as models and rulebases, related to
entailments is maintained in the MDSYS.SEM_RULES_INDEX_DATASETS view. This
view has the columns shown in Table 1-7 and one row for each unique combination of
values of all the columns.

Table 1-7    MDSYS.SEM_RULES_INDEX_DATASETS View Columns

Column Name Data Type Description

INDEX_NAME VARCHAR2(25) Name of the entailment

DATA_TYPE VARCHAR2(8) Type of data included in the entailment. Examples:
MODEL and RULEBASE

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE
column

Example 1-3 creates an entailment named family_rb_rix_family, using the family
model and the RDFS and family_rb rulebases. (This example is an excerpt from 
Example 1-110 in Example: Family Information.)

Example 1-3    Creating an Entailment

BEGIN
  SEM_APIS.CREATE_ENTAILMENT(
    'rdfs_rix_family',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'));
END;
/
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1.3.8 Virtual Models
A virtual model is a logical graph that can be used in a SEM_MATCH query. A virtual
model is the result of a UNION or UNION ALL operation on one or more models
and/or entailments.

Using a virtual model can provide several benefits:

• It can simplify management of access privileges for semantic data. For example,
assume that you have created three semantic models and one entailment based
on the three models and the OWLPrime rulebase. Without a virtual model, you
must individually grant and revoke access privileges for each model and the
entailment. However, if you create a virtual model that contains the three models
and the entailment, you will only need to grant and revoke access privileges for the
single virtual model.

• It can facilitate rapid updates to semantic models. For example, assume that
virtual model VM1 contains model M1 and entailment R1 (that is, VM1 = M1
UNION ALL R1), and assume that semantic model M1_UPD is a copy of M1 that
has been updated with additional triples and that R1_UPD is an entailment created
for M1_UPD. Now, to have user queries over VM1 go to the updated model and
entailment, you can redefine virtual model VM1 (that is, VM1 = M1_UPD UNION
ALL R1_UPD).

• It can simplify query specification because querying a virtual model is equivalent to
querying multiple models in a SEM_MATCH query. For example, assume that
models m1, m2, and m3 already exist, and that an entailment has been created for
m1, m2 ,and m3 using the OWLPrime rulebase. You could create a virtual model
vm1 as follows:

EXECUTE sem_apis.create_virtual_model('vm1', sem_models('m1', 'm2', 'm3'), 
                                      sem_rulebases('OWLPRIME'));

To query the virtual model, use the virtual model name as if it were a model in a
SEM_MATCH query. For example, the following query on the virtual model:

SELECT * FROM TABLE (sem_match('{…}', sem_models('vm1'), null, …));

is equivalent to the following query on all the individual models:

SELECT * FROM TABLE (sem_match('{…}', sem_models('m1', 'm2', 'm3'), 
                                      sem_rulebases('OWLPRIME'), …));

A SEM_MATCH query over a virtual model will query either the SEMV or SEMU
view (SEMU by default and SEMV if the 'ALLOW_DUP=T' option is specified)
rather than querying the UNION or UNION ALL of each model and entailment. For
information about these views and options, see the reference section for the 
SEM_APIS.CREATE_VIRTUAL_MODEL procedure.

Virtual models use views (described later in this section) and add some metadata
entries, but do not significantly increase system storage requirements.

To create a virtual model, use the SEM_APIS.CREATE_VIRTUAL_MODEL
procedure. To drop (delete) a virtual model, use the 
SEM_APIS.DROP_VIRTUAL_MODEL procedure. A virtual model is dropped
automatically if any of its component models, rulebases, or entailment are dropped. To
replace a virtual model without dropping it, use the 
SEM_APIS.CREATE_VIRTUAL_MODEL procedure with the REPLACE=T option.
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Replacing a virtual model allows you to redefine it while maintaining any access
privileges.

To query a virtual model, specify the virtual model name in the models parameter of
the SEM_MATCH table function, as shown in Example 1-4.

For information about the SEM_MATCH table function, see Using the SEM_MATCH
Table Function to Query Semantic Data, which includes information using certain
attributes when querying a virtual model.

When you create a virtual model, an entry is created for it in the
MDSYS.SEM_MODEL$ view, which is described in Table 1-1 in Metadata for Models.
However, the values in several of the columns are different for virtual models as
opposed to semantic models, as explained in Table 1-8.

Table 1-8    MDSYS.SEM_MODEL$ View Column Explanations for Virtual Models

Column Name Data Type Description

OWNER VARCHAR2(30) Schema of the owner of the virtual model

MODEL_ID NUMBER Unique model ID number, automatically generated. Will
be a negative number, to indicate that this is a virtual
model.

MODEL_NAME VARCHAR2(25) Name of the virtual model

TABLE_NAME VARCHAR2(30) Null for a virtual model

COLUMN_NAME VARCHAR2(30) Null for a virtual model

MODEL_TABLES
PACE_NAME

VARCHAR2(30) Null for a virtual model

Information about all virtual models is maintained in the
MDSYS.SEM_VMODEL_INFO view, which has the columns shown in Table 1-9 and
one row for each virtual model.

Table 1-9    MDSYS.SEM_VMODEL_INFO View Columns

Column Name Data Type Description

OWNER VARCHAR2(30) Owner of the virtual model

VIRTUAL_MODE
L_NAME

VARCHAR2(25) Name of the virtual model

UNIQUE_VIEW_
NAME

VARCHAR2(30) Name of the view that contains unique triples in the
virtual model, or null if the view was not created

DUPLICATE_VIE
W_NAME

VARCHAR2(30) Name of the view that contains duplicate triples (if any)
in the virtual model
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Table 1-9    (Cont.) MDSYS.SEM_VMODEL_INFO View Columns

Column Name Data Type Description

STATUS VARCHAR2(30) Contains VALID if the associated entailment is valid,
INVALID if the entailment is not valid, INCOMPLETE if
the entailment is incomplete (similar to INVALID but
requiring less time to re-create), INPROGRESS if the
entailment is being created, FAILED if a system failure
occurred during the creation of the entailment, or
NORIDX if no entailment is associated with the virtual
model.

In the case of multiple entailments, the lowest status
among all of the component entailments is used as the
virtual model's status (INVALID < INCOMPLETE <
VALID).

MODEL_COUNT NUMBER Number of models in the virtual model

RULEBASE_COU
NT

NUMBER Number of rulebases used for the virtual model

RULES_INDEX_
COUNT

NUMBER Number of entailments in the virtual model

Information about all objects (models, rulebases, and entailments) related to virtual
models is maintained in the MDSYS.SEM_VMODEL_DATASETS view. This view has
the columns shown in Table 1-10 and one row for each unique combination of values
of all the columns.

Table 1-10    MDSYS.SEM_VMODEL_DATASETS View Columns

Column Name Data Type Description

VIRTUAL_MODE
L_NAME

VARCHAR2(25) Name of the virtual model

DATA_TYPE VARCHAR2(8) Type of object included in the virtual model. Examples:
MODEL for a semantic model, RULEBASE for a rulebase,
or RULEIDX for an entailment

DATA_NAME VARCHAR2(25) Name of the object of the type in the DATA_TYPE
column

Example 1-4    Querying a Virtual Model

SELECT COUNT(protein)
  FROM TABLE (SEM_MATCH (
    '{?protein rdf:type :Protein .
      ?protein :citation ?citation . 
      ?citation :author "Bairoch A."}',
    SEM_MODELS('UNIPROT_VM'), 
    NULL, 
    SEM_ALIASES(SEM_ALIAS('', 'http://purl.uniprot.org/core/')),
    NULL, 
    NULL, 
    'ALLOW_DUP=T'));
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1.3.9 Named Graphs
RDF Semantic Graph supports the use of named graphs, which are described in the
"RDF Dataset" section of the W3C SPARQL Query Language for RDF
recommendation (http://www.w3.org/TR/rdf-sparql-query/#rdfDataset).

This support is provided by extending an RDF triple consisting of the traditional
subject, predicate, and object, to include an additional component to represent a
graph name. The extended RDF triple, despite having four components, will continue
to be referred to as an RDF triple in this document. In addition, the following terms are
sometimes used:

• N-Triple is a format that does not allow extended triples. Thus, n-triples can
include only triples with three components.

• N-Quad is a format that allows both "regular" triples (three components) and
extended triples (four components, including the graph name). For more
information, see http://www.w3.org/TR/2013/NOTE-n-quads-20130409/.

To load a file containing extended triples (possibly mixed with regular triples) into
an Oracle database, the input file must be in N-Quad format.

The graph name component of an RDF triple must either be null or a URI. If it is null,
the RDF triple is said to belong to a default graph; otherwise it is said to belong to a
named graph whose name is designated by the URI.

Additionally, to support named graphs in SDO_RDF_TRIPLE_S object type (described
in Semantic Data Types_ Constructors_ and Methods), a new syntax is provided for
specifying a model-graph, that is, a combination of model and graph (if any) together,
and the RDF_M_ID attribute holds the identifier for a model-graph: a combination of
model ID and value ID for the graph (if any). The name of a model-graph is specified
as model_name, and if a graph is present, followed by the colon (:) separator
character and the graph name (which must be a URI and enclosed within angle
brackets < >).

For example, in a medical data set the named graph component for each RDF triple
might be a URI based on patient identifier, so there could be as many named graphs
as there are unique patients, with each named graph consisting of data for a specific
patient.

For information about performing specific operations with named graphs, see the
following:

• Using constructors and methods: Semantic Data Types_ Constructors_ and
Methods

• Loading: Loading N-Quad Format Data into a Staging Table Using an External
Table and Loading Data into Named Graphs Using INSERT Statements

• Querying: GRAPH Keyword Support and Expressions in the SELECT Clause

• Inferencing: Using Named Graph Based Inferencing (Global and Local)

• Data Formats Related to Named Graph Support

1.3.9.1 Data Formats Related to Named Graph Support
TriG and N-QUADS are two popular data formats that provide graph names (or
context) to triple data. (As of November 2011, neither format was a standard.) The
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graph names (context) can be used in a variety of different ways. Typical usage
includes, but is not limited to, the grouping of triples for ease of management, localized
query, localized inference, and provenance.

Example 1-5    RDF Data Encoded in TriG Format

Example 1-5 shows an RDF data set encoded in TriG format. It contains a default
graph and a named graph.

@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .
 
# Default graph
{
  <http://my.com/John> dc:publisher <http://publisher/Xyz> .
}
 
# A named graph
<http://my.com/John> {
  <http://my.com/John> foaf:name "John Doe" .
}

When loading the TriG file from Example 1-5 into a DatasetGraphOracleSem object (for
example, using Example 6-12 in Bulk Loading Using RDF Semantic Graph Support for
Apache Jena, but replacing the constant "N-QUADS" with "TRIG"), the triples in the
default graph will be loaded into Oracle Database as triples with null graph names, and
the triples in the named graphs will be loaded into Oracle Database with the
designated graph names.

Example 1-6    N-QUADS Format Representation

N-QUADS format is a simple extension of the existing N-TRIPLES format by adding an
optional fourth column (graph name or context). Example 1-6 shows the N-QUADS
format representation of the TriG file from Example 1-5.

<http://my.com/John> <http://purl.org/dc/elements/1.1/publisher> <http://publisher/
Xyz> .
<http://my.com/John> <http://xmlns.com/foaf/0.1/name> "John Doe" <http://my.com/John>

When loading an N-QUADS file into a DatasetGraphOracleSem object (see 
Example 6-12), lines without the fourth column will be loaded into Oracle Database as
triples with null graph names, and lines with a fourth column will be loaded into Oracle
Database with the designated graph names.

1.3.10 Semantic Data Security Considerations
The following database security considerations apply to the use of semantic data:

• When a model or entailment is created, the owner gets the SELECT privilege with
the GRANT option on the associated view. Users that have the SELECT privilege
on these views can perform SEM_MATCH queries against the associated model
or entailment.

• When a rulebase is created, the owner gets the SELECT, INSERT, UPDATE, and
DELETE privileges on the rulebase, with the GRANT option. Users that have the
SELECT privilege on a rulebase can create an entailment that includes the
rulebase. The INSERT, UPDATE, and DELETE privileges control which users can
modify the rulebase and how they can modify it.
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• To perform data manipulation language (DML) operations on a model, a user must
have DML privileges for the corresponding base table.

• The creator of the base table corresponding to a model can grant privileges to
other users.

• To perform data manipulation language (DML) operations on a rulebase, a user
must have the appropriate privileges on the corresponding database view.

• The creator of a model can grant SELECT privileges on the corresponding
database view to other users.

• A user can query only those models for which that user has SELECT privileges to
the corresponding database views.

• Only the creator of a model or a rulebase can drop it.

1.4 Semantic Metadata Tables and Views
Oracle Database maintains several tables and views in the MDSYS schema to hold
metadata related to semantic data.

Some of these tables and views are created by the 
SEM_APIS.CREATE_SEM_NETWORK procedure, as explained in Quick Start for
Using Semantic Data, and some are created only as needed.Table 1-11 lists the
tables and views in alphabetical order. (In addition, several tables and views are
created for Oracle internal use, and these are accessible only by users with DBA
privileges.)

Table 1-11    Semantic Metadata Tables and Views

Name Contains Information
About

Described In

RDF_CRS_URI$ Availavle EPSG spatial
reference system URIs

Spatial Support

RDF_VALUE$ Subjects, properties, and
objects used to represent
statements

Statements

RDFOLS_SECU
RE_RESOURCE

Resources secured with
Oracle Label Security (OLS)
policies and the sensitivity
labels associated with these
resources

RDFOLS_SECURE_RESOURCE View

SEM_DTYPE_IN
DEX_INFO

All data type indexes in the
network

Using Data Type Indexes

SEM_MODEL$ All models defined in the
database

Metadata for Models

SEM_NETWOR
K_INDEX_INFO$

Semantic network indexes MDSYS.SEM_NETWORK_INDEX_INFO
View

SEM_RULEBAS
E_INFO

Rulebases Inferencing: Rules and Rulebases

SEM_RULES_IN
DEX_DATASET
S

Database objects used in
entailments

Entailments (Rules Indexes)
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Table 1-11    (Cont.) Semantic Metadata Tables and Views

Name Contains Information
About

Described In

SEM_RULES_IN
DEX_INFO

Entailments (rules indexes) Entailments (Rules Indexes)

SEM_VMODEL_I
NFO

Virtual models Virtual Models

SEM_VMODEL_
DATASETS

Database objects used in
virtual models

Virtual Models

SEMCL_entailm
ent-name

owl:sameAs clique members
and canonical
representatives

Optimizing owl:sameAs Inference

SEMI_entailment
-name

Triples in the specified
entailment

Entailments (Rules Indexes)

SEMM_model-
name

Triples in the specified model Metadata for Models

SEMR_rulebase-
name

Rules in the specified
rulebase

Inferencing: Rules and Rulebases

SEMU_virtual-
model-name

Unique triples in the virtual
model

Virtual Models

SEMV_virtual-
model-name

Triples in the virtual model Virtual Models

1.5 Semantic Data Types, Constructors, and Methods
The SDO_RDF_TRIPLE object type represents semantic data in triple format, and the
SDO_RDF_TRIPLE_S object type (the _S for storage) stores persistent semantic data
in the database.

The SDO_RDF_TRIPLE_S type has references to the data, because the actual
semantic data is stored only in the central RDF schema. This type has methods to
retrieve the entire triple or part of the triple.

Note:

Blank nodes are always reused within an RDF model and cannot be reused
across models

The SDO_RDF_TRIPLE type is used to display triples, whereas the
SDO_RDF_TRIPLE_S type is used to store the triples in database tables.

The SDO_RDF_TRIPLE object type has the following attributes:

SDO_RDF_TRIPLE (
  subject VARCHAR2(4000), 
  property VARCHAR2(4000), 
  object VARCHAR2(10000))
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The SDO_RDF_TRIPLE_S object type has the following attributes:

SDO_RDF_TRIPLE_S (
  RDF_C_ID NUMBER, -- Canonical object value ID
  RDF_M_ID NUMBER, -- Model (or Model-Graph) ID 
  RDF_S_ID NUMBER, -- Subject value ID
  RDF_P_ID NUMBER, -- Property value ID
  RDF_O_ID NUMBER) -- Object value ID

The SDO_RDF_TRIPLE_S type has the following methods that retrieve the name of
the RDF model (or model-graph), a triple, or a part (subject, property, or object) of a
triple:

GET_MODEL() RETURNS VARCHAR2
GET_TRIPLE() RETURNS SDO_RDF_TRIPLE
GET_SUBJECT() RETURNS VARCHAR2
GET_PROPERTY() RETURNS VARCHAR2
GET_OBJECT() RETURNS CLOB

Example 1-7 shows some of the SDO_RDF_TRIPLE_S methods.

Example 1-7    SDO_RDF_TRIPLE_S Methods

-- Find all articles that reference Article2.
SELECT a.triple.GET_SUBJECT() AS subject
    FROM articles_rdf_data a
    WHERE a.triple.GET_PROPERTY() = '<http://purl.org/dc/terms/references>' AND
    TO_CHAR(a.triple.GET_OBJECT()) = '<http://nature.example.com/Article2>';

SUBJECT                                                                         
--------------------------------------------------------------------------------
<http://nature.example.com/Article1>                                            

-- Find all triples with Article1 as subject.
SELECT a.triple.GET_TRIPLE() AS triple
    FROM articles_rdf_data a
    WHERE a.triple.GET_SUBJECT() = '<http://nature.example.com/Article1>';

TRIPLE(SUBJECT, PROPERTY, OBJECT)                                               
--------------------------------------------------------------------------------
SDO_RDF_TRIPLE('<http://nature.example.com/Article1>', '<http://purl.org/dc/elem
ents/1.1/title>', '"All about XYZ"')                                            
                                                                                
SDO_RDF_TRIPLE('<http://nature.example.com/Article1>', '<http://purl.org/dc/elem
ents/1.1/creator>', '"Jane Smith"')                                             
                                                                                
SDO_RDF_TRIPLE('<http://nature.example.com/Article1>', '<http://purl.org/dc/term
s/references>', '<http://nature.example.com/Article2>')                         
                                                                                
SDO_RDF_TRIPLE('<http://nature.example.com/Article1>', '<http://purl.org/dc/term
s/references>', '<http://nature.example.com/Article3>')                         

TRIPLE(SUBJECT, PROPERTY, OBJECT)                                               
--------------------------------------------------------------------------------
                                                                                
-- Find all objects where the subject is Article1.
SELECT a.triple.GET_OBJECT() AS object
    FROM articles_rdf_data a
    WHERE a.triple.GET_SUBJECT() = '<http://nature.example.com/Article1>';

OBJECT                                                                          
--------------------------------------------------------------------------------
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"All about XYZ"                                                                 
"Jane Smith"                                                                    
<http://nature.example.com/Article2>                                            
<http://nature.example.com/Article3>                                            

-- Find all triples where Jane Smith is the object.
SELECT a.triple.GET_TRIPLE() AS triple
    FROM articles_rdf_data a
    WHERE TO_CHAR(a.triple.GET_OBJECT()) = '"Jane Smith"';

TRIPLE(SUBJECT, PROPERTY, OBJECT)                                               
--------------------------------------------------------------------------------
SDO_RDF_TRIPLE('<http://nature.example.com/Article1>', '<http://purl.org/dc/elem
ents/1.1/creator>', '"Jane Smith"')  

• Constructors for Inserting Triples

1.5.1 Constructors for Inserting Triples
The following constructor formats are available for inserting triples into a model table.
The only difference is that in the second format the data type for the object is CLOB, to
accommodate very long literals.

SDO_RDF_TRIPLE_S (
  model_name VARCHAR2, -- Model name
  subject    VARCHAR2, -- Subject
  property   VARCHAR2, -- Property
  object     VARCHAR2) -- Object
  RETURN     SELF;

SDO_RDF_TRIPLE_S (
  model_name VARCHAR2, -- Model name
  subject    VARCHAR2, -- Subject
  property   VARCHAR2, -- Property
  object     CLOB) -- Object
  RETURN SELF;

GET_OBJ_VALUE() RETURN VARCHAR2;

Example 1-8 uses the first constructor format to insert several triples.

Example 1-8    SDO_RDF_TRIPLE_S Constructor to Insert Triples

INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
    '<http://purl.org/dc/elements/1.1/creator>',
    '"Jane Smith"'));

INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
    '<http://nature.example.com/Article102>',
    '<http://purl.org/dc/elements/1.1/creator>',
    '_:b1'));
 
INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
    '_:b2',
    '<http://purl.org/dc/elements/1.1/creator>',
    '_:b1'));
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1.6 Using the SEM_MATCH Table Function to Query
Semantic Data

To query semantic data, use the SEM_MATCH table function.

This function has the following attributes:

SEM_MATCH(
  query        VARCHAR2,
  models       SEM_MODELS,
  rulebases    SEM_RULEBASES,
  aliases      SEM_ALIASES,
  filter       VARCHAR2,
  index_status VARCHAR2,
  options      VARCHAR2,
  graphs       SEM_GRAPHS,
  named_graphs SEM_GRAPHS
 ) RETURN ANYDATASET;

The query attribute is required. The other attributes are optional (that is, each can be a
null value).

The query attribute is a string literal (or concatenation of string literals) with one or
more triple patterns, usually containing variables. (The query attribute cannot be a
bind variable or an expression involving a bind variable.) A triple pattern is a triple of
atoms followed by a period. Each atom can be a variable (for example, ?x), a qualified
name (for example, rdf:type) that is expanded based on the default namespaces and
the value of the aliases attribute, or a full URI (for example, <http://
www.example.org/family/Male>). In addition, the third atom can be a numeric literal
(for example, 3.14), a plain literal (for example, "Herman"), a language-tagged plain
literal (for example, "Herman"@en), or a typed literal (for example, "123"^^xsd:int).

For example, the following query attribute specifies three triple patterns to find
grandfathers (that is, grandparents who are also male) and the height of each of their
grandchildren:

'{ ?x :grandParentOf ?y . ?x rdf:type :Male . ?y :height ?h }'

The models attribute identifies the model or models to use. Its data type is
SEM_MODELS, which has the following definition: TABLE OF VARCHAR2(25). If you are
querying a virtual model, specify only the name of the virtual model and no other
models. (Virtual models are explained in Virtual Models.)

The rulebases attribute identifies one or more rulebases whose rules are to be applied
to the query. Its data type is SDO_RDF_RULEBASES, which has the following
definition: TABLE OF VARCHAR2(25). If you are querying a virtual model, this attribute
must be null.

The aliases attribute identifies one or more namespaces, in addition to the default
namespaces, to be used for expansion of qualified names in the query pattern. Its data
type is SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS, where
each SEM_ALIAS element identifies a namespace ID and namespace value. The
SEM_ALIAS data type has the following definition: (namespace_id VARCHAR2(30),
namespace_val VARCHAR2(4000))
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The following default namespaces (namespace_id and namespace_val attributes) are
used by the SEM_MATCH table function and the SEM_CONTAINS and
SEM_RELATED operators:

('ogc', 'http://www.opengis.net/ont/geosparql#')
('ogcf', 'http://www.opengis.net/def/function/geosparql/')
('ogcgml', 'http://www.opengis.net/ont/gml#')
('ogcsf', 'http://www.opengis.net/ont/sf#')
('orardf', 'http://xmlns.oracle.com/rdf/')
('orageo', 'http://xmlns.oracle.com/rdf/geo/')
('owl',    'http://www.w3.org/2002/07/owl#')
('rdf',    'http://www.w3.org/1999/02/22-rdf-syntax-ns#')
('rdfs',   'http://www.w3.org/2000/01/rdf-schema#')
('xsd',    'http://www.w3.org/2001/XMLSchema#')

You can override any of these defaults by specifying the namespace_id value and a
different namespace_val value in the aliases attribute.

The filter attribute identifies any additional selection criteria. If this attribute is not
null, it should be a string in the form of a WHERE clause without the WHERE keyword. For
example: '(h >= ''6'')' to limit the result to cases where the height of the
grandfather's grandchild is 6 or greater (using the example of triple patterns earlier in
this section).

Note:

Instead of using the filter attribute, you are encouraged to use the FILTER
keyword inside your query pattern whenever possible (as explained in Graph
Patterns: Support for Curly Brace Syntax_ and OPTIONAL_ FILTER_
UNION_ and GRAPH Keywords). Using the FILTER keyword is likely to give
better performance because of internal optimizations. The filter argument,
however, can be useful if you require SQL constructs that cannot be
expressed with the FILTER keyword.

The index_status attribute lets you query semantic data even when the relevant
entailment does not have a valid status. (If you are querying a virtual model, this
attribute refers to the entailment associated with the virtual model.) If this attribute is
null, the query returns an error if the entailment does not have a valid status. If this
attribute is not null, it must be the string INCOMPLETE or INVALID. For an explanation of
query behavior with different index_status values, see Performing Queries with
Incomplete or Invalid Entailments.

The options attribute identifies options that can affect the results of queries. Options
are expressed as keyword-value pairs. The following options are supported:

• ALL_AJ_HASH, ALL_AJ_MERGE, and ALL_BGP_NL are global query optimizer hints that
specify that all anti joins for NOT EXISTS and MINUS operations should use the
specified join type.

• ALL_BGP_HASH and ALL_BGP_NL are global query optimizer hints that specify that all
inter-BGP joins (for example. the join between the root BGP and an OPTIONAL
BGP) should use the specified join type. (BGP stands for basic graph pattern.
From the W3C SPARQL Query Language for RDF Recommendation: "SPARQL
graph pattern matching is defined in terms of combining the results from matching
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basic graph patterns. A sequence of triple patterns interrupted by a filter comprises
a single basic graph pattern. Any graph pattern terminates a basic graph pattern."

The BGP_JOIN(USE_NL) and BGP_JOIN(USE_HASH) HINT0 query optimizer hints can
be used to control the join type with finer granularity.

Example 1-14 shows the ALL_BGP_HASH option used in a SEM_MATCH query.

• ALL_LINK_HASH and ALL_LINK_NL are global query optimizer hints that specify the
join type for all RDF_LINK$ joins (that is, all joins between triple patterns within a
BGP). ALL_LINK_HASH and ALL_LINK_NL can also be used within a HINT0 query
optimizer hint for finer granularity.

• ALL_MAX_PP_DEPTH(n) is a global query optimizer hint that sets the maximum
depth to use when evaluating * and + property path operators. The default value is
10. The MAX_PP_DEPTH(n) HINT0 hint can be used to specify maximum depth with
finer granularity.

• ALL_ORDERED is a global query optimizer hint that specifies that the triple patterns in
each BGP in the query should be evaluated in order.

Example 1-14 shows the ALL_ORDERED option used in a SEM_MATCH query.

• ALL_USE_PP_HASH and ALL_USE_PP_NL are global query optimizer hints that specify
the join type to use when evaluating property path expressions. The USE_PP_HASH
and USE_PP_NL HINT0 hints can be used for specifying join type with finer
granularity.

• ALLOW_DUP=T generates an underlying SQL statement that performs a "union all"
instead of a union of the semantic models and inferred data (if applicable). This
option may introduce more rows (duplicate triples) in the result set, and you may
need to adjust the application logic accordingly. If you do not specify this option,
duplicate triples are automatically removed across all the models and inferred data
to maintain the set semantics of merged RDF graphs; however, removing
duplicate triples increases query processing time. In general, specifying
'ALLOW_DUP=T' improves performance significantly when multiple semantic models
are involved in a SEM_MATCH query.

If you are querying a virtual model, specifying ALLOW_DUP=T causes the
SEMV_vm_name view to be queried; otherwise, the SEMU_vm_name view is
queried.

• ALLOW_PP_DUP=T allows duplicate results for + and * property path queries.
Allowing duplicate results may return the first result rows faster.

• AS_OF [SCN, <SCN_VALUE>] , where <SCN_VALUE> is a valid system change
number, indicates that Flashback Query should be used to query the state of the
semantic network as of the specified SCN.

• AS_OF [TIMESTAMP, <TIMESTAMP_VALUE>] , where <TIMESTAMP_VALUE> is a
valid timestamp string with format 'YYYY/MM/DD HH24:MI:SS.FF', indicates that
Flashback Query should be used to query the state of the semantic network as of
the specified timestamp.

• CLOB_AGG_SUPPORT=T enables support for CLOB values for the following
aggregates: MIN, MAX, GROUP_CONCAT, SAMPLE. Note that enabling CLOB
support incurs a significant performance penalty.

• CLOB_EXP_SUPPORT=T enables support for CLOB values for some built-in SPARQL
functions. Note that enabling CLOB support incurs a significant performance
penalty.
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• CONSTRUCT_STRICT=T eliminates invalid RDF triples from the result of SPARQL
CONSTRUCT or SPARQL DESCRIBE syntax queries. RDF triples with literals in
the subject position or literals or blank nodes in the predicate position are
considered invalid.

• CONSTRUCT_UNIQUE=T eliminates duplicate RDF triples from the result of SPARQL
CONSTRUCT or SPARQL DESCRIBE syntax queries.

• DISABLE_NULL_EXPR_JOIN specifies that the query compiler should assume that all
SELECT expressions produce non-null output.

• DO_UNESCAPE=T causes characters in the following return columns to be unescaped
according to the W3C N-Triples specification (http://www.w3.org/TR/rdf-
testcases/#ntriples): var, var$_PREFIX, var$_SUFFIX, var$RDFCLOB,
var$RDFLTYP, var$RDFLANG, and var$RDFTERM.

See also the reference information for SEM_APIS.ESCAPE_CLOB_TERM, 
SEM_APIS.ESCAPE_CLOB_VALUE, SEM_APIS.ESCAPE_RDF_TERM, 
SEM_APIS.ESCAPE_RDF_VALUE, SEM_APIS.UNESCAPE_CLOB_TERM, 
SEM_APIS.UNESCAPE_CLOB_VALUE, SEM_APIS.UNESCAPE_RDF_TERM,
and SEM_APIS.UNESCAPE_RDF_VALUE.

• FINAL_VALUE_HASH and FINAL_VALUE_NL are global query optimizer hints that
specify the join method that should be used to obtain the lexical values for any
query variables that are not used in a FILTER clause.

• GRAPH_MATCH_UNNAMED=T allows unnamed triples (null G_ID) to be matched inside
GRAPH clauses. That is, two triples will satisfy the graph join condition if their
graphs are equal or if one or both of the graphs are null. This option may be useful
when your dataset includes unnamed TBOX triples or unnamed entailed triples.

• HINT0={<hint-string>} (pronounced and written "hint" and the number zero)
specifies one or more keywords with hints to influence the execution plan and
results of queries. Conceptually, a graph pattern with n triple patterns and referring
to m distinct variables results in an (n+m)-way join: n-way self-join of the target
RDF model or models and optionally the corresponding entailment, and then m
joins with RDF_VALUE$ for looking up the values for the m variables. A hint
specification affects the join order and join type used for the query execution.

The hint specification, <hint-string>, uses keywords, some of which have
parameters consisting of a sequence or set of aliases, or references, for individual
triple patterns and variables used in the query. Aliases for triple patterns are of the
form ti where i refers to the 0-based ordinal numbers of triple patterns in the query.
For example, the alias for the first triple pattern in a query is t0, the alias for the
second one is t1, and so on. Aliases for the variables used in a query are simply
the names of those variables. Thus, ?x will be used in the hint specification as the
alias for a variable ?x used in the graph pattern.

Hints used for influencing query execution plans include LEADING(<sequence of
aliases>), USE_NL(<set of aliases>), USE_HASH(<set of aliases>), and
INDEX(<alias> <index_name>). These hints have the same format and basic
meaning as hints in SQL statements, which are explained in Oracle Database SQL
Language Reference.

Example 1-10 shows the HINT0 option used in a SEM_MATCH query.

• HTTP_METHOD=POST_PAR indicates that the HTTP POST method with URL-encoded
parameters pass should be used for the SERVICE request. The default option for
requests is the HTTP GET method. For more information about SPARQL protocol,
see http://www.w3.org/TR/2013/REC-sparql11-protocol-20130321/#protocol.
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• INF_ONLY=T queries only the entailed graph for the specified models and
rulebases.

• OVERLOADED_NL=T specifies that a procedural nested loop execution should be
used to join with an overloaded SERVICE clause.

• PLUS_RDFT=T can be used with SPARQL SELECT syntax (see Expressions in the
SELECT Clause) to additionally return a var$RDFTERM CLOB column for each
projected query variable. The value for this column is equivalent to the result of 
SEM_APIS.COMPOSE_RDF_TERM(var, var$RDFVTYP, var$RDFLTYP,
var$RDFLANG, var$RDFCLOB). When using this option, the return columns for
each variable var will be var, var$RDFVID, var$_PREFIX, var$_SUFFIX,
var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, var$RDFLANG, and
var$RDFTERM.

• PLUS_RDFT=VC can be used with SPARQL SELECT syntax (see Expressions in the
SELECT Clause) to additionally return a var$RDFTERM VARCHAR2(4000)
column for each projected query variable. The value for this column is equivalent
to the result of SEM_APIS.COMPOSE_RDF_TERM(var, var$RDFVTYP,
var$RDFLTYP, var$RDFLANG). When using this option, the return columns for
each variable var will be var, var$RDFVID, var$_PREFIX, var$_SUFFIX,
var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, var$RDFLANG, and
var$RDFTERM.

• PROJ_EXACT_VALUES=T disables canonicalization of values returned from functions
and of constant values used in value assignment statements. Such values are
canonicalized by default.

• SERVICE_CLOB=F sets the column values of var$RDFCLOB to null instead of saving
values when calling the service. If CLOB data is not needed in your application,
performance can be improved by using this option to skip CLOB processing.

• SERVICE_ESCAPE=F disables character escaping for RDF literal values returned by
SPARQL SERVICE calls. RDF literal values are escaped by default. If character
escaping is not relevant for your application, performance can be improved by
disabling character escaping.

• SERVICE_JPDWN=T is a query optimizer hint for using nested loop join in SPARQL
SERVICE. Example 1-70 shows the SERVICE_JPDWN=T option used in a
SEM_MATCH query.

• SERVICE_PROXY=<proxy-string> sets a proxy address to be used when
performing http connections. The given proxy-string will be used in SERVICE
queries. Example 1-73 shows a SEM_MATCH query including a proxy address.

• STRICT_AGG_CARD=T uses SPARQL semantics (one null row) instead of SQL
semantics (zero rows) for aggregate queries with graph patterns that fail to match.
This option incurs a slight performance penalty.

• STRICT_DEFAULT=T restricts the default graph to unnamed triples when no dataset
information is specified.

The graphs attribute specifies the set of named graphs from which to construct the
default graph for a SEM_MACH query. Its data type is SEM_GRAPHS, which has the
following definition: TABLE OF VARCHAR2(4000). The default value for this attribute is
NULL. When graphs is NULL, the "union all" of all graphs in the set of query models is
used as the default graph.

The named_graphs attribute specifies the set of named graphs that can be matched by
a GRAPH clause. Its data type is SEM_GRAPHS, which has the following definition:
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TABLE OF VARCHAR2(4000). The default value for this attribute is NULL. When
named_graphs is NULL, all named graphs in the set of query models can be matched
by a GRAPH clause.

The SEM_MATCH table function returns an object of type ANYDATASET, with
elements that depend on the input variables. In the following explanations, var
represents the name of a variable used in the query. For each variable var, the result
elements have the following attributes: var, var$RDFVID, var$_PREFIX,
var$_SUFFIX, var$RDFVTYP, var$RDFCLOB, var$RDFLTYP, and var$RDFLANG.

In such cases, var has the lexical value bound to the variable, var$RDFVID has the
VALUE_ID of the value bound to the variable, var$_PREFIX and var$_SUFFIX are the
prefix and suffix of the value bound to the variable, var$RDFVTYP indicates the type
of value bound to the variable (URI, LIT [literal], or BLN [blank node]), var$RDFCLOB
has the lexical value bound to the variable if the value is a long literal, var$RDFLTYP
indicates the type of literal bound if a literal is bound, and var$RDFLANG has the
language tag of the bound literal if a literal with language tag is bound. var$RDFCLOB
is of type CLOB, while all other attributes are of type VARCHAR2.

For a literal value or a blank node, its prefix is the value itself and its suffix is null. For a
URI value, its prefix is the left portion of the value up to and including the rightmost
occurrence of any of the three characters / (slash), # (pound), or : (colon), and its suffix
is the remaining portion of the value to the right. For example, the prefix and suffix for
the URI value http://www.example.org/family/grandParentOf are http://
www.example.org/family/ and grandParentOf, respectively.

Along with columns for variable values, a SEM_MATCH query that uses SPARQL
SELECT syntax returns one additional NUMBER column, SEM$ROWNUM, which can
be used to ensure the correct result ordering for queries that involve a SPARQL
ORDER BY clause.

A SEM_MATCH query that uses SPARQL ASK syntax returns the columns ASK,
ASK$RDFVID, ASK$_PREFIX, ASK$_SUFFIX, ASK$RDFVTYP, ASK$RDFCLOB,
ASK$RDFLTYP, ASK$RDFLANG, and SEM$ROWNUM. This is equivalent to a
SPARQL SELECT syntax query that projects a single ?ask variable.

A SEM_MATCH query that uses SPARQL CONSTRUCT or SPARQL DESCRIBE
syntax returns columns that contain RDF triple data rather than query result bindings.
Such queries return values for subject, predicate and object components. See Graph
Patterns: Support for SPARQL CONSTRUCT Syntaxfor details.

To use the SEM_RELATED operator to query an OWL ontology, see Using Semantic
Operators to Query Relational Data.

When you are querying multiple models or querying one or more models and the
corresponding entailment, consider using virtual models (explained in Virtual Models)
because of the potential performance benefits.

Example 1-9    SEM_MATCH Table Function

Example 1-9 selects all grandfathers (grandparents who are male) and their
grandchildren from the family model, using inferencing from both the RDFS and
family_rb rulebases. (This example is an excerpt from Example 1-110 in Example:
Family Information.)

SELECT x grandfather, y grandchild
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-28



    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

Example 1-10    HINT0 Option with SEM_MATCH Table Function

Example 1-10 is functionally the same as Example 1-9, but it adds the HINT0 option.

SELECT x grandfather, y grandchild
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_Aliases(SEM_ALIAS('','http://www.example.org/family/')),
    null,
    null,
    'HINT0={LEADING(t0 t1) USE_NL(?x ?y) GET_CANON_VALUE(?x ?y)}'));

Example 1-11    SEM_MATCH Table Function

Example 1-11 uses the Pathway/Genome BioPax ontology to get all chemical
compound types that belong to both Proteins and Complexes:

SELECT t.r 
  FROM TABLE (SEM_MATCH ( 
      '{?r rdfs:subClassOf :Proteins .  
        ?r rdfs:subClassOf :Complexes}', 
      SEM_Models ('BioPax'), 
      SEM_Rulebases ('rdfs'), 
      SEM_Aliases (SEM_ALIAS('', 'http://www.biopax.org/release1/biopax-
release1.owl')),
      NULL)) t;

As shown in Example 1-11, the search pattern for the SEM_MATCH table function is
specified using SPARQL-like syntax where the variable starts with the question-mark
character (?). In this example, the variable ?r must match to the same term, and thus it
must be a subclass of both Proteins and Complexes.

• Performing Queries with Incomplete or Invalid Entailments

• Graph Patterns: Support for Curly Brace Syntax, and OPTIONAL, FILTER,
UNION, and GRAPH Keywords

• Graph Patterns: Support for SPARQL ASK Syntax

• Graph Patterns: Support for SPARQL CONSTRUCT Syntax

• Graph Patterns: Support for SPARQL DESCRIBE Syntax

• Graph Patterns: Support for SPARQL SELECT Syntax

• Graph Patterns: Support for SPARQL 1.1 Constructs

• Graph Patterns: Support for SPARQL 1.1 Federated Query

• Inline Query Optimizer Hints

• Full-Text Search

• Spatial Support

• Flashback Query Support

• Best Practices for Query Performance
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• Special Considerations When Using SEM_MATCH

1.6.1 Performing Queries with Incomplete or Invalid Entailments
You can query semantic data even when the relevant entailment does not have a valid
status if you specify the string value INCOMPLETE or INVALID for the index_status
attribute of the SEM_MATCH table function. (The entailment status is stored in the
STATUS column of the MDSYS.SEM_RULES_INDEX_INFO view, which is described
in Entailments (Rules Indexes). The SEM_MATCH table function is described in Using
the SEM_MATCH Table Function to Query Semantic Data.)

The index_status attribute value affects the query behavior as follows:

• If the entailment has a valid status, the query behavior is not affected by the value
of the index_status attribute.

• If you provide no value or specify a null value for index_status, the query returns
an error if the entailment does not have a valid status.

• If you specify the string INCOMPLETE for the index_status attribute, the query is
performed if the status of the entailment is incomplete or valid.

• If you specify the string INVALID for the index_status attribute, the query is
performed regardless of the actual status of the entailment (invalid, incomplete, or
valid).

However, the following considerations apply if the status of the entailment is
incomplete or invalid:

• If the status is incomplete, the content of an entailment may be approximate,
because some triples that are inferable (due to the recent insertions into the
underlying models) may not actually be present in the entailment, and therefore
results returned by the query may be inaccurate.

• If the status is invalid, the content of the entailment may be approximate, because
some triples that are no longer inferable (due to recent modifications to the
underlying models or rulebases, or both) may still be present in the entailment,
and this may affect the accuracy of the result returned by the query. In addition to
possible presence of triples that are no longer inferable, some inferable rows may
not actually be present in the entailment.

1.6.2 Graph Patterns: Support for Curly Brace Syntax, and
OPTIONAL, FILTER, UNION, and GRAPH Keywords

The SEM_MATCH table function accepts the syntax for the graph pattern in which a
sequence of triple patterns is enclosed within curly braces. The period is usually
required as a separator unless followed by the OPTIONAL, FILTER, UNION, or
GRAPH keyword. With this syntax, you can do any combination of the following:

• Use the OPTIONAL construct to retrieve results even in the case of a partial match

• Use the FILTER construct to specify a filter expression in the graph pattern to
restrict the solutions to a query

• Use the UNION construct to match one of multiple alternative graph patterns

• Use the GRAPH construct (explained in GRAPH Keyword Support) to scope graph
pattern matching to a set of named graphs
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In addition to arithmetic operators (+, -, *, /), Boolean operators and logical connectives
(||, &&, !), and comparison operators (<, >, <=, >=, =, !=), several built-in functions are
available for use in FILTER clauses. Table 1-12 lists built-in functions that you can use
in the FILTER clause. In the Description column of Table 1-12, x, y, and z are
arguments of the appropriate types.

Table 1-12    Built-in Functions Available for FILTER Clause

Function Description

ABS(RDF term) Returns the absolute value of term. If term is a non-numerical
value, returns null.

BNODE(literal) or BNODE() Constructs a blank node that is distinct from all blank nodes in
the dataset of the query, and those created by this function in
other queries. The form with no arguments results in a distinct
blank node in every call. The form with a simple literal results in
distinct blank nodes for different simple literals, and the same
blank node for calls with the same simple literal.

BOUND(variable) BOUND(x) returns true if x is bound (that is, non-null) in the
result, false otherwise.

CEIL(RDF term) Returns the closest number with no fractional part which is not
less than term. If term is a non-numerical value, returns null.

COALESCE(term list) Returns the first element on the argument list that is evaluated
without raising an error. Unbound variables raise an error if
evaluated. Returns null if there are no valid elements in the term
list.

CONCAT(term list) Returns an xsd:String value resulting of the concatenation of
the string values in the term list.

CONTAINS(literal, match) Returns true if the string match is found anywhere in literal.
It returns false otherwise.

DATATYPE(literal) DATATYPE(x) returns a URI representing the datatype of x.

DAY(argument) Returns an integer corresponding to the day part of argument. If
the argument is not a dateTime or date data type, it returns a
null value.

ENCODE_FOR_URI(literal) Returns a string where the reserved characters in literal are
escaped and converted to its percent-encode form.

EXISTS(pattern) Returns true if the pattern matches the query data set, using
the current bindings in the containing group graph pattern and
the current active graph. If there are no matches, it returns
false.

FLOOR(RDF term) Returns the closest number with no fractional part which is less
than term. If term is a non-numerical value, returns null.

HOURS(argument) Returns an integer corresponding to the hours part of argument.
If the argument is not a dateTime or date data type, it returns a
null value.

IF(condition , expression1,
expression2)

Evaluates the condition and obtains the effective Boolean value.
If true, the first expression is evaluated and its value returned. If
false, the second expression is used. If the condition raises an
error, the error is passed as the result of the IF statement.
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Table 1-12    (Cont.) Built-in Functions Available for FILTER Clause

Function Description

IRI(RDF term) Returns an IRI resolving the string representation of argument
term. If there is a base IRI defined in the query, the IR is resolve
against it, and the result must result in an absolute IRI.

isBLANK(RDF term) isBLANK(x) returns true if x is a blank node, false otherwise.

isIRI(RDF term) isIRI(x) returns true if x is an IRI, false otherwise.

isLITERAL(RDF term) isLiteral(x) returns true if x is a literal, false otherwise.

IsNUMERIC(RDF term) Returns true if term is a numeric value, false otherwise.

isURI(RDF term) isURI(x) returns true if x is a URI, false otherwise.

LANG(literal) LANG(x) returns a plain literal serializing the language tag of x.

LANGMATCHES(literal,
literal)

LANGMATCHES(x, y) returns true if language tag x matches
language range y, false otherwise.

LCASE(literal) Returns a string where each character in literal is converted to its
lowercase correspondent.

MD5(literal) Returns the checksum for literal, corresponding to the MD5
hash function.

MINUTES(argument) Returns an integer corresponding to the minutes part of
argument. If the argument is not a dateTime or date data type,
it returns a null value.

MONTH(argument) Returns an integer corresponding to the month part of
argument. If the argument is not a dateTime or date data type,
it returns a null value.

NOT_EXISTS(pattern) Returns true if the pattern does not match the query data set,
using the current bindings in the containing group graph pattern
and the current active graph. It returns false otherwise.

NOW() Returns an xsd:dateTime value corresponding to the current
time at the moment of the query execution.

RAND() Generates a numeric value in the range of [0,1).

REGEX(string, pattern) REGEX(x,y) returns true if x matches the regular expression y,
false otherwise. For more information about the regular
expressions supported, see the Oracle Regular Expression
Support appendix in Oracle Database SQL Language
Reference.

REGEX(string, pattern,
flags)

REGEX(x,y,z) returns true if x matches the regular expression
y using the options given in z, false otherwise. Available
options: 's' – dot all mode ('.' matches any character
including the newline character); 'm' – multiline mode ('^'
matches the beginning of any line and '$' matches the end of
any line); 'i' – case insensitive mode; 'x' – remove
whitespace characters from the regular expression before
matching.

REPLACE(string, pattern,
replacement)

Returns a string where each match of the regular expression
pattern in string is replaced by replacement. For more
information about the regular expressions supported, see the
Oracle Regular Expression Support appendix in Oracle
Database SQL Language Reference.
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Table 1-12    (Cont.) Built-in Functions Available for FILTER Clause

Function Description

REPLACE(string, pattern,
replacement, flags)

Returns a string where each match of the regular expression
pattern in string is replaced by replacement. Available
options: 's' – dot all mode ('.' matches any character
including the newline character); 'm' – multiline mode ('^'
matches the beginning of any line and '$' matches the end of
any line); 'i' – case insensitive mode; 'x' – remove
whitespace characters from the regular expression before
matching.

For more information about the regular expressions supported,
see the Oracle Regular Expression Support appendix in Oracle
Database SQL Language Reference.

ROUND(RDF term) Returns the closest number with no fractional part to term. If two
values exist, the value closer to positive infinite is returned. If
term is a non-numerical value, returns null.

sameTerm(RDF term, RDF
term)

sameTerm(x, y) returns true if x and y are the same RDF term,
false otherwise.

SECONDS(argument) Returns an integer corresponding to the seconds part of
argument. If the argument is not a dateTime or date data type,
it returns a null value.

SHA1(literal) Returns the checksum for literal, corresponding to the SHA1
hash function.

SHA256(literal) Returns the checksum for literal, corresponding to the
SHA256 hash function.

SHA384(literal) Returns the checksum for literal, corresponding to the
SHA384 hash function.

SHA512(literal) Returns the checksum for literal, corresponding to the
SHA512 hash function.

STR(RDF term) STR(x) returns a plain literal of the string representation of x
(that is, what would be stored in the VALUE_NAME column of
MDSYS.RDF_VALUE$ enclosed within double quotes).

STRAFTER(literal, literal) StrAfter (x,y) returns the portion of the string corresponding to
substring that precedes in x the first match of y, and the end of
x. If y cannot be matched inside x, the empty string is returned.

STRBEFORE(literal, literal) StrBefore (x,y) returns the portion of the string corresponding to
the start of x and the first match of y. If y cannot be matched
inside x, the empty string is returned.

STRDT(string, datatype) Construct a literal term composed by the string lexical form
and the datatype passed as arguments. datatype must be a
URI; otherwise, the function returns a null value.

STRENDS(literal, match) Returns true if the string literal ends with the string match. It
returns false otherwise.

STRLANG (string,
languageTag)

Constructs a string composed by the string lexical form and
language tag passed as arguments.

STRLEN(literal) Returns the length of the lexical form of the literal.
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Table 1-12    (Cont.) Built-in Functions Available for FILTER Clause

Function Description

STRSTARTS(literal, match) Returns true if the string literal starts with the string match.
It returns false otherwise.

STRUUID() Returns a string containing the scheme section of a new UUID.

SUBSTR(term, startPos) Returns the string corresponding to the portion of term that
starts at startPos and continues until term ends. The index of
the first character is 1.

SUBSTR(term, startPos,
length)

Returns the string corresponding to the portion of term that starts
at startPos and continues for length characters. The index of
the first character is 1.

term IN (term list) The expression x IN(term list) returns true if x can be found in
any of the values in termlist. Returns false if not found.
Zero-length lists are legal. An error is raised if any of the values
in termlist raises an error and x is not found.

term NOT IN (term list) The expression x NOT IN(term list) returns false if x can be
found in any of the values in term list. Returns true if not found.
Zero-length lists are legal. An error is raised if any of the values
in term list raises an error and x is not found.

TIMEZONE(argument) Returns the time zones section of argument as an
xsd:dayTimeDuration value. If the argument is not a
dateTime or date data type, it returns a null value.

TZ(argument) Returns an integer corresponding to the time zone part of
argument. If the argument is not a dateTime or date data type,
it returns a null value.

UCASE(literal) Returns a string where each character in literal is converted
to its uppercase correspondent.

URI(RDF term) (Synonym for IRI(RDF term)

UUID() Returns a URI with a new Universal Unique Identifier. The value
and the version correspond to the PL/SQL function sys_guid
().

YEAR(argument) Returns an integer corresponding to the year part of argument.

See also the descriptions of the built-in functions defined in the SPARQL query
language specification (http://www.w3.org/TR/sparql11-query/), to better
understand the built-in functions available in SEM_MATCH.

In addition, Oracle provides some proprietary query functions that take advantage of
Oracle Database features and help improve query performance. The following table
lists these Oracle-specific query functions. Note that the built-in namespace prefix
orardf expands to <http://xmlns.oracle.com/rdf/>.
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Table 1-13    Oracle-Specific Query Functions

Function Description

orardf:like(RDF term,
pattern)

Returns true if the given term matches with the given like
pattern, false otherwise. See Full-Text Search for more
information.

orardf:sameCanonTerm(RD
F term, RDF term)

Returns true if two terms represent the same canonical RDF
term, false otherwise. Allows a VALUE_ID-based comparison,
which is more efficient than sameTerm(?x, ?y) or (?x = ?
y).

orardf:textContains(RDF
term, pattern)

Returns true if the given term matches with the given Oracle
Text search pattern, false otherwise. See Full-Text Search for
more information.

orardf:textScore(invocation
id)

Returns the score of an orardf:textContains match. See Full-Text
Search for more information.

(Spatial built-in functions) (See Spatial Support.)

The following XML Schema casting functions are available for use in FILTER clauses.
These functions take an RDF term as input and return a new RDF term of the desired
type or raise an error if the term cannot be cast to the desired type. Details of type
casting can be found in Section 17.1 of the XPath query specification: http://
www.w3.org/TR/xpath-functions/#casting-from-primitive-to-primitive. These
functions use the XML Namespace xsd : http://www.w3.org/2001/XMLSchema#.

• xsd:string (RDF term)

• xsd:dateTime (RDF term)

• xsd:boolean (RDF term)

• xsd:integer (RDF term)

• xsd:float (RDF term)

• xsd:double (RDF term)

• xsd:decimal (RDF term)

If you use the syntax with curly braces to express a graph pattern:

• The query always returns canonical lexical forms for the matching values for the
variables.

• Any hints specified in the options argument using HINT0={<hint-string>}
(explained in Using the SEM_MATCH Table Function to Query Semantic Data),
should be constructed only on the basis of the portion of the graph pattern inside
the root BGP. For example, the only valid aliases for use in a hint specification for
the query in Example 1-13 are t0, t1, ?x, and ?y. Inline query optimizer hints can
be used to influence other parts of the graph pattern (see Inline Query Optimizer
Hints).

• The FILTER construct is not supported for variables bound to long literals.

Example 1-12    Curly Brace Syntax

Example 1-12 uses the syntax with curly braces and a period to express a graph
pattern in the SEM_MATCH table function.
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SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

Example 1-13    Curly Brace Syntax and OPTIONAL Construct

Example 1-13 uses the OPTIONAL construct to modify Example 1-12, so that it also
returns, for each grandfather, the names of the games that he plays or null if he does
not play any games.

SELECT x, y, game
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . 
      OPTIONAL{?x :plays ?game} 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,
    null,
    'HINT0={LEADING(t0 t1) USE_NL(?x ?y)}'));

Example 1-14    Curly Brace Syntax and Multi-Pattern OPTIONAL Construct

When multiple triple patterns are present in an OPTIONAL graph pattern, values for
optional variables are returned only if a match is found for each triple pattern in the
OPTIONAL graph pattern. Example 1-14 modifies Example 1-13 so that it returns, for
each grandfather, the names of the games both he and his grandchildren play, or null
if he and his grandchildren have no such games in common. It also uses global query
optimizer hints to specify that triple patterns should be evaluated in order within each
BGP and that a hash join should be used to join the root BGP with the OPTIONAL
BGP.

SELECT x, y, game
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . 
      OPTIONAL{?x :plays ?game . ?y :plays ?game} 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,
    'ALL_ORDERED ALL_BGP_HASH'));

Example 1-15    Curly Brace Syntax and Nested OPTIONAL Construct

A single query can contain multiple OPTIONAL graph patterns, which can be nested or
parallel. Example 1-15 modifies Example 1-14 with a nested OPTIONAL graph
pattern. This example returns, for each grandfather, (1) the games he plays or null if
he plays no games and (2) if he plays games, the ages of his grandchildren that play
the same game, or null if he has no games in common with his grandchildren. Note
that in Example 1-15 a value is returned for ?game even if the nested OPTIONAL graph
pattern ?y :plays ?game . ?y :age ?age is not matched.

SELECT x, y, game, age
  FROM TABLE(SEM_MATCH(
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    '{?x :grandParentOf ?y . ?x rdf:type :Male . 
      OPTIONAL{?x :plays ?game 
                          OPTIONAL {?y :plays ?game . ?y :age ?age} } 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

Example 1-16    Curly Brace Syntax and Parallel OPTIONAL Construct

Example 1-16 modifies Example 1-14 with a parallel OPTIONAL graph pattern. This
example returns, for each grandfather, (1) the games he plays or null if he plays no
games and (2) his email address or null if he has no email address. Note that, unlike
nested OPTIONAL graph patterns, parallel OPTIONAL graph patterns are treated
independently. That is, if an email address is found, it will be returned regardless of
whether or not a game was found; and if a game was found, it will be returned
regardless of whether an email address was found.

SELECT x, y, game, email
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . 
      OPTIONAL{?x :plays ?game}
      OPTIONAL{?x :email ?email} 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

Example 1-17    Curly Brace Syntax and FILTER Construct

Example 1-17 uses the FILTER construct to modify Example 1-12, so that it returns
grandchildren information for only those grandfathers who are residents of either NY or
CA.

SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :residentOf ?z
       FILTER (?z = "NY"  || ?z = "CA")}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

Example 1-18    Curly Brace Syntax and FILTER with REGEX and STR Built-In
Constructs

Example 1-18 uses the REGEX built-in function to select all grandfathers who have an
Oracle email address. Note that backslash (\) characters in the regular expression
pattern must be escaped in the query string; for example, \\. produces the following
pattern: \.

SELECT x, y, z
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :email ?z
       FILTER (REGEX(STR(?z), "@oracle\\.com$"))}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
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Example 1-19    Curly Brace Syntax and UNION and FILTER Constructs

Example 1-19 uses the UNION construct to modify Example 1-17, so that grandfathers
are returned only if they are residents of NY or CA or own property in NY or CA, or if
both conditions are true (they reside in and own property in NY or CA).

SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male 
       {{?x :residentOf ?z} UNION {?x :ownsPropertyIn ?z}}
       FILTER (?z = "NY"  || ?z = "CA")}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

• GRAPH Keyword Support

1.6.2.1 GRAPH Keyword Support
A SEM_MATCH query is executed against an RDF Dataset. An RDF Dataset is a
collection of graphs that includes one unnamed graph, known as the default graph,
and one or more named graphs, which are identified by a URI. Graph patterns that
appear inside a GRAPH clause are matched against the set of named graphs, and
graph patterns that do not appear inside a graph clause are matched against the
default graph. The graphs and named_graphs SEM_MATCH parameters are used to
construct the default graph and set of named graphs for a given SEM_MATCH query.
A summary of possible dataset configurations is shown in Table 1-14.

Table 1-14    SEM_MATCH graphs and named_graphs Values, and Resulting Dataset
Configurations

Parameter Values Default Graph Set of Named Graphs

graphs: NULL

named_graphs: NULL

Union All of all unnamed triples and all named graph
triples. (But if the options parameter contains
STRICT_DEFAULT=T, only unnamed triples are included in
the default graph.)

All named graphs

graphs: NULL

named_graphs: {g1,…, gn}

Empty set {g1,…, gn}

graphs: {g1,…, gm}

named_graphs: NULL

Union All of {g1,…, gm} Empty set

graphs: {g1,…, gm}

named_graphs: {gn,…, gz}

Union All of {g1,…, gm} {gn,…, gz}

See also the W3C SPARQL specification for more information on RDF data sets and
the GRAPH construct, specifically: http://www.w3.org/TR/rdf-sparql-query/
#rdfDataset

Example 1-20    Named Graph Construct

Example 1-20 uses the GRAPH construct to scope graph pattern matching to a
specific named graph. This example finds the names and email addresses of all
people in the <http://www.example.org/family/Smith> named graph.
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SELECT name, email
  FROM TABLE(SEM_MATCH(
    '{GRAPH :Smith {
       ?x :name ?name . ?x :email ?email } }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

Example 1-21    Using the named_graphs Parameter

In addition to URIs, variables can appear after the GRAPH keyword. Example 1-21
uses a variable, ?g, with the GRAPH keyword, and uses the named_graphs parameter
to restrict the possible values of ?g to the <http://www.example.org/family/Smith>
and <http://www.example.org/family/Jones> named graphs. Aliases specified in
SEM_ALIASES argument can be used in the graphs and named_graphs parameters.

SELECT name, email
  FROM TABLE(SEM_MATCH(
    '{GRAPH ?g {
       ?x :name ?name . ?x :email ?email } }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,null,null,null,
    SEM_GRAPHS('<http://www.example.org/family/Smith>',
               ':Jones')));

Example 1-22    Using the graphs Parameter

Example 1-22 uses the default graph to query the union of the <http://
www.example.org/family/Smith> and <http://www.example.org/family/Jones>
named graphs.

FROM TABLE(SEM_MATCH(
    '{?x :name ?name . ?x :email ?email }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,null,null,
    SEM_GRAPHS('<http://www.example.org/family/Smith>', 
               ':Jones'),
    null));

1.6.3 Graph Patterns: Support for SPARQL ASK Syntax
SEM_MATCH allows fully-specified SPARQL ASK queries in the query parameter.

ASK queries are used to test whether or not a solution exists for a given query pattern.
In contrast to other forms of SPARQL queries, ASK queries do not return any
information about solutions to the query pattern. Instead, such queries return
"true"^^xsd:boolean if a solution exists and "false"^^xsd:boolean if no solution
exists.

All SPARQL ASK queries return the same columns: ASK, ASK$RDFVID,
ASK$_PREFIX, ASK$_SUFFIX, ASK$RDFVTYP, ASK$RDFCLOB, ASK$RDFLTYP,
ASK$RDFLANG, SEM$ROWNUM. Note that these columns are the same as a
SPARQL SELECT syntax query that projects a single ?ask variable.
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SPARQL ASK queries will generally give better performance than an equivalent
SPARQL SELECT syntax query because the ASK query does not have to retrieve
lexical values for query variables, and query execution can stop after a single result
has been found.

SPARQL ASK queries use the same syntax as SPARQL SELECT queries, but the
topmost SELECT clause must be replaced with the keyword ASK.

Example 1-23    SPARQL ASK

Example 1-23 shows a SPARQL ASK query that determines whether or not any
cameras are for sale with more than 10 megapixels that cost less than 50 dollars.

SELECT ask
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     ASK
     WHERE
      {?x :price ?p .
       ?x :megapixels ?m .
       FILTER (?p < 50 && ?m > 10)
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null));

See also the W3C SPARQL specification for more information on SPARQL ASK
queries, specifically: http://www.w3.org/TR/sparql11-query/#ask

1.6.4 Graph Patterns: Support for SPARQL CONSTRUCT Syntax
SEM_MATCH allows fully-specified SPARQL CONSTRUCT queries in the query
parameter.

CONSTRUCT queries are used to build RDF graphs from stored RDF data. In contrast
to SPARQL SELECT queries, CONSTRUCT queries return a set of RDF triples rather
than a set of query solutions (variable bindings).

All SPARQL CONSTRUCT queries return the same columns from SEM_MATCH.
These columns correspond to the subject, predicate and object of an RDF triple, and
there are 10 columns for each triple component. In addition, a SEM$ROWNUM
column is returned. More specifically, the following columns are returned:

SUBJ
SUBJ$RDFVID
SUBJ$_PREFIX
SUBJ$_SUFFIX
SUBJ$RDFVTYP
SUBJ$RDFCLOB
SUBJ$RDFLTYP
SUBJ$RDFLANG
SUBJ$RDFTERM
SUBJ$RDFCLBT
PRED
PRED$RDFVID
PRED$_PREFIX
PRED$_SUFFIX
PRED$RDFVTYP
PRED$RDFCLOB
PRED$RDFLTYP
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PRED$RDFLANG
PRED$RDFTERM
PRED$RDFCLBT
OBJ
OBJ$RDFVID
OBJ$_PREFIX
OBJ$_SUFFIX
OBJ$RDFVTYP
OBJ$RDFCLOB
OBJ$RDFLTYP
OBJ$RDFLANG
OBJ$RDFTERM
OBJ$RDFCLBT
SEM$ROWNUM

For each component, COMP, COMP$RDFVID, COMP$_PREFIX, COMP$_SUFFIX,
COMP$RDFVTYP, COMP$RDFCLOB, COMP$RDFLTYP, and COMP$RDFLANG
correspond to the same values as those from SPARQL SELECT queries.
COMP$RDFTERM holds a VARCHAR2(4000) RDF term in N-Triple syntax, and
COMP$RDFCLBT holds a CLOB RDF term in N-Triple syntax.

SPARQL CONSTRUCT queries use the same syntax as SPARQL SELECT queries,
except the topmost SELECT clause is replaced with a CONSTRUCT template. The
CONSTRUCT template determines how to construct the result RDF graph using the
results of the query pattern defined in the WHERE clause. A CONSTRUCT template
consists of the keyword CONSTRUCT followed by sequence of SPARQL triple
patterns that are enclosed within curly braces. The keywords OPTIONAL, UNION,
FILTER, MINUS, BIND, VALUES, and GRAPH are not allowed within CONSTRUCT
templates, and property path expressions are not allowed within CONSTRUCT
templates. These keywords, however, are allowed within the query pattern inside the
WHERE clause.

SPARQL CONSTRUCT queries build result RDF graphs in the following manner. For
each result row returned by the WHERE clause, variable values are substituted into
the CONSTRUCT template to create one or more RDF triples. Suppose the graph
pattern in the WHERE clause of Example 1-24 returns the following result rows.

E$RDFTERM FNAME$RDFTERM LNAME$RDFTERM

ent:employee1 "Fred" "Smith"

ent:employee2 "Jane" "Brown"

ent:employee3 "Bill" "Jones"

The overall SEM_MATCH CONSTRUCT query in Example 1-24 would then return the
following rows, which correspond to six RDF triples (two for each result row of the
query pattern).

SUBJ$RDFTERM PRED$RDFTERM OBJ$RDFTERM

ent:employee1 foaf:givenName "Fred"

ent:employee1 foaf:familyName "Smith"

ent:employee2 foaf:givenName "Jane"

ent:employee2 foaf:familyName "Brown"

ent:employee3 foaf:givenName "Bill"

ent:employee3 foaf:familyName "Jones"
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There are two SEM_MATCH query options that influence the behavior of SPARQL
CONSTRUCT: CONSTRUCT_UNIQUE=T and CONSTRUCT_STRICT=T. Using the
CONSTRUCT_UNIQUE=T query option ensures that only unique RDF triples are returned
from the CONSTRUCT query. Using the CONSTRUCT_STRICT=T query option ensures
that only valid RDF triples are returned from the CONSTRUCT query. Valid RDF
triples are those that have (1) a URI or blank node in the subject position, (2) a URI in
the predicate position, and (3) a URI, blank node or RDF literal in the object position.
Both of these query options are turned off by default for improved query performance.

Example 1-24    SPARQL CONSTRUCT

Example 1-24 shows a SPARQL CONSTRUCT query that builds an RDF graph of
employee names using the foaf vocabulary.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
  FROM TABLE(SEM_MATCH(
    'PREFIX  ent: <http://www.example.org/enterprise/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     CONSTRUCT
      {?e foaf:givenName  ?fname .
       ?e foaf:familyName ?lname 
      }
     WHERE
      {?e ent:fname ?fname .
       ?e ent:lname ?lname 
      }',
    SEM_Models('enterprise'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-25    CONSTRUCT with Solution Modifiers

SPARQL SOLUTION modifiers can be used with CONSTRUCT queries. 
Example 1-25 shows the use of ORDER BY and LIMIT to build a graph about the top
two highest-paid employees. Note that the LIMIT 2 clause applies to the query pattern
not to the overall CONSTRUCT query. That is, the query pattern will return two result
rows, but the overall CONSTRUCT query will return 6 RDF triples (three for each of
the two employees bound to ?e).

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
  FROM TABLE(SEM_MATCH(
    'PREFIX  ent: <http://www.example.org/enterprise/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     CONSTRUCT
      { ?e ent:fname       ?fname .
        ?e ent:lname       ?lname .
        ?e ent:dateOfBirth ?dob }
     WHERE
      { ?e ent:fname  ?fname .
        ?e ent:lname  ?lname .
        ?e ent:salary ?sal
      }
     ORDER BY DESC(?sal)
     LIMIT 2',
    SEM_Models('enterprise'),
    SEM_Rulebases('RDFS'),
    null, null));
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Example 1-26    SPARQL 1.1 Features with CONSTRUCT

SPARQL 1.1 features are supported within CONSTRUCT query patterns. 
Example 1-26 shows the use of subqueries and SELECT expressions within a
CONSTRUCT query.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
  FROM TABLE(SEM_MATCH(
    'PREFIX  ent: <http://www.example.org/enterprise/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     CONSTRUCT
      { ?e foaf:name  ?name }
     WHERE
      { SELECT ?e (CONCAT(?fname," ",?lname) AS ?name)
        WHERE { ?e ent:fname ?fname .
                ?e ent:lname ?lname }
      }',
    SEM_Models('enterprise'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-27    SPARQL CONSTRUCT with Named Graphs

Named graph data cannot be returned from SPARQL CONSTRUCT queries because,
in accordance with the W3C SPARQL specification, only RDF triples are returned, not
RDF quads. The FROM, FROM NAMED and GRAPH keywords, however, can be
used when matching the query pattern defined in the WHERE clause.

Example 1-27 constructs an RDF graph with ent:name triples from the UNION of
named graphs ent:g1 and ent:g2, ent:dateOfBirth triples from named graph
ent:g3, and ent:ssn triples from named graph ent:g4.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
  FROM TABLE(SEM_MATCH(
    'PREFIX  ent: <http://www.example.org/enterprise/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     CONSTRUCT
      { ?e ent:name ?name .
        ?e ent:dateOfBirth ?dob .
        ?e ent:ssn ?ssn
      }
     FROM ent:g1
     FROM ent:g2
     FROM NAMED ent:g3
     FROM NAMED ent:g4
     WHERE
      { ?e foaf:name ?name .
        GRAPH ent:g3 { ?e ent:dateOfBirth ?dob }
        GRAPH ent:g4 { ?e ent:ssn ?ssn } 
      }',
    SEM_Models('enterprise'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-28    SPARQL CONSTRUCT Normal Form

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
  FROM TABLE(SEM_MATCH(
    'PREFIX  ent: <http://www.example.org/enterprise/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     CONSTRUCT
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      {?e foaf:givenName  ?fname .
       ?e foaf:familyName ?lname 
      }
     WHERE
      {?e ent:fname ?fname .
       ?e ent:lname ?lname 
      }',
    SEM_Models('enterprise'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-29    SPARQL CONSTRUCT Short Form

A short form of CONSTRUCT is supported when the CONSTRUCT template is exactly
the same as the WHERE clause. In this case, only the keyword CONSTRUCT is
needed, and the graph pattern in the WHERE clause will also be used as a
CONSTRUCT template. Example 1-29 shows the short form of Example 1-28.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
  FROM TABLE(SEM_MATCH(
    'PREFIX  ent: <http://www.example.org/enterprise/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     CONSTRUCT
     WHERE
      {?e ent:fname ?fname .
       ?e ent:lname ?lname 
      }',
    SEM_Models('enterprise'),
    SEM_Rulebases('RDFS'),
    null, null));

• Typical SPARQL CONSTRUCT Workflow

1.6.4.1 Typical SPARQL CONSTRUCT Workflow
A typical workflow for SPARQL CONSTRUCT would be to execute a CONSTRUCT
query to extract and/or transform RDF triple data from an existing semantic model and
then load this data into an existing or new semantic model. The data loading can be
accomplished through simple INSERT statements or executing the 
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure.

Example 1-30    SPARQL CONSTRUCT Workflow

Example 1-30 constructs foaf:name triples from existing ent:fname and ent:lname
triples and then bulk loads these new triples back into the original model. Afterward,
you can query the original model for foaf:name values.

-- use create table as select to build a staging table 
CREATE TABLE STAB(RDF$STC_sub, RDF$STC_pred, RDF$STC_obj) AS
SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX  ent: <http://www.example.org/enterprise/> 
  PREFIX foaf: <http://xmlns.com/foaf/0.1/>
  CONSTRUCT
   { ?e foaf:name  ?name }
  WHERE
   { SELECT ?e (CONCAT(?fname," ",?lname) AS ?name)
     WHERE { ?e ent:fname ?fname .
             ?e ent:lname ?lname }
   }',
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 SEM_Models('enterprise'),
 null, null, null)); 
 
-- grant privileges on STAB
GRANT SELECT ON STAB TO MDSYS;
 
-- bulk load data back into the enterprise model
BEGIN
  SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE(
    model_name=>'enterprise',
    table_owner=>'rdfuser',
    table_name=>'stab',
    flags=>' parallel_create_index parallel=4 ');
END;
/
 
-- query for foaf:name data
SELECT e$rdfterm, name$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX foaf: <http://xmlns.com/foaf/0.1/>
  SELECT ?e ?name
  WHERE { ?e foaf:name ?name }',
 SEM_Models('enterprise'),
null, null, null));

See also the W3C SPARQL specification for more information on SPARQL
CONSTRUCT queries, specifically: http://www.w3.org/TR/sparql11-query/
#construct

1.6.5 Graph Patterns: Support for SPARQL DESCRIBE Syntax
SEM_MATCH allows fully-specified SPARQL DESCRIBE queries in the query
parameter.

SPARQL DESCRIBE queries are useful for exploring RDF data sets. You can easily
find information about a given resource or set of resources without knowing
information about the exact RDF properties used in the data set. A DESCRIBE query
returns a "description" of a resource r, where a "description" is the set of RDF triples in
the query data set that contain r in either the subject or object position.

Like CONSTRUCT queries, DESCRIBE queries return an RDF graph instead of result
bindings. Each DESCRIBE query, therefore, returns the same columns as a
CONSTRUCT query (see Graph Patterns: Support for SPARQL CONSTRUCT Syntax
for a listing of return columns).

SPARQL DESCRIBE queries use the same syntax as SPARQL SELECT queries,
except the topmost SELECT clause is replaced with a DESCRIBE clause. A
DESCRIBE clause consists of the DESCRIBE keyword followed by a sequence of
URIs and/or variables separated by whitespace or the DESCRIBE keyword followed
by a single * (asterisk).

Two SEM_MATCH query options affect SPARQL DESCRIBE queries:
CONSTRUCT_UNIQUE=T and CONSTRUCT_STRICT=T. CONSTRUCT_UNIQUE=T ensures that
duplicate triples are eliminated from the result, and CONSTRUCT_STRICT=T ensures that
invalid triples are eliminated from the result. Both of these options are turned off by
default. These options are described in more detail in Graph Patterns: Support for
SPARQL CONSTRUCT Syntax.
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See also the W3C SPARQL specification for more information on SPARQL
DESCRIBE queries, specifically: http://www.w3.org/TR/sparql11-query/#describe

Example 1-31    SPARQL DESCRIBE Short Form

A short form of SPARQL DESCRIBE is provided to describe a single constant URI. In
the short form, only a DESCRIBE clause is needed. Example 1-31 shows a short form
SPARQL DESCRIBE query.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'DESCRIBE <http://www.example.org/enterprise/emp_1>',
 SEM_Models('enterprise'),
null, null, null));

Example 1-32    SPARQL DESCRIBE Normal Form

The normal form of SPARQL DESCRIBE specifies a DESCRIBE clause and a
SPARQL query pattern, possibly including solution modifiers. Example 1-32 shows a
SPARQL DESCRIBE query that describes all employees whose departments are
located in New Hampshire.

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX  ent: <http://www.example.org/enterprise/>
  DESCRIBE ?e
  WHERE 
   { ?e ent:department ?dept .
     ?dept ent:locatedIn "New Hampshire" }',
 SEM_Models('enterprise'),
null, null, null));

Example 1-33    DESCRIBE *

With the normal form of DESCRIBE, as shown in Example 1-32, all resources bound
to variables listed in the DESCRIBE clause are described. In Example 1-32, all
employees returned from the query pattern and bound to ?e will be described. When
DESCRIBE * is used, all visible variables in the query are described.

Example 1-33 shows a modified version of Example 1-32 that describes both
employees (bound to ?e) and departments (bound to ?dept).

SELECT subj$rdfterm, pred$rdfterm, obj$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX  ent: <http://www.example.org/enterprise/>
  DESCRIBE *
  WHERE 
   { ?e ent:department ?dept .
     ?dept ent:locatedIn "New Hampshire" }',
 SEM_Models('enterprise'),
null, null, null));

1.6.6 Graph Patterns: Support for SPARQL SELECT Syntax
In addition to curly-brace graph patterns, SEM_MATCH allows fully-specified SPARQL
SELECT queries in the query parameter. When using the SPARQL SELECT syntax
option, SEM_MATCH supports the following query constructs: BASE, PREFIX,
SELECT, SELECT DISTINCT, FROM, FROM NAMED, WHERE, ORDER BY, LIMIT,
and OFFSET. Each SPARQL SELECT syntax query must include a SELECT clause
and a graph pattern.
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A key difference between curly-brace and SPARQL SELECT syntax when using
SEM_MATCH is that only variables appearing in the SPARQL SELECT clause are
returned from SEM_MATCH when using SPARQL SELECT syntax.

One additional column, SEM$ROWNUM, is returned from SEM_MATCH when using
SPARQL SELECT syntax. This NUMBER column can be used to order the results of a
SEM_MATCH query so that the result order matches the ordering specified by a
SPARQL ORDER BY clause.

The SPARQL ORDER BY clause can be used to order the results of SEM_MATCH
queries. This clause specifies a sequence of comparators used to order the results of
a given query. A comparator consists of an expression composed of variables, RDF
terms, arithmetic operators (+, -, *, /), Boolean operators and logical connectives (||,
&&, !), comparison operators (<, >, <=, >=, =, !=), and any functions available for use
in FILTER expressions.

The following order of operations is used when evaluating SPARQL SELECT queries:

1. Graph pattern matching

2. Grouping (see Grouping and Aggregation.)

3. Aggregates (see Grouping and Aggregation)

4. Having (see Grouping and Aggregation)

5. Values (see Value Assignment)

6. Select expressions

7. Order by

8. Projection

9. Distinct

10. Offset

11. Limit

See also the W3C SPARQL specification for more information on SPARQL BASE,
PREFIX, SELECT, SELECT DISTINCT, FROM, FROM NAMED, WHERE, ORDER
BY, LIMIT, and OFFSET constructs, specifically: http://www.w3.org/TR/sparql11-
query/

Example 1-34    SPARQL PREFIX, SELECT, and WHERE Clauses

Example 1-34 uses the following SPARQL constructs:

• SPARQL PREFIX clause to specify an abbreviation for the http://
www.example.org/family/ and http://xmlns.com/foaf/0.1/ namespaces

• SPARQL SELECT clause to specify the set of variables to project out of the query

• SPARQL WHERE clause to specify the query graph pattern

SELECT y, name
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/family/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     SELECT ?y ?name
     WHERE
     {?x :grandParentOf ?y . 
      ?x foaf:name ?name }',
    SEM_Models('family'),
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    SEM_Rulebases('RDFS','family_rb'), 
    null, null));

Example 1-34 returns the following columns: y, y$RDFVID, y$_PREFIX, y$_SUFFIX,
y$RDFVTYP, y$RDFCLOB, y$RDFLTYP, y$RDFLANG, name, name$RDFVID,
name$_PREFIX, name$_SUFFIX, name$RDFVTYP, name$RDFCLOB,
name$RDFLTYP, name$RDFLANG, and SEM$ROWNUM.

Example 1-35    SPARQL SELECT * (All Variables in Triple Pattern)

The SPARQL SELECT clause specifies either (A) a sequence of variables and/or
expressions (see Expressions in the SELECT Clause), or (B) * (asterisk), which
projects all variables that appear in a specified triple pattern. Example 1-35 uses the
SPARQL SELECT clause to select all variables that appear in a specified triple
pattern.

SELECT x, y, name
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/family/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     SELECT *
     WHERE
     {?x :grandParentOf ?y . 
      ?x foaf:name ?name }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null));

Example 1-36    SPARQL SELECT DISTINCT

The DISTINCT keyword can be used after SELECT to remove duplicate result rows. 
Example 1-36 uses SELECT DISTINCT to select only the distinct names.

SELECT name
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/family/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
     SELECT DISTINCT ?name
     WHERE
     {?x :grandParentOf ?y . 
      ?x foaf:name ?name }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null));

Example 1-37    RDF Dataset Specification Using FROM and FROM NAMED

SPARQL FROM and FROM NAMED are used to specify the RDF dataset for a query.
FROM clauses are used to specify the set of graphs that make up the default graph,
and FROM NAMED clauses are used to specify the set of graphs that make up the set
of named graphs. Example 1-37 uses FROM and FROM NAMED to select email
addresses and friend of relationships from the union of the <http://
www.friends.com/friends> and <http://www.contacts.com/contacts> graphs and
grandparent information from the <http://www.example.org/family/Smith> and
<http://www.example.org/family/Jones> graphs.

SELECT x, y, z, email
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/family/> 
     PREFIX foaf: <http://xmlns.com/foaf/0.1/>
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     PREFIX friends: <http://www.friends.com/>
     PREFIX contacts: <http://www.contacts.com/>
     SELECT *
     FROM friends:friends
     FROM contacts:contacts
     FROM NAMED :Smith
     FROM NAMED :Jones
     WHERE
     {?x foaf:frendOf ?y .
      ?x :email ?email .
      GRAPH ?g {
        ?x :grandParentOf ?z }
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    null, null));

Example 1-38    SPARQL ORDER BY

In a SPARQL ORDER BY clause:

• Single variable ordering conditions do not require enclosing parenthesis, but
parentheses are required for more complex ordering conditions.

• An optional ASC() or DESC() order modifier can be used to indicate the desired
order (ascending or descending, respectively). Ascending is the default order.

• When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query
should be ordered by SEM$ROWNUM to ensure that the desired ordering is
maintained through any enclosing SQL blocks.

Example 1-38 uses a SPARQL ORDER BY clause to select all cameras, and it
specifies ordering by descending type and ascending total price (price * (1 -
discount) * (1 + tax)).

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT * 
     WHERE
      {?x :price ?p .
       ?x :discount ?d .
       ?x :tax ?t .
       ?x :cameraType ?cType .
      }
     ORDER BY DESC(?cType) ASC(?p * (1-?d) * (1+?t))',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null))
ORDER BY SEM$ROWNUM;

Example 1-39    SPARQL LIMIT

SPARQL LIMIT and SPARQL OFFSET can be used to select different subsets of the
query solutions. Example 1-39 uses SPARQL LIMIT to select the five cheapest
cameras, and Example 1-40 uses SPARQL LIMIT and OFFSET to select the fifth
through tenth cheapest cameras.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
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     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
      }
     ORDER BY ASC(?p)
     LIMIT 5',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null))
ORDER BY SEM$ROWNUM;

Example 1-40    SPARQL OFFSET

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
      }
     ORDER BY ASC(?p)
     LIMIT 5
     OFFSET 5',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null))
ORDER BY SEM$ROWNUM;

Example 1-41    Query Using Full URIs

The SPARQL BASE keyword is used to set a global prefix. All relative IRIs will be
resolved with the BASE IRI using the basic algorithm described in Section 5.2 of the
Uniform Resource Identifier (URI): Generic Syntax (RFC3986) (http://
www.ietf.org/rfc/rfc3986.txt). Example 1-41 is a simple query using full URIs, and 
Example 1-42 is an equivalent query using a base IRI.

SELECT *
  FROM TABLE(SEM_MATCH(
    'SELECT ?employee ?position
     WHERE
      {?x <http://www.example.org/employee> ?p .
       ?p <http://www.example.org/employee/name> ?employee .
       ?p <http://www.example.org/employee/position> ?pos .
       ?pos <http://www.example.org/positions/name> ?position
      }',
    SEM_Models('enterprise'),
    null, 
    null, null))
ORDER BY 1,2;

Example 1-42    Query Using a Base IRI

SELECT *
  FROM TABLE(SEM_MATCH(
    'BASE <http://www.example.org/>
     SELECT ?employee ?position
     WHERE
      {?x <employee> ?p .
       ?p <employee/name> ?employee .
       ?p <employee/position> ?pos .

Chapter 1
Using the SEM_MATCH Table Function to Query Semantic Data

1-50

http://www.ietf.org/rfc/rfc3986.txt
http://www.ietf.org/rfc/rfc3986.txt


       ?pos <positions/name> ?position
      }',
    SEM_Models('enterprise'),
    null, 
    null, null))
ORDER BY 1,2;

1.6.7 Graph Patterns: Support for SPARQL 1.1 Constructs
SEM_MATCH supports the following SPARQL 1.1 constructs:

• An expanded set of functions (all items in Table 1-12 in Graph Patterns: Support
for Curly Brace Syntax_ and OPTIONAL_ FILTER_ UNION_ and GRAPH
Keywords)

• Expressions in the SELECT Clause

• Subqueries

• Grouping and Aggregation

• Negation

• Value Assignment

• Property Paths

1.6.7.1 Expressions in the SELECT Clause
Expressions can be used in the SELECT clause to project the value of an expression
from a query. A SELECT expression is composed of variables, RDF terms, arithmetic
operators (+, -, *, /), Boolean operators and logical connectives (||, &&, !), comparison
operators (<, >, <=, >=, =, !=), and any functions available for use in FILTER
expressions. The expression must be aliased to a single variable using the AS
keyword, and the overall <expression> AS <alias> fragment must be enclosed in
parentheses. The alias variable cannot already be defined in the query. A SELECT
expression may reference the result of a previous SELECT expression (that is, an
expression that appears earlier in the SELECT clause).

Example 1-43    SPARQL SELECT Expression

Example 1-43 uses a SELECT expression to project the total price for each camera.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ((?p * (1-?d) * (1+?t)) AS ?totalPrice) 
     WHERE
      {?x :price ?p .
       ?x :discount ?d .
       ?x :tax ?t .
       ?x :cameraType ?cType .
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null));

Example 1-44    SPARQL SELECT Expressions (2)

Example 1-44 uses two SELECT expressions to project the discount price with and
without sales tax.
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SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ((?p * (1-?d)) AS ?preTaxPrice) ((?preTaxPrice * (1+?t)) AS ?
finalPrice)
     WHERE
      {?x :price ?p .
       ?x :discount ?d .
       ?x :tax ?t .
       ?x :cameraType ?cType .
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null));

1.6.7.2 Subqueries
Subqueries are allowed with SPARQL SELECT syntax. That is, fully-specified
SPARQL SELECT queries may be embedded within other SPARQL SELECT queries.
Subqueries have many uses, for example, limiting the number of results from a
subcomponent of a query.

Example 1-45    SPARQL SELECT Subquery

Example 1-45 uses a subquery to find the manufacturer that makes the cheapest
camera and then finds all other cameras made by this manufacturer.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?c1
     WHERE {?c1 rdf:type :Camera .
            ?c1 :manufacturer ?m .
            {
             SELECT ?m
             WHERE {?c2 rdf:Type :Camera .
                    ?c2 :price ?p .
                    ?c2 :manufacturer ?m .
             }
             ORDER BY ASC(?p)
             LIMIT 1
            }
     }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null));

Subqueries are logically evaluated first, and the results are projected up to the outer
query. Note that only variables projected in the subquery's SELECT clause are visible
to the outer query.

1.6.7.3 Grouping and Aggregation
The GROUP BY keyword used to perform grouping. Syntactically, the GROUP BY
keyword must appear after the WHERE clause and before any solution modifiers such
as ORDER BY or LIMIT.

Aggregates are used to compute values across results within a group. An aggregate
operates over a collection of values and produces a single value as a result.
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SEM_MATCH supports the following built-in Aggregates: COUNT, SUM, MIN, MAX,
AVG, GROUP_CONCAT and SAMPLE. These aggregates are described in 
Table 1-15.

Table 1-15    Built-in Aggregates

Aggregate Description

AVG(expression) Returns the numeric average of expression over the values
within a group.

COUNT(* | expression) Counts the number of times expression has a bound, non-error
value within a group; asterisk (*) counts the number of results
within a group.

GROUP_CONCAT(expressi
on [; SEPARATOR =
"STRING"])

Performs string concatenation of expression over the values
within a group. If provided, an optional separator string will be
placed between each value.

MAX(expression) Returns the maximum value of expression within a group based
on the ordering defined by SPARQL ORDER BY.

MIN(expression) Returns the minimum value of expression within a group based
on the ordering defined by SPARQL ORDER BY.

SAMPLE(expression) Returns expression evaluated for a single arbitrary value from a
group.

SUM(expression) Calculates the numeric sum of expression over the values within
a group.

Certain restrictions on variable references apply when using grouping and
aggregation. Only group-by variables (single variables in the GROUP BY clause) and
alias variables from GROUP BY value assignments can be used in non-aggregate
expressions in the SELECT or HAVING clauses.

Example 1-46    Simple Grouping Query

Example 1-46 shows a query that uses the GROUP BY keyword to find all the different
types of cameras.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?cType
     WHERE
      {?x rdf:type :Camera .
       ?x :cameraType ?cType .
      }
     GROUP BY ?cType',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null));

A grouping query partitions the query results into a collection of groups based on a
grouping expression (?cType in Example 1-46) such that each result within a group
has the same values for the grouping expression. The final result of the grouping
operation will include one row for each group.

Example 1-47    Complex Grouping Expression

A grouping expression consists of a sequence of one or more of the following: a
variable, an expression, or a value assignment of the form (<expression> as <alias>). 
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Example 1-47 shows a grouping query that uses one of each type of component in the
grouping expression.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?cType ?totalPrice
     WHERE
      {?x rdf:type :Camera .
       ?x :cameraType ?cType .
       ?x :manufacturer ?m .
       ?x :price ?p .
       ?x :tax ?t .
      }
     GROUP BY ?cType (STR(?m)) ((?p*(1+?t)) AS ?totalPrice)',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-48    Aggregation

Example 1-48 uses aggregates to select the maximum, minimum, and average price
for each type of camera.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?cType 
            (MAX(?p) AS ?maxPrice) 
            (MIN(?p) AS ?minPrice) 
            (AVG(?p) AS ?avgPrice)
     WHERE
      {?x rdf:type :Camera .
       ?x :cameraType ?cType .
       ?x :manufacturer ?m .
       ?x :price ?p .
      }
     GROUP BY ?cType',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-49    Aggregation Without Grouping

If an aggregate is used without a grouping expression, then the entire result set is
treated as a single group. Example 1-49 computes the total number of cameras for the
whole data set.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT (COUNT(?x) as ?cameraCnt)
     WHERE
      { ?x rdf:type :Camera 
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));
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Example 1-50    Aggregation with DISTINCT

The DISTINCT keyword can optionally be used as a modifier for each aggregate.
When DISTINCT is used, duplicate values are removed from each group before
computing the aggregate. Syntactically, DISTINCT must appear as the first argument
to the aggregate. Example 1-50 uses DISTINCT to find the number of distinct camera
manufacturers. In this case, duplicate values of STR(?m) are removed before counting.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT (COUNT(DISTINCT STR(?m)) as ?mCnt)
     WHERE
      { ?x rdf:type :Camera .
        ?x :manufacturer ?m
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-51    HAVING Clause

The HAVING keyword can be used to filter groups based on constraints. HAVING
expressions can be composed of variables, RDF terms, arithmetic operators (+, -, *, /),
Boolean operators and logical connectives (||, &&, !), comparison operators (<, >, <=,
>=, =, !=), aggregates, and any functions available for use in FILTER expressions.
Syntactically, the HAVING keyword appears after the GROUP BY clause and before
any other solution modifiers such as ORDER BY or LIMIT.

Example 1-51 uses a HAVING expression to find all manufacturers that sell cameras
for less than $200.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?m
     WHERE
      { ?x rdf:type :Camera .
        ?x :manufacturer ?m .
        ?x :price ?p
      }
     GROUP BY ?m
     HAVING (MIN(?p) < 200)
     ORDER BY ASC(?m)',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

1.6.7.4 Negation
SEM_MATCH supports two forms of negation in SPARQL query patterns: NOT
EXISTS and MINUS. NOT EXISTS can be used to filter results based on whether or
not a graph pattern matches, and MINUS can be used to remove solutions based on
their relation to another graph pattern.

Example 1-52    Negation with NOT EXISTS

Example 1-52 uses a NOT EXISTS FILTER to select those cameras that do not have
any user reviews.
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SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
       FILTER( NOT EXISTS({?x :userReview ?r}) )
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null));

Example 1-53    EXISTS

Conversely, the EXISTS operator can be used to ensure that a pattern matches. 
Example 1-53 uses an EXISTS FILTER to select only those cameras that have a user
review.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
       FILTER( EXISTS({?x :userReview ?r}) )
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null));

Example 1-54    Negation with MINUS

Example 1-54 uses MINUS to arrive at the same result as Example 1-52. Only those
solutions that are not compatible with solutions from the MINUS pattern are included in
the result. That is, if a solution has the same values for all shared variables as a
solution from the MINUS pattern, it is removed from the result.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
       MINUS {?x :userReview ?r}
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'), 
    null, null));

Example 1-55    Negation with NOT EXISTS (2)

NOT EXISTS and MINUS represent two different styles of negation and have different
results in certain cases. One such case occurs when no variables are shared between
the negation pattern and the rest of the query. For example, the NOT EXISTS query in 
Example 1-55 removes all solutions because {?subj ?prop ?obj} matches any triple,
but the MINUS query in Example 1-56 removes no solutions because there are no
shared variables.
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SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
       FILTER( NOT EXISTS({?subj ?prop ?obj}) )
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-56    Negation with MINUS (2)

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?p
     WHERE
      {?x :price ?p .
       ?x :cameraType ?cType .
       MINUS {?subj ?prop ?obj}
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

1.6.7.5 Value Assignment
SEM_MATCH provides a variety of ways to assign values to variables in a SPARQL
query.

The value of an expression can be assigned to a new variable in three ways: (1)
expressions in the SELECT clause, (2) expressions in the GROUP BY clause, and (3)
the BIND keyword. In each case, the new variable must not already be defined in the
query. After assignment, the new variable can be used in the query and returned in
results. As discussed in Expressions in the SELECT Clause, the syntax for value
assignment is (<expression> AS <alias>) where alias is the new variable, for example,
((?price * (1+?tax)) AS ?totalPrice).

Example 1-57    Nested SELECT Expression

Example 1-57 uses a nested SELECT expression to compute the total price of a
camera and assign the value to a variable (?totalPrice). This variable is then used in
a FILTER in the outer query to find cameras costing less than $200.

SELECT *
 FROM TABLE(SEM_MATCH(
   'PREFIX : <http://www.example.org/electronics/> 
    SELECT ?x ?cType ?totalPrice
    WHERE
     {?x :cameraType ?cType .
       { SELECT ?x ( ((?price*(1+?tax)) AS ?totalPrice )
         WHERE { ?x :price ?price .
                 ?x :tax ?tax }
       }
      FILTER (?totalPrice < 200)
     }',
   SEM_Models('electronics'),
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   SEM_Rulebases('RDFS'),
   null, null));

Example 1-58    BIND

The BIND keyword can be used inside a basic graph pattern to assign a value and is
syntactically more compact than an equivalent nested SELECT expression. 
Example 1-58 uses the BIND keyword to expresses a query that is logically equivalent
to Example 1-57.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?totalPrice
     WHERE
      {?x :cameraType ?cType .
       ?x :price ?price .
       ?x :tax ?tax .
       BIND ( ((?price*(1+?tax)) AS ?totalPrice )
       FILTER (?totalPrice < 200)
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-59    GROUP BY Expression

Value assignments in the GROUP BY clause can subsequently be used in the
SELECT clause, the HAVING clause, and the outer query (in the case of a nested
grouping query). Example 1-59 uses a GROUP BY expression to find the maximum
number of megapixels for cameras at each price point less than $1000.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?totalPrice (MAX(?mp) as ?maxMP)
     WHERE
      {?x rdf:type :Camera .
       ?x :price ?price .
       ?x :tax ?tax .
       GROUP BY ( ((?price*(1+?tax)) AS ?totalPrice )
       HAVING (?totalPrice < 1000)
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-60    VALUES

In addition to the preceding three ways to assign the value of an expression to a new
variable, the VALUES keyword can be used to introduce an unordered solution
sequence that is combined with the query results through a join operation. A VALUES
block can appear inside a query pattern or at the end of a SPARQL SELECT query
block after any solution modifiers. The VALUES construct can be used in subqueries.

Example 1-60 uses the VALUES keyword to constrain the query results to DSLR
cameras made by :Company1 or any type of camera made by :Company2. The keyword
UNDEF is used to represent an unbound variable in the solution sequence.

SELECT *
  FROM TABLE(SEM_MATCH(
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    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?m
     WHERE 
      { ?x rdf:type :Camera .
        ?x :cameraType ?cType .
        ?x :manufacturer ?m
      }
     VALUES (?cType ?m)
     { ("DSLR" :Company1)
       (UNDEF  :Company2) 
     }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-61    Simplified VALUES Syntax

A simplified syntax can be used for the common case of a single variable. Specifically,
the parentheses around the variable and each solution can be omitted. Example 1-61
uses the simplified syntax to constrain the query results to cameras made
by :Company1 or :Company2.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?m
     WHERE 
      { ?x rdf:type :Camera .
        ?x :cameraType ?cType .
        ?x :manufacturer ?m
      }
     VALUES ?m
     { :Company1
       :Company2 
     }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));

Example 1-62    Inline VALUES Block

Example 1-62 also constrains the query results to any camera made by :Company1
or :Company2, but specifies the VALUES block inside the query pattern.

SELECT *
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?x ?cType ?m
     WHERE 
      { VALUES ?m { :Company1 :Company2 }
        ?x rdf:type :Camera .
        ?x :cameraType ?cType .
        ?x :manufacturer ?m
      }',
    SEM_Models('electronics'),
    SEM_Rulebases('RDFS'),
    null, null));
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1.6.7.6 Property Paths
A SPARQL Property Path describes a possible path between two RDF resources
(nodes) in an RDF graph. A property path appears in the predicate position of a triple
pattern and uses a regular expression-like syntax to place constraints on the
properties (edges) making up a path from the subject of the triple pattern to the object
of a triple pattern. Property paths allow SPARQL queries to match arbitrary length
paths in the RDF graph and also provide a more concise way to express other graph
patterns.

Table 1-16 describes the syntax constructs available for constructing SPARQL
Property Paths. Note that iri is either an IRI or a prefixed name, and elt is a property
path element, which may itself be composed of other property path elements.

Table 1-16    Property Path Syntax Constructs

Syntax Construct Matches

iri An IRI or a prefixed name. A path of length 1 (one).

^elt Inverse path (object to subject).

!iri or !(iri1 | … | irin) Negated property set. An IRI that is not one of irii.

!^iri or !(iri1 | … | irij | ^irij
+1 | … | ^irin)

Negated property set with some inverse properties. An IRI that is not
one of irii, nor one of irij+1...irin as reverse paths. !^iri is short for !
(^iri). The order of properties and inverse properties is not important.
They can occur in mixed order.

(elt) A group path elt; brackets control precedence.

elt1 / elt2 A sequence path of elt1, followed by elt2.

elt1 | elt2 An alternative path of elt1, or elt2 (all possibilities are tried).

elt* A path of zero or more occurrences of elt.

elt+ A path of one or more occurrences of elt.

elt? A path of zero or one occurrence of elt.

The precedence of the syntax constructs is as follows (from highest to lowest):

• IRI, prefixed names

• Negated property sets

• Groups

• Unary operators *, ?, +

• Unary ^ inverse links

• Binary operator /

• Binary operator |

Precedence is left-to-right within groups.

Special Considerations for Property Path Operators + and *

In general, truly unbounded graph traversals using the + (plus sign) and * (asterisk)
operator can be very expensive. For this reason, a depth-limited version of the + and *
operator is used by default, and the default depth limit is 10. In addition, the depth-
limited implementation can be run in parallel. The ALL_MAX_PP_DEPTH(n)
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SEM_MATCH query option or the MAX_PP_DEPTH(n) inline HINT0 query optimizer hint
can be used to change the depth-limit setting. To achieve a truly unbounded traversal,
you can set a depth limit of less than 1 to fall back to a CONNECT BY-based
implementation.

Query Hints for Property Paths

Other query hints are available to influence the performance of property path queries.
The ALLOW_PP_DUP=T query option can be used with * and + queries to allow duplicate
results. Allowing duplicate results may return the first rows from a query faster. In
addition, ALL_USE_PP_HASH and ALL_USE_PP_NL query options are available to influence
the join types used when evaluating property path expressions. Analogous
USE_PP_HASH and USE_PP_NL inline HINT0 query optimizer hints can also be used.

Example 1-63    SPARQL Property Path (Using rdfs:subClassOf Relations)

Example 1-63 uses a property path to find all Males based on transitivity of the
rdfs:subClassOf relationship. A property path allows matching an arbitrary number
of consecutive rdfs:subClassOf relations.

SELECT x, name
  FROM TABLE(SEM_MATCH(
    '{ ?x foaf:name ?name .
       ?x rdf:type ?t .
       ?t rdfs:subClassOf* :Male }',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/') 
                SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
    null));

Example 1-64    SPARQL Property Path (Using foaf:friendOf or foaf:knows
Relationships)

Example 1-64 uses a property path to find all of Scott's close friends (those people
reachable within two hops using foaf:friendOf or foaf:knows relationships).

SELECT name
  FROM TABLE(SEM_MATCH(
    '{ { :Scott (foaf:friendOf | foaf:knows) ?f }
       UNION
       { :Scott (foaf:friendOf | foaf:knows)/(foaf:friendOf | foaf:knows) ?f }
       ?f foaf:name ?name .
       FILTER (!sameTerm(?f, :Scott)) }',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/'),
                SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
    null));

Example 1-65    Specifying Property Path Maximum Depth Value

Example 1-65 specifies a maximum depth of 12 for all property path expressions with
the ALL_MAX_PP_DEPTH(n) query option value.

SELECT x, name
  FROM TABLE(SEM_MATCH(
    '{ ?x foaf:name ?name .
       ?x rdf:type ?t .
       ?t rdfs:subClassOf* :Male }',
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    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/') 
                SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
    null,
    null,
    ' ALL_MAX_PP_DEPTH(12) '));

Example 1-66    Specifying Property Path Join Hint

Example 1-66 shows an inline HINT0 query optimizer hint that requests a nested loop
join for evaluating the property path expression.

SELECT x, name
  FROM TABLE(SEM_MATCH(
    '{ # HINT0={ USE_PP_NL }
       ?x foaf:name ?name .
       ?x rdf:type ?t .
       ?t rdfs:subClassOf* :Male }',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/') 
                SEM_ALIAS('foaf',' http://xmlns.com/foaf/0.1/')),
    null));

1.6.8 Graph Patterns: Support for SPARQL 1.1 Federated Query
SEM_MATCH supports SPARQL 1.1 Federated Query (see http://www.w3.org/TR/
sparql11-federated-query/#SPROT). The SERVICE construct can be used to retrieve
results from a specified SPARQL endpoint URL. With this capability, you can combine
local RDF data (native RDF data or RDF views of relational data) with other, possibly
remote, RDF data served by a W3C standards-compliant SPARQL endpoint.

Example 1-67    SPARQL SERVICE Clause to Retrieve All Triples

Example 1-67 shows a query that uses a SERVICE clause to retrieve all triples from
the SPARQL endpoint available at http://www.example1.org/sparql.

SELECT s, p, o
  FROM TABLE(SEM_MATCH(
    'SELECT ?s ?p ?o
     WHERE {
       SERVICE <http://www.example1.org/sparql>{ ?s ?p ?o }
     }',
    SEM_Models('electronics'),
    null, null, null, null, ' '));

Example 1-68    SPARQL SERVICE Clause to Join Remote and Local RDF Data

Example 1-68 joins remote RDF data with local RDF data. This example joins camera
types ?cType from local model electronics with the camera names ?name from the
SPARQL endpoint at http://www.example1.org/sparql.

SELECT cType, name
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?cType ?name
     WHERE {
       ?s :cameraType ?cType
       SERVICE <http://www.example1.org/sparql>{ ?s :name ?name }
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      }',
    SEM_Models('electronics'),
    null, null, null, null, ' '));

• Privileges Required to Execute Federated SPARQL Queries

• SPARQL SERVICE Join Push Down

• SPARQL SERVICE SILENT

• Using a Proxy Server with SPARQL SERVICE

• Accessing SPARQL Endpoints with HTTP Basic Authentication

1.6.8.1 Privileges Required to Execute Federated SPARQL Queries
You need certain database privileges to use the SERVICE construct within
SEM_MATCH queries. You should be granted EXECUTE privilege on the
SPARQL_SERVICE MDSYS function by a user with DBA privileges: The following
example grants this access to a user named RDFUSER:

grant execute on mdsys.sparql_service to rdfuser;

Also, an Access Control List (ACL) should be used to grant the CONNECT privilege to
the user attempting a federated query. Example 1-69 creates a new ACL to grant the
user RDFUSER the CONNECT privilege and assigns the domain * to the ACL. For
more information about ACLs, see Oracle Database PL/SQL Packages and Types
Reference.

Example 1-69    Access Control List and Host Assignment

dbms_network_acl_admin.create_acl (
  acl       => 'rdfuser.xml',
  description => 'Allow rdfuser to query SPARQL endpoints',
  principal => 'RDFUSER',
  is_grant  => true,
  privilege => 'connect'
);
 
dbms_network_acl_admin.assign_acl (
  acl  => 'rdfuser.xml',
  host => '*'
);      

After the necessary privileges are granted, you are ready to execute federated queries
from SEM_MATCH

1.6.8.2 SPARQL SERVICE Join Push Down
The SPARQL SERVICE Join Push Down (SERVICE_JPDWN=T) feature can be used to
improve the performance of certain SPARQL SERVICE queries. By default, the query
pattern within the SERVICE clause is executed first on the remote SPARQL endpoint.
The full result of this remote execution is then joined with the local portion of the query.
This strategy can result in poor performance if the local portion of the query is very
selective and the remote portion of the query is very unselective.

The SPARQL SERVICE Join Push Down feature cannot be used in a query that
contains more than one SERVICE clause.
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Example 1-70    SPARQL SERVICE Join Push Down

Example 1-70 shows the SPARQL SERVICE Join Push Down feature.

SELECT s, prop, obj
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?s ?prop ?obj
     WHERE {
       ?s rdf:type   :Camera .
       ?s :modelName "Camera 12345"
       SERVICE <http://www.example1.org/sparql> { ?s ?prop ?obj }
      }',
    SEM_Models('electronics'),
    null, null, null, null, ' SERVICE_JPDWN=T '));

In Example 1-70, the local portion of the query will return a very small number of rows,
but the remote portion of the query is completely unbound and will return the entire
remote dataset. When the SERVICE_JPDWN=T option is specified, SEM_MATCH
performs a nested-loop style evaluation by first executing the local portion of the query
and then executing a modified version of the remote query once for each row returned
by the local portion. The remote query is modified with a FILTER clause that effectively
performs a substitution for the join variable ?s. For example, if <urn:camera1> and
<urn:camera2> are returned from the local portion of Example 1-70 as bindings for ?s,
then the following two queries are sent to the remote endpoint: { ?s ?prop ?obj
FILTER (?s = <urn:camera1>) } and { s ?prop ?obj FILTER (?s =
<urn:camera2>) }.

1.6.8.3 SPARQL SERVICE SILENT
When the SILENT keyword is used in federated queries, errors while accessing the
specified remote SPARQL endpoint will be ignored. If the SERVICE SILENT request
fails, a single solution with no bindings will be returned.

Example 1-71 uses SERVICE with the SILENT keyword inside an OPTIONAL clause,
so that, when connection errors accessing http://www.example1.org/sparql appear,
such errors will be ignored and all the rows retrieved from triple ?s :cameratype ?k
will be combined with a null value for ?n.

Example 1-71    SPARQL SERVICE with SILENT Keyword

SELECT s, n
  FROM TABLE(SEM_MATCH(
    'PREFIX : <http://www.example.org/electronics/> 
     SELECT ?s ?n
     WHERE {
       ?s :cameraType ?k
       OPTIONAL { SERVICE SILENT <http://www.example1.org/sparql>{ ?k :name ?n } }
      }',
    SEM_Models('electronics'),
    null, null, null, null));

1.6.8.4 Using a Proxy Server with SPARQL SERVICE
The following methods are available for sending SPARQL SERVICE requests through
an HTTP proxy:
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• Specifying the HTTP proxy that should be used for requests in the current session.
This can be done through the SET_PROXY function of UTL_HTTP package. 
Example 1-72 sets the proxy proxy.example.com to be used for HTTP requests,
excluding those to hosts in the domain example2.com. (For more information about
the SET_PROXY procedure, see Oracle Database PL/SQL Packages and Types
Reference.)

• Using the SERVICE_PROXY SEM_MATCH option, which allows setting the proxy
address for SPARQL SERVICE request. However, in this case no exceptions can
be specified, and all requests are sent to the given proxy server. Example 1-73
shows a SEM_MATCH query where the proxy address proxy.example.com at port
80 is specified.

Example 1-72    Setting Proxy Server with UTL_HTTP.SET_PROXY

BEGIN
  UTL_HTTP.SET_PROXY('proxy.example.com:80', 'example2.com');
END;
/

Example 1-73    Setting Proxy Server in SPARQL SERVICE

SELECT *
  FROM TABLE(SEM_MATCH(
    'SELECT *
     WHERE {
       SERVICE <http://www.example1.org/sparql>{ ?s ?p ?o }
      }',
    SEM_Models('electronics'),
    null, null, null, null, ' SERVICE_PROXY=proxy.example.com:80 '));

1.6.8.5 Accessing SPARQL Endpoints with HTTP Basic Authentication
To allow accessing of SPARQL endpoints with HTTP Basic Authentication, user
credentials should be saved in Session Context SDO_SEM_HTTP_CTX. A user with
DBA privileges must grant EXECUTE on this context to the user that wishes to use
basic authentication. The following example grants this access to a user named
RDFUSER:

grant execute on mdsys.sdo_sem_http_ctx to rdfuser;

After the privilege is granted, the user should save the user name and password for
each SPARQL Endpoint with HTTP Authentication through functions
mdsys.sdo_sem_http_ctx.set_usr and mdsys.sdo_sem_http_ctx.set_pwd. The
following example sets a user name and password for the SPARQL endpoint at
http://www.example1.org/sparql:

BEGIN
  mdsys.sdo_sem_http_ctx.set_usr('http://www.example1.org/sparql','user');
  mdsys.sdo_sem_http_ctx.set_pwd('http://www.example1.org/sparql','pwrd');
END;
/

1.6.9 Inline Query Optimizer Hints
In SEM_MATCH, the SPARQL comment construct has been overloaded to allow inline
HINT0 query optimizer hints. In SPARQL, the hash (#) character indicates that the
remainder of the line is a comment. To associate an inline hint with a particular BGP,
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place a HINT0 hint string inside a SPARQL comment and insert the comment between
the opening curly bracket ({) and the first triple pattern in the BGP. Inline hints enable
you to influence the execution plan for each BGP in a query.

Inline optimizer hints override any hints passed to SEM_MATCH through the options
argument. For example, a global ALL_ORDERED hint applies to each BGP that does
not specify an inline optimizer hint, but those BGPs with an inline hint use the inline
hint instead of the ALL_ORDERED hint.

Example 1-74    Inline Query Optimizer Hints (BGP_JOIN)

The following example shows a query with inline query optimizer hints.

SELECT x, y, hp, cp
  FROM TABLE(SEM_MATCH(
    '{ # HINT0={ LEADING(t0) USE_NL(?x ?y ?bd) }
      ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
      OPTIONAL { # HINT0={ LEADING(t0 t1) BGP_JOIN(USE_HASH) }
                 ?x :homepage ?hp . ?x :cellPhoneNum ?cp }
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

The BGP_JOIN hint influences inter-BGP joins and has the following syntax:
BGP_JOIN(<join_type>), where <join_type> is USE_HASH or USE_NL. Example 1-74
uses the BGP_JOIN(USE_HASH) hint to specify that a hash join should be used when
joining the OPTIONAL BGP with its parent BGP.

Inline optimizer hints override any hints passed to SEM_MATCH through the options
argument. For example, a global ALL_ORDERED hint applies to each BGP that does
not specify an inline optimizer hint, but those BGPs with an inline hint use the inline
hint instead of the ALL_ORDERED hint.

Example 1-75    Inline Query Optimizer Hints (ANTI_JOIN)

The ANTI_JOIN hint influences the evaluation of NOT EXISTS and MINUS clauses.
This hint has the syntax ANTI_JOIN(<join_type>), where <join_type> is HASH_AJ,
NL_AJ, or MERGE_AJ. The following example uses a hint to indicate that a hash anti
join should be used. Global ALL_AJ_HASH, ALL_AJ_NL, ALL_AJ_MERGE can be
used in the options argument of SEM_MATCH to influence the join type of all NOT
EXISTS and MINUS clauses in the entire query.

SELECT x, y
  FROM TABLE(SEM_MATCH(
    'SELECT ?x ?y
     WHERE {
       ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
       FILTER ( 
         NOT EXISTS {# HINT0={ ANTI_JOIN(HASH_AJ) }
                     ?x :homepage ?hp . ?x :cellPhoneNum ?cp })
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
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Example 1-76    Inline Query Optimizer Hints (NON_NULL)

HINT0={ NON_NULL} is supported in SPARQL SELECT clauses to signify that a
particular variable is always bound (that is, has a non-null value in each result row).
This hint allows the query compiler to optimize joins for values produced by SELECT
expressions. These optimizations cannot be applied by default because it cannot be
guaranteed that expressions will produce non-null values for all possible input. If you
know that a SELECT expression will not produce any null values for a particular query,
using this NON_NULL hint can significantly increase performance. This hint should be
specified in the comment in a line before the 'AS' keyword of a SELECT expression.

The following example shows the NON_NULL hint option used in a SEM_MATCH
query, specifying that variable ?full_name is definitely bound.

SELECT s, t
  FROM TABLE(SEM_MATCH(
    'SELECT * WHERE {
       ?s :name ?full_name
       { SELECT (CONCAT(?fname, " ", ?lname) # HINT0={ NON_NULL }
                 AS ?full_name)
         WHERE { 
           ?t :fname ?fname .
           ?t :lname ?lname } 
         } 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
          null));

1.6.10 Full-Text Search
The Oracle-specific orardf:textContains SPARQL FILTER function uses full-text
indexes on the MDSYS.RDF_VALUE$ table. This function has the following syntax
(where orardf is a built-in prefix that expands to <http://xmlns.oracle.com/rdf/>):

orardf:textContains(variable, pattern)

The first argument to orardf:textContains must be a local variable (that is, a variable
present in the BGP that contains the orardf:textContains filter), and the second
argument must be a constant plain literal.

For example, orardf:textContains(x, y) returns true if x matches the expression y,
where y is a valid expression for the Oracle Text SQL operator CONTAINS. For more
information about such expressions, see Oracle Text Reference.

Before using orardf:textContains, you must create an Oracle Text index for the RDF
network. To create such an index, invoke the SEM_APIS.ADD_DATATYPE_INDEX
procedure as follows:

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://xmlns.oracle.com/rdf/text');

Performance for wildcard searches like orardf:textContains(?x, "%abc%") can be
improved by using prefix and substring indexes. You can include any of the following
options to the SEM_APIS.ADD_DATATYPE_INDEX procedure:

• prefix_index=true – for adding prefix index

• prefix_min_length=<number> – minimum length for prefix index tokens
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• prefix_max_length=<number> – maximum length for prefix index tokens

• substring_index=true – for adding substring index

For more information about Oracle Text indexing elements, see Oracle Text
Reference.

When performing large bulk loads into a semantic network with a text index, the overall
load time may be faster if you drop the text index, perform the bulk load, and then re-
create the text index. See Using Data Type Indexes for more information about data
type indexing.

After creating a text index, you can use the orardf:textContains FILTER function in
SEM_MATCH queries. Example 1-77 uses orardf:textContains to find all
grandfathers whose names start with the letter A or B.

Example 1-77    Full-Text Search

SELECT x, y, n
  FROM TABLE(SEM_MATCH(
    '{ ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n 
       FILTER (orardf:textContains(?n, " A% | B% ")) }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
          null));

Example 1-78    orardf:textScore

The ancillary operator orardf:textScore can be used in combination with
orardf:textContains to rank results by the goodness of their text match. There are,
however, limitations when using orardf:textScore. The orardf:textScore invocation
must appear as a SELECT expression in the SELECT clause immediately surrounding
the basic graph pattern that contains the corresponding orardf:textContains
FILTER. The alias for this SELECT expression can then be used in other parts of the
query. In addition, a REWRITE=F' query hint must be used in the options argument of
SEM_MATCH.

The following example finds text matches with score greater than 0.5. Notice that an
additional invocation id argument is required for orardf:textContains, so that it can
be linked to the orardf:textScore invocation with the same invocation id. The
invocation ID is an arbitrary integer constant used to match a primary operator with its
ancillary operator.

SELECT x, y, n, scr
  FROM TABLE(SEM_MATCH(
    'SELECT *
     WHERE {
       { SELECT ?x ?y ?n (orardf:textScore(123) AS ?scr)
         WHERE { 
           ?x :grandParentOf ?y . ?x rdf:type :Male . ?x :name ?n 
           FILTER (orardf:textContains(?n, " A% | B% ", 123)) }
       }
       FILTER (?scr > 0.5)
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),           
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    null,
    null,
    ' REWRITE=F '));

Example 1-79    orardf:like

For a lightweight text search, you can use the orardf:like function, which performs
simple test for pattern matching using the Oracle SQL operator LIKE. The
orardf:like function has the following syntax:

orardf:like(string, pattern

The first argument of orardf:like can be any variable or RDF term, as opposed to
orardf:Contains, which requires the first argument to be a local variable. When the
first argument to orardf:like is a URI, the match is performed against the URI suffix
only. The second argument must be a pattern expression, which can contain the
following special pattern-matching characters:

• The percent sign (%) can match zero or more characters.

• The underscore (_) matches exactly one character.

The following example shows a percent sign (%) wildcard search to find all
grandparents whose URIs start with Ja.

SELECT x, y, n
  FROM TABLE(SEM_MATCH(
    '{ ?x :grandParentOf ?y . ?y :name ?n 
        FILTER (orardf:like(?x, "Ja%")) }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

The following example shows an underscore (_) wildcard search to find all the
grandchildren whose names start with J followed by two characters and end with k..

SELECT x, y, n
  FROM TABLE(SEM_MATCH(
    '{ ?x :grandParentOf ?y . ?y :name ?n 
        FILTER (orardf:like(?n, "J__k")) 
    }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

For efficient execution of orardf:like, you can create an index using the 
SEM_APIS.ADD_DATATYPE_INDEX procedure with http://
xmlns.oracle.com/rdf/like as the data type URI. This index can speed up queries
when the first argument is a local variable and the leading character of the search
pattern is not a wildcard. The underlying index is a simple function-based B-Tree index
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on a varchar function, which has lower maintenance and storage costs than a full
Oracle Text index. The index for orardf:like is created as follows:

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://xmlns.oracle.com/rdf/like');

1.6.11 Spatial Support
RDF Semantic Graph supports storage and querying of spatial geometry data through
the OGC GeoSPARQL standard and through Oracle-specific SPARQL extensions.
Geometry data can be stored as orageo:WKTLiteral, ogc:wktLiteral, or
ogc:gmlLiteral typed literals, and geometry data can be queried using several query
functions for spatial operations. Spatial indexing for increased performance is also
supported.

orageo is a built-in prefix that expands to <http://xmlns.oracle.com/rdf/geo/>, ogc
is a built-in prefix that expands to <http://www.opengis.net/ont/geosparql#>, and
ogcf is a built-in prefix that expands to <http://www.opengis.net/def/function/
geosparql>.

• OGC GeoSPARQL Support

• Representing Spatial Data in RDF

• Validating Geometries

• Indexing Spatial Data

• Querying Spatial Data

• Using Long Literals with GeoSPARQL Queries

1.6.11.1 OGC GeoSPARQL Support
RDF Semantic Graph supports the following conformance classes for the OGC
GeoSPARQL standard (http://www.opengeospatial.org/standards/geosparql)
using well-known text (WKT) serialization and the Simple Features relation family.

• Core

• Topology Vocabulary Extension (Simple Features)

• Geometry Extension (WKT, 1.2.0)

• Geometry Topology Extension (Simple Features, WKT, 1.2.0)

• RDFS Entailment Extension (Simple Features, WKT, 1.2.0)

Specifics for representing and querying spatial data using GeoSPARQL are covered in
sections that follow this one.

1.6.11.2 Representing Spatial Data in RDF
Spatial geometries can be represented in RDF as orageo:WKTLiteral,
ogc:wktLiteral, or ogc:gmlLiteral typed literals.

Example 1-80    Spatial Point Geometry Represented as orageo:WKTLiteral

The following example shows the orageo:WKTLiteral encoding for a simple point
geometry.
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"Point(-83.4 34.3)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>

Example 1-81    Spatial Point Geometry Represented as ogc:wktLiteral

The following example shows the ogc:wktLiteral encoding for the same point as in
the preceding example.

"Point(-83.4 34.3)"^^<http://www.opengis.net/ont/geosparql#wktLiteral>

Both orageo:WKTLiteral and ogc:wktLiteral encodings consist of an optional spatial
reference system URI, followed by a Well-Known Text (WKT) string that encodes a
geometry value. The spatial reference system URI and the WKT string should be
separated by a whitespace character. (In this document the term geometry literal is
used to refer to both orageo:WKTLiteral and ogc:wktLiteral typed literals.)

Supported spatial reference system URIs have the following form <http://
www.opengis.net/def/crs/EPSG/0/{srid}>, where {srid} is a valid spatial reference
system ID defined by the European Petroleum Survey Group (EPSG). For URIs that
are not in the EPSG Geodetic Parameter Dataset, the spatial reference system URIs
used have the form <http://xmlns.oracle.com/rdf/geo/srid/{srid}>., where
{srid} is a valid spatial reference system ID from Oracle Spatial and Graph. If a
geometry literal value does not include a spatial reference system URI, then the
default spatial reference system, WGS84 Longitude-Latitude (URI <http://
www.opengis.net/def/crs/OGC/1.3/CRS84>), is used. The same default spatial
reference system is used when geometry literal values are encountered in a query
string.

Example 1-82    Spatial Point Geometry Represented as ogc:gmlLiteral

The following example shows the ogc:gmlLiteral encoding for a point geometry.

"<gml:Point srsName=\"urn:ogc:def:crs:EPSG::8307\" xmlns:gml=\"http://
www.opengis.net/gml\"><gml:posList srsDimension=\"2\">-83.4 34.3</gml:posList></
gml:Point>"^^<http://www.opengis.net/ont/geosparql#gmlLiteral>

ogc:gmlLiteral encodings consist of a valid element from the GML schema that
implements a subtype of GM_Object. In contrast to WKT literals, A GML encoding
explicitly includes spatial reference system information, so a spatial reference system
URI prefix is not needed.

Several geometry types can be represented as geometry literal values, including point,
linestring, polygon, polyhedral surface, triangle, TIN, multipoint, multi-linestring,
multipolygon, and geometry collection. Up to 500,000 vertices per geometry are
supported for two-dimensional geometries.

Example 1-83    Spatial Data Encoded Using orageo:WKTLiteral Values

The following example shows some RDF spatial data (in N-triple format) encoded
using orageo:WKTLiteral values. In this example, the first two geometries (in lot1) use
the default coordinate system (SRID 8307), but the other two geometries (in lot2)
specify SRID 8265.

# spatial data for lot1 using the default WGS84 Longitude-Latitude spatial reference 
system
<urn:lot1> <urn:hasExactGeometry> "Polygon((-83.6 34.1, -83.6 34.5, -83.2 34.5, 
-83.2 34.1, -83.6 34.1))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral> .
<urn:lot1> <urn:hasPointGeometry> "Point(-83.4 34.3)"^^<http://
xmlns.oracle.com/rdf/geo/WKTLiteral> .
# spatial data for lot2 using the NAD83 Longitude-Latitude spatial reference system
<urn:lot2> <urn:hasExactGeometry> "<http://xmlns.oracle.com/rdf/geo/srid/8265> 
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Polygon((-83.6  34.1, -83.6 34.3, -83.4 34.3, -83.4 34.1, -83.6 34.1))"^^<http://
xmlns.oracle.com/rdf/geo/WKTLiteral> .
<urn:lot2> <urn:hasPointGeometry> "<http://xmlns.oracle.com/rdf/geo/srid/8265> 
Point(-83.5 34.2)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral> .

For more information, see the chapter about coordinate systems (spatial reference
systems) in Oracle Spatial and Graph Developer's Guide. See also the material about
the WKT geometry representation in the Open Geospatial Consortium (OGC) Simple
Features document, available at: http://www.opengeospatial.org/standards/sfa

1.6.11.3 Validating Geometries
Before manipulating spatial data, you should check that there are no invalid geometry
literals stored in your RDF model. The procedure 
SEM_APIS.VALIDATE_GEOMETRIES allows verifying geometries in an RDF model.
The geometries are validated using an input SRID and tolerance value. (SRID and
tolerance are explained in Indexing Spatial Data.)

If there are invalid geometries, a table with name {model_name}_IVG$, is created in
the user schema, where {model_name} is the name of the RDF model specified. Such
table contains, for each invalid geometry literal, the value_id of the geometry literal in
MDSY.RDF_VALUE$ table, the error message explaining the reason the geometry is
not valid and a corrected geometry literal if the geometry can be rectified. For more
information about geometry validation, see the reference information for the Oracle
Spatial and Graph subprograms 
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT and 
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT.

Example 1-84    Validating Geometries in a Model

The following example validates a model m, using SRID=8307 and tolerance=0.1.

-- Validate
EXECUTE sem_apis.validate_geometries(model_name=>'m',SRID=>8307,tolerance=>0.1);
-- Check for invalid geometries
SELECT original_vid, error_msg, corrected_wkt_literal FROM M_IVG$;

1.6.11.4 Indexing Spatial Data
Before you can use any of the SPARQL extension functions (introduced in Querying
Spatial Data) to query spatial data, you must create a spatial index on the RDF
network by calling the SEM_APIS.ADD_DATATYPE_INDEX procedure.

When you create the spatial index, you must specify the following information:

• SRID - The ID for the spatial reference system in which to create the spatial index.
Any valid spatial reference system ID from Oracle Spatial and Graph can be used
as an SRID value.

• TOLERANCE – The tolerance value for the spatial index. Tolerance is a positive
number indicating how close together two points must be to be considered the
same point. The units for this value are determined by the default units for the
SRID used (for example, meters for WGS84 Long-Lat). Tolerance is explained in
detail in Oracle Spatial and Graph Developer's Guide.

• DIMENSIONS - A text string encoding dimension information for the spatial index.
Each dimension is represented by a sequence of three comma-separated values:
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name, minimum value, and maximum value. Each dimension is enclosed in
parentheses, and the set of dimensions is enclosed by an outer parenthesis.

Example 1-85    Adding a Spatial Data Type Index on RDF Data

Example 1-85 adds a spatial data type index on the RDF network, specifying the
WGS84 Longitude-Latitude spatial reference system, a tolerance value of 10 meters,
and the recommended dimensions for the indexing of spatial data that uses this
coordinate system. The TOLERANCE, SRID, and DIMENSIONS keywords are case
sensitive, and creating a data type index for <http://xmlns.oracle.com/rdf/geo/
WKTLiteral> will also index <http://www.opengis.net/ont/geosparql#wktLiteral>
geometry literals, and vice versa (that is, creating a data type index for <http://
www.opengis.net/ont/geosparql#wktLiteral> will also index <http://
xmlns.oracle.com/rdf/geo/WKTLiteral> geometry literals).

EXECUTE sem_apis.add_datatype_index('http://xmlns.oracle.com/rdf/geo/WKTLiteral',  
options=>'TOLERANCE=10 SRID=8307 DIMENSIONS=((LONGITUDE,-180,180) 
(LATITUDE,-90,90))');

No more than one spatial data type index is supported for an RDF network. Geometry
literal values stored in the RDF network are automatically normalized to the spatial
reference system used for the index, so a single spatial index can simultaneously
support geometry literal values from different spatial reference systems. This
coordinate transformation is done transparently for indexing and spatial computations.
When geometry literal values are returned from a SEM_MATCH query, the original,
untransformed geometry is returned.

For more information about spatial indexing, see the chapter about indexing and
querying spatial data in Oracle Spatial and Graph Developer's Guide.

1.6.11.5 Querying Spatial Data
Several SPARQL extension functions are available for performing spatial queries in
SEM_MATCH. For example, for spatial RDF data, you can find the area and perimeter
(length) of a geometry, the distance between two geometries, and the centroid and the
minimum bounding rectangle (MBR) of a geometry, and you can check various
topological relationships between geometries.

SEM_MATCH Support for Spatial Queries contains reference and usage information
about the available functions, grouped into two categories:

• GeoSPARQL functions

• Oracle-specific functions

1.6.11.6 Using Long Literals with GeoSPARQL Queries
Geometry literals can become very long, which make the use of CLOBs necessary to
represent them. CLOB constants cannot be used directly in a SEM_MATCH query.
However, a user-defined SPARQL function can be used to bind CLOB constants into
SEM_MATCH queries.

The following example does this by using a temporary table.

Example 1-86    Binding a CLOB Constant into a SPARQL Query

conn rdfuser/<password>;
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-- Create temporary table
create global temporary table local_value$(
 VALUE_TYPE      VARCHAR2(10),
 VALUE_NAME     VARCHAR2(4000),
 LITERAL_TYPE     VARCHAR2(1000),
 LANGUAGE_TYPE     VARCHAR2(80),
 LONG_VALUE      CLOB)
on commit preserve rows;

-- Create user-defined function to transform a CLOB into an RDF term
CREATE OR REPLACE FUNCTION myGetClobTerm
RETURN MDSYS.SDO_RDF_TERM
AS
  term         SDO_RDF_TERM;
BEGIN
  select sdo_rdf_term(
      value_type,
      value_name,
      literal_type,
      language_type,
      long_value)
  into term
  from local_value$
  where rownum < 2;

  RETURN term;
END;
/

-- Insert a row with CLOB geometry
insert into local_value$
(value_type,value_name,literal_type,language_type,long_value)
values ('LIT','','http://www.opengis.net/ont/
geosparql#wktLiteral','','Some_CLOB_WKT');

-- Use the CLOB constant in a SEM_MATCH query
SELECT cdist
FROM table(sem_match(
'{ ?cdist ogc:asWKT ?cgeom 
   FILTER (
     orageo:withinDistance(?cgeom, oraextf:myGetClobTerm(), 200, "M")) }'
,sem_models('gov_all_vm')
,null, null,null, null, ' ALLOW_DUP=T '));

1.6.12 Flashback Query Support
You can perform SEM_MATCH queries that return past data using Flashback Query.
A TIMESTAMP or a System Change Number (SCN) value is passed to SEM_MATCH
through the AS_OF hint. The AS_OF hint can have one of the following forms:

• AS_OF[TIMESTAMP,<TIMESTAMP_VALUE>], where <TIMESTAMP_VALUE> is a valid
timestamp string with format 'YYYY/MM/DD HH24:MI:SS.FF'.

• AS_OF[SCN,<SCN_VALUE>], where <SCN_VALUE> is a valid SCN.
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The AS_OF hint is internally transformed to perform a Flashback Query (SELECT AS
OF) against the queried table or view containing triples of the specified model. This
allows you to query the model as it existed in a prior time. For this feature to work, the
invoker needs a flashback privilege on the queried metadata table or view
(MDSYS.RDFM_model-name view for native models, MDSYS.SEMU_virtual-model-
name and MDSYS.SEMV_virtual-model-name for virtual models, and underlying
relational tables for RDF view models). For example: grant flashback on
MDSYS.RDFM_FAMILY to rdfuser

Restrictions on Using Flashback Query with RDF Data

Adding or removing a partition from a partitioned table disables Flashback Query for
previous versions of the partitioned table. As a consequence, creating or dropping a
native RDF model or creating or dropping an entailment will disable Flashback Query
for previous versions of all native RDF models in a semantic network. Therefore, be
sure to control such operations when using Flashback Query in a semantic network.

Example 1-87    Flashback Query Using TIMESTAMP

The following example shows the use of the AS_OF clause defining a TIMESTAMP.

SELECT x, name
  FROM TABLE(SEM_MATCH(
    '{ ?x :name ?name }',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,null,' AS_OF=[TIMESTAMP,2016/05/02 13:06:03.979546]'));

Example 1-88    Flashback Query Using SCN

The following example shows the use of the AS_OF clause specifying an SCN.

SELECT x, name
  FROM TABLE(SEM_MATCH(
    '{ ?x :name ?name }',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,null,' AS_OF=[SCN,1429849]'));

1.6.13 Best Practices for Query Performance
This section describes some recommended practices for using the SEM_MATCH table
function to query semantic data. It includes the following subsections:

• FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time

• Function-Based Indexes for FILTER Constructs Involving Typed Literals

• FILTER Constructs Involving Relational Expressions

• Optimizer Statistics and Dynamic Sampling

• Multi-Partition Queries

• Compression on Systems with OLTP Index Compression

• Unbounded Property Path Expressions

• Nested Loop Pushdown for Property Paths
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• Grouping and Aggregation

• Use of Bind Variables to Reduce Compilation Time

• Non-Null Expression Hints

1.6.13.1 FILTER Constructs Involving xsd:dateTime, xsd:date, and xsd:time
By default, SEM_MATCH complies with the XML Schema standard for comparison of
xsd:date, xsd:time, and xsd:dateTime values. According to this standard, when
comparing two calendar values c1 and c2 where c1 has an explicitly specified time
zone and c2 does not have a specified time zone, c2 is converted into the interval
[c2-14:00, c2+14:00]. If c2-14:00 <= c1 <= c2+14:00, then the comparison is undefined
and will always evaluate to false. If c1 is outside this interval, then the comparison is
defined.

However, the extra logic required to evaluate such comparisons (value with a time
zone and value without a time zone) can significantly slow down queries with FILTER
constructs that involve calendar values. For improved query performance, you can
disable this extra logic by specifying FAST_DATE_FILTER=T in the options parameter of
the SEM_MATCH table function. When FAST_DATE_FILTER=T is specified, all calendar
values without time zones are assumed to be in Greenwich Mean Time (GMT).

Note that using FAST_DATE_FILTER=T does not affect query correctness when either (1)
all calendar values in the data set have a time zone or (2) all calendar values in the
data set do not have a time zone.

1.6.13.2 Function-Based Indexes for FILTER Constructs Involving Typed
Literals

The evaluation of SEM_MATCH queries involving the FILTER construct often requires
executing one or more SQL functions against the RDF_VALUE$ table. For example,
the filter (?x < "1929-11-16Z"^^xsd:date) invokes the 
SEM_APIS.GETV$DATETZVAL function.

Function-based indexes can be used to improve the performance of queries that
contain a filter condition involving a typed literal. For example, an xsd:date function-
based index may speed up evaluation of the filter (?x < "1929-11-16Z"^^xsd:date).

Convenient interfaces are provided for creating, altering, and dropping these function-
based indexes. For more information, see Using Data Type Indexes.

Note, however, that the existence of these function-based indexes on the
MDSYS.RDF_VALUE$ table can significantly slow down bulk load operations. In many
cases it may be faster to drop the indexes, perform the bulk load, and then re-create
the indexes, as opposed to doing the bulk load with the indexes in place.

1.6.13.3 FILTER Constructs Involving Relational Expressions
The following recommendations apply to FILTER constructs involving relational
expressions:

• The sameCanonTerm extension function is the most efficient way to compare two
RDF terms for equality because it allows an id-based comparison in all cases.

• When using standard SPARQL features, the sameTerm built-in function is more
efficient than using = or != when comparing two variables in a FILTER clause, so
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(for example) use sameTerm(?a, ?b) instead of (?a = ?b) and use (!sameTerm(?
a, ?b)) instead of (?a != ?b) whenever possible.

• When comparing values in FILTER expressions, you may get better performance
by reducing the use of negation. For example, it is more efficient to evaluate (?x
<= "10"^^xsd:int) than it is to evaluate the expression (!(?x >
"10"^^xsd:int)).

1.6.13.4 Optimizer Statistics and Dynamic Sampling
Having sufficient statistics for the query optimizer is critical for good query
performance. In general, you should ensure that you have gathered basic statistics for
the semantic network using the SEM_PERF.GATHER_STATS procedure (described
in SEM_PERF Package Subprograms).

Due to the inherent flexibility of the RDF data model, static information may not
produce optimal execution plans for SEM_MATCH queries. Dynamic sampling can
often produce much better query execution plans. Dynamic sampling levels can be set
at the session or system level using the optimizer_dynamic_sampling parameter, and
at the individual query level using the dynamic_sampling(level) SQL query hint. In
general, it is good to experiment with dynamic sampling levels between 3 and 6. For
information about estimating statistics with dynamic sampling, see Oracle Database
SQL Tuning Guide.

Example 1-89 uses a SQL hint for a dynamic sampling level of 6.

Example 1-89    SQL Hint for Dynamic Sampling

SELECT /*+ DYNAMIC_SAMPLING(6) */ x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . 
      ?x rdf:type :Male . 
      ?x :birthDate ?bd }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null, null, '' ));

1.6.13.5 Multi-Partition Queries
The following recommendations apply to the use of multiple semantic models,
semantic models plus entailments, and virtual models:

• If you execute SEM_MATCH queries against multiple semantic models or against
semantic models plus entailments, you can probably improve query performance if
you create a virtual model (see Virtual Models) that contains all the models and
entailments you are querying and then query this single virtual model.

• Use the ALLOW_DUP=T query option. If you do not use this option, then an
expensive (in terms of processing) duplicate-elimination step is required during
query processing, in order to maintain set semantics for RDF data. However, if you
use this option, the duplicate-elimination step is not performed, and this results in
significant performance gains.
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1.6.13.6 Compression on Systems with OLTP Index Compression
On systems where OLTP index compression is supported (such as Exadata). you can
take advantage of the feature to improve the compression ratio for some of the B-tree
indexes used by the semantic network.

For example, a DBA can use the following command to change the compression
scheme on the MDSYS.RDF_VAL_NAMETYLITLNG_IDX index from prefix
compression to OLTP index compression:

SQL> alter index mdsys.RDF_VAL_NAMETYLITLNG_IDX rebuild compress for oltp high;

1.6.13.7 Unbounded Property Path Expressions
A depth-limited search should be used for + and * property path operators whenever
possible. The depth-limited implementation for * and + is likely to significantly
outperform the CONNECT BY-based implementation in large and/or highly connected
graphs. A depth limit of 10 is used by default. For a given graph, depth limits larger
than the graph's diameter are not useful. See Property Paths for more information on
setting depth limits.

A backward chaining style inference using rdfs:subClassOf+ for ontologies with very
deep class hierarchies may be an exception to this rule. In such cases, unbounded
CONNECT BY-based evaluations may perform better than depth-limited evaluations
with very high depth limits (for example, 50).

1.6.13.8 Nested Loop Pushdown for Property Paths
If an unbounded CONNECT BY evaluation is performed for a property path, and if the
subject of the property path triple pattern is a variable, a CONNECT BY WITHOUT
FILTERING operation will most likely be used. If this subject variable is only bound to
a small number of values during query execution, a nested loop strategy (see Nested
Loop Pushdown with Overloaded Service) could be a good option to run the query. In
this case, the property path can be pushed down into an overloaded SERVICE clause
and the OVERLOADED_NL=T hint can be used.

For example, consider the following query where there is an unbounded property path
search { ?s :hasManager+ ?x }, but the triple { ?s :ename "ADAMS" } only has a
small number of possible values for ?s.

select s, x
from table(sem_match(
'PREFIX : <http://scott-hr.org#>
 SELECT *
 WHERE {
   ?s :ename "ADAMS" .
   ?s :hasManager+ ?x .
 }',
sem_models('scott_hr_data'),
null,null,null,null,'  ALL_MAX_PP_DEPTH(0) '));
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The query can be transformed to force the nested-loop strategy. Notice that the model
specified in the SERVICE graph is the same as the model specified in the
SEM_MATCH call.

select s, x
from table(sem_match(
'PREFIX : <http://scott-hr.org#>
 SELECT *
 WHERE {
   ?s :ename "ADAMS" .
   service oram:scott_hr_data { ?s :hasManager+ ?x . }
 }',
sem_models('scott_hr_data'),
null,null,null,null,'  ALL_MAX_PP_DEPTH(0) OVERLOADED_NL=T '));

With this nested-loop strategy, { ?s :hasManager_ ?x } is evaluated once for each
value of ?s, and in each evaluation, a constant value is substituted for ?s. This
constant in the subject position allows a CONNECT BY WITH FILTERING operation,
which usually provides a substantial performance improvement.

1.6.13.9 Grouping and Aggregation
MIN, MAX and GROUP_CONCAT aggregates require special logic to fully capture SPARQL
semantics for input of non-uniform type (for example, MAX(?x)). For certain cases
where a uniform input type can be determined at compile time (for example, MAX(STR(?
x)) – plain literal input), optimizations for built-in SQL aggregates can be used. Such
optimizations generally give an order of magnitude increase in performance. The
following cases are optimized:

• MIN/MAX(<plain literal>)

• MIN/MAX(<numeric>)

• MIN/MAX(<dateTime>)

• GROUP_CONCAT(<plain literal>)

Example 1-90 uses MIN/MAX(<numeric>) optimizations.

Example 1-90    Aggregate Optimizations

SELECT dept, minSal, maxSal
  FROM TABLE(SEM_MATCH(
    'SELECT ?dept (MIN(xsd:decimal(?sal)) AS ?minSal) (MAX(xsd:decimal(?sal)) AS ?
maxSal)
     WHERE
       {?x :salary ?y . 
        ?x :department ?dept }
     GROUP BY ?dept',
    SEM_Models('hr_data'),
    null, null, null, null, '' ));

1.6.13.10 Use of Bind Variables to Reduce Compilation Time
For some queries, query compilation can be more expensive than query execution,
which can limit throughput on workloads of small queries. If the queries in your
workload differ only in the constants used, then session context-based bind variables
can be used to skip the compilation step.
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The following example shows how to use a session context in combination with a user-
defined SPARQL function to compile a SEM_MATCH query once and then run it with
different constants. The basic idea is to create a user-defined function that reads an
RDF term value from the session context and returns it. A SEM_MATCH query with
this function will read the RDF term value at run time; so when the session context
variable changes, the same exact SEM_MATCH query will see a different value.

conn / as sysdba;
grant create any context to testuser;

conn testuser/testuser;

create or replace package MY_CTXT_PKG as  
  procedure set_attribute(name varchar2, value varchar2);  
  function get_attribute(name varchar2) return varchar2;  
end MY_CTXT_PKG;  
/

create or replace package body MY_CTXT_PKG as  
  procedure set_attribute(  
    name varchar2,  
    value varchar2  
  ) as  
  begin  
    dbms_session.set_context(namespace => 'MY_CTXT',  
                             attribute => name,  
                             value     => value );
  end;  

  function get_attribute(  
    name varchar2  
  ) return varchar2 as  
  begin  
    return sys_context('MY_CTXT', name);  
  end;  
end MY_CTXT_PKG;  
/

create or replace function myCtxFunc(  
  params in MDSYS.SDO_RDF_TERM_LIST  
) return MDSYS.SDO_RDF_TERM  
as  
  name varchar2(4000);  
  arg  MDSYS.SDO_RDF_TERM;  
begin  
  arg := params(1);  
  name := arg.value_name;  
  return MDSYS.SDO_RDF_TERM(my_ctxt_pkg.get_attribute(name));  
end;  
/  

CREATE OR REPLACE CONTEXT MY_CTXT using TESTUSER.MY_CTXT_PKG;

-- Set a value
exec MY_CTXT_PKG.set_attribute('value','<http://www.example.org/family/
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Martha>');

-- Query using the function
-- Note the use of HINT0={ NON_NULL } to allow the most efficient join
SELECT s, p, o
  FROM TABLE(SEM_MATCH(
    'SELECT ?s ?p ?o
     WHERE {
       BIND (oraextf:myCtxFunc("value") # HINT0={ NON_NULL } 
             AS ?s)
       ?s ?p ?o }',
    SEM_Models('family'),
    null,
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

-- Set another value
exec MY_CTXT_PKG.set_attribute('value','<http://www.example.org/family/
Sammy>');

-- Now the same query runs for Sammy without recompiling
SELECT s, p, o
  FROM TABLE(SEM_MATCH(
    'SELECT ?s ?p ?o
     WHERE {
       BIND (oraextf:myCtxFunc("value") # HINT0={ NON_NULL } 
             AS ?s)
       ?s ?p ?o }',
    SEM_Models('family'),
    null,
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));

1.6.13.11 Non-Null Expression Hints
When performing a join of several graph patterns with common variables that can be
unbound, a more complex join condition is needed to handle null values to avoid
performance degradation. Unbound values can be introduced through SELECT
expressions, binds, OPTIONAL clauses, and unions. In many cases, SELECT
expressions are not expected to produce NULL values. In such cases, query
performance can be substantially improved through use of an inline
HINT0={ NON_NULL } hint to mark a specific SELECT expression as definitely non-
null or through use of a DISABLE_NULL_EXPR_JOIN query option to signify that all
SELECT expressions produce only non-null values.

The following example includes the global DISABLE_NULL_EXPR_JOIN hint to signify
that variable ?fulltitle is always bound on both sides of the join. (See also Inline
Query Optimizer Hints.)

SELECT s, t
  FROM TABLE(SEM_MATCH(
    'SELECT * WHERE {
       { SELECT ?s (CONCAT(?title, ". ", ?fullname) AS ?fulltitle)
         WHERE { ?s :fullname ?fullname .
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                 ?s :title ?title }
       }
       { SELECT ?t (CONCAT(?title, ". ", ?fname, " ", ?lname) AS ?
fulltitle)
         WHERE { 
         ?t :fname ?fname .
         ?t :lname ?lname . 
         ?t :title ?title } 
       } 
     }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null,
    null,
    ' DISABLE_NULL_EXPR_JOIN '));

1.6.14 Special Considerations When Using SEM_MATCH
The following considerations apply to SPARQL queries executed by RDF Semantic
Graph using SEM_MATCH:

• Value assignment

– A compile-time error is raised when undefined variables are referenced in the
source of a value assignment.

• Grouping and aggregation

– Non-grouping variables (query variables not used for grouping and therefore
not valid for projection) cannot be reused as a target for value assignment.

– Non-numeric values are ignored by the AVG and SUM aggregates.

– By default, SEM_MATCH returns no rows for an aggregate query with a graph
pattern that fails to match. The W3C specification requires a single, null row
for this case. W3C-compliant behavior can be obtained with the
STRICT_AGG_CARD=T query option for a small performance penalty.

• ORDER BY

– When using SPARQL ORDER BY in SEM_MATCH, the containing SQL query
should be ordered by SEM$ROWNUM to ensure that the desired ordering is
maintained through any enclosing SQL blocks.

• Numeric computations

– The native Oracle NUMBER type is used internally for all arithmetic
operations, and the results of all arithmetic operations are serialized as
xsd:decimal. Note that the native Oracle NUMBER type is more precise than
both BINARY_FLOAT and BINARY_DOUBLE. See Oracle Database SQL
Language Reference for more information on the NUMBER built-in data type.

– Division by zero causes a runtime error instead of producing an unbound
value.

• Negation

– EXISTS and NOT EXISTS filters that reference potentially unbound variables
are not supported in the following contexts:
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* Non-aliased expressions in GROUP BY

* Input to aggregates

* Expressions in ORDER BY

* FILTER expressions within OPTIONAL graph patterns that also reference
variables that do not appear inside of the OPTIONAL graph pattern

The first three cases can be realized by first assigning the result of the
EXISTS or NOT EXISTS filter to a variable using a BIND clause or SELECT
expression.

These restrictions do not apply to EXISTS and NOT EXISTS filters that only
reference definitely bound variables.

• Blank nodes

– Blank nodes are not supported within graph patterns.

– The BNODE(literal) function returns the same blank node value every time it
is called with the same literal argument.

• Property paths

– Unbounded operators + and * use a 10-hop depth limit by default for
performance reasons. This behavior can be changed to a truly unbounded
search by setting a depth limit of 0. See Property Paths for details.

• Long literals (CLOBs)

– SPARQL functions and aggregates do not support long literals by default.

– Specifying the CLOB_EXP_SUPPORT=T query option enables long literal support
for the following SPARQL functions: IF, COALESCE, STRLANG, STRDT,
SUBSTR, STRBEFORE, STRAFTER, CONTAINS, STRLEN, STRSTARTS,
STRENDS.

– Specifying the CLOB_AGG_SUPPORT=T query option enables long literal support
for the following aggregates: MIN, MAX, SAMPLE, GROUP_CONCAT.

• Canonicalization of RDF literals

– By default, RDF literals returned from SPARQL functions and constant RDF
literals used in value assignment statements (BIND, SELECT expressions,
GROUP BY expressions) are canonicalized. This behavior is consistent with
the SPARQL 1.1 D-Entailment Regime.

– Canonicalization can be disabled with the PROJ_EXACT_VALUES=T query option.

1.7 Using the SEM_APIS.SPARQL_TO_SQL Function to
Query Semantic Data

You can use the SEM_APIS.SPARQL_TO_SQL function as an alternative to the
SEM_MATCH table function to query semantic data.

The SEM_APIS.SPARQL_TO_SQL function is provided as an alternative to the
SEM_MATCH table function. It can be used by application developers to obtain the
SQL translation for a SPARQL query. This is the same SQL translation that would be
executed by SEM_MATCH. The resulting SQL translation can then be executed in the
same way as any other SQL string (for example, with EXECUTE IMMEDIATE in
PL/SQL applications or with JDBC in Java applications).
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The first (sparql_query) parameter to SEM_APIS.SPARQL_TO_SQL specifies a
SPARQL query string and corresponds to the query argument of SEM_MATCH. In this
case, however, sparql_query is of type CLOB, which allows query strings longer than
4000 bytes (or 32K bytes with long VARCHAR enabled). All other parameters are
exactly equivalent to the same arguments of SEM_MATCH (described in Using the
SEM_MATCH Table Function to Query Semantic Data). The SQL query string
returned by SEM_APIS.SPARQL_TO_SQL will produce the same return columns as
an execution of SEM_MATCH with the same arguments.

The following PL/SQL fragment is an example of using the 
SEM_APIS.SPARQL_TO_SQL function.

DECLARE
  c           sys_refcursor;
  sparql_stmt clob;
  sql_stmt    clob;
  x_value     varchar2(4000);
BEGIN
  sparql_stmt := 
    'SELECT ?x
     WHERE {
       ?x :grandParentOf ?y . 
       ?x rdf:type :Male
     }';

  sql_stmt := sem_apis.sparql_to_sql(
                sparql_stmt,
                sem_models('family'),
                SEM_Rulebases('RDFS','family_rb'),
                SEM_ALIASES(SEM_ALIAS('','http://www.example.org/
family/')),
                null,
                ' PLUS_RDFT=VC ');

  open c for 'select x$rdfterm from(' || sql_stmt || ')';
  loop
    fetch c into x_value;
    exit when c%NOTFOUND;
    
    dbms_output.put_line('x_value: ' || x_value);    
  end loop;
  close c;

END;
/

• Using Bind Variables with SEM_APIS.SPARQL_TO_SQL

• SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared

1.7.1 Using Bind Variables with SEM_APIS.SPARQL_TO_SQL
The SEM_APIS.SPARQL_TO_SQL function allows the use of PL/SQL and JDBC bind
variables. This is possible because the SQL translation returned from 
SEM_APIS.SPARQL_TO_SQL does not involve an ANYTYPE table function
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invocation. The basic strategy is to transform simple SPARQL BIND clauses into either
JDBC or PL/SQL bind variables when the USE_BIND_VAR=PLSQL or USE_BIND_VAR=JDBC
query option is specified. A simple SPARQL BIND clause is one with the form BIND
(<constant> AS ?var).

With the bind variable option, the SQL translation will contain two bind variables for
each transformed SPARQL query variable: one for the value ID, and one for the RDF
term string. An RDF term value can be substituted for a SPARQL query variable by
specifying the value ID (from MDSYS.RDF_VALUE$ table) as the first bind value and
the RDF term string as the second bind value. The value ID for a bound-in RDF term is
required for performance reasons. The typical workflow would be to look up the value
ID for an RDF term from the MDSYS.RDF_VALUE$ table (or with
SEM_APIS.RES2VID) and then bind the ID and RDF term into the translated SQL.

Multiple query variables can be transformed into bind variables in a single query. In
such cases, bind variables in the SQL translation will appear in the same order as the
SPARQL BIND clauses appear in the SPARQL query string. That is, the (id, term) pair
for the first BIND clause should be bound first, and the (id, term) pair for the second
BIND clause should be bound second.

The following example shows the use of bind variables for 
SEM_APIS.SPARQL_TO_SQL from a PL/SQL block. A dummy bind variable ?n is
declared..

DECLARE
  sparql_stmt clob;
  sql_stmt    clob;
  cur         sys_refcursor;
  vid         number;
  term        varchar2(4000);
  c_val       varchar2(4000);
BEGIN
  -- Add a dummy bind clause in the SPARQL statement
  sparql_stmt := 'SELECT ?c WHERE { 
                  BIND("" as ?s)
                  ?s :parentOf ?c }';
  -- Get the SQL translation for SPARQL statement
  sql_stmt := sem_apis.sparql_to_sql(
                sparql_stmt,
                sem_models('family'),
                SEM_Rulebases('RDFS','family_rb'),
                SEM_ALIASES(SEM_ALIAS('','http://www.example.org/
family/')),
                null,' USE_BIND_VAR=PLSQL PLUS_RDFT=VC ');

  -- execute with <http://www.example.org/family/Martha>
  term := '<http://www.example.org/family/Martha>';
  vid := sem_apis.res2vid('MDSYS.RDF_VALUE$',term);

  dbms_output.put_line(chr(10)||'?s='||term);
  open cur for 'select c$rdfterm from('|| sql_stmt || ')' using vid,term;
  loop
    fetch cur into c_val;
    exit when cur%NOTFOUND;
    dbms_output.put_line('|-->?c='||c_val);
  end loop;
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  close cur;

  -- execute with <http://www.example.org/family/Sammy>
  term := '<http://www.example.org/family/Sammy>';
  vid := sem_apis.res2vid('MDSYS.RDF_VALUE$',term);

  dbms_output.put_line(chr(10)||'?s='||term);
  open cur for 'select c$rdfterm from('|| sql_stmt || ')' using vid,term;
  loop
    fetch cur into c_val;
    exit when cur%NOTFOUND;
    dbms_output.put_line('|-->?c='||c_val);
  end loop;
  close cur;

END;
/

The following example the use of bind variables from Java
forSEM_APIS.SPARQL_TO_SQL. In this case, the hint USE_BIND_VAR=JDBC is used.

public static void sparqlToSqlTest() {

    try {
        // Get connection
        Connection conn=DriverManager.getConnection( 
                "jdbc:oracle:thin:@localhost:
1521:orcl","testuser","testuser");          

        String sparqlStmt =
            "SELECT ?c WHERE {  \n" +
            "  BIND(\"\" as ?s) \n" +
            "  ?s :parentOf ?c      \n" +
            "}";

        // Get SQL translation of SPARQL statement
        // through sem_apis.sparql_to_sql
        OracleCallableStatement ocs = 
(OracleCallableStatement)conn.prepareCall(
            "begin" +
            "  ? := " +
            "    sem_apis.sparql_to_sql('" +
            "      "+sparqlStmt+"'," +
            "      sem_models('family')," +
            "      SEM_Rulebases('RDFS','family_rb')," +
            "      SEM_ALIASES(SEM_ALIAS('','http://www.example.org/
family/')),null," +
            "  ' USE_BIND_VAR=JDBC PLUS_RDFT=VC " +
            " ',null,null);" +
            "end;");          
        ocs.registerOutParameter(1,Types.VARCHAR);
        ocs.execute();
        String sqlStmt = ocs.getString(1);
        ocs.close();
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        // Setup statement to lookup value ids
        OracleCallableStatement ocsVid = 
(OracleCallableStatement)conn.prepareCall(
            "begin" +
            "  ? := sem_apis.res2vid(?,?);" +
            "end;");          

        // Execute SQL setting values for a bind variable
        PreparedStatement stmt=conn.prepareStatement(sqlStmt);

        // lookup value id for first value
        long valueId = 0;
        String term = "<http://www.example.org/family/Martha>";
        ocsVid.registerOutParameter(1,Types.NUMERIC);
        ocsVid.setString(2,"MDSYS.RDF_VALUE$");
        ocsVid.setString(3,term);
        ocsVid.execute();
        valueId = ocsVid.getLong(1);

        stmt.setLong(1, valueId);
        stmt.setString(2, term);
        ResultSet rs=stmt.executeQuery();

        // Print results
        System.out.println("\n?s="+term);
        while(rs.next()) {
            System.out.println("|-->?c=" + rs.getString("c$rdfterm"));
        }
        rs.close();

        // execute the same query for a different URI
        // lookup value id for next value
        valueId = 0;
        term = "<http://www.example.org/family/Sammy>";
        ocsVid.registerOutParameter(1,Types.NUMERIC);
        ocsVid.setString(2,"MDSYS.RDF_VALUE$");
        ocsVid.setString(3,term);
        ocsVid.execute();
        valueId = ocsVid.getLong(1);

        stmt.setLong(1, valueId);
        stmt.setString(2, term);
        rs=stmt.executeQuery();

        // Print results
        System.out.println("\n?s="+term);
        while(rs.next()) {
            System.out.println("|-->?c=" + rs.getString("c$rdfterm"));
        }
        rs.close();

        stmt.close();
        ocsVid.close();
        conn.close(); 
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    } catch (SQLException e) {
        e.printStackTrace();
    }
}

1.7.2 SEM_MATCH and SEM_APIS.SPARQL_TO_SQL Compared
The SEM_APIS.SPARQL_TO_SQL function avoids some limitations that are inherent
in the SEM_MATCH table function due to its use of the rewritable table function
interface. Specifically, SEM_APIS.SPARQL_TO_SQL adds the following capabilities.

• SPARQL query string arguments larger than 4000 bytes (32K bytes with long
varchar support) can be used.

• The plain SQL returned from SEM_APIS.SPARQL_TO_SQL can be executed
against read-only databases.

• The plain SQL returned from SEM_APIS.SPARQL_TO_SQL can support PL/SQL
and JDBC bind variables.

SEM_MATCH, however, provides some unique capabilities that are not possible with 
SEM_APIS.SPARQL_TO_SQL..

• Support for projection optimization: If only the VAR$RDFVID column of a projected
variable is selected from the SEM_MATCH invocation, the RDF_VALUE$ join for
this variable will be avoided.

• Support for advanced features that require the procedural start-fetch-close table
function execution: SERVICE_JPDWN=T and OVERLOADED_NL=T options with SPARQL
SERVICE.

• The ability to execute queries interactively with tools like SQL*Plus.

1.8 Loading and Exporting Semantic Data
You can load semantic data into a model in the database and export that data from the
database into a staging table.

To load semantic data into a model, use one or more of the following options:

• Bulk load or append data into the semantic data store from a staging table, with
each row containing the three components -- subject, predicate, and object -- of an
RDF triple and optionally a named graph. This is explained in Bulk Loading
Semantic Data Using a Staging Table.

This is the fastest option for loading large amounts of data; however, it cannot
handle triples containing object values with more than 4000 bytes.

• Batch load using a Java client interface to load or append data from an N-Triple
format file into the semantic data store (see Batch Loading N-Triple Format
Semantic Data Using the Java API).

This option is slower than bulk loading, but it handles triples containing object
values with more than 4000 bytes. However, this option does not handle named
graphs.

• Load into the application table using SQL INSERT statements that call the
SDO_RDF_TRIPLE_S constructor, which results in the corresponding RDF triple,
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possibly including a graph name, to be inserted into the semantic data store, as
explained in Loading Semantic Data Using INSERT Statements.

This option is convenient for loading small amounts of data.

To export semantic data, that is, to retrieve semantic data from Oracle Database
where the results are in N-Triple or N-Quad format that can be stored in a staging
table, use the SQL queries described in Exporting Semantic Data.

Note:

Effective with Oracle Database Release 12.1, you can export and import a
semantic network using the full database export and import features of the
Oracle Data Pump utility, as explained in Exporting or Importing a Semantic
Network Using Oracle Data Pump.

• Bulk Loading Semantic Data Using a Staging Table

• Batch Loading N-Triple Format Semantic Data Using the Java API

• Loading Semantic Data Using INSERT Statements

• Exporting Semantic Data

• Exporting or Importing a Semantic Network Using Oracle Data Pump

• Purging Unused Values

1.8.1 Bulk Loading Semantic Data Using a Staging Table
You can load semantic data (and optionally associated non-semantic data) in bulk
using a staging table. Call the SEM_APIS.LOAD_INTO_STAGING_TABLE procedure
(described in SEM_APIS Package Subprograms) to load the data, and you can have
during the load operation to check for syntax correctness. Then, you can call the 
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure to load the data into
the semantic store from the staging table. (If the data was not parsed during the load
operation into the staging table, you must specify the PARSE keyword in the flags
parameter when you call the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
procedure.)

The following example shows the format for the staging table, including all required
columns and the required names for these columns, plus the optional
RDF$STC_graph column which must be included if one or more of the RDF triples to
be loaded include a graph name:

CREATE TABLE stage_table (
                     RDF$STC_sub varchar2(4000) not null,
                     RDF$STC_pred varchar2(4000) not null,
                     RDF$STC_obj varchar2(4000) not null,
                     RDF$STC_graph varchar2(4000)
);

If you also want to load non-semantic data, specify additional columns for the non-
semantic data in the CREATE TABLE statement. The non-semantic column names
must be different from the names of the required columns. The following example
creates the staging table with two additional columns (SOURCE and ID) for non-
semantic attributes.
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CREATE TABLE stage_table_with_extra_cols (
                     source VARCHAR2(4000),
                     id NUMBER,
                     RDF$STC_sub varchar2(4000) not null,
                     RDF$STC_pred varchar2(4000) not null,
                     RDF$STC_obj varchar2(4000) not null,
                     RDF$STC_graph varchar2(4000)
);

Note:

For either form of the CREATE TABLE statement, you may want to add the
COMPRESS clause to use table compression, which will reduce the disk
space requirements and may improve bulk-load performance.

Both the invoker and the MDSYS user must have the following privileges: SELECT
privilege on the staging table, and INSERT privilege on the application table.

See also the following:

• Loading the Staging Table

• Recording Event Traces During Bulk Loading

1.8.1.1 Loading the Staging Table
You can load semantic data into the staging table, as a preparation for loading it into
the semantic store, in several ways. Some of the common ways are the following:

• Loading N-Triple Format Data into a Staging Table Using SQL*Loader

• Loading N-Quad Format Data into a Staging Table Using an External Table

1.8.1.1.1 Loading N-Triple Format Data into a Staging Table Using SQL*Loader
You can use the SQL*Loader utility to parse and load semantic data into a staging
table. If you installed the demo files from the Oracle Database Examples media (see 
Oracle Database Examples Installation Guide), a sample control file is available
at $ORACLE_HOME/md/demo/network/rdf_demos/bulkload.ctl. You can modify and
use this file if the input data is in N-Triple format.

Objects longer than 4000 bytes cannot be loaded. If you use the sample SQL*Loader
control file, triples (rows) containing such long values will be automatically rejected and
stored in a SQL*Loader "bad" file. However, you can load these rejected rows by
inserting them into the application table using SQL INSERT statements (see Loading
Semantic Data Using INSERT Statements).

1.8.1.1.2 Loading N-Quad Format Data into a Staging Table Using an External Table
You can use an Oracle external table to load N-Quad format data (extended triple
having four components) into a staging table, as follows:

1. Call the SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE procedure to create
an external table, and then use the SQL STATEMENT ALTER TABLE to alter the
external table to include the relevant input file name or names. You must have
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READ and WRITE privileges for the directory object associated with folder
containing the input file or files.

2. After you create the external table, grant the MDSYS user SELECT and INSERT
privileges on the table.

3. Call the SEM_APIS.LOAD_INTO_STAGING_TABLE procedure to populate the
staging table.

4. After the loading is finished, issue a COMMIT statement to complete the
transaction.

Example 1-91    Using an External Table to Load a Staging Table

-- Create a source external table (note: table names are case sensitive)
BEGIN
  sem_apis.create_source_external_table(
    source_table    => 'stage_table_source'
   ,def_directory   => 'DATA_DIR'
   ,bad_file        => 'CLOBrows.bad'
   );
END;
/
grant SELECT on "stage_table_source" to MDSYS;
 
-- Use ALTER TABLE to target the appropriate file(s)
alter table "stage_table_source" location ('demo_datafile.nt');
 
-- Load the staging table (note: table names are case sensitive)
BEGIN
  sem_apis.load_into_staging_table(
    staging_table => 'STAGE_TABLE'
   ,source_table  => 'stage_table_source'
   ,input_format  => 'N-QUAD');
END;
/

Rows where the objects and graph URIs (combined) are longer than 4000 bytes will
be rejected and stored in a "bad" file. However, you can load these rejected rows by
inserting them into the application table using SQL INSERT statements (see Loading
Semantic Data Using INSERT Statements).

Example 1-91 shows the use of an external table to load a staging table.

1.8.1.2 Recording Event Traces During Bulk Loading
If a table named RDF$ET_TAB exists in the invoker's schema and if the MDSYS user
has been granted the INSERT and UPDATE privileges on this table, event traces for
some of the tasks performed during executions of the 
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE procedure will be added to the
table. You may find the content of this table useful if you ever need to report any
problems in bulk load. The RDF$ET_TAB table must be created as follows:

CREATE TABLE RDF$ET_TAB (
  proc_sid VARCHAR2(30), 
  proc_sig VARCHAR2(200),
  event_name varchar2(200),
  start_time timestamp,
  end_time timestamp,
  start_comment varchar2(1000) DEFAULT NULL,
  end_comment varchar2(1000) DEFAULT NULL
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);
GRANT INSERT, UPDATE on RDF$ET_TAB to MDSYS;

1.8.2 Batch Loading N-Triple Format Semantic Data Using the Java
API

Note:

The Java class oracle.spatial.rdf.client.BatchLoader described in this
section has been deprecated, and it does not support loading of N-Quad
data.

You are instead encouraged to use the bulk loading capabilities of the RDF
Semantic Graph support for Apache Jena, as described in Bulk Loading
Using RDF Semantic Graph Support for Apache Jena.

You can perform a batch (bulk) load operation for N-Triple format semantic data using
the Java class oracle.spatial.rdf.client.BatchLoader, which is packaged in
<ORACLE_HOME>/md/jlib/sdordf.jar. Before performing a batch load operation,
ensure that the following are true:

• The semantic data is in N-Triple format. (Several tools are available for converting
RDF/XML to N-Triple format; see the Oracle Technology Network or perform a
Web search for information about RDF/XML to N-Triple conversion.)

• Oracle Database Release 11 or later, with Oracle Spatial and Graph, is installed,
and partitioning is enabled.

• A semantic technologies network, an application table, and its corresponding
semantic model have been created in the database.

• The CLASSPATH definition includes ojdbc6.jar.

• You are using JDK version 1.5 or later. (You can use the Java version packaged
under <ORACLE_HOME>/jdk/bin.)

To run the oracle.spatial.rdf.client.BatchLoader class, use a command (on a
single command line) in the following general form (replacing the sample example
database connection information with your own connection information).

• Linux systems:

java -Ddb.user=scott -Ddb.password=password -Ddb.host=127.0.0.1 -Ddb.port=1522 -
Ddb.sid=orcl -classpath ${ORACLE_HOME}/md/jlib/sdordf.jar:${ORACLE_HOME}/
jdbc/lib/ojdbc6.jar oracle.spatial.rdf.client.BatchLoader <N-TripleFile> 
<tablename> <tablespaceName> <modelName>

• Windows systems:

java -Ddb.user=scott -Ddb.password=password -Ddb.host=127.0.0.1 -Ddb.port=1522 -
Ddb.sid=orcl -classpath %ORACLE_HOME%\md\jlib\sdordf.jar;%ORACLE_HOME%\jdbc\lib
\ojdbc6.jar oracle.spatial.rdf.client.BatchLoader <N-TripleFile> <tablename> 
<tablespaceName> <modelName>

The values for -Ddb.user and -Ddb.password must correspond either to the owner of
the model <modelName> or to a DBA user.
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By default, BatchLoader assumes there are at least two columns, a column named ID
of type NUMBER and a column named TRIPLE of type SDO_RDF_TRIPLE_S, in the
user's application table. However, you can override the default names by using the
JVM properties -DidColumn=<idColumnName> and -
DtripleColumn=<tripleColumnName>. The ID column is not required; and to prevent
BatchLoader from generating a sequence-like identifier in the ID column for each triple
inserted, specify the JVM property -DjustTriple=true.

If the application table is not empty and if you want the batch loading to be done in
append mode, specify an additional JVM property: -Dappend=true. Moreover, in
append mode you might want to choose a different starting value for ID column in
user's application table, and to accomplish this you can add the JVM property -
DstartID=<startingIntegerValue> to the command line. By default, the ID column
starts at 1 and is increased sequentially as new triples are inserted into the application
table.

To skip the first n triples in <N-TripleFile>, add the JVM property -
Dskip=<numberOfTriplesSkipped> to the command line.

To load an N-Triple file with a character set different from the default, specify the JVM
property -Dcharset=<charsetName>. For example, -Dcharset="UTF-8" will recognize
UTF-8 encoding. However, for UTF-8 characters to be stored properly in the N-Triple
file, the Oracle database must be configured to use a corresponding universal
character set, such as AL32UTF8.

The BatchLoader class supports loading an N-Triple file in compressed format. If the
<N-TripleFile> has a file extension of .zip or .jar, the file will be uncompressed and
loaded at the same time.

1.8.3 Loading Semantic Data Using INSERT Statements
To load semantic data using INSERT statements, the data should be encoded using <
> (angle brackets) for URIs, _: (underscore colon) for blank nodes, and " " (quotation
marks) for literals. Spaces are not allowed in URIs or blank nodes. Use the
SDO_RDF_TRIPLE_S constructor to insert the data, as described in Constructors for
Inserting Triples. You must have INSERT privilege on the application table.

Note:

If URIs are not encoded with < > and literals with " ", statements will still be
processed. However, the statements will take longer to load, since they will
have to be further processed to determine their VALUE_TYPE values.

The following example includes statements with URIs, a blank node, a literal, a literal
with a language tag, and a typed literal:

INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://nature.example.com/nsu/rss.rdf>',
  '<http://purl.org/rss/1.0/title>', '"Nature''s Science Update"'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu', '_:BNSEQN1001A',
  '<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>', 
  '<http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq>'));
INSERT INTO nsu_data VALUES (SDO_RDF_TRIPLE_S('nsu',
  '<http://nature.example.com/cgi-taf/dynapage.taf?file=/nature/journal/v428/n6978/index.html>',
  '<http://purl.org/dc/elements/1.1/language>', '"English"@en-GB'));
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INSERT INTO nature VALUES (SDO_RDF_TRIPLE_S('nsu', '<http://dx.doi.org/10.1038/428004b>',
  '<http://purl.org/dc/elements/1.1/date>', '"2004-03-04"^^xsd:date'));

To convert semantic XML data to INSERT statements, you can edit the sample
rss2insert.xsl XSLT file to convert all the features in the semantic data XML file.
The blank node constructor is used to insert statements with blank nodes. After editing
the XSLT, download the Xalan XSLT processor (http://xml.apache.org/xalan-j/)
and follow the installation instructions. To convert a semantic data XML file to INSERT
statements using your edited version of the rss2insert.xsl file, use a command in
the following format:

java org.apache.xalan.xslt.Process –in input.rdf -xsl rss2insert.xsl –out output.nt

• Loading Data into Named Graphs Using INSERT Statements

1.8.3.1 Loading Data into Named Graphs Using INSERT Statements
To load an RDF triple with a non-null graph name using an INSERT statement, you
must append the graph name, enclosed within angle brackets (< >), after the model
name and colon (:) separator character, as shown in the following example:

INSERT INTO articles_rdf_data VALUES ( 
  SDO_RDF_TRIPLE_S ('articles:<http://examples.com/ns#Graph1>',
    '<http://nature.example.com/Article101>',
    '<http://purl.org/dc/elements/1.1/creator>',
    '"John Smith"'));

1.8.4 Exporting Semantic Data
This section contains the following topics related to exporting semantic data, that is,
retrieving semantic data from Oracle Database where the results are in N-Triple or N-
Quad format that can be stored in a staging table.

• Retrieving Semantic Data from an Application Table

• Retrieving Semantic Data from an RDF Model

• Removing Model and Graph Information from Retrieved Blank Node Identifiers

1.8.4.1 Retrieving Semantic Data from an Application Table
Semantic data can be retrieved from an application table using the member functions
of SDO_RDF_TRIPLE_S, as shown in Example 1-92 (where the output is reformatted
for readability).

Example 1-92    Retrieving Semantic Data from an Application Table

--
-- Retrieves model-graph, subject, predicate, and object
--
SQL> SELECT a.triple.GET_MODEL() AS model_graph, a.triple.GET_SUBJECT() AS sub, 
a.triple.GET_PROPERTY() pred, a.triple.GET_OBJECT() obj FROM articles_rdf_data a;

MODEL_GRAPH
--------------------------------------------------------------------------------
SUB
--------------------------------------------------------------------------------
PRED
--------------------------------------------------------------------------------
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OBJ
--------------------------------------------------------------------------------
ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/title>
"All about XYZ"

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article2>

ARTICLES
<http://nature.example.com/Article1>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article3>

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/elements/1.1/title>
"A review of ABC"

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/elements/1.1/creator>
"Joe Bloggs"

ARTICLES
<http://nature.example.com/Article2>
<http://purl.org/dc/terms/references>
<http://nature.example.com/Article3>

7 rows selected.

1.8.4.2 Retrieving Semantic Data from an RDF Model
Semantic data can be retrieved from an RDF model using the SEM_MATCH table
function (described in Using the SEM_MATCH Table Function to Query Semantic
Data), as shown in Example 1-93.

Example 1-93    Retrieving Semantic Data from an RDF Model

--
-- Retrieves graph, subject, predicate, and object
--
SQL> select to_char(g$rdfterm) graph, to_char(x$rdfterm) sub, to_char(p$rdfterm) 
pred, y$rdfterm obj from table(sem_match('Select ?g ?x ?p ?y FROM NAMED <http://
examples.com/ns#Graph1> {GRAPH ?g {?x ?p ?
y}}',sem_models('articles'),null,null,null,null,' GRAPH_MATCH_UNNAMED=T PLUS_RDFT=T 
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'));
 
GRAPH
------------------------------------------------------------
SUB
------------------------------------------------------------
PRED
------------------------------------------------------------
OBJ
---------------------------------------------------------------------------
<http://examples.com/ns#Graph1>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb2
<http://purl.org/dc/elements/1.1/creator>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb1
 
<http://examples.com/ns#Graph1>
<http://nature.example.com/Article102>
<http://purl.org/dc/elements/1.1/creator>
_:m99g3C687474703A2F2F6578616D706C65732E636F6D2F6E73234772617068313Egmb1
 
<http://examples.com/ns#Graph1>
<http://nature.example.com/Article101>
<http://purl.org/dc/elements/1.1/creator>
"John Smith"
 
<http://nature.example.com/Article1>
<http://purl.org/dc/elements/1.1/creator>
"Jane Smith"

1.8.4.3 Removing Model and Graph Information from Retrieved Blank Node
Identifiers

Blank node identifiers retrieved during the retrieval of semantic data can be trimmed to
remove the occurrence of model and graph information using the transformations
shown in the code excerpt in Example 1-94, which are applicable to VARCHAR2 (for
example, subject component) and CLOB (for example, object component) data,
respectively.

Example 1-95 shows the results obtained after using these two transformations in 
Example 1-94 on the sub and obj columns, respectively, using the semantic data
retrieval query described in Retrieving Semantic Data from an RDF Model.

Example 1-94    Retrieving Semantic Data from an Application Table

--
-- Transformation on column "sub VARCHAR2" 
-- holding blank node identifier values
--
Select (case substr(sub,1,2) when '_:' then '_:' || substr(sub,instr(sub,'m',1,2)+1) 
else sub end) from …
--
-- Transformation on column "obj CLOB" 
-- holding blank node identifier values
--
Select (case dbms_lob.substr(obj,2,1) when '_:' then to_clob('_:' || 
substr(obj,instr(obj,'m',1,2)+1)) else obj end) from …
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Example 1-95    Results from Applying Transformations from Example 1-94

--
-- Results obtained by applying transformations on the sub and pred cols
-- 
SQL> select (case substr(sub,1,2) when '_:' then '_:' || substr(sub,instr(sub,'m',
1,2)+1) else sub end) sub, pred, (case dbms_lob.substr(obj,2,1) when '_:' then 
to_clob('_:' || substr(obj,instr(obj,'m',1,2)+1)) else obj end) obj from (select 
to_char(g$rdfterm) graph, to_char(x$rdfterm) sub, to_char(p$rdfterm) pred, y$rdfterm 
obj from table(sem_match('Select ?g ?x ?p ?y FROM NAMED <http://examples.com/
ns#Graph1> {GRAPH ?g {?x ?p ?y}}',sem_models('articles'),null,null,null,null,' 
GRAPH_MATCH_UNNAMED=T PLUS_RDFT=T ')));
 
SUB
------------------------------------------------------------
PRED
------------------------------------------------------------
OBJ
---------------------------------------------------------------------------
_:b2
<http://purl.org/dc/elements/1.1/creator>
_:b1
 
<http://nature.example.com/Article102>
<http://purl.org/dc/elements/1.1/creator>
_:b1

1.8.5 Exporting or Importing a Semantic Network Using Oracle Data
Pump

Effective with Oracle Database Release 12.1, you can export and import a semantic
network using the full database export and import features of the Oracle Data Pump
utility. The network is moved as part of the full database export or import, where the
whole database is represented in an Oracle dump (.dmp) file.

The following usage notes apply to using Data Pump to export or import a semantic
network:

• The target database for an import must have the RDF Semantic Graph software
installed, and there cannot be a pre-existing semantic network.

• Semantic networks using fine-grained access control (triple-level or resource-level
OLS or VPD) cannot be exported or imported.

• Semantic document indexes for SEM_CONTAINS (MDSYS.SEMCONTEXT index
type) and semantic indexes for SEM_RELATED (MDSYS.SEM_INDEXTYPE
index type) must be dropped before an export and re-created after an import.

• Only default privileges for semantic network objects (those that exist just after
object creation) are preserved during export and import. For example, if user A
creates semantic model M and grants SELECT on MDSYS.RDFM_M to user B,
only user A's SELECT privilege on MDSYS.RDFM_M will be present after the
import. User B will not have SELECT privilege on MDSYS.RDFM_M after the
import. Instead, user B's SELECT privilege will have to be granted again.

• The Data Pump command line option transform=oid:n must be used when
exporting or importing semantic network data. For example, use a command in the
following format:
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impdp system/<password-for-system> directory=dpump_dir dumpfile=rdf.dmp full=YES 
version=12 transform=oid:n

For Data Pump usage information and examples, see the relevant chapters in Part I of 
Oracle Database Utilities.

1.8.6 Purging Unused Values
Deletion of triples over time may lead to a subset of the values in the RDF_VALUE$
table becoming unused in any of the RDF triples or rules currently in the semantic
network. If the count of such unused values becomes large and a significant portion of
the RDF_VALUE$ table, you may want to purge the unused values using the 
SEM_APIS.PURGE_UNUSED_VALUES subprogram.

Before the purging, MDSYS must be granted SELECT privilege on application tables
for all the RDF models. This can be done directly using the GRANT command or by
using the SEM_APIS.PRIVILEGE_ON_APP_TABLES subprogram.

Event traces for tasks performed during the purge operation may be recorded into the
RDF$ET_TAB table, if present in the invoker's schema, as described in Recording
Event Traces During Bulk Loading.

The following example purges unused values from the RDF_VALUE$ table. The
example does not consider named graphs or CLOBs. It also assumes that the data
from the example in Example: Journal Article Information has been loaded.

Example 1-96    Purging Unused Values

-- Purging unused values
set numwidth 20

-- Create view to show the values actually used in the RDF model
CREATE VIEW values_used_in_model (value_id) as
  SELECT a.triple.rdf_s_id FROM articles_rdf_data a UNION
  SELECT a.triple.rdf_p_id FROM articles_rdf_data a UNION
  SELECT a.triple.rdf_c_id FROM articles_rdf_data a UNION
  SELECT a.triple.rdf_o_id FROM articles_rdf_data a;
 
View created.

-- Create views to show triples in the model
CREATE VIEW triples_in_app_table as
  SELECT a.triple.GET_SUBJECT() AS s, a.triple.GET_PROPERTY() AS p, 
a.triple.GET_OBJ_VALUE() AS o
    FROM articles_rdf_data a;
 
View created.

CREATE VIEW triples_in_rdf_model as
  SELECT s, p, o FROM TABLE ( SEM_MATCH('{?s ?p ?o}', SEM_MODELS('articles'), null, 
null, null ));
 
View created.

--
-- Content before deletion
--

-- Values in mdsys.RDF_VALUE$
CREATE TABLE values_before_deletion as select value_id from mdsys.rdf_value$;
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Table created.

-- Values used in the RDF model
CREATE TABLE used_values_before_deletion as
  SELECT * FROM values_used_in_model;
 
Table created.

-- Content of RDF model
CREATE TABLE atab_triples_before_deletion
  as select * from triples_in_app_table;
 
Table created.

CREATE TABLE model_triples_before_deletion
  as select * from triples_in_rdf_model;
 
Table created.

-- Delete some triples so that some of the values become unused
DELETE FROM articles_rdf_data a
   WHERE a.triple.GET_PROPERTY() = '<http://purl.org/dc/elements/1.1/title>'
     OR a.triple.GET_SUBJECT() = '<http://nature.example.com/Article1>';
 
5 rows deleted.

-- Content of RDF model after deletion
CREATE TABLE atab_triples_after_deletion
  as select * from triples_in_app_table;
 
Table created.

CREATE TABLE model_triples_after_deletion
  as select * from triples_in_rdf_model;
 
Table created.

-- Values that became unused in the RDF model
SELECT * from used_values_before_deletion
  MINUS
  SELECT * FROM values_used_in_model;
 
VALUE_ID
--------------------
 1399113999628774496
 4597469165946334122
 6345024408674005890
 7299961478807817799
 7995347759607176041

-- RDF_VALUE$ content, however, is unchanged
SELECT value_id from values_before_deletion
  MINUS
  select value_id from mdsys.rdf_value$;
 
no rows selected

-- Now purge the values from RDF_VALUE$ (requires that MDSYS has
-- SELECT privilege on *all* the app tables in the semantic network)
EXECUTE sem_apis.privilege_on_app_tables;
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PL/SQL procedure successfully completed.
 
EXECUTE sem_apis.purge_unused_values;
 
PL/SQL procedure successfully completed.

-- RDF_VALUE$ content is NOW changed due to the purge of unused values
SELECT value_id from values_before_deletion
  MINUS
  select value_id from mdsys.rdf_value$;
 
VALUE_ID
--------------------
 1399113999628774496
 4597469165946334122
 6345024408674005890
 7299961478807817799
 7995347759607176041

-- Content of RDF model after purge
CREATE TABLE atab_triples_after_purge
  as select * from triples_in_app_table;
 
Table created.

CREATE TABLE model_triples_after_purge
  as select * from triples_in_rdf_model;
 
Table created.

-- Compare triples present before purging of values and after purging
SELECT * from atab_triples_after_deletion
  MINUS
  SELECT * FROM atab_triples_after_purge;
 
no rows selected

SELECT * from model_triples_after_deletion
  MINUS
  SELECT * FROM model_triples_after_purge;
 
no rows selected

1.9 Using Semantic Network Indexes
Semantic network indexes are nonunique B-tree indexes that you can add, alter, and
drop for use with models and entailments in a semantic network.

You can use such indexes to tune the performance of SEM_MATCH queries on the
models and entailments in the network. As with any indexes, semantic network
indexes enable index-based access that suits your query workload. This can lead to
substantial performance benefits, such as in the following example scenarios:

• If your graph pattern is '{<John> ?p <Mary>}', you may want to have a usable
'CSP' or 'SCP' index for the target model or models and on the corresponding
entailment, if used in the query.
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• If your graph pattern is '{?x <talksTo> ?y . ?z ?p ?y}', you may want to have
a usable semantic network index on the relevant model or models and entailment,
with C as the leading key (for example, 'C' or 'CPS').

However, using semantic network indexes can affect overall performance by
increasing the time required for DML, load, and inference operations.

You can create and manage semantic network indexes using the following
subprograms:

• SEM_APIS.ADD_SEM_INDEX

• SEM_APIS.ALTER_SEM_INDEX_ON_MODEL

• SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

• SEM_APIS.DROP_SEM_INDEX

All of these subprograms have an index_code parameter, which can contain any
sequence of the following letters (without repetition): P, C, S, G, M. These letters used in
the index_code correspond to the following columns in the SEMM_* and SEMI_*
views: P_VALUE_ID, CANON_END_NODE_ID, START_NODE_ID, G_ID, and
MODEL_ID.

The SEM_APIS.ADD_SEM_INDEX procedure creates a semantic network index that
results in creation of a nonunique B-tree index in UNUSABLE status for each of the
existing models and entailments. The name of the index is
RDF_LNK_<index_code>_IDX and the index is owned by MDSYS. This operation is
allowed only if the invoker has DBA role. The following example shows creation of the
PSCGM index with the following key: <P_VALUE_ID, START_NODE_ID,
CANON_END_NODE_ID, G_ID, MODEL_ID>.

EXECUTE SEM_APIS.ADD_SEM_INDEX('PSCGM');

After you create a semantic network index, each of the corresponding nonunique B-
tree indexes is in the UNUSABLE status, because making it usable can cause
significant time and resources to be used, and because subsequent index
maintenance operations might involve performance costs that you do not want to
incur. You can make a semantic network index usable or unusable for specific models
or entailments that you own by calling the 
SEM_APIS.ALTER_SEM_INDEX_ON_MODEL and 
SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT procedures and specifying
'REBUILD' or 'UNUSABLE' as the command parameter. Thus, you can experiment by
making different semantic network indexes usable and unusable, and checking for any
differences in performance. For example, the following statement makes the PSCGM
index usable for the FAMILY model:

EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_MODEL('FAMILY','PSCGM','REBUILD');

Also note the following:

• Independent of any semantic network indexes that you create, when a semantic
network is created, one of the indexes that is automatically created is an index that
you can manage by referring to the index_code as 'PSCGM' when you call the
subprograms mentioned in this section.

• When you create a new model or a new entailment, a new nonunique B-tree index
is created for each of the semantic network indexes, and each such B-tree index is
in the USABLE status.
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• Including the MODEL_ID column in a semantic network index key (by including 'M'
in the index_code value) may improve query performance. This is particularly
relevant when virtual models are used.

• MDSYS.SEM_NETWORK_INDEX_INFO View

1.9.1 MDSYS.SEM_NETWORK_INDEX_INFO View
Information about all network indexes on models and entailments is maintained in the
MDSYS.SEM_NETWORK_INDEX_INFO view, which includes (a partial list) the
columns shown in Table 1-17 and one row for each network index.

Table 1-17    MDSYS.SEM_NETWORK_INDEX_INFO View Columns (Partial List)

Column Name Data Type Description

NAME VARCHAR2(30) Name of the RDF model or entailment

TYPE VARCHAR2(10) Type of object on which the index is built: MODEL,
ENTAILMENT, or NETWORK

ID NUMBER ID number for the model or entailment, or zero (0) for
an index on the network

INDEX_CODE VARCHAR2(25) Code for the index (for example, PSCGM).

INDEX_NAME VARCHAR2(30) Name of the index (for example,
RDF_LNK_PSCGM_IDX)

LAST_REFRESH TIMESTAMP(6)
WITH TIME ZONE

Timestamp for the last time this content was
refreshed

In addition to the columns listed in Table 1-17, the
MDSYS.SEM_NETWORK_INDEX_INFO view contains columns from the 
ALL_INDEXES and ALL_IND_PARTITIONS views (both described in Oracle Database
Reference), including:

• From the ALL_INDEXES view: UNIQUENESS, COMPRESSION,
PREFIX_LENGTH

• From the ALL_IND_PARTITIONS view: STATUS, TABLESPACE_NAME,
BLEVEL, LEAF_BLOCKS, NUM_ROWS, DISTINCT_KEYS,
AVG_LEAF_BLOCKS_PER_KEY, AVG_DATA_BLOCKS_PER_KEY,
CLUSTERING_FACTOR, SAMPLE_SIZE, LAST_ANALYZED

Note that the information in the MDSYS.SEM_NETWORK_INDEX_INFO view may
sometimes be stale. You can refresh this information by using the 
SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO procedure.

1.10 Using Data Type Indexes
Data type indexes are indexes on the values of typed literals stored in a semantic
network.

These indexes may significantly improve the performance of SEM_MATCH queries
involving certain types of FILTER expressions. For example, a data type index on
xsd:dateTime literals may speed up evaluation of the filter (?x <
"1929-11-16T13:45:00Z"^^xsd:dateTime). Indexes can be created for several data
types, which are listed in Table 1-18.
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Table 1-18    Data Types for Data Type Indexing

Data Type URI Oracle
Type

Index Type

http://www.w3.org/2001/
XMLSchema#decimal

NUMBER Non-unique B-tree (creates a single
index for all xsd numeric types,
including xsd:float, xsd:double,
and xsd:decimal and all of its
subtypes)

http://www.w3.org/2001/
XMLSchema#string

VARCHAR
2

Non-unique B-tree (creates a single
index for xsd:string typed literals
and plain literals)

http://www.w3.org/2001/
XMLSchema#time

TIMESTA
MP WITH
TIMEZON
E

Non-unique B-tree

http://www.w3.org/2001/
XMLSchema#date

TIMESTA
MP WITH
TIMEZON
E

Non-unique B-tree

http://www.w3.org/2001/
XMLSchema#dateTime

TIMESTA
MP WITH
TIMEZON
E

Non-unique B-tree

http://xmlns.oracle.com/rdf/text (Not
applicable)

CTXSYS.CONTEXT

http://xmlns.oracle.com/rdf/geo/
WKTLiteral

SDO_GEO
METRY

MDSYS.SPATIAL_INDEX

http://www.opengis.net/
geosparql#wktLiteral

SDO_GEO
METRY

MDSYS.SPATIAL_INDEX

http://www.opengis.net/
geosparql#gmlLiteral

SDO_GEO
METRY

MDSYS.SPATIAL_INDEX

http://xmlns.oracle.com/rdf/like VARCHAR
2

Non-unique B-tree

The suitability of data type indexes depends on your query workload. Data type
indexes on xsd data types can be used for filters that compare a variable with a
constant value, and are particularly useful when queries have an unselective graph
pattern with a very selective filter condition. Appropriate data type indexes are required
for queries with spatial or text filters.

While data type indexes improve query performance, overhead from incremental index
maintenance can degrade the performance of DML and bulk load operations on the
semantic network. For bulk load operations, it may often be faster to drop data type
indexes, perform the bulk load, and then re-create the data type indexes.

You can add, alter, and drop data type indexes using the following procedures, which
are described in SEM_APIS Package Subprograms:

• SEM_APIS.ADD_DATATYPE_INDEX

• SEM_APIS.ALTER_DATATYPE_INDEX

• SEM_APIS.DROP_DATATYPE_INDEX
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Information about existing data type indexes is maintained in the
MDSYS.SEM_DTYPE_INDEX_INFO view, which has the columns shown in 
Table 1-19 and one row for each data type index.

Table 1-19    MDSYS.SEM_DTYPE_INDEX_INFO View Columns

Column Name Data Type Description

DATATYPE VARCHAR2(51) Data type URI

INDEX_NAME VARCHAR2(30) Name of the index

STATUS VARCHAR2(8) Status of the index: USABLE or UNUSABLE

TABLESPACE_N
AME

VARCHAR2(30) Tablespace for the index

FUNCIDX_STAT
US

VARCHAR2(8) Status of the function-based index: NULL, ENABLED, or
DISABLED

You can use the HINT0 hint to ensure that data type indexes are used during query
evaluation, as shown in Example 1-97, which finds all grandfathers who were born
before November 16, 1929.

Example 1-97    Using HINT0 to Ensure Use of Data Type Index

SELECT x, y
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male . ?x :birthDate ?bd
       FILTER (?bd <= "1929-11-15T23:59:59Z"^^xsd:dateTime) }',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null, null, 
    'HINT0={ LEADING(?bd) INDEX(?bd rdf_v$dateTime_idx) } 
             FAST_DATE_FILTER=T' ));

1.11 Managing Statistics for Semantic Models and the
Semantic Network

Statistics are critical to the performance of SPARQL queries and OWL inference
against semantic data stored in an Oracle database.

Oracle Database Release 11g introduced SEM_APIS.ANALYZE_MODEL, 
SEM_APIS.ANALYZE_ENTAILMENT, and SEM_PERF.GATHER_STATS to analyze
semantic data and keep statistics up to date. These APIs are straightforward to use
and they are targeted at regular users who may not care about the internal details
about table and partition statistics.

You can export, import, set, and delete model and entailment statistics, and can
export, import, and delete network statistics, using the following subprograms:

• SEM_APIS.DELETE_ENTAILMENT_STATS

• SEM_APIS.DELETE_MODEL_STATS

• SEM_APIS.EXPORT_ENTAILMENT_STATS

• SEM_APIS.EXPORT_MODEL_STATS

Chapter 1
Managing Statistics for Semantic Models and the Semantic Network

1-104



• SEM_APIS.IMPORT_ENTAILMENT_STATS

• SEM_APIS.IMPORT_MODEL_STATS

• SEM_APIS.SET_ENTAILMENT_STATS

• SEM_APIS.SET_MODEL_STATS

• SEM_PERF.DELETE_NETWORK_STATS

• SEM_PERF.EXPORT_NETWORK_STATS

• SEM_PERF.IMPORT_NETWORK_STATS

This section contains the following topics related to managing statistics for semantic
models and the semantic network.

• Saving Statistics at a Model Level

• Restoring Statistics at a Model Level

• Saving Statistics at the Network Level

• Restoring Statistics at the Network Level

• Setting Statistics at a Model Level

• Deleting Statistics at a Model Level

1.11.1 Saving Statistics at a Model Level
If queries and inference against an existing model are executed efficiently, as the
owner of the model, you can save the statistics of the existing model.

-- Login as the model owner (for example, SCOTT)
-- Create a stats table. This is required.
execute dbms_stats.create_stat_table('scott','rdf_stat_tab');
 
-- You must grant access to MDSYS
SQL> grant select, insert, delete, update on scott.rdf_stat_tab to MDSYS;
 
-- Now export the statistics of model TEST
execute sdo_rdf.export_model_stats('TEST','rdf_stat_tab', 
'model_stat_saved_on_AUG_10', true, 'SCOTT', 'OBJECT_STATS');

You can also save the statistics of an entailment (entailed graph) by using 
SEM_APIS.EXPORT_ENTAILMENT_STATS .

execute 
sem_apis.create_entailment('test_inf',sem_models('test'),sem_rulebases('owl2rl'),
0,null);
PL/SQL procedure successfully completed.
 
execute sem_apis.export_entailment_stats('TEST_INF','rdf_stat_tab', 
'inf_stat_saved_on_AUG_10', true, 'SCOTT', 'OBJECT_STATS');

1.11.2 Restoring Statistics at a Model Level
As the owner of a model, can restore the statistics that were previously saved with 
SEM_APIS.EXPORT_MODEL_STATS . This may be necessary if updates have been
applied to this model and statistics have been re-collected. A change in statistics might
cause a plan change to existing SPARQL queries, and if such a plan change is
undesirable, then an old set of statistics can be restored.
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execute sem_apis.import_model_stats('TEST','rdf_stat_tab', 
'model_stat_saved_on_AUG_10', true, 'SCOTT', false, true, 'OBJECT_STATS');

You can also restore the statistics of an entailment (entailed graph) by using 
SEM_APIS.IMPORT_ENTAILMENT_STATS .

execute sem_apis.import_entailment_stats('TEST','rdf_stat_tab', 
'inf_stat_saved_on_AUG_10', true, 'SCOTT', false, true, 'OBJECT_STATS');

1.11.3 Saving Statistics at the Network Level
You can save statistics at the network level.

-- First, create a user RDF_ADMIN and assign access to package SEM_PERF to RDF_ADMIN
--
-- As SYS
--
create user RDF_ADMIN identified by RDF_ADMIN;
 
grant connect, resource, unlimited tablespace to RDF_ADMIN;
 
grant execute on sem_perf to RDF_ADMIN;
 
conn RDF_ADMIN/<password>
 
execute dbms_stats.create_stat_table('RDF_ADMIN','rdf_stat_tab');
grant select, insert, delete, update on RDF_ADMIN.rdf_stat_tab to MDSYS;
 
--
-- This API call will save the statistics of both MDSYS.RDF_VALUE$ table
-- and MDSYS.RDF_LINK$
--
execute sem_perf.export_network_stats('rdf_stat_tab', 'NETWORK_ALL_saved_on_Aug_10', 
true, 'RDF_ADMIN', 'OBJECT_STATS');
 
--
-- Alternatively, you can save statistics of the MDSYS.RDF_VALUE$ table
--
execute sem_perf.export_network_stats('rdf_stat_tab', 
'NETWORK_VALUE_TAB_saved_on_Aug_10', true, 'RDF_ADMIN', 'OBJECT_STATS', options=> 
mdsys.sdo_rdf.VALUE_TAB_ONLY);
 
--
-- Or, you can save statistics of the MDSYS.RDF_LINK$ table
--
execute sem_perf.export_network_stats('rdf_stat_tab', 
'NETWORK_LINK_TAB_saved_on_Aug_10', true, 'RDF_ADMIN', 'OBJECT_STATS', options=> 
mdsys.sdo_rdf.LINK_TAB_ONLY);

1.11.4 Restoring Statistics at the Network Level
The privileged user from Saving Statistics at the Network Level can restore the
network level statistics using SEM_PERF.IMPORT_NETWORK_STATS .

conn RDF_ADMIN/<password>
 
execute sem_perf.import_network_stats('rdf_stat_tab', 'NETWORK_ALL_saved_on_Aug_10', 
true, 'RDF_ADMIN', false, true, 'OBJECT_STATS');
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1.11.5 Setting Statistics at a Model Level
As the owner of a model, you can manually adjust the statistics for this model.
(However, before you adjust statistics, you should save the statistics first so that they
can be restored if necessary.) The following example sets two metrics: number of rows
and number of blocks for the model.

execute sem_apis.set_model_stats('TEST', numrows=>10, 
numblks=>1,no_invalidate=>false);

You can also set the statistics for the entailment by using 
SEM_APIS.SET_ENTAILMENT_STATS .

execute sem_apis.set_entailment_stats('TEST_INF', numrows=>10, 
numblks=>1,no_invalidate=>false);

1.11.6 Deleting Statistics at a Model Level
Removing statistics can also have an impact on execution plans. As owner of a model,
you can remove the statistics for the model.

execute sem_apis.delete_model_stats('TEST', no_invalidate=> false);

You can also remove the statistics for the entailment by using 
SEM_APIS.DELETE_ENTAILMENT_STATS. (However, before you remove statistics
of a model or an entailment, you should save the statistics first so that they can be
restored if necessary.)

execute sem_apis.delete_entailment_stats('TEST_INF', no_invalidate=> false);

1.12 Support for SPARQL Update Operations on a
Semantic Model

Effective with Oracle Database Release 12.2, you can perform SPARQL Update
operations on a semantic model.

The W3C provides SPARQL 1.1 Update (https://www.w3.org/TR/2013/REC-sparql11-
update-20130321/), an update language for RDF graphs. SPARQL 1.1 Update is
supported in Oracle Database semantic technologies through the 
SEM_APIS.UPDATE_MODEL procedure.

Before performing any SPARQL Update operations on a model, some prerequisites
apply:

• The SEM_APIS.CREATE_SPARQL_UPDATE_TABLES procedure should be run
in the schema of each user that will be using the SEM_APIS.UPDATE_MODEL
procedure.

• Each user that will update a model using the SEM_APIS.UPDATE_MODEL
procedure must have the INSERT privilege on the application table associated
with the apply_model model, and the MDSYS user must be granted the INSERT
privilege on that table (for example, GRANT INSERT on APP_TAB1 to MDSYS;).

The application table is the table that holds references to the semantic data for the
model.
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• To run a LOAD operation, the user must have the CREATE ANY DIRECTORY
and DROP ANY DIRECTORY privileges.

Examples follow that show update operations being performed on an RDF model.

Example 1-98    INSERT DATA Operation

This example shows an INSERT DATA operation that inserts several triples in the
default graph of the electronics model.

-- Dataset before operation:
#Empty default graph
-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    INSERT DATA {
       :camera1 :name "Camera 1" .
       :camera1 :price 120 .
       :camera1 :cameraType :Camera .
       :camera2 :name "Camera 2" .
       :camera2 :price 150 .
       :camera2 :cameraType :Camera .
      } ');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera1 :name "Camera 1";
         :price 120;
         :cameraType :Camera .
:camera2 :name "Camera 2"; 
         :price 150;
         :cameraType :Camera .

Example 1-99    DELETE DATA Operation

This example shows a DELETE DATA operation that removes a single triple from the
default graph of the electronics model.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera1 :name "Camera 1";
         :price 120;
         :cameraType :Camera .
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    DELETE DATA { :camera1 :price 120 . } ');
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END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera1 :name "Camera 1";
         :cameraType :Camera .
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .

Example 1-100    DELETE/INSERT Operation on Default Graph

This example performs a DELETE/INSERT operation. The :cameraType of :camera1 is
updated to :digitalCamera.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera1 :name "Camera 1";
         :cameraType :Camera .
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .

-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    DELETE { :camera1 :cameraType ?type . } 
    INSERT { :camera1 :cameraType :digitalCamera . } 
    WHERE  { :camera1 :cameraType ?type . }');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera1 :name "Camera 1";
         :cameraType :digitalCamera .
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .

Example 1-101    DELETE/INSERT Operation Involving Default Graph and Named
Graph

Graphs can also be specified inside the DELETE and INSERT templates, as well as
inside the WHERE clause. This example moves all triples corresponding to digital
cameras from the default graph to the graph :digitalCameras.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
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#Default graph
:camera1 :name "Camera 1";
         :cameraType :digitalCamera .
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Empty graph :digitalCameras

-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    DELETE { ?s ?p ?o } 
    INSERT { graph :digitalCameras { ?s ?p ?o } }
    WHERE  { ?s :cameraType :digitalCamera .
             ?s ?p ?o }');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}

Example 1-102    INSERT WHERE and DELETE WHERE Operations

One of either the DELETE template or the INSERT template can be omitted from a
DELETE/INSERT operation. In addition, the template following DELETE can be
omitted as a shortcut for using the WHERE pattern as the DELETE template. This
example uses an INSERT WHERE statement to insert the contents of
the :digitalCameras graph to the :cameras graph, and it uses a DELETE WHERE
statement (with syntactic shortcut) to delete all contents of the :cameras graph.

-- INSERT WHERE
-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}
#Empty graph :cameras
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-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    INSERT { graph :cameras { ?s ?p ?o } }
    WHERE  { graph :digitalCameras { ?s ?p ?o } }');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}

-- DELETE WHERE
-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}

-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    DELETE WHERE { graph :cameras { ?s ?p ?o } }');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
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:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}
#Empty graph :cameras

Example 1-103    COPY Operation

This example performs a COPY operation. All data from the default graph is inserted
into the graph :cameras. Existing data from :cameras, if any, is removed before the
insertion.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
  :camera3 :name "Camera 3" .
}

-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/>
    COPY DEFAULT TO GRAPH :cameras');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1"; 
           :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
  :camera2 :name "Camera 2";
           :price 150;
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           :cameraType :Camera .
}

Example 1-104    ADD Operation

This example adds all the triples in the graph :digitalCameras to the graph :cameras.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
  :camera2 :name "Camera 2";
           :price 150;
           :cameraType :Camera .
}

-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/>
    ADD GRAPH :digitalCameras TO GRAPH :cameras');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
  :camera2 :name "Camera 2";
           :price 150;
           :cameraType :Camera .
}
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Example 1-105    MOVE Operation

This example moves all the triples in the graph :digitalCameras to the
graph :digCam.

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Graph :digitalCameras
GRAPH :digitalCameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
  :camera2 :name "Camera 2";
           :price 150;
           :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
  :camera4 :cameraType :digCamera .
}

-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/>
    MOVE GRAPH :digitalCameras TO GRAPH :digCam');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2" .
         :camera2 :price 150 .
         :camera2 :cameraType :Camera .
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
  :camera2 :name "Camera 2";
           :price 150;
           :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
  :camera1 :name "Camera 1";
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           :cameraType :digitalCamera .
}

Example 1-106    CLEAR Operation

This example performs a CLEAR operation, deleting all the triples in the default graph.
Because empty graphs are not stored in the RDF model, the CLEAR operation always
succeeds and is equivalent to a DROP operation. (For the same reason, the CREATE
operation has no effect on the RDF model.)

-- Dataset before operation:
@prefix : <http://www.example.org/electronics/> 
#Default graph
:camera2 :name "Camera 2";
         :price 150;
         :cameraType :Camera .
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera 
  :camera2 :name "Camera 2";
           :price 150;
           :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}

-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'CLEAR DEFAULT ');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Empty Default graph
#Empty graph :digitalCameras
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
  :camera2 :name "Camera 2";
           :price 150;
           :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
  :camera1 :name "Camera 1";
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           :cameraType :digitalCamera .
}

Example 1-107    LOAD Operation

N-Triple and N-Quad files can be loaded from the local file system using the LOAD
operation. An optional INTO clause can be used to load the file into a specific named
graph. (The CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges are
required for performing a LOAD operation.) This example loads the /home/oracle/
example.nq N-Quad file into a semantic model.

Note that the use of an INTO clause with an N-Quad file will override any named graph
information in the N-Quad file. In this example, INTO GRAPH :cameras
overrides :myGraph for the first quad, so the subject, property, object triple component
of this quad is inserted into the :cameras graph instead.

-- Datafile: /home/oracle/example.nq
<http://www.example.org/electronics/camera3> <http://www.example.org/
electronics/name> "Camera 3" <http://www.example.org/electronics/myGraph> .
<http://www.example.org/electronics/camera3> <http://www.example.org/
electronics/price> "125"^^<http://www.w3.org/2001/XMLSchema#decimal> .

-- Dataset before operation:
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
  :camera2 :name "Camera 2";
           :price 150;
           :cameraType :Camera .
}
#Graph :digCam
GRAPH :digCam {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}

-- Update operation:
BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/>
    LOAD <file:///home/oracle/example.nq> INTO GRAPH :cameras');
END;
/

-- Dataset after operation:
@prefix : <http://www.example.org/electronics/> 
#Graph :cameras
GRAPH :cameras {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
  :camera2 :name "Camera 2";
           :price 150;
           :cameraType :Camera .
  :camera3 :name "Camera 3";
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           :price 125.
}
#Graph :digCam
GRAPH :digCam {
  :camera1 :name "Camera 1";
           :cameraType :digitalCamera .
}

Several files under the same directory can be loaded in parallel with a single LOAD
operation. To specify extra N-Triple or N-Quad files to be loaded, you can use the
LOAD_OPTIONS hint. The files will be loaded in parallel using a degree of parallelism
equal to the number of files. The following example shows how to load the files /home/
oracle/example1.nq, /home/oracle/example2.nq, and /home/oracle/example3.nq
into a semantic model. A degree of parallelism of 3 will automatically be used for this
example.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/>
    LOAD <file:///home/oracle/example1.nq>',
   options=> ' LOAD_OPTIONS={ example2.nq example3.nq } ' );
END;
/

Related subtopics:

• Tuning the Performance of SPARQL Update Operations

• Transaction Management with SPARQL Update Operations

• Support for Bulk Operations

• Setting UPDATE_MODEL Options at the Session Level

• Load Operations: Special Considerations for SPARQL Update

• Long Literals: Special Considerations for SPARQL Update

• Blank Nodes: Special Considerations for SPARQL Update

1.12.1 Tuning the Performance of SPARQL Update Operations
In some cases it may be necessary to tune the performance of SPARQL Update
operations. Because SPARQL Update operations involve executing one or more
SPARQL queries based on the WHERE clause in the UPDATE statement, the Best
Practices for Query Performance also apply to SPARQL Update operations. The
following considerations also apply:

• Delete operations require an appropriate index on the application table (associated
with the apply_model model in SEM_APIS.UPDATE_MODEL) for good
performance. Assuming an application table named APP_TAB with the
SDO_RDF_TRIPLE_S column named TRIPLE, an index similar to the following is
recommended (this is the same index used by RDF Semantic Graph Support for
Apache Jena ):

-- Application table index for 
--  (graph_id, subject_id, predicate_id, canonical_object_id)
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CREATE INDEX app_tab_idx ON app_tab app (
  BITAND(app.triple.rdf_m_id,79228162514264337589248983040)/4294967296,
  app.triple.rdf_s_id,
  app.triple.rdf_p_id,
  app.triple.rdf_c_id)
COMPRESS;

• Performance-related SEM_MATCH options can be passed to the match_options
parameter of SEM_APIS.UPDATE_MODEL, and performance-related options
such as PARALLEL and DYNAMIC_SAMPLING can be specified in the options
parameter of that procedure. The following example uses the options parameter to
specify a degree of parallelism of 4 and an optimizer dynamic sampling level of 6
for the update. In addition, the example uses ALLOW_DUP=T as a match option
when matching against the virtual model VM1.

BEGIN
  sem_apis.update_model(
   'electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    INSERT { graph :digitalCameras { ?s ?p ?o } }
    WHERE  { ?s :cameraType :digitalCamera .
             ?s ?p ?o }',
   match_models=>sem_models('VM1'),
   match_options=>' ALLOW_DUP=T ',
   options=>' PARALLEL(4) DYNAMIC_SAMPLING(6) ');
END;
/

• Inline Query Optimizer Hints can be specified in the WHERE clause. The following
example extends the preceding example by using the HINT0 hint in the WHERE
clause and the FINAL_VALUE_NL hint in the match_options parameter.

BEGIN
  sem_apis.update_model(
   'electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    INSERT { graph :digitalCameras { ?s ?p ?o } }
    WHERE  { # HINT0={ LEADING(t0 t1) USE_NL(t0 t1)
             ?s :cameraType :digitalCamera .
             ?s ?p ?o }',
   match_models=>sem_models('VM1'),
   match_options=>' ALLOW_DUP=T FINAL_VALUE_NL ',
   options=>' PARALLEL(4) DYNAMIC_SAMPLING(6) ');
END;
/

1.12.2 Transaction Management with SPARQL Update Operations
You can exercise some control over the number of transactions used and whether
they are automatically committed by a SEM_APIS.UPDATE_MODEL operation.

By default, the SEM_APIS.UPDATE_MODEL procedure executes in a single
transaction that is either committed upon successful completion or rolled back if an
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error occurs. For example, the following call executes three update operations
(separated by semicolons) in a single transaction:

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX elec: <http://www.example.org/electronics/>
    PREFIX ecom: <http://www.example.org/ecommerce/> 
    # insert camera data
    INSERT DATA {
      elec:camera1 elec:name "Camera 1" .
      elec:camera1 elec:price 120 .
      elec:camera1 elec:cameraType elec:DigitalCamera .
      elec:camera2 elec:name "Camera 2" .
      elec:camera2 elec:price 150 .
      elec:camera2 elec:cameraType elec:DigitalCamera . }; 
    # insert ecom:price triples
    INSERT { ?c  ecom:price ?p }
    WHERE  { ?c  elec:price ?p };
    # delete elec:price triples
    DELETE WHERE { ?c elec:price ?p }');
END;
/

PL/SQL procedure successfully completed.

By contrast, the following example uses three separate SEM_APIS.UPDATE_MODEL
calls to execute the same three update operations in three separate transactions:

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX elec: <http://www.example.org/electronics/>
    PREFIX ecom: <http://www.example.org/ecommerce/> 
    # insert camera data
    INSERT DATA {
      elec:camera1 elec:name "Camera 1" .
      elec:camera1 elec:price 120 .
      elec:camera1 elec:cameraType elec:DigitalCamera .
      elec:camera2 elec:name "Camera 2" .
      elec:camera2 elec:price 150 .
      elec:camera2 elec:cameraType elec:DigitalCamera . }');
END;
/

PL/SQL procedure successfully completed.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX elec: <http://www.example.org/electronics/>
    PREFIX ecom: <http://www.example.org/ecommerce/> 
    # insert ecom:price triples
    INSERT { ?c  ecom:price ?p }
    WHERE  { ?c  elec:price ?p }');
END;
/
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PL/SQL procedure successfully completed.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX elec: <http://www.example.org/electronics/>
    PREFIX ecom: <http://www.example.org/ecommerce/> 
    # insert elec:price triples
    DELETE WHERE { ?c elec:price ?p }');
END;
/

PL/SQL procedure successfully completed.

The AUTOCOMMIT=F option can be used to prevent separate transactions for each 
SEM_APIS.UPDATE_MODEL call. With this option, transaction management is the
responsibility of the caller. The following example shows how to execute the update
operations in the preceding example as a single transaction instead of three separate
ones.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX elec: <http://www.example.org/electronics/>
    PREFIX ecom: <http://www.example.org/ecommerce/> 
    # insert camera data
    INSERT DATA {
      elec:camera1 elec:name "Camera 1" .
      elec:camera1 elec:price 120 .
      elec:camera1 elec:cameraType elec:DigitalCamera .
      elec:camera2 elec:name "Camera 2" .
      elec:camera2 elec:price 150 .
      elec:camera2 elec:cameraType elec:DigitalCamera . }',
   options=>' AUTOCOMMIT=F ');
END;
/

PL/SQL procedure successfully completed.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX elec: <http://www.example.org/electronics/>
    PREFIX ecom: <http://www.example.org/ecommerce/> 
    # insert ecom:price triples
    INSERT { ?c  ecom:price ?p }
    WHERE  { ?c  elec:price ?p }',
   options=>' AUTOCOMMIT=F ');
END;
/

PL/SQL procedure successfully completed.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX elec: <http://www.example.org/electronics/>
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    PREFIX ecom: <http://www.example.org/ecommerce/> 
    # insert elec:price triples
    DELETE WHERE { ?c elec:price ?p }',
   options=>' AUTOCOMMIT=F ');
END;
/

PL/SQL procedure successfully completed.

COMMIT;

Commit complete.

However, the following cannot be used with the AUTOCOMMIT=F option:

• Bulk operations (FORCE_BULK=T, DEL_AS_INS=T)

• LOAD operations

• Materialization of intermediate data (STREAMING=F)

• Transaction Isolation Levels

1.12.2.1 Transaction Isolation Levels
Oracle Database supports three different transaction isolation levels: read committed,
serializable, and read-only.

Read committed isolation level is the default. Queries in a transaction using this
isolation level see only data that was committed before the query – not the transaction
– began and any changes made by the transaction itself. This isolation level allows the
highest degree of concurrency.

Serializable isolation level queries see only data that was committed before the
transaction began and any changes made by the transaction itself.

Read-only isolation level behaves like serializable isolation level but data cannot be
modified by the transaction.

SEM_APIS.UPDATE_MODEL supports read committed and serializable transaction
isolation levels, and read committed is the default. SPARQL UPDATE operations are
processed in the following basic steps.

1. A query is executed to obtain a set of triples to be deleted.

2. A query is executed to obtain a set of triples to be inserted.

3. Triples obtained in Step 1 are deleted.

4. Triples obtained in Step 2 are inserted.

With the default read committed isolation level, the underlying triple data may be
modified by concurrent transactions, so each step may see different data. In addition,
changes made by concurrent transactions will be visible to subsequent update
operations within the same SEM_APIS.UPDATE_MODEL call. Note that steps 1 and 2
happen as a single step when using materialization of intermediate data
(STREAMING=F), so underlying triple data cannot be modified between steps 1 and 2
with this option. See Support for Bulk Operations for more information about
materialization of intermediate data.
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Serializable isolation level can be used by specifying the SERIALIZABLE=T option. In
this case, each step will only see data that was committed before the update model
operation began, and multiple update operations executed in a single 
SEM_APIS.UPDATE_MODEL call will not see modifications made by concurrent
update operations in other transactions. However, ORA-08177 errors will be raised if a 
SEM_APIS.UPDATE_MODEL execution tries to update triples that were modified by a
concurrent transaction. When using SERIALIZABLE=T, the application should detect
and handle ORA-08177 errors (for example, retry the update command if it could not
be serialized on the first attempt).

The following cannot be used with the SERIALIZABLE=T option:

• Bulk operations (FORCE_BULK=T, DEL_AS_INS=T)

• LOAD operations

• Materialization of intermediate data (STREAMING=F)

1.12.3 Support for Bulk Operations
SEM_APIS.UPDATE_MODEL supports bulk operations for efficient execution of large
updates. The following options are provided; however, when using any of these bulk
operations, serializable isolation (SERIALIZABLE=T) and autocommit false
(AUTOCOMMMIT=F) cannot be used.

• Materialization of Intermediate Data (STREAMING=F)

• Using SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

• Using Delete as Insert (DEL_AS_INS=T)

1.12.3.1 Materialization of Intermediate Data (STREAMING=F)
By default, SEM_APIS.UPDATE_MODEL executes two queries for a basic DELETE
INSERT SPARQL Update operation: one query to find triples to delete and one query
to find triples to insert. For some update operations with WHERE clauses that are
expensive to evaluate, executing two queries may not give the best performance. In
these cases, executing a single query for the WHERE clause, materializing the results,
and then using the materialized results to construct triples to delete and triples to insert
may give better performance. This approach incurs overhead from a DDL operation,
but overall performance is likely to be better for complex update statements.

The following example update using this option (STREAMING=F). Note that STREAMING=F
is not allowed with serializable isolation (SERIALIZABLE=T) or autocommit false
(AUTOCOMMIT=F).

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    DELETE { ?s ?p ?o } 
    INSERT { graph :digitalCameras { ?s ?p ?o } }
    WHERE  { ?s :cameraType :digitalCamera .
             ?s ?p ?o }',
  options=>' STREAMING=F ');
END;
/
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1.12.3.2 Using SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
For updates that insert a large number of triples (such as tens of thousands), the
default approach of incremental DML on the application table may not give acceptable
performance. In such cases, the FORCE_BULK=T option can be specified so that 
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE is used instead of incremental
DML.

However, not all update operations can use this optimization. The FORCE_BULK=T
option is only allowed for a SEM_APIS.UPDATE_MODEL call with either a single ADD
operation or a single INSERT WHERE operation. The use of 
SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE forces a series of commits and
autonomous transactions, so the AUTOCOMMIT=F and SERIALIZABLE=T options are not
allowed with FORCE_BULK=T. In addition, bulk load cannot be used with
CLOB_UPDATE_SUPPORT=T.

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE allows various customizations
through its flags parameter. SEM_APIS.UPDATE_MODEL supports the
BULK_OPTIONS={ OPTIONS_STRING } flag so that OPTIONS_STRING can be passed into
the flags input of SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE to customize
bulk load options. The following example shows a SEM_APIS.UPDATE_MODEL
invocation using the FORCE_BULK=T option and BULK_OPTIONS flag.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX elec: <http://www.example.org/electronics/>
    PREFIX ecom: <http://www.example.org/ecommerce/> 
    INSERT { ?c  ecom:price ?p }
    WHERE  { ?c  elec:price ?p }',
   options=>' FORCE_BULK=T BULK_OPTIONS={  parallel=4 
parallel_create_index } ');
END;
/

1.12.3.3 Using Delete as Insert (DEL_AS_INS=T)
For updates that delete a large number of triples (such as tens of thousands), the
default approach of incremental DML on the application table may not give acceptable
performance. For such cases, the DEL_AS_INS=T option can be specified. With this
option, a large delete operation is implemented as INSERT, TRUNCATE, and
EXCHANGE PARTITION operations.

The use of DEL_AS_INS=T causes a series of commits and autonomous transactions,
so this option cannot be used with SERIALIZABLE=T or AUTOCOMMIT=F. In addition, this
option can only be used with SEM_APIS.UPDATE_MODEL calls that involve a single
DELETE WHERE operation, a single DROP operation, or a single CLEAR operation.

Delete as insert internally uses SEM_APIS.MERGE_MODELS during intermediate
operations. The string OPTIONS_STRING from the MM_OPTIONS={ OPTIONS_STRING } flag
can be specified to customize options for merging. The following example shows a 
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SEM_APIS.UPDATE_MODEL invocation using the DEL_AS_INS=T option and
MM_OPTIONS flag.

BEGIN
  sem_apis.update_model('electronics',
   'CLEAR NAMED',
   options=>' DEL_AS_INS=T MM_OPTIONS={  dop=4 } ');
END;
/

1.12.4 Setting UPDATE_MODEL Options at the Session Level
Some settings that affect the SEM_APIS.UPDATE_MODEL procedure’s behavior can
be modified at the session level through the use of the special
MDSYS.SDO_SEM_UPDATE_CTX.SET_PARAM procedure. The following options
can be set to true or false at the session level: autocommit, streaming, strict_bnode,
and clob_support.

The MDSYS.SDO_SEM_UPDATE_CTX contains the following subprograms to get
and set SEM_APIS.UPDATE_MODEL parameters at the session level:

SQL> describe mdsys.sdo_sem_update_ctx
FUNCTION GET_PARAM RETURNS VARCHAR2
 Argument Name                  Type                    In/Out Default?
 ------------------------------ ----------------------- ------ --------
 NAME                           VARCHAR2                IN
PROCEDURE SET_PARAM
 Argument Name                  Type                    In/Out Default?
 ------------------------------ ----------------------- ------ --------
 NAME                           VARCHAR2                IN
 VALUE                          VARCHAR2                IN

The following example causes all subsequent calls to the 
SEM_APIS.UPDATE_MODEL procedure to use the AUTOCOMMIT=F setting, until the
end of the session or the next call to SEM_APIS.UPDATE_MODEL that specifies a
different autocommit value.

begin
  mdsys.sdo_sem_update_ctx.set_param('autocommit','false');
end;
/

1.12.5 Load Operations: Special Considerations for SPARQL Update
If a load operation is performed using the SEM_APIS.UPDATE_MODEL procedure
and if the loaded document contains values longer than 4000 bytes, triples containing
such values are not inserted into the model. When loading finishes, a file with “.bad”
extension is created in the same directory where the loaded document is located.
The .bad file contains triples with long values. They can be inserted using INSERT
statements as explained in Loading Semantic Data Using INSERT Statements, or they
can be inserted with INSERT DATA statements executed through the 
SEM_APIS.UPDATE_MODEL procedure with the CLOB_UPDATE_SUPPORT=T option.
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To perform the load operation, triples from the document are loaded into a staging
table that is created under the current schema. If a load operation is interrupted, but
the staging table has already been created, loading can be resumed with the
RESUME_LOAD=T keyword in the options parameter.

1.12.6 Long Literals: Special Considerations for SPARQL Update
By default, SPARQL Update operations do not manipulate values longer than 4000
bytes. To enable long literals support, specify CLOB_UPDATE_SUPPORT=T in the options
parameter with the SEM_APIS.UPDATE_MODEL procedure.

Bulk load does not work for long literals; the FORCE_BULK=T option is ignored when
used with the CLOB_UPDATE_SUPPORT=T option.

1.12.7 Blank Nodes: Special Considerations for SPARQL Update
Some update operations only affect the graph of a set of RDF triples. Specifically,
these operations are ADD, COPY and MOVE. For example, the MOVE operation
example in Support for SPARQL Update Operations on a Semantic Model can be
performed only updating triples having :digitalCameras as the graph. However, the
performance of such operations can be improved by using ID-only operations over the
RDF model. To run a large ADD, COPY, or MOVE operation as an ID-only operation,
you can specify the STRICT_BNODE=F hint in the options parameter for the 
SEM_APIS.UPDATE_MODEL procedure.

ID-only operations may lead to incorrect blank nodes, however, because no two
graphs should share the same blank node. RDF Semantic Graph uses a blank node
prefixing scheme based on the model and graph combination that contains a blank
node. These prefixes ensure that blank node identifiers are unique across models and
graphs. An ID-only approach for ADD, COPY, and UPDATE operations does not
update blank node prefixes.

Example 1-108    ID-Only Update Causing Incorrect Blank Node Values

The update in the following example leads to the same blank node subject for both
triples in graphs :cameras and :cameras2. This can be verified running the provided
SEM_MATCH query.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    INSERT DATA { 
       GRAPH :cameras { :camera2 :owner _:bn1 .
                        _:bn1 :name "Axel" }
    };
    COPY :cameras TO :cameras2',
   options=>' STRICT_BNODE=F ');
END;
/

SELECT count(s)
FROM TABLE( SEM_MATCH('
  PREFIX : <http://www.example.org/electronics/> 
  SELECT * 
  WHERE { { graph :cameras  {?s :name "Axel"  } }
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          { graph :cameras2 {?s :name "Axel"  } } }
', sem_models('electronics'),null,null,null,null,' STRICT_DEFAULT=T '));

To avoid such errors, you should specify the STRICT_BNODE=F hint in the options
parameter for the SEM_APIS.UPDATE_MODEL procedure only when you are sure
that blank nodes are not involved in the ADD, COPY, or MOVE update operation.

However, ADD, COPY, and MOVE operations on large graphs with the
STRICT_BNODE=F option may run significantly faster than they would run using the
default method. If you need to run a series of ID-only updates, another option is to use
the STRICT_BNODE=F option, and then execute the SEM_APIS.CLEANUP_BNODES
procedure at the end. This approach resets the prefix of all blank nodes in a given
model, which effectively corrects ("cleans up") all erroneous blank node labels.

Note that this two-step strategy should not be used with a small number of ADD,
COPY, or MOVE operations. Performing a few operations using the default approach
will execute faster than running a few ID-only operations and then executing the 
SEM_APIS.CLEANUP_BNODES procedure.

The following example corrects blank nodes in a semantic model named electronics.

EXECUTE sem_apis.cleanup_bnodes('electronics');

1.13 Enhanced RDF ORDER BY Query Processing
Effective with Oracle Database Release 12.2, queries on RDF data that use SPARQL
ORDER BY semantics are processed more efficiently than in previous releases.

This internal efficiency involves the use of the ORDER_TYPE, ORDER_NUM, and
ORDER_DATE columns in the MDSYS.RDF_VALUE$ metadata table (documented in 
Statements). The values for these three columns are populated during loading, and
this enables ORDER BY queries to reduce internal function calls and to execute faster.

Effective with Oracle Database Release 12.2, the procedure 
SEM_APIS.ADD_DATATYPE_INDEX creates an index on the ORDER_NUM column
for numeric types (xsd:float, xsd:double, and xsd:decimal and all of its subtypes) and
an index on ORDER_DATE column for date-related types (xsd:date, xsd:time, and
xsd:dateTime) instead of a function-based index as in previous versions. If you want to
continue using a function-based index for these data types, you should use the
FUNCTION=T option of the SEM_APIS.ADD_DATATYPE_INDEX procedure.. For
example:

EXECUTE sem_apis.add_datatype_index('http://www.w3.org/2001/
XMLSchema#decimal', options=>'FUNCTION=T');
EXECUTE sem_apis.add_datatype_index('http://www.w3.org/2001/
XMLSchema#date',options=>'FUNCTION=T');

1.14 Quick Start for Using Semantic Data
To work with semantic data in an Oracle database, follow these general steps.

1. Create a tablespace for the system tables. You must be connected as a user with
appropriate privileges to create the tablespace. The following example creates a
tablespace named RDF_TBLSPACE:

Chapter 1
Enhanced RDF ORDER BY Query Processing

1-126



CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;

2. Create a semantic data network.

Creating a semantic data network adds semantic data support to an Oracle
database. You must create a semantic data network as a user with DBA
privileges, specifying a valid tablespace with adequate space. Create the network
only once for an Oracle database.

The following example creates a semantic data network using a tablespace named
RDF_TBLSPACE (which must already exist):

EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');

3. Connect as the database user under whose schema you will store your semantic
data; do not perform the following steps while connected as SYS, SYSTEM, or
MDSYS.

4. Create a table to store references to the semantic data. (You do not need to be
connected as a user with DBA privileges for this step and the remaining steps.)

This table must contain a column of type SDO_RDF_TRIPLE_S, which will contain
references to all data associated with a single model.

The following example creates a table named ARTICLES_RDF_DATA with one
column to hold the data for triples:

CREATE TABLE articles_rdf_data (triple SDO_RDF_TRIPLE_S);

5. Create a model.

When you create a model, you specify the model name, the table to hold
references to semantic data for the model, and the column of type
SDO_RDF_TRIPLE_S in that table.

The following command creates a model named ARTICLES, which will use the
table created in the preceding step.

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data', 'triple');

After you create the model, you can insert triples into the table, as shown in the
examples in Semantic Data Examples (PL/SQL and Java).

1.15 Semantic Data Examples (PL/SQL and Java)
PL/SQL examples are provided in this guide.

In addition to the examples in this guide, see the sample code at http://
www.oracle.com/technetwork/indexes/samplecode/semantic-sample-522114.html.

• Example: Journal Article Information

• Example: Family Information

1.15.1 Example: Journal Article Information
This section presents a simplified PL/SQL example of model for statements about
journal articles. Example 1-109 contains descriptive comments, refers to concepts that
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are explained in this chapter, and uses functions and procedures documented in 
SEM_APIS Package Subprograms.

Example 1-109    Using a Model for Journal Article Information

-- Basic steps:
-- After you have connected as a privileged user and called 
-- SEM_APIS.CREATE_SEM_NETWORK to add RDF support,
-- connect as a regular database user and do the following.
-- 1. For each desired model, create a table to hold its data.
-- 2. For each model, create a model (SEM_APIS.CREATE_SEM_MODEL).
-- 3. For each table to hold semantic data, insert data into the table.
-- 4. Use various subprograms and constructors.
 
-- Create the table to hold data for the model. Only one column: data for triples.
CREATE TABLE articles_rdf_data (triple SDO_RDF_TRIPLE_S);
 
-- Create the model.
EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data', 'triple');
 
-- Information to be stored about some fictitious articles:
-- Article1, titled "All about XYZ" and written by Jane Smith, refers 
--   to Article2 and Article3.
-- Article2, titled "A review of ABC" and written by Joe Bloggs, 
--   refers to Article3.
-- Seven SQL statements to store the information. In each statement:
-- Each article is referred to by its complete URI The URIs in
--   this example are fictitious.
-- Each property is referred to by the URL for its definition, as 
--   created by the Dublin Core Metadata Initiative.
 
-- Insert rows into the table.
 
-- Article1 has the title "All about XYZ".
INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
    '<http://purl.org/dc/elements/1.1/title>','"All about XYZ"'));
 
-- Article1 was created (written) by Jane Smith.
INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles','<http://nature.example.com/Article1>',
    '<http://purl.org/dc/elements/1.1/creator>',
    '"Jane Smith"'));
 
-- Article1 references (refers to) Article2.
INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles',
    '<http://nature.example.com/Article1>',
    '<http://purl.org/dc/terms/references>',
    '<http://nature.example.com/Article2>'));
 
-- Article1 references (refers to) Article3.
INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles',
    '<http://nature.example.com/Article1>',
    '<http://purl.org/dc/terms/references>',
    '<http://nature.example.com/Article3>'));
 
-- Article2 has the title "A review of ABC".
INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles',

Chapter 1
Semantic Data Examples (PL/SQL and Java)

1-128



    '<http://nature.example.com/Article2>',
    '<http://purl.org/dc/elements/1.1/title>',
    '"A review of ABC"'));
 
-- Article2 was created (written) by Joe Bloggs.
INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles',
    '<http://nature.example.com/Article2>',
    '<http://purl.org/dc/elements/1.1/creator>',
    '"Joe Bloggs"'));
 
-- Article2 references (refers to) Article3.
INSERT INTO articles_rdf_data VALUES (
  SDO_RDF_TRIPLE_S ('articles',
    '<http://nature.example.com/Article2>',
    '<http://purl.org/dc/terms/references>',
    '<http://nature.example.com/Article3>'));
 
COMMIT;
 
-- Query semantic data.
 
SELECT SEM_APIS.GET_MODEL_ID('articles') AS model_id FROM DUAL;
 
SELECT SEM_APIS.GET_TRIPLE_ID(
  'articles',
  '<http://nature.example.com/Article2>',
  '<http://purl.org/dc/terms/references>',
  '<http://nature.example.com/Article3>') AS RDF_triple_id FROM DUAL;
 
SELECT SEM_APIS.IS_TRIPLE(
  'articles',
  '<http://nature.example.com/Article2>',
  '<http://purl.org/dc/terms/references>',
  '<http://nature.example.com/Article3>') AS is_triple FROM DUAL;
 
-- Use SDO_RDF_TRIPLE_S member functions in queries.
 
-- Find all articles that reference Article2.
SELECT a.triple.GET_SUBJECT() AS subject
  FROM articles_rdf_data a
  WHERE a.triple.GET_PROPERTY() = '<http://purl.org/dc/terms/references>' AND
    TO_CHAR(a.triple.GET_OBJECT()) = '<http://nature.example.com/Article2>';

-- Find all triples with Article1 as subject.
SELECT a.triple.GET_TRIPLE() AS triple
  FROM articles_rdf_data a
  WHERE a.triple.GET_SUBJECT() = '<http://nature.example.com/Article1>';

-- Find all objects where the subject is Article1.
SELECT a.triple.GET_OBJECT() AS object 
  FROM articles_rdf_data a 
WHERE a.triple.GET_SUBJECT() = '<http://nature.example.com/Article1>';

-- Find all triples where Jane Smith is the object.
SELECT a.triple.GET_TRIPLE() AS triple
  FROM articles_rdf_data a 
  WHERE TO_CHAR(a.triple.GET_OBJECT()) = '"Jane Smith"';
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1.15.2 Example: Family Information
This section presents a simplified PL/SQL example of a model for statements about
family tree (genealogy) information. Example 1-109 contains descriptive comments,
refers to concepts that are explained in this chapter, and uses functions and
procedures documented in SEM_APIS Package Subprograms.

The family relationships in this example reflect the family tree shown in Figure 1-3.
This figure also shows some of the information directly stated in the example: Cathy is
the sister of Jack, Jack and Tom are male, and Cindy is female.

Figure 1-3    Family Tree for RDF Example

John Janice

Suzie MattSammy Martha

Cathy Jack Tom Cindy




(sisterOf Jack) (Male) (Male) (Female)

Example 1-110    Using a Model for Family Information

-- Preparation: create tablespace; enable RDF support.
-- Connect as a privileged user. Example: CONNECT SYSTEM/password-for-SYSTEM
-- Create a tablespace for the RDF data. Example:
CREATE TABLESPACE rdf_tblspace 
  DATAFILE 'rdf_tblspace.dat' 
    SIZE 128M REUSE
    AUTOEXTEND ON NEXT 128M MAXSIZE 4G
  SEGMENT SPACE MANAGEMENT AUTO;

-- Call SEM_APIS.CREATE_SEM_NETWORK to enable RDF support. Example:
EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');

-- Connect as the user that is to perform the RDF operations (not SYSTEM), 
-- and do the following:
-- 1. For each desired model, create a table to hold its data.
-- 2. For each model, create a model (SEM_APIS.CREATE_SEM_MODEL).
-- 3. For each table to hold semantic data, insert data into the table.
-- 4. Use various subprograms and constructors.

-- Create the table to hold data for the model.
CREATE TABLE family_rdf_data (triple SDO_RDF_TRIPLE_S);
 
-- Create the model.
execute SEM_APIS.create_sem_model('family', 'family_rdf_data', 'triple');
 
-- Insert rows into the table. These express the following information:
-----------------
-- John and Janice have two children, Suzie and Matt.
-- Matt married Martha, and they have two children:
--   Tom (male, height 5.75) and Cindy (female, height 06.00).
-- Suzie married Sammy, and they have two children:
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--   Cathy (height 5.8) and Jack (male, height 6).
 
-- Person is a class that has two subslasses: Male and Female.
-- parentOf is a property that has two subproperties: fatherOf and motherOf.
-- siblingOf is a property that has two subproperties: brotherOf and sisterOf.
-- The domain of the fatherOf and brotherOf properties is Male.
-- The domain of the motherOf and sisterOf properties is Female.
------------------------
 
-- John is the father of Suzie.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/John>', 
'<http://www.example.org/family/fatherOf>', 
'<http://www.example.org/family/Suzie>'));
 
-- John is the father of Matt.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/John>', 
'<http://www.example.org/family/fatherOf>', 
'<http://www.example.org/family/Matt>'));
 
-- Janice is the mother of Suzie.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Janice>', 
'<http://www.example.org/family/motherOf>', 
'<http://www.example.org/family/Suzie>'));
 
-- Janice is the mother of Matt.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Janice>', 
'<http://www.example.org/family/motherOf>', 
'<http://www.example.org/family/Matt>'));
 
-- Sammy is the father of Cathy.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Sammy>', 
'<http://www.example.org/family/fatherOf>', 
'<http://www.example.org/family/Cathy>'));
 
-- Sammy is the father of Jack.
INSERT INTO family_rdf_data VALUES (
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Sammy>', 
'<http://www.example.org/family/fatherOf>', 
'<http://www.example.org/family/Jack>'));
 
-- Suzie is the mother of Cathy.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Suzie>', 
'<http://www.example.org/family/motherOf>', 
'<http://www.example.org/family/Cathy>'));
 
-- Suzie is the mother of Jack.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
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'<http://www.example.org/family/Suzie>', 
'<http://www.example.org/family/motherOf>', 
'<http://www.example.org/family/Jack>'));
 
-- Matt is the father of Tom.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Matt>', 
'<http://www.example.org/family/fatherOf>', 
'<http://www.example.org/family/Tom>'));
 
-- Matt is the father of Cindy
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Matt>', 
'<http://www.example.org/family/fatherOf>', 
'<http://www.example.org/family/Cindy>'));
 
-- Martha is the mother of Tom.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Martha>', 
'<http://www.example.org/family/motherOf>', 
'<http://www.example.org/family/Tom>'));
 
-- Martha is the mother of Cindy. 
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Martha>', 
'<http://www.example.org/family/motherOf>', 
'<http://www.example.org/family/Cindy>'));
 
-- Cathy is the sister of Jack.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Cathy>', 
'<http://www.example.org/family/sisterOf>', 
'<http://www.example.org/family/Jack>'));
 
-- Jack is male.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Jack>', 
'<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
'<http://www.example.org/family/Male>'));
 
-- Tom is male.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Tom>', 
'<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
'<http://www.example.org/family/Male>'));
 
-- Cindy is female.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Cindy>', 
'<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
'<http://www.example.org/family/Female>'));
 
-- Person is a class.
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INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Person>', 
'<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
'<http://www.w3.org/2000/01/rdf-schema#Class>'));
 
-- Male is a subclass of Person.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Male>', 
'<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
'<http://www.example.org/family/Person>'));
 
-- Female is a subclass of Person. 
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Female>', 
'<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
'<http://www.example.org/family/Person>'));
 
-- siblingOf is a property.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/siblingOf>', 
'<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
'<http://www.w3.org/1999/02/22-rdf-syntax-ns#Property>'));
 
-- parentOf is a property.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/parentOf>', 
'<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>',
'<http://www.w3.org/1999/02/22-rdf-syntax-ns#Property>'));
 
-- brotherOf is a subproperty of siblingOf.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/brotherOf>', 
'<http://www.w3.org/2000/01/rdf-schema#subPropertyOf>',
'<http://www.example.org/family/siblingOf>'));
 
-- sisterOf is a subproperty of siblingOf.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/sisterOf>', 
'<http://www.w3.org/2000/01/rdf-schema#subPropertyOf>',
'<http://www.example.org/family/siblingOf>'));
 
-- A brother is male.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/brotherOf>', 
'<http://www.w3.org/2000/01/rdf-schema#domain>',
'<http://www.example.org/family/Male>'));
 
-- A sister is female.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/sisterOf>', 
'<http://www.w3.org/2000/01/rdf-schema#domain>',
'<http://www.example.org/family/Female>'));
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-- fatherOf is a subproperty of parentOf.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/fatherOf>', 
'<http://www.w3.org/2000/01/rdf-schema#subPropertyOf>',
'<http://www.example.org/family/parentOf>'));
 
-- motherOf is a subproperty of parentOf.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/motherOf>', 
'<http://www.w3.org/2000/01/rdf-schema#subPropertyOf>',
'<http://www.example.org/family/parentOf>'));
 
-- A father is male.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/fatherOf>', 
'<http://www.w3.org/2000/01/rdf-schema#domain>',
'<http://www.example.org/family/Male>'));
 
-- A mother is female.
INSERT INTO family_rdf_data VALUES ( 
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/motherOf>', 
'<http://www.w3.org/2000/01/rdf-schema#domain>',
'<http://www.example.org/family/Female>'));
 
-- Use SET ESCAPE OFF to prevent the caret (^) from being
-- interpreted as an escape character. Two carets (^^) are
-- used to represent typed literals.
SET ESCAPE OFF;
 
-- Cathy's height is 5.8 (decimal).
INSERT INTO family_rdf_data VALUES (
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Cathy>', 
'<http://www.example.org/family/height>',
'"5.8"^^xsd:decimal'));
 
-- Jack's height is 6 (integer).
INSERT INTO family_rdf_data VALUES (
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Jack>', 
'<http://www.example.org/family/height>',
'"6"^^xsd:integer'));
 
-- Tom's height is 05.75 (decimal).
INSERT INTO family_rdf_data VALUES (
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Tom>', 
'<http://www.example.org/family/height>',
'"05.75"^^xsd:decimal'));
 
-- Cindy's height is 06.00 (decimal).
INSERT INTO family_rdf_data VALUES (
SDO_RDF_TRIPLE_S('family', 
'<http://www.example.org/family/Cindy>', 
'<http://www.example.org/family/height>',
'"06.00"^^xsd:decimal'));
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COMMIT;
 
-- RDFS inferencing in the family model
BEGIN
  SEM_APIS.CREATE_ENTAILMENT(
    'rdfs_rix_family',
    SEM_Models('family'),
    SEM_Rulebases('RDFS'));
END;
/
 
-- Select all males from the family model, without inferencing.
-- (Returns only Jack and Tom.)
SELECT m
  FROM TABLE(SEM_MATCH(
    '{?m rdf:type :Male}',
    SEM_Models('family'),
    null,
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
 
-- Select all males from the family model, with RDFS inferencing.
-- (Returns Jack, Tom, John, Sammy, and Matt.)
SELECT m
  FROM TABLE(SEM_MATCH(
    '{?m rdf:type :Male}',
    SEM_Models('family'),
    SDO_RDF_Rulebases('RDFS'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
 
-- General inferencing in the family model
 
EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');
 
INSERT INTO mdsys.semr_family_rb VALUES(
  'grandparent_rule',
  '(?x :parentOf ?y) (?y :parentOf ?z)',
  NULL,
  '(?x :grandParentOf ?z)', 
  SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')));
 
COMMIT;
 
-- Because a new rulebase has been created, and it will be used in the
-- entailment, drop the preceding entailment and then re-create it.
EXECUTE SEM_APIS.DROP_ENTAILMENT ('rdfs_rix_family');
 
-- Re-create the entailment.
BEGIN
  SEM_APIS.CREATE_ENTAILMENT(
    'rdfs_rix_family',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'));
END;
/
 
-- Select all grandfathers and their grandchildren from the family model, 
-- without inferencing. (With no inferencing, no results are returned.)
SELECT x grandfather, y grandchild
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  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
 
-- Select all grandfathers and their grandchildren from the family model.
-- Use inferencing from both the RDFS and family_rb rulebases.
SELECT x grandfather, y grandchild
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null));
 
-- Set up to find grandfathers of tall (>= 6) grandchildren
-- from the family model, with RDFS inferencing and
-- inferencing using the "family_rb" rulebase.
 
UPDATE mdsys.semr_family_rb SET
  antecedents = '(?x :parentOf ?y) (?y :parentOf ?z) (?z :height ?h)',
  filter = '(h >= ''6'')',
  aliases = SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/'))
WHERE rule_name = 'GRANDPARENT_RULE';
 
-- Because the rulebase has been updated, drop the preceding entailment, 
-- and then re-create it.
EXECUTE SEM_APIS.DROP_ENTAILMENT ('rdfs_rix_family');
 
-- Re-create the entailment.
BEGIN
  SEM_APIS.CREATE_ENTAILMENT(
    'rdfs_rix_family',
    SEM_Models('family'),
    SEM_Rulebases('RDFS','family_rb'));
END;
/
 
-- Find the entailment that was just created (that is, the
-- one based on the specified model and rulebases).
SELECT SEM_APIS.LOOKUP_ENTAILMENT(SEM_MODELS('family'),
  SEM_RULEBASES('RDFS','family_rb')) AS lookup_entailment FROM DUAL;
 
-- Select grandfathers of tall (>= 6) grandchildren, and their
-- tall grandchildren.
SELECT x grandfather, y grandchild
  FROM TABLE(SEM_MATCH(
    '{?x :grandParentOf ?y . ?x rdf:type :Male}',
    SEM_Models('family'),
    SEM_RuleBases('RDFS','family_rb'), 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')), 
    null));

1.16 Software Naming Changes Since Release 11.1
Because the support for semantic data has been expanded beyond the original focus
on RDF, the names of many software objects (PL/SQL packages, functions and
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procedures, system tables and views, and so on) have been changed as of Oracle
Database Release 11.1.

In most cases, the change is to replace the string RDF with SEM. although in some
cases it may be to replace SDO_RDF with SEM.

All valid code that used the pre-Release 11.1 names will continue to work; your
existing applications will not be broken. However, it is suggested that you change
old applications to use new object names, and you should use the new names for any
new applications. This manual will document only the new names.

Table 1-20 lists the old and new names for some objects related to support for
semantic technologies, in alphabetical order by old name.

Table 1-20    Semantic Technology Software Objects: Old and New Names

Old Name New Name

RDF_ALIAS data type SEM_ALIAS

RDF_MODEL$ view SEM_MODEL$

RDF_RULEBASE_INFO view SEM_RULEBASE_INFO

RDF_RULES_INDEX_DATASETS view SEM_RULES_INDEX_DATASETS

RDF_RULES_INDEX_INFO view SEM_RULES_INDEX_INFO

RDFI_rules-index-name view SEMI_rules-index-name

RDFM_model-name view SEMM_model-name

RDFR_rulebase-name view SEMR_rulebase-name

SDO_RDF package SEM_APIS

SDO_RDF_INFERENCE package SEM_APIS

SDO_RDF_MATCH table function SEM_MATCH

SDO_RDF_MODELS data type SEM_MODELS

SDO_RDF_RULEBASES data type SEM_RULEBASES

1.17 For More Information About RDF Semantic Graph
More information is available about RDF Semantic Graph support and related topics.

See the following resources:

• Oracle Spatial and Graph RDF Semantic Graph page (OTN), which includes links
for downloads, technical and business white papers, a discussion forum, and other
sources of information: http://www.oracle.com/technetwork/database/
options/spatialandgraph/overview/rdfsemantic-graph-1902016.html

• World Wide Web Consortium (W3C) RDF Primer: http://www.w3.org/TR/rdf-
primer/

• World Wide Web Consortium (W3C) OWL Web Ontology Language Reference: 
http://www.w3.org/TR/owl-ref/
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1.18 Required Migration of Pre-12.2 Semantic Data
If you have any semantic data created using Oracle Database 11.1. 11.2, or 12.1, then
before you use it in an Oracle Database 12.2 environment, you must migrate this data.

To perform the migration, use the SEM_APIS.MIGRATE_DATA_TO_CURRENT
procedure. This applies not only to your existing semantic data, but also to any other
semantic data introduced into your environment if that data was created using Oracle
Database 11.1. 11.2, or 12.1

The reason for this requirement is for optimal performance of queries that use ORDER
BY. Effective with Release 12.2, Oracle Database creates, populates, and uses the
ORDER_TYPE, ORDER_NUM, and ORDER_DATE columns (new in Release 12.2) in
the RDF_VALUE$ table (described in Statements). The 
SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure populates these order-
related columns. If you do not do this, those columns will be null for existing data.

You run this procedure after upgrading to Oracle Database Release 12.2. If you later
bring into your Release 12.2 environment any semantic data that was created using an
earlier release, you must also run the procedure before using that data. Running the
procedure can take a long time with large amounts of semantic data, so consider that
in deciding when to tun it. (Note that using the INS_AS_SEL=T option improves the
performance of the SEM_APIS.MIGRATE_DATA_TO_CURRENT procedure with
large data sets.)
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2
OWL Concepts

You should understand key concepts related to the support for a subset of the Web
Ontology Language (OWL).

This chapter builds on the information in RDF Semantic Graph Overview, and it
assumes that you are familiar with the major concepts associated with OWL, such as
ontologies, properties, and relationships. For detailed information about OWL, see the
OWL Web Ontology Language Reference at http://www.w3.org/TR/owl-ref/.

• Ontologies
An ontology is a shared conceptualization of knowledge in a particular domain.

• Using OWL Inferencing
You can use entailment rules to perform native OWL inferencing.

• Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted
manner, based on the semantic relationship between the data in a table column
and terms in an ontology.

2.1 Ontologies
An ontology is a shared conceptualization of knowledge in a particular domain.

It consists of a collection of classes, properties, and optionally instances. Classes are
typically related by class hierarchy (subclass/ superclass relationship). Similarly, the
properties can be related by property hierarchy (subproperty/ superproperty
relationship). Properties can be symmetric or transitive, or both. Properties can also
have domain, ranges, and cardinality constraints specified for them.

RDFS-based ontologies only allow specification of class hierarchies, property
hierarchies, instanceOf relationships, and a domain and a range for properties.

OWL ontologies build on RDFS-based ontologies by additionally allowing specification
of property characteristics. OWL ontologies can be further classified as OWL-Lite,
OWL-DL, and OWL Full. OWL-Lite restricts the cardinality minimum and maximum
values to 0 or 1. OWL-DL relaxes this restriction by allowing minimum and maximum
values. OWL Full allows instances to be also defined as a class, which is not allowed
in OWL-DL and OWL-Lite ontologies.

Supported OWL Subsets describes OWL capabilities that are supported and not
supported with semantic data.

• Example: Disease Ontology

• Supported OWL Subsets

2.1.1 Example: Disease Ontology
Figure 2-1 shows part of a disease ontology, which describes the classes and
properties related to certain diseases. One requirement is to have a PATIENTS data
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table with a column named DIAGNOSIS, which must contain a value from the
Diseases_and_Disorders class hierarchy.

Figure 2-1    Disease Ontology Example

 Immune_System_Disorder

 T_Cell_Immunodeficiency

Autoimmune_Disease

 AIDS

 Rheumatoid_Arthritis

Immunodeficiency_

     Syndrome

In the disease ontology shown in Figure 2-1, the diagnosis Immune_System_Disorder
includes two subclasses, Autoimmune_Disease and Immunodeficiency_Syndrome. The
Autoimmune_Disease diagnosis includes the subclass Rheumatoid_Arthritis; and the
Immunodeficiency_Syndrome diagnosis includes the subclass
T_Cell_Immunodeficiency, which includes the subclass AIDS.

The data in the PATIENTS table might include the PATIENT_ID and DIAGNOSIS
column values shown in Table 2-1.

Table 2-1    PATIENTS Table Example Data

PATIENT_ID DIAGNOSIS

1234 Rheumatoid_Arthritis

2345 Immunodeficiency_Syndrome

3456 AIDS

To query ontologies, you can use the SEM_MATCH table function or the
SEM_RELATED operator and its ancillary operators.

Related Topics

• Using the SEM_MATCH Table Function to Query Semantic Data
To query semantic data, use the SEM_MATCH table function.

• Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted
manner, based on the semantic relationship between the data in a table column
and terms in an ontology.
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2.1.2 Supported OWL Subsets
This section describes OWL vocabulary subsets that are supported.

Oracle Database supports the RDFS++, OWLSIF, and OWLPrime vocabularies, which
have increasing expressivity, as well as OWL 2 RL. Each supported vocabulary has a
corresponding rulebase; however, these rulebases do not need to be populated
because the underlying entailment rules of these three vocabularies are internally
implemented. The supported vocabularies are as follows:

• RDFS++: A minimal extension to RDFS; which is RDFS plus owl:sameAs and
owl:InverseFunctionalProperty.

• OWLSIF: OWL with IF Semantic, with the vocabulary and semantics proposed for
pD* semantics in Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary, by H.J. Horst,
Journal of Web Semantics 3, 2 (2005), 79–115.

• OWLPrime: The following OWL capabilities:

– Basics: class, subclass, property, subproperty, domain, range, type

– Property characteristics: transitive, symmetric, functional, inverse functional,
inverse

– Class comparisons: equivalence, disjointness

– Property comparisons: equivalence

– Individual comparisons: same, different

– Class expressions: complement

– Property restrictions: hasValue, someValuesFrom, allValuesFrom

As with pD*, the supported semantics for these value restrictions are only
intensional (IF semantics).

• OWL 2 RL: Described in the "OWL 2 RL" section of the W3C OWL 2 Web
Ontology Language Profiles recommendation (http://www.w3.org/TR/owl2-
profiles/#OWL_2_RL) as: "The OWL 2 RL profile is aimed at applications that
require scalable reasoning without sacrificing too much expressive power. It is
designed to accommodate both OWL 2 applications that can trade the full
expressivity of the language for efficiency, and RDF(S) applications that need
some added expressivity from OWL 2."

The system-defined rulebase OWL2RL supports all the standard production rules
defined for OWL 2 RL. As with OWLPRIME, users will not see any rules in this
OWL2RL rulebase. The rulebase OWL2RL will be created automatically if it does not
already exist.

The following code excerpt uses the OWL2RL rulebase:

CREATE TABLE m1_tpl (triple SDO_RDF_TRIPLE_S) COMPRESS;
EXECUTE sem_apis.create_sem_model('m1','m1_tpl','triple');
-- Insert data into model M1. Details omitted
...
-- Now run inference using the OWL2RL rulebase
EXECUTE 
sem_apis.create_entailment('m1_inf',sem_models('m1'),sem_rulebases('owl2rl'));

Chapter 2
Ontologies

2-3

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
http://www.w3.org/TR/owl2-profiles/#OWL_2_RL


Note that inference-related optimizations, such as parallel inference and RAW8,
are all applicable when the OWL2RL rulebase is used.

• OWL 2 EL: Described in the "OWL 2 EL" section of the W3C OWL 2 Web
Ontology Language Profiles recommendation (http://www.w3.org/TR/owl2-
profiles/#OWL_2_EL) as: "The OWL 2 EL profile is designed as a subset of OWL
2 that

– is particularly suitable for applications employing ontologies that define very
large numbers of classes and/or properties,

– captures the expressive power used by many such ontologies, and

– for which ontology consistency, class expression subsumption, and instance
checking can be decided in polynomial time."

A prime example of OWL 2 EL ontology is the biomedical ontology SNOMED
Clinical Terms (SNOMED CT). For information about SNOMED CT, see: http://
www.ihtsdo.org/snomed-ct/

The system-defined rulebase OWL2EL supports the EL syntax.

As with OWLPRIME and OWL2RL, users will not see any rules in this OWL2EL rulebase,
and the OWL2EL rulebase will be created automatically if it does not already exist.

The following code excerpt uses the OWL2EL rulebase against the well known
SNOMED ontology:

CREATE TABLE snomed_tpl (triple SDO_RDF_TRIPLE_S) COMPRESS;
EXECUTE sem_apis.create_sem_model('snomed','snomed_tpl','triple') compress;
-- Insert data into model SNOMED. Details omitted
...
-- Now run inference using the OWL2EL rulebase
EXECUTE 
sem_apis.create_entailment('snomed_inf',sem_models('snomed'),sem_rulebases('owl2e
l'));

Note that the OWL2EL rulebase support does not include reflexive object properties
(ReflexiveObjectProperty) simply because a reflexive object property will link
every individual with itself, which would probably cause an unnecessary and costly
expansion of the inference graph.

Table 2-2 lists the RDFS/OWL vocabulary constructs included in each supported
rulebase.

Table 2-2    RDFS/OWL Vocabulary Constructs Included in Each Supported
Rulebase

Rulebase Name RDFS/OWL Constructs Included

RDFS++ all RDFS vocabulary constructs

owl:InverseFunctionalProperty

owl:sameAs

Chapter 2
Ontologies

2-4

http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
http://www.ihtsdo.org/snomed-ct/
http://www.ihtsdo.org/snomed-ct/


Table 2-2    (Cont.) RDFS/OWL Vocabulary Constructs Included in Each
Supported Rulebase

Rulebase Name RDFS/OWL Constructs Included

OWLSIF all RDFS vocabulary constructs

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

owl:sameAs

owl:inverseOf

owl:equivalentClass

owl:equivalentProperty

owl:hasValue

owl:someValuesFrom

owl:allValuesFrom

OWLPrime rdfs:subClassOf

rdfs:subPropertyOf

rdfs:domain

rdfs:range

owl:FunctionalProperty

owl:InverseFunctionalProperty

owl:SymmetricProperty

owl:TransitiveProperty

owl:sameAs

owl:inverseOf

owl:equivalentClass

owl:equivalentProperty

owl:hasValue

owl:someValuesFrom

owl:allValuesFrom

owl:differentFrom

owl:disjointWith

owl:complementOf

OWL2RL (As described in http://www.w3.org/TR/owl2-profiles/
#OWL_2_RL)

OWL2EL (As described in http://www.w3.org/TR/owl2-profiles/
#OWL_2_EL)

2.2 Using OWL Inferencing
You can use entailment rules to perform native OWL inferencing.

This section creates a simple ontology, performs native inferencing, and illustrates
some more advanced features.

• Creating a Simple OWL Ontology
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• Performing Native OWL inferencing

• Performing OWL and User-Defined Rules Inferencing

• Generating OWL inferencing Proofs

• Validating OWL Models and Entailments

• Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference

• Enhancing Inference Performance

• Optimizing owl:sameAs Inference

• Performing Incremental Inference

• Using Parallel Inference

• Using Named Graph Based Inferencing (Global and Local)

• Performing Selective Inferencing (Advanced Information)

2.2.1 Creating a Simple OWL Ontology
Example 2-1 creates a simple OWL ontology, inserts one statement that two URIs
refer to the same entity, and performs a query using the SEM_MATCH table function.

Example 2-1    Creating a Simple OWL Ontology

SQL> CREATE TABLE owltst(id number, triple sdo_rdf_triple_s);
Table created.
 
SQL> EXECUTE sem_apis.create_sem_model('owltst','owltst','triple');
PL/SQL procedure successfully completed.
 
SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
       'http://example.com/name/John', 'http://www.w3.org/2002/07/owl#sameAs', 
       'http://example.com/name/JohnQ'));
1 row created.
 
SQL> commit;
 
SQL> -- Use SEM_MATCH to perform a simple query.
SQL> select s,p,o from table(SEM_MATCH('(?s ?p  ?o)', SEM_Models('OWLTST'),
           null,  null, null ));

2.2.2 Performing Native OWL inferencing
Example 2-2 calls the SEM_APIS.CREATE_ENTAILMENT procedure. You do not
need to create the rulebase and add rules to it, because the OWL rules are already
built into the RDF Semantic Graph inferencing engine.

Example 2-2    Performing Native OWL Inferencing

SQL> -- Invoke the following command to run native OWL inferencing that
SQL> -- understands the vocabulary defined in the preceding section.
SQL>
SQL>  EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), 
sem_rulebases('OWLPRIME'));
PL/SQL procedure successfully completed.
 
SQL> -- The following view is generated to represent the entailed graph (rules 
index).
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SQL> desc mdsys.semi_owltst_idx;
 
SQL> -- Run the preceding query with an additional rulebase parameter to list
SQL> -- the original graph plus the inferred triples.
SQL> SELECT s,p,o FROM table(SEM_MATCH('(?s ?p  ?o)', SEM_MODELS('OWLTST'),
           SEM_RULEBASES('OWLPRIME'),  null, null ));

2.2.3 Performing OWL and User-Defined Rules Inferencing
Example 2-3 creates a user-defined rulebase, inserts a simplified uncleOf rule (stating
that the brother of one's father is one's uncle), and calls the 
SEM_APIS.CREATE_ENTAILMENT procedure.

Example 2-3    Performing OWL and User-Defined Rules Inferencing

SQL> -- First, insert the following assertions.
 
SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
       'http://example.com/name/John', 'http://example.com/rel/fatherOf',
       'http://example.com/name/Mary'));
 
 
SQL> INSERT INTO owltst VALUES (1, sdo_rdf_triple_s('owltst',
       'http://example.com/name/Jack', 'http://example.com/rel/brotherOf',
       'http://example.com/name/John'));
 
SQL> -- Create a user-defined rulebase.
 
SQL> EXECUTE sem_apis.create_rulebase('user_rulebase');
 
SQL> -- Insert a simple "uncle" rule.
 
SQL> INSERT INTO mdsys.semr_user_rulebase VALUES ('uncle_rule', 
'(?x <http://example.com/rel/brotherOf> ?y)(?y <http://example.com/rel/fatherOf> ?
z)',
NULL, '(?x <http://example.com/rel/uncleOf> ?z)', null);
 
SQL>  -- In the following statement, 'USER_RULES=T' is required, to
SQL> --  include the original graph plus the inferred triples.
SQL> EXECUTE sem_apis.create_entailment('owltst2_idx', sem_models('owltst'),
          sem_rulebases('OWLPRIME','USER_RULEBASE'), 
          SEM_APIS.REACH_CLOSURE, null, 'USER_RULES=T');
 
SQL> -- In the result of the following query, :Jack :uncleOf :Mary is inferred.
SQL> SELECT s,p,o FROM table(SEM_MATCH('(?s ?p  ?o)',
           SEM_MODELS('OWLTST'),
           SEM_RULEBASES('OWLPRIME','USER_RULEBASE'),  null, null ));

For performance, the inference engine by default executes each user rule without
checking the syntax legality of inferred triples (for example, literal value as a subject,
blank node as a predicate) until after the last round of entailment. After completing the
last entailment round, the inference engine removes all syntactically illegal triples
without throwing any errors for these triples. However, because triples with illegal
syntax may exist during multiple rounds of inference, rules can use these triples as
part of their antecedents. For example, consider the following user-defined rules:

• Rule 1:

(?s :account ?y)
(?s :country :Spain) --> (?y rdf:type :SpanishAccount)
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• Rule 2:

(?s :account ?y)
(?y rdf:type :SpanishAccount) --> (?s :language "es_ES")

Rule 1 finds all Spanish users and designates their accounts as Spanish accounts.
Rule 2 sets the language for all users with Spanish accounts to es_ES (Spanish).
Consider the following data, displayed in Turtle format:

:Juan      :account "123ABC4Z"
           :country :Spain
 
:Alejandro :account "5678DEF9Y"
           :country :Spain

Applying Rule 1 and Rule 2 produces the following inferred triples:

(:Juan      :language "es_ES")
(:Alejandro :language "es_ES")

Note there are no triples specifying which accounts are of type :SpanishAccount. The
user-defined rules infer those triples during creation of the entailment, but the
inference engine removes them after the last round of inference because they contain
illegal syntax. The accounts are the literal values, which cannot be used as subjects in
an RDF triple.

To force the checking of syntax legality of inferred triples, add the /*+
ENABLE_SYNTAX_CHECKING */ optimizer hint to the beginning of the rule's FILTER
expression. Forcing syntax checking for a rule can result in a performance penalty and
will throw an exception for any syntactically illegal triples. The following example,
similar to Rule 1, forces syntax checking. (In addition, merely to illustrate the use of a
filter expression, the example restricts accounts to those that do not end with the letter
'Z'.)

INSERT INTO mdsys.semr_user_rulebase VALUES (
  'spanish_account_rule',
  '(?s <http://example.com/account> ?y)(?y <http://example.com/account> <http://
example.com/Spain>)',
  '/*+ ENABLE_SYNTAX_CHECKING */ y not like ''%Z'' ',
  '(?y <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://example.com/
SpanishAccount>)',
  NULL
);

2.2.4 Generating OWL inferencing Proofs
OWL inference can be complex, depending on the size of the ontology, the actual
vocabulary (set of language constructs) used, and the interactions among those
language constructs. To enable you to find out how a triple is derived, you can use
proof generation during inference. (Proof generation does require additional CPU time
and disk resources.)

To generate the information required for proof, specify PROOF=T in the call to the 
SEM_APIS.CREATE_ENTAILMENT procedure, as shown in the following example:

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), -
  sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, 'SAM', 'PROOF=T');

Specifying PROOF=T causes a view to be created containing proof for each inferred
triple. The view name is the entailment name prefixed by MDSYS.SEMI_. Two relevant
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columns in this view are LINK_ID and EXPLAIN (the proof). The following example
displays the LINK_ID value and proof of each generated triple (with LINK_ID values
shortened for simplicity):

SELECT link_id || ' generated by ' || explain as 
          triple_and_its_proof FROM mdsys.semi_owltst_idx;
 
TRIPLE_AND_ITS_PROOF
--------------------------------------------------------------------
8_5_5_4 generated by 4_D_5_5 : SYMM_SAMH_SYMM
8_4_5_4 generated by 8_5_5_4 4_D_5_5 : SAM_SAMH
. . .

A proof consists of one or more triple (link) ID values and the name of the rule that is
applied on those triples:

link-id1 [link-id2 ... link-idn] : rule-name

Example 2-4    Displaying Proof Information

To get the full subject, predicate, and object URIs for proofs, you can query the model
view and the entailment (rules index) view. Example 2-4 displays the LINK_ID value
and associated triple contents using the model view MDSYS.SEMM_OWLTST and the
entailment view MDSYS.SEMI_OWLTST_IDX.

SELECT to_char(x.triple.rdf_m_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
       to_char(x.triple.rdf_s_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
       to_char(x.triple.rdf_p_id, 'FMXXXXXXXXXXXXXXXX') ||'_'||
       to_char(x.triple.rdf_c_id, 'FMXXXXXXXXXXXXXXXX'),
       x.triple.get_triple()
  FROM (
   SELECT sdo_rdf_triple_s(
           t.canon_end_node_id,
           t.model_id, 
           t.start_node_id,
           t.p_value_id,
           t.end_node_id) triple
     FROM (select * from mdsys.semm_owltst union all
           select * from mdsys.semi_owltst_idx
          ) t  
    WHERE t.link_id IN ('4_D_5_5','8_5_5_4')
  ) x;
 
   LINK_ID  X.TRIPLE.GET_TRIPLE()(SUBJECT, PROPERTY, OBJECT)
----------  --------------------------------------------------------------
4_D_5_5 SDO_RDF_TRIPLE('<http://example.com/name/John>', '<http://www.w3.org/2002/07/
owl#sameAs>', '<http://example.com/name/JohnQ>')
8_5_5_4 SDO_RDF_TRIPLE('<http://example.com/name/JohnQ>', '<http://www.w3.org/
2002/07/owl#sameAs>', '<http://example.com/name/John>')

In Example 2-4, for the proof entry 8_5_5_4 generated by 4_D_5_5 :
SYMM_SAMH_SYMM for the triple with LINK_ID = 8_5_5_4, it is inferred from the
triple with 4_D_5_5 using the symmetricity of owl:sameAs.

If the entailment status is INCOMPLETE and if the last entailment was generated
without proof information, you cannot invoke SEM_APIS.CREATE_ENTAILMENT with
PROOF=T. In this case, you must first drop the entailment and create it again specifying
PROOF=T.
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2.2.5 Validating OWL Models and Entailments
An OWL ontology may contain errors, such as unsatisfiable classes, instances
belonging to unsatisfiable classes, and two individuals asserted to be same and
different at the same time. You can use the SEM_APIS.VALIDATE_MODEL and 
SEM_APIS.VALIDATE_ENTAILMENT functions to detect inconsistencies in the
original data model and in the entailment, respectively.

Example 2-5    Validating an Entailment

Example 2-5 shows uses the SEM_APIS.VALIDATE_ENTAILMENT function, which
returns a null value if no errors are detected or a VARRAY of strings if any errors are
detected.

SQL>  -- Insert an offending triple.
SQL>  insert into owltst values (1, sdo_rdf_triple_s('owltst',
             'urn:C1', 'http://www.w3.org/2000/01/rdf-schema#subClassOf', 'http://
www.w3.org/2002/07/owl#Nothing'));
 
SQL> -- Drop entailment first.
SQL>  exec sem_apis.drop_entailment('owltst_idx');
PL/SQL procedure successfully completed.
 
SQL> -- Perform OWL inferencing.
SQL> exec sem_apis.create_entailment('owltst_idx', sem_models('OWLTST'), 
sem_rulebases('OWLPRIME'));
PL/SQL procedure successfully completed.
 
SQL > set serveroutput on; 
SQL > -- Now invoke validation API: sem_apis.validate_entailment
SQL > 
declare 
  lva mdsys.rdf_longVarcharArray; 
  idx int; 
begin 
  lva := sem_apis.validate_entailment(sem_models('OWLTST'), 
sem_rulebases('OWLPRIME')) ; 
 
  if (lva is null) then
   dbms_output.put_line('No errors found.');
  else 
    for idx in 1..lva.count loop 
      dbms_output.put_line('Offending entry := ' || lva(idx)) ; 
    end loop ; 
  end if;
end ; 
/ 
 
SQL> -- NOTE: The LINK_ID value and the numbers in the following
SQL> -- line are shortened for simplicity in this example. -- 

          Offending entry  := 1 10001 (4_2_4_8 2 4 8) Unsatisfiable class.

Each item in the validation report array includes the following information:

• Number of triples that cause this error (1 in Example 2-5)

• Error code (10001 Example 2-5)
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• One or more triples (shown in parentheses in the output; (4_2_4_8 2 4 8) in 
Example 2-5).

These numbers are the LINK_ID value and the ID values of the subject, predicate,
and object.

• Descriptive error message (Unsatisfiable class. in Example 2-5)

The output in Example 2-5 indicates that the error is caused by one triple that asserts
that a class is a subclass of an empty class owl:Nothing.

2.2.6 Using SEM_APIS.CREATE_ENTAILMENT for RDFS Inference
In addition to accepting OWL vocabularies, the SEM_APIS.CREATE_ENTAILMENT
procedure accepts RDFS rulebases. The following example shows RDFS inference
(all standard RDFS rules are defined in http://www.w3.org/TR/rdf-mt/):

EXECUTE sem_apis.create_entailment('rdfstst_idx', sem_models('my_model'), 
sem_rulebases('RDFS'));

Because rules RDFS4A, RDFS4B, RDFS6, RDFS8, RDFS10, RDFS13 may not
generate meaningful inference for your applications, you can deselect those
components for faster inference. The following example deselects these rules.

EXECUTE sem_apis.create_entailment('rdfstst_idx', sem_models('my_model'), 
sem_rulebases('RDFS'), SEM_APIS.REACH_CLOSURE, -
 'RDFS4A-, RDFS4B-, RDFS6-, RDFS8-, RDFS10-, RDFS13-');

2.2.7 Enhancing Inference Performance
This section describes suggestions for improving the performance of inference
operations.

• Collect statistics before inferencing. After you load a large RDF/OWL data model,
you should execute the SEM_PERF.GATHER_STATS procedure. See the Usage
Notes for that procedure (in SEM_PERF Package Subprograms) for important
usage information.

• Allocate sufficient temporary tablespace for inference operations. OWL inference
support in Oracle relies heavily on table joins, and therefore uses significant
temporary tablespace.

• Use the appropriate implementations of the SVFH and AVFH inference
components.

The default implementations of the SVFH and AVFH inference components work
best when the number of restriction classes defined by owl:someValuesFrom
and/or owl:allValuesFrom is low (as in the LUBM data sets). However, when the
number of such classes is high (as in the Gene Ontology http://
www.geneontology.org/), using non-procedural implementations of SVFH and
AVFH may significantly improve performance.

To disable the procedural implementations and to select the non-procedural
implementations of SVFH and AVFH, include 'PROCSVFH=F' and/or 'PROCAVFH=F'
in the options to SEM_APIS.CREATE_ENTAILMENT. Using the appropriate
implementation for an ontology can provide significant performance benefits. For
example, selecting the non-procedural implementation of SVFH for the NCI
Thesaurus ontology (see http://www.cancer.gov/research/resources/
terminology) produced a 960% performance improvement for the SVFH inference
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component (tested on a dual-core, 8GB RAM desktop system with 3 SATA disks
tied together with Oracle ASM).

See also Optimizing owl:sameAs Inference.

Related Topics

• Optimizing owl:sameAs Inference

2.2.8 Optimizing owl:sameAs Inference
You can optimize inference performance for large owl:sameAs cliques by specifying
'OPT_SAMEAS=T' in the options parameter when performing OWLPrime entailment. (A
clique is a graph in which every node of it is connected to, bidirectionally, every other
node in the same graph.)

According to OWL semantics, the owl:sameAs construct is treated as an equivalence
relation, so it is reflexive, symmetric, and transitive. As a result, during inference a full
materialization of owl:sameAs-related entailments could significantly increase the size
of the inferred graph. Consider the following example triple set:

:John  owl:sameAs  :John1 .
:John  owl:sameAs  :John2 .
:John2 :hasAge     "32" .

Applying OWLPrime inference (with the SAM component specified) to this set would
generate the following new triples:

:John1  owl:sameAs  :John .
:John2  owl:sameAs  :John .
:John1  owl:sameAs  :John2 .
:John2  owl:sameAs  :John1 .
:John   owl:sameAs  :John .
:John1  owl:sameAs  :John1 .
:John2  owl:sameAs  :John2 .
:John   :hasAge     "32" . 
:John1  :hasAge     "32" .

In the preceding example, :John, :John1 and :John2 are connected to each other with
the owl:sameAs relationship; that is, they are members of an owl:sameAs clique. To
provide optimized inference for large owl:sameAs cliques, you can consolidate
owl:sameAs triples without sacrificing correctness by specifying 'OPT_SAMEAS=T' in the
options parameter when performing OWLPrime entailment. For example:

EXECUTE sem_apis.create_entailment('M_IDX',sem_models('M'),
   sem_rulebases('OWLPRIME'),null,null,'OPT_SAMEAS=T');

When you specify this option, for each owl:sameAs clique, one resource from the
clique is chosen as a canonical representative and all of the inferences for that clique
are consolidated around that resource. Using the preceding example, if :John1 is the
clique representative, after consolidation the inferred graph would contain only the
following triples:

:John1 owl:sameAs :John1 .
:John1 :hasAge    "32" .

Some overhead is incurred with owl:sameAs consolidation. During inference, all
asserted models are copied into the inference partition, where they are consolidated
together with the inferred triples. Additionally, for very large asserted graphs,
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consolidating and removing duplicate triples incurs a large runtime overhead, so the
OPT_SAMEAS=T option is recommended only for ontologies that have a large number of
owl:sameAs relationships and large clique sizes.

After the OPT_SAMEAS=T option has been used for an entailment, all subsequent
uses of SEM_APIS.CREATE_ENTAILMENT for that entailment must also use
OPT_SAMEAS=T, or an error will be reported. To disable optimized sameAs handling, you
must first drop the entailment.

Clique membership information is stored in a view named MDSYS.SEMC_entailment-
name, where entailment-name is the name of the entailment (rules index). Each
MDSYS.SEMC_entailment-name view has the columns shown in Table 2-3.

Table 2-3    MDSYS.SEMC_entailment_name View Columns

Column Name Data Type Description

MODEL_ID NUMBER ID number of the inferred model

VALUE_ID NUMBER) ID number of a resource that is a member of the
owl:sameAs clique identified by CLIQUE_ID

CLIQUE_ID NUMBER ID number of the clique representative for the
VALUE_ID resource

To save space, the MDSYS.SEMC_entailment-name view does not contain reflexive
rows like (CLIQUE_ID, CLIQUE_ID).

• Querying owl:sameAs Consolidated Inference Graphs

2.2.8.1 Querying owl:sameAs Consolidated Inference Graphs
At query time, if the entailment queried was created using the OPT_SAMEAS=T option,
the results are returned from an owl:sameAs-consolidated inference partition. The
query results are not expanded to include the full owl:sameAs closure.

In the following example query, the only result returned would be :John1, which is the
canonical clique representative.

SELECT A FROM TABLE (
  SEM_MATCH ('(?A :hasAge "32")',SEM_MODELS('M'),  
    SEM_RULEBASES('OWLPRIME'),NULL, NULL));

With the preceding example, even though :John2 :hasAge "32" occurs in the model,
it has been replaced during the inference consolidation phase where redundant triples
are removed. However, you can expand the query results by performing a join with the
MDSYS.SEMC_rules-index-name view that contains the consolidated owl:sameAs
information. For example, to get expanded result set for the preceding SEM_MATCH
query, you can use the following expanded query:

SELECT V.VALUE_NAME A_VAL FROM TABLE (
  SEM_MATCH ('(?A :hasAge "32")',SEM_MODELS('M'), 
    SEM_RULEBASES('OWLPRIME'), NULL, NULL)) Q,
    MDSYS.RDF_VALUE$ V, MDSYS.SEMC_M_IDX C
  WHERE V.VALUE_ID  = C.VALUE_ID 
     AND C.CLIQUE_ID = Q.A$RDFVID
  UNION ALL
    SELECT A A_VAL FROM TABLE (
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      SEM_MATCH ('(?A :hasAge "32")',SEM_MODELS('M'),  
        SEM_RULEBASES('OWLPRIME'),NULL, NULL));

Or, you could rewrite the preceding expanded query using a left outer join, as follows:

SELECT V.VALUE_NAME A_VAL FROM TABLE (
  SEM_MATCH ('(?A <http://hasAge> "33")',SEM_MODELS('M'), 
   SEM_RULEBASES('OWLPRIME'), NULL, NULL)) Q,
  MDSYS.RDF_VALUE$ V, 
   (SELECT value_id, clique_id FROM MDSYS.SEMC_M_IDX 
  UNION ALL
    SELECT DISTINCT clique_id, clique_id 
      FROM MDSYS.SEMC_M_IDX) C
 WHERE Q.A$RDFVID  = c.clique_id  (+)
   AND V.VALUE_ID  = nvl(C.VALUE_ID, Q.A$RDFVID);

2.2.9 Performing Incremental Inference
Incremental inference can be used to update entailments (rules indexes) efficiently
after triple additions. There are two ways to enable incremental inference for an
entailment:

• Specify the options parameter value INC=T when creating the entailment. For
example:

EXECUTE sem_apis.create_entailment ('M_IDX',sem_models('M'),
  sem_rulebases('OWLPRIME'),null,null, 'INC=T');

• Use the SEM_APIS.ENABLE_INC_INFERENCE procedure.

If you use this procedure, the entailment must have a VALID status. Before calling
the procedure, if you do not own the models involved in the entailment, you must
ensure that the respective model owners have used the 
SEM_APIS.ENABLE_CHANGE_TRACKING procedure to enable change tracking
for those models.

When incremental inference is enabled for an entailment, the parameter INC=T must
be specified when invoking the SEM_APIS.CREATE_ENTAILMENT procedure for that
entailment.

Incremental inference for an entailment depends on triggers for the application tables
of the models involved in creating the entailment. This means that incremental
inference works only when triples are inserted in the application tables underlying the
entailment using conventional path loads, unless you specify the triples by using the
delta_in parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure,
as in the following example, in which the triples from model M_NEW will be added to
model M, and entailment M_IDX will be updated with the new inferences:

EXECUTE sem_apis.create_entailment('M_IDX', sem_models('M'),
  sem_rulebases('OWLPRIME''), SEM_APIS.REACH_CLOSURE, null, null,
  sem_models('M_NEW'));

If multiple models are involved in the incremental inference call, then to specify the
destination model to which the delta_in model or models are to be added, specify
DEST_MODEL=<model_name> in the options parameter. For example, the following
causes the semantic data in model M_NEW to be added to model M2:

EXECUTE sem_apis.create_entailment('M_IDX', sem_models('M1','M2','M3'),
sem_rulebases('OWLPRIME''), SEM_APIS.REACH_CLOSURE, null, 'DEST_MODEL=M2', 
sem_models('M_NEW'));

Chapter 2
Using OWL Inferencing

2-14



Another way to bypass the conventional path loading requirement when using
incremental inference is to set the UNDO_RETENTION parameter to cover the
intervals between entailments when you perform bulk loading. For example, if the last
entailment was created 6 hours ago, the UNDO_RETENTION value should be set to
greater than 6 hours; if it is less than that, then (given a heavy workload and limited
undo space) it is not guaranteed that all relevant undo information will be preserved for
incremental inference to apply. In such cases, the 
SEM_APIS.CREATE_ENTAILMENT procedure falls back to regular (non-incremental)
inference.

To check if change tracking is enabled on a model, use the 
SEM_APIS.GET_CHANGE_TRACKING_INFO procedure. To get additional
information about incremental inference for an entailment, use the 
SEM_APIS.GET_INC_INF_INFO procedure.

The following restrictions apply to incremental inference:

• It does not work with optimized owl:sameAs handling (OPT_SAMEAS), user-defined
rules, VPD-enabled models, or version-enabled models.

• It supports only the addition of triples. With updates or deletions, the entailment
will be completely rebuilt.

• It depends on triggers on application tables.

• Column types (RAW8 or NUMBER) used in incremental inference must be
consistent. For instance, if RAW8=T is used to build the entailment initially, then for
every subsequent SEM_APIS.CREATE_ENTAILMENT call the same option must
be used. To change the column type to NUMBER, you must drop and rebuild the
entailment.

2.2.10 Using Parallel Inference
Parallel inference can improve inference performance by taking advantage of the
capabilities of a multi-core or multi-CPU architectures. To use parallel inference,
specify the DOP (degree of parallelism) keyword and an appropriate value when using
the SEM_APIS.CREATE_ENTAILMENT procedure. For example:

EXECUTE sem_apis.create_entailment('M_IDX',sem_models('M'), 
      sem_rulebases('OWLPRIME'), sem_apis.REACH_CLOSURE, null, 'DOP=4');

Specifying the DOP keyword causes parallel execution to be enabled for an Oracle-
chosen set of inference components

The success of parallel inference depends heavily on a good hardware configuration
of the system on which the database is running. The key is to have a "balanced"
system that implements the best practices for database performance tuning and
Oracle SQL parallel execution. For example, do not use a single 1 TB disk for an 800
GB database, because executing SQL statements in parallel on a single physical disk
can even be slower than executing SQL statements in serial mode. Parallel inference
requires ample memory; for each CPU core, you should have at least 4 GB of
memory.

Parallel inference is best suited for large ontologies; however, inference performance
can also improve for small ontologies.

There is some transient storage overhead associated with using parallel inference.
Parallel inference builds a source table that includes all triples based on all the source
RDF/OWL models and existing inferred graph. This table might use an additional 10 to
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30 percent of storage compared to the space required for storing data and index of the
source models.

2.2.11 Using Named Graph Based Inferencing (Global and Local)
The default inferencing in Oracle Database takes all asserted triples from all the
source model or models provided and applies semantic rules on top of all the asserted
triples until an inference closure is reached. Even if the given source models contain
one or more multiple named graphs, it makes no difference because all assertions,
whether part of a named graph or not, are treated the same as if they come from a
single graph. (For an introduction to named graph support in RDF Semantic Graph,
see Named Graphs.)

This default inferencing can be thought of as completely "global" in that it does not
consider named graphs at all.

However, if you use named graphs, you can override the default inferencing and have
named graphs be considered by using either of the following features:

• Named graph based global inference (NGGI), which treats all specified named
graphs as a unified graph. NGGI lets you narrow the scope of triples to be
considered, while enabling great flexibility; it is explained in Named Graph Based
Global Inference (NGGI).

• Named graph based local inference (NGLI), which treats each specified named
graph as a separate entity. NGLI is explained in Named Graph Based Local
Inference (NGLI).

For using NGGI and NGLI together, see a recommended usage flow in Using NGGI
and NGLI Together.

You specify NGGI or NGLI through certain parameters and options to the 
SEM_APIS.CREATE_ENTAILMENT procedure when you create an entailment (rules
index).

• Named Graph Based Global Inference (NGGI)

• Named Graph Based Local Inference (NGLI)

• Using NGGI and NGLI Together

2.2.11.1 Named Graph Based Global Inference (NGGI)
Named graph based global inference (NGGI) enables you to narrow the scope of
triples used for inferencing at the named graph level (as opposed to the model level). It
also enables great flexibility in selecting the scope; for example, you can include triples
from zero or more named graphs and/or from the default graph, and you can include
all triples with a null graph name from specified models.

For example, in a hospital application you may only want to apply the inference rules
on all the information contained in a set of named graphs describing patients of a
particular hospital. If the patient-related named graphs contains only instance-related
assertions (ABox), you can specify one or multiple additional schema related-models
(TBox), as in Example 2-6.

Example 2-6    Named Graph Based Global Inference

EXECUTE sem_apis.create_entailment(
  'patients_inf',
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  models_in         => sem_models('patients','hospital_ontology'),
  rulebases_in      => sem_rulebases('owl2rl'),
  passes            => SEM_APIS.REACH_CLOSURE,
  inf_components_in => null,
  options           => 'DOP=4,RAW8=T',
  include_default_g => sem_models('hospital_ontology'),
  include_named_g   => 
sem_graphs('<urn:hospital1_patient1>','<urn:hospital1_patient2>'),
  inf_ng_name       => '<urn:inf_graph_for_hospital1>'
  );

In Example 2-6:

• Two models are involved: patients contains a set of named graphs where each
named graph holds triples relevant to a particular patient, and hospital_ontology
contains schema information describing concepts and relationships that are
defined for hospitals. These two models together are the source models, and they
set up an overall scope for the inference.

• The include_default_g parameter causes all triples with a NULL graph name in
the specified models to participate in NGGI. In this example, all triples with a NULL
graph name in model hospital_ontology will be included in NGGI.

• The include_named_g parameter causes all triples from the specified named
graphs (across all source models) to participate in NGGI. In this example, triples
from named graphs <urn:hospital1_patient1> and <urn:hospital1_patient2>
will be included in NGGI.

• The inf_ng_name parameter assigns graph name
<urn:inf_graph_for_hospital1> to all the new triples inferred by NGGI.

2.2.11.2 Named Graph Based Local Inference (NGLI)
Named graph based local inference (NGLI) treats each named graph as a separate
entity instead of viewing the graphs as a single unified graph. Inference logic is
performed within the boundary of each entity. You can specify schema-related
assertions (TBox) in a default graph, and that default graph will participate the
inference of each named graph. For example, inferred triples based on a graph with
name G1 will be assigned the same graph name G1 in the inferred data partition.

Assertions from any two separate named graphs will never jointly produce any new
assertions.

For example, assume the following:

• Graph G1 includes the following assertion:

:John  :hasBirthMother  :Mary .

• Graph G2 includes the following assertion:

:John  :hasBirthMother  :Bella .

• The default graph includes the assertion that :hasBirthMother is an
owl:FunctionalProperty. (This assertion has a null graph name.)

In this example, named graph based local inference (NGLI) will not infer that :Mary is
owl:sameAs :Bella because the two assertions are from two distinct graphs, G1 and
G2. By contrast, a named graph based global inference (NGGI) that includes G1, G2,
and the functional property definition would be able to infer that :Mary is
owl:sameAs :Bella.
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NGLI currently does not work together with proof generation, user-defined rules,
optimized owl:sameAs handling, or incremental inference.

Example 2-7    Named Graph Based Local Inference

Example 2-7 shows NGLI.

EXECUTE sem_apis.create_entailment(
  'patients_inf',
  models_in         => sem_models('patients','hospital_ontology'),
  rulebases_in      => sem_rulebases('owl2rl'),
  passes            => SEM_APIS.REACH_CLOSURE,
  inf_components_in => null,
  options           => 'LOCAL_NG_INF=T'
);

In Example 2-7:

• The two models patients and hospital_ontology together are the source models,
and they set up an overall scope for the inference, similar to the case of global
inference in Example 2-6. All triples with a null graph name are treated as part of
the common schema (TBox). Inference is performed within the boundary of every
single named graph combined with the common schema.

• Then options parameter keyword-value pair LOCAL_NG_INF=T specifies that
named graph based local inference (NGLI) is to be performed.

Note that, by design, NGLI does not apply to the default graph itself. However, you can
easily apply named graph based global inference (NGGI) on the default graph and set
the inf_ng_name parameter to null. In this way, the TBox inference is precomputed,
improving the overall performance and storage consumption.

NGLI does not allow the following:

• Inferring new relationships based on a mix of triples from multiple named graphs

• Inferring new relationships using only triples from the default graph.

To get the inference that you would normally expect, you should keep schema
assertions and instance assertions separate. Schema assertions (for example, :A
rdfs:subClassOf :B and :p1 rdfs:subPropertyOf :p2) should be stored in the
default graph as unnamed triples (with null graph names). By contrast, instance
assertions (for example, :X :friendOf :Y) should be stored in one of the named
graphs.

For a discussion and example of using NGLI to perform document-centric inference
with semantically indexed documents, see Performing Document-Centric Inference.

2.2.11.3 Using NGGI and NGLI Together
The following is a recommended usage flow for using NGGI and NGLI together. It
assumes that TBox and ABox are stored in two separate models, that TBox contains
schema definitions and all triples in the TBox have a null graph name, but that ABox
consists of a set of named graphs describing instance-related data.

1. Invoke NGGI on the TBox by itself. For example:

EXECUTE sem_apis.create_entailment(
    'TEST_INF',
    sem_models('abox','tbox'),
    sem_rulebases('owl2rl'),
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    SEM_APIS.REACH_CLOSURE,
    include_default_g=>sem_models('tbox')
);

2. Invoke NGLI for all named graphs. For example:

EXECUTE sem_apis.create_entailment(
    'TEST_INF',
    sem_models('abox','tbox'),
    sem_rulebases('owl2rl'),
    SEM_APIS.REACH_CLOSURE,
    options => 'LOCAL_NG_INF=T,ENTAIL_ANYWAY=T'
);

ENTAIL_ANYWAY=T is specified because the NGGI call in step 1will set the status of
inferred graph to VALID, and the SEM_APIS.CREATE_ENTAILMENT procedure
call in step 2 will quit immediately unless ENTAIL_ANYWAY=T is specified.

2.2.12 Performing Selective Inferencing (Advanced Information)
Selective inferencing is component-based inferencing, in which you limit the
inferencing to specific OWL components that you are interested in. To perform
selective inferencing, use the inf_components_in parameter to the 
SEM_APIS.CREATE_ENTAILMENT procedure to specify a comma-delimited list of
components. The final inferencing is determined by the union of rulebases specified
and the components specified.

Example 2-8    Performing Selective Inferencing

Example 2-8 limits the inferencing to the class hierarchy from subclass (SCOH)
relationship and the property hierarchy from subproperty (SPOH) relationship. This
example creates an empty rulebase and then specifies the two components
('SCOH,SPOH') in the call to the SEM_APIS.CREATE_ENTAILMENT procedure.

EXECUTE sem_apis.create_rulebase('my_rulebase');
 
EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), 
sem_rulebases('my_rulebase'), SEM_APIS.REACH_CLOSURE, 'SCOH,SPOH');

The following component codes are available: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH,
MBRH, SPOH, DOMH, RANH, EQCH, EQPH, FPH, IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP,
IFP, SYMM, TRANS, DIF, SAM, CHAIN, HASKEY, ONEOF, INTERSECT, INTERSECTSCOH, MBRLST,
PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION, RDFP1, RDFP2, RDFP3,
RDFP4, RDFP6, RDFP7, RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11, RDFP12A, RDFP12B,
RDFP12C, RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16, RDFS2,
RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12,
RDFS13

The rules corresponding to components with a prefix of RDFP can be found in
Completeness, decidability and complexity of entailment for RDF Schema and a
semantic extension involving the OWL vocabulary, by H.J. Horst.

The syntax for deselecting a component is component_name followed by a minus (-)
sign. For example, the following statement performs OWLPrime inference without
calculating the subClassOf hierarchy:

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), 
sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, 'SCOH-');
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By default, the OWLPrime rulebase implements the transitive semantics of
owl:sameAs. OWLPrime does not include the following rules (semantics):

U   owl:sameAs   V  .
U     p    X  .        ==>   V  p   X   .
 
U   owl:sameAs   V  .
X     p    U  .        ==>   X   p   V   .

The reason for not including these rules is that they tend to generate many assertions.
If you need to include these assertions, you can include the SAM component code in
the call to the SEM_APIS.CREATE_ENTAILMENT procedure.

2.3 Using Semantic Operators to Query Relational Data
You can use semantic operators to query relational data in an ontology-assisted
manner, based on the semantic relationship between the data in a table column and
terms in an ontology.

The SEM_RELATED semantic operator retrieves rows based on semantic
relatedness. The SEM_DISTANCE semantic operator returns distance measures for
the semantic relatedness, so that rows returned by the SEM_RELATED operator can
be ordered or restricted using the distance measure. The index type
MDSYS.SEM_INDEXTYPE allows efficient execution of such queries, enabling
scalable performance over large data sets.

• Using the SEM_RELATED Operator

• Using the SEM_DISTANCE Ancillary Operator

• Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE

• Using SEM_RELATED and SEM_DISTANCE When the Indexed Column Is Not
the First Parameter

• Using URIPREFIX When Values Are Not Stored as URIs

2.3.1 Using the SEM_RELATED Operator
Referring to the ontology example in Example: Disease Ontology, consider the
following query that requires semantic matching: Find all patients whose diagnosis is
of the type 'Immune_System_Disorder'. A typical database query of the PATIENTS
table (described in Example: Disease Ontology) involving syntactic match will not
return any rows, because no rows have a DIAGNOSIS column containing the exact
value Immune_System_Disorder. For example the following query will not return any
rows:

SELECT diagnosis FROM patients WHERE diagnosis = 'Immune_System_Disorder';

Example 2-9    SEM_RELATED Operator

However, many rows in the patient data table are relevant, because their diagnoses
fall under this class. Example 2-9 uses the SEM_RELATED operator (instead of lexical
equality) to retrieve all the relevant rows from the patient data table. (In this example,
the term Immune_System_Disorder is prefixed with a namespace, and the default
assumption is that the values in the table column also have a namespace prefix.
However, that might not always be the case, as explained in Using URIPREFIX When
Values Are Not Stored as URIs.)
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SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis, 
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

The SEM_RELATED operator has the following attributes:

SEM_RELATED(
  sub  VARCHAR2,
  predExpr  VARCHAR2,
  obj  VARCHAR2,
  ontologyName  SEM_MODELS,
  ruleBases  SEM_RULEBASES,
  index_status  VARCHAR2,
  lower_bound INTEGER,
  upper_bound INTEGER
 ) RETURN INTEGER;

The sub attribute is the name of table column that is being searched. The terms in the
table column are typically the subject in a <subject, predicate, object> triple pattern.

The predExpr attribute represents the predicate that can appear as a label of the edge
on the path from the subject node to the object node.

The obj attribute represents the term in the ontology for which related terms (related
by the predExpr attribute) have to be found in the table (in the column specified by the
sub attribute). This term is typically the object in a <subject, predicate, object> triple
pattern. (In a query with the equality operator, this would be the query term.)

The ontologyName attribute is the name of the ontology that contains the relationships
between terms.

The rulebases attribute identifies one or more rulebases whose rules have been
applied to the ontology to infer new relationships. The query will be answered based
both on relationships from the ontology and the inferred new relationships when this
attribute is specified.

The index_status optional attribute lets you query the data even when the relevant
entailment (created when the specified rulebase was applied to the ontology) does not
have a valid status. If this attribute is null, the query returns an error if the entailment
does not have a valid status. If this attribute is not null, it must be the string VALID,
INCOMPLETE, or INVALID, to specify the minimum status of the entailment for the query
to succeed. Because OWL does not guarantee monotonicity, the value INCOMPLETE
should not be used when an OWL Rulebase is specified.

The lower_bound and upper_bound optional attributes let you specify a bound on the
distance measure of the relationship between terms that are related. See Using the
SEM_DISTANCE Ancillary Operator for the description of the distance measure.

The SEM_RELATED operator returns 1 if the two input terms are related with respect
to the specified predExpr relationship within the ontology, and it returns 0 if the two
input terms are not related. If the lower and upper bounds are specified, it returns 1 if
the two input terms are related with a distance measure that is greater than or equal to
lower_bound and less than or equal to upper_bound.
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2.3.2 Using the SEM_DISTANCE Ancillary Operator
The SEM_DISTANCE ancillary operator computes the distance measure for the rows
filtered using the SEM_RELATED operator. The SEM_DISTANCE operator has the
following format:

SEM_DISTANCE (number) RETURN NUMBER;

The number attribute can be any number, as long as it matches the number that is the
last attribute specified in the call to the SEM_RELATED operator (see Example 2-10).
The number is used to match the invocation of the ancillary operator SEM_DISTANCE
with a specific SEM_RELATED (primary operator) invocation, because a query can
have multiple invocations of primary and ancillary operators.

Example 2-10    SEM_DISTANCE Ancillary Operator

Example 2-10 expands Example 2-9 to show several statements that include the
SEM_DISTANCE ancillary operator, which gives a measure of how closely the two
terms (here, a patient's diagnosis and the term Immune_System_Disorder) are related
by measuring the distance between the terms. Using the ontology described in 
Example: Disease Ontology, the distance between AIDS and Immune_System_Disorder
is 3.

SELECT diagnosis, SEM_DISTANCE(123) FROM patients 
  WHERE SEM_RELATED (diagnosis, 
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1;
 
SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis,
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
  ORDER BY SEM_DISTANCE(123);
 
SELECT diagnosis, SEM_DISTANCE(123) FROM patients 
  WHERE SEM_RELATED (diagnosis,
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1 
  AND SEM_DISTANCE(123) <= 3;

Example 2-11    Using SEM_DISTANCE to Restrict the Number of Rows Returned

Example 2-11 uses distance information to restrict the number of rows returned by the
primary operator. All rows with a term related to the object attribute specified in the
SEM_RELATED invocation, but with a distance of greater than or equal to 2 and less
than or equal to 4, are retrieved.

SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis,
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 2, 4) = 1;

In Example 2-11, the lower and upper bounds are specified using the lower_bound
and upper_bound parameters in the SEM_RELATED operator instead of using the
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SEM_DISTANCE operator. The SEM_DISTANCE operator can be also be used for
restricting the rows returned, as shown in the last SELECT statement in Example 2-10.

• Computation of Distance Information

2.3.2.1 Computation of Distance Information
Distances are generated for the following properties during inference (entailment):
OWL properties defined as transitive properties, and RDFS subClassOf and RDFS
subPropertyOf properties. The distance between two terms linked through these
properties is computed as the shortest distance between them in a hierarchical class
structure. Distances of two terms linked through other properties are undefined and
therefore set to null.

Each transitive property link in the original model (viewed as a hierarchical class
structure) has a distance of 1, and the distance of an inferred triple is generated
according to the number of links between the two terms. Consider the following
hypothetical sample scenarios:

• If the original graph contains C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf
C3, then C1 rdfs:subClassof of C3 will be derived. In this case:

– C1 rdfs:subClassOf C2: distance = 1, because it exists in the model.

– C2 rdfs:subClassOf C3: distance = 1, because it exists in the model.

– C1 rdfs:subClassOf C3: distance = 2, because it is generated during
inference.

• If the original graph contains P1 rdfs:subPropertyOf P2 and P2
rdfs:subPropertyOf P3, then P1 rdfs:subPropertyOf P3 will be derived. In this
case:

– P1 rdfs:subPropertyOf P2: distance = 1, because it exists in the model.

– P2 rdfs:subPropertyOf P3: distance = 1, because it exists in the model.

– P1 rdfs:subPropertyOf P3: distance = 2, because it is generated during
inference.

• If the original graph contains C1 owl:equivalentClass C2 and C2
owl:equivalentClass C3, then C1 owl:equivalentClass C3 will be derived. In
this case:

– C1 owl:equivalentClass C2: distance = 1, because it exists in the model.

– C2 owl:equivalentClass C3: distance = 1, because it exists in the model.

– C1 owl:equivalentClass C3: distance = 2, because it is generated during
inference.

The SEM_RELATED operator works with user-defined rulebases. However, using the
SEM_DISTANCE operator with a user-defined rulebase is not yet supported, and will
raise an error.

2.3.3 Creating a Semantic Index of Type MDSYS.SEM_INDEXTYPE
When using the SEM_RELATED operator, you can create a semantic index of type
MDSYS.SEM_INDEXTYPE on the column that contains the ontology terms. Creating
such an index will result in more efficient execution of the queries. The CREATE
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INDEX statement must contain the INDEXTYPE IS MDSYS.SEM_INDEXTYPE clause, to
specify the type of index being created.

Example 2-12    Creating a Semantic Index

Example 2-12 creates a semantic index named DIAGNOSIS_SEM_IDX on the
DIAGNOSIS column of the PATIENTS table using the ontology in Example: Disease
Ontology.

CREATE INDEX diagnosis_sem_idx
  ON patients (diagnosis) 
  INDEXTYPE IS MDSYS.SEM_INDEXTYPE;

The column on which the index is built (DIAGNOSIS in Example 2-12) must be the first
parameter to the SEM_RELATED operator, in order for the index to be used. If it not
the first parameter, the index is not used during the execution of the query.

Example 2-13    Creating a Semantic Index Specifying a Model and Rulebase

To improve the performance of certain semantic queries, you can cause statistical
information to be generated for the semantic index by specifying one or more models
and rulebases when you create the index. Example 2-13 creates an index that will also
generate statistics information for the specified model and rulebase. The index can be
used with other models and rulebases during query, but the statistical information will
be used only if the model and rulebase specified during the creation of the index are
the same model and rulebase specified in the query.

CREATE INDEX diagnosis_sem_idx
  ON patients (diagnosis) 
  INDEXTYPE IS MDSYS.SEM_INDEXTYPE('ONTOLOGY_MODEL(medical_ontology), 
    RULEBASE(OWLPrime)');

Example 2-14    Query Benefitting from Generation of Statistical Information

The statistical information is useful for queries that return top-k results sorted by
semantic distance. Example 2-14 shows such a query.

SELECT /*+ FIRST_ROWS */ diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis,
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime'), 123) = 1
  ORDER BY SEM_DISTANCE(123);

2.3.4 Using SEM_RELATED and SEM_DISTANCE When the Indexed
Column Is Not the First Parameter

If an index of type MDSYS.SEM_INDEXTYPE has been created on a table column
that is the first parameter to the SEM_RELATED operator, the index will be used. For
example, the following query retrieves all rows that have a value in the DIAGNOSIS
column that is a subclass of (rdfs:subClassOf) Immune_System_Disorder.

SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis, 
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;
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Assume, however, that this query instead needs to retrieve all rows that have a value
in the DIAGNOSIS column for which Immune_System_Disorder is a subclass. You
could rewrite the query as follows:

SELECT diagnosis FROM patients 
  WHERE SEM_RELATED
    ('<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    '<http://www.w3.org/2000/01/rdf-schema#subClassOf>', 
    diagnosis, 
    sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

However, in this case a semantic index on the DIAGNOSIS column will not be used,
because it is not the first parameter to the SEM_RELATED operator. To cause the
index to be used, you can change the preceding query to use the inverseOf keyword,
as follows:

SELECT diagnosis FROM patients 
  WHERE SEM_RELATED (diagnosis,
    'inverseOf(http://www.w3.org/2000/01/rdf-schema#subClassOf)',
    '<http://www.example.org/medical_terms/Immune_System_Disorder>', 
    sem_models('medical_ontology'), sem_rulebases('owlprime')) = 1;

This form causes the table column (on which the index is built) to be the first
parameter to the SEM_RELATED operator, and it retrieves all rows that have a value
in the DIAGNOSIS column for which Immune_System_Disorder is a subclass.

2.3.5 Using URIPREFIX When Values Are Not Stored as URIs
By default, the semantic operator support assumes that the values stored in the table
are URIs. These URIs can be from different namespaces. However, if the values in the
table do not have URIs, you can use the URIPREFIX keyword to specify a URI when
you create the semantic index. In this case, the specified URI is prefixed to the value
in the table and stored in the index structure. (One implication is that multiple URIs
cannot be used).

Example 2-15 creates a semantic index that uses a URI prefix.

Example 2-15    Specifying a URI Prefix During Semantic Index Creation

CREATE INDEX diagnosis_sem_idx
  ON patients (diagnosis) 
  INDEXTYPE IS MDSYS.SEM_INDEXTYPE
  PARAMETERS('URIPREFIX(<http://www.example.org/medical/>)');

The slash (/) character at the end of the URI is important, because the URI is prefixed
to the table value (in the index structure) without any parsing.
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3
Simple Knowledge Organization System
(SKOS) Support

You can perform inferencing based on a core subset of the Simple Knowledge
Organization System (SKOS) data model, which is especially useful for representing
thesauri, classification schemes, taxonomies, and other types of controlled vocabulary.

SKOS is based on standard semantic web technologies including RDF and OWL,
which makes it easy to define the formal semantics for those knowledge organization
systems and to share the semantics across applications.

Support is provided for most, but not all, of the features of SKOS, the detailed
specification of which is available at http://www.w3.org/TR/skos-reference/.

Around 40 SKOS-specific terms are included in the RDF Semantic Graph support,
such as skos:broader, skos:relatedMatch, and skos:Concept. Over 100 SKOS
axiomatic triples have been added, providing the basic coverage of SKOS semantics.
However, support is not included for the integrity conditions described in the SKOS
specification.

To perform SKOS-based inferencing, specify the system-defined SKOSCORE rulebase in
the rulebases_in parameter in the call to the SEM_APIS.CREATE_ENTAILMENT
procedure, as in the following example:

EXECUTE sem_apis.create_entailment('tstidx',sem_models('tst'), 
sem_rulebases('skoscore'));

Example 3-1 defines, in Turtle format, a simple electronics scheme and two relevant
concepts, cameras and digital cameras. Its meaning is straightforward and its
representation is in RDF. It can be managed by Oracle Database in the same way as
other RDF and OWL data.

Example 3-1    SKOS Definition of an Electronics Scheme

ex1:electronicsScheme rdf:type skos:ConceptScheme;
 
ex1:cameras rdf:type skos:Concept;
   skos:prefLabel "cameras"@en;
   skos:inScheme ex1:electronicsScheme.
 
ex1:digitalCameras rdf:type skos:Concept;
   skos:prefLabel "digital cameras"@en;
   skos:inScheme ex1:electronicsScheme.
 
ex1:digitalCameras skos:broader ex1:cameras.

• Supported and Unsupported SKOS Semantics
This section describes features of SKOS semantics that are and are not supported
by Oracle Database.

• Performing Inference on SKOS Models
Performing inference on a SKOS model is similar to performing inference on a
semantic model.
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3.1 Supported and Unsupported SKOS Semantics
This section describes features of SKOS semantics that are and are not supported by
Oracle Database.

• Supported SKOS Semantics

• Unsupported SKOS Semantics

3.1.1 Supported SKOS Semantics
All terms defined in SKOS and SKOS extension for labels are recognized. When the
SKOSCORE rulebase is chosen for inference, the recognized terms include the
following:

skos:altLabel
skos:broader
skos:broaderTransitive
skos:broadMatch
skos:changeNote
skos:closeMatch
skos:Collection
skos:Concept
skos:ConceptScheme
skos:definition
skos:editorialNote
skos:exactMatch
skos:example
skos:hasTopConcept
skos:hiddenLabel
skos:historyNote
skos:inScheme
skos:mappingRelation
skos:member
skos:memberList
skos:narrower
skos:narrowerTransitive
skos:narrowMatch
skos:notation
skos:note
skos:OrderedCollection
skos:prefLabel
skos:related
skos:relatedMatch
skos:scopeNote
skos:semanticRelation
skos:topConceptOf
skosxl:altLabel
skosxl:hiddenLabel
skosxl:Label
skosxl:labelRelation
skosxl:literalForm
skosxl:prefLabel

Most SKOS axioms and definitions are supported including the following: S1-S8, S10-
S11, S15-S26, S28-S31, S33-S36, S38-S45, S47-S50, and S53-S54. (See the SKOS
detailed specification for definitions.)
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Most SKOS integrity conditions are supported, including S9, S13, S27, S37, and S46.

S52 is partially supported.

S55, S56, and S57 are not supported by default.

• S55, the property chain (skosxl:prefLabel, skosxl:literalForm), is a
subproperty of skos:prefLabel.

• S56, the property chain (skosxl:altLabel, skosxl:literalForm), is a
subproperty of skos:altLabel.

• S57, the property chain (skosxl:hiddenLabel, skosxl:literalForm), is a
subproperty of skos:hiddenLabel.chains.

However, S55, S56, and S57 can be implemented using the OWL 2 subproperty chain
construct. For information about property chain handling, see Property Chain
Handling.

3.1.2 Unsupported SKOS Semantics
The following features of SKOS semantics are not supported:

• S12 and S51: The rdfs:range of the relevant predicates is the class of RDF plain
literals. There is no check that the object values of these predicates are indeed
plain literals; however, applications can perform such a check.

• S14: A resource has no more than one value of skos:prefLabel per language tag.
This integrity condition is even beyond OWL FULL semantics, and it is not
enforced in the current release.

• S32: The rdfs:range of skos:member is the union of classes skos:Concept and
skos:Collection. This integrity condition is not enforced.

• S55, S56, and S57 are not supported by default, but they can be implemented
using the OWL 2 subproperty chain construct, as explained in Supported SKOS
Semantics.

3.2 Performing Inference on SKOS Models
Performing inference on a SKOS model is similar to performing inference on a
semantic model.

To create an SKOS model, use the same procedure
(SEM_APIS.CREATE_SEM_MODEL) as for creating a semantic model. You can load
data into an SKOS model in the same way as for semantic models.

To infer new relationships for one or more SKOS models, use the 
SEM_APIS.CREATE_ENTAILMENT procedure with the system-defined rulebase
SKOSCORE. For example:

EXECUTE sem_apis.create_entailment('tstidx',sem_models('tst'), 
sem_rulebases('skoscore'));

The inferred data will include many of the axioms defined in the SKOS detailed
specification. Like other system-defined rulebases, SKOSCORE has no explicit rules;
all the semantics supported are coded into the implementation.

• Validating SKOS Models and Entailments
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• Property Chain Handling

3.2.1 Validating SKOS Models and Entailments
You can use the SEM_APIS.VALIDATE_ENTAILMENT and 
SEM_APIS.VALIDATE_MODEL procedures to validate the supported integrity
conditions. The output will include any inconsistencies caused by the supported
integrity conditions, such as OWL 2 propertyDisjointWith and S52.

Example 3-2 validates an SKOS entailment.

Example 3-2    Validating an SKOS Entailment

set serveroutput on
declare
  lva mdsys.rdf_longVarcharArray;
  idx int;
begin
  lva := sem_apis.validate_entailment(sdo_rdf_models('tstskos'), 
sem_rulebases('skoscore'));
  if (lva is null) then
    dbms_output.put_line('No conflicts');
  else
  for idx in 1..lva.count loop
    dbms_output.put_line('entry ' || idx || ' ' || lva(idx));
  end loop;
  end if;
end;
 /

3.2.2 Property Chain Handling
The SKOS S55, S56, and S57 semantics are not supported by default. However, you
can add support for them by using the OWL 2 subproperty chain construct.

Example 3-3 inserts the necessary chain definition triples for S55 into an SKOS model.
After the insertion, an invocation of SEM_APIS.CREATE_ENTAILMENT that specifies
the SKOSCORE rulebase will include the semantics defined in S55.

Example 3-3    Property Chain Insertions to Implement S55

INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','<http://www.w3.org/2004/02/skos/
core#prefLabel>', '<http://www.w3.org/2002/07/owl#propertyChainAxiom>', '_:jA1'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA1', '<http://www.w3.org/
1999/02/22-rdf-syntax-ns#first>', '<http://www.w3.org/2008/05/skos-xl#prefLabel>'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA1', '<http://www.w3.org/
1999/02/22-rdf-syntax-ns#rest>', '_:jA2'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA2', '<http://www.w3.org/
1999/02/22-rdf-syntax-ns#first>', '<http://www.w3.org/2008/05/skos-
xl#literalForm>'));
INSERT INTO tst VALUES(sdo_rdf_triple_s('tst','_:jA2', '<http://www.w3.org/
1999/02/22-rdf-syntax-ns#rest>', '<http://www.w3.org/1999/02/22-rdf-syntax-
ns#nil>'));
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4
Semantic Indexing for Documents

Information extractors locate and extract meaningful information from unstructured
documents. The ability to search for documents based on this extracted information is
a significant improvement over the keyword-based searches supported by the full-text
search engines.

Semantic indexing for documents introduces an index type that can make use of
information extractors and annotators to semantically index documents stored in
relational tables. Documents indexed semantically can be searched using
SEM_CONTAINS operator within a standard SQL query. The search criteria for these
documents are expressed using SPARQL query patterns that operate on the
information extracted from the documents, as in the following example.

SELECT docId
FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
     ' { ?org    rdf:type            typ:Organization  . 
         ?org    pred:hasCategory    cat:BusinessFinance } ', ..) = 1

The key components that facilitate Semantic Indexing for documents in an Oracle
Database include:

• Extensible information extractor framework, which allows third-party information
extractors to be plugged into the database

• SEM_CONTAINS operator to identify documents of interest, based on their
extracted information, using standard SQL queries

• SEM_CONTAINS_SELECT ancillary operator to return relevant information about
the documents identified using SEM_CONTAINS operator

• SemContext index type to interact with the information extractor and manage the
information extracted from a document set in an index structure and to facilitate
semantically meaningful searches on the documents

The application program interface (API) for managing extractor policies and semantic
indexes created for documents is provided in the SEM_RDFCTX PL/SQL package. 
SEM_RDFCTX Package Subprograms provides the reference information about the
subprograms in SEM_RDFCTX package.

• Information Extractors for Semantically Indexing Documents
Information extractors process unstructured documents and extract meaningful
information from them, often using natural-language processing engines with the
aid of ontologies.

• Extractor Policies
An extractor policy is a named dictionary entity that determines the
characteristics of a semantic index that is created using the policy.

• Semantically Indexing Documents
Textual documents stored in a CLOB or VARCHAR2 column of a relational table
can be indexed using the MDSYS.SEMCONTEXT index type, to facilitate
semantically meaningful searches.
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• SEM_CONTAINS and Ancillary Operators
You can use the SEM_CONTAINS operator in a standard SQL statement to
search for documents or document references that are stored in relational tables.

• Searching for Documents Using SPARQL Query Patterns
Documents that are semantically indexed (that is, indexed using the
mdsys.SemContext index type) can be searched using SEM_CONTAINS operator
within a standard SQL query.

• Bindings for SPARQL Variables in Matching Subgraphs in a Document
(SEM_CONTAINS_SELECT Ancillary Operator)
You can use the SEM_CONTAINS_SELECT ancillary operator to return additional
information about each document matched using the SEM_CONTAINS operator.

• Improving the Quality of Document Search Operations
The quality of a document search operation depends on the quality of the
information produced by the extractor used to index the documents. If the
information extracted is incomplete, you may want to add some annotations to a
document.

• Indexing External Documents
You can use semantic indexing on documents that are stored in a file system or on
the network. In such cases, you store the references to external documents in a
table column, and you create a semantic index on the column using an appropriate
extractor policy.

• Configuring the Calais Extractor type
The CALAIS_EXTRACTOR type, which is a subtype of the
RDFCTX_WS_EXTRACTOR type, enables you to access a Web service end point
anywhere on the network, including the one that is publicly accessible
(OpenCalais.com).

• Working with General Architecture for Text Engineering (GATE)
General Architecture for Text Engineering (GATE) is an open source natural
language processor and information extractor.

• Creating a New Extractor Type
You can create a new extractor type by extending the RDFCTX_EXTRACTOR or
RDFCTX_WS_EXTRACTOR extractor type.

• Creating a Local Semantic Index on a Range-Partitioned Table
A local index can be created on a VARCHAR2 or CLOB column of a range-
partitioned table.

• Altering a Semantic Index
You can use the ALTER INDEX statement with a semantic index.

• Passing Extractor-Specific Parameters in CREATE INDEX and ALTER INDEX
The CREATE INDEX and ALTER INDEX statements allow the passing of
parameters needed by extractors.

• Performing Document-Centric Inference
Document-centric inference refers to the ability to infer from each document
individually.

• Metadata Views for Semantic Indexing
This section describes views that contain metadata about semantic indexing
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• Default Style Sheet for GATE Extractor Output
This section lists the default XML style sheet that the mdsys.gatenlp_extractor
implementation uses to convert the annotation set (encoded in XML) into RDF/
XML.

4.1 Information Extractors for Semantically Indexing
Documents

Information extractors process unstructured documents and extract meaningful
information from them, often using natural-language processing engines with the aid of
ontologies.

The quality and the completeness of information extracted from a document vary from
one extractor to another. Some extractors simply identify the entities (such as names
of persons, organizations, and geographic locations from a document), while the
others attempt to identify the relationships among the identified entities and additional
description for those entities. You can search for a specific document from a large set
when the information extracted from the documents is maintained as a semantic index.

You can use an information extractor to create a semantic index on the documents
stored in a column of a relational table. An extensible framework allows any third-party
information extractor that is accessible from the database to be plugged into the
database. An object type created for an extractor encapsulates the extraction logic,
and has methods to configure the extractor and receive information extracted from a
given document in RDF/XML format.

An abstract type MDSYS.RDFCTX_EXTRACTOR defines the common interfaces to
all information extractors. An implementation of this abstract type interacts with a
specific information extractor to produce RDF/XML for a given document. An
implementation for this type can access a third-party information extractor that either is
available as a database application or is installed on the network (accessed using Web
service callouts). Example 4-1 shows the definition of the RDFCTX_EXTRACTOR
abstract type.

Example 4-1    RDFCTX_EXTRACTOR Abstract Type Definition

create or replace type rdfctx_extractor authid current_user as object (
  extr_type        VARCHAR2(32),
  member function  getDescription return VARCHAR2,
  member function  rdfReturnType return VARCHAR2,
  member function  getContext(attribute VARCHAR2) return VARCHAR2,
  member procedure startDriver,
  member function  extractRDF(document CLOB,
                              docId    VARCHAR2) return CLOB,
  member function  extractRdf(document CLOB,
                              docId    VARCHAR2,
                              params   VARCHAR2,
                              options  VARCHAR2 default NULL) return CLOB
  member function  batchExtractRdf(docCursor        SYS_REFCURSOR,
                              extracted_info_table  VARCHAR2,
                              params                VARCHAR2,
                              partition_name        VARCHAR2 default NULL,
                              docId                 VARCHAR2 default NULL,
                              preferences           SYS.XMLType default NULL,
                              options               VARCHAR2 default NULL)  
                              return CLOB,
  member procedure closeDriver
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) not instantiable not final
/

A specific implementation of the RDFCTX_EXTRACTOR type sets an identifier for the
extractor type in the extr_type attribute, and it returns a short description for the
extractor type using getDescription method. All implementations of this abstract type
return the extracted information as RDF triples. In the current release, the RDF triples
are expected to be serialized using RDF/XML format, and therefore the rdfReturnType
method should return 'RDF/XML'.

An extractor type implementation uses the extractRDF method to encapsulate the
extraction logic, possibly by invoking external information extractor using proprietary
interfaces, and returns the extracted information in RDF/XML format. When a third-
party extractor uses some proprietary XML Schema to capture the extracted
information, an XML style sheet can be used to generate an equivalent RDF/XML. The
startDriver and closeDriver methods can perform any housekeeping operations
pertaining to the information extractor. The optional params parameter allows the
extractor to obtain additional information about the type of extraction needed (for
example, the desired quality of extraction).

Optionally, an extractor type implementation may support a batch interface by
providing an implementation of the batchExtractRdf member function. This function
accepts a cursor through the input parameter docCursor and typically uses that cursor
to retrieve each document, extract information from the document, and then insert the
extracted information into (the specified partition identified by the partition_name
partition of the extracted_info_table table. The preferences parameter is used to
obtain the preferences value associated with the policy (as described in Indexing
External Documents and in the SEM_RDFCTX.CREATE_POLICY reference section).

The getContext member function accepts an attribute name and returns the value for
that attribute. Currently this function is used only for extractors supporting the batch
interface. The attribute names and corresponding possible return values are the
following:

• For the BATCH_SUPPORT attribute, the return values are 'YES' or 'NO' depending on
whether the extractor supports the batch interface.

• For the DBUSER attribute, the return value is the name of a database user that will
connect to the database to retrieve rows from the cursor (identified by the
docCursor parameter) and that will write to the table extracted_info_table.

This information is used for granting appropriate privileges to the table being indexed
and the table extracted_info_table.

The startDriver and closeDriver methods can perform any housekeeping
operations pertaining to the information extractor.

An extractor type for the General Architecture for Text Engineering (GATE) engine is
defined as a subtype of the RDFCTX_EXTRACTOR type. The implementation of this
extractor type sends the documents to a GATE engine over a TCP connection,
receives annotations extracted by the engine in XML format, and converts this
proprietary XML document to an RDF/XML document. For more information on
configuring a GATE engine to work with Oracle Database, see Working with General
Architecture for Text Engineering (GATE). For an example of creating a new
information extractor, see Creating a New Extractor Type.

Information extractors that are deployed as Web services can be invoked from the
database by extending the RDFCTX_WS_EXTRACTOR type, which is a subtype of
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the RDFCTX_EXTRACTOR type. The RDFCTX_WS_EXTRACTOR type
encapsulates the Web service callouts in the extractRDF method; specific
implementations for network-based extractors can reuse this implementation by setting
relevant attribute values in the type constructor.

Thomson Reuters Calais is an example of a network-based information extractor that
can be accessed using web-service callouts. The CALAIS_EXTRACTOR type, which
is a subtype of the RDFCTX_WS_EXTRACTOR type, encapsulates the Calais
extraction logic, and it can be used to semantically index the documents. The
CALAIS_EXTRACTOR type must be configured for the database instance before it
can be used to create semantic indexes, as explained in Configuring the Calais
Extractor type.

4.2 Extractor Policies
An extractor policy is a named dictionary entity that determines the characteristics of
a semantic index that is created using the policy.

Each extractor policy refers, directly or indirectly, to an instance of an extractor type.
An extractor policy with a direct reference to an extractor type instance can be used to
compose other extractor policies that include additional RDF models for ontologies.

The following example creates a basic extractor policy created using the GATE
extractor type:

begin
  sem_rdfctx.create_policy (policy_name => 'SEM_EXTR',
                            extractor   => mdsys.gatenlp_extractor());
end;
/

The following example creates a dependent extractor policy that combines the
metadata extracted by the policy in the preceding example with a user-defined RDF
model named geo_ontology:

begin
  sem_rdfctx.create_policy (policy_name => 'SEM_EXTR_PLUS_GEOONT',
                            base_policy => 'SEM_EXTR',
                            user_models => SEM_MODELS ('geo_ontology'));
end;
/

You can use an extractor policy to create one or more semantic indexes on columns
that store unstructured documents, as explained in Semantically Indexing Documents.

4.3 Semantically Indexing Documents
Textual documents stored in a CLOB or VARCHAR2 column of a relational table can
be indexed using the MDSYS.SEMCONTEXT index type, to facilitate semantically
meaningful searches.

The extractor policy specified at index creation determines the information extractor
used to semantically index the documents. The extracted information, captured as a
set of RDF triples for each document, is managed in the semantic data store. Each
instance of the semantic index is associated with a system-generated RDF model,
which maintains the RDF triples extracted from the corresponding documents.
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The following example creates a semantic index named ArticleIndex on the textual
documents in the ARTICLE column of the NEWSFEED table, using the extractor
policy named SEM_EXTR:

CREATE INDEX ArticleIndex on Newsfeed (article)
   INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR');

The RDF model created for an index is managed internally and it is not associated
with an application table. The triples stored in such model are automatically
maintained for any modifications (such as update, insert, or delete) made to the
documents stored in the table column. Although a single RDF model is used to index
all documents stored in a table column, the triples stored in the model maintain
references to the documents from which they are extracted; therefore, all the triples
extracted from a specific document form an individual graph within the RDF model.
The documents that are semantically indexed can then be searched using a SPARQL
query pattern that operates on the triples extracted from the documents.

When creating a semantic index for documents, you can use a basic extractor policy
or a dependent policy, which may include one or more user-defined RDF models.
When you create an index with a dependent extractor policy, the document search
pattern specified using SPARQL could span the triples extracted from the documents
as well as those defined in user-defined models.

You can create an index using multiple extractor policies, in which case the triples
extracted by the corresponding extractors are maintained separately in distinct RDF
models. A document search query using one such index can select the specific policy
to be used for answering the query. For example, an extractor policy named
CITY_EXTR can be created to extract the names of the cities from a given document,
and this extractor policy can be used in combination with the SEM_EXTR policy to
create a semantic index, as in the following example:

CREATE INDEX ArticleIndex on Newsfeed (article)
   INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR CITY_EXTR');

The first extractor policy in the PARAMETERS list is considered to be the default
policy if a query does not refer to a specific policy; however, you can change the
default extractor policy for a semantic index by using the 
SEM_RDFCTX.SET_DEFAULT_POLICY procedure, as in the following example:

begin
  sem_rdfctx.set_default_policy (index_name => 'ArticleIndex',
                                 policy_name => 'CITY_EXTR');
end;
/

4.4 SEM_CONTAINS and Ancillary Operators
You can use the SEM_CONTAINS operator in a standard SQL statement to search for
documents or document references that are stored in relational tables.

This operator has the following syntax:

SEM_CONTAINS(
  column   VARCHAR2 / CLOB,
  sparql   VARCHAR2,
  policy   VARCHAR2,
  aliases  SEM_ALIASES,
  index_status  NUMBER,
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  ancoper  NUMBER
 ) RETURN NUMBER;

The column and sparql attributes attribute are required. The other attributes are
optional (that is, each can be a null value).

The column attribute identifies a VARCHAR2 or CLOB column in a relational table that
stores the documents or references to documents that are semantically indexed. An
index of type MDSYS.SEMCONTEXT must be defined in this column for the
SEM_CONTAINS operator to use.

The sparql attribute is a string literal that defines the document search criteria,
expressed in SPARQL format.

The optional policy attribute specifies the name of an extractor policy, usually to
override the default policy. A semantic document index can have one or more
extractor policies specified at index creation, and one of these policies is the default,
which is used if the policy attribute is null in the call to SEM_CONTAINS.

The optional aliases attribute identifies one or more namespaces, including a default
namespace, to be used for expansion of qualified names in the query pattern. Its data
type is SEM_ALIASES, which has the following definition: TABLE OF SEM_ALIAS, where
each SEM_ALIAS element identifies a namespace ID and namespace value. The
SEM_ALIAS data type has the following definition: (namespace_id VARCHAR2(30),
namespace_val VARCHAR2(4000))

The optional index_status attribute is relevant only when a dependent policy involving
one or more entailments is being used for the SEM_CONTAINS invocation. The
index_status value identifies the minimum required validity status of the entailments.
The possible values are 0 (for VALID, the default), 1 (for INCOMPLETE), and 2 (for
INVALID).

The optional ancoper attribute specifies a number as the binding to be used when the
SEM_CONTAINS_SELECT ancillary operator is used with this operator in a query.
The number specified for the ancoper attribute should be the same as number
specified for the operbind attribute in the SEM_CONTAINS_SELECT ancillary
operator.

The SEM_CONTAINS operator returns 1 for each document instance matching the
specified search criteria, and returns 0 for all other cases.

For more information about using the SEM_CONTAINS operator, including an
example, see Searching for Documents Using SPARQL Query Patterns.

• SEM_CONTAINS_SELECT Ancillary Operator

• SEM_CONTAINS_COUNT Ancillary Operator

4.4.1 SEM_CONTAINS_SELECT Ancillary Operator
You can use the SEM_CONTAINS_SELECT ancillary operator to return additional
information about each document that matches some search criteria. This ancillary
operator has a single numerical attribute (operbind) that associates an instance of the
SEM_CONTAINS_SELECT ancillary operator with a SEM_CONTAINS operator by
using the same value for the binding. This ancillary operator returns an object of type
CLOB that contains the additional information from the matching document, formatted
in SPARQL Query Results XML format.
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The SEM_CONTAINS_SELECT ancillary operator has the following syntax:

SEM_CONTAINS_SELECT(
  operbind  NUMBER
 ) RETURN CLOB;

For more information about using the SEM_CONTAINS_SELECT ancillary operator,
including examples, see Bindings for SPARQL Variables in Matching Subgraphs in a
Document (SEM_CONTAINS_SELECT Ancillary Operator).

4.4.2 SEM_CONTAINS_COUNT Ancillary Operator
You can use the SEM_CONTAINS_COUNT ancillary operator for a SEM_CONTAINS
operator invocation. For each matched document, it returns the count of matching
subgraphs for the SPARQL graph pattern specified in the SEM_CONTAINS
invocation.

The SEM_CONTAINS_COUNT ancillary operator has the following syntax:

SEM_CONTAINS_COUNT(
  operbind  NUMBER
 ) RETURN NUMBER;

The following example excerpt shows the use of the SEM_CONTAINS_COUNT
ancillary operator to return the count of matching subgraphs for each matched
document:

SELECT docId, SEM_CONTAINS_COUNT(1) as matching_subgraph_count
FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
  '{ ?org   rdf:type          class:Organization  . 
     ?org   pred:hasCategory  cat:BusinessFinance }', .., 
   1)= 1;

4.5 Searching for Documents Using SPARQL Query
Patterns

Documents that are semantically indexed (that is, indexed using the
mdsys.SemContext index type) can be searched using SEM_CONTAINS operator
within a standard SQL query.

In the query, the SEM_CONTAINS operator must have at least two parameters, the
first specifying the column in which the documents are stored and the second
specifying the document search criteria expressed as a SPARQL query pattern, as in
the following example:

SELECT docId FROM Newsfeed
WHERE  SEM_CONTAINS (article, 
  '{ ?org  rdf:type  <http://www.example.com/classes/Organization>  . 
     ?org  <http://example.com/pred/hasCategory>  
             <http://www.example.com/category/BusinessFinance> }'
           )= 1;

The SPARQL query pattern specified with the SEM_CONTAINS operator is matched
against the individual graphs corresponding to each document, and a document is
considered to match a search criterion if the triples from the corresponding graph
satisfy the query pattern. In the preceding example, the SPARQL query pattern
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identifies the individual graphs (thus, the documents) that refer to an Organization
that belong to BusinessFinance category. The SQL query returns the rows
corresponding to the matching documents in its result set. The preceding example
assumes that the URIs used in the query are generated by the underlying extractor,
and that you (the user searching for documents) are aware of the properties and terms
that are generated by the extractor in use.

When you create an index using a dependent extractor policy that includes one or
more user-defined RDF models, the triples asserted in the user models are considered
to be common to all the documents. Document searches involving such policies test
the search criteria against the triples in individual graphs corresponding to the
documents, combined with the triples in the user models. For example, the following
query identifies all articles referring to organizations in the state of New Hampshire,
using the geographical ontology (geo_ontology RDF Model from a preceding
example) that maps cities to states:

SELECT docId FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
        '{ ?org     rdf:type          class:Organization  . 
           ?org     pred:hasLocation  ?city . 
           ?city    geo:hasState      state:NewHampshire }', 
        'SEM_EXTR_PLUS_GEOONT', 
               sem_aliases(                              
                  sem_alias('class', 'http://www.myorg.com/classes/'),
                  sem_alias('pred', 'http://www.myorg.com/pred/'),
                  sem_alias('geo', 'http://geoont.org/rel/'),
                  sem_alias('state', 'http://geoont.org/state/'))) = 1;

The preceding query, with a reference to the extractor policy
SEM_EXTR_PLUS_GEOONT (created in an example in Extractor Policies), combines
the triples extracted from the indexed documents and the triples in the user model to
find matching documents. In this example, the name of the extractor policy is optional
if the corresponding index is created with just this policy or if this is the default
extractor policy for the index. When the query pattern uses some qualified names, an
optional parameter to the SEM_CONTAINS operator can specify the namespaces to
be used for expanding the qualified names.

SPARQL-based document searches can make use of the SPARQL syntax that is
supported through SEM_MATCH queries.

4.6 Bindings for SPARQL Variables in Matching Subgraphs
in a Document (SEM_CONTAINS_SELECT Ancillary
Operator)

You can use the SEM_CONTAINS_SELECT ancillary operator to return additional
information about each document matched using the SEM_CONTAINS operator.

Specifically, the bindings for the variables used in SPARQL-based document search
criteria can be returned using this operator. This operator is ancillary to the
SEM_CONTAINS operator, and a literal number is used as an argument to this
operator to associate it with a specific instance of SEM_CONTAINS operator, as in the
following example:

SELECT docId, SEM_CONTAINS_SELECT(1) as result
FROM   Newsfeed

Chapter 4
Bindings for SPARQL Variables in Matching Subgraphs in a Document (SEM_CONTAINS_SELECT Ancillary Operator)

4-9



WHERE  SEM_CONTAINS (article, 
  '{ ?org   rdf:type          class:Organization  . 
     ?org   pred:hasCategory  cat:BusinessFinance }', .., 
   1)= 1;

The SEM_CONTAINS_SELECT ancillary operator returns the bindings for the
variables in SPARQL Query Results XML format, as CLOB data. The variables may
be bound to multiple data instances from a single document, in which case all bindings
for the variables are returned. The following example is an excerpt from the output of
the preceding query: a value returned by the SEM_CONTAINS_SELECT ancillary
operator for a document matching the specified search criteria.

<results>
  <result> 
     <binding name="ORG">
        <uri>http://newscorp.com/Org/AcmeCorp</uri>
     </binding>
  </result> 
  <result>
     <binding name="ORG">
       <uri>http://newscorp.com/Org/ABCCorp</uri>
     </binding>
  </result>
</results>

You can rank the search results by creating an instance of XMLType for the CLOB
value returned by the SEM_CONTAINS_SELECT ancillary operator and applying an
XPath expression to sort the results on some attribute values.

By default, the SEM_CONTAINS_SELECT ancillary operator returns bindings for all
variables used in the SPARQL-based document search criteria. However, when the
values for only a subset of the variables are relevant for a search, the SPARQL pattern
can include a SELECT clause with space-separated list of variables for which the
values should be returned, as in the following example:

SELECT docId, SEM_CONTAINS_SELECT(1) as result
FROM   Newsfeed
WHERE  SEM_CONTAINS (article, 
        'SELECT ?org  ?city 
         WHERE { ?org     rdf:type          class:Organization  . 
                 ?org     pred:hasLocation  ?city . 
                 ?city    geo:hasState      state:NewHampshire }', .., 
         1) = 1;

4.7 Improving the Quality of Document Search Operations
The quality of a document search operation depends on the quality of the information
produced by the extractor used to index the documents. If the information extracted is
incomplete, you may want to add some annotations to a document.

You can use the SEM_RDFCTX.MAINTAIN_TRIPLES procedure to add annotations,
in the form of RDF triples, to specific documents in order to improve the quality of
search, as shown in the following example:

begin
  sem_rdfctx.maintain_triples(
     index_name      => 'ArticleIndex',
     where_clause    => 'docid in (1,15,20)',  
     rdfxml_content => sys.xmltype(

Chapter 4
Improving the Quality of Document Search Operations

4-10



      '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
                xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
                xmlns:pred="http://example.com/pred/">
       <rdf:Description rdf:about=" http://newscorp.com/Org/ExampleCorp">
         <pred:hasShortName 
               rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
             Example
         </pred:hasShortName>
     </rdf:Description> 
    </rdf:RDF>'));
end;
/

The index name and the WHERE clause specified in the preceding example identify
specific instances of the document to be annotated, and the RDF/XML content passed
in is used to add additional triples to the individual graphs corresponding to those
documents. This allows domain experts and user communities to improve the quality
of search by adding relevant triples to annotate some documents.

4.8 Indexing External Documents
You can use semantic indexing on documents that are stored in a file system or on the
network. In such cases, you store the references to external documents in a table
column, and you create a semantic index on the column using an appropriate extractor
policy.

To index external documents, define an extractor policy with appropriate preferences,
using an XML document that is assigned to the preferences parameter of the 
SEM_RDFCTX.CREATE_POLICY procedure, as in the following example:

begin
  sem_rdfctx.create_policy (
       policy_name => 'SEM_EXTR_FROM_FILE',
       extractor   => mdsys.gatenlp_extractor()),
       preferences => sys.xmltype('<RDFCTXPreferences>
                                     <Datastore type="FILE"> 
                                        <Path>EXTFILES_DIR</Path>
                                     </Datastore>
                                   </RDFCTXPreferences>')); 
end;
/

The <Datastore> element in the preferences document specifies the type of repository
used for the documents to be indexed. When the value for the type attribute is set to
FILE, the <Path> element identifies a directory object in the database (created using
the SQL statement CREATE DIRECTORY). A table column indexed using the
specified extractor policy is expected to contain relative paths to individual files within
the directory object, as shown in the following example:

CREATE TABLE newsfeed (docid       number, 
                       articleLoc  VARCHAR2(100)); 
INSERT INTO into newsfeed (docid, articleLoc) values
                     (1, 'article1.txt'); 
INSERT INTO newsfeed (docid, articleLoc) values
                     (2, 'folder/article2.txt'); 
 
CREATE INDEX ArticleIndex on newsfeed (articleLoc)
   INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR_FROM_FILE');
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To index documents that are accessed using HTTP protocol, create a extractor policy
with preferences that set the type attribute of the <Datastore> element to URL and that
list one or more hosts in the <Path> elements, as shown in the following excerpt:

<RDFCTXPreferences>
   <Datastore type="URL"> 
       <Path>http://cnn.com</Path>
       <Path>http://abc.com</Path>
   </Datastore>
</RDFCTXPreferences>

The schema in which a semantic index for external documents is created must have
the necessary privileges to access the external objects, including access to any proxy
server used to access documents outside the firewall, as shown in the following
example:

-- Grant read access to the directory object for FILE data store -- 
grant read on directory EXTFILES_DIR to SEMUSR;
 
-- Grant connect access to set of hosts for URL data store -- 
begin
  dbms_network_acl_admin.create_acl (
                acl          => 'network_docs.xml',
                description  => 'Normal Access',
                principal    => 'SEMUSR',
                is_grant     => TRUE,
                privilege    => 'connect');
end;
/
 
begin
  dbms_network_acl_admin.assign_acl (
               acl        => 'network_docs.xml',
               host       =>  'cnn.com',
               lower_port => 1,
               upper_port => 10000);
end;
/

External documents that are semantically indexed in the database may be in one of
the well-known formats such as Microsoft Word, RTF, and PDF. This takes advantage
of the Oracle Text capability to extract plain text version from formatted documents
using filters (see the CTX_DOC.POLICY_FILTER procedure, described in Oracle Text
Reference). To semantically index formatted documents, you must specify the name of
a CTX policy in the extractor preferences, as shown in the following excerpt:

<RDFCTXPreferences>
   <Datastore type="FILE" filter="CTX_FILTER_POLICY"> 
       <Path>EXTFILES_DIR</Path>
   </Datastore>
</RDFCTXPreferences>

In the preceding example, the CTX_FILTER_POLICY policy, created using the
CTX_DDL.CREATE_POLICY procedure, must exist in your schema. The table
columns that are semantically indexed using this preferences document can store
paths to formatted documents, from which plain text is extracted using the specified
CTX policy. The information extractor associated with the extractor policy then
processes the plain text further, to extract the semantics in RDF/XML format.
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4.9 Configuring the Calais Extractor type
The CALAIS_EXTRACTOR type, which is a subtype of the
RDFCTX_WS_EXTRACTOR type, enables you to access a Web service end point
anywhere on the network, including the one that is publicly accessible
(OpenCalais.com).

To do so, you must connect with SYSDBA privileges and configure the Calais
extractor type with Web service end point, the SOAP action, and the license key by
setting corresponding parameters, as shown in the following example:

begin
  sem_rdfctx.set_extractor_param (
     param_key   => 'CALAIS_WS_ENDPOINT',
     param_value => 'http://api1.opencalais.com/enlighten/calais.asmx',
     param_desc  => 'Calais web service end-point');
       
  sem_rdfctx.set_extractor_param (
     param_key   => 'CALAIS_KEY',
     param_value => '<Calais license key goes here>',
     param_desc  => 'Calais extractor license key');
 
  sem_rdfctx.set_extractor_param (
     param_key   => 'CALAIS_WS_SOAPACTION',
     param_value => 'http://clearforest.com/Enlighten',
     param_desc  => 'Calais web service SOAP Action');
end;

To enable access to a Web service outside the firewall, you must also set the
parameter for the proxy host, as in the following example:

begin
  sem_rdfctx.set_extractor_param (
      param_key   => 'HTTP_PROXY',
      param_value => 'www-proxy.acme.com',
      param_desc  => 'Proxy server');
end;

4.10 Working with General Architecture for Text Engineering
(GATE)

General Architecture for Text Engineering (GATE) is an open source natural language
processor and information extractor.

For details about GATE, see http://gate.ac.uk.

You can use GATE to perform semantic indexing of documents stored in the
database. The extractor type mdsys.gatenlp_extractor is defined as a subtype of the
RDFCTX_EXTRACTOR type. The implementation of this extractor type sends an
unstructured document to a GATE engine over a TCP connection, receives
corresponding annotations, and converts them into RDF following a user-specified
XML style sheet.

The requests for information extraction are handled by a server socket
implementation, which instantiates the GATE components and listens to extraction
requests at a pre-determined port. The host and the post for the GATE listener are

Chapter 4
Configuring the Calais Extractor type

4-13

http://gate.ac.uk


recorded in the database, as shown in the following example, for all instances of the
mdsys.gatenlp_extractor type to use.

begin 
  sem_rdfctx.set_extractor_param (
     param_key   => 'GATE_NLP_HOST',
     param_value => 'gateserver.acme.com',
     param_desc  => 'Host for GATE NLP Listener ');
       
  sem_rdfctx.set_extractor_param (
     param_key   => 'GATE_NLP_PORT',
     param_value => '7687',
     param_desc  => 'Port for Gate NLP Listener');
end;

The server socket application receives an unstructured document and constructs an
annotation set with the desired types of annotations. Each annotation in the set may
be customized to include additional features, such as the relevant phrase from the
input document and some domain specific features. The resulting annotation set is
serialized into XML (using the annotationSetToXml method in the
gate.corpora.DocumentXmlUtils Java package) and returned back to the socket
client.

A sample Java implementation for the GATE listener is available for download from
the code samples and examples page on OTN (see Semantic Data Examples
(PL/SQL and Java) for information about this page).

The mdsys.gatenlp_extractor implementation in the database receives the
annotation set encoded in XML, and converts it to RDF/XML using an XML style sheet.
You can replace the default style sheet (listed in Default Style Sheet for GATE
Extractor Output) used by the mdsys.gatenlp_extractor implementation with a
custom style sheet when you instantiate the type.

The following example creates an extractor policy that uses a custom style sheet to
generate RDF from the annotation set produced by the GATE extractor:

begin
  sem_rdfctx.create_policy (policy_name => 'GATE_EXTR',
                            extractor   => mdsys.gatenlp_extractor(
      sys.XMLType('<?xml version="1.0"?> 
                 <xsl:stylesheet version="2.0" 
                    xmlns:xsl="http://www.w3.org/1999/XSL/Transform" >
                   ..
                 </xsl:stylesheet>')));
end;
/

4.11 Creating a New Extractor Type
You can create a new extractor type by extending the RDFCTX_EXTRACTOR or
RDFCTX_WS_EXTRACTOR extractor type.

The extractor type to be extended must be accessible using Web service calls. The
schema in which the new extractor type is created must be granted additional
privileges to allow creation of the subtype. For example, if a new extractor type is
created in the schema RDFCTXU, you must enter the following commands to grant
the UNDER and RDFCTX_ADMIN privileges to that schema:
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GRANT under ON mdsys.rdfctx_extractor TO rdfctxu;
GRANT rdfctx_admin TO rdfctxu;

As an example, assume that an information extractor can process an incoming
document and return an XML document that contains extracted information. To enable
the information extractor to be invoked using a PL/SQL wrapper, you can create the
corresponding extractor type implementation, as in the following example:

create or replace type rdfctxu.info_extractor under rdfctx_extractor (
  xsl_trans   sys.XMLtype,
  constructor function info_extractor (
                 xsl_trans  sys.XMLType ) return self as result,
  overriding member function getDescription return VARCHAR2,
  overriding member function rdfReturnType return VARCHAR2,
  overriding member function extractRDF(document CLOB,
                                        docId    VARCHAR2) return CLOB
)
/
 
create or replace type body rdfctxu.info_extractor as 
  constructor function info_extractor (
                 xsl_trans  sys.XMLType ) return self as result is
  begin
    self.extr_type := 'Info Extractor Inc.'; 
    -- XML style sheet to generate RDF/XML from proprietary XML documents
    self.xsl_trans := xsl_trans; 
    return;
  end info_extractor; 
 
  overriding member function getDescription return VARCHAR2 is
  begin
    return 'Extactor by Info Extractor Inc.';
  end getDescription;
 
  overriding member function rdfReturnType return VARCHAR2 is
  begin
    return 'RDF/XML';
  end rdfReturnType;
 
  overriding member function extractRDF(document CLOB,
                                        docId    VARCHAR2) return CLOB is
    ce_xmlt  sys.xmltype;
  begin
    EXECUTE IMMEDIATE 
      'begin :1 = info_extract_xml(doc => :2); end;'
       USING IN OUT ce_xmlt, IN document;
 
    -- Now pass the ce_xmlt through RDF/XML transformation -- 
    return ce_xmlt.transform(self.xsl_trans).getClobVal();
  end extractRdf;
 
end;

In the preceding example:

• The implementation for the created info_extractor extractor type relies on the
XML style sheet, set in the constructor, to generate RDF/XML from the proprietary
XML schema used by the underlying information extractor.
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• The extractRDF function assumes that the info_extract_xml function contacts
the desired information extractor and returns an XML document with the
information extracted from the document that was passed in.

• The XML style sheet is applied on the XML document to generate equivalent RDF/
XML, which is returned by the extractRDF function.

4.12 Creating a Local Semantic Index on a Range-
Partitioned Table

A local index can be created on a VARCHAR2 or CLOB column of a range-partitioned
table.

To do so, use the following syntax:

CREATE INDEX <index-name> … LOCAL;

The following example creates a range-partitioned table and a local semantic index on
that table:

CREATE TABLE part_newsfeed (
  docid number, article CLOB, cdate DATE) 
partition by range (cdate)
(partition p1 values less than (to_date('01-Jan-2001')),
 partition p2 values less than (to_date('01-Jan-2004')),
 partition p3 values less than (to_date('01-Jan-2008')),
 partition p4 values less than (to_date('01-Jan-2012'))
);
 
CREATE INDEX ArticleLocalIndex on part_newsfeed (article)
   INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR')
LOCAL;

Note that every partition of the local semantic index will have content generated for the
same set of policies. When you use the ALTER INDEX statement on a local index to
add or drop policies associated with a semantic index partition, you should try to keep
the same set of policies associated with each partition. You can achieve this result by
using ALTER INDEX statements in a loop over the set of partitions. (For more
information about altering semantic indexes, see Altering a Semantic Index,)

4.13 Altering a Semantic Index
You can use the ALTER INDEX statement with a semantic index.

For a local semantic index, the ALTER INDEX statement applies to a specified
partition. The general syntax of the ALTER INDEX command for a semantic index is
as follows:

ALTER INDEX <index-name> REBUILD [PARTITION <index-partition-name>]
  [PARAMETERS ('-<action_for_policy> <policy-name>')];

• Rebuilding Content for All Existing Policies in a Semantic Index

• Rebuilding to Add Content for a New Policy to a Semantic Index

• Rebuilding Content for an Existing Policy from a Semantic Index

• Rebuilding to Drop Content for an Existing Policy from a Semantic Index
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4.13.1 Rebuilding Content for All Existing Policies in a Semantic Index
If the PARAMETERS clause is not included in the ALTER INDEX statement, the
content of the semantic index (or index partition) is rebuilt for every policy presently
associated with the index. The following are two examples:

ALTER INDEX ArticleIndex REBUILD;
ALTER INDEX ArticleLocalIndex REBUILD PARTITION p1;

4.13.2 Rebuilding to Add Content for a New Policy to a Semantic
Index

Using add_policy for <action_for_policy>, you can add content for a new base policy
or a dependent policy to a semantic index (or index partition). If a dependent policy is
being added and if its base policy is not already a part of the index, then content for
the base policy is also added implicitly (by invoking the extractor specified as part of
the base policy definition). The following is an example:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-add_policy MY_POLICY');

4.13.3 Rebuilding Content for an Existing Policy from a Semantic
Index

Using rebuild_policy for <action_for_policy>, you can rebuild the content of the
semantic index (or index partition) for an existing policy presently associated with the
index. The following is an example:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-rebuild_policy MY_POLICY');

4.13.4 Rebuilding to Drop Content for an Existing Policy from a
Semantic Index

Using drop_policy for <action_for_policy>, you can drop content corresponding to an
existing base policy or a dependent policy from a semantic index (or index partition).
Note that dropping the content for a base policy will fail if it is the only policy for the
index (or index partition) or if it is used by dependent policies associated with this
index (or index partition).

The following example drops the content for a policy from an index:

ALTER INDEX ArticleIndex REBUILD PARAMETERS ('-drop_policy MY_POLICY');

4.14 Passing Extractor-Specific Parameters in CREATE
INDEX and ALTER INDEX

The CREATE INDEX and ALTER INDEX statements allow the passing of parameters
needed by extractors.
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These parameters are passed on to the extractor using the params parameter of the
extractRdf and batchExtractRdf methods. The following two examples show their
use:

CREATE INDEX ArticleIndex on Newsfeed (article)
  INDEXTYPE IS mdsys.SemContext PARAMETERS ('SEM_EXTR=(NE_ONLY)');

ALTER INDEX ArticleIndex REBUILD 
  PARAMETERS ('-add_policy MY_POLICY=(NE_ONLY)');

4.15 Performing Document-Centric Inference
Document-centric inference refers to the ability to infer from each document
individually.

It does not allow triples extracted from two different documents to be used together for
inference. It contrasts with the more common corpus-centric inference, where new
triples can be inferred from combinations of triples extracted from multiple documents.

Document-centric inference can be desirable in document search applications
because inclusion of a document in the search result is based on the extracted and/or
inferred triples for that document only, that is, triples extracted and/or inferred from any
other documents in the corpus do not play any role in the selection of this document.
(Document-centric inference might be preferred, for example, if there is inconsistency
among documents because of differences in the reliability of the data or in the biases
of the document creators.)

To perform document-centric inference, use named graph based local inference
(explained in Named Graph Based Local Inference (NGLI)) by specifying options =>
'LOCAL_NG_INF=T' in the call to the SEM_APIS.CREATE_ENTAILMENT procedure.

Entailments created through document-centric inference can be included as content of
a semantic index by creating a dependent policy and adding that policy to the
semantic index, as shown in Example 4-2.

Example 4-2    Using Document-Centric Inference

-- Create entailment 'extr_data_inf' using document-centric inference
-- assuming:
--   model_name for semantic index based on base policy: 'RDFCTX_MOD_1'
--    (model name is available from the RDFCTX_INDEX_POLICIES view; 
--     see RDFCTX_INDEX_POLICIES View)
--   ontology: dataOntology
--   rulebase: OWL2RL
-- options: 'LOCAL_NG_INF=T' (for document-centric inference)
BEGIN
sem_apis.create_entailment('extr_data_inf',
  models_in    => sem_models('RDFCTX_MOD_1', 'dataOntology'),
  rulebases_in => sem_rulebases('OWL2RL'),
  options      => 'LOCAL_NG_INF=T');
END;
/
-- Create a dependent policy to augment data extracted using base policy
-- with content of entailment extr_data_inf (computed in previous statement)
BEGIN
sem_rdfctx.create_policy (
  policy_name => 'SEM_EXTR_PLUS_DATA_INF',
  base_policy => 'SEM_EXTR',
  user_models => NULL,
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  user_entailments => sem_models('extr_data_inf'));
END;
/
-- Add the dependent policy to the ARTICLEINDEX index.
EXECUTE sem_rdfctx.add_dependent_policy('ARTICLEINDEX','SEM_EXTR_PLUS_DATA_INF');

4.16 Metadata Views for Semantic Indexing
This section describes views that contain metadata about semantic indexing

• MDSYS.RDFCTX_POLICIES View

• RDFCTX_INDEX_POLICIES View

• RDFCTX_INDEX_EXCEPTIONS View

4.16.1 MDSYS.RDFCTX_POLICIES View
Information about extractor policies defined in the current schema is maintained in the
MDSYS.RDFCTX_POLICIES view, which has the columns shown in Table 4-1 and
one row for each extractor policy.

Table 4-1    MDSYS.RDFCTX_POLICIES View Columns

Column Name Data Type Description

POLICY_OWNER VARCHAR2(32) Owner of the extractor policy

POLICY_NAME VARCHAR2(32) Name of the extractor policy

EXTRACTOR MDSYS.RDFCTX_EXTRACT
OR

Instance of extractor type

IS_DEPENDENT VARCHAR2(3) Contains YES if the extractor
policy is dependent on a base
policy; contains NO if the
extractor policy is not
dependent on a base policy.

BASE_POLICY VARCHAR2(32) For a dependent policy, the
name of the base policy

USER_MODELS MDSYS.RDF_MODELS For a dependent policy, a list
of the RDF models included in
the policy

4.16.2 RDFCTX_INDEX_POLICIES View
Information about semantic indexes defined in the current schema and the extractor
policies used to create the index is maintained in the MDSYS.RDFCTX_POLICIES
view, which has the columns shown in Table 4-2 and one row for each combination of
semantic index and extractor policy.

Table 4-2    MDSYS.RDFCTX_INDEX_POLICIES View Columns

Column Name Data Type Description

INDEX_OWNER VARCHAR2(32) Owner of the semantic index
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Table 4-2    (Cont.) MDSYS.RDFCTX_INDEX_POLICIES View Columns

Column Name Data Type Description

INDEX_NAME VARCHAR2(32) Name of the semantic index

INDEX_PARTITION VARCHAR2(32) Name of the index partition
(for LOCAL index only)

POLICY_NAME VARCHAR2(32) Name of the extractor policy

EXTR_PARAMETERS VARCHAR2(100) Parameters specified for the
extractor

IS_DEFAULT VARCHAR2(3) Contains YES if
POLICY_NAME is the default
extractor policy for the index;
contains NO if POLICY_NAME
is not the default extractor
policy for the index.

STATUS VARCHAR2(10) Contains VALID if the index is
valid, INPROGRESS if the index
is being created, or FAILED if
a system failure occurred
during the creation of the
index.

RDF_MODEL VARCHAR2(32) Name of the RDF model
maintaining the index data

4.16.3 RDFCTX_INDEX_EXCEPTIONS View
Information about exceptions encountered while creating or maintaining semantic
indexes in the current schema is maintained in the
MDSYS.RDFCTX_INDEX_EXCEPTIONS view, which has the columns shown in 
Table 4-3 and one row for each exception.

Table 4-3    MDSYS.RDFCTX_INDEX_EXCEPTIONS View Columns

Column Name Data Type Description

INDEX_OWNER VARCHAR2(32) Owner of the semantic index
associated with the exception

INDEX_NAME VARCHAR2(32) Name of the semantic index
associated with the exception

POLICY_NAME VARCHAR2(32) Name of the extractor policy
associated with the exception

DOC_IDENTIFIER VARCHAR2(38) Row identifier (rowid) of the
document associated with the
exception

EXCEPTION_TYPE VARCHAR2(13) Type of exception

EXCEPTION_CODE NUMBER Error code associated with the
exception

EXCEPTION_TEXT CLOB Text associated with the
exception
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Table 4-3    (Cont.) MDSYS.RDFCTX_INDEX_EXCEPTIONS View Columns

Column Name Data Type Description

EXTRACTED_AT TIMESTAMP Time at which the exception
occurred

4.17 Default Style Sheet for GATE Extractor Output
This section lists the default XML style sheet that the mdsys.gatenlp_extractor
implementation uses to convert the annotation set (encoded in XML) into RDF/XML.

(This extractor is explained in Working with General Architecture for Text Engineering
(GATE).)

<?xml version="1.0"?> 
  <xsl:stylesheet version="2.0" 
                   xmlns:xsl="http://www.w3.org/1999/XSL/Transform" > 
     <xsl:output encoding="utf-8" indent="yes"/> 
     <xsl:param name="docbase">http://xmlns.oracle.com/rdfctx/</xsl:param>
     <xsl:param name="docident">0</xsl:param>
     <xsl:param name="classpfx">
       <xsl:value-of select="$docbase"/>
       <xsl:text>class/</xsl:text> 
     </xsl:param>
     <xsl:template match="/">
        <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
                 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
                 xmlns:owl="http://www.w3.org/2002/07/owl#" 
                 xmlns:prop="http://xmlns.oracle.com/rdfctx/property/">  
        <xsl:for-each select="AnnotationSet/Annotation"> 
          <rdf:Description> 
            <xsl:attribute name="rdf:about"> 
              <xsl:value-of select="$docbase"/>
              <xsl:text>docref/</xsl:text>
              <xsl:value-of select="$docident"/>
              <xsl:text>/</xsl:text>
              <xsl:value-of select="@Id"/>
            </xsl:attribute>
            <xsl:for-each select="./Feature"> 
              <xsl:choose>
                <xsl:when test="./Name[text()='majorType']"> 
                  <rdf:type> 
                    <xsl:attribute name="rdf:resource"> 
                       <xsl:value-of select="$classpfx"/>
                       <xsl:text>major/</xsl:text>
                       <xsl:value-of select="translate(./Value/text(),
                                                       ' ', '#')"/>
                    </xsl:attribute>  
                  </rdf:type>
                </xsl:when>
                <xsl:when test="./Name[text()='minorType']"> 
                  <xsl:element name="prop:hasMinorType"> 
                    <xsl:attribute name="rdf:resource"> 
                       <xsl:value-of select="$docbase"/>
                       <xsl:text>minorType/</xsl:text>
                       <xsl:value-of select="translate(./Value/text(),
                                                       ' ', '#')"/>
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                    </xsl:attribute>  
                  </xsl:element> 
                </xsl:when>
                <xsl:when test="./Name[text()='kind']"> 
                  <xsl:element name="prop:hasKind"> 
                    <xsl:attribute name="rdf:resource"> 
                       <xsl:value-of select="$docbase"/>
                       <xsl:text>kind/</xsl:text>
                       <xsl:value-of select="translate(./Value/text(),
                                                       ' ', '#')"/>
                    </xsl:attribute>  
                  </xsl:element> 
                </xsl:when>
                <xsl:when test="./Name[text()='locType']"> 
                  <xsl:element name="prop:hasLocType"> 
                    <xsl:attribute name="rdf:resource"> 
                       <xsl:value-of select="$docbase"/>
                       <xsl:text>locType/</xsl:text>
                       <xsl:value-of select="translate(./Value/text(),
                                                       ' ', '#')"/>
                    </xsl:attribute>  
                  </xsl:element> 
                </xsl:when>
                <xsl:when test="./Name[text()='entityValue']"> 
                  <xsl:element name="prop:hasEntityValue"> 
                    <xsl:attribute name="rdf:datatype"> 
                      <xsl:text>
                         http://www.w3.org/2001/XMLSchema#string
                      </xsl:text>
                    </xsl:attribute> 
                    <xsl:value-of select="./Value/text()"/>
                  </xsl:element> 
                </xsl:when>
                <xsl:otherwise> 
                  <xsl:element name="prop:has{translate(
                                        substring(./Name/text(),1,1),
                                        'abcdefghijklmnopqrstuvwxyz',
                                        'ABCDEFGHIJKLMNOPQRSTUVWXYZ')}{
                                      substring(./Name/text(),2)}"> 
                     <xsl:attribute name="rdf:datatype"> 
                        <xsl:text>
                          http://www.w3.org/2001/XMLSchema#string
                        </xsl:text> 
                     </xsl:attribute> 
                    <xsl:value-of select="./Value/text()"/>
                  </xsl:element> 
                </xsl:otherwise> 
              </xsl:choose>
            </xsl:for-each> 
          </rdf:Description> 
        </xsl:for-each>
        </rdf:RDF> 
      </xsl:template>
   </xsl:stylesheet>
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5
Fine-Grained Access Control for RDF Data

The default control of access to the Oracle Database semantic data store is at the
model level: the owner of a model can grant select, delete, and insert privileges on the
model to other users by granting appropriate privileges on the view named
RDFM_<model_name>. However, for applications with stringent security
requirements, you can enforce a fine-grained access control mechanism by using the
Oracle Label Security option of Oracle Database.

Oracle Label Security (OLS) for RDF data allows sensitivity labels to be associated
with individual triples stored in an RDF model. For each query, access to specific
triples is granted by comparing their labels with the user's session labels. Furthermore,
a minimum sensitivity label for all triple describing a specific resource or all triples
defined with a specific predicate can be enforced by assigning a sensitivity label
directly to the resource or the predicate, respectively.

For information about using OLS, see Oracle Label Security Administrator's Guide.

Oracle Label Security (OLS) for RDF data provides two options for securing semantic
data:

• Triple-level security (explained in Triple-Level Security), which is highly
recommended for its performance and ease of use

• Resource-level security (explained in Resource-Level Security), which is generally
not recommended

To specify an option, use the SEM_RDFSA.APPLY_OLS_POLICY procedure with the
appropriate rdfsa_options parameter value.

To switch from one option to the other, remove the existing policy by using the 
SEM_RDFSA.REMOVE_OLS_POLICY procedure, and then apply the new policy by
using the SEM_RDFSA.APPLY_OLS_POLICY procedure with the appropriate
rdfsa_options parameter value.

• Triple-Level Security
The triple-level security option provides a thin layer of RDF-specific capabilities on
top of the Oracle Database native support for label security.

• Resource-Level Security
The resource-level security option enables you to assign one or more security
labels that define a security level for table rows.

5.1 Triple-Level Security
The triple-level security option provides a thin layer of RDF-specific capabilities on top
of the Oracle Database native support for label security.

This option provides better performance and is easier to use than the resource-level
security (described in Resource-Level Security), especially for performing inference
while using OLS. The main difference is that with triple-level security there is no need
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to assign labels, explicitly or implicitly, to individual triple resources (subjects,
properties, objects).

To use triple-level security, specify SEM_RDFSA.TRIPLE_LEVEL_ONLY as the
rdfsa_options parameter value when you execute the 
SEM_RDFSA.APPLY_OLS_POLICY procedure. For example:

EXECUTE sem_rdfsa.apply_ols_policy('defense', SEM_RDFSA.TRIPLE_LEVEL_ONLY);

Do not specify any of the other available parameters for the 
SEM_RDFSA.APPLY_OLS_POLICY procedure.

When you use triple-level security, OLS is applied to each semantic model in the
network. That is, label security is applied to the relevant internal tables and to all the
application tables; there is no need to manually apply policies to the application tables
of existing semantic models. However, if you need to create additional models after
applying the OLS policy, you must use the 
SEM_OLS.APPLY_POLICY_TO_APP_TAB procedure to apply OLS to the application
table before creating the model. Similarly, if you have dropped a semantic model and
you no longer need to protect the application table, you can use the 
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB procedure. (These procedures are
described in SEM_OLS Package Subprograms.)

With triple-level security, duplicate triples with different labels can be inserted in the
semantic model. (Such duplicates are not allowed with resource-level security.) For
example, assume that you have a triple with a very sensitive label, such as:

(<urn:X>,<urn:P>,<urn:Y>, "TOPSECRET")

This does not prevent a low-privileged (UNCLASSIFIED) user from inserting the triple
(<urn:X>,<urn:P>,<urn:Y>, "UNCLASSIFIED"). Because SPARQL and
SEM_MATCH do not return label information, a query will return both rows (assuming
the user has appropriate privileges), and it will not be easy to distinguish between the
TOPSECRET and UNCLASSIFIED triples.

To filter out such low-security triples when querying the semantic models, you can one
or more the following options with SEM_MATCH:

• POLICY_NAME specifies the OLS policy name.

• MIN_LABEL specifies the minimum label for triples that are included in the query

In other words, every triple that contains a label that is strictly dominated by MIN_LABEL
is not included in the query. For example, to filter out the "UNCLASSIFIED" triple, you
could use the following query (assuming the OLS policy name is DEFENSE and that the
query user has read privileges over UNCLASSIFIED and TOPSECRET triples):

SELECT s,p,y FROM table(sem_match('{?s ?p ?y}' , 
  sem_models(TEST'), null, null, null, null, 
  'MIN_LABEL=TOPSECRET POLICY_NAME=DEFENSE'));

Note that the filtering in the preceding example occurs in addition to the security
checks performed by the native OLS software.

After a triple has been inserted, you can view and update the label information through
the CTXT1 column in the application table for the semantic model (assuming that you
have the WRITEUP and WRITEDOWN privileges to modify the labels).

There are no restrictions on who can perform inference or bulk loading with triple-level
security; all of the inferred or bulk loaded triples are inserted with the user's session
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row label. Note that you can change the session labels by using the SA_UTL package.
(For more information about SQ_UTL, see Oracle Label Security Administrator's
Guide.)

• Fine-Grained Security for Inferred Data and Ladder-Based Inference (LBI)

• Extended Example: Applying OLS Triple-Level Security on Semantic Data

5.1.1 Fine-Grained Security for Inferred Data and Ladder-Based
Inference (LBI)

When triple-level security is turned on for RDF data stored in Oracle Database,
asserted facts are tagged with data labels to enforce mandatory access control. In
addition, when a user invokes the forward-chaining based inference function through
the SEM_APIS.CREATE_ENTAILMENT procedure, the newly inferred relationships
will be tagged with the current row label (SA_UTL.NUMERIC_ROW_LABEL).

These newly inferred relationships are derived solely based on the information that the
user is allowed to access. These relationships do, however, share the same data
label. This is understandable because a SEM_APIS.CREATE_ENTAILMENT call can
be viewed as a three-step process: read operation, followed by a logical inference
computation, followed by a write operation. The read operation gathers information
upon which inference computation is based, and it is restricted by access privileges,
the user's label, and the data labels; the logical inference computation step is purely
mathematical; and the final write of inferred information into the entailed graph is no
different from the same user asserting some new facts (which happen to be calculated
by the previous step).

Having all inferred assertions tagged with a single label is sufficient if a user only owns
a single label. It is, however, not fine-grained enough when there are multiple labels
owned by the same user, which is a common situation in a multitenancy setup.

For example, assume a user sets its user label and data label as TopSecret, invokes 
SEM_APIS.CREATE_ENTAILMENT, switches to a weaker label named Secret, and
finally performs a SPARQL query. The query will not be able to see any of those newly
inferred relationships because they were all tagged with the TopSecret label. However,
if the user switches back to the TopSecret label, now every single inferred relationship
is visible. It is "all or nothing" (that is, all visible or nothing visible) as far as inferred
relationships are concerned.

When multiple labels are available for use by a given user, you normally want to
assign different labels to different inferred relationships. There are two ways to achieve
this goal:

• Invoking SEM_APIS.CREATE_ENTAILMENT Multiple Times

• Using Ladder-Based Inference (LBI)

Ladder-based inference, effective with Oracle Database 12c Release 1 (12.1), is
probably the simpler and more convenient of the two approaches.

Invoking SEM_APIS.CREATE_ENTAILMENT Multiple Times

Assume a security policy named DEFENSE, a user named SCOTT, and a sequence
of user labels Label1, Label2,..., Labeln owned by SCOTT. The following call by
SCOTT sets the label as Label1, runs the inference for the first time, and tags the
newly inferred triples with Label1:
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EXECUTE sa_utl.set_label('defense',char_to_label('defense','Label1'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Label1'));
EXECUTE sem_apis.create_entailment('inf', sem_models('contracts'), 
sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, null,'');

Now, SCOTT switches the label to Label2, runs the inference a second time, and tags
the newly inferred triples with Label2. Obviously, if Label2 is dominated by Label1,
then no new triples will be inferred because Label2 cannot see anything beyond what
Label1 is allowed to see. If Label2 is not dominated by Label1, the read step of the
inference process will probably see a different set of triples, and consequently the
inference call can produce some new triples, which will in turn be tagged with Label2.

For the purpose of this example, assume the following condition holds true: for any 1
<= i < j <= n, Labelj is not dominated by Labeli.

EXECUTE sa_utl.set_label('defense',char_to_label('defense','Label2'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Label2'));
EXECUTE sem_apis.create_entailment('inf', sem_models('contracts'), 
sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, null, 'ENTAIL_ANYWAY=T');

SCOTT continues the preceding actions using the rest of the labels in the label
sequence: Label1, Label2, ..., Labeln. The last step will be as follows:

EXECUTE sa_utl.set_label('defense',char_to_label('defense','Labeln'));
EXECUTE sa_utl.set_row_label('defense',char_to_label('defense','Labeln'));
EXECUTE sem_apis.create_entailment('inf', sem_models('contracts'), 
sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, null, 'ENTAIL_ANYWAY=T');

After all these actions are performed, the inference graph probably consists of triples
tagged with various different labels.

Using Ladder-Based Inference (LBI)

Basically, ladder-based inference (LBI) wraps in one API call all the actions described
in the Invoking SEM_APIS.CREATE_ENTAILMENT Multiple Times approach.
Visually, those actions are like climbing up a ladder. When proceeding from one label
to the next, more asserted facts become visible or accessible (assuming the new label
is not dominated by any of the previous ones), and therefore new relationships can be
inferred.

The syntax to invoke LBI is shown in the following example.

EXECUTE sem_apis.create_entailment('inf',
  sem_models('contracts'),
  sem_rulebases('owlprime'),
  SEM_APIS.REACH_CLOSURE,
  null,
  null,
  ols_ladder_inf_lbl_seq=>'numericLabel1 numericLabel2 numericLabel3 numericLabel4'
);

The parameter ols_ladder_inf_lbl_seq specifies a sequence of labels. This
sequence is provided as a list of numeric labels delimited by spaces. When using LBI,
it is a good practice to arrange the sequence of labels so that weaker labels are put
before stronger labels. This will reduce the size of the inferred graph. (If labels do not
dominate each other, they can be specified in any order.)
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5.1.2 Extended Example: Applying OLS Triple-Level Security on
Semantic Data

This section presents an extended example illustrating how to apply OLS triple-level
security to semantic data. It assumes that OLS has been configured and enabled. The
examples are very simplified, and do not reflect recommended practices regarding
user names and passwords.

Unless otherwise indicated, perform the steps while connected AS SYSDBA.

1. Perform some necessary setup steps.

a. As SYSDBA, create database users named A, B, and C.

create user a identified by <password-for-a>;
grant connect, unlimited tablespace, resource to a;
create user b identified by <password-for-b>;
grant connect, unlimited tablespace, resource to b;
create user c identified by <password-for-c>;
grant connect, unlimited tablespace, resource to c;

b. As SYSDBA, create a security administrator and grant privileges.

CREATE USER fgac_admin identified by <password-for-fgac_admin>; 
GRANT connect, unlimited tablespace,resource to fgac_admin;
GRANT SELECT ON mdsys.rdf_link$ to fgac_admin;
GRANT EXECUTE ON sa_components TO fgac_admin;
GRANT EXECUTE ON sa_user_admin TO fgac_admin;
GRANT EXECUTE ON sa_label_admin TO fgac_admin;
GRANT EXECUTE ON sa_policy_admin TO fgac_admin;
GRANT EXECUTE ON sa_sysdba to fgac_admin;
GRANT EXECUTE ON TO_LBAC_DATA_LABEL to fgac_admin;
GRANT lbac_dba to fgac_admin;

c. Connect as the security administrator and create a policy named defense.

CONNECT fgac_admin/<password-for-fgac_admin>
EXECUTE SA_SYSDBA.CREATE_POLICY('defense','ctxt1');

d. Create three security levels (For simplicity, compartments and groups are
omitted.)

EXECUTE SA_COMPONENTS.CREATE_LEVEL('defense',3000,'TS','TOP SECRET');
EXECUTE SA_COMPONENTS.CREATE_LEVEL('defense',2000,'SE','SECRET');
EXECUTE SA_COMPONENTS.CREATE_LEVEL('defense',1000,'UN','UNCLASSIFIED');

e. Create three labels.

EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('defense',1000,'UN');
EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('defense',1500,'SE');
EXECUTE SA_LABEL_ADMIN.CREATE_LABEL('defense',3100,'TS');

f. Assign labels and privileges.

EXECUTE SA_USER_ADMIN.SET_USER_LABELS('defense','A','UN');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('defense','B','SE');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('defense','C','TS');
EXECUTE SA_USER_ADMIN.SET_USER_LABELS('defense','fgac_admin','TS');
EXECUTE SA_USER_ADMIN.SET_USER_PRIVS('defense','FGAC_ADMIN', 'full');

2. Create a semantic model.

a. Create a model and share it with some other users.
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CONNECT a/<password-for-a>
CREATE TABLE project_tpl (triple sdo_rdf_triple_s) compress for oltp;
EXECUTE sem_apis.create_sem_model('project', 'project_tpl', 'triple');
GRANT select on mdsys.rdfm_project to B;
GRANT select on mdsys.rdfm_project to C;
GRANT select, insert, update, delete on project_tpl to B, C;

b. Ensure that the bulk loading API can be executed.

GRANT insert on project_tpl to mdsys;

3. Apply the OLS policy for RDF.

CONNECT fgac_admin/fgac_admin
BEGIN
  sem_rdfsa.apply_ols_policy('defense', sem_rdfsa.TRIPLE_LEVEL_ONLY);
END;
/

Note that the application table now has an extra column named CTXT1:

CONNECT a/<password-for-a>a
DESCRIBE project_tpl;
Name                                      Null?    Type
----------------------------------------- -------- --------------------------
 TRIPLE                                             PUBLIC.SDO_RDF_TRIPLE_S
 CTXT1                                              NUMBER(10)

4. Add data to the semantic model.

-- User A uses incremental APIs to add semantic data
connnect a/<password-for a) 
INSERT INTO project_tpl(triple) values
  (sdo_rdf_triple_s('project','<urn:A>','<urn:hasManager>','<urn:B>')); 
INSERT INTO project_tpl(triple) values
  (sdo_rdf_triple_s('project','<urn:B>','<urn:hasManager>','<urn:C>'));
INSERT INTO project_tpl(triple) values
   (sdo_rdf_triple_s('project','<urn:A>','<urn:expenseReportAmount>','"100"'));
INSERT INTO project_tpl(triple) values 
  
(sdo_rdf_triple_s('project','<urn:expenseReportAmount>','rdfs:subPropertyOf','<ur
n:projExp>'));
COMMIT;

-- User B uses bulk API to add semantic data 
connect b/<password-for-b>
CREATE TABLE  project_stab(RDF$STC_GRAPH varchar2(4000),
RDF$STC_sub varchar2(4000),
RDF$STC_pred varchar2(4000),
RDF$STC_obj varchar2(4000)) compress;
GRANT select on project_stab to mdsys;

-- For simplicity, data types are omitted.
INSERT INTO project_stab values(null, 
'<urn:B>','<urn:expenseReportAmount>','"200"'); 
INSERT INTO project_stab values(null, 
'<urn:proj1>','<urn:deadline>','"2012-12-25"');
EXECUTE sem_apis.bulk_load_from_staging_table('project','b','project_stab');

-- As User B, check the contents in the application table
 connect b/<password-for-b> 
SELECT * from a.project_tpl order by ctxt1;
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SDO_RDF_TRIPLE_S(8.5963E+18, 7, 1.4711E+18, 2.0676E+18, 8.5963E+18)    1000
SDO_RDF_TRIPLE_S(5.1676E+18, 7, 8.5963E+18, 2.0676E+18, 5.1676E+18)    1000
SDO_RDF_TRIPLE_S(2.3688E+18, 7, 1.4711E+18, 4.6588E+18, 2.3688E+18)    1000
SDO_RDF_TRIPLE_S(7.6823E+18, 7, 4.6588E+18, 1.1911E+18, 7.6823E+18)    1000
SDO_RDF_TRIPLE_S(6.6322E+18, 7, 8.5963E+18, 4.6588E+18, 6.6322E+18)    1500
SDO_RDF_TRIPLE_S(8.4800E+18, 7, 6.2294E+18, 5.4118E+18, 8.4800E+18)    1500
 
6 rows selected.
SELECT count(1) from mdsys.rdfm_project;
6
 
-- As User A, check the contents in the application table
-- As expected, A can only see 4 triples
SQL> conn a/<password>
SQL> select * from a.project_tpl order by ctxt1;
SDO_RDF_TRIPLE_S(8.5963E+18, 7, 1.4711E+18, 2.0676E+18, 8.5963E+18)    1000
 
SDO_RDF_TRIPLE_S(5.1676E+18, 7, 8.5963E+18, 2.0676E+18, 5.1676E+18)    1000
 
SDO_RDF_TRIPLE_S(2.3688E+18, 7, 1.4711E+18, 4.6588E+18, 2.3688E+18)    1000
 
SDO_RDF_TRIPLE_S(7.6823E+18, 7, 4.6588E+18, 1.1911E+18, 7.6823E+18)    1000
 
SQL> select count(1) from mdsys.rdfm_project;
4
 
-- User C uses incremental APIs to add semantic data including 2 quads 
connect c/<password-for-c>
INSERT INTO a.project_tpl(triple) values
  (sdo_rdf_triple_s('project','<urn:C>','<urn:expenseReportAmount>','"400"'));
INSERT INTO a.project_tpl(triple) values
  (sdo_rdf_triple_s('project','<urn:proj1>','<urn:hasBudget>','"10000"'));
INSERT INTO a.project_tpl(triple) values
  
(sdo_rdf_triple_s('project:<urn:proj2>','<urn:proj2>','<urn:hasBudget>','"20000"'
));
INSERT INTO a.project_tpl(triple) values
  
(sdo_rdf_triple_s('project:<urn:proj2>','<urn:proj2>','<urn:dependsOn>','<urn:pro
j1>'));
COMMIT;

5. Query the data as different users using the default label.

-- Now as user A, B, C, execute the following query 
select lpad(nvl(g, ' '), 20) || ' ' || s || ' ' || p || ' ' || o from 
table(sem_match('{ graph ?g { ?s ?p ?o }}',
sem_models('project'),
null,
null,
null,
null,
'GRAPH_MATCH_UNNAMED=T'
            ))
order by g, s, p, o;
 
connect  a/<password-for-a>
-- Repeat the preceding query
SQL> /
 
urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
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urn:B urn:hasManager urn:C
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf 
urn:projExp
SQL> connect  b/<password-for-b>
SQL> /
 
urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:expenseReportAmount 200
urn:B urn:hasManager urn:C
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf 
urn:projExp
urn:proj1 urn:deadline 2012-12-25
SQL> connect  c/<password-for-c>
SQL> /
 
urn:proj2 urn:proj2 urn:dependsOn urn:proj1
urn:proj2 urn:proj2 urn:hasBudget 20000
urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:expenseReportAmount 200
urn:B urn:hasManager urn:C
urn:C urn:expenseReportAmount 400
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf 
urn:projExp
urn:proj1 urn:deadline 2012-12-25
urn:proj1 urn:hasBudget 10000

As expected, different users (with different labels) can see different sets of triples
in the project RDF graph.

6. Query the same data as a single user using different labels.

The same query used in the preceding step produces just 6 matches:

urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:expenseReportAmount 200
urn:B urn:hasManager urn:C
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf 
urn:projExp
urn:proj1 urn:deadline 2012-12-25

6 rows selected.

If user C picks the weakest label ("unclassified"), then user C sees even less

exec sa_utl.set_label('defense',char_to_label('defense','UN'));
exec sa_utl.set_row_label('defense',char_to_label('defense','UN'));

The same query used in the preceding step produces just 4 matches:

urn:A urn:expenseReportAmount 100
urn:A urn:hasManager urn:B
urn:B urn:hasManager urn:C
urn:expenseReportAmount http://www.w3.org/2000/01/rdf-schema#subPropertyOf 
urn:projExp

If user C wants to run the query only against triples/quads with data label that
dominates "Secret":

-- First set the label back
exec sa_utl.set_label('defense',char_to_label('defense','TS')); exec 
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sa_utl.set_row_label('defense',char_to_label('defense','TS'));
select lpad(nvl(g, ' '), 20) || ' ' || s || ' ' || p || ' ' || o
from table(sem_match('{ graph ?g { ?s ?p ?o }}',
sem_models('project'),
null,
null,
null,
null,
'MIN_LABEL=SE POLICY_NAME=DEFENSE GRAPH_MATCH_UNNAMED=T'
            ))
order by g, s, p, o;

The query response excludes those assertions made by user A:

urn:proj2 urn:proj2 urn:dependsOn urn:proj1
urn:proj2 urn:proj2 urn:hasBudget 20000
urn:B urn:expenseReportAmount 200
urn:C urn:expenseReportAmount 400
urn:proj1 urn:deadline 2012-12-25
urn:proj1 urn:hasBudget 10000
 
6 rows selected.

The same query can be executed as User A. However, no matches are returned,
as expected.

You can delete semantic data when OLS is enabled for RDF. In the following example,
assume that SEM_RDFSA.APPLY_OLS_POLICY has been executed successfully,
and that the same user setup and label designs are used as in the preceding example.

-- First, create a test model as user A and grant access to users B and C
connect a/<password-for-a>
 
create table test_tpl (triple sdo_rdf_triple_s) compress for oltp;
grant select on mdsys.rdfm_test to B,C;
grant select, insert, update, delete on test_tpl to B, C;
 
-- The following will fail with an error message
-- "Error while creating triggers: If OLS
-- is enabled,  you have to apply table policy
-- before creating an OLS-enabled model"
--
EXECUTE sem_apis.create_sem_model('test', 'test_tpl', 'triple');
 
-- You need to run this API first
 
connect fgac_admin/<password-for-fgac_admin>
 
EXECUTE sem_ols.apply_policy_to_app_tab('defense', 'A', 'TEST_TPL');
 
-- Now model creation (after OLS policy has been applied) can go through
connect a/<password-for-a>
EXECUTE sem_apis.create_sem_model('test', 'test_tpl', 'triple');
 
-- Add a triple as User A
INSERT INTO test_tpl(triple) values
  (sdo_rdf_triple_s('test','<urn:A>','<urn:p>','<urn:B>'));
COMMIT;
 
-- Add the same triple as User B
connect b/<password-for-b>
INSERT INTO a.test_tpl(triple) values
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  (sdo_rdf_triple_s('test','<urn:A>','<urn:p>','<urn:B>'));
COMMIT;
 
-- Now User B can see both triples in the application table as well as the model view
set numwidth 20
SELECT * from a.test_tpl;
 
SDO_RDF_TRIPLE_S(8596269297967065604, 19, 1471072612573670395, 28121856352072361
78, 8596269297967065604)
                1000
 
SDO_RDF_TRIPLE_S(8596269297967065604, 19, 1471072612573670395, 28121856352072361
78, 8596269297967065604)
                1500
 
SELECT count(1) from mdsys.rdfm_test;
                   2
 
-- User A can only see one triple due to A's label assignment, as expected.
 
SELECT * from a.test_tpl;
 
SDO_RDF_TRIPLE_S(8596269297967065604, 19, 1471072612573670395, 28121856352072361
78, 8596269297967065604)
                1000
 
SELECT count(1) from mdsys.rdfm_test;
                   1
 
 
-- User A issues a delete to remove A's assertions
SQL> delete from a.test_tpl;
1 row deleted.
 
COMMIT;
Commit complete.
 
 
-- Now user A has no assertions left.
 
SELECT * from a.test_tpl;
no rows selected
 
SELECT count(1) from mdsys.rdfm_test;
                   0
 
-- Note that the preceding delete does not affect the same assertion made by B.
connect b/<password-for-b>
SELECT * from a.test_tpl;
 
SDO_RDF_TRIPLE_S(8596269297967065604, 19, 1471072612573670395, 28121856352072361
78, 8596269297967065604)
                1500
 
SELECT count(1) from mdsys.rdfm_test;
                   1
 
-- User B can remove this assertion using a DELETE statement.
-- The following DELETE statement uses the oracle_orardf_res2vid function
-- to narrow down the scope to triples with a particular subject.
DELETE FROM a.test_tpl app_tab
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       where app_tab.triple.rdf_s_id =
             sdo_sem_inference.oracle_orardf_res2vid('<urn:A>');
 
1 row deleted.

5.2 Resource-Level Security
The resource-level security option enables you to assign one or more security labels
that define a security level for table rows.

Note:

Oracle recommends that you generally use triple-level security rather than
resource-level security. Triple-level security is described in Triple-Level
Security.

Conceptually, a table in a relational data model can be mapped to an equivalent RDF
graph. Specifically, a row in a relational table can be mapped to a set of triples, each
asserting some facts about a specific Subject. In this scenario, the subject represents
the primary key for the row and each non-key column-value combination from the row
is mapped to a predicate-object value combination for the corresponding triples.

A row in a relational data model is identified by its key, and OLS, as a row-level access
control mechanism, effectively restricts access to the values associated with the key.
With this conceptual mapping between relational and RDF data models, restricting
access to a row in a relational table is equivalent to restricting access to a subgraph
involving a specific subject. In a model that supports sensitivity labels for each triple,
this is enforced by applying the same label to all the triples involving the given subject.
However, you can also achieve greater flexibility by allowing the individual triples to
have different labels, while maintaining a minimum bound for all the labels.

OLS support for RDF data employs a multilevel approach in which sensitivity labels
associated with the triple components (subject, predicate, object) collectively form a
minimum bound for the sensitivity label for the triple. With this approach, a data
sensitivity label associated with an RDF resource (used as subject, predicate, or
object) restricts unauthorized users from accessing any triples involving the resource
and from creating new triples with the resource. For example, projectHLS as a subject
may have a minimum sensitivity label, which ensures that all triples describing this
subject have a sensitivity label that at least covers the label for projectHLS.
Additionally, hasContractValue as a predicate may have a higher sensitivity label; and
when this predicate is used with projectHLS to form a triple, that triple minimally has a
label that covers both the subject and the predicate labels, as in the following example:

Triple 1: <http://www.myorg.com/contract/projectHLS> :ownedBy
                               <http://www.myorg.com/department/Dept1>
Triple 2: <http://www.myorg.com/contract/projectHLS> :hasContractValue
                               "100000"^^xsd:integer

Sensitivity labels are associated with the RDF resources (URIs) based on the position
in which they appear in a triple. For example, the same RDF resource may appear in
different positions (subject, predicate, or object) in different triples. Three unique labels
can be assigned to each resource, so that the appropriate label is used to determine
the label for a triple based on the position of the resource in the triple. You can choose

Chapter 5
Resource-Level Security

5-11



the specific resource positions to be secured in a database instance when you apply
an OLS policy to the RDF repository. You can secure subjects, objects, predicates, or
any combination, as explained in separate sections to follow. The following example
applies an OLS policy named defense to the RDF repository and allows sensitivity
labels to be associated with RDF subjects and predicates.

begin
  sem_rdfsa.apply_ols_policy(
        policy_name   => 'defense',
        rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
                         sem_rdfsa.SECURE_PREDICATE); 
end;
/

The same RDF resource can appear in both the subject and object positions (and
sometime even as the predicate), and such a resource can have distinct sensitivity
labels based on its position. A triple using the resource at a specific position should
have a label that covers the label corresponding to the resource's position. In such
cases, the triple can be asserted or accessed only by the users with labels that cover
the triple and the resource labels.

In a specific RDF repository, security based on data classification techniques can be
turned on for subjects, predicates, objects, or a combination of these. This ensures
that all the triples added to the repository automatically conform to the label
relationships described above.

• Securing RDF Subjects

• Securing RDF Predicates

• Securing RDF Objects

• Generating Labels for Inferred Triples

• Using Labels Based on Application Logic

• RDFOLS_SECURE_RESOURCE View

5.2.1 Securing RDF Subjects
An RDF resource (typically a URI) appears in the subject position of a triple when an
assertion is made about the resource. In this case, a sensitivity label associated with
the resource has following characteristics:

• The label represents the minimum sensitivity label for any triple using the resource
as a subject. In other words, the sensitivity label for the triple should dominate or
cover the label for the subject.

• The label for a newly added triple is initialized to the user initial row label or is
generated using the label function, if one is specified. Such operations are
successful only if the triple's label dominates the label associated with the triple's
subject.

• Only a user with an access label that dominates the subject's label and the triple's
label can read the triple.

By default, the sensitivity label for a subject is derived from the user environment when
an RDF resource is used in the subject position of a triple for the first time. The default
sensitivity label in this case is set to the user's initial row label (the default that is
assigned to all rows inserted by the user).
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However, you can categorize an RDF resource as a subject and assign a sensitivity
label to it even before it is used in a triple. The following example assigns a sensitivity
label named SECRET:HLS:US to the projectHLS resource, thereby restricting the users
who are able to define new triples about this resource and who are able to access
existing triples with this resource as the subject:

begin
  sem_rdfsa.set_resource_label(
         model_name   => 'contracts',
         resource_uri => '<http://www.myorg.com/contract/projectHLS>',
         label_string => 'SECRET:HLS:US',
         resource_pos => 'S');
end;

5.2.2 Securing RDF Predicates
An RDF predicate defines the relationship between a subject and an object. You can
use sensitivity labels associated with RDF predicates to restrict access to specific
types of relationships with all subjects.

RDF predicates are analogous to columns in a relational table, and the ability to
restrict access to specific predicates is equivalent to securing relational data at the
column level. As in the case of securing the subject, the predicate's sensitivity label
creates a minimum bound for any triples using this predicate. It is also the minimum
authorization that a user must posses to define a triple with the predicate or to access
a triple with the predicate.

The following example assigns the label HSECRET:FIN (in this scenario, a label that is
Highly Secret and that also belongs to the Finance department) to triples with the
hasContractValue predicate, to ensure that only a user with such clearance can
define the triple or access it:

begin
  sem_rdfsa.set_predicate_label( 
         model_name   => 'contracts',
         predicate    => '<http://www.myorg.com/pred/hasContractValue>',
         label_string => 'HSECRET:FIN');
end;  
/

You can secure predicates in combination with subjects. In such cases, the triples
using a subject and a predicate are ensured to have a sensitivity label that at least
covers the labels for both the subject and the predicate. Extending the preceding
example, if projectHLS as a subject is secured with label SECRET:HLS:US and if
hasContractValue as a predicate is secured with label HSECRET:FIN:, a triple
assigning a monetary value for projectHLS should at least have a label
HSECRET:HLS,FIN:US. Effectively, a user's label must dominate this triple's label to be
able to define or access the triple.

5.2.3 Securing RDF Objects
An RDF triple can have an URI or a literal in its object position. The URI in object
position of a triple represents some resource. You can secure a resource in the object
position by associating a sensitivity label to it, to restrict the ability to use the resource
as an object in triples.
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Typically, a resource (URI or non-literal) appearing in the object position of a triple may
itself be described using additional RDF statements. Effectively, an RDF resource in
the object position could appear in the subject position in some other triples. When the
RDF resources are secured at the object position without explicit sensitivity labels, the
label associated with the same resource in the subject position is used as the default
label for the object.

5.2.4 Generating Labels for Inferred Triples
RDF data model allows for specification of declarative rules, enabling it to infer the
presence of RDF statements that are not explicitly added to the repository. The
following shows some simple declarative rules associated with the logic that projects
can be owned by departments and departments have Vice Presidents, and in such
cases the project leader is by default the Vice President of the department that owns
the project.

RuleID -> projectLedBy
Antecedent Expression -> (?proj :ownedBy ?dept) (?dept :hasVP ?person)
Consequent Expression -> (?proj :isLedBy ?person)

An RDF rule uses some explicitly asserted triples as well as previously inferred triples
as antecedents, and infers one or more consequent triples. Traditionally, the inference
process is executed as an offline operation to pregenerate all the inferred triples and to
make them available for subsequent query operations.

When the underlying RDF graph is secured using OLS, any additional data inferred
from the graph should also be secured to avoid exposing the data to unauthorized
users. Additionally, the inference process should run with higher privileges, specifically
with full access to data, in order to ensure completeness.

OLS support for RDF data offers techniques to generate sensitivity labels for inferred
triples based on labels associated with one or more RDF artifacts. It provides label
generation techniques that you can invoke at the time of inference. Additionally, it
provides an extensibility framework, which allows an extensible implementation to
receive a set of possible labels for a specific triple and determine the most appropriate
sensitivity label for the triple based on some application-specific logic. The techniques
that you can use for generating the labels for inferred triples include the following
(each technique, except for Use Antecedent Labels, is associated with a SEM_RDFSA
package constant):

• Use Rule Label (SEM_RDFSA.LABELGEN_RULE): An inferred triple is directly
generated by a specific rule, and it may be indirectly dependent on other rules
through its antecedents. Each rule may have a sensitivity label, which is used as
the sensitivity label for all the triples directly inferred by the rule.

• Use Subject Label (SEM_RDFSA.LABELGEN_SUBJECT): Derives the label for the
inferred triple by considering any sensitivity labels associated with the subject in
the new triple. Each inferred triple has a subject, which could in turn be a subject,
predicate, or object in any of the triple's antecedents. When such RDF resources
are secured, the subject in the newly inferred triple may have one or more labels
associated with it. With the Use Subject Label technique, the label for the inferred
triple is set to the unique label associated with the RDF resource. When more than
one label exists for the resource, you can implement the extensible logic to
determine the most relevant label for the new triple.

• Use Predicate Label (SEM_RDFSA.LABELGEN_PREDICATE): Derives the label for the
inferred triple by considering any sensitivity labels associated with the predicate in
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the new triple. Each inferred triple has a predicate, which could in turn be a
subject, predicate, or object in any of the triple's antecedents. When such RDF
resources are secured, the predicate in the newly inferred triple may have one or
more labels associated with it. With the Use Predicate Label technique, the label
for the inferred triple is set to the unique label associated with the RDF resource.
When more than one label exists for the resource, you can implement the
extensible logic to determine the most relevant label for the new triple.

• Use Object Label (SEM_RDFSA.LABELGEN_OBJECT): Derives the label for the inferred
triple by considering any sensitivity labels associated with the object in the new
triple. Each inferred triple has an object, which could in turn be a subject,
predicate, or object in any of the triple's antecedents. When such RDF resources
are secured, the object in the newly inferred triple may have one or more labels
associated with it. With the Use Object Label technique, the label for the inferred
triple is set to the unique label associated with the RDF resource. When more than
one label exists for the resource, you can implement the extensible logic to
determine the most relevant label for the new triple.

• Use Dominating Label (SEM_RDFSA.LABELGEN_DOMINATING): Each inferred triple
minimally has four direct components: subject, predicate, object, and the rule that
produced the triple. With the Use Dominating Label technique, at the time of
inference the label generator computes the most dominating of the sensitivity
labels associated with each of the component and assigns it as the sensitivity label
for the inferred triple. Exception labels are assigned when a clear dominating
relationship cannot be established between various labels.

• Use Antecedent Labels: In addition to the four direct components for each inferred
triple (subject, predicate, object, and the rule that produced the triple), a triple may
have one or more antecedent triples, which are instrumental in deducing the new
triple. With the Use Antecedent Labels technique, the labels for all the antecedent
triples are considered, and conflict resolution criteria are implemented to
determine the most appropriate label for the new triple. Since an inferred triple
may be dependent on other inferred triples, a strict order is followed while
generating the labels for all the inferred triples.

The Use Antecedent Labels technique requires that you use a custom label
generator. For information about creating and using a custom label generator, see 
Using Labels Based on Application Logic.

The following example creates an entailment (rules index) for the contracts data using
a specific rulebase. This operation can only be performed by a user with FULL access
privilege with the OLS policy applied to the RDF repository. In this case, the labels
generated for the inferred triples are based on the labels associated with their
predicates, as indicated by the use of the SEM_RDFSA.LABELGEN_PREDICATE package
constant in the label_gen parameter.

begin
  sem_rdfsa.create_entailment(
         index_name_in   => 'contracts_inf',
         models_in       => SDO_RDF_Models('contracts'),
         rulebases_in    => SDO_RDF_Rulebases('contracts_rb'),
         options         => 'USER_RULES=T',
         label_gen       => sem_rdfsa.LABELGEN_PREDICATE);
end;

When the predefined or extensible label generation implementation cannot compute a
unique label to be applied to an inferred triple, an exception label is set for the triple.
Such triples are not accessible by any user other than the user with full access to RDF
data (also the user initiating the inference process). The triples with exception labels
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are clearly marked, so that a privileged user can access them and apply meaningful
labels manually. After the sensitivity labels are applied to inferred triples, only users
with compatible labels can access these triples. The following example updates the
sensitivity label for triples for which an exception label was set:

update mdsys.rdfi_contracts_inf 
     set ctxt1 = char_to_label('defense', 'SECRET:HLS:US')
     where ctxt1 = -1;

Inferred triples accessed through generated labels might not be same as conceptual
triples inferred directly from the user accessible triples and rules. The labels generated
using system-defined or custom implementations cannot be guaranteed to be precise.
See the information about Fine-Grained Access Control (OLS) Considerations in the
Usage Notes for the SEM_APIS.CREATE_ENTAILMENT procedure in SEM_APIS
Package Subprograms for details.

5.2.5 Using Labels Based on Application Logic
The MDSYS.RDFSA_LABELGEN type is used to apply appropriate label generator
logic at the time of index creation; however, you can also extend this type to
implement a custom label generator and generate labels based on application logic.
The label generator is specified using the label_gen parameter with the 
SEM_APIS.CREATE_ENTAILMENT procedure. To use a system-defined label
generator, specify a SEM_RDFSA package constant, as explained in Generating
Labels for Inferred Triples; to use a custom label generator, you must implement a
custom label generator type and specify an instance of that type instead of a
SEM_RDFSA package constant.

To create a custom label generator type, you must have the UNDER privilege on the
RDFSA_LABELGEN type. In addition, to create an index for RDF data , you must
should have the EXECUTE privilege on this type. The following example grants these
privileges to a user named RDF_ADMIN:

GRANT under, execute ON mdsys.rdfsa_labelgen TO rdf_admin;

The custom label generator type must implement a constructor, which should set the
dependent resources and specify the getNumericLabel method to return the label
computed from the information passed in, as shown in the following example:

CREATE OR REPLACE TYPE CustomSPORALabel UNDER mdsys.rdfsa_labelgen  (
   constructor function CustomSPORALabel return self as result,
   overriding member function getNumericLabel (
                                    subject   rdfsa_resource,
                                    predicate rdfsa_resource,
                                    object    rdfsa_resource,
                                    rule      rdfsa_resource,
                                    anteced   rdfsa_resource)
        return number);

Example 5-1    Creating a Custom Label Generator Type

CREATE OR REPLACE TYPE BODY CustomSPORALabel AS
 
   constructor function CustomSPORALabel return self as result as
   begin
     self.setDepResources(sem_rdfsa.USE_SUBJECT_LABEL+
                          sem_rdfsa.USE_PREDICATE_LABEL+
                          sem_rdfsa.USE_OBJECT_LABEL+
                          sem_rdfsa.USE_RULE_LABEL+
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                          sem_rdfsa.USE_ANTECED_LABELS);
     return;
   end CustomSPORALabel;
   
   overriding member function getNumericLabel (
                                    subject   rdfsa_resource,
                                    predicate rdfsa_resource,
                                    object    rdfsa_resource,
                                    rule      rdfsa_resource,
                                    anteced   rdfsa_resource)
        return number as
     labellst mdsys.int_array := mdsys.int_array(); 
   begin
    -- Find dominating label of S P O R A –
    –- Application specific logic for computing the triple label –
    -- Copy over all labels to labellst --
    for li in 1 .. subject.getLabelCount() loop
      labellst.extend; 
      labellst(labellst.COUNT) = subject.getLabel(li); 
    end loop; 
    --- Copy over other labels as well --- 
    --- Find a dominating of all the labels. Generates –1 if no
    --- dominating label within the set
    return self.findDominatingOf(labellst); 
   end getNumericLabel;
  end CustomSPORALabel;  
  /

The label generator constructor uses a set of constants defined in the SEM_RDFSA
package to indicate the list of resources on which the label generator relies. The
dependent resources are identified as an inferred triple's subject, its predicate, its
object, the rule that produced the triple, and its antecedents. A custom label generator
can rely on any subset of these resources for generating the labels, and you can
specify this in its constructor by using the constants defined in SEM_RDFSA package :
USE_SUBJECT_LABEL, USE_PREDICATE_LABEL, USE_OBJECT_LABEL,
USE_RULE_LABEL, USE_ANTCED_LABEL. The following example creates the type
body and specifies the constructor:

Example 5-1 creates the type body, specifying the constructor function and the
getNumericLabel member function. (Application-specific logic is not included in this
example.)

In Example 5-1, the sample label generator implementation uses all the resources
contributing to the inferred triple for generating a sensitivity label for the triple. Thus,
the constructor uses the setDepResources method defined in the superclass to set all
its dependent components. The list of dependent resources set with this step
determines the exact list of values passed to the label generating routine.

The getNumericLabel method is the label generation routine that has one argument
for each resource that an inferred triple may depend on. Some arguments may be null
values if the corresponding dependent resource is not set in the constructor
implementation.

The label generator implementation can make use of a general-purpose static routine
defined in the RDFSA_LABELGEN type to find a domination label for a given set of
labels. A set of labels is passed in an instance of MDSYS.INT_ARRAY type, and the
method finds a dominating label among them. If no such label exists, an exception
label –1 is returned.
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After you have implemented the custom label generator type, you can use the custom
label generator for inferred data by assigning an instance of this type to the label_gen
parameter in the SEM_APIS.CREATE_ENTAILMENT procedure, as shown in the
following example:

begin
  sem_apis.create_entailment(
         index_name_in  => 'contracts_rdfsinf',
         models_in      => SDO_RDF_Models('contracts'),
         rulebases_in   => SDO_RDF_Rulebases('RDFS'),
         options        => '',
         label_gen      => CustomSPORALabel());
end;
/

5.2.6 RDFOLS_SECURE_RESOURCE View
The MDSYS.RDFOLS_SECURE_RESOURCE view contains information about
resources secured with Oracle Label Security (OLS) policies and the sensitivity labels
associated with these resources.

Select privileges on this view can be granted to appropriate users. To view the
resources associated with a specific model, you must also have select privileges on
the model (or the corresponding RDFM_model-name view).

The MDSYS.RDFOLS_SECURE_RESOURCE view contains the columns shown in 
Table 5-1.

Table 5-1    MDSYS.RDFOLS_SECURE_RESOURCE View Columns

Column Name Data Type Description

MODEL_NAME VARCHAR2(25) Name of the model.

MODEL_ID NUMBER Internal identifier for the model.

RESOURCE_ID NUMBER Internal identifier for the resource; to be joined with
MDSYS.RDF_VALUE$.VALUE_ID column for
information about the resource.

RESOURCE_TYP
E

VARCHAR2(16) One of the following string values to indicate the
resource type for which the label is assigned:
SUBJECT, PREDICATE, OBJECT, GLOBAL.

CTXT1 NUMBER Sensitivity label assigned to the resource.
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6
RDF Semantic Graph Support for Apache
Jena

RDF Semantic Graph support for Apache Jena (also referred to here as support for
Apache Jena) provides a Java-based interface to Oracle Spatial and Graph RDF
Semantic Graph by implementing the well-known Jena Graph, Model, and
DatasetGraph APIs.

Note:

This feature was previously referred to as the Jena Adapter for Oracle
Database and the Jena Adapter.

Support for Apache Jena extends the semantic data management capabilities of
Oracle Database RDF/OWL.

(Apache Jena is an open source framework. For license and copyright conditions, see 
http://www.apache.org/licenses/ and http://www.apache.org/licenses/
LICENSE-2.0.)

The DatasetGraph APIs are for managing named graph data, also referred to as
quads. In addition, RDF Semantic Graph support for Apache Jena provides network
analytical functions on top of semantic data through integrating with the Oracle Spatial
and Graph Network Data Model Graph feature.

This chapter assumes that you are familiar with major concepts explained in RDF
Semantic Graph Overview and OWL Concepts . It also assumes that you are familiar
with the overall capabilities and use of the Jena Java framework. For information about
the Jena framework, see http://jena.apache.org/, especially the Jena
Documentation page. If you use the network analytical function, you should also be
familiar with the Network Data Model Graph feature, which is documented in Oracle
Spatial and Graph Topology Data Model and Network Data Model Graph Developer's
Guide.

Note:

The current RDF Semantic Graph support for Apache Jena release has been
tested against Apache Jena 2.11.1 and Joseki 3.4.4. Because of the nature
of open source projects, you should not use this support for Apache Jena
with later versions of Jena or Joseki.

• Setting Up the Software Environment
To use the support for Apache Jena, you must first ensure that the system
environment has the necessary software, including Oracle Database 11g Release
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2 or later with the Spatial and Graph and Partitioning options and with RDF
Semantic Graph support enabled, Apache Jena 2.11.1, and JDK 1.6 or later.

• Setting Up the SPARQL Service
This section explains how to set up a SPARQL web service endpoint by deploying
the joseki.war file in WebLogic Server.

• Setting Up a Dynamic SPARQL Endpoint
You can set up a dynamic SPARQL web service endpoint using Apache Jena
Joseki and Apache Jena Fuseki.

• Adding Cross-Site Request Forgery (CSRF) Protection to the Joseki Servlet
You can add cross-site request forgery (CSRF) protection to the Joseki servlet.

• Setting Up the RDF Semantic Graph Environment

• SEM_MATCH and RDF Semantic Graph Support for Apache Jena Queries
Compared
There are two ways to query semantic data stored in Oracle Database:
SEM_MATCH-based SQL statements and SPARQL queries through the support
for Apache Jena.

• Retrieving User-Friendly Java Objects from SEM_MATCH or SQL-Based Query
Results
You can query a semantic graph using any of the following approaches.

• Optimized Handling of SPARQL Queries
This section describes some performance-related features of the support for
Apache Jena that can enhance SPARQL query processing. These features are
performed automatically by default.

• Additions to the SPARQL Syntax to Support Other Features
RDF Semantic Graph support for Apache Jena allows you to pass in hints and
additional query options. It implements these capabilities by overloading the
SPARQL namespace prefix syntax by using Oracle-specific namespaces that
contain query options.

• Functions Supported in SPARQL Queries through RDF Semantic Graph Support
for Apache Jena
SPARQL queries through the support for Apache Jena can use the following kinds
of functions.

• SPARQL Update Support
RDF Semantic Graph support for Apache Jena supports SPARQL Update
(http://www.w3.org/TR/sparql11-update/), also referred to as SPARUL.

• Analytical Functions for RDF Data
You can perform analytical functions on RDF data by using the
SemNetworkAnalyst class in the oracle.spatial.rdf.client.jena package.

• Support for Server-Side APIs
This section describes some of the RDF Semantic Graph features that are
exposed by RDF Semantic Graph support for Apache Jena.

• Bulk Loading Using RDF Semantic Graph Support for Apache Jena
To load thousands to hundreds of thousands of RDF/OWL data files into an Oracle
database, you can use the prepareBulk and completeBulk methods in the
OracleBulkUpdateHandler Java class to simplify the task.

• Automatic Variable Renaming
Automatic variable renaming can enable certain queries that previously failed to
run successfully.
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• JavaScript Object Notation (JSON) Format Support
JavaScript Object Notation (JSON) format is supported for SPARQL query
responses. JSON data format is simple, compact, and well suited for JavaScript
programs.

• Other Recommendations and Guidelines
This section contains various recommendations and other information related to
SPARQL queries.

• Example Queries Using RDF Semantic Graph Support for Apache Jena
This section includes example queries using the support for Apache Jena. Each
example is self-contained: it typically creates a model, creates triples, performs a
query that may involve inference, displays the result, and drops the model.

• SPARQL Gateway and Semantic Data
SPARQL Gateway is a J2EE web application that is included with the support for
Apache Jena. It is designed to make semantic data (RDF/OWL/SKOS) easily
available to applications that operate on relational and XML data, including Oracle
Business Intelligence Enterprise Edition (OBIEE) 11g.

• Deploying Joseki in Apache Tomcat or JBoss
If you choose not to deploy Joseki in Oracle WebLogic Server , you can deploy it
in Apache Tomcat or JBoss.

6.1 Setting Up the Software Environment
To use the support for Apache Jena, you must first ensure that the system
environment has the necessary software, including Oracle Database 11g Release 2 or
later with the Spatial and Graph and Partitioning options and with RDF Semantic
Graph support enabled, Apache Jena 2.11.1, and JDK 1.6 or later.

You can set up the software environment by performing these actions:

1. Install Oracle Database Enterprise Edition with the Oracle Spatial and Graph and
Partitioning Options.

2. If you have not yet installed Oracle Database Release 11.2.0.3 or later, install the
11.2.0.2 Patch Set for Oracle Database Server (https://updates.oracle.com/
Orion/PatchDetails/process_form?patch_num=10098816).

3. Enable the support for RDF Semantic Graph, as explained in Enabling RDF
Semantic Graph Support.

4. Download RDF Semantic Graph support for Apache Jena from My Oracle Support
at http://support.oracle.com/. Search the Knowledge Base for bug identifier
17241927.

A full evaluation version of RDF Semantic Graph support for Apache Jena can be
downloaded from OTN at http://www.oracle.com/technetwork/database-
options/spatialandgraph/. Click the Downloads tab, and then under Licensed
Software click RDF Semantic Graph Licensed Software.

5. Unzip the kit into a temporary directory, such as (on a Linux system) /tmp/
jena_adapter. (If this temporary directory does not already exist, create it before
the unzip operation.)

The RDF Semantic Graph support for Apache Jena has the following top-level
directories:
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|-- META-INF
  |-- examples
  |-- jar
  |-- javadoc
  |-- joseki
  |-- joseki_web_app
  |-- protege_plugin
  |-- sparqlgateway
  |-- sparqlgateway_web_app
  |-- fuseki
  |-- web

6. If JDK 1.6 or later is not already installed, install it.

7. If the JAVA_HOME environment variable does not already refer to the JDK 1.6 or
later installation, define it accordingly. For example:

setenv JAVA_HOME /usr/local/packages/jdk16/

8. If the SPARQL service to support the SPARQL protocol is not set up, set it up as
explained in Setting Up the SPARQL Service.

After setting up the software environment, ensure that your RDF Semantic Graph
environment can enable you to use the support for Apache Jena to perform queries,
as explained in Setting Up the RDF Semantic Graph Environment.

• If You Used a Previous Version of the Support for Apache Jena

6.1.1 If You Used a Previous Version of the Support for Apache Jena
If you used a previous version of the support for Apache Jena, note the following
important changes for this version:

• com.hp.hpl.jena.sparql.core.DataSourceImpl is replaced by
com.hp.hpl.jena.sparql.core.DatasetImpl.

If you have import com.hp.hpl.jena.sparql.core.DataSourceImpl in your Java
source code, you will need to update it to import
com.hp.hpl.jena.sparql.core.DatasetImpl.

If you have DataSourceImpl.wrap in your Java source code, you will need to
update it to DatasetImpl.wrap".

• joseki-config.ttl is moved under the WEB-INF/classes directory of joseki.war.
This configuration file was formerly placed under the top-level directory of
joseki.war. The following example shows the new placement:

% /usr/local/packages/jdk16/bin/jar tf joseki.war
application.xml
index.html
joseki-config-ttl_now_under_WEB-INF_classes
META-INF/
META-INF/MANIFEST.MF
ojdbc6.jar
StyleSheets/
StyleSheets/joseki.css
update.html
WEB-INF/
WEB-INF/lib/
WEB-INF/lib/sdordfclient.jar
WEB-INF/lib/jena-arq-2.11.1.jar
WEB-INF/lib/log4j-1.2.16.jar
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WEB-INF/lib/jcl-over-slf4j-1.6.4.jar
WEB-INF/lib/httpclient-4.2.3.jar
WEB-INF/lib/commons-codec-1.6.jar
WEB-INF/lib/slf4j-log4j12-1.6.4.jar
WEB-INF/lib/servlet-api-2.5-20081211.jar
WEB-INF/lib/xercesImpl-2.11.0.jar
WEB-INF/lib/slf4j-api-1.6.4.jar
WEB-INF/lib/jena-tdb-1.0.1.jar
WEB-INF/lib/jena-core-2.11.1.jar
WEB-INF/lib/httpcore-4.2.2.jar
WEB-INF/lib/joseki-3.4.4.oracle_build_jena211.jar
WEB-INF/lib/jena-iri-1.0.1.jar
WEB-INF/lib/sdordf.jar
WEB-INF/lib/xml-apis-1.4.01.jar
WEB-INF/web.xml
WEB-INF/classes/
WEB-INF/classes/joseki-config.ttl
xml-to-html.xsl

6.2 Setting Up the SPARQL Service
This section explains how to set up a SPARQL web service endpoint by deploying the
joseki.war file in WebLogic Server.

Note:

Before you make the first connection from the SPARQL service to an Oracle
Database, your database user must have the CREATE PROCEDURE
privilege. For example, if your database user is SCOTT and if it does not
have this privilege, enter the following from a privileged account:

SQL> GRANT CREATE PROCEDURE TO scott;

The first time a connection is established from the SPARQL service to an
Oracle Database, some PL/SQL helper subprograms are automatically
created in the user schema, and this requires the user to have the CREATE
PROCEDURE privilege.

Note:

If you want to deploy Joseki in Apache Tomcat or JBoss instead of WebLogic
Server, see Deploying Joseki in Apache Tomcat or JBoss.

1. Download and Install Oracle WebLogic Server 11g or later.

2. Ensure that you have Java 6 or later installed, because it is required by Joseki
3.4.4.

3. Using the WebLogic Server Administration console, create a J2EE data source
named OracleSemDS. During the data source creation, you can specify a user
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and password for the database schema that contains the relevant semantic data
against which SPARQL queries are to be executed.

If you need help in creating this data source, see Creating the Required Data
Source Using WebLogic Server.

4. Go to the autodeploy directory of WebLogic Server and copy files, as follows. (For
information about auto-deploying applications in development domains, see: 
http://docs.oracle.com/cd/E24329_01/web.1211/e24443/autodeploy.htm)

cd <domain_name>/autodeploy
cp -rf  /tmp/jena_adapter/joseki_web_app/joseki.war  <domain_name>/autodeploy

In the preceding example, <domain_name> is the name of a WebLogic Server
domain.

Note that while you can run a WebLogic Server domain in two different modes,
development and production, only development mode allows you use the auto-
deployment feature.

5. Verify your deployment by using your Web browser to connect to a URL in the
following format (assume that the Web application is deployed at port 7001):
http://<hostname>:7001/joseki

You should see a page titled Oracle SPARQL Service Endpoint using Joseki, and
the first text box should contain an example SPARQL query.

6. Click Submit Query.

You should see a page titled Oracle SPARQL Endpoint Query Results. There may
or may not be any results, depending on the underlying semantic model against
which the query is executed.

By default, the joseki-config.ttl file contains an oracle:Dataset definition using a
model named M_NAMED_GRAPHS. The following snippet shows the configuration. The
oracle:allGraphs predicate denotes that the SPARQL service endpoint will serve
queries using all graphs stored in the M_NAMED_GRAPHS model.

<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize     1 ;         ## Number of concurrent connections allowed to 
this dataset.
    oracle:connection
    [ a oracle:OracleConnection ;
    ];
    oracle:allGraphs [ oracle:firstModel "M_NAMED_GRAPHS" ] .

The M_NAMED_GRAPHS model will be created automatically (if it does not already exist)
upon the first SPARQL query request. You can add a few example triples and quads
to test the named graph functions; for example:

SQL> CONNECT username/password
SQL> INSERT INTO m_named_graphs_tpl 
VALUES(sdo_rdf_triple_s('m_named_graphs','<urn:s>','<urn:p>','<urn:o>'));
SQL> INSERT INTO m_named_graphs_tpl 
VALUES(sdo_rdf_triple_s('m_named_graphs:<urn:G1>','<urn:g1_s>','<urn:g1_p>','<urn:g1_
o>'));
SQL> INSERT INTO m_named_graphs_tpl 
VALUES(sdo_rdf_triple_s('m_named_graphs:<urn:G2>','<urn:g2_s>','<urn:g2_p>','<urn:g2_
o>'));
SQL> COMMIT;
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After inserting the rows, go to http://<hostname>:7001/joseki, type the following
SPARQL query, and click Submit Query:

SELECT ?g ?s ?p ?o
WHERE 
  { GRAPH ?g { ?s ?p ?o} }

The result should be an HTML table with four columns and two sets of result bindings.

The http://<hostname>:7001/joseki page also contains a JSON Output option. If
this option is selected (enabled), the SPARQL query response is converted to JSON
format.

• Creating the Required Data Source Using WebLogic Server

• Configuring the Joseki-Based SPARQL Service

• Configuring the Fuseki-Based SPARQL Service
This topic briefly describes how to configure and set up the Fuseki-based
SPARQL service that connects to Oracle Database.

• Terminating Long-Running SPARQL Queries

• N-Triples Encoding for Non-ASCII Characters

6.2.1 Creating the Required Data Source Using WebLogic Server
If you need help creating the required J2EE data source using the WebLogic Server
admin console, you can follow these steps:

1. Login to: http://<hostname>:7001/console

2. In the Domain Structure panel, click Services.

3. Click JDBC

4. Click Data Sources.

5. In the Summary of JDBC Data Sources panel, click New under the Data Sources
table.

6. In the Create a New JDBC Data Source panel, enter or select the following values.

Name: OracleSemDS

JNDI Name: OracleSemDS

Database Type: Oracle

Database Driver: Oracle's Driver (Thin) Versions: 9.0.1,9.2.0,10,11

7. Click Next twice.

8. In the Connection Properties panel, enter the appropriate values for the Database
Name, Host Name, Port, Database User Name (schema that contains semantic
data), Password fields.

9. Click Next.

10. Select (check) the target server or servers to which you want to deploy this
OracleSemDS data source.

11. Click Finish.

You should see a message that all changes have been activated and no restart is
necessary.
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6.2.2 Configuring the Joseki-Based SPARQL Service
By default, the SPARQL Service endpoint assumes that the queries are to be
executed against a semantic model with a pre-set name. This semantic model is
owned by the schema specified in the J2EE data source with a default JNDI name
OracleSemDS. Note that you do not need to create this model explicitly using PL/SQL
or Java; if the model does not exist in the network, it will be automatically created,
along with the necessary application table and index.

Note:

Effective with the support for Apache Jena release in November 2011, the
application table index (<model_name>_idx) definition is changed to
accommodate named graph data (quads).

For existing models created by an older version of the support for Apache
Jena, you can migrate the application table index name and definition by
using the static OracleUtils.migrateApplicationTableIndex(oracle,
graph, dop) method in the oracle.spatial.rdf.client.jena package.
(See the Javadoc for more information.) Note that the new index definition is
critical to the performance of DML operations against the application table.

To change the default JNDI name or to use a default semantic model, you can
configure the SPARQL service by editing the joseki-config.ttl configuration file,
which is embedded under the WEB-INF/classes directory in the prebuilt application
joseki_web_app/joseki.war. (If you used a previous version of the support for
Apache Jena, note that joseki-config.ttl is now placed under the WEB-INF/classes
directory instead of under the top level directory of the web application.)

The supplied joseki-config.ttl file includes a section similar to the following for the
Oracle data set:

#
## Datasets
#
[] ja:loadClass "oracle.spatial.rdf.client.jena.assembler.OracleAssemblerVocab" .
 
oracle:Dataset  rdfs:subClassOf  ja:RDFDataset .
 
<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize     1 ;         ## Number of concurrent connections allowed to 
this dataset.
    oracle:connection
    [ a oracle:OracleConnection ;
      oracle:dataSourceName "OracleSemDS"
    ];
    oracle:defaultModel [ oracle:firstModel "TEST_MODEL" ] .

In this section of the file, you can:

• Modify the joseki:poolSize value, which specifies the number of concurrent
connections allowed to this Oracle data set (<#oracle> rdf:type
oracle:Dataset;), which points to various RDF models in the database.
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• Customize the name of the data source. The default name of OracleSemDS can
be changed depending on your application requirements. The name, however,
must match the data source name specified in Creating the Required Data Source
Using WebLogic Server.

• Modify the name (or the object value of oracle:firstModel predicate) of the
defaultModel, to use a different semantic model for queries. You can also specify
multiple models, and one or more rulebases for this defaultModel.

For example, the following specifies two models (named ABOX and TBOX) and an
OWLPRIME rulebase for the default model. Note that models specified using the
oracle:modelName predicate must exist; they will not be created automatically.

<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize 1 ; ## Number of concurrent connections allowed to this 
dataset.
    oracle:connection
    [ a oracle:OracleConnection ;
      oracle:dataSourceName "OracleSemDS"
    ];
    oracle:defaultModel [ oracle:firstModel "ABOX";
                                      oracle:modelName "TBOX";
                                      oracle:rulebaseName "OWLPRIME" ] .

• Specify named graphs in the dataset. For example, you can create a named graph
called <http://G1> based on two Oracle models and an entailment, as follows.

<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize 1 ; ## Number of concurrent connections allowed to this 
dataset.
      oracle:connection
      [ a oracle:OracleConnection ;
      ];
      oracle:namedModel [ oracle:firstModel "ABOX";
                          oracle:modelName "TBOX";
                          oracle:rulebaseName "OWLPRIME";
                          oracle:namedModelURI <http://G1> ]  .

The object of namedModel can take the same specifications as defaultModel, so
virtual models are supported here as well (see also the next item).

• Use a virtual model for queries by adding oracle:useVM "TRUE", as shown in the
following example. Note that if the specified virtual model does not exist, it will
automatically be created on demand.

<#oracle> rdf:type oracle:Dataset;
    joseki:poolSize 1 ; ## Number of concurrent connections allowed to this 
dataset.
    oracle:connection
    [ a oracle:OracleConnection ;
    ];
    oracle:defaultModel [ oracle:firstModel "ABOX";
                                     oracle:modelName "TBOX";
                                     oracle:rulebaseName "OWLPRIME";
                                     oracle:useVM "TRUE"
    ] .

For more information, see Virtual Models Support.

• Specify a virtual model as the default model to answer SPARQL queries by using
the predicate oracle:virtualModelName, as shown in the following example with a
virtual model named TRIPLE_DATA_VM_0:
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oracle:defaultModel [ oracle:virtualModelName "TRIPLE_DATA_VM_0" ] .

If the underlying data consists of quads, you can use oracle:virtualModelName
with oracle:allGraphs. The presence of oracle:allGraphs causes an
instantiation of DatasetGraphOracleSem objects to answer named graph queries.
An example is as follows:

oracle:allGraphs [ oracle:virtualModelName "QUAD_DATA_VM_0" ] .

Note that when a virtual model name is specified as the default graph, the
endpoint can serve only query requests; SPARQL Update operations are not
supported.

• Set the queryOptions and inferenceMaintenance properties to change the query
behavior and inference update mode. (See the Javadoc for information about
QueryOptions and InferenceMaintenanceMode.)

By default, QueryOptions.ALLOW_QUERY_INVALID_AND_DUP and
InferenceMaintenanceMode.NO_UPDATE are set, for maximum query flexibility and
efficiency.

• Client Identifiers

• Using OLTP Compression for Application Tables and Staging Tables

6.2.2.1 Client Identifiers
For every database connection created or used by the support for Apache Jena, a
client identifier is associated with the connection. The client identifier can be helpful,
especially in a Real Application Cluster (Oracle RAC) environment, for isolating RDF
Semantic Graph support for Apache Jena-related activities from other database
activities when you are doing performance analysis and tuning.

By default, the client identifier assigned is JenaAdapter. However, you can specify a
different value by setting the Java VM clientIdentifier property using the following
format:

-Doracle.spatial.rdf.client.jena.clientIdentifier=<identificationString>

To start the tracing of only RDF Semantic Graph support for Apache Jena-related
activities on the database side, you can use the
DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE procedure. For example:

SQL> EXECUTE DBMS_MONITOR.CLIENT_ID_TRACE_ENABLE('JenaAdapter', true, true);

6.2.2.2 Using OLTP Compression for Application Tables and Staging Tables
By default, the support for Apache Jena creates the application tables and any staging
tables (the latter used for bulk loading, as explained in Bulk Loading Using RDF
Semantic Graph Support for Apache Jena) using basic table compression with the
following syntax:

CREATE TABLE .... (... column definitions ...) ... compress;

However, if you are licensed to use the Oracle Advanced Compression option no the
database, you can set the following JVM property to turn on OLTP compression, which
compresses data during all DML operations against the underlying application tables
and staging tables:
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-Doracle.spatial.rdf.client.jena.advancedCompression="compress for oltp"

6.2.3 Configuring the Fuseki-Based SPARQL Service
This topic briefly describes how to configure and set up the Fuseki-based SPARQL
service that connects to Oracle Database.

The concepts and actions for using the Fuseki-based SPARQL service are similar to
those for the Joseki-based SPARQL service, as explained in Configuring the Joseki-
Based SPARQL Service. The information in that topic about client identifiers and
OLTP compression also applies to the the Fuseki-based SPARQL service, and the
ways to defaultModel and allGraphs are the same.

An example oracle service for the Fuseki-based service is provided in the config-
oracle.ttl file. For detailed information, see "Fuseki: serving RDF data over HTTP"
(http://jena.apache.org/documentation/serving_data/).

To start the Fuseki-based SPARQL service that connects to Oracle Database, enter
the following command:

cd fuseki/        
% ./fuseki-server  --config config-oracle.ttl

When Fuseki is running, you can check the status by going to a URL in the following
format: http://your-hostname:3030/

6.2.4 Terminating Long-Running SPARQL Queries
Because some applications need to be able to terminate long-running SPARQL
queries, an abort framework has been introduced with RDF Semantic Graph support
for Apache Jena and the Joseki setup. Basically, for queries that may take a long time
to run, you must stamp each with a unique query ID (qid) value.

For example, the following SPARQL query selects out the subject of all triples. A query
ID (qid) is set so that this query can be terminated upon request.

PREFIX ORACLE_SEM_FS_NS:  <http://example.com/semtech#qid=8761>
SELECT ?subject WHERE {?subject ?property ?object }

The qid attribute value is of long integer type. You can choose a value for the qid for a
particular query based on your own application needs.

To terminate a SPARQL query that has been submitted with a qid value, applications
can send an abort request to a servlet in the following format and specify a matching
QID value

http://<hostname>:7001/joseki/querymgt?abortqid=8761

6.2.5 N-Triples Encoding for Non-ASCII Characters
For any non-ASCII characters in the lexical representation of RDF resources, \uHHHH
N-Triples encoding is used when the characters are inserted into the Oracle database.
(For details about N-Triples encoding, see http://www.w3.org/TR/rdf-testcases/
#ntrip_grammar.) Encoding of the constant resources in a SPARQL query is handled
in a similar fashion.
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Using \uHHHH N-Triples encoding enables support for international characters, such as
a mix of Norwegian and Swedish characters, in the Oracle database even if a
supported Unicode character set is not being used.

6.3 Setting Up a Dynamic SPARQL Endpoint
You can set up a dynamic SPARQL web service endpoint using Apache Jena Joseki
and Apache Jena Fuseki.

A dynamic SPARQL endpoint extends the SPARQL query and update services to
manipulate graphs or models beyond the ones explicitly specified in the configuration
file. This way, the SPARQL service does not require a restart to read the updated
configurations from the configuration file. The RDF Semantic Graph dynamic SPARQL
endpoint feature works with physical models, virtual models, hybrid graphs, and
RDB2RDF.

To ensure that the dynamic SPARQL endpoint will provide access to authorized
graphs only, blacklist and whitelist entries can be specified in the configuration file of
the SPARQL service. The blacklist and whitelist entries are a set of patterns, defined
using Java regular expressions, that specify the list of model names that are prohibited
or allowed to be used with the dynamic SPARQL endpoint. This way, only the models
with names that match at least one pattern in the whitelist and none in the blacklist will
be accessible through the dynamic SPARQL endpoint.

If both blacklist and whitelist entries are specified, blacklist entries always take
precedence. Specifically:

• If a model name matches any blacklist pattern, then it is not exposed.

• If a model name does not match any blacklist pattern, but it also does not match
any whitelist pattern, then it is not exposed.

• If a model name does not match any blacklist pattern, and it matches one or more
whitelist patterns, then it is exposed.

• Configuring the Dynamic SPARQL Endpoint in the Fuseki Server

• Configuring the Dynamic SPARQL Endpoint in the Joseki Servlet

6.3.1 Configuring the Dynamic SPARQL Endpoint in the Fuseki Server
To configure the dynamic SPARQL endpoint in Fuseki, you must define two new
services in the config-oracle.ttl file: oracle/model/* for SPARQL Query and
oracle/updatemodel/* for SPARQL Update. These services will be used when
accessing a model through the dynamic SPARQL web service endpoint. Additionally
you need to define the blacklist and whitelist patterns that will be matched against the
graph (model) names.

To add these services and the list patterns:

1. Stop the Fuseki server.

2. Insert these additional triples with the model/* and updatemodel/* services to the
config-oracle.ttl configuration file in the services part. The section should look
like the following:

     <#service1> rdf:type fuseki:Service ;
         ...
        # Dynamic SPARQL Endpoint Query service
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        fuseki:serviceQuery             "model/*" ;
         ...
        # Dynamic SPARQL Endpoint Update service
        fuseki:serviceUpdate            "updatemodel/*" ; 
         ...
        fuseki:dataset           <#oracle> ;
         .

3. Define the blacklist and whitelist patterns that will be matched against the model
names. To configure these patterns, insert triples with the oracle:blackListRegex
and oracle:whiteListRegex predicates in the config-oracle.ttl file. The
following snippet shows some example patterns that will only allow access to
models which contain “nice”, “ok” or “showme” and do not contain “forbidden” and
“secret” in their names to be exposed through the dynamic SPARQL endpoint.

     <#oracle>
         oracle:blackListRegex ".*forbidden.*";
         oracle:blackListRegex ".*secret.*";
         oracle:whiteListRegex ".*ok.*" ;
         oracle:whiteListRegex ".*nice.*" ;
         oracle:whiteListRegex ".*showme.*" .

4. Restart the Fuseki server.

With this additional configuration, you can now access a model mynicegraph even if it
is not defined explicitly in the Dataset section of the configuration file, as long as the
whitelist and blacklist patterns allow it, with a URL like the following for SPARQL
Query:

http://<hostname:port>/oracle/model/mynicegraph

For SPARQL Update, use a URL like the following:

http://<hostname:port>/oracle/updatemodel/mynicegraph

6.3.2 Configuring the Dynamic SPARQL Endpoint in the Joseki Servlet
To configure the Dynamic SPARQL Endpoint in Joseki, you must define two new
services in the joseki-config.ttl file: oracle/model/* for SPARQL Query and
oracle/updatemodel/* for SPARQL Update. These services will be used when
accessing a model through the dynamic SPARQL web service endpoint. Additionally
you need to define the blacklist and whitelist patterns that will be matched against the
graph (model) names

To add these services and the list patterns:

1. Stop the web server that runs the Joseki service.

2. From the joseki.war file, extract the extract the joseki-config.ttl file to a
temporary location. For example:

cd /tmp/jena_adapter/war
cp <your_directory>/joseki.war  /tmp/jena_adapter/war/
jar -xf joseki.war WEB-INF/classes/joseki-config.ttl
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3. To configure the Dynamic SPARQL Query service in Joseki, include a set of triples
with subject <#serviceDynamicQuery> and <#serviceDynamicUpdate> in the
configuration joseki-config.ttl file, similar to the services that are already defined.

These triples will define the oracle/model/* and oracle/updatemodel/* services.
The predicate joseki:serviceRef denotes that the oracle/model/* SPARQL service
endpoint will serve queries and the oracle/updatemodel/* SPARQL service
endpoint will serve updates using any model name in URL encoding. The Dynamic
SPARQL Query service section should look like the following:

     # Dynamic SPARQL Query Service
     <#serviceDynamicQuery>
       rdf:type            joseki:Service ;
       rdfs:label          "model SPARQL with Oracle Semantic Data Management" ;
       joseki:serviceRef   "oracle/model/*" ;   # web.xml must route this name 
to Joseki
       # dataset part
       joseki:dataset      <#oracle> ;
       # Service part.
       # This processor will not allow either the protocol,
       # nor the query, to specify the dataset.
       Joseki:processor    joseki:ProcessorSPARQL_FixedDS ;
       .

The Dynamic SPARQL Update section should look like the following:

     # Dynamic SPARQL Update Service
     <#serviceDynamicUpdate>
       rdf:type            joseki:Service ;
       rdfs:label          "SPARQL/Update" ;
       joseki:serviceRef   "oracle/updatemodel/*" ;
       # dataset part
       joseki:dataset      <#oracle>;
       # Service part.
       # This processor will not allow either the protocol,
       # nor the query, to specify the dataset.
       joseki:processor    joseki:ProcessorSPARQLUpdate
       .

4. Define the blacklist and whitelist patterns that will be matched against the model
names. To configure these patterns, insert triples with the oracle:blackListRegex
and oracle:whiteListRegex predicates in the joseki-config.ttl file.

The following snippet shows some example patterns that allow access only to the
models containing the word “cool” or “good” and not containing the word “banned”
or “test” in their names to be exposed through the dynamic SPARQL endpoint. If a
user tries to access any other model through the Dynamic Query or Update
services, an error message saying the model is not available will be returned.

     <#oracle>
           oracle:blackListRegex ".*banned.*";
           oracle:blackListRegex ".*test.*";
           oracle:whiteListRegex ".*cool.*" ;
           oracle:whiteListRegex ".*good.*" .

5. Update the .ttl configuration file in the war file. For example:

jar -uf joseki.war WEB-INF/classes/joseki-config.ttl
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6. From the joseki.war file, extract the web descriptor file to a temporary location:.
For example:

cd /tmp/jena_adapter/war/
jar -xf joseki.war WEB-INF/web.xml

7. Map the model/* and updatemodel/* URL routes in the web descriptor to the
Joseki servlet. Insert the new servlet mappings in the web.xml file. The servlet
mapping sections should look like the following:

       ...
       <servlet>
         <servlet-name>SPARQL service processor</servlet-name>
         <servlet-class>org.joseki.http.Servlet</servlet-class>
         <init-param>
           <param-name>org.joseki.rdfserver.config</param-name>
           <param-value>joseki-oracle-config.ttl</param-value>
         </init-param>
       </servlet>
       ...
       <servlet>
         <servlet-name>SPARQL/Update service processor</servlet-name>
         <servlet-class>org.joseki.http.ServletUpdate</servlet-class>
         <init-param>
           <param-name>org.joseki.rdfserver.config</param-name>
           <param-value>joseki-oracle-config.ttl</param-value>
         </init-param>
       </servlet>
       ...
       <servlet-mapping>
         <servlet-name>SPARQL service processor</servlet-name>
         <url-pattern>/oracle/model/*</url-pattern>
       </servlet-mapping>
       ...
       <servlet-mapping>
         <servlet-name>SPARQL/Update service processor</servlet-name>
         <url-pattern>/oracle/updatemodel/*</url-pattern>
       </servlet-mapping>
       ...

8. Update the web descriptor file in the war file. For example:

jar -uf joseki.war web.xml

9. Redeploy the joseki.war file into the same J2EE container.

With this additional configuration, you can now access a model mycoolgraph even if it
is not defined explicitly in the Dataset section of the configuration file, as long as the
whitelist and blacklist patterns allow it, with a URL like the following for SPARQL
Query:

http://<hostname:port>/joseki/oracle/model/mycoolgraph

For SPARQL Update, use a URL like the following:

http://<hostname:port>/joseki/oracle/updatemodel/mycoolgraph
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6.4 Adding Cross-Site Request Forgery (CSRF) Protection
to the Joseki Servlet

You can add cross-site request forgery (CSRF) protection to the Joseki servlet.

The cross-site request forgery (CSRF, or sometimes called XSRF) attack is a type of
exploit in which unauthorized and unintentional requests are sent to a website. These
unauthorized requests come from an already authenticated user or a user that the
website trusts, so there is no way to distinguish them from a valid request. This type of
attack is also known as the one-click attack or session riding, and it can happen even
if the web application is using SSL encryption (HTTPS).

Oracle Spatial and Graph RDF Semantic Graph lets you enable protection against
CSRF attacks to the Joseki servlet by implementing thedouble submit cookie pattern.
This security pattern ensures that an update request will only be accepted if the
request includes a security token as a parameter and if this security token matches the
one specified in a cookie that is used and set by the application. For backward
compatibility, CSRF protection is not enabled by default.

An application that implements the double submit cookie pattern must generate and
set a security token as the value in a cookie. In the RDF Semantic Graph
implementation, this task is executed by the servlet
org.joseki.http.CookieTokenSetter. Likewise, clients that submit requests to an
application protected against CSRF attacks must retrieve this value from the cookie
and set it as an additional parameter in their requests. The RDF Semantic Graph
feature uses _RDF_AUTH_TOKEN_HIDDEN as a special parameter to send valid requests
to the server by using JavaScript in the update.html file.

• Configuring the Joseki Server to Add Cross-Site Request Forgery Protection

• Configuring the Joseki Client to Add Cross-Site Request Forgery Protection

6.4.1 Configuring the Joseki Server to Add Cross-Site Request
Forgery Protection

To enable cross-site request forgery (CSRF) protection in the Joseki service:

1. Stop the web server that runs the Joseki service.

2. From the joseki.war file, extract the extract the web descriptor file to a temporary
location. For example:

cd /tmp/jena_adapter/war
jar -xf joseki.war WEB-INF/web.xml

3. Specify the servlet org.joseki.http.CookieTokenSetter in the web descriptor.
This servlet will generate secure random tokens that will protect the SPARQL
Endpoint against CSRF attacks. The web.xml file should include a code snippet as
the following:

 <!-- RDF AUTH TOKEN COOKIE -->
  <servlet>
    <servlet-name>OracleRdfCookieTokenSetter</servlet-name>
    <servlet-class>org.joseki.http.CookieTokenSetter</servlet-class>
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  </servlet>
  ...
  <servlet-mapping>
    <servlet-name>OracleRdfCookieTokenSetter</servlet-name>
    <url-pattern>/oracle/getCookie</url-pattern>
  </servlet-mapping>

4. Update the web descriptor file in the war file. For example:

jar -uf joseki.war WEB-INF/web.xml

5. Redeploy the joseki.war into the same J2EE container.

6. Enable the Java property
oracle.spatial.rdf.client.jena.enableCsrfProtection before running the
Joseki SPARQL service:

-Doracle.spatial.rdf.client.jena.enableCsrfProtection=true

7. Restart your server again. The Joseki service will now be protected against CSRF
attacks.

You can now access a URL in the following format in the Joseki servlet with your
preferred client application, and the cookie with the security token will be automatically
set:

http://hostname:port/joseki/oracle/getCookie

Configuring the Joseki Client to Add Cross-Site Request Forgery Protection describes
how to configure a client to retrieve and use this token.

6.4.2 Configuring the Joseki Client to Add Cross-Site Request Forgery
Protection

To be able to sent valid requests to a CSRF-protected Joseki service, you also need
some extra configuration in your client application.

This topic describes one sample flow to configure and use a client application to send
valid requests to the protected Joseki server. You can use a different way, as long as
the security token is sent in the _RDF_AUTH_TOKEN_HIDDEN parameter and in the
cookie. Note that in this sample flow, the client application is actually an HTML page
that provides a simple SPARQL update interface. This client application is also
bundled in the same joseki.war file.

1. Stop the web server that runs Joseki.

2. From the joseki.war file, extract the extract the update.html file to a temporary
location. For example:

cd /tmp/jena_adapter/war
jar -xf joseki.war update.html

3. Edit the update.html file, remove the submit input, and replace it with a button
input that calls a custom JavaScript function. The file should include a code
snippet like the following:

   <form id=" formSPARQLUpdate" action="update/service" method="post">
     <p>Type in your SPARQL/Update request</p>
     <p> 
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     <textarea style="background-color: #F0F0F0;" name="request" cols="70" 
rows="20"></textarea>
     <br/>
     <input type="hidden" name="_RDF_AUTH_TOKEN_HIDDEN" 
id="_RDF_AUTH_TOKEN_HIDDEN" value=""/>
     <!-- <input type="submit" value="Perform SPARQL Update" /> -->
     <input type="button" value="Perform SPARQL Update" onclick=" 
postSPARQLUpdate()">
     </p>
   </form>

4. Add a script to the update.html file with a custom function that will submit POST
requests to the Joseki servlet. This function must read the security token from the
cookie value and set it as the _RDF_AUTH_TOKEN_HIDDEN parameter before sending
the request. The script should include a code snippet like the following:

  <script type="text/javascript">
    function postSPARQLUpdate() {
      var form = document.getElementById("formSPARQLUpdate");
      var token = getCookie('RDF_AUTH_TOKEN_COOKIE');
      document.getElementById('_RDF_AUTH_TOKEN_HIDDEN').value = token; 
      form.submit();
    }

    function getCookie(cname) {
      var name = cname + "=";
      var ca = document.cookie.split(';');
      for(var i=0; i < ca.length; i++) {
        var c = ca[i];
        while (c.charAt(0)==' ')
          c = c.substring(1);
        if (c.indexOf(name) == 0)
          return c.substring(name.length,c.length);
      }
      return "";
    }
  </script>

5. Update the update.html file in the war file. For example:

jar -uf joseki.war update.html

6. Redeploy the joseki.war file into the selected J2EE container.

7. Restart the web server.

With these modifications, the simple SPARQL Update client application in Joseki will
be able to properly use the CSRF-protected Joseki service at the following website.
(Note that you may implement and use a different client if you prefer.)

http://hostname:port/joseki/update.html

6.5 Setting Up the RDF Semantic Graph Environment
To use the support for Apache Jena to perform queries, you can connect as any user
(with suitable privileges) and use any models in the semantic network.
If your RDF Semantic Graph environment already meets the requirements, you can go
directly to compiling and running Java code that uses the support for Apache Jena. If
your RDF Semantic Graph environment is not yet set up to be able to use the support
for Apache Jena, you can perform actions similar to the following example steps:
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1. Connect as SYS with the SYSDBA role:

sqlplus sys/<password-for-sys> as sysdba

2. Create a tablespace for the system tables. For example:

CREATE TABLESPACE rdf_users datafile 'rdf_users01.dbf' 
    size 128M reuse autoextend on next 64M 
    maxsize unlimited segment space management auto;

3. Create the semantic network. For example:

EXECUTE sem_apis.create_sem_network('RDF_USERS');

4. Create a database user (for connecting to the database to use the semantic
network and the support for Apache Jena). For example:

CREATE USER rdfusr IDENTIFIED BY <password-for-udfusr>
                   DEFAULT TABLESPACE rdf_users;

5. Grant the necessary privileges to this database user. For example:

GRANT connect, resource TO rdfusr;

6. To use the support for Apache Jena with your own semantic data, perform the
appropriate steps to store data, create a model, and create database indexes, as
explained in Quick Start for Using Semantic Data. Then perform queries by
compiling and running Java code; see Example Queries Using RDF Semantic
Graph Support for Apache Jena for information about example queries.

To use the support for Apache Jena with supplied example data, see Example
Queries Using RDF Semantic Graph Support for Apache Jena.

6.6 SEM_MATCH and RDF Semantic Graph Support for
Apache Jena Queries Compared

There are two ways to query semantic data stored in Oracle Database: SEM_MATCH-
based SQL statements and SPARQL queries through the support for Apache Jena.

Queries using each approach are similar in appearance, but there are important
behavioral differences. To ensure consistent application behavior, you must
understand the differences and use care when dealing with query results coming from
SEM_MATCH queries and SPARQL queries.

The following simple examples show the two approaches.

Query 1 (SEM_MATCH-based)

select s, p, o
    from table(sem_match('{?s ?p ?o}', sem_models('Test_Model'), ....))

Query 2 (SPARQL query through Support for Apache Jena)

select ?s ?p ?o
where {?s ?p ?o}

These two queries perform the same kind of functions; however, there are some
important differences. Query 1 (SEM_MATCH-based):

• Reads all triples out of Test_Model.
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• Does not differentiate among URI, bNode, plain literals, and typed literals, and it
does not handle long literals.

• Does not unescape certain characters (such as '\n').

Query 2 (SPARQL query executed through the support for Apache Jena) also reads all
triples out of Test_Model (assume it executed a call to ModelOracleSem referring to the
same underlying Test_Model). However, Query 2:

• Reads out additional columns (as opposed to just the s, p, and o columns with the
SEM_MATCH table function), to differentiate URI, bNodes, plain literals, typed
literals, and long literals. This is to ensure proper creation of Jena Node objects.

• Unescapes those characters that are escaped when stored in Oracle Database

Blank node handling is another difference between the two approaches:

• In a SEM_MATCH-based query, blank nodes are always treated as constants.

• In a SPARQL query, a blank node that is not wrapped inside < and > is treated as
a variable when the query is executed through the support for Apache Jena. This
matches the SPARQL standard semantics. However, a blank node that is wrapped
inside < and > is treated as a constant when the query is executed, and the
support for Apache Jena adds a proper prefix to the blank node label as required
by the underlying data modeling.

The maximum length for the name of a semantic model created using the support for
Apache Jena API is 22 characters.

6.7 Retrieving User-Friendly Java Objects from
SEM_MATCH or SQL-Based Query Results

You can query a semantic graph using any of the following approaches.

• SPARQL (through Java methods or web service end point)

• SEM_MATCH (table function that has SPARQL queries embedded)

• SQL (by querying the MDSYS.RDFM_<model> view and joining with
MDSYS.RDF_VALUE$ and/or other tables)

For Java developers, the results from the first approach are easy to consume. The
results from the second and third approaches, however, can be difficult for Java
developers because you must parse various columns to get properly typed Java
objects that are mapped from typed RDF literals. RDF Semantic Graph support for
Apache Jena supports several methods and helper functions to simplify the task of
getting properly typed Java objects from a JDBC result set. These methods and helper
functions are shown in the following examples:

• Example 6-1

• Example 6-2

• Example 6-3

These examples use a test table TGRAPH_TPL (and model TGRAPH based on it),
into which a set of typed literals is added, as in the following code:

create table tgraph_tpl(triple sdo_rdf_triple_s);
exec sem_apis.create_sem_model('tgraph','tgraph_tpl','triple');
truncate table tgraph_tpl;
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-- Add some triples
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s1>','<urn:p1>', '<urn:o1>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s2>','<urn:p2>', '"hello world"'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s3>','<urn:p3>', '"hello world"@en'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s4>','<urn:p4>', '" o1o "^^<http://
www.w3.org/2001/XMLSchema#string>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s4>','<urn:p4>', '"xyz"^^<http://
mytype>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s5>','<urn:p5>', '"123"^^<http://
www.w3.org/2001/XMLSchema#integer>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s5>','<urn:p5>', '"123.456"^^<http://
www.w3.org/2001/XMLSchema#double>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph','<urn:s6>','<urn:p6>', '_:bn1'));
 
-- Add some quads
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g1>','<urn:s1>','<urn:p1>', '<urn:o1>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s1>','<urn:p1>', '<urn:o1>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s2>','<urn:p2>', '"hello 
world"'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s3>','<urn:p3>', '"hello 
world"@en'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s4>','<urn:p4>', '" o1o 
"^^<http://www.w3.org/2001/XMLSchema#string>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s4>','<urn:p4>', 
'"xyz"^^<http://mytype>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s5>','<urn:p5>', 
'"123"^^<http://www.w3.org/2001/XMLSchema#integer>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s5>','<urn:p5>', 
'"123.456"^^<http://www.w3.org/2001/XMLSchema#double>'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s6>','<urn:p6>', '_:bn1'));
insert into tgraph_tpl values(sdo_rdf_triple_s('tgraph:<urn:g2>','<urn:s7>','<urn:p7>', 
'"2002-10-10T12:00:00-05:00"^^<http://www.w3.org/2001/XMLSchema#dateTime>'));

Example 6-1    SQL-Based Graph Query

Example 6-1 runs a pure SQL-based graph query and constructs Jena objects.

iTimeout = 0; // no time out
iDOP = 1;     // degree of parallelism
iStartColPos = 2;
queryString = "select 'hello'||rownum as extra, 
o.VALUE_TYPE,o.LITERAL_TYPE,o.LANGUAGE_TYPE,o.LONG_VALUE,o.VALUE_NAME "
            + "  from mdsys.rdfm_tgraph g, mdsys.rdf_value$ o where 
g.canon_end_node_id = o.value_id";
 
rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues);  
 
while (rs.next()) {
  node = OracleSemIterator.retrieveNodeFromRS(rs, iStartColPos, 
OracleSemQueryPlan.CONST_FIVE_COL, translator);
  System.out.println("Result " + node.getClass().getName() + " = " + node + " " + 
rs.getString(1));
}

Example 6-1 might generate the following output:

Result com.hp.hpl.jena.graph.Node_URI = urn:o1 hello1
Result com.hp.hpl.jena.graph.Node_URI = urn:o1 hello2
Result com.hp.hpl.jena.graph.Node_Literal = "hello world" hello3
Result com.hp.hpl.jena.graph.Node_Literal = "hello world"@en hello4
Result com.hp.hpl.jena.graph.Node_Literal = " o1o " hello5
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Result com.hp.hpl.jena.graph.Node_Literal = "xyz" hello6
Result com.hp.hpl.jena.graph.Node_Literal = "123"^^http://www.w3.org/2001/
XMLSchema#decimal hello7
Result com.hp.hpl.jena.graph.Node_Literal = "1.23456E2"^^http://www.w3.org/2001/
XMLSchema#double hello8
Result com.hp.hpl.jena.graph.Node_Blank = m8g3C75726E3A67323Egmbn1 hello9
Result com.hp.hpl.jena.graph.Node_Literal = "2002-10-10T17:00:00Z"^^http://
www.w3.org/2001/XMLSchema#dateTime hello10
Result com.hp.hpl.jena.graph.Node_Literal = "1.23456E2"^^http://www.w3.org/2001/
XMLSchema#double hello11
Result com.hp.hpl.jena.graph.Node_URI = urn:o1 hello12
Result com.hp.hpl.jena.graph.Node_Literal = "hello world" hello13
Result com.hp.hpl.jena.graph.Node_Literal = "hello world"@en hello14
Result com.hp.hpl.jena.graph.Node_Literal = " o1o " hello15
Result com.hp.hpl.jena.graph.Node_Literal = "xyz" hello16
Result com.hp.hpl.jena.graph.Node_Literal = "123"^^http://www.w3.org/2001/
XMLSchema#decimal hello17
Result com.hp.hpl.jena.graph.Node_Blank = m8mbn1 hello18

Example 6-2    Hybrid Query Mixing SEM_MATCH with Regular SQL Constructs

Example 6-2 uses the OracleSemIterator.retrieveNodeFromRS API to construct a
Jena object by reading the five consecutive columns (in the exact order of value type,
literal type, language type, long value, and value name), and by performing the
necessary unescaping and object instantiations. This example bypasses
SEM_MATCH and directly joins the graph view with MDSYS.RDF_VALUE$.

iStartColPos = 1;
queryString = "select  g$RDFVTYP, g, count(1) as cnt " 
            + "  from table(sem_match('{ GRAPH ?g { ?s ?p ?
o . } }',sem_models('tgraph'),null,null,null,null,null)) "
            + " group by g$RDFVTYP, g";
 
rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues);  
while (rs.next()) {
  node = OracleSemIterator.retrieveNodeFromRS(rs, iStartColPos, 
OracleSemQueryPlan.CONST_TWO_COL, translator);
  System.out.println("Result " + node.getClass().getName() + " = " + node + " " + 
rs.getInt(iStartColPos + 2));
}

Example 6-2 might generate the following output:

Result com.hp.hpl.jena.graph.Node_URI = urn:g2 9
Result com.hp.hpl.jena.graph.Node_URI = urn:g1 1

In Example 6-2:

• The helper function executeQuery in the Oracle class is used to run the SQL
statement, and the OracleSemIterator.retrieveNodeFromRS API (also used in 
Example 6-1) is used to construct Jena objects.

• Only two columns are used in the output: value type (g$RDFVTYP) and value
name (g), it is known that this g variable can never be a literal RDF resource.

• The column order is significant. For a two-column variable, the first column must
be the value type and the second column must be the value name.

Example 6-3    SEM_MATCH Query

Example 6-3 runs a SEM_MATCH query and constructs an iterator (instance of
OracleSemIterator) that returns a list of Jena objects.
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queryString = "select  g$RDFVTYP, g, s$RDFVTYP, s, p$RDFVTYP, p, 
o$RDFVTYP,o$RDFLTYP,o$RDFLANG,o$RDFCLOB,o "
            + "  from table(sem_match('{ GRAPH ?g { ?s ?p ?
o . } }',sem_models('tgraph'),null,null,null,null,null))";
 
guide = new ArrayList<String>();
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_TWO_COL);
guide.add(OracleSemQueryPlan.CONST_FIVE_COL);
 
rs = oracle.executeQuery(queryString, iTimeout, iDOP, bindValues); 
osi = new OracleSemIterator(rs); 
osi.setGuide(guide); 
osi.setTranslator(translator);
 
while (osi.hasNext()) {
  result = osi.next();
  System.out.println("Result " + result.getClass().getName() + " = " + result);
}

Example 6-3 might generate the following output:

Result com.hp.hpl.jena.graph.query.Domain = [urn:g1, urn:s1, urn:p1, urn:o1]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s1, urn:p1, urn:o1]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s2, urn:p2, "hello world"]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s3, urn:p3, "hello 
world"@en]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s4, urn:p4, " o1o "]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s4, urn:p4, "xyz"]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s5, urn:p5, "123"^^http://
www.w3.org/2001/XMLSchema#decimal]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s5, urn:p5, 
"1.23456E2"^^http://www.w3.org/2001/XMLSchema#double]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s6, urn:p6, 
m8g3C75726E3A67323Egmbn1]
Result com.hp.hpl.jena.graph.query.Domain = [urn:g2, urn:s7, urn:p7, 
"2002-10-10T17:00:00Z"^^http://www.w3.org/2001/XMLSchema#dateTime]

In Example 6-3:

• OracleSemIterator takes in a JDBC result set. OracleSemIterator needs
guidance on parsing all the columns that represent the bind values of SPARQL
variables. A guide is simply a list of string values. Two constants have been
defined to differentiate a 2-column variable (for subject or predicate position) from
a 5-column variable (for object position). A translator is also required.

• Four variables are used in the output. The first three variables are not RDF literal
resources, so CONST_TWO_COL is used as their guide. The last variable can be
an RDF literal resource, so CONST_FIVE_COL is used as its guide.

• The column order is significant, and it must be as shown in the example.

6.8 Optimized Handling of SPARQL Queries
This section describes some performance-related features of the support for Apache
Jena that can enhance SPARQL query processing. These features are performed
automatically by default.
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It assumes that you are familiar with SPARQL, including the CONSTRUCT feature and
property paths.

• Compilation of SPARQL Queries to a Single SEM_MATCH Call

• Optimized Handling of Property Paths

6.8.1 Compilation of SPARQL Queries to a Single SEM_MATCH Call
SPARQL queries involving DISTINCT, OPTIONAL, FILTER, UNION, ORDER BY, and
LIMIT are converted to a single Oracle SEM_MATCH table function. If a query cannot
be converted directly to SEM_MATCH because it uses SPARQL features not
supported by SEM_MATCH (for example, CONSTRUCT), the support for Apache
Jena employs a hybrid approach and tries to execute the largest portion of the query
using a single SEM_MATCH function while executing the rest using the Jena ARQ
query engine.

For example, the following SPARQL query is directly translated to a single
SEM_MATCH table function:

PREFIX dc:  <http://purl.org/dc/elements/1.1/> 
PREFIX rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/> 
SELECT ?person ?name 
  WHERE {
                 {?alice foaf:knows ?person . }
               UNION { 
                 ?person ?p ?name. OPTIONAL { ?person ?x ?name1 } 
                     }
        }

However, the following example query is not directly translatable to a single
SEM_MATCH table function because of the CONSTRUCT keyword:

PREFIX vcard: <http://www.w3.org/2001/vcard-rdf/3.0#> 
CONSTRUCT  { <http://example.org/person#Alice> vcard:FN ?obj } 
  WHERE  { { ?x <http://pred/a> ?obj.}
         UNION
         { ?x <http://pred/b> ?obj.}  }

In this case, the support for Apache Jena converts the inner UNION query into a single
SEM_MATCH table function, and then passes on the result set to the Jena ARQ query
engine for further evaluation.

6.8.2 Optimized Handling of Property Paths
As defined in Jena, a property path is a possible route through an RDF graph between
two graph nodes. Property paths are an extension of SPARQL and are more
expressive than basic graph pattern queries, because regular expressions can be
used over properties for pattern matching RDF graphs. For more information about
property paths, see the documentation for the Jena ARQ query engine.

RDF Semantic Graph support for Apache Jena supports all Jena property path types
through the integration with the Jena ARQ query engine, but it converts some common
path types directly to native SQL hierarchical queries (not based on SEM_MATCH) to
improve performance. The following types of property paths are directly converted to
SQL by the support for Apache Jena when dealing with triple data:
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• Predicate alternatives: (p1 | p2 | … | pn) where pi is a property URI

• Predicate sequences: (p1 / p2 / … / pn) where pi is a property URI

• Reverse paths : ( ^ p ) where p is a predicate URI

• Complex paths: p+, p*, p{0, n} where p could be an alternative, sequence, reverse
path, or property URI

Path expressions that cannot be captured in this grammar are not translated directly to
SQL by the support for Apache Jena, and they are answered using the Jena query
engine.

The following example contains a code snippet using a property path expression with
path sequences:

String m = "PROP_PATH";
 
ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, m);
 
GraphOracleSem graph = new GraphOracleSem(oracle, m);    
    
// populate the RDF Graph
    graph.add(Triple.create(Node.createURI("http://a"),
    Node.createURI("http://p1"),
    Node.createURI("http://b")));
 
graph.add(Triple.create(Node.createURI("http://b"),
 Node.createURI("http://p2"),
 Node.createURI("http://c")));
 
graph.add(Triple.create(Node.createURI("http://c"),
 Node.createURI("http://p5"),
 Node.createURI("http://d")));
 
String query =
" SELECT ?s  " +
" WHERE {?s (<http://p1>/<http://p2>/<http://p5>)+ <http://d>.}";
   
QueryExecution qexec = 
      QueryExecutionFactory.create(QueryFactory.create(query, 
 Syntax.syntaxARQ), model);
 
try {
  ResultSet results = qexec.execSelect();
  ResultSetFormatter.out(System.out, results);
}
finally {
  if (qexec != null)
    qexec.close();
}
     
OracleUtils.dropSemanticModel(oracle, m);
model.close();

6.9 Additions to the SPARQL Syntax to Support Other
Features

RDF Semantic Graph support for Apache Jena allows you to pass in hints and
additional query options. It implements these capabilities by overloading the SPARQL
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namespace prefix syntax by using Oracle-specific namespaces that contain query
options.

The namespaces are in the form PREFIX ORACLE_SEM_xx_NS, where xx indicates the
type of feature (such as HT for hint or AP for additional predicate)

• SQL Hints

• Using Bind Variables in SPARQL Queries

• Additional WHERE Clause Predicates

• Additional Query Options

• Midtier Resource Caching

6.9.1 SQL Hints
SQL hints can be passed to a SEM_MATCH query including a line in the following
form:

PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#hint>

Where hint can be any hint supported by SEM_MATCH. For example:

PREFIX ORACLE_SEM_HT_NS: <http://oracle.com/semtech#leading(t0,t1)> 
SELECT ?book ?title ?isbn     
WHERE { ?book <http://title> ?title. ?book <http://ISBN> ?isbn }

In this example, t0,t1 refers to the first and second patterns in the query.

Note the slight difference in specifying hints when compared to SEM_MATCH. Due to
restrictions of namespace value syntax, a comma (,) must be used to separate t0 and
t1 (or other hint components) instead of a space.

For more information about using SQL hints, see Using the SEM_MATCH Table
Function to Query Semantic Data, specifically the material about the HINT0 keyword in
the options attribute.

6.9.2 Using Bind Variables in SPARQL Queries
In Oracle Database, using bind variables can reduce query parsing time and increase
query efficiency and concurrency. Bind variable support in SPARQL queries is
provided through namespace pragma specifications similar to ORACLE_SEM_FS_NS.

Consider a case where an application runs two SPARQL queries, where the second
(Query 2) depends on the partial or complete results of the first (Query 1). Some
approaches that do not involve bind variables include:

• Iterating through results of Query 1 and generating a set of queries. (However, this
approach requires as many queries as the number of results of Query 1.)

• Constructing a SPARQL filter expression based on results of Query 1.

• Treating Query 1 as a subquery.

Another approach in this case is to use bind variables, as in the following sample
scenario:

Query 1:
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  SELECT ?x
    WHERE { ... <some complex query> ... };
 
 
Query 2:
 
  SELECT ?subject ?x
    WHERE {?subject <urn:related> ?x .};

The following example shows Query 2 with the syntax for using bind variables with the
support for Apache Jena:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#no_fall_back,s2s>
PREFIX ORACLE_SEM_UEAP_NS: <http://oracle.com/semtech#x$RDFVID%20in(?,?,?)>
PREFIX ORACLE_SEM_UEPJ_NS: <http://oracle.com/semtech#x$RDFVID>
PREFIX ORACLE_SEM_UEBV_NS: <http://oracle.com/semtech#1,2,3>
SELECT ?subject ?x
WHERE {
  ?subject <urn:related>  ?x
};

This syntax includes using the following namespaces:

• ORACLE_SEM_UEAP_NS is like ORACLE_SEM_AP_NS, but the value portion of
ORACLE_SEM_UEAP_NS is URL Encoded. Before the value portion is used, it
must be URL decoded, and then it will be treated as an additional predicate to the
SPARQL query.

In this example, after URL decoding, the value portion (following the # character)
of this ORACLE_SEM_UEAP_NS prefix becomes "x$RDFVID in(?,?,?)". The
three question marks imply a binding to three values coming from Query 1.

• ORACLE_SEM_UEPJ_NS specifies the additional projections involved. In this
case, because ORACLE_SEM_UEAP_NS references the x$RDFVID column,
which does not appear in the SELECT clause of the query, it must be specified.
Multiple projections are separated by commas.

• ORACLE_SEM_UEBV_NS specifies the list of bind values that are URL encoded
first, and then concatenated and delimited by commas.

Conceptually, the preceding example query is equivalent to the following non-SPARQL
syntax query, in which 1, 2, and 3 are treated as bind values:

SELECT ?subject ?x
  WHERE {
    ?subject <urn:related>  ?x
  }
  AND ?x$RDFVID in (1,2,3);

In the preceding SPARQL example of Query 2, the three integers 1, 2, and 3 come
from Query 1. You can use the oext:build-uri-for-id function to generate such
internal integer IDs for RDF resources. The following example gets the internal integer
IDs from Query 1:

PREFIX oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT ?x  (oext:build-uri-for-id(?x) as ?xid)
WHERE { ... <some complex query> ... };

The values of ?xid have the form of <rdfvid:integer-value>. The application can strip
out the angle brackets and the "rdfvid:" strings to get the integer values and pass them
to Query 2.
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Consider another case, with a single query structure but potentially many different
constants. For example, the following SPARQL query finds the hobby for each user
who has a hobby and who logs in to an application. Obviously, different users will
provide different <uri> values to this SPARQL query, because users of the application
are represented using different URIs.

SELECT ?hobby
  WHERE { <uri> <urn:hasHobby> ?hobby };

One approach, which would not use bind variables, is to generate a different SPARQL
query for each different <uri> value. For example, user Jane Doe might trigger the
execution of the following SPARQL query:

SELECT ?hobby WHERE {
<http://www.example.com/Jane_Doe> <urn:hasHobby> ?hobby };

However, another approach is to use bind variables, as in the following example
specifying user Jane Doe:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#no_fall_back,s2s>
PREFIX ORACLE_SEM_UEAP_NS: <http://oracle.com/semtech#subject$RDFVID
%20in(ORACLE_ORARDF_RES2VID(?))>
PREFIX ORACLE_SEM_UEPJ_NS: <http://oracle.com/semtech#subject$RDFVID>
PREFIX ORACLE_SEM_UEBV_NS: <http://oracle.com/semtech#http%3a%2f%2fwww.example.com
%2fJohn_Doe>
SELECT ?subject ?hobby
  WHERE {
    ?subject <urn:hasHobby>  ?hobby
  };

Conceptually, the preceding example query is equivalent to the following non-SPARQL
syntax query, in which http://www.example.com/Jane_Doe is treated as a bind
variable:

SELECT ?subject ?hobby
WHERE {
  ?subject <urn:hasHobby>  ?hobby
}
AND ?subject$RDFVID in (ORACLE_ORARDF_RES2VID('http://www.example.com/Jane_Doe'));

In this example, ORACLE_ORARDF_RES2VID is a function that translates URIs and
literals into their internal integer ID representation. This function is created
automatically when the support for Apache Jena is used to connect to an Oracle
database.

6.9.3 Additional WHERE Clause Predicates
The SEM_MATCH filter attribute can specify additional selection criteria as a string
in the form of a WHERE clause without the WHERE keyword. Additional WHERE
clause predicates can be passed to a SEM_MATCH query including a line in the
following form:

PREFIX ORACLE_SEM_AP_NS: <http://oracle.com/semtech#pred>

Where pred reflects the WHERE clause content to be appended to the query. For
example:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX ORACLE_SEM_AP_NS:<http://www.oracle.com/semtech#label$RDFLANG='fr'>  
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SELECT DISTINCT ?inst ?label
  WHERE { ?inst a <http://someCLass>. ?inst rdfs:label ?label . }
  ORDER BY (?label) LIMIT 20

In this example, a restriction is added to the query that the language type of the label
variable must be 'fr'.

6.9.4 Additional Query Options
Additional query options can be passed to a SEM_MATCH query including a line in the
following form:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#option>

Where option reflects a query option (or multiple query options delimited by commas)
to be appended to the query. For example:

PREFIX ORACLE_SEM_FS_NS:   
<http://oracle.com/semtech#timeout=3,dop=4,INF_ONLY,ORDERED,ALLOW_DUP=T>
SELECT * WHERE {?subject ?property ?object }

The following query options are supported:

• ALLOW_DUP=t chooses a faster way to query multiple semantic models, although
duplicate results may occur.

• BEST_EFFORT_QUERY=t, when used with the TIMEOUT=n option, returns all matches
found in n seconds for the SPARQL query.

• DEGREE=n specifies, at the statement level, the degree of parallelism (n) for the
query. With multi-core or multi-CPU processors, experimenting with different DOP
values (such as 4 or 8) may improve performance.

Contrast DEGREE with DOP, which specifies parallelism at the session level. DEGREE
is recommended over DOP for use with the support for Apache Jena, because
DEGREE involves less processing overhead.

• DOP=n specifies, at the session level, the degree of parallelism (n) for the query.
With multi-core or multi-CPU processors, experimenting with different DOP values
(such as 4 or 8) may improve performance.

• INF_ONLY causes only the inferred model to be queried.

• JENA_EXECUTOR disables the compilation of SPARQL queries to SEM_MATCH (or
native SQL); instead, the Jena native query executor will be used.

• JOIN=n specifies how results from a SPARQL SERVICE call to a federated query
can be joined with other parts of the query. For information about federated
queries and the JOIN option, see JOIN Option and Federated Queries.

• NO_FALL_BACK causes the underlying query execution engine not to fall back on
the Jena execution mechanism if a SQL exception occurs.

• ODS=n specifies, at the statement level, the level of dynamic sampling. (For an
explanation of dynamic sampling, see the section about estimating statistics with
dynamic sampling in Oracle Database SQL Tuning Guide.) Valid values for n are 1
through 10. For example, you could try ODS=3 for complex queries.

• ORDERED is translated to a LEADING SQL hint for the query triple pattern joins,
while performing the necessary RDF_VALUE$ joins last.
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• PLAIN_SQL_OPT=F disables the native compilation of queries directly to SQL.

• QID=n specifies a query ID number; this feature can be used to cancel the query if
it is not responding.

• RESULT_CACHE uses the Oracle RESULT_CACHE directive for the query.

• REWRITE=F disables ODCI_Table_Rewrite for the SEM_MATCH table function.

• S2S (SPARQL to pure SQL) causes the underlying SEM_MATCH-based query or
queries generated based on the SPARQL query to be further converted into SQL
queries without using the SEM_MATCH table function. The resulting SQL queries
are executed by the Oracle cost-based optimizer, and the results are processed by
the support for Apache Jena before being passed on to the client. For more
information about the S2S option, including benefits and usage information, see 
S2S Option Benefits and Usage Information.

S2S is enabled by default for all SPARQL queries. If you want to disable S2S, set
the following JVM system property:

-Doracle.spatial.rdf.client.jena.defaultS2S=false

• SKIP_CLOB=T causes CLOB values not to be returned for the query.

• STRICT_DEFAULT=F allows the default graph to include triples in named graphs. (By
default, STRICT_DEFAULT=T restricts the default graph to unnamed triples when no
data set information is specified.)

• TIMEOUT=n (query timeout) specifies the number of seconds (n) that the query will
run until it is terminated. The underlying SQL generated from a SPARQL query
can return many matches and can use features like subqueries and assignments,
all of which can take considerable time. The TIMEOUT and BEST_EFFORT_QUERY=t
options can be used to prevent what you consider excessive processing time for
the query.

• JOIN Option and Federated Queries

• S2S Option Benefits and Usage Information

6.9.4.1 JOIN Option and Federated Queries
A SPARQL federated query, as described in W3C documents, is a query "over
distributed data" that entails "querying one source and using the acquired information
to constrain queries of the next source." For more information, see SPARQL 1.1
Federation Extensions (http://www.w3.org/2009/sparql/docs/fed/service).

You can use the JOIN option (described in Additional Query Options) and the
SERVICE keyword in a federated query that uses the support for Apache Jena. For
example, assume the following query:

SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
                    {
                     SERVICE <http://sparql.org/books> { ?s ?p ?o }
                    }
                 }

If the local query portion (?s1 ?p1 ?s,) is very selective, you can specify join=2, as
shown in the following query:

PREFIX ORACLE_SEM_FS_NS:   <http://oracle.com/semtech#join=2>
SELECT ?s ?s1 ?o
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 WHERE { ?s1 ?p1 ?s .
                    {
                     SERVICE <http://sparql.org/books> { ?s ?p ?o }
                    }
                 }

In this case, the local query portion (?s1 ?p1 ?s,) is executed locally against the
Oracle database. Each binding of ?s from the results is then pushed into the SERVICE
part (remote query portion), and a call is made to the service endpoint specified.
Conceptually, this approach is somewhat like nested loop join.

If the remote query portion (?s ?s1 ?o) is very selective, you can specify join=3, as
shown in the following query, so that the remote portion is executed first and results
are used to drive the execution of local portion:

PREFIX ORACLE_SEM_FS_NS:   <http://oracle.com/semtech#join=3>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
                    {
                     SERVICE <http://sparql.org/books> { ?s ?p ?o }
                    }
                  }

In this case, a single call is made to the remote service endpoint and each binding of ?
s triggers a local query. As with join=2, this approach is conceptually a nested loop
based join, but the difference is that the order is switched.

If neither the local query portion nor the remote query portion is very selective, then we
can choose join=1, as shown in the following query:

PREFIX ORACLE_SEM_FS_NS:   <http://oracle.com/semtech#join=1>
SELECT ?s ?s1 ?o
 WHERE { ?s1 ?p1 ?s .
                    {
                     SERVICE <http://sparql.org/books> { ?s ?p ?o }
                    }
                }

In this case, the remote query portion and the local portion are executed
independently, and the results are joined together by Jena. Conceptually, this
approach is somewhat like a hash join.

For debugging or tracing federated queries, you can use the HTTP Analyzer in Oracle
JDeveloper to see the underlying SERVICE calls.

6.9.4.2 S2S Option Benefits and Usage Information
The S2S option, described in Additional Query Options, provides the following potential
benefits:

• It works well with the RESULT_CACHE option to improve query performance. Using
the S2S and RESULT_CACHE options is especially helpful for queries that are
executed frequently.

• It reduces the parsing time of the SEM_MATCH table function, which can be
helpful for applications that involve many dynamically generated SPARQL queries.

• It eliminates the limit of 4000 bytes for the query body (the first parameter of the
SEM_MATCH table function), which means that longer, more complex queries are
supported.
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The S2S option causes an internal in-memory cache to be used for translated SQL
query statements. The default size of this internal cache is 1024 (that is, 1024 SQL
queries); however, you can adjust the size by using the following Java VM property:

-Doracle.spatial.rdf.client.jena.queryCacheSize=<size>

6.9.5 Midtier Resource Caching
When semantic data is stored, all of the resource values are hashed into IDs, which
are stored in the triples table. The mappings from value IDs to full resource values are
stored in the MDSYS.RDF_VALUE$ table. At query time, for each selected variable,
Oracle Database must perform a join with the RDF_VALUE$ table to retrieve the
resource.

However, to reduce the number of joins, you can use the midtier cache option, which
causes an in-memory cache on the middle tier to be used for storing mappings
between value IDs and resource values. To use this feature, include the following
PREFIX pragma in the SPARQL query:

PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#midtier_cache>

To control the maximum size (in bytes) of the in-memory cache, use the
oracle.spatial.rdf.client.jena.cacheMaxSize system property. The default cache
maximum size is 1GB.

Midtier resource caching is most effective for queries using ORDER BY or DISTINCT
(or both) constructs, or queries with multiple projection variables. Midtier cache can be
combined with the other options specified in Additional Query Options.

If you want to pre-populate the cache with all of the resources in a model, use the
GraphOracleSem.populateCache or DatasetGraphOracleSem.populateCache method.
Both methods take a parameter specifying the number of threads used to build the
internal midtier cache. Running either method in parallel can significantly increase the
cache building performance on a machine with multiple CPUs (cores).

6.10 Functions Supported in SPARQL Queries through RDF
Semantic Graph Support for Apache Jena

SPARQL queries through the support for Apache Jena can use the following kinds of
functions.

• Functions in the function library of the Jena ARQ query engine

• Native Oracle Database functions for projected variables

• User-defined functions

• Functions in the ARQ Function Library

• Native Oracle Database Functions for Projected Variables

• User-Defined Functions

Chapter 6
Functions Supported in SPARQL Queries through RDF Semantic Graph Support for Apache Jena

6-32



6.10.1 Functions in the ARQ Function Library
SPARQL queries through the support for Apache Jena can use functions in the
function library of the Jena ARQ query engine. These queries are executed in the
middle tier.

The following examples use the upper-case and namespace functions. In these
examples, the prefix fn is <http://www.w3.org/2005/xpath-functions#> and the
prefix afn is <http://jena.hpl.hp.com/ARQ/function#>.

PREFIX  fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX  afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT (fn:upper-case(?object) as ?object1)
WHERE { ?subject dc:title ?object }

PREFIX  fn: <http://www.w3.org/2005/xpath-functions#>
PREFIX  afn: <http://jena.hpl.hp.com/ARQ/function#>
SELECT ?subject (afn:namespace(?object) as ?object1)
WHERE { ?subject <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> ?object } 

6.10.2 Native Oracle Database Functions for Projected Variables
SPARQL queries through the support for Apache Jena can use native Oracle
Database functions for projected variables. These queries and the functions are
executed inside the database. Note that the functions described in this section should
not be used together with ARQ functions (described in Functions in the ARQ Function
Library).

This section lists the supported native functions and provides some examples. In the
examples, the prefix oext is <http://oracle.com/semtech/jena-adaptor/ext/
function#>.

Note:

In the preceding URL, note the spelling jena-adaptor, which is retained for
compatibility with existing applications and which must be used in queries.
The adapter spelling is used in regular text, to follow Oracle documentation
style guidelines.

• oext:upper-literal converts literal values (except for long literals) to uppercase.
For example:

PREFIX  oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:upper-literal(?object) as ?object1)
WHERE { ?subject dc:title ?object }

• oext:lower-literal converts literal values (except for long literals) to lowercase.
For example:

PREFIX  oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:lower-literal(?object) as ?object1)
WHERE { ?subject dc:title ?object }

• oext:build-uri-for-id converts the value ID of a URI, bNode, or literal into a
URI form. For example:
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PREFIX  oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:build-uri-for-id(?object) as ?object1)
WHERE { ?subject dc:title ?object }

An example of the output might be: <rdfvid:1716368199350136353>

One use of this function is to allow Java applications to maintain in memory a
mapping of those value IDs to the lexical form of URIs, bNodes, or literals. The
MDSYS.RDF_VALUE$ table provides such a mapping in Oracle Database.

For a given variable ?var, if only oext:build-uri-for-id(?var) is projected, the
query performance is likely to be faster because fewer internal table join
operations are needed to answer the query.

• oext:literal-strlen returns the length of literal values (except for long literals).
For example:

PREFIX  oext: <http://oracle.com/semtech/jena-adaptor/ext/function#>
SELECT (oext:literal-strlen(?object) as ?objlen)
WHERE { ?subject dc:title ?object }

6.10.3 User-Defined Functions
SPARQL queries through the support for Apache Jena can use user-defined functions
that are stored in the database.

In the following example, assume that you want to define a string length function
(my_strlen) that handles long literals (CLOB) as well as short literals. On the SPARQL
query side, this function can be referenced under the namespace of ouext, which is
http://oracle.com/semtech/jena-adaptor/ext/user-def-function#.

PREFIX  ouext: <http://oracle.com/semtech/jena-adaptor/ext/user-def-function#>
SELECT ?subject ?object (ouext:my_strlen(?object) as ?obj1)
WHERE { ?subject dc:title ?object }

Inside the database, functions including my_strlen, my_strlen_cl, my_strlen_la,
my_strlen_lt, and my_strlen_vt are defined to implement this capability.
Conceptually, the return values of these functions are mapped as shown in Table 6-1.

Table 6-1    Functions and Return Values for my_strlen Example

Function Name Return Value

my_strlen <VAR>

my_strlen_cl <VAR>$RDFCLOB

my_strlen_la <VAR>$RDFLANG

my_strlen_lt <VAR>$RDFLTYP

my_strlen_vt <VAR>$RDFVTYP

A set of functions (five in all) is used to implement a user-defined function that can be
referenced from SPARQL, because this aligns with the internal representation of an
RDF resource (in MDSYS.RDF_VALUE$). There are five major columns describing an
RDF resource in terms of its value, language, literal type, long value, and value type,
and these five columns can be selected out using SEM_MATCH. In this context, a
user-defined function simply converts one RDF resource that is represented by five
columns to another RDF resource.
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These functions are defined as follows:

create or replace function my_strlen(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return varchar2
 as
   ret_val  varchar2(4000);
 begin
   -- value
   if (rdfvtyp = 'LIT') then
     if (rdfclob is null) then
       return length(value);
     else
       return dbms_lob.getlength(rdfclob);
     end if;
   else
     -- Assign -1 for non-literal values so that application can
     -- easily differentiate
     return '-1';
   end if;
 end;
 /
 
 create or replace function my_strlen_cl(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return clob
 as
 begin
   return null;
 end;
 /
 
 create or replace function my_strlen_la(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return varchar2
 as
 begin
   return null;
 end;
 /
 
 create or replace function my_strlen_lt(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return varchar2
 as
   ret_val  varchar2(4000);
 begin
   -- literal type
   return 'http://www.w3.org/2001/XMLSchema#integer';
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 end;
 /
 
 create or replace function my_strlen_vt(rdfvtyp in varchar2,
                              rdfltyp in varchar2,
                              rdflang in varchar2,
                              rdfclob in clob,
                              value   in varchar2
                              ) return varchar2
 as
   ret_val  varchar2(3);
 begin
   return 'LIT';
 end;
 /

User-defined functions can also accept a parameter of VARCHAR2 type. The following
five functions together define a my_shorten_str function that accepts an integer (in
VARCHAR2 form) for the substring length and returns the substring. (The substring in
this example is 12 characters, and it must not be greater than 4000 bytes.)

-- SPARQL query that returns the first 12 characters of literal values.
-- 
PREFIX  ouext: <http://oracle.com/semtech/jena-adaptor/ext/user-def-function#>
SELECT (ouext:my_shorten_str(?object, "12") as ?obj1) ?subject
WHERE { ?subject dc:title ?object }
 
create or replace function my_shorten_str(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return varchar2
as
 ret_val  varchar2(4000);
begin
 -- value
 if (rdfvtyp = 'LIT') then
   if (rdfclob is null) then
     return substr(value, 1, to_number(arg));
   else
     return dbms_lob.substr(rdfclob, to_number(arg), 1);
   end if;
 else
   return null;
 end if;
end;
/
 
create or replace function my_shorten_str_cl(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return clob
as
 ret_val  clob;
begin
 -- lob
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 return null;
end;
/
 
create or replace function my_shorten_str_la(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return varchar2
as
 ret_val  varchar2(4000);
begin
 -- lang
 if (rdfvtyp = 'LIT') then
   return rdflang;
 else
   return null;
 end if;
end;
/
 
create or replace function my_shorten_str_lt(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return varchar2
as
 ret_val  varchar2(4000);
begin
 -- literal type
 ret_val := rdfltyp;
 return ret_val;
end;
/
 
create or replace function my_shorten_str_vt(rdfvtyp in varchar2,
                            rdfltyp in varchar2,
                            rdflang in varchar2,
                            rdfclob in clob,
                            value   in varchar2,
                            arg     in varchar2
                            ) return varchar2
as
 ret_val  varchar2(3);
begin
 return 'LIT';
end;
/

6.11 SPARQL Update Support
RDF Semantic Graph support for Apache Jena supports SPARQL Update (http://
www.w3.org/TR/sparql11-update/), also referred to as SPARUL.

The primary programming APIs involve the Jena class UpdateAction (in package
com.hp.hpl.jena.update) and RDF Semantic Graph support for Apache Jena classes
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GraphOracleSem and DatasetGraphOracleSem. Example 6-4 shows a SPARQL Update
operation removes all triples in named graph <http://example/graph> from the
relevant model stored in the database.

Example 6-4    Simple SPARQL Update

GraphOracleSem graphOracleSem = .... ;
DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graphOracleSem);
 
// SPARQL Update operation
String szUpdateAction = "DROP GRAPH <http://example/graph>";
 
// Execute the Update against a DatasetGraph instance (can be a Jena Model as well)
UpdateAction.parseExecute(szUpdateAction, dsgos);

Note that Oracle Database does not keep any information about an empty named
graph. This implies if you invoke CREATE GRAPH <graph_name> without adding any
triples into this graph, then no additional rows in the application table or the underlying
RDF_LINK$ table will be created. To an Oracle database, you can safely skip the
CREATE GRAPH step, as is the case in Example 6-4.

Example 6-5    SPARQL Update with Insert and Delete Operations

Example 6-5 shows a SPARQL Update operation (from ARQ 2.8.8) involving multiple
insert and delete operations.

PREFIX : <http://example/>
CREATE GRAPH <http://example/graph> ;
INSERT DATA { :r :p 123 } ;
INSERT DATA { :r :p 1066 } ;
DELETE DATA { :r :p 1066 } ;
INSERT DATA {
  GRAPH <http://example/graph> { :r :p 123 . :r :p 1066 }
} ;
DELETE DATA {
  GRAPH <http://example/graph>  { :r :p 123 }
}

After running the update operation in Example 6-5 against an empty
DatasetGraphOracleSem, running the SPARQL query SELECT ?s ?p ?o WHERE {?s ?
p ?o} generates the following response:

-------------------------------------------------------------------------------------
----------
| s                  | p                  | 
o                                                 |
=====================================================================================
==========
| <http://example/r> | <http://example/p> | "123"^^<http://www.w3.org/2001/
XMLSchema#decimal> |
-------------------------------------------------------------------------------------
----------

Using the same data, running the SPARQL query SELECT ?g ?s ?p ?o where
{GRAPH ?g {?s ?p ?o}} generates the following response:

-------------------------------------------------------------------------------------
------------------------------------
| g                      | s                  | p                  | 
o                                                  |
=====================================================================================
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====================================
| <http://example/graph> | <http://example/r> | <http://example/p> | "1066"^^<http://
www.w3.org/2001/XMLSchema#decimal> |
-------------------------------------------------------------------------------------
------------------------------------

In addition to using the Java API for SPARQL Update operations, you can configure
Joseki to accept SPARQL Update operations by removing the comment (##)
characters at the start of the following lines in the joseki-config.ttl file.

## <#serviceUpdate>
##     rdf:type            joseki:Service ;
##     rdfs:label          "SPARQL/Update" ;
##     joseki:serviceRef   "update/service" ;
##     # dataset part
##     joseki:dataset      <#oracle>;
##     # Service part.    
##     # This processor will not allow either the protocol,
##     # nor the query, to specify the dataset.
##     joseki:processor    joseki:ProcessorSPARQLUpdate
##     .
## 
## <#serviceRead>
##     rdf:type            joseki:Service ;
##     rdfs:label          "SPARQL" ;
##     joseki:serviceRef   "sparql/read" ;
##     # dataset part
##     joseki:dataset      <#oracle> ;     ## Same dataset
##     # Service part. 
##     # This processor will not allow either the protocol,
##     # nor the query, to specify the dataset.
##     joseki:processor    joseki:ProcessorSPARQL_FixedDS ;
##     .

After you edit the joseki-config.ttl file, you must restart the Joseki Web application.
You can then try a simple update operation, as follows:

1. In your browser, go to: http://<hostname>:7001/joseki/update.html

2. Type or paste the following into the text box:

PREFIX : <http://example/>
INSERT DATA {
  GRAPH <http://example/g1> { :r :p 455 }
}

3. Click Perform SPARQL Update.

To verify that the update operation was successful, go to http://<hostname>:7001/
joseki and enter the following query:

SELECT *
WHERE
  {  GRAPH <http://example/g1> {?s ?p ?o}};

The response should contain the following triple:

<http://example/r>     <http://example/p>    "455"^^<http://www.w3.org/2001/
XMLSchema#decimal>

A SPARQL Update can also be sent using an HTTP POST operation to the http://
<hostname>:7001/joseki/update/service. For example, you can use curl (http://
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en.wikipedia.org/wiki/CURL) to send an HTTP POST request to perform the update
operation:

curl --data "request=PREFIX%20%3A%20%3Chttp%3A%2F%2Fexample%2F%3E%20%0AINSERT%20DATA
%20%7B%0A%20%20GRAPH%20%3Chttp%3A%2F%2Fexample%2Fg1%3E%20%7B%20%3Ar%20%3Ap
%20888%20%7D%0A%7D%0A"  http://hostname:7001/joseki/update/service

In the preceding example, the URL encoded string is a simple INSERT operation into
a named graph. After decoding, it reads as follows:

PREFIX : <http://example/>
INSERT DATA {
  GRAPH <http://example/g1> { :r :p 888 }

6.12 Analytical Functions for RDF Data
You can perform analytical functions on RDF data by using the SemNetworkAnalyst
class in the oracle.spatial.rdf.client.jena package.

This support integrates the Network Data Model Graph logic with the underlying RDF
data structures. Therefore, to use analytical functions on RDF data, you must be
familiar with the Network Data Model Graph feature, which is documented in Oracle
Spatial and Graph Topology Data Model and Network Data Model Graph Developer's
Guide.

The required NDM Java libraries, including sdonm.jar and sdoutl.jar, are under the
directory $ORACLE_HOME/md/jlib. Note that xmlparserv2.jar
(under $ORACLE_HOME/xdk/lib) must be included in the classpath definition.

Example 6-6    Performing Analytical functions on RDF Data

Example 6-6 uses the SemNetworkAnalyst class, which internally uses the NDM
NetworkAnalyst API

Oracle oracle = new Oracle(jdbcUrl, user, password);
GraphOracleSem graph = new GraphOracleSem(oracle, modelName);
 
Node nodeA = Node.createURI("http://A");
Node nodeB = Node.createURI("http://B");
Node nodeC = Node.createURI("http://C");
Node nodeD = Node.createURI("http://D");
Node nodeE = Node.createURI("http://E");
Node nodeF = Node.createURI("http://F");
Node nodeG = Node.createURI("http://G");
Node nodeX = Node.createURI("http://X");
 
// An anonymous node
Node ano = Node.createAnon(new AnonId("m1"));
 
Node relL = Node.createURI("http://likes");
Node relD = Node.createURI("http://dislikes");
Node relK = Node.createURI("http://knows");
Node relC = Node.createURI("http://differs");
 
graph.add(new Triple(nodeA, relL, nodeB));
graph.add(new Triple(nodeA, relC, nodeD));
graph.add(new Triple(nodeB, relL, nodeC));
graph.add(new Triple(nodeA, relD, nodeC));
 
graph.add(new Triple(nodeB, relD, ano));
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graph.add(new Triple(nodeC, relL, nodeD));
graph.add(new Triple(nodeC, relK, nodeE));
graph.add(new Triple(ano,   relL, nodeD));
graph.add(new Triple(ano,   relL, nodeF));
graph.add(new Triple(ano,   relD, nodeB));
 
// X only likes itself
graph.add(new Triple(nodeX, relL, nodeX));
 
graph.commitTransaction();
HashMap<Node, Double> costMap = new HashMap<Node, Double>();
costMap.put(relL, Double.valueOf((double)0.5));
costMap.put(relD, Double.valueOf((double)1.5));
costMap.put(relC, Double.valueOf((double)5.5));
 
graph.setDOP(4); // this allows the underlying LINK/NODE tables
                 // and indexes to be created in parallel.
 
SemNetworkAnalyst sna = SemNetworkAnalyst.getInstance(
    graph,   // network data source
    true,    // directed graph
    true,    // cleanup existing NODE and LINK table
    costMap
    );
 
psOut.println("From nodeA to nodeC");
Node[] nodeArray = sna.shortestPathDijkstra(nodeA, nodeC);
printNodeArray(nodeArray, psOut);
 
psOut.println("From nodeA to nodeD"); 
nodeArray = sna.shortestPathDijkstra( nodeA, nodeD);
printNodeArray(nodeArray, psOut);
 
psOut.println("From nodeA to nodeF");
nodeArray = sna.shortestPathAStar(nodeA, nodeF);
printNodeArray(nodeArray, psOut);
 
psOut.println("From ano to nodeC");
nodeArray = sna.shortestPathAStar(ano, nodeC);
printNodeArray(nodeArray, psOut);
 
psOut.println("From ano to nodeX");
nodeArray = sna.shortestPathAStar(ano, nodeX);
printNodeArray(nodeArray, psOut);
 
graph.close();
oracle.dispose();
...
...
   
// A helper function to print out a path
public static void printNodeArray(Node[] nodeArray, PrintStream psOut)
{
  if (nodeArray == null) {
    psOut.println("Node Array is null");
    return;
  }
  if (nodeArray.length == 0) {psOut.println("Node Array is empty"); }
  int iFlag = 0;
  psOut.println("printNodeArray: full path starts");
  for (int iHops = 0; iHops < nodeArray.length; iHops++) {
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    psOut.println("printNodeArray: full path item " + iHops + " = "
        + ((iFlag == 0) ? "[n] ":"[e] ") + nodeArray[iHops]);
    iFlag = 1 - iFlag;
  }
}

In Example 6-6:

• A GraphOracleSem object is constructed and a few triples are added to the
GraphOracleSem object. These triples describe several individuals and their
relationships including likes, dislikes, knows, and differs.

• A cost mapping is constructed to assign a numeric cost value to different links/
predicates (of the RDF graph). In this case, 0.5, 1.5, and 5.5 are assigned to
predicates likes, dislikes, and differs, respectively. This cost mapping is optional. If
the mapping is absent, then all predicates will be assigned the same cost 1. When
cost mapping is specified, this mapping does not need to be complete; for
predicates not included in the cost mapping, a default value of 1 is assigned.

The output of Example 6-6 is as follows. In this output, the shortest paths are listed for
the given start and end nodes. Note that the return value of
sna.shortestPathAStar(ano, nodeX) is null because there is no path between these
two nodes.

From nodeA to nodeC
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A           ## "n" denotes 
Node             
printNodeArray: full path item 1 = [e] http://likes       ## "e" denotes Edge (Link)
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C
 
From nodeA to nodeD
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A
printNodeArray: full path item 1 = [e] http://likes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C
printNodeArray: full path item 5 = [e] http://likes
printNodeArray: full path item 6 = [n] http://D
 
From nodeA to nodeF
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://A
printNodeArray: full path item 1 = [e] http://likes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://dislikes
printNodeArray: full path item 4 = [n] m1
printNodeArray: full path item 5 = [e] http://likes
printNodeArray: full path item 6 = [n] http://F
 
From ano to nodeC
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] m1
printNodeArray: full path item 1 = [e] http://dislikes
printNodeArray: full path item 2 = [n] http://B
printNodeArray: full path item 3 = [e] http://likes
printNodeArray: full path item 4 = [n] http://C
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From ano to nodeX
Node Array is null

The underlying RDF graph view (SEMM_<model_name> or RDFM_<model_name>)
cannot be used directly by NDM functions, and so SemNetworkAnalyst creates
necessary tables that contain the nodes and links that are derived from a given RDF
graph. These tables are not updated automatically when the RDF graph changes;
rather, you can set the cleanup parameter in SemNetworkAnalyst.getInstance to
true, to remove old node and link tables and to rebuild updated tables.

Example 6-7    Implementing NDM nearestNeighbors Function on Top of
Semantic Data

Example 6-7 implements the NDM nearestNeighbors function on top of semantic
data. This gets a NetworkAnalyst object from the SemNetworkAnalyst instance, gets
the node ID, creates PointOnNet objects, and processes LogicalSubPath objects.

%cat TestNearestNeighbor.java 
 
import java.io.*;
import java.util.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
import com.hp.hpl.jena.sparql.core.DatasetImpl;
 
import oracle.spatial.rdf.client.jena.*;
 
import oracle.spatial.rdf.client.jena.SemNetworkAnalyst;
import oracle.spatial.network.lod.LODGoalNode;
import oracle.spatial.network.lod.LODNetworkConstraint;
import oracle.spatial.network.lod.NetworkAnalyst;
import oracle.spatial.network.lod.PointOnNet;
import oracle.spatial.network.lod.LogicalSubPath;
 
 
/**
 * This class implements a nearestNeighbors function on top of semantic data
 * using public APIs provided in SemNetworkAnalyst and Oracle Spatial NDM
 */
public class TestNearestNeighbor
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
 
    PrintStream psOut = System.out;
 
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    
    String szModelName = "test_nn";
    // First construct a TBox and load a few axioms
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    String insertString =  
      " PREFIX my:  <http://my.com/> " +
      " INSERT DATA "                             +
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      " { my:A   my:likes my:B .                " +
      "   my:A   my:likes my:C .                " +
      "   my:A   my:knows my:D .                " +
      "   my:A   my:dislikes my:X .             " +
      "   my:A   my:dislikes my:Y .             " +
      "   my:C   my:likes my:E .                " +
      "   my:C   my:likes my:F .                " +
      "   my:C   my:dislikes my:M .             " +
      "   my:D   my:likes my:G .                " +
      "   my:D   my:likes my:H .                " +
      "   my:F   my:likes my:M .                " +
      " }   ";
    UpdateAction.parseExecute(insertString,  model);
 
    GraphOracleSem g = model.getGraph();
    g.commitTransaction();
    g.setDOP(4);
 
    HashMap<Node, Double> costMap = new HashMap<Node, Double>();
    costMap.put(Node.createURI("http://my.com/likes"),    Double.valueOf(1.0));
    costMap.put(Node.createURI("http://my.com/dislikes"), Double.valueOf(4.0));
    costMap.put(Node.createURI("http://my.com/knows"),    Double.valueOf(2.0));
 
    SemNetworkAnalyst sna = SemNetworkAnalyst.getInstance(
        g,     // source RDF graph
        true,  // directed graph
        true,  // cleanup old Node/Link tables
        costMap
        );
 
    Node nodeStart = Node.createURI("http://my.com/A");
    long origNodeID = sna.getNodeID(nodeStart);
 
    long[] lIDs = {origNodeID};
 
    // translate from the original ID
    long nodeID = (sna.mapNodeIDs(lIDs))[0]; 
 
    NetworkAnalyst networkAnalyst = sna.getEmbeddedNetworkAnalyst();
 
    LogicalSubPath[] lsps = networkAnalyst.nearestNeighbors(
      new PointOnNet(nodeID),      // startPoint
      6,                           // numberOfNeighbors
      1,                           // searchLinkLevel
      1,                           // targetLinkLevel
      (LODNetworkConstraint) null, // constraint
      (LODGoalNode) null           // goalNodeFilter
      );
 
    if (lsps != null) {
      for (int idx = 0; idx < lsps.length; idx++) {
        LogicalSubPath lsp = lsps[idx];
        Node[] nodePath = sna.processLogicalSubPath(lsp, nodeStart);
        psOut.println("Path " + idx);
        printNodeArray(nodePath, psOut);
      }
    }
 
    g.close();
    sna.close();
    oracle.dispose();
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  }
 
 
  public static void printNodeArray(Node[] nodeArray, PrintStream psOut)
  {
    if (nodeArray == null) {
      psOut.println("Node Array is null");
      return;
    }
    if (nodeArray.length == 0) {
      psOut.println("Node Array is empty");
    }
    int iFlag = 0;
    psOut.println("printNodeArray: full path starts");
    for (int iHops = 0; iHops < nodeArray.length; iHops++) {
      psOut.println("printNodeArray: full path item " + iHops + " = "
          + ((iFlag == 0) ? "[n] ":"[e] ") + nodeArray[iHops]);
      iFlag = 1 - iFlag;
    }
  }
}

The output of Example 6-7 is as follows.

Path 0
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C
 
Path 1
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/B
 
Path 2
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/knows
printNodeArray: full path item 2 = [n] http://my.com/D
 
Path 3
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/E
 
Path 4
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
printNodeArray: full path item 1 = [e] http://my.com/likes
printNodeArray: full path item 2 = [n] http://my.com/C
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/F
 
Path 5
printNodeArray: full path starts
printNodeArray: full path item 0 = [n] http://my.com/A
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printNodeArray: full path item 1 = [e] http://my.com/knows
printNodeArray: full path item 2 = [n] http://my.com/D
printNodeArray: full path item 3 = [e] http://my.com/likes
printNodeArray: full path item 4 = [n] http://my.com/H

• Generating Contextual Information about a Path in a Graph

6.12.1 Generating Contextual Information about a Path in a Graph
It is sometimes useful to see contextual information about a path in a graph, in addition
to the path itself. The buildSurroundingSubGraph method in the SemNetworkAnalyst
class can output a DOT file (graph description language file, extension .gv) into the
specified Writer object. For each node in the path, up to ten direct neighbors are used
to produce a surrounding subgraph for the path. The following example shows the
usage of generating a DOT file with contextual information, specifically the output from
the analytical functions used in Example 6-6.

nodeArray = sna.shortestPathDijkstra(nodeA, nodeD);
printNodeArray(nodeArray, psOut);
 
FileWriter dotWriter = new FileWriter("Shortest_Path_A_to_D.gv");
sna.buildSurroundingSubGraph(nodeArray, dotWriter);

The generated output DOT file from the preceding example is straightforward, as
shown in the following example:

% cat Shortest_Path_A_to_D.gv
digraph { rankdir = LR; charset="utf-8"; 
 
"Rhttp://A" [ label="http://A" shape=rectangle,color=red,style = filled, ];
"Rhttp://B" [ label="http://B" shape=rectangle,color=red,style = filled, ];
"Rhttp://A" -> "Rhttp://B" [ label="http://likes"  color=red, style=bold, ];
"Rhttp://C" [ label="http://C" shape=rectangle,color=red,style = filled, ];
"Rhttp://A" -> "Rhttp://C" [ label="http://dislikes" ];
"Rhttp://D" [ label="http://D" shape=rectangle,color=red,style = filled, ];
"Rhttp://A" -> "Rhttp://D" [ label="http://differs" ];
"Rhttp://B" -> "Rhttp://C" [ label="http://likes"  color=red, style=bold, ];
"Rm1" [ label="m1" shape=ellipse,color=blue, ];
"Rhttp://B" -> "Rm1" [ label="http://dislikes" ];
"Rm1" -> "Rhttp://B" [ label="http://dislikes" ];
"Rhttp://C" -> "Rhttp://D" [ label="http://likes"  color=red, style=bold, ];
"Rhttp://E" [ label="http://E" shape=ellipse,color=blue, ];
"Rhttp://C" -> "Rhttp://E" [ label="http://knows" ];
"Rm1" -> "Rhttp://D" [ label="http://likes" ];
}

You can also use methods in the SemNetworkAnalyst and GraphOracleSem classes to
produce more sophisticated visualization of the analytical function output.

You can convert the preceding DOT file into a variety of image formats. Figure 6-1 is
an image representing the information in the preceding DOT file.
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Figure 6-1    Visual Representation of Analytical Function Output

6.13 Support for Server-Side APIs
This section describes some of the RDF Semantic Graph features that are exposed by
RDF Semantic Graph support for Apache Jena.

For comprehensive documentation of the API calls that support the available features,
see the RDF Semantic Graph support for Apache Jena reference information
(Javadoc). For additional information about the server-side features exposed by the
support for Apache Jena, see the relevant chapters in this manual.

• Virtual Models Support

• Connection Pooling Support

• Semantic Model PL/SQL Interfaces

• Inference Options

• PelletInfGraph Class Support Deprecated

6.13.1 Virtual Models Support
Virtual models (explained in Virtual Models) are specified in the GraphOracleSem
constructor, and they are handled transparently. If a virtual model exists for the model-
rulebase combination, it is used in query answering; if such a virtual model does not
exist, it is created in the database.

Note:

Virtual model support through the support for Apache Jena is available only
with Oracle Database Release 11.2 or later.

The following example reuses an existing virtual model.

String modelName = "EX";
String m1 = "EX_1";
 
ModelOracleSem defaultModel = 
  ModelOracleSem.createOracleSemModel(oracle, modelName);
 
// create these models in case they don't exist
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ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, m1);
 
String vmName = "VM_" + modelName;
 
 
//create a virtual model containing EX and EX_1
oracle.executeCall(
"begin sem_apis.create_virtual_model(?,sem_models('"+ m1 + "','"+ modelName
+"'),null); end;",vmName);
 
String[] modelNames = {m1};
String[] rulebaseNames = {};
 
Attachment attachment = Attachment.createInstance(modelNames, rulebaseNames, 
InferenceMaintenanceMode.NO_UPDATE, QueryOptions.ALLOW_QUERY_VALID_AND_DUP);
 
// vmName is passed to the constructor, so GraphOracleSem will use the virtual 
// model named vmname (if the current user has read privileges on it)
GraphOracleSem graph = new GraphOracleSem(oracle, modelName, attachment, vmName);
graph.add(Triple.create(Node.createURI("urn:alice"),
                        Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
                        Node.createURI("mailto:alice@example")));
ModelOracleSem model = new ModelOracleSem(graph);      
 
String queryString =
 
   " SELECT ?subject ?object WHERE { ?subject ?p ?object } ";
 
Query query = QueryFactory.create(queryString) ;
QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
try {
   ResultSet results = qexec.execSelect() ;
   for ( ; results.hasNext() ; ) {
      QuerySolution soln = results.nextSolution() ;
      psOut.println("soln " + soln);
   }
} 
finally { 
   qexec.close() ; 
}
 
OracleUtils.dropSemanticModel(oracle, modelName);
OracleUtils.dropSemanticModel(oracle, m1);
 
oracle.dispose();

You can also use the GraphOracleSem constructor to create a virtual model, as in the
following example:

GraphOracleSem graph = new GraphOracleSem(oracle, modelName, attachment, true);

In this example, the fourth parameter (true) specifies that a virtual model needs to be
created for the specified modelName and attachment.

6.13.2 Connection Pooling Support
Oracle Database Connection Pooling is provided through the support for Apache Jena
OraclePool class. Once this class is initialized, it can return Oracle objects out of its
pool of available connections. Oracle objects are essentially database connection
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wrappers. After dispose is called on the Oracle object, the connection is returned to
the pool. More information about using OraclePool can be found in the API reference
information (Javadoc).

The following example sets up an OraclePool object with five (5) initial connections.

public static void main(String[] args) throws Exception
  {    
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
 
    // test with connection properties 
    java.util.Properties prop = new java.util.Properties();
    prop.setProperty("MinLimit", "2");     // the cache size is 2 at least 
    prop.setProperty("MaxLimit", "10");
    prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
    prop.setProperty("InactivityTimeout", "1800");    //  seconds
    prop.setProperty("AbandonedConnectionTimeout", "900");  //  seconds
    prop.setProperty("MaxStatementsLimit", "10");
    prop.setProperty("PropertyCheckInterval", "60"); // seconds
 
    System.out.println("Creating OraclePool");
    OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop, 
               "OracleSemConnPool");
    System.out.println("Done creating OraclePool");
 
    // grab an Oracle and do something with it
    System.out.println("Getting an Oracle from OraclePool");
    Oracle oracle = op.getOracle();
    System.out.println("Done");
    System.out.println("Is logical connection:" +
        oracle.getConnection().isLogicalConnection());
    GraphOracleSem g = new GraphOracleSem(oracle, szModelName);
    g.add(Triple.create(Node.createURI("u:John"), 
                        Node.createURI("u:parentOf"), 
                        Node.createURI("u:Mary")));
    g.close();
    // return the Oracle back to the pool
    oracle.dispose();
    
    // grab another Oracle and do something else 
    System.out.println("Getting an Oracle from OraclePool");
    oracle = op.getOracle();
    System.out.println("Done");
    System.out.println("Is logical connection:" +
        oracle.getConnection().isLogicalConnection());
    g = new GraphOracleSem(oracle, szModelName);
    g.add(Triple.create(Node.createURI("u:John"), 
                        Node.createURI("u:parentOf"), 
                        Node.createURI("u:Jack")));
    g.close();
    
    OracleUtils.dropSemanticModel(oracle, szModelName); 
    
    // return the Oracle object back to the pool
    oracle.dispose();
}
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6.13.3 Semantic Model PL/SQL Interfaces
Several semantic PL/SQL subprograms are available through the support for Apache
Jena. Table 6-2 lists the subprograms and their corresponding Java class and
methods.

Table 6-2    PL/SQL Subprograms and Corresponding RDF Semantic Graph
support for Apache Jena Java Class and Methods

PL/SQL Subprogram Corresponding Java Class and Methods

SEM_APIS.DROP_SEM_MODEL OracleUtils.dropSemanticModel

SEM_APIS.MERGE_MODELS OracleUtils.mergeModels

SEM_APIS.SWAP_NAMES OracleUtils.swapNames

SEM_APIS.REMOVE_DUPLICATES OracleUtils.removeDuplicates

SEM_APIS.RENAME_MODEL OracleUtils.renameModels

For information about these PL/SQL utility subprograms, see the reference information
in SEM_APIS Package Subprograms. For information about the corresponding Java
class and methods, see the RDF Semantic Graph support for Apache Jena API
Reference documentation (Javadoc).

6.13.4 Inference Options
You can add options to entailment calls by using the following methods in the
Attachment class (in package oracle.spatial.rdf.client.jena):

public void setUseLocalInference(boolean useLocalInference)
public boolean getUseLocalInference()
 
public void setDefGraphForLocalInference(String defaultGraphName)
public String getDefGraphForLocalInference()
 
public String getInferenceOption()
public void setInferenceOption(String inferenceOption)

Example 6-8    Specifying Inference Options

For more information about these methods, see the Javadoc.

Example 6-8 enables parallel inference (with a degree of 4) and RAW format when
creating an entailment. The example also uses the performInference method to
create the entailment (comparable to using the SEM_APIS.CREATE_ENTAILMENT
PL/SQL procedure).

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
import com.hp.hpl.jena.sparql.core.DatasetImpl;
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public class TestNewInference
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
 
    PrintStream psOut = System.out;
 
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    
    String szTBoxName = "test_new_tbox";
    {
      // First construct a TBox and load a few axioms
      ModelOracleSem modelTBox = ModelOracleSem.createOracleSemModel(oracle, 
szTBoxName);
      String insertString =  
        " PREFIX my:  <http://my.com/> " +
        " PREFIX rdfs:  <http://www.w3.org/2000/01/rdf-schema#> " +
        " INSERT DATA "                                     +
        " { my:C1  rdfs:subClassOf my:C2 .                " +
        "   my:C2  rdfs:subClassOf my:C3 .                " +
        "   my:C3  rdfs:subClassOf my:C4 .                " +
        " }   ";
      UpdateAction.parseExecute(insertString,  modelTBox);
      modelTBox.close();
    }
 
    String szABoxName = "test_new_abox";
    {
      // Construct an ABox and load a few quads
      ModelOracleSem modelABox = ModelOracleSem.createOracleSemModel(oracle, 
szABoxName);
      DatasetGraphOracleSem dataset = 
DatasetGraphOracleSem.createFrom(modelABox.getGraph());
      modelABox.close();
 
      String insertString =  
        " PREFIX my:    <http://my.com/> " +
        " PREFIX rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#> " +
        " INSERT DATA                                                 " +
        " { GRAPH my:G1 { my:I1  rdf:type my:C1 .                     " +
        "                 my:I2  rdf:type my:C2 .                     " +
        "               }                                             " +
        " };                                                          " +
        " INSERT DATA                                                 " +
        " { GRAPH my:G2 { my:J1  rdf:type my:C3 .                     " +
        "               }                                             " +
        " }    ";
      UpdateAction.parseExecute(insertString,  dataset);
      dataset.close();
    }
 
 
    String[] attachedModels = new String[1];
    attachedModels[0] = szTBoxName;
 
    String[] attachedRBs = {"OWL2RL"};
 
    Attachment attachment = Attachment.createInstance(
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        attachedModels, attachedRBs,
        InferenceMaintenanceMode.NO_UPDATE,
        QueryOptions.ALLOW_QUERY_INVALID);
 
    // We are going to run named graph based local inference
    attachment.setUseLocalInference(true);
 
    // Set the default graph (TBox)
    attachment.setDefGraphForLocalInference(szTBoxName);
 
    // Set the inference option to use parallel inference 
    // with a degree of 4, and RAW format.
    attachment.setInferenceOption("DOP=4,RAW8=T");
 
    GraphOracleSem graph = new GraphOracleSem(
        oracle, 
        szABoxName, 
        attachment
        );
    DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graph);
    graph.close();
 
    // Invoke create_entailment PL/SQL API
    dsgos.performInference();
 
    psOut.println("TestNewInference: # of inferred graph " + 
        Long.toString(dsgos.getInferredGraphSize()));
 
    String queryString = 
      " SELECT ?g ?s ?p ?o WHERE {  GRAPH ?g {?s ?p ?o } } " ;
 
    Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
    QueryExecution qexec = QueryExecutionFactory.create(
        query, DatasetImpl.wrap(dsgos));
    ResultSet results = qexec.execSelect();
 
    ResultSetFormatter.out(psOut, results);
 
    dsgos.close();
    oracle.dispose();
  }
}

The output of Example 6-8 is as follows.

TestNewInference: # of inferred graph 9
 
-------------------------------------------------------------------------------------
-------------------------------
| g                  | s                  | 
p                                                 | o                  |
=====================================================================================
===============================
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C3> |
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C2> |
| <http://my.com/G1> | <http://my.com/I2> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C3> |
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| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C1> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C2> |
| <http://my.com/G1> | <http://my.com/I1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |
| <http://my.com/G2> | <http://my.com/J1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C3> |
| <http://my.com/G2> | <http://my.com/J1> | <http://www.w3.org/1999/02/22-rdf-syntax-
ns#type> | <http://my.com/C4> |
-------------------------------------------------------------------------------------
-------------------------------

For information about using OWL inferencing, see Using OWL Inferencing.

6.13.5 PelletInfGraph Class Support Deprecated
The support for the PelletInfGraph class within the support for Apache Jena is
deprecated. You should instead use the more optimized Oracle/Pellet integration
through the PelletDb OWL 2 reasoner for Oracle Database.

6.14 Bulk Loading Using RDF Semantic Graph Support for
Apache Jena

To load thousands to hundreds of thousands of RDF/OWL data files into an Oracle
database, you can use the prepareBulk and completeBulk methods in the
OracleBulkUpdateHandler Java class to simplify the task.

The addInBulk method in the OracleBulkUpdateHandler class can load triples of a
graph or model into an Oracle database in bulk loading style. If the graph or model is a
Jena in-memory graph or model, the operation is limited by the size of the physical
memory. The prepareBulk method bypasses the Jena in-memory graph or model and
takes a direct input stream to an RDF data file, parses the data, and load the triples
into an underlying staging table. If the staging table and an accompanying table for
storing long literals do not already exist, they are created automatically.

The prepareBulk method can be invoked multiple times to load multiple data files into
the same underlying staging table. It can also be invoked concurrently, assuming the
hardware system is balanced and there are multiple CPU cores and sufficient I/O
capacity.

Once all the data files are processed by the prepareBulk method, you can invoke
completeBulk to load all the data into the semantic network.

Example 6-9    Loading Data into the Staging Table (prepareBulk)

Example 6-9 shows how to load all data files in directory dir_1 into the underlying
staging table. Long literals are supported and will be stored in a separate table. The
data files can be compressed using GZIP to save storage space, and the prepareBulk
method can detect automatically if a data file is compressed using GZIP or not.

Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);
 
PrintStream psOut = System.out;

Chapter 6
Bulk Loading Using RDF Semantic Graph Support for Apache Jena

6-53



String dirname = "dir_1";
File fileDir = new File(dirname);
String[] szAllFiles = fileDir.list();

// loop through all the files in a directory
for (int idx = 0; idx < szAllFiles.length; idx++) {
  String szIndFileName = dirname + File.separator + szAllFiles[idx];
  psOut.println("process to [ID = " + idx + " ] file " + szIndFileName);
  psOut.flush();
 
  try {
    InputStream is = new FileInputStream(szIndFileName);
    graph.getBulkUpdateHandler().prepareBulk(
        is,                    // input stream
        "http://example.com",  // base URI
        "RDF/XML",             // data file type: can be RDF/XML, N-TRIPLE, etc.
        "SEMTS",               // tablespace
        null,                  // flags
        null,                  // listener
        null                   // staging table name.
        );
    is.close();
  }
  catch (Throwable t) {
    psOut.println("Hit exception " + t.getMessage());
  }
}
 
graph.close();
oracle.dispose();

The code in Example 6-9, starting from creating a new Oracle object and ending with
disposing of the Oracle object, can be executed in parallel. Assume there is a quad-
core CPU and enough I/O capacity on the database hardware system; you can divide
up all the data files and save them into four separate directories: dir_1, dir_2, dir_3,
and dir_4. Four Java threads of processes can be started to work on those directories
separately and concurrently. (For more information, see Using prepareBulk in Parallel
(Multithreaded) Mode.)

Example 6-10    Loading Data from the Staging Table into the Semantic Network
(completeBulk)

After all data files are processed, you can invoke, just once, the completeBulk method
to load the data from staging table into the semantic network, as shown in 
Example 6-10. Triples with long literals will be loaded also.

graph.getBulkUpdateHandler().completeBulk(
  null,  // flags for invoking SEM_APIS.bulk_load_from_staging_table
  null   // staging table name
);

The prepareBulk method can also take a Jena model as an input data source, in
which case triples in that Jena model are loaded into the underlying staging table. For
more information, see the Javadoc.

Example 6-11    Using prepareBulk with RDFa

In addition to loading triples from Jena models and data files, the prepareBulk method
supports RDFa, as shown in Example 6-11. (RDFa is explained in http://
www.w3.org/TR/xhtml-rdfa-primer/.)
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graph.getBulkUpdateHandler().prepareBulk(
  rdfaUrl,   // url to a web page using RDFa
  "SEMTS",   // tablespace
  null,      // flags
  null,      // listener
  null       // staging table name
);

To parse RDFa, the relevant java-rdfa libraries must be included in the classpath. No
additional setup or API calls are required. (For information about java-rdfa, see 
http://www.rootdev.net/maven/projects/java-rdfa/ and the other topics there
under Project Information.)

Note that if the rdfaUrl is located outside a firewall, you may need to set the following
HTTP Proxy-related Java VM properties:

-Dhttp.proxyPort=...
-Dhttp.proxyHost=...

Example 6-12    Loading Quads into a DatasetGraph

The preceding examples in this section load triple data into a single graph. Loading
quad data that may span across multiple named graphs (such as data in NQUADS
format) requires the use of the DatasetGraphOracleSem class. The
DatasetGraphOracleSem class does not use the BulkUpdateHandler API, but does
provide a similar prepareBulk and completeBulk interface, as shown in Example 6-12.

Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
 
// Can only create DatasetGraphOracleSem from an existing GraphOracleSem
GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);
DatasetGraphOracleSem dataset = DatasetGraphOracleSem.createFrom(graph);
 
// Don't need graph anymore, close it to free resources
graph.close();
 
try {
    InputStream is = new FileInputStream(szFileName);
    // load NQUADS file into a staging table. This file can be gzipp'ed.
    dataset.prepareBulk(
        is,                // input stream
        "http://my.base/", // base URI
        "N-QUADS",         // data file type; can be "TRIG"
        "SEMTS",           // tablespace
        null,              // flags
        null,              // listener
        null,              // staging table name
        false              // truncate staging table before load
    );
    // Load quads from staging table into the dataset
    dataset.completeBulk(
        null, // flags; can be "PARSE PARALLEL_CREATE_INDEX PARALLEL=4 
              //                mbv_method=shadow" on a quad core machine
        null  // staging table name
    );
} 
catch (Throwable t) {
    System.out.println("Hit exception " + t.getMessage());
}
finally {
    dataset.close();
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    oracle.dispose();
}

• Using prepareBulk in Parallel (Multithreaded) Mode

• Handling Illegal Syntax During Data Loading

6.14.1 Using prepareBulk in Parallel (Multithreaded) Mode
Example 6-9 provided a way to load, sequentially, a set of files under a file system
directory to an Oracle Database table (staging table). Example 6-13 loads,
concurrently, a set of files to an Oracle table (staging table). The degree of parallelism
is controlled by the input parameter iMaxThreads.

On a balanced hardware setup with 4 or more CPU cores, setting iMaxThreads to 8 (or
16) can improve significantly the speed of prepareBulk operation when there are
many data files to be processed.

Example 6-13    Using prepareBulk with iMaxThreads

public void testPrepareInParallel(String jdbcUrl, String user,
                       String password, String modelName,
                       String lang,
                       String tbs,
                       String dirname,
                       int iMaxThreads,
                       PrintStream psOut)
   throws SQLException, IOException,  InterruptedException
 {
   File dir = new File(dirname);
   File[] files = dir.listFiles();

   // create a set of physical Oracle connections and graph objects
   Oracle[] oracles = new Oracle[iMaxThreads];
   GraphOracleSem[] graphs = new GraphOracleSem[iMaxThreads];
   for (int idx = 0; idx < iMaxThreads; idx++) {
     oracles[idx] = new Oracle(jdbcUrl, user, password);
     graphs[idx] = new GraphOracleSem(oracles[idx], modelName);
   }

   PrepareWorker[] workers = new PrepareWorker[iMaxThreads];
   Thread[] threads = new Thread[iMaxThreads];
   for (int idx = 0; idx < iMaxThreads; idx++) {
     workers[idx] = new PrepareWorker(
         graphs[idx],
         files,
         idx,
         iMaxThreads,
         lang,
         tbs,
         psOut
         );
     threads[idx] = new Thread(workers[idx], workers[idx].getName());
     psOut.println("testPrepareInParallel: PrepareWorker " + idx + " running");
     threads[idx].start();
   }

   psOut.println("testPrepareInParallel: all threads started");

   for (int idx = 0; idx < iMaxThreads; idx++) {
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     threads[idx].join();
   }
   for (int idx = 0; idx < iMaxThreads; idx++) {
     graphs[idx].close();
     oracles[idx].dispose();
   }
 }

 static class PrepareWorker implements Runnable
 {
   GraphOracleSem graph = null;
   int idx;
   int threads;
   File[] files = null;
   String lang = null;
   String tbs  = null;
   PrintStream psOut;

   public void run()
   {
     long lStartTime = System.currentTimeMillis();
     for (int idxFile = idx; idxFile < files.length; idxFile += threads) {
       File file = files[idxFile];
       try {
         FileInputStream fis = new FileInputStream(file);
         graph.getBulkUpdateHandler().prepareBulk(
             fis,
             "http://base.com/",
             lang,
             tbs,
             null,                   // flags
             new MyListener(psOut),  // listener
             null                    // table name
             );
         fis.close();
       }
       catch (Exception e) {
         psOut.println("PrepareWorker: thread ["+getName()+"] error "+ 
e.getMessage());
       }
       psOut.println("PrepareWorker: thread ["+getName()+"] done to "
           + idxFile + ", file = " + file.toString()
           + " in (ms) " + (System.currentTimeMillis() - lStartTime));
     }
   }

   public PrepareWorker(GraphOracleSem graph,
                        File[] files,
                        int idx,
                        int threads,
                        String lang,
                        String tbs,
                        PrintStream psOut)
   {
     this.graph   = graph;
     this.files   = files;
     this.psOut   = psOut;
     this.idx     = idx;
     this.threads = threads;
     this.files   = files;
     this.lang    = lang;
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     this.tbs     = tbs ;
   }

   public String getName()
   {
     return "PrepareWorker" + idx;
   }
 } 
 
 static class MyListener implements StatusListener 
 {
   PrintStream m_ps = null;
   public MyListener(PrintStream ps) { m_ps = ps; }
   long lLastBatch = 0;

   public void statusChanged(long count)
   {
     if (count - lLastBatch >= 10000) {
       m_ps.println("process to " + Long.toString(count));
       lLastBatch = count;
     }
   }

   public int illegalStmtEncountered(Node graphNode, Triple triple, long count)
   {
     m_ps.println("hit illegal statement with object " + 
triple.getObject().toString());
     return 0; // skip it
   }
 }

6.14.2 Handling Illegal Syntax During Data Loading
You can skip illegal triples and quads when using prepareBulk. This feature is useful if
the source RDF data may contain syntax errors. In Example 6-14, a customized
implementation of the StatusListener interface (defined in package
oracle.spatial.rdf.client.jena) is passed as a parameter to prepareBulk. In this
example, the illegalStmtEncountered method prints the object field of the illegal
triple, and returns 0 so that prepareBulk can skip that illegal triple and move on.

Example 6-14    Skipping Triples with Illegal Syntax

....
 
Oracle oracle = new Oracle(jdbcUrl, user, password);
GraphOracleSem graph = new GraphOracleSem(oracle, modelName);
PrintStream psOut = System.err;
 
graph.getBulkUpdateHandler().prepareBulk(
  new FileInputStream(rdfDataFilename),
  "http://base.com/",    // base 
  lang,                  // data format, can be "N-TRIPLES" "RDF/XML" ...
  tbs,                   // tablespace name
  null,                  // flags
  new MyListener(psOut), // call back to show progress and also process illegal 
triples/quads
  null,                  // tableName, if null use default names
  false                  // truncate existing staging tables
  );
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 graph.close();
 oracle.dispose();
 .... 
 
 // A customized StatusListener interface implementation
  public class MyListener implements StatusListener
 {
   PrintStream m_ps = null;
   public MyListener(PrintStream ps) { m_ps = ps; }
 
   public void statusChanged(long count)
   {
     // m_ps.println("process to " + Long.toString(count));
   }
 
  public int illegalStmtEncountered(Node graphNode, Triple triple, long count)
  {
    m_ps.println("hit illegal statement with object " + 
triple.getObject().toString());
    return 0; // skip it
  }
 }

6.15 Automatic Variable Renaming
Automatic variable renaming can enable certain queries that previously failed to run
successfully.

Previously, variable names used in SPARQL queries were passed directly on to
Oracle Database as a part of a SQL statement. If the variable names included a SQL
or PL/SQL reserved keyword, the query failed to execute. For example, the following
SPARQL query used to fail because the word date as a special meaning to the Oracle
Database SQL processing engine.

select ?date { :event  :happenedOn ?date }

Currently, this query does not fail, because a "smart scan" is performed and automatic
replacement is done on certain reserved variable names (or variable names that are
very long) before the query is sent to Oracle database for execution. The replacement
is based on a list of reserved keywords that are stored in the following file embedded
in sdordfclient.jar:

oracle/spatial/rdf/client/jena/oracle_sem_reserved_keywords.lst

This file contains over 100 entries, and you can edit the file to add entries if necessary.

The following are examples of SPARQL queries that use SQL or PL/SQL reserved
keywords as variables, and that will succeed because of automatic variable renaming:

• Query using SELECT as a variable name:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
select ?SELECT ?z
where
{    ?SELECT foaf:name ?y.
     optional {?SELECT foaf:knows ?z.}
}

• Query using ARRAY and DATE as variable names:
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PREFIX x:    <http://example.com#>
construct {
    ?ARRAY x:date ?date .
}
where {
    ?ARRAY x:happenedOn ?date .
}

6.16 JavaScript Object Notation (JSON) Format Support
JavaScript Object Notation (JSON) format is supported for SPARQL query responses.
JSON data format is simple, compact, and well suited for JavaScript programs.

For example, assume the following Java code snippet, which calls the
ResultSetFormatter.outputAsJSON method:

Oracle oracle = new Oracle(jdbcUrl, user, password);
 
GraphOracleSem graph = new GraphOracleSem(oracle, modelName);
ModelOracleSem model = new ModelOracleSem(graph);
 
graph.add(new Triple(
                   Node.createURI("http://ds1"),
                   Node.createURI("http://dp1"),
                   Node.createURI("http://do1")
                   )
         );
 
graph.add(new Triple(
                   Node.createURI("http://ds2"),
                   Node.createURI("http://dp2"),
                   Node.createURI("http://do2")
                   )
         );
graph.commitTransaction();
 
Query q = QueryFactory.create("select ?s ?p ?o where {?s ?p ?o}",
                              Syntax.syntaxARQ);
QueryExecution qexec = QueryExecutionFactory.create(q, model);
 
ResultSet results = qexec.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results);

The JSON output is as follows:

{
  "head": {
    "vars": [ "s" , "p" , "o" ]
  } ,
  "results": {
    "bindings": [
      {
        "s": { "type": "uri" , "value": "http://ds1" } ,
        "p": { "type": "uri" , "value": "http://dp1" } ,
        "o": { "type": "uri" , "value": "http://do1" }
      } ,
      {
        "s": { "type": "uri" , "value": "http://ds2" } ,
        "p": { "type": "uri" , "value": "http://dp2" } ,
        "o": { "type": "uri" , "value": "http://do2" }
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      }
    ]
  }
}

The preceding example can be changed as follows to query a remote SPARQL
endpoint instead of directly against an Oracle database. (If the remote SPARQL
endpoint is outside a firewall, then the HTTP Proxy probably needs to be set.)

Query q = QueryFactory.create("select ?s ?p ?o where {?s ?p ?o}",
                              Syntax.syntaxARQ);
QueryExecution qe = QueryExecutionFactory.sparqlService(sparqlURL, q);
 
ResultSet results = qexec.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results);

To extend the first example in this section to named graphs, the following code snippet
adds two quads to the same Oracle model, executes a named graph-based SPARQL
query, and serializes the query output into JSON format:

DatasetGraphOracleSem dsgos = DatasetGraphOracleSem.createFrom(graph);
graph.close();
 
dsgos.add(new Quad(Node.createURI("http://g1"),
                   Node.createURI("http://s1"),
                   Node.createURI("http://p1"),
                   Node.createURI("http://o1")
                   )
         );
dsgos.add(new Quad(Node.createURI("http://g2"),
                   Node.createURI("http://s2"),
                   Node.createURI("http://p2"),
                   Node.createURI("http://o2")
                   )
         );
 
Query q1 = QueryFactory.create(
  "select ?g ?s ?p ?o where { GRAPH ?g {?s ?p ?o} }");
 
QueryExecution qexec1 = QueryExecutionFactory.create(q1,
    DatasetImpl.wrap(dsgos));
 
ResultSet results1 = qexec1.execSelect();
ResultSetFormatter.outputAsJSON(System.out, results1);
 
dsgos.close();
oracle.dispose();

The JSON output is as follows:

{
  "head": {
    "vars": [ "g" , "s" , "p" , "o" ]
  } ,
  "results": {
    "bindings": [
      {
        "g": { "type": "uri" , "value": "http://g1" } ,
        "s": { "type": "uri" , "value": "http://s1" } ,
        "p": { "type": "uri" , "value": "http://p1" } ,
        "o": { "type": "uri" , "value": "http://o1" }
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      } ,
      {
        "g": { "type": "uri" , "value": "http://g2" } ,
        "s": { "type": "uri" , "value": "http://s2" } ,
        "p": { "type": "uri" , "value": "http://p2" } ,
        "o": { "type": "uri" , "value": "http://o2" }
      }
    ]
  }
}

You can also get a JSON response through HTTP against a Joseki-based SPARQL
endpoint, as in the following example. Normally, when executing a SPARQL query
against a SPARQL Web service endpoint, the Accept request-head field is set to be
application/sparql-results+xml. For JSON output format, replace the Accept
request-head field with application/sparql-results+json.

http://hostname:7001/joseki/oracle?query=<URL_ENCODED_SPARQL_QUERY>&output=json

6.17 Other Recommendations and Guidelines
This section contains various recommendations and other information related to
SPARQL queries.

• BOUND or !BOUND Instead of EXISTS or NOT EXISTS

• SPARQL 1.1 SELECT Expressions

• Syntax Involving Bnodes (Blank Nodes)

• Limit in the SERVICE Clause

• OracleGraphWrapperForOntModel Class for Better Performance

6.17.1 BOUND or !BOUND Instead of EXISTS or NOT EXISTS
For better performance, use BOUND or !BOUND instead of EXISTS or NOT EXISTS.

6.17.2 SPARQL 1.1 SELECT Expressions
You can use SPARQL 1.1 SELECT expressions without any significant performance
overhead, even if the function is not currently supported within Oracle Database.
Examples include the following:

-- Query using MD5 and SHA1 functions
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX xsd:  <http://www.w3.org/2001/XMLSchema#>
PREFIX eg:   <http://biometrics.example/ns#>
SELECT ?name (md5(?name) as ?name_in_md5) (sha1(?email) as ?sha1) 
WHERE 
{ 
  ?x foaf:name  ?name ; eg:email ?email .
}

-- Query using CONCAT function
PREFIX foaf:   <http://xmlns.com/foaf/0.1/>
SELECT ( CONCAT(?G, " ", ?S) AS ?name )
WHERE  
{ 
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  ?P foaf:givenName ?G ; foaf:surname ?S 
}

6.17.3 Syntax Involving Bnodes (Blank Nodes)
Syntax involving bnodes can be used freely in query patterns. For example, the
following bnode-related syntax is supported at the parser level, so each is equivalent
to its full triple-query-pattern-based version.

:x :q [ :p "v" ] .
 
(1 ?x 3 4) :p "w" .
 
(1 [:p :q] ( 2 ) ) .

6.17.4 Limit in the SERVICE Clause
When writing a SPARQL 1.1 federated query, you can set a limit on returned rows in
the subquery inside the SERVICE clause. This can effectively constrain the amount of
data to be transported between the local repository and the remote SPARQL endpoint.

For example, the following query specifies limit 100 in the subquery in the SERVICE
clause:

PREFIX : <http://example.com/>
SELECT ?s ?o 
 WHERE 
     { 
       ?s :name "CA"  
       SERVICE <http://REMOTE_SPARQL_ENDPOINT_HERE>
          {
             select ?s  ?o 
                 {?s :info ?o} 
              limit 100 
           } 
     }

6.17.5 OracleGraphWrapperForOntModel Class for Better
Performance

The Jena OntModel class lets you create, modify, and analyze an ontology stored in a
Jena model. However, the OntModel implementation is not optimized for semantic data
stored in a database. This results in suboptimal performance when using OntModel
with an Oracle model. Therefore, the class OracleGraphWrapperForOntModel has
been created to alleviate this performance issue.

The OracleGraphWrapperForOntModel class implements the Jena Graph interface and
represents a graph backed by an Oracle RDF/OWL model that is meant for use with
the Jena OntModel API. The OracleGraphWrapperForOntModel class uses two
semantic stores in a hybrid approach for persisting changes and responding to
queries. Both semantic stores contain the same data, but one resides in memory while
the other resides in the Oracle database.

When queried through OntModel, the OracleGraphWrapperForOntModel graph runs the
queries against the in-memory store to improve performance. However, the
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OracleGraphWrapperForOntModel class persists changes made through OntModel,
such as adding or removing classes, by applying changes to both stores.

Due to its hybrid approach, an OracleGraphWrapperForOntModel graph requires that
sufficient memory be allocated to the JVM to store a copy of the ontology in memory.
In internal experiments, it was found that an ontology with approximately 3 million
triples requires 6 or more GB of physical memory.

Example 6-15    Using OntModel with Ontology Stored in Oracle Database

Example 6-15 shows how to use the OntModel APIs with an existing ontology stored in
an Oracle model.

// Set up connection to Oracle semantic store and the Oracle model
// containing the ontology
Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
GraphOracleSem oracleGraph = new GraphOracleSem(oracle, szModelName);
 
// Create a new hybrid graph using the oracle graph to persist
// changes.  This method will copy all the data from the oracle graph
// into an in-memory graph, which may significantly increase JVM memory
// usage.
Graph hybridGraph = OracleGraphWrapperForOntModel.getInstance(oracleGraph);
 
// Build a model around the hybrid graph and wrap the model with Jena's
// OntModel
Model model = ModelFactory.createModelForGraph(hybridGraph);
OntModel ontModel = ModelFactory.createOntologyModel(ontModelSpec, model);
 
// Perform operations on the ontology
OntClass personClass = ontModel.createClass("<http://someuri/person>");
ontModel.createIndividual(personClass);
 
// Close resources (will also close oracleGraph)!
hybridGraph.close();
ontModel.close();

Note that any OntModel object created using OracleGraphWrapperForOntModel will not
reflect changes made to the underlying Oracle model by another process, through a
separate OntModel, or through a separate Oracle graph referencing the same
underlying model. All changes to an ontology should go through a single OntModel
object and its underlying OracleGraphWrapperForOntModel graph until the model or
graph have been closed.

Example 6-16    Using a Custom In-Memory Graph

If the default in-memory semantic store used by OracleGraphWrapperForOntModel is
not sufficient for an ontology and system, the class provides an interface for specifying
a custom graph to use as the in-memory store. Example 6-16 shows how to create an
OracleGraphWrapperForOntModel that uses a custom in-memory graph to answer
queries from OntModel.

// Set up connection to Oracle semantic store and the Oracle model
// containing the ontology
Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
GraphOracleSem oracleGraph = new GraphOracleSem(oracle, szModelName);
 
// Create a custom in-memory graph to use instead of the default
// Jena in-memory graph for quickly answering OntModel queries.
// Note that this graph does not *need* to be in-memory, but in-memory
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// is preferred.
GraphBase queryGraph = new CustomInMemoryGraphImpl();
 
// Create a new hybrid graph using the oracle graph to persist
// changes and the custom in-memory graph to answer queries. 
// Also set the degree of parallelism to use when copying data from
// the oracle graph to the querying graph.
int degreeOfParallelism = 4;
Graph hybridGraph = OracleGraphWrapperForOntModel.getInstance(oracleGraph, 
queryGraph, degreeOfParallelism);
 
// Build a model and wrap the model with Jena's OntModel
Model model = ModelFactory.createModelForGraph(hybridGraph);
OntModel ontModel = ModelFactory.createOntologyModel(ontModelSpec, model);
 
// Perform operations on the ontology
// ...
 
// Close resources (will close oracleGraph and queryGraph)!
hybridGraph.close();
ontModel.close();

6.18 Example Queries Using RDF Semantic Graph Support
for Apache Jena

This section includes example queries using the support for Apache Jena. Each
example is self-contained: it typically creates a model, creates triples, performs a
query that may involve inference, displays the result, and drops the model.

This section includes queries that do the following:

• Count asserted triples and asserted plus inferred triples in an example "university"
ontology, both by referencing the ontology by a URL and by bulk loading the
ontology from a local file

• Run several SPARQL queries using a "family" ontology, including features such as
LIMIT, OFFSET, TIMEOUT, DOP (degree of parallelism), ASK, DESCRIBE,
CONSTRUCT, GRAPH, ALLOW_DUP (duplicate triples with multiple models),
SPARUL (inserting data)

• Use the ARQ built-in function

• Use a SELECT cast query

• Instantiate Oracle Database using OracleConnection

• Use Oracle Database connection pooling

To run a query, you must do the following:

1. Include the code in a Java source file. The examples used in this section are
supplied in files in the examples directory of the support for Apache Jena
download.

2. Compile the Java source file. For example:

> javac -classpath ../jar/'*' Test.java
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Note:

The javac and java commands must each be on a single command line.

3. Run the compiled file. For example:

> java -classpath ./:../jar/'*'  Test jdbc:oracle:thin:@localhost:1521:orcl 
scott <password-for-scott> M1

• Test.java: Query Family Relationships

• Test6.java: Load OWL Ontology and Perform OWLPrime inference

• Test7.java: Bulk Load OWL Ontology and Perform OWLPrime inference

• Test8.java: SPARQL OPTIONAL Query

• Test9.java: SPARQL Query with LIMIT and OFFSET

• Test10.java: SPARQL Query with TIMEOUT and DOP

• Test11.java: Query Involving Named Graphs

• Test12.java: SPARQL ASK Query

• Test13.java: SPARQL DESCRIBE Query

• Test14.java: SPARQL CONSTRUCT Query

• Test15.java: Query Multiple Models and Specify "Allow Duplicates"

• Test16.java: SPARQL Update

• Test17.java: SPARQL Query with ARQ Built-In Functions

• Test18.java: SELECT Cast Query

• Test19.java: Instantiate Oracle Database Using OracleConnection

• Test20.java: Oracle Database Connection Pooling

6.18.1 Test.java: Query Family Relationships
Example 6-17    Query Family Relationships

Example 6-17 specifies that John is the father of Mary, and it selects and displays the
subject and object in each fatherOf relationship

import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.query.*;
public class Test {
 
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
      
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    Model model = ModelOracleSem.createOracleSemModel(
      oracle, szModelName);
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    model.getGraph().add(Triple.create(
          Node.createURI("http://example.com/John"),
          Node.createURI("http://example.com/fatherOf"),
          Node.createURI("http://example.com/Mary")));
    Query query = QueryFactory.create(
        "select ?f ?k WHERE {?f <http://example.com/fatherOf> ?k .}");
    QueryExecution qexec = QueryExecutionFactory.create(query, model);
    ResultSet results = qexec.execSelect();
    ResultSetFormatter.out(System.out, results, query);
    model.close();
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-17, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test.java
java -classpath ./:../jar/'*'  Test jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
 
---------------------------------------------------------
| f                         | k                         |
=========================================================
| <http://example.com/John> | <http://example.com/Mary> |
---------------------------------------------------------

6.18.2 Test6.java: Load OWL Ontology and Perform OWLPrime
inference

Example 6-18 loads an OWL ontology and performs OWLPrime inference. Note that
the OWL ontology is in RDF/XML format, and after it is loaded into Oracle it will be
serialized out in N-TRIPLE form. The example also queries for the number of asserted
and inferred triples.

The ontology in this example can be retrieved from http://swat.cse.lehigh.edu/
onto/univ-bench.owl, and it describes roles, resources, and relationships in a
university environment.

Example 6-18    Load OWL Ontology and Perform OWLPrime inference

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
public class Test6 {
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    Model model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
        
    // load UNIV ontology
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    InputStream in = FileManager.get().open("./univ-bench.owl" );
    model.read(in, null);
    OutputStream os = new FileOutputStream("./univ-bench.nt");
    model.write(os, "N-TRIPLE");
    os.close();
 
    String queryString =
      " SELECT ?subject ?prop ?object WHERE { ?subject ?prop ?object } ";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    try {
      int iTriplesCount = 0;
      ResultSet results = qexec.execSelect() ;
      for ( ; results.hasNext() ; ) {
        QuerySolution soln = results.nextSolution() ;
        iTriplesCount++;
      }
      System.out.println("Asserted  triples count: " + iTriplesCount);
    } 
    finally { 
      qexec.close() ; 
    }
    
    Attachment attachment = Attachment.createInstance(
        new String[] {}, "OWLPRIME",
        InferenceMaintenanceMode.NO_UPDATE, QueryOptions.DEFAULT);
 
    GraphOracleSem graph = new GraphOracleSem(oracle, szModelName, attachment);
    graph.analyze();
    graph.performInference();
 
    query = QueryFactory.create(queryString) ;
    qexec = QueryExecutionFactory.create(query,new ModelOracleSem(graph)) ;
 
    try {
      int iTriplesCount = 0;
      ResultSet results = qexec.execSelect() ;
      for ( ; results.hasNext() ; ) {
        QuerySolution soln = results.nextSolution() ;
        iTriplesCount++;
      }
      System.out.println("Asserted + Infered triples count: " + iTriplesCount);
    } 
    finally { 
      qexec.close() ; 
    }
    model.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);    
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-18, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test6.java
java -classpath ./:../jar/'*'  Test6 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
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Asserted  triples count: 293
Asserted + Infered triples count: 340

Note that this output reflects an older version of the LUBM ontology. The latest version
of the ontology has more triples.

6.18.3 Test7.java: Bulk Load OWL Ontology and Perform OWLPrime
inference

Example 6-19 loads the same OWL ontology as in Test6.java: Load OWL Ontology
and Perform OWLPrime inference, but stored in a local file using Bulk Loader.
Ontologies can also be loaded using an incremental and batch loader; these two
methods are also listed in the example for completeness.

Example 6-19    Bulk Load OWL Ontology and Perform OWLPrime inference

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.rdf.model.*;
import com.hp.hpl.jena.util.*;
import oracle.spatial.rdf.client.jena.*;
 
public class Test7 
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    // in memory Jena Model
    Model model = ModelFactory.createDefaultModel();
    InputStream is = FileManager.get().open("./univ-bench.owl");
    model.read(is, "", "RDF/XML");
    is.close();
 
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem modelDest = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
 
    GraphOracleSem g = modelDest.getGraph();
    g.dropApplicationTableIndex();
 
    int method = 2; // try bulk loader
    String tbs = "SYSAUX"; // can be customized
    if (method == 0) {
      System.out.println("start incremental");
      modelDest.add(model);
      System.out.println("end size " + modelDest.size());
    }
    else if (method == 1) {
      System.out.println("start batch load");
      g.getBulkUpdateHandler().addInBatch(
          GraphUtil.findAll(model.getGraph()), tbs);
      System.out.println("end size " + modelDest.size());
    }
    else {
      System.out.println("start bulk load");
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      g.getBulkUpdateHandler().addInBulk(
          GraphUtil.findAll(model.getGraph()), tbs);
      System.out.println("end size " + modelDest.size());
    }
    g.rebuildApplicationTableIndex();
 
    long lCount = g.getCount(Triple.ANY);
    System.out.println("Asserted  triples count: " + lCount);
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-19, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test7.java
java -classpath ./:../jar/'*'  Test7 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
start bulk load
end size 293
Asserted  triples count: 293

Note that this output reflects an older version of the LUBM ontology. The latest version
of the ontology has more triples.

6.18.4 Test8.java: SPARQL OPTIONAL Query
Example 6-20 shows a SPARQL OPTIONAL query. It inserts triples that postulate the
following:

• John is a parent of Mary.

• John is a parent of Jack.

• Mary is a parent of Jill.

It then finds parent-child relationships, optionally including any grandchild (gkid)
relationships.

Example 6-20    SPARQL OPTIONAL Query

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test8 
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
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szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(
          Node.createURI("u:John"), Node.createURI("u:parentOf"), 
Node.createURI("u:Mary")));
    g.add(Triple.create(
          Node.createURI("u:John"), Node.createURI("u:parentOf"), 
Node.createURI("u:Jack")));
    g.add(Triple.create(
          Node.createURI("u:Mary"), Node.createURI("u:parentOf"), 
Node.createURI("u:Jill")));
        
    String queryString =
  " SELECT ?s ?o ?gkid " +
  " WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?gkid }} ";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    try {
      int iMatchCount = 0;
      ResultSet results = qexec.execSelect() ;
      ResultSetFormatter.out(System.out, results, query);
    } 
    finally { 
      qexec.close() ; 
    }
    model.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-20, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test8.java
java -classpath ./:../jar/'*'  Test8 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
----------------------------------
| s        | o        | gkid     |
==================================
| <u:John> | <u:Mary> | <u:Jill> |
| <u:Mary> | <u:Jill> |          |
| <u:John> | <u:Jack> |          |
---------------------------------- 

6.18.5 Test9.java: SPARQL Query with LIMIT and OFFSET
Example 6-21 shows a SPARQL query with LIMIT and OFFSET. It inserts triples that
postulate the following:

• John is a parent of Mary.

• John is a parent of Jack.

• Mary is a parent of Jill.
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It then finds one parent-child relationship (LIMIT 1), skipping the first two parent-child
relationships encountered (OFFSET 2), and optionally includes any grandchild (gkid)
relationships for the one found.

Example 6-21    SPARQL Query with LIMIT and OFFSET

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
public class Test9 
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
                    Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),
                    Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Mary"), 
Node.createURI("u:parentOf"),              
                    Node.createURI("u:Jill")));
        
    String queryString =
      " SELECT ?s ?o ?gkid " +
      " WHERE { ?s <u:parentOf> ?o . OPTIONAL {?o <u:parentOf> ?gkid }} " +
      " LIMIT 1 OFFSET 2";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    int iMatchCount = 0;
    ResultSet results = qexec.execSelect() ;
    ResultSetFormatter.out(System.out, results, query);
    qexec.close() ; 
    model.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-21, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test9.java
java -classpath ./:../jar/'*'  Test9 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
------------------------------
| s        | o        | gkid |
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==============================
| <u:John> | <u:Jack> |      |
------------------------------ 

6.18.6 Test10.java: SPARQL Query with TIMEOUT and DOP
Example 6-22 shows the SPARQL query from Test9.java: SPARQL Query with LIMIT
and OFFSET with additional features, including a timeout setting (TIMEOUT=1, in
seconds) and parallel execution setting (DOP=4).

Example 6-22    SPARQL Query with TIMEOUT and DOP

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test10 {
  public static void main(String[] args) throws Exception  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                            Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Jill")));
    String queryString =
        " PREFIX ORACLE_SEM_FS_NS: <http://oracle.com/semtech#dop=4,timeout=1> " 
      + " SELECT ?s ?o ?gkid WHERE { ?s <u:parentOf> ?o . " 
      + " OPTIONAL {?o <u:parentOf> ?gkid }} "
      + " LIMIT 1 OFFSET 2";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    int iMatchCount = 0;
    ResultSet results = qexec.execSelect() ;
    ResultSetFormatter.out(System.out, results, query);
    qexec.close() ; 
    model.close();    
 
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-22, as well as the
expected output of the java command.
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javac -classpath ../jar/'*' Test10.java
java -classpath ./:../jar/'*'  Test10 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
------------------------------
| s        | o        | gkid |
==============================
| <u:John> | <u:Jack> |      |
------------------------------

6.18.7 Test11.java: Query Involving Named Graphs
Example 6-23 shows a query involving named graphs. It involves a default graph that
has information about named graph URIs and their publishers. The query finds graph
names, their publishers, and within each named graph finds the mailbox value using
the foaf:mbox predicate.

Example 6-23    Named Graph Based Query

import java.io.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.sparql.core.*;
import com.hp.hpl.jena.query.*;
import oracle.spatial.rdf.client.jena.*;
 
public class Test11
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    GraphOracleSem graph = new GraphOracleSem(oracle, szModelName);
    DatasetGraphOracleSem dataset = DatasetGraphOracleSem.createFrom(graph);
    
    // don't need the GraphOracleSem anymore, release resources
    graph.close();
    
    // add data to the default graph
    dataset.add(new Quad(
          Quad.defaultGraphIRI, // specifies default graph
          Node.createURI("http://example.org/bob"),
          Node.createURI("http://purl.org/dc/elements/1.1/publisher"),
          Node.createLiteral("Bob Hacker")));
    dataset.add(new Quad(
          Quad.defaultGraphIRI, // specifies default graph
          Node.createURI("http://example.org/alice"),
          Node.createURI("http://purl.org/dc/elements/1.1/publisher"),
          Node.createLiteral("alice Hacker")));
    
    // add data to the bob named graph
    dataset.add(new Quad(
          Node.createURI("http://example.org/bob"), // graph name
          Node.createURI("urn:bob"),
          Node.createURI("http://xmlns.com/foaf/0.1/name"),
          Node.createLiteral("Bob")));
    dataset.add(new Quad(
          Node.createURI("http://example.org/bob"), // graph name
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          Node.createURI("urn:bob"),
          Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
          Node.createURI("mailto:bob@example")));
    
    // add data to the alice named graph
    dataset.add(new Quad(
          Node.createURI("http://example.org/alice"), // graph name
          Node.createURI("urn:alice"),
          Node.createURI("http://xmlns.com/foaf/0.1/name"),
          Node.createLiteral("Alice")));
    dataset.add(new Quad(
          Node.createURI("http://example.org/alice"), // graph name
          Node.createURI("urn:alice"),
          Node.createURI("http://xmlns.com/foaf/0.1/mbox"),
          Node.createURI("mailto:alice@example")));
    
    DataSource ds = DatasetFactory.create(dataset);
    
    String queryString =  
          " PREFIX foaf: <http://xmlns.com/foaf/0.1/> "
        + " PREFIX dc: <http://purl.org/dc/elements/1.1/> "
        + " SELECT ?who ?graph ?mbox "
        + " FROM NAMED <http://example.org/alice> "
        + " FROM NAMED <http://example.org/bob> "
        + " WHERE "
        + " { " 
        + "    ?graph dc:publisher ?who . "
        + "    GRAPH ?graph { ?x foaf:mbox ?mbox } "
        + " } ";
    
    Query query = QueryFactory.create(queryString);
    QueryExecution qexec = QueryExecutionFactory.create(query, ds);
    
    ResultSet results = qexec.execSelect();
    ResultSetFormatter.out(System.out, results, query);
    
    qexec.close();
    dataset.close();
    
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-23, as well as the
expected output of the java command.

javac -classpath ./:./jena-2.6.4.jar:./sdordfclient.jar:./ojdbc6.jar:./slf4j-
api-1.5.8.jar:./slf4j-log4j12-1.5.8.jar:./arq-2.8.8.jar:./xercesImpl-2.7.1.jar 
Test11.java
java -classpath ./:../jar/'*'  Test11 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
------------------------------------------------------------------------
| who            | graph                      | mbox                   |
========================================================================
| "alice Hacker" | <http://example.org/alice> | <mailto:alice@example> |
| "Bob Hacker"   | <http://example.org/bob>   | <mailto:bob@example>   |
------------------------------------------------------------------------ 
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6.18.8 Test12.java: SPARQL ASK Query
Example 6-24 shows a SPARQL ASK query. It inserts a triple that postulates that John
is a parent of Mary. It then finds whether John is a parent of Mary.

Example 6-24    SPARQL ASK Query

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
public class Test12
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
          szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Mary")));
    String queryString = " ASK { <u:John> <u:parentOf> <u:Mary> } ";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
    boolean b = qexec.execAsk();
    System.out.println("ask result = " + ((b)?"TRUE":"FALSE"));
    qexec.close() ; 
    
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-24, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test12.java
java -classpath ./:../jar/'*'  Test12 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
ask result = TRUE

6.18.9 Test13.java: SPARQL DESCRIBE Query
Example 6-25 shows a SPARQL DESCRIBE query. It inserts triples that postulate the
following:

• John is a parent of Mary.

• John is a parent of Jack.
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• Amy is a parent of Jack.

It then finds all relationships that involve any parents of Jack.

Example 6-25    SPARQL DESCRIBE Query

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test13
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                    Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Amy"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Jack")));
    String queryString = " DESCRIBE ?x WHERE {?x <u:parentOf> <u:Jack>}";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
    Model m = qexec.execDescribe();
    System.out.println("describe result = " + m.toString());
 
    qexec.close() ; 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-25, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test13.java
java -classpath ./:../jar/'*'  Test13 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
describe result = <ModelCom   {u:Amy @u:parentOf u:Jack; 
     u:John @u:parentOf u:Jack; u:John @u:parentOf u:Mary} |  [u:Amy, u:parentOf, 
u:Jack] [u:John, u:parentOf,
       u:Jack] [u:John, u:parentOf, u:Mary]>

6.18.10 Test14.java: SPARQL CONSTRUCT Query
Example 6-26 shows a SPARQL CONSTRUCT query. It inserts triples that postulate
the following:
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• John is a parent of Mary.

• John is a parent of Jack.

• Amy is a parent of Jack.

• Each parent loves all of his or her children.

It then constructs an RDF graph with information about who loves whom.

Example 6-26    SPARQL CONSTRUCT Query

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test14
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Amy"), Node.createURI("u:parentOf"), 
 Node.createURI("u:Jack")));
    String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";
 
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
    Model m = qexec.execConstruct();
    System.out.println("Construct result = " + m.toString());
 
    qexec.close() ; 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-26, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test14.java
java -classpath ./:../jar/'*'  Test14 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
Construct result = <ModelCom   {u:Amy @u:loves u:Jack; 
  u:John @u:loves u:Jack; u:John @u:loves u:Mary} |  [u:Amy, u:loves, u:Jack] 
[u:John, u:loves,
    u:Jack] [u:John, u:loves, u:Mary]>
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6.18.11 Test15.java: Query Multiple Models and Specify "Allow
Duplicates"

Example 6-27 queries multiple models and uses the "allow duplicates" option. It inserts
triples that postulate the following:

• John is a parent of Jack (in Model 1).

• Mary is a parent of Jack (in Model 2).

• Each parent loves all of his or her children.

It then finds out who loves whom. It searches both models and allows for the
possibility of duplicate triples in the models (although there are no duplicates in this
example).

Example 6-27    Query Multiple Models and Specify "Allow Duplicates"

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
 
public class Test15
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName1 = args[3];
    String szModelName2 = args[4];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model1 = ModelOracleSem.createOracleSemModel(oracle, 
szModelName1);
    model1.getGraph().add(Triple.create(Node.createURI("u:John"), 
                     Node.createURI("u:parentOf"), Node.createURI("u:Jack")));
    model1.close();
 
    ModelOracleSem model2 = ModelOracleSem.createOracleSemModel(oracle, 
szModelName2);
    model2.getGraph().add(Triple.create(Node.createURI("u:Mary"), 
                     Node.createURI("u:parentOf"), Node.createURI("u:Jack")));
    model2.close();
 
    String[] modelNamesList = {szModelName2};
    String[] rulebasesList  = {};
    Attachment attachment = Attachment.createInstance(modelNamesList, rulebasesList, 
              InferenceMaintenanceMode.NO_UPDATE,
              QueryOptions.ALLOW_QUERY_VALID_AND_DUP);
 
    GraphOracleSem graph = new GraphOracleSem(oracle, szModelName1, attachment);
    ModelOracleSem model = new ModelOracleSem(graph);
 
    String queryString = " CONSTRUCT { ?s <u:loves> ?o } WHERE {?s <u:parentOf> ?o}";
    Query query = QueryFactory.create(queryString) ;
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    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
    Model m = qexec.execConstruct();
    System.out.println("Construct result = " + m.toString());
 
    qexec.close() ; 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName1);
    OracleUtils.dropSemanticModel(oracle, szModelName2);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-27, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test15.java
java -classpath ./:../jar/'*'  Test15 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1 M2
Construct result = <ModelCom   {u:Mary @u:loves u:Jack; u:John @u:loves u:Jack} |  
[u:Mary, u:loves, u:Jack] [u:John, u:loves, u:Jack]>

6.18.12 Test16.java: SPARQL Update
Example 6-28 inserts two triples into a model.

Example 6-28    SPARQL Update

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
 
public class Test16
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
    String insertString =  
      " PREFIX dc: <http://purl.org/dc/elements/1.1/> "         + 
      " INSERT DATA "                                           +
      " { <http://example/book3> dc:title    \"A new book\" ; " +
      "                         dc:creator  \"A.N.Other\" . "   + 
      " }   ";
 
    UpdateAction.parseExecute(insertString,  model);
    ExtendedIterator ei = GraphUtil.findAll(g);
    while (ei.hasNext()) {
      System.out.println("Triple " + ei.next().toString());
    }
    model.close();    
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    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-28, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test16.java
java -classpath ./:../jar/'*'  Test16 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
Triple http://example/book3 @dc:title "A new book"
Triple http://example/book3 @dc:creator "A.N.Other"

6.18.13 Test17.java: SPARQL Query with ARQ Built-In Functions
Example 6-29 inserts data about two books, and it displays the book titles in all
uppercase characters and the length of each title string.

Example 6-29    SPARQL Query with ARQ Built-In Functions

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
 
public class Test17 {
  public static void main(String[] args) throws Exception  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, szModelName);
    GraphOracleSem g = model.getGraph();
    String insertString =  
      " PREFIX dc: <http://purl.org/dc/elements/1.1/> "         + 
      " INSERT DATA "                                           +
      " { <http://example/book3> dc:title    \"A new book\" ; " +
      "                         dc:creator  \"A.N.Other\" . "   + 
      "   <http://example/book4> dc:title    \"Semantic Web Rocks\" ; " +
      "                         dc:creator  \"TB\" . "   + 
      " }   ";
 
    UpdateAction.parseExecute(insertString,  model);
    String queryString = "PREFIX  dc:   <http://purl.org/dc/elements/1.1/> " +
      " PREFIX  fn: <http://www.w3.org/2005/xpath-functions#> " + 
      " SELECT ?subject (fn:upper-case(?object) as ?object1)  " + 
      "                 (fn:string-length(?object) as ?strlen) " + 
      " WHERE { ?subject dc:title ?object } " 
      ;
    Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
    QueryExecution qexec = QueryExecutionFactory.create(query, model);
    ResultSet results = qexec.execSelect();
    ResultSetFormatter.out(System.out, results, query);
    model.close();    
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    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-29, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test17.java
java -classpath ./:../jar/'*'  Test17 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
----------------------------------------------------------
| subject                | object1              | strlen |
==========================================================
| <http://example/book3> | "A NEW BOOK"         | 10     |
| <http://example/book4> | "SEMANTIC WEB ROCKS" | 18     |
----------------------------------------------------------

6.18.14 Test18.java: SELECT Cast Query
Example 6-30 "converts" two Fahrenheit temperatures (18.1 and 32.0) to Celsius
temperatures.

Example 6-30    SELECT Cast Query

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import oracle.spatial.rdf.client.jena.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
 
public class Test18 {
  public static void main(String[] args) throws Exception  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
    
    Oracle oracle = new Oracle(szJdbcURL, szUser, szPasswd);
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
    GraphOracleSem g = model.getGraph();
    String insertString =  
      " PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> " +
      " INSERT DATA "                                     +
      " { <u:Object1> <u:temp>    \"18.1\"^^xsd:float ; " +
      "               <u:name>    \"Foo... \" . "         + 
      "   <u:Object2> <u:temp>    \"32.0\"^^xsd:float ; " +
      "               <u:name>    \"Bar... \" . "         + 
      " }   ";
 
    UpdateAction.parseExecute(insertString,  model);
    String queryString = 
      " PREFIX  fn: <http://www.w3.org/2005/xpath-functions#> " + 
      " SELECT ?subject ((?temp - 32.0)*5/9 as ?celsius_temp) " +
      "WHERE { ?subject <u:temp> ?temp } " 
      ;
    Query query = QueryFactory.create(queryString, Syntax.syntaxARQ);
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    QueryExecution qexec = QueryExecutionFactory.create(query, model);
    ResultSet results = qexec.execSelect();
    ResultSetFormatter.out(System.out, results, query);
 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-30, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test18.java
java -classpath ./:../jar/'*'  Test18 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
------------------------------------------------------------------------
| subject     | celsius_temp                                           |
========================================================================
| <u:Object1> | "-7.7222223"^^<http://www.w3.org/2001/XMLSchema#float> |
| <u:Object2> | "0.0"^^<http://www.w3.org/2001/XMLSchema#float>        |
------------------------------------------------------------------------

6.18.15 Test19.java: Instantiate Oracle Database Using
OracleConnection

Example 6-31 shows a different way to instantiate an Oracle object using a given
OracleConnection object. (In a J2EE Web application, users can normally get an
OracleConnection object from a J2EE data source.)

Example 6-31    Instantiate Oracle Database Using OracleConnection

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.*;
    
public class Test19 {
  public static void main(String[] args) throws Exception {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
 
    OracleDataSource ds = new OracleDataSource();
    ds.setURL(szJdbcURL);
    ds.setUser(szUser);
    ds.setPassword(szPasswd);
    OracleConnection conn = (OracleConnection) ds.getConnection();
    Oracle oracle = new Oracle(conn);
 
    ModelOracleSem model = ModelOracleSem.createOracleSemModel(oracle, 
szModelName);
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    GraphOracleSem g = model.getGraph();
 
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Mary")));
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"),   
                        Node.createURI("u:Jack")));
    g.add(Triple.create(Node.createURI("u:Mary"), Node.createURI("u:parentOf"), 
         Node.createURI("u:Jill")));
    String queryString =
       " SELECT ?s ?o  WHERE { ?s <u:parentOf> ?o .} ";
    Query query = QueryFactory.create(queryString) ;
    QueryExecution qexec = QueryExecutionFactory.create(query, model) ;
 
    ResultSet results = qexec.execSelect() ;
    ResultSetFormatter.out(System.out, results, query);
    qexec.close() ; 
    model.close();    
    OracleUtils.dropSemanticModel(oracle, szModelName);
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-31, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test19.java
java -classpath ./:../jar/'*'  Test19 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
-----------------------
| s        | o        |
=======================
| <u:John> | <u:Mary> |
| <u:John> | <u:Jack> |
| <u:Mary> | <u:Jill> |
-----------------------

6.18.16 Test20.java: Oracle Database Connection Pooling
Example 6-32 uses Oracle Database connection pooling.

Example 6-32    Oracle Database Connection Pooling

import java.io.*;
import com.hp.hpl.jena.query.*;
import com.hp.hpl.jena.rdf.model.Model;
import com.hp.hpl.jena.util.FileManager;
import com.hp.hpl.jena.util.iterator.*;
import com.hp.hpl.jena.graph.*;
import com.hp.hpl.jena.update.*;
import oracle.spatial.rdf.client.jena.*;
import oracle.jdbc.pool.*;
import oracle.jdbc.*;
 
public class Test20
{
  public static void main(String[] args) throws Exception
  {
    String szJdbcURL = args[0];
    String szUser    = args[1];
    String szPasswd  = args[2];
    String szModelName = args[3];
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    // test with connection properties (taken from some example)
    java.util.Properties prop = new java.util.Properties();
    prop.setProperty("MinLimit", "2");     // the cache size is 2 at least 
    prop.setProperty("MaxLimit", "10");
    prop.setProperty("InitialLimit", "2"); // create 2 connections at startup
    prop.setProperty("InactivityTimeout", "1800");    //  seconds
    prop.setProperty("AbandonedConnectionTimeout", "900");  //  seconds
    prop.setProperty("MaxStatementsLimit", "10");
    prop.setProperty("PropertyCheckInterval", "60"); // seconds
 
    System.out.println("Creating OraclePool");
    OraclePool op = new OraclePool(szJdbcURL, szUser, szPasswd, prop, 
               "OracleSemConnPool");
    System.out.println("Done creating OraclePool");
 
    // grab an Oracle and do something with it
    System.out.println("Getting an Oracle from OraclePool");
    Oracle oracle = op.getOracle();
    System.out.println("Done");
    System.out.println("Is logical connection:" +
        oracle.getConnection().isLogicalConnection());
    GraphOracleSem g = new GraphOracleSem(oracle, szModelName);
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Mary")));
    g.close();
    // return the Oracle back to the pool
    oracle.dispose();
    
    // grab another Oracle and do something else 
    System.out.println("Getting an Oracle from OraclePool");
    oracle = op.getOracle();
    System.out.println("Done");
    System.out.println("Is logical connection:" +
        oracle.getConnection().isLogicalConnection());
    g = new GraphOracleSem(oracle, szModelName);
    g.add(Triple.create(Node.createURI("u:John"), Node.createURI("u:parentOf"), 
                        Node.createURI("u:Jack")));
    g.close();
    
    OracleUtils.dropSemanticModel(oracle, szModelName); 
    
    // return the Oracle back to the pool
    oracle.dispose();
  }
}

The following are the commands to compile and run Example 6-32, as well as the
expected output of the java command.

javac -classpath ../jar/'*' Test20.java
java -classpath ./:../jar/'*'  Test20 jdbc:oracle:thin:@localhost:1521:orcl scott 
<password-for-scott> M1
Creating OraclePool
Done creating OraclePool
Getting an Oracle from OraclePool
Done
Is logical connection:true
Getting an Oracle from OraclePool
Done
Is logical connection:true
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6.19 SPARQL Gateway and Semantic Data
SPARQL Gateway is a J2EE web application that is included with the support for
Apache Jena. It is designed to make semantic data (RDF/OWL/SKOS) easily available
to applications that operate on relational and XML data, including Oracle Business
Intelligence Enterprise Edition (OBIEE) 11g.

• SPARQL Gateway Features and Benefits Overview

• Installing and Configuring SPARQL Gateway

• Using SPARQL Gateway with Semantic Data

• Customizing the Default XSLT File

• Using the SPARQL Gateway Java API

• Using the SPARQL Gateway Graphical Web Interface

• Using SPARQL Gateway as an XML Data Source to OBIEE

6.19.1 SPARQL Gateway Features and Benefits Overview
SPARQL Gateway handles several challenges in exposing semantic data to a non-
semantic application:

• RDF syntax, SPARQL query syntax and SPARQL protocol must be understood.

• The SPARQL query response syntax must be understood.

• A transformation must convert a SPARQL query response to something that the
application can consume.

To address these challenges, SPARQL Gateway manages SPARQL queries and
XSLT operations, executes SPARQL queries against any arbitrary standard-compliant
SPARQL endpoints, and performs necessary XSL transformations before passing the
response back to applications. Applications can then consume semantic data as if it is
coming from an existing data source.

Different triple stores or quad stores often have different capabilities. For example, the
SPARQL endpoint supported by Oracle Database, with RDF Semantic Graph support
for Apache Jena and with Joseki, allows parallel execution, query timeout, dynamic
sampling, result cache, and other features, in addition to the core function of parsing
and answering a given standard-compliant SPARQL query. However, these features
may not be available from another given semantic data store.

With the RDF Semantic Graph SPARQL Gateway, you get certain highly desirable
capabilities, such as the ability to set a timeout on a long running query and the ability
to get partial results from a complex query in a given amount of time. Waiting
indefinitely for a query to finish is a challenge for end users, as is an application with a
response time constraint. SPARQL Gateway provides both timeout and best effort
query functions on top of a SPARQL endpoint. This effectively removes some
uncertainty from consuming semantic data through SPARQL query executions. (See 
Specifying a Timeout Value and Specifying Best Effort Query Execution.)
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6.19.2 Installing and Configuring SPARQL Gateway
To install and configure SPARQL Gateway, follow these major steps, which are
explained in their own topics:

1. Download the RDF Semantic Graph Support for Apache Jena .zip File (if Not
Already Done)

2. Deploy SPARQL Gateway in WebLogic Server

3. Modify Proxy Settings_ if Necessary

4. Configure the OracleSGDS Data Source_ if Necessary

5. Add and Configure the SparqlGatewayAdminGroup Group_ if Desired

• Download the RDF Semantic Graph Support for Apache Jena .zip File (if Not
Already Done)

• Deploy SPARQL Gateway in WebLogic Server

• Modify Proxy Settings, if Necessary

• Configure the OracleSGDS Data Source, if Necessary

• Add and Configure the SparqlGatewayAdminGroup Group, if Desired

6.19.2.1 Download the RDF Semantic Graph Support for Apache Jena .zip File
(if Not Already Done)

If you have not already done so, download the RDF Semantic Graph support for
Apache Jena file from the RDF Semantic Graph page and unzip it into a temporary
directory, as explained in Setting Up the Software Environment.

Note that the SPARQL Gateway Java class implementations are embedded in
sdordfclient.jar (see Using the SPARQL Gateway Java API).

6.19.2.2 Deploy SPARQL Gateway in WebLogic Server
Deploy SPARQL Gateway in Oracle WebLogic Server, as follows:

1. Go to the autodeploy directory of WebLogic Server, and copy over the prebuilt
sparqlgateway.war file as follows. (For information about auto-deploying
applications in development domains, see: http://docs.oracle.com/cd/
E11035_01/wls100/deployment/autodeploy.html)

cp -rf  /tmp/jena_adapter/sparqlgateway_web_app/sparqlgateway.war  <domain_name>/
autodeploy/sparqgateway.war
  

In this example, <domain_name> is the name of a WebLogic Server domain.

You can customize the prebuilt application in the following ways:

• Modify the WEB-INF/web.xml file embedded in sparqlgateway_web_app/
sparqlgateway.war as needed. Be sure to specify appropriate values for the
sparql_gateway_repository_filedir and sparql_gateway_repository_url
parameters.
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• Add XSLT files or SPARQL query files to the top-level directory of
sparqlgateway_web_app/sparqlgateway.war, if necessary.

The following files are provided by Oracle in that directory: default.xslt,
noop.xslt, and qb1.sparql. The default.xslt file is intended mainly for
transforming SPARQL query responses (XML) to a format acceptable to
Oracle.

(These files are described in Storing SPARQL Queries and XSL
Transformations; using SPARQL Gateway with OBIEE is explained in Using
SPARQL Gateway as an XML Data Source to OBIEE.)

2. Verify your deployment by using your Web browser to connect to a URL in the
following format (assume that the Web application is deployed at port 7001):

http://<hostname>:7001/sparqlgateway

6.19.2.3 Modify Proxy Settings, if Necessary
If your SPARQL Gateway is behind a firewall and you want SPARQL Gateway to
communicate with SPARQL endpoints on the Internet as well as those inside the
firewall, you probably need to use the following JVM settings:

-Dhttp.proxyHost=<your_proxy_host>
-Dhttp.proxyPort=<your_proxy_port>
-Dhttp.nonProxyHosts=127.0.0.1|<hostname_1_for_sparql_endpoint_inside_firewall>|
<hostname_2_for_sparql_endpoint_inside_firewall>|...|
<hostname_n_for_sparql_endpoint_inside_firewall>

You can specify these settings in the startWebLogic.sh script.

6.19.2.4 Configure the OracleSGDS Data Source, if Necessary
If an Oracle database is used for storage of and access to SPARQL queries and XSL
transformations for SPARQL Gateway, then you must configure a data source named
OracleSGDS.

To create this data source, follow the instructions in Creating the Required Data
Source Using WebLogic Server; however, specify OracleSGDS as the data source
name instead of OracleSemDS.

If the OracleSGDS data source is configured and available, SPARQL Gateway servlet
will automatically create all the necessary tables and indexes upon initialization.

6.19.2.5 Add and Configure the SparqlGatewayAdminGroup Group, if Desired
The following JSP files in SPARQL Gateway can help you to view, edit, and update
SPARQL queries and XSL transformations that are stored in an Oracle database:

http://<host>:7001/sparqlgateway/admin/sparql.jsp
http://<host>:7001/sparqlgateway/admin/xslt.jsp

These files are protected by HTTP Basic Authentication. In WEB-INF/weblogic.xml, a
principal named SparqlGatewayAdminGroup is defined.

To be able to log in to either of these JSP pages, you must use the WebLogic Server
to add a group named SparqlGatewayAdminGroup, and create a new user or assign an
existing user to this group.
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6.19.3 Using SPARQL Gateway with Semantic Data
The primary interface for an application to interact with SPARQL Gateway is through a
URL with the following format:

http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>

In the preceding format:

• <SPARQL_ENDPOINT> specifies the ee parameter, which contains a URL
encoded form of a SPARQL endpoint.

For example, ee=http%3A%2F%2Fsparql.org%2Fbooks is the URL encoded string
for SPARQL endpoint http://sparql.org/books. It means that SPARQL queries
are to be executed against endpoint http://sparql.org/books.

• <SPARQL_QUERY> specifies either the SPARQL query, or the location of the
SPARQL query.

If it is feasible for an application to accept a very long URL, you can encode the
whole SPARQL query and set eq=<encoded_SPARQL_query> in the URL If it is not
feasible for an application to accept a very long URL, you can store the SPARQL
queries and make them available to SPARQL Gateway using one of the
approaches described in Storing SPARQL Queries and XSL Transformations.

• <XSLT> specifies either the XSL transformation, or the location of the XSL
transformation.

If it is feasible for an application to accept a very long URL, you can encode the
whole XSL transformation and set ex=<encoded_XSLT> in the URL If it is not
feasible for an application to accept a very long URL, you can store the XSL
transformations and make them available to SPARQL Gateway using one of the
approaches described in Storing SPARQL Queries and XSL Transformations.

• Storing SPARQL Queries and XSL Transformations

• Specifying a Timeout Value

• Specifying Best Effort Query Execution

• Specifying a Content Type Other Than text/xml

6.19.3.1 Storing SPARQL Queries and XSL Transformations
If it is not feasible for an application to accept a very long URL, you can specify the
location of the SPARQL query and the XSL transformation in the <SPARQL_QUERY>
and <XSLT> portions of the URL format described in Using SPARQL Gateway with
Semantic Data, using any of the following approaches:

• Store the SPARQL queries and XSL transformations in the SPARQL Gateway
Web application itself.

To do this, unpack the sparqlgateway.war file, and store the SPARQL queries
and XSL transformations in the top-level directory; then pack the
sparqlgateway.war file and redeploy it.

The sparqlgateway.war file includes the following example files: qb1.sparql
(SPARQL query) and default.xslt (XSL transformation).
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Tip:

Use the file extension .sparql for SPARQL query files, and the file
extension .xslt for XSL transformation files.

The syntax for specifying these files (using the provided example file names) is
wq=qb1.sparql for a SPARQL query file and wx=default.xslt for an XSL
transformation file.

If you want to customize the default XSL transformations, see the examples in 
Customizing the Default XSLT File.

If you specify wx=noop.xslt, XSL transformation is not performed and the
SPARQL response is returned "as is" to the client.

• Store the SPARQL queries and XSL transformations in a file system directory, and
make sure that the directory is accessible for the deployed SPARQL Gateway
Web application.

By default, the directory is set to /tmp, as shown in the following <init-param>
setting:

<init-param>
   <param-name>sparql_gateway_repository_filedir</param-name>
   <param-value>/tmp/</param-value>
</init-param>

It is recommended that you customize this directory before deploying the SPARQL
Gateway. To change the directory setting, edit the text in between the <param-
value> and </param-value> tags.

The following example specifies a SPARQL query file and an XSL transformation
file that are in the directory specified in the <init-param> element for
sparql_gateway_repository_filedir:

fq=qb1.sparql
fx=myxslt1.xslt

• Make the SPARQL queries and XSL transformations accessible from a website.

By default, the website directory is set to http://127.0.0.1/queries/, as shown
in the following <init-param> setting:

<init-param>
   <param-name>sparql_gateway_repository_url</param-name>
   <param-value>http://127.0.0.1/queries/</param-value>
</init-param>

Customize this directory before deploying the SPARQL Gateway. To change the
website setting, edit the text in between the <param-value> and </param-value>
tags.

The following example specifies a SPARQL query file and an XSL transformation
file that are in the URL specified in the <init-param> element for
sparql_gateway_repository_url.

uq=qb1.sparql
ux=myxslt1.xslt
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Internally, SPARQL Gateway computes the appropriate complete URL, fetches the
content, starts query execution, and applies the XSL transformation to the query
response XML.

• Store the SPARQL queries and XSL transformations in an Oracle database.

This approach requires that the J2EE data source OracleSGDS be defined. After
SPARQL Gateway retrieves a database connection from the OracleSGDS data
source, a SPARQL query is read from the database table
ORACLE_ORARDF_SG_QUERY using the integer ID provided.

The syntax for fetching a SPARQL query from an Oracle database is
dq=<integer-id>, and the syntax for fetching an XSL transformation from an
Oracle database is dx=<integer-id>.

Upon servlet initialization, the following tables are created automatically if they do
not already exist (you do not need to create them manually):

– ORACLE_ORARDF_SG_QUERY with a primary key of QID (integer type)

– ORACLE_ORARDF_SG_XSLT with a primary key of XID (integer type)

6.19.3.2 Specifying a Timeout Value
When you submit a potentially long-running query using the URL format described in 
Using SPARQL Gateway with Semantic Data, you can limit the execution time by
specifying a timeout value in milliseconds. For example, the following shows the URL
format and a timeout specification that the SPARQL query execution started from
SPARQL Gateway is to be ended after 1000 milliseconds (1 second):

http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&t=1000

If a query does not finish when timeout occurs, then an empty SPARQL response is
constructed by SPARQL Gateway.

Note that even if SPARQL Gateway times out a query execution at the HTTP
connection level, the query may still be running on the server side. The actual behavior
will be vendor-dependent.

6.19.3.3 Specifying Best Effort Query Execution

Note:

You can specify best effort query execution only if you also specify a timeout
value (described in Specifying a Timeout Value).

When you submit a potentially long-running query using the URL format described in 
Using SPARQL Gateway with Semantic Data, if you specify a timeout value, you can
also specify a "best effort" limitation on the query. For example, the following shows
the URL format with a timeout specification of 1000 milliseconds (1 second) and a best
effort specification (&b=t):

http://host:port/sparqlgateway/sg?<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&t=1000&b=t
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The web.xml file includes two parameter settings that affect the behavior of the best
effort option: sparql_gateway_besteffort_maxrounds and
sparql_gateway_besteffort_maxthreads. The following show the default definitions:

<init-param>
  <param-name>sparql_gateway_besteffort_maxrounds</param-name>
  <param-value>10</param-value>
</init-param>
 
<init-param>
  <param-name>sparql_gateway_besteffort_maxthreads</param-name>
  <param-value>3</param-value>
</init-param>

When a SPARQL SELECT query is executed in best effort style, a series of queries
will be executed with an increasing LIMIT value setting in the SPARQL query body.
(The core idea is based on the observation that a SPARQL query runs faster with a
smaller LIMIT setting.) SPARQL Gateway starts query execution with a "LIMIT 1"
setting. Ideally, this query can finish before the timeout is due. Assume that is the
case, the next query will have its LIMIT setting is increased, and subsequent queries
have higher limits. The maximum number of query executions is controlled by the
sparql_gateway_besteffort_maxrounds parameter.

If it is possible to run the series of queries in parallel, the
sparql_gateway_besteffort_maxthreads parameter controls the degree of
parallelism.

6.19.3.4 Specifying a Content Type Other Than text/xml
By default, SPARQL Gateway assumes that XSL transformations generate XML, and
so the default content type set for HTTP response is text/xml. However, if your
application requires a response format other than XML, you can specify the format in
an additional URL parameter (with syntax &rt=), using the following format:

http://host:port/sparqlgateway/sg?
<SPARQL_ENDPOINT>&<SPARQL_QUERY>&<XSLT>&rt=<content_type>

Note that <content_type> must be URL encoded.

6.19.4 Customizing the Default XSLT File
You can customize the default XSL transformation file (the one referenced using
wx=default.xslt). This section presents some examples of customizations.

The following example implements this namespace prefix replacement logic: if a
variable binding returns a URI that starts with http://purl.org/goodrelations/v1#,
that portion is replaced by gr:; and if a variable binding returns a URI that starts with
http://www.w3.org/2000/01/rdf-schema#, that portion is replaced by rdfs:.

<xsl:when test="starts-with(text(),'http://purl.org/goodrelations/v1#')">
   <xsl:value-of select="concat('gr:',substring-after(text(),'http://purl.org/
goodrelations/v1#'))"/>
</xsl:when>
...
<xsl:when test="starts-with(text(),'http://www.w3.org/2000/01/rdf-schema#')">
   <xsl:value-of select="concat('rdfs:',substring-after(text(),'http://www.w3.org/
2000/01/rdf-schema#'))"/>
</xsl:when>
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The following example implements logic to trim a leading http://localhost/ or a
leading http://127.0.0.1/.

<xsl:when test="starts-with(text(),'http://localhost/')">
  <xsl:value-of select="substring-after(text(),'http://localhost/')"/>
</xsl:when>
<xsl:when test="starts-with(text(),'http://127.0.0.1/')">
  <xsl:value-of select="substring-after(text(),'http://127.0.0.1/')"/>
</xsl:when>

6.19.5 Using the SPARQL Gateway Java API
In addition to a Web interface, the SPARQL Gateway administration service provides a
convenient Java application programming interface (API) for managing SPARQL
queries and their associated XSL transformations. The Java API is included in the
RDF Semantic Graph support for Apache Jena library, sdordfclient.jar.

Java API reference information is available in the javadoc_sparqlgateway.zip file that
is included in the SPARQL Gateway .zip file (described in Download the RDF
Semantic Graph Support for Apache Jena .zip File (if Not Already Done)).

The main entry point for this API is the
oracle.spatial.rdf.client.jena.SGDBHandler class (SPARQL Gateway Database
Handler), which provides the following static methods for managing queries and
transformations:

• deleteSparqlQuery(Connection, int)

• deleteXslt(Connection, int)

• insertSparqlQuery(Connection, int, String, String, boolean)

• insertXslt(Connection, int, String, String, boolean)

• getSparqlQuery(Connection, int, StringBuilder, StringBuilder)

• getXslt(Connection, int, StringBuilder, StringBuilder)

These methods manipulate and retrieve entries in the SPARQL Gateway associated
tables that are stored in an Oracle Database instance. To use these methods, the
necessary associated tables must already exist. If the tables do not exist, deploy the
SPARQL Gateway on a Web server and access a URL in the following format:

http://<host>:<port>/sparqlgateway/sg?

where <host> is the host name of the Web server and <port> is the listening port of the
Web server. Accessing this URL will automatically create the necessary tables if they
do not already exist.

Any changes made through the Java API affect the SPARQL Gateway Web service in
the same way as changes made through the administration Web interface. This
provides the flexibility to manage queries and transformations using the interface you
find most convenient.

Note that the insert methods provided by the Java API will not replace existing queries
or transformations stored in the tables. Attempting to replace an existing query or
transformation will fail. To replace a query or transformation, you must remove the
existing entry in the table using one of the delete methods, and then insert the new
query or transformation using one of the insert methods.
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The following examples demonstrate how to perform common management tasks
using the Java API. The examples assume a connection has already been established
to the underlying Oracle Database instance backing the SPARQL Gateway.

Example 6-33    Storing a SPARQL Query and an XSL Transformation

Example 6-33 adds a query and an XSL transformation to the database backing the
SPARQL Gateway. After the query and transformation are added, other programs can
use the query and transformation through the gateway by specifying the appropriate
query ID (qid) and XSL transformation ID (xid) in the request URL.

Note that Although Example 6-33 inserts both a query and transformation, the query
and transformation are not necessarily related and do not need to be used together
when accessing SPARQL Gateway. Any query in the database can be used with any
transformation in the database when submitting a request to SPARQL Gateway.

String query = "PREFIX ... SELECT ..."; // full SPARQL query text
String xslt  = "<?xml ...> ...";        // full XSLT transformation text
 
String queryDesc = "Conference attendee information"; // description of SPARQL query
String xsltDesc = "BIEE table widget transformation"; // description of XSLT 
transformation
 
int queryId = queryIdCounter++; // assign a unique ID to this query
int xsltId  = xsltIdCounter++;  // assign a unique ID to this transformation
 
// Inserting a query or transformation will fail if the table already contains
// an entry with the same ID.  Setting this boolean to true will ignore these
// exceptions (but the table will remain unchanged). Here we specify that we
// want an exception thrown if we encounter a duplicate ID.
boolean ignoreDupException = false;
 
// add the query
try {
  // Delete query if one already exists with this ID (this will not throw an
  // error if no such entry exists)
  SGDBHandler.deleteSparqlQuery( connection, queryId );
  SGDBHandler.insertSparqlQuery( connection, queryId, query, queryDesc, 
ignoreDupException );
} catch( SQLException sqle ) {
  // Handle exception
} catch( QueryException qe ) {
  // Handle query syntax exception
}
 
// add the XSLT
try {
  // Delete xslt if one already exists with this ID (this will not throw an
  // error if no such entry exists)
  SGDBHandler.deleteXslt( connection, xsltId );
  SGDBHandler.insertXslt( connection, xsltId, xslt, xsltDesc, ignoreDupException );
}  catch( SQLException sqle ) {
  // Handle database exception
} catch( TransformerConfigurationException tce ) {
  // Handle XSLT syntax exception
}

Example 6-34    Modifying a Query

Example 6-34 retrieves an existing query from the database, modifies it, then stores
the updated version of the query back in the database. These steps simulate editing a
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query and saving the changes. (Note that if the query does not exist, an exception is
thrown.)

StringBuilder query;
StringBuilder description;
 
// Populate these with the query text and description from the database
query = new StringBuilder( );
description = new StringBuilder( );
 
// Get the query from the database
try {
  SGDBHandler.getSparqlQuery( connection, queryId, query, description );
} catch( SQLException sqle ) {
  // Handle exception
  // NOTE: exception is thrown if query with specified ID does not exist
}
 
// The query and description should be populated now
 
// Modify the query 
String updatedQuery = query.toString( ).replaceAll("invite", "attendee");
 
// Insert the query back into the database
boolean ignoreDup = false;
try {
  // First must delete the old query
  SGDBHandler.deleteSparqlQuery( connection, queryId );
  // Now we can add
  SGDBHandler.insertSparqlQuery( connection, queryId, updatedQuery, 
description.toString( ), ignoreDup );
} catch( SQLException sqle ) {
  // Handle exception
} catch( QueryException qe ) {
  // Handle query syntax exception
}

Example 6-35    Retrieving and Printing an XSL Transformation

Example 6-35 retrieves an existing XSL transformation and prints it to standard output.
(Note that if the transformation does not exist, an exception is thrown.)

StringBuilder xslt;
StringBuilder description;
 
// Populate these with the XSLT text and description from the database
xslt = new StringBuilder( );
description = new StringBuilder( );
 
try {
  SGDBHandler.getXslt( connection, xsltId, xslt, description );
} catch( SQLException sqle ) {
  // Handle exception
  // NOTE: exception is thrown if transformation with specified ID does not exist
}
 
// Print it to standard output
System.out.printf( "XSLT description: %s\n", description.toString( ) );
System.out.printf( "XSLT body:\n%s\n", xslt.toString( ) );
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6.19.6 Using the SPARQL Gateway Graphical Web Interface
SPARQL Gateway provides several browser-based interfaces to help you test queries,
navigate semantic data, and manage SPQARQL query and XSLT files.

• Main Page (index.html)

• Navigation and Browsing Page (browse.jsp)

• XSLT Management Page (xslt.jsp)

• SPARQL Management Page (sparql.jsp)

6.19.6.1 Main Page (index.html)
http://<host>:<port>/sparqlgateway/index.html provides a simple interface for
executing SPARQL queries and then applying the transformations in the default.xslt
file to the response. Figure 6-2 shows this interface for executing a query.

Figure 6-2    Graphical Interface Main Page (index.html)

Enter or select a SPARQL Endpoint, specify the SPARQL SELECT Query Body,
and press Submit Query.

For example, if you specify http://dbpedia.org/sparql as the SPARQL endpoint
and use the SPARQL query body from Figure 6-2, the response will be similar to 
Figure 6-3. Note that the default transformations (in default.xslt) have been applied
to the XML output in this figure.
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Figure 6-3    SPARQL Query Main Page Response

6.19.6.2 Navigation and Browsing Page (browse.jsp)
http://<host>:<port>/sparqlgateway/browse.jsp provides navigation and browsing
capabilities for semantic data. It works against any standard compliant SPARQL
endpoint. Figure 6-4 shows this interface for executing a query.
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Figure 6-4    Graphical Interface Navigation and Browsing Page (browse.jsp)

Enter or select a SPARQL Endpoint, specify the SPARQL SELECT Query Body,
optionally specify a Timeout (ms) value in milliseconds and the Best Effort option,
and press Submit Query.

The SPARQL response is parsed and then presented in table form, as shown in 
Figure 6-5.

Figure 6-5    Browsing and Navigation Page: Response

In Figure 6-5, note that URIs are clickable to allow navigation, and that when users
move the cursor over a URI, tool tips are shown for the URIs which have been
shortened for readability (as in http://purl.org.dc/elements/1.1/title being
displayed as the tool tip for dc:title in the figure).

If you click the URI http://example.org/book/book5 in the output shown in 
Figure 6-5, a new SPARQL query is automatically generated and executed. This
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generated SPARQL query has three query patterns that use this particular URI as
subject, predicate, and object, as shown in Figure 6-6. Such a query can give you a
good idea about how this URI is used and how it is related to other resources in the
data set.

Figure 6-6    Query and Response from Clicking URI Link

When there are many matches of a query, the results are organized in pages and you
can click on any page. The page size by default is 50 results. To display more (or
fewer) than 50 rows per page in a response with the Browsing and Navigation Page
(browse.jsp), you can specify the &resultsPerPage parameter in the URL. For
example, to allow 100 rows per page, include the following in the URL:

&resultsPerPage=100

6.19.6.3 XSLT Management Page (xslt.jsp)
http://<host>:<port>/sparqlgateway/admin/xslt.jsp provides a simple XSLT
management interface. You can enter an XSLT ID (integer) and click Get XSLT to
retrieve both the Description and XSLT Body. You can modify the XSLT Body text and
then save the changes by clicking Save XSLT. Note that there is a previewer to help
you navigate among available XSLT definitions.

Figure 6-7 shows the XSLT Management Page.
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Figure 6-7    XSLT Management Page

6.19.6.4 SPARQL Management Page (sparql.jsp)
http://<host>:<port>/sparqlgateway/admin/xslt.jsp provides a simple SPARQL
management interface. You can enter a SPARQL ID (integer) and click Get SPARQL
to retrieve both the Description and SPARQL Body. You can modify the SPARQL
Body text and then save the changes by clicking Save SPARQL. Note that there is a
previewer to help you navigate among available SPARQL queries.

Figure 6-8 shows the SPARQL Management Page.
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Figure 6-8    SPARQL Management Page

6.19.7 Using SPARQL Gateway as an XML Data Source to OBIEE
This section explains how to create an XML Data source for Oracle Business
Intelligence Enterprise Edition (OBIEE), by integrating OBIEE with RDF using
SPARQL Gateway as a bridge. (The specific steps and illustrations reflect the Oracle
BI Administration Tool Version 11.1.1.3.0.100806.0408.000.)

1. Start the Oracle BI Administration Tool.

2. Click File, then Import Metadata. The first page of the Import Metadata wizard is
displayed, as shown in Figure 6-9.
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Figure 6-9    Import Metadata - Select Data Source

Connection Type: Select XML.

URL: URL for an application to interact with SPARQL Gateway, as explained in 
Using SPARQL Gateway with Semantic Data. You can also include the timeout
and best effort options.

Ignore the User Name and Password fields.

3. Click Next. The second page of the Import Metadata wizard is displayed, as
shown in Figure 6-10.

Chapter 6
SPARQL Gateway and Semantic Data

6-102



Figure 6-10    Import Metadata - Select Metadata Types

Select the desired metadata types to be imported. Be sure that Tables is included
in the selected types.

4. Click Next. The third page of the Import Metadata wizard is displayed, as shown in 
Figure 6-11.
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Figure 6-11    Import Metadata - Select Metadata Objects

In the Data Source View, expand the node that has the table icon, select the
column names (mapped from projected variables defined in the SPARQL SELECT
statement), and click the right-arrow (>) button to move the selected columns to
the Repository View.

5. Click Finish.

6. Complete the remaining steps for the usual BI Business Model work and Mapping
and Presentation definition work, which are not specific to SPARQL Gateway or
RDF data.

6.20 Deploying Joseki in Apache Tomcat or JBoss
If you choose not to deploy Joseki in Oracle WebLogic Server , you can deploy it in
Apache Tomcat or JBoss.

• Deploying Joseki in Apache Tomcat 6.0.29 or 7.0.42

• Deploying Joseki in JBoss 7.1.1

6.20.1 Deploying Joseki in Apache Tomcat 6.0.29 or 7.0.42
To deploy Joseki in Apache Tomcat 6.0.29 or 7.0.42, follow these steps.

1. Download and install Apache Tomcat 6.0.29 or 7.0.42.

The directory root for Apache Tomcat installation will be referred to in these
instructions as $CATALINA_HOME.
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2. Set up environment variables using the following as examples:

setenv JAVA_HOME< your_path_here>/jdk16/
setenv PATH <your_path_here>/jdk16/bin/:$PATH 
setenv CATALINA_HOME <your_path_here>/apache-tomcat-6.0.29 OR
setenv CATALINA_HOME <your_path_here>/apache-tomcat-7.0.42

3. Copy ojdbc6.jar into ${CATALINA_HOME}/lib.

4. Modify tomcat-users.xml so that it includes the following:

<tomcat-users> 
<role rolename="tomcat"/> 
<role rolename="role1"/> 
<user username="tomcat" password="<tomcat-password>" roles="tomcat,manager"/> 
<user username="both" password="<tomcat-password>" roles="tomcat,role1"/> 
<user username="role1" password="<tomcat-password>" roles="role1"/> 
</tomcat-users>

However, if you are using Apache Tomcat version 7.0.42, replace
roles="tomcat,manager" with roles="tomcat,manager-gui" in the preceding code.

5. Start Tomcat:

$CATALINA_HOME/bin/startup.sh

If this file does not have executable permission, enter the following command and
then again attempt to start Tomcat:

chmod u+x $CATALINA_HOME/bin/startup.sh

6. In a browser go to: http://hostname:8080/manager/html

If authentication is required, enter tomcat for the user and then enter the Tomcat
password.

7. Deploy Joseki in Tomcat.

a. In the Tomcat Manager page (http://hostname:8080/manager/html), select
Deploy directory or WAR file located on server.

b. For Context Path, enter: /joseki

c. For WAR or Directory URL, enter the path to joseki.war, for example: /tmp/
jena_adapter/joseki_web_app/joseki.war

d. Click Deploy.

A directory named joseki has been created under apache-tomcat-6.0.29/
webapps or apache-tomcat-7.0.42/webapps. This directory will be referred to as
JOSEKI_HOME.

8. Verify that Joseki is installed properly by going to:

http://<hostname>:8080/joseki

9. Create a J2EE data source named OracleSemDS.

During the data source creation, you can specify a user and password for the
database schema that contains the relevant semantic data against which SPARQL
queries are to be executed. To create a data source in Tomcat, make the following
changes:

• In the global $CATALINA_HOME/conf/server.xml file, add the following
resource in GlobalNamingResources (customize where needed):

Chapter 6
Deploying Joseki in Apache Tomcat or JBoss

6-105



<Resource name="OracleSemDS" auth="Container" 
type="oracle.jdbc.pool.OracleDataSource" 
driverClassName="oracle.jdbc.OracleDriver" 
factory="oracle.jdbc.pool.OracleDataSourceFactory" 
url="jdbc:oracle:thin:@hostname:port:sid" user="username" 
password="password" maxActive="30" maxIdle="10" maxWait="-1"/>

• In the global $CATALINA_HOME/conf/context.xml file, add the following link:

<ResourceLink global="OracleSemDS" name="OracleSemDS" 
type="oracle.jdbc.pool.OracleDataSource"/>

For more information about setting up data sources, see the Tomcat
documentation.

10. Shut down and restart Tomcat:

$CATALINA_HOME/bin/shutdown.sh 
$CATALINA_HOME/bin/startup.sh

11. Verify your deployment by going to (assuming that the web application is deployed
at port 8080):

http://<hostname>:8080/joseki/querymgt?abortqid=0

You should see an XML response, which indicates a successful deployment of
Joseki with the RDF Semantic Graph support for Apache Jena query management
servlet.

6.20.2 Deploying Joseki in JBoss 7.1.1
To deploy Joseki in JBoss 7.1.1, follow these steps. (The steps have also been tested,
with modifications as needed, against Red Hat JBoss Enterprise Application Platform
6.1.0.)

1. Download and install JBoss Application Server 7.1.1.

These instructions assume that jboss-as-7.1.1.Final/ is the top-level directory
of the JBoss installation.

2. Install the JDBC driver:

create directory jboss-as-7.1.1.Final/modules/oracle/jdbc/main/

3. Copy ojdbc6.jar into this directory

4. Create module.xml in this directory with the following content:

<?xml version="1.0" encoding="UTF-8"?>
 <module xmlns="urn:jboss:module:1.0" name="oracle.jdbc">
     <resources>
        <resource-root path="ojdbc6.jar"/>
    </resources>
    <dependencies>
        <module name="javax.api"/>
         <module name="javax.transaction.api"/>
     </dependencies>
</module>

5. Modify jboss-as-7.1.1.Final/standalone/configuration/standalone.xml by
adding the following line:

<driver name="OracleJDBCDriver" module="oracle.jdbc"/>
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The modified standalone.xml file should include the following:

...
       <drivers>
         <driver name="OracleJDBCDriver" module="oracle.jdbc"/>
         <driver name="h2" module="com.h2database.h2">
              <xa-datasource-class>org.h2.jdbcx.JdbcDataSource</xa-datasource-
class>
          </driver>
       </drivers>
...

6. Create the necessary data source.

a. Log into the JBoss AS Administration Console:

http://<hostname>:9990/console/App.html#server-overview

b. Click Datasource.

c. Click Profile.

d. Click Add, and enter the following:

Name: OracleSemDS

JNDI Name: java:jboss/datasources/OracleSemDS

e. Select OracleJDBCDriver.

f. Click Next.

The following information is displayed:

Connection URL: jdbc:oracle:thin:@hostname:port:sid     NOTE: customize
Username:    scott                                       NOTE: customize
Password:    tiger                                       NOTE: customize
Security Domain: (Leave empty)

g. Customize the information as needed and leave Security Domain blank, and
click Done.

7. Highlight this new data source, click Enable, then click Confirm.

8. Deploy the joseki.war file using the JBoss Administration Console.

a. Go to the following page:

http://<hostname>:9990/console/App.html#deployments

b. Click Deployments.

c. Click Manage Deployments.

d. Click Add and specify the joseki.war file.
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7
User-Defined Inferencing and Querying

RDF Semantic Graph extension architectures enable the addition of user-defined
capabilities.

Effective with Oracle Database 12c Release 1 (12.1):

• The inference extension architecture enables you to add user-defined inferencing
to the presupplied inferencing support.

• The query extension architecture enables you to add user-defined functions and
aggregates to be used in SPARQL queries, both through the SEM_MATCH table
function and through the support for Apache Jena.

Note:

The capabilities described in this chapter are intended for advanced users.
You are assumed to be familiar with the main concepts and techniques
described in RDF Semantic Graph Overview and OWL Concepts .

• User-Defined Inferencing
The RDF Semantic Graph inference extension architecture enables you to add
user-defined inferencing to the presupplied inferencing support.

• User-Defined Functions and Aggregates
The RDF Semantic Graph query extension architecture enables you to add user-
defined functions and aggregates to be used in SPARQL queries, both through the
SEM_MATCH table function and through the support for Apache Jena.

7.1 User-Defined Inferencing
The RDF Semantic Graph inference extension architecture enables you to add user-
defined inferencing to the presupplied inferencing support.

• Problem Solved and Benefit Provided by User-Defined Inferencing

• API Support for User-Defined Inferencing

• User-Defined Inference Extension Function Examples

7.1.1 Problem Solved and Benefit Provided by User-Defined
Inferencing

Before Oracle Database 12c Release 1 (12.1), the Oracle Database inference engine
provided native support for OWL 2 RL,RDFS, SKOS, SNOMED (core EL), and user-
defined rules, which covered a wide range of applications and requirements. However,
there was the limitation that no new RDF resources could be created as part of the
rules deduction process.
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As an example of the capabilities and the limitation before Oracle Database 12c
Release 1 (12.1), consider the following straightforward inference rule:

?C   rdfs:subClassOf  ?D .
?x    rdf:type  ?C  .  ==>  ?x   rdf:type  ?D

The preceding rule says that any instance x of a subclass C will be an instance of C's
superclass, D. The consequent part of the rule mentions two variables ?x and ?D.
However, these variables must already exist in the antecedents of the rule, which
further implies that these RDF resources must already exist in the knowledge base. In
other words, for example, you can derive that John is a Student only if you know that
John exists as a GraduateStudent and if an axiom specifies that the GraduateStudent
class is a subclass of the Student class.

Another example of a limitation is that before Oracle Database 12c Release 1 (12.1),
the inference functions did not support combining a person's first name and last name
to produce a full name as a new RDF resource in the inference process. Specifically,
this requirement can be captured as a rule like the following:

?x   :firstName  ?fn
?x   :lastName   ?ln  ==>  ?x  :fullName  concatenate(?fn ?ln)

Effective with Oracle Database 12c Release 1 (12.1), the RDF Semantic Graph
inference extension architecture opens the inference process so that users can
implement their own inference extension functions and integrate them into the native
inference process. This architecture:

• Supports rules that require the generation of new RDF resources.

Examples might include concatenation of strings or other string operations,
mathematical calculations, and web service callouts.

• Allows implementation of certain existing rules using customized optimizations.

Although the native OWL inference engine has optimizations for many rules and
these rules work efficiently for a variety of large-scale ontologies, for some new
untested ontologies a customized optimization of a particular inference component
may work even better. In such a case, you can disable a particular inference
component in the SEM_APIS.CREATE_ENTAILMENT call and specify a
customized inference extension function (using the inf_ext_user_func_name
parameter) that implements the new optimization.

• Allows the inference engine to be extended with sophisticated inference
capabilities.

Examples might include integrating geospatial reasoning, time interval reasoning,
and text analytical functions into the native database inference process.

7.1.2 API Support for User-Defined Inferencing
The primary application programming interface (API) for user-defined inferencing is the 
SEM_APIS.CREATE_ENTAILMENT procedure, specifically the last parameter:

inf_ext_user_func_name  IN VARCHAR2 DEFAULT NULL

The inf_ext_user_func_name parameter, if specified, identifies one or more user-
defined inference functions that implement the specialized logic that you want to use.

• User-Defined Inference Function Requirements
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7.1.2.1 User-Defined Inference Function Requirements
Each user-defined inference function that is specified in the inf_ext_user_func_name
parameter in the call to the SEM_APIS.CREATE_ENTAILMENT procedure must:

• Have a name that starts with the following string: SEM_INF_

• Be created with definer's rights, not invoker's rights. (For an explanation of
definer's rights and invoker's rights, see Oracle Database Security Guide.)

The format of the user-defined inference function must be that shown in the following
example for a hypothetical function named SEM_INF_EXAMPLE:

create or replace function sem_inf_example(
    src_tab_view         in  varchar2,
    resource_id_map_view in  varchar2,
    output_tab           in  varchar2,
    action               in  varchar2,
    num_calls            in  number,
    tplInferredLastRound in  number,
    options              in  varchar2 default null,
    optimization_flag    out number,
    diag_message         out varchar2
    )
return boolean
as
  pragma autonomous_transaction;
begin
  if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_START) then
    <... preparation work ...>  
  end if;
  if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_RUN) then
    <... actual inference logic ...>
    commit;
  end if;
  if (action = SDO_SEM_INFERENCE.INF_EXT_ACTION_END) then
    <... clean up ...> 
  end if;
return true;  -- succeed
end;
/
grant execute on sem_inf_example to MDSYS;

In the user-defined function format, the optimization_flag output parameter can
specify one or more Oracle-defined names that are associated with numeric values.
You can specify one or more of the following:

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NONE indicates that the inference engine
should not enable any optimizations for the extension function. (This is the default
behavior of the inference engine when the optimization_flag parameter is not
set.)

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS indicates that all triples/quads
inferred by the extension function use only resource IDs. In other words, the
output_tab table only contains resource IDs (columns gid, sid, pid, and oid) and
does not contain any lexical values (columns g, s, p, and o are all null). Enabling
this optimization flag allows the inference engine to skip resource ID lookups.
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• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY indicates that all the triples/
quads inferred by the extension function are new and do not already exist in
src_tab_view. Enabling this optimization flag allows the inference engine to skip
checking for duplicates between the output_tab table and src_tab_view. Note
that the src_tab_view contains triples/quads from previous rounds of reasoning,
including triples/quads inferred from extension functions.

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY indicates that all the
triples/quads inferred by the extension function are unique and do not already exist
in the output_tab table. Enabling this optimization flag allows the inference engine
to skip checking for duplicates within the output_tab table (for example, no need
to check for the same triple inferred twice by an extension function). Note that the
output_tab table is empty at the beginning of each round of reasoning for an
extension function, so uniqueness of the data must only hold for the current round
of reasoning.

• SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_IGNORE_NULL indicates that the inference
engine should ignore an inferred triple or quad if the subject, predicate, or object
resource is null. The inference engine considers a resource null if both of its
columns in the output_tab table are null (for example, subject is null if the s and
sid columns are both null). Enabling this optimization flag allows the inference
engine to skip invalid triples/quads in the output_tab table. Note that the inference
engine interprets null graph columns (g and gid) as the default graph.

To specify more than one value for the optimization_flag output parameter, use the
plus sign (+) to concatenate the values. For example:

optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
                     SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
                     SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;

For more information about using the optimization_flag output parameter, see 
Example 3: Optimizing Performance.

7.1.3 User-Defined Inference Extension Function Examples
The following examples demonstrate how to use user-defined inference extension
functions to create entailments.

• Example 1: Adding Static Triples, Example 2: Adding Dynamic Triples, and 
Example 3: Optimizing Performance cover the basics of user-defined inference
extensions.

Example 1: Adding Static Triples and Example 2: Adding Dynamic Triples focus on
adding new, inferred triples.

Example 3: Optimizing Performance focuses on optimizing performance.

• Example 4: Temporal Reasoning (Several Related Examples) and Example 5:
Spatial Reasoning demonstrate how to handle special data types efficiently by
leveraging native Oracle types and operators.

Example 4: Temporal Reasoning (Several Related Examples) focuses on the
xsd:dateTime data type.

Example 5: Spatial Reasoning focuses on geospatial data types.

• Example 6: Calling a Web Service makes a web service call to the Oracle
Geocoder service.
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The first three examples assume that the model EMPLOYEES exists and contains the
following semantic data, displayed in Turtle format:

:John   :firstName  "John"  ;
        :lastName   "Smith" .
 
:Mary   :firstName  "Mary"  ;
        :lastName   "Smith" ;
        :name       "Mary Smith" .
 
:Alice  :firstName  "Alice" .
 
:Bob    :firstName  "Bob" ;
        :lastName   "Billow" .

For requirements and guidelines for creating user-defined inference extension
functions, see API Support for User-Defined Inferencing.

• Example 1: Adding Static Triples

• Example 2: Adding Dynamic Triples

• Example 3: Optimizing Performance

• Example 4: Temporal Reasoning (Several Related Examples)

• Example 5: Spatial Reasoning

• Example 6: Calling a Web Service

7.1.3.1 Example 1: Adding Static Triples
The most basic method to infer new data in a user-defined inference extension
function is adding static data. Static data does not depend on any existing data in a
model. This is not a common case for a user-defined inference extension function, but
it demonstrates the basics of adding triples to an entailment. Inserting static data is
more commonly done during the preparation phase (that is, action='START') to
expand on the existing ontology.

The following user-defined inference extension function (sem_inf_static) adds three
static triples to an entailment:

-- this user-defined rule adds static triples
create or replace function sem_inf_static(
    src_tab_view         in  varchar2,
    resource_id_map_view in  varchar2,
    output_tab           in  varchar2,
    action               in  varchar2,
    num_calls            in  number,
    tplInferredLastRound in  number,
    options              in  varchar2 default null,
    optimization_flag    out number,
    diag_message         out varchar2
    )
return boolean
as
  query varchar2(4000);
  pragma autonomous_transaction;
begin
  if (action = 'RUN') then
    -- generic query we use to insert triples
    query := 
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      'insert /*+ parallel append */ into ' || output_tab || 
      ' ( s,  p,  o) VALUES ' ||
      ' (:1, :2, :3) ';
 
    -- execute the query with different values
    execute immediate query using 
      '<http://example.org/S1>', '<http://example.org/P2>', '"O1"';
 
    execute immediate query using
      '<http://example.org/S2>', '<http://example.org/P2>', '"2"^^xsd:int';
 
    -- duplicate quad
    execute immediate query using
      '<http://example.org/S2>', '<http://example.org/P2>', '"2"^^xsd:int';
 
    execute immediate query using
      '<http://example.org/S3>', '<http://example.org/P3>', '"3.0"^^xsd:double';
 
    -- commit our changes
    commit;
  end if;
 
  -- return true to indicate success
  return true;
end sem_inf_static;
/
show errors;

The sem_inf_static function inserts new data by executing a SQL insert query, with
output_tab as the target table for insertion. The output_tab table will only contain
triples added by the sem_inf_static function during the current call (see the
num_calls parameter). The inference engine will always call a user-defined inference
extension function at least three times, once for each possible value of the action
parameter ('START', 'RUN', and 'END'). Because sem_inf_static does not need to
perform any preparation or cleanup, the function only adds data during the RUN phase.
The extension function can be called more than once during the RUN phase, depending
on the data inferred during the current round of reasoning.

Although the sem_inf_static function makes no checks for existing triples (to prevent
duplicate triples), the inference engine will not generate duplicate triples in the
resulting entailment. The inference engine will filter out duplicates from the output_tab
table (the data inserted by the extension function) and from the final entailment (the
model or models and other inferred data). Setting the appropriate optimization flags
(using the optimization_flag parameter) will disable this convenience feature and
improve performance. (See Example 3: Optimizing Performance for more information
about optimization flags.)

Although the table definition for output_tab shows a column for graph names, the
inference engine will ignore and override all graph names on triples added by
extension functions when performing Global Inference (default behavior of 
SEM_APIS.CREATE_ENTAILMENT) and Named Graph Global Inference (NGGI). To
add triples to specific named graphs in a user-defined extension function, use NGLI
(Named Graph Local Inference). During NGLI, all triples must belong to a named
graph (that is, the gid and g columns of output_tab cannot both be null).

The MDSYS user must have execute privileges on the sem_inf_static function to use
the function for reasoning. The following example shows how to grant the appropriate
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privileges on the sem_inf_static function and create an entailment using the function
(along with OWLPRIME inference logic):

-- grant appropriate privileges
grant execute on sem_inf_static to mdsys;
 
-- create the entailment
begin
  sem_apis.create_entailment( 
    'EMPLOYEES_INF'
  , sem_models('EMPLOYEES')
  , sem_rulebases('OWLPRIME')
  , passes => SEM_APIS.REACH_CLOSURE
  , inf_ext_user_func_name => 'sem_inf_static' 
);
end;
/

The following example displays the newly entailed data:

-- formatting
column s format a23;
column p format a23;
column o format a23;
set linesize 100;
 
-- show results
select s, p, o from table(SEM_MATCH(
    'select ?s ?p ?o where { ?s ?p ?o } order by ?s ?p ?o'
  , sem_models('EMPLOYEES')
  , sem_rulebases('OWLPRIME')
  , null, null, null
  , 'INF_ONLY=T'));

The preceding query returns the three unique static triples added by sem_inf_static,
with no duplicates:

S                      P                      O
---------------------- ---------------------- -----------------------
http://example.org/S1  http://example.org/P2  O1
http://example.org/S2  http://example.org/P2  2
http://example.org/S3  http://example.org/P3  3E0

7.1.3.2 Example 2: Adding Dynamic Triples
Adding static data is useful, but it is usually done during the preparation (that is,
action='START') phase. Adding dynamic data involves looking at existing data in the
model and generating new data based on the existing data. This is the most common
case for a user-defined inference extension function.

The following user-defined inference extension function (sem_inf_dynamic)
concatenates the first and last names of employees to create a new triple that
represents the full name.

-- this user-defined rule adds static triples
create or replace function sem_inf_dynamic(
    src_tab_view         in  varchar2,
    resource_id_map_view in  varchar2,
    output_tab           in  varchar2,
    action               in  varchar2,
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    num_calls            in  number,
    tplInferredLastRound in  number,
    options              in  varchar2 default null,
    optimization_flag    out number,
    diag_message         out varchar2
    )
return boolean
as
  firstNamePropertyId number;
  lastNamePropertyId  number;
  fullNamePropertyId  number;
 
  sqlStmt    varchar2(4000);
  insertStmt varchar2(4000);
  pragma autonomous_transaction;
begin
  if (action = 'RUN') then
    -- retrieve ID of resource that already exists in the data (will
    -- throw exception if resource does not exist). These will improve
    -- performance of our SQL queries. 
    firstNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/firstName');
    lastNamePropertyId  := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/lastName');
    fullNamePropertyId  := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/name');
 
    -- SQL query to find all employees and their first and last names
    sqlStmt :=
      'select ids1.sid employeeId,
              values1.value_name firstName,
              values2.value_name lastName
       from   ' || resource_id_map_view || ' values1,
              ' || resource_id_map_view || ' values2,
              ' || src_tab_view || '         ids1,
              ' || src_tab_view || '         ids2
       where  ids1.sid = ids2.sid 
         AND  ids1.pid = ' || to_char(firstNamePropertyId,'TM9') || ' 
         AND  ids2.pid = ' || to_char(lastNamePropertyId,'TM9')  || ' 
         AND  ids1.oid = values1.value_id 
         AND  ids2.oid = values2.value_id 
       /* below ensures we have NEWDATA (a no duplicate optimization flag) */
         AND  not exists
               (select 1 
                from   ' || src_tab_view || ' 
                where  sid = ids1.sid AND 
                       pid = ' || to_char(fullNamePropertyId,'TM9') || ')';
 
    -- create the insert statement that concatenates the first and
    -- last names from our sqlStmt into a new triple.
    insertStmt :=
      'insert /*+ parallel append */ 
       into ' || output_tab || ' (sid, pid, o) 
       select employeeId, ' || to_char(fullNamePropertyId,'TM9') || ', ''"'' || 
firstName || '' '' || lastName ||  ''"''
       from   (' || sqlStmt || ')';
 
    -- execute the insert statement
    execute immediate insertStmt;
 
    -- commit our changes
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    commit;
 
    -- set our optimization flags indicating we already checked for
    -- duplicates in the model (src_tab_view)
    optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY;
  end if;
 
  -- return true to indicate success
  return true;
end sem_inf_dynamic;
/
show errors;

The sem_inf_dynamic function inserts new data using two main steps. First, the
function builds a SQL query that collects all first and last names from the existing data.
The sqlStmt variable stores this SQL query. Next, the function inserts new triples
based on the first and last names it collects, to form a full name for each employee.
The insertStmt variable stores this SQL query. Note that the insertStmt query
includes the sqlStmt query because it is performing an INSERT with a subquery.

The sqlStmt query performs a join across two main views: the resource view
(resource_id_map_view) and the existing data view (src_tab_view). The existing data
view contains all existing triples but stores the values of those triples using numeric
IDs instead of lexical values. Because the sqlStmt query must extract the lexical
values of the first and last names of an employee, it joins with the resource view twice
(once for the first name and once for the last name).

The sqlStmt query contains the PARALLEL SQL hint to help improve performance.
Parallel execution on a balanced hardware configuration can significantly improve
performance. (See Example 3: Optimizing Performance for more information.)

The insertStmt query also performs a duplicate check to avoid adding a triple if it
already exists in the existing data view (src_tab_view). The function indicates it has
performed this check by enabling the INF_EXT_OPT_FLAG_NEWDATA_ONLY optimization
flag. Doing the check inside the extension function improves overall performance of
the reasoning. Note that the existing data view does not contain the new triples
currently being added by the sem_inf_dynamic function, so duplicates may still exist
within the output_tab table. If the sem_inf_dynamic function additionally checked for
duplicates within the output_tab table, then it could also enable the
INF_EXT_OPT_FLAG_UNIQUEDATA_ONLY optimization flag.

Both SQL queries use numeric IDs of RDF resources to perform their joins and inserts.
Using IDs instead of lexical values improves the performance of the queries. The
sem_inf_dynamic function takes advantage of this performance benefit by looking up
the IDs of the lexical values it plans to use. In this case, the function looks up three
URIs representing the first name, last name, and full name properties. If the
sem_inf_dynamic function inserted all new triples purely as IDs, then it could enable
the INF_EXT_OPT_FLAG_ALL_IDS optimization flag. For this example, however, the new
triples each contain a single, new, lexical value: the full name of the employee.

To create an entailment with the sem_inf_dynamic function, grant execution privileges
to the MDSYS user, then pass the function name to the 
SEM_APIS.CREATE_ENTAILMENT procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_dynamic to mdsys;
 
-- create the entailment
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begin
  sem_apis.create_entailment( 
    'EMPLOYEES_INF'
  , sem_models('EMPLOYEES')
  , sem_rulebases('OWLPRIME')
  , passes => SEM_APIS.REACH_CLOSURE
  , inf_ext_user_func_name => 'sem_inf_dynamic' 
);
end;
/

The entailment should contain the following two new triples added by
sem_inf_dynamic:

S                        P                        O
------------------------ ------------------------ -----------------------
http://example.org/Bob   http://example.org/name  Bob Billow
http://example.org/John  http://example.org/name  John Smith

Note that the sem_inf_dynamic function in the preceding example did not infer a full
name for Mary Smith, because Mary Smith already had her full name specified in the
existing data.

7.1.3.3 Example 3: Optimizing Performance
Several techniques can improve the performance of an inference extension function.
One such technique is to use the numeric IDs of resources rather than their lexical
values in queries. By only using resource IDs, the extension function avoids having to
join with the resource view (resource_id_map_view), and this can greatly improve
query performance. Inference extension functions can obtain additional performance
benefits by also using resource IDs when adding new triples to the output_tab table
(that is, using only using the gid, sid, pid, and oid columns of the output_tab table).

The following user-defined inference extension function (sem_inf_related) infers a
new property, :possibleRelative, for employees who share the same last name. The
SQL queries for finding such employees use only resource IDs (no lexical values, no
joins with the resource view). Additionally, the inference extension function in this
example inserts the new triples using only resource IDs, allowing the function to
enable the INF_EXT_OPT_FLAG_ALL_IDS optimization flag.

-- this user-defined rule adds static triples
create or replace function sem_inf_related(
    src_tab_view         in  varchar2,
    resource_id_map_view in  varchar2,
    output_tab           in  varchar2,
    action               in  varchar2,
    num_calls            in  number,
    tplInferredLastRound in  number,
    options              in  varchar2 default null,
    optimization_flag    out number,
    diag_message         out varchar2
    )
return boolean
as
  lastNamePropertyId  number;
  relatedPropertyId   number;
 
  sqlStmt    varchar2(4000);
  insertStmt varchar2(4000);
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  pragma autonomous_transaction;
begin
  if (action = 'RUN') then
    -- retrieve ID of resource that already exists in the data (will
    -- throw exception if resource does not exist).
    lastNamePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/lastName');
 
    -- retreive ID of resource or generate a new ID if resource does
    -- not already exist
    relatedPropertyId := sdo_sem_inference.oracle_orardf_add_res('http://example.org/
possibleRelative');
 
    -- SQL query to find all employees that share a last name
    sqlStmt :=
      'select ids1.sid employeeId,
              ids2.sid relativeId
       from   ' || src_tab_view || '         ids1,
              ' || src_tab_view || '         ids2
       where  ids1.pid = ' || to_char(lastNamePropertyId,'TM9') || ' 
         AND  ids2.pid = ' || to_char(lastNamePropertyId,'TM9') || ' 
         AND  ids1.oid  = ids2.oid 
       /* avoid employees related to themselves */
         AND  ids1.sid != ids2.sid 
       /* below ensures we have NEWDATA (a no duplicate optimization flag) */
         AND  not exists
               (select 1 
                from   ' || src_tab_view || ' 
                where  sid = ids1.sid 
                  AND  pid = ' || to_char(relatedPropertyId,'TM9') || ' 
                  AND  oid = ids2.sid) 
       /* below ensures we have UNIQDATA (a no duplicate optimization flag) */
         AND  not exists
               (select 1 
                from   ' || output_tab || ' 
                where  sid = ids1.sid 
                  AND  pid = ' || to_char(relatedPropertyId,'TM9') || ' 
                  AND  oid = ids2.sid)';
 
    -- create the insert statement that only uses resource IDs
    insertStmt :=
      'insert /*+ parallel append */ 
       into ' || output_tab || ' (sid, pid, oid) 
       select employeeId, ' || to_char(relatedPropertyId,'TM9') || ', relativeId
       from   (' || sqlStmt || ')';
 
    -- execute the insert statement
    execute immediate insertStmt;
 
    -- commit our changes
    commit;
 
    -- set flag indicating our new triples
    --   1) are specified using only IDs
    --   2) produce no duplicates with the model (src_tab_view)
    --   3) produce no duplicates in the output (output_tab)
    optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
                         SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
                         SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;
  end if;
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  -- return true to indicate success
  return true;
end sem_inf_related;
/
show errors;

The sem_inf_related function has a few key differences from previous examples.
First, the sem_inf_related function queries purely with resource IDs and inserts new
triples using only resource IDs. Because all the added triples in the output_tab table
only use resource IDs, the function can enable the INF_EXT_OPT_FLAG_ALL_IDS
optimization flag. For optimal performance, functions should try to use resource IDs
over lexical values. However, sometimes this is not possible, as in Example 2: Adding
Dynamic Triples, which concatenates lexical values to form a new lexical value. Note
that in cases like Example 2: Adding Dynamic Triples, it is usually better to join with
the resource view (resource_id_map_view) than to embed calls to
oracle_orardf_res2vid within the SQL query. This is due to the overhead of calling
the function for each possible match as opposed to joining with another table.

Another key difference in the sem_inf_related function is the use of the
oracle_orardf_add_res function (compared to oracle_orardf_res2vid). Unlike the
res2vid function, the add_res function will add a resource to the resource view
(resource_id_map_view) if the resource does not already exist. Inference extensions
functions should use the add_res function if adding the resource to the resource view
is not a concern. Calling the function multiple times will not generate duplicate entries
in the resource view.

The last main difference is the additional NOT EXISTS clause in the SQL query. The
first NOT EXISTS clause avoids adding any triples that may be duplicates of triples
already in the model or triples inferred by other rules (src_tab_view). Checking for
these duplicates allows sem_inf_related to enable the
INF_EXT_OPT_FLAG_NEWDATA_ONLY optimization flag. The second NOT EXISTS clause
avoids adding triples that may be duplicates of triples already added by the
sem_inf_related function to the output_tab table during the current round of
reasoning (see the num_calls parameter). Checking for these duplicates allows
sem_inf_related to enable the INF_EXT_OPT_FLAG_UNIQDATA_ONLY optimization flag.

Like the sem_inf_dynamic example, sem_inf_related example uses a PARALLEL SQL
query hint in its insert statement. Parallel execution on a balanced hardware
configuration can significantly improve performance. For a data-intensive application, a
good I/O subsystem is usually a critical component to the performance of the whole
system.

To create an entailment with the sem_inf_dynamic function, grant execution privileges
to the MDSYS user, then pass the function name to the 
SEM_APIS.CREATE_ENTAILMENT procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_related to mdsys;
 
-- create the entailment
begin
  sem_apis.create_entailment( 
    'EMPLOYEES_INF'
  , sem_models('EMPLOYEES')
  , sem_rulebases('OWLPRIME')
  , passes => SEM_APIS.REACH_CLOSURE
  , inf_ext_user_func_name => 'sem_inf_related' 
);
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end;
/

The entailment should contain the following two new triples added by
sem_inf_related:

S                        P                                    O
------------------------ ------------------------------------ 
------------------------
http://example.org/John  http://example.org/possibleRelative  http://example.org/Mary
http://example.org/Mary  http://example.org/possibleRelative  http://example.org/John

7.1.3.4 Example 4: Temporal Reasoning (Several Related Examples)
User-defined extension functions enable you to better leverage certain data types (like
xsd:dateTime) in the triples. For example, with user-defined extension functions, it is
possible to infer relationships between triples based on the difference between two
xsd:dateTime values. The three examples in this section explore two different
temporal reasoning rules and how to combine them into one entailment. The examples
assume the models EVENT and EVENT_ONT exist and contain the following semantic
data:

EVENT_ONT

@prefix owl:  <http://www.w3.org/2002/07/owl#> .
@prefix rdf:  <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd:  <http://www.w3.org/2001/XMLSchema#> .
@prefix :     <http://example.org/event/> .
 
# we model two types of events
:Meeting      rdfs:subClassOf :Event .
:Presentation rdfs:subClassOf :Event .
 
# events have topics
:topic        rdfs:domain     :Event .
 
# events have start and end times 
:startTime    rdfs:domain     :Event ;
              rdfs:range      xsd:dateTime .
:endTime      rdfs:domain     :Event ;
              rdfs:range      xsd:dateTime .
 
# duration (in minutes) of an event
:lengthInMins rdfs:domain      :Event ;
              rdfs:range       xsd:integer .
 
# overlaps property identifies conflicting events
:overlaps     rdfs:domain      :Event ;
              rdf:type         owl:SymmetricProperty .
:noOverlap    rdfs:domain      :Event ;
              rdf:type         owl:SymmetricProperty .

EVENT_TBOX

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix :    <http://example.org/event/> .
 
:m1 rdf:type   :Meeting ;
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    :topic     "Beta1 launch" ;
    :startTime "2012-04-01T09:30:00-05:00"^^xsd:dateTime ;
    :endTime   "2012-04-01T11:00:00-05:00"^^xsd:dateTime .
 
:m2 rdf:type   :Meeting ;
    :topic     "Standards compliance" ;
    :startTime "2012-04-01T12:30:00-05:00"^^xsd:dateTime ;
    :endTime   "2012-04-01T13:30:00-05:00"^^xsd:dateTime .
 
:p1 rdf:type   :Presentation ;
    :topic     "OWL Reasoners" ;
    :startTime "2012-04-01T11:00:00-05:00"^^xsd:dateTime ;
    :endTime   "2012-04-01T13:00:00-05:00"^^xsd:dateTime .

The examples are as follow.

• Example 4a: Duration Rule

• Example 4b: Overlap Rule

• Example 4c: Duration and Overlap Rules

7.1.3.4.1 Example 4a: Duration Rule
The following user-defined inference extension function (sem_inf_durations) infers
the duration in minutes of events, given the start and end times of an event. For
example, an event starting at 9:30 AM and ending at 11:00 AM has duration of 90
minutes. The following extension function extracts the start and end times for each
event, converts the xsd:dateTime values into Oracle timestamps, then computes the
difference between the timestamps. Notice that this extension function can handle time
zones.

create or replace function sem_inf_durations(
    src_tab_view         in  varchar2,
    resource_id_map_view in  varchar2,
    output_tab           in  varchar2,
    action               in  varchar2,
    num_calls            in  number,
    tplInferredLastRound in  number,
    options              in  varchar2 default null,
    optimization_flag    out number,
    diag_message         out varchar2
    )
return boolean
as
  eventClassId        number;
  rdfTypePropertyId   number;
  startTimePropertyId number;
  endTimePropertyId   number;
  durationPropertyId  number;
 
  xsdTimeFormat       varchar2(100);
  sqlStmt             varchar2(4000);
  insertStmt          varchar2(4000);
 
  pragma autonomous_transaction;
begin
  if (action = 'RUN') then
    -- retrieve ID of resource that already exists in the data (will
    -- throw exception if resource does not exist).
    eventClassId        := sdo_sem_inference.oracle_orardf_res2vid('http://
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example.org/event/Event');
    startTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/startTime');
    endTimePropertyId   := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/endTime');
    durationPropertyId  := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/lengthInMins');
    rdfTypePropertyId   := sdo_sem_inference.oracle_orardf_res2vid('http://
www.w3.org/1999/02/22-rdf-syntax-ns#type');
 
    -- set the TIMESTAMP format we will use to parse XSD times
    xsdTimeFormat := 'YYYY-MM-DD"T"HH24:MI:SSTZH:TZM';
 
    -- query we use to extract the event ID and start/end times.  
    sqlStmt := 
      'select ids1.sid eventId,
              TO_TIMESTAMP_TZ(values1.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'') 
startTime,
              TO_TIMESTAMP_TZ(values2.value_name,''YYYY-MM-DD"T"HH24:MI:SSTZH:TZM'') 
endTime
       from   ' || resource_id_map_view || ' values1,
              ' || resource_id_map_view || ' values2,
              ' || src_tab_view || '         ids1,
              ' || src_tab_view || '         ids2,
              ' || src_tab_view || '         ids3
       where  ids1.sid = ids3.sid 
         AND  ids3.pid = ' || to_char(rdfTypePropertyId,'TM9') || ' 
         AND  ids3.oid = ' || to_char(eventClassId,'TM9')      || ' 
         AND  ids1.sid = ids2.sid 
         AND  ids1.pid = ' || to_char(startTimePropertyId,'TM9') || ' 
         AND  ids2.pid = ' || to_char(endTimePropertyId,'TM9')   || ' 
         AND  ids1.oid = values1.value_id 
         AND  ids2.oid = values2.value_id 
       /* ensures we have NEWDATA */
         AND  not exists
               (select 1 
                from   ' || src_tab_view || ' 
                where  sid = ids3.sid 
                  AND  pid = ' || to_char(durationPropertyId,'TM9') || ') 
       /* ensures we have UNIQDATA */
         AND  not exists
               (select 1 
                from   ' || output_tab || ' 
                where  sid = ids3.sid 
                  AND  pid = ' || to_char(durationPropertyId,'TM9') || ')';
 
    -- compute the difference (in minutes) between the two Oracle
    -- timestamps from our sqlStmt query.  Store the minutes as
    -- xsd:integer.
    insertStmt :=
      'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, o) 
       select eventId, 
              ' || to_char(durationPropertyId,'TM9') || ', 
              ''"'' || minutes || ''"^^xsd:integer''
       from   (
         select eventId,
                (extract(day    from (endTime - startTime))*24*60 +
                 extract(hour   from (endTime - startTime))*60 +
                 extract(minute from (endTime - startTime))) minutes
         from   (' || sqlStmt || '))';
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    -- execute the query
    execute immediate insertStmt;
 
    -- commit our changes
    commit;
  end if;
 
  -- we already checked for duplicates in src_tab_view (NEWDATA) and
  -- in output_tab (UNIQDATA)
  optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
                       SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;
 
  -- return true to indicate success
  return true;
 
  -- handle any exceptions
  exception 
    when others then
      diag_message := 'error occurred: ' || SQLERRM;
      return false;
end sem_inf_durations;
/
show errors;

The sem_inf_durations function leverages built-in Oracle temporal functions to
compute the event durations. First, the function converts the xsd:dateTime literal value
to an Oracle TIMESTAMP object using the TO_TIMESTAMP_TZ function. Taking the
difference between two Oracle TIMESTAMP objects produces an INTERVAL object that
represents a time interval. Using the EXTRACT operator, the sem_inf_durations
function computes the duration of each event in minutes by extracting the days, hours,
and minutes out of the duration intervals.

Because the sem_inf_durations function checks for duplicates against both data in
the existing model (src_tab_view) and data in the output_tab table, it can enable the
INF_EXT_OPT_FLAG_NEWDATA_ONLY and INF_EXT_OPT_FLAG_UNIQDATA_ONLY optimization
flags. (See Example 3: Optimizing Performance for more information about
optimization flags.)

Notice that unlike previous examples, sem_inf_durations contains an exception
handler. Exception handlers are useful for debugging issues in user-defined inference
extension functions. To produce useful debugging messages, catch exceptions in the
extension function, set the diag_message parameter to reflect the error, and return
FALSE to indicate that an error occurred during execution of the extension function. The
sem_inf_durations function catches all exceptions and sets the diag_message value
to the exception message.

To create an entailment with the sem_inf_durations function, grant execution
privileges to the MDSYS user, then pass the function name to the 
SEM_APIS.CREATE_ENTAILMENT procedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_durations to mdsys;
 
-- create the entailment
begin
  sem_apis.create_entailment( 
    'EVENT_INF'
  , sem_models('EVENT', 'EVENT_ONT')
  , sem_rulebases('OWLPRIME')

Chapter 7
User-Defined Inferencing

7-16



  , passes => SEM_APIS.REACH_CLOSURE
  , inf_ext_user_func_name => 'sem_inf_durations' 
);
end;
/

In addition to the triples inferred by OWLPRIME, the entailment should contain the
following three new triples added by sem_inf_durations:

S                            P                                      O
---------------------------- -------------------------------------- ---------
http://example.org/event/m1  http://example.org/event/lengthInMins  90
http://example.org/event/m2  http://example.org/event/lengthInMins  60
http://example.org/event/p1  http://example.org/event/lengthInMins  120

7.1.3.4.2 Example 4b: Overlap Rule
The following user-defined inference extension function (sem_inf_overlap) infers
whether two events overlap. Two events overlap if one event starts while the other
event is in progress. The function extracts the start and end times for every pair of
events, converts the xsd:dateTime values into Oracle timestamps, then computes
whether one event starts within the other.

create or replace function sem_inf_overlap(
    src_tab_view         in  varchar2,
    resource_id_map_view in  varchar2,
    output_tab           in  varchar2,
    action               in  varchar2,
    num_calls            in  number,
    tplInferredLastRound in  number,
    options              in  varchar2 default null,
    optimization_flag    out number,
    diag_message         out varchar2
    )
return boolean
as
  eventClassId        number;
  rdfTypePropertyId   number;
  startTimePropertyId number;
  endTimePropertyId   number;
  overlapsPropertyId  number;
  noOverlapPropertyId number;
 
  xsdTimeFormat       varchar2(100);
  sqlStmt             varchar2(4000);
  insertStmt          varchar2(4000);
 
  pragma autonomous_transaction;
begin
  if (action = 'RUN') then
    -- retrieve ID of resource that already exists in the data (will
    -- throw exception if resource does not exist).
    eventClassId        := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/Event');
    startTimePropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/startTime');
    endTimePropertyId   := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/endTime');
    overlapsPropertyId  := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/overlaps');
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    noOverlapPropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/event/noOverlap');
    rdfTypePropertyId   := sdo_sem_inference.oracle_orardf_res2vid('http://
www.w3.org/1999/02/22-rdf-syntax-ns#type');
 
    -- set the TIMESTAMP format we will use to parse XSD times
    xsdTimeFormat := 'YYYY-MM-DD"T"HH24:MI:SSTZH:TZM';
 
    -- query we use to extract the event ID and start/end times.  
    sqlStmt := 
      'select idsA1.sid eventAId,
              idsB1.sid eventBId,
              TO_TIMESTAMP_TZ(valuesA1.value_name,''YYYY-MM-
DD"T"HH24:MI:SSTZH:TZM'') startTimeA,
              TO_TIMESTAMP_TZ(valuesA2.value_name,''YYYY-MM-
DD"T"HH24:MI:SSTZH:TZM'') endTimeA,
              TO_TIMESTAMP_TZ(valuesB1.value_name,''YYYY-MM-
DD"T"HH24:MI:SSTZH:TZM'') startTimeB,
              TO_TIMESTAMP_TZ(valuesB2.value_name,''YYYY-MM-
DD"T"HH24:MI:SSTZH:TZM'') endTimeB
       from   ' || resource_id_map_view || ' valuesA1,
              ' || resource_id_map_view || ' valuesA2,
              ' || resource_id_map_view || ' valuesB1,
              ' || resource_id_map_view || ' valuesB2,
              ' || src_tab_view || '         idsA1,
              ' || src_tab_view || '         idsA2,
              ' || src_tab_view || '         idsA3,
              ' || src_tab_view || '         idsB1,
              ' || src_tab_view || '         idsB2,
              ' || src_tab_view || '         idsB3
       where  idsA1.sid = idsA3.sid 
         AND  idsA3.pid = ' || to_char(rdfTypePropertyId,'TM9') || ' 
         AND  idsA3.oid = ' || to_char(eventClassId,'TM9')      || ' 
         AND  idsB1.sid = idsB3.sid 
         AND  idsB3.pid = ' || to_char(rdfTypePropertyId,'TM9') || ' 
         AND  idsB3.oid = ' || to_char(eventClassId,'TM9')      || ' 
       /* only do half the checks, our TBOX ontology will handle symmetries */
         AND  idsA1.sid < idsB1.sid                   
       /* grab values of startTime and endTime for event A */
         AND  idsA1.sid = idsA2.sid 
         AND  idsA1.pid = ' || to_char(startTimePropertyId,'TM9') || ' 
         AND  idsA2.pid = ' || to_char(endTimePropertyId,'TM9')   || ' 
         AND  idsA1.oid = valuesA1.value_id 
         AND  idsA2.oid = valuesA2.value_id 
       /* grab values of startTime and endTime for event B */
         AND  idsB1.sid = idsB2.sid 
         AND  idsB1.pid = ' || to_char(startTimePropertyId,'TM9') || ' 
         AND  idsB2.pid = ' || to_char(endTimePropertyId,'TM9')   || ' 
         AND  idsB1.oid = valuesB1.value_id 
         AND  idsB2.oid = valuesB2.value_id 
       /* ensures we have NEWDATA */
         AND  not exists
               (select 1 
                from   ' || src_tab_view || ' 
                where  sid = idsA1.sid  
                  AND  oid = idsB1.sid 
                  AND  pid in (' || to_char(overlapsPropertyId,'TM9')  || ',' || 
                                    to_char(noOverlapPropertyId,'TM9') || ')) 
       /* ensures we have UNIQDATA */
         AND  not exists
               (select 1
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                from   ' || output_tab   || '
                where  sid = idsA1.sid 
                  AND  oid = idsB1.sid 
                  AND  pid in (' || to_char(overlapsPropertyId,'TM9')  || ',' || 
                                    to_char(noOverlapPropertyId,'TM9') || '))';
 
    -- compare the two event times
    insertStmt :=
      'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, oid) 
       select eventAId, overlapStatusId, eventBId
       from   (
         select eventAId,
                (case 
                 when (startTimeA < endTimeB and 
                       startTimeA > startTimeB) then
                   ' || to_char(overlapsPropertyId,'TM9') || '
                 when (startTimeB < endTimeA and
                       startTimeB > startTimeA) then
                   ' || to_char(overlapsPropertyId,'TM9') || '
                 else
                   ' || to_char(noOverlapPropertyId,'TM9') || '
                 end) overlapStatusId,
                 eventBId
         from   (' || sqlStmt || '))';
 
    -- execute the query
    execute immediate insertStmt;
 
    -- commit our changes
    commit;
  end if;
 
  -- we only use ID values in the output_tab and we check for
  -- duplicates with our NOT EXISTS clause.
  optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
                       SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
                       SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;
 
  -- return true to indicate success
  return true;
 
  -- handle any exceptions
  exception 
    when others then
      diag_message := 'error occurred: ' || SQLERRM;
      return false;
end sem_inf_overlap;
/
show errors;

The sem_inf_overlap function is similar to the sem_inf_durations function in 
Example 4b: Overlap Rule. The main difference between the two is that the query in
sem_inf_overlap contains more joins and enables the
INF_EXT_OPT_FLAG_ALL_IDS optimization flag because it does not need to
generate new lexical values. (See Example 3: Optimizing Performance for more
information about optimization flags.)

To create an entailment with the sem_inf_overlap function, grant execution privileges
to the MDSYS user, then pass the function name to the 
SEM_APIS.CREATE_ENTAILMENT procedure, as follows:
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-- grant appropriate privileges
grant execute on sem_inf_overlap to mdsys;
 
-- create the entailment
begin
  sem_apis.create_entailment( 
    'EVENT_INF'
  , sem_models('EVENT', 'EVENT_ONT')
  , sem_rulebases('OWLPRIME')
  , passes => SEM_APIS.REACH_CLOSURE
  , inf_ext_user_func_name => 'sem_inf_overlap' 
);
end;
/

In addition to the triples inferred by OWLPRIME, the entailment should contain the
following six new triples added by sem_inf_overlap:

S                            P                                   O
---------------------------- ----------------------------------- 
----------------------------
http://example.org/event/m1  http://example.org/event/noOverlap  http://example.org/
event/m2
http://example.org/event/m1  http://example.org/event/noOverlap  http://example.org/
event/p1
http://example.org/event/m2  http://example.org/event/noOverlap  http://example.org/
event/m1
http://example.org/event/m2  http://example.org/event/overlaps   http://example.org/
event/p1
http://example.org/event/p1  http://example.org/event/noOverlap  http://example.org/
event/m1
http://example.org/event/p1  http://example.org/event/overlaps   http://example.org/
event/m2

7.1.3.4.3 Example 4c: Duration and Overlap Rules
The example in this section uses the extension functions from Example 4a: Duration
Rule (sem_inf_durations) and Example 4b: Overlap Rule (sem_inf_overlap) together
to produce a single entailment. The extension functions are left unmodified for this
example.

To create an entailment using multiple extension functions, use a comma to separate
each extension function passed to the inf_ext_user_func_name parameter of 
SEM_APIS.CREATE_ENTAILMENT. The following example assumes that the
MDSYS user has already been granted the appropriate privileges on the extension
functions.

-- use multiple user-defined inference functions
begin
  sem_apis.create_entailment( 
    'EVENT_INF'
  , sem_models('EVENT', 'EVENT_ONT')
  , sem_rulebases('OWLPRIME')
  , passes => SEM_APIS.REACH_CLOSURE
  , inf_ext_user_func_name => 'sem_inf_durations,sem_inf_overlap' 
);
end;
/
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In addition to the triples inferred by OWLPRIME, the entailment should contain the
following nine new triples added by sem_inf_durations and sem_inf_overlap:

S                            P                                      O
---------------------------- -------------------------------------- 
----------------------------
http://example.org/event/m1  http://example.org/event/lengthInMins  90
http://example.org/event/m1  http://example.org/event/noOverlap     http://
example.org/event/m2
http://example.org/event/m1  http://example.org/event/noOverlap     http://
example.org/event/p1
http://example.org/event/m2  http://example.org/event/lengthInMins  60
http://example.org/event/m2  http://example.org/event/noOverlap     http://
example.org/event/m1
http://example.org/event/m2  http://example.org/event/overlaps      http://
example.org/event/p1
http://example.org/event/p1  http://example.org/event/lengthInMins  120
http://example.org/event/p1  http://example.org/event/noOverlap     http://
example.org/event/m1
http://example.org/event/p1  http://example.org/event/overlaps      http://
example.org/event/m2

Notice that the extension functions, sem_inf_durations and sem_inf_overlap, did not
need to use the same optimization flags. It is possible to use extension functions with
contradictory optimization flags (for example, one function using
INF_EXT_OPT_FLAG_ALL_IDS and another function inserting all new triples as lexical
values).

7.1.3.5 Example 5: Spatial Reasoning
User-defined inference extension functions can also leverage geospatial data types,
like WKT (well-known text), to perform spatial reasoning. For example, with user-
defined extension functions, it is possible to infer a "contains" relationship between
geometric entities, such as states and cities.

The example in this section demonstrates how to infer whether a geometry (a US
state) contains a point (a US city). This example assumes the RDF network already
has a spatial index (described in section 1.6.6.2). This example also assumes the
model STATES exists and contains the following semantic data:

@prefix orageo: <http://xmlns.oracle.com/rdf/geo/> .
@prefix rdf:    <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:   <http://www.w3.org/2000/01/rdf-schema#> .
@prefix :       <http://example.org/geo/> .
 
:Colorado rdf:type  :State ;
          :boundary "Polygon((-109.0448 37.0004, -102.0424 36.9949, -102.0534 
41.0006, -109.0489 40.9996, -109.0448 37.0004))"^^orageo:WKTLiteral .
:Utah     rdf:type  :State ;
          :boundary "Polygon((-114.0491 36.9982, -109.0462 37.0026, -109.0503 
40.9986, -111.0471 41.0006, -111.0498 41.9993, -114.0395 41.9901, -114.0491 
36.9982))"^^orageo:WKTLiteral .
:Wyoming  rdf:type  :State ;
          :boundary "Polygon((-104.0556 41.0037, -104.0584 44.9949, -111.0539 
44.9998, -111.0457 40.9986, -104.0556 41.0037))"^^orageo:WKTLiteral
 
:StateCapital rdfs:subClassOf :City ;
 
:Denver   rdf:type  :StateCapital ;
          :location "Point(-104.984722 39.739167)"^^orageo:WKTLiteral .
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:SaltLake rdf:type  :StateCaptial ;
          :location "Point(-111.883333 40.75)"^^orageo:WKTLiteral .
:Cheyenne rdf:type  :StateCapital ;
          :location "Point(-104.801944 41.145556)"^^orageo:WKTLiteral .

The following user-defined inference extension function (sem_inf_capitals) searches
for capital cities within each state using the WKT geometries. If the function finds a
capital city, it infers the city is the capital of the state containing it.

create or replace function sem_inf_capitals(
    src_tab_view         in  varchar2,
    resource_id_map_view in  varchar2,
    output_tab           in  varchar2,
    action               in  varchar2,
    num_calls            in  number,
    tplInferredLastRound in  number,
    options              in  varchar2 default null,
    optimization_flag    out number,
    diag_message         out varchar2
    )
return boolean
as
  stateClassId        number;
  capitalClassId      number;
  
  boundaryPropertyId  number;
  locationPropertyId  number;
  rdfTypePropertyId   number;
  capitalPropertyId   number;
 
  defaultSRID         number := 8307;
 
  xsdTimeFormat       varchar2(100);
  sqlStmt             varchar2(4000);
  insertStmt          varchar2(4000);
 
  pragma autonomous_transaction;
begin
  if (action = 'RUN') then
    -- retrieve ID of resource that already exists in the data (will
    -- throw exception if resource does not exist).
    stateClassId       := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/geo/State');
    capitalClassId     := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/geo/StateCapital');
    boundaryPropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/geo/boundary');
    locationPropertyId := sdo_sem_inference.oracle_orardf_res2vid('http://
example.org/geo/location');
    rdfTypePropertyId  := sdo_sem_inference.oracle_orardf_res2vid('http://www.w3.org/
1999/02/22-rdf-syntax-ns#type');
 
    -- retreive ID of resource or generate a new ID if resource does
    -- not already exist
    capitalPropertyId := sdo_sem_inference.oracle_orardf_add_res('http://
example.org/geo/capital');
 
    -- query we use to extract the capital cities contained within state boundaries
    sqlStmt := 
      'select idsA1.sid stateId,
              idsB1.sid cityId
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       from   ' || resource_id_map_view || ' valuesA,
              ' || resource_id_map_view || ' valuesB,
              ' || src_tab_view || '         idsA1,
              ' || src_tab_view || '         idsA2,
              ' || src_tab_view || '         idsB1,
              ' || src_tab_view || '         idsB2
       where  idsA1.pid = ' || to_char(rdfTypePropertyId,'TM9') || ' 
         AND  idsA1.oid = ' || to_char(stateClassId,'TM9')      || ' 
         AND  idsB1.pid = ' || to_char(rdfTypePropertyId,'TM9') || ' 
         AND  idsB1.oid = ' || to_char(capitalClassId,'TM9')    || ' 
       /* grab geometric lexical values */
         AND  idsA2.sid = idsA1.sid                                  
         AND  idsA2.pid = ' || to_char(boundaryPropertyId,'TM9')|| ' 
         AND  idsA2.oid = valuesA.value_id                           
         AND  idsB2.sid = idsB1.sid                                  
         AND  idsB2.pid = ' || to_char(locationPropertyId,'TM9')|| ' 
         AND  idsB2.oid = valuesB.value_id                           
       /* compare geometries to see if city is contained by state */              
         AND  SDO_RELATE( 
                SDO_RDF.getV$GeometryVal( 
                  valuesA.value_type, 
                  valuesA.vname_prefix, 
                  valuesA.vname_suffix, 
                  valuesA.literal_type, 
                  valuesA.language_type, 
                  valuesA.long_value, 
                  ' || to_char(defaultSRID,'TM9') || '),
                SDO_RDF.getV$GeometryVal(
                  valuesB.value_type, 
                  valuesB.vname_prefix, 
                  valuesB.vname_suffix, 
                  valuesB.literal_type, 
                  valuesB.language_type, 
                  valuesB.long_value, 
                  ' || to_char(defaultSRID,'TM9') || '),
                ''mask=CONTAINS'') = ''TRUE'' 
       /* ensures we have NEWDATA and only check capitals not assigned to a state */
         AND  not exists
               (select 1 
                from   ' || src_tab_view || ' 
                where  pid = ' || to_char(capitalPropertyId,'TM9') || ' 
                  AND  (sid = idsA1.sid OR oid = idsB1.sid)) 
       /* ensures we have UNIQDATA and only check capitals not assigned to a state */
         AND  not exists
               (select 1
                from   ' || output_tab   || '
                where  pid = ' || to_char(capitalPropertyId,'TM9') || ' 
                  AND  (sid = idsA1.sid OR oid = idsB1.sid))';
 
    -- insert new triples using only IDs
    insertStmt :=
      'insert /*+ parallel append */ into ' || output_tab || ' (sid, pid, oid) 
       select stateId, ' || to_char(capitalPropertyId,'TM9') || ', cityId
       from   (' || sqlStmt || ')';
 
    -- execute the query
    execute immediate insertStmt;
 
    -- commit our changes
    commit;
  end if;
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  -- we only use ID values in the output_tab and we check for
  -- duplicates with our NOT EXISTS clauses.
  optimization_flag := SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_ALL_IDS +
                       SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_NEWDATA_ONLY +
                       SDO_SEM_INFERENCE.INF_EXT_OPT_FLAG_UNIQDATA_ONLY;
 
  -- return true to indicate success
  return true;
 
  -- handle any exceptions
  exception 
    when others then
      diag_message := 'error occurred: ' || SQLERRM;
      return false;
end sem_inf_capitals;
/
show errors;

The sem_inf_capitals function is similar to the sem_inf_durations function in 
Example 4a: Duration Rule, in that both functions must convert the lexical values of
some triples into Oracle types to leverage native Oracle operators. In the case of
sem_inf_capitals, the function converts the WKT lexical values encoding polygons
and points into the Oracle Spatial and Graph SDO_GEOMETRY type, using the
SDO_RDF.getV$GeometryVal function. The getV$GeometryVal function requires
arguments mostly provided by the resource view (resource_id_map_view) and an
additional argument, an ID to a spatial reference system (SRID). The
getV$GeometryVal function will convert the geometry into the spatial reference system
specified by SRID. The sem_inf_capitals function uses the default Oracle Spatial and
Graph reference system, WGS84 Longitude-Latitude, specified by SRID value 8307.
(For more information about support in RDF Semantic Graph for spatial references
systems, see Spatial Support.)

After converting the WKT values into SDO_GEOMETRY types using the
getV$GeometryVal function, the sem_inf_capitals function compares the state
geometry with the city geometry to see if the state contains the city. The SDO_RELATE
operator performs this comparison and returns the literal value 'TRUE' when the state
contains the city. The SDO_RELATE operator can perform various different types of
comparisons. (See Oracle Spatial and Graph Developer's Guide for more information
about SDO_RELATE and other spatial operators.)

To create an entailment with the sem_inf_capitals function, grant execution
privileges to the MDSYS user, then pass the function name to the 
SEM_APIS.CREATE_ENTAILMENTprocedure, as follows:

-- grant appropriate privileges
grant execute on sem_inf_capitals to mdsys;
 
-- create the entailment
begin
  sem_apis.create_entailment( 
    'STATES_INF'
  , sem_models('STATES')
  , sem_rulebases('OWLPRIME')
  , passes => SEM_APIS.REACH_CLOSURE
  , inf_ext_user_func_name => 'sem_inf_capitals' 
);
end;
/
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In addition to the triples inferred by OWLPRIME, the entailment should contain the
following three new triples added by sem_inf_capitals:

S                                P                               O
-------------------------------- ------------------------------- 
--------------------------------
http://example.org/geo/Colorado  http://example.org/geo/capital  http://
example.org/geo/Denver
http://example.org/geo/Utah      http://example.org/geo/capital  http://
example.org/geo/SaltLake
http://example.org/geo/Wyoming   http://example.org/geo/capital  http://
example.org/geo/Cheyenne

7.1.3.6 Example 6: Calling a Web Service
This section contains a user-defined inference extension function
(sem_inf_geocoding) and a related helper procedure (geocoding), which enable you to
make a web service call to the Oracle Geocoder service. The user-defined inference
extension function looks for the object values of triples using predicate
<urn:streetAddress>, makes callouts to the Oracle public Geocoder service endpoint
at http://maps.oracle.com/geocoder/gcserver, and inserts the longitude and
latitude information as two separate triples.

For example, assume that the semantic model contains the following assertion:

<urn:NEDC>  <urn:streetAddress>  "1 Oracle Dr., Nashua, NH"

In this case, an inference call using sem_inf_geocoding will produce the following new
assertions:

<urn:NEDC> <http://www.w3.org/2003/01/geo/wgs84_pos#long>  "-71.46421"
<urn:NEDC> <http://www.w3.org/2003/01/geo/wgs84_pos#lat>   "42.75836"
<urn:NEDC> <http://www.opengis.net/geosparql#asWKT>  "POINT(-71.46421 
42.75836)"^^<http://www.opengis.net/geosparql#wktLiteral>
<urn:NEDC> <http://xmlns.oracle.com/rdf/geo/asWKT>   "POINT(-71.46421 
42.75836)"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>

The sem_inf_geocoding function is defined as follows:

create or replace function sem_inf_geocoding(
    src_tab_view         in  varchar2,
    resource_id_map_view in  varchar2,
    output_tab           in  varchar2,
    action               in  varchar2,
    num_calls            in  number,
    tplInferredLastRound in  number,
    options              in  varchar2 default null,
    optimization_flag    out number,
    diag_message         out varchar2
    )
return boolean
as
  pragma autonomous_transaction;
  iCount integer;
  
  nLong number;
  nLat  number;
  nWKT  number;
  nOWKT number;
  nStreetAddr number;
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  sidTab    dbms_sql.number_table;
  oidTab    dbms_sql.number_table;
  
  vcRequestBody varchar2(32767);
  vcStmt        varchar2(32767);
  vcStreeAddr   varchar2(3000);
  
  type cur_type is ref cursor;
  cursorFind    cur_type; 
  vcLong varchar2(100);
  vcLat  varchar2(100);
begin
  if (action = 'START') then
    nLat := sdo_sem_inference.oracle_orardf_add_res('http://www.w3.org/2003/01/geo/
wgs84_pos#lat');
    nLong := sdo_sem_inference.oracle_orardf_add_res('http://www.w3.org/2003/01/geo/
wgs84_pos#long');
    nWKT  := sdo_sem_inference.oracle_orardf_add_res('http://www.opengis.net/
geosparql#asWKT');
    nOWKT := sdo_sem_inference.oracle_orardf_add_res('http://
xmlns.oracle.com/rdf/geo/asWKT');
  end if; 
  
  if (action = 'RUN') then
    nStreetAddr := sdo_sem_inference.oracle_orardf_res2vid('<urn:streetAddress>');
    nLat := sdo_sem_inference.oracle_orardf_res2vid('http://www.w3.org/2003/01/geo/
wgs84_pos#lat');
    nLong := sdo_sem_inference.oracle_orardf_res2vid('http://www.w3.org/2003/01/geo/
wgs84_pos#long');
    nWKT  := sdo_sem_inference.oracle_orardf_res2vid('http://www.opengis.net/
geosparql#asWKT');
    nOWKT := sdo_sem_inference.oracle_orardf_res2vid('http://
xmlns.oracle.com/rdf/geo/asWKT');
 
    vcStmt := '
      select /*+ parallel */ distinct s1.sid as s_id, s1.oid as o_id
        from ' || src_tab_view || ' s1
       where s1.pid = :1
         and not exists ( select 1
                            from   ' || src_tab_view || ' x
                           where  x.sid = s1.sid
                             and  x.pid = :2
                        ) ';
    open cursorFind for vcStmt using nStreetAddr, nLong;
    
    loop
      fetch cursorFind bulk collect into sidTab, oidTab limit 10000;
      for i in 1..sidTab.count loop 
        vcStreeAddr := sdo_sem_inference.oracle_orardf_vid2lit(oidTab(i));
        -- dbms_output.put_line('Now processing street addr ' || vcStreeAddr);
        geocoding(vcStreeAddr, vcLong, vcLat);
        execute immediate 'insert into ' || output_tab || '(sid,pid,oid,gid,s,p,o,g)
            values(:1, :2, null, null, null, null, :3, null) '
            using sidTab(i), nLong, '"'||vcLong||'"';
        execute immediate 'insert into ' || output_tab || '(sid,pid,oid,gid,s,p,o,g)
            values(:1, :2, null, null, null, null, :3, null) '
            using sidTab(i), nLat, '"'||vcLat||'"';
        execute immediate 'insert into ' || output_tab || '(sid,pid,oid,gid,s,p,o,g) 
            values(:1, :2, null, null, null, null, :3, null) '
            using sidTab(i), nWKT, '"POINT('|| vcLong || ' ' ||vcLat ||')"^^<http://
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www.opengis.net/geosparql#wktLiteral>';
        execute immediate 'insert into ' || output_tab || '(sid,pid,oid,gid,s,p,o,g) 
            values(:1, :2, null, null, null, null, :3, null) '
            using sidTab(i), nOWKT, '"POINT('|| vcLong || ' ' ||vcLat ||')"^^<http://
xmlns.oracle.com/rdf/geo/WKTLiteral>';
      end loop;
      exit when cursorFind%notfound;
    end loop;   
    commit;
  end if;
  return true;
end;
/
grant execute on sem_inf_geocoding to mdsys;

The sem_inf_geocoding function makes use of the following helper procedure named
geocoding, which does the actual HTTP communication with the Geocoder web
service endpoint. Note that proper privileges are required to connect to the web server.

create or replace procedure geocoding(addr varchar2,
                                     vcLong out varchar2,
                                     vcLat  out varchar2
                                    )
as
  httpReq  utl_http.req;
  httpResp utl_http.resp;
  
  vcRequestBody varchar2(32767);
  
  vcBuffer  varchar2(32767);
  idxLat integer;
  idxLatEnd integer;
begin
  vcRequestBody := utl_url.escape('xml_request=<?xml version="1.0" standalone="yes"?>
    <geocode_request vendor="elocation">
      <address_list> 
      <input_location id="27010">
      <input_address match_mode="relax_street_type">
        <unformatted country="US">
           <address_line value="'|| addr ||'"/>
        </unformatted>
       </input_address>
      </input_location>
    </address_list>
    </geocode_request>
  ');
  dbms_output.put_line('request ' || vcRequestBody);
  
  -- utl_http.set_proxy('<your_proxy_here_if_necessary>', null);
  httpReq := utl_http.begin_request (
    'http://maps.oracle.com/geocoder/gcserver', 'POST');
    
  utl_http.set_header(httpReq, 'Content-Type', 'application/x-www-form-urlencoded');
  utl_http.set_header(httpReq, 'Content-Length', lengthb(vcRequestBody));
  
  utl_http.write_text(httpReq, vcRequestBody);
  
  httpResp := utl_http.get_response(httpReq);
  
  utl_http.read_text(httpResp, vcBuffer, 32767);
  utl_http.end_response(httpResp);
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  -- dbms_output.put_line('response ' || vcBuffer);
  -- Here we are doing some simple string parsing out of an XML.
  -- It is more robust to use XML functions instead.
  idxLat := instr(vcBuffer, 'longitude="'); 
  idxLatEnd := instr(vcBuffer, '"', idxLat + 12);
  vcLong := substr(vcBuffer, idxLat + 11, idxLatEnd - idxLat - 11);
  dbms_output.put_line('long = ' || vcLong);
  
  idxLat := instr(vcBuffer, 'latitude="');
  idxLatEnd := instr(vcBuffer, '"', idxLat + 11);
  vcLat := substr(vcBuffer, idxLat + 10, idxLatEnd - idxLat - 10);
  dbms_output.put_line('lat = ' || vcLat);
exception
  when others then
    dbms_output.put_line('geocoding: error ' || dbms_utility.format_error_backtrace 
|| ' '
                                             || dbms_utility.format_error_stack);
end;
/

7.2 User-Defined Functions and Aggregates
The RDF Semantic Graph query extension architecture enables you to add user-
defined functions and aggregates to be used in SPARQL queries, both through the
SEM_MATCH table function and through the support for Apache Jena.

The SPARQL 1.1 Standard provides several functions used mainly for filtering and
categorizing data obtained by a query. However, you may need specialized functions
not supported by the standard.

Some simple examples include finding values that belong to a specific type, or
obtaining values with a square sum value that is greater than a certain threshold.
Although this can be done by means of combining functions, it may be useful to have a
single function that handles the calculations, which also allows for a simpler and
shorter query.

The RDF Semantic Graph query extension allows you to include your own query
functions and aggregates. This architecture allows:

• Custom query functions that can be used just like built-in SPARQL query
functions, as explained in API Support for User-Defined Functions

• Custom aggregates that can be used just like built-in SPARQL aggregates, as
explained in API Support for User-Defined Aggregates

• Data Types for User-Defined Functions and Aggregates

• API Support for User-Defined Functions

• API Support for User-Defined Aggregates

7.2.1 Data Types for User-Defined Functions and Aggregates
The SDO_RDF_TERM object type is used to represent an RDF term when creating
user-defined functions and aggregates.

SDO_RDF_TERM has the following attributes, which correspond to columns in the
MDSYS.RDF_VALUE$ table (see Table 1-3 in Statements for a description of these
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attributes). The CTX1 attribute is reserved for future use and does not have a
corresponding column in MDSYS.RDF_VALUE$.

SDO_RDF_TERM(
  VALUE_TYPE   VARCHAR2(10),
  VALUE_NAME    VARCHAR2(4000), 
  VNAME_PREFIX   VARCHAR2(4000), 
  VNAME_SUFFIX   VARCHAR2(512), 
  LITERAL_TYPE   VARCHAR2(1000), 
  LANGUAGE_TYPE   VARCHAR2(80), 
  LONG_VALUE   CLOB, 
  CTX1   VARCHAR2(4000) )

The following constructors are available for creating SDO_RDF_TERM objects. The
first constructor populates each attribute from a single, lexical RDF term string. The
second and third constructors receive individual attribute values as input. Only the first
RDF term string constructor sets values for VNAME_PREFIX and VNAME_SUFFIX.
These values are initialized to null by the other constructors.

SDO_RDF_TERM (
  rdf_term_str  VARCHAR2) 
  RETURN SELF;

SDO_RDF_TERM (
  value_type  VARCHAR2, 
  value_name  VARCHAR2, 
  literal_type  VARCHAR2, 
  language_type  VARCHAR2, 
  long_value  CLOB) 
  RETURN SELF;

SDO_RDF_TERM (
  value_type  VARCHAR2, 
  value_name  VARCHAR2, 
  literal_type  VARCHAR2, 
  language_type  VARCHAR2, 
  long_value  CLOB, 
  ctx1 VARCHAR2) 
  RETURN SELF;

The SDO_RDF_TERM_LIST type is used to hold a list of SDO_RDF_TERM objects
and is defined as VARRAY(32767) of SDO_RDF_TERM.

7.2.2 API Support for User-Defined Functions
A user-defined function is created by implementing a PL/SQL function with a specific
signature, and a specific URI is used to invoke the function in a SPARQL query
pattern.

After each successful inference extension function call, a commit is executed to persist
changes made in the inference extension function call. If an inference extension
function is defined as autonomous by specifying pragma autonomous_transaction,
then it should either commit or roll back at the end of its implementation logic. Note
that the inference engine may call an extension function multiple times when creating
an entailment (once per round). Commits and rollbacks from one call will not affect
other calls.

• PL/SQL Function Implementation
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• Invoking User-Defined Functions from a SPARQL Query Pattern

• User-Defined Function Examples

7.2.2.1 PL/SQL Function Implementation
Each user-defined function must be implemented by a PL/SQL function with a
signature in the following format:

FUNCTION user_function_name (params IN SDO_RDF_TERM_LIST)
  RETURN SDO_RDF_TERM

This signature supports an arbitrary number of RDF term arguments, which are
passed in using a single SDO_RDF_TERM_LIST object, and returns a single RDF
term as output, which is represented as a single SDO_RDF_TERM object. Type
checking or other verifications for these parameters are not performed. You should
take steps to validate the data according to the function goals.

Note that PL/SQL supports callouts to functions written in other programming
languages, such as C and Java, so the PL/SQL function that implements a user-
defined query function can serve only as a wrapper for functions written in other
programming languages.

7.2.2.2 Invoking User-Defined Functions from a SPARQL Query Pattern
After a user-defined function is implemented in PL/SQL, it can be invoked from a
SPARQL query pattern using a function URI constructed from the prefix <http://
xmlns.oracle.com/rdf/extensions/> followed by
schema.package_name.function_name if the corresponding PL/SQL function is part of
a PL/SQL package, or schema.function_name if the function is not part of a PL/SQL
package. The following are two example function URIs:

<http://xmlns.oracle.com/rdf/extensions/my_schema.my_package.my_function>(arg_1, …, 
arg_n)

<http://xmlns.oracle.com/rdf/extensions/my_schema.my_function>(arg_1, …, arg_n)

7.2.2.3 User-Defined Function Examples
This section presents examples of the implementation of a user-defined function and
the use of that function in a FILTER clause, in a SELECT expression, and in a BIND
operation.

For the examples, assume that the following data, presented here in N-triple format,
exists inside a model called MYMODEL:

<a>  <p>  "1.0"^^xsd:double .
<b>  <p>  "1.5"^^xsd:float .
<c>  <p>  "3"^^xsd:decimal .
<d>  <p>  "4"^^xsd:string .

Example 7-1    User-Defined Function to Calculate Sum of Two Squares

Example 7-1 shows the implementation of a simple function that receives two values
and calculates the sum of the squares of each value.

CREATE OR REPLACE FUNCTION sum_squares (params IN MDSYS.SDO_RDF_TERM_LIST) 
   RETURN MDSYS.SDO_RDF_TERM
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   AS 
     retTerm    SDO_RDF_TERM;
     sqr1       NUMBER;
     sqr2       NUMBER;
     addVal     NUMBER;
     val1       SDO_RDF_TERM;
     val2       SDO_RDF_TERM;
   BEGIN 
     –- Set the return value to null.
     retTerm := SDO_RDF_TERM(NULL,NULL,NULL,NULL,NULL);
     –- Obtain the data from the first two parameters.
     val1 := params(1); 
     val2 := params(2);
     –- Convert the value stored in the sdo_rdf_term to number.
     –- If any exception occurs, return the null value.
     BEGIN
       sqr1 := TO_NUMBER(val1.value_name);
       sqr2 := TO_NUMBER(val2.value_name);
       EXCEPTION WHEN OTHERS THEN RETURN retTerm;
     END;
     –- Compute the square sum of both values.
       addVal := (sqr1 * sqr1) + (sqr2 * sqr2);
     –- Set the return value to the desired rdf term type.
     retTerm := SDO_RDF_TERM('LIT',to_char(addVal),
                'http://www.w3.org/2001/XMLSchema#integer','',NULL);
     – Return the new value.
     RETURN retTerm;
END;
/
SHOW ERRORS;

Note that the sum_squares function in Example 7-1 does not verify the data type of the
value received. It is intended as a demonstration only, and relies on TO_NUMBER to
obtain the numeric value stored in the VALUE_NAME field of SDO_RDF_TERM.

Example 7-2    User-Defined Function Used in a FILTER Clause

Example 7-2 shows the sum_squares function (from Example 7-1) used in a FILTER
clause.

SELECT s, o
FROM table(sem_match(
'SELECT  ?s ?o
 WHERE { ?s ?p ?o 
 FILTER (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) > 2)}',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 7-2 returns the following result:

s                    o                    
-------------------- -------------------- 
b                    1.5
c                    3                  
d                    4

Example 7-3    User-Defined Function Used in a SELECT Expression

Example 7-3 shows the sum_squares function (from Example 7-1) used in an
expression in the SELECT clause.

SELECT s, o, sqr_sum
FROM table(sem_match(
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'SELECT  ?s ?o 
       (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) AS    
        ?sqr_sum)
 WHERE { ?s ?p ?o }',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 7-3 returns the following result:

s                    o                    sqr_sum
-------------------- -------------------- -------------------- 
a                    1                    2
b                    1.5                  4.5
c                    3                    18
d                    4                    32

Example 7-4    User-Defined Function Used in a BIND Operation

Example 7-4 shows the sum_squares function (from Example 7-1) used in a BIND
operation.

SELECT s, o, sqr_sum
FROM table(sem_match(
'SELECT  ?s ?o ?sqr_sum
 WHERE { ?s ?p ?o .
 BIND (<http://xmlns.oracle.com/rdf/extensions/schema.sum_squares>(?o,?o) AS
       ?sqr_sum)}',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 7-4 returns the following result:

s                    o                    sqr_sum
-------------------- -------------------- -------------------- 
a                    1                    2
b                    1.5                  4.5
c                    3                    18
d                    4                    32

7.2.3 API Support for User-Defined Aggregates
User-defined aggregates are implemented by defining a PL/SQL object type that
implements a set of interface methods. After the user-defined aggregate is created, a
specific URI is used to invoke it.

• ODCIAggregate Interface

• Invoking User-Defined Aggregates

• User-Defined Aggregate Examples

7.2.3.1 ODCIAggregate Interface
User-defined aggregates use the ODCIAggregate PL/SQL interface. For more detailed
information about this interface, see the chapter about user-defined aggregate
functions in Oracle Database Data Cartridge Developer's Guide.

The ODCIAggregate interface is implemented by a PL/SQL object type that implements
four main functions:

• ODCIAggregateInitialize

• ODCIAggregateIterate
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• ODCIAggregateMerge

• ODCIAggregateTerminate

As with user-defined functions (described in API Support for User-Defined Functions),
user-defined aggregates receive an arbitrary number of RDF term arguments, which
are passed in as an SDO_RDF_TERM_LIST object, and return a single RDF term
value, which is represented as an SDO_RDF_TERM object.

This scheme results in the following signatures for the PL/SQL ODCIAggregate
interface functions (with my_aggregate_obj_type representing the actual object type
name):

STATIC FUNCTION ODCIAggregateInitialize(
        sctx IN OUT my_aggregate_obj_type)
RETURN NUMBER
 
MEMBER FUNCTION ODCIAggregateIterate(
        self       IN OUT my_aggregate_obj_type
       ,value      IN MDSYS.SDO_RDF_TERM_LIST)
RETURN NUMBER
 
MEMBER FUNCTION ODCIAggregateMerge(
        self IN OUT my_aggregate_obj_type
       ,ctx2 IN     my_aggregate_obj_type)
RETURN NUMBER
 
MEMBER FUNCTION ODCIAggregateTerminate (
        self IN my_aggregate_obj_type
       ,return_value OUT MDSYS.SDO_RDF_TERM
       ,flags IN NUMBER)              
RETURN NUMBER

7.2.3.2 Invoking User-Defined Aggregates
After a user-defined aggregate is implemented in PL/SQL, it can be invoked from a
SPARQL query by referring to an aggregate URI constructed from the prefix <http://
xmlns.oracle.com/rdf/aggExtensions/> followed by schema_name.aggregate_name.
The following is an example aggregate URI:

<http://xmlns.oracle.com/rdf/aggExtensions/schema.my_aggregate>(arg_1, …, arg_n)

The DISTINCT modifier can be used with user-defined aggregates, as in the following
example:

<http://xmlns.oracle.com/rdf/aggExtensions/schema.my_aggregate>(DISTINCT arg_1)

In this case, only distinct argument values are passed to the aggregate. Note,
however, that the DISTINCT modifier can only be used with aggregates that have
exactly one argument.

7.2.3.3 User-Defined Aggregate Examples
This section presents examples of implementing and using a user-defined aggregate.
For the examples, assume that the following data, presented here in N-triple format,
exists inside a model called MYMODEL:

<a>  <p>  "1.0"^^xsd:double .
<b>  <p>  "1.5"^^xsd:float .
<c>  <p>  "3"^^xsd:decimal .
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<c>  <p>  "4"^^xsd:decimal .
<d>  <p>  "4"^^xsd:string .

Example 7-5    User-Defined Aggregate Implementation

Example 7-5 shows the implementation of a simple user-defined aggregate
(countSameType). This aggregate has two arguments: the first is any RDF term, and
the second is a constant data type URI. The aggregate counts how many RDF terms
from the first argument position have a data type equal to the second argument.

-- Aggregate type creation
CREATE OR REPLACE TYPE countSameType authid current_user AS OBJECT(
 
count NUMBER, –- Variable to store the number of same-type terms.
 
–- Mandatory Functions for aggregates 
STATIC FUNCTION ODCIAggregateInitialize(
        sctx IN OUT countSameType)
RETURN NUMBER,
 
MEMBER FUNCTION ODCIAggregateIterate(
         self       IN OUT countSameType
       , value      IN MDSYS.SDO_RDF_TERM_LIST)
RETURN NUMBER,
 
MEMBER FUNCTION ODCIAggregateMerge(
        self IN OUT countSameType
       ,ctx2 IN     countSameType)
RETURN NUMBER,
 
MEMBER FUNCTION ODCIAggregateTerminate (
        self IN countSameType
       ,return_value OUT MDSYS.SDO_RDF_TERM
       ,flags IN NUMBER)              
RETURN NUMBER
);
/
SHOW ERRORS;
 
–- Interface function for the user-defined aggregate
CREATE OR REPLACE FUNCTION countSameAs (input MDSYS.SDO_RDF_TERM_LIST) RETURN 
MDSYS.SDO_RDF_TERM
PARALLEL_ENABLE AGGREGATE USING countSameType;
/
show errors;
 
–- User-defined aggregate body
CREATE OR REPLACE TYPE BODY countSameType IS
 
STATIC FUNCTION ODCIAggregateInitialize(
         sctx            IN OUT countSameType)
RETURN NUMBER IS
BEGIN
  sctx := countSameType (0); –- Aggregate initialization
  RETURN ODCIConst.Success;
END;
 
MEMBER FUNCTION ODCIAggregateIterate(
         self           IN OUT countSameType
       , value          IN MDSYS.SDO_RDF_TERM_LIST )
RETURN NUMBER IS
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BEGIN
  -- Increment count if the first argument has a literal type
  -- URI equal to the value of the second argument
  IF (value(1).literal_type = value(2).value_name) THEN
    self.count := self.count + 1;
  END IF;                                    
  RETURN ODCIConst.Success;
END;   
 
MEMBER FUNCTION ODCIAggregateMerge(
         self            IN OUT countSameType
        ,ctx2            IN countSameType)
RETURN NUMBER IS
BEGIN
  –- Sum count to merge parallel threads.
  self.count := self.count + ctx2.count;   
  RETURN ODCIConst.Success;
END;
 
MEMBER FUNCTION ODCIAggregateTerminate(
         self            IN countSameType
        ,return_value    OUT MDSYS.SDO_RDF_TERM
        ,flags           IN NUMBER)              
RETURN NUMBER IS
BEGIN
   -- Set the return value
   return_value := MDSYS.SDO_RDF_TERM('LIT',to_char(self.count),
     'http://www.w3.org/2001/XMLSchema#decimal',NULL,NULL); RETURN  
ODCIConst.Success;
END;
 
END;
/
SHOW ERRORS;

Example 7-6    User-Defined Aggregate Used Without a GROUP BY Clause

Example 7-6 shows the countSameType aggregate (from Example 7-5) used over an
entire query result group.

FROM o
from table(sem_match(
'SELECT 
 (<http://xmlns.oracle.com/rdf/aggExtensions/schema.countSameType>(?o,xsd:decimal) 
  AS ?o)
 WHERE { ?s ?p ?o }',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 7-6 returns the following result:

o                    
-------------------- 
2                    

Example 7-7    User-Defined Aggregate Used With a GROUP BY Clause

Example 7-7 shows the countSameType aggregate (from Example 7-5) used over a set
of groups formed from a GROUP BY clause.

select s, o
from table(sem_match(
'SELECT ?s

Chapter 7
User-Defined Functions and Aggregates

7-35



 (<http://xmlns.oracle.com/rdf/aggExtensions/schema.countSameType>(?o,xsd:decimal) 
  AS ?o)
 WHERE { ?s ?p ?o } GROUP BY ?s',
sem_models('MYMODEL'),null,null,null,null,''));

The query in Example 7-7 returns the following result:

s                    o                    
-------------------- -------------------- 
a                    0
b                    0
c                    2                    
d                    0
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8
RDF Views: Relational Data as RDF

You can create and use RDF views over relational data in Oracle Spatial and Graph
RDF Semantic Graph.

Relational data is viewed as virtual RDF triples using one of the two forms of
RDB2RDF mapping described in W3C documents on Direct Mapping and R2RML
mapping:

• R2RML: RDB to RDF Mapping Language, W3C Recommendation (http://
www.w3.org/TR/r2rml/)

• A Direct Mapping of Relational Data to RDF, W3C Recommendation (http://
www.w3.org/TR/rdb-direct-mapping/)

• Why Use RDF Views on Relational Data?
Using RDF views on relational data enables you to integrate data available from
different sources.

• API Support for RDF Views
Subprograms are included in the SEM_APIS package for creating, dropping, and
exporting (that is, materializing the content of) RDF views.

• Example: Using an RDF View with Direct Mapping
This topic provides an example of using an RDF view with direct mapping.

• Combining Native RDF Data with Virtual RDB2RDF Data
You can combine native triple data with virtual RDB2RDF triple data in a single
SEM_MATCH query by means of the SERVICE keyword.

8.1 Why Use RDF Views on Relational Data?
Using RDF views on relational data enables you to integrate data available from
different sources.

You can exploit the advantages of relational data without the need for physical storage
of the RDF triples that correspond to the relational data. Before RDF views were
included in RDF Semantic Graph in Oracle Database 12c Release 1 (12.1), you
needed to write custom SQL queries or use non-standard mappings and physically
store the generated RDF triples in an RDF model.

The simplest way to create a mapping of relational data to RDF data is by calling the 
SEM_APIS.CREATE_RDFVIEW_MODEL procedure to create an RDF view and
supplying the list of tables or views whose content you would like to be viewed as
RDF. This provides a direct mapping of those relational tables or views.

To get a more customized mapping, you can write an R2RML mapping document (in
RDF using Turtle, for example) to specify the desired mapping, load the mapping
document (after converting it to N-Triple format) into a staging table (for the table
definition, see Bulk Loading Semantic Data Using a Staging Table), and then call the 
SEM_APIS.CREATE_RDFVIEW_MODEL procedure to create an RDF view by
supplying the name of the staging table.
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8.2 API Support for RDF Views
Subprograms are included in the SEM_APIS package for creating, dropping, and
exporting (that is, materializing the content of) RDF views.

An RDF view is created as an RDF model, but the RDF model physically contains only
metadata. The actual data is still stored in the relational tables for which the RDF view
has been created. (The SEM_APIS subprograms are documented in SEM_APIS
Package Subprograms.)

For the examples in the rest of this section, assume that the following relational tables
exist in the invoker's schema:

CREATE TABLE dept (
  deptno NUMBER CONSTRAINT pk_DeptTab_deptno PRIMARY KEY,
  dname VARCHAR2(30),
  loc VARCHAR2(30)
);
 
CREATE TABLE emp ( 
  empno NUMBER PRIMARY KEY,
  ename VARCHAR2(30),
  job VARCHAR2(20),
  deptno NUMBER REFERENCES dept (deptno)
);

Note that if these tables are in a different schema (for example, SCOTT) than the
invoker's, when specifying the names of these tables, you need to use schema-
qualified table names: "SCOTT"."DEPT" and "SCOTT"."EMP".

• Creating an RDF View with Direct Mapping

• Creating an RDF View with an R2RML Mapping

• Dropping an RDF View

• Exporting Virtual Content of an RDF View into a Staging Table

8.2.1 Creating an RDF View with Direct Mapping
Example 8-1 creates an RDF view model using direct mapping of two tables, EMP and
DEPT, with a base prefix of http://empdb/. The (virtual) RDF terms are generated
according to A Direct Mapping of Relational Data to RDF, W3C Recommendation
(http://www.w3.org/TR/rdb-direct-mapping/).

Example 8-1    Creating an RDF View with Direct Mapping

BEGIN
  sem_apis.create_rdfview_model(
    model_name => 'empdb_model',
    tables => SYS.ODCIVarchar2List('EMP', 'DEPT'),
    prefix => 'http://empdb/',
    options => 'KEY_BASED_REF_PROPERTY=T'
  );
END;
/

Chapter 8
API Support for RDF Views

8-2

http://www.w3.org/TR/rdb-direct-mapping/


To see the properties that are generated, enter the following statement (which
assumes that the objects are created in the schema of a user named TESTUSER):

SELECT DISTINCT p
  FROM TABLE(SEM_MATCH(
    '{?s ?p ?o}',
    SEM_Models('empdb_model'),
    NULL,
    NULL,
    NULL));
 
P                                                                               
--------------------------------------------------------------------------------
http://empdb/TESTUSER.EMP#DEPTNO                                                
http://empdb/TESTUSER.DEPT#LOC                                                  
http://empdb/TESTUSER.EMP#JOB                                                   
http://empdb/TESTUSER.DEPT#DEPTNO                                               
http://empdb/TESTUSER.EMP#ENAME                                                 
http://www.w3.org/1999/02/22-rdf-syntax-ns#type                                 
http://empdb/TESTUSER.DEPT#DNAME                                                
http://empdb/TESTUSER.EMP#EMPNO                                                 
http://empdb/TESTUSER.EMP#ref-DEPTNO                                            
 
9 rows selected.

Example 8-2    Using CONFORMANCE=T

Example 8-2 is essentially the same as Example 8-1, but it uses the CONFORMANCE=T
option (see the options parameter description for 
SEM_APIS.CREATE_RDFVIEW_MODEL). Notice in the output that the schema name
is not included in the list of properties; for example, the first output record in 
Example 8-2 is http://empdb/DEPT#LOC, whereas its counterpart generated by 
Example 8-1 is http://empdb/TESTUSER.DEPT#LOC.

BEGIN
  sem_apis.create_rdfview_model(
    model_name => 'empdb_model',
    tables => SYS.ODCIVarchar2List('EMP', 'DEPT'),
    prefix => 'http://empdb/',
    options => 'CONFORMANCE=T'
  );
END;
/

SELECT DISTINCT p
  FROM TABLE(SEM_MATCH(
    '{?s ?p ?o}',
    SEM_Models('empdb_model'),
    NULL,
    NULL,
    NULL));
 
P                                                                               
--------------------------------------------------------------------------------
http://empdb/DEPT#LOC                                                           
http://empdb/EMP#ref-DEPTNO                                                     
http://empdb/EMP#ENAME                                                          
http://empdb/DEPT#DEPTNO                                                        
http://empdb/EMP#JOB                                                            
http://empdb/EMP#EMPNO                                                          
http://www.w3.org/1999/02/22-rdf-syntax-ns#type                                 

Chapter 8
API Support for RDF Views

8-3



http://empdb/DEPT#DNAME                                                         
http://empdb/EMP#DEPTNO                                                         
 
9 rows selected.

8.2.2 Creating an RDF View with an R2RML Mapping
If you wanted to create an RDF view using the two tables EMP and DEPT, but with
your own customizations, you could create an R2RML mapping document specified
using Turtle, such as the following:

@prefix rr: <http://www.w3.org/ns/r2rml#>.
@prefix xsd: <http://www.w3.org/2001/XMLSchema#>.
@prefix ex: <http://example.com/ns#>.
 
ex:TriplesMap_Dept
    rr:logicalTable [ rr:tableName "DEPT" ];
    rr:subjectMap [
        rr:template "http://data.example.com/department/{DEPTNO}";
        rr:class ex:Department;
    ];
    rr:predicateObjectMap [
        rr:predicate ex:deptNum;
        rr:objectMap [ rr:column "DEPTNO" ; rr:datatype xsd:integer ];
    ];
    rr:predicateObjectMap [
        rr:predicate ex:deptName;
        rr:objectMap [ rr:column "DNAME" ];
    ];
    rr:predicateObjectMap [
        rr:predicate ex:deptLocation;
        rr:objectMap [ rr:column "LOC" ];
    ].
 
ex:TriplesMap_Emp
    rr:logicalTable [ rr:tableName "EMP" ];
    rr:subjectMap [
        rr:template "http://data.example.com/employee/{EMPNO}";
        rr:class ex:Employee;
    ];
    rr:predicateObjectMap [
        rr:predicate ex:empNum;
        rr:objectMap [ rr:column "EMPNO" ; rr:datatype xsd:integer ];
    ];
    rr:predicateObjectMap [
        rr:predicate ex:empName;
        rr:objectMap [ rr:column "ENAME" ];
    ];
    rr:predicateObjectMap [
        rr:predicate ex:jobType;
        rr:objectMap [ rr:column "JOB" ];
    ];
    rr:predicateObjectMap [
        rr:predicate ex:worksForDeptNum;
        rr:objectMap [ rr:column "DEPTNO" ; rr:dataType xsd:integer ];
    ];
    rr:predicateObjectMap [
        rr:predicate ex:worksForDept;
        rr:objectMap [ 
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          rr:parentTriplesMap ex:TriplesMap_Dept ; 
          rr:joinCondition [ rr:child "DEPTNO"; rr:parent "DEPTNO" ]]].

Then, load your R2RML mapping (converted into N-Triples format) into a staging table,
such as SCOTT.R2RTAB, and grant the SELECT privilege for this table to MDSYS.

Next, call SEM_APIS.CREATE_RDFVIEW_MODEL, as in Example 8-3.

Example 8-3    Creating an RDF View with an R2RML Mapping

BEGIN
  sem_apis.create_rdfview_model(
    model_name => 'empdb_model',
    tables => NULL,
    r2rml_table_owner => 'SCOTT',
    r2rml_table_name => 'R2RTAB'
  );
END;
/

8.2.3 Dropping an RDF View
An RDF view can be dropped using the SEM_APIS.DROP_RDFVIEW_MODEL
procedure, as shown in Example 8-4.

Example 8-4    Dropping an RDF View

BEGIN
  sem_apis.drop_rdfview_model(
    model_name => 'empdb_model'
  );
END;
/

8.2.4 Exporting Virtual Content of an RDF View into a Staging Table
The content of an RDF view is virtual; that is, the RDF triples corresponding to the
underlying relational data, as mapped by direct mapping or R2RML mapping, are not
materialized and stored anywhere. You may, however, want to materialize and store
these virtual RDF triples in an RDF model for your testing purposes. The 
SEM_APIS.EXPORT_RDFVIEW_MODEL subprogram lets you store the RDF triples
of an RDF view in a staging table. The staging table can then be used for loading into
an RDF model.

Example 8-5 materializes (in N-Triples format) the content of RDF view empdb_model
into the staging table SCOTT.RDFTAB.

Example 8-5    Exporting an RDF View

BEGIN
  sem_apis.export_rdfview_model(
    model_name => 'empdb_model',
    rdf_table_owner => 'SCOTT',
    rdf_table_name => 'RDFTAB'
  );
END;
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8.3 Example: Using an RDF View with Direct Mapping
This topic provides an example of using an RDF view with direct mapping.

Example 8-6 shows a simple workflow using an RDF view with direct mapping. In it,
you:

1. Create two relational tables (EMP and DEPT).

2. Insert data into the tables.

3. Create an RDF view model (empdb_model) using direct mapping of the two tables.

4. Query the RDF view using SPARQL in a SEM_MATCH-based SQL query.

Example 8-7 shows the output of the statements in Example 8-6.

Example 8-6    Using an RDF View with Direct Mapping

-- Use the following relational tables.
 
CREATE TABLE dept (
  deptno NUMBER CONSTRAINT pk_DeptTab_deptno PRIMARY KEY,
  dname VARCHAR2(30),
  loc VARCHAR2(30)
);
 
CREATE TABLE emp ( 
  empno NUMBER PRIMARY KEY,
  ename VARCHAR2(30),
  job VARCHAR2(20),
  deptno NUMBER REFERENCES dept (deptno)
);
 
-- Insert some data.
 
INSERT INTO dept (deptno, dname, loc)
  VALUES (1, 'Sales', 'Boston');
INSERT INTO dept (deptno, dname, loc)
  VALUES (2, 'Manufacturing', 'Chicago');
INSERT INTO dept (deptno, dname, loc)
  VALUES (3, 'Marketing', 'Boston');
 
INSERT INTO emp (empno, ename, job, deptno)
  VALUES (1, 'Alvarez', 'SalesRep', 1);
INSERT INTO emp (empno, ename, job, deptno)
  VALUES (2, 'Baxter', 'Supervisor', 2);
INSERT INTO emp (empno, ename, job, deptno)
  VALUES (3, 'Chen', 'Writer', 3);
INSERT INTO emp (empno, ename, job, deptno)
  VALUES (4, 'Davis', 'Technician', 2);
 
-- Create an RDF view model using direct mapping of two tables, EMP and DEPT, 
-- with a base prefix of http://empdb/.
-- Specify KEY_BASED_REF_PROPERTY=T for the options parameter.
 
BEGIN
  sem_apis.create_rdfview_model(
    model_name => 'empdb_model',
    tables => SYS.ODCIVarchar2List('EMP', 'DEPT'),
    prefix => 'http://empdb/',
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    options => 'KEY_BASED_REF_PROPERTY=T'
  );
END;
/
 
-- Query an RDF view using SPARQL in a SEM_MATCH-based SQL query. 
-- The next statament is a query against an RDF view named empdb_model 
-- to find the employees who work for any department located in Boston.

SELECT emp
  FROM TABLE(SEM_MATCH(
  '{?emp emp:ref-DEPTNO ?dept . ?dept dept:LOC "Boston"}',
  SEM_Models('empdb_model'),
  NULL,
  SEM_ALIASES(
    SEM_ALIAS('dept','http://empdb/TESTUSER.DEPT#'),
    SEM_ALIAS('emp','http://empdb/TESTUSER.EMP#')
  ),
  null));

-- The preceding query is functionally comparable to this:
SELECT e.empno FROM emp e, dept d WHERE e.deptno = d.deptno AND d.loc = 'Boston';

Example 8-7    Output of Example 8-6

SQL> -- Use the following relational tables.
SQL> 
SQL> CREATE TABLE dept (
  2    deptno NUMBER CONSTRAINT pk_DeptTab_deptno PRIMARY KEY,
  3    dname VARCHAR2(30),
  4    loc VARCHAR2(30)
  5  );
 
Table created.
 
SQL> 
SQL> CREATE TABLE emp (
  2    empno NUMBER PRIMARY KEY,
  3    ename VARCHAR2(30),
  4    job VARCHAR2(20),
  5    deptno NUMBER REFERENCES dept (deptno)
  6  );
 
Table created.
 
SQL> 
SQL> -- Insert some data.
SQL> 
SQL> INSERT INTO dept (deptno, dname, loc)
  2    VALUES (1, 'Sales', 'Boston');
 
1 row created.
 
SQL> INSERT INTO dept (deptno, dname, loc)
  2    VALUES (2, 'Manufacturing', 'Chicago');
 
1 row created.
 
SQL> INSERT INTO dept (deptno, dname, loc)
  2    VALUES (3, 'Marketing', 'Boston');
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1 row created.
 
SQL> 
SQL> INSERT INTO emp (empno, ename, job, deptno)
  2    VALUES (1, 'Alvarez', 'SalesRep', 1);
 
1 row created.
 
SQL> INSERT INTO emp (empno, ename, job, deptno)
  2    VALUES (2, 'Baxter', 'Supervisor', 2);
 
1 row created.
 
SQL> INSERT INTO emp (empno, ename, job, deptno)
  2    VALUES (3, 'Chen', 'Writer', 3);
 
1 row created.
 
SQL> INSERT INTO emp (empno, ename, job, deptno)
  2    VALUES (4, 'Davis', 'Technician', 2);
 
1 row created.
 
SQL> 
SQL> -- Create an RDF view model using direct mapping of two tables, EMP and DEPT,
SQL> -- with a base prefix of http://empdb/.
SQL> -- Specify KEY_BASED_REF_PROPERTY=T for the options parameter.
SQL> 
SQL> BEGIN
  2    sem_apis.create_rdfview_model(
  3       model_name => 'empdb_model',
  4       tables => SYS.ODCIVarchar2List('EMP', 'DEPT'),
  5       prefix => 'http://empdb/',
  6       options => 'KEY_BASED_REF_PROPERTY=T'
  7    );
  8  END;
  9  /
 
PL/SQL procedure successfully completed.
 
SQL> 
SQL> -- Query an RDF view using SPARQL in a SEM_MATCH-based SQL query.
SQL> -- The next statament is a query against an RDF view named empdb_model
SQL> -- to find the employees who work for any department located in Boston.
SQL> 
SQL> SELECT emp
  2    FROM TABLE(SEM_MATCH(
  3       '{?emp emp:ref-DEPTNO ?dept . ?dept dept:LOC "Boston"}',
  4       SEM_Models('empdb_model'),
  5       NULL,
  6       SEM_ALIASES(
  7         SEM_ALIAS('dept','http://empdb/TESTUSER.DEPT#'),
  8         SEM_ALIAS('emp','http://empdb/TESTUSER.EMP#')
  9       ),
 10       null));
 
EMP                                                                             
--------------------------------------------------------------------------------
http://empdb/TESTUSER.EMP/EMPNO=1                                               
http://empdb/TESTUSER.EMP/EMPNO=3                                               
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SQL> 
SQL> -- The preceding query is functionally comparable to this:
SQL> SELECT e.empno FROM emp e, dept d WHERE e.deptno = d.deptno AND d.loc = 
'Boston';
 
     EMPNO                                                                      
----------                                                                      
         1                                                                      
         3  

8.4 Combining Native RDF Data with Virtual RDB2RDF
Data

You can combine native triple data with virtual RDB2RDF triple data in a single
SEM_MATCH query by means of the SERVICE keyword.

The SERVICE keyword (explained in Graph Patterns: Support for SPARQL 1.1
Federated Query) is overloaded through the use of special SERVICE URLs that signify
local (virtual) RDF data. The following prefixes are used to denote special SERVICE
URLs:

• Native models - oram: <http://xmlns.oracle.com/models/>

• Native virtual models - oravm: <http://xmlns.oracle.com/virtual_models/>

• RDB2RDF models - orardbm: <http://xmlns.oracle.com/rdb_models/>

Example 8-8    Querying Multiple Data Sets

Example 8-8 queries multiple data sets. In this query, the first triple pattern { ?x
rdf:type :Person } will go against native model m1 as usual, but { ?x :name ?
name } will go against the local native model m2, and { ?x :email ?email } will go
against the local RDB2RDF model rdfview1.

select * from table (sem_match(
'SELECT ?x ?name ?email
 WHERE {
  ?x rdf:type :Person .
  OPTIONAL { SERVICE oram:m2 { ?x :name ?name } }
  OPTIONAL { SERVICE orardbm:rdfview1 { ?x :email ?email } }
}'
sem_models('m1'), null, null, null, null, ' '));

Overloaded SERVICE use is only allowed with a single model specified in the models
argument of SEM_MATCH. Overloaded SERVICE queries do not allow multiple
models or a rulebase as input. A virtual model that contains multiple models and/or
entailments should be used instead for such combinations. In addition, the
index_status argument for SEM_MATCH will only check the entailment contained in
the virtual model passed as input in the models parameter. This means the status of
entailments that are referenced in overloaded SERVICE calls will not be checked.

Example 8-9    Querying Virtual RDB2RDF Data and Native RDF Data

Example 8-9 queries two data sets: the empdb_model from Example 8-6 and a native
model named people.

-- Create native model people --
create table atab (gval varchar2(4000), tri sdo_rdf_triple_s);
 

Chapter 8
Combining Native RDF Data with Virtual RDB2RDF Data

8-9



execute sem_apis.create_sem_model('people','atab','tri');
 
create table stab(RDF$STC_GRAPH varchar2(4000), RDF$STC_sub varchar2(4000),
                  RDF$STC_pred varchar2(4000), RDF$STC_obj varchar2(4000));
grant select on stab to mdsys;
grant insert on atab to mdsys;
 
insert into stab values (null, '<http://empdb/TESTUSER.EMP/EMPNO=1>', '<http://
people.org/age>', '"35"^^<http://www.w3.org/2001/XMLSchema#int>');
insert into stab values (null, '<http://empdb/TESTUSER.EMP/EMPNO=2>', '<http://
people.org/age>', '"39"^^<http://www.w3.org/2001/XMLSchema#int>');
insert into stab values (null, '<http://empdb/TESTUSER.EMP/EMPNO=3>', '<http://
people.org/age>', '"30"^^<http://www.w3.org/2001/XMLSchema#int>');
insert into stab values (null, '<http://empdb/TESTUSER.EMP/EMPNO=4>', '<http://
people.org/age>', '"42"^^<http://www.w3.org/2001/XMLSchema#int>');
commit;
 
exec sem_apis.bulk_load_from_staging_table('people','testuser','stab');
 
-- Querying multiple datasets --
SELECT emp, age
  FROM TABLE(SEM_MATCH(
    'SELECT ?emp ?age WHERE{
       ?emp peop:age ?age
       SERVICE orardbm:empdb_model { ?emp emp:ref-DEPTNO ?dept . ?dept dept:LOC 
"Boston" }
    }',
    SEM_Models('people'),
    NULL,
    SEM_ALIASES(
          SEM_ALIAS('dept','http://empdb/TESTUSER.DEPT#'),
          SEM_ALIAS('emp','http://empdb/TESTUSER.EMP#'),
          SEM_ALIAS('peop','http://people.org/')
        ),
    NULL));

• Nested Loop Pushdown with Overloaded Service

8.4.1 Nested Loop Pushdown with Overloaded Service
Using a nested loop service can improve performance is some scenarios. Consider
the following examlpe query against multiple data sets, which finds the properties of all
the departments with people who are 35 years old.

SELECT emp, dept, p, o
  FROM TABLE(SEM_MATCH(
    'SELECT * WHERE{
       ?emp peop:age 35
       SERVICE orardbm:empdb_model{ ?emp emp:ref-DEPTNO ?dept . ?dept ?p ?
o }
    }',
    SEM_Models('people'),
    NULL,
    SEM_ALIASES(
          SEM_ALIAS('dept','http://empdb/TESTUSER.DEPT#'),
          SEM_ALIAS('emp','http://empdb/TESTUSER.EMP#'),
          SEM_ALIAS('peop','http://people.org/')
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        ),
    NULL));

To get all the results that match for given graph pattern, first the triple { ?emp
peop:age 35 } is matched against model people, then the triples { ?emp emp:ref-
DEPTNO ?d . ?d dept:DNAME ?dept } are matched against model empdb_model, and
finally the results are joined. Assume that there is only one 35-year-old person in the
model people, but there are 100,000 triples with information about departments.
Obviously, a strategy that retrieves all the results is not the most efficient, and query
may have poor performance because a large numberof results that need to be
processed before being joined with the rest of the query.

An nested-loop service can improve performance in this case. If the hint
OVERLOADED_NL=T is used, the results of the first part of the query are computed and
the SERVICE pattern is executed procedurally in a nested loop once for each ?emp
value from the root triple pattern. The ?emp subject variable in the SERVICE pattern is
replaced with a constant from the root triple pattern in each execution. This effectively
pushes the join condition down into the SERVICE clause.

The following example shows the use of the OVERLOADED_NL=T hint for the preceding
query.

SELECT emp, dept, p, o
  FROM TABLE(SEM_MATCH(
    'SELECT * WHERE{
       ?emp peop:age 35
       SERVICE orardbm:empdb_model { ?emp emp:ref-DEPTNO ?dept . ?dept ?p ?
o }
    }',
    SEM_Models('people'),
    NULL,
    SEM_ALIASES(
          SEM_ALIAS('dept','http://empdb/TESTUSER.DEPT#'),
          SEM_ALIAS('emp','http://empdb/TESTUSER.EMP#'),
          SEM_ALIAS('peop','http://people.org/')
        ),
    NULL,null,' OVERLOADED_NL=T '));

The hint OVERLOADED_NL=T can be specified among SEM_MATCH options or among
inline comments for a given SERVICE graph.
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9
RDF Integration with Property Graph Data
Stored in Oracle Database

The property graph data model is supported in Oracle Spatial and Graph. Oracle
Spatial and Graph provides built-in support for RDF views of property graph data
stored in Oracle Database.

• About RDF Integration with Property Graph Data

• R2RML Mapping for the Property Graph Relational Schema
You can use the built-in R2RML mapping to construct an RDF view from the
property graph relational schema.

• PL/SQL API for Creating and Maintaining Property Graph RDF Views
Subprograms in the SEM_APIS package simplify the creation and maintenance of
property graph RDF views.

• Sample RDF Workflow with Property Graph Data
This topic presents a sample RDF workflow with property graph data.

• Special Considerations When Using Property Graph RDF Views
The following special considerations apply when using property graph RDF views.

9.1 About RDF Integration with Property Graph Data
The property graph data model is simpler than the RDF data model in that it has no
concept of global resource identification (that is, no URIs) or formal semantics and
entailment. In addition, property graphs allow direct association of properties (key-
value pairs) with edges. RDF, by contrast, needs reification or a quad data model to
associate properties with edges (RDF triples).
Oracle Spatial and Graph provides built-in support for RDF views of property graph
data stored in Oracle Database. These RDF views serve as an integration point
between property graph data and RDF data. RDF views of property graph data behave
the same way as other RDF views; you can run SPARQL queries against them and
materialize them as native RDF models. Support for RDF views of property graphs is
provided through the following components:

• A built-in R2RML mapping for the relational schema used to store property graph
data [ref to schema].

• A PL/SQL API for creating and maintaining RDF views using the built-in R2RML
mapping for property graph data.

There are two main considerations when representing property graph data in RDF:

• How to generate syntactically valid RDF terms (URIs, literals, and so on) from
property graph identifiers and values

• How to represent edge properties (key-value pairs for edges)

Oracle Spatial and Graph uses specific prefixes to generate URIs from property graph
identifiers, and uses XML Schema typed literals for property values. Named graphs
are used to model edge properties.
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The example shown in the following figure illustrates a property graph to RDF
mapping. Note that edges in the property graph model become an RDF quad, where
the predicate is the edge label and the named graph is a URI constructed from the
edge identifier. Edge properties are then modeled as RDF quads within the named
graph for the edge. As an illustration, the Trig serialization for RDF graph in the
following figure is as follows:

@PREFIX edge: <http://xmlns.oracle.com/pg/edge/> .
@PREFIX vertex: <http://xmlns.oracle.com/pg/vertex/> .
@PREFIX ep: <http://xmlns.oracle.com/pg/property/edge/> .
@PREFIX vp: <http://xmlns.oracle.com/pg/property/vertex/> .
@PREFIX label: <http://xmlns.oracle.com/pg/property/edge/label/> .

vertex:v1 vp:name "John";
          vp:age 40 .
vertex:v2 vp:name "Jill"
          vp:age 35 .
vertex:v3 vp:name "Frank";
          vp:age 23 .
vertex:v4 vp:name "Susan";
          vp:age 50 .
edge:e5 { vertex:v1 label:friend_of vertex:v2 .
          edge:e5   ep:weight 1.0 . }
edge:e6 { vertex:v1 label:friend_of vertex:v3 .
          edge:e6   ep:weight 2.0 . }
edge:e7 { vertex:v2 label:friend_of vertex:v3 .
          edge:e7   ep:weight 1.5 . }
edge:e8 { vertex:v2 label:friend_of vertex:v4 .
          edge:e8   ep:weight 1.0 . }
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Figure 9-1    Equivalent Property Graph and RDF Representations of the Same
Graph

In the preceding figure, the property graph model at the top is simpler than the RDF
model at the bottom. Both models show four vertices (nodes) representing four people
(John, Jill, Frank, Susan), but the property graph model shows simple boxes for name
and label information. The property graph model shows many edges with properties
represented using the following prefixes:

• PREFIX edge: <http://xminx,oracle.com/pg/edge/>
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• PREFIX vertex: <http://xminx,oracle.com/pg/vertex/>

• PREFIX ep: <http://xminx,oracle.com/pg/property/edge/>

• PREFIX vp http://xminx,oracle.com/pg/property/vertex/>

• PREFIX label: <http://xminx,oracle.com/pg/property/edge/label/>

9.2 R2RML Mapping for the Property Graph Relational
Schema

You can use the built-in R2RML mapping to construct an RDF view from the property
graph relational schema.

Several helper views are created to simplify the R2RML mapping and to convert
values from NVARCHAR to VARCHAR. These views are shown in the following output
(assuming RDF view model name M1, property graph name G1, and user name USER).
Note that substring length for edge label and property name can be customized, and
the M1$GT view will select directly from the G1GT$ table if you indicate that this table
is populated (with options=>'GT_TABLE=T').

-- 5 VT$ views --
-- Varchar --
create or replace view "USER"."M1$V1" as
select
  "VID",
  to_char(substr("K",1,200)) KC,
  "T",
  to_char("V") VC,
  "SL",
  "VTS",
  "VTE",
  "FE"
from  "USER"."G1VT$"
where T=1;

-- Number --
create or replace view "USER"."M1$V2" as
select
  "VID",
  to_char(substr("K",1,200)) KC,
  "T",
  "VN",
  "SL",
  "VTS",
  "VTE",
  "FE"
from  "USER"."G1VT$"
where T IN (2,3,4);

-- DateTime --
create or replace view "USER"."M1$V3" as
select
  "VID",
  to_char(substr("K",1,200)) KC,
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  "T",
  "VT",
  "SL",
  "VTS",
  "VTE",
  "FE"
from  "USER"."G1VT$"
where T=5;

-- Boolean --
create or replace view "USER"."M1$V4" as
select
  "VID",
  to_char(substr("K",1,200)) KC,
  "T",
  DECODE("V",'y',to_char('true'),
             'Y',to_char('true'),
             'n',to_char('false'),
             'N',to_char('false')) VB,
  "SL",
  "VTS",
  "VTE",
  "FE"
from  "USER"."G1VT$"
where T=6; 

-- ID View –
create or replace view "USER"."M1$VT" as
select DISTINCT
  "VID"
from "USER"."G1VT$";

-- 4 GE$ Views --
-- Varchar --
create or replace view "USER"."M1$G1" as
select
  "EID",
  "SVID",
  "DVID",
  "EL",
  to_char(substr("K",1,200)) KC,
  "T",
  to_char("V") VC,
  "SL",
  "VTS",
  "VTE",
  "FE"
from "USER"."G1GE$"
where T=1;

-- Number --
create or replace view "USER"."M1$G2" as
select
  "EID",
  "SVID",
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  "DVID",
  "EL",
  to_char(substr("K",1,200)) KC,
  "T",
  "VN",
  "SL",
  "VTS",
  "VTE",
  "FE"
from "USER"."G1GE$"
where T IN (2,3,4);

-- DateTime --
create or replace view "USER"."M1$G3" as
select
  "EID",
  "SVID",
  "DVID",
  "EL",
  to_char(substr("K",1,200)) KC,
  "T",
  "VT",
  "SL",
  "VTS",
  "VTE",
  "FE"
from "USER"."G1GE$"
where T=5;

-- Boolean --
create or replace view "USER"."M1$G4" as
select
  "EID",
  "SVID",
  "DVID",
  "EL",
  to_char(substr("K",1,200)) KC,
  "T",
  DECODE("V",'y',to_char('true'),
             'Y',to_char('true'),
             'n',to_char('false'),
             'N',to_char('false')) VB,
  "SL",
  "VTS",
  "VTE",
  "FE"
from "USER"."G1GE$"
where T=6;

-- GT$ View –
create or replace view "USER"."M1$GT" as
select DISTINCT
  "EID",
  "SVID",
  "DVID",
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  to_char(substr("EL",1,200)) LC
from "USER"."G1GE$";

The built-in R2RML mapping that uses these views is shown in the following output in
turtle format.

@prefix rdf:   <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rr:    <http://www.w3.org/ns/r2rml#>.
@prefix xsd:   <http://www.w3.org/2001/XMLSchema#>.
@prefix pg:    <http://xmlns.oracle.com/pg/>.
@prefix pgvtpr: <http://xmlns.oracle.com/pg/property/vertex/>.
@prefix pgedpr: <http://xmlns.oracle.com/pg/property/edge/>.
# Vertex Property views ===============================================
pg:TMap_VERTEXPR_VC_TAB
  rr:logicalTable [ rr:tableName "\"USER\".\"M1$V1\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ; 
    rr:class pg:VERTEX ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/property/vertex/{KC}" ] ; 
    rr:objectMap [ rr:column "VC" ]
]
.
pg:TMap_VERTEXPR_VN_TAB
  rr:logicalTable [ rr:tableName "\"USER\".\"M1$V2\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ; 
    rr:class pg:VERTEX ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/property/vertex/{KC}" ] ; 
    rr:objectMap [  
      rr:column "VN" ; 
      rr:datatype xsd:decimal ]
]
.
pg:TMap_VERTEXPR_VT_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$V3\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ; 
    rr:class pg:VERTEX ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/property/vertex/{KC}" ] ; 
    rr:objectMap [ 
      rr:column "VT" ; 
      rr:datatype xsd:dateTime ] 
]
.
pg:TMap_VERTEXPR_VB_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$V4\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ; 
    rr:class pg:VERTEX ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/property/vertex/{KC}" ] ; 
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    rr:objectMap [ 
      rr:column "VB" ; 
      rr:datatype xsd:boolean ] 
]
.
# VERTEX ID view ==============================================
pg:TMap_VERTEXID_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$VT\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/vertex/v{VID}" ; 
    rr:class pg:VERTEX ] ;
  rr:predicateObjectMap [
    rr:predicate pgvtpr:id ;
    rr:objectMap [ 
      rr:column "VID" ] 
  ]
.
# Edge Property views ===============================================
pg:TMap_EDGEPR_VC_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$G1\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ; 
    rr:graphMap [ 
      rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ] ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/property/edge/{KC}" ] ; 
    rr:objectMap [ 
      rr:column "VC" ]
  ]
.
pg:TMap_EDGEPR_VN_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$G2\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ; 
    rr:graphMap [ 
      rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ] ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/property/edge/{KC}" ] ; 
    rr:objectMap [ 
      rr:column "VN" ; 
      rr:datatype xsd:decimal ]
  ]
.
pg:TMap_EDGEPR_VT_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$G3\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ; 
    rr:graphMap [ 
      rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ] ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/property/edge/{KC}" ] ; 
    rr:objectMap [ 
      rr:column "VT" ; 
      rr:datatype xsd:dateTime ] 
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  ]
.
pg:TMap_EDGEPR_VB_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$G4\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ; 
    rr:graphMap [ 
      rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ] ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/property/edge/{KC}" ] ; 
    rr:objectMap [ 
      rr:column "VB" ; 
      rr:datatype xsd:boolean ] 
  ]
.
# Edge IDLABEL views ==========================================
pg:TMap_EDGEIDLABEL_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$GT\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ; 
    rr:class pg:EDGE ; 
    rr:graphMap [ 
      rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ] ] ;
  rr:predicateObjectMap [
    rr:predicate pgedpr:id ;
    rr:objectMap [ 
      rr:column "EID" ] 
  ] ;
  rr:predicateObjectMap [
    rr:predicate pgedpr:label ;
    rr:objectMap [ 
      rr:column "LC" ] 
  ]
.
# Edge views ===================================================
pg:TMap_EDGE_TAB
  rr:logicalTable [ 
    rr:tableName "\"USER\".\"M1$GT\"" ] ;
  rr:subjectMap [ 
    rr:template "http://xmlns.oracle.com/pg/vertex/v{SVID}" ;
    rr:graphMap [ 
      rr:template "http://xmlns.oracle.com/pg/edge/e{EID}" ] ] ;
  rr:predicateObjectMap [ 
    rr:predicateMap [ 
      rr:template "http://xmlns.oracle.com/pg/label/{LC}" ] ;
    rr:objectMap [ 
      rr:template "http://xmlns.oracle.com/pg/vertex/v{DVID}" ; 
      rr:termType rr:IRI ] 
  ]
.
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9.3 PL/SQL API for Creating and Maintaining Property
Graph RDF Views

Subprograms in the SEM_APIS package simplify the creation and maintenance of
property graph RDF views.

Reference and usage information for these subprograms is included in the SEM_APIS
Package Subprograms chapter.

To create an property graph view from an existing model, use the 
SEM_APIS.CREATE_PG_RDFVIEW procedure.

To drop a property graph RDF view, use the SEM_APIS.DROP_PG_RDFVIEW.

Indexes should be created on the property graph tables for improved performance of
RDF view queries. You can create any number of index schemes on these tables, but
the SEM_APIS.BUILD_PG_RDFVIEW_INDEXESprocedure is provided for
convenience. (To drop all indexes created by that procedure, you can use the 
SEM_APIS.DROP_PG_RDFVIEW_INDEXES procedure.)

To return the VALUE_ID value for the canonical version of an RDF term (or NULL if
the term does not exist), you can use the SEM_APIS.RES2VID function.

9.4 Sample RDF Workflow with Property Graph Data
This topic presents a sample RDF workflow with property graph data.

The first example creates an RDF view named M1 from a property graph named G1
stored in Oracle Database, and creates indexes on that view. The other examples run
SPARQL queries using the SEM_MATCH table function.

Example 9-1    Creating the RDF View and Indexes

-- Create a property graph RDF view
EXECUTE sem_apis.create_pg_rdfview('M1','G1');
-- Create indexes
EXECUTE sem_apis.build_pg_rdfview_indexes('G1');

Example 9-2    Find the Names and Ages of All of John’s Friends

SELECT name$rdfterm, age$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX edge: <http://xmlns.oracle.com/pg/edge/>
  PREFIX vertex: <http://xmlns.oracle.com/pg/vertex/>
  PREFIX ep: <http://xmlns.oracle.com/pg/property/edge/>
  PREFIX vp: <http://xmlns.oracle.com/pg/property/vertex/>
  PREFIX label: <http://xmlns.oracle.com/pg/property/edge/label/>
  SELECT ?name ?age
  WHERE { 
    ?v1 vp:name "John" .
    ?v1 label:friend_of ?v2 .
    ?v2 vp:name ?name .
    ?v2 vp:age ?age . }'
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, sem_models('M1')
, null, null, null, null
, ' PLUS_RDFT=VC '));

Example 9-3    Find the Names and Ages of All of John’s Good Friends (Weight >
1.5)

SELECT name$rdfterm, age$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX edge: <http://xmlns.oracle.com/pg/edge/>
  PREFIX vertex: <http://xmlns.oracle.com/pg/vertex/>
  PREFIX ep: <http://xmlns.oracle.com/pg/property/edge/>
  PREFIX vp: <http://xmlns.oracle.com/pg/property/vertex/>
  PREFIX label: <http://xmlns.oracle.com/pg/property/edge/label/>
  SELECT ?name ?age
  WHERE { 
    ?v1 vp:name "John" .
    GRAPH ?e { 
      ?v1 label:friend_of ?v2 .
      ?e ep:weight ?w .
      FILTER (?w > 1.5) 
    }
    ?v2 vp:name ?name .
    ?v2 vp:age ?age . }'
, sem_models('M1')
, null, null, null, null
, ' PLUS_RDFT=VC '));

Example 9-4    Find John’s Best Friend (Highest Edge Weight)

SELECT name$rdfterm
FROM TABLE(SEM_MATCH(
 'PREFIX edge: <http://xmlns.oracle.com/pg/edge/>
  PREFIX vertex: <http://xmlns.oracle.com/pg/vertex/>
  PREFIX ep: <http://xmlns.oracle.com/pg/property/edge/>
  PREFIX vp: <http://xmlns.oracle.com/pg/property/vertex/>
  PREFIX label: <http://xmlns.oracle.com/pg/property/edge/label/>
  SELECT ?name
  WHERE { 
    ?v1 vp:name "John" .
    GRAPH ?e { 
      ?v1 label:friend_of ?v2 .
      ?e ep:weight ?w . 
    }
    ?v2 vp:name ?name . }
  ORDER BY DESC(?w)
  LIMIT 1'
, sem_models('M1')
, null, null, null, null
, ' PLUS_RDFT=VC '));
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9.5 Special Considerations When Using Property Graph
RDF Views

The following special considerations apply when using property graph RDF views.

• Vertex and edge property values greater than 4000 bytes in length are not
supported.

• Edge label values will be replaced with the IRI-safe form (as described in the W3C
R2RML specification) when generating edge label URIs.

• Vertex and edge property names will be replaced with the IRI-safe form (as
described in the W3C R2RML specification) when generating vertex and edge
property name URIs.

• Special characters and non-ASCII characters in string-valued vertex and edge
property values will be escaped (as described in the per the W3C N-Triples
specification).
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Part II
Reference and Supplementary Information

This document has the following parts:

• Conceptual and Usage Information provides conceptual and usage information
about RDF Semantic Graph.

• Reference and Supplementary Information provides reference information about
RDF Semantic Graph subprograms; it also provides supplementary information in
appendixes and a glossary.

Part II contains the following chapters with reference and supplementary information.
To understand the examples in the reference chapters, you must understand the
conceptual and data type information in RDF Semantic Graph Overview and OWL
Concepts .

• SEM_APIS Package Subprograms
The SEM_APIS package contains subprograms (functions and procedures) for
working with the Resource Description Framework (RDF) and Web Ontology
Language (OWL) in an Oracle database.

• SEM_OLS Package Subprograms
The SEM_OLS package contains subprograms (functions and procedures) related
to triple-level security to RDF data, using Oracle Label Security (OLS).

• SEM_PERF Package Subprograms
The SEM_PERF package contains subprograms for examining and enhancing the
performance of the Resource Description Framework (RDF) and Web Ontology
Language (OWL) support in an Oracle database.

• SEM_RDFCTX Package Subprograms
The SEM_RDFCTX package contains subprograms (functions and procedures) to
manage extractor policies and semantic indexes created for documents.

• SEM_RDFSA Package Subprograms
The SEM_RDFSA package contains subprograms (functions and procedures) for
providing fine-grained access control to RDF data using Oracle Label Security
(OLS).
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SEM_APIS Package Subprograms

The SEM_APIS package contains subprograms (functions and procedures) for
working with the Resource Description Framework (RDF) and Web Ontology
Language (OWL) in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and
usage information in RDF Semantic Graph Overview and OWL Concepts .

This chapter provides reference information about the subprograms, listed in
alphabetical order.

• SEM_APIS.ADD_DATATYPE_INDEX

• SEM_APIS.ADD_SEM_INDEX

• SEM_APIS.ALTER_DATATYPE_INDEX

• SEM_APIS.ALTER_ENTAILMENT

• SEM_APIS.ALTER_MODEL

• SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT

• SEM_APIS.ALTER_SEM_INDEX_ON_MODEL

• SEM_APIS.ANALYZE_ENTAILMENT

• SEM_APIS.ANALYZE_MODEL

• SEM_APIS.BUILD_PG_RDFVIEW_INDEXES

• SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE

• SEM_APIS.CLEANUP_BNODES

• SEM_APIS.CLEANUP_FAILED

• SEM_APIS.COMPOSE_RDF_TERM

• SEM_APIS.CONVERT_TO_GML311_LITERAL

• SEM_APIS.CONVERT_TO_WKT_LITERAL

• SEM_APIS.CREATE_ENTAILMENT

• SEM_APIS.CREATE_PG_RDFVIEW

• SEM_APIS.CREATE_RDFVIEW_MODEL

• SEM_APIS.CREATE_RULEBASE

• SEM_APIS.CREATE_SEM_MODEL

• SEM_APIS.CREATE_SEM_NETWORK

• SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE

• SEM_APIS.CREATE_SPARQL_UPDATE_TABLES

• SEM_APIS.CREATE_VIRTUAL_MODEL

• SEM_APIS.DELETE_ENTAILMENT_STATS
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• SEM_APIS.DELETE_MODEL_STATS

• SEM_APIS.DISABLE_CHANGE_TRACKING

• SEM_APIS.DISABLE_INC_INFERENCE

• SEM_APIS.DROP_DATATYPE_INDEX

• SEM_APIS.DROP_ENTAILMENT

• SEM_APIS.DROP_PG_RDFVIEW

• SEM_APIS.DROP_PG_RDFVIEW_INDEXES

• SEM_APIS.DROP_RDFVIEW_MODEL

• SEM_APIS.DROP_RULEBASE

• SEM_APIS.DROP_SEM_INDEX

• SEM_APIS.DROP_SEM_MODEL

• SEM_APIS.DROP_SEM_NETWORK

• SEM_APIS.DROP_SPARQL_UPDATE_TABLES

• SEM_APIS.DROP_USER_INFERENCE_OBJS

• SEM_APIS.DROP_VIRTUAL_MODEL

• SEM_APIS.ENABLE_CHANGE_TRACKING

• SEM_APIS.ENABLE_INC_INFERENCE

• SEM_APIS.ESCAPE_CLOB_TERM

• SEM_APIS.ESCAPE_CLOB_VALUE

• SEM_APIS.ESCAPE_RDF_TERM

• SEM_APIS.ESCAPE_RDF_VALUE

• SEM_APIS.EXPORT_ENTAILMENT_STATS

• SEM_APIS.EXPORT_MODEL_STATS

• SEM_APIS.EXPORT_RDFVIEW_MODEL

• SEM_APIS.GET_CHANGE_TRACKING_INFO

• SEM_APIS.GET_INC_INF_INFO

• SEM_APIS.GET_MODEL_ID

• SEM_APIS.GET_MODEL_NAME

• SEM_APIS.GET_TRIPLE_ID

• SEM_APIS.GETV$DATETIMETZVAL

• SEM_APIS.GETV$DATETZVAL

• SEM_APIS.GETV$NUMERICVAL

• SEM_APIS.GETV$STRINGVAL

• SEM_APIS.GETV$TIMETZVAL

• SEM_APIS.IMPORT_ENTAILMENT_STATS

• SEM_APIS.IMPORT_MODEL_STATS

• SEM_APIS.IS_TRIPLE
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• SEM_APIS.LOAD_INTO_STAGING_TABLE

• SEM_APIS.LOOKUP_ENTAILMENT

• SEM_APIS.MERGE_MODELS

• SEM_APIS.MIGRATE_DATA_TO_CURRENT

• SEM_APIS.PRIVILEGE_ON_APP_TABLES

• SEM_APIS.PURGE_UNUSED_VALUES

• SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO

• SEM_APIS.REMOVE_DUPLICATES

• SEM_APIS.RENAME_ENTAILMENT

• SEM_APIS.RENAME_MODEL

• SEM_APIS.RES2VID

• SEM_APIS.SET_ENTAILMENT_STATS

• SEM_APIS.SET_MODEL_STATS

• SEM_APIS.SPARQL_TO_SQL

• SEM_APIS.SWAP_NAMES

• SEM_APIS.UNESCAPE_CLOB_TERM

• SEM_APIS.UNESCAPE_CLOB_VALUE

• SEM_APIS.UNESCAPE_RDF_TERM

• SEM_APIS.UNESCAPE_RDF_VALUE

• SEM_APIS.UPDATE_MODEL

• SEM_APIS.VALIDATE_ENTAILMENT

• SEM_APIS.VALIDATE_GEOMETRIES

• SEM_APIS.VALIDATE_MODEL

• SEM_APIS.VALUE_NAME_PREFIX

• SEM_APIS.VALUE_NAME_SUFFIX

10.1 SEM_APIS.ADD_DATATYPE_INDEX
Format

SEM_APIS.ADD_DATATYPE_INDEX(
     datatype        IN VARCHAR2, 
     tablespace_name IN VARCHAR2 default NULL, 
     parallel        IN PLS_INTEGER default NULL, 
     online          IN BOOLEAN default FALSE, 
     options         IN VARCHAR2 default NULL);

Description

Adds a data type index for the specified data type to the semantic network.
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Parameters

datatype
URI of the data type to index.

tablespace_name
Destination tablespace for the index.

parallel
Degree of parallelism to use when building the index.

online
TRUE allows DML operations affecting the index during creation of the index; FALSE
(the default) does not allow DML operations affecting the index during creation of the
index.

options
String specifying options for index creation using the form
OPTION_NAME=option_value. Supported options associated with spatial index
creation are SRID, TOLERANCE, and DIMENSIONS. For materialized spatial index
creation, use MATERIALIZE=T. Supported options associated with text index creation
are PREFIX_INDEX, PREFIX_MIN_LENGTH, PREFIX_MAX_LENGTH, and SUBSTRING_INDEX.
For function-based numeric or dateTime index creation, use FUNCTION=T. The
option name keywords are case sensitive and must be specified in uppercase.

Usage Notes

You must have DBA privileges to call this procedure.

For more information about data type indexing, see Using Data Type Indexes.

For information about creating a like index, see the lightweight text search material in 
Full-Text Search.

For information about creating a data type index on RDF spatial data, see Indexing
Spatial Data.

Examples

The following example creates an index on xsd:string typed literals and plain literals
in the MY_TBS tablespace.

EXECUTE SEM_APIS.ADD_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string', 
tablespace_name=>'MY_TBS', parallel=>4);

10.2 SEM_APIS.ADD_SEM_INDEX
Format

SEM_APIS.ADD_SEM_INDEX(
     index_code  IN VARCHAR2);

Description

Creates a semantic network index that results in creation of a nonunique B-tree index
in UNUSABLE status for each of the existing models and entailments of the semantic
network.
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Parameters

index_code
Index code string.

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of semantic network indexes, see Using Semantic Network
Indexes.

Examples

The following example creates a semantic network index with the index code string
pcsm on the models and entailments of the semantic network.

EXECUTE SEM_APIS.ADD_SEM_INDEX('pscm');

10.3 SEM_APIS.ALTER_DATATYPE_INDEX
Format

SEM_APIS.ALTER_DATATYPE_INDEX(
     datatype        IN VARCHAR2, 
     command         IN VARCHAR2, 
     tablespace_name IN VARCHAR2 default NULL, 
     parallel        IN PLS_INTEGER default NULL, 
     online          IN BOOLEAN default FALSE);

Description

Alters a data type index.

Parameters

datatype
URI of the data type to index.

options
String specifying the command to be performed: REBUILD to rebuild the data type
index, or UNUSABLE to marks the data type index as unusable. The value for this
parameter is not case-sensitive.

tablespace_name
Destination tablespace for the index.

parallel
Degree of parallelism to use when rebuilding the index.

online
TRUE allows DML operations affecting the index during rebuilding of the index; FALSE
(the default) does not allow DML operations affecting the index during rebuilding of
the index.
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Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of data type indexes, see Using Data Type Indexes.

Examples

The following example rebuilds the index on xsd:string typed literals and plain literals
in the MY_TBS tablespace.

EXECUTE SEM_APIS.ALTER_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string', 
command=>'REBUILD', tablespace_name=>'MY_TBS', parallel=>4);

10.4 SEM_APIS.ALTER_ENTAILMENT
Format

SEM_APIS.ALTER_ENTAILMENT(
     entailment_name IN VARCHAR2, 
     command         IN VARCHAR2, 
     tablespace_name IN VARCHAR2, 
     parallel        IN NUMBER(38) DEFAULT NULL);

Description

Alters an entailment (rules index). Currently, the only action supported is to move the
entailment to a specified tablespace.

Parameters

entailment_name
Name of the entailment.

command
Must be the string MOVE.

tablespace_name
Name of the destination tablespace.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

Usage Notes

For an explanation of entailments, see Entailments (Rules Indexes).

Examples

The following example moves the entailment named rdfs_rix_family to the
tablespace named my_tbs.

EEXECUTE SEM_APIS.ALTER_ENTAILMENT('rdfs_rix_family', 'MOVE',  'my_tbs');
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10.5 SEM_APIS.ALTER_MODEL
Format

SEM_APIS.ALTER_MODEL(
     model_name      IN VARCHAR2, 
     command         IN VARCHAR2, 
     tablespace_name IN VARCHAR2, 
     parallel        IN NUMBER(38) DEFAULT NULL);

Description

Alters a model. Currently, the only action supported is to move the model to a
specified tablespace.

Parameters

model_name
Name of the model.

command
Must be the string MOVE.

tablespace_name
Name of the destination tablespace.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

Usage Notes

For an explanation of models, see Semantic Data Modeling and Semantic Data in the
Database.

Examples

The following example moves the model named family to the tablespace named
my_tbs.

EEXECUTE SEM_APIS.ALTER_MODEL('family', 'MOVE',  'my_tbs');

10.6 SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT
Format

SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT(
     entailment_name  IN VARCHAR2, 
     index_code       IN VARCHAR2, 
     command          IN VARCHAR2, 
     tablespace_name  IN VARCHAR2 DEFAULT NULL, 
     use_compression  IN BOOLEAN DEFAULT NULL, 
     parallel         IN NUMBER(38) DEFAULT NULL, 
     online           IN BOOLEAN DEFAULT FALSE);
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Description

Alters a semantic network index on an entailment.

Parameters

entailment_name
Name of the entailment.

index_code
Index code string.

command
String value containing one of the following commands: REBUILD rebuilds the semantic
network index on the entailment, or UNUSABLE marks as unusable the semantic
network index on the entailment. The value for this parameter is not case-sensitive.

tablespace_name
Name of the destination tablespace for the rebuild operation.

use_compression
Specifies whether compression should be used when rebuilding the index.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

online
TRUE allows DML operations affecting the index during the rebuilding of the index;
FALSE (the default) does not allow DML operations affecting the index during the
rebuilding of the index.

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network
Indexes.

Examples

The following example rebuilds (and makes usable if it is unusable) the semantic
network index on the entailment named rdfs_rix_family.

EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_ENTAILMENT('rdfs_rix_family', 'pscm', 'rebuild');

10.7 SEM_APIS.ALTER_SEM_INDEX_ON_MODEL
Format

SEM_APIS.ALTER_SEM_INDEX_ON_MODEL(
     model_name       IN VARCHAR2, 
     index_code       IN VARCHAR2, 
     command          IN VARCHAR2, 
     tablespace_name  IN VARCHAR2 DEFAULT NULL, 
     use_compression  IN BOOLEAN DEFAULT NULL, 
     parallel         IN NUMBER(38) DEFAULT NULL, 
     online           IN BOOLEAN DEFAULT FALSE);
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Description

Alters a semantic network index on a model.

Parameters

model_name
Name of the model.

index_code
Index code string.

command
String value containing one of the following commands: REBUILD rebuilds the semantic
network index on the model, or UNUSABLE marks as unusable the semantic network
index on the model. The value for this parameter is not case-sensitive.

tablespace_name
Name of the destination tablespace for the rebuild operation.

use_compression
Specifies whether compression should be used when rebuilding the index.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

online
TRUE allows DML operations affecting the index during the rebuilding of the index;
FALSE (the default) does not allow DML operations affecting the index during the
rebuilding of the index.

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network
Indexes.

Examples

The following example rebuilds (and makes usable if it is unusable) the semantic
network index on the model named family.

EXECUTE SEM_APIS.ALTER_SEM_INDEX_ON_MODEL('family', 'pscm', 'rebuild');

10.8 SEM_APIS.ANALYZE_ENTAILMENT
Format

SEM_APIS.ANALYZE_ENTAILMENT(
     entailment_name  IN VARCHAR2, 
     estimate_percent IN NUMBER DEFAULT to_estimate_percent_type 
(get_param('ESTIMATE_PERCENT')), 
     method_opt       IN VARCHAR2 DEFAULT get_param('METHOD_OPT'), 
     degree           IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')), 
     cascade          IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')), 
     no_invalidate    IN BOOLEAN DEFAULT to_no_invalidate_type 
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(get_param('NO_INVALIDATE')), 
     force            IN BOOLEAN DEFAULT FALSE);

Description

Collects statistics for a specified entailment (rules index).

Parameters

entailment_name
Name of the entailment.

estimate_percent
Percentage of rows to estimate in the internal table partition containing information
about the entailment (NULL means compute). The valid range is [0.000001,100]. Use
the constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate
sample size for good statistics. This is the usual default.

method_opt
Accepts either of the following options, or both in combination, for the internal table
partition containing information about the entailment:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}
column is defined as column := column_name | (extension)

- integer : Number of histogram buckets. Must be in the range [1,254].
- REPEAT : Collects histograms only on the columns that already have histograms.
- AUTO : Oracle determines the columns to collect histograms based on data
distribution and the workload of the columns.
- SKEWONLY : Oracle determines the columns to collect histograms based on the
data distribution of the columns.
- column_name : name of a column
- extension: Can be either a column group in the format of (column_name,
column_name [, ...]) or an expression.

The usual default is FOR ALL COLUMNS SIZE AUTO.

degree
Degree of parallelism for the internal table partition containing information about the
entailment. The usual default for degree is NULL, which means use the table default
value specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement.
Use the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on
the initialization parameters. The AUTO_DEGREE value determines the degree of
parallelism automatically. This is either 1 (serial execution) or DEFAULT_DEGREE (the
system default value based on number of CPUs and initialization parameters)
according to size of the object.

cascade
Gathers statistics on the indexes for the internal table partition containing information
about the entailment. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle
determine whether index statistics are to be collected or not. This is the usual default.
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no_invalidate
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates
the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE.
to have Oracle decide when to invalidate dependent cursors. This is the usual default.

force
TRUE gathers statistics even if the entailment is locked; FALSE (the default) does not
gather statistics if the entailment is locked.

Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join
indexes.

This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS
procedure, which collects statistics for the internal table partition that contains
information about the entailment. The DBMS_STATS.GATHER_TABLE_STATS
procedure is documented in Oracle Database PL/SQL Packages and Types
Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

For information about entailments, see Entailments (Rules Indexes).

Examples

The following example collects statistics for the entailment named rdfs_rix_family.

EXECUTE SEM_APIS.ANALYZE_ENTAILMENT('rdfs_rix_family');

10.9 SEM_APIS.ANALYZE_MODEL
Format

SEM_APIS.ANALYZE_MODEL(
     model_name       IN VARCHAR2, 
     estimate_percent IN NUMBER DEFAULT to_estimate_percent_type 
(get_param('ESTIMATE_PERCENT')), 
     method_opt       IN VARCHAR2 DEFAULT get_param('METHOD_OPT'), 
     degree           IN NUMBER DEFAULT to_degree_type(get_param('DEGREE')), 
     cascade          IN BOOLEAN DEFAULT to_cascade_type(get_param('CASCADE')), 
     no_invalidate    IN BOOLEAN DEFAULT to_no_invalidate_type 
(get_param('NO_INVALIDATE')), 
     force            IN BOOLEAN DEFAULT FALSE);

Description

Collects optimizer statistics for a specified model.

Parameters

model_name
Name of the model.

estimate_percent
Percentage of rows to estimate in the internal table partition containing information
about the model (NULL means compute). The valid range is [0.000001,100]. Use the
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constant DBMS_STATS.AUTO_SAMPLE_SIZE to have Oracle determine the appropriate
sample size for good statistics. This is the usual default.

method_opt
Accepts either of the following options, or both in combination, for the internal table
partition containing information about the model:

• FOR ALL [INDEXED | HIDDEN] COLUMNS [size_clause]

• FOR COLUMNS [size clause] column|attribute [size_clause] [,column|attribute
[size_clause]...]

size_clause is defined as size_clause := SIZE {integer | REPEAT | AUTO |
SKEWONLY}
column is defined as column := column_name | (extension)

- integer : Number of histogram buckets. Must be in the range [1,254].
- REPEAT : Collects histograms only on the columns that already have histograms.
- AUTO : Oracle determines the columns to collect histograms based on data
distribution and the workload of the columns.
- SKEWONLY : Oracle determines the columns to collect histograms based on the
data distribution of the columns.
- column_name : name of a column
- extension: Can be either a column group in the format of (column_name,
column_name [, ...]) or an expression.

The usual default is FOR ALL COLUMNS SIZE AUTO.

degree
Degree of parallelism for the internal table partition containing information about the
model. The usual default for degree is NULL, which means use the table default value
specified by the DEGREE clause in the CREATE TABLE or ALTER TABLE statement. Use
the constant DBMS_STATS.DEFAULT_DEGREE to specify the default value based on the
initialization parameters. The AUTO_DEGREE value determines the degree of parallelism
automatically. This is either 1 (serial execution) or DEFAULT_DEGREE (the system
default value based on number of CPUs and initialization parameters) according to
size of the object.

cascade
Gathers statistics on the indexes for the internal table partition containing information
about the model. Use the constant DBMS_STATS.AUTO_CASCADE to have Oracle
determine whether index statistics are to be collected or not. This is the usual default.

no_invalidate
Does not invalidate the dependent cursors if set to TRUE. The procedure invalidates
the dependent cursors immediately if set to FALSE. Use DBMS_STATS.AUTO_INVALIDATE.
to have Oracle decide when to invalidate dependent cursors. This is the usual default.

force
TRUE gathers statistics even if the model is locked; FALSE (the default) does not gather
statistics if the model is locked.

Usage Notes

Index statistics collection can be parellelized except for cluster, domain, and join
indexes.
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This procedure internally calls the DBMS_STATS.GATHER_TABLE_STATS
procedure, which collects optimizer statistics for the internal table partition that
contains information about the model. The DBMS_STATS.GATHER_TABLE_STATS
procedure is documented in Oracle Database PL/SQL Packages and Types
Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example collects statistics for the semantic model named family.

EXECUTE SEM_APIS.ANALYZE_MODEL('family');

10.10 SEM_APIS.BUILD_PG_RDFVIEW_INDEXES
Format

SEM_APIS.BUILD_PG_RDFVIEW_INDEXES(
     pg_name         IN VARCHAR2, 
     tsblespace_name IN VARCHAR2 DEFAULT NULL, 
     options         IN VARCHAR2 DEFAULT NULL);

or

SEM_APIS.BUILD_PG_RDFVIEW_INDEXES(
     pg_name         IN VARCHAR2, 
     tsblespace_name IN VARCHAR2 DEFAULT NULL, 
     pg_edge_kv_tab  IN VARCHAR2, 
     pg_node_kv_tab  IN VARCHAR2, 
     pg_edge_tab     IN VARCHAR2, 
     options         IN VARCHAR2 DEFAULT NULL);

Description

Creates a set of default indexes to speed up queries against property graph RDF
views.

Parameters

pg_name
Name of the property graph to index.

tablespace_name
Destination tablespace for the indexes.

pg_edge_kv_tab
Name of the table storing edge properties

 pg_node_kv_tab
Name of the table storing node properties.

pg_edge_tab
Name of the table storing distinct edges.
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options
String specifying options for index creation using the form
OPTION_NAME=option_value. Supported options are:

• SUB_K=N, SUB_EL=N (use a substring of N characters for property key name or
edge label)

• GT_TABLE=T (assume a populated GT$ table)

• PARALLEL=N (use a degree of parallelism of N during index creation)

• SKIP_VAL_IDX=T (skip creation of indexes on vertex/edge property values)

• SKIP_FUNC_IDX=T (skip creation of function based indexes on edge start and
end vertex URIs)

• SUB_V_IDX=N (use a substring of N characters when indexing string-valued
vertex and edge properties)

Usage Notes

Indexes should be created on the property graph tables for improved performance of
RDF view queries. You can create any number of index schemes on these tables, but
the SEM_APIS.BUILD_PG_RDFVIEW_INDEXES procedure is provided for
convenience.

Several indexes are created by default by the
SEM_APIS.BUILD_PG_RDFVIEW_INDEXES procedure. The following indexes are
used to look up vertex and edge properties based on property name and type:

create index g1$ntk on g1vt$(
  T
, substr(K,1,200))
compress local nologging;

create index g1$etk on g1ge$(
  T
, substr(k,1,200)) 
compress local nologging;

The following indexes are used for graph traversals. If you indicate that the G1LGT$
table is populated (by specifying options => ‘GT_TABLE=T’), these indexes will be
created on the G1GT$ table instead of on the G1GE$ table.

create index g1$lsd on g1ge$(
  substr(el,1,200)
, svid
, dvid
, eid) 
compress local nologging;

create index g1$lds on g1ge$(
  substr(el,1,200)
, dvid
, svid
, eid) 
compress local nologging;

The following function-based are used for graph traversals based on vertex URIs.
These function-based indexes can be skipped with the 'SKIP_FUNC_IDX=T' option. If
you indicate that the G1LGT$ table is populated (by specifying options =>
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‘GT_TABLE=T’), these indexes will be created on the G1GT$ table instead of on the
G1GE$ table.

create index g1$lsd on g1ge$(
  substr(el,1,200)
, svid
, dvid
, eid) 
compress local nologging;

create index g1$lds on g1ge$(
  substr(el,1,200)
, dvid
, svid
, eid) 
compress local nologging;

The following function-based indexes are used to look up vertices and edges based on
their URIs.

create index g1$idf on g1ge$(
  '<http://xmlns.oracle.com/pg/edge/e'||TO_CHAR("EID")||'>') 
compress local nologging;

create index g1$vid on g1vt$(
  '<http://xmlns.oracle.com/pg/vertex/v'||TO_CHAR("VID")||'>') 
compress local nologging;

The following indexes are used to lookup vertices and edges based on their property
values. These indexes can be skipped with the 'SKIP_VAL_IDX=T' option..

-- varchar --
create index g1$nvt on g1vt$(
  substr(to_char(V),1,200)
, T 
compress local nologging;

-- number --
create index g1$nnt on g1vt$(
  VN
, T 
compress local nologging;

-- date --
create index g1$ndt on g1vt$(
  VT
, T 
compress local nologging;

-- varchar --
create index g1$evt on g1ge$(
  substr(to_char(V),1,200)
, T 
compress local nologging;

-- number --
create index g1$ent on g1ge$(
  VN
, T 
compress local nologging;
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-- date --
create index g1$edt on g1ge$(
  VT
, T 
compress local nologging;

For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

Examples

The following example builds indexes for the property graph G1 in tablespace
MY_TBS and skips creation of value indexes.

EXECUTE SEM_APIS.BUILD_PG_RDFVIEW_INDEXES('G1', 'MY_TBS', ' SKIP_VAL_IDX=T ');

The following example builds indexes for the property graph G1in tablespace MY_TBS
with property graph tables MY_EDGE_KV_TAB, MY_NODE_KV_TAB, and
MY_EDGE_TAB. In addition, a populated distinct edges table is specified.

EXECUTE SEM_APIS.BUILD_PG_RDFVIEW_INDEXES('G1', 'MY_TBS', 'MY_EDGE_KV_TAB', 
'MY_NODE_KV_TAB', 'MY_EDGE_TAB', 'GT_TABLE=T');

10.11 SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
Format

SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE(
     model_name    IN VARCHAR2, 
     table_owner   IN VARCHAR2, 
     table_name    IN VARCHAR2, 
     flags         IN VARCHAR2 DEFAULT NULL, 
     debug         IN INTEGER DEFAULT NULL, 
     start_comment IN VARCHAR2 DEFAULT NULL, 
     end_comment   IN VARCHAR2 DEFAULT NULL);

Description

Loads semantic data from a staging table.

Parameters

model_name
Name of the model.

table_owner
Name of the schema that owns the staging table that holds semantic data to be
loaded.

table_name
Name of the staging table that holds semantic data to be loaded.

flags
An optional quoted string with one or more of the following keyword specifications:

• • COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on
the MDSYS.RDF_LINK$ partition for the model.
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• • COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on
the MDSYS.RDF_LINK$ partition for the model.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the
MDSYS.RDF_LINK$ partition for the model.

• COMPRESS=RSCAB uses ROW STORE COMPRESS BASIC on the
MDSYS.RDF_LINK$ partition for the model.

• DEL_BATCH_DUPS=USE_INSERT allows the use of an insertion-based strategy for
duplicate elimination that may lead to faster processing if the input data contains
many duplicates.

• MBV_METHOD=SHADOW allows the use of a different value loading strategy that may
lead to faster processing for large loads.

• PARALLEL_CREATE_INDEX allows internal indexes to be created in parallel, which
may improve the performance of the bulk load processing.

• PARALLEL=<integer> allows much of the processing used during bulk load to be
done in parallel using the specified degree of parallelism to be associated with the
operation.

• PARSE allows parsing of triples retrieved from the staging table (also parses triples
containing graph names).

• <task>_JOIN_HINT=<join_type>, where <task> can be any of the following
internal tasks performed during bulk load: IZC (is zero collisions), MBV (merge
batch values), or MBT (merge batch triples, used when adding triples to a non-
empty model), and where <join_type> can be USE_NL and USE_HASH.

debug
(Reserved for future use)

start_comment
Optional comment about the start of the load operation.

end_comment
Optional comment about the end of the load operation.

Usage Notes

You must first load semantic data into a staging table before calling this procedure.
See Bulk Loading Semantic Data Using a Staging Table for more information.

Using BULK_LOAD_FROM_STAGING_TABLE with Fine Grained Access Control
(OLS)

When fine-grained access control (explained in Fine-Grained Access Control for RDF
Data ) is enabled for the entire network using OLS, only a user with FULL access
privileges to the associated policy may perform the bulk load operation. When OLS is
enabled, full access privileges to the OLS policy are granted using the
SA_USER_ADMIN.SET_USER_PRIVS procedure.

When the OLS is used, the label column in the tables storing the RDF triples must be
maintained. By default, with OLS enabled, the label column in the tables storing the
RDF triples is set to null. If you have FULL access, you can reset the labels for the
newly inserted triples as well as any resources introduced by the new batch of triples
by using appropriate subprograms (SEM_RDFSA.SET_RESOURCE_LABEL and 
SEM_RDFSA.SET_PREDICATE_LABEL).
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Optionally, you can define a numeric column named RDF$STC_CTXT1 in the staging
table and the application table, to assign the sensitivity label of the triple before the
data is loaded into the desired model. Such labels are automatically applied to the
corresponding triples stored in the MDSYS.RDF_LINK$ table. The labels for the newly
introduced resources may still have to be applied separately before or after the load,
and the system does not validate the labels assigned during bulk load operation.

The RDF$STC_CTXT1 column in the application table has no significance, and it may
be dropped after the bulk load operation.

By default, SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE uses the semantic
network compression setting (stored in MDSYS.RDF_PARAMETER table) for the
model.

Examples

The following example loads semantic data stored in the staging table named
STAGE_TABLE in schema SCOTT into the semantic model named family. The
example includes some join hints.

EXECUTE SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE('family', 'scott', 'stage_table', 
flags => 'IZC_JOIN_HINT=USE_HASH MBV_JOIN_HINT=USE_HASH');

10.12 SEM_APIS.CLEANUP_BNODES
Format

SEM_APIS.CLEANUP_BNODES(
     model_name      IN VARCHAR2, 
     tablespace_name IN VARCHAR2 DEFAULT NULL, 
     options         IN VARCHAR2 DEFAULT NULL);

Description

Corrects blank node identifiers for blank nodes in a specified model.

Parameters

model_name
Name of the model.

tablespace_name
Name of the tablespace to use for storing intermediate data.

options
String specifying one or more options to influence the behavior of the procedure. See
the Usage Notes for available option values.

Usage Notes

See Blank Nodes: Special Considerations for SPARQL Update.

The options parameter can contain one or more of the following keywords:

• APPEND: Uses the APPEND hint when populating tables during blank node
correction.

• PARALLEL(n): Uses n as the degree of parallelism during blank node correction.
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• RECOVER_FAILED=T: Include this option when a previous attempt to correct blank
nodes has been interrupted, and transient tables with intermediate data have not
been deleted.

Examples

The following example corrects blank node identifiers for the electronics semantic
model.

EXECUTE SEM_APIS.CLEANUP_BNODES('electronics');

10.13 SEM_APIS.CLEANUP_FAILED
Format

SEM_APIS.CLEANUP_FAILED(
     rdf_object_type  IN VARCHAR2, 
     rdf_object_name  IN VARCHAR2);

Description

Drops (deletes) a specified rulebase or entailment if it is in a failed state.

Parameters

rdf_object_type
Type of the RDF object: RULEBASE for a rulebase or RULES_INDEX for an entailment
(rules index).

rdf_object_name
Name of the RDF object of type rdf_object_type.

Usage Notes

This procedure checks to see if the specified RDF object is in a failed state; and if the
object is in a failed state, the procedure deletes the object.

A rulebase or entailment is in a failed state if a system failure occurred during the
creation of that object. You can check if a rulebase or entailment is in a failed state by
checking to see if the value of the STATUS column is FAILED in the
SDO_RULEBASE_INFO view (described in Inferencing: Rules and Rulebases) or the
SDO_RULES_INDEX_INFO view (described in Entailments (Rules Indexes)),
respectively.

If the rulebase or entailment is not in a failed state, this procedure performs no action
and returns a successful status.

An exception is generated if the RDF object is currently being used.

Examples

The following example deletes the rulebase named family_rb if (and only if) that
rulebase is in a failed state.

EXECUTE SEM_APIS.CLEANUP_FAILED('RULEBASE', 'family_rb');
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10.14 SEM_APIS.COMPOSE_RDF_TERM
Format

SEM_APIS.COMPOSE_RDF_TERM(
     value_name    IN VARCHAR2, 
     value_type    IN VARCHAR2, 
     literal_type  IN VARCHAR2, 
     language_type IN VARCHAR2 
     ) RETURN VARCHAR2;

or

SEM_APIS.COMPOSE_RDF_TERM(
     value_name    IN VARCHAR2, 
     value_type    IN VARCHAR2, 
     literal_type  IN VARCHAR2, 
     language_type IN VARCHAR2, 
     long_value    IN CLOB, 
     options       IN VARCHAR2 DEFAULT NULL, 
     ) RETURN CLOB;

Description

Creates and returns an RDF term using the specified parameters.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the
MDSYS.RDF_VALUE$ table (described in Statements) or in the var attribute returned
from SEM_MATCH table function.

value_type
The type of text information. Must match a value in the VALUE_TYPE column in the
MDSYS.RDF_VALUE$ table (described in Statements) or in the var$RDFVTYP
attribute returned from SEM_MATCH table function.

literal_type
For typed literals, the type information; otherwise, null. Must either be a null value or
match a value in the LITERAL_TYPE column in the MDSYS.RDF_VALUE$ table
(described in Statements) or in the var$RDFLTYP attribute returned from
SEM_MATCH table function.

language_type
Language tag. Must match a value in the LANGUAGE_TYPE column in the
MDSYS.RDF_VALUE$ table (described in Statements) or in the var$RDFLANG
attribute returned from SEM_MATCH table function.

long_value
The character string if the length of the lexical value is greater than 4000 bytes. Must
match a value in the LONG_VALUE column in the MDSYS.RDF_VALUE$ table
(described in Statements) or in the var$RDFCLOB attribute returned from
SEM_MATCH table function.

Chapter 10
SEM_APIS.COMPOSE_RDF_TERM

10-20



options
(Reserved for future use.)

Usage Notes

If you specify an inconsistent combination of values for the parameters, this function
returns a null value. If a null value is returned but you believe that the values for the
parameters are appropriate (reflecting columns from the same row in the
MDSYS.RDF_VALUE$ table or from a SEM_MATCH query for the same variable),
contact Oracle Support.

Examples

The following example returns, for each member of the family whose height is known,
the RDF term for the height and also just the value portion of the height.

SELECT x, SEM_APIS.COMPOSE_RDF_TERM(h, h$RDFVTYP, h$RDFLTYP, h$RDFLANG)
       h_rdf_term, h
  FROM TABLE(SEM_MATCH(
    '{?x :height ?h}',
    SEM_Models('family'),
    null, 
    SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
    null))
ORDER BY x;
X
--------------------------------------------------------------------------------
H_RDF_TERM
--------------------------------------------------------------------------------
H
--------------------------------------------------------------------------------
http://www.example.org/family/Cathy
"5.8"^^<http://www.w3.org/2001/XMLSchema#decimal>
5.8
 
http://www.example.org/family/Cindy
"6"^^<http://www.w3.org/2001/XMLSchema#decimal>
6
 
http://www.example.org/family/Jack
"6"^^<http://www.w3.org/2001/XMLSchema#decimal>
6
 
http://www.example.org/family/Tom
"5.75"^^<http://www.w3.org/2001/XMLSchema#decimal>
5.75
 
4 rows selected.

The following example returns the RDF terms for a few of the values stored in the
MDSYS.RDF_VALUE$ table.

SELECT SEM_APIS.COMPOSE_RDF_TERM(value_name, value_type, literal_type,
     language_type)
  FROM MDSYS.RDF_VALUE$ WHERE ROWNUM < 5;

SEM_APIS.COMPOSE_RDF_TERM(VALUE_NAME,VALUE_TYPE,LITERAL_TYPE,LANGUAGE_TYPE)
--------------------------------------------------------------------------------
<http://www.w3.org/1999/02/22-rdf-syntax-ns#object>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
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<http://www.w3.org/1999/02/22-rdf-syntax-ns#subject>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#Property>

10.15 SEM_APIS.CONVERT_TO_GML311_LITERAL
Format

SDO_RDF.CONVERT_TO_GML311_LITERAL(
     geom         IN SDO_GEOMETRY, 
     options      IN VARCHAR2 default NULL
     )RETURN CLOB;

Description

Serializes an SDO_GEOMETRY object into an ogc:gmlLiteral value.

Parameters

geom
SDO_GEOMETRY object to be serialized.

options
(Reserved for future use.)

Usage Notes

The procedure SDO_UTIL.TO_GML311GEOMETRY is used internally to create the
geometry literal with a certain spatial reference system URI.

For more information about geometry serialization, see 
SDO_UTIL.TO_GML311GEOMETRY.

Examples

The following example shows the use of this function for a geometry with SRID 8307
The COLA_MARKETS table is the one from the simple example in Oracle Spatial and
Graph Developer's Guide.

INSERT INTO cola_markets VALUES(
  10,
  'cola_x',
  SDO_GEOMETRY(
    2003,
    8307, -- SRID
    NULL,
    SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(1,1, 6,13)
  )
);
commit;

SELECT
sem_apis.convert_to_gml311_literal(shape) as gml1
FROM cola_markets;

"<gml:Polygon srsName=\"SDO:8307\" xmlns:gml=\"http://www.opengis.net/gml\"><gml
:exterior><gml:LinearRing><gml:posList srsDimension=\"2\">1.0 1.0 6.0 1.0 6.0 13.0 
1.0 13.0 1.0 1.0 </gml:posList></gml:LinearRing></gml:exterior></gml:Polygon>
"^^<http://www.opengis.net/ont/geosparql#gmlLiteral>
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10.16 SEM_APIS.CONVERT_TO_WKT_LITERAL
Format

SEM_APIS.CONVERT_TO_WKT_LITERAL(
     geom         IN SDO_GEOMETRY, 
     srid_prefix  IN VARCHAR2 default NULL, 
     options      IN VARCHAR2 default NULL
     )RETURN CLOB;

Description

Serializes an SDO_GEOMETRY object into an ogc:wktLiteral value.

Parameters

geom
SDO_GEOMETRY object to be serialized.

srid_prefix
Spatial reference system URI prefix that should be used in the ogc:wktLiteral
instead of the default. The resulting SRID URI will be of the form <srid_prefix/
{srid}>.

options
String specifying options for transformation. Available options are:

• ORACLE_PREFIX=T. Generate SRID URIs of the form <http://
xmlns.oracle.com/rdf/geo/srid/{srid}>.

Usage Notes

The procedure SDO_UTIL.TO_WKTGEOMETRY is used internally to create the
geometry literal with a certain spatial reference system URI.

Standard SRID URIs are used by default (<http://www.opengis.net/def/crs/
EPSG/0/{srid}> or (<http://www.opengis.net/def/crs/OGC/1.3/CRS84>>).

For more information about geometry serialization, see 
SDO_UTIL.TO_WKTGEOMETRY.

Examples

The following example shows three different uses of this function for a geometry with
SRID 8307. The COLA_MARKETS table is the one from the simple example in Oracle
Spatial and Graph Developer's Guide.

INSERT INTO cola_markets VALUES(
  10,
  'cola_x',
  SDO_GEOMETRY(
    2003,
    8307, -- SRID
    NULL,
    SDO_ELEM_INFO_ARRAY(1,1003,3),
    SDO_ORDINATE_ARRAY(1,1, 6,13)
  )
);
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commit;

SELECT
sem_apis.convert_to_wkt_literal(shape) as wkt1,
sem_apis.convert_to_wkt_literal(shape,'http://my.org/') as wkt2,
sem_apis.convert_to_wkt_literal(shape,null,' ORACLE_PREFIX=T ') as wkt3
FROM cola_markets;

"<http://www.opengis.net/def/crs/OGC/1.3/CRS84> POLYGON ((1.0 1.0, 6.0 1.0, 6.0 
13.0, 1.0 13.0, 1.0 1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>
"<http://my.org/8307> POLYGON ((1.0 1.0, 6.0 1.0, 6.0 13.0, 1.0 13.0, 1.0 
1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>
"<http://xmlns.oracle.com/rdf/geo/srid/8307> POLYGON ((1.0 1.0, 6.0 1.0, 6.0 13.0, 
1.0 13.0, 1.0 1.0))"^^<http://www.opengis.net/ont/geosparql#wktLiteral>

10.17 SEM_APIS.CREATE_ENTAILMENT
Format

SEM_APIS.CREATE_ENTAILMENT(
     entailment_name_in IN VARCHAR2, 
     models_in          IN SEM_MODELS, 
     rulebases_in       IN SEM_RULEBASES, 
     passes             IN NUMBER DEFAULT SEM_APIS.REACH_CLOSURE, 
     inf_components_in  IN VARCHAR2 DEFAULT NULL, 
     options            IN VARCHAR2 DEFAULT NULL, 
     delta_in           IN SEM_MODELS DEFAULT NULL, 
     label_gen          IN RDFSA_LABELGEN DEFAULT NULL,      
     include_named_g    IN SEM_GRAPHS DEFAULT NULL,      
     include_default_g  IN SEM_MODELS DEFAULT NULL,      
     include_all_g      IN SEM_MODELS DEFAULT NULL,      
     inf_ng_name        IN VARCHAR2 DEFAULT NULL,      
     inf_ext_user_func_name IN VARCHAR2 DEFAULT NULL);

Description

Creates an entailment (rules index) that can be used to perform OWL or RDFS
inferencing, and optionally use user-defined rules.

Parameters

entailment_name_in
Name of the entailment to be created.

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in 
Inferencing: Rules and Rulebases.

passes
The number of rounds that the inference engine should run. The default value is
SEM_APIS.REACH_CLOSURE, which means the inference engine will run till a closure is
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reached. If the number of rounds specified is less than the number of actual rounds
needed to reach a closure, the status of the entailment will then be set to INCOMPLETE.

inf_components_in
A comma-delimited string of keywords representing inference components, for
performing selective or component-based inferencing. If this parameter is null, the
default set of inference components is used. See the Usage Notes for more
information about inference components.

options
A comma-delimited string of options to control the inference process by overriding the
default inference behavior. To enable an option, specify option-name=T; to disable an
option, you can specify option-name=F (the default). The available option-name
values are COL_COMPRESS, DEST_MODEL, DISTANCE,DOP, ENTAIL_ANYWAY, HASH_PART,
INC, LOCAL_NG_INF, OPT_SAMEAS, RAW8, PROOF, and USER_RULES. See the Usage Notes
for explanations of each value.

delta_in
If incremental inference is in effect, specifies one or more models on which to perform
incremental inference. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)
The triples in the first model in delta_in are copied to the first model in models_in,
and the entailment (rules index) in rules_index_in is updated; then the triples in the
second model (if any) in delta_in are copied to the second model (if any) in
models_in, and the entailment in rules_index_in is updated; and so on until all
triples are copied and the entailment is updated. (The delta_in parameter has no
effect if incremental inference is not enabled for the entailment.)

label_gen
An instance of MDSYS.RDFSA_LABELGEN or a subtype of it, defining the logic for
generating Oracle Label Security (OLS) labels for inferred triples. What you specify for
this parameter depends on whether you use the default label generator or a custom
label generator:

• If you use the default label generator, specify one of the following constants:
SEM_RDFSA.LABELGEN_RULE for Use Rule Label, SEM_RDFSA.LABELGEN_SUBJECT for
Use Subject Label, SEM_RDFSA.LABELGEN_PREDICATE for Use Predicate Label,
SEM_RDFSA.LABELGEN_OBJECT for Use Object Label,
SEM_RDFSA.LABELGEN_DOMINATING for Use Dominating Label,
SEM_RDFSA.LABELGEN_ANTECED for Use Antecedent Labels. For a detailed
explanation of each constant, see Generating Labels for Inferred Triples.

• If you use a custom label generator, specify the custom label generator type. For
information about creating and implementing a custom label generator, see Using
Labels Based on Application Logic.

include_named_g
Causes all triples from the specified named graphs (across all source models) to
participate in named graph based global inference (NGGI, explained in Named Graph
Based Global Inference (NGGI)). For example, include_named_g =>
sem_graphs('<urn:G1>','<urn:G2>') implies that triples from named graphs G1 and
G2 will be included in NGGI.
Its data type is SEM_GRAPHS, which has the following definition: TABLE OF
VARCHAR2(4000).
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include_default_g
Causes all triples with a null graph name in the specified models to participate in
named graph based global inference (NGGI, explained in Named Graph Based
Global Inference (NGGI)). For example, include_default_g => sem_models('m1')
causes all triples with a null graph name from model M1 to be included in NGGI.

include_all_g
Causes all triples, regardless of their graph name values, in the specified models to
participate in named graph based global inference (NGGI, explained in Named Graph
Based Global Inference (NGGI)). For example, include_all_g =>
sem_models('m2')causes all triples in model M2 to be included in NGGI.

inf_ng_name
Assigns the specified graph name to all the new triples inferred by the named graph
based global inference (NGGI, explained in Named Graph Based Global Inference
(NGGI)).

inf_ext_user_func_name
The name of a user-defined inference function, or a comma-delimited list of names of
user-defined functions. For information about creating user-defined inference
functions, including format requirements and options for certain parameters, see API
Support for User-Defined Inferencing. (For information about user-defined inferencing,
including examples, see User-Defined Inferencing and Querying .)

Usage Notes

For the inf_components_in parameter, you can specify any combination of the
following keywords: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, MBRH, SPOH, DOMH, RANH,
EQCH, EQPH, FPH, IFPH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF,
SAM, CHAIN, HASKEY, ONEOF, INTERSECT, INTERSECTSCOH, MBRLST, PROPDISJH,
SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION, RDFP1, RDFP2, RDFP3, RDFP4,
RDFP6, RDFP7, RDFP8AX, RDFP8BX, RDFP9, RDFP10, RDFP11, RDFP12A, RDFP12B, RDFP12C,
RDFP13A, RDFP13B, RDFP13C, RDFP14A, RDFP14BX, RDFP15, RDFP16, RDFS2, RDFS3, RDFS4a,
RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8, RDFS9, RDFS10, RDFS11, RDFS12, RDFS13. For an
explanation of the meaning of these keywords, see Table 10-1, where the keywords
are listed in alphabetical order.

The default set of inference components for the OWLPrime vocabulary includes the
following: SCOH, COMPH, DISJH, SYMMH, INVH, SPIH, SPOH, DOMH, RANH, EQCH, EQPH, FPH,
IFPH, SAMH, DOM, RAN, SCO, DISJ, COMP, INV, SPO, FP, IFP, SYMM, TRANS, DIF, RDFP14A,
RDFP14BX, RDFP15, RDFP16. However, note the following:

• Component SAM is not in this default OWLPrime list, because it tends to generate
many new triples for some ontologies.

• Effective with Release 11.2, the native OWL inference engine supports the
following new inference components: CHAIN, HASKEY, INTERSECT, INTERSECTSCOH,
MBRLST, ONEOF, PROPDISJH, SKOSAXIOMS, SNOMED, SVFH, THINGH, THINGSAM, UNION.
However, for backward compatibility, the OWLPrime rulebase and any existing
rulebases do not include these new components by default; instead, to use these
new inference components, you must specify them explicitly, and they are
included in Table 10-1. The following example creates an OWLPrime entailment
for two OWL ontologies named LUBM and UNIV. Because of the additional inference
components specified, this entailment will include the new semantics introduced in
those inference components.

Chapter 10
SEM_APIS.CREATE_ENTAILMENT

10-26



EXECUTE sem_apis.create_entailment('lubm1000_idx',sem_models('lubm','univ'),
    sem_rulebases('owlprime'), SEM_APIS.REACH_CLOSURE, 
    'INTERSECT,INTERSECTSCOH,SVFH,THINGH,THINGSAM,UNION');

Table 10-1    Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

CHAIN Captures the property chain semantics defined in OWL 2. Only chains of
length 2 are supported. By default, this is included in the SKOSCORE
rulebase. Subproperty chaining is an OWL 2 feature, and for backward
compatibility this component is not by default included in the OWLPrime
rulebase. (For information about property chain handling, see Property
Chain Handling.) (New as of Release 11.2.)

COMPH Performs inference based on owl:complementOf assertions and the
interaction of owl:complementOf with other language constructs.

DIF Generates owl:differentFrom assertions based on the symmetricity of
owl:differentFrom.

DISJ Infers owl:differentFrom relationships at instance level using
owl:disjointWith assertions.

DISJH Performs inference based on owl:disjointWith assertions and their
interactions with other language constructs.

DOM Performs inference based on RDFS2.

DOMH Performs inference based on rdfs:domain assertions and their interactions
with other language constructs.

EQCH Performs inference that are relevant to owl:equivalentClass.

EQPH Performs inference that are relevant to owl:equivalentProperty.

FP Performs instance-level inference using instances of
owl:FunctionalProperty.

FPH Performs inference using instances of owl:FunctionalProperty.

HASKEY Covers the semantics behind "keys" defined in OWL 2. In OWL 2, a
collection of properties can be treated as a key to a class expression. For
efficiency, the size of the collection must not exceed 3. (New as of
Release 11.2.)

IFP Performs instance-level inference using instances of
owl:InverseFunctionalProperty.

IFPH Performs inference using instances of owl:InverseFunctionalProperty.

INTERSECT Handles the core semantics of owl:intersectionOf. For example, if class C
is the intersection of classes C1, C2 and C3, then C is a subclass of C1,
C2, and C3. In addition, common instances of all C1, C2, and C3 are also
instances of C. (New as of Release 11.2.)

INTERSECTSCOH Handles the fact that an intersection is the maximal common subset. For
example, if class C is the intersection of classes C1, C2, and C3, then any
common subclass of all C1, C2, and C3 is a subclass of C. (New as of
Release 11.2.)

INV Performs instance-level inference using owl:inverseOf assertions.

INVH Performs inference based on owl:inverseOf assertions and their
interactions with other language constructs.
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Table 10-1    (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

MBRLST Captures the semantics that for any resource, every item in the list given
as the value of the skos:memberList property is also a value of the
skos:member property. (See S36 in the SKOS detailed specification.) By
default, this is included in the SKOSCORE rulebase. (New as of Release
11.2.)

ONEOF Generates classification assertions based on the definition of the
enumeration classes. In OWL, class extensions can be enumerated
explicitly with the owl:oneOf constructor. (New as of Release 11.2.)

PROPDISJH Captures the interaction between owl:propertyDisjointWith and
rdfs:subPropertyOf. By default, this is included in SKOSCORE
rulebase. propertyDisjointWith is an OWL 2 feature, and for backward
compatibility this component is not by default included in the OWLPrime
rulebase. (New as of Release 11.2.)

RANH Performs inference based on rdfs:range assertions and their
interactions with other language constructs.

RDFP* (The rules corresponding to components with a prefix of RDFP can be
found in Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary, by H.J.
Horst.)

RDFS2, ...
RDFS13

RDFS2, RDFS3, RDFS4a, RDFS4b, RDFS5, RDFS6, RDFS7, RDFS8,
RDFS9, RDFS10, RDFS11, RDFS12, and RDFS13 are described in
Section 7.3 of RDF Semantics (http://www.w3.org/TR/rdf-mt/).
Note that many of the RDFS components are not relevant for OWL
inference.

SAM Performs inference about individuals based on existing assertions for
those individuals and owl:sameAs.

SAMH Infers owl:sameAs assertions using transitivity and symmetricity of
owl:sameAs.

SCO Performs inference based on RDFS9.

SCOH Generates the subClassOf hierarchy based on existing rdfs:subClassOf
assertions. Basically, C1 rdfs:subClassOf C2 and C2 rdfs:subClassOf C3
will infer C1 rdfs:subClassOf C3 based on transitivity. SCOH is also an
alias of RDFS11.

SKOSAXIOMS Captures most of the axioms defined in the SKOS detailed specification.
By default, this is included in the SKOSCORE rulebase. (New as of Release
11.2.)

SNOMED Performs inference based on the semantics of the OWL 2 EL profile,
which captures the expressiveness of SNOMED CT (Systematized
Nomenclature of Medicine - Clinical Terms), which is one of the most
expressive and complex medical terminologies. (New as of Release 11.2.)

SPIH Performs inference based on interactions between rdfs:subPropertyOf
and owl:inverseOf assertions.

SPO Performs inference based on RDFS7.

SPOH Generates rdfs:subPropertyOf hierarchy based on transitivity of
rdfs:subPropertyOf. It is an alias of RDFS5.
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Table 10-1    (Cont.) Inferencing Keywords for inf_components_in Parameter

Keyword Explanation

SVFH Handles the following semantics that involves the interaction between
owl:someValuesFrom and rdfs:subClassOf. Consider two existential
restriction classes C1 and C2 that both use the same restriction property.
Assume further that the owl:someValuesFrom constraint class for C1 is a
subclass of that for C2. Then C1 can be inferred as a subclass of C2.
(New as of Release 11.2.)

SYMM Performs instance-level inference using instances of
owl:SymmetricProperty.

SYMH Performs inference for properties of type owl:SymmetricProperty.

THINGH Handles the semantics that any defined OWL class is a subclass of
owl:Thing. The consequence of this rule is that instances of all defined
OWL classes will become instances of owl:Thing. The size of the inferred
graph will very likely be bigger with this component selected. (New as of
Release 11.2.)

THINGSAM Handles the semantics that instances of owl:Thing are equal to
(owl:sameAs) themselves. This component is provided for the
convenience of some applications. Note that an application does not have
to select this inference component to figure out an individual is equal to
itself; this kind of information can easily be built in the application logic.
(New as of Release 11.2.)

TRANS Calculates transitive closure for instances of owl:TransitiveProperty.

UNION Captures the core semantics of the owl:unionOf construct. Basically, the
union class is a superclass of all member classes. For backward
compatibility, this component is not by default included in the OWLPrime
rulebase. (New as of Release 11.2.)

To deselect a component, use the component name followed by a minus (-) sign. For
example, SCOH- deselects inference of the subClassOf hierarchy.

For the options parameter, you can enable the following options to override the
default inferencing behavior:

• COL_COMPRESS=T creates temporary, intermediate working tables. This option can
reduce the space required for such tables, and can improve the performance of
the CREATE_ENTAILMENT operation with large data sets.

By default COL_COMPRESS=T uses the "compress for query level low" setting;
however, you can add CPQH=T to change to the "compress for query level high"
setting.

Note:

You can specify COL_COMPRESS=T only on systems that support Hybrid
Columnar Compression (HCC). For information about HCC, see Oracle
Database Concepts.

• DEST_MODEL=<model_name> specifies, for incremental inference, the destination
model to which the delta_in model or models are to be added. The specified
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destination model must be one of the models specified in the models_in
parameter.

• DISTANCE=T generates ancillary distance information that is useful for semantic
operators.

• DOP=n specifies the degree of parallelism for parallel inference, which can improve
inference performance. For information about parallel inference, see Using Parallel
Inference.

• ENTAIL_ANYWAY=T forces OWL inferencing to proceed and reuse existing inferred
data (entailment) when the entailment has a valid status. By default,
SEM_APIS.CREATE_ENTAILMENT quits immediately if there is already a valid
entailment for the combination of models and rulebases.

• HASH_PART=n creates the specified number of hash partitions for internal working
tables. (The number must be a power of 2: 2, 4, 8, 16, 32, and so on.) You may
want to specify a value if there are many distinct predicates in the semantic data
model. In Oracle internal testing on benchmark ontologies, HASH_PART=32
worked well.

• INC=T enables incremental inference for the entailment. For information about
incremental inference, see Performing Incremental Inference.

• LOCAL_NG_INF=T causes named graph based local inference (NGLI) to be used
instead of named graph based global inference (NGGI). For information about
NGLI, see Named Graph Based Local Inference (NGLI).

• OPT_SAMEAS=T uses consolidated owl:sameAs entailment for the entailment. If you
specify this option, you cannot specify PROOF=T. For information about optimizing
owl:sameAs inference, see Optimizing owl:sameAs Inference.

• RAW8=T uses RAW8 data types for the auxiliary inference tables. This option can
improve entailment performance by up to 30% in some cases.

• PROOF=T generates proof for inferred triples. Do not specify this option unless you
need to; it slows inference performance because it causes more data to be
generated. If you specify this option, you cannot specify OPT_SAMEAS=T.

• USER_RULES=T causes any user-defined rules to be applied. If you specify this
option, you cannot specify PROOF=T or DISTANCE=T, and you must accept the
default value for the passes parameter.

For the delta_in parameter, inference performance is best if the value is small
compared to the overall size of those models. In a typical scenario, the best results
might be achieved when the delta contains fewer than 10,000 triples; however, some
tests have shown significant inference performance improvements with deltas as large
as 100,000 triples.

For the label_gen parameter, if you want to use the default OLS label generator,
specify the appropriate SEM_RDFSA package constant value from Table 10-2.

Table 10-2    SEM_RDFSA Package Constants for label_gen Parameter

Constant Description

SEM_RDFSA.LABELGEN_
SUBJECT

Label generator that applies the label associated with the inferred
triple's subject as the triple's label.

SEM_RDFSA.LABELGEN_
PREDICATE

Label generator that applies the label associated with the inferred
triple's subject as the triple's label.
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Table 10-2    (Cont.) SEM_RDFSA Package Constants for label_gen Parameter

Constant Description

SEM_RDFSA.LABELGEN_
OBJECT

Label generator that applies the label associated with the inferred
triple's subject as the triple's label.

SEM_RDFSA.LABELGEN_
RULE

Label generator that applies the label associated with the rule that
directly produced the inferred triple as the triple's label. If you
specify this option, you must also specify PROOF=T in the
options parameter.

SEM_RDFSA.LABELGEN_
DOMINATING

Label generator that computes a dominating label of all the
available labels for the triple's components (subject, predicate,
object, and rule), and applies it as the label for the inferred triple.

Fine-Grained Access Control (OLS) Considerations

When fine-grained access control is enabled for the entire network using OLS, only a
user with FULL access privileges to the associated policy may create an entailment.
When OLS is enabled, full access privileges to the OLS policy are granted using the
SA_USER_ADMIN.SET_USER_PRIVS procedure.

Inferred triples accessed through generated labels might not be same as conceptual
triples inferred directly from the user accessible triples and rules. The labels generated
using a subset of triple components may be weaker than intended. For example, one
of the antecedents for the inferred triple may have a higher label than any of the
components of the triple. When the label is generated based on just the triple
components, end users with no access to one of the antecedents may still have
access to the inferred triple. Even when the antecedents are used for custom label
generation, the generated label may be stronger than intended. The inference process
is not exhaustive, and information pertaining to any alternate ways of inferring the
same triple is not available. So, the label generated using a given set of antecedents
may be too strong, because the user with access to all the triples in the alternate path
could infer the triple with lower access.

Even when generating a label that dominates all its components and antecedents, the
label may not be precise. This is the case when labels considered for dominating
relationship have non-overlapping group information. For example, consider two labels
L:C:NY and L:C:NH where L is a level, C is a component and NY and NH are two
groups. A simple label that dominates these two labels is L:C:NY,NH, and a true
supremum for the two labels is L:C:US, where US is parent group for both NY and NH.
Unfortunately, neither of these two dominating labels is precise for the triple inferred
from the triples with first two labels. If L:C:NY,NH is used for the inferred triple, a user
with membership in either of these groups has access to the inferred triple, whereas
the same user does not have access to one of its antecedents. On the other hand, if
L:C:US is used for the inferred triple, a user with membership in both the groups and
not in the US group will not be able to access the inferred triple, whereas that user
could infer the triple by directly accessing its components and antecedents.

Because of these unique challenges with inferred triples, extra caution must be taken
when choosing or implementing the label generator.

See also the OLS example in the Examples section.
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Examples

The following example creates an entailment named OWLTST_IDX using the OWLPrime
rulebase, and it causes proof to be generated for inferred triples.

EXECUTE sem_apis.create_entailment('owltst_idx', sem_models('owltst'), 
sem_rulebases('OWLPRIME'), SEM_APIS.REACH_CLOSURE, null, 'PROOF=T');

The following example assumes an OLS environment. It creates a rulebase with a
rule, and it creates an entailment.

-- Create an entailment with a rule. -- 
exec sdo_rdf_inference.create_entailment('contracts_rb');
 
insert into mdsys.rdfr_contracts_rb values (
  'projectLedBy', '(?x :drivenBy ?y) (?y :hasVP ?z)',  NULL,
  '(?x :isLedBy ?z)',
  SDO_RDF_Aliases(SDO_RDF_Alias('','http://www.myorg.com/pred/')));
 
-- Assign sensitivity label for the predicate to be inferred. -- 
-- Yhe predicate label may be set globally or it can be assign to --
-- the one or the models used to infer the data – e.g: CONTRACTS. 
begin
  sem_rdfsa.set_predicate_label(
         model_name   => 'rdf$global',
         predicate    => 'http://www.myorg.com/pred/isLedBy',
         label_string => 'TS:US_SPCL');
end;
/
 
-- Create index with a specific label generator. -- 
begin
  sem_apis.create_entailment(
         entailment_name_in => 'contracts_inf',
         models_in          => SDO_RDF_Models('contracts'),
         rulebases_in       => SDO_RDF_Rulebases('contracts_rb'),
         options            => 'USER_RULES=T',
         label_gen          => sem_rdfsa.LABELGEN_PREDICATE);
end;
/
 
-- Check for any label exceptions and update them accordingly. -- 
update mdsys.rdfi_contracts_inf set ctxt1 = 1100 where ctxt1 = -1;
 
-- The new entailment is now ready for use in SEM_MATCH queries. --

10.18 SEM_APIS.CREATE_PG_RDFVIEW
Format

SEM_APIS.CREATE_PG_RDFVIEW(
     model_name      IN VARCHAR2, 
   pg_name         IN VARCHAR2, 
     tsblespace_name IN VARCHAR2 DEFAULT NULL, 
     options         IN VARCHAR2 DEFAULT NULL);

or
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SEM_APIS.CREATE_PG_RDFVIEW(
     model_name      IN VARCHAR2, 
   pg_name         IN VARCHAR2,
     tsblespace_name IN VARCHAR2 DEFAULT NULL, 
     pg_stag_tab     IN VARCHAR2, 
     pg_edge_kv_tab  IN VARCHAR2, 
     pg_node_kv_tab  IN VARCHAR2, 
     pg_edge_tab     IN VARCHAR2, 
     options         IN VARCHAR2 DEFAULT NULL);

Description

Creates an RDF ciew model for a property graph stored in Oracle Database.

Parameters

model_name
Name of the RDF view model to create.

pg_name
Name of the property graph for the RDF view.

tablespace_name
Destination tablespace for the RDF view model and the R2RML staging table.

pg_stag_tab
Name of the staging table. (See the Usage Notes for more information.)

pg_edge_kv_tab
Name of the table storing edge properties

 pg_node_kv_tab
Name of the table storing node properties.

pg_edge_tab
Name of the table storing distinct edges.

options
String specifying options for index creation using the form
OPTION_NAME=option_value. Supported options are:

• SUB_K=N, SUB_EL=N (use a substring of N characters for property key name or
edge label)

• GT_TABLE=T (assume a populated GT$ table)

• RECREATE=T (re-create an existing property graph RDF view model)

Usage Notes

This procedure has two formats. The first format has minimal input that uses default
names for the staging table and each table in the property graph schema, and that
creates the staging table automatically if it does not exist. The second format lets you
specify custom table names for the staging table and the property graph tables.

If you use the second format, the staging table must already exist. If the staging table
is not empty, you must specify the RECREATE=T option. (With the second format, if the
staging table is not empty and if you do not specify the RECREATE=T option, then an
error is generated.)
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For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

Examples

The following example creates the RDF view M1 for the property graph G1 in
tablespace MY_TBS, and it specifies a populated distinct edges table.

EXECUTE SEM_APIS.CREATE_PG_RDFVIEW('M1', 'G1', 'MY_TBS', ' GT_TABLE=T ');

The following example creates the RDF view M1 for the property graph G1 in
tablespace MY_TBS with property graph tables MY_EDGE_KV_TAB,
MY_NODE_KV_TAB, and MY_EDGE_TAB. and staging table MY_STAB.

EXECUTE SEM_APIS.CREATE_PG_RDFVIEW('M1', 'G1', 'MY_TBS', 'MY_STAB', 
'MY_EDGE_KV_TAB', 'MY_NODE_KV_TAB', 'MY_EDGE_TAB');

10.19 SEM_APIS.CREATE_RDFVIEW_MODEL
Format

SEM_APIS.CREATE_RDFVIEW_MODEL(
     model_name          IN VARCHAR2, 
     tables              IN SYS.ODCIVarchar2List, 
     prefix              IN VARCHAR2 DEFAULT NULL, 
     r2rml_table_owner   IN VARCHAR2 DEFAULT NULL, 
     r2rml_table_name    IN VARCHAR2 DEFAULT NULL, 
     schema_table_owner  IN VARCHAR2 DEFAULT NULL, 
     schema_table_name   IN VARCHAR2 DEFAULT NULL, 
     options             IN VARCHAR2 DEFAULT NULL);

Description

Creates an RDF. view using direct mapping for the specified list of tables or views or
using R2RML mapping.

Parameters

model_name
Name of the RDF view to be created.

tables
List of tables or views that are the sources of relational data for the RDF view to be
created using direct mapping. This parameter must be null if you want to use R2RML
mapping.

prefix
Base prefix to be added at the beginning of the URIs in the RDF view.

r2rml_table_owner
For R2ML mapping, this parameter is required and specifies the name of the schema
that owns the staging table that holds the R2RML mapping (in N-triple format) to be
used for creating the RDF view.
For direct mapping, this parameter is optional and specifies the name of the schema
that owns the staging table into which the R2RML mapping (in N-triple format)
generated from the direct mapping will be stored.
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r2rml_table_name
For R2ML mapping, this parameter is required and specifies the name of the staging
table that holds the R2RML mapping (in N-triple format) to be used for creating the
RDF view.
For direct mapping, this parameter is optional and specifies the name of the staging
table into which the R2RML mapping (in N-triple format) generated from the direct
mapping will be stored.

schema_table_owner
Name of the schema that owns the staging table where the RDF schema generated
for the RDF view will be stored.

schema_table_name
Name of the staging table where the RDF schema generated for the RDF view will be
stored.

options
For direct mapping, you can optionally specify any combination (including none) of the
following:

• CONFORMANCE=T suppresses some of the information that would otherwise get
included by default, including use of database constraint names and schema-
qualified table or view names for constructing RDF predicate names.

For more information, see Example 8-2 in Creating an RDF View with Direct
Mapping.

• GENERATE_ONLY=T only generates the R2RML mapping for the specified tables and
stores it in the specified r2rml_table_name, but the underlying RDF view model is
not created. If you specify this option, the r2rml_table_name parameter must not
be null.

• KEY_BASED_REF_PROPERTY=T uses the foreign key column names to construct the
RDF predicate name. If this option is not specified, then the database constraint
name is used for constructing the RDF predicate name.

For direct mapping, RDF predicate names are derived from the corresponding
database names; therefore, preserving the name for the foreign key constraint is
the default behavior.

For an example that uses KEY_BASED_REF_PROPERTY=T , see Example 8-1 in 
Creating an RDF View with Direct Mapping.

• SCALAR_COLUMNS_ONLY=T generates the R2RML mapping for only the scalar
columns in the specified tables or views. Other non-scalar columns in the tables
or views are ignored. Without this option, if you attempt to create a direct mapping
on a table with user-defined types or LOB columns, an error is raised.

Usage Notes

You must grant the SELECT and INSERT privileges on r2rml_table_name and
schema_table_name to MDSYS.

For more information about RDF views, see RDF Views: Relational Data as RDF .

Examples

The following example creates an RDF view using direct mapping for tables EMP and
DEPT. The prefix used for the URIs is http://empdb/.
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BEGIN
  sem_apis.create_rdfview_model(
    model_name => 'empdb_model_direct',
    tables => sem_models('EMP', 'DEPT'),
    prefix => 'http://empdb/'
  );
END;
/

The following example creates an RDF view using R2RML mapping as specified by
the RDF triples in the staging table SCOTT.R2RTAB.

BEGIN
  sem_apis.create_rdfview_model(
    model_name => 'empdb_model_R2RML',
    tables => NULL,
    r2rml_table_owner => 'SCOTT',
    r2rml_table_name => 'R2RTAB'
  );
END;
/

10.20 SEM_APIS.CREATE_RULEBASE
Format

SEM_APIS.CREATE_RULEBASE(
     rulebase_name  IN VARCHAR2);

Description

Creates a rulebase.

Parameters

rulebase_name
Name of the rulebase.

Usage Notes

This procedure creates a user-defined rulebase. After creating the rulebase, you can
add rules to it. To cause the rules in the rulebase to be applied in a query of RDF data,
you can specify the rulebase in the call to the SEM_MATCH table function.

Rules and rulebases are explained in Inferencing: Rules and Rulebases. The
SEM_MATCH table function is described in Using the SEM_MATCH Table Function to
Query Semantic Data,

Examples

The following example creates a rulebase named family_rb. (It is an excerpt from 
Example 1-110 in Example: Family Information.)

EXECUTE SEM_APIS.CREATE_RULEBASE('family_rb');

Chapter 10
SEM_APIS.CREATE_RULEBASE

10-36



10.21 SEM_APIS.CREATE_SEM_MODEL
Format

SEM_APIS.CREATE_SEM_MODEL(
     model_name       IN VARCHAR2, 
     table_name       IN VARCHAR2, 
     column_name      IN VARCHAR2, 
     model_tablespace IN VARCHAR2 DEFAULT NULL,
     options          IN VARCHAR2 DEFAULT NULL);

Description

Creates a semantic technology model.

Parameters

model_name
Name of the model.

table_name
Name of the table to hold references to semantic technology data for this model.

column_name
Name of the column of type SDO_RDF_TRIPLE_S in table_name.

model_tablespace
Name of the tablespace for the tables and other database objects used by Oracle to
support this model. The default value is the tablespace that was specified in the call to
the SEM_APIS.CREATE_SEM_NETWORK procedure.

options
An optional quoted string with one or more of the following model creation options:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
MDSYS.RDF_LINK$ partition for the model.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
MDSYS.RDF_LINK$ partition for the model.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the
MDSYS.RDF_LINK$ partition for the model.

• COMPRESS=RSCAB uses ROW STORE COMPRESS BASIC on the
MDSYS.RDF_LINK$ partition for the model.

Usage Notes

You must create the table to hold references to semantic technology data before
calling this procedure to create the semantic technology model. For more information,
see Quick Start for Using Semantic Data.

This procedure adds the model to the MDSYS.SEM_MODEL$ view, which is
described in Metadata for Models.

This procedure is the only supported way to create a model. Do not use SQL INSERT
statements with the MDSYS.SEM_MODEL$ view.
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To delete a model, use the SEM_APIS.DROP_SEM_MODEL procedure.

The options COMPRESS=RSCA, COMPRESS=RSCA, and COMPRESS=RSCA should be used only
if you have the appropriate licenses.

Examples

The following example creates a semantic technology model named articles.
References to the triple data for the model will be stored in the TRIPLE column of the
ARTICLES_RDF_DATA table. (This example is an excerpt from Example 1-109 in 
Example: Family Information.)

EXECUTE SEM_APIS.CREATE_SEM_MODEL('articles', 'articles_rdf_data', 'triple');

The definition of the ARTICLES_RDF_DATA table is as follows:

CREATE TABLE articles_rdf_data (triple SDO_RDF_TRIPLE_S);

10.22 SEM_APIS.CREATE_SEM_NETWORK
Format

SEM_APIS.CREATE_SEM_NETWORK( 
     tablespace_name  IN VARCHAR2,
     options          IN VARCHAR2 DEFAULT NULL);

Description

Creates structures for persistent storage of semantic data.

Parameters

tablespace_name
Name of the tablespace to be used for tables created by this procedure. This
tablespace will be the default for all models that you create, although you can override
the default when you create a model by specifying the model_tablespace parameter
in the call to the SEM_APIS.CREATE_SEM_MODEL procedure.

options
An optional quoted string with one or more of the following network creation options:

• COMPRESS=CSCQH uses COLUMN STORE COMPRESS FOR QUERY HIGH on the
MDSYS.RDF_LINK$ and MDSYS.RDF_VALUE$ tables.

• COMPRESS=CSCQL uses COLUMN STORE COMPRESS FOR QUERY LOW on the
MDSYS.RDF_LINK$ and MDSYS.RDF_VALUE$ tables.

• COMPRESS=RSCA uses ROW STORE COMPRESS ADVANCED on the
MDSYS.RDF_LINK$ and MDSYS.RDF_VALUE$ tables.

• COMPRESS=RSCAB uses ROW STORE COMPRESS BASIC on the
MDSYS.RDF_LINK$ and MDSYS.RDF_VALUE$ tables. This is the default
compression level.

Usage Notes

This procedure creates system tables and other database objects used for semantic
technology support.
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You should create a tablespace for the semantic technology system tables and specify
the tablespace name in the call to this procedure. (You should not specify the SYSTEM
tablespace.) The size needed for the tablespace that you create will depend on the
amount of semantic technology data you plan to store.

You must connect to the database as a user with DBA privileges in order to call this
procedure, and you should call the procedure only once for the database.

To drop these structures for persistent storage of semantic data, you must connect as
a user with DBA privileges and call the SEM_APIS.DROP_SEM_NETWORK
procedure.

The options COMPRESS=RSCA, COMPRESS=RSCA, and COMPRESS=RSCA should be used only
if you have the appropriate licenses.

After the semantic network is created, a row in the MDSYS.RDF_PARAMETER table
with NAMESPACE = 'NETWORK' and ATTRIBUTE = 'COMPRESSION' will indicate
the type of compression used for the semantic network.

Examples

The following example creates a tablespace for semantic technology system tables
and creates structures for persistent storage of semantic data in this tablespace.
Advanced compression is used for the semantic network.

CREATE TABLESPACE rdf_tblspace
 DATAFILE '/oradata/orcl/rdf_tblspace.dat' SIZE 1024M REUSE
 AUTOEXTEND ON NEXT 256M MAXSIZE UNLIMITED
 SEGMENT SPACE MANAGEMENT AUTO;
. . .
EXECUTE SEM_APIS.CREATE_SEM_NETWORK('rdf_tblspace');

10.23 SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE
Format

SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE(
     source_table   IN VARCHAR2, 
     def_directory  IN VARCHAR2, 
     log_directory  IN VARCHAR2 DEFAULT NULL, 
     bad_directory  IN VARCHAR2 DEFAULT NULL, 
     log_file       IN VARCHAR2 DEFAULT NULL, 
     bad_file       IN VARCHAR2 DEFAULT NULL, 
     parallel       IN INTEGER DEFAULT NULL, 
     source_table_owner IN VARCHAR2 DEFAULT NULL, 
     flags          IN VARCHAR2 DEFAULT NULL);

Description

Creates an external table to map an N-Triple or N-Quad format file into a table.

Parameters

source_table
Name of the external table to be created.

Chapter 10
SEM_APIS.CREATE_SOURCE_EXTERNAL_TABLE

10-39



def_directory
Database directory where the input files are located. To load from this staging table,
you must have READ privilege on this directory.

log_directory
Database directory where the log files will be generated when loading from the
external table. If not specified, the value of the def_directory parameter is used.
When loading from the external table, you must have WRITE privilege on this
directory.

bad_directory
Database directory where the bad files will be generated when loading from the
external table. If not specified, the value of the def_directory parameter is used.
When loading from the external table, you must have WRITE privilege on this
directory.

log_file
Name of the log file. If not specified, the name will be .generated automatically during
a load operation.

bad_file
Name of the bad file. If not specified, the name will be .generated automatically during
a load operation.

parallel
Degree of parallelism to associate with the external table being created.

source_table_owner
Owner for the external table being created. If not specified, the invoker becomes the
owner.

flags
(Reserved for future use)

Usage Notes

For more information and an example, see Loading N-Quad Format Data into a
Staging Table Using an External Table.

Examples

The following example creates a source external table. (This example is an excerpt
from Example 1-91 in Loading N-Quad Format Data into a Staging Table Using an
External Table.)

BEGIN
  sem_apis.create_source_external_table(
    source_table    => 'stage_table_source'
   ,def_directory   => 'DATA_DIR'
   ,bad_file        => 'CLOBrows.bad'
   );
END;
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10.24 SEM_APIS.CREATE_SPARQL_UPDATE_TABLES
Format

SEM_APIS.CREATE_SPARQL_UPDATE_TABLES();

Description

Creates global temporary tables in the caller’s schema for use with SPARQL Update
operations.

Parameters

None.

Usage Notes

Invoking SEM_APIS.UPDATE_MODEL with STREAMING=F, FORCE_BULK=T, or
DEL_AS_INS=T option requires that the following temporary tables exist in the caller’s
schema: RDF_UPD_DEL$, RDF_UPD_INS$, and RDF_UPD_INS_CLOB$. These
tables are created with the following definitions:

  CREATE GLOBAL TEMPORARY TABLE RDF_UPD_DEL$ (
    RDF$STC_GRAPH VARCHAR2(4000),
    RDF$STC_SUB   VARCHAR2(4000),
    RDF$STC_PRED  VARCHAR2(4000),
    RDF$STC_OBJ   VARCHAR2(4000),
    RDF$STC_CLOB  CLOB
  ) ON COMMIT PRESERVE ROWS';
  CREATE GLOBAL TEMPORARY TABLE RDF_UPD_INS$ (
    RDF$STC_GRAPH VARCHAR2(4000),
    RDF$STC_SUB   VARCHAR2(4000),
    RDF$STC_PRED  VARCHAR2(4000),
    RDF$STC_OBJ   VARCHAR2(4000)
  ) ON COMMIT PRESERVE ROWS';
  CREATE GLOBAL TEMPORARY TABLE RDF_UPD_INS_CLOB$ (
    RDF$STC_GRAPH VARCHAR2(4000),
    RDF$STC_SUB   VARCHAR2(4000),
    RDF$STC_PRED  VARCHAR2(4000),
    RDF$STC_OBJ   VARCHAR2(4000),
    RDF$STC_CLOB  CLOB
  ) ON COMMIT PRESERVE ROWS';

If you need to drop these tables, use the 
SEM_APIS.DROP_SPARQL_UPDATE_TABLES.

For more information, see Support for SPARQL Update Operations on a Semantic
Model.

Examples

The following example creates the necessary global temporary tables in the caller’s
schema for use with SPARQL Update operations.

EXECUTE SEM_APIS.CREATE_SPARQL_UPDATE_TABLES;
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10.25 SEM_APIS.CREATE_VIRTUAL_MODEL
Format

SEM_APIS.CREATE_VIRTUAL_MODEL(
     vm_name     IN VARCHAR2, 
     models      IN SEM_MODELS, 
     rulebases   IN SEM_RULEBASES DEFAULT NULL, 
     options     IN VARCHAR2 DEFAULT NULL, 
     entailments IN SEM_ENTAILMENTS DEFAULT NULL);

Description

Creates a virtual model containing the specified semantic models and/or entailments.
Entailments can be specified in one of the following ways:

• By specifying one or more models and one or more rulebases. In this case, a
virtual model will be created using the single entailment that corresponds to the
exact combination of models and rulebases specified. An error is raised if no such
entailment exists.

• By specifying zero or more models and one or more entailments. In this case, the
contents of the models and entailments will be combined regardless of their
relationship.

The first method ensures a sound and complete dataset, whereas the second method
relaxes the sound and complete constraints for more flexibility.

Parameters

vm_name
Name of the virtual model to be created.

models
One or more semantic model names. Its data type is SEM_MODELS, which has the
following definition: TABLE OF VARCHAR2(25). If this parameter is null, no models are
included in the virtual model definition.

rulebases
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25). If this parameter is null, no rulebases
are included in the virtual model definition. Rules and rulebases are explained in 
Inferencing: Rules and Rulebases.
If you specify this parameter, you cannot also specify the entailments parameter.

options
REPLACE=T lets you to replace a virtual model without dropping it. (Using this option is
analogous to using CREATE OR REPLACE VIEW with a view.)

entailments
One or more entailment names. Its data type is SEM_ENTAILMENTS, which has the
following definition: TABLE OF VARCHAR2(25). If this parameter is null, no entailments
are included in the virtual model definition. Entailments are explained in Using OWL
Inferencing.
If you specify this parameter, you cannot also specify the rulebases parameter.
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Usage Notes

For an explanation of virtual models, including usage information, see Virtual Models.

An entailment must exist for each specified combination of semantic model and
rulebase.

To create a virtual model, you must either be (A) the owner of each specified model
and any corresponding entailments, or (B) a user with DBA privileges.

To replace a virtual model, you must be the owner of the virtual model or a user with
DBA privileges.

This procedure creates views with names in the following format:

• SEMV_vm_name, which corresponds to a UNION ALL of the triples in each model
and entailment. This view may contain duplicates.

• SEMU_vm_name, which corresponds to a UNION of the triples in each model and
entailment. This view will not contain duplicates (thus, the U in SEMU indicates
unique).

However, the SEMU_vm_name view is not created if the virtual model contains
only one semantic model and no entailment.

To use the example in Virtual Models of a virtual model vm1 created from models m1,
m2, m3, and with an entailment created for m1, m2 ,and m3 using the OWLPrime
rulebase, this procedure will create the following two views (assuming that m1, m2,
and m3, and the OWLPRIME entailment have internal model_id values 1, 2, 3, 4):

CREATE VIEW MDSYS.SEMV_VM1 AS
  SELECT start_node_id, p_value_id, canon_end_node_id, end_node_id
  FROM MDSYS.rdf_link$
  WHERE model_id IN (1, 2, 3, 4);
 
CREATE VIEW MDSYS.SEMU_VM1 AS
  SELECT start_node_id, p_value_id, canon_end_node_id, MAX(end_node_id)
  FROM MDSYS.rdf_link$
  WHERE model_id IN (1, 2, 3, 4)
  GROUP BY start_node_id, p_value_id, canon_end_node_id;

The user that invokes this procedure will be the owner of the virtual model and will
have SELECT WITH GRANT privileges on the SEMU_vm_name and
SEMV_vm_name views. To query the corresponding virtual model, a user must have
select privileges on these views.

Examples

The following example creates a virtual model named VM1.

EXECUTE sem_apis.create_virtual_model('VM1', sem_models('model_1', 'model_2'), 
sem_rulebases('OWLPRIME'));

The following example creates a virtual model named VM1 using the relaxed entailment
specification.

EXECUTE sem_apis.create_virtual_model('VM1', models=>sem_models('model_1', 
'model_2'), entailments=>sem_entailments('entailment1','entailment2'));

Chapter 10
SEM_APIS.CREATE_VIRTUAL_MODEL

10-43



The following example effectively redefines virtual model VM1 by using the REPLACE=T
option.

EXECUTE sem_apis.create_virtual_model('VM1', models=>sem_models('model_1', 
'model_2'), entailments=>sem_entailments('entailment1'), options=>'REPLACE=T');

10.26 SEM_APIS.DELETE_ENTAILMENT_STATS
Format

SEM_APIS.DELETE_ENTAILMENT_STATS (
     entailment_name  IN VARCHAR2, 
     cascade_parts    IN BOOLEAN DEFAULT TRUE, 
     cascade_columns  IN BOOLEAN DEFAULT TRUE, 
     cascade_indexes  IN BOOLEAN DEFAULT TRUE, 
     no_invalidate    IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE, 
     force            IN BOOLEAN DEFAULT FALSE);

Description

Deletes statistics for a specified entailment.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to entailment statistics.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example deletes statistics for an entailment named OWLTST_IDX.

EXECUTE SEM_APIS.DELETE_ENTAILMENT_STATS('owltst_idx');

10.27 SEM_APIS.DELETE_MODEL_STATS
Format

SEM_APIS.DELETE_MODEL_STATS (
     model_name      IN VARCHAR2, 
     cascade_parts   IN BOOLEAN DEFAULT TRUE, 
     cascade_columns IN BOOLEAN DEFAULT TRUE, 
     cascade_indexes IN BOOLEAN DEFAULT TRUE, 
     no_invalidate   IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE, 
     force           IN BOOLEAN DEFAULT FALSE);
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Description

Deletes statistics for a specified model.

Parameters

model_name
Name of the model.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to model statistics.

Usage Notes

Only the model owner or a users with DBA privileges can execute this procedure.

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example deletes statistics for a model named FAMILY.

EXECUTE SEM_APIS.DELETE_MODEL_STATS('family');

10.28 SEM_APIS.DISABLE_CHANGE_TRACKING
Format

SEM_APIS.DISABLE_CHANGE_TRACKING(
     models_in IN SEM_MODELS);

Description

Disables change tracking for a specified set of models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

Usage Notes

Disabling change tracking on a model automatically disables incremental inference on
all entailment that use the model.

To use this procedure, you must be the owner of the specified model, and incremental
inference must have been previously enabled.

For an explanation of incremental inference, including usage information, see 
Performing Incremental Inference.
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Examples

The following example disables change tracking for the family model.

EXECUTE sem_apis.disable_change_tracking(sem_models('family'));

10.29 SEM_APIS.DISABLE_INC_INFERENCE
Format

SEM_APIS.DISABLE_INC_INFERENCE(
     entailment_name IN VARCHAR2);

Description

Disables incremental inference for a specified entailment (rules index).

Parameters

entailment_name
Name of the entailment for which to disable incremental inference.

Usage Notes

To use this procedure, you must be the owner of the specified entailment, and
incremental inference must have been previously enabled by the 
SEM_APIS.ENABLE_INC_INFERENCE procedure.

Calling this procedure automatically disables change tracking for all models owned by
the invoking user that were having changes tracked only because of this particular
inference.

For an explanation of incremental inference, including usage information, see 
Performing Incremental Inference.

Examples

The following example enables incremental inference for the entailment named
RDFS_RIX_FAMILY.

EXECUTE sem_apis.disable_inc_inference('rdfs_rix_family');

10.30 SEM_APIS.DROP_DATATYPE_INDEX
Format

SEM_APIS.DROP_DATATYPE_INDEX(
     datatype    IN VARCHAR2, 
     force_drop  IN BOOLEAN default FALSE);

Description

Drops (deletes) an existing data type index.
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Parameters

datatype
URI of the data type for the index to drop.

force_drop
TRUE forces the index to be dropped if an error occurs during the processing of the
statement; FALSE (the default) does not drop the index if an error occurs during the
processing of the statement.

Usage Notes

You must have DBA privileges to call this procedure.

For an explanation of data type indexes, see Using Data Type Indexes.

Examples

The following example drops the data type index for xsd:string typed literals and
plain literals.

EXECUTE SEM_APIS.DROP_DATATYPE_INDEX('http://www.w3.org/2001/XMLSchema#string');

10.31 SEM_APIS.DROP_ENTAILMENT
Format

SEM_APIS.DROP_ENTAILMENT(
     entailment_name_in IN VARCHAR2, 
     named_g_in         IN SEM_GRAPHS DEFAULT NULL, 
     dop                IN INT DEFAULT 1);

Description

Drops (deletes) an entailment (rules index).

Parameters

entailment_name_in
Name of the entailment to be deleted.

named_g_in
Causes only the triples with the specified graph names in the entailment to be
deleted. A null value (the default) drops the entire entailment.
For example, named_g_in => sem_graphs('<urn:G1>','<urn:G2>') drops only the
triples in entailment with graph names G1 and G2; the rest of the entailment graph is
not dropped.

dop
Degree of parallelism for a parallel execution of triple deletion. Applies only if the
named_g_in parameter is not null.

Usage Notes

You can use this procedure to delete an entailment that you created using the 
SEM_APIS.CREATE_ENTAILMENT procedure.
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If you drop only a subset of the entailment with specified named graphs (that is, when
named_g_in is not null) on an entailment with a VALID or INCOMPLETE status, then the
resulting status of the entailment after the drop is set to INCOMPLETE.

Examples

The following example deletes a entailment named OWLTST_IDX.

EXECUTE sem_apis.drop_entailment('owltst_idx');

The following example deletes only inferred triples with graph names G1 and G2 that
belong to the entailment named OWLNG_IDX. Any inferred triples in the default graph
and other named graphs remain in the entailment.

EXECUTE sem_apis.drop_entailment('owlng_idx',sem_graphs('<urn:G1>','<urn:G2>'));

10.32 SEM_APIS.DROP_PG_RDFVIEW
Format

SEM_APIS.DROP_PG_RDFVIEW(
     model_name      IN VARCHAR2, 
     options         IN VARCHAR2 DEFAULT NULL);

or

SEM_APIS.CDROP_PG_RDFVIEW(
     model_name      IN VARCHAR2, 
     pg_stag_tab     IN VARCHAR2, 
     options         IN VARCHAR2 DEFAULT NULL);

Description

Drops an RDF ciew model for a property graph stored in Oracle Database.

Parameters

model_name
Name of the RDF view model to drop.

pg_stag_tab
Name of the staging table. (See also the TRUNCATE=T option.)

options
String specifying options for index creation using the form
OPTION_NAME=option_value. Supported options are:

• TRUNCATE=T (truncate the staging table ionstead of dropping it)

Usage Notes

For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

Examples

The following example drops the RDF view M1.

EXECUTE SEM_APIS.DROP_PG_RDFVIEW('M1');
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The following example drops the RDF view with the staging table MY_STAB, and
truncates the staging table instead of dropping it.

EXECUTE SEM_APIS.DROP_PG_RDFVIEW('M1', 'MY_STAB', 'TRUNCATE_STAB=T');

10.33 SEM_APIS.DROP_PG_RDFVIEW_INDEXES
Format

SEM_APIS.DROP_PG_RDFVIEW_INDEXES(
     pg_name         IN VARCHAR2, 

Description

Drops indexes that were created using the 
SEM_APIS.BUILD_PG_RDFVIEW_INDEXES procedure.

Parameters

pg_name
Name of the property graph to index.

options
(Reserved for future use.)

Usage Notes

For more information, see RDF Integration with Property Graph Data Stored in Oracle
Database.

Examples

The following example drops indexes for the property graph G1.

EXECUTE SEM_APIS.DROP_PG_RDFVIEW_INDEXES('G1');

10.34 SEM_APIS.DROP_RDFVIEW_MODEL
Format

SEM_APIS.DROP_RDFVIEW_MODEL(
     model_name IN VARCHAR2, 
     options    IN VARCHAR2 DEFAULT NULL);

Description

Drops (deletes) an RDF view.

Parameters

model_name
Name of the RDF view to be dropped.

options
(Reserved for future use.)
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Usage Notes

You must be the owner of the RDF view to be dropped.

For more information about RDF views, see RDF Views: Relational Data as RDF .

Examples

The following example drops an RDF view.

BEGIN
  sem_apis.drop_rdfview_model(
    model_name => 'empdb_model'
  );
END;
/

10.35 SEM_APIS.DROP_RULEBASE
Format

SEM_APIS.DROP_RULEBASE(
     rulebase_name  IN VARCHAR2);

Description

Deletes a rulebase.

Parameters

rulebase_name
Name of the rulebase.

Usage Notes

This procedure deletes the specified rulebase, making it no longer available for use in
calls to the SEM_MATCH table function. For information about rulebases, see 
Inferencing: Rules and Rulebases.

Only the creator of a rulebase can delete the rulebase.

Examples

The following example drops the rulebase named family_rb.

EXECUTE SEM_APIS.DROP_RULEBASE('family_rb');

10.36 SEM_APIS.DROP_SEM_INDEX
Format

SEM_APIS.DROP_SEM_INDEX(
     index_code  IN VARCHAR2);
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Description

Drops a semantic network index on the models and entailments of the semantic
network.

Parameters

index_code
Index code string. Must match the index_code value that was specified in an earlier
call to the SEM_APIS.ADD_SEM_INDEX procedure.

Usage Notes

For an explanation of semantic network indexes, see Using Semantic Network
Indexes.

Examples

The following example drops a semantic network index with the index code string pcsm
on the models and entailments of the semantic network.

EXECUTE SEM_APIS.DROP_SEM_INDEX('pscm');

10.37 SEM_APIS.DROP_SEM_MODEL
Format

SEM_APIS.DROP_SEM_MODEL(
     model_name  IN VARCHAR2);

Description

Drops (deletes) a semantic technology model.

Parameters

model_name
Name of the model.

Usage Notes

This procedure deletes the model from the MDSYS.SEM_MODEL$ view, which is
described in Metadata for Models.

This procedure is the only supported way to delete a model. Do not use SQL DELETE
statements with the MDSYS.SEM_MODEL$ view.

Only the creator of a model can delete the model.

Examples

The following example drops the semantic technology model named articles.

EXECUTE SEM_APIS.DROP_SEM_MODEL('articles');
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10.38 SEM_APIS.DROP_SEM_NETWORK
Format

SEM_APIS.DROP_SEM_NETWORK(
     cascade  IN BOOLEAN DEFAULT FALSE);

Description

Removes structures used for persistent storage of semantic data.

Parameters

cascade
TRUE drops any existing semantic technology models and rulebases, and removes
structures used for persistent storage of semantic data; FALSE (the default) causes the
operation to fail if any semantic technology models or rulebases exist.

Usage Notes

To remove structures used for persistent storage of semantic data, you must connect
as a user with DBA privileges and call this procedure.

If any version-enabled models exist, this procedure will fail regardless of the value of
the cascade parameter.

Examples

The following example removes structures used for persistent storage of semantic
data.

EXECUTE SEM_APIS.DROP_SEM_NETWORK;

10.39 SEM_APIS.DROP_SPARQL_UPDATE_TABLES
Format

SEM_APIS.DROP_SPARQL_UPDATE_TABLES();

Description

Drops the global temporary tables in the caller’s schema for use with SPARQL Update
operations.

Parameters

None.

Usage Notes

This procedure drops the global temporary tables that were created by the 
SEM_APIS.CREATE_SPARQL_UPDATE_TABLES procedure.

For more information, see Support for SPARQL Update Operations on a Semantic
Model.
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Examples

The following example drops the global temporary tables that had been created in the
caller’s schema for use with SPARQL Update operations.

EXECUTE SEM_APIS.DROP_SPARQL_UPDATE_TABLES;

10.40 SEM_APIS.DROP_USER_INFERENCE_OBJS
Format

SEM_APIS.DROP_USER_INFERENCE_OBJS(
     uname  IN VARCHAR2);

Description

Drops (deletes) all rulebases and entailments owned by a specified database user.

Parameters

uname
Name of a database user. (This value is case-sensitive; for example, HERMAN and
herman are considered different users.)

Usage Notes

You must have sufficient privileges to delete rules and rulebases for the specified user.

This procedure does not delete the database user. It deletes only RDF rulebases and
entailments owned by that user.

Examples

The following example deletes all rulebases and entailments owned by user SCOTT.

EXECUTE SEM_APIS.DROP_USER_INFERENCE_OBJS('SCOTT');
 
PL/SQL procedure successfully completed.

10.41 SEM_APIS.DROP_VIRTUAL_MODEL
Format

SEM_APIS.DROP_VIRTUAL_MODEL(
     vm_name  IN VARCHAR2);

Description

Drops (deletes) a virtual model.

Parameters

vm_name
Name of the virtual model to be deleted.
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Usage Notes

You can use this procedure to delete a virtual model that you created using the 
SEM_APIS.CREATE_VIRTUAL_MODEL procedure. A virtual model is deleted
automatically if any of its component models, rulebases, or entailment are deleted.

To use this procedure, you must be the owner of the specified virtual model.

For an explanation of virtual models, including usage information, see Virtual Models.

Examples

The following example deletes a virtual model named VM1.

EXECUTE sem_apis.drop_virtual_model('VM1');

10.42 SEM_APIS.ENABLE_CHANGE_TRACKING
Format

SEM_APIS.ENABLE_CHANGE_TRACKING(
     models_in IN SEM_MODELS);

Description

Enables change tracking for a specified set of models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

Usage Notes

Change tracking must be enabled on a model before incremental inference can be
enabled on any entailments that use the model.

To use this procedure, you must be the owner of the specified model or models.

If the owner of an entailment is also an owner of any underlying models, then enabling
incremental inference on the entailment (by calling the 
SEM_APIS.ENABLE_INC_INFERENCE procedure) automatically enables change
tracking on those models owned by that user.

To disable change tracking for a set of models, use the 
SEM_APIS.DISABLE_CHANGE_TRACKING procedure.

For an explanation of incremental inference, including usage information, see 
Performing Incremental Inference.

Examples

The following example enables change tracking for the family model.

EXECUTE sem_apis.enable_change_tracking(sem_models('family'));
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10.43 SEM_APIS.ENABLE_INC_INFERENCE
Format

SEM_APIS.ENABLE_INC_INFERENCE(
     entailment_name IN VARCHAR2);

Description

Enables incremental inference for a specified entailment (rules index).

Parameters

entailment_name
Name of the entailment for which to enable incremental inference.

Usage Notes

To use this procedure, you must be the owner of the specified entailment.

Before this procedure is executed, all underlying models involved in the entailment
must have change tracking enabled. If the owner of the entailment is also an owner of
any underlying models, calling this procedure automatically enables change tracking
on those models. However, if some underlying model are not owned by the owner of
the entailment, the appropriate model owners must first call the 
SEM_APIS.ENABLE_CHANGE_TRACKING procedure to enable change tracking on
those models.

To disable incremental inference for an entailment, use the 
SEM_APIS.DISABLE_INC_INFERENCE procedure.

For an explanation of incremental inference, including usage information, see 
Performing Incremental Inference.

Examples

The following example enables incremental inference for the entailment named
RDFS_RIX_FAMILY.

EXECUTE sem_apis.enable_inc_inference('rdfs_rix_family');

10.44 SEM_APIS.ESCAPE_CLOB_TERM
Format

SEM_APIS.ESCAPE_CLOB_TERM(
     term        IN  CLOB CHARACTER SET ANY_CS, 
     utf_encode  IN NUMBER DEFAULT 1 
     ) RETURN CLOB CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters
escaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).
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Parameters

term
The RDF term to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters
other than chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise,
such characters will not be escaped.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example escapes an input RDF term containing TAB and NEWLINE
characters.

SELECT SEM_APIS.ESCAPE_CLOB_TERM('"abc' || chr(9) || 'def' || chr(10) || 
'hij"^^<http://www.w3.org/2001/XMLSchema#string>')
  FROM DUAL;

10.45 SEM_APIS.ESCAPE_CLOB_VALUE
Format

SEM_APIS.ESCAPE_CLOB_VALUE(
     val          IN  CLOB CHARACTER SET ANY_CS, 
     start_offset IN NUMBER DEFAULT 1, 
     end_offset   IN NUMBER DEFAULT 0, 
     utf_encode   IN NUMBER DEFAULT 1, 
      include_start IN NUMBER DEFAULT 0 
     ) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters
escaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

val
The CLOB text to escape.

start_offset
The offset in val from which to start character escaping. The default (1) causes
escaping to start at the first character of val.

end_offset
The offset in val from which to end character escaping. The default (0) causes
escaping to continue through the end of val.
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utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters
other than chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise,
such characters will not be escaped.

include_start
Set to 1 if the characters in val from 1 to start_offset should be prefixed
(prepended) to the return value. Otherwise, no such characters will be prefixed to the
return value.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example escapes an input character string containing TAB and
NEWLINE characters.

SELECT SEM_APIS.ESCAPE_CLOB_VALUE('abc' || chr(9) || 'def' || chr(10) || 'hij')
  FROM DUAL;

10.46 SEM_APIS.ESCAPE_RDF_TERM
Format

SEM_APIS.ESCAPE_RDF_TERM(
     term       IN  VARCHAR2 CHARACTER SET ANY_CS, 
     utf_encode IN NUMBER DEFAULT 1 
     ) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters
escaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

term
The RDF term to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters
other than chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise,
such characters will not be escaped.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.
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Examples

The following example escapes an input RDF term containing TAB and NEWLINE
characters.

SELECT SEM_APIS.ESCAPE_RDF_TERM('"abc' || chr(9) || 'def' || chr(10) || 
'hij"^^<http://www.w3.org/2001/XMLSchema#string>')
  FROM DUAL;

10.47 SEM_APIS.ESCAPE_RDF_VALUE
Format

SEM_APIS.ESCAPE_RDF_VALUE(
     val         IN  VARCHAR2 CHARACTER SET ANY_CS, 
     utf_encode  IN NUMBER DEFAULT 1 
     ) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters
escaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

val
The text to escape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters
other than chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise,
such characters will not be escaped.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example escapes an input character string containing TAB and
NEWLINE characters.

SELECT SEM_APIS.ESCAPE_RDF_VALUE('abc' || chr(9) || 'def' || chr(10) || 'hij')
  FROM DUAL;

10.48 SEM_APIS.EXPORT_ENTAILMENT_STATS
Format

SEM_APIS.EXPORT_ENTAILMENT_STATS (
     entailment_name IN VARCHAR2, 
     stattab         IN VARCHAR2, 
     statid          IN VARCHAR2 DEFAULTNULL, 
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     cascade         IN BOOLEAN DEFAULT TRUE, 
     statown         IN VARCHAR2 DEFAULT NULL, 
     stat_category   IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Exports statistics for a specified entailment and stores them in the user statistics table.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to entailment statistics.
Specifying cascade also exports all index statistics associated with the entailment.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example exports statistics for an entailment named OWLTST_IDX and
stores them in a table named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_ENTAILMENT_STATS('owltst_idx', 'stat_table');

10.49 SEM_APIS.EXPORT_MODEL_STATS
Format

SEM_APIS.EXPORT_MODEL_STATS (
     model_name   IN VARCHAR2, 
     stattab      IN VARCHAR2, 
     statid       IN VARCHAR2 DEFAULT NULL, 
     cascade      IN BOOLEAN DEFAULT TRUE, 
     statown      IN VARCHAR2 DEFAULT NULL, 
     stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Exports statistics for a specified model and stores them in the user statistics table.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference.
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Specifying cascade also exports all index statistics associated with the model.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example exports statistics for a model named FAMILY and stores them in
a table named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_MODEL_STATS('family', 'stat_table');

10.50 SEM_APIS.EXPORT_RDFVIEW_MODEL
Format

SEM_APIS.EXPORT_RDFVIEW_MODEL(
     model_name       IN VARCHAR2, 
     rdf_table_owner  IN VARCHAR2 DEFAULT NULL, 
     rdf_table_name   IN VARCHAR2 DEFAULT NULL, 
     options          IN VARCHAR2 DEFAULT NULL);

Description

Exports (materializes) the virtual RDF triples of an RDF view to a staging table.

Parameters

model_name
Name of the RDF view to be exported.

rdf_table_owner
Name of the schema that owns the staging table where the RDF triples obtained from
the RDF view are to be stored.

rdf_table_name
Name of the staging table where the RDF triples obtained from the RDF view are to
be stored.

options
(Reserved for future use)

Usage Notes

You must have the SELECT privilege for the database view SEMM_<model_name>.

For more information about RDF views, see RDF Views: Relational Data as RDF . For
information about exporting RDF views, see Exporting Virtual Content of an RDF View
into a Staging Table.

Examples

The following example exports RDF triples from RDF view empdb_model to the staging
table SCOTT.RDFTAB.
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BEGIN
  sem_apis.export_rdfview_model(
    model_name => 'empdb_model',
    rdf_table_owner => 'SCOTT',
    rdf_table_name => 'RDFTAB'
  );
END;
/

10.51 SEM_APIS.GET_CHANGE_TRACKING_INFO
Format

SEM_APIS.GET_CHANGE_TRACKING_INFO(
     model_name           IN VARCHAR2, 
     enabled              OUT BOOLEAN, 
     tracking_start_time  OUT TIMESTAMP);

Description

Returns change tracking information for a model.

Parameters

model_name
Name of the semantic technology model.

enabled
Boolean value returned by the procedure: TRUE if change tracking is enabled for the
model, or FALSE if change tacking is not enabled for the model.

timestamp
Timestamp indicating when change tracking was enabled for the model (if it is
enabled).

Usage Notes

The model_name value must match a value in the MODEL_NAME column in the
MDSYS.SEM_MODEL$ view, which is described in Metadata for Models.

To enable change tracking for a set of models, use the 
SEM_APIS.ENABLE_CHANGE_TRACKING procedure.

For an explanation of incremental inference, including usage information, see 
Performing Incremental Inference.

Examples

The following example displays change tracking information for a model.

DECLARE 
  bEnabled  boolean;
  tsEnabled  timestamp;
  
BEGIN
  EXECUTE IMMEDIATE 'create table m1 (t SDO_RDF_TRIPLE_S)';
  sem_apis.create_sem_model('m1','m1','t');
 
  sem_apis.enable_change_tracking(sem_models('m1'));
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  sem_apis.get_change_tracking_info('m1', bEnabled,  tsEnabled);
  dbms_output.put_line('is enabled:' || case when bEnabled then 'true' else 'false' 
end);
  dbms_output.put_line('enabled at:' || tsEnabled);
END;
/

10.52 SEM_APIS.GET_INC_INF_INFO
Format

SEM_APIS.GET_INC_INF_INFO(
     entailment_name     IN VARCHAR2, 
     enabled             OUT BOOLEAN, 
     prev_inf_start_time OUT TIMESTAMP);

Description

Returns incremental inference information for an entailment.

Parameters

entailment_name
Name of the entailment.

enabled
Boolean value returned by the procedure: TRUE if incremental inference is enabled for
the entailment, or FALSE if incremental inference is not enabled for the entailment.

timestamp
Timestamp indicating when the entailment was most recently updated (if incremental
inference is enabled).

Usage Notes

To enable incremental inference for an entailment, use the 
SEM_APIS.ENABLE_INC_INFERENCE procedure.

For an explanation of incremental inference, including usage information, see 
Performing Incremental Inference.

Examples

The following example displays incremental inference information for an entailment.

DECLARE 
  bEnabled boolean;
  tsEnabled timestamp;
  
DECLARE 
  EXECUTE IMMEDIATE 'create table m1 (t SDO_RDF_TRIPLE_S)';
  sem_apis.create_sem_model('m1','m1','t');
 
  sem_apis.create_entailment('m1_inf',sem_models('m1'), 
sem_rulebases('owlprime'),null,null,'INC=T');
 
  sem_apis.get_inc_inf_info('m1_inf', bEnabled,  tsEnabled);
  dbms_output.put_line('is enabled:' || case when bEnabled then 'true' else 'false' 
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  end);
  dbms_output.put_line('enabled at:' || tsEnabled);
END
/

10.53 SEM_APIS.GET_MODEL_ID
Format

SEM_APIS.GET_MODEL_ID(
     model_name  IN VARCHAR2 
     ) RETURN NUMBER;

Description

Returns the model ID number of a semantic technology model.

Parameters

model_name
Name of the semantic technology model.

Usage Notes

The model_name value must match a value in the MODEL_NAME column in the
MDSYS.SEM_MODEL$ view, which is described in Metadata for Models.

Examples

The following example returns the model ID number for the model named articles.
(This example is an excerpt from Example 1-109 in Example: Family Information.)

SELECT SEM_APIS.GET_MODEL_ID('articles') AS model_id FROM DUAL;
 
  MODEL_ID
----------
         1

10.54 SEM_APIS.GET_MODEL_NAME
Format

SEM_APIS.GET_MODEL_NAME(
     model_id  IN NUMBER 
     ) RETURN VARCHAR2;

Description

Returns the model name of a semantic technology model.

Parameters

model_id
ID number of the semantic technology model.
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Usage Notes

The model_id value must match a value in the MODEL_ID column in the
MDSYS.SEM_MODEL$ view, which is described in Metadata for Models.

Examples

The following example returns the model ID number for the model with the ID value of
1. This example is an excerpt from Example 1-109 in Example: Family Information.)

SQL> SELECT SEM_APIS.GET_MODEL_NAME(1) AS model_name FROM DUAL;
 
MODEL_NAME                                                       
--------------------------------------------------------------------------------
ARTICLES                                                           

10.55 SEM_APIS.GET_TRIPLE_ID
Format

SEM_APIS.GET_TRIPLE_ID(
     model_id  IN NUMBER, 
     subject   IN VARCHAR2, 
     property  IN VARCHAR2, 
     object    IN VARCHAR2 
     ) RETURN VARCHAR2;

or

SEM_APIS.GET_TRIPLE_ID(
     model_name IN VARCHAR2, 
     subject    IN VARCHAR2, 
     property   IN VARCHAR2, 
     object     IN VARCHAR2 
     ) RETURN VARCHAR2;

Description

Returns the ID of a triple in the specified semantic technology model, or a null value if
the triple does not exist.

Parameters

model_id
ID number of the semantic technology model. Must match a value in the MODEL_ID
column of the MDSYS.SEM_MODEL$ view, which is described in Metadata for
Models.

model_name
Name of the semantic technology model. Must match a value in the MODEL_NAME
column of the MDSYS.SEM_MODEL$ view, which is described in Metadata for
Models.

subject
Subject. Must match a value in the VALUE_NAME column of the
MDSYS.RDF_VALUE$ table, which is described in Statements.
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property
Property. Must match a value in the VALUE_NAME column of the
MDSYS.RDF_VALUE$ table, which is described in Statements.

object
Object. Must match a value in the VALUE_NAME column of the
MDSYS.RDF_VALUE$ table, which is described in Statements.

Usage Notes

This function has two formats, enabling you to specify the semantic technology model
by its model number or its name.

Examples

The following example returns the ID number of a triple. (This example is an excerpt
from Example 1-109 in Example: Family Information.)

SELECT SEM_APIS.GET_TRIPLE_ID(
  'articles',
  'http://nature.example.com/Article2',
  'http://purl.org/dc/terms/references',
  'http://nature.example.com/Article3') AS RDF_triple_id FROM DUAL;
 
RDF_TRIPLE_ID
--------------------------------------------------------------------------------
2_9F2BFF05DA0672E_90D25A8B08C653A_46854582F25E8AC5

10.56 SEM_APIS.GETV$DATETIMETZVAL
Format

SEM_APIS.GETV$DATETIMETZVAL(
     value_type     IN VARCHAR2, 
     vname_prefix   IN VARCHAR2, 
     vname_suffix   IN VARCHAR2, 
     literal_type   IN VARCHAR2, 
     language_type  IN VARCHAR2, 
     ) RETURN NUMBER;

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:dateTime typed literals, and
returns a null value for all other RDF terms. Greenwich Mean Time is used as the
default time zone for xsd:dateTime values without time zones.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.
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literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For
more information, see Function-Based Indexes for FILTER Constructs Involving Typed
Literals.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values for all
xsd:dateTime literals in the MDSYS.RDF_VALUE$ table:

SELECT SEM_APIS.GETV$DATETIMETZVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;

10.57 SEM_APIS.GETV$DATETZVAL
Format

SEM_APIS.GETV$DATETZVAL(
     value_type     IN VARCHAR2, 
     vname_prefix   IN VARCHAR2, 
     vname_suffix   IN VARCHAR2, 
     literal_type   IN VARCHAR2, 
     language_type  IN VARCHAR2, 
     ) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:date typed literals, and
returns a null value for all other RDF terms. Greenwich Mean Time is used as the
default time zone for xsd:date values without time zones.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.
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Usage Notes

For better performance, consider creating a function-based index on this function. For
more information, see Function-Based Indexes for FILTER Constructs Involving Typed
Literals.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values for all xsd:date
literals in the MDSYS.RDF_VALUE$ table:

SELECT SEM_APIS.GETV$DATETZVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;

10.58 SEM_APIS.GETV$NUMERICVAL
Format

SEM_APIS.GETV$NUMERICVAL(
     value_type     IN VARCHAR2, 
     vname_prefix   IN VARCHAR2, 
     vname_suffix   IN VARCHAR2, 
     literal_type   IN VARCHAR2, 
     language_type  IN VARCHAR2, 
     ) RETURN NUMBER;

Description

Returns a numeric value for XML Schema numeric typed literals, and returns a null
value for all other RDF terms.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For
more information, see Function-Based Indexes for FILTER Constructs Involving Typed
Literals.
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Examples

The following example returns numeric values for all numeric literals in the
MDSYS.RDF_VALUE$ table:

SELECT SEM_APIS.GETV$NUMERICVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;

10.59 SEM_APIS.GETV$STRINGVAL
Format

SEM_APIS.GETV$STRINGVAL(
     value_type     IN VARCHAR2, 
     vname_prefix   IN VARCHAR2, 
     vname_suffix   IN VARCHAR2, 
     literal_type   IN VARCHAR2, 
     language_type  IN VARCHAR2, 
     ) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns a VARCHAR2 string of the lexical form of plain literals and xsd:string typed
literals, and returns a null value for all other RDF terms. CHR(0) is returned for empty
literals.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For
more information, see Function-Based Indexes for FILTER Constructs Involving Typed
Literals.

Examples

The following example returns lexical values for all plain literals and xsd:string literals
in the MDSYS.RDF_VALUE$ table:

SELECT SEM_APIS.GETV$STRINGVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;
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10.60 SEM_APIS.GETV$TIMETZVAL
Format

SEM_APIS.GETV$TIMETZVAL(
     value_type     IN VARCHAR2, 
     vname_prefix   IN VARCHAR2, 
     vname_suffix   IN VARCHAR2, 
     literal_type   IN VARCHAR2, 
     language_type  IN VARCHAR2, 
     ) RETURN TIMESTAMP WITH TIME ZONE;

Description

Returns a TIMESTAMP WITH TIME ZONE value for xsd:time typed literals, and
returns a null value for all other RDF terms. Greenwich Mean Time is used as the
default time zone for xsd:time values without time zones. 2009-06-26 is used as the
default date in all the generated TIMESTAMP WITH TIME ZONE values.

Parameters

value_type
Type of the RDF term.

vname_prefix
Prefix value of the RDF term.

vname_suffix
Suffix value of the RDF term.

literal_type
Literal type of the RDF term.

language_type
Language type of the RDF term.

Usage Notes

For better performance, consider creating a function-based index on this function. For
more information, see Function-Based Indexes for FILTER Constructs Involving Typed
Literals.

Because xsd:time values include only a time but not a date, the returned TIMESTAMP
WITH TIME ZONE values (which include a date component) have 2009-06-26 added
as the date. This is done so that the returned values can be indexed internally, and so
that the date is the same for all of them.

Examples

The following example returns TIMESTAMP WITH TIME ZONE values (using the
default 2009-06-26 for the date) for all xsd:time literals in the MDSYS.RDF_VALUE$
table. (

SELECT SEM_APIS.GETV$DATETIMETZVAL(value_type, vname_prefix, vname_suffix, 
  literal_type, language_type) 
  FROM MDSYS.RDF_VALUE$;
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10.61 SEM_APIS.IMPORT_ENTAILMENT_STATS
Format

SEM_APIS.IMPORT_ENTAILMENT_STATS (
     entailment_name  IN VARCHAR2, 
     stattab          IN VARCHAR2, 
     statid           IN VARCHAR2 DEFAULT NULL, 
     cascade          IN BOOLEAN DEFAULT TRUE, 
     statown          IN VARCHAR2 DEFAULT NULL, 
     no_invalidate    IN BOOLEAN DEFAULT FALSE, 
     force            IN BOOLEAN DEFAULT FALSE, 
     stat_category    IN VARCHAR2 DEFAULT 'OBJECT_STATS');

Description

Retrieves statistics for an entailment from a user statistics table and stores them in the
dictionary.

Parameters

entailment_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to entailment statistics.
Specifying cascade also exports all index statistics associated with the model.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example imports statistics for an entailment named OWLTST_IDX from a
table named STAT_TABLE.

EXECUTE SEM_APIS.IMPORT_ENTAILMENT_STATS('owltst_idx', 'stat_table');

10.62 SEM_APIS.IMPORT_MODEL_STATS
Format

SEM_APIS.IMPORT_MODEL_STATS (
     model_name    IN VARCHAR2, 
     stattab       IN VARCHAR2, 
     statid        IN VARCHAR2 DEFAULT NULL, 
     cascade       IN BOOLEAN DEFAULT TRUE, 
     statown       IN VARCHAR2 DEFAULT NULL, 
     no_invalidate IN BOOLEAN DEFAULT FALSE, 
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     force         IN BOOLEAN DEFAULT FALSE, 
     stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS);

Description

Retrieves statistics for a specified model from a user statistics table and stores them in
the dictionary.

Parameters

model_name
Name of the entailment.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference.
Specifying cascade also imports all index statistics associated with the model.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example imports statistics for a model named FAMILY from a table
named STAT_TABLE, and stores them in the dictionary.

EXECUTE SEM_APIS.IMOPRT_MODEL_STATS('family', 'stat_table');

10.63 SEM_APIS.IS_TRIPLE
Format

SEM_APIS.IS_TRIPLE(
     model_id  IN NUMBER, 
     subject   IN VARCHAR2, 
     property  IN VARCHAR2, 
     object    IN VARCHAR2) RETURN VARCHAR2;

or

SEM_APIS.IS_TRIPLE(
     model_name IN VARCHAR2, 
     subject    IN VARCHAR2, 
     property   IN VARCHAR2, 
     object     IN VARCHAR2) RETURN VARCHAR2;

Description

Checks if a statement is an existing triple in the specified model in the database.
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Parameters

model_id
ID number of the semantic technology model. Must match a value in the MODEL_ID
column of the MDSYS.SEM_MODEL$ view, which is described in Metadata for
Models.

model_name
Name of the semantic technology model. Must match a value in the MODEL_NAME
column of the MDSYS.SEM_MODEL$ view, which is described in Metadata for
Models.

subject
Subject. Must match a value in the VALUE_NAME column of the
MDSYS.RDF_VALUE$ table, which is described in Statements.

property
Property. Must match a value in the VALUE_NAME column of the
MDSYS.RDF_VALUE$ table, which is described in Statements.

object
Object. Must match a value in the VALUE_NAME column of the
MDSYS.RDF_VALUE$ table, which is described in Statements.

Usage Notes

This function returns the string value FALSE, TRUE, or TRUE (EXACT):

• FALSE means that the statement is not a triple in the specified model the database.

• TRUE means that the statement matches the value of a triple or is the canonical
representation of the value of a triple in the specified model the database.

• TRUE (EXACT) means that the specified subject, property, and object values
have exact matches in a triple in the specified model in the database.

Examples

The following example checks if a statement is a triple in the database. In this case,
there is an exact match. (This example is an excerpt from Example 1-109 in Example:
Family Information.)

SELECT SEM_APIS.IS_TRIPLE(
  'articles',
  'http://nature.example.com/Article2',
  'http://purl.org/dc/terms/references',
  'http://nature.example.com/Article3') AS is_triple FROM DUAL;
 
IS_TRIPLE                                                                       
--------------------------------------------------------------------------------
TRUE (EXACT)

10.64 SEM_APIS.LOAD_INTO_STAGING_TABLE
Format

SEM_APIS.LOAD_INTO_STAGING_TABLE(
     stagong_table    IN VARCHAR2, 
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     source_table     IN VARCHAR2, 
     input_format     IN VARCHAR2 DEFAULT NULL, 
     parallel         IN INTEGER DEFAULT NULL, 
     staging_table_owner IN VARCHAR2 DEFAULT NULL, 
     source_table_owner  IN VARCHAR DEFAULT NULL, 
     flags            IN VARCHAR DEFAULT NULL);

Description

Loads data into a staging table from an external table mapped to an N-Triple or N-
Quad format input file.

Parameters

staging_table
Name of the staging table.

source_table
Name of the source external table.

input_format
Format of the input file mapped by the source external table: N-TRIPLE or N-QUAD

parallel
Degree of parallelism to use during the load.

staging_table_owner
Owner for the staging table being created. If not specified, the invoker is assumed to
be the owner.

source_table_owner
Owner for the source table. If not specified, the invoker is assumed to be the owner.

flags
(Reserved for future use)

Usage Notes

For more information and an example, see Loading N-Quad Format Data into a
Staging Table Using an External Table.

Examples

The following example loads the staging table. (This example is an excerpt from 
Example 1-91 in Loading N-Quad Format Data into a Staging Table Using an External
Table.)

BEGIN
  sem_apis.load_into_staging_table(
    staging_table => 'STAGE_TABLE'
   ,source_table  => 'stage_table_source'
   ,input_format  => 'N-QUAD');
END;
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10.65 SEM_APIS.LOOKUP_ENTAILMENT
Format

SEM_APIS.LOOKUP_ENTAILMENT (
     models     IN SEM_MODELS, 
     rulebases  IN SEM_RULEBASES 
     ) RETURN VARCHAR2;

Description

Returns the name of the entailment (rules index) based on the specified models and
rulebases.

Parameters

models
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25)Rules and rulebases are explained in 
Inferencing: Rules and Rulebases.

Usage Notes

For a rulebase index to be returned, it must be based on all specified models and
rulebases.

Examples

The following example finds the entailment that is based on the family model and the
RDFS and family_rb rulebases. (It is an excerpt from Example 1-110 in Example:
Family Information.)

SELECT SEM_APIS.LOOKUP_ENTAILMENT(SEM_MODELS('family'),
  SEM_RULEBASES('RDFS','family_rb')) AS lookup_entailment FROM DUAL;

LOOKUP_ENTAILMENT
--------------------------------------------------------------------------------
RDFS_RIX_FAMILY

10.66 SEM_APIS.MERGE_MODELS
Format

SEM_APIS.MERGE_MODELS(
     source_model         IN VARCHAR2, 
     destination_model    IN VARCHAR2, 
     rebuild_apptab_index IN BOOLEAN DEFAULT TRUE, 
     drop_source_model    IN BOOLEAN DEFAULT FALSE, 
     options              IN VARCHAR2 DEFAULT NULL);
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Description

Inserts the content from a source model into a destination model, and updates the
destination application table.

Parameters

source_model
Name of the source model.

destination_model
Name of the destination model.

rebuild_apptab_index
TRUE causes indexes on the destination application table to be rebuilt after the models
are merged; FALSE does not rebuild any indexes.

drop_source_model
TRUE causes the source model (source_model) to be deleted after the models are
merged; FALSE (the default) does not delete the source model.

options
A comma-delimited string of options that overrides the default behavior of the
procedure. Currently, only the DOP (degree of parallelism) option is supported, to
enable parallel execution of this procedure and to specify the degree of parallelism to
be associated with the operation.

Usage Notes

Before you merge any models, if you are using positional parameters, check to be
sure that you are specifying the correct models for the first and second parameters
(source model for the first, destination model for the second). This is especially
important if you plan to specify drop_source_model=TRUE.

If appropriate, make copies of the destination model or both models before performing
the merge. To make a copy of a model, use SEM_APIS.CREATE_SEM_MODEL to
create an empty model with the desired name for the copy, and use
SEM_APIS.MERGE_MODELS to populate the newly created copy as the destination
model.

Some common uses for this procedure include the following:

• If you have read-only access to a model that you want to modify, you can clone
that model into an empty model on which you have full access, and then modify
this latter model.

• If you want to consolidate multiple models, you can use this procedure as often as
necessary to merge the necessary models. Merging all models beforehand and
using only the merged model simplifies entailment and can improve entailment
performance.

On a multi-core or multi-cpu machine, the DOP (degree of parallelism) option can be
beneficial. See Examples for an example that uses the DOP option.

If the source model is large, you may want to update the optimizer statistics on the
destination after the merge operation by calling the SEM_APIS.ANALYZE_MODEL
procedure.
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The following considerations apply to the use of this procedure:

• You must be the owner of the destination model and have SELECT privilege on
the source model. If drop_second_model=TRUE, you must also be owner of the
source model.

• This procedure is not supported on virtual models (explained in Virtual Models).

• No table constraints are allowed on the destination application table.

Examples

The following example inserts the contents of model M1 into M2.

EXECUTE SEM_APIS.MERGE_MODELS('M1', 'M2');

The following example inserts the contents of model M1 into M2, and it specifies a
degree of parallelism of 4 (up to four parallel threads for execution of the merge
operation).

EXECUTE SEM_APIS.MERGE_MODELS('M1', 'M2', null, null, 'DOP=4');

10.67 SEM_APIS.MIGRATE_DATA_TO_CURRENT
Format

SEM_APIS.MIGRATE_DATA_TO_CURRENT(
     options  IN VARCHAR2 DEFAULT NULL); 

Description

Migrates semantic data from before Oracle Database Release 12.2 data to the format
needed for use with RDF in the current Oracle Database release.

Parameters

options
If you specify INS_AS_SEL=T, the migration is performed using a bulk load operation. If
you do not specify that value, then by default update operations are performed. See
the Usage Notes for more information.

Usage Notes

It is strongly recommended that you use this procedure to migrate semantic data
created using Oracle Database 11.1. 11.2, and 12.1, as explained in Required
Migration of Pre-12.2 Semantic Data.

This procedure does not perform any operation on semantic data that is already in the
current format.

For the options parameter, if the amount of data to be migrated is small, the default
(not specifying the parameter) probably provides adequate performance. However, for
large amounts of data, specifying INS_AS_SEL=T can improve performance
significantly.
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Examples

The following example migrates Release 11.2 semantic data in the network to the
format for the current Oracle Database version. It performs the migration using a bulk
load operation.

EXECUTE sem_apis.migrate_data_to_current('INS_AS_SEL=T');

The following example migrates Release 11.2 semantic data in the network to the
format for the current Oracle Database version. It performs the migration using update
operations (the default).

EXECUTE sem_apis.migrate_data_to_current;

10.68 SEM_APIS.PRIVILEGE_ON_APP_TABLES
Format

SEM_APIS.PRIVILEGE_ON_APP_TABLES(

     command IN VARCHAR2 DEFAULT 'GRANT',
     privilege IN VARCHAR2 DEFAULT 'SELECT');

Description

Grants (or revokes) SELECT or INSERT privilege to (or from) MDSYS on application
tables corresponding to all the RDF models owned by the invoker.

Parameters

command
SQL statement, with possible values GRANT (the default) or REVOKE (case insensitive).

privilege
Privilege name, with possible values SELECT (the default) or INSERT (case insensitive).

Usage Notes

(None)

Examples

The following example grants SELECT privilege to MDSYS on application tables
corresponding to all the RDF models owned by the invoker.

EXECUTE SEM_APIS.PRIVILEGE_ON_APP_TABLES('grant', 'select');

10.69 SEM_APIS.PURGE_UNUSED_VALUES
Format

SEM_APIS.PURGE_UNUSED_VALUES(
     flags  IN VARCHAR2 DEFAULT NULL); 

Description

Purges purges invalid geometry literal values from the semantic network.
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Parameters

flags
An optional quoted string with one or more of the following keyword specifications:

• MBV_METHOD=SHADOW allows the use of a different value loading strategy that may
lead to faster processing when a large number of values need to be purged.

• PARALLEL=<integer> allows much of the processing to be done in parallel using
the specified integer degree of parallelism to be associated with the operation. If
only PARALLEL is specified without a degree, a default degree will be used.

• PUV_COMPUTE_VIDS_USED allows use of a different strategy that may lead to faster
processing when most of the values are expected to be purged.

Usage Notes

Before calling this procedure, you must grant to MDSYS the SELECT privilege on
application tables for all the currently existing RDF models.

For more usage information and an extended example, see Purging Unused Values.

It is recommended that you execute this procedure after using 
SEM_APIS.VALIDATE_GEOMETRIES to check that all geometry literals in the
specified model are valid for the provided SRID and tolerance values.

Examples

The following example purges unused values using a degree of parallelism of 4.

EXECUTE SEM_APIS.PURGE_UNUSED_VALUES(flags => 'PARALLEL=4');

10.70
SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO

Format

SEM_APIS.REFRESH_SEM_NETWORK_INDEX_INFO(
     options  IN VARCHAR2 DEFAULT NULL);

Description

Refreshes the information about semantic network indexes.

Parameters

options
(Reserved for future use)

Usage Notes

This procedure updates the information in the
MDSYS.SEM_NETWORK_INDEX_INFO view, which is described in 
MDSYS.SEM_NETWORK_INDEX_INFO View.
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Examples

The following example refreshes the information about semantic network indexes.

EXECUTE sem_apis.refresh_sem_network_index_info;

10.71 SEM_APIS.REMOVE_DUPLICATES
Format

SEM_APIS.REMOVE_DUPLICATES(
     model_name           IN VARCHAR2, 
     threshold            IN FLOAT DEFAULT 0.3, 
     rebuild_apptab_index IN BOOLEAN DEFAULT TRUE);

Description

Removes duplicate triples from a model.

Parameters

model_name
Name of the model.

threshold
A value to determine how numerous triples must be in order for the removal operation
to be performed. This procedure removes triples only if the number of triples in the
model exceeds the following formula: (total-triples - total-unique-triples + 0.01) / (total-
unique-triples + 0.01). For the default value of 0.3 and a model containing 1000 total
triples (including duplicates), duplicate triples would be removed only if the number of
duplicates exceeds approximately 230.
The lower the threshold value, the fewer duplicates are needed for the procedure to
remove duplicates; the higher the threshold value, the more duplicates are needed for
the procedure to remove duplicates.

rebuild_apptab_index
TRUE (the default) causes all usable indexes on tables that were affected by this
operation to be rebuilt after the duplicate triples are removed; FALSE does not rebuild
any indexes.

Usage Notes

When duplicate triples are removed, all information in the removed rows is lost,
including information in columns other than the triple column.

This procedure is not supported on virtual models (explained in Virtual Models).

If the model is empty, or if it contains no duplicate triples or not enough duplicate
triples (as computed using the threshold value), this procedure does not perform any
removal operations.

If there are not enough duplicates (as computed using the threshold value) to perform
the operation, an informational message is displayed.

If unusable indexes are involved, be sure that the SKIP_UNUSABLE_INDEXES
system parameter is set to TRUE. Although TRUE is the default value for this parameter,
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some production databases may use the value FALSE; therefore, if you need to change
it, enter the following:

SQL> alter session set skip_unusable_indexes=true;

To use this procedure on an application table with one or more user-defined triggers,
you must connect as a DBA user and grant the ALTER ANY TRIGGER privilege to the
MDSYS user, as follows:

SQL> grant alter any trigger to MDSYS;

Examples

The following example removes duplicate triples in the model named family. It
accepts the default threshold value of 0.3 and (by default) rebuilds indexes after the
duplicates are removed.

EXECUTE SEM_APIS.REMOVE_DUPLICATES('family');

10.72 SEM_APIS.RENAME_ENTAILMENT
Format

SEM_APIS.RENAME_ENTAILMENT(
     old_name  IN VARCHAR2, 
     new_name  IN VARCHAR2);

Description

Renames an entailment (rules index).

Parameters

old_name
Name of the existing entailment to be renamed.

new_name
New name for the entailment.

Usage Notes

None.

Examples

The following example renames a entailment named OWLTST_IDX to MY_OWLTST_IDX.

EXECUTE sem_apis.rename_entailment('owltst_idx', 'my_owltst_idx');

10.73 SEM_APIS.RENAME_MODEL
Format

SEM_APIS.RENAME_MODEL(
     old_name  IN VARCHAR2, 
     new_name  IN VARCHAR2);
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Description

Renames a model.

Parameters

old_name
Name of the existing model to be renamed.

new_name
New name for the model.

Usage Notes

The following considerations apply to the use of this procedure:

• You must be the owner of the existing model.

• This procedure is not supported on virtual models (explained in Virtual Models).

Contrast this procedure with SEM_APIS.SWAP_NAMES, which swaps (exchanges)
the names of two existing models.

Examples

The following example renames a model named MODEL1 to MODEL2.

EXECUTE sem_apis.rename_model('model1', 'model2');

10.74 SEM_APIS.RES2VID
Format

SEM_APIS.RES2VID(
     vTab     IN VARCHAR2, 
     uri   IN VARCHAR2, 
    lt   IN VARCHAR2 DEFAULT NULL, 
     lang   IN VARCHAR2 DEFAULT NULL, 
     lval  IN CLOB DEFAULT NULL, 
     ) RETURN NUMBER;

Description

Returns the VALUE_ID for the canonical version of an RDF term, or NULL if the term
does not exist in the values table.

Parameters

vTab
Values table to query for the VALUE_ID value. (Usually MDSYS.RDF_VALUE$)

uri
Prefix value of the RDF term.

lt
Data type URI of a types literal to look up. Do not include the enclosing angle brackets
(‘<’ and ‘>’).
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lang
Language tag of a language tagged literal to look up.

lval
The plain literal portion of a long literal to look up.

Usage Notes

For information about the components of an RDF term stored in the
MDSYS.RDF_VALUE$ table, see Semantic Metadata Tables and Views..

See also RDF Integration with Property Graph Data Stored in Oracle Database.

Examples

The following example returns VALUE_ID values for the canonical versions of RDF
terms. Comments before each SQL statement describe the purpose of the statement.

-- Look up the VALUE_ID for the RDF term <http://www.example.com/a>.
SELECT  sem_apis.res2vid('MDSYS.RDF_VALUE$','<http://www.example.com/a>') FROM DUAL;

-- Look up the VALUE_ID for the RDF term "abc".
SELECT sem_apis.res2vid('MDSYS.RDF_VALUE$','"abc"') FROM DUAL;

-- Look up the VALUE_ID for the RDF term "10"^^<http://www.w3.org/2001/
XMLSchema#decimal>.
SELECT sem_apis.res2vid('MDSYS.RDF_VALUE$','"10"','http://www.w3.org/2001/
XMLSchema#decimal') FROM DUAL;

-- Look up the VALUE_ID for the RDF term "abc"@en.
SELECT sem_apis.res2vid('MDSYS.RDF_VALUE$','"abc"',lang=>'en') FROM DUAL;

-- Look up the VALUE_ID for the long literal RDF term '"a CLOB literal"'.
SELECT sem_apis.res2vid('MDSYS.RDF_VALUE$',null,lval=>'"a CLOB literal"') FROM DUAL; 

10.75 SEM_APIS.SET_ENTAILMENT_STATS
Format

SEM_APIS.SET_ENTAILMENT_STATS (
     entailment_name IN VARCHAR2, 
     numrows         IN NUMBER DEFAULT NULL, 
     numblks         IN NUMBER DEFAULT NULL, 
     avgrlen         IN NUMBER DEFAULT NULL, 
     flags           IN NUMBER DEFAULT NULL, 
     no_invalidate   IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE, 
     cachedblk       IN NUMBER DEFAULT NULL, 
     cachehit        IN NUMBER DEFAULT NULL, 
     force           IN BOOLEAN DEFAULT FALSE);

Description

Sets statistics for a specified entailment.

Parameters

entailment_name
Name of the entailment.
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(other parameters)
See the parameter explanations for the DBMS_STATS.SET_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to entailment statistics.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example sets statistics for an entailment named OWLTST_IDX.

EXECUTE SEM_APIS.SET_ENTAILMENT_STATS('owltst_idx', numrows => 100);

10.76 SEM_APIS.SET_MODEL_STATS
Format

SEM_APIS.SET_MODEL_STATS (
     model_name  IN VARCHAR2, 
     numrows       IN NUMBER DEFAULT NULL, 
     numblks       IN NUMBER DEFAULT NULL, 
     avgrlen       IN NUMBER DEFAULT NULL, 
     flags         IN NUMBER DEFAULT NULL, 
     no_invalidate IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE, 
     cachedblk     IN NUMBER DEFAULT NULL, 
     cachehit      IN NUMBER DEFAULT NULL, 
     force         IN BOOLEAN DEFAULT FALSE);

Description

Sets statistics for a specified model.

Parameters

model_name
Name of the model.

(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to model statistics.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example sets statistics for a model named FAMILY.

EXECUTE SEM_APIS.SET_MODEL_STATS('family', numrows => 100);
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10.77 SEM_APIS.SPARQL_TO_SQL
Format

SEM_APIS.SPARQL_TO_SQL(
    sparql_query  IN CLOB,
    models        IN RDF_MODELS DEFAULT NULL, 
    rulebases     IN RDF_RULEBASES DEFAULT NULL,
    aliases       IN RDF_ALIASES DEFAULT NULL, 
    index_status  IN VARCHAR2 DEFAULT NULL, 
    options       IN VARCHAR2 DEFAULT NULL
    graphs        IN RDF_GRAPHS DEFAULT NULL,
    named_graphs  IN RDF_GRAPHS DEFAULT NULL) RETURN CLOB;

Description

Translates a SPARQL query into a SQL query string that can be executed by an
application programl.

Parameters

sparql_qurry
A string literal with one or more triple patterns, usually containing variables.

models
The model or models to use.

rulebases
One or more rulebases whose rules are to be applied to the query

aliases
One or more namespaces to be used for expansion of qualified names in the query
pattern.

index_status
The status of the relevant entailment for this query.

options
Options that can affect the results of queries.

graphs
The set of named graphs from which to construct the default graph for the query.

named_graphs
The set of named graphs that can be matched by a GRAPH clause.

Usage Notes

Before using this procedure, be sure you understand the material in Using the
SEM_APIS.SPARQL_TO_SQL Function to Query Semantic Data.

Examples

The following example translates a SPARQL query into a SQL query string.

DECLARE
  sparql_stmt clob;
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  sql_stmt    clob;
BEGIN
  sparql_stmt := '{?x :grandParentOf ?y . ?x rdf:type :Male}';
  sql_stmt := sem_apis.sparql_to_sql(
                sparql_stmt,
                sem_models('family'),
                SEM_Rulebases('RDFS','family_rb'),
                SEM_ALIASES(SEM_ALIAS('','http://www.example.org/family/')),
                null);
  execute immediate
    'create table gf_table as 
     select x grandfather, y grandchild from('|| sql_stmt || ')';
END;
/

10.78 SEM_APIS.SWAP_NAMES
Format

SEM_APIS.SWAP_NAMES(
     model1  IN VARCHAR2, 
     model2  IN VARCHAR2);

Description

Swaps (exchanges) the names of two existing models.

Parameters

model1
Name of a model.

model2
Name of another model.

Usage Notes

As a result of this procedure, the name of model model1 is changed to the (old) name
of model2, and the name of model model2 is changed to the (old) name of model1.

The order of the names does not affect the result. For example, you could specify TEST
for model1 and PRODUCTION for model2, or PRODUCTION for model1 and TEST for model2,
and the result will be the same.

Contrast this procedure with SEM_APIS.RENAME_MODEL, which renames an
existing model.

Examples

The following example changes the name of the (old) TEST model to PRODUCTION,
and the name of the (old) PRODUCTION model to TEST.

EXECUTE sem_apis.swap_names('test', 'production');
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10.79 SEM_APIS.UNESCAPE_CLOB_TERM
Format

SEM_APIS.UNESCAPE_CLOB_TERM(
     term  IN CLOB CHARACTER SET ANY_CS 
     ) RETURN CLOB CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters
unescaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

term
The RDF term to unescape.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example unescapes an input RDF term containing TAB and NEWLINE
characters.

SEM_APIS.UNESCAPE_CLOB_TERM('"abc\tdef\nhij"^^<http://www.w3.org/2001/
XMLSchema#string>')
  FROM DUAL;

10.80 SEM_APIS.UNESCAPE_CLOB_VALUE
Format

SEM_APIS.UNESCAPE_CLOB_VALUE(
     val           IN  CLOB CHARACTER SET ANY_CS, 
     start_offset  IN NUMBER DEFAULT 1, 
     end_offset    IN NUMBER DEFAULT 0, 
     include_start IN NUMBER DEFAULT 0 
     ) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters
unescaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

val
The CLOB text to unescape.
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start_offset
The offset in val from which to start character unescaping. The default (1) causes
escaping to start at the first character of val.

end_offset
The offset in val from which to end character unescaping. The default (0) causes
escaping to continue through the end of val.

include_start
Set to 1 if the characters in val from 1 to start_offset should be prefixed
(prepended) to the return value. Otherwise, no such characters will be prefixed to the
return value.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example unescapes an input character string containing TAB and
NEWLINE characters.

SELECT SEM_APIS.UNESCAPE_CLOB_VALUE('abc\tdef\nhij')
  FROM DUAL;

10.81 SEM_APIS.UNESCAPE_RDF_TERM
Format

SEM_APIS.UNESCAPE_RDF_TERM(
     term  IN VARCHAR2 CHARACTER SET ANY_CS 
     ) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input RDF term with special characters and non-ASCII characters
unescaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

term
The RDF term to unescape.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example unescapes an input RDF term containing TAB and NEWLINE
characters.
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SELECT SEM_APIS.UNESCAPE_RDF_TERM('"abc\tdef\nhij"^^<http://www.w3.org/2001/
XMLSchema#string>')
  FROM DUAL;

10.82 SEM_APIS.UNESCAPE_RDF_VALUE
Format

SEM_APIS.UNESCAPE_RDF_VALUE(
     val  IN VARCHAR2 CHARACTER SET ANY_CS 
     ) RETURN VARCHAR2 CHARACTER SET val%CHARSET;

Description

Returns the input CLOB value with special characters and non-ASCII characters
unescaped as specified by the W3C N-Triples format (http://www.w3.org/TR/rdf-
testcases/#ntriples).

Parameters

val
The text to unescape.

utf_encode
Set to 1 (the default) if non-ASCII characters and non-printable ASCII characters
other than chr(8), chr(9), chr(10), chr(12), and chr(13) should be escaped. Otherwise,
such characters will not be escaped.

Usage Notes

For information about using the DO_UNESCAPE keyword in the options parameter of the
SEM_MATCH table function, see Using the SEM_MATCH Table Function to Query
Semantic Data.

Examples

The following example unescapes an input character string containing TAB and
NEWLINE characters.

SELECT SEM_APIS.UNESCAPE_RDF_VALUE('abc\tdef\nhij')
  FROM DUAL;

10.83 SEM_APIS.UPDATE_MODEL
Format

SEM_APIS.UPDATE_MODEL(
     apply_model         IN VARCHAR2, 
     update_stmt         IN CLOB, 
     match_models        IN RDF_MODELS DEFAULT NULL, 
     match_rulebases     IN RDF_RULEBASES DEFAULT NULL, 
     match_index_status  IN VARCHAR2 DEFAULT NULL, 
     match_options       IN VARCHAR2 DEFAULT NULL, 
     options             IN VARCHAR2 DEFAULT NULL);
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Description

Executes a SPARQL Update statement on a semantic model.

Parameters

apply_model
Name of the RDF model to be updated. This is the name specified when the model
was created using the SEM_APIS.CREATE_SEM_MODEL procedure.
It cannot be a virtual model (see Virtual Models) or an RDF view (see RDF Views).

update_stmt
One or more SPARQL Update commands to be executed on the apply_model model.
Use the semicolon (;) to separate commands.

match_models
A list of models that forms the SPARQL data set to query for graph pattern matching
during a SPARQL Update operation (INSERT WHERE, DELETE WHERE, COPY,
MOVE, ADD). Can include virtual models and/or RDF views If this parameter is not
specified, the apply_model model is used.

match_rulebases
A list of rulebases to use with match_models to provide an entailment that generates
additional triples or quads to use for graph pattern matching during a SPARQL
Update operation.

match_index_status
The desired status for any entailments used for graph pattern matching during a
SPARQL Update operation.

match_options
String specifying hints to influence graph pattern matching during a SPARQL Update
operation. The set of hints that can be used here is identical to those that can be used
in the options parameter of SEM_MATCH.

options
String specifying hints that affect SPARQL operations. See the Usage Notes for a list
of available options.

Usage Notes

Before using this procedure, be sure you understand the material in Support for
SPARQL Update Operations on a Semantic Model.

The options parameter can specify one or more of the following options:

• APP_TAB_IDX={INDEX_NAME} uses an INDEX optimizer hint for INDEX_NAME
when doing DML operations on the application table.

• APPEND uses the SQL APPEND hint with DML operations.

• AUTOCOMMIT=F avoids starting and committing a transaction for each
SEM_APIS.UPDATE_MODEL call. Instead, this option gives transaction control to
the caller. Each SEM_APIS.UPDATE_MODEL call will execute as part of a main
transaction that is started, committed, or rolled back by the caller.

• BULK_OPTIONS={OPTIONS_STRING} uses OPTIONS_STRING as the flags
parameter when calling SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE.
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• CLOB_UPDATE_SUPPORT=T turns on CLOB functionality.

• DEL_AS_INS=T performs a large delete operation by inserting all data that should
remain after the delete operation instead of doing deletions. This option may
significantly improve the performance of large delete operations.

• DYNAMIC_SAMPLING(n) uses DYNAMIC_SAMPLING(n) SQL optimizer hint with
query operations.

• FORCE_BULK=T uses the SEM_APIS.BULK_LOAD_FROM_STAGING_TABLE
procedure for bulk insertion of triples. This option may provide better performance
on large updates.

• LOAD_OPTIONS={ OPTIONS_STRING } uses OPTIONS_STRING as the extra file
names when performing a LOAD operation.

• MM_OPTIONS={ OPTIONS_STRING } uses OPTIONS_STRING as the options
parameter for operations calling SEM_APIS.MERGE_MODELS.

• PARALLEL(n) uses the SQL PARALLEL(n) hint for query and DML operations.

• RESUME_LOAD=T allows resuming an interrupted LOAD operation.

• SERIALIZABLE=T uses the SERIALIZABLE transaction isolation level for
SEM_APIS.UPDATE_MODEL operations. READ COMMITTED is the default
transaction isolation level.

• STREAMING=F materializes intermediate data and uses INSERT AS SELECT
operations instead of streaming through JDBC Result Sets. This mode may
provide better performance on large updates or updates with complex patterns in
the WHERE clause.

• STRICT_BNODE=F enables ID-only operations for ADD, COPY, and MOVE. (ID-
only operations are explained in Blank Nodes: Special Considerations for
SPARQL Update.)

You can override some options settings at the session level by using the
MDSYS.SDO_SEM_UPDATE_CTX.SET_PARAM procedure, as explained in Setting
UPDATE_MODEL Options at the Session Level.

Examples

The following example inserts six triples into a semantic model.

BEGIN
  sem_apis.update_model('electronics',
   'PREFIX : <http://www.example.org/electronics/> 
    INSERT DATA {
       :camera1 :name "Camera 1" .
       :camera1 :price 120 .
       :camera1 :cameraType :Camera .
       :camera2 :name "Camera 2" .
       :camera2 :price 150 .
       :camera2 :cameraType :Camera .
      } ');
END;
/
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10.84 SEM_APIS.VALIDATE_ENTAILMENT
Format

SEM_APIS.VALIDATE_ENTAILMENT(
     models_in    IN SEM_MODELS, 
     rulebases_in IN SEM_RULEBASES, 
     criteria_in  IN VARCHAR2 DEFAULT NULL, 
     max_conflict IN NUMBER DEFAULT 100, 
     options      IN VARCHAR2 DEFAULT NULL 
     ) RETURN RDF_LONGVARCHARARRAY;

Description

Validates entailments (rules indexes) that can be used to perform OWL or RDFS
inferencing for one or more models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

rulebases_in
One or more rulebase names. Its data type is SEM_RULEBASES, which has the
following definition: TABLE OF VARCHAR2(25). Rules and rulebases are explained in 
Inferencing: Rules and Rulebases.

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this
parameter, by default all of the following checks are run:

• UNSAT: Find unsatisfiable classes.

• EMPTY: Find instances that belong to unsatisfiable classes.

• SYNTAX_S: Find triples whose subject is neither URI nor blank node.

• SYNTAX_P: Find triples whose predicate is not URI.

• SELF_DIF: Find individuals that are different from themselves.

• INST: Find individuals that simultaneously belong to two disjoint classes.

• SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For
example, criteria_in => 'UNSAT' causes the validation process to search only for
unsatisfiable classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The
default value is 100.

options
(Not currently used. Reserved for Oracle use.).
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Usage Notes

This procedure can be used to detect inconsistencies in the original entailment. For
more information, see Validating OWL Models and Entailments.

This procedure returns a null value if no errors are detected or (if errors are detected)
an object of type RDF_LONGVARCHARARRAY, which has the following definition:
VARRAY(32767) OF VARCHAR2(4000)

To create an entailment, use the SEM_APIS.CREATE_ENTAILMENT procedure.

Examples

For an example of this procedure, see Example 2-5 in Validating OWL Models and
Entailments.

10.85 SEM_APIS.VALIDATE_GEOMETRIES
Format

SEM_APIS.VALIDATE_GEOMETRIES(
     model_name      IN VARCHAR2, 
     SRID            IN NUMBER, 
     tolerance       IN NUMBER,
     parallel        IN PLS_INTEGER default NULL, 
     tablespace_name IN VARCHAR2    default NULL,
     options         IN VARCHAR2    default NULL);

Description

Determines if all geometry literals in the specified model are valid for the provided
SRID and tolerance values.

Parameters

model_name
Name of the model containing geometry literals to validate. Only native models can be
specified.

SRID
SRID for the spatial reference system.

tolerance
Tolerance value that should be used for validation.

parallel
Degree of parallelism to be associated with the operation. For more information about
parallel execution, see Oracle Database VLDB and Partitioning Guide.

tablespace_name
Destination tablespace for the tables {model_name}_IVG$, {model_name}_FXT$, and
{model_name}_NFT$.

options
String specifying options for validation. Supported options are:
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• RECTIFY=T. Staging tables {model_name}_FXT$ and {model_name}_NFT$ are
created, containing rectifiable and non-rectifiable triples, respectively. You can
use these tables to correct the model.

• AUTOCORRECT=T. Triples containing invalid but rectifiable geometries are
corrected. Also, table {model_name}_NFT$ containing triples with non-rectifiable
geometries is created so that you can correct such triples manually.

• STANDARD_CRS_URI=T. Use standard CRS (coordinate reference systems)
URIs.

• GML_LIT_SRL=T. Use ogc:gmlLiteral serialization for corrected geometry literals.
ogc:wktLiteral serialization is the default.

Usage Notes

This procedure is a wrapper for 
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT function.

A table {model_name}_IVG$ containing invalid WKT literals is created. Optionally,
staging tables {model_name}_FXT$ and {model_name}_NFT$ can be created,
containing rectifiable and non-rectifiable triples, respectively. Staging tables allow the
user to correct invalid geometries. Invalid but rectifiable geometry literals in a model
can also be rectified automatically if specified.

After correction of invalid geometries in a model, it is recommended that you execute 
SEM_APIS.PURGE_UNUSED_VALUES to purge invalid geometry literal values from
the semantic network.

For an explanation of models, see Semantic Data Modeling and Semantic Data in the
Database.

Examples

The following example creates a model with some invalid geometry literals and then
validates the model using the RECTIFY=T and STANDARD_CRS_URI=T options.

-- Create model
CREATE TABLE atab (id int, tri sdo_rdf_triple_s);
GRANT INSERT ON atab TO mdsys;
EXEC sem_apis.create_sem_model('m','atab','tri');

-- Insert invalid geometries
-- Duplicated coordinates - rectifiable
insert into atab(tri) values (sdo_rdf_triple_s('m','<http://my.org/geom1>', '<http://
www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0, 3.0 2.0, 1.0 4.0, 1.0 2.0, 1.0 
2.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'));
-- Boundary is not closed – rectifiable
insert into atab(tri) values (sdo_rdf_triple_s('m','<http://my.org/geom2>', '<http://
www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0, 3.0 2.0, 3.0 4.0, 1.0 
4.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'));
-- Less than 4 points – non rectifiable
insert into atab(tri) values (sdo_rdf_triple_s('m:<http://my.org/g2>','<http://
my.org/geom3>', '<http://www.opengis.net/rdf#asWKT>', '"POLYGON((1.0 2.0, 3.0 2.0, 
1.0 4.0))"^^<http://xmlns.oracle.com/rdf/geo/WKTLiteral>'));
commit;

-- Validate
EXEC sem_apis.validate_geometries(model_name=>'m',SRID=>8307,tolerance=>1.0, 
options=>'STANDARD_CRS_URI=T RECTIFY=T');
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-- Check invalid geometries
SELECT original_vid, error_msg, corrected_geom_literal FROM M_IVG$;

-- Check rectified triples
select RDF$STC_GRAPH, RDF$STC_SUB, RDF$STC_PRED, RDF$STC_OBJ from M_FXT$;

-- Check non-rectified triples
select RDF$STC_GRAPH, RDF$STC_SUB, RDF$STC_PRED, RDF$STC_OBJ, ERROR_MSG from M_NFT$;

10.86 SEM_APIS.VALIDATE_MODEL
Format

SEM_APIS.VALIDATE_MODEL(
     models_in    IN SEM_MODELS, 
     criteria_in  IN VARCHAR2 DEFAULT NULL, 
     max_conflict IN NUMBER DEFAULT 100, 
     options      IN VARCHAR2 DEFAULT NULL 
     ) RETURN RDF_LONGVARCHARARRAY;

Description

Validates one or more models.

Parameters

models_in
One or more model names. Its data type is SEM_MODELS, which has the following
definition: TABLE OF VARCHAR2(25)

criteria_in
A comma-delimited string of validation checks to run. If you do not specify this
parameter, by default all of the following checks are run:

• UNSAT: Find unsatisfiable classes.

• EMPTY: Find instances that belong to unsatisfiable classes.

• SYNTAX_S: Find triples whose subject is neither URI nor blank node.

• SYNTAX_P: Find triples whose predicate is not URI.

• SELF_DIF: Find individuals that are different from themselves.

• INST: Find individuals that simultaneously belong to two disjoint classes.

• SAM_DIF: Find pairs of individuals that are same (owl:sameAs) and different
(owl:differentFrom) at the same time.

To specify fewer checks, specify a string with only the checks to be performed. For
example, criteria_in => 'UNSAT' causes the validation process to search only for
unsatisfiable classes.

max_conflict
The maximum number of conflicts to find before the validation process stops. The
default value is 100.

options
(Not currently used. Reserved for Oracle use.).
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Usage Notes

This procedure can be used to detect inconsistencies in the original data model. For
more information, see Validating OWL Models and Entailments.

This procedure returns a null value if no errors are detected or (if errors are detected)
an object of type RDF_LONGVARCHARARRAY, which has the following definition:
VARRAY(32767) OF VARCHAR2(4000)

Examples

The following example validates the model named family.

SELECT SEM_APIS.VALIDATE_MODEL(SEM_MODELS('family')) FROM DUAL;

10.87 SEM_APIS.VALUE_NAME_PREFIX
Format

SEM_APIS.VALUE_NAME_PREFIX (
     value_name  IN VARCHAR2, 
     value_type  IN VARCHAR2 
     ) RETURN VARCHAR2;

Description

Returns the value in the VNAME_PREFIX column for the specified value name and
value type pair in the MDSYS.RDF_VALUE$ table.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the
MDSYS.RDF_VALUE$ table, which is described in Statements.

value_type
Value type. Must match a value in the VALUE_TYPE column in the
MDSYS.RDF_VALUE$ table, which is described in Statements.

Usage Notes

This function usually causes an index on the MDSYS.RDF_VALUE$ table to be used
for processing a lookup for values, and thus can make a query run faster.

Examples

The following query returns value name portions of all the lexical values in
MDSYS.RDF_VALUE$ table with a prefix value same as that returned by the
VALUE_NAME_PREFIX function. This query uses an index on the
MDSYS.RDF_VALUE$ table, thereby providing efficient lookup.

SELECT value_name FROM MDSYS.RDF_VALUE$
  WHERE vname_prefix = SEM_APIS.VALUE_NAME_PREFIX(
    'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');
 
VALUE_NAME
--------------------------------------------------------------------------------
http://www.w3.org/1999/02/22-rdf-syntax-ns#Alt
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http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag
http://www.w3.org/1999/02/22-rdf-syntax-ns#List
http://www.w3.org/1999/02/22-rdf-syntax-ns#Property
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq
http://www.w3.org/1999/02/22-rdf-syntax-ns#Statement
http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral
http://www.w3.org/1999/02/22-rdf-syntax-ns#first
http://www.w3.org/1999/02/22-rdf-syntax-ns#nil
http://www.w3.org/1999/02/22-rdf-syntax-ns#object
http://www.w3.org/1999/02/22-rdf-syntax-ns#predicate
http://www.w3.org/1999/02/22-rdf-syntax-ns#rest
http://www.w3.org/1999/02/22-rdf-syntax-ns#subject
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#value
 
15 rows selected.

10.88 SEM_APIS.VALUE_NAME_SUFFIX
Format

SEM_APIS.VALUE_NAME_SUFFIX (
     value_name  IN VARCHAR2, 
     value_type  IN VARCHAR2 
     ) RETURN VARCHAR2;

Description

Returns the value in the VNAME_SUFFIX column for the specified value name and
value type pair in the MDSYS.RDF_VALUE$ table.

Parameters

value_name
Value name. Must match a value in the VALUE_NAME column in the
MDSYS.RDF_VALUE$ table, which is described in Statements.

value_type
Value type. Must match a value in the VALUE_TYPE column in the
MDSYS.RDF_VALUE$ table, which is described in Statements.

Usage Notes

This function usually causes an index on the MDSYS.RDF_VALUE$ table to be used
for processing a lookup for values, and thus can make a query run faster.

Examples

The following query returns value name portions of all the lexical values in
MDSYS.RDF_VALUE$ table with a suffix value same as that returned by the
VALUE_NAME_SUFFIX function. This query uses an index on the
MDSYS.RDF_VALUE$ table, thereby providing efficient lookup.

SELECT value_name FROM MDSYS.RDF_VALUE$
  WHERE vname_suffix = SEM_APIS.VALUE_NAME_SUFFIX(
    'http://www.w3.org/1999/02/22-rdf-syntax-ns#type','UR');
 
VALUE_NAME
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--------------------------------------------------------------------------------
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
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11
SEM_OLS Package Subprograms

The SEM_OLS package contains subprograms (functions and procedures) related to
triple-level security to RDF data, using Oracle Label Security (OLS).

To use the subprograms in this chapter, you should understand the conceptual and
usage information in RDF Semantic Graph Overview and Fine-Grained Access Control
for RDF Data .

This chapter provides reference information about the subprograms, listed in
alphabetical order.

• SEM_OLS.APPLY_POLICY_TO_APP_TAB

• SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

11.1 SEM_OLS.APPLY_POLICY_TO_APP_TAB
Format

SEM_OLS.APPLY_POLICY_TO_APP_TAB(
     policy_name  IN VARCHAR2, 
     schema_name  IN VARCHAR2, 
     table_name   IN VARCHAR2, 
     predicate    IN VARCHAR2 DEFAULT NULL);

Description

Applies an OLS policy to an application table.

Parameters

policy_name
Name of an existing OLS policy.

schema_name
Name of the schema containing the application table.

table_name
Name of the application table.

predicate
An additional predicate to combine with the label-based predicate.

Usage Notes

When you use triple-level security, OLS is applied to each semantic model in the
network. That is, label security is applied to the relevant internal tables and to all the
application tables; there is no need to manually apply policies to the application tables
of existing semantic models. However, if you need to create additional models after
applying the OLS policy, you must use the
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SEM_OLS.APPLY_POLICY_TO_APP_TAB procedure to apply OLS to the application
table before creating the model.

You must have the following to execute this procedure: EXECUTE privilege for the
SA_POLICY_ADMIN package, and the policy_DBA role.

Before executing this procedure, you must have executed the 
SEM_RDFSA.APPLY_OLS_POLICY procedure specifying
SEM_RDFSA.TRIPLE_LEVEL_ONLY for the rdfsa_options parameter.

To remove the OLS policy from the application table, use the 
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example applies an OLS policy named defense to the
MY_SCHEMA.MY_APP_TABLE application table.

begin
  sem_ols.apply_policy_to_app_table(
        policy_name => 'defense',
        schema_name => 'my_schema',
        table_name  => 'my_app_table');
end;
/

11.2 SEM_OLS.REMOVE_POLICY_FROM_APP_TAB
Format

SEM_OLS.REMOVE_POLICY_FROM_APP_TAB(
     policy_name  IN VARCHAR2, 
     schema_name  IN VARCHAR2, 
     table_name   IN VARCHAR2);

Description

Permanently removes or detaches the OLS policy from an application table.

Parameters

policy_name
Name of the existing OLS policy.

schema_name
Name of the schema containing the application table.

table_name
Name of the application table.

Usage Notes

If you have dropped a semantic model and you no longer need to protect the
application table, you can use this procedure.

Chapter 11
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

11-2



You must have the following to execute this procedure: EXECUTE privilege for the
SA_POLICY_ADMIN package, and the policy_DBA role.

Before executing this procedure, you must have executed the 
SEM_RDFSA.APPLY_OLS_POLICY procedure specifying
SEM_RDFSA.TRIPLE_LEVEL_ONLY for the rdfsa_options parameter.

An exception is generated if the associated model exists. In this case, if you want to
execute this procedure, you must first drop the model.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example removes the OLS policy named defense from the
MY_SCHEMA.MY_APP_TABLE application table.

begin
  sem_ols.remove_policy_from_app_table(
        policy_name => 'defense',
        schema_name => 'my_schema',
        table_name  => 'my_app_table');
end;
/

Chapter 11
SEM_OLS.REMOVE_POLICY_FROM_APP_TAB

11-3



12
SEM_PERF Package Subprograms

The SEM_PERF package contains subprograms for examining and enhancing the
performance of the Resource Description Framework (RDF) and Web Ontology
Language (OWL) support in an Oracle database.

To use the subprograms in this chapter, you must understand the conceptual and
usage information in RDF Semantic Graph Overview and OWL Concepts .

This chapter provides reference information about the subprograms, listed in
alphabetical order.

• SEM_PERF.DELETE_NETWORK_STATS

• SEM_PERF.EXPORT_NETWORK_STATS

• SEM_PERF.GATHER_STATS

• SEM_PERF.IMPORT_NETWORK_STATS

12.1 SEM_PERF.DELETE_NETWORK_STATS
Format

SEM_PERF.DELETE_NETWORK_STATS (
     cascade_parts    IN BOOLEAN DEFAULT TRUE, 
     cascade_columns  IN BOOLEAN DEFAULT TRUE, 
     cascade_indexes  IN BOOLEAN DEFAULT TRUE, 
     no_invalidate    IN BOOLEAN DEFAULT DBMS_STATS.AUTO_INVALIDATE, 
     force            IN BOOLEAN DEFAULT FALSE, 
     options          IN VARCHAR2 DEFAULT NULL);

Description

Deletes statistics for the semantic network.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_VALUE$ table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_LINK$ table.

• If null (the default), the operation applies to both the MDSYS.RDF_VALUE$ and
MDSYS.RDF_LINK$ tables.
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(other parameters)
See the parameter explanations for the DBMS_STATS.DELETE_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to network statistics.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example deletes statistics for the semantic network:

EXECUTE SEM_APIS.DELETE_NETWORK_STATS;

12.2 SEM_PERF.EXPORT_NETWORK_STATS
Format

SEM_PERF.EXPORT_NETWORK_STATS (
     stattab        IN VARCHAR2, 
     statid         IN VARCHAR2 DEFAULT NULL, 
     cascade        IN BOOLEAN DEFAULT TRUE, 
     statown        IN VARCHAR2 DEFAULT NULL, 
     stat_category  IN VARCHAR2 DEFAULT 'OBJECT_STATS', 
     options        IN VARCHAR2 DEFAULT NULL);

Description

Exports the statistics for the semantic network and stores them in the user statistics
table.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_VALUE$ table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_LINK$ table.

• If null (the default), the operation applies to both the MDSYS.RDF_VALUE$ and
MDSYS.RDF_LINK$ tables.

(other parameters)
See the parameter explanations for the DBMS_STATS.EXPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.
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Examples

The following example exports the statistics for the semantic network and stores them
in a table named STAT_TABLE.

EXECUTE SEM_APIS.EXPORT_NETWORK_STATS('stat_table');

12.3 SEM_PERF.GATHER_STATS
Format

SEM_PERF.GATHER_STATS(
     just_on_values_table  IN BOOLEAN DEFAULT FALSE, 
     degree                IN NUMBER(38) DEFAULT NULL);

Description

Gathers statistics about RDF and OWL tables and their indexes.

Parameters

just_on_values_table
TRUE collects statistics only on the table containing the lexical values of triples; FALSE
(the default) collects statistics on all major tables related to the storage of RDF and
OWL data.
A value of TRUE reduces the execution time for the procedure; and it may be sufficient
if you need only to collect statistics on the values table (for example, if you use other
interfaces to collect any other statistics that you might need).

degree
Degree of parallelism. For more information about parallel execution, see Oracle
Database VLDB and Partitioning Guide.

Usage Notes

To use this procedure, you must connect as a user with permission to execute it. By
default, when Spatial and Graph is installed as part of Oracle Database, only the
MDSYS user can execute this procedure; however execution permission on this
procedure can be granted to users as needed.

This procedure collects statistical information that can help you to improve inferencing
performance, as explained in Enhancing Inference Performance. This procedure
internally calls the DBMS_STATS.GATHER_TABLE_STATS procedure to collect
statistics on RDF- and OWL-related tables and their indexes, and stores the statistics
in the Oracle Database data dictionary. For information about using the DBMS_STATS
package, see Oracle Database PL/SQL Packages and Types Reference.

Gathering statistics uses significant system resources, so execute this procedure
when it cannot adversely affect essential applications and operations.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example gathers statistics about RDF and OWL related tables and their
indexes.
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EXECUTE SEM_PERF.GATHER_STATS;

12.4 SEM_PERF.IMPORT_NETWORK_STATS
Format

SEM_PERF.IMPORT_NETWORK_STATS (
     stattab       IN VARCHAR2, 
     statid        IN VARCHAR2 DEFAULT NULL, 
     cascade       IN BOOLEAN DEFAULT TRUE, 
     statown       IN VARCHAR2 DEFAULT NULL, 
     no_invalidate IN BOOLEAN DEFAULT FALSE, 
     force         IN BOOLEAN DEFAULT FALSE, 
     stat_category IN VARCHAR2 DEFAULT 'OBJECT_STATS', 
     options       IN VARCHAR2 DEFAULT NULL);

Description

Retrieves the statistics for the semantic network from a user statistics table and stores
them in the dictionary.

Parameters

options
Controls the scope of the operation:

• If MDSYS.SDO_RDF.VALUE_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_VALUE$ table.

• If MDSYS.SDO_RDF.LINK_TABLE_ONLY, the operation applies only to the
MDSYS.RDF_LINK$ table.

• If null (the default), the operation applies to both the MDSYS.RDF_VALUE$ and
MDSYS.RDF_LINK$ tables.

(other parameters)
See the parameter explanations for the DBMS_STATS.IMPORT_TABLE_STATS
procedure in Oracle Database PL/SQL Packages and Types Reference, although
force here applies to network statistics.

Usage Notes

See the information about the DBMS_STATS package inOracle Database PL/SQL
Packages and Types Reference.

See also Managing Statistics for Semantic Models and the Semantic Network.

Examples

The following example imports the statistics for the semantic network in a table named
STAT_TABLE, and stores them in the dictionary.

EXECUTE SEM_APIS.IMPORT_NETWORK_STATS('stat_table');
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13
SEM_RDFCTX Package Subprograms

The SEM_RDFCTX package contains subprograms (functions and procedures) to
manage extractor policies and semantic indexes created for documents.

To use the subprograms in this chapter, you should understand the conceptual and
usage information in Semantic Indexing for Documents .

This chapter provides reference information about the subprograms, listed in
alphabetical order.

• SEM_RDFCTX.ADD_DEPENDENT_POLICY

• SEM_RDFCTX.CREATE_POLICY

• SEM_RDFCTX.DROP_POLICY

• SEM_RDFCTX.MAINTAIN_TRIPLES

• SEM_RDFCTX.SET_DEFAULT_POLICY

• SEM_RDFCTX.SET_EXTRACTOR_PARAM

13.1 SEM_RDFCTX.ADD_DEPENDENT_POLICY
Format

SEM_RDFCTX.ADD_DEPENDENT_POLICY(
     index_name     IN VARCHAR2, 
     policy_name    IN VARCHAR2, 
     partition_name IN VARCHAR2 DEFAULT NULL);

Description

Adds a dependent policy to an (already created) index or index partition.

Parameters

index_name
Name of the index.

policy_name
Name of the dependent policy.

partition_name
If the specified index is local, the name of the target partition. (Otherwise, must be
null.)

Usage Notes

The base policy corresponding to the new dependent policy must already be a part of
the index.
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Examples

The following example adds a new dependent policy SEM_EXTR_PLUS_GEOONT to the
index ArticleIndex.

begin
  sem_rdfctx.add_dependent_policy (index_name  => 'ArticleIndex',
                                   policy_name => 'SEM_EXTR_PLUS_GEOONT');
end;
/

13.2 SEM_RDFCTX.CREATE_POLICY
Format

SEM_RDFCTX.CREATE_POLICY(
     policy_name  IN VARCHAR2, 
     extractor    IN mdsys.rdfctx_extractor, 
     preferences  IN sys.XMLType DEFAULT NULL);

or

SEM_RDFCTX.CREATE_POLICY(
     policy_name       IN VARCHAR2, 
     base_policy       IN VARCHAR2, 
     user_models       IN SEM_MODELS DEFAULT NULL, 
     user_entailments  IN SEM_MODELS DEFAULT NULL);

Description

Creates an extractor policy. (The first format is for a base policy; the second format is
for a policy that is dependent on a base policy.)

Parameters

policy_name
Name of the extractor policy.

extractor
An instance of a subtype of the RDFCTX_EXTRACTOR type that encapsulates the
extraction logic for the information extractor.

preferences
Any preferences associated with the policy.

base_policy
Base extractor policy for a dependent policy.

user_models
List of user models for a dependent policy.

user_entailments
List of user entailments for a dependent policy.
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Usage Notes

An extractor policy created using this procedure determines the characteristics of a
semantic index that is created using the policy. Each extractor policy refers to an
instance of an extractor type, either directly or indirectly. An extractor policy with a
direct reference to an extractor type instance can be used to compose other extractor
policies that include additional RDF models for ontologies.

An instance of the extractor type assigned to the extractor parameter must be an
instance of a direct or indirect subtype of type mdsys.rdfctx_extractor.

The RDF models specified in the user_models parameter must be accessible to the
user that is creating the policy.

The RDF entailments specified in the user_entailments parameter must be
accessible to the user that is creating the policy. Note that the RDF models underlying
the entailments do not get automatically included in the dependent policy. To include
one or more of those underlying RDF models, you need to include the models in the
user_models parameter.

The preferences specified for extractor policy determine the type of repository used for
the documents to be indexed and other relevant information. For more information,
see Indexing External Documents.

Examples

The following example creates an extractor policy using the gatenlp_extractor
extractor type, which is included with the Oracle Database support for semantic
indexing.

begin
  sem_rdfctx.create_policy (policy_name => 'SEM_EXTR',
                            extractor   => mdsys.gatenlp_extractor());
end;
/

The following example creates a dependent policy for the previously created extractor
policy, and it adds the user-defined RDF model geo_ontology to the dependent policy.

begin
  sem_rdfctx.create_policy (policy_name => 'SEM_EXTR_PLUS_GEOONT',
                            base_policy => 'SEM_EXTR',
                            user_models => SEM_MODELS ('geo_ontology'));
end;
/

13.3 SEM_RDFCTX.DROP_POLICY
Format

SEM_RDFCTX.DROP_POLICY(
     policy_name  IN VARCHAR2);

Description

Deletes (drops) an unused extractor policy.
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Parameters

policy_name
Name of the extractor policy.

Usage Notes

An exception is generated if the specified policy being is used for a semantic index for
documents or if a dependent extractor policy exists for the specified policy.

Examples

The following example drops the SEM_EXTR_PLUS_GEOONT extractor policy.

begin
  sem_rdfctx.drop_policy (policy_name => 'SSEM_EXTR_PLUS_GEOONT');
end;
/

13.4 SEM_RDFCTX.MAINTAIN_TRIPLES
Format

SEM_RDFCTX.MAINTAIN_TRIPLES(
     index_name     IN VARCHAR2, 
     where_clause   IN VARCHAR2, 
     rdfxml_content IN sys.XMLType, 
     policy_name    IN VARCHAR2 DEFAULT NULL, 
     action         IN VARCHAR2 DEFAULT 'ADD');

Description

Adds one or more triples to graphs that contain information extracted from specific
documents.

Parameters

index_name
Name of the semantic index for documents.

where_clause
A SQL predicate (WHERE clause text without the WHERE keyword) on the table in
which the documents are stored, to identify the rows for which to maintain the index.

rdfxml_content
Triples, in the form of an RDF/XML document, to be added to the individual graphs
corresponding to the documents.

policy_name
Name of the extractor policy. If policy_name is null (the default), the triples are added
to the information extracted by the default (or the only) extractor policy for the index; if
you specify a policy name, the triples are added to the information extracted by that
policy.

Chapter 13
SEM_RDFCTX.MAINTAIN_TRIPLES

13-4



action
Type of maintenance operation to perform on the triples. The only value currently
supported in ADD (the default), which adds the triples that are specified in the
rdfxml_content parameter.

Usage Notes

The information extracted from the semantically indexed documents may be
incomplete and lacking in proper context. This procedure enables a domain expect to
add triples to individual graphs pertaining to specific semantically indexed documents,
so that all subsequent SEM_CONTAINS queries can consider these triples in their
document search criteria.

This procedure accepts the index name and WHERE clause text to identify the specific
documents to be annotated with the additional triples. For example, the where_clause
might be specified as a simple predicate involving numeric data, such as 'docId IN
(1,2,3)'.

Examples

The following example annotates a specific document with the semantic index
ArticleIndex by adding triples to the corresponding individual graph.

begin
  sem_rdfctx.maintain_triples(
     index_name      => 'ArticleIndex',
     where_clause    => 'docid = 15',  
     rdfxml_content => sys.xmltype(
      '<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 
                xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
                xmlns:pred="http://myorg.com/pred/">
       <rdf:Description rdf:about=" http://newscorp.com/Org/ExampleCorp">
         <pred:hasShortName 
               rdf:datatype="http://www.w3.org/2001/XMLSchema#string">
             Example
         </pred:hasShortName>
     </rdf:Description> 
    </rdf:RDF>'));
end;
/

13.5 SEM_RDFCTX.SET_DEFAULT_POLICY
Format

SEM_RDFCTX.SET_DEFAULT_POLICY(
     index_name   IN VARCHAR2, 
     policy_name  IN VARCHAR2);

Description

Sets the default extractor policy for a semantic index that is configured with multiple
extractor policies.
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Parameters

index_name
Name of the semantic index for documents.

policy_name
Name of the extractor policy to be used as the default extractor policy for the specified
semantic index. Must be one of the extractor policies listed in the PARAMETERS
clause of the CREATE INDEX statement that created index_name.

Usage Notes

When you create a semantic index for documents, you can specify multiple extractor
policies as a space-separated list of names in the PARAMETERS clause of the
CREATE INDEX statement. As explained in Semantically Indexing Documents, the
first policy from this list is used as the default extractor policy for all SEM_CONTAINS
queries that do not identify an extractor policy by name. You can use the
SEM_RDFCTX.SET_DEFAULT_POLICY procedure to set a different default policy for
the index.

Examples

The following example sets CITY_EXTR as the default extractor policy for the
ArticleIndex index.

begin
  sem_rdfctx.set_default_policy (index_name => 'ArticleIndex',
                                 policy_name => 'CITY_EXTR');
end;
/

13.6 SEM_RDFCTX.SET_EXTRACTOR_PARAM
Format

SEM_RDFCTX.SET_EXTRACTOR_PARAM(
     param_key    IN VARCHAR2, 
     patam_value  IN VARCHAR2, 
     param_desc   IN VARCHAR2);

Description

Configures the Oracle Database semantic indexing support to work with external
information extractors, such as Calais and GATE.

Parameters

param_key
Key for the parameter to be set.

param_value
Value for the parameter to be set.

param_desc
Short description for the parameter to be set.
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Usage Notes

You must have the SYSDBA role to use this procedure.

To work with the Calais extractor type (see Configuring the Calais Extractor type), you
must specify values for the following parameters:

• CALAIS_WS_ENDPOINT: Web service end point for Calais.

• CALAIS_KEY: License key for Calais.

• CALAIS_WS_SOAPACTION: SOAP action for the Calais Web service.

To work with the General Architecture for Text Engineering (GATE) extractor type (see 
Working with General Architecture for Text Engineering (GATE)), you must specify
values for the following parameters:

• GATE_NLP_HOST: Host for the GATE NLP Listener.

• GATE_NLP_PORT: Port for the GATE NLP Listener.

In addition to these parameters, you may need to specify a value for the HTTP_PROXY
parameter to work with information extractors or index documents that are outside the
firewall.

A database instance only has one set of values for these parameters, and they are
used for all instances of semantic indexes using the corresponding information
extractor. You can use this procedure if you need to change the existing values of any
of the parameters.

Examples

For examples, see the following sections:

• Configuring the Calais Extractor type

• Working with General Architecture for Text Engineering (GATE)
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14
SEM_RDFSA Package Subprograms

The SEM_RDFSA package contains subprograms (functions and procedures) for
providing fine-grained access control to RDF data using Oracle Label Security (OLS).

To use the subprograms in this chapter, you should understand the conceptual and
usage information in RDF Semantic Graph Overview and Fine-Grained Access Control
for RDF Data .

This chapter provides reference information about the subprograms, listed in
alphabetical order.

• SEM_RDFSA.APPLY_OLS_POLICY

• SEM_RDFSA.DISABLE_OLS_POLICY

• SEM_RDFSA.ENABLE_OLS_POLICY

• SEM_RDFSA.REMOVE_OLS_POLICY

• SEM_RDFSA.RESET_MODEL_LABELS

• SEM_RDFSA.SET_PREDICATE_LABEL

• SEM_RDFSA.SET_RDFS_LABEL

• SEM_RDFSA.SET_RESOURCE_LABEL

• SEM_RDFSA.SET_RULE_LABEL

14.1 SEM_RDFSA.APPLY_OLS_POLICY
Format

SEM_RDFSA.APPLY_OLS_POLICY(
     policy_name    IN VARCHAR2, 
     rdfsa_options  IN NUMBER  DEFAULT SEM_RDFSA.SECURE_SUBJECT, 
     table_options  IN VARCHAR2 DEFAULT 'ALL_CONTROL', 
     label_function IN VARCHAR2 DEFAULT NULL, 
     predicate      IN VARCHAR2 DEFAULT NULL);

Description

Applies an OLS policy to the semantic data store.

Parameters

policy_name
Name of an existing OLS policy.

rdfsa_options
Options specifying the mode of fine-grained access control to be enabled for RDF
data. The default option for securing RDF data involves assigning sensitivity labels for
the resources appearing the triples' subject position. You can override the defaults by
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using the rdfsa_options parameter and specifying one of the constants defined in 
Table 14-1 in the Usage Notes.

table_options
Policy enforcement options. The default value (ALL_CONTROL) is the only supported
value for this procedure.

label_function
A string invoking a function to return a label value to use as the default.

predicate
An additional predicate to combine with the label-based predicate.

Usage Notes

The OLS policy specified with this procedure must be created with CTXT1 as the
column name, and it should use default policy options. For information about policy
options, see Oracle Label Security Administrator's Guide.

This procedure invokes the sa_policy_admin.apply_table_policy procedure on
multiple tables defined in the MDSYS schema. The parameters table_options,
label_function, and predicate for the SEM_RDFSA.APPLY_OLS_POLICY
procedure have same semantics as the parameters with same names in the
sa_policy_admin.apply_table_policy procedure.

For the rdfsa_options parameter, you can specify the package constant for the
desired option. Table 14-1 lists these constants and their descriptions.

Table 14-1    SEM_RDFSA Package Constants for rdfsa_options Parameter

Constant Description

SEM_RDFSA.SECURE_
SUBJECT

Assigns sensitivity labels for the resources appearing the triples'
subject position.

SEM_RDFSA.SECURE_
PREDICATE

Assigns sensitivity labels for the resources appearing the triples'
predicate position.

SEM_RDFSA.SECURE_
OBJECT

Assigns sensitivity labels for the resources appearing the triples'
object position.

SEM_RDFSA.TRIPLE_LE
VEL_ONLY

Applies triple-level security. Provides good performance, and
eliminates the need to assign labels to individual resources.
(Requires that Patch 9819833, available from My Oracle Support,
be installed.)

SEM_RDFSA.OPT_DEFI
NE_BEFORE_USE

Restricts the use of an RDF resource in a triple before the
sensitivity label is defined for the resource. If this option is not
specified, the user's initial row label is used as the default label for
the resource upon first use.

SEM_RDFSA.OPT_RELA
X_TRIPLE_LABEL

Relaxes the dominating relationship that exists between the triple
label and the labels associated with all its components. With this
option, a triple can be defined if the user has READ access to all
the triple components and the triple label may not bear any
relationship with the component labels. Without this option, the
triple label should at least cover the label for all its components.

You can specify a function in the label_function parameter to generate custom
labels for newly inserted triples. The label function is associated with the
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MDSYS.RDF_LINK$ table, and the columns in this table may be configured as
parameters to the label function as shown in the following example:

fgac_admin.new_triple_label(:new.model_id,
                            :new.start_node_id,
                            :new.p_value_id,
                            :new.canon_end_node_id)'

Because the OLS policy is applied to more than one table with different structures, the
only valid column reference in any predicates assigned to the predicate parameter is
that of the label column: CTXT1. If OLS is enabled for a semantic data store with
existing data, you can specify a predicate of the form 'OR CTXT1 is null' to be able
to continue using this data with no access restrictions.

An OLS-enabled semantic data store uses sensitivity labels for all the RDF triples
organized in multiple models. User access to such triples, through model views and
SEM_MATCH queries, is restricted by the OLS policy. Additionally, independent of a
user owning the application table, access to the triple column (of type
SDO_RDF_TRIPLE_S) in the table is restricted to users with FULL access privileges
with the OLS policy.

The triples are inserted into a specific RDF model using the INSERT privileges on the
corresponding application table. A sensitivity label for the new triple is generated using
the user's session context (initial row label) or the label function. The triple is validated
for any RDF policy violations using labels associated with the triple components.
Although the triple information may not be accessed trough the application table, the
model view may be queried to access the triples, while enforcing the OLS policy
restrictions. If you have the necessary policy privileges (such as writeup, writeacross),
you can update the CTXT1 column in the model view to reset the label assigned to the
triple. The new label is automatically validated for any RDF policy violations involving
the triple components. Update privilege on the CTXT1 column of the model view is
granted to the owner of the model, and this user may selectively grant this privilege to
other users.

If the RDF models are created in schemas other than the user with FULL access,
necessary privileges on the model objects -- specifically, read/write access on the
application table, read access to the model view, and write access to the CTXT1
column in the model view -- can be granted to such users for maintenance operations.
These operations include bulk loading into the model, resetting any sensitivity labels
assigned to the triples, and creating entailments using the model.

To disable the OLS policy, use the SEM_RDFSA.DISABLE_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example enable secure access to RDF data with secure subject and
secure predicate options.

begin
  sem_rdfsa.apply_ols_policy(
        policy_name   => 'defense',
        rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
                         sem_rdfsa.SECURE_PREDICATE); 
end;
/
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The following example extends the preceding example by specifying a Define Before
Use option, which allows a user to define a triple only if the triple components secured
(Subject, Predicate or Object) are predefined with an associated sensitivity label. This
configuration is effective if the user inserting the triple does not have execute
privileges on the SEM_RDFSA package.

begin
  sem_rdfsa.apply_ols_policy(
        policy_name   => 'defense',
        rdfsa_options => sem_rdfsa.SECURE_SUBJECT+
                         sem_rdfsa.SECURE_PREDICATE+
                         sem_rdfsa.OPT_DEFINE_BEFORE_USE); 
end;
/

14.2 SEM_RDFSA.DISABLE_OLS_POLICY
Format

SEM_RDFSA.DISABLE_OLS_POLICY;

Description

Disables the OLS policy that has been previously applied to or enabled on the
semantic data store.

Parameters

(None.)

Usage Notes

You can use this procedure to disable temporarily the OLS policy that had been
applied to or enabled for the semantic data store. The user disabling the policy should
have the necessary privileges to administer OLS policies and should also have access
to the OLS policy applied to RDF data.

The sensitivity labels assigned to various RDF resources and triples are preserved
and the OLS policy may be re-enabled to enforce them. New resources with specific
labels can be added, or labels for existing triples and resources can be updated when
the OLS policy is disabled.

To apply an OLS policy, use the SEM_RDFSA.APPLY_OLS_POLICY procedure; to
enable an OLS policy that had been disabled, use the 
SEM_RDFSA.ENABLE_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example disables the OLS policy for the semantic data store.

begin
  sem_rdfsa.disable_ols_policy;
end;
/

Chapter 14
SEM_RDFSA.DISABLE_OLS_POLICY

14-4



14.3 SEM_RDFSA.ENABLE_OLS_POLICY
Format

SEM_RDFSA.ENABLE_OLS_POLICY;

Description

Enables the OLS policy that has been previously disabled.

Parameters

(None.)

Usage Notes

You can use this procedure to enable the OLS policy that had been disabled for the
semantic data store. The user enabling the policy should have the necessary
privileges to administer OLS policies and should also have access to the OLS policy
applied to RDF data.

To disable an OLS policy, use the SEM_RDFSA.DISABLE_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example enables the OLS policy for the semantic data store.

begin
  sem_rdfsa.enable_ols_policy;
end;
/

14.4 SEM_RDFSA.REMOVE_OLS_POLICY
Format

SEM_RDFSA.REMOVE_OLS_POLICY;

Description

Permanently removes or detaches the OLS policy from the semantic data store.

Parameters

(None.)

Usage Notes

You should have the necessary privileges to administer OLS policies, and you should
also have access to the OLS policy applied to RDF data. Once the OLS policy is
detached from the semantic data store, all the sensitivity labels previously assigned to
the triples and resources are lost.
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This operation drops objects that are specifically created to maintain the RDF security
policies.

To apply an OLS policy, use the SEM_RDFSA.APPLY_OLS_POLICY procedure.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example removes the OLS policy that had been previously applied to the
semantic data store.

begin
  sem_rdfsa.remove_ols_policy;
end;
/

14.5 SEM_RDFSA.RESET_MODEL_LABELS
Format

SEM_RDFSA.RESET_MODEL_LABELS(
     model_name  IN VARCHAR2);

Description

Resets the labels associated with a model or with global resources; requires that the
associated model or models be empty.

Parameters

model_name
Name of the model for which the labels should be reset, or the string RDF$GLOBAL to
reset the labels associated with all global resources.

Usage Notes

If you specify a model name, the model must be empty. If you specify RDF$GLOBAL, all
the models must be empty (that is, no triples in the RDF repository).

You must have FULL access privilege with the OLS policy applied to the semantic
data store.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example removes all resources and their labels associated with the
Contracts model.

begin
   sem_rdfsa.reset_model_labels(model_name => 'Contracts');
end;
/
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14.6 SEM_RDFSA.SET_PREDICATE_LABEL
Format

SEM_RDFSA.SET_PREDICATE_LABEL(
     model_name   IN VARCHAR2, 
     predicate    IN VARCHAR2, 
     label_string IN VARCHAR2);

Description

Sets a sensitivity label for a predicate at the model level or for the whole repository.

Parameters

model_name
Name of the model to which the predicate belongs, or the string RDF$GLOBAL if the
same label should applied for the use of the predicate in all models.

predicate
Predicate for which the label should be assigned.

label_string
OLS row label in string representation.

Usage Notes

If you specify a model name, you must have read access to the model and execute
privileges on the SEM_RDFSA package to perform this operation. If you specify
RDF$GLOBAL, you must have FULL access privilege with the OLS policy applied to RDF
data.

You must have access to the specified label and OLS policy privilege to overwrite an
existing label if a label already exists for the predicate. The SECURE_PREDICATE
option must be enabled for RDF data.

If an existing predicate label is updated with this operation, the labels for the triples
using this predicate must all dominate the new predicate label. The only exception is
when the OPT_RELAX_TRIPLE_LABEL option is chosen for the OLS-enabled RDF
data.

If you specify RDF$GLOBAL, a global predicate with a unique sensitivity label across
models is created. If the same predicate is previously defined in one or more models,
the global label dominates all such labels and the model-specific labels are replaced
for the given predicate.

After a label for a predicate is set, new triples with the predicate can be added only if
the triple label (which may be initialized from user's initial row label or using a label
function) dominates the predicate's sensitivity label. This dominance relationship can
be relaxed with the OPT_RELAX_TRIPLE_LABEL option, in which case the user
should at least have read access to the predicate to be able to define a new triple
using the predicate.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .
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Examples

The following example sets a predicate label for Contracts model and another
predicate label for all models in the database instance.

begin
  sem_rdfsa.set_predicate_label( 
         model_name   => 'contracts',
         predicate    => '<http://www.myorg.com/pred/hasContractValue>',
         label_string => 'TS:US_SPCL');
end;  
/
 
begin
  sem_rdfsa.set_predicate_label(
         model_name   => 'rdf$global',
         predicate    => '<http://www.myorg.com/pred/hasStatus>',
         label_string => 'SE:US_SPCL:US');
end;
/

14.7 SEM_RDFSA.SET_RDFS_LABEL
Format

SEM_RDFSA.SET_RDFS_LABEL(
     label_string  IN VARCHAR2, 
     inf_override  IN VARCHAR2);

Description

Sets a sensitivity label for RDFS schema elements.

Parameters

label_string
OLS row label in string representation, to be used as the sensitivity label for all RDF
schema constructs.

inf_override
OLS row label to be used as the override for generating labels for inferred triples.

Usage Notes

This procedure sets or resets the sensitivity label associated with the RDF schema
resources, often recognized by http://www.w3.org/1999/02/22-rdf-syntax-ns# and
http://www.w3.org/2000/01/rdf-schema# prefixes for their URIs. You can assign a
sensitivity label with restricted access to these resources, so that operations such as
creating new RDF classes and adding new properties can be restricted to users with
higher privileges.

You must have FULL access privilege with policy applied to RDF data.

RDF schema elements implicitly use the relaxed triple label option, so that the triples
using RDFS and OWL constructs for subject, predicate, or object are not forced to
have a sensitivity label that dominates the labels associated with the schema
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constructs. Therefore, a user capable of defining new RDF classes and properties
must least have read access to the schema elements.

When RDF schema elements are referred to in the inferred triples, the system-defined
and custom label generators consider the inference override label in determining the
appropriate label for the inferred triples. If a custom label generator is used, this
override label is passed instead of the actual label when an RDF schema element is
involved.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example sets a label with a unique compartment for all RDF schema
elements. A user capable of defining new RDF classes and properties is expected to
have an exclusive membership to the compartment.

begin
  sem_rdfsa.set_rdfs_label( 
         label_string  => 'SE:RDFS:',
         inf_override  => 'SE:US_SPCL:US');
end;  
/

14.8 SEM_RDFSA.SET_RESOURCE_LABEL
Format

SEM_RDFSA.SET_RESOURCE_LABEL(
     model_name   IN VARCHAR2, 
     resource_uri IN VARCHAR2, 
     label_string IN VARCHAR2, 
     resource_pos IN VARCHAR2 DEFAULT 'S');

Description

Sets a sensitivity label for a resource that may be used in the subject and/or object
position of a triple.

Parameters

model_name
Name of the model to which the resource belongs, or the string RDF$GLOBAL if the
same label should applied for using the resource in all models.

resource_uri
URI for the resource that may be used as subject or object in one or more triples.

label_string
OLS row label in string representation.

resource_pos
Position of the resource within a triple: S, O, or S,O. You can specify up to two
separate labels for the same resource, one to be considered when the resource is
used in the subject position of a triple and the other to be considered when it appears
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in the object position. The values 'S', 'O' or 'S,O' set a label for the resource in subject,
object or both subject and object positions, respectively.

Usage Notes

If you specify a model name, you must have read access to the model and execute
privileges on the SEM_RDFSA package to perform this operation. If you specify
RDF$GLOBAL, you must have FULL access privilege with the OLS policy applied to RDF
data.

You must have access to the specified label and OLS policy privilege to overwrite an
existing label if a label already exists for the predicate. The SECURE_PREDICATE
option must be enabled for RDF data.

If an existing resource label is updated with this operation, the labels for the triples
using this resource in the specified position must all dominate the new resource label.
The only exception is when the OPT_RELAX_TRIPLE_LABEL option is chosen for the
OLS-enabled RDF data.

If you specify RDF$GLOBAL, a global resource with a unique sensitivity label across
models is created. If the same resource is previously defined in one or more models
with the same triple position, the global label dominates all such labels and the model-
specific labels are replaced for the given resource in that position.

After a label for a predicate is set, new triples using the resource in the specified
position can be added only if the triple label dominates the resource's sensitivity label.
This dominance relationship can be relaxed with OPT_RELAX_TRIPLE_LABEL
option, in which case, the user should at least have read access to the resource.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example sets sensitivity labels for multiple resources based on their
position.

begin
  sem_rdfsa.set_resource_label(
         model_name   => 'contracts',
         resource_uri => '<http://www.myorg.com/contract/projectHLS>',
         label_string => 'SE:US_SPCL:US',
         resource_pos => 'S,O');
end;
/
 
begin
  sem_rdfsa.set_resource_label(
       model_name   => 'rdf$global',
       resource_uri => '<http://www.myorg.com/contract/status/Complete>',
       label_string => 'SE:US_SPCL:US',
       resource_pos => 'O');
end;
/
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14.9 SEM_RDFSA.SET_RULE_LABEL
Format

SEM_RDFSA.SET_RULE_LABEL(
     rule_base    IN VARCHAR2, 
     rule_name    IN VARCHAR2, 
     label_string IN VARCHAR2);

Description

Sets sensitivity label for a rule belonging to a rulebase.

Parameters

rule_base
Name of an existing RDF rulebase.

rule_name
Name of the rule belonging to the rulebase.

label_string
OLS row label in string representation.

Usage Notes

The sensitivity label assigned to the rule is used to generate the label for the inferred
triples when an appropriate label generator option is chosen.

You must have access have access to the rulebase, and you must have FULL access
privilege with the OLS policy can assign labels for system-defined rules in the RDFS
rulebase.

There is no support for labels assigned to user-defined rules.

For information about support for OLS, see Fine-Grained Access Control for RDF
Data .

Examples

The following example assigns a sensitivity label for an RDFS rule.

begin
sem_rdfsa.set_rule_label (rule_base    => 'RDFS',
                          rule_name    => 'RDF-AXIOMS',
                          label_string => 'SE:US_SPCL:');
end;
/
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A
Enabling, Downgrading, or Removing RDF
Semantic Graph Support

You must perform certain steps before you can use any types, synonyms, or PL/SQL
packages related to RDF Semantic Graph support in the current Oracle Database
release.

You must run one or more scripts, and you must ensure that Spatial and Graph is
installed and the Partitioning option is enabled. These requirements are explained in 
Enabling RDF Semantic Graph Support and its related subtopics.

This appendix also describes the steps if, after enabling RDF Semantic Graph support,
you need to do any of the following:

• Downgrade the RDF Semantic Graph support to that provided with a previous
Oracle Database release, as explained in Downgrading RDF Semantic Graph
Support to a Previous Release.

• Remove all support for RDF Semantic Graph from the database, as explained in 
Removing RDF Semantic Graph Support.

• Enabling RDF Semantic Graph Support
Before you can use any types, synonyms, or PL/SQL packages related to RDF
Semantic Graph support in the current Oracle Database release, you must either
install the capabilities in a new Oracle Database installation or upgrade the
capabilities from a previous release. You must also ensure that Spatial and Graph
is installed and the Partitioning option is enabled.

• Downgrading RDF Semantic Graph Support to a Previous Release
You can downgrade the RDF Semantic Graph support, in conjunction with an
Oracle Database downgrade to Release 12.1.

• Removing RDF Semantic Graph Support
You can remove the RDF Semantic Graph support from the database.

A.1 Enabling RDF Semantic Graph Support
Before you can use any types, synonyms, or PL/SQL packages related to RDF
Semantic Graph support in the current Oracle Database release, you must either
install the capabilities in a new Oracle Database installation or upgrade the capabilities
from a previous release. You must also ensure that Spatial and Graph is installed and
the Partitioning option is enabled.

• Enabling RDF Semantic Graph Support in a New Database Installation

• Upgrading RDF Semantic Graph Support from Release 11.1, 11.2, or 12.1

• Workspace Manager and Virtual Private Database Desupport

• Spatial and Partitioning Requirements
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A.1.1 Enabling RDF Semantic Graph Support in a New Database
Installation

RDF Semantic Graph is automatically enabled when Spatial and Graph Release 12.2
or later is installed.

If RDF Semantic Graph was enabled successfully, a row with the following column
values will exist in the MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS

• ATTRIBUTE: SEM_VERSION

• VALUE: (string starting with 12.2)

• DESCRIPTION: VALID

A.1.2 Upgrading RDF Semantic Graph Support from Release 11.1,
11.2, or 12.1

If you are upgrading from Oracle Database Release 11.1 or 11.2 that includes the
semantic technologies support, the semantic technologies support is automatically
upgraded to Release 12.1 or later when the database is upgraded.

However, you may also need to migrate RDF data if you have an existing Release
11.1 or 11.2 RDF network containing triples that include typed literal values of type
xsd:float, xsd:double, xsd:boolean, or xsd:time.

To check if you need to migrate RDF data, connect to the database as a user with
DBA privileges and query the MDSYS.RDF_PARAMETER table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
  WHERE namespace='MDSYS' 
  AND attribute IN ('FLOAT_DOUBLE_DECIMAL',
                    'XSD_TIME', 'XSD_BOOLEAN', 
                    'DATA_CONVERSION_CHECK');

If the FLOAT_DOUBLE_DECIMAL, XSD_TIME, or XSD_BOOLEAN attributes have
the string value INVALID or if the DATA_CONVERSION_CHECK attribute has the
string value FAILED_UNABLE_TO_LOCK_APPLICATION_TABLES,
FAILED_INSUFFICIENT_WORKSPACE_PRIVILEGES, or
FAILED_OLS_POLICIES_ARE_ENABLED, you need to migrate RDF data.

However, if the FLOAT_DOUBLE_DECIMAL, XSD_TIME, and XSD_BOOLEAN
attributes do not exist or have the string value VALID and if the
DATA_CONVERSION_CHECK attribute does not exist, you do not need to migrate
RDF data. However, if your semantic network may have any empty RDF literals, see 
Handling of Empty RDF Literals; and if you choose to migrate existing empty literals to
the new format, follow the steps in this section.

To migrate RDF data, follow these steps:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted), and enter: SET
CURRENT_SCHEMA=MDSYS
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2. Ensure that the user MDSYS has the following privileges:

• INSERT privilege on all application tables in the semantic network

• ALTER ANY INDEX privilege (optional: only necessary if Semantic Indexing
for Documents is being used)

• ACCESS privilege for any workspace in which version-enabled application
tables have been modified (optional: only necessary if Workspace Manager is
being used for RDF data)

3. Ensure that any OLS policies for RDF data are temporarily disabled (optional: only
necessary if OLS for RDF Data is being used). OLS policies can be re-enabled
after running convert_old_rdf_data.

4. Start SQL*Plus. If you want to migrate the RDF data without converting existing
empty literals to the new format (see Handling of Empty RDF Literals), enter the
following statement:

EXECUTE sdo_rdf_internal.convert_old_rdf_data;

If you want to migrate the RDF data and also convert existing empty literals to the
new format, call convert_old_rdf_data with the flags parameter set to
'CONVERT_ORARDF_NULL'. In addition, you can use an optional tablespace_name
parameter to specify the tablespace to use when creating intermediate tables
during data migration. For example, the following statement migrates old semantic
data, converts existing "orardf:null " values to "", and uses the MY_TBS
tablespace for any intermediate tables:

EXECUTE sdo_rdf_internal.convert_old_rdf_data(
  flags=>'CONVERT_ORARDF_NULL', 
  tablespace_name=>'MY_TBS');

The sdo_rdf_internal.convert_old_rdf_data procedure may take a significant
amount of time to run if the semantic network contains many triples that are using
(or affected by use of) xsd:float, xsd:double, xsd:time, or xsd:boolean typed
literals.

5. Enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semrelod.sql

• Windows: @%ORACLE_HOME%\md\admin\semrelod.sql

Note:

You may encounter the ORA-00904 (invalid identifier) error when executing
a SEM_MATCH query if the sdo_rdf_internal.convert_old_rdf_data
procedure and the semrelod.sql script were not run after the upgrade to
Release 12.1 or later.

• Required Data Migration After Upgrade

• Handling of Empty RDF Literals
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A.1.2.1 Required Data Migration After Upgrade
After the database upgrade completes, if you have existing RDF data from a previous
release, you must migrate the RDF data. If you do not perform the data migration, you
will encounter the following error when running SEM_MATCH queries:

ORA-20000:  RDF_VALUE$ Table needs data migration with 
SEM_APIS.MIGRATE_DATA_TO_CURRENT

Columns were added to the MDSYS.RDF_VALUE$ table in Release 12.2 (see 
Enhanced RDF ORDER BY Query Processing. These columns must be populated
after upgrading an existing RDF network. The need for migration will be noted with the
following row in the MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS

• ATTRIBUTE: RDF_VALUE$

• VALUE: INVALID_ORDER_COLUMNS

• DESCRIPTION: RDF_VALUE$ Table needs data migration with
SEM_APIS.MIGRATE_DATA_TO_CURRENT

If migration is needed, the RDF Semantic Graph installation will initially be marked as
INVALD, which is signified with the following row in MDSYS.RDF_PARAMETER:

• NAMESPACE: MDSYS

• ATTRIBUTE: SEM_VERSION

• VALUE: (string starting with 12.2)

• DESCRIPTION: INVALID

To perform data migration by populating new MDSYS.RDF_VALUE$ columns, follow
these steps:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted),

2. Run the following statement:

EXECUTE sem_apis.migrate_data_to_current;

If data migration was successful, the INVALID_ORDER_COLUMNS row will be
removed from MDSYS.RDF_PARAMETER and the SEM_VERSION row will have a
DESCRIPTION value of VALID.

Moreover, additional data migration may be required if you are upgrading an existing
Release 11.1 or 11.2 RDF network containing triples that include typed literal values of
type xsd:float, xsd:double, xsd:boolean, or xsd:time.

To check if you need to perform this additional RDF data migration, connect to the
database as a user with DBA privileges and query the MDSYS.RDF_PARAMETER
table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
  WHERE namespace='MDSYS' 
  AND attribute IN ('FLOAT_DOUBLE_DECIMAL',
                    'XSD_TIME', 'XSD_BOOLEAN', 
                    'DATA_CONVERSION_CHECK');
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If the FLOAT_DOUBLE_DECIMAL, XSD_TIME, or XSD_BOOLEAN attributes have
the string value INVALID or if the DATA_CONVERSION_CHECK attribute has the
string value FAILED_UNABLE_TO_LOCK_APPLICATION_TABLES,
FAILED_INSUFFICIENT_WORKSPACE_PRIVILEGES, or
FAILED_OLS_POLICIES_ARE_ENABLED, you need to migrate RDF data.

However, if the FLOAT_DOUBLE_DECIMAL, XSD_TIME, and XSD_BOOLEAN
attributes do not exist or have the string value VALID and if the
DATA_CONVERSION_CHECK attribute does not exist, you do not need to migrate
RDF data. However, if your semantic network may have any empty RDF literals, see 
Handling of Empty RDF Literals; and if you choose to migrate existing empty literals to
the new format, follow the steps in this section.

To migrate the RDF data, follow these steps:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted), and enter: SET
CURRENT_SCHEMA=MDSYS

2. Ensure that the user MDSYS has the following privileges:

• INSERT privilege on all application tables in the semantic network

• ALTER ANY INDEX privilege (optional: only necessary if Semantic Indexing
for Documents is being used)

• ACCESS privilege for any workspace in which version-enabled application
tables have been modified (optional: only necessary if Workspace Manager is
being used for RDF data)

3. Ensure that any OLS policies for RDF data are temporarily disabled (optional: only
necessary if OLS for RDF Data is being used). OLS policies can be re-enabled
after running convert_old_rdf_data.

4. Start SQL*Plus. If you want to migrate the RDF data without converting existing
empty literals to the new format (see Handling of Empty RDF Literals), enter the
following statement:

EXECUTE sdo_rdf_internal.convert_old_rdf_data;

If you want to migrate the RDF data and also convert existing empty literals to the
new format, call convert_old_rdf_data with the flags parameter set to
'CONVERT_ORARDF_NULL'. In addition, you can use an optional tablespace_name
parameter to specify the tablespace to use when creating intermediate tables
during data migration. For example, the following statement migrates old semantic
data, converts existing "orardf:null " values to "", and uses the MY_TBS
tablespace for any intermediate tables:

EXECUTE sdo_rdf_internal.convert_old_rdf_data(
  flags=>'CONVERT_ORARDF_NULL', 
  tablespace_name=>'MY_TBS');

The sdo_rdf_internal.convert_old_rdf_data procedure may take a significant
amount of time to run if the semantic network contains many triples that are using
(or affected by use of) xsd:float, xsd:double, xsd:time, or xsd:boolean typed
literals.

5. Enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semrelod.sql
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• Windows: @%ORACLE_HOME%\md\admin\semrelod.sql

Note:

You may encounter the ORA-00904 (invalid identifier) error when executing
a SEM_MATCH query if the sdo_rdf_internal.convert_old_rdf_data
procedure and the semrelod.sql script were not run after the upgrade to
Release 12.1 or later.

A.1.2.2 Handling of Empty RDF Literals
The way empty-valued RDF literals are handled was changed in Release 11.2. Before
this release, the values of empty-valued literals were converted to "orardf:null". In
Release 11.2 and later, such values are stored without modification (that is, as "").
However, whether you migrate existing "orardf:null" values to "" is optional.

To check if "orardf:null" values exist in your semantic network, connect to the
database as a user with DBA privileges and query the MDSYS.RDF_PARAMETER
table, as follows:

SELECT namespace, attribute, value FROM mdsys.rdf_parameter
  WHERE namespace='MDSYS' 
  AND attribute = 'NULL_LITERAL';

If the NULL_LITERAL attribute has the value EXISTS, then "orardf:null" values are
present in your semantic network.

A.1.3 Workspace Manager and Virtual Private Database Desupport
Effective with Oracle Database Release 12.2, the following are no longer supported:

• Workspace Manager support for RDF data

• Virtual Private Database (VPD) support for RDF data

If an existing semantic network that contains Workspace Manager (WM) or Virtual
Private Database (VPD) data is upgraded, the RDF Semantic Graph installation will be
marked as INVALID. In addition, the MDSYS.RDF_PARAMETER table will contain a
row with description Feature not supported in current version' for the
unsupported component. To correct this situation, all existing WM and VPD data
should be dropped, and the WM and VPD components should be uninstalled.

To uninstall Workspace Manager support for RDF data:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/sdordfwm_rm.sql

• Windows: @%ORACLE_HOME%\md\admin\sdordfwm_rm.sql
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Note:

If you are in a multitenant environment, run the script with catcon.pl.
See “Running Oracle-Supplied SQL Scripts in a CDB” in Oracle
Database Administrator’s Guide.

To uninstall Virtual Private Database support for RDF data:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

EXECUTE mdsys.sem_rdfsa_dr.uninstall_vpd;

After performing the necessary uninstall operations, reset the network validity as
follows:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semvalidate.sql

• Windows: @%ORACLE_HOME%\md\admin\semvalidate.sql

Note:

If you are in a multitenant environment, run the script with catcon.pl.
See “Running Oracle-Supplied SQL Scripts in a CDB” in Oracle
Database Administrator’s Guide.

A.1.4 Spatial and Partitioning Requirements
Oracle Spatial and Graph must be installed before you can use any of the RDF and
OWL capabilities. Oracle Locator is not sufficient. For information about Spatial and
Graph and Locator, including which features are and are not included in Locator. see 
Oracle Spatial and Graph Developer's Guide.

The Partitioning option must be enabled before you can use any of the RDF and OWL
capabilities. For licensing information about the Partitioning option, see Oracle
Database Licensing Information. For usage information about partitioning, see Oracle
Database VLDB and Partitioning Guide.

A.2 Downgrading RDF Semantic Graph Support to a
Previous Release

You can downgrade the RDF Semantic Graph support, in conjunction with an Oracle
Database downgrade to Release 12.1.
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However, downgrading is strongly discouraged, except for rare cases where it is
necessary. If you downgrade to a previous release, you will not benefit from bug fixes
and enhancements that have been made in intervening releases.

• Downgrading to Release 12.1 Semantic Graph Support

A.2.1 Downgrading to Release 12.1 Semantic Graph Support
If you need to downgrade to Oracle Database Release 12.1, the RDF semantic graph
support component will be downgraded automatically when you downgrade the
database. However, any RDF or OWL data that is specific to Release 12.2 (that is,
Release 12.2 or later RDF/OWL persistent structures that are not supported in
previous versions) must be dropped before you perform the downgrade, so that the
database is compatible with Release 12.1.

To check if any Release 12.2 or later RDF data is incompatible with Release 12.1,
perform the following steps:

1. Connect to the database (Release 12.2 or later) as the SYS user with SYSDBA
privileges (SYS AS SYSDBA, and enter the SYS account password when
prompted).

2. Start SQL*Plus, and enter the following statements:

SET SERVEROUT ON
EXECUTE SDO_SEM_DOWNGRADE.CHECK_121_COMPATIBLE;

If any RDF data is incompatible with Release 12.1, the procedure generates an error
and displays a list of the incompatible data. In this case, you must perform the
following steps:

1. Remove any Release 12.2 or later release-specific RDF or OWL data if you have
not already done so, as explained earlier in this section.

2. Perform the database downgrade.

3. Connect to the Release 12.1 database as the SYS user with SYSDBA privileges
(SYS AS SYSDBA, and enter the SYS account password when prompted).

4. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/catsem.sql

• Windows: @%ORACLE_HOME%\md\admin\catsem.sql

Note:

If you are in a multitenant environment, run the script with
catcon.pl. See “Running Oracle-Supplied SQL Scripts in a CDB” in 
Oracle Database Administrator’s Guide.

If the script completes successfully, a row with the following column values is
inserted into the MDSYS.RDF_PARAMETER table:

• NAMESPACE: MDSYS

• ATTRIBUTE: SEM_VERSION

• VALUE: (string starting with 12.1)
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• DESCRIPTION: VALID

After the catsem.sql script completes successfully, Oracle semantic technologies
support for Release 11.2 is enabled and ready to use, and all Release 12.1-
compatible data is preserved.

A.3 Removing RDF Semantic Graph Support
You can remove the RDF Semantic Graph support from the database.

However, removing this support is strongly discouraged, unless you have a solid
reason for doing it. After you remove this support, no applications or database users
will be able to use any types, synonyms, or PL/SQL packages related to RDF
Semantic Graph support.

To remove the RDF Semantic Graph support from the database, perform the following
steps:

1. Connect to the database as the SYS user with SYSDBA privileges (SYS AS
SYSDBA, and enter the SYS account password when prompted).

2. Start SQL*Plus, and enter the following statement:

• Linux: @$ORACLE_HOME/md/admin/semremov.sql

• Windows: @%ORACLE_HOME%\md\admin\semremov.sql

Note:

If you are in a multitenant environment, run the script with catcon.pl.
See “Running Oracle-Supplied SQL Scripts in a CDB” in Oracle
Database Administrator’s Guide.

The semremov.sql script drops the semantic network and removes any RDF Semantic
Graph types, tables, and PL/SQL packages.

Appendix A
Removing RDF Semantic Graph Support

A-9



B
SEM_MATCH Support for Spatial Queries

This appendix provides reference information for SPARQL extension functions for
performing spatial queries in SEM_MATCH.

To use these functions, you must understand the concepts explained in Spatial
Support.

Note:

Throughout this appendix geomLiteral is used as a placeholder for
orageo:WKTLiteral, ogc:wktLiteral, and ogc:gmlLiteral, which can be
used interchangeably, in format representations and parameter descriptions.
(However, orageo:WKTLiteral or ogc:wktLiteral is used in actual
examples.)

This appendix includes the following GeoSPARQL and Oracle-specific functions:

GeoSPARQL functions:

• ogcf:boundary

• ogcf:buffer

• ogcf:convexHull

• ogcf:difference

• ogcf:distance

• ogcf:envelope

• ogcf:getSRID

• ogcf:intersection

• ogcf:relate

• ogcf:sfContains

• ogcf:sfCrosses

• ogcf:sfDisjoint

• ogcf:sfEquals

• ogcf:sfIntersects

• ogcf:sfOverlaps

• ogcf:sfTouches

• ogcf:sfWithin

• ogcf:symDifference

Oracle-specific functions:
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• orageo:aggrCentroid

• orageo:aggrConvexHull

• orageo:aggrMBR

• orageo:aggrUnion

• orageo:area

• orageo:buffer

• orageo:centroid

• orageo:convexHull

• orageo:difference

• orageo:distance

• orageo:intersection

• orageo:length

• orageo:mbr

• orageo:nearestNeighbor

• orageo:relate

• orageo:sdoDistJoin

• orageo:sdoJoin

• orageo:union

• orageo:withinDistance

• orageo:xor

• ogcf:boundary

• ogcf:buffer

• ogcf:convexHull

• ogcf:difference

• ogcf:distance

• ogcf:envelope

• ogcf:getSRID

• ogcf:intersection

• ogcf:relate

• ogcf:sfContains

• ogcf:sfCrosses

• ogcf:sfDisjoint

• ogcf:sfEquals

• ogcf:sfIntersects

• ogcf:sfOverlaps

• ogcf:sfTouches

• ogcf:sfWithin
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• ogcf:symDifference

• ogcf:union

• orageo:aggrCentroid

• orageo:aggrConvexHull

• orageo:aggrMBR

• orageo:aggrUnion

• orageo:area

• orageo:buffer

• orageo:centroid

• orageo:convexHull

• orageo:difference

• orageo:distance

• orageo:getSRID

• orageo:intersection

• orageo:length

• orageo:mbr

• orageo:nearestNeighbor

• orageo:relate

• orageo:sdoDistJoin

• orageo:sdoJoin

• orageo:union

• orageo:withinDistance

• orageo:xor

B.1 ogcf:boundary
Format

ogcf:boundary(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the closure of the boundary of geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.
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See also the OGC GeoSPARQL specification.

Example

The following example finds the boundaries of U.S. Congressional district polygons.

SELECT cb
FROM table(sem_match(
'SELECT (ogcf:boundary(?cgeom) AS ?cb)
 WHERE
 { ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.2 ogcf:buffer
Format

ogcf:buffer(geom : geomLiteral, radius : xsd:decimal, units : xsd:anyURI) :
ogc:wktLiteral

Description

Returns a buffer polygon the specified radius (measured in units) around a geometry.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

radius
Radius value used to define the buffer.

units
Unit of measurement: a URI of the form <http://xmlns.oracle.com/rdf/geo/uom/
{SDO_UNIT}> (for example, <http://xmlns.oracle.com/rdf/geo/uom/KM>). Any
SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table will be recognized. See
the section about unit of measurement support in Oracle Spatial and Graph
Developer's Guide for more information about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.
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Example

The following example finds the U.S. Congressional district polygons that are within a
100 kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (
     ogcf:sfWithin(?cgeom, 
       ogcf:buffer("POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
                     100, 
                     <http://xmlns.oracle.com/rdf/geo/uom/KM>)) }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.3 ogcf:convexHull
Format

ogcf:convexHull(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a polygon geometry that represents the convex hull of geom. (The convex hull
is a simple convex polygon that completely encloses the geometry object, using as few
straight-line sides as possible to create the smallest polygon that completely encloses
the geometry object.)

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose convex
hull contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
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   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfContains(ogcf:convexHull(?cgeom), 
      "POINT(-71.46444 42.7575)"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.4 ogcf:difference
Format

ogcf:difference(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological difference (MINUS operation) of
geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose centroid is
within the difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfWithin(orageo:centroid(?cgeom), 
        ogcf:difference("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                         -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral,
                        "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                         -83.2 34.5, -83.2 34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
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   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.5 ogcf:distance
Format

ogcf:distance(geom1 : geomLiteral, geom2 : geomLiteral, units : xsd:anyURI) :
xsd:decimal

Description

Returns the distance in units between the two closest points of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

units
Unit of measurement: a URI of the form <http://xmlns.oracle.com/rdf/geo/uom/
{SDO_UNIT}> (for example, <http://xmlns.oracle.com/rdf/geo/uom/KM>). Any
SDO_UNIT value from the MDSYS.SDO_DIST_UNITS table will be recognized. See
the section about unit of measurement support in Oracle Spatial and Graph
Developer's Guide for more information about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example orders U.S. Congressional districts based on distance from a
specified point.

SELECT name, cdist
FROM table(sem_match(
'SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
 }
 ORDER BY ASC(ogcf:distance(?cgeom,
                "POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
                <http://xmlns.oracle.com/rdf/geo/uom/KM>))'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
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   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '))
ORDER BY sem$rownum;

B.6 ogcf:envelope
Format

ogcf:envelope(geom : geomLiteral) : ogc:wktLiteral

Description

Returns the minimum bounding rectangle (MBR) of geom, that is, the single rectangle
that minimally encloses geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose minimum
bounding rectangle contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfContains(ogcf:envelope(?cgeom), 
      "POINT(-71.46444 42.7575)"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.7 ogcf:getSRID
Format

ogcf:getSRID(geom : geomLiteral) : xsd:anyURI
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Description

Returns the spatial reference system URI for geom.

Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds spatial reference system URIs for U.S. Congressional
district polygons.

SELECT csrid
FROM table(sem_match(
'SELECT (ogcf:getSRID(?cgeom) AS ?csrid)
 WHERE
 { ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.8 ogcf:intersection
Format

ogcf:intersection (geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological intersection (AND operation) of geom1
and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.
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Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose centroid is
within the intersection of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfWithin(orageo:centroid(?cgeom), 
        ogcf:intersection("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                           -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral,
                          "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                           -83.2 34.5, -83.2 34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.9 ogcf:relate
Format

ogcf:relate(geom1 : geomLiteral, geom2 : geomLiteral, pattern-matrix : xsd:string) :
xsd:boolean

Description

Returns true if the topological relationship between geom1 and geom2 satisfies the
specified DE-9IM pattern-matrix. Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

pattern-matrix
A dimensionally extended 9-intersection model (DE-9IM) intersection pattern string
consisting of T (true) and F (false) values. A DE-9IM pattern string describes the
intersections between the interiors, boundaries, and exteriors of two geometries.
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Usage Notes

When invoking ogcf:relate with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:relate spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:relate spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See the OGC Simple Features Specification (OGC 06-103r3) for a detailed description
of DE-9IM intersection patterns. See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district that contains a specified
point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:relate(?cgeom, 
      "POINT(-71.46444 42.7575)"^^ogc:wktLiteral,
      "TTTFFTFFT")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '
));

B.10 ogcf:sfContains
Format

ogcf:sfContains(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially contains geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.
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geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfContains spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfContains spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially contain
a constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfContains(?cgeom, 
             "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                       -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.11 ogcf:sfCrosses
Format

ogcf:sfCrosses(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially crosses geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.
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geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfCrosses spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfCrosses spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially cross a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfCrosses(?cgeom, 
             "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                       -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.12 ogcf:sfDisjoint
Format

ogcf:fDisjoint(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are spatially disjoint as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.
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geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

The ogcf:sfDisjoint filter cannot use a spatial index for evaluation, so performance
will probably be much worse than with other simple features spatial functions.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially
disjoint from a constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfDisjoint(?cgeom, 
             "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                       -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.13 ogcf:sfEquals
Format

ogcf:sfEquals(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are spatially equal as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.
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For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfEquals spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfEquals spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially
equal to a constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfEquals(?cgeom, 
             "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                       -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.14 ogcf:sfIntersects
Format

ogcf:sfIntersects(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries are not disjoint as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.
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For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfIntersects spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfIntersects spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that intersect a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfIntersects(?cgeom, 
             "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                       -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.15 ogcf:sfOverlaps
Format

ogcf:sfOverlaps(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 spatially overlaps geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.

Appendix B
ogcf:sfOverlaps

B-16



For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfOverlaps spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfOverlaps spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially overlap
a constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfOverlaps(?cgeom, 
             "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                       -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.16 ogcf:sfTouches
Format

ogcf:sfTouches(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if the two geometries spatially touch as defined by the OGC Simple
Features specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.
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For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfTouches spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfTouches spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that spatially touch a
constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfTouches(?cgeom, 
             "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                       -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.17 ogcf:sfWithin
Format

ogcf:sfWithin(geom1 : geomLiteral, geom2 : geomLiteral) : xsd:boolean

Description

Returns true if geom1 is spatially within geom2 as defined by the OGC Simple Features
specification (OGC 06-103r3). Returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

When invoking this function with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.
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For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the ogcf:sfWithin spatial filter).

It is recommended to use a LEADING(?var) HINT0 hint when the query involves a
restrictive ogcf:sfWithin spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds U.S. Congressional district polygons that are spatially
within a constant polygon.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfWithin(?cgeom, 
             "Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                       -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral)) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.18 ogcf:symDifference
Format

ogcf:symDifference(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological symmetric difference (XOR
operation) of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Appendix B
ogcf:symDifference

B-19



Example

The following example finds the U.S. Congressional district polygons that are within a
100 kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfWithin(orageo:centroid(?cgeom), 
      ogcf:symDifference("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                          -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral,
                          "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                          -83.2 34.5, -83.2 34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.19 ogcf:union
Format

ogcf:union(geom1 : geomLiteral, geom2 : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry object that is the topological union (OR operation) of geom1 and
geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the OGC GeoSPARQL specification.

Example

The following example finds the U.S. Congressional district polygons whose centroid is
within the union of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
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   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (ogcf:sfWithin(orageo:centroid(?cgeom), 
        ogcf:union("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                    -83.6 34.5, -83.6 34.1))"^^ogc:wktLiteral,
                   "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                    -83.2 34.5, -83.2 34.3))"^^ogc:wktLiteral))) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, null, ' ALLOW_DUP=T '));

B.20 orageo:aggrCentroid
Format

orageo:aggrCentroid(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the centroid of the group of specified geometry
objects. (The centroid is also known as the "center of gravity.")

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_AGGR_CENTROID function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the centroid of all the U.S. Congressional district
polygons.

SELECT centroid
FROM table(sem_match(
'select (orageo:aggrCentroid(?cgeom) as ?centroid)
 {?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));
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B.21 orageo:aggrConvexHull
Format

orageo:aggrConvexhull(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the convex hull of the group of specified geometry
objects.. (The convex hull is a simple convex polygon that, for this funciton,
completely encloses the group of geometry objects, using as few straight-line sides as
possible to create the smallest polygon that completely encloses the geometry
objects.)

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_AGGR_CONVEXHULL function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the convex hull of all the U.S. Congressional district
polygons.

SELECT chull
FROM table(sem_match(
'select (orageo:aggrConvexhull(?cgeom) as ?chull)
 { 
   ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.22 orageo:aggrMBR
Format

orageo:aggrMBR(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the minimum bounding rectangle (MBR) of the group
of specified geometry objects.
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Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_AGGR_MBR function in Oracle Spatial and Graph Developer's
Guide.

Example

The following example finds the MBR of all the U.S. Congressional district polygons.

SELECT mbr
FROM table(sem_match(
'select (orageo:aggrMBR(?cgeom) as ?mbr)
 { 
   ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.23 orageo:aggrUnion
Format

orageo:aggrUnion(geom : geomLiteral) : ogc:wktLiteral

Description

Returns a geometry literal that is the topological union of the group of specified
geometry objects.

Parameters

geom
Geometry objects. Specified as a query variable.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_UNION function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the union of all the U.S. Congressional district polygons.

SELECT u
FROM table(sem_match(
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'select (orageo:aggrUnion(?cgeom) as ?u)
 { 
   ?cdist orageo:hasExactGeometry ?cgeom } '
,sem_models('gov_all_vm'), null 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '));

B.24 orageo:area
Format

orageo:area(geom1 : geomLiteral, unit : Literal) : xsd:decimal

Description

Returns the area of geom1 in terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=SQ_KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_AREA function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons with areas
greater than 10,000 square kilometers.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:area(?cgeom, "unit=SQ_KM") > 10000) }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));
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B.25 orageo:buffer
Format

orageo:buffer(geom1 : geomLiteral, distance : xsd:decimal, unit : Literal) : geomLiteral

Description

Returns a buffer polygon at a specified distance around or inside a geometry.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

distance
Distance value. Distance value. If the value is positive, the buffer is generated around
geom1; if the value is negative (valid only for polygons), the buffer is generated inside
geom1.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_BUFFER function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons that are
completely inside a 100 kilometer buffer around a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (
     orageo:relate(?cgeom, 
       orageo:buffer("POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
                     100, "unit=KM"),
      "mask=inside")) }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));
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B.26 orageo:centroid
Format

orageo:centroid(geom1 : geomLiteral) : geomLiteral

Description

Returns a point geometry that is the centroid of geom1. (The centroid is also known as
the "center of gravity.")

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

For an input geometry consisting of multiple objects, the result is weighted by the area
of each polygon in the geometry objects. If the geometry objects are a mixture of
polygons and points, the points are not used in the calculation of the centroid. If the
geometry objects are all points, the points have equal weight.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_CENTROID function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons with centroids
within 200 kilometers of a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:withinDistance(orageo:centroid(?cgeom), 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "distance=200 unit=KM")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));

B.27 orageo:convexHull
Format

orageo:convexHull(geom1 : geomLiteral) : geomLiteral
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Description

Returns a polygon-type object that represents the convex hull of geom1. (The convex
hull is a simple convex polygon that completely encloses the geometry object, using
as few straight-line sides as possible to create the smallest polygon that completely
encloses the geometry object.)

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

A convex hull is a convenient way to get an approximation of a complex geometry
object.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_CONVEX_HULL function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose convex
hull contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:convexHull(?cgeom), 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "mask=contains")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));

B.28 orageo:difference
Format

orageo:difference(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological difference (MINUS operation) of
geom1 and geom2.
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Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_UNION function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is
inside the difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:centroid(?cgeom), 
      orageo:difference("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                         -83.6 34.5, -83.6 34.1))"^^orageo:WKTLiteral,
                        "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                         -83.2 34.5, -83.2 34.3))"^^orageo:WKTLiteral),
      "mask=inside")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));

B.29 orageo:distance
Format

orageo:distance(geom1 : geomLiteral, geom2 : geomLiteral, unit : Literal) :
xsd:decimal

Description

Returns the distance between the nearest pair of points or segments of geom1 and
geom2 in terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.
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geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

Use orageo:withinDistance instead of orageo:distance whenever possible, because 
orageo:withinDistance has a more efficient index-based implementation.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_DISTANCE function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the ten nearest U.S. Congressional districts to a specified
point and orders them by distance from the point.

SELECT name, cdist
FROM table(sem_match(
'SELECT ?name ?cdist
 WHERE
 { # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:nearestNeighbor(?cgeom, 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "sdo_num_res=10")) }
 ORDER BY ASC(orageo:distance(?cgeom,
                "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
                "unit=KM"))'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '))
ORDER BY sem$rownum;

B.30 orageo:getSRID
Format

orageo:getSRID(geom : geomLiteral) : xsd:anyURI

Description

Returns the oracle spatial reference system (SRID) URI for geom.
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Parameters

geom
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

Example

The following example finds spatial reference system URIs for U.S. Congressional
district polygons.

SELECT csrid
FROM table(sem_match(
'SELECT (orageo:getSRID(?cgeom) AS ?csrid)
 WHERE
 { ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom }'
,sem_models('gov_all_vm'), null 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/')
   )
,null, null, ' ALLOW_DUP=T '));

B.31 orageo:intersection
Format

orageo:intersection(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological intersection (AND operation) of geom1
and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_INTERSECTION function in Oracle Spatial and
Graph Developer's Guide.
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Example

The following example finds the U.S. Congressional district polygons whose centroid is
inside the intersection of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:centroid(?cgeom), 
      orageo:intersection("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                           -83.6 34.5, -83.6 34.1))"^^orageo:WKTLiteral,
                          "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                           -83.2 34.5, -83.2 34.3))"^^orageo:WKTLiteral),
      "mask=inside")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));

B.32 orageo:length
Format

orageo:length(geom1 : geomLiteral, unit : Literal) : xsd:decimal

Description

Returns the length or perimeter of geom1 in terms of the specified unit of measure.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_LENGTH function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons with lengths
(perimeters) greater than 1000 kilometers.
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SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:legnth(?cgeom, "unit=KM") > 1000) }'
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));

B.33 orageo:mbr
Format

orageo:mbr(geom1 : geomLiteral) : geomLiteral

Description

Returns the minimum bounding rectangle of geom1, that is, the single rectangle that
minimally encloses geom1.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_MBR function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose minimum
bounding rectangle contains a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:mbr(?cgeom), 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "mask=contains")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));
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B.34 orageo:nearestNeighbor
Format

orageo:nearestNeighbor(geom1: geomLiteral, geom2 : geomLiteral, param : Literal) :
xsd:boolean

Description

Returns true if geom1 is a nearest neighbor of geom2, where the size of the nearest
neighbors set is specified by param; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Determines the behavior of the operator. See the Usage Notes for the available
keyword-value pairs.

Usage Notes

In the param parameter, the available keyword-value pairs are:

• distance=n specifies the maximum allowable distance for the nearest neighbor
search.

• sdo_num_res=n specifies the size of the set for the nearest neighbor search.

• unit=unit specifies the unit of measurement to use with distance value. If you do
not specify a value, the unit of measurement associated with the data is used.

geom1 must be a local variable (that is, a variable that appears in the basic graph
pattern that contains the orageo:nearestNeighbor spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a
restrictive orageo:relate spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_NN operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the ten nearest U.S. Congressional districts to a specified
point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
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   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:nearestNeighbor(?cgeom, 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "sdo_num_res=10")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));

B.35 orageo:relate
Format

orageo:relate(geom1: geomLiteral, geom2 : geomLiteral, param : Literal) : xsd:boolean

Description

Returns true if geom1 and geom2 satisfy the topological spatial relation specified by the
param parameter; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a list of mask relationships to check. See the list of keywords in the Usage
Notes.

Usage Notes

The following param values (mask relationships) can be tested:

• ANYINTERACT: Returns TRUE if the objects are not disjoint.

• CONTAINS: Returns CONTAINS if the second object is entirely within the first
object and the object boundaries do not touch; otherwise, returns FALSE.

• COVEREDBY: Returns COVEREDBY if the first object is entirely within the
second object and the object boundaries touch at one or more points; otherwise,
returns FALSE.

• COVERS: Returns COVERS if the second object is entirely within the first object
and the boundaries touch in one or more places; otherwise, returns FALSE.

• DISJOINT: Returns DISJOINT if the objects have no common boundary or interior
points; otherwise, returns FALSE.

• EQUAL: Returns EQUAL if the objects share every point of their boundaries and
interior, including any holes in the objects; otherwise, returns FALSE.

• INSIDE: Returns INSIDE if the first object is entirely within the second object and
the object boundaries do not touch; otherwise, returns FALSE.
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• ON: Returns ON if the boundary and interior of a line (the first object) is completely
on the boundary of a polygon (the second object); otherwise, returns FALSE.

• OVERLAPBDYDISJOINT: Returns OVERLAPBDYDISJOINT if the objects
overlap, but their boundaries do not interact; otherwise, returns FALSE.

• OVERLAPBDYINTERSECT: Returns OVERLAPBDYINTERSECT if the objects
overlap, and their boundaries intersect in one or more places; otherwise, returns
FALSE.

• TOUCH: Returns TOUCH if the two objects share a common boundary point, but
no interior points; otherwise, returns FALSE.

Values for param can be combined using the logical Boolean operator OR. For
example, 'INSIDE + TOUCH' returns INSIDE+TOUCH if the relationship between the
geometries is INSIDE or TOUCH or both INSIDE and TOUCH; it returns FALSE if the
relationship between the geometries is neither INSIDE nor TOUCH.

When invoking orageo:relate with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the orageo:relate spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a
restrictive orageo:relate spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_RELATE operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds the U.S. Congressional district that contains a specified
point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(?cgeom, 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      "mask=contains")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '
));
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B.36 orageo:sdoDistJoin
Format

orageo:sdoDistJoin(geom1 : geomLiteral, geom2 : geomLiteral, param : Literal) :
xsd:boolean

Description

Performs a spatial join based on distance between two geometries. Returns true if the
distance between geom1 and geom2 is within the given value specified in param; returns
false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a distance value and unit of measure to use for the distance-based spatial
join. The distance value is added to the tolerance value of the associated spatial
index. For example if "distance=100 and unit=m" is used with a tolerance value of
10 meters, then orageo:sdoDistJoin returns true if the distance between two
geometries is no more than 110 meters.

Usage Notes

orageo:sdoDistJoin should be used when performing a distance-based spatial join
between two large geometry collections. When performing a distance-based spatial
join between one small geometry collection and one large geometry collection,
invoking orageo:withinDistance with the small geometry collection as the first
argument will usually give better performance than orageo:sdoDistJoin.

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_JOIN operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds pairs of U.S. Congressional district polygons that are
within 100 meters of each other.

SELECT cdist1, cdist2
FROM table(sem_match(
'{ ?cdist1 orageo:hasExactGeometry ?cgeom1 .
   ?cdist2 orageo:hasExactGeometry ?cgeom2 
   FILTER (orageo:sdoDistJoin(?cgeom1, ?cgeom2, 
      "distance=100 unit=m")) } '
,sem_models('gov_all_vm'), null 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
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,null, null, ' ALLOW_DUP=T '
));

B.37 orageo:sdoJoin
Format

orageo:sdoJoin(geom1 : geomLiteral, geom2 : geomLiteral, param : Literal) :
xsd:boolean

Description

Performs a spatial join based on one or more topological relationships. Returns true if
geom1 and geom2 satisfy the spatial relationship specified by param; returns false
otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

param
Specifies a list of mask relationships to check. The topological relationship of
interest.Valid values are 'mask=<value>' where <value> is one or more of the mask
values that are valid for the SDO_RELATE operator (TOUCH,
OVERLAPBDYDISJOINT, OVERLAPBDYINTERSECT, EQUAL, INSIDE,
COVEREDBY, CONTAINS, COVERS, ANYINTERACT, ON). Multiple masks are
combined with the logical Boolean operator OR (for example, "mask=inside+touch").

Usage Notes

orageo:sdoJoin should be used when performing a spatial join between two large
geometry collections. When performing a spatial join between one small geometry
collection and one large geometry collection, invoking orageo:relate with the small
geometry collection as the first argument will usually give better performance than
orageo:sdoJoin.

See Spatial Support for information about representing, indexing, and querying spatial
data in RDF.

See also the SDO_JOIN operator in Oracle Spatial and Graph Developer's Guide.

Example

The following example finds pairs of U.S. Congressional district polygons that have
any spatial interaction.

SELECT cdist1, cdist2
FROM table(sem_match(
'{ ?cdist1 orageo:hasExactGeometry ?cgeom1 .
   ?cdist2 orageo:hasExactGeometry ?cgeom2 
   FILTER (orageo:sdoJoin(?cgeom1, ?cgeom2, 
      "mask=anyinteract")) } '
,sem_models('gov_all_vm'), null 
,sem_aliases(
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   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, ' ALLOW_DUP=T '
));

B.38 orageo:union
Format

orageo:union(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological union (OR operation) of geom1 and
geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_UN ION function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is
inside the union of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:centroid(?cgeom), 
      orageo:union("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                    -83.6 34.5, -83.6 34.1))"^^orageo:WKTLiteral,
                   "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                    -83.2 34.5, -83.2 34.3))"^^orageo:WKTLiteral),
      "mask=inside")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));
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B.39 orageo:withinDistance
Format

orageo:withinDistance(geom1 : geomLiteral, geom2 : geomLiteral, distance :
xsd:decimal, unit : Literal) : xsd:boolean

Description

Returns true if the distance between geom1 and geom2 is less than or equal to
distance when measured in unit; returns false otherwise.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

distance
Distance value.

unit
Unit of measurement: a quoted string with an SDO_UNIT value from the
MDSYS.SDO_DIST_UNITS table (for example, "unit=KM"). See the section about
unit of measurement support in Oracle Spatial and Graph Developer's Guide for more
information about unit of measurement specification.

Usage Notes

When invoking this function with a query variable and a constant geometry, always
use the query variable as the first parameter and the constant geometry as the second
parameter.

For best performance, geom1 should be a local variable (that is, a variable that appears
in the basic graph pattern that contains the orageo:withinDistance spatial filter).

It is a good idea to use a 'LEADING(?var)' HINT0 hint when your query involves a
restrictive orageo:withinDistance spatial filter on ?var.

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_WITHIN_DISTANCE operator in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional districts that are within 100
kilometers of a specified point.

SELECT name, cdist
FROM table(sem_match(
'{ # HINT0={LEADING(?cgeom)}
   ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
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   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:withinDistance(?cgeom, 
      "POINT(-71.46444 42.7575)"^^orageo:WKTLiteral,
      100, "KM")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));

B.40 orageo:xor
Format

orageo:xor(geom1 : geomLiteral, geom2 : geomLiteral) : geomLiteral

Description

Returns a geometry object that is the topological symmetric difference (XOR
operation) of geom1 and geom2.

Parameters

geom1
Geometry object. Specified as a query variable or a constant geomLiteral value.

geom2
Geometry object. Specified as a query variable or a constant geomLiteral value.

Usage Notes

See Spatial Support for information about representing , indexing, and querying spatial
data in RDF.

See also the SDO_GEOM.SDO_XOR function in Oracle Spatial and Graph
Developer's Guide.

Example

The following example finds the U.S. Congressional district polygons whose centroid is
inside the symmetric difference of two specified polygons.

SELECT name, cdist
FROM table(sem_match(
'{ ?person usgovt:name ?name .
   ?person pol:hasRole ?role .
   ?role pol:forOffice ?office .
   ?office pol:represents ?cdist .
   ?cdist orageo:hasExactGeometry ?cgeom 
   FILTER (orageo:relate(orageo:centroid(?cgeom), 
      orageo:xor("Polygon((-83.6 34.1, -83.2 34.1, -83.2 34.5, 
                  -83.6 34.5, -83.6 34.1))"^^orageo:WKTLiteral,
                 "Polygon((-83.2 34.3, -83.0 34.3, -83.0 34.5, 
                  -83.2 34.5, -83.2 34.3))"^^orageo:WKTLiteral),
      "mask=inside")) } '
,sem_models('gov_all_vm'), null, 
,sem_aliases(
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   sem_alias('usgovt','http://www.rdfabout.com/rdf/schema/usgovt/'),
   sem_alias('pol','http://www.rdfabout.com/rdf/schema/politico/'))
,null, null, null, ' ALLOW_DUP=T '));

Appendix B
orageo:xor

B-41



Glossary

apply pattern
Part of a data access constraint defines additional graph patterns to be applied on the
resources that match the match pattern before they can be used to construct the query
results. See also: match pattern

basic graph pattern (BGP)
A set of triple patterns. From the W3C SPARQL Query Language for RDF
Recommendation: "SPARQL graph pattern matching is defined in terms of combining
the results from matching basic graph patterns. A sequence of triple patterns
interrupted by a filter comprises a single basic graph pattern. Any graph pattern
terminates a basic graph pattern."

clique
A graph in which every node of it is connected to, bidirectionally, every other node in
the same graph.

Cytoscape
An open source bioinformatics software platform for visualizing molecular interaction
networks and integrating these interactions with gene expression profiles and other
state data. (See http://www.cytoscape.org/.) An RDF viewer (available for
download) is provided as a Cytoscape plug-in.

entailment
An object containing precomputed triples that can be inferred from applying a specified
set of rulebases to a specified set of models. See also: rulebase

extractor policy
A named dictionary entity that determines the characteristics of a semantic index that
is created using the policy. Each extractor policy refers, directly or indirectly, to an
instance of an extractor type.

graph pattern
A combination of triples constructed by combining triple patterns in various ways,
including conjunction of triple patterns into groups, optionally using filter conditions,
and then combining such groups using connectors similar to disjunctions, outer-joins,
and so on. SPARQL querying is based around graph pattern matching.

Glossary-1

http://www.cytoscape.org/


inferencing
The ability to make logical deductions based on rules. Inferencing enables you to
construct queries that perform semantic matching based on meaningful relationships
among pieces of data, as opposed to just syntactic matching based on string or other
values. Inferencing involves the use of rules, either supplied by Oracle or user-defined,
placed in rulebases.

information extractor
An application that processes unstructured documents and extract meaningful
information from them, often using natural-language processing engines with the aid of
ontologies.

match pattern
Part of a constraint that determines the type of access restriction it enforces and binds
one or more variables to the corresponding data instances accessed in the user query.
See also: apply pattern

model
A user-created semantic structure that has a model name, and refers to triples stored
in a specified table column. Examples in this manual are the Articles and Family
models.

ontology
A shared conceptualization of knowledge in a particular domain. It consists of a
collection of classes, properties, and optionally instances. Classes are typically related
by class hierarchy (subclass/ superclass relationship). Similarly, the properties can be
related by property hierarchy (subproperty/ superproperty relationship). Properties can
be symmetric or transitive, or both. Properties can also have domain, ranges, and
cardinality constraints specified for them.

OWLPrime
An Oracle-defined subset of OWL capabilities; refers to the elements of the OWL
standard supported by the RDF Semantic Graph native inferencing engine.

RDF Semantic Graph support for Apache Jena
An Oracle-supplied adapter (available for download) for Apache Jena, which is a Java
framework for building Semantic Web applications.

reasoning
See inferencing

rule
An object that can be applied to draw inferences from semantic data.

rulebase
An object that can contain rules. See also: rule

Glossary

Glossary-2



rules index
See: entailment

semantic index
An index of type MDSYS.SEMCONTEXT, created on textual documents stored in a
column of a table, and used with information extractors to locate and extract
meaningful information from unstructured documents. See also: information extractor

Simple Knowledge Organization System (SKOS)
A data model that is especially useful for representing thesauri, classification schemes,
taxonomies, and other types of controlled vocabulary. SKOS is based on standard
semantic web technologies including RDF and OWL, which makes it easy to define the
formal semantics for those knowledge organization systems and to share the
semantics across applications.

triple pattern
Similar to an RDF triple, but allows use of a variable in place of any of the three
components (subject, predicate, or object). Triple patterns are basic elements in graph
patterns used in SPARQL queries. A triple pattern used in a query against an RDF
graph is said to match if, substitution of RDF terms for the variables present in the
triple pattern, creates a triple that is present in the RDF graph. See also: graph pattern
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Symbols
.gv files (DOT files)

outputting, 6-46

A
ADD_DATATYPE_INDEX procedure, 10-3
ADD_DEPENDENT_POLICY procedure, 13-1
ADD_SEM_INDEX procedure, 10-4
Advanced Compression, 6-10
aggregates

user-defined, 7-28
aliases

SEM_ALIASES and SEM_ALIAS data types,
1-23, 4-7

ALL_AJ_HASH
query option for SEM_MATCH, 1-24

ALL_AJ_MERGE
query option for SEM_MATCH, 1-24

ALL_AJ_NL
query option for SEM_MATCH, 1-24

ALL_BGP_HASH
query option for SEM_MATCH, 1-24

ALL_BGP_NL
query option for SEM_MATCH, 1-24

ALL_LINK_HASH
query option for SEM_MATCH, 1-25

ALL_LINK_NL
query option for SEM_MATCH, 1-25

ALL_MAX_PP_DEPTH(n)
query option for SEM_MATCH, 1-25

ALLOW_DUP=T
query option for SEM_MATCH, 1-25

ALTER_DATATYPE_INDEX procedure, 10-5
ALTER_ENTAILMENT procedure, 10-6
ALTER_MODEL procedure, 10-7
ALTER_SEM_INDEX_ON_ENTAILMENT

procedure, 10-7
ALTER_SEM_INDEX_ON_MODEL procedure,

10-8
ANALYZE_ENTAILMENT procedure, 10-9
ANALYZE_MODEL procedure, 10-11
APPLY_OLS_POLICY procedure, 14-1
APPLY_POLICY_TO_APP_TAB procedure, 11-1

B
BASE keyword

global prefix, 1-50
basic graph pattern (BGP), 1-24
batch (bulk) loading, 10-16, 10-72
batch loading semantic data, 1-92
best effort

specifying for SPARQL query, 6-91
BGP (basic graph pattern), 1-24
bind variables

using with the
SEM_APIS.SPARQL_TO_SQL
function, 1-84

blacklist, 6-12
blank nodes, 1-9

CLEANUP_BNODES procedure, 10-18
SPARQL update considerations, 1-125

BUILD_PG_RDFVIEW_INDEXES procedure,
10-13

bulk loading, 10-16, 10-72
bulk loading semantic data, 1-89
BULK_LOAD_FROM_STAGING_TABLE

procedure, 10-16

C
Calais

configuring the Calais extractor type, 4-13
canonical forms, 1-8
catsem.sql script, A-2
change tracking

disabling, 10-45
enabling, 10-54
getting information, 10-61

CLEANUP_BNODES procedure, 10-18
CLEANUP_FAILED procedure, 10-19
client identifiers, 6-10
cliques (sameAs), 2-12
COMPOSE_RDF_TERM function, 10-20
connection pooling

support in RDF Semantic Graph support for
Apache Jena, 6-48

CONSTRUCT_STRICT=T
query option for SEM_MATCH, 1-26
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CONSTRUCT_UNIQUE=T
query option for SEM_MATCH, 1-26

constructors for semantic data, 1-20
convert_old_rdf_data procedure, A-3, A-5
CONVERT_TO_GML311_LITERAL procedure,

10-22
CONVERT_TO_WKT_LITERAL procedure,

10-23
corpus-centric inference, 4-18
CREATE_ENTAILMENT procedure, 10-24
CREATE_PG_RDFVIEW procedure, 10-32
CREATE_POLICY procedure, 13-2
CREATE_RDFVIEW_MODEL procedure, 10-34
CREATE_RULEBASE procedure, 10-36
CREATE_SEM_MODEL procedure, 10-37
CREATE_SEM_NETWORK procedure, 10-38
CREATE_SOURCE_EXTERNAL_TABLE

procedure, 10-39
CREATE_VIRTUAL_MODEL procedure, 10-42
cross-site request forgery (CSRF) protection,

6-16
CSRF (cross-site request forgery) protection,

6-16

D
data migration

required after upgrade, A-4
data type indexes

adding, 10-3
altering, 10-5
dropping, 10-46
SEM_DTYPE_INDEX_INFO view, 1-104
using, 1-102

data types
for literals, 1-8

data types for semantic data, 1-20
default.xslt file

customizing, 6-92
DELETE_ENTAILMENT_STATS procedure,

10-44
DELETE_MODEL_STATS procedure, 10-44
DELETE_NETWORK_STATS procedure, 12-1
demo files

semantic data, 1-127
DISABLE_CHANGE_TRACKING procedure,

10-45
DISABLE_INC_INFERENCE procedure, 10-46
DISABLE_NULL_EXPR_JOIN

query option for SEM_MATCH, 1-26
DISABLE_OLS_POLICY procedure, 14-4
DISABLE_ORDER_COL option, 1-126
discussion forum

RDF Semantic Graph, 1-137
document-centric inference, 4-18

documents
semantic indexing for, 4-1

DOT files
outputting, 6-46

downgrading
RDF semantic graph support, A-8

downloads
RDF Semantic Graph, 1-137

DROP_DATATYPE_INDEX procedure, 10-46
DROP_ENTAILMENT procedure, 10-47
DROP_PG_RDFVIEW procedure, 10-48
DROP_PG_RDFVIEW_INDEXES procedure,

10-49
DROP_POLICY procedure, 13-3
DROP_RDFVIEW_MODEL procedure, 10-49
DROP_RULEBASE procedure, 10-50
DROP_SEM_INDEX procedure, 10-50
DROP_SEM_MODEL procedure, 10-51
DROP_SEM_NETWORK procedure, 10-52
DROP_USER_INFERENCE_OBJS procedure,

10-53
DROP_VIRTUAL_MODEL procedure, 10-53
duplicate triples

checking for, 1-8
removing from model, 10-77, 10-79

E
ENABLE_CHANGE_TRACKING procedure,

10-54
ENABLE_INC_INFERENCE procedure, 10-55
ENABLE_OLS_POLICY procedure, 14-5
ENABLE_SYNTAX_CHECKING optimizer hint,

2-8
entailment

invalid status, 1-24
entailment rules, 1-10
entailments, 1-12

altering, 10-6
deleting if in failed state, 10-19
incomplete status, 1-24, 2-21
invalid status, 2-21
SEM_RULES_INDEX_DATASETS view,

1-13
SEM_RULES_INDEX_INFO view, 1-13

ESCAPE_CLOB_TERM procedure, 10-55
ESCAPE_CLOB_VALUE procedure, 10-56
ESCAPE_RDF_TERM procedure, 10-57
ESCAPE_RDF_VALUE procedure, 10-58
examples

Java (on Oracle Technology Network), 1-127
PL/SQL, 1-127

EXPORT_ENTAILMENT_STATS procedure,
10-58

EXPORT_MODEL_STATS procedure, 10-59
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EXPORT_NETWORK_STATS procedure, 12-2
EXPORT_RDFVIEW_MODEL procedure, 10-60
exporting semantic data, 1-88
external documents

indexing, 4-11
external table

creating, 10-39
extractor policies, 4-5

RDFCTX_POLICIES view, 4-19
extractors

information, 4-3
policies, 4-5

F
failed state

rulebase or entailment, 10-19
federated queries, 1-62, 6-30
filter

attribute of SEM_MATCH, 1-24, 4-7
FINAL_VALUE_HASH

query option for SEM_MATCH, 1-26
FINAL_VALUE_NL

query option for SEM_MATCH, 1-26
functions

user-defined, 7-28
Fuseki server

configuring dynamic SPARQL endpoint, 6-12

G
GATE (General Architecture for Text

Engineering)
sample Java implementation, 4-14
using, 4-13

GATHER_STATS procedure, 12-3
General Architecture for Text Engineering

(GATE)
sample Java implementation, 4-14
using, 4-13

geometry literal, 1-71
GET_CHANGE_TRACKING_INFO procedure,

10-61
GET_INC_INF_INFO procedure, 10-62
GET_MODEL_ID function, 10-63
GET_MODEL_NAME function, 10-63
GET_TRIPLE_ID function, 10-64
GETV$DATETIMETZVAL function, 10-65
GETV$DATETZVAL function, 10-66
GETV$NUMERICVAL function, 10-67
GETV$STRINGVAL function, 10-68
GETV$TIMETZVAL function, 10-69
global prefix (BASE keyword), 1-50
GRAPH_MATCH_UNNAMED=T

query option for SEM_MATCH, 1-26

graphs
attribute of SEM_MATCH, 1-27

H
HINT0

query option for SEM_MATCH, 1-26
HTTP_METHOD=POST_PAR

query option for SEM_MATCH, 1-26

I
IMPORT_ENTAILMENT_STATS procedure,

10-70
IMPORT_MODEL_STATS procedure, 10-70
IMPORT_NETWORK_STATS procedure, 12-4
incremental inference, 2-14

disabling, 10-46
enabling, 10-55

incremental inferencing
getting information, 10-62

index_status
attribute of SEM_MATCH, 1-24, 2-21

inf_ext_user_func_name parameter, 7-2
inferencing, 1-9

user-defined, 7-1
information extractors, 4-3
inverseOf keyword

using to force use of semantic index, 2-24
IS_TRIPLE function, 10-71

J
Java examples

GATE listener, 4-14
OTN RDF Semantic Graph page, 1-127

JavaScript Object Notation (JSON) format
support, 6-60

Join Push Down, 1-63
Joseki client aspplications

cross-site request forgery (CSRF) protection,
6-17

Joseki server
cross-site request forgery (CSRF) protection,

6-16
Joseki servlet

configuring dynamic SPARQL endpoint, 6-13
JSON format support, 6-60

L
literals

data types for, 1-8
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load operations
SPARQL update considerations, 1-124

LOAD_INTO_STAGING_TABLE procedure,
10-72

loading semantic data, 1-88
bulk, 10-16, 10-72

long literals
SPARQL update considerations, 1-125

LOOKUP_ENTAILMENT procedure, 10-74

M
MAINTAIN_TRIPLES procedure, 13-4
mdsys.SemContent index type, 4-5
MERGE_MODELS procedure, 10-74
metadata

semantic, 1-5
metadata tables and views for semantic data,

1-19
methods for semantic data, 1-20
MIGRATE_DATA_TO_CURRENT procedure,

10-76
model ID

getting, 10-63
model name

getting, 10-63
models, 1-4

altering, 10-7
creating, 10-37
deleting (dropping), 10-51
disabling support in the database, 10-52
enabling support in the database, 10-38
merging, 10-74
renaming, 10-80
SEM_MODELS data type, 1-23
SEMI_entailment-name view, 1-12
SEMM_model-name view, 1-5
swapping names, 10-85
updating, 10-88
validating geometries in, 10-92
virtual, 1-14

N
N-Quad format, 1-17
N-QUADS data format, 1-17
N-Triple format, 1-17
named graph based inference

global, 2-16
local, 2-16

named graphs
support for, 1-17

named_graphs
attribute of SEM_MATCH, 1-27

network indexes
refreshing information, 10-78
SEM_NETWORK_INDEX_INFO view, 1-102

NGGI (named graph based global inference),
2-16

NGLI (named graph based local inference), 2-16

O
OBIEE

using SPARQL Gateway as an XML data
source, 6-101

objects, 1-9
ODCIAggregate interface

user-defined aggregates (RDF Semantic
Graph), 7-32

ogcf
boundary function, B-3
buffer function, B-4
convexHull function, B-5
difference function, B-6
distance function, B-7
envelope function, B-8
getSRID function, B-8
intersection function, B-9
relate function, B-10
sfContains function, B-11
sfCrosses function, B-12
sfDisjoint function, B-13
sfEquals function, B-14
sfIntersects function, B-15
sfOverlaps function, B-16
sfTouches function, B-17
sfWithin function, B-18
symDifference function, B-19
union function, B-20

OLTP compression, 6-10
OLTP index compression, 1-78
options

attribute of SEM_MATCH, 1-24
Oracle Advanced Compression

OLTP compression, 6-10
Oracle Business Intelligence Enterprise Edition

(OBIEE)
using SPARQL Gateway as an XML data

source, 6-101
Oracle Label Security (OLS), 5-18

applying policy, 11-1, 14-1
disabling policy, 14-4
enabling policy, 14-5
removing policy, 11-2, 14-5
resetting labels associated with a model,

14-6
resource-level security, 5-11
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Oracle Label Security (OLS) (continued)
setting sensitivity label for a resource that

may be used in the subject and/or
object position of a triple, 14-9

setting sensitivity level for a predicate, 14-7
setting sensitivity level for a rule belonging to

a rulebase, 14-11
setting sensitivity level for RDFS schema

elements, 14-8
triple-level security, 5-1
using with RDF data, 5-1

Oracle Spatial and Graph
prerequisite software for RDF and OWL

capabilities, A-7
orageo

aggrCentroid function, B-21
aggrConvexHull function, B-22
aggrMBR function, B-22
aggrUnion function, B-23
area function, B-24
buffer function, B-25
centroid function, B-26
convexHull function, B-26
difference function, B-27
distance function, B-28
getSRID function, B-29
intersection function, B-30
length function, B-31
mbr function, B-32
nearestNeighbor function, B-33
relate function, B-34
sdoDistJoin function, B-36
sdoJoin function, B-37
union function, B-38
withinDistance function, B-39
xor function, B-40

ORDER BY query processing, 1-126
OTN page

RDF Semantic Graph, 1-137
OVERLOADED_NL=T

query option for SEM_MATCH, 1-27
owl

sameAs
SEMCL_entailment-name view, 2-13

OWL
queries using the SEM_DISTANCE ancillary

operator, 2-22
queries using the SEM_RELATED operator,

2-20
SameAs

optimizing inference, 2-12
OWL 2 EL support, 2-4
OWL 2 RL support, 2-3
OWL2EL rulebase, 2-4
OWL2RL rulebase, 2-3

P
parallel inference, 2-15
Partitioning

must be enabled for RDF and OWL, A-7
PelletInfGraph class

support deprecated in RDF Semantic Graph
support for Apache Jena, 6-53

PRIVILEGE_ON_APP_TABLES procedure,
10-77

PROCAVFH=F option, 2-11
PROCSVFH=F option, 2-11
properties, 1-9
property chain handling, 3-4
property graph data

RDF integration, 9-1
property paths

optimized handling by RDF Semantic Graph
support for Apache Jena, 6-24

PURGE_UNUSED_VALUES procedure, 10-77

Q
quality of search, 4-10
queries

using the SEM_APIS.SPARQL_TO_SQL
function, 1-83

using the SEM_DISTANCE ancillary
operator, 2-22

using the SEM_MATCH table function, 1-23
using the SEM_RELATED operator, 2-20

R
RDF rulebase

subset of RDFS rulebase, 1-10
RDF Semantic Graph, 1-1

overview, 1-1
RDF semantic graph support

downgrading, A-8
RDF Semantic Graph support

removing, A-9
RDF Semantic Graph support for Apache Jena,

6-1
cross-site request forgery (CSRF) protection,

6-16
functions supported in SPARQL queries,

6-32
optimized handling of SPARQL queries, 6-23
optimized handling or property paths, 6-24
query examples, 6-65
RDFa support with prepareBulk, 6-54
SEM_MATCH and RDF Semantic Graph

support for Apache Jena queries
compared, 6-19
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RDF Semantic Graph support for Apache Jena (continued)
setting up dynamic SPARQL endpoint, 6-12
setting up software environment, 6-3
setting up SPARQL service, 6-5
support for connection pooling, 6-48
support for semantic model PL/SQL

interfaces, 6-50
support for virtual models, 6-47

RDF views, 8-1
creating, 10-34
dropping, 10-49
exporting, 10-60

RDF_VALUE$ table, 1-6
RDF$ET_TAB table, 1-91
RDFa

support with prepareBulk (RDF Semantic
Graph support for Apache Jena),
6-54

RDFCTX_INDEX_EXCEPTIONS view, 4-20
RDFCTX_POLICIES view, 4-19
RDFOLS_SECURE_RESOURCE view, 5-18
RDFS entailment rules, 1-10
RDFS rulebase

implements RDFS entailment rules, 1-10
REFRESH_SEM_NETWORK_INDEX_INFO

procedure, 10-78
relational data as RDF, 8-1
REMOVE_DUPLICATES procedure, 10-79
REMOVE_OLS_POLICY procedure, 14-5
REMOVE_POLICY_FROM_APP_TAB

procedure, 11-2
removing RDF Semantic Graph, A-9
RENAME_ENTAILMENT procedure, 10-80
RENAME_MODEL procedure, 10-80
REPLACE=T option, 10-42
RES2VID function, 10-81
RESET_MODEL_LABELS procedure, 14-6
Resource Description Framework

See RDF Semantic Graph
resource-level security, 5-11
resultsPerPage parameter, 6-99
rulebases, 1-9

attribute of SEM_MATCH, 2-21
deleting if in failed state, 10-19
SEM_RULEBASE_INFO view, 1-11
SEM_RULEBASES data type, 1-23
SEMR_rulebase-name view, 1-11

rules, 1-9
rules indexes

See entailments

S
sameAs

optimizing inference (OWL), 2-12

sameCanonTerm built-in function, 1-76
sameTerm built-in function, 1-76
AS_OF [SCN, <SCN_VALUE>]

query option for SEM_MATCH, 1-25
sdo_rdf_internal.convert_old_rdf_data procedure,

A-3, A-5
SDO_RDF_TERM data type, 7-28
SDO_RDF_TERM_LIST data type, 7-29
SDO_SEM_PDATE_CTX, 1-124
search

quality of, 4-10
security considerations, 1-18
SEM_ALIAS data type, 1-23, 4-7
SEM_ALIASES data type, 1-23, 4-7
SEM_APIS package

ADD_DATATYPE_INDEX, 10-3
ADD_SEM_INDEX, 10-4
ALTER_DATATYPE_INDEX, 10-5
ALTER_ENTAILMENT, 10-6
ALTER_MODEL, 10-7
ALTER_SEM_INDEX_ON_ENTAILMENT

semantic network indexes
altering on entailment, 10-7

ALTER_SEM_INDEX_ON_MODEL, 10-8
ANALYZE_ENTAILMENT, 10-9
ANALYZE_MODEL, 10-11
BUILD_PG_RDFVIEW_INDEXES, 10-13
BULK_LOAD_FROM_STAGING_TABLE,

10-16
CLEANUP_BNODES, 10-18
CLEANUP_FAILED, 10-19
COMPOSE_RDF_TERM, 10-20
CONVERT_TO_GML311_LITERAL, 10-22
CONVERT_TO_WKT_LITERAL, 10-23
CREATE_ENTAILMENT, 10-24
CREATE_PG_RDFVIEW, 10-32
CREATE_RDFVIEW_MODEL, 10-34
CREATE_RULEBASE, 10-36
CREATE_SEM_MODEL, 10-37
CREATE_SEM_NETWORK, 10-38
CREATE_SOURCE_EXTERNAL_TABLE,

10-39
CREATE_VIRTUAL_MODEL, 10-42
DELETE_ENTAILMENT_STATS, 10-44
DELETE_MODEL_STATS, 10-44
DISABLE_CHANGE_TRACKING, 10-45
DISABLE_INC_INFERENCE, 10-46
DROP_DATATYPE_INDEX, 10-46
DROP_ENTAILMENT, 10-47
DROP_PG_RDFVIEW, 10-48
DROP_PG_RDFVIEW_INDEXES, 10-49
DROP_RDFVIEW_MODEL, 10-49
DROP_RULEBASE, 10-50
DROP_SEM_INDEX, 10-50
DROP_SEM_MODEL, 10-51
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SEM_APIS package (continued)
DROP_SEM_NETWORK, 10-52
DROP_USER_INFERENCE_OBJS, 10-53
DROP_VIRTUAL_MODEL, 10-53
ENABLE_CHANGE_TRACKING, 10-54
ENABLE_INC_INFERENCE, 10-55
ESCAPE_CLOB_TERM, 10-55
ESCAPE_CLOB_VALUE, 10-56
ESCAPE_RDF_TERM, 10-57
ESCAPE_RDF_VALUE, 10-58
EXPORT_ENTAILMENT_STATS, 10-58
EXPORT_MODEL_STATS, 10-59
EXPORT_RDFVIEW_MODEL, 10-60
GET_CHANGE_TRACKING_INFO, 10-61
GET_INC_INF_INFO, 10-62
GET_MODEL_ID, 10-63
GET_MODEL_NAME, 10-63
GET_TRIPLE_ID, 10-64
GETV$DATETIMETZVAL, 10-65
GETV$DATETZVAL, 10-66
GETV$NUMERICVAL, 10-67
GETV$STRINGVAL, 10-68
GETV$TIMETZVAL, 10-69
IMPORT_ENTAILMENT_STATS, 10-70
IMPORT_MODEL_STATS, 10-70
LOAD_INTO_STAGING_TABLE, 10-72
LOOKUP_ENTAILMENT, 10-74
MERGE_MODELS, 10-74
MIGRATE_DATA_TO_CURRENT, 10-76
PRIVILEGE_ON_APP_TABLES, 10-77
PURGE_UNUSED_VALUES, 10-77
reference information, 10-1, 12-1
REFRESH_SEM_NETWORK_INDEX_INFO,

10-78
REMOVE_DUPLICATES, 10-79
RENAME_ENTAILMENT, 10-80
RENAME_MODEL, 10-80
RES2VID, 10-81
SEM_APIS.CREATE_SPARQL_UPDATE_T

ABLES, 10-41
SEM_APIS.DROP_SPARQL_UPDATE_TAB

LES, 10-52
SET_ENTAILMENT_STATS, 10-82
SET_MODEL_STATS, 10-83
SPARQL_TO_SQL, 10-84
SWAP_NAMES, 10-85
TRIPLE, 10-71
UNESCAPE_CLOB_TERM, 10-86
UNESCAPE_CLOB_VALUE, 10-86
UNESCAPE_RDF_TERM, 10-87
UNESCAPE_RDF_VALUE, 10-88
UPDATE_MODEL, 10-88
VALIDATE_ENTAILMENT, 10-91
VALIDATE_GEOMETRIES, 10-92
VALIDATE_MODEL, 10-94

SEM_APIS package (continued)
VALUE_NAME_PREFIX, 10-95, 10-96

SEM_APIS.CREATE_SPARQL_UPDATE_TABL
ES procedure, 10-41

SEM_APIS.DROP_SPARQL_UPDATE_TABLES
procedure, 10-52

SEM_CONTAINS operator
syntax, 4-6

SEM_CONTAINS_COUNTancillary operator
syntax, 4-8

SEM_CONTAINS_SELECT ancillary operator
syntax, 4-7
using in queries, 4-9

SEM_DISTANCE ancillary operator, 2-22
SEM_DTYPE_INDEX_INFO view, 1-104
SEM_GRAPHS data type, 10-25
SEM_INDEXTYPE index type, 2-23
SEM_MATCH compared to SPARQL_TO_SQL,

1-88
SEM_MATCH table function, 1-23
SEM_MODEL$ view, 1-5

virtual model entries, 1-15
SEM_MODELS data type, 1-23
SEM_NETWORK_INDEX_INFO view, 1-102
SEM_OLS package

APPLY_POLICY_TO_APP_TAB, 11-1
REMOVE_POLICY_FROM_APP_TAB, 11-2

SEM_PERF package
DELETE_NETWORK_STATS, 12-1
EXPORT_NETWORK_STATS, 12-2
GATHER_STATS, 12-3
IMPORT_NETWORK_STATS, 12-4

SEM_RDFCTX package
ADD_DEPENDENT_POLICY, 13-1
CREATE_POLICY, 13-2
DROP_POLICY, 13-3
MAINTAIN_TRIPLES, 13-4
reference information, 13-1
SET_DEFAULT_POLICY, 13-5
SET_EXTRACTOR_PARAM, 13-6

SEM_RDFSA package
APPLY_OLS_POLICY, 14-1
DISABLE_OLS_POLICY, 14-4
ENABLE_OLS_POLICY, 14-5
reference information, 11-1, 14-1
REMOVE_OLS_POLICY, 14-5
RESET_MODEL_LABELS, 14-6
SET_PREDICATE_LABEL, 14-7
SET_RDFS_LABEL, 14-8
SET_RESOURCE_LABEL, 14-9
SET_RULE_LABEL, 14-11

SEM_RELATED operator, 2-20
SEM_RULEBASE_INFO view, 1-11
SEM_RULEBASES data type, 1-23
SEM_RULES_INDEX_DATASETS view, 1-13
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SEM_RULES_INDEX_INFO view, 1-13
SEM_VMODEL_DATASETS view, 1-16
SEM_VMODEL_INFO view, 1-15
semantic data

blank nodes, 1-9
constructors, 1-20
data types, 1-20
demo files, 1-127
examples (Java), 1-127
examples (PL/SQL), 1-127
in the database, 1-4
metadata, 1-5
metadata tables and views, 1-19
methods, 1-20
modeling, 1-4
objects, 1-9
properties, 1-9
queries using the

SEM_APIS.SPARQL_TO_SQL
function, 1-83

queries using the SEM_MATCH table
function, 1-23

security considerations, 1-18
statements, 1-6
steps for using, 1-126
subjects, 1-9

semantic index
creating (MDSYS.SEM_INDEXTYPE), 2-23
indexing documents, 4-5
using for documents, 4-1

semantic indexes
RDFCTX_INDEX_EXCEPTIONS view, 4-20

semantic network indexes
adding, 10-4
altering on model, 10-8
dropping, 10-50
using, 1-100

semantic technologies support
enabling, A-1
upgrading from Release 11.1, 11.2, or 12.1,

A-2
SEMCL_entailment-name view, 2-13
SemContent

mdsys.SemContent index type, 4-5
SEMI_entailment-name view, 1-12
SEMM_model-name view, 1-5
SEMR_rulebase-name view, 1-11
semrelod.sql script, A-3, A-5
semremov.sql script, A-9
SERVICE_CLOB=f

query option for SEM_MATCH, 1-27
SERVICE_ESCAPE=f

query option for SEM_MATCH, 1-27
SERVICE_JPDWN=t

query option for SEM_MATCH, 1-27

SERVICE_PROXY
query option for SEM_MATCH, 1-27

SET_DEFAULT_POLICY procedure, 13-5
SET_ENTAILMENT_STATS procedure, 10-82
SET_EXTRACTOR_PARAM procedure, 13-6
SET_MODEL_STATS procedure, 10-83
SET_PREDICATE_LABEL procedure, 14-7
SET_RDFS_LABEL procedure, 14-8
SET_RESOURCE_LABEL procedure, 14-9
SET_RULE_LABEL procedure, 14-11
Simple Knowledge Organization System (SKOS)

property chain handling, 3-4
support for, 3-1

SKOS (Simple Knowledge Organization System)
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