
Oracle® Cloud
Using Oracle Mobile Cloud Service

Release 18.4.3
E93987-04
September 2019

Oracle Cloud Using Oracle Mobile Cloud Service, Release 18.4.3

E93987-04

Copyright © 2015, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Patrick Keegan, John Bassett, Chris Kutler, Jennifer Shipman, Susan Post

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience xxvi

Documentation Accessibility xxvi

Related Resources xxvi

Conventions xxvii

Part I The Basics

1 Get to Know Oracle Mobile Cloud Service

Jump in with Mobile Backends 1-2

Design Custom APIs 1-4

Implement APIs 1-5

Get the Data 1-6

Use Platform APIs 1-8

Call APIs from Your App Code 1-8

Call Platform APIs with Mobile SDKs 1-9

Set Up and Manage Your Mobile App Users 1-10

Deploy Code between MCS Environments 1-10

Monitor and Administer the Mobile Infrastructure 1-12

Analyze Your Mobile Projects 1-12

What About Security? 1-13

Video: Security Overview 1-13

Job Descriptions and Learning Paths 1-14

Mobile App Developer 1-14

Service Developer 1-15

Enterprise Architect 1-16

Mobile Cloud Administrator 1-16

Mobile Program Manager 1-17

iii

2 Set Up the Service

Where Do I Sign Up? 2-1

What Do I Need To Do? 2-1

Activate the Service 2-2

Create Mobile Environment Service Instances 2-2

Setting Up MCS Environments 2-3

Setting Up MAX Environments 2-3

Assign MCS Team Member Roles 2-4

MCS Team Member Roles 2-5

Distinguishing Between MAX Team Member Roles for Business Users and for
Mobile App Developers 2-7

Example Team Member Role Assignments 2-8

Set Up Mobile Users, Realms and Roles 2-11

Creating Realms 2-11

Setting the Default Realm for an Environment 2-12

Creating and Managing Mobile User Roles 2-12

Creating Mobile Users and Assigning Roles 2-13

Creating Individual Mobile Users for Testing 2-13

Importing Groups of Mobile Users Into MCS Using Oracle Cloud 2-14

Mobile Users for MAX 2-15

Changing a Mobile User Password 2-15

Configuring Identity Management (SSO and OAuth) 2-16

Configuring Oracle Cloud Applications as the Identity Provider 2-16

Get on Board 2-17

Part II Setting up Mobile Apps

3 Mobile Backends

What Is a Mobile Backend and How Can I Use It? 3-1

What's the Mobile Backend Development Process? 3-2

Creating and Populating Mobile Backends 3-2

Creating a Mobile Backend 3-3

Mobile Backends for MAX Apps 3-3

Mobile Backend Authentication and Connection Info 3-3

Environments and Mobile Backends 3-4

Realms and Mobile Backends 3-5

Changing a Mobile Backend's Realm 3-5

Getting Test Users for a Mobile Backend 3-5

Associating APIs with a Mobile Backend 3-6

iv

Associating Storage Collections with a Mobile Backend 3-6

Clients and Mobile Backends 3-7

What Can I Change in a Mobile Backend? 3-7

Video: Mobile Backend Design Considerations 3-7

The SDKs 3-8

Connecting Your App to a Mobile Backend 3-8

4 Client Management

How Clients Work in MCS 4-1

Profiles 4-2

Creating a Profile 4-2

Registering an App as a Client in MCS 4-3

Legacy Client Behavior 4-4

5 Authentication in MCS

OAuth Consumer Authentication in MCS 5-2

HTTP Basic Authentication in MCS 5-2

Enterprise Single Sign-On in MCS 5-2

Third-Party SAML and JWT Tokens 5-3

SAML Tokens and Virtual Users 5-3

JWT Tokens and Virtual Users 5-8

Mapping Users from a Third-Party IdP to Oracle Cloud Users 5-25

Getting a Single Sign-On OAuth Token through a Browser 5-25

Enabling Browser-Based SSO through MCS 5-26

Enabling Single Sign-On for a Mobile Backend 5-27

Getting an SSO Token Using Form Post Response Mode 5-27

Testing APIs in a Mobile Backend with SSO Login 5-28

Token Expiration for SSO Login 5-30

Facebook Login in MCS 5-30

Registering an App for Login Through Facebook 5-30

Enabling Facebook Login in a Mobile Backend 5-31

Configuring an App to Use Facebook Login 5-31

Adding APIs to a Mobile Backend with Facebook Login 5-31

Getting a Facebook User Access Token Manually 5-32

Headers Needed for API Calls with Facebook Authentication 5-33

Authenticating in Direct REST Calls 5-33

Authenticating with OAuth in Direct REST Calls 5-33

Authenticating with HTTP Basic in Direct REST Calls 5-34

How OAuth Works in MCS 5-35

v

Resource Owner Password Credentials Grant - Authenticated Access 5-36

Client Credentials Grant - Unauthenticated Access 5-38

Securing Cross-Site Requests to MCS APIs 5-39

6 Android Applications

Getting the SDK for Android 6-1

Contents of the Android SDK 6-1

Android SDK Dependencies 6-2

Adding the SDK to an Android App 6-2

Upgrading an Android App from SDK 17.x and Before 6-3

Configuring SDK Properties for Android 6-4

Configuring Your Android Manifest File 6-8

Loading a Mobile Backend's Configuration into an Android App 6-9

Authenticating and Logging In Using the SDK for Android 6-9

Calling Platform APIs Using the SDK for Android 6-14

Calling Custom APIs Using the SDK for Android 6-15

Video: Configuring an Existing Android App to Work with Mobile Cloud 6-16

7 iOS Applications

Getting the SDK for iOS 7-1

Contents of the iOS SDK 7-1

Prerequisites for Developing iOS Apps 7-2

Adding the SDK to an iOS App 7-2

iOS SDK Interdependencies 7-3

Configuring SDK Properties for iOS 7-4

Loading a Mobile Backend's Configuration into an iOS App 7-8

Authenticating and Logging In Using the SDK for iOS 7-9

Calling Platform APIs Using the SDK for iOS 7-11

Calling Custom APIs Using the SDK for iOS 7-12

Video: Configuring an Existing iOS App to Work with Mobile Cloud 7-13

8 Cordova Applications

Getting the SDK for Cordova 8-1

Contents of the Cordova SDK Bundle 8-1

Adding the SDK to a Cordova App 8-2

Configuring SDK Properties for Cordova 8-2

Loading a Mobile Backend's Configuration in a Cordova App 8-6

Authenticating and Logging In Using the SDK for Cordova 8-6

Setting Up a Cordova App for FCM or GCM Notifications 8-9

vi

Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks 8-11

Calling Platform APIs Using the SDK for Cordova 8-12

Calling Custom APIs Using the SDK for Cordova 8-13

9 JavaScript Applications

Getting the SDK for JavaScript 9-1

Contents of the JavaScript SDK Bundle 9-1

Adding the SDK to a JavaScript App 9-1

Configuring SDK Properties for JavaScript 9-2

Loading a Mobile Backend's Configuration into a JavaScript App 9-4

Authenticating and Logging In Using the SDK for JavaScript 9-4

Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks 9-6

Calling Platform APIs Using the SDK for JavaScript 9-6

Avoiding Unsafe Header Errors 9-8

Calling Custom APIs Using the SDK for JavaScript 9-8

10

Xamarin Android Applications

Getting the SDK for Xamarin Android 10-1

Adding the SDK to a Xamarin Android Project 10-1

Configuring SDK Properties for Xamarin Android 10-3

Configuring Your AndroidManifest.xml File 10-7

Loading a Mobile Backend's Configuration into a Xamarin Android App 10-8

Authenticating and Logging In Using the SDK for Xamarin Android 10-8

Calling Platform APIs Using the SDK for Xamarin Android 10-12

User Management 10-12

Location 10-13

Storage 10-19

Notifications 10-20

Analytics 10-21

App Policies 10-21

Calling Custom APIs Using the SDK for Xamarin Android 10-22

11

Xamarin iOS Applications

Getting the SDK for Xamarin iOS 11-1

Adding the SDK to a Xamarin iOS Project 11-1

Configuring SDK Properties for Xamarin iOS 11-1

Loading a Mobile Backend's Configuration into a Xamarin iOS App 11-6

Authenticating and Logging In Using the SDK for Xamarin iOS 11-6

Calling Platform APIs Using the SDK for Xamarin iOS 11-8

vii

User Management 11-8

Location 11-9

Storage 11-12

Notifications 11-13

Analytics 11-16

App Policies 11-17

Calling Custom APIs Using the SDK for Xamarin iOS 11-18

Part III Platform APIs

12

Mobile User Management

User Types 12-1

Getting User Information 12-2

Getting User Roles 12-3

Updating Mobile User Custom Properties 12-4

13

Location

What Can I Do With Location? 13-1

Setting Up Location Devices, Places and Assets 13-2

Defining Places 13-2

Uploading Places Using a CSV File 13-3

Defining Location Assets 13-4

Uploading Assets Using a CSV File 13-4

Registering Location Devices 13-5

Uploading Location Devices Using a CSV File 13-6

Calling the Location API from Your App 13-7

Querying for Location Devices, Places and Assets 13-7

Querying for Location Devices 13-7

Querying for Places 13-11

Querying for Assets 13-15

Using the SDK to Query for Location Objects: iOS 13-17

Using the SDK to Query for Location Objects: Android 13-19

Retrieving Location Objects and Properties 13-20

Using the SDK to Retrieve a Location Object: iOS 13-20

Using the SDK to Retrieve a Location Object: Android 13-25

viii

14

Storage

What is the Storage API? 14-1

How Mobile Applications Access Collections 14-2

Shared and User Isolated Collections 14-3

Working with Collections 14-6

Using the Storage Configuration Pages 14-6

Creating Collections 14-8

Defining a Collection 14-8

Adding Access Permissions to a Collection 14-10

Updating the Collection 14-12

Offline Data Storage 14-12

Adding Objects to a Collection 14-13

Managing Collections 14-14

Associating a Collection with a Backend 14-14

Removing a Collection from a Backend 14-15

Calling the Storage API from Your App 14-16

Testing Runtime Operations Using the Endpoints Page 14-20

Storage API Endpoints 14-22

Getting a Single Collection 14-22

Getting All Collections Associated with a Mobile Backend 14-22

Storing an Object 14-22

Specifying the Object Identifier 14-23

Creating an Object (If One Doesn't Already Exist) 14-23

Generating an Object Identifier 14-23

What Happens When an Object is Created? 14-23

Updating an Object 14-24

What Happens When an Object Is Updated? 14-24

Optimistic Locking 14-24

Retrieving Objects 14-25

Retrieving a List of Objects 14-25

Retrieving an Object 14-26

Deleting an Object 14-26

Optimizing Performance 14-27

Check If Exists 14-27

Get If Newer 14-27

Reading Part of an Object (Chunking Data) 14-28

15

Data Offline and Sync

Building Apps that Work Offline Using Sync Express 15-2

Building Apps that Work Offline Using the Synchronization Library 15-6

ix

What Can I Do with the Synchronization Library? 15-7

Synchronization Library Process Flow 15-9

Video: Overview of the Data Offline & Synchronization API 15-10

Android Synchronization Library 15-10

Setting Up Your Mobile App for the Android Synchronization Library 15-10

Fetching Resources 15-11

Fetching Filtered Resources 15-13

Specifying Which Resources to Synchronize First 15-17

Setting a Resource’s Synchronization Policies Programmatically 15-18

Detecting and Handling Conflicts 15-19

Reviewing and Discarding Offline Edits 15-22

iOS Synchronization Library 15-25

Setting Up Your Mobile App for the iOS Synchronization Library 15-25

Fetching Resources 15-26

Fetching Filtered Resources 15-28

Specifying Which Resources To Synchronize First 15-30

Setting a Resource’s Synchronization Policies Programmatically 15-30

Detecting and Handling Conflicts 15-32

Reviewing and Discarding Offline Edits 15-35

Making Custom APIs Synchronizable 15-37

Synchronization Policies 15-39

Video: Introduction to the Data Offline & Sync Policies 15-40

Synchronization Policy Options 15-40

Video: Deep-Dive into the Data Offline & Sync Policies 15-44

Synchronization Policy Levels and Precedence 15-44

Defining Synchronization Policies Using a Configuration File 15-45

Defining Synchronization Policies and Cache Settings in a Response
Header 15-51

Tracking Cache Hits with the Synchronization Library 15-51

How Synchronization Works with the Storage APIs 15-52

16

Notifications

What Can I Do with Notifications? 16-1

How Are Notifications Sent and Received? 16-2

What is the Device ID or Notification Token? 16-3

Setting Up a Mobile App for Notifications 16-3

Setting Up Android Notifications 16-3

Android: Google API Key 16-4

Setting Up a Device Handshake for Android (FCM) 16-5

Setting Up a Device Handshake for Android (GCM) 16-7

Setting Up iOS Notifications 16-10

x

iOS: Apple Secure Certificates 16-10

Setting Up a Device Handshake for iOS 16-11

Setting Up Windows Notifications 16-12

Windows: WNS Credentials 16-13

Syniverse: SMS Credentials 16-13

Setting Up a Device Handshake for Windows 16-14

Sending Notifications to and from Your App 16-15

Testing Notifications from the MCS UI 16-16

Cancelling a Scheduled Notification from the UI 16-17

Sending Notifications Using the Notifications API 16-17

Registering a Device ID 16-19

Sending a Text Message Notification 16-20

Sending a Notification Using a Unified Payload 16-21

Sending a Notification Using a Payload Template 16-22

Cancelling Scheduled Notifications 16-24

Troubleshooting Notifications 16-24

Checking Notification Status in the UI 16-25

Checking Notification Status with the Notifications REST API 16-26

17

Analytics

What Can I Do With Analytics? 17-1

How Does MCS Create Analytics Reports? 17-1

Enabling Your Mobile Apps to Report Event Data 17-2

Adding Location Properties to the context Event 17-5

Integrating Analytics into a Mobile App Using the Mobile Client SDK 17-6

Understanding Different Types of Analytics Reports 17-6

Accessing the Analytics Reports 17-7

API Calls Reports 17-9

API Calls Count 17-9

API Calls Response Time 17-10

Events Report 17-10

Events 17-11

User and Session Reports 17-12

User Reports 17-13

Why User Counts Can Vary 17-13

User Session Reports 17-13

New Users 17-13

Active Users 17-14

Session Count 17-15

Session Duration 17-15

xi

Improving User Retention with Funnel Analysis 17-16

Creating a Funnel 17-17

Analyzing Funnels 17-18

Creating Custom Analytics Reports 17-19

How Do I Create a Custom Analytics Report? 17-20

My Reports 17-23

How Do I Run a Custom Report? 17-24

How Do I Edit a Custom Report? 17-24

Tracking Sessions and Logging Events for Mobile Apps 17-25

Creating Events and Sessions Using the iOS Library 17-26

Calling the Analytics Service 17-26

Designating Sessions 17-26

Associating a Session With Your Mobile App Being in the Foreground 17-27

Adding Custom Properties to Events 17-28

Receiving the Status of Event Posts 17-29

Creating Events and Sessions Using the Android Library 17-29

Taking a Look at Events and Sessions in Android Apps 17-31

Defining Sessions 17-32

Exporting Event Data 17-32

Purging Analytics Data 17-36

Troubleshooting Analytics Reports 17-38

18

Database

What Can I Do with Database APIs? 18-1

Database Access API 18-2

Calling the Database Access API from Custom Code 18-2

Creating and Restructuring Database Tables 18-3

Preventing Passing SQL Using Implicit Table Creation 18-6

Adding and Updating Table Rows 18-6

Retrieving Table Rows 18-8

Deleting Table Rows 18-10

Database Management API 18-10

Creating a Table Explicitly 18-11

Copying Table Structures to Another Environment 18-12

Creating or Deleting an Index on a Table 18-13

19

App Policies

What Are App Policies and What Can I Do With Them? 19-1

Setting an App Policy 19-2

xii

Retrieving App Policies in App Code 19-3

Updating an App Policy Value in a Published Mobile Backend 19-5

Part IV Custom APIs

20

Creating APIs Fast with the Express API Designer

What are Resources? 20-1

How Do I Get Started with Resources? 20-1

Creating An API 20-2

Completing Your Resources 20-4

Adding Additional Fields 20-5

Shaping the Payload for Your Resource 20-5

Adding More Sample Data 20-6

Referenced Resources 20-6

Referencing Resources 20-7

Fields 20-9

Methods 20-10

Shaping Payloads 20-11

Read-Only Fields 20-12

Sample Data 20-13

Using the Express API Designer with MAX 20-15

Who Uses MAX? 20-16

Enabling Uploadable Images 20-17

Tips for User-Friendly Business Objects in MAX 20-18

Video: An Introduction to Mobile Application Accelerator (MAX) 20-25

Creating Resources with JSON Schemas 20-25

Defining Fields in a Schema 20-26

Defining Field Types, Formats, and Enums 20-27

Defining Child Objects 20-29

Defining Fields for List, Details, Create, and Update Screens 20-30

Collection Actions 20-32

Create Actions 20-35

Update Actions 20-37

Delete Actions 20-38

Custom Actions 20-38

Creating Mock Data 20-38

Which API Designer Should I Use? 20-39

xiii

21

Custom API Design

API Design Process 21-1

The API Designer 21-3

Generating Custom APIs for Connectors 21-4

How Do I Generate a Custom API from a Connector 21-5

Completing the Custom API 21-7

Working with the Implementation 21-7

Spec Out a Custom API 21-10

Creating a Complete Custom API 21-14

Setting Up Your API 21-15

Defining Endpoints 21-16

Adding Methods to Your Resources 21-18

Defining a Request for the Method 21-19

Defining a Response for the Method 21-20

Testing API Endpoints Using Mock Data 21-22

Providing a Schema 21-23

Security in Custom APIs 21-24

Setting Access to the API 21-25

Testing Your Custom API 21-27

Creating Resource Types 21-29

Creating Resource Traits 21-31

Providing API Documentation 21-32

How Do I Write in Markdown? 21-34

Getting Diagnostic Information 21-35

API Design Considerations 21-35

Valid URLs 21-35

API Timeouts 21-37

API Resources 21-37

URI Parameters 21-38

Endpoint Requirements for Sync Compatibility 21-39

Schemas 21-40

RAML 21-41

Editing a Custom API 21-44

Video: End-to-End Custom API Demo 21-45

Troubleshooting Custom APIs 21-45

22

Implementing Custom APIs

What Can I Do with Custom Code? 22-1

How Does Custom Code Work? 22-2

What's the Foundation for the Custom Code Service? 22-2

xiv

Video: Node.js Technology Primer 22-4

Setting Up Tooling for Custom Code 22-4

Steps to Implement a Custom API 22-4

Downloading a JavaScript Scaffold for a Custom API 22-5

Writing Custom Code 22-6

Key JavaScript Constructs in Custom Code 22-6

Accessing the Body of the Request 22-9

Inserting Logging Into Custom Code 22-10

Storing Data Locally 22-12

Video: Working with Node - Common Code 22-12

Implementing Synchronization-Compatible APIs 22-12

Video: Working with Custom APIs via Data Offline & Sync 22-12

Requirements for a Synchronization-Compatible Custom API 22-13

Returning Cacheable Data 22-18

Specifying Synchronization and Cache Policies 22-20

Calling Web Services and APIs from Custom Code 22-21

Packaging Custom Code into a Module 22-22

Required Artifacts for an API Implementation 22-22

package.json Contents 22-23

Declaring the API Implementation Version 22-24

Declaring the Node Version 22-25

Packaging Additional Libraries with Your Implementation 22-25

Uploading the Custom Code Module 22-26

Managing Custom Code in Git 22-26

Setting Up a Git Repository for Custom Code 22-26

Designating a Git Repository for Custom Code 22-26

Setting Up a Git Repository in Oracle Developer Cloud Service 22-27

Generating a Scaffold in a Git Repository 22-27

Testing and Debugging Custom Code 22-28

Testing with Mock Data 22-28

Testing Custom Code from the UI 22-28

Offline Debugging with the MCS Custom Code Test Tools 22-29

Other Tools for Testing Custom Code Outside of the UI 22-29

Accessing Logging Messages for Custom Code 22-29

Troubleshooting Custom API Implementations 22-33

Diagnosing Syntax Errors 22-33

Common Custom Code Errors 22-34

What Happens When a Custom API Is Called? 22-36

xv

23

Calling APIs from Custom Code

How to Send Requests to MCS APIs 23-1

API Request Pattern 23-1

Common options Argument Properties 23-2

API Response Patterns 23-5

Handling a Stream 23-5

Handling a Promise 23-6

Accessing Mobile Backend Information from Custom Code 23-13

mbe.getMBE() 23-14

Calling Platform APIs from Custom Code 23-14

Accessing the Analytics API from Custom Code 23-15

analytics.postEvent(events, options, httpOptions) 23-15

Accessing the App Policies API from Custom Code 23-19

appConfig.getProperties(httpOptions) 23-19

Accessing the Database Access API from Custom Code 23-20

database.delete(table, keys, options, httpOptions) 23-20

database.get(table, keys, options, httpOptions) 23-22

database.getAll(table, options, httpOptions) 23-24

database.insert(table, object, options, httpOptions) 23-25

database.merge(table, object, options, httpOptions) 23-30

Accessing the Devices API from Custom Code 23-35

devices.deregister(device, httpOptions) 23-35

devices.register(device, httpOptions) 23-36

Accessing the Location API from Custom Code 23-37

location.assets.getAsset(id, httpOptions) 23-37

location.assets.query(queryObject, httpOptions) 23-40

location.devices.getDevice(id, httpOptions) 23-43

location.devices.query(queryObject, httpOptions) 23-45

location.places.getPlace(id, httpOptions) 23-46

location.places.query(queryObject, httpOptions) 23-48

Accessing the Location Management API from Custom Code 23-52

Location Management Context Argument 23-52

location.assets.register(assets, context, httpOptions) 23-53

location.assets.remove(id, context, httpOptions) 23-55

location.assets.update(id, asset, context, httpOptions) 23-57

location.devices.register(devices, context, httpOptions) 23-59

location.devices.remove(id, context, httpOptions) 23-62

location.devices.update(id, device, context, httpOptions) 23-63

location.places.register(places, context, httpOptions) 23-66

location.places.remove(id, context, httpOptions) 23-68

xvi

location.places.removeCascade(id, context, httpOptions) 23-70

location.places.update(id, place, context, httpOptions) 23-70

Accessing the Notifications API from Custom Code 23-73

Notifications Context Argument 23-73

notification.getAll(context, options, httpOptions) 23-74

notification.getById(id, context, options, httpOptions) 23-77

notification.post(notification, context, options, httpOptions) 23-79

notification.remove(id, context, options, httpOptions) 23-80

Accessing the Storage API from Custom Code 23-81

storage.doesCollectionExist(collectionId, options, httpOptions) 23-81

storage.doesExist(collectionId, objectId, options, httpOptions) 23-83

storage.getAll(collectionId, options, httpOptions) 23-85

storage.getById(collectionId, objectId, options, httpOptions) 23-90

storage.getCollection(collectionId, options, httpOptions) 23-94

storage.getCollections(options, httpOptions) 23-95

storage.remove(collectionId, objectId, options, httpOptions) 23-98

storage.store(collectionId, object, options, httpOptions) 23-100

storage.storeById(collectionId, objectId, object, options, httpOptions) 23-103

Accessing the Mobile Users API from Custom Code 23-106

ums.getUser(options, httpOptions) 23-107

ums.getUserExtended(options, httpOptions) 23-109

ums.updateUser(fields, options, httpOptions) 23-111

Calling Custom APIs from Custom Code 23-112

Calling Connector APIs from Custom Code 23-115

Calling a Connector to a REST Web Service 23-118

Calling a Connector to a SOAP Service 23-119

Calling Connectors that Require Form Data 23-121

Passing Headers to the Target Service 23-122

Overriding SSL Settings for Connectors 23-124

Specifying the API Version in Calls to Custom and Connector APIs 23-124

Using Generic REST Methods to Access APIs 23-125

optionsList Argument 23-127

Learning About Platform, Custom, and Connector APIs 23-128

Part V Connector APIs

24

REST Connector APIs

How REST Connector APIs Work 24-1

REST Connector API Design Process 24-1

Why Use Connectors Instead of Direct Calls to External Resources? 24-2

xvii

Creating a REST Connector API 24-3

Basic Connector Setup 24-3

Providing the Descriptor 24-4

Rules 24-6

Selecting Endpoints 24-8

Security Policies and Overriding Properties 24-9

Setting a CSF Key 24-10

Testing the REST Connector API 24-11

Testing in Standard Mode 24-12

Testing in Advanced Mode 24-13

Getting the Test Results 24-14

Getting Diagnostic Information 24-15

Security and REST Connector APIs 24-16

Security Policy Types for REST Connector APIs 24-17

CSF Keys and Web Service Certificates 24-18

Query and Header Parameters 24-19

Setting Query Parameters in Remote URLs 24-19

Editing a REST Connector API 24-20

Using Your Connector API in an App 24-21

Troubleshooting REST Connector APIs 24-21

25

SOAP Connector APIs

How SOAP Connector APIs Work 25-1

SOAP Connector API Design Process 25-1

Why Use SOAP Connectors Instead of Direct Calls to External Resources? 25-3

Creating a SOAP Connector API 25-3

Setting the Basic Information for Your SOAP Connector API 25-4

Selecting a Port 25-7

Setting Security Policies and Overriding Properties for SOAP Connector APIs 25-8

Setting a CSF Key 25-9

Setting a Web Service Certificate 25-10

Testing a SOAP Connector API 25-10

Testing Your Connector 25-10

Getting the Test Results 25-12

Getting Diagnostic Information 25-13

SOAP Connector API Design Tips 25-13

How Does XML Get Translated into JSON? 25-14

XML - JSON Mapping Conventions 25-15

Using XML Instead of JSON 25-17

Security Policy Types for SOAP Connector APIs 25-18

xviii

CSF Keys and Web Service Certificates 25-19

Editing a SOAP Connector API 25-20

Using Your Connector API in an App 25-21

Troubleshooting SOAP Connector APIs 25-22

26

ICS Connector APIs

How ICS Connector APIs Work 26-1

ICS Connector API Flow 26-2

How Do I Create an ICS Connector API? 26-3

Setting the Basic Information for Your ICS Connector API 26-4

Connecting to an Integration Cloud Service Instance 26-7

Selecting or Creating an ICS Instance Connection 26-7

Selecting an Active Integration 26-8

Editing the ICS Connector API 26-9

Setting Runtime Security for the ICS Connector API 26-10

Creating a New CSF Key 26-11

Testing the ICS Connector API 26-11

Getting the Test Results 26-13

Getting Diagnostic Information 26-14

Security and ICS Connector APIs 26-14

CSF Keys 26-15

Using Your Connector API in an App 26-15

Troubleshooting ICS Connector APIs 26-16

27

Fusion Applications Connector APIs

How Fusion Applications Connector APIs Work 27-1

Fusion Applications Connector API Flow 27-2

How Do I Create a Fusion Applications Connector API? 27-3

Setting the Basic Information for Your Fusion Applications Connector API 27-4

Connecting to a Fusion Applications Instance 27-6

Creating a Fusion Applications Instance Connection 27-7

Selecting Fusion Applications Resources 27-7

Setting Resource Attributes 27-9

Editing the Fusion Applications Connector API 27-11

Setting Runtime Security for the Fusion Applications Connector API 27-12

Providing a CSF Key 27-13

Creating a New CSF Key 27-13

Setting a Web Service Certificate 27-14

Testing the Fusion Applications Connector API 27-14

xix

Getting the Test Results 27-16

Security Policy Types for Fusion Applications Connector APIs 27-16

CSF Keys and Web Service Certificates 27-17

Using Your Fusion Application Connector API in an App 27-18

Troubleshooting Fusion Applications Connector APIs 27-19

Part VI Deployment and Lifecycle

28

MCS Environments

Team Members 28-1

What is My Environment? 28-1

Your Work Environment 28-2

Changing Environments 28-2

Administration View 28-3

Changing Environment Views for the Administrator 28-5

Setting the Default Environment 28-5

Environment Policies 28-5

Environment Policy Names 28-6

Environment Policy Scopes 28-7

Modifying an Environment Policy 28-9

Removing Environment Policies 28-10

CSF Keys and Certificates 28-10

Viewing Available CSF Keys, Certificates, and Token Issuers 28-11

Configuring a CSF Key 28-12

Configuring a Web Service or Token Certificate 28-12

Configuring an SSL Certificate 28-12

Disabling SSL Hostname Verification 28-13

Adding a Token Issuer 28-13

Rules for Certificate Subject Names 28-14

Configuring Rules 28-14

Rule Types 28-15

Rule Examples 28-17

Native Builds 28-18

29

Diagnostics

What Can I Do with Diagnostics? 29-1

Viewing Environment Health 29-2

Viewing Server Load 29-2

Viewing Errors 29-3

xx

Viewing Underperforming Requests 29-4

Viewing Log Messages Related to a Request 29-4

Viewing Storage Usage 29-5

Monitoring a Selected Backend 29-6

Viewing API Performance 29-7

What Do the Health Indicator Thresholds Mean? 29-8

Adjusting the Performance Threshold Configurations 29-11

Viewing Status Codes for API Calls and Outbound Connector Calls 29-12

Relating Log Messages 29-14

How Client SDK Headers Enable Device and Session Diagnostics 29-15

Viewing Log Messages 29-15

Viewing Message Details 29-18

Taking a Look at Exported Messages 29-19

Configuring the Logging Level for Custom Code 29-26

Diagnosing Custom Code 29-27

Use Case: Using Correlation to Diagnose Custom Code 29-28

Use Case: Using Correlation to Diagnose Connector Issues 29-30

Video: Logging and Diagnostic Examples 29-32

30

Lifecycle

Draft State 30-1

Published State 30-2

Making Changes After a Backend is Published (Rerouting) 30-4

Deployment 30-6

Artifact Deletion 30-9

Dependencies That Affect a Move to the Trash 30-12

Restoring an Artifact 30-12

Restoring an Artifact from Administration 30-14

Purging an Artifact 30-15

Purging Artifacts from Administration 30-15

31

Lifecycle Scenarios

Initial Deployment of a Mobile Backend 31-1

Bug Fix 31-4

Rerouting a Mobile Backend 31-9

New Features 31-10

xxi

32

Managing an Artifact’s Lifecycle

Realm Lifecycle 32-1

Publishing a Realm 32-2

Creating a New Version of a Realm 32-2

Deploying a Realm 32-2

Moving a Realm to the Trash 32-4

Restoring a Realm 32-4

Managing a Realm 32-4

Client Lifecycle 32-5

Publishing a Client 32-6

Updating the Version Number of a Client 32-6

Creating a New Version of a Client 32-7

Deploying Clients 32-7

Specifying a Target Environment for the Client 32-8

Identifying Dependencies and Deployment Impact 32-9

Setting Environment Policies for Clients 32-9

Deploying the Client 32-10

Moving a Client to the Trash 32-10

Restoring a Client 32-10

Managing a Client 32-11

Mobile Backend Lifecycle 32-12

Backend Lifecycle States 32-12

Publishing a Mobile Backend 32-13

Updating the Version Number of a Backend 32-14

Creating a New Version of a Backend 32-14

Deploying Mobile Backends 32-15

Specifying a Target Environment for the Mobile Backend 32-15

Identifying Dependencies and Deployment Effects 32-16

Setting Environment Policies for Mobile Backends 32-16

Deploying the Mobile Backend 32-17

Moving a Backend to the Trash 32-17

Restoring a Backend 32-18

Deactivating a Backend 32-18

Managing a Mobile Backend 32-18

Mobile Client SDK Demo Applications 32-20

API Lifecycle 32-20

Publishing a Custom API 32-21

Custom APIs and API Implementations 32-22

Updating the Version Number of an API 32-23

Creating a New Version of an API 32-23

xxii

Deploying APIs 32-24

Specifying a Target Environment 32-24

Identifying Dependencies and Deployment Effects 32-25

Setting Environment Policies for APIs 32-25

Deploying the API 32-26

Moving a Custom API to the Trash 32-26

Restoring a Custom API 32-27

Managing an API 32-27

API Implementation Lifecycle 32-28

Publishing an API Implementation 32-28

Creating a New Version or Updating the Version of an API Implementation 32-30

Deploying an API Implementation 32-30

Specifying a Target Environment for the Implementation 32-31

Identifying Dependencies and Deployment Effects 32-31

Setting Environment Policies for an API Implementation 32-32

Deploying the Implementation 32-32

Moving an API Implementation to the Trash 32-32

Restoring an API Implementation 32-33

Connector Lifecycle 32-33

Publishing a Connector 32-34

Updating the Version Number of a Connector 32-34

Creating a New Version of a Connector 32-35

Deploying Connectors 32-35

Specifying a Target Environment 32-36

Identifying Dependencies and Deployment Effects 32-36

Setting Environment Policies for Connectors 32-36

Deploying the Connector 32-38

Moving a Connector to the Trash 32-38

Restoring a Connector 32-38

Managing a Connector 32-39

Collection Lifecycle 32-39

Publishing a Collection 32-40

Updating the Version Number of a Collection 32-40

Creating a New Version of a Collection 32-41

Deploying a Collection 32-41

Moving a Collection to the Trash 32-42

Restoring a Collection 32-43

Managing a Collection 32-43

xxiii

33

Testing APIs and Mobile Backends

Use Case: End-to-End Testing 33-1

How Can I Test an API? 33-2

Testing a Platform or Custom API from the UI 33-2

Testing a Connector API from the UI 33-3

Testing Platform and Custom APIs Remotely 33-3

Troubleshooting Unexpected Test Results 33-4

Monitoring Runtime Issues and System Health 33-6

34

Packages

What’s a Package? 34-1

Why Do I Want a Package? 34-1

Exporting a Package 34-2

Adding Artifacts to the Package 34-2

Reviewing Dependencies During Export 34-4

Setting Environment Policies During Export 34-5

Completing the Export 34-6

Re-exporting a Package 34-7

Importing a Package 34-7

Uploading the Package 34-8

Examining the Contents of the Import Package 34-8

Setting Environment Policies During Import 34-10

What Happens When You Import a Package? 34-11

Import Results 34-12

Exporting Updated Artifacts 34-13

Examining a Package 34-13

Moving a Package to the Trash 34-14

Environment Policy Settings for Packaged Artifacts 34-15

Part VII Reference

A HTTP Headers

API Headers A-1

SDK Headers A-2

xxiv

B Oracle Mobile Cloud Service Environment Policies

Environment Policies and Their Values B-1

C Security Policies for Connector APIs

Security Policies for REST Connector APIs C-1

Security Policies for SOAP Connector APIs C-3

Security Policies for ICS Connector APIs C-11

Security Policies for Fusion Applications Connector APIs C-11

Security Policy Properties C-12

D Identity Domain Relocation

E Writing Swift Applications Using the iOS Client SDK

Adding the Bridging Header File E-1

Adding the SDK Headers and Libraries to a Swift App E-2

Using SDK Objects in Swift Apps E-3

F Supported Browsers and Languages

Supported Browsers F-1

Supported Languages F-1

G Identity Provider Integration

Use Case: Configuring OKTA to Obtain a SAML Token G-1

Use Case: Configuring AD FS to Obtain a SAML Token G-2

Integrating Microsoft Azure Active Directory with Oracle Cloud G-7

H Migrate to Oracle Mobile Hub

Glossary

xxv

Preface

Welcome to Using Oracle Mobile Cloud Service.

This guide is intended for all users of Oracle Mobile Cloud Service, whether you are a
mobile app developer, service developer, enterprise architect, mobile cloud
administrator, or mobile program manager.

Audience
Using Oracle Mobile Cloud Service is intended for those people who are implementing
their company’s mobile application strategy, including mobile application developers,
API developers, system administrators, and business analysts.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Resources
• What’s New in Oracle Mobile Cloud Service

• Oracle Mobile Cloud Service Getting Started Tutorials

• Oracle Mobile Cloud Service Videos

• REST API for Oracle Mobile Cloud Service

• Oracle Mobile Cloud Service Android SDK Reference

• Oracle Mobile Cloud Service iOS SDK Reference

• Oracle Mobile Cloud Service Windows SDK Reference

• Oracle Mobile Cloud Service Cordova SDK Reference

• Oracle Mobile Cloud Service JavaScript SDK Reference

• Oracle Mobile Cloud Service Known Issues

• Using Mobile Application Accelerator

Preface

xxvi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mobilegs
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mobilevideos
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssa-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssi-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssw-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssc-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssj-index

Conventions
The following text conventions are used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

xxvii

Part I
The Basics

This part contains the following chapters:

• Get to Know Oracle Mobile Cloud Service

• Set Up the Service

1
Get to Know Oracle Mobile Cloud Service

Welcome to Oracle Mobile Cloud Service (MCS)! MCS is a cloud-based service that
provides a unified hub for developing, deploying, maintaining, monitoring, and
analyzing your mobile apps and the resources that they rely on.

Your entry point into MCS depends on your role in your team’s mobile project.

If you are a mobile app developer, you use MCS to line up and test the resources
you need for your apps to work. This includes selecting from MCS platform APIs and
custom APIs and collaborating with other team members to create new custom APIs.

If you are a service developer, you write Node.js-based JavaScript code to
implement the custom APIs required by the mobile app developers on your team. You
might also find yourself collaborating with mobile app developers to fine-tune API
designs and creating connector APIs to connect to enterprise systems.

If you are the team’s enterprise architect, you establish where desired data and
functionality will come from, security and environment policies, and the roles and
permissions of team members.

If you are the team’s mobile program manager, you use the Analytics features to
track usage patterns.

If you are a mobile cloud administrator, you work within the Administration tab to
monitor the services in production, use the Diagnostics features to drill down and
pinpoint problems, and handle other admin tasks such as the adding and removing of
users.

To get a more concrete idea of how all of this works, let’s imagine you work for a
company called FixItFast (FiF) that supplies maintenance services for large in-house
appliances. To help facilitate speed and quality of service, FiF management wants to
roll out a mobile app which customers can use to quickly initiate a service request and

1-1

provide key information, such as by scanning the bar code of the defective appliance.
They’ll call this app FiF_Customer.

Here’s how your team would use Oracle Mobile Cloud Service to develop that app and
get the most out of it.

Jump in with Mobile Backends
As a mobile app developer, your first task is to set up a mobile backend for the app.

A mobile backend is a logical grouping of custom APIs, users, storage collections, and
other resources that serves as a cloud-based companion to one or more related
mobile apps. Within a mobile backend, you organize and develop resources that will
be used by your apps (which they access as REST web services). The mobile
backend also provides the security context (backed by an OAuth client ID/Client secret
pair or by HTTP Basic authentication credentials) for accessing those services from
the mobile app.

When you need apps for the same purpose on multiple platforms, all of those apps
can use the same mobile backend. Likewise, completely different apps that rely on the
same resources can share a mobile backend.

The screenshot below shows the Settings page of a mobile backend.

Chapter 1
Jump in with Mobile Backends

1-2

At development time, here are some of the things you do with a mobile backend:

• Browse and select the APIs to be available for the apps and test their endpoints
with mock data.

• Create object storage collections and enable offline data caching.

• Specify a user realm within which you manage the mobile app users who are
allowed to access the applications associated with the mobile backend.

• Set up notifications for your apps using the services provided by the platform
vendors (such as Apple Push Notifications Service (APNS) for iOS, Google Cloud
Messaging (GCM) for Android, and Windows Push Notification Services (WNS)). If
you set up notifications for multiple platforms, you can initiate a single notification
and have it delivered to apps on multiple platforms.

Later, at deployment time, the mobile backend serves as a deployment unit with
dependency management for all of the artifacts you need to support the set of mobile
apps.

However, before you do any of this for the FiF_Customer app that we introduced
earlier, assume you’re going to create a custom API to handle much of the app’s
heavy lifting.

Chapter 1
Jump in with Mobile Backends

1-3

Design Custom APIs
Especially if your company is new to MCS, one of the first things you’ll need to do is
start creating your own set of REST APIs to provide building blocks for your apps.

API creation is divided into two parts: designing and implementing. Let’s talk about
designing first.

When you design a REST API, you express the functionality that you expect in terms
of resources, along with the HTTP methods they accept, and media types for the
request and response bodies. In other words, you essentially define the formats for
making a request on the API and for what kind of data is returned in the response.
This definition is stored in a RAML (RESTful API Modeling Language) document. You
don’t actually fill in the details of how the data is produced and where it comes from
right away. Those details are worked out later in the implementation.

For the previously-mentioned FiF_Customer app, you’ll need an API for generating
and logging incident reports. Let’s call the API incidentreports. This report will
consist of data entered by the customer, including a photo of the appliance’s bar code
and a description of the problem.

As the centerpiece to this API, you could define a resource called incidents to
represent all incident reports. For that resource, you would have a GET method to
retrieve all incidents and a POST to create a new incident. Further, you could define
parameters for querying based on given criteria, such as the incident ID.

For the bodies of the requests sent to the incidents endpoint and responses returned
from it, you’ll define the media types (such as application/json) that they accept and
then provide examples for those bodies. Those examples serve as mock data that is
used when you (and eventually the users of your API) test the way the API works in a
mobile backend.

Chapter 1
Design Custom APIs

1-4

Once you are happy with the structure of the API, a service developer can get to work
on coding the implementation.

Implement APIs
As a service developer, you will work on APIs that have been sketched out for you by
app developers (or perhaps on APIs that you have designed yourself). Once you have
a set of endpoints to work with (like /mobile/custom/incidentreport/incidents, as
outlined above), you can start implementing them with custom code.

This custom code takes the form of Node.js-based JavaScript. For each API
implementation, you create a Node.js module. Within each module, you write a route
definition for each endpoint that specifies how to respond to a client request to that
endpoint. These route definitions are based on conventions promoted by the
Express.js web framework for Node.js. You can also include other Node.js libraries in
the module to support your custom code.

Let’s go back to the GET method on the incidents resource that we were just talking
about. Imagine that you have created a route definition for it that retrieves the incidents

Chapter 1
Implement APIs

1-5

via the Database Access API. The custom code implementing the endpoint might look
something like this:

/**
 * GET ALL INCIDENTS
 */
service.get('/mobile/custom/incidentreport/incidents', function (req, res)
{
 //call to custom code SDK, which handles the interaction with the
Database Access API
 req.oracleMobile.database.getAll(
 'FIF_Incidents').then(
 function (result) {
 res.send(result.statusCode, result.result);
 },
 function (error) {
 res.send(500, error.error);
 }
);
});

In the real world, your implementations will probably need additional logic and perhaps
need to aggregate data with multiple API calls, but this sample should give you an idea
of the basic mechanisms involved.

In much of your custom code, you’ll probably also need to access various enterprise
resources that reside outside of MCS, such as databases, CRM software, and other
cloud services and legacy systems. Read on to learn more about accessing those
resources and shaping them for use in your mobile apps.

Get the Data
Chances are that the main purpose of many of your custom APIs is to pull data into
your app from various business applications and other systems maintained by your
company, whether cloud or on-premises. As a service developer, your challenge is to
do so in a way that’s manageable, especially if you don’t have detailed knowledge of
the systems or the interfaces needed to access them. MCS answers this problem with
connector APIs.

Chapter 1
Get the Data

1-6

Connector APIs provide a bridge between your custom APIs and the enterprise
services you want to process with those APIs. Using the REST, SOAP, and ICS
(Integration Cloud Service) connector types, you create connector APIs for each data
source that you want to access. You define a connector API by filling in info on the
target resource, creating rules for the call parameters to "shape" the returned data so
that it works well in a mobile context, and specifying security policies. The result is a
reusable service that’s exposed as a straightforward REST API that you can view in
the Custom Code API Catalog. Service developers can call this connector from their
custom code just like they would any other API and do not have to worry about tricky
specifics like security policies and identity propagation.

For the Incident Report API, there are a number of resources that you’ll want to
interact with, such as an API for geolocation and customer data through your
company’s CRM software. In this example, the custom code calls a connector called
RightNow to add an incident report to an Oracle Service Cloud instance that is used to
manage customer service interactions.

/**
 * The following example calls the 'CreateIncident' resource
 * on a SOAP connector named '/mobile/connector/RightNow'.
 * */
req.oracleMobile.connectors.RightNow.post('CreateIncident',
{Body: {CreateIncident: req.body}}).then(
 function(result){
 res.send(result.statusCode, result.result);
 },

Chapter 1
Get the Data

1-7

 function(error){
 res.send(500, error.error);
 }
);

Note:

When you use connector APIs in your apps, you get other MCS advantages
when your apps call the API, including diagnostics to measure API
performance and API call analytics to evaluate how mobile apps are used.

Use Platform APIs
In addition to custom APIs, you can use MCS platform REST APIs in your apps. You
can call these APIs directly from your apps and/or via the implementation code of
custom APIs. You can also access many of them through MCS’s SDKs for the iOS,
Android, Windows, Cordova, and JavaScript platforms.

The available platform APIs include the following:

• Storage to work with collections and objects (such as images and documents) that
you associate with your mobile backend.

You set up collections in the web interface (and optionally populate them). Then
you can use API calls to add, modify, and delete objects in those collections.

• Mobile User Management to store and retrieve data related to mobile users.

• Location to define location devices and places and query for them from your
mobile apps.

• Notifications for writing code to send notifications to your mobile apps.

• Analytics Collector to initiate logging of specified events in the running apps.
These logged events are collected and can be viewed through the prism of various
reports in the Analytics tab in the MCS user interface.

• Database Access to access an Oracle Cloud database with REST calls. For
security reasons, you can access the Database Access operations only from
custom API implementations by using the custom code SDK, as described in
Accessing the Database Access API from Custom Code. You can't make direct
requests from client applications.

• Database Management to add, view, replace, and drop tables that are created
(and updated) automatically when you POST or PUT a JSON object using
Database Access API.

• App Policies to retrieve application configuration properties that you have set in
the mobile backend.

Call APIs from Your App Code
Once you have selected the custom APIs to use in your mobile backend, you can call
their REST endpoints from your mobile app code. Platform APIs are automatically
available for all mobile backends, but calling them works the same way as calling
custom APIs.

Chapter 1
Use Platform APIs

1-8

Here is a call from some Android app code to use the incidentreport custom API to
post an incident.

String url = "http://<MCS_SERVER>:<PORT>/mobile/custom/incidentreport/
incidents";

HttpClient httpClient = new DefaultHttpClient();
HttpPost post = new HttpPost(url);
post.addHeader("Content-Type", "application/json");
post.addHeader("Authorization", basic bWNzOldlbGNvbWUxKg==);
try {
 JSONObject newIncidentReport = new JSONObject();
 newIncidentReport.put("EmailAddress", email);
 newIncidentReport.put("ImageLink", imageLink);
 post.setEntity(new StringEntity(newIncidentReport.toString()));
 HttpResponse response = httpClient.execute(post);
 StatusLine statusLine = response.getStatusLine();
 if (statusLine.getStatusCode() == HttpStatus.SC_OK) {
 // Success
 }
}catch (Exception e) {
 ...
}

And here is an example of using the Storage API in an Android app to post to a
collection called FiF_Images that has been associated with your mobile backend:

String url = "http://<MCS_SERVER>:<PORT/mobile/platform/storage/
collections/FIF_Images/objects";

HttpClient httpClient = new DefaultHttpClient();
HttpPost post = new HttpPost(url);
post.setEntity(new ByteArrayEntity(imageBytes));
post.addHeader("X-Backend-Token", "FixItFast_Customer/1.0");
post.addHeader("Content-Type", "image/jpeg");
post.addHeader("Authorization", "basic bWNzOldlbGNvbWUxKg==");
HttpResponse response = httpclient.execute(post);

StatusLine statusLine = response.getStatusLine();
if (statusLine.getStatusCode() == HttpStatus.SC_CREATED) {
 // Image uploaded successfully
}

Call Platform APIs with Mobile SDKs
In addition to being able to call MCS APIs with straight REST calls, MCS provides
SDKs to simplify use of some of the platform APIs in native code.

Here’s some code for an Android app that uses the SDK classes (StorageCollection
and StorageObject) for object storage.

Storage storage =

Chapter 1
Call APIs from Your App Code

1-9

MobileBackendManager.getManager().getDefaultMobileBackend(context).getServi
ceProxy(Storage.class);
 try {
 StorageCollection imagesCollection =
storage.getStorageCollection("FIF_Images");
 StorageObject image = imagesCollection.get("3x4mp1e-st0r4g3-0bj3ct-
k3y");
 byte[] imageBytes = image.getPayloadBytes();
 }catch (ServiceProxyException e) {
 int errorCode = e.getErrorCode();
 ...
 }

A similar call with the iOS SDK might look like:

AppDelegate* appDelegate = [[UIApplication sharedApplication] delegate];
OMCMobileBackend* mbe = [appDelegate myMobileBackend];
OMCStorage* storage = [mbe storage];

OMCStorageCollection* aCollection = [storage getCollection:FIF_Images];
OMCStorageObject* aObject = [aCollection get:3x4mp1e-st0r4g3-0bj3ct-k3y];
NSData* data = [aObject getPayloadData];
...

Set Up and Manage Your Mobile App Users
With the app just about ready to go, it’s now time the person on your team who has the
Oracle Cloud identity domain administrator role to set up the users of the app. To
manage the users of your mobile apps, you set up user realms. A realm is a collection
of mobile app users with similar properties. Each mobile backend in an environment is
associated with one realm. However, a realm can be used by multiple environments
and multiple mobile backends. (Keep reading for more information on environments.)

You can also set up roles, which are sets of permissions that you can assign to users
to control which users have permissions to what APIs and other resources. For
example, you could have a role for customer service reps that provides them
permissions to access the APIs that are needed for their job, such as for assigning
cases. Similarly, you could have a role for technicians that allows them to access APIs
relevant to their job, such as getting notifications for open cases and marking a case
as resolved.

If you already have an identity provider for the future users of your apps, you can use
MCS’s Enterprise Single Sign-On support to enable those users to log in to apps that
use MCS mobile backends. Similarly, you can use MCS’s support for Facebook login
for consumer apps.

Deploy Code between MCS Environments
Once your code is developed and your mobile backend is configured, it’s time to
proceed with deployment.

An environment is a predefined arena for working in MCS. You develop artifacts
(mobile backends, APIs, and user realms) or custom code in a development

Chapter 1
Set Up and Manage Your Mobile App Users

1-10

environment and deploy to a runtime environment for testing and distribution. You can
work in one environment at a time.

For example, if you have a three-environment setup, you might use it this way:

• Designate one as a development environment to create your mobile backend,
define custom APIs, create new services using custom code, set up storage for
your collections, and so on. Typically, such an environment is where your team
does most of its development work, and it isn’t exposed to end users.

• Designate one as a staging environment where you can deploy completed project
code for testing. Team members with broad permissions in the development
environment might have no access to this staging environment if testing is handled
by another team.

• Designate one as a production environment where you can promote fully tested
code for real world distribution through an app store, such as the Apple App Store
or Google Play Store. Not many team members need access to the published
project code in this environment.

For more information about environments, see MCS Environments.

When you deploy, you follow this process:

1. Publish numbered versions of your artifacts, essentially freezing them, so those
versions can no longer be edited. To make a change to a published artifact, you
need to create a new version, make necessary changes, and publish again.

2. Set (or verify) dependencies between relevant artifacts, such as between API
versions and their implementation versions.

Chapter 1
Deploy Code between MCS Environments

1-11

3. Set (or verify) environment policies to determine things such as what security
credentials are associated with the environment, what versions of an app can
access the mobile backend, timeouts, etc.

4. Push the artifacts to the target environment.

To release updates, you simply create a new version in your development
environment and follow the deployment process again.

Monitor and Administer the Mobile Infrastructure
As the mobile cloud administrator, you use the Administration tab in the user interface
to monitor the health and performance of your apps in all of your environments,
particularly Production. The Administration tab provides graphical and tabular data on
the server load and the request backlog. If any problems arise in production, you can
view logs of server and app activity, filter them, and drill down to identify any trouble
spots.

Analyze Your Mobile Projects
Once your apps are in production, the mobile program manager can step in to
evaluate long-term usage and performance patterns in your mobile backends.

MCS comes with a host of built-in metrics such as API calls, API call response time,
new users, active users, session count, and session duration.

Chapter 1
Monitor and Administer the Mobile Infrastructure

1-12

You can also track any custom events that have been created in your apps using the
Analytics API. For example, imagine your app uses the Analytics API to post an event
each time a mobile app user creates a new incident report and capture properties such
as appliance type, make, model, and model year. You could then generate graphs and
tables based on those events and filter the data in any number of ways, such as how
many incident reports were filed for water heaters every month for the last year.

What About Security?
Oracle Mobile Cloud Service is designed with enterprise-grade security baked in.

Security begins at the level of the mobile backend. For an app to access any
resources through a mobile backend, its user first has to be authenticated with the
mobile backend, whether it is using OAuth, enterprise single sign-on (SSO), Facebook
login, or HTTP Basic authentication. See Authentication in MCS for the details.

Once a user is authenticated, access to APIs is controlled through MCS’s mobile user
management features. Realms allow mobile apps to use a shared set of users and
data, and roles define permissions that control user access to APIs and resources
from those mobile apps. For an introduction to users, roles and realms in MCS, see
Set Up Mobile Users, Realms and Roles.

Security for custom APIs can be configured individually for each API. On the Security
tab in the API Designer, you can decide whether or not an API can be accessed
anonymously (without a user login). If you choose No, you can define the authorization
policy by specifying which roles can access the API or specific endpoints. For details,
see Security in Custom APIs.

MCS connector APIs also have access to security functionality, which is especially
important if the connection involves transmitting proprietary or sensitive information.
For details, see Security Policy Types for REST Connector APIs and Security Policy
Types for SOAP Connector APIs.

Video: Security Overview
This video illustrates the key security aspects of MCS:

Video

Chapter 1
What About Security?

1-13

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13061

Job Descriptions and Learning Paths
Let’s take a few moments to talk about the various jobs (e.g. mobile developer, service
developer, etc.) that we introduced at the beginning of the chapter. MCS is designed to
meet the needs of widely disparate team roles, so the way you interact with MCS
depends on your given responsibilities. To help you better understand how your
responsibilities fit with MCS, here’s more specific detail about what we mean by each
job and links to the parts of the guide that are most relevant to those jobs.

Mobile App Developer
As a mobile app developer, it’s your job to create new applications for the iOS and
Android platforms. Often these apps incorporate existing enterprise functionality, which
you’ll need to optimize for phones and tablets.

To make things easier, you’ll want to leverage existing APIs wherever possible. You
can find our built-in APIs for common functions (like storage, mobile user
management, notifications, and analytics) in Oracle Mobile Cloud Service’s API
Catalog, as well as APIs that other team members have created. When the API you
need isn’t available, use the API Designer to sketch out the API quickly and supply
some mock data. Then you can go back to work on your app and let the service
developer fill in the details (or do it yourself, if you prefer).

Here are the sections you’ll be most interested in.

• For creating a mobile backend and setting up your apps to work with it:

– Mobile Backends

– Connecting Your App to a Mobile Backend

– Android Applications

– iOS Applications

– Cordova Applications

– JavaScript Applications

• For working with platform APIs:

– Working with Mobile Users (for info on having test users created for you) in the
Mobile User Management chapter

– Location

– Storage (for setting up object storage collections that your app can use)

– Data Offline (for caching of data on your device)

– Notifications (for setting up and sending push notifications for both iOS and
Android apps)

– Enabling Your Applications to Report Event Data in the Analytics chapter

– App Policies (for referencing custom properties that you have defined in a
mobile backend)

• For getting the ball rolling on designing APIs that you’ll need in your apps:

– Designing Custom APIs

Chapter 1
Job Descriptions and Learning Paths

1-14

• For info on the diagnostics features that may help you as you are testing your
apps against your mobile backend:

– Monitoring Performance and Troubleshooting

• For learning about the Oracle Mobile Application Accelerator to create mobile apps
with visual tools:

– Creating APIs Fast with the Express API Designer

If you haven’t gone through them already, here are some tutorials to help you get
started quickly:

• Mobile Backends (Access this tutorial by logging into MCS and clicking Get
Started on the home page.)

• Custom APIs

• Storage

• Mobile User Management

• Notifications

Here are some other resources that you may want to look at:

• This video overview of the API designer shows you how to quickly sketch out an
API design, which you can then pass to a service developer for implementation.

• The YouTube channel for Oracle Mobile Platform, which contains instructional
videos covering a plethora of MCS topics, including designing and testing mobile
backends, security, registering and configuring notifications, the storage API
(including testing and examples), creating custom reports with the Analytics API,
building connectors, and more.

Service Developer
As a service developer, your primary task in Oracle Mobile Cloud Service is to write
the JavaScript code that implements the custom APIs that your organization's mobile
apps rely on. These APIs might draw on existing enterprise services, platform APIs
provided by Oracle Mobile Cloud Service, or other APIs your team has developed in
Oracle Mobile Cloud Service.

In addition, you may be called upon to work with mobile developers to refine APIs
they’ve already sketched out, and to create connector APIs that make it easier for your
custom APIs to access enterprise resources.

Here are the chapters you’ll be most interested in.

• For fine-tuning API designs and writing their implementation code:

– Custom API Design

– Implementing Custom APIs

– Calling APIs from Custom Code

– Database

• For creating connector APIs to access the enterprise system data:

– REST Connector APIs

– SOAP Connector APIs

Chapter 1
Job Descriptions and Learning Paths

1-15

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_customapis
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_storage
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_usermanage
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_notifications
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10456
http://bit.ly/oramobilesub

– ICS Connector APIs

• For info on testing your apps against your mobile backend:

– Diagnostics

– Testing APIs and Mobile Backends

• For creating packages that contain mobile backends, APIs, and other artifacts and
then exporting and importing those packages:

– Packages

If you haven’t gone through them already, here are some tutorials to help you get
started quickly:

• Mobile Backends (Access this tutorial by signing into MCS and clicking Get
Started on the home page.)

• Custom APIs

• Connectors

You may also want to subscribe to The YouTube channel for Oracle Mobile Platform,
which contains instructional videos covering all of the areas above.

Enterprise Architect
As the enterprise architect, you’re concerned with designing a secure and scalable
mobile solution for your business. It’s your job to determine what can be built, where
desired data and functionality will come from, and what security and environment
policies need to be implemented. You’re particularly attuned to establishing best
practices, consistency, and reusability in your resources and repeatability in your
processes.

In addition to establishing the mobile architecture, you also oversee how apps are
deployed initially, updated, and patched.

You will be most interested in the following topics:

• Getting the Service Set Up

• Lifecycle

• What About Security?

You may also want to subscribe to the YouTube channel for Oracle Mobile Platform,
which contains instructional videos covering all of the areas above.

Mobile Cloud Administrator
As the mobile cloud admin, you are responsible for setting up MCS for your team
members and making sure that it keeps clicking both for the team members working
with MCS and the end users of your apps. In your day-to-day work, you monitor the
Administration tab to make sure that the service is running smoothly. When you detect
issues or when problems are reported to you, the built-in diagnostics tools help you
identify and fix the problems.

You will be most interested in the following chapters:

• Set Up the Service

Chapter 1
Job Descriptions and Learning Paths

1-16

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_customapis
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_connectors
http://bit.ly/oramobilesub
http://bit.ly/oramobilesub

• Lifecycle (for learning about the main principles of deployment and lifecycle of
mobile backends, APIs, and other artifacts)

• Managing an Artifact’s Lifecycle (for the steps on versioning, deploying, and
patching)

• Diagnostics (for using diagnostics and logs)

• App Policies (for adjusting app policies for already-deployed apps)

If you haven’t gone through it already, you may want to look at the Mobile User
Management tutorial, which shows how to quickly set up an additional realm.

You might also want to look at this video on managing your mobile deployments as
well as the YouTube channel for Oracle Mobile Platform, which contains instructional
videos covering all of the areas above.

Mobile Program Manager
As the mobile program manager, you’re responsible for the success of your mobile
strategy. You want to know how many people are using your applications, and how
they’re using them. To achieve that, you will probably want to use Oracle Mobile Cloud
Service's Analytics features to track standard metrics (such as registered and active
users, number of transactions, etc.) and create your own events to track.

You will be most interested in the following chapter:

• Analytics

In addition, you may be interested in looking at this video on MCS’s Analytics and the
YouTube channel for Oracle Mobile Platform.

Chapter 1
Job Descriptions and Learning Paths

1-17

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_usermanage
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_usermanage
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10579
http://bit.ly/oramobilesub
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10080
http://bit.ly/oramobilesub
http://bit.ly/oramobilesub

2
Set Up the Service

Here’s what you need to know to get your team set up with Oracle Mobile Cloud
Service (MCS), including activating the service, creating a service instance, and
assigning team members. Be sure to go through this chapter carefully to make sure
that you have fully configured the service for what your team needs.

Where Do I Sign Up?
If you haven't already purchased a subscription to Oracle Mobile Cloud Service (MCS)
and would like to, you can do so in either of these ways:

• Visit https://shop.oracle.com and enter Mobile Cloud Service into the Search
field to display the purchase options.

• Contact your sales representative. If you don’t know who that is, go to the Oracle
Contact List and click Live Sales Chat.

You can purchase a metered or non-metered subscription. For an overview, see
Overview of Oracle Cloud Subscriptions in Getting Started with Oracle Cloud.

You can also sign up for a trial by following these steps:

1. Navigate to https://cloud.oracle.com/en_US/tryit and click Get started for free.

2. Click Sign up.

3. Fill out the online form to create an Oracle account.

See Requesting a Free Oracle Cloud Promotion if you have any questions on how
to fill out the form.

Once the request is approved, you will receive an email with details for logging in (and
changing your password).

What Do I Need To Do?
MCS setup activities are divided between team members with the following
administrative roles, assigned in Oracle Cloud.

Task Who Does It? How Do I Do It?

Activate the service and
designate administrators

Your company’s Oracle Cloud
account administrator. This
person is designated by your
Oracle sales representative
when you sign up with Oracle
Cloud.

See Activate the Service

2-1

https://shop.oracle.com/
http://www.oracle.com/us/corporate/contact/global-070511.html
http://www.oracle.com/us/corporate/contact/global-070511.html
https://cloud.oracle.com/en_US/tryit

Task Who Does It? How Do I Do It?

Create one or more service
instances (environments) and
assign a service administrator

For non-metered service, it is
the account administrator or
service administrator
designated by the account
administrator.

For metered service, it is the
service administrator.

See Create Mobile
Environment Service
Instances

Assign MCS team member
roles to define permissions

A service administrator for
the MCS environment.

See Assign MCS Team
Member Roles

Set up mobile users, realms
and roles

A team member with the
Oracle Cloud identity domain
administrator role and the
mobile user configuration
(MobileEnvironment_Mobil
eUserConfig) and mobile
user management
(MobileEnvironment_Mobil
eUserMgmt) MCS team
member roles in the MCS
environment.

See Set Up Mobile Users,
Realms and Roles

Set up MCS for MAX Your company’s MCS service
administrator.

See Setting Up MAX
Environments, Distinguishing
Between MAX Team Member
Roles for Business Users and
for Mobile App Developers
and Mobile Users for MAX

Log in to MCS All MCS team members. See Get on Board

Activate the Service
When your company submits an order for MCS, your sales representative designates
an account administrator, who is the activator for the service. If you're that person,
you’ll receive an activation email to get started. If this is your first time logging in to
Oracle Cloud, you’ll be prompted to change your temporary password.

• Open the activation email and click Cloud Account Services Setup.

If you have a non-metered subscription, you’ve subscribed to an entitlement to create
service instances of MCS (environments), so your first task is to create those
environments based on your business needs, described next in Create Mobile
Environment Service Instances

If you have a metered subscription, your first task is to assign MCS roles to your team,
described in Assign MCS Team Member Roles.

Create Mobile Environment Service Instances
MCS uses environments to define the behavior of artifacts and control access to
development and administrative features. As an account or service administrator, you
define these environments, assign predefined MCS team member roles, and configure
environment policies. For example, if you have more than one environment, you could
designate one as a development environment and one as a production environment.

Chapter 2
Activate the Service

2-2

• Development could be an environment where you create your mobile backend,
define your custom APIs, create new services using custom code, set up storage
for your collections, and so on. It’s the primary environment where you’ll do most
of your work.

• Production could be a completely separate environment, into which you can
promote your completed project code for testing or public access. Developers and
team members with broad permissions and easy access to features in the
development environment might have little or no access to a production (or
staging) environment where specific testing can be done by another team. You
could also further separate the production environment to promote fully tested
code for use by applications.

To create your mobile environment service instances:

1. Open the welcome email you received after being assigned as the service
entitlement administrator and click My Account.

You’ll be prompted to change your temporary password.

2. In the Oracle Cloud Infrastructure Classic Console, click the Create Instance
button next to Mobile Cloud Service in the list of services and complete the wizard
that appears.

Allow up to three hours for the instance to be created.

Upon creation of your first environment, an MCS Portal instance is also created
and your environment is associated with it.

3. For any additional environments you want to create, repeat step 2 of this
procedure and associate them with the MCS Portal instance using the
Associations dropdown in the wizard.

If you need more detailed information on the wizard, see Creating Service Instances in
Getting Started with Oracle Cloud.

Setting Up MCS Environments
If you’re assigned as service administrator for the mobile environment service
instance, you’re granted all MCS team member roles in the environment so you can
start setting up the environment:

• To assign team member roles, open the welcome email you received when you
were assigned as service administrator and follow the link to Oracle Cloud My
Services. From the Oracle Cloud Infrastructure Classic Console, click the

navigation menu in the top left corner, and choose Users.

• From the Users page you can assign team member roles for the environment as
described in Assign MCS Team Member Roles.

• To monitor activity, access administrative features and define environment

policies, go to MCS, click and open Administration from the side menu. For
more information on using these features, see MCS Environments.

Setting Up MAX Environments
MAX (Mobile Application Accelerator) is a development tool that enables business
users to create, test, and publish mobile apps without writing code. You can find out

Chapter 2
Create Mobile Environment Service Instances

2-3

more about MAX and how it’s used in Creating APIs Fast with the Express API
Designer.

MCS doesn’t support multiple development and production environments for MAX.
You can only assign one MAX development environment and one production
environment.

• A business user builds and tests apps in the MAX development environment. The
MobileEnvironment_BusinessUser role in the development environment limits
business users to the MAX UI only. MCS team members with the
MobileEnvironment_Develop role in the environment also have access to MAX
features.

• A business user or MCS team member can use MAX to publish apps by promoting
them to the MAX production environment, making them available to other people
in the organization. This requires the MobileEnvironment_MAXApplicationDeploy
role in the environment.

For more information on MAX roles, see Distinguishing Between MAX Team Member
Roles for Business Users and for Mobile App Developers.

Tip:

Instead of accepting the default names for the MAX development and
production environments, choose names that make them easy to identify.
You might consider a MAX-themed naming convention and choose simple
names to help you associate MAX roles with the correct environment service
instances.

Assign MCS Team Member Roles
As a service administrator, you use the predefined MCS team member roles to grant
permissions and capabilities to your team members in each environment. Team
members and their roles are managed from Oracle Cloud Infrastructure Classic
Console.

Chapter 2
Assign MCS Team Member Roles

2-4

Note:

A service administrator can assign MCS roles to existing team members.
To create new team members, you need to be assigned the identity domain
administrator role in Oracle Cloud by the account administrator.
As account administrator, be judicious about granting the identity domain
administrator role. It’s required to create team members and mobile users,
but it also grants broader permissions over your MCS instance in Oracle
Cloud.

To add users and assign them roles:

1. Sign in to your Oracle Cloud account.

2. On the Oracle Cloud Infrastructure Classic Console, click the navigation menu
in the top left corner, and choose Users.

3. For each team member, click Add and fill in the name, email, and other required
information.

4. In the Simple Role Selection section, select roles for each user.

For development environments, it's generally a good idea to assign team members
all of the MCS roles described below in development environments (except for the
MobileEnvironment_BusinessUser role) to make sure that they can complete all of
the development activities. (Use the MobileEnvironment_BusinessUser only for
team members you want to go straight to Mobile Application Accelerator (MAX)
without seeing the rest of the MCS interface.)

For production environments, most team members should have more limited
access.

If you need more detailed instructions, see Adding Users and Assigning Roles in
Getting Started with Oracle Cloud.

MCS Team Member Roles
MCS team member roles are predefined and can’t be created or customized. Team
members must be assigned at least one of the roles in the table below in each
environment they should have access to.

Role Name Privileges Available Actions

MCS Team Member
(MobilePortal_Team
Member)

Access to the MCS UI. All team
members.
The MCS UI is represented by an
environment in Oracle Cloud, called
the MCS UI service. All team
members must be granted this role in
the MCS UI service in addition to
roles granted in other MCS
environments.

• Access the MCS UI

Mobile Analytics
(MobileEnvironment
_Analytics)

Read-only access to analytics data
for the environment.

• View analytics data and
define custom reports

Chapter 2
Assign MCS Team Member Roles

2-5

Role Name Privileges Available Actions

Mobile Database
Management
(MobileEnvironment
_DbMgmt)

Use the Database Management API
to to view, create, and drop tables.

• Access the database
• Migrate data

Mobile Deploy
(MobileEnvironment
_Deploy)

Control artifact versions deployed
within the environment and configure
artifact policies and instance data.

• Deploy versioned artifacts
• Create, modify and remove

artifact policies
• Modify artifact instance

data

Mobile Develop
(MobileEnvironment
_Develop)

Create, configure and publish new
artifacts, such as mobile APIs and
custom code. Create and test mobile
apps using MAX. This role is only
useful in development environments.

• Create a draft of an artifact
• Modify artifact metadata
• Publish an artifact
• Test custom code by

creating mobile apps using
Mobile Application
Accelerator (MAX)

Mobile Location
Management
(MobileEnvironment
_LocationMgmt)

Create, configure and delete location
artifacts such as assets, devices and
places so applications can query
location data.

• View location devices,
places and assets from the
UI

• Create location devices,
places, and assets from the
UI

• Modify location devices,
place, and assets from the
UI

• Delete location devices,
places, and assets from the
UI

Mobile System
(MobileEnvironment
_System)

Access the Location Management
API from custom code.

• Create location devices,
places, and assets from
custom code

• Modify location devices,
place, and assets from
custom code

• Delete location devices,
places, and assets from
custom code

Mobile User
Configuration
(MobileEnvironment
_MobileUserConfig)

Define realms and roles for mobile
users so applications can use role-
based access policies.
You must also be granted the role of
identity domain administrator in
Oracle Cloud to manage roles and
realms.

• Create a role
• Delete a role
• Create a realm
• Modify a realm (draft/

publish)

– Add a user attribute
– Remove a user

attribute

Mobile User
Management
(MobileEnvironment
_MobileUserMgmt)

Manage mobile users within a realm,
including creating mobile users and
assigning roles.
You must also be granted the role of
identity domain administrator in
Oracle Cloud to manage users.

• Create, update, suspend,
activate and remove mobile
users

• Assign mobile roles to
mobile users

• Reset a mobile user’s
password

Chapter 2
Assign MCS Team Member Roles

2-6

Role Name Privileges Available Actions

Mobile Monitor
(MobileEnvironment
_Monitor)

Read-only access to diagnostics
data for the environment.

• View diagnostic data and
define custom reports

Mobile Notifications
(MobileEnvironment
_Notifications)

Send and receive notifications in the
environment.

• Create (send) and query for
notifications

Business User
(MobileEnvironment
_BusinessUser)

Access to the Mobile Application
Accelerator (MAX) development UI.
Blocks access to the rest of the MCS
UI.
Never grant the Business User
role to a MCS mobile app or
service developer or assign it to a
production environment.

• Create and test mobile
apps using MAX

MAX Mobile App
Deployment
(MobileEnvironment
_MAXApplicationDe
ploy)

Access to the MAX production
environment and MAX application
deployment features.

• Publish mobile apps using
MAX

The naming convention for Oracle Cloud roles that correspond to MCS team member
roles is: {serviceName}.{rolename}. For example, in the environment with service
name paid1247mobsvc002dev the name of the Oracle Cloud role for the
MobileEnvironment_Deploy team member role would be
paid1247mobsvc002dev.MobileEnvironment_Deploy. Service names for MCS
environments are listed on the Oracle Cloud Infrastructure Classic Console.

You might see some extra roles in the list in Oracle Cloud, including a Mobile Team
Management role in several environments and extra Mobile Monitor and Mobile User
Management roles in the UI environment. You don’t need to assign those roles to
anyone, as they aren’t used in this release.

Team member roles are different from the mobile user roles that you assign to end
users of your apps. For details on mobile user roles, see Creating and Managing
Mobile User Roles.

Distinguishing Between MAX Team Member Roles for Business Users
and for Mobile App Developers

MAX (Mobile Application Accelerator) is a development tool for business users, but
MCS mobile app and service developers can also use MAX to test custom code. You
can find out more about MAX and how it’s used in Creating APIs Fast with the Express
API Designer.

To set up MCS so both business users and MCS developers can use MAX, take care
in assigning roles. Both business users and MCS developers need the
MobilePortal_TeamMember role to access the mobile portal, but these two types of
users access MAX differently.

• The MobileEnvironment_BusinessUser role must only be assigned to a business
user in the MAX development environment so they can bypass the rest of MCS.
Business users with this role are MAX-only users and can’t even see the MCS UI.

Chapter 2
Assign MCS Team Member Roles

2-7

Never assign this role to a MCS mobile app or service developer or to a production
environment.

• The MobileEnvironment_Develop role grants access to MAX from within the MCS
UI. To make sure that MCS mobile app and service developers can open the
Applications page and aren’t trapped in MAX, always assign them the
MobileEnvironment_Develop role, and not the MobileEnvironment_BusinessUser
role.

• The MobileEnvironment_MAXApplicationDeploy role in the MAX production
environment enables both business users and MCS developers to publish apps
using MAX. When this role is assigned, MAX is included on the Applications page
for the environment.

To find out more about accessing MAX, see Who Uses MAX?

Example Team Member Role Assignments
This table shows one way you could assign MCS team member roles by environment
for the common jobs described in Get to Know Oracle Mobile Cloud Service. All team
members also need to be assigned the MobilePortal_TeamMember role in the MCS UI
service.

Caution:

When creating team member accounts for Mobile Application Accelerator
(MAX), be sure to keep the roles and their associated environments straight.
Do not grant the MAX BusinessUser role to MCS mobile app or service
developers or they will be limited to the MAX UI and won’t have access to
MCS development features. Also, the MAX development environment is
identified by the MobileEnvironment_BusinessUser role, so take care when
choosing the service instance name in the Oracle Cloud Infrastructure
Classic Console. Do not assign this role to the MAX production environment.

Chapter 2
Assign MCS Team Member Roles

2-8

Job Development
Environment Roles

Staging
Environment Roles

Production
Environment Roles

enterprise architect MobileEnvironment
_Analytics,
MobileEnvironment
_DbMgmt,
MobileEnvironment
_Deploy,
MobileEnvironment
_Develop,
MobileEnvironment
_LocationMgmt,
MobileEnvironment
_System,
MobileEnvironment
_MobileUserConfig
,
MobileEnvironment
_MobileUserMgmt,
MobileEnvironment
_Monitor,
MobileEnvironment
_Notifications

MobileEnvironment
_Analytics,
MobileEnvironment
_DbMgmt,
MobileEnvironment
_Deploy,
MobileEnvironment
_LocationMgmt,
MobileEnvironment
_System,
MobileEnvironment
_MobileUserConfig
,
MobileEnvironment
_MobileUserMgmt,
MobileEnvironment
_Monitor,
MobileEnvironment
_Notifications

MobileEnvironment
_Notifications

mobile cloud
administrator

MobileEnvironment
_Analytics,
MobileEnvironment
_DbMgmt,
MobileEnvironment
_Deploy,
MobileEnvironment
_Develop,
MobileEnvironment
_LocationMgmt,
MobileEnvironment
_System,
MobileEnvironment
_MobileUserConfig
,
MobileEnvironment
_MobileUserMgmt,
MobileEnvironment
_Monitor,
MobileEnvironment
_Notifications

MobileEnvironment
_Analytics,
MobileEnvironment
_DbMgmt,
MobileEnvironment
_Deploy,
MobileEnvironment
_LocationMgmt,
MobileEnvironment
_System,
MobileEnvironment
_MobileUserConfig
,
MobileEnvironment
_MobileUserMgmt,
MobileEnvironment
_Monitor,
MobileEnvironment
_Notifications

MobileEnvironment
_Analytics,
MobileEnvironment
_DbMgmt,
MobileEnvironment
_Deploy,
MobileEnvironment
_LocationMgmt,
MobileEnvironment
_System,
MobileEnvironment
_MobileUserConfig
,
MobileEnvironment
_MobileUserMgmt,
MobileEnvironment
_Monitor,
MobileEnvironment
_Notifications

Chapter 2
Assign MCS Team Member Roles

2-9

Job Development
Environment Roles

Staging
Environment Roles

Production
Environment Roles

mobile app developer
and service developer

MobileEnvironment
_Analytics,
MobileEnvironment
_DbMgmt,
MobileEnvironment
_Deploy,
MobileEnvironment
_Develop,
MobileEnvironment
_LocationMgmt,
MobileEnvironment
_System,
MobileEnvironment
_MobileUserConfig
,
MobileEnvironment
_MobileUserMgmt,
MobileEnvironment
_Monitor,
MobileEnvironment
_Notifications,

MobileEnvironment
_Analytics,
MobileEnvironment
_MobileUserMgmt,
MobileEnvironment
_Monitor,
MobileEnvironment
_Notifications

MobileEnvironment
_Notifications,
MobileEnvironment
_MAXApplicationDe
ploy

mobile program
manager

MobileEnvironment
_Analytics,
MobileEnvironment
_DbMgmt,
MobileEnvironment
_Deploy,
MobileEnvironment
_Develop,
MobileEnvironment
_LocationMgmt,
MobileEnvironment
_System,
MobileEnvironment
_MobileUserConfig
,
MobileEnvironment
_MobileUserMgmt,
MobileEnvironment
_Monitor,
MobileEnvironment
_Notifications

MobileEnvironment
_Analytics,
MobileEnvironment
_Notifications

MobileEnvironment
_Analytics,
MobileEnvironment
_Notifications

business user MobileEnvironment
_BusinessUser

N/A MobileEnvironment
_MAXApplicationDe
ploy

Remember, to create new team members or mobile users, a team member also needs
to be granted the identity domain administrator role in Oracle Cloud.

Chapter 2
Assign MCS Team Member Roles

2-10

Set Up Mobile Users, Realms and Roles
Mobile users are your customers — the ones who use the mobile apps built with
MCS. Organize your mobile users by setting up realms that define the user schema,
and creating roles to grant access permissions. It’s a good idea to define some realms
and roles before app developers start working with MCS. You can also set up some
initial mobile users for testing and maybe import larger groups of mobile users.

Note:

To manage mobile users, roles and realms, you need to be assigned the
mobile user configuration (MobileEnvironment_MobileUserConfig) and
mobile user management (MobileEnvironment_MobileUserMgmt) MCS team
member roles in the environment, as well as the identity domain
administrator role in Oracle Cloud.

Manage mobile users, realms and roles in MCS from Applications > Mobile User
Management.

Creating Realms
A realm is a container for managing mobile users within an environment. Each realm
includes a user schema that defines the user data that can be stored and made
accessible to mobile apps. You can define custom properties for a user schema, but
the following properties are required:

• user name

• password

• first name

• last name

• e-mail

To create a new realm, start in a development environment. Available realms are listed
under Mobile User Management in the side menu.

1. Make sure you're in the development environment where you want to create the
realm.

2. Click to open the side menu and select Applications > Mobile User
Management.

3. Click the Realms navigation link.

4. To create a realm, click New Realm.

5. Enter a unique name and an optional description. The realm name can’t be
changed after the realm is created.

6. If you want to add a custom property to the user schema, click New Field.

a. Enter a unique name for the field and an optional description.

Chapter 2
Set Up Mobile Users, Realms and Roles

2-11

You can’t use any of the following reserved field names: firstname, lastname,
email, username, password, createdOn, createdBy, modifiedOn, modifiedBy,
id, roles, and links.

b. Select the appropriate data Type for the field: string, number, date or Boolean.

c. Click Create to add the new field to the user schema.

7. When you’ve finished, click Save to save your changes to the realm and return to
the Realms tab.

After a realm is published, the user schema can’t be changed. Realms can’t be
deleted from MCS.
Realms are deployed automatically with the associated mobile backend. Only the user
schema is deployed; no user data is migrated. For detailed information on publishing
and deploying realms, see Realm Lifecycle. If you want to change the realm
associated with an existing mobile backend, see Changing a Mobile Backend's Realm.

Setting the Default Realm for an Environment
When you create a new mobile backend, it’s automatically associated with the default
realm for the environment. You can set this default realm to any available realm in the
environment.

1. Make sure you're in the environment where you want to set the default realm.

2. Click to open the side menu and select Applications > Mobile User
Management.

3. Click the Realms navigation link.

4. Select the realm that you want to make the new default. Click More and select
Make default realm.

Creating and Managing Mobile User Roles
Mobile user roles allow you to define permissions for your apps and assign them to
mobile users. You can define as many roles as you need, and you can assign multiple
roles to the same mobile user.

A mobile app can allow different access to mobile users with different roles. You could
assign a Technician role to a mobile technician to grant access to specific features of
the company's mobile app, and a Salesperson role to a sales rep to grant access to
different features. The same mobile technician could have a Customer role in the
company’s supply ordering app where the sales rep has no role assigned.

To create and manage mobile user roles:

1. Make sure you're in the environment where you want to create the role(s).

2. Click to open the side menu and select Applications > Mobile User
Management.

Chapter 2
Set Up Mobile Users, Realms and Roles

2-12

Note:

Though it's possible to create and delete mobile user roles from My
Services in Oracle Cloud, you should handle all operations on mobile
user roles from Mobile User Management in the MCS UI.

3. Click the Roles page. From here you can view and edit available mobile user roles
and create new roles. As soon as you create a role, it’s added to the list on the
Roles page and you can define access permissions.

• Role names are case-sensitive.

• Roles are deployed automatically with any object that references them.

Once you’ve defined roles, you can use them throughout MCS:

• Assign roles to individual mobile users from the Mobile Users page in MCS, or
use Oracle Cloud to batch assign roles to groups of mobile users, described in
Importing Groups of Mobile Users Into MCS Using Oracle Cloud.

• Assign specific permissions for objects and resources to the roles you’ve defined,
as described in Adding Access Permissions to a Collection.

• Restrict access to APIs and individual methods, as described in Setting Access to
the API.

Creating Mobile Users and Assigning Roles
From the Mobile Users page in MCS Mobile User Management, you can create and
edit users and assign roles, search for an existing user, and reset a user’s password to
a system-generated temporary password that is sent to the user’s email address.
Remember, you can only create mobile users if you have the identity domain
administrator role in Oracle Cloud.

For more thorough testing or for production, you’ll probably want to import a group of
users. To import groups of users into MCS, use Oracle Cloud to batch assign them to
a realm. You can also use Oracle Cloud to batch assign mobile user roles. For
detailed instructions, see Importing Groups of Mobile Users Into MCS Using Oracle
Cloud.

Note:

In all cases, when you a create mobile users, they are sent a temporary
password. The new users need to use this temporary password to log into
the Oracle Cloud Infrastructure Classic Console, change the password, and
set up their challenge questions before they can be recognized as an MCS
mobile user.

Creating Individual Mobile Users for Testing
You can use the MCS UI to create individual mobile users and assign roles. Here are
the steps for quickly creating a test user. Some steps include suggested values that
will allow app developers to seamlessly complete the Get Started with Mobile
Development tutorial on the MCS home page.

Chapter 2
Set Up Mobile Users, Realms and Roles

2-13

1. Make sure you're in the environment where you want to create the mobile user(s).

2. Click to open the side menu and select Applications > Mobile User
Management.

3. Click Mobile Users.

4. Select the Realm where you want to create the user.

5. Click the New User button.

6. Enter a unique user name and fill in the remaining fields in the dialog, including an
email address where you can retrieve the generated password.

The available fields may vary depending on the realm where you’re creating the
user. The Get Started with Mobile Development tutorial uses the user name Joe.

Note:

Both user name and email address must be unique across all services in
Oracle Cloud.

7. If you haven’t created the role you need yet, you can add a new role to the
environment by clicking Create Role on the right side of the dialog.

The Get Started with Mobile Development tutorial uses the role name Technician
for the user Joe.

8. Click Create again to create the new mobile user.

An email is sent from Oracle Cloud to the address you entered with a temporary
password.

9. (Optional) Assign roles to an individual mobile user from the Mobile Users page in
MCS.

You can only assign a mobile user to one realm via the MCS Mobile Users page, but
you can associate mobile users with multiple realms using Oracle Cloud. For more
thorough testing or for production, you’ll also probably want to import a group of mobile
users.

Importing Groups of Mobile Users Into MCS Using Oracle Cloud
You can use Oracle Cloud to import a group of users into MCS or assign MCS roles to
a group of users, using the steps below. MCS mobile user realms and roles are both
represented by custom roles in Oracle Cloud. As with all mobile user operations in this
section, you need the identity domain manager role in Oracle Cloud to complete these
steps.

1. Create the MCS realm and mobile user roles you want to assign to the group of
users, if you haven’t already. For detailed instructions, see Creating Realms and
Creating and Managing Mobile User Roles.

2. Create a group of mobile users in Oracle Cloud using a comma-separated values
(CSV) file.

For detailed information on batch importing users, including the related CSV files,
see Importing a Batch of User Accounts in Getting Started with Oracle Cloud.

Chapter 2
Set Up Mobile Users, Realms and Roles

2-14

3. Import the users into MCS by assigning the group to the Oracle Cloud custom role
that represents the MCS realm you created in step 1.

The naming convention for Oracle Cloud custom roles that represent MCS realms
is: {serviceName}_MobileEnvironment_{realmname}_{version with dots as
underscores}_Realm where {serviceName} is the service name of the
environment in Oracle Cloud. You can find the service names for all MCS
environments on the Oracle Cloud Infrastructure Classic Console. For example,
for the default realm version 1.0 in the environment with service name
“3240930apod” the custom role in Oracle Cloud would be
3240930apod_MobileEnvironment_Default_1_0_Realm, or for the MyCustomers
realm version 2.5 in the environment with service name “poeo342ed” it would be
poeo342ed_MobileEnvironment_MyCustomers_2_5_Realm. For detailed
instructions, see Assigning One Role to Many Users in Getting Started with Oracle
Cloud.

4. (Optional) Assign MCS mobile user roles to the group by assigning Oracle Cloud
custom roles using the same process you did for the realm in the previous step.

The naming convention for Oracle Cloud custom roles that represent MCS mobile
user roles is: {serviceName}_MobileEnvironment_{rolename}. For example, for a
role named “APIRole” in the environment with service name “poeo342ed” the
custom role in Oracle Cloud would be poeo342ed_MobileEnvironment_APIRole.

Mobile Users for MAX
In addition to their team member accounts, MAX (Mobile Application Accelerator)
business users need mobile user accounts to test and use their mobile apps. For
details on MAX team member roles, see Distinguishing Between MAX Team Member
Roles for Business Users and for Mobile App Developers. For more information about
MAX, see Using the Express API Designer with MAX.

Role Definition

test user A test user account enables MAX users to
preview apps using live data. It also enables
them to generate the QR code that identifies
the test version of an app. For more
information on creating a test user account,
see Creating Individual Mobile Users for
Testing.

mobile user Mobile user accounts enable everyone
(business users, MCS developers, and mobile
app users) to log in to MAX and use published
mobile apps. Anyone who tests or uses a
mobile app built using MAX needs a mobile
user account. For more information, see
Importing Groups of Mobile Users Into MCS
Using Oracle Cloud.

Changing a Mobile User Password
As mobile cloud administrator, you can change a mobile user’s password from the
Mobile Users page in MCS Mobile User Management. Mobile users can change their
own passwords from Oracle Cloud Identity Self Service.

Chapter 2
Set Up Mobile Users, Realms and Roles

2-15

1. Click to open the side menu and select Applications > Mobile User
Management.

2. Click Mobile Users.

3. Select the mobile user on the Mobile Users page and click the Reset password
button. MCS will send an email with a temporary password to the email address
associated with the user.

Configuring Identity Management (SSO and OAuth)
MCS allows you to use single sign-on (SSO) with OAuth so your mobile apps can use
your own identity provider (IdP) for authentication.

• If you want to use a third-party IdP as your identity store (without any
corresponding accounts for your users in Oracle Cloud), you can use SAML and
JWT tokens for authentication. See Third-Party SAML and JWT Tokens.

• If you want to use a third-party IdP in conjunction with Oracle Cloud user accounts,
configure the connection between Oracle Cloud and the identity provider from the
Users page in Oracle Cloud Infrastructure Classic Console. For detailed
instructions, see Managing Single Sign On in Administering Oracle Cloud Identity
Management.

Configuring Oracle Cloud Applications as the Identity Provider
If your team will be creating mobile apps that are designed for users of Fusion
Applications-based services such as Oracle Sales Cloud, Oracle HCM Cloud, and
Oracle ERP Cloud, you will probably want to enable those users to sign in to the
mobile app once and not have to re-enter credentials to access the Oracle Cloud
application.

For your mobile app and service developers to be able to create such apps where the
user only needs to sign in once, you need to get the following things in place:

1. Have your MCS instance provisioned in the same identity domain as the Oracle
Cloud application service that your apps will access.

2. Enable SSO for the identity domain and set the Oracle Cloud application service
as the identity provider.

3. Enable sign—on with identity domain credentials. This enables team members to
sign in with their Oracle Cloud credentials. Otherwise, they would be prompted to
log in with credentials for the Oracle Cloud application service (which they might
not have).

The steps for this are:

a. In Oracle Cloud Infrastructure Classic Console, go to the SSO Configuration
page.

b. Go to the Enable Sign In to Oracle Cloud Services with Identity Domain
credentials section and click Enable.

Note:

You can only designate one identity provider to be used with SSO.

Chapter 2
Set Up Mobile Users, Realms and Roles

2-16

Once the services are set up in the same identity domain and SSO has been enabled,
the mobile app developer can do the following to enable the app user’s login
credentials to propagate to the Oracle Cloud application:

• Create a Fusion Applications connector API to connect to the Oracle Cloud
application service.

• Within the connector API, designate the appropriate security policy to handle
authentication and authorization with the service.

• Create a custom API that calls the connector API.

• Create a mobile backend, enable it to use SSO, and associate the custom API
with it.

Get on Board
Once you’re assigned a role in MCS, you can log in and get to work. To open MCS
from the Oracle Cloud Infrastructure Classic Console, click the Open Service
Console link in the MobilePortalService box. (This link is only accessible to team
members with administrative roles.)

Note:

If you see an error when you try to access MCS, you probably don’t have all
the roles you need. Ask your service administrator to assign you the
necessary MCS roles.

Chapter 2
Get on Board

2-17

Part II
Setting up Mobile Apps

This part contains the following chapters:

• Mobile Backends

• Authentication in MCS

• Android Applications

• iOS Applications

• Cordova Applications

• JavaScript Applications

• Xamarin Android Applications

• Xamarin iOS Applications

3
Mobile Backends

Oracle Mobile Cloud Service (MCS) is built around the concept of mobile backends,
which enables you, as a mobile app developer, to develop and deploy groupings of
APIs that are designed to support a specific set of mobile apps. You can then
associate one or more apps with the mobile backend to access those APIs.

What Is a Mobile Backend and How Can I Use It?
A mobile backend is a secure grouping of APIs and other resources for a set of mobile
apps. Within a mobile backend, you select the APIs that you want available for those
apps. For any apps that you want to receive notifications, you can also register the
appropriate credentials for the given network (e.g. APNS, GCM, or WNS) in the mobile
backend.

You can have multiple backends, each serving a set of applications. In addition, you
can have APIs that are used by multiple backends.

When an app accesses APIs through MCS, it is always in the context of a mobile
backend. The app authenticates with credentials (OAuth Consumer or HTTP Basic
Authentication) specific to the mobile backend or through an identity store (or social
login provider) that is mediated by your mobile backend. If the called API includes calls
to other APIs within the backend, the identity and credentials of the original caller are
propagated through the chain of calls.

You don't have to start your work in MCS with a mobile backend (for example, you
could start developing custom APIs or set up storage collections first without
associating them with any mobile backends). But you may find it useful to do so.
Working in mobile backends helps you visualize the resources available for the target
apps and how they will work together. In addition, you can use the mobile backend's
security context to test calls to your APIs, even in the earliest stages of development.

3-1

What's the Mobile Backend Development Process?
Generally speaking, using MCS entails developing APIs, grouping them in mobile
backends, and developing mobile apps that use these mobile backends. The
development model is flexible, allowing you to work on APIs, mobile backends, and
mobile apps largely in parallel.

As shown in this figure, the general workflow includes steps both for creating and filling
out the mobile backend and for setting up your app to work with the mobile backend.

Creating and Populating Mobile Backends
You create and populate mobile backends directly in Oracle Mobile Cloud Service.
Once you have created a mobile backend, you can associate APIs and Storage
collections with it, and register client apps that will use the mobile backend.

Chapter 3
What's the Mobile Backend Development Process?

3-2

Creating a Mobile Backend
1. Make sure you're in the environment where you want to create the mobile

backend.

2. Click to open the side menu and select Applications > Mobile Backends.

3. Click New Mobile Backend.

4. Enter a name for the mobile backend and a description.

Mobile Backends for MAX Apps
A mobile backend is created on the fly whenever a Mobile Application Accelerator
(MAX) user creates an app. These mobile backends are named with a MAX_ prefix,
followed by the name of the MAX app itself, another underscore (_) and an App ID.
For example, MAX_myMAXApp_0123_a4563. (MCS inserts underscores if a MAX
app’s name includes spaces: My MAX APP becomes My_MAX_App, for example.)
Use the Mobile Application Accelerator filtering option to locate these mobile
backends. Although these mobile backends are created automatically and are already
associated with a client app (that is, a MAX App), you can use the Settings page to
update them just as you would with any other mobile backend. For example, you can
add SSO support to your MAX apps.

Mobile Backend Authentication and Connection Info
The following authentication and connection details are generated when you create a
mobile backend and are displayed on the mobile backend’s Settings page. Your apps
use these details to connect to and authenticate with APIs associated with that mobile
backend. These credentials can be used by every application associated with that
mobile backend.

• Environment URLs

Chapter 3
Creating and Populating Mobile Backends

3-3

– The Base URL is needed for all API calls. This URL is distinct for each
environment that you have provisioned.

– The OAuth Token Endpoint is the URL that your app needs to use to make
OAuth token requests.

– A SSO Token Endpoint is also provided if you enable OAuth and then enable
single sign-on (SSO) for your mobile backend. Your app would use this URL to
obtain a single sign-on OAuth token in order to login through a remote identity
provider.

• A set of Authentication Keys, which your app needs to access APIs through the
mobile backend. Keys are generated for both OAuth Consumer and HTTP Basic
authentication. Use the toggle switch next to each to enable or disable access
through that protocol.

A set of Access Keys, which your app needs to access APIs through the mobile
backend. Keys are generated for both OAuth Consumer and HTTP Basic
authentication. Use the toggle switch next to each to enable or disable access
through that protocol. For OAuth, you can also enable SSO in order to allow your
company’s identity provider to be used authenticate users.

OAuth Consumer keys are generated in the form of a client ID and a client
secret. These two values are unique to this mobile backend.

HTTP Basic Authentication keys are generated for you in the form of a mobile
backend ID and an anonymous key.

These keys are also unique by environment. When you deploy a mobile backend
to a different environment, a new set of keys is generated for the copy of the
mobile backend that is added to the target environment.

If you suspect that these credentials have been compromised (such as by an
application handling them insecurely), click Refresh to replace the credentials with
new ones or click Revoke to cancel the existing credentials without generating
replacements.

Note:

Think twice before refreshing or revoking credentials, since these actions
will block any calls that any existing apps make through the mobile
backend. To get the apps working properly again after credentials have
been revoked or refreshed, you need to rebuild the apps with the new
credentials and redeploy them.

For details on using the various authentication methods, see Authentication in MCS.

To make it easier to incorporate these details in your apps, use the MCS SDKs for
your app platforms. See The SDKs.

Environments and Mobile Backends
All work on mobile backends takes place in the context of an environment. You can
use a separate environment for each phase in the mobile backend lifecycle, such as
development, testing, and production.

Typically you create a mobile backend in an environment that you have designated for
development, publish that mobile backend, and then deploy it to another environment

Chapter 3
Creating and Populating Mobile Backends

3-4

for testing. Once thoroughly tested, you would then deploy the mobile backend to your
production environment.

For more on environments, see What is My Environment?.

Realms and Mobile Backends
A realm is the security context for a set of users that defines a set of properties that
contain information on the user, such as user ID and user name as well as any custom
information that is relevant to the purpose of the apps using that realm.

You can have different realms for different purposes. Each mobile backend in an
environment can be associated with only one realm, but multiple mobile backends can
be associated with the same realm, allowing them to use a shared set of users and
data. When you create a mobile backend, it is assigned to the default realm for the
environment.

You can change the realm associated with a mobile backend from the Users tab of the
mobile backend. Realms are typically handled by users with the Oracle Cloud identity
domain administrator role. If you don’t have that role and you need to change the
mobile backend’s realm, contact someone who does have that role. For details on the
default realm, see Setting the Default Realm for an Environment.

Even when a mobile backend is configured to allow login through enterprise SSO, it
needs a realm that contains records for the users that log in through SSO. In this case,
the realm would define only the properties needed to match the user records with
those in the identity provider (such as user name or email address).

Note:

When you change the realm for a mobile backend, the user properties and
user data also change. Make sure that the new realm includes all the
properties required by any mobile apps in the mobile backend.

Changing a Mobile Backend's Realm
1. Make sure you're in the environment where you want to change the realm.

2. Click to open the side menu and select Applications > Mobile Backends.

3. Open the mobile backend. (Select it and click Open.)

4. Click the Users tab. This tab lets you search for and manage users, and change
the realm for the mobile backend.

Getting Test Users for a Mobile Backend
You’ll probably find it useful to have one or more test users set up in the realm
associated with your mobile backend. Among other things, this will make it easier to try
out APIs in your mobile backend. As an app developer, you probably don’t have the
permissions necessary to create test users, but a person on your team with the Oracle
Cloud identity domain administrator role can.

To see if you have any test users:

Chapter 3
Creating and Populating Mobile Backends

3-5

1. Make sure you're in the environment where you want to work with test users.

2. Click to open the side menu and select Applications > Mobile Backends.

3. Select your mobile backend and click Open.

4. In the left navbar, click Users.

If you don’t have any test users, see Creating Individual Mobile Users for Testing for
information on creating them.

Associating APIs with a Mobile Backend
Once you have a mobile backend, you can use the API Catalog to select the custom
APIs you want to access through that mobile backend. The API Catalog provides
detail on each API endpoint and its documentation, as well as an opportunity to test
the endpoint with mock data to see what it does.

1. Make sure you're in the environment containing the draft mobile backend.

2. Click to open the side menu and select Applications > Mobile Backends.

3. Select your mobile backend and click Open.

4. In the left navbar, click APIs.

5. Click Select APIs.

6. Optionally, click an API’s name to view its endpoints.

At this stage, you can click Test Endpoint to see how the API works with mock
data. To do so, you also need to provide a user name and password. If you don’t
yet have a test user, see Creating Test Users for info on creating one.

For custom APIs, you can also specify that the API can be accessed without a
user login. See Testing Your Custom API for more details.

7. Click the + (Add) icon for each API that you want to include.

Note:

Platform APIs (for Storage, Mobile User Management, Analytics, etc.) are
automatically available in your mobile backends. If an API with the
functionality that you are looking for isn’t available, you can design such an
API yourself. See Custom API Design.

Associating Storage Collections with a Mobile Backend
You can associate a mobile backend with collections so that your mobile apps can
work with data in those collections using the MCS platform’s Storage API.

To associate your mobile backend with an existing collection:

1. Make sure you're in the environment containing the draft mobile backend.

2. Click to open the side menu and select Applications > Mobile Backends.

3. Select your mobile backend and click Open.

Chapter 3
Creating and Populating Mobile Backends

3-6

4. In the left navbar of the mobile backend, click Storage.

5. Click Select Collections.

6. Start typing the name of the collection that you want to add, select the collection
from the drop-down list, and click Select.

For more on collections, including creating them, see Storage.

Clients and Mobile Backends
You can associate apps with a mobile backend by registering them as clients in MCS
and then picking the mobile backend for them to use. In the process, you can also set
up notifications profiles for the clients to use. See Client Management for information
on registering clients.

What Can I Change in a Mobile Backend?
If you haven’t yet published your mobile backend, you can change the following things
that are associated with the mobile backend at any time:

• Registered clients

• Notifications credentials

• Custom APIs (and their implementations)

• Any connector APIs that are called from custom API implementations

• Storage collections

• User realm

• App policies

Once you have published a mobile backend, its content is frozen. At that point, you
would need to create a new version of the mobile backend to make any changes. See
Mobile Backend Lifecycle if you are interested in a rundown of publishing, deploying,
and versioning mobile backends.

Note:

Though you can’t change the list of app policies in a published mobile
backend, you can change their values.

Video: Mobile Backend Design Considerations
Before you start creating mobile backends, you should spend some time analyzing
what your apps need from the mobile backends, what different apps will have in
common, and what kind of approach will be easiest to maintain. To help you think
about these questions, watch the following video on the Oracle Mobile Platform
channel on YouTube:

Video

Chapter 3
Video: Mobile Backend Design Considerations

3-7

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13043

The SDKs
MCS provides client SDKs for multiple platforms to help you use MCS APIs in your
apps. The SDKs simplify app development in the following ways:

• Simplify the passing of access keys and environment details in all of your API
calls, including for custom APIs. All APIs in MCS are REST APIs that are called
with an HTTPS request, including headers containing security credentials and
mobile backend environment details. With each SDK, you use a configuration file
to hold these values in one place so that they do not have to be hard-coded into
each API call.

• Provide wrapper classes for key endpoints in the platform APIs.

• Set up the network connection between your mobile app and its mobile backend.

You can get the SDKs from the Oracle Technology Network’s MCS download page.

For specific info on each SDK, see Android Applications, iOS Applications, Cordova
Applications, JavaScript Applications, Xamarin Android Applications, and Xamarin iOS
Applications.

There is also a utility for accessing MCS from Oracle Mobile Application Framework
(MAF) apps that is available in a MAF sample app. Go to the Oracle Mobile
Application Framework Samples page to get the sample and download the MAF MCS
Utility Developer Guide to learn more about using it.

Note:

For information on using the REST APIs directly, see the platform's REST
API reference docs.

Connecting Your App to a Mobile Backend
Once you have a mobile backend set up and a client application registered with that
mobile backend, you need to configure your app code to access the mobile backend.

Connecting your app to a mobile backend involves these basic steps:

• Adding the SDK libraries to your app. (This step is optional, but highly
recommended.)

• Adding a configuration file to your app to hold environment information that your
app needs to access the mobile backend. The SDK classes that you use to make
calls to the mobile backend use the values in this file so that you don’t have to
manually include them in each of your calls.

• Adding calls to MCS APIs in your app.

The APIs available include MCS platform APIs and any custom APIs that you or
other members of your team have developed in MCS.

• Testing your app.

Chapter 3
The SDKs

3-8

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/developer-tools/maf/learnmore/mafsamples-2227357.html
http://www.oracle.com/technetwork/developer-tools/maf/learnmore/mafsamples-2227357.html
http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf
http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

For platform-specific details on setting up your apps, see:

• iOS Applications

• Android Applications

• Cordova Applications

• JavaScript Applications

Chapter 3
Connecting Your App to a Mobile Backend

3-9

4
Client Management

To simplify handling of notifications and management of the application lifecycle in
Oracle Mobile Cloud Service (MCS), you can register your mobile apps in MCS as
clients and associate them with a mobile backend and a Notifications profile. When it
comes time to deploy an app, you can deploy the client you have registered and have
its associated mobile backend and its dependencies deployed as well.

Registering a client accomplishes the following things:

• Enables you to store the ID that is needed for the app store.

• Enables the app to receive notifications via MCS.

• Simplifies lifecycle management of the app and its associated mobile backend and
related artifacts.

• Enables collection of data specific to that app through the Analytics API.

How Clients Work in MCS
Here are the principles behind client registration in MCS:

• A client in MCS represents a single version of a single app binary.

For example, if you have both iOS and Android versions of an app, you would
register a client for each. Similarly, if you provide an upgraded version of the app,
you would create a new client to hold its metadata.

• When you register a client, you specify metadata such as the application ID that is
required by the platform vendor’s app store, the app version number, and a profile
that contains notifications credentials.

• Once the client is registered an application key is generated. In turn, you can use
this key in your apps to access the client metadata. Each of the SDKs has a
configuration file where you can insert this application key.

• A client can only be associated with one version of a mobile backend.

This means that when you create a new version of a mobile backend, that mobile
backend doesn’t inherit any clients that you associated with the previous version of
the mobile backend. So, as you create new versions of your mobile apps that use
a new version of a mobile backend, you should create corresponding clients in
MCS.

• A client can be published and deployed in a way similar to other artifacts. When a
client is deployed, its mobile backend and other dependencies are deployed with
it.

For a rundown on publishing, deploying, and versioning clients, see Client
Lifecycle.

4-1

Profiles
Profiles serve as a place to store credentials for notification services. After you create
a profile, you can associate it with multiple clients.

Creating a Profile
You create profiles to hold notification credentials that your clients need.

To create a profile:

1. Make sure you're in the environment where you want to create the profile.

2. Click to open the side menu and select Applications > Client Management.

3. Click Profiles.

4. In the New Profile dialog:

• Fill in the Name. This can be whatever name that will help you identify the
profile most easily.

• Select the Notification Service.

• Fill in the rest of the dialog with the information required by the notification
service. For details on getting credentials from your notification provider,
including any additional setup steps, see Setting Up a Mobile App for
Notifications.

For Apple Push Notification Services (APNS), you need to register a certificate
obtained from the Apple Developer portal.

For Firebase Cloud Messaging (FCM) and Google Cloud Messaging (GCM),
you must register server credentials obtained from the Developers Console for
an Android application. (However, providing the package name is optional,
because credentials may or may not be scoped to a specific app.)

For Windows Notification Service (WNS), you register your app in the
Windows Store Dashboard to get the credentials required to authenticate with
the Windows Notification Service.

For Syniverse (SMS), fill in the required fields:

– Channel ID or sender address. A Channel represents a collection of
sender addresses, for example, a set of SMS short codes that can be
used to send text-based messages. A sender address can be any long
code, short code or alphanumeric ID that applications can send SMS
messages from. You can use your own sender address or purchase a
sender address owned by Syniverse. When sending messages via a
Channel, the Syniverse Messaging API service chooses the most
appropriate sender address for each message and recipient. To get a
Syniverse-provisioned test channel ID for testing SMS in the U.S. or
Canada, go to your Syniverse Dashboard > Service Offerings >
Messaging Accounts > Public Channels (U.S. apps must use the “US MT
Test Channel”). To test in the U.S. or Canada, you also need to whitelist
test phone numbers as described in Setting Up a Mobile App for
Notifications.

Chapter 4
Profiles

4-2

– The authentication keys you got from Syniverse: Consumer Key,
Consumer Secret and Access Token.

– By default, consent management is handled by Syniverse, but if you want
your app to handle consent management or you want to register devices
through the MCS UI, deselect Consent Management Enabled.

5. Click Create.

Once a profile is created, you can add it to a client by opening the client, selecting its
Profiles tab, and clicking Select Profile.

You can add a profile to any client whose platform is valid for the profile's notification
service and whose application ID matches that of the profile. If an FCM or GCM profile
does not specify a package name, the profile may be used with any Android client.

Registering an App as a Client in MCS
1. Copy the bundle ID (for iOS), package name (for Android), or application ID (for

Windows) so that you have it ready when creating the client.

Once you create a client, you can’t change this value, and the value needs to
match that of the profile that you associate with the client.

Note:

You might find it more convenient to create your profiles before
registering the clients so that you have these credentials in hand when
creating the client. Also, you might have multiple clients that use the
same profile.

2. Make sure you're in the environment containing the version of the client you want
to register.

3. Click to open the side menu and select Applications > Client Management.

4. Click New Client.

5. In the New Client dialog:

• Fill in the Client Display Name and Client Name.

These can be whatever names that will help you identify the client most easily.
The former can have spaces and the latter can’t.

In most places in the user interface, the client display name is used. The client
name is used for clients in packages and the trash.

• Select the Platform (iOS, Android, Windows, or Web).

• Fill in the Version Number field. This version must match the version number
of the app as registered with your platform vendor.

• Fill in the fully-qualified app ID. You obtain this from the platform vendor.

For Apple, it is the Bundle ID assigned to the application in the Xcode project.

For Google, it is the Package Name for the application as declared in its
manifest file.

Chapter 4
Registering an App as a Client in MCS

4-3

For Microsoft, it is the Application ID you gave your app when you registered
it in the Windows Dashboard.

For Web, it can be any unique identifier that distinguishes it from other web
applications that you register.

6. Click Create.

7. On the Settings page, select a mobile backend to associate with the client from
the Mobile Backend dropdown.

8. Click the Profiles tab and select one or more notifications profiles that you want to
associate with the client.

Note:

If the notifications profile is for the notifications service of the app’s
vendor (e.g. APNS for an iOS app or FCM for an Android app), the app
ID (bundle ID for iOS, package name for Android, or package SID for
Microsoft) for the profile must match the app ID specified for the client. A
client can only be associated with a single SMS profile.

Legacy Client Behavior
In versions of MCS previous to 16.4.1, there were some differences in how clients
were handled:

• Client registrations and notifications profiles were not divided. Instead of referring
to notifications profiles, client registrations held notifications credentials directly.

• Client registrations could apply to multiple versions of a mobile backend.

When your environment was upgraded to 16.4.1, these differences were reconciled in
the following way:

• Any existing clients were split into clients and profiles.

• For any client that was associated with multiple versions of a mobile backend, the
client only remained associated with the version of the mobile backend in which it
was created.

Chapter 4
Legacy Client Behavior

4-4

5
Authentication in MCS

In Oracle Mobile Cloud Service (MCS), all resources are secured and can only be
accessed by authenticated users that are authorized to access those resources. As a
mobile app developer, you enable one or more authentication methods in the mobile
backend and then write app code to use one of these methods.

The authentication methods available are:

• OAuth Consumer

• HTTP Basic

• Enterprise Single Sign-On (SSO)

This method includes variants for browser-based SSO and use of third-party
tokens.

• Facebook Login

Before getting into the specifics of each authentication method, let’s go over how
authentication relates to authorization:

• Authentication is the process of identifying an individual, usually based on a user
name and password, often in combination with other credentials such as an
application key. Authentication ensures that the user is who he or she claims to
be. This chapter explains how to use these features in your mobile apps.

• Authorization is the process of determining what an individual has permission to
do. After the user gains access through authentication, the system grants access
according to the settings configured for the user. The MCS Mobile User
Management features let you configure an intelligent authorization policy based on
user roles. For an introduction to MCS Mobile User Management, see Set Up
Mobile Users, Realms and Roles.

5-1

OAuth Consumer Authentication in MCS
The ability to use OAuth as your authentication mechanism is built in to all mobile
backends and enabled by default. Whenever you create a mobile backend, the OAuth
Consumer keys are generated for you.

To enable or disable OAuth Consumer as an authentication method:

1. Open the mobile backend and select the Settings page.

2. Under Access Keys, set the OAuth Consumer switch to ON or OFF.

For details on the access keys and environment details provided, see Mobile Backend
Authentication and Connection Info.

Once you have these keys, you can use them in your apps. When using the MCS SDK
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the mobile backend. If you are coding the REST calls manually,
see Authenticating with OAuth in Direct REST Calls.

HTTP Basic Authentication in MCS
The ability to use HTTP Basic as your authentication mechanism is built in to all
mobile backends and enabled by default.

To enable or disable HTTP Basic as an authentication method:

1. Open the mobile backend and select the Settings page.

2. Under Access Keys, set the HTTP Basic switch to ON or OFF.

When switched to ON, the access keys that you need are displayed.

For details on the access keys and environment details provided, see Mobile Backend
Authentication and Connection Info.

Once you have these keys, you can use them in your apps. When using the MCS SDK
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the mobile backend. If you are coding the REST calls manually,
see Authenticating with HTTP Basic in Direct REST Calls.

Enterprise Single Sign-On in MCS
If you want to use your own identity provider to authenticate users of your apps, you
can enable Oracle Cloud’s single sign-on (SSO) capability to connect with that identity
provider and then configure your mobile backends to use it. This is particularly useful if
you are rolling out apps for your company’s employees and you want them to be able
to sign into the apps using their existing employee login credentials. Similarly, this
could work for consumer applications where the customers already have user
accounts for corresponding web applications.

You can set up SSO to work in either of the following ways:

• Third-Party SAML and JWT tokens. The app obtains a token from a trusted 3rd-
party issuer, makes an API call to the MCS token exchange endpoint, and

Chapter 5
OAuth Consumer Authentication in MCS

5-2

receives back an MCS-issued token, which you include as a bearer token on each
subsequent MCS API call.

• Browser-Based SSO through MCS. The app opens the MCS SSO URL in a
browser and, after a series of redirects, displays the login screen of the remote
identity provider. Once the user successfully enters their credentials, they receive
an OAuth token, which you include as a bearer token on each subsequent MCS
API call.

In the case of JWT tokens, MCS uses the OpenID Connect discovery protocol.

Third-Party SAML and JWT Tokens
MCS supports the use of tokens from third-party providers in two cases:

• With zero footprint SSO, where no user accounts are stored in Oracle Cloud.
Instead, all of the information for the user, including user roles, is derived from the
third-party token. Such users are referred to as virtual users.

• With a token that identifies a user that has been provisioned in both Oracle Cloud
and the third-party IdP. Roles are assigned to the users in MCS.

SAML Tokens and Virtual Users
If you have users set up in a third-party IdP that supports the SAML 2.0 spec, you can
authenticate those users in MCS via SAML tokens.

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in Oracle Cloud):

1. You configure your mobile backend to use HTTP Basic authentication. (This is
required for you to be able to get the token.)

You do this by selecting the backend in MCS, selecting the backend’s Settings
page, and setting the switch for HTTP Basic Authentication to ON.

Note:

To test authentication through the API Test page, you’ll need to enable
SSO for your mobile backend. You can check if your instance of MCS is
configured for SSO from the Settings page of the mobile backend. Select
the Enable Single Sign-On option if it’s not selected. If you don’t see
the Enable Single Sign-On checkbox, you need to enable SSO for your
Oracle Cloud account. See Configuring Identity Management (SSO and
OAuth). After SSO is set up, you may need to log out and back into MCS
for it to take effect.

2. Your administrator configures the IdP to generate a SAML token when the user
logs in.

3. Your administrator registers the third-party token issuer and one or more token
certificates in MCS.

As part of this process, she can also associate MCS roles with tokens in one of the
following ways.

• By designating MCS roles to be associated with all tokens based on a given
certificate.

Chapter 5
Enterprise Single Sign-On in MCS

5-3

• By deriving role names (that match existing MCS roles) from given token
attributes.

• By mapping given token attribute values to existing MCS roles (where the
attribute values don’t already match the MCS names).

4. You code your app to do the following:

a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an MCS token exchange endpoint to get an MCS-issued
token in return.

c. Use the MCS token for all subsequent API calls to MCS.

Configuring SAML Tokens for Virtual Users
To enable the authentication of virtual users via SAML tokens, you need to create a
SAML app in your IdP. This is a special app that mediates the creating and passing of
the SAML tokens.

Though the workflow varies by IdP, you generally need to do the following key tasks:

1. Create a SAML 2.0 app.

2. Configure the SAML 2.0 app by specifying the following:

a. Redirect URL.

You’ll configure your app to use the redirect URL to obtain the token. How the
token is obtained depends on the operating system you use (iOS or Android) .
Avoid entering an address to an actual live site. Use a fictitious address URL
request, for example,
http://hostname/mobile/platform/sso/redirect

Be sure the redirect URL you provide is formed correctly, that is it should
match the expected redirect URL value.

b. Audience.

SAML tokens have the concept of an audience. An audience is the intended
recipient of the SAML response (the token). It restricts the set of URLs against
which the token can be used. You configure the audience to the URL for the
MCS SSO token endpoint.

You construct this endpoint by appending /mobile/platform/sso/exchange-
token to your instance’s base URL. You can determine the base URL by
opening any mobile backend in MCS, clicking its Settings tab, and looking in
the Environment URLs section.

c. An assertion that lists the applicable roles for the user.

For concrete examples, see Use Case: Configuring OKTA to Obtain a SAML Token
and Use Case: Configuring AD FS to Obtain a SAML Token.

Registering the Token Issuer in MCS
Before your apps can use tokens issued by a third-party IdP to authenticate with a
backend, an administrator needs to register the IdP as a token issuer in MCS. Here
are the steps:

1. In MCS, click and select Administration from the side menu.

Chapter 5
Enterprise Single Sign-On in MCS

5-4

2. Select an environment and click Keys & Certificates.

3. Click the Web Service and Token Certificates tab.

4. Click Add and provide the following information:

• In the Alias field, enter a unique identifiable name for the certificate.

• In the text field, paste the definition of the token certificate that was provided
by the identity provider.

5. Click Save.

6. Wait for the token certificate to be propagated in the system. This should take no
longer than 10 minutes.

7. Click the Token Issuers tab.

8. Click New Issuer.

9. Enter the name of the token issuer in the Name field under Issuer Details.

10. Next to the Certificate Subject Names panel, click Add (+) .

11. From the Select Certificate Subject Names dialog, select at least one name and
click Save.

Typically the name is the subject name of the token certificate you added
previously.

12. Back on the Token Issuers tab, click Rules.

13. Select Enable Virtual User.

14. Optionally, create a User Mapping rule to designate the name of the token’s
attribute that identifies the user.

See Configuring Rules for information on creating rules.

15. Optionally, designate user roles and mappings. The next topic has more
information on how this works.

16. Click Save and Close.

Associating Roles with a SAML Token
If you want to set up role-based access for users that authenticate with SAML tokens,
you do so when registering the token issuer in MCS. You have the following
possibilities:

• Use roles already defined in the token that match the names of MCS roles.

You do this by creating a Role Attribute rule and providing a comma-separated
list of token attribute names. The roles are then derived from the values of these
attributes.

• If the role names defined in the token don’t match role names defined in MCS,
provide a mapping between the two.

You do this by:

1. Creating a Role Attribute rule and providing a comma-separated list of token
attributes that contain the role names.

2. Creating a Role Mapping rule to create a mapping between a role derived
from the token (via the role attribute rule) with one or more MCS user roles.

Chapter 5
Enterprise Single Sign-On in MCS

5-5

You can create multiple mappings.

• Apply one or more MCS roles to all tokens issued with a given certificate (unless
roles were already applied via the role attribute or role mapping rules).

You do this by creating a Default Role rule.

See Configuring Rules for the steps to create rules.

Extracting the SAML Assertion
After you’ve obtained a SAML token from an IdP, you need to decode it to extract the
SAML assertion from its response. You then GZIP compress that assertion and
base64 encode it again before submitting it to the MCS token exchange to receive an
MCS token.

One way to extract the assertion is to follow these steps:

1. Open a browser and enter the address for the identity provider:

For example, if you configured a SAML token with AD FS: https://
domain_name/adfs/ls/idpinitiatedsignon

You’re taken to the Test Local Federation page.

2. Enter the user name and password credentials for the user you created and click
Sign In.

3. After the page refreshes, select the SAML app you created and click Sign in
again.

You are redirected to the endpoint URL and the SAML token is displayed in the
browser URL field.

4. Copy the response beginning with SAML Response=.

5. Since you’ll need to base64 decode and inflate the SAML response, go to a SAML
decoder tool such as SAML Decoder at https://www.samltool.com/decode.php.

6. Go to the base64 Decode and Inflate page and paste the response into the
Decode and Inflate XML field.

7. Click DECODE AND INFLATE XML.

8. Extract the SAML assertion from the XML field.

9. Gzip compress the extracted assertion.

10. Base64 encode the assertion.

Now you can call the token exchange, pass the assertion, and receive the MCS token.

Using a SAML Token to Authenticate with MCS
Once you have obtained a valid SAML token, you can use it to authenticate with MCS.
You do so by passing the token to MCS’s token exchange endpoint. In exchange, you
get an OAuth token issued by MCS that can be used for subsequent API calls during
the session.

MCS’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Chapter 5
Enterprise Single Sign-On in MCS

5-6

https://www.samltool.com/decode.php

Android

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileBackendManager.getManager().getMobileBackend(this);
} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.TOKENAUTH);

iOS

-(void) authenticateSSOTokenExchange: (NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock: (OMCErrorCompletionBlock)
completionBlock;

Cordova and JavaScript

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token);
mcs.mobileBackend.authorization.authenticate(token).then(callback).catch(er
rorCallback);

Coding the SAML Token Exchange Manually
If you are not using a client SDK, you need to manually code your app to exchange
that token for an MCS token, with which you then authenticate.

1. In the app’s login sequence, call the MCS token exchange endpoint to exchange
the third-party token for an MCS-issued OAuth token:

• The token exchange request is a simple GET request with no parameters.

• It must include an Authorization header of the form:

Authorization: Bearer external-token

• It must also include the oracle-mobile-backend-id header with the value of
the Basic Auth mobile backend ID for the mobile backend that you’re using.

The token exchange endpoint is formed by starting with the base URL for your
environment (which you can get from the Settings page of a mobile backend) and
appending /mobile/platform/sso/exchange-token.

2. In all REST calls to MCS APIs, include the given token in the Authorization
header.

The header takes the form Bearer access-token.

The access-token value includes the mobile backend ID from the original request
so you don’t have to include the ID in a separate header.

Chapter 5
Enterprise Single Sign-On in MCS

5-7

JWT Tokens and Virtual Users
If you have users set up in a third-party IdP that supports JWT, you can authenticate
those users in MCS via JWT tokens.

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in Oracle Cloud):

1. You configure your backend to use both HTTP Basic and OAuth Consumer
authentication.

You can do this by selecting the backend in MCS, selecting the backend’s
Settings page, and setting the switches for HTTP Basic and OAuth Consumer
authentication to ON.

2. Your administrator configures the IdP to generate a JWT token when the user logs
in.

3. Your administrator registers the third-party token issuer via a policy in MCS.

As part of this process, she can also associate MCS roles with tokens in one of the
following ways.

• By designating MCS roles to be associated with all tokens based on a given
certificate.

• By deriving role names (that match existing MCS roles) from given token
attributes.

• By mapping given token attribute values to existing MCS roles (where the
attribute values don’t already match the MCS names).

4. You code your app to do the following:

a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an MCS token exchange endpoint to get an MCS-issued
token in return.

c. Use the MCS token for all subsequent API calls to MCS.

Note:

This mode of integrating with an IdP is based on enhanced features that are
specific to working with JWT tokens (such as JWKS support) and includes
other features, such as the ability to configure allowed audience values and
username attribute. You can also use the process that is used for integrating
with SAML-based IdPs, though this provides you with less flexibility. See
SAML Tokens and Virtual Users.

Registering a JWT Token Issuer in MCS
Before your apps can use JWT tokens issued by a third-party IdP to authenticate with
a backend, an administrator needs to register the IdP as a token issuer in MCS. Here’s
how it works:

1. You create a configuration that holds information that is needed to integrate with
the token issuer. This integration takes the form of a JSON object.

Chapter 5
Enterprise Single Sign-On in MCS

5-8

2. You flatten the configuration into a single line.

3. You insert the configuration as the value of the
Security_AuthTokenConfiguration policy.

See Modifying an Environment Policy.

The following several topics provide some examples of creating the configuration file
for a token issuer.

Minimal IdP Configuration
Here is an example of a configuration file that covers a basic use case, where:

• The user name can be derived from the token’s sub claim.

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using MCS’s virtual user (zero footprint) capability so that you don’t need
to have corresponding records for the user in Oracle Cloud.

• User roles are specified in a token attribute named roles.

• The token’s audience (aud) claim is set to the JWT auth token endpoint for your
MCS instance (MCS-BASE-URL/mobile/platform/auth/token) so there is no need
to override the default audience validation behavior.

{
 "issuers": [
 {
 "issuerName": "TOKEN-ISSUER-URL",
 "jwks": {
 "discoveryUri": "TOKEN-ISSUER-URL/.well-known/openid-configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [
 "roles"
]
 }
]
}

IdP Configuration with Audience
Here is an example of a configuration file that covers a basic use case, where:

• The user name can be derived from the token’s sub claim.

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using MCS’s virtual user (zero footprint) capability so that you don’t need
to have corresponding records for the user in Oracle Cloud.

• User roles are specified in a token attribute named roles.

Chapter 5
Enterprise Single Sign-On in MCS

5-9

• The token’s audience (aud) claim is set to GUID-12345678-ABCD-EFAB-
CDEF-123456789ABC (which is a value that does not match MCS’s auth token
endpoint).

{

 "issuers": [
 {
 "issuerName": "TOKEN-ISSUER-URL",
 "audience": [
 "GUID-12345678-ABCD-EFAB-CDEF-123456789ABC"
],
 "jwks": {
 "discoveryUri": "TOKEN-ISSUER-URL/.well-known/openid-configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [
 "roles"
]
 }
]
}

IdP Configuration with Audience and Username Attribute
Here is an example of a configuration file that covers a basic use case, where:

• The username is specified in the unique_name claim (rather than the sub claim).

• The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

• You are using MCS’s virtual user (zero footprint) capability so that you don’t need
to have corresponding records for the user in Oracle Cloud.

• User roles are specified in a token attribute named roles.

• The token’s audience (aud) claim is set to GUID-12345678-ABCD-EFAB-
CDEF-123456789ABC (which is a value that does not match MCS’s auth token
endpoint).

{

 "issuers": [
 {
 "issuerName": "BASE-TOKEN-ISSUER-URL",
 "usernameAttribute": "unique_name",
 "audience": [
 "GUID-12345678-ABCD-EFAB-CDEF-123456789ABC"
],
 "jwks": {
 "discoveryUri": "BASE-TOKEN-ISSUER-URL/.well-known/openid-
configuration"
 },
 "virtualUserEnabled": true,
 "roleAttributes": [

Chapter 5
Enterprise Single Sign-On in MCS

5-10

 "roles"
]
 }
]
}

Associating Roles with a JWT Token
If you want to set up role-based access for users that authenticate with JWT tokens,
you do so when registering the token issuer in MCS via the
Security_AuthTokenConfiguration policy. You have the following possibilities:

• Use roles already defined in the token that match the names of MCS roles.

You do this by creating a roleAttributes array for the issuer and populate it with
claims in the token that you want to derive roles from.

• If the role names defined in the token don’t match role names defined in MCS,
provide a mapping between the two.

You do this by:

1. Creating a roleAttributes array for the issuer and populate it with claims in
the token that you want to derive roles from.

2. Creating a roleMappings array rule to create a mapping between a role
derived from the token (via the roleAttributes array) with one or more MCS
user roles.

You can create multiple mappings.

• Apply one or more MCS roles to all tokens issued with a given certificate (unless
roles were already applied via roleAttributes or roleMappings).

You do this by creating a defaultRoles array.

• Apply one or more MCS roles to all tokens issued with a given certificate (whether
or not roles were already applied via roleAttributes or roleMappings).

You do this by creating an issuerRoles array.

See JWT Configuration Reference for details on the syntax of the configuration file.

Converting a JSON Object to One Line
You might find it useful to have some tools to convert JSON objects from multi-line
objects to single-line objects and vice versa. Here are some examples of Python
commands that you can use for that purpose,

To output the JSON content in file /scratch/jsmith/authTokenConfig.json as a
single line:

cat /scratch/jsmith/authTokenConfig.json | python -c 'import
json,sys;obj=json.load(sys.stdin);print json.dumps(obj);'

Chapter 5
Enterprise Single Sign-On in MCS

5-11

To output the JSON content in file /scratch/jsmith/authTokenConfig.json in “pretty
print" form:

cat /scratch/jsmith/authTokenConfig.json | python -c 'import
json,sys;obj=json.load(sys.stdin);print json.dumps(obj, indent=4,
sort_keys=False);'

JWT Configuration Reference
Here are the fields that can be used in the JSON object that serves as the
configuration for a JWT identity provider.

Root Fields

• issuers — Required. A JSON array of trusted issuers objects. Each trusted issuer
is defined as a JSON object, with a combination of the following fields.

• policyMinReloadInterval — Optional. If a token exchange request is received,
and the specified issuer is not found in the configuration cache, the configuration
cache will automatically be reloaded from the stored policy in order to check for
changes, unless the amount of time since the last configuration cache reload is
less than the policyMinReloadInterval. The default value for this interval is 10
seconds. The policyMinReloadInterval configuration field can be used to
override the default value with a specified integer value in seconds.

• policyMaxReloadInterval — Optional. If a token exchange request is received, if
the elapsed time since the last time the configuration cache was reloaded is in
excess of policyMaxReloadInterval, the configuration cache will automatically be
reloaded from the stored policy in order to check for changes. The default value for
this interval is 120 seconds. The policyMaxReloadInterval configuration field can
be used to override the default value with a specified integer value in seconds.

• certificatesMinReloadInterval — Optional. If a token exchange request is
received, and a required certificate is not found in the certificates cache, the
certificates cache will automatically be reloaded from Oracle Keystore Service
(KSS) in order to check for changes, unless the amount of time since the last
certificates cache reload is less than the certificatesMinReloadInterval. The
default value for this interval is 10 seconds. The certificatesMinReloadInterval
configuration field can be used to override the default value with a specified
integer value in seconds.

• certificatesMaxReloadInterval — Optional. If a token exchange request is
received, if the elapsed time since the last time the certificates cache was
reloaded is in excess of certificatesMaxReloadInterval, the certificates cache
will automatically be reloaded from KSS in order to check for changes. The default
value for this interval is 300 seconds. The certificatesMaxReloadInterval
configuration field can be used to override the default value with a specified
integer value in seconds.

Issuer Fields

• issuerName — Required. A JSON string which specifies the issuer name. This
value must match the value of the iss claim in tokens from the associated token
issuer.

Chapter 5
Enterprise Single Sign-On in MCS

5-12

• enabled — Optional. A JSON boolean which can be used to enable or disable the
token issuer. If the token issuer is disabled, any attempt to exchange a token from
that issuer will fail. The default value is true.

• audience — Optional. A JSON array of string values, specifying valid audience
values for the external token. If the external token contains an aud claim and none
of the associated values exactly matches one of the values in the specified list,
then the external token will be treated as invalid.

The default behavior if this field is not specified (or contains an empty list) is to
compare the aud values in the external token to the following values:

– base-URL

– base-URL/

– base-URL/mobile

– base-URL/mobile/

– base-URL/mobile/platform

– base-URL/mobile/platform/

– base-URL/mobile/platform/auth

– base-URL/mobile/platform/auth/

– base-URL/mobile/platform/auth/token

– base-URL/mobile/platform/auth/token/

If none of the aud values in the external token match any of the above values, the
external token will be treated as invalid.

• virtualUserEnabled — Optional. If true the virtual user (zero footprint) feature is
enabled for this issuer, meaning your users can authenticate with third-party
tokens without having corresponding user accounts in Oracle Cloud. The default
value is false.

• usernameAttribute — Optional. A JSON string specifying the name of a JWT
token claim from which a username is extracted. If no value is provided, the value
of the sub claim will be used as the username.

• requireClientAuth — Optional. A JSON boolean which can be used to configure
whether client authentication is required for this token issuer.

– If the value is true, full client authentication is required.

– If the value is false, a token exchange request can contain a client-id value
in the POST body, with no client_secret value provided. This is intended
only for cases where devices are not able to protect the client_secret.

The default value is true.

• clientIdAttribute — Optional. A JSON string specifying the name of a JWT
token claim which contains the client ID of the OAuth client on the external token
issuer which was used to obtain the external token. If a clientIdAttribute value
is specified, the specified attribute is present in a token, and its value matches the
username associated with the token, then the token exchange request will be
rejected, because client tokens shouldn’t be exchanged for MCS user tokens.

If no clientIdAttribute value is provided, this check will not be performed.

Chapter 5
Enterprise Single Sign-On in MCS

5-13

• tokenTimeoutSeconds — Optional. A JSON integer specifying the token lifetime
(i.e. from iat to exp) in seconds for MCS tokens issued in exchange for tokens
from this issuer. If this field is not specified, the token lifetime will be governed by
the Security_TokenExchangeTimeoutSecs policy. If the
Security_TokenExchangeTimeoutSecs policy has not been defined, the default
token lifetime is 28800 seconds (i.e. 8 hours).

The token lifetime is also governed by the tokenTimeoutPolicy.

• tokenTimeoutPolicy — Optional. A JSON string specifying the policy used to
control the token lifetime (i.e. from iat to exp) for MCS tokens issued in exchange
for tokens from this issuer. Three policy values are supported:

– FromTimeoutSecs — The token lifetime is governed by the
tokenTimeoutSeconds value.

– FromExternalToken — The MCS-issued token will expire at the same time the
external token being exchanged will expire (i.e. tokenTimeoutSeconds is
ignored).

– FromExternalTokenLimitedByTimeoutSecs — The MCS-issued token will
expire at the same time the external token being exchanged or after the token
timeout value, whichever comes first.

If this field is not specified, the token timeout policy lifetime will be governed by the
Security_TokenExchangeTimeoutPolicy policy. If
the Security_TokenExchangeTimeoutPolicy policy has not been defined, the
default token timeout policy is FromTimeoutSecs.

• jwks— Optional. A JSON object which specifies the URI(s) and other configuration
options associated with loading keys and/or certificates from the external token
issuer on the fly.

Use this object if you are using a discovery URI to load keys and/or certificates
(and you are not using a certificateSubjectNames object).

See jwks Fields for the options.

• certificateSubjectNames — Optional. A JSON array of strings containing a list of
the certificate subject names of certificates that have been uploaded into MCS
through the Administration tab’s Keys and Certificates page. (See Configuring a
Web Service or Token Certificate.)

Use this object if you are not using a discovery URI to load keys and/or certificates
(and therefore are not using a jwks object).

• filters — Optional. A JSON array of filter objects. Each filter is defined as a
JSON object, with a combination of these fields:

– name — Required. A JSON string specifying the name of an attribute or claim
to which the filter will be applied.

– type — Optional. A JSON string specifying whether the filter is an include
filter or an exclude filter.

An include filter is satisfied if the token contains a value which matches one or
more of the specified filter values (i.e. presence of a "match" causes the filter
to be satisfied). An exclude filter is satisfied if the token does not contains a
value which matches any of the specified filter values (i.e. absence of a
"match" causes the filter to be satisfied).

The default value is include.

Chapter 5
Enterprise Single Sign-On in MCS

5-14

– values — Required. A JSON array of string values which will be compared to
the value of the attribute or claim in the external token as identified by the name
field.

Filter values may contain the * character as a wildcard for matching purposes.

Each filter in the array must be satisfied in order for the external token to be
considered valid.

Note:

If a filter is specified incorrectly or incompletely (e.g. missing name,
invalid type, missing or empty values array) the filter will always be
considered to be not satisfied. The rationale is that the admin who
configured the filter was trying to filter out something, and if we cannot
figure out what that something is, it is better to err on the side of caution,
and reject the external token.

• allowedMbes — Optional. A JSON array of JSON objects which identify mobile
backends can be used with this token issuer.

You can specify a mobile backend including the name and version, or by including
just clientId.

If this field isn’t specified, the issuer can be used with any mobile backend.

Here are the possible entries:

– name — Optional. A JSON string specifying the name of a mobile backend. If
you include this field, you must also include version.

– version — Optional. A JSON string specifying the mobile backend version. If
you include this field, you must also include name.

– clientId — Optional. A JSON string specifying the OAuth client ID of a
mobile backend.

• userMappingAttribute — Optional. A JSON string identifying the user attribute
used to search for an Oracle Cloud user to be associated with the token
exchange.

This attribute is ignored if virtualUserEnabled is set to true.

The string can have one of the following values:

– uid — Search for an Oracle Cloud user whose username matches the
username extracted from the external token.

– mail — Search for an Oracle Cloud user whose email address matches the
username extracted from the external token.

The default value is uid.

Chapter 5
Enterprise Single Sign-On in MCS

5-15

Note:

If a usernameAttribute hasn’t been configured, the username extracted
from the external token will be the value of the sub claim. If a
usernameAttribute has been configured, the username extracted from
the external token will be the value of the whatever claim is identified by
the usernameAttribute value.

• defaultRoles — Optional. A JSON array of strings, where each string is the name
of an MCS role which should be granted to a virtual user in the case where no
roleAttributes value has been configured or where a roleAttributes value is
configured but the specified attributes are either absent from the external token or
are empty.

• issuerRoles — Optional. A JSON array of strings, where each string is the name
of an MCS role which should be always granted to a virtual user when a token
from this external issuer is exchanged. The difference between default roles and
issuer roles is that default roles are granted only when no roles have been found
during processing of role attributes, while issuer roles are always granted.

• roleAttributes — Optional. A JSON array of strings where each string is the
name of a token attribute (i.e. claim) which should be searched for role values. If a
specified token attribute is not present in the external token, no roles will be added
for that attribute. Otherwise, the token attribute value will be processed as follows:

– If the token attribute value contains a JSON string, the string value will be
granted as a role, subject to role mapping (see theroleMappings field).

– If the token attribute value contains a JSON array of JSON string values, each
of the string values will be granted as a role, subject to role mapping.

If no roleAttributes array is provided, the external token will not be searched for
roles, and the roles to be granted to the user will be based on defaultRoles
and/or issuerRoles configuration, where provided.

• roleMappings — Optional. A JSON array of role mapping objects, each of which
specifies a mapping from a token role value (i.e. a value obtained from
roleAttributes) and one or more MCS roles. Use this field when the values
derived from role attributes do not match MCS role names.

Here are the fields for a role mapping object:

– tokenRole — Required. A JSON string specifying a token role name.

– mappedRoles — Required. A JSON array of string values. Each string value
should match an MCS role name.

.

jwks Fields

• discoveryUri — Optional. A JSON string specifying the URI from which the token
issuer's discovery information can be loaded. The discovery information provided
by the external token issuer must be in accordance with the following specification:

http://openid.net/specs/openid-connect-discovery-1_0.html

The discovery URI for a token issuer will typically be of the form base-url/.well-
known/openid-configuration, but MCS does not require this to be the case.

Chapter 5
Enterprise Single Sign-On in MCS

5-16

http://openid.net/specs/openid-connect-discovery-1_0.html

If a discoveryUri is configured for a token issuer, the MCS token exchange
service will make a GET request to that URL to obtain the discovery information as
needed. Once the discovery information has been obtained, MCS will typically use
the jwks_uri value specified in the discovery information to obtain the issuer's
current keys and/or certificates.

If no discoveryUri is configured, then a jwksUri value must be configured.

• jwksUri — Optional. A JSON string specifying the URI from which the token
issuer's JWKS information can be loaded. The information provided by the
external token issuer must be in accordance with the following specification:

https://tools.ietf.org/html/rfc7517

If a jwksUri is configured for a token issuer, the MCS token exchange service will
make a GET request to that URL to obtain the current keys and/or certificates for
that issuer as needed.

If both a discoveryUri and a jwksUri are specified in the configuration, the
configured jwksUri value will be used, overriding the value in the issuer's
discovery information.

• allowHttp — Optional. A JSON boolean indicating that HTTP discoveryUri and
jwksUri values should be allowed.

For security reasons, discoveryUri and jwksUri values for external token issuers
in production should always use HTTPS URLs, so that the server providing the
information can be verified using its SSL certificate. However, in certain non-
production test scenarios, it may be helpful to allow HTTP URIs to be used.

The default value is false.

• minReloadInterval — Optional. If a token exchange request is received, and the
key and/or certificate needed to validate the external token cannot be found, MCS
will automatically reload the discovery and JWKS information in order to check for
changes (e.g. key rotation), unless the amount of time since the discovery/JWKS
reload is less than this value (in seconds, expressed as an integer).

The default value is 60.

• maxReloadInterval — Optional. If a token exchange request is received and if the
elapsed time since the last time the discovery and JWKS information was reloaded
is in excess of this value (in seconds, expressed as an integer), the discovery and
JWKS information will automatically be reloaded from the external token issuer in
order to check for changes.

The default value is 28800 (i.e. 8 hours).

• connectTimeout — Optional. A JSON integer specifying the default connect
timeout for discovery and/or JWKS requests. The default is 30 seconds.

• readTimeout — Optional. A JSON integer specifying the default read timeout for
discovery and/or JWKS requests. The default is 60 seconds

• tlsVersions — Optional. A JSON array of string values, listing the SSL/TLS which
will be allowed when connecting to the external token issuer for Discovery and/or
JWKS requests. Valid version names are:

– SSL

– SSLv2

– SSLv3

Chapter 5
Enterprise Single Sign-On in MCS

5-17

https://tools.ietf.org/html/rfc7517

– TLS

– TLSv1

– TLSv1.1

– TLSv1.2

The default value is ["TLSv1.1", "TLSv1.2"].

Note:

Older SSL/TLS versions are considered insecure, and should be
avoided.

• authorizationHeader — Optional. A JSON string specifying an Authorization
header value which should be included in discovery and/or JWKS requests. In
most cases, discovery and JWKS web pages are public and no authorization is
required. This property is intended primarily for test purposes (e.g. when setting up
a custom service to act as a discovery and/or JWKS endpoint).

Obtaining a JWT Token Using an Embedded Browser
If you use an embedded browser to obtain JWT tokens, you’ll need to perform the
following actions:

1. Create a delegate object (for iOS) or client (for Android) to intercept the web
request that contains the token. The delegate (or client) implements a method that
allows your app to preview any web requests. For iOS, create a
UIWebViewDelegate object. For Android, create a WebViewClient object.

2. Register the delegate or client object with the embedded browser.

3. Modify the method to look for a redirect URL or a form post URL, depending on
how the IdP is configured to deliver it.

When the specified request is located, the method should extract the token from
the query string (or post body) and indicate to the browser to stop the request and
close or hide the browser.

For either iOS or Android, you’ll need a web view class, a delegate (or client) class,
and the delegate (or client) implementation method name.

For iOS, use the UIWebView object and the UIWebViewDelegate method:

#pragma mark - UIWebViewDelegate

- (BOOL)webView:(UIWebView *)webView shouldStartLoadWithRequest:
(NSURLRequest *)
request navigationType:(UIWebVeiwNavigationType)navigationType

For Android, use the WebView client and the WebVewClient method:

public class MainActivity extends Activity {
 private Activity mCtx;
 private static final String TAG = "TokenExchange";
 private String remoteIDPURL = "https://hostname/mobile/platform/sso/

Chapter 5
Enterprise Single Sign-On in MCS

5-18

redirect/saml";
 private WebView myWebView = null;
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.content_main);
 mCtx = MainActivity.this;
 myWebView = (WebView) findViewById(R.id.webview);
 initWebView();
 }
private class MyBrowser extends WebViewClient {
 @Override
 public void onReceivedSslError(WebView view, SslErrorHandler
handler,
SslError error){
 handler.proceed();
 }
@Override
 public void onPageStarted(WebView view, String url, Bitmap
favicon) {
 super.onPageStarted(view, url, favicon);
 if(url.contains("http://localhost:port")) {
 // get value of SAMLResponse form field
 myWebView.loadUrl("javascript:window.HtmlViewer.showHTML" +
"('<html>'+document.getElementsByName('SAMLResponse')[0].value+'</
html>');");
 }
 }
 }
class MyJavaScriptInterface
 {
 @JavascriptInterface
 @SuppressWarnings("unused")
 public void showHTML(String html){
 Log.i(TAG, "===== html is "+html);
 String samlToken = html.substring(html.indexOf("<html>") + 6,
html.indexOf("</html>"));
 Log.i(TAG, "SAML Token = " + samlToken);
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 myWebView.stopLoading();
 myWebView.setVisibility(View.INVISIBLE);
 myWebView.destroy();
 finish();
 }
 });
 }
 }
private void initWebView(){
 myWebView.setWebViewClient(new MyBrowser());
 myWebView.getSettings().setJavaScriptEnabled(true);
 myWebView.addJavascriptInterface(new MyJavaScriptInterface(),
"HtmlViewer");
 myWebView.getSettings().setLoadWithOverviewMode(true);

Chapter 5
Enterprise Single Sign-On in MCS

5-19

 myWebView.getSettings().setUseWideViewPort(false);
 myWebView.loadUrl(remoteIDPURL);
 }
private void showMessage(final String message){
 runOnUiThread(new Runnable() {
 @Override
 public void run() {
 Toast.makeText(mCtx, message, Toast.LENGTH_LONG).show();
 }
 });
 }
}

When the app is launched, it's directed to the remoteIDPURL (the redirect URL). When
you enter your login credentials, the page is redirected. The onPageStarted method
intercepts the response and the showHTML method retrieves the token

Obtaining a JWT Token Using a System Browser
If you use a system browser to obtain the token, your app must relinquish control to
the system browser app. When the login process is complete, you’ll need to return
control to your app. You can return control via a redirect to a custom app scheme for
which your app has registered.

For either iOS or Android, you’ll need to perform the following actions:

1. Register the custom scheme for your app as dictated by the operating system. The
custom scheme URL tells the mobile OS that requests to the given scheme should
be sent to your app.

2. Edit your app to handle the redirection. You’ll need to implement a method to
handle the incoming redirect, which contains the token.

Coding Your Android App to Obtain a JWT Token

For Android apps, you need to register a custom URL scheme and then code the app
to handle requests associated with that scheme. You do this by editing the
AndroidManifest.xml file:

<activity android:name=".MainActivity">
 <intent-filter>
 <action android:name="android.intent.action.VIEW"/>
 <category android:name="android.intent.category.DEFAULT"/>
 <category android:name="android.intent.category.BROWSABLE"/>
 <data android:scheme="http"
 android:host="mytest.com"
 android:pathPrefix="/"/>
 </intent-filter>
</activity>

The following example shows how to extract the token from the custom URL scheme
in the Android activity class:

@Override
protected void onCreate(Bundle savedInstanceState) {

Chapter 5
Enterprise Single Sign-On in MCS

5-20

 super.onCreate(savedInstanceState);
 setContentView(R.layout.content_main);
 Uri uri = getIntent().getData();
 if(uri != null) {
 String token = uri.getQueryParameter("token");
 Logger.debug(TAG, "token is : " + token);
 }
}

When you open the link to mytest.com, you'll have the option to open the link with the
app. This will launch the Android activity from where the JWT token is retrieved.

Coding Your iOS App to Obtain a JWT Token

To obtain a third-party token via a system browser for an iOS app, you need to
perform the following actions:

1. Declare a custom URL scheme by editing the app’s Info.plist configuration file.

The scheme tells the mobile operating system to route to your app the request that
contains the token.

2. Edit your app to implement the method to handle requests associated with that
scheme.

To register a custom URL scheme with your iOS app, you must include the
CFBundleURLTypes in your app’s Info.plist file. CFBundleURLTypes is an array of
dictionaries. Each dictionary defines a URL scheme that the app supports.
CFBundleURLTypes contains the following keys:

• CFBundleURLName - a string that contains the abstract name of the URL scheme.
This name should be unique. To ensure the name is unique, specify it as a reverse
DNS style of identifier, such as com.company.myscheme.

This string is also used as a key in your app’s InfoPlist.strings file. The value
of the key is the human-readable scheme name.

• CFBundleURLSchemes - An array of string s that contain the URL scheme names.
For example: http, mailto, tel, and sms.

Note:

If multiple third-party apps register to handle the same URL scheme,
there’s no way to determine which app is given the scheme.

Here’s an example of how to implement support for the custom URL scheme:

<key>CFBundleURLTypes</key>
<array>
 <dict>
 <key>CFBundleURLName</key>
 <string>oracle.cloud.mobile.URLDemo</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>urldemo</string>
 </array>

Chapter 5
Enterprise Single Sign-On in MCS

5-21

 <key>CFBundleTypeRole</key>
 <string>Viewer</string>
 </dict>
</array>

This stipulates that any URL specifying the scheme, urlScheme, is redirected to your
app.

When the iOS system browser encounters a URL with this custom scheme, it launches
your app, if necessary, and passes the URL to your app delegate. To handle incoming
URLs, your app delegate must implement the application:openURL:options:
method. For example:

- (BOOL)application:(UIApplication*)application
 openURL:(NSURL*)url
 options:
(NSDictionary<UIApplicationOpenURLOptionsKey,id>*)options
{
 NSLog(@"Open URL: %@", url.absoluteString);
 NSLog(@"Open URL options: %@", options);
 if ([url.scheme isEqualToString:@"urldemo"]) {
 [self viewController].incomingURL = url;
 return YES;
 }
 return NO;
}

This implementation parses the incoming URL and extracts a ‘token’ query argument
and stores it in an instance variable for later use. The implementation assumes the
token is passed via the URL’s query string. Your implementation might differ and the
token could be stored somewhere else in the URL. After your app extracts the token
from the URL, the token can be exchanged for an MCS-issued token.

If you’re not familiar with creating URL schemes or implementing them in your app,
see Apple’s documentation, specifically Using URL Schemes to Communicate with
Apps.

Using a JWT Token to Authenticate with MCS
Once you have obtained a valid JWT token, you can use it to authenticate with MCS.
You do so by passing the token to MCS’s token exchange endpoint. In exchange, you
get a token issued by MCS that can be used for subsequent API calls during the
session.

MCS’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Android

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

try {
 mobileBackend = MobileBackendManager.getManager().getMobileBackend(this);

Chapter 5
Enterprise Single Sign-On in MCS

5-22

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1

} catch (ServiceProxyException e) {
 e.printStackTrace();
}

mAuthorization = mobileBackend.getAuthorization(AuthType.TOKENAUTH);

iOS

-(void) authenticateSSOTokenExchange: (NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock: (OMCErrorCompletionBlock)
completionBlock;

Cordova and JavaScript

mcs.mobileBackend.setAuthenticationType(mcs.AUTHENTICATION_TYPES.token);
mcs.mobileBackend.authorization.authenticate(token).then(callback).catch(er
rorCallback);

Coding the JWT Token Exchange Manually
Once your mobile administrator has registered an IdP as a token issuer in your
environment and you have code in your app to acquire a 3rd-party token, you can use
the MCS client SDK for your platform to handle the complete login sequence.

If you are not using a client SDK, you need to code your app to exchange that token
for an MCS token, with which you then authenticate.

In the app’s login sequence, you call the MCS token exchange endpoint to exchange
the third-party token for an MCS-issued OAuth token.

The token exchange request is an HTTP POST request, with an application/x/www-
form-urlencoded request body, to the token exchange URL: base-URL/mobile/
platform/auth/token.

The token exchange request must provide:

• The external token (a.k.a. "user assertion") being exchanged in the form
assertion=external-token.

• Client authentication for the MCS mobile backend for which a new token is being
requested, to prove that it is a valid user of that mobile backend.

Client authentication can be provided in any of the following ways:

• Encode the client_id and client_secret in basic auth form in the Authorization
header.

In this case, the following headers are required:

Content-Type: application/x/www-form-urlencoded
Authorization: Bearer Base64(client_id:client_secret)

Chapter 5
Enterprise Single Sign-On in MCS

5-23

And the body of the POST must contain these values:

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token

• Encode the client_id and client_secret as application/x/www-form-
urlencoded form values in the POST body.

In this case, the following header is required:

Content-Type: application/x/www-form-urlencoded

And the body of the POST must contain these values:

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token
client_id=client-id
client_secret=client-secret

If this option is used, the client_secret can be omitted if the requireClientAuth
value in the configuration is set to false for the given issuer. This option is
provided for clients that are unable to securely protect a client secret value. Even if
the client_secret is omitted, the client_id value must still be provided, in order
to identify the MCS mobile backend for which a token is being requested.

• Provide a valid client assertion as an application/x/www-form-urlencoded form
value in the POST body.

In this case, the following header is required:

Content-Type: application/x/www-form-urlencoded

And the body of the POST must contain these values, where client-token is
client token obtained from Oracle Cloud for the OAuth client associated with the
MCS mobile backend for which a user token is being requested.

grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer
assertion=external-token
client_assertion_type=urn:ietf:params:oauth:client-assertion-type:jwt-
bearer
client_assertion=client-token

If the token exchange is successful, the response will have a 200 status, and will
include an application/json body similar to this:

{

"access_token":"123456789iJKV1QiLA0KICJhbGciOiJIUzI1NiJ9.abcdefiOiJqb2UiLA0
KICJleHAiOjEzMDA4MTkzODAsDQogImh0dHA6Ly9leGFtcGxlLmNvbS9pc19yb290Ijp0cnVlfQ
.dBjftJeZ4CVP-mB92K27uhbUJU1p1r_wW1gFWFOEjXk",
 "token_type":"Bearer",
 "id_token":null,
 "expires_in":28800 }

Chapter 5
Enterprise Single Sign-On in MCS

5-24

Mapping Users from a Third-Party IdP to Oracle Cloud Users
It is also possible to have enable authentication with 3rd-party tokens where there are
matching records for the users in Oracle Cloud. This enables you to apply roles to
users directly in MCS.

For this matching to work, the following conditions apply:

• The Oracle Cloud users have been assigned to the realm that your mobile
backend uses.

• When registering the token issuer in MCS, your mobile administrator didn’t select
the Enable Virtual User option.

• In SAML tokens, the subject must identify the user’s username as defined in
Oracle Cloud.

• In JWT tokens, the sub or prn attributes must identify either the user’s username
or email address as defined in Oracle Cloud.

User roles can be applied in any of these ways:

• By assigning roles to individual users on the Applications > Mobile User
Management page of MCS.

• By doing batch assignments of roles in the Oracle Cloud Infrastructure Classic
Console. To do this, you need to have the identity domain administrator role for
your account in Oracle Cloud.

• By having your administrator, in the process of registering the IdP as a token
issuer in MCS, specify one or more mobile roles to give to users authenticated
with this IdP (via the default role rule).

• By having your administrator, in the process of registering the IdP as a token
issuer in MCS, create rules to map information extracted from the token (such as
role names) to MCS mobile roles (via role attribute rules).

If the role names defined in the IdP don’t match the role names defined in MCS,
your administrator can configure role apping rules to map the token role names to
the MCS role names.

If you want to use this approach but don’t yet have user accounts set up in Oracle
Cloud, follow the instructions at Importing Groups of Mobile Users Into MCS Using
Oracle Cloud.

Getting a Single Sign-On OAuth Token through a Browser
For an app to authenticate through a single sign-on identity provider, it first needs to
get an SSO OAuth token. Using the MCS SDK for your platform simplifies this
process. However, if you are making the REST calls directly from your app (or you are
testing API calls using another tool, such as cURL or Postman), you need to get the
token manually.

1. On the mobile backend’s Settings page, gather the following information:

• (OAuth Consumer) Client ID

• Base URL

2. Form the SSO token endpoint by appending /mobile/platform/sso/exchange-
token to the base URL.

Chapter 5
Enterprise Single Sign-On in MCS

5-25

3. Form a URL that combines the SSO token endpoint and a query parameter for the
client ID. For example:

<SSO_Token_Endpoint>?clientID=<client_ID>

4. Open a private or incognito browser window, paste the URL into the address bar,
and press Enter.

(You need to use an incognito or private window because cookies stored in your
browser for whatever reason, such as from having logged in to MCS, will interfere
with your SSO token request.)

5. In the page that appears, enter the SSO user name and password and press
Enter.

6. Open a private or incognito browser window, paste the URL into the address bar,
and press Enter.

The browser window will then display your token.

You can use this in any REST calls you make to APIs through that mobile
backend.

Note:

If you want to obtain a new token, do it from a fresh incognito or private
window. If you use the same window from which you previously obtained a
token, the correct token might not be returned.

Enabling Browser-Based SSO through MCS
Setting up browser-based single sign-on (SSO) in MCS consists of steps both in MCS
and in the Oracle Cloud Infrastructure Classic Console. To follow these steps, you
need to have the identity domain administrator role for your Oracle Cloud account.

To set up SSO for a group of users, you need to:

1. Create a realm in MCS for those users by following the steps at Creating Realms.

2. Configure your Oracle Cloud identity domain to allow SSO.

To do so, go to the Users section of the Oracle Cloud Infrastructure Classic
Console. See Configuring Identity Management (SSO and OAuth). After SSO is
set up, you may need to log out and back into MCS for it to take effect.

3. Create user accounts in Oracle Cloud for the app users and have them assigned
to the realm that you have just set up.

These accounts correspond with the user accounts in your identity provider but
only contain limited information, such as user name and email address. The
password is not stored in the Oracle Cloud user account.

To get user accounts set up, follow the instructions at Importing Groups of Mobile
Users Into MCS Using Oracle Cloud.

4. (Optional) Assign the roles to the users that they need to access the APIs. (This
step assumes that the given APIs are role-based.)

Chapter 5
Enterprise Single Sign-On in MCS

5-26

This step is not a prerequisite for developing APIs and mobile backends that use
SSO as the authentication method. However, you might find it convenient to
assign roles to the mobile users as they are created, especially if your team has
decided on the mobile user roles to create and what users and APIs to associate
them with.

In addition, as an identity domain administrator, you can do batch assignments of
roles in the Oracle Cloud Infrastructure Classic Console. Mobile app developers
can use the Mobile User Management interface in MCS to assign roles, but only
one at a time. This is useful for testing purposes, but might be cumbersome when
setting up more than a handful of users.

Note:

If you’re not sure whether your instance of MCS is already configured to
allow SSO, you can quickly check by opening the Settings page of any
mobile backend, enabling OAuth Consumer authentication, and looking for
the Enable SSO checkbox under the OAuth settings. If SSO isn’t configured
for your identity domain, you’ll see the message SSO is not set up for your
Oracle Cloud account.

Enabling Single Sign-On for a Mobile Backend
1. Open the mobile backend and select the Settings page.

2. Under Access Keys, make sure OAuth Consumer is enabled.

The Enable Single Sign-On checkbox appears.

3. Select Enable Single Sign-On.

Note:

If the Enable Single Sign-On checkbox does not appear, you need to
enable SSO for your Oracle Cloud account. See Configuring Identity
Management (SSO and OAuth).

After you enable single sign-on, an SSO token endpoint is displayed under
Environment URLs. You use this token endpoint to obtain the SSO authentication
token. When using the MCS SDK for a given mobile platform, you insert this token
endpoint into the configuration file provided by the SDK and SDK code handles the
obtaining of the token.

Getting an SSO Token Using Form Post Response Mode
If you want to use MCS’s SSO login feature with browser-based apps, you use the
form post response type to get the OAuth token from the SSO token relay and have it
posted back to the app through a redirect URI.

So that you don’t make yourself vulnerable to having OAuth tokens generated on your
behalf and then sent to a URI out of your control, you also have to specify acceptable
values for the redirect URI in the Security_SsoRedirectWhitelist environment
policy.

Chapter 5
Enterprise Single Sign-On in MCS

5-27

To code the call to the SSO token relay:

1. On the mobile backend’s Settings page, gather the following information:

• (OAuth Consumer) Client ID

• SSO token endpoint

2. In your code, form a URL that combines the SSO token endpoint, a query
parameter for the client ID, and a parameter for the redirect URI. For example:

<SSO_Token_Endpoint>?clientID=<client_ID>&redirect_uri=<Redirect_URI>

3. From your code, call that URL.

When that URL is called, the app user is redirected to a login page where they can
sign in.

To set the Security_SsoRedirectWhitelist environment policy, see Modifying an
Environment Policy.

The value for the Security_SsoRedirectWhitelist environment policy is a comma-
separated list of simple URL patterns. For example:

https://www.example.com, https://*.example2.com

The pattern https://www.example.com will match the URLs https://
www.example.com/path1, https://www.example.com/path1/path2, and so on.

Similarly, the pattern http://www.example.com/path1 will match URLs http://
www.example.com/path1, http://www.example.com/path1/path2, http://
www.example.com/path1/path2/path3 and so on, but will not match URL http://
www.example.com/other-path.

Here are some other rules for the environment policy value:

• You must include the port, unless you are using the default port for the URL
scheme. For example, the pattern http://www.example.com matches the URL
http://www.example.com or the URL http://www.example.com:80, but not
http://www.example.com:8080.

• You can use an asterisk (*) as a wildcard character within a URL segment but it
doesn't apply across dot (.), forward slash (/), or colon (:) characters.

For example, https://example*:8080 would match https://example-source:
8080, but it wouldn’t match https://example.com:8080. This restriction is
designed to prevent matching unintended sites. (Imagine something like http://
example.imposter.com:8080 which you would not want your wildcard to match.)

• Simple path values don’t require a wildcard. For example, if a redirect URI of
https://example.com/apps/customer is passed to the mobile backend and
compared to the white list value in the above policy example, it will be accepted.

• The protocol (https:// in the above example) must be included.

Testing APIs in a Mobile Backend with SSO Login
Once you add an API to a mobile backend with SSO login enabled, you can use the
API tester with SSO as the authentication method. This helps you ensure that the API

Chapter 5
Enterprise Single Sign-On in MCS

5-28

call works end to end. You can test with the MCS-issued SSO token or a token from a
third-party provider.

To test a custom API with SSO login:

1. Click and select Applications > Mobile Backends from the side menu.

2. Select your mobile backend and click Open.

3. In the left navbar of the mobile backend, select APIs.

4. Click the API that you want to test.

5. If the user that you plan to authenticate in the test has not yet been assigned the
role that is needed to access the API, click the Security navigation link and switch
Login Required to OFF.

6. Click the Endpoints navigation link and scroll to the endpoint that you want to test.

7. From the Authentication Method dropdown, select Single Sign-On Token .

8. Obtain a valid SSO token for the mobile backend.

If you are using web SSO, the fastest way to do this is to:

a. Mouse over the info tip next to the Single Sign-On Token field, select the
token endpoint URL that is in the info tip, and select Copy from your browser’s
menu (pressing Ctrl-C might not work).

b. Open a private or incognito browser window, paste the URL into the address
bar, and press Enter.

c. In the page that appears, enter the SSO user name and password and press
Enter.

The token should appear in the page that is returned.

9. In the Single Sign-On Token, text field, paste the SSO token.

If you have a token from your third-party provider, you can paste it in this field to
authentication.

10. Click Test Endpoint.

If successful, a test response will appear with an appropriate HTTP code, such as
200.

Chapter 5
Enterprise Single Sign-On in MCS

5-29

Token Expiration for SSO Login
When you use SSO as your login mode, the token expires after six hours by default,
meaning that the app user will need to log in again after that time. The length of the
timeout is governed by the Security_TokenExchangeTimeoutSecs policy, which is
given in seconds. See Environment Policies for information on changing the policy.

Facebook Login in MCS
You can configure mobile backends to enable users to log in through Facebook. This
mode of authentication is particularly useful for apps targeting consumers (as opposed
to employees of your business).

When you enable users to log in to an app through Facebook, you can do the following
things in the app:

• Call any custom APIs that allow access with a social identity login.

• In the implementation code of such custom APIs, use the custom code SDK to call
MCS platform APIs (with the exception of any APIs that are role-based).

• Register for notifications.

The main steps for setting up an app to use Facebook for login are:

1. Registering the app itself with Facebook.

2. Configuring Facebook login in the mobile backend that the app will be using.

Note:

This mobile backend can only be used for Facebook login. If you wish to
have apps access the mobile backend using different authentication
methods, you must create a separate mobile backend for that purpose.

3. Configuring the app itself to use Facebook for logging in.

4. In the mobile backend, adding custom APIs that allow access through Facebook
login.

Registering an App for Login Through Facebook
Before you can enable login through Facebook, you need to register your app with
Facebook using the Facebook SDK for your platform. From the registration process

Chapter 5
Facebook Login in MCS

5-30

Facebook will give you a Facebook app ID and secret which you will next configure in
MCS.

For details, see Facebook’s documentation at https://developers.facebook.com/docs/
apps/register.

Enabling Facebook Login in a Mobile Backend
Once you have registered your app with Facebook, you can enable Facebook login in
a mobile backend.

1. In MCS, open the mobile backend and select the Settings page.

2. Under Social Login, switch on Facebook.

3. In the Facebook Settings dialog, enter the app ID and app secret that you
obtained when registering the app with Facebook.

4. On the same page, make sure that HTTP Basic authentication is enabled.

(HTTP Basic authentication is needed for the first part of the authentication
process when the app requests the Facebook access token.)

Note:

If you also want to make an app accessible through any other authentication
method, create a separate mobile backend for which Facebook Login is not
enabled. Then, in the configuration file provided by the MCS client SDK for
the given platform (e.g. OMC.plist for iOS and
oracle_mobile_cloud_config.xml for Android), add the details for that
mobile backend. The app can then use both mobile backends, depending on
how the user authenticates.

Configuring an App to Use Facebook Login
Once you have registered your app with Facebook and have configured a mobile
backend to work with Facebook login, you can configure your app to log users in with
their Facebook identities. You need to:

• Specify that Facebook is the identity provider.

• Provide the Facebook App ID.

• Provide the mobile backend ID and HTTP Basic anonymous key.

The easiest way to get this working is by using the MCS client SDK for the app’s
platform, which enables you to specify all of the credentials in a single configuration
file. See The SDKs.

Adding APIs to a Mobile Backend with Facebook Login
You can add the following types of APIs to a mobile backend configured for Facebook
login.

• Custom APIs that have the Login Required switch set to OFF.

Chapter 5
Facebook Login in MCS

5-31

https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/apps/register

• Custom APIs that have the Login Required switch set to ON and the Social
Login switch set to ON.

• Any MCS platform APIs endpoints that allow anonymous access. The Analytics
Collector, App Policies, Devices, MCS, and Location APIs all have endpoints that
can be accessed anonymously. The Database Access API and Notifications API
can be accessed from any custom API, including custom APIs that allow
anonymous access.

To add an API to a mobile backend with Facebook login:

1. Make sure that the API allows social login. For custom APIs, you can check by
following these steps:

a. Click and select Applications > APIs from the side menu.

b. Select the API that you want to add and click Open.

c. In the API Designer, select the Security tab and check the settings.

Note:

APIs that you design for use with Facebook login can not be used
with other authentication types. If you want an API’s functionality to
be available for apps with Facebook login and apps that are based
on other types of authentication (such as OAuth, enterprise SSO, or
HTTP Basic anonymous access), you need separate variants of the
API, each with the appropriate security settings. For more
information on API security, see Security in Custom APIs.

2. Add the API to the mobile backend:

a. Click and select Applications > Mobile Backends from the side menu.

b. Select your mobile backend and click Open.

c. In the left navbar of the mobile backend, select APIs.

d. Click Select APIs.

e. Click the + (Add) icon for the API.

Getting a Facebook User Access Token Manually
For an app to authenticate through Facebook, it needs to get a user access token from
Facebook. Using the MCS client SDK for your platform simplifies this process.

However, if you are testing an API with the API tester or another tool (such as cURL or
Postman) or making the REST calls directly from your app, you need to get the user
access token yourself. If you are the person who registered the app with Facebook,
you can do this by following these steps:

1. Log into your Facebook account (the one with which you registered the mobile
app).

2. Navigate to https://developers.facebook.com/tools/accesstoken/ and find your app.

3. Click the You need to grant permissions to your app to get an access token
link to generate the token. A token is generated for you on the next page.

Chapter 5
Facebook Login in MCS

5-32

https://developers.facebook.com/tools/accesstoken/

Note:

If you anticipate testing the app over a period of several weeks, you might
find it convenient to extend the validity of your access token. You can do so
by clicking Extend Access Token.

For more information, see Facebook’s documentation on user access tokens at https://
developers.facebook.com/docs/facebook-login/access-tokens#usertokens.

Headers Needed for API Calls with Facebook Authentication
When you call custom APIs from apps that use Facebook login, headers need to be
passed to handle authentication. If you are using the SDKs for your platform, these
headers are constructed for you based on values that you have entered into the SDK’s
configuration file.

If you are making REST calls to the APIs directly from your app (or from a separate
tool, such as cURL), you need to add the following headers in your calls manually:

• Authorization: Basic {anonymousKey}

• Oracle-Mobile-Backend-ID: {mobileBackendID}

• Oracle-Mobile-Social-Identity-Provider : facebook

• Oracle-Mobile-Social-Access-Token : {YOUR_FACEBOOK_USER_ACCESS_TOKEN}

Authenticating in Direct REST Calls
When your app uses the MCS client SDK, you store the authentication credentials in
one place so that you don’t need to manually insert them into each call. In addition, the
SDK handles the encoding of the username and password. However, if you are
making the REST calls directly from your app (or you are testing API calls using
another tool, such as cURL or Postman), you need to handle the authentication in
each call. The value you send in the Authorization header depends on the type of
authentication.

Authenticating with OAuth in Direct REST Calls
When you have OAuth enabled as an authentication mechanism for a mobile backend,
an app can authenticate itself by sending the mobile backend’s OAuth credentials
(client ID and client secret) plus a user name and password to get an OAuth access
token. If the API that is being called does not require a logged-in user, then the user
name and password are not needed. The app then uses the OAuth token to make
REST calls to APIs in the mobile backend.

You need the following information from the Settings page for the mobile backend:

• OAuth token endpoint

• Client ID

• Client secret

If the API is configured to require login, you also need the user name and password for
a mobile user.

Chapter 5
Authenticating in Direct REST Calls

5-33

https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens

To construct a REST call to authenticate via OAuth:

1. Send the request to retrieve an access token:

a. Base64 encode the clientID:clientSecret string.

b. Set the Authorization header to Basic client id:client secret-Base64-
encoded-string.

c. Set the Content-Type to application/x-www-form-urlencoded;
charset=utf-8.

d. Set the request body to the appropriate grant type:

• For access without a logged-in user, use:
grant_type=client_credentials

• For access with a logged-in user, use:
grant_type=password&username=username&password=password. The user
name and password must be URL encoded.

e. POST the request to the OAuth token endpoint. For example, in cURL:

curl -i
-H "Authorization: Basic clientId:clientSecret–encoded-string"
-H "Content-Type: application/x-www-form-urlencoded; charset=utf-8"
-d "grant_type=client_credentials"
--request POST oauthTokenEndpoint

2. In the response, find the access_token property, as shown below (the value is
truncated in this example).

{"oracle_client_assertion_type":"urn:ietf:params:oauth:client-assertion-
type:jwt-bearer",
"expires_in":604800,
"token_type":"Bearer",
"oracle_tk_context":"client_assertion",
"access_token":"eyJhbGciOiJ...FIqFiA"}

3. Copy the access_token property’s value into the value of the Authorization
header.

The header takes the form Bearer access_token.

Authenticating with HTTP Basic in Direct REST Calls
When you have HTTP Basic enabled as an authentication mechanism for a mobile
backend, an app can authenticate itself by sending the mobile backend ID, a user
name, and a password. You pass the username and password as a Base64–encoded
string. If the API that is being called is set to allow anonymous access, then you pass
an anonymous access key instead of a user name and password.

Remember, if your app uses the MCS client SDK, the authentication credentials are
stored in one place so you don’t need to manually insert them.

To authenticate with MCS using HTTP Basic, you send a method to any platform
endpoint with these headers:

Chapter 5
Authenticating in Direct REST Calls

5-34

• Oracle-Mobile-Backend-ID: The mobile backend ID is listed on the Settings tab
for the mobile backend.

• Authorization: Basic: For basic authentication this header should include the
mobile user’s name and password encoded in Base64 or the anonymous key. If
the anonymous key is available, it will also be displayed on the Settings tab for the
mobile backend.

For example:

curl -X GET
 -H "Authorization: Basic {Base64 of
mobileUsername:mobileUserPassword} or {anonymousKey}"
 -H "Oracle-Mobile-Backend-ID: {mobileBackendID}"
 {baseUri}/mobile/platform/users/~

For this call, the response would be one of the following:

• In the case of 200: Success, the payload returned from MCS contains a JSON
object with the user information.

• In case of an error, a JSON error message is returned.

For more information about Base64 encoding, see Base64 Decode and Encode.

How OAuth Works in MCS
This section provides some background on how MCS takes advantage of OAuth. You
don’t necessarily need to read this section to do your work, but you might find the
conceptual background useful.

OAuth 2.0 is explicitly designed with REST in mind. It supports a variety of different
client types that access REST APIs, including mobile apps. Secured APIs are made
available only after a mobile app presents a valid OAuth access token.

Oracle Mobile Cloud Service's implementation of OAuth uses a model with the
following roles:

• Resource Owner: The resource owner is responsible for entering credentials to
grant authorizations to protected resources. The resource owner is often the app
user.

• Mobile Application: The mobile app is the client that accesses protected resources
and makes calls to secure APIs.

• MCS Server: The MCS server provides the interface for accessing the protected
resources.

• OAuth Server: The OAuth server manages authorizations by the resource owner
and issues access tokens. Typically, this role is also handled by the MCS server.

In OAuth 2.0, the client uses an access token issued by the OAuth server to access
protected resources hosted by the MCS server.

1. The mobile app sends credentials to the OAuth server in an HTTP header.

2. The OAuth server returns an access token.

3. The mobile app uses the access token to access secure MCS APIs.

Chapter 5
How OAuth Works in MCS

5-35

https://www.base64encode.org/

This enables MCS to manage permissions and grant applications access to services
without requiring a separate login for each individual service. Credentials are issued
for each mobile backend. Each mobile app registered with the mobile backend uses
those credentials to authenticate with any API associated with that mobile backend.

Before a mobile application can access MCS APIs, it must first register with the MCS
OAuth server. The registration is typically a one-time task and is done when the mobile
backend is created. Once registered, the registration remains valid unless revoked.
For details on registering a mobile app with a mobile backend, see Registering
Applications.

For every custom API in Mobile Cloud Service, the mobile developer decides whether
or not authentication is required. This determines which OAuth flow is used.

• Resource Owner Password Credentials Grant - Authenticated Access

• Client Credentials Grant - Unauthenticated Access

Resource Owner Password Credentials Grant - Authenticated Access
The resource owner password credentials grant flow is suitable for highly trusted
mobile applications because the client could abuse the credentials, or they could
unintentionally be disclosed to an attacker. This grant type requires direct access to
user credentials, but credentials are used for a single request and are exchanged for
an access token. This grant type can eliminate the need for the mobile app to store
user credentials for future use, by exchanging them for a long-lived access token or
refresh token.

Note:

If you want to use a refresh token, you need to use a 3rd-party identity
provider. MCS’s OAuth server does not support refresh tokens.

Chapter 5
How OAuth Works in MCS

5-36

The resource owner password credentials grant flow involves the following steps:

1. The mobile app prompts the user (resource owner) to enter a username and
password.

2. The mobile app authenticates with the OAuth server through the token endpoint
and requests an access token using the credentials entered by the user. The
request contains the following parameters:

• grant_type — Required. Must be set to password.

• username — Required. The username of the resource owner (user).

• password — Required. The password of the resource owner (user).

• scope — Optional. The scope of the authorization.

3. The OAuth server validates the credentials and issues an access token.

• access_token

• token_type

• expires_in (the number of seconds before the access token is no longer
valid; expiration is optional)

4. The mobile app passes the access token to the MCS service, which validates the
token and grants access.

For example, the mobile app makes the following HTTP request using transport-layer
security:

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW
Content-Type: application/x-www-form-urlencoded
grant_type=password&username=johndoe&password=A3ddj3w

After the OAuth server accepts these values, it returns the following response with an
access token:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache
{

Chapter 5
How OAuth Works in MCS

5-37

"access_token":"2YotnFZFEjr1zCsicMWpAA",
"token_type":"example",
"expires_in":3600,

"example_parameter":"example_value"
}

Client Credentials Grant - Unauthenticated Access
The client credentials grant flow can be used when the authorization scope is limited to
protected resources under the control of the mobile app. A registered trusted app is
allowed to obtain an access token by providing only the client credentials to the OAuth
server.

This flow is applicable in the following situations:

• The mobile app is requesting access to protected resources under its control. For
example, unauthenticated access to APIs in the Mobile Backend, such as when a
mobile banking app retrieves a list of ATMs based on location.

• The mobile app is requesting access to a protected resource where authorization
has been previously arranged with the OAuth server.

The client credentials grant flow involves the following steps:

1. The mobile app authenticates with the OAuth server through the token endpoint
and requests an access token. The request contains the following parameters:

• grant_type — Required. Must be set to client_credentials.

• scope — Optional. The scope of the authorization.

2. The OAuth server validates the credentials and issues an access token.

The access token has the following parameters:

• access_token

• token_type

• expires_in (the number of seconds before the access token is no longer
valid; expiration is optional)

3. The mobile app passes the access token to the service. The service accepts the
token and allows access.

For example, the mobile app makes the following HTTP request using transport-layer
security

POST /token HTTP/1.1
Host: server.example.com
Authorization: Basic czZCaGRSa3F0MzpnWDFmQmF0M2JW

Chapter 5
How OAuth Works in MCS

5-38

Content-Type: application/x-www-form-urlencoded
grant_type=client_credentials

The OAuth server MUST authenticate the client. It returns the following response with
an access token:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-store
Pragma: no-cache
{
"access_token":"2YotnFZFEjr1zCsicMWpAA",
"token_type":"example",
"expires_in":3600,
"example_parameter":"example_value"
}

Securing Cross-Site Requests to MCS APIs
In addition to setting authentication methods, it’s very important that you manage
cross-origin resource sharing (CORS) for access to MCS APIs. You do so through the
Security_AllowOrigin environment policy.

For browser-based applications, particularly those that use Single-Sign On (SSO)
authentication, you should either not allow cross-site access at all or restrict access
only to trusted origins where authorized applications are known to be hosted to
mitigate vulnerability to Cross-Site Request Forgery (CSRF) attacks. If you're not using
browser-based applications, it’s best to use the default value, disallow, for
Security_AllowOrigin.

Control cross-site access by setting the Security_AllowOrigin environment policy
value to either disallow (the default value) or to a comma separated list of URL
patterns, which specifies a whitelist of trusted URLs from which cross-site requests
can be made. If the origin of a cross-site request matches at least one of the patterns
in the whitelist, the request is allowed.

For example, the URL value for Security_AllowOrigin might look like this:

https://myexample.com, https://*.example.com, https://*.example2.com

When specifying a URL, note the following:

• You must include the port, unless you are using the default port for the URL
scheme. For example, the pattern http://www.example.com matches the URL
http://www.example.com or the URL http://www.example.com:80, but not
http://www.example.com:8080.

• When specifying values for Security_AllowOrigin, don’t include path parts and
don’t include a trailing forward slash, ‘/’, character. For example, the pattern
http://www.example.com/ won’t match http://www.example.com.

• You can use an asterisk (*) as a wildcard character within a URL segment but it
doesn't apply across dot (.), forward slash (/), or colon (:) characters.

For example, if the URL is https://example.example.com:8080, the following
patterns match:

– https://*.example.com:8080

– https://*.example.com:*

Chapter 5
Securing Cross-Site Requests to MCS APIs

5-39

– https://ex*.example.com:*

These patterns, however, won’t match:

– https://*.example.com*

– https://example*.oracle.com:*

These restrictions are designed to prevent matching unintended sites.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security_AllowOrigin to http://localhost:[port], but be sure to update
the value in production.

Chapter 5
Securing Cross-Site Requests to MCS APIs

5-40

6
Android Applications

If you are an Android app developer, you can use the SDK that Oracle Mobile Cloud
Service (MCS) provides for Android. This SDK simplifies authentication with MCS and
provides native wrapper classes for MCS platform APIs.

Getting the SDK for Android
To get the MCS client SDK for Android, go to the Oracle Technology Network’s MCS
download page.

To use the MCS SDK for Android, you should have the following software on your
system:

• Android Studio, or the standalone Android SDK Tools from Google.

See https://developer.android.com/studio/index.html for info on getting and using
Android Studio.

• Java Development Kit (JDK) 1.7.0_67 or compatible.

See http://www.oracle.com/technetwork/java/javase/downloads/index.html for JDK
downloads.

Contents of the Android SDK
The following SDK libraries (JAR files) are included in the Android SDK:

• mcs–android-sdk-shared-<version-number>.jar - The base library for the SDK,
including functionality required by the other libraries as well as utility classes for
accessing and authenticating with mobile backends.

• mcs-android-sdk-analytics-<version-number>.jar - The Analytics library,
which lets you insert custom events into your code that can then be collected and
analyzed from the Analytics console.

• mcs-android-sdk-location-<version-number>.jar - The Location library, which
lets you access details about location devices that have been registered in MCS
and the places and assets they are associated with.

• mcs-android-sdk-fcm-notifications-<version-number>.jar - The Notifications
library for FCM, which lets you set up your application to receive notifications sent
from your mobile backend. If your app still uses GCM, the SDK also
includes /gcm/mcs-android-sdk-notifications-<version-number>.jar. (The
two notifications modules can’t be used at the same time.)

• mcs-android-sdk-social-<version-number>.jar - The Social Login library,
which allows you to set up your app to use Facebook login.

• mcs-android-sdk-storage-<version-number>.jar - The Storage library, which
lets you write code to access storage collections that are set up with your mobile
backend.

6-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
https://developer.android.com/studio/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

• mcs-android-sdk-sync-<version-number>.jar - The Sync Client library, which
allows you to cache application data when the device running your app is
disconnected from the network, then sync up the data when the network
connection is reestablished.

• IDMMobileSDK.jar - The identity management library used by all applications.

The SDK also includes these tools and examples:

• mcs-tools.zip - The MCS Custom Code Test Tools, a set of command line tools
for debugging custom APIs that you have associated with your app's mobile
backend. Detailed instructions are located in the README file included in the zip.

• mobile-log-download.zip - A command-line tool that allows you to download logs
from MCS for viewing or archiving.

• oracle_mobile_cloud_config.xml - A sample configuration file. You can adjust its
properties based on the environment details of the mobile backend that your app
will use and then copy the file to the assets folder you created when adding the
SDK to your app.

• examples.zip - Sample mobile apps that demonstrate how to use the SDK.

• Javadoc.zip - Complete SDK API documentation. You can also reference the API
documentation online: https://docs.oracle.com/en/cloud/paas/mobile-cloud/mcssa/
index.html

Android SDK Dependencies
The SDK is modular, so you can package just the libraries that your app needs. Just
be aware of the following dependencies:

• Every Android application developed for MCS must have the shared (oracle-
mobile_android_shared-<version-number>.jar) and IDMMobileSDK.jar libraries.

• If the Storage library is installed, the Sync Client library must also be installed.

Adding the SDK to an Android App
1. If you haven’t already done so, unzip the Android SDK zip.

2. Copy the SDK jars into the /libs folder in your app's project. If this folder doesn't
exist, create it at the same level in your hierarchy as your /src and /build folders.

3. Decide which notifications library you need (FCM or GCM) and delete the .jar you
are not using: mcs-android-sdk-fcm-notifications-<version-number>.jar
or /gcm/mcs-android-sdk-notifications-<version-number>.jar. These
modules can’t be used at the same time.

4. In the source tree for the application, create a folder called /assets (at the same
level as the /java and /res folders).

5. In the SDK bundle, locate the oracle_mobile_cloud_config.xml file and copy it to
the /assets folder.

6. In your app's build.gradle file, make sure the following are among the
dependencies registered so that the SDK libraries are available to the app.

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])

Chapter 6
Adding the SDK to an Android App

6-2

https://docs.oracle.com/en/cloud/paas/mobile-cloud/mcssa/index.html
https://docs.oracle.com/en/cloud/paas/mobile-cloud/mcssa/index.html

 compile 'org.slf4j:slf4j-jdk14:1.7.13'
}

7. Open /assets/oracle_mobile_cloud_config.xml and fill in the environment
details for the mobile backend that the app will be using. See Configuring SDK
Properties for Android.

Upgrading an Android App from SDK 17.x and Before
1. Remove the following SDK jar files from the libs folder in your app's project (if

they exist):

• IDMMobileSDK.jar

• IDMMobileSDK.zip

• mcs-android-sdk-vanalytics-<version>.jar

• mcs-android-sdk-vIDMSDK-<version>.jar

• mcs-android-sdk-vlocation-<version>.jar

• mcs-android-sdk-vnotifications-<version>.jar

• mcs-android-sdk-vshared-<version>.jar

• mcs-android-sdk-vsocial-<version>.jar

• mcs-android-sdk-vstorage-<version>.jar

• mcs-android-sdk-vsync-<version>.jar

2. Unzip the new MCS Android SDK zip if you haven’t already.

3. Copy the new SDK jar files into the libs folder in your app's project.

4. Decide which notifications library you need (FCM or GCM) and delete the .jar you
are not using: mcs-android-sdk-fcm-notifications-<version-number>.jar
or /gcm/mcs-android-sdk-notifications-<version-number>.jar. These
modules can’t be used at the same time.

5. In your app's settings.gradle file, make sure that IDMMobileSDK is NOT an
include. (Remove it if it is.)

6. In your app's build.gradle file, make sure the following is removed from the
dependencies registered:

 compile project(':IDMMobileSDK')

7. In your app's build.gradle file, add the following to the dependencies registered:

 compile 'org.slf4j:slf4j-jdk14:1.7.13'

So, the final dependencies should include:

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'org.slf4j:slf4j-jdk14:1.7.13'
}

Chapter 6
Upgrading an Android App from SDK 17.x and Before

6-3

Follow the rest of the instructions in this chapter to configure SDK properties and your
Android manifest file.

Configuring SDK Properties for Android
To use the SDK in an Android app, you need to add the
oracle_mobile_cloud_config.xml configuration file to the app and fill it in with
environment details for your mobile backend. In turn, the SDK classes use the
information provided in this file to access the mobile backend and construct HTTP
headers for REST calls made to APIs.

You package the configuration file in your app’s main bundle in the assets folder at the
same level as the java and res folders. For example, in the demo application
FixItFast, it’s in /app/src/main/assets.

The following code sample shows the structure of a
oracle_mobile_cloud_config.xml file.

<mobileBackends>
 <mobileBackend>
 <mbeName>MBE_NAME</mbeName>
 <mbeVersion>MBE_VERSION</mbeVersion>
 <default>true</default>
 <appKey>APPLICATION_KEY</appKey>
 <baseUrl>BASE_URL</baseUrl>
 <networkConnectionTimeOut>CONNECTION_TIMEOUT</networkConnectionTimeOut>
 <enableAnalytics>true</enableAnalytics>
 <enableLogger>true</enableLogger>
 <authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>AUTH_TYPE</authenticationType>
 <oauth>
 <oAuthTokenEndPoint>OAUTH_URL</oAuthTokenEndPoint>
 <oAuthClientId>CLIENT_ID</oAuthClientId>
 <oAuthClientSecret>CLIENT_SECRET</oAuthClientSecret>
 </oauth>
 <basic>
 <mobileBackendID>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 </authorization>
 <!-- additional properties go here -->
 </mobileBackend>
</mobileBackends>

Here’s a list of the file’s elements. The values that you need to fill in for a given mobile
backend can be found on the Settings and Clients pages for that mobile backend.

• mobileBackends — The config file’s root element, containing one or more
mobileBackend elements.

• mobileBackend — The element for a mobile backend.

• mbeName — The name of the mobile backend associated with your app.

• mbeVersion — The version number of your app (for example, 1.0).

Chapter 6
Configuring SDK Properties for Android

6-4

• default — If true, that mobile backend is treated as the default and thus can be
easily referenced using the getDefaultMobileBackend(Context context) method
in the SDK’s MobileBackendManager class.

• appKey — The application key, which is a unique string assigned to your app when
you register it as a client in MCS. This key is only required if you are using
notifications. See Registering an App as a Client in MCS.

• baseUrl — The URL your app uses to connect to its mobile backend.

• networkConnectionTimeOut — (Optional) The connection timeout value in
seconds. The default is 60 seconds. This element was added in 17.4.5.

• enableLogger — When set to true, logging is included in your app.

• enableAnalytics — When set to true, analytics on the app’s use can be
collected.

• authorization — Use the sub-elements of this element to define the
authentication the app will be using and specify the required credentials.

– offlineAuthenticationEnabled — If set to true, offline login will be allowed.
For this to work, you also need to add the following to the app’s
AndroidManifest.xml file:

<receiver android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
</receiver>

– authenticationType — Define the kind of authentication mechanism being
used to connect your app to MCS. Possible values are oauth (for OAuth
Consumer) , basic (for HTTP Basic), sso, tokenAuth (for SSO token
exchange), and facebook (for logging in with Facebook credentials). If this
element isn’t specified, OAuth Consumer is used. The other contents and sub-
elements of the authorization element depend on the type of authentication.

OAuth Consumer

For OAuth, set the value of the <authenticationType> element to oauth and fill in the
OAuth credentials provided by the mobile backend.

• oAuthTokenEndPoint — The URL of the OAuth server your app goes to, to get its
authentication token.

• oAuthClientId — The unique client identifier assigned to all apps when they’re
first created in your mobile backend.

• oAuthClientSecret — The unique secret string assigned to all apps they’re first
created in your mobile backend.

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>oauth</authenticationType>
 <oauth>
 <oAuthTokenEndPoint>http://oam-server.oracle.com/oam/oauth2/tokens</
oAuthTokenEndPoint>

Chapter 6
Configuring SDK Properties for Android

6-5

 <oAuthClientId>f2d3ca5c-7e6f-4d1c-aabc-a2f3caf7ec4e</oAuthClientId>
 <oAuthClientSecret>vZMRkgniIbhNUiPnSRT2</oAuthClientSecret>
 </oauth>
</authorization>

Enterprise SSO

For SSO, set the value of the <authenticationType> element to sso, fill in the OAuth
credentials provided by the mobile backend, and add the ssoTokenEndpoint.

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>sso</authenticationType>
 <oauth>
 <oAuthTokenEndPoint>host/mobile/platform/sso/token</oAuthTokenEndPoint>
 <oAuthClient>f2d3ca5c-7e6f-4d1c-aabc-a2f3caf7ec4e</oAuthClient>
 <oAuthClientSecret>vZMRkgniIbhNUiPnSRT2</oAuthClientSecret>
 <ssoTokenEndpoint>https://development-
mcspmtrial90.mobileenv.oracle.com:443/mobile/platform/sso/token</
ssoTokenEndpoint>
</oauth>
</authorization>

SSO with a Third Party Token

For SSO with a third-party token, set the value of the <authenticationType> element
to tokenAuth. You also need to fill in authentication credentials provided by the mobile
backend, depending on how you have integrated the token issuer.

If you are using JWT tokens and have integrated the token issuer by registering a
configuration via a policy in MCS, you need to nest the mobile backend’s OAuth
credentials. The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>tokenAuth</authenticationType>
 <oauth>
 <oAuthTokenEndPoint>http://oam-server.oracle.com/oam/oauth2/tokens</
oAuthTokenEndPoint>
 <oAuthClientId>f2d3ca5c-7e6f-4d1c-aabc-a2f3caf7ec4e</oAuthClientId>
 <oAuthClientSecret>vZMRkgniIbhNUiPnSRT2</oAuthClientSecret>
 </oauth>
</authorization>

If you have integrated the IdP token issuer by uploading certificates into MCS, you
need to nest the mobile backend’s HTTP Basic credentials. The resulting
authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>tokenAuth</authenticationType>
 <basic>

Chapter 6
Configuring SDK Properties for Android

6-6

 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>
</authorization>

HTTP Basic

For HTTP Basic authentication, you need to set the value of the
<authenticationType> element to basic and fill in the HTTP Basic auth credentials
provided by the mobile backend.

• mobileBackendID — The unique identifier assigned to a specific mobile backend. It
gets passed in an HTTP header of every REST call made from your app to MCS,
to connect it to the correct mobile backend. When calling platform APIs, the SDK
handles the construction of the authentication headers for you.

• anonymousKey — A unique string that allows your app to access APIs that don’t
require login. In this scenario, the anonymous key is passed to MCS instead of an
encoded user name and password combination.

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>basic</authenticationType>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>
</authorization>

Facebook

For Facebook login, you need to set the value of the <authenticationType> element
to facebook, fill in the HTTP Basic auth credentials provided by the mobile backend,
and add the facebook element, where you specify the Facebook credentials.

• facebookAppId — The Facebook application ID.

• scopes — You can use this element to specify Facebook permissions (optional).

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>facebook</authenticationType>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>
 <facebook>
 <facebookAppId>123456789012345</facebookAppId>
 <scopes>public_profile,user_friends,email,user_location,user_birthday</
scopes>
 </facebook>
</authorization>

Chapter 6
Configuring SDK Properties for Android

6-7

Configuring Your Android Manifest File
Permissions for operations such as accessing the network and finding the network
state are controlled through permission settings in your application's manifest file,
AndroidManifest.xml. These permissions are required:

• permission.INTERNET — Allows your app to access open network sockets.

• permission.ACCESS_NETWORK_STATE — Allows your app to access information
about networks.

Other permissions are optional. For example, the Analytics platform API uses location
to provide detailed information about the usage and performance of your app. If you’re
including the Analytics library from the SDK, you’ll want to add these permissions as
well.

• permission.ACCESS_COARSE_LOCATION— Allows your app to access approximate
location information, derived from sources such as wi-fi and cell tower positions.

• permission.ACCESS_FINE_LOCATION — Allows your app to access precise location
information, derived from sources such as GPS.

For more information about permissions in your Android application, see Android
Manifest Permissions in the Google documentation.

Add the permissions at the top of your AndroidManifest.xml file, as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="oracle.cloud.mobile.photobox" >
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />
</manifest>

Chapter 6
Configuring Your Android Manifest File

6-8

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

Note:

Versions of the SDK before 17.4.5 used a NetworkHelper class that is no
longer required. If your manifest file includes the following section, it can be
deleted:

<application>
 <receiver
android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action
android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
 </receiver>
 (.....)
</application>

Adding the SDK to your application may require you to configure your
AndroidManifest.xml file to add new permissions or activities. For example, if you
add the Notifications individual SDK library, you may also need to add a new
broadcast receiver. For more information, see Setting Up a Mobile App for
Notifications.

Loading a Mobile Backend's Configuration into an Android
App

For any calls to MCS APIs using the Android SDK to successfully complete, you need
to have the mobile backend’s configuration loaded from the app’s
oracle_mobile_cloud_config.xml file. You do this using the MobileBackendManager
and MobileBackend classes:

MobileBackendManager.getManager().getMobileBackend("My_Backend_Name")

Authenticating and Logging In Using the SDK for Android
Here is some sample code that you can use for authentication through MCS in your
Android apps.

OAuth Consumer

First you initialize the authorization agent and set the authentication type to OAUTH.

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;
Context mCtx = getApplicationContext();
mobileBackend =
MobileBackendManager.getManager().getDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.getAuthorization(AuthType.OAUTH);

Chapter 6
Loading a Mobile Backend's Configuration into an Android App

6-9

Then you use the authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

TextView username, password;
username = (TextView) findViewById(R.id.username);
password = (TextView) findViewById(R.id.password);
String userName = username.getText().toString();
String passWord = password.getText().toString();
mAuthorization.authenticate(mCtx, userName, passWord, mLoginCallback);

Here’s the definition for the callback.

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 Log.d(TAG, "OnCompletion Auth Callback");
 if (exception != null) {
 Log.e(TAG, "Exception while receiving the Access Token",
exception);
 } else {
 Log.e(TAG, "Authorization successful");
 }
 }
 }

Enterprise SSO

First you initialize the authorization agent and set the authentication type to SSO. (For
SSO third-party token exchange, see the next example.)

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;
Context mCtx = getApplicationContext();
mobileBackend =
MobileBackendManager.getManager().getDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.getAuthorization(AuthType.SSO);

Then you create a thread to handle the authentication call and its callback.

private final Object lock = new Object();
new Thread(new Runnable() {
 @Override
 public void run() {
 mAuthorization.authenticateSSO(mCtx, cookies.isChecked(), new
AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 if (exception != null)
 Logger.debug(TAG, "Exception " +
exception.getMessage());
 else {
 Logger.debug(TAG, "SSO Auth Succeeded");

Chapter 6
Authenticating and Logging In Using the SDK for Android

6-10

 }
 synchronized (lock) {
 lock.notifyAll();
 }
 }
 });

 synchronized (lock) {
 try {
 lock.wait();
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 }
 }
}).start();

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in MCS, see Third-Party SAML and JWT
Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call.

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;

Context mCtx = getApplicationContext();
mobileBackend =
MobileBackendManager.getManager().getDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.getAuthorization(AuthType.TOKENAUTH);
mAuthorization.authenticateUsingTokenExchange(mCtx, token, false,
mLoginCallback);

Here’s the callback:

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 if (exception == null) {
 //log event with Analytics
 mAnalyticsAgent.logEvent("Login with 3rd party token
successfully");
 mAnalyticsAgent.flush();

 //redirect to another Activity after login
 Intent intent = new Intent(mCtx, ContentActivity.class);
 startActivity(intent);

 } else {
 Log.e(TAG, "Exception during token exchange:", exception);

Chapter 6
Authenticating and Logging In Using the SDK for Android

6-11

 finish();
 }
 }
};

SSO with a Third-Party Token — Staying Logged In

You can also code the app to keep the user logged in, even when closing and
restarting the app.

In the above example, the authenticateUsingTokenExchange() method is called with
the third parameter (storeToken) set to false. If you set this parameter to true and
the token exchange is successful, the MCS token is stored in a secure store and the
user remains logged in until the token expires.

You can then use the loadSSOTokenExchange method on the Authorization object to
load the stored token. If a token can’t be retrieved from the secure store, the method
returns false.

Here’s some code that tries to load a saved token and, if it fails, restarts the
authentication process:

try {
 mAuthorization =
MobileBackendManager.getManager().getDefaultMobileBackend(mCtx).getAuthoriz
ation();
 if (!mAuthorization.loadSSOTokenExchange(mCtx)) {
 //user not logged in, so need to initiate login
 mAuthorization.authenticateUsingTokenExchange(mCtx, token, true,
mLoginCallback);
 }

When you have the token stored in the secure store, it remains associated with the
mobile backend that the app originally used. Therefore, if the app is updated to use a
different mobile backend (or mobile backend version), you need to clear the saved
token and re-authenticate.

mAuthorization.clearSSOTokenExchange(mCtx);
mAuthorization.authenticateUsingTokenExchange(mCtx, token, true,
mLoginCallback);

Note:

The default expiration time for a stored token that was obtained through
token exchange is 6 hours. You can adjust this time by changing the
Security_TokenExchangeTimeoutSecs policy.

HTTP Basic Authentication

The code for handling login with HTTP Basic is nearly the same as the code for
OAuth.

Chapter 6
Authenticating and Logging In Using the SDK for Android

6-12

First you initialize the authorization agent and set the authentication type to
BASIC_AUTH.

private AuthorizationAgent mAuthorization;
private MobileBackend mobileBackend;
Context mCtx = getApplicationContext();
mobileBackend =
MobileBackendManager.getManager().getDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.getAuthorization(AuthType.BASIC_AUTH)

Then you use the authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

TextView username, password;
username = (TextView) findViewById(R.id.username);
password = (TextView) findViewById(R.id.password);
String userName = username.getText().toString();
String passWord = password.getText().toString();
mAuthorization.authenticate(mCtx, userName, passWord, mLoginCallback);

Here’s the definition for the callback.

AuthorizationCallback mLoginCallback = new AuthorizationCallback() {
 @Override
 public void onCompletion(ServiceProxyException exception) {
 Log.d(TAG, "OnCompletion Auth Callback");
 if (exception != null) {
 Log.e(TAG, "Exception while receiving the Access Token", exception);
 } else {
 Log.e(TAG, "Authorization successful");
 }
 }
 }

Facebook

For Facebook login, you use classes in the oracle_mobile_android_social library.

First you initialize the authorization agent and set the authentication type to Facebook.

private AuthorizationAgent mAuthorization;
private SocialMobileBackend socialMobileBackend;
Context mCtx = getApplicationContext();
socialMobileBackend =
SocialMobileBackendManager.getManager().getDefaultMobileBackend(mCtx);
mAuthorization = socialMobileBackend.getAuthorization(AuthType.Facebook);
mAuthorization.setAuthType(AuthType.Facebook);

Using a CallbackManager object from Facebook’s SDK, initiate authentication.

private CallbackManager callbackManager;
mAuthorization.setup(getApplicationContext(), callback);

Chapter 6
Authenticating and Logging In Using the SDK for Android

6-13

callbackManager = mAuthorization.getCallBackManager();
mAuthorization.authenticateSocial(mCtx);

Here’s code you can use for the callback that is passed above.

private FacebookCallback<LoginResult> callback = new
FacebookCallback<LoginResult>() {
 @Override
 public void onSuccess(LoginResult loginResult) {
 Log.e(TAG, "facebook login successful.");
 }
 @Override
 public void onCancel() {
 }
 @Override
 public void onError(FacebookException e) {
 }
};

Override the onActivityResult() method to use the callback.

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data)
{
 super.onActivityResult(requestCode, resultCode, data);
 callbackManager.onActivityResult(requestCode, resultCode, data);

Calling Platform APIs Using the SDK for Android
Once the mobile backend’s configuration info is loaded into the app, you can make
calls to SDK classes.

The root class in the Android SDK is the MobileBackendManager. An instance of
MobileBackendManager manages one or moreMobileBackend objects. A
MobileBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined. In turn, a
MobileBackend instance manages instances of ServiceProxy. These instances
correspond to platform services in MCS (for example, Analytics, Notifications, Sync,
and so on).

The MobileBackend instance retrieves the information it needs about each mobile
backend (the mobile backend name, version, and ID, as well as authentication
information) from the app’s oracle_mobile_cloud_config.xml file.

Here’s an example of how you would use these classes to make calls into the
Analytics API to create a new analytics event. The ServiceProxy instance created
here manages calls to the Analytics platform API, including the constructing of the
HTTP headers with the mobile backend credentials necessary to access the API:

...
byte[] imageBytes = new byte[0];
try {

Chapter 6
Calling Platform APIs Using the SDK for Android

6-14

 Analytics analytics =
MobileBackendManager.getManager().getDefaultMobileBackend(this).getServiceP
roxy(Analytics.class);
 Event customEvent = new Event("App Submission", new Date(), null);
 customEvent.addProperty("Image Attached", new
Boolean(imageBytes.length > 0).toString());
 analytics.logEvent(customEvent);
 analytics.flush();
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();
...
}

Here’s how you could upload an image using the Storage API:

try {
 Storage storage =
MobileBackendManager.getManager().getDefaultMobileBackend(this).getServiceP
roxy(Storage.class);
 StorageCollection imagesCollection =
storage.getStorageCollection("FIF_Images");
 StorageObject imageToUpload = new StorageObject(null, imageBytes,
"image/jpeg");
 StorageObject uploadedImage = imagesCollection.post(imageToUpload);
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();
 ...
}

And here’s how you could retrieve an image using the Storage API:

try {
 Storage storage =
MobileBackendManager.getManager().getDefaultMobileBackend(this).getServiceP
roxy(Storage.class);
 StorageCollection imagesCollection =
storage.getStorageCollection("FIF_Images");
 StorageObject image = imagesCollection.get("3x4mp1e-st0r4g3-0bj3ct-
k3y");byte[] imageBytes = image.getPayloadBytes();
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();
 ...
}

For more information on the individual platform APIs, see Platform APIs.

Calling Custom APIs Using the SDK for Android
The SDK provides the CustomHttpResponse class, the
GenericCustomCodeClientCallBack interface, and the invokeCustomCodeJSONRequest
method in the authorization classes to simplify the calling of custom APIs in MCS. You
can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where the
request payload is JSON or empty and the response payload is JSON or empty.

You use GenericCustomCodeClientCallBack to create a handler for the response
(which is returned in the form of a CustomHttpResponse object.)

Chapter 6
Calling Custom APIs Using the SDK for Android

6-15

Then, to call the custom API, you call
invokeCustomCodeJSONRequest(GenericCustomCodeClientCallBack
restClientCallback, JSONObject data, String functionName,
RestClient.HttpMethod httpMethod) on your Authorization object.

To make a call to a custom API endpoint, you could use something like this:

import org.json.JSONObject;
import oracle.cloud.mobile.customcode.CustomHttpResponse;
import oracle.cloud.mobile.customcode.GenericCustomCodeClientCallBack;
import oracle.cloud.mobile.mobilebackend.MobileBackendManager;
.......

final GenericCustomCodeClientCallBack genericCustomCodeClientCallBack =
new GenericCustomCodeClientCallBack() {
 @Override
 public void requestCompleted(CustomHttpResponse response, JSONObject
data, Exception e) {
 boolean getResponse = (response.getHttpStatus() >=200 &&
response.getHttpStatus() <300);

 // write any logic based on above response
 }
};
AuthorizationAgent authorization =
MobileBackendManager.getManager().getDefaultMobileBackend(mContext).getAuth
orization();

authorization.authenticate(mContext, "user1", "pass1", successCallback);

........
// after the user successfully authenticates, make a call to the custom
API endpoint
authorization.invokeCustomCodeJSONRequest(genericCustomCodeClientCallBack,
null, "TaskApi/tasks", RestClient.HttpMethod.GET);

Video: Configuring an Existing Android App to Work with
Mobile Cloud

For a demonstration on how to configure an Android app to use mobile backends and
call MCS platform APIs, see this video on YouTube channel for the Oracle Mobile
Platform:

Video

Chapter 6
Video: Configuring an Existing Android App to Work with Mobile Cloud

6-16

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13055

7
iOS Applications

If you are an iOS app developer, you can use the client SDK that Oracle Mobile Cloud
Service (MCS) provides for iOS. This SDK simplifies authentication with MCS and
provides Objective-C wrapper classes for MCS platform APIs.

Getting the SDK for iOS
To get the MCS client SDK for iOS, go to the Oracle Technology Network’s MCS
download page.

Contents of the iOS SDK
The iOS SDK contains the following items:

• Documentation - Contains web-browser based documentation (html.zip) and a
docset for browsing and accessing context-sensitive help from Xcode
(oracle.mobile.cloud.Mobile_Client_SDK.docset.zip). To use html.zip, unzip
the file and browse the main page from index.html. To use the docset, unzip the
file into the usual location for Xcode docsets, typically something like ~/Library/
Developer/Shared/Documentation/DocSets, where ~ is your home directory.

This folder also contains a sample copy of the OMC.plist file that you will need to
add to your app and populate with the configuration details for your mobile
backend.

• release-iphoneos - Release versions of the static libraries and header files. Also
contains SyncStore initialization data. The static libraries are Universal (fat)
binaries that contain armv7* code and support both the iPhone Simulator and real
devices. The following static libraries are included:

– libOMCCore.a - The Core static library file shared by all iOS applications.
Contains the common libraries required by all other libraries.

– libOMCAnalytics.a - The Analytics static library file, which allows you to insert
events in your code that can then be collected and analyzed from the Analytics
console.

– libOMCLocation.a - The Location library, which lets you access details about
location devices that have been registered in MCS and the places and assets
they are associated with.

– libOMCNotifications.a - The Notifications static library file, which allows you
to set up your application to receive notifications sent from your mobile
backend.

– libOMCStorage.a - The Storage static library file, which allows you to write
code to access storage collections that are set up with your mobile backend.

– libOMCSynchronization.a - The Data Offline static library file, which allows
you to cache application data when the device running your app is

7-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html

disconnected from the network, then synchronize the data when the network
connection is reestablished.

• thirdParty - The static library (libIDMMobileSDK.a), headers, and resource
strings for the identity management (IDM) library.

• mcs-tools.zip - The MCS Custom Code Test Tools, a set of command line tools
for debugging custom APIs that you have associated with your app's mobile
backend. Detailed instructions are located in the README file included in the zip.

Prerequisites for Developing iOS Apps
Before you start developing your app, you need to do some basic setup, such as
adding iOS SDK frameworks, modifying configuration settings, and other steps.

Here’s what we assume:

• You’re familiar with Xcode as your development environment. If you’re just
starting, see https://developer.apple.com/xcode/.

• You’ve already obtained the following things from Apple:

– An Apple Developer account.

– A unique secure certificate installed on your Mac or iPad (that is, on the
machine where you’ll be developing your app).

– An Application ID, which is used as the bundle identifier for your application in
Xcode.

– A Provisioning Profile. If you intend to install the Notifications static library from
the client SDK and receive notifications in your iOS app, your Provisioning
Profile must be enabled for notifications.

If you haven’t done these things yet, see the iOS developer documentation at
http://developer.apple.com.

Note:

You can also use the client SDK with Swift apps. See Writing Swift
Applications Using the iOS SDK.

Adding the SDK to an iOS App
1. Unzip the download file, oracle_mobile_ios_sdk-{n}.zip (where {n} is the

version number of the SDK) into some directory on your machine.

2. Drag and drop the contents of the zip to the Xcode project navigator.

• Select Copy items if needed.

• Select Create Groups.

• Click Finish.

Once the .a file for a specific library has been copied into your application’s
development tree in Xcode, the corresponding platform API is available to your
app through SDK calls. At this point, all of the SDK’s static libraries are available to

Chapter 7
Prerequisites for Developing iOS Apps

7-2

https://developer.apple.com/xcode/
http://developer.apple.com

your app. However, you need to complete the next steps so that the Identity
Management library works properly.

3. Select the target for your project, select the Build Phases tab, expand Link
Binary with Libraries, click the + button, and add the following frameworks:

• SystemConfiguration.framework

• Security.framework

• CoreLocation.framework

4. Add the -ObjC flag to the Other Linker Flags settings.

5. Expand the Documentation folder of the unpacked zip, copy the OMC.plist file,
and place it in the root of your app’s main application bundle.

6. Fill in your mobile backend environment details. See Configuring SDK Properties
for iOS.

7. If you are using Xcode 7 or higher, you need to account for the Application
Transport Security (ATS) policy, which enforces remote communications to be
over HTTPS.

For development purposes only, add the following key in app’s Info.plist file to
turn off the ATS policy for the app.

<key>NSAppTransportSecurity</key>
<dict>
 <key>NSAllowsArbitraryLoads</key>
 <true/>
</dict>

Note:

You shouldn't use this setting in production. To make sure you provide
optimal security for your app, study Apple's documentation for
NSAppTransportSecurity and follow Apple's recommendations for
disabling ATS for specific domains and applying proper security
reductions for those domains.

iOS SDK Interdependencies
The client SDK is modular, so you can package just the libraries that your app needs.
Just be aware of the following dependencies:

• Every app must have the libOMCCore.a static library file.

• If your app uses libOMCStorage.a, you must also include
lilbOMCSynchronization.a.

• If your app uses lilbOMCSynchronization.a, you must also include the
SyncStore.momd folder, which contains initialization data.

• If your app uses libOMCCxAEngagement.a, you must also include
libOMCCxAAnalytics.a.

Chapter 7
Adding the SDK to an iOS App

7-3

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html

Configuring SDK Properties for iOS
To use the SDK in an iOS app, you need to add the OMC.plist configuration file to the
app and fill it in with environment details for your mobile backend. In turn, the SDK
classes use this information to access the mobile backend and construct HTTP
headers for REST calls made to APIs.

You package the configuration file in the root of your app’s main bundle.

Here’s an example of the contents of the OMC.plist file. Pay careful attention to the
hierarchy of elements.

Here’s the source code for the same example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd"
<plist version="1.0">
<dict>
 <key>mobileBackends</key>
 <dict>
 <key>FixItFast_Customer</key>
 <dict>
 <key>default</key>
 <true/>
 <key>baseURL</key>
 <string>https://fif.cloud.oracle.com</string>
 <key>appKey</key>
 <string>ebfbc8ea-9173-442b-8a5e-2fae63c64422</string>
 <key>authorization</key>
 <dict>
 <key>authenticationType</key>
 <string>OAuth</string>
 <key>OAuth</key>
 <dict>
 <key>tokenEndpoint</key>
 <string>https://oam.oracle.com/oam/oauth2/tokens</string>

Chapter 7
Configuring SDK Properties for iOS

7-4

 <key>clientID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>clientSecret</key>
 <string>pFmzazXzNTBNVDyraQs7</string>
 </dict>
 </dict>
 </dict>
 </dict>
 <key>logLevel</key>
 <string>debug</string>
</dict>
</plist>

Here are the key entries in the OMC.plist file. You can obtain the necessary
environment details from the Settings and Clients pages of the mobile backend.

• mobileBackends — a dictionary entry containing a nested dictionary for your
mobile backend such as FixItFast_Customer. (When you call OMCMobileBackend
in an app, you need to supply the value of that entry as a parameter to
OMCMobileBackendManager.) That entry, in turn, contains entries for appKey,
baseURL, authenticationType, mobileBackendID, anonymousKey, and, optionally,
networkConnectionTimeout. See the example below.

• baseURL — The URL your application uses to connect to its mobile backend.

• appKey — The application key, which is a unique string assigned to your app when
you register it as a client in MCS. See Registering an App as a Client in MCS. If
you have not registered the app as a client in MCS, assign a placeholder value for
this entry.

• networkConnectionTimeout — (Optional) The network timeout for API calls, in
seconds. Should you need to do any network performance tuning, you can add
this property, though you should use it with care. Keep in mind that app
responsiveness issues might be better addressed in the app design itself. The
default timeout is 60 seconds.

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is error. Other possible values (in increasing level of detail) are
warning, info, and debug. It is also possible to set the value to none.

• logHTTPRequestBody — When set to true, the SDK will also log the HTTP and
HTTPS headers and body in the requests to MCS.

• logHTTPResponseBody — When set to true, the SDK will also log the HTTP and
HTTPS headers and body in responses from MCS.

• authorization — Use this key to define the type of authentication the app will be
using and specify the required credentials. The contents and sub-elements of the
authorization key depend on the type of authentication.

– authenticationType — Defines the type of authentication mechanism being
used in your mobile application. Possible values are OAuth (for OAuth
Consumer), basic (for HTTP Basic), SSO, SSOTokenExchange and Facebook.
Include a dictionary for each supported authentication type with the required
credentials as explained in the sections that follow.

– offlineAuthenticationEnabled — If set to true, offline login will be allowed.
Offline login is not supported for OAuth so this key will be ignored.

Chapter 7
Configuring SDK Properties for iOS

7-5

OAuth Consumer

For OAuth, set the value of the authenticationType property to OAuth and fill in the
OAuth credentials provided by the mobile backend.

• tokenEndpoint — The URL of the OAuth server your application goes to, to get its
authentication token.

• clientID — The unique client identifier assigned to all applications when they’re
first created in your mobile backend.

• clientSecret — The unique secret string assigned to all applications when
they’re first created in your mobile backend.

The resulting authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>
 <string>oauth</string>
 <key>OAuth</key>
 <dict>
 <key>tokenEndpoint</key>
 <string>https://oam.oracle.com/oam/oauth2/tokens</string>
 <key>clientID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>clientSecret</key>
 <string>pFmzazXzNTBNVDyraQs7</string>
 </dict>
 </dict>

SSO

For SSO, set the value of the authenticationType property to SSO and fill in the OAuth
credentials provided by the mobile backend. (For tokenEndpoint, you use the mobile
backend’s OAuth token endpoint.)

The resulting authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>
 <string>SSO</string>
 <key>SSO</key>
 <dict>
 <key>tokenEndpoint</key>
 <string>https://oam-server.oracle.com/oam/oauth2/tokens</string>
 <key>clientID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>clientSecret</key>
 <string>pFmzazXzNTBNVDyraQs7</string>
 </dict>
</dict>

Chapter 7
Configuring SDK Properties for iOS

7-6

SSO with a Third-Party Token

For SSO with a third-party token, set authenticationType to SSOTokenExchange and
fill in the appropriate credentials. You also need to fill in auth credentials provided by
the mobile backend, depending on how you have integrated the token issuer.

If you are using JWT tokens and have integrated the token issuer by registering a
configuration via a policy in MCS, you need to nest the mobile backend’s HTTP Basic
credentials and then include the mobile backend’s OAuth credentials as a separate
key. The resulting authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>
 <string>SSOTokenExchange</string>
 <key>SSOTokenExchange</key>
 <dict>
 <key>mobileBackendID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>anonymousKey</key>

<string>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOnZrZWJxUmwuamE
wbTdu</string>
 </dict>
 <key>OAuth</key>
 <dict>
 <key>tokenEndpoint</key>
 <string>https://p2mob1813rc1f.identity.dc1.c9dev2.oraclecorp.com/oam/
oauth2/tokens</string>
 <key>clientID</key>
 <string>c437c1ed-fef0-4e88-802c-b85525fa0d6d</string>
 <key>clientSecret</key>
 <string>MtHoeHcRrWlDLiKcHJC8</string>
 </dict>
</dict>

If you have integrated the IdP token issuer by uploading certificates into MCS, you
need to nest the mobile backend’s HTTP Basic credentials. The resulting
authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>
 <string>SSOTokenExchange</string>
 <key>SSOTokenExchange</key>
 <dict>
 <key>mobileBackendID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>anonymousKey</key>

<string>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOnZrZWJxUmwuamE
wbTdu</string>

Chapter 7
Configuring SDK Properties for iOS

7-7

 </dict>
</dict>

HTTP Basic

For HTTP Basic authentication, set the value of the authenticationType property to
basic and fill in the HTTP Basic credentials provided by the mobile backend.

• mobileBackendID — The unique identifier assigned to a specific mobile backend. It
gets passed in an HTTP header in every REST call made from your application to
MCS, to connect it to the correct mobile backend. When calling platform APIs, the
SDK handles the construction of the mobileBackendID header for you.

• anonymousKey — When using HTTP Basic authentication, a unique string that
allows your app to access APIs that don’t require login. In this scenario, the
anonymous key is passed to MCS instead of an encoded user name and
password combination.

You can also enable offline login for Basic authentication by setting the
offlineAuthenticationEnabled property to true.

The resulting authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>
 <string>Basic</string>
 <key>offlineAuthenticationEnabled</key>
 <true/>
 <key>Basic</key>
 <dict>
 <key>anonymousKey</key>

<string>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOml6LmQxdTlCaWF
rd2Nz</string>
 <key>mobileBackendID</key>
 <string>4fb9cabd-d0e2-40f8-87b5-d2d44cdd7c68</string>
 </dict>
</dict>

Loading a Mobile Backend's Configuration into an iOS App
For any calls to MCS APIs using the iOS SDK to successfully complete, you need to
have the mobile backend’s configuration loaded from the app’s OMC.plist file. You do
this using the OMCMobileBackend class:

/**
 * Returns the mobile backend named "FixItFast_Customer" that is
configured in the OMC.plist file
 */
- (OMCMobileBackend *) myMobileBackend{

 return [[OMCMobileBackendManager sharedManager]
mobileBackendForName:@"FixItFast_Customer"];

Chapter 7
Loading a Mobile Backend's Configuration into an iOS App

7-8

}

Authenticating and Logging In Using the SDK for iOS
Here is are some methods you can use for authentication through MCS in your iOS
apps. All of code given uses the OMCAuthorization.h class and relies on the following
imports:

#import "OMCCore/OMCAuthorization.h"
#import "OMCCore/OMCMobileBackend.h"
#import "OMCCore/OMCMobileBackendManager.h"

OAuth Consumer and HTTP Basic

You can use the following method to handle a user logging in with a user name and
password.

- (void) authenticate:(NSString *)userName
 password:(NSString *)password
 completionBlock: (OMCAuthorizationAuthCompletionBlock)
completionBlock;

This method terminates the connection to MCS and clears the user name and
password from the iOS keychain:

-(void) logout: (OMCAuthorizationLogoutCompletionBlock) completionBlock;

SSO

For apps that allow login through enterprise SSO, use:

-(void) authenticateSSO: (UIViewController*) presentingViewController
 clearCookies: (BOOL) clearCookies
 completionBlock:(OMCAuthorizationAuthCompletionBlock)
completionBlock;

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in MCS, see Third-Party SAML and JWT
Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call.

-(void) authenticateSSOTokenExchange:(NSString*) token
 storeAccessToken:(BOOL) storeToken
 completionBlock:(OMCAuthorizationAuthCompletionBlock)
completionBlock;

Chapter 7
Authenticating and Logging In Using the SDK for iOS

7-9

-(NSError*) authenticateSSOTokenExchange:(NSString*) token
 storeAccessToken:(BOOL) storeToken;

SSO with a Third-Party Token — Staying Logged In

You can also code the app to keep the user logged in, even when closing and
restarting the app.

In the authenticateSSOTokenExchange method, if storeAccessToken is set to YES, the
token is stored in secure store and the user remains logged in until the token expires.

You can use the loadSSOTokenExchange() method in the app launch sequence to load
the token from the keychain. (If a token can’t be retrieved, the method returns NO).

Here’s some code that tries to load a saved token and, if it fails, restarts the
authentication process:

OMCAuthorization* auth;
if ([auth loadSSOTokenExchange]){
 NSLog(@"## Token already found, login skipped.");
 ...
}
else{
 [auth authenticateSSOTokenExchange:thirdPartyToken
 storeAccessToken:YES
 completionBlock:^(NSError * _Nullable error) {

 if(error){
 //Show error popup
 }
 else{
 // Login success.
 ...
 }
 }];
}

When you have the token stored in the secure store, it remains associated with the
mobile backend that the app originally used. Therefore, if the app is updated to use a
different mobile backend (or mobile backend version), you need to clear the saved
token (using clearSSOTokenExchange) and re-authenticate.

Note:

The default expiration time for a stored token that was obtained through
token exchange is 6 hours. You can adjust this time by changing the
Security_TokenExchangeTimeoutSecs policy.

Chapter 7
Authenticating and Logging In Using the SDK for iOS

7-10

Calling Platform APIs Using the SDK for iOS
Once the mobile backend’s configuration info is loaded into the app, you can make
calls to SDK classes based on the iOS Core library classes.

The iOS Core library (libOMCCore.a) provides three public interfaces that are common
across all other iOS libraries:

• OMCMobileBackendManager

• OMCMobileBackend

• OMCServiceProxy

The root class in the SDK is the OMCMobileBackendManager. An instance of
OMCMobileBackendManager manages one or more OMCMobileBackend objects. An
OMCMobileBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined. In turn, an
OMCMobileBackend instance manages instances of OMCServiceProxy. These instances
correspond to platform services in MCS (for example, Analytics, Notifications, and so
on).

It retrieves the information it needs about each mobile backend (the mobile backend
name and ID, as well as authentication information) from the app’s OMC.plist file.

Here’s an example of using these classes to call APIs.

//Get mobile backend, here "FixItFast_Customer" is your backend name
from the OMC.plist configuration.
OMCMobileBackend* mbe = [[OMCMobileBackendManager sharedManager]
mobileBackendForName:@"FixItFast_Customer"];

//Authenticate with your credentials; if returns nil, then authenticated
successfully.
NSError* error = [mbe.authorization authenticate:@"username"
 password:@"password"];
//Get analytics client
OMCAnalytics* analytics = [mbe analytics];

//Get storage client
OMCStorage* storage = [mbe storage];

//Get notifications client
OMCNotifications* notifications = [mbe notifications];

To access the required headers to compile the preceding code, you need to import the
following headers into your code:

#import "OMCMobileBackend.h"
#import "OMCMobileBackendManager.h"
#import "OMCAuthorization.h"
#import "OMCAnalytics.h"
#import "OMCMobileBackend+OMC_Analytics.h"
#import "OMCStorage.h"

Chapter 7
Calling Platform APIs Using the SDK for iOS

7-11

#import "OMCMobileBackend+OMC_Storage.h"
#import "OMCNotifications.h"
#import "OMCMobileBackend+OMC_Notifications"

Note:

Methods written in Objective-C that are used in the MCS SDK for iOS can
also be mapped to Swift. For more information, see Writing Swift
Applications Using Mobile Client SDK.

Calling Custom APIs Using the SDK for iOS
The SDK provides the OMCCustomCodeClient class to simplify the calling of custom
APIs in MCS. You can call a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

Using this class, you invoke a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

In addition you can provide a completion handler to be called when the method
invocation is complete (meaning that the handler runs asynchronously).

If the completion handler is set, it will be invoked in the UI (main) thread upon
completion of the method invocation, allowing update of UI items. The completion
block will contain the format-specific data for a JSON object, namely an NSDictionary
or NSArray. Use the completion block for any returned data or errors, HTTP or system.

All of the required MCS headers, such as Authorization (assuming the user has
authenticated), will automatically be inserted into the request.

Use of OMCCustomCodeClient might look something like this:

#import "OMCCore/OMCMobileBackend.h"
#import "OMCCore/OMCCustomCodeClient.h"
...

// A GET, PUT, POST, or DELETE method may be specified here - sent or
returned JSON data object may be nil as appropriate.
OMCMobileBackend *backend = ...
OMCCustomCodeClient *ccClient = backend.customCodeClient;
NSDictionary *jsonPayload = @{@"myKey", @"myValue"};
[ccClient invokeCustomRequest: @"API2/endpoint2"
 method: "@PUT"
 data: jsonPayload,
 completion: ^(NSError* error,
 NSHTTPURLResponse *response,
 id responseData) {
 // error will be nil if no problems occurred, otherwise it will
contain the error object
 // response will be complete HTTP response
 // response data will be Map or Array for JSON object if success

Chapter 7
Calling Custom APIs Using the SDK for iOS

7-12

or nil if error
 }];

Video: Configuring an Existing iOS App to Work with Mobile
Cloud

For a demonstration on how to configure an iOS app to use mobile backends and call
MCS platform APIs, see this video on YouTube channel for the Oracle Mobile
Platform:

Video

Chapter 7
Video: Configuring an Existing iOS App to Work with Mobile Cloud

7-13

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13056

8
Cordova Applications

If you develop hybrid apps based on the Apache Cordova framework, you can use the
client SDK that Oracle Mobile Cloud Service (MCS) provides for Cordova. This SDK
simplifies authentication with MCS and provides Cordova wrapper classes for MCS
platform APIs as well as libraries for Data Offline and Sync and Sync Express.

If you are new to Cordova itself and still need to set it up on your system, you can
follow the Getting Started with JET Hybrid Apps tutorial for an end-to-end look at
creating a Cordova app and connecting it with a mobile backend.

Note:

This SDK supports Cordova apps for the iOS and Android platforms. Apps
for Microsoft Windows are not supported.

Getting the SDK for Cordova
To get the MCS client SDK for Cordova, go to the Oracle Technology Network’s MCS
download page.

Contents of the Cordova SDK Bundle
The Cordova SDK contains the following items:

• jsdocs.zip — The compiled documentation for the library.

• mcs.js — The uncompressed version of the SDK. This version contains code
comments and is best used as you are developing and debugging your app.

• mcs.sync.js — The uncompressed version of the SDK Data Offline and Sync and
Sync Express libraries.

• mcs.min.js — The compressed version of the SDK. Use this version when you
deploy the completed app.

• mcs.sync.min.js — The compressed version of the SDK Data Offline and Sync
and Sync Express libraries.

• oracle_mobile_cloud_config.js — An MCS configuration file, in which you can
insert environment and authentication details for the mobile backends that your
app will access.

• oracle_mobile_js_sdk_cookies_cordova_plugin[VERSION].zip — A Cordova
plugin that’s necessary if you are developing Cordova apps that authenticate with
MCS via SSO.

• \pako — This folder includes the pako JavaScript library, which is required to use
SSO with a third-party token.

8-1

https://apexapps.oracle.com/pls/apex/f?p=44785:24:0:::24:P24_CONTENT_ID,P24_PREV_PAGE:16851,1
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html

• mcs-tools.zip - The MCS Custom Code Test Tools, a set of command line tools
for debugging custom APIs that you have associated with your app's mobile
backend. Detailed instructions are located in the README file included in the zip.

Adding the SDK to a Cordova App
1. If you haven’t already done so, unzip the Cordova SDK zip.

2. Copy mcs.min.js and oracle_mobile_cloud_config.js into the directory where
you keep your JavaScript libraries.

3. Fill in your mobile backend details in oracle_mobile_cloud_config.js. See
Configuring SDK Properties for Cordova.

4. If you will be using SSO or Facebook authentication in your apps, add the Cordova
inappbrowser to your project:

cordova plugin add cordova-plugin-inappbrowser -save

5. If you will be using SSO in your apps, install the
oracle_mobile_js_sdk_cookies_cordova_plugin plugin:

a. Unzip oracle_mobile_js_sdk_cookies_cordova_plugin[VERSION].zip.

b. At the command line, type:

cordova plugin add <PLUGIN_FOLDER>

where <PLUGIN_FOLDER> is the path to the unpacked plugin.

6. Load mcs.min.js in your app using RequireJS or a HTML script tag.

Note:

In addition to mcs.min.js, if your app uses Sync Express,
mcs.sync.min.js must be fetched and executed as the first script in the
main page of your app, before any other script, including RequireJS. For
detailed instructions on adding Sync Express to your app, see Building
Apps that Work Offline Using Sync Express.

Configuring SDK Properties for Cordova
To use the SDK in a Cordova app, add the oracle_mobile_cloud_config.js
configuration file to the app and fill it in with environment details for your mobile
backend. The SDK classes draw on this file for the details needed to access the
mobile backend and use them to construct HTTP headers for REST calls made to
APIs.

Chapter 8
Adding the SDK to a Cordova App

8-2

Note:

If any of your apps will be browser-based, you need to manage cross-origin
resource sharing (CORS) for access to MCS APIs. See Securing Browser-
Based Apps Against Cross-Site Request Forgery Attacks.

Package the configuration file in the same folder as the mcs.min.js file.

The following example shows the structure of a generic
oracle_mobile_cloud_config.js file:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "logHTTP": true,
 "mobileBackends": {
 "YOUR_BACKEND_NAME": {
 "default": true,
 "baseUrl": "YOUR_BACKEND_BASE_URL",
 "applicationKey": "YOUR_BACKEND_APPLICATION_KEY",
 "authorization": {
 "basicAuth": {
 "backendId": "YOUR_BACKEND_ID",
 "anonymousToken": "YOUR_BACKEND_ANONYMOUS_TOKEN"
 },
 "oAuth": {
 "clientId": "YOUR_CLIENT_ID",
 "clientSecret": "YOUR_ClIENT_SECRET",
 "tokenEndpoint": "YOUR_TOKEN_ENDPOINT"
 },
 "facebookAuth":{
 "facebookAppId": "YOUR_FACEBOOK_APP_ID",
 "backendId": "YOUR_BACKEND_ID",
 "anonymousToken": "YOUR_BACKEND_ANONYMOUS_TOKEN"
 },
 "ssoAuth":{
 "clientId": "YOUR_CLIENT_ID",
 "clientSecret": "YOUR_CLIENT_SECRET",
 "tokenEndpoint": "YOUR_TOKEN_ENDPOINT"
 },
 "tokenAuth":{
 "backendId": "YOUR_BACKEND_ID"
 }
 }
 }
 },
 "syncExpress": {
 "handler": "OracleRestHandler",
 "policies": [
 {
 "path": '/mobile/custom/firstApi/tasks/:id(\\d+)?',
 },
 {
 "path": '/mobile/custom/secondApi/tasks/:id(\\d+)?',

Chapter 8
Configuring SDK Properties for Cordova

8-3

 }
]
 }
};

Here’s a list of the file’s elements. The values that you need to fill in for a given mobile
backend can be found on the Settings and Clients pages for that mobile backend. For
details on sync elements, see Building Apps that Work Offline Using Sync Express.

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is mcs.LOG_LEVEL.INFO (where only important events are
logged). Other possible values are mcs.LOG_LEVEL.ERROR (only errors are logged)
and mcs.LOG_LEVEL.VERBOSE.

• logHTTP — When set to true, enables additional logging capability that includes
the complete HTTP headers and body in requests and responses to MCS.

• mobileBackends — The config file’s root element, containing a JSON object for
each mobile backend.

• baseUrl — The URL your app uses to connect to its mobile backend.

• applicationKey — The application key, which is a unique string assigned to your
app when you register it as a client in MCS. See Registering an App as a Client in
MCS.

• authorization — JSON object containing the authentication details for
connecting your app to MCS. In turn, it must contain one or more objects of type
basicAuth, oAuth, ssoAuth, tokenAuth or facebookAuth. The contents of the
object depend on the type of authentication.

OAuth Consumer

For OAuth, nest an oAuth object within the authorization object and fill in the OAuth
credentials provided by the mobile backend.

• clientID — The unique client identifier assigned to all apps when they’re first
created in your mobile backend.

• clientSecret — The unique secret string assigned to all apps they’re first created
in your mobile backend.

• tokenEndpoint — The URL of the OAuth server your app goes to, to get its
authentication token.

The resulting authorization property might look something like this:

"authorization": {
 "oAuth": {
 "clientID": "b20a34b4-e646-44dc-a787-3a8715f4bb46",
 "clientSecret": "chIkehuDPYsaosPEMyE2",
 "tokenEndpoint": "http://abc09xyz.oracle.com:14100/oam/oauth2/tokens",
 }
}

HTTP Basic

For HTTP Basic, nest a basicAuth object within the authorization object and fill in
the HTTP Basic credentials provided by the mobile backend.

Chapter 8
Configuring SDK Properties for Cordova

8-4

• backendId — The unique identifier assigned to a specific mobile backend.

• anonymousToken — A unique string that allows your app to access APIs that don’t
require login. In this scenario, the anonymous key is passed to MCS instead of an
encoded user name and password combination.

The resulting authorization property might look something like this:

"authorization": {
 "basicAuth": {
 "backendId": "3b113ad5-07dc-4143-8b6a-a2ef62a175c1",
 "anonymousToken":
"UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOnZrZWJxUmwuamEwbTdu"
 }
}

SSO

For SSO, nest an ssoAuth object within the authorization object and fill in the OAuth
credentials provided by the mobile backend. The resulting authorization property
might look something like this:

"authorization": {
 "ssoAuth": {
 "clientID": "b20a34b4-e646-44dc-a787-3a8715f4bb46",
 "clientSecret": "chIkehuDPYsaosPEMyE2",
 "tokenEndpoint": "http://abc09xyz.oracle.com:14100/oam/oauth2/tokens",
 }
}

SSO with a Third-Party Token

For SSO with a third-party token, nest a tokenAuth object within the authorization
object and fill in credentials, depending on how you have the token issuer integrated
with MCS.

If you are using JWT tokens and have integrated the token issuer by registering a
configuration via a policy in MCS, you need to include the mobile backend ID and the
OAuth credentials for the backend. The resulting authorization property might look
something like this:

"authorization": {
 "tokenAuth": {
 "backendId": "3b113ad5-07dc-4143-8b6a-a2ef62a175c1",
 "clientId": "b20a34b4-e646-44dc-a787-3a8715f4bb46",
 "clientSecret": "chIkehuDPYsaosPEMyE2" }
}

If you have integrated the IdP token issuer by uploading certificates into MCS you just
nest the mobile backend ID. The resulting authorization property might look
something like this:

"authorization": {
 "tokenAuth": {

Chapter 8
Configuring SDK Properties for Cordova

8-5

 "backendId": "3b113ad5-07dc-4143-8b6a-a2ef62a175c1",
 }
}

Facebook

For Facebook login, nest a facebookAuth object within the authorization object, fill in
the HTTP Basic credentials provided by the mobile backend, and add the
facebookAppId. The resulting authorization property might look something like this:

"authorization": {
 "basicAuth": {
 "backendId": "3b113ad5-07dc-4143-8b6a-a2ef62a175c1",
 "anonymousToken":
"UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOnZrZWJxUmwuamEwbTdu",
 "facebookAppId": "123456789012"
 }
}

Loading a Mobile Backend's Configuration in a Cordova App
For any calls to MCS APIs using the Cordova SDK to successfully complete, you need
to have the mobile backend’s configuration loaded. You do this using the
mobileBackendManager and mobileBackend objects.

The root object in the SDK is the mcs.mobileBackendManager. The
mcs.mobileBackendManager object manages one or more mobileBackend objects. A
mobileBackend object is used to manage connectivity, authentication, and other
interactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined.

Use mobileBackendManager.setConfig to specify a configuration, defined in a local
JavaScript object or in the app’s oracle_mobile_cloud_config.js file. This
configuration includes info such as the mobile backend name and version, base URL,
and authentication details.

Here’s some code you can insert into the app class to retrieve data from the
oracle_mobile_cloud_config.js file:

function initializeMCS(){
 mcs.mobileBackendManager.platform = new mcs.CordovaPlatform();
 mcs.mobileBackendManager.setConfig(mcs_config);
 backend = mcs.mobileBackendManager.getMobileBackend("YOUR_BACKEND_NAME");
 if(backend != null){
 backend.setAuthenticationType("oAuth");
 }
}

Authenticating and Logging In Using the SDK for Cordova
Here are some examples of using the Cordova SDK’s Authorization class.

Chapter 8
Loading a Mobile Backend's Configuration in a Cordova App

8-6

OAuth and HTTP Basic

Get the mobile backend and set the authentication type to oAuth (or basicAuth).

function initializeMCS(){
 mcs.mobileBackendManager.platform = new mcs.CordovaPlatform();
 mcs.mobileBackendManager.setConfig(mcs_config);
 mcsBackend =
mcs.mobileBackendManager.getMobileBackend("YOUR_BACKEND_NAME");
 if(mcsBackend != null){
 mcsBackend.setAuthenticationType("oAuth");
 }
}

Then add a function that calls Authorization.authenticate and pass it the MCS
mobile backend and a user name and password.

function login(username, password){
 return mcsBackend
 .authorization
 .authenticate(username, password)
 .then(succeed)
 .catch(failed);

 function succeed(response){
 logAnalyticsEvent();
 console.log(response.statusCode + " with message: " + response.data);
 return response;
 }

 function failed(response){
 console.log(response.statusCode + " with message: " + response.data);
 return response;
 }
}

SSO

Get the mobile backend and set the authentication type to ssoAuth.

function initializeMCS(){
 mcs.mobileBackendManager.platform = new mcs.CordovaPlatform();
 mcs.mobileBackendManager.setConfig(mcs_config);
 mcsBackend =
mcs.mobileBackendManager.getMobileBackend("YOUR_BACKEND_NAME");
 if (mcsBackend != null) {
 mcsBackend.setAuthenticationType("ssoAuth");
 }
},

Chapter 8
Authenticating and Logging In Using the SDK for Cordova

8-7

Then add a function that calls Authorization.authenticate.

function ssoLogin() {
 mcsBackend.authorization.authenticate().then(
 function (response) {
 console.log(response.statusCode + " with message: " + response.data);
 }).catch(
 function (response) {
 console.log(response.statusCode + " with message: " + response.data);
 });
}

SSO with a Third-Party Token

To use SSO with a third-party token, first your app needs to get a token from the third-
party token issuer. The way you can obtain the token varies by issuer. For detailed
information on obtaining third-party tokens and configuring identity providers in MCS,
seeThird-Party SAML and JWT Tokens.

Get the mobile backend and set the authentication type to tokenAuth.

function initializeMCS(){
 mcs.mobileBackendManager.platform = new mcs.CordovaPlatform();
 mcs.mobileBackendManager.setConfig(mcs_config);
 mcsBackend =
mcs.mobileBackendManager.getMobileBackend("YOUR_BACKEND_NAME");
 if (mcsBackend != null) {
 mcsBackend.setAuthenticationType("tokenAuth");
 }
},

Then pass the token you got from the third-party token issuer to a function that calls
Authorization.authenticate.

function ssoLoginToken() {
 mcsBackend.Authorization.authenticate(thirdPartyToken).then(
 function() {
 console.log("MCS authenticate() worked");
 }
).catch(
 function() {
 console.log("MCS authenticate() FAILED");
 });
}

Facebook

Get the mobile backend and set the authentication type to facebookAuth.

function initializeMCS(){
 mcs.mobileBackendManager.platform = new mcs.CordovaPlatform();
 mcs.mobileBackendManager.setConfig(mcs_config);
 mcsBackend =
mcs.mobileBackendManager.getMobileBackend("YOUR_BACKEND_NAME");

Chapter 8
Authenticating and Logging In Using the SDK for Cordova

8-8

 if (mcsBackend != null) {
 mcsBackend.setAuthenticationType("facebookAuth");
},

Then add a function that calls Authorization.authenticate.

function facebookLogin() {
 mcsBackend.authorization.authenticate().then(
 function (response) {
 console.log(response.statusCode + " with message: " + response.data);
 }).catch(
 function (response) {
 console.log(response.statusCode + " with message: " + response.data);
 });
}

Setting Up a Cordova App for FCM or GCM Notifications
If you want to use Firebase Cloud Messaging (FCM) or Google Cloud Messaging
(GCM) in a Cordova app, follow the instructions below.

For more information on using notifications in MCS, see Notifications.

FCM

These steps configure a Cordova app to use Firebase Cloud Messaging (FCM).

1. Create a project in Firebase. Record the Server Key and Sender ID (Project
Number), and download the google-service.json file. For details on setting up a
Firebase project, see Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

2. Create a client for your mobile app and configure notifications profile(s) by entering
the credentials you got in step 1. See Client Management.

3. Copy the google-service.json file you downloaded in step 1 to the root of your
project, typically app/.

4. Add following lines to the application config.xml in the platform tag for Android:

• cordova-android 7.0 or above:

<platform name="android">
 <resource-file src="google-services.json" target="app/google-
services.json" />
</platform>

• cordova-android 6.x or earlier:

<platform name="android">
 <resource-file src="google-services.json" target="google-
services.json" />
</platform>

Chapter 8
Setting Up a Cordova App for FCM or GCM Notifications

8-9

https://firebase.google.com/docs/cloud-messaging/android/client

5. Add the phonegap-plugin-push Cordova plugin to your application.

cordova plugin add phonegap-plugin-push

6. From the application code, after the device ready event, register the device.

const push = PushNotification.init({
 android: { }
 });

 push.on('registration', (data) => {

backend.notifications.registerForNotifications(data.registrationId,
appId, appVersion, 'FCM');
 });

 push.on('notification', (data) => {
 // data.message,
 // data.title,
 // data.count,
 // data.sound,
 // data.image,
 // data.additionalData
 console.log(data);
 });

 push.on('error', (e) => {
 console.error(e.message);
 });
 function success(data) {
 console.log('Registered successfully');
 }

7. For next steps and more information, see Setting Up Android Notifications and
Sending Notifications to and from Your App.

GCM

These steps configure a Cordova app to use Google Cloud Messaging (GCM).

Note:

Google Cloud Messaging (GCM) is being phased out, so new apps should
be configured with FCM.

1. Open your project in Google console and record the API Key and Sender ID
(Project Number).

2. Create a client for your mobile app and configure notifications profile(s) by entering
the credentials you got in step 1. See Client Management.

Chapter 8
Setting Up a Cordova App for FCM or GCM Notifications

8-10

3. Add the phonegap-plugin-push Cordova plugin to your application.

cordova plugin add phonegap-plugin-push@v1.9.0 --variable
SENDER_ID="SENDER_ID_FROM_FIRST_STEP"

4. From the application code, after the device ready event, register the device.

const push = PushNotification.init({
 android: {
 senderID: "SENDER_ID_FROM_FIRST_STEP"
 }
 });

 push.on('registration', (data) => {

backend.notifications.registerForNotifications(data.registrationId,
appId, appVersion, 'GCM');
 });

 push.on('notification', (data) => {
 // data.message,
 // data.title,
 // data.count,
 // data.sound,
 // data.image,
 // data.additionalData
 console.log(data);
 });

 push.on('error', (e) => {
 console.error(e.message);
 });
 function success(data) {
 console.log('Registered successfully');
 }

5. For next steps and more information, see Setting Up Android Notifications and
Sending Notifications to and from Your App.

Securing Browser-Based Apps Against Cross-Site Request
Forgery Attacks

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to MCS APIs to protect against Cross-Site Request
Forgery (CSRF) attacks. Do this by setting the Security_AllowOrigin environment to
either disallow (the default value) or to a comma-separated whitelist of trusted URLs
from which cross-site requests can be made. For more information and details on how
to use the wildcard character (*), see Securing Cross-Site Requests to MCS APIs.

Chapter 8
Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks

8-11

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security_AllowOrigin to http://localhost:[port], but be sure to update
the value in production.

Calling Platform APIs Using the SDK for Cordova
Once you include the SDK libraries in your application, and adjust configuration
settings, you’re ready to use the SDK classes in your apps.

The root object in the Cordova SDK is the mcs.mobileBackendManager. An instance of
mcs.mobileBackendManager manages one or more mobileBackend objects. A
mobileBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined. In turn, a
mobileBackend instance manages instances of ServiceProxy. These instances
correspond to platform services in MCS (for example, Analytics, Notifications, Offline
Data, and so on).

Here’s an example of how you could use these classes to get a Storage collection in
the mobile backend, create a storage object (in this case, a text file), and then upload
that object to the collection. The code here manages calls to the Storage API,
including the constructing of the HTTP headers with the mobile backend credentials
necessary to access the API:

var backend;
var collection_id = 'YOUR_STORAGE_COLLECTION_NAME';

function uploadTextFile() {

 return getCollection()
 .then(success);

 function success(collection){
 var obj = new mcs.StorageObject(collection);
 obj.setDisplayName("JSFile.txt");
 obj.loadPayload("Hello World from Oracle Mobile Cloud Service Cordova
SDK", "text/plain");

 return postObject(collection, obj).then(function(object){
 return readObject(collection, object.id);
 });
 }
}

function getCollection(){
 //return a storage collection with the name assigned to the
collection_id variable.
 return backend
 .storage
 .getCollection(collection_id, null)

Chapter 8
Calling Platform APIs Using the SDK for Cordova

8-12

 .then(onGetCollectionSuccess)
 .catch(onGetCollectionFailed);

 function onGetCollectionSuccess(collection){
 console.log('onGetCollectionSuccess:', collection);
 return collection;
 }

 function onGetCollectionFailed(response){
 console.log('onGetCollectionFailed:', response);
 return response.statusCode;
 }
}

function postObject(collection, obj){
 return collection
 .postObject(obj)
 .then(onPostObjectSuccess)
 .catch(onPostObjectFailed);

 function onPostObjectSuccess(object){
 console.log('onPostObjectSuccess:', object);
 return object;
 }

 function onPostObjectFailed(response){
 console.log('onPostObjectFailed:', response);
 return response.statusCode;
 }
}

For more information on the individual platform APIs, see Platform APIs.

Calling Custom APIs Using the SDK for Cordova
The SDK provides the CustomCode class to simplify the calling of custom APIs in MCS.
You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where
the request payload is JSON or empty and the response payload is JSON or empty.

To call a custom API endpoint, you could use something like this:

mcs.mobileBackendManager.platform = new mcs.CordovaPlatform();
mcs.mobileBackendManager.setConfig(mcs_config);
backend = mcs.mobileBackendManager.getMobileBackend("CordovaJSBackend");
.....

backend.CustomCode.invokeCustomCodeJSONRequest("TaskApi1/tasks/100" ,
"GET" , null).then(function(response){
 //The response parameter returns the status code and HTTP payload from
the HTTP REST Call.
 console.log(response);
 // Example: { statusCode: 200, data: {} }
 //Depends on the response format defined in the API.
 }).catch(function(response){

Chapter 8
Calling Custom APIs Using the SDK for Cordova

8-13

 //The response parameter returns the status code and HTTP payload, if
available, or an error message, from the HTTP REST Call.
 console.log(response);
 /*
 Example:
 { statusCode: 404,
 data: {
 "type":"http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.4.1",
 "status":404,"title":"API not found",
 "detail":"We cannot find the API cordovaJSApi2 in Mobile Backend
CordovaJSBackend(1.0). Check that this Mobile Backend is associated with
the API.",
 "o:ecid":"005Bojjhp2j2FSHLIug8yf00052t000Jao, 0:2",
"o:errorCode":"MOBILE-57926", "o:errorPath":"/mobile/custom/cordovaJSApi2/
tasks" } }
 */
 //Depends on the response format defined in the API.
 });

Chapter 8
Calling Custom APIs Using the SDK for Cordova

8-14

9
JavaScript Applications

If you develop JavaScript-based mobile apps, you can use the client SDK that Oracle
Mobile Cloud Service (MCS) provides for JavaScript. This SDK simplifies
authentication with MCS and provides JavaScript wrapper classes for MCS platform
APIs.

This SDK is primarily geared toward browser-based apps but can also be used for
hybrid frameworks. If you develop Cordova-based apps, use the Cordova SDK. See
Cordova Applications.

Getting the SDK for JavaScript
To get the MCS client SDK for JavaScript, go to the Oracle Technology Network’s
MCS download page.

Contents of the JavaScript SDK Bundle
The JavaScript SDK contains the following items:

• jsdocs.zip - The compiled documentation for the library.

• mcs.js - The uncompressed version of the SDK. This version contains code
comments and is best used as you are developing and debugging your app.

• mcs.sync.js - The uncompressed version of the Sync Express library.

• mcs.min.js - The compressed version of the SDK. Use this version when you
deploy the completed app.

• mcs.sync.min.js - The compressed version of the Sync Express library.

• oracle_mobile_cloud_config.js - The MCS configuration file. In this file, you
insert environment and authentication details for the mobile backends that your
app will access.

• \pako - This folder includes the pako JavaScript library, which is required to use
SSO with a third-party token.

• mcs-tools.zip - The MCS Custom Code Test Tools, a set of command line tools
for debugging custom APIs that you have associated with your app's mobile
backend. Detailed instructions are located in the README file included in the zip.

Adding the SDK to a JavaScript App
1. If you haven’t already done so, unzip the JavaScript SDK zip.

2. Copy mcs.min.js and oracle_mobile_cloud_config.js into the directory where
you keep your JavaScript libraries.

3. Fill in your backend details in oracle_mobile_cloud_config.js.

9-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html

Configuring SDK Properties for JavaScript
To use the SDK in a JavaScript app, you need to add the
oracle_mobile_cloud_config.js configuration file to the app and fill it in with
environment details for your mobile backend. In turn, the SDK classes draw on this file
for the details needed to access the mobile backend and use them to construct HTTP
headers for REST calls made to APIs.

You package the configuration file in the same folder as the mcs.min.js file.

The following example shows the structure of a generic
oracle_mobile_cloud_config.js file:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "logHTTP": true,
 "mobileBackends": {
 "YOUR_BACKEND_NAME": {
 "default": true,
 "baseUrl": "YOUR_BACKEND_BASE_URL",
 "applicationKey": "YOUR_BACKEND_APPLICATION_KEY",
 "authorization": {
 "basicAuth": {
 "backendId": "YOUR_BACKEND_ID",
 "anonymousToken": "YOUR_BACKEND_ANONYMOUS_TOKEN"
 },
 }
 }
 }
};

Here’s a list of the file’s elements. The values that you need to fill in for a given mobile
backend can be found on the Settings and Clients pages for that mobile backend.

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is mcs.LOG_LEVEL.INFO (where only important events are
logged). Other possible values are mcs.LOG_LEVEL.ERROR (only errors are logged)
and mcs.LOG_LEVEL.VERBOSE.

• logHTTP — When set to true, enables additional logging capability that includes
the complete HTTP headers and body in requests and responses to MCS.

• mobileBackends — The config file’s root element, containing a JSON object for
each mobile backend.

• baseUrl — The URL your app uses to connect to its mobile backend.

• applicationKey — The application key, which is a unique string assigned to your
app when you register it in MCS.

• backendId — The unique identifier assigned to a specific mobile backend.

• anonymousToken — A unique string that allows your app to access APIs that don’t
require login. In this scenario, the anonymous key is passed to MCS instead of an
encoded user name and password combination.

Chapter 9
Configuring SDK Properties for JavaScript

9-2

• authorization — JSON object containing the authentication details for
connecting your app to MCS. In turn, it must contain one or more objects of type
basicAuth, oAuth, or tokenAuth. The contents of the object depend on the type of
authentication.

HTTP Basic

For HTTP Basic, you need to nest an basicAuth object within the authorization
object and fill in the HTTP Basic credentials provided by the mobile backend. The
resulting authorization property might look something like this:

"authorization": {
 "basicAuth": {
 "backendId": "3b113ad5-07dc-4143-8b6a-a2ef62a175c1",
 "anonymousToken":
"UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOnZrZWJxUmwuamEwbTdu"
 }
}

OAuth Consumer

For OAuth, you need to nest an oAuth object within the authorization object and fill
in the OAuth credentials provided by the mobile backend. The resulting authorization
property might look something like this:

"authorization": {
 "oAuth": {
 "clientID": "b20a34b4-e646-44dc-a787-3a8715f4bb46",
 "clientSecret": "chIkehuDPYsaosPEMyE2",
 "tokenEndpoint": "http://abc09xyz.oracle.com:14100/oam/oauth2/tokens",
 }
}

SSO with a Third-Party Token

For SSO with a third-party token, nest a tokenAuth object within the authorization
object and fill in credentials, depending on how you have the token issuer integrated
with MCS.

If you are using JWT tokens and have integrated the token issuer by registering a
configuration via a policy in MCS, you need to include the mobile backend ID and the
OAuth credentials for the backend. The resulting authorization property might look
something like this:

"authorization": {
 "tokenAuth": {
 "backendId": "3b113ad5-07dc-4143-8b6a-a2ef62a175c1",
 "clientId": "b20a34b4-e646-44dc-a787-3a8715f4bb46",
 "clientSecret": "chIkehuDPYsaosPEMyE2" }
}

Chapter 9
Configuring SDK Properties for JavaScript

9-3

If you have integrated the IdP token issuer by uploading certificates into MCS you just
nest the mobile backend ID. The resulting authorization property might look
something like this:

"authorization": {
 "tokenAuth": {
 "backendId": "3b113ad5-07dc-4143-8b6a-a2ef62a175c1",
 }
}

Loading a Mobile Backend's Configuration into a JavaScript
App

For any calls to MCS APIs using the JavaScript SDK to successfully complete, you
need to have the mobile backend’s configuration loaded. You do this using the
mobileBackendManager and mobileBackend objects.

The root object in the SDK is the mcs.mobileBackendManager. The
mcs.mobileBackendManager object manages one or more mobileBackend objects. A
mobileBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined.

Using mobileBackendManager.setConfig, you specify a configuration that is defined in
the app’s oracle_mobile_cloud_config.js file. This configuration includes info such
as the mobile backend name and version, base URL, and authentication details.

Here’s some code you can insert into the app class establish the mobile backend and
retrieve data from the oracle_mobile_cloud_config.js file.

mcs.mobileBackendManager.platform = new mcs.BrowserPlatform();
mcs.mobileBackendManager.setConfig(mcs_config);

this.backend =
mcs.mobileBackendManager.getMobileBackend("YOUR_BACKEND_NAME");

Authenticating and Logging In Using the SDK for JavaScript
Here are some examples of how to use the Authorization class of the JavaScript
SDK in your code.

OAuth and HTTP Basic

Get the mobile backend and set the authentication type to oAuth or basicAuth.

function initializeMCS(){
 mcs.mobileBackendManager.setConfig(mcs_config);
 mcsBackend =
mcs.mobileBackendManager.getMobileBackend("YOUR_BACKEND_NAME");
 if(mcsBackend != null){
 mcsBackend.setAuthenticationType("oAuth");

Chapter 9
Loading a Mobile Backend's Configuration into a JavaScript App

9-4

 }
}

Then add a function that calls Authorization.authenticate and pass it a user name
and password.

function login(username, password){
 var deferred = $q.defer();
 mcsBackend.Authorization.authenticate(username, password, success,
failed);

 return deferred.promise;

 function success(response,data){
 deferred.resolve();
 logAnalyticsEvent();
 }

 function failed(statusCode,data){
 deferred.reject();
 }
}

SSO with a Third-Party Token

To use SSO with a third-party token, first your app needs to get a token from the third-
party token issuer. The way you can obtain the token varies by issuer. For detailed
information on obtaining third-party tokens and configuring identity providers in MCS,
see Third-Party SAML and JWT Tokens.

Note:

Third-party token exchange requires the pako JavaScript library, so make
sure to add it to your app. Pako is distributed with the SDK in the \pako
subdirectory.

Get the mobile backend and set the authentication type to tokenAuth.

function initializeMCS(){
 mcs.mobileBackendManager.platform = new mcs.JSPlatform();
 mcs.mobileBackendManager.setConfig(mcs_config);
 mcsBackend =
mcs.mobileBackendManager.getMobileBackend("YOUR_BACKEND_NAME");
 if (mcsBackend != null) {
 mcsBackend.setAuthenticationType("tokenAuth");
 }
},

Chapter 9
Authenticating and Logging In Using the SDK for JavaScript

9-5

Then pass the token you got from the third-party token issuer to a function that calls
Authorization.authenticate.

mcsBackend.Authorization.authenticate(thirdPartyToken).then(
 function() {
 console.log("MCS authenticate() worked");
 }
).catch(
 function() {
 console.log("MCS authenticate() FAILED");
 }
);

Securing Browser-Based Apps Against Cross-Site Request
Forgery Attacks

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to MCS APIs to protect against Cross-Site Request
Forgery (CSRF) attacks. Do this by setting the Security_AllowOrigin environment to
either disallow (the default value) or to a comma-separated whitelist of trusted URLs
from which cross-site requests can be made. For more information and details on how
to use the wildcard character (*), see Securing Cross-Site Requests to MCS APIs.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security_AllowOrigin to http://localhost:[port], but be sure to update
the value in production.

Calling Platform APIs Using the SDK for JavaScript
Once you include the SDK libraries in your application, and adjust configuration
settings, you’re ready to use the SDK classes in your apps.

The root class in the JavaScript SDK is the mcs.mobileBackendManager. An instance
of mcs.mobileBackendManager manages one or moremobileBackend objects. A
mobileBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined. In turn, a
mobileBackend instance manages instances of ServiceProxy. These instances
correspond to platform services in MCS (for example, Analytics, Notifications, Offline
Data, and so on).

It retrieves the information it needs about each mobile backend (such as the mobile
backend name and authentication information) from the app’s
oracle_mobile_cloud_config.js file.

Here’s an example of how you could use these classes to get a Storage collection in
the mobile backend, create a storage object (in this case, a text file), and then upload

Chapter 9
Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks

9-6

that object to the collection. The code here manages calls to the Storage API,
including the constructing of the HTTP headers with the mobile backend credentials
necessary to access the API:

var backend;
var collection_id = 'YOUR_STORAGE_COLLECTION_NAME';

function uploadTextFile() {

 return getCollection()
 .then(success);

 function success(collection){
 //create new Storage object and set its name and payload
 var obj = new mcs.StorageObject(collection);
 obj.setDisplayName("JSFile.txt");
 obj.loadPayload("Hello World from Oracle Mobile Cloud Service
Javascript SDK", "text/plain");

 return postObject(collection, obj).then(function(object){
 return readObject(collection, object.id);
 });
 }
}

function getCollection(){
 var deferred = $q.defer();

 //return a storage collection with the name assigned to the
collection_id variable.
 backend.Storage.getCollection(collection_id, null,
onGetCollectionSuccess, onGetCollectionFailed);

 return deferred.promise;

 function onGetCollectionSuccess(collection){
 deferred.resolve(collection);
 }

 function onGetCollectionFailed(statusCode, headers, data){
 deferred.reject(statusCode);
 }
}

function postObject(collection, obj){
 var deferred = $q.defer();

 //post an object to the collection
 collection.postObject(obj, onPostObjectSuccess, onPostObjectFailed);

 return deferred.promise;

 function onPostObjectSuccess(object){
 deferred.resolve(object);
 }

Chapter 9
Calling Platform APIs Using the SDK for JavaScript

9-7

 function onPostObjectFailed(statusCode, headers, data){
 deferred.reject(statusCode);
 }
}

For more information on the individual platform APIs, see Platform APIs.

Avoiding Unsafe Header Errors
When you have JavaScript web apps that call the Storage APIs, you need to set the
Security_ExposeHeaders policy to allow headers returned by these APIs to be
accessed by the browser. For example, setting the value of that policy to the following
would allow you to use all Storage API endpoints:

..Security_ExposeHeaders=Oracle-Mobile-Created-By,Oracle-Mobile-Created-
On,Oracle-Mobile-Modified-By,Oracle-Mobile-Modified-On,Accept-
Encoding,Oracle-Mobile-Name,ETag

For instructions on setting policies, see Environment Policies.

Calling Custom APIs Using the SDK for JavaScript
The SDK provides the CustomCode class to simplify the calling of custom APIs in MCS.
You can use this class to call a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

To make a call to a custom API endpoint, you could use something like this:

mcs.mobileBackendManager.setConfig(mcs_config);
backend = mcs.mobileBackendManager.getMobileBackend("JSBackend");
.....

backend.CustomCode.invokeCustomCodeJSONRequest("TaskApi1/tasks/100" ,
"GET" , null, function(statusCode, data){
 mcs._Logger.log(mcs.LOG_LEVEL.INFO, statusCode);
 //The statusCode parameter returns the status code from the HTTP REST
Call.
 mcs._Logger.log(mcs.LOG_LEVEL.INFO, data);
 //The data parameter is the HTTP payload from the server, if available,
or an error message.
 Example:
 statusCode: 200,
 data: {}
 //Depends on the response format defined in the API.
},
function(statusCode, data){
 mcs._Logger.log(mcs.LOG_LEVEL.INFO, statusCode);
 //The statusCode parameter returns the status code from the HTTP REST
Call.
 mcs._Logger.log(mcs.LOG_LEVEL.INFO, data);
 //The data parameter is the HTTP payload from the server, if available,

Chapter 9
Calling Custom APIs Using the SDK for JavaScript

9-8

or an error message.
 Example:
 statusCode: 404,
 data: {
 "type":"http://www.w3.org/Protocols/rfc2616/rfc2616-
sec10.html#sec10.4.1",
 "status":404,"title":"API not found",
 "detail":"We cannot find the API JSApi2 in Mobile Backend
JSBackend(1.0). Check that this Mobile Backend is associated with the
API.",
 "o:ecid":"005Bojjhp2j2FSHLIug8yf00052t000Jao, 0:2",
"o:errorCode":"MOBILE-57926", "o:errorPath":"/mobile/custom/JSApi2/tasks" }
 //Depends on the response format defined in the API.
 });

Chapter 9
Calling Custom APIs Using the SDK for JavaScript

9-9

10
Xamarin Android Applications

If you use the Xamarin platform to develop Android apps, you can use the SDK that
Oracle Mobile Cloud Service (MCS) provides for Xamarin Android apps. This SDK
simplifies authentication with MCS and provides native wrapper classes for MCS
platform APIs.

Getting the SDK for Xamarin Android
To get the MCS client SDK for Xamarin Android, go to the Oracle Technology
Network’s MCS download page.

To use this SDK, you should have the following software on your system:

• Microsoft Visual Studio, with support for Xamarin development.

• Java Development Kit (JDK) 1.7.0_67 or compatible.

See http://www.oracle.com/technetwork/java/javase/downloads/index.html for JDK
downloads.

Adding the SDK to a Xamarin Android Project
1. If you haven’t already done so, extract the contents from the SDK zip.

2. In Visual Studio, create a Visual C# Android app.

3. Make sure you can connect to the internet from Visual Studio connection so that
NuGet packages are reachable.

4. Add GCM and Facebook dependencies to your project:

• If a Packages node appears in the Solution Explorer for your project, do the
following:

a. Right-click the Packages node.

b. Type GCM in the search field, select Xamarin.GooglePlayServices.Gcm
(not Crosslight.Xamarin.GooglePlayServices.GCM), and click Add
Package. The remaining GCM dependencies will be added automatically.

c. Accept the terms to add the packages successfully.

d. Add Xamarin.Facebook.Android by searching for it in the NuGet
packages and adding it in the same way you added the GCM packages.

• If a Packages node doesn't appear in the Solution Explorer for your project,
do the following:

a. Select Tools > NuGet Package Manager > Manage NuGet Packages
for Solution.

b. Select the Browse tab.

10-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

c. Type GCM in the search field, select Xamarin.GooglePlayServices.Gcm
(not Crosslight.Xamarin.GooglePlayServices.GCM), select the checkbox
for your app, and click Install. The remaining GCM dependencies will be
added automatically.

d. After previewing the changes, click OK.

e. Add Xamarin.Facebook.Android by searching for it in the NuGet
packages and adding it in the same way you added the GCM packages.

5. At the end make sure you have all the below dependencies. If any of them are
missing, search for them in the NuGet package manager.

<packages>
 <package id="Bolts" version="1.4.0.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Animated.Vector.Drawable"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Annotations" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Compat" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Core.UI" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Core.Utils" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.CustomTabs" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Design" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Fragment" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Media.Compat" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Transition" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.v4" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.v7.AppCompat" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.v7.CardView" version="25.4.0.2"
targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.v7.RecyclerView"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Android.Support.Vector.Drawable"
version="25.4.0.2" targetFramework="monoandroid71" />
 <package id="Xamarin.Build.Download" version="0.4.7"
targetFramework="monoandroid80" />
 <package id="Xamarin.Facebook.Android" version="4.26.0"
targetFramework="monoandroid80" />
 <package id="Xamarin.Google.ZXing.Core" version="3.3.0"
targetFramework="monoandroid80" />
 <package id="Xamarin.GooglePlayServices.Base" version="42.1021.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.GooglePlayServices.Basement" version="42.1021.1"
targetFramework="monoandroid71" />

Chapter 10
Adding the SDK to a Xamarin Android Project

10-2

 <package id="Xamarin.GooglePlayServices.Gcm" version="42.1021.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.GooglePlayServices.Iid" version="42.1021.1"
targetFramework="monoandroid71" />
 <package id="Xamarin.GooglePlayServices.Tasks" version="42.1021.1"
targetFramework="monoandroid71" />
</packages>

6. Add the SDK's DLL file to your app by right-clicking the project's References node
and selecting Edit References or Add Reference (depending on which menu
item is available).

• If you select Edit References, click the .NET Assembly tab, and then browse
to the Android.dll file in the extracted SDK zip.

• If you select Add Reference, click the Browse tab, click the Browse button,
and then navigate to the Android.dll file in the extracted SDK zip.

7. Add the configuration file to the app by right-clicking the project's Assets node and
selecting either Add > Add Files or Add > Existing File (depending which is
available) and then navigating to the SDK's oracle_mobile_cloud_config.xml
file.

8. Select the node for oracle_mobile_cloud_config.xml so that it's properties are
displayed in the Properties pane. Then make sure that the Build Action property
is set to AndroidAsset.

9. Open oracle_mobile_cloud_config.xml and fill in the environment details for the
mobile backend that the app will be using. See Configuring SDK Properties for
Xamarin Android.

10. Update the AndroidManifest.xml file with the necessary properties as detailed in
Configuring Your AndroidManifest.xml File.

Configuring SDK Properties for Xamarin Android
To use the SDK in an Android app, you need to add the
oracle_mobile_cloud_config.xml configuration file to the app and fill it in with
environment details for your mobile backend. In turn, the SDK classes use the
information provided in this file to access the mobile backend and construct HTTP
headers for REST calls made to APIs.

The following code sample shows the structure of a
oracle_mobile_cloud_config.xml file:

<mobileBackends>
 <mobileBackend>
 <mbeName>MBE_NAME</mbeName>
 <mbeVersion>MBE_VERSION</mbeVersion>
 <default>true</default>
 <appKey>APPLICATION_KEY</appKey>
 <baseUrl>BASE_URL</baseUrl>
 <enableAnalytics>true</enableAnalytics>
 <enableLogger>true</enableLogger>
 <authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>AUTH_TYPE</authenticationType>

Chapter 10
Configuring SDK Properties for Xamarin Android

10-3

 <oauth>
 <oAuthTokenEndPoint>OAUTH_URL</oAuthTokenEndPoint>
 <oAuthClientId>CLIENT_ID</oAuthClientId>
 <oAuthClientSecret>CLIENT_SECRET</oAuthClientSecret>
 </oauth>
 <basic>
 <mobileBackendID>MOBILE_BACKEND_ID</mobileBackendID>
 <anonymousKey>ANONYMOUS_KEY</anonymousKey>
 </basic>
 </authorization>
 <!-- additional properties go here -->
 </mobileBackend>
</mobileBackends>

Here’s a list of the file’s elements. The values that you need to fill in for a given mobile
backend can be found on the Settings and Clients pages for that mobile backend.

• mobileBackends — The config file’s root element, containing one or more
mobileBackend elements.

• mobileBackend — The element for a mobile backend.

• mbeName — The name of the mobile backend associated with your app.

• mbeVersion — The version number of your app (for example, 1.0).

• default — If true, that mobile backend is treated as the default and thus can be
easily referenced using the getDefaultMobileBackend(Context context) method
in the SDK’s MobileBackendManager class.

• appKey — The application key, which is a unique string assigned to your app when
you register it as a client in MCS. See Registering an App as a Client in MCS.

• baseUrl — The URL your app uses to connect to its mobile backend.

• enableLogger — When set to true, logging is included in your app.

• enableAnalytics — When set to true, analytics on the app’s use can be
collected.

• authorization — Use the sub-elements of this element to define the
authentication the app will be using and specify the required credentials.

– offlineAuthenticationEnabled — If set to true, offline login will be allowed.
For this to work, you also need to add the following to the app’s
AndroidManifest.xml file:

<receiver android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
</receiver>

– authenticationType — Define the kind of authentication mechanism being
used to connect your app to MCS. Possible values are oauth (for OAuth
Consumer) , basic (for HTTP Basic), sso, tokenAuth (for SSO token
exchange), and facebook (for logging in with Facebook credentials). If this
element isn’t specified, OAuth Consumer is used. The other contents and sub-
elements of the authorization element depend on the type of authentication.

Chapter 10
Configuring SDK Properties for Xamarin Android

10-4

OAuth Consumer

For OAuth, set the value of the <authenticationType> element to oauth and fill in the
OAuth credentials provided by the mobile backend.

• oAuthTokenEndPoint — The URL of the OAuth server your app goes to, to get its
authentication token.

• oAuthClient — The unique client identifier assigned to all apps when they’re first
created in your mobile backend.

• oAuthClientSecret — The unique secret string assigned to all apps they’re first
created in your mobile backend.

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>oauth</authenticationType>
 <oauth>
 <oAuthTokenEndPoint>http://oam-server.oracle.com/oam/oauth2/tokens</
oAuthTokenEndPoint>
 <oAuthClient>f2d3ca5c-7e6f-4d1c-aabc-a2f3caf7ec4e</oAuthClient>
 <oAuthClientSecret>vZMRkgniIbhNUiPnSRT2</oAuthClientSecret>
 </oauth>
</authorization>

Enterprise SSO

For SSO, set the value of the <authenticationType> element to sso, fill in the OAuth
credentials provided by the mobile backend, and add the ssoTokenEndpoint.

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>sso</authenticationType>
 <oauth>
 <oAuthTokenEndPoint>host/mobile/platform/sso/token</oAuthTokenEndPoint>
 <oAuthClient>f2d3ca5c-7e6f-4d1c-aabc-a2f3caf7ec4e</oAuthClient>
 <oAuthClientSecret>vZMRkgniIbhNUiPnSRT2</oAuthClientSecret>
 <ssoTokenEndpoint>https://development-
mcspmtrial90.mobileenv.oracle.com:443/mobile/platform/sso/token</
ssoTokenEndpoint>
</oauth>
</authorization>

SSO with a Third Party Token

For SSO with a third-party token, set the value of the <authenticationType> element
to tokenAuth and fill in the HTTP Basic auth credentials provided by the mobile
backend (described next).

Chapter 10
Configuring SDK Properties for Xamarin Android

10-5

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>tokenAuth</authenticationType>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>
</authorization>

HTTP Basic

For HTTP Basic authentication, you need to set the value of the
<authenticationType> element to basic and fill in the HTTP Basic auth credentials
provided by the mobile backend.

• mobileBackendID — The unique identifier assigned to a specific mobile backend. It
gets passed in an HTTP header of every REST call made from your app to MCS,
to connect it to the correct mobile backend. When calling platform APIs, the SDK
handles the construction of the authentication headers for you.

• anonymousKey — A unique string that allows your app to access APIs that don’t
require login. In this scenario, the anonymous key is passed to MCS instead of an
encoded user name and password combination.

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>basic</authenticationType>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>
</authorization>

Facebook

For Facebook login, you need to set the value of the <authenticationType> element
to facebook, fill in the HTTP Basic auth credentials provided by the mobile backend,
and add the facebook element, where you specify the Facebook credentials.

• facebookAppId — The Facebook application ID.

• scopes — You can use this element to specify Facebook permissions (optional).

The resulting authorization element might look something like this:

<authorization>
 <offlineAuthenticationEnabled>true</offlineAuthenticationEnabled>
 <authenticationType>facebook</authenticationType>
 <basic>
 <mobileBackendID>6d3744b8-cab2-479c-998b-ebba2c31560f</mobileBackendID>
 <anonymousKey>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTll</anonymousKey>
 </basic>

Chapter 10
Configuring SDK Properties for Xamarin Android

10-6

 <facebook>
 <facebookAppId>123456789012345</facebookAppId>
 <scopes>public_profile,user_friends,email,user_location,user_birthday</
scopes>
 </facebook>
</authorization>

Configuring Your AndroidManifest.xml File
Permissions for operations such as accessing the network and finding the network
state are controlled through permission settings in AndroidManifest.xml. These
permissions are required:

• permission.INTERNET — Allows your app to access open network sockets.

• permission.ACCESS_NETWORK_STATE — Allows your app to access information
about networks.

Other permissions are optional. For example, the Analytics platform API uses location
to provide detailed information about the usage and performance of your app. If you’re
using the Analytics library from the SDK, you’ll want to add these permissions as well.

• permission.ACCESS_COARSE_LOCATION— Allows your app to access approximate
location information, derived from sources such as wi-fi and cell tower positions.

• permission.ACCESS_FINE_LOCATION — Allows your app to access precise location
information, derived from sources such as GPS.

For more information about permissions in your Android application, see Android
Manifest Permissions in the Google documentation.

Add the permissions at the top of your AndroidManifest.xml file, as shown in the
following example:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="oracle.cloud.mobile.photobox" >
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <application>
 <receiver android:name="oracle.cloud.mobile.network.NetworkHelper"
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
 </receiver>
 (.....)
 </application>
</manifest>

Chapter 10
Configuring Your AndroidManifest.xml File

10-7

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

If you are using the Notifications API in your app, you may also need to add a
broadcast receiver element. See Setting Up a Mobile App for Notifications.

Loading a Mobile Backend's Configuration into a Xamarin
Android App

For any calls to MCS APIs using the Xamarin Android SDK to successfully complete,
you need to have the mobile backend’s configuration loaded from the app’s
oracle_mobile_cloud_config.xml file. You do this using the MobileBackendManager
class:

MobileBackendManager.Manager.GetMobileBackend(context,"GCMBackend");

Authenticating and Logging In Using the SDK for Xamarin
Android

Here is some sample code that you can use for authentication through MCS in your
Xamarin Android apps.

OAuth Consumer

First you initialize the authorization agent and set the authentication type to OAUTH.

MobileBackend mobileBackend;
IAuthorizationAgent mAuthorization;
mobileBackend = MobileBackendManager.Manager.GetDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.GetAuthorization(AuthType.Oauth);

Then you use the authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

TextView username, password;
username = (AutoCompleteTextView)FindViewById(Resource.Id.username);
password = (EditText)FindViewById(Resource.Id.password);
String userName = username.Text;
String passWord = password.Text;
mAuthorization.Authenticate(mCtx, userName, passWord, new
AuthorizationCallback());

Here’s the definition for the callback.

Authorization CallBack
private class AuthorizationCallback : Java.Lang.Object,
IAuthorizationCallback
{
 public void OnCompletion(ServiceProxyException exception)
 {
 if (exception != null)

Chapter 10
Loading a Mobile Backend's Configuration into a Xamarin Android App

10-8

 {
 Logger.Error(TAG, "Exception while receiving the Access
Token", exception);
 }
 else
 {
 Logger.Error(TAG, "Authorization successful");
 }
 }
}

Enterprise SSO

mAuthorization.authenticateSSO(mCtx, false, new AuthorizationCallback());

private class AuthorizationCallback : Java.Lang.Object,
IAuthorizationCallback
{
 public void OnCompletion(ServiceProxyException exception)
 {
 if (exception != null)
 Logger.Debug(TAG, "Exception " + exception.Message;
 else
 {
 Logger.Debug(TAG, "SSO Auth Succeeded");
 }
 }
}

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in MCS, see Third-Party SAML and JWT
Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call. The example below checks to see if the token is already stored in
MCS before logging in again.

Note:

The default expiration time for storing a third-party token in MCS is 6 hours.
You can adjust this time by changing the
Security_TokenExchangeTimeoutSecs policy.

IAuthorizationAgent mAuthorization;
MobileBackend mobileBackend;
mobileBackend = MobileBackendManager.Manager.GetDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.GetAuthorization(AuthType.Tokenauth);

Chapter 10
Authenticating and Logging In Using the SDK for Xamarin Android

10-9

// Check whether credential exists in secure store
Boolean isCredentialLoaded = mAuthorization.LoadSSOTokenExchange(mCtx);

if(isCredentialLoaded){
 // Credentials found in secure store - redirect to main activity
 Logger.Info(TAG, "Credentials got loaded successfully from secure
store.");
 Intent intent = new Intent(mCtx, typeof(ContentActivity));
 StartActivity(intent);

} else {
 // Credentials not found - authenticate using token exchange
 Logger.Info(TAG, "Credentials could not be found in secure store.");
 mAuthorization.AuthenticateUsingTokenExchange(mCtx, token, true,
mLoginCallback);
}

Here’s the callback:

private class AuthorizationCallback : Java.Lang.Object,
IAuthorizationCallback
{
 public void OnCompletion(ServiceProxyException exception)
 {
 if (exception == null)
 {
 //log event with Analytics
 mAnalyticsAgent.LogEvent("Login with 3rd party token
successfully");
 mAnalyticsAgent.Flush();

 //redirect to another Activity after login
 Intent intent = new Intent(mCtx, typeof(ContentActivity));
 LoginActivity.activity.StartActivity(intent);

 } else {
 Logger.Error(TAG, "Exception during token exchange:",
exception);
 LoginActivity.activity.Finish();
 }
 }
}

HTTP Basic Authentication

The code for handling login with HTTP Basic is nearly the same as the code for
OAuth.

First you initialize the authorization agent and set the authentication type to
BASIC_AUTH.

MobileBackend mobileBackend;
IAuthorizationAgent mAuthorization;

Chapter 10
Authenticating and Logging In Using the SDK for Xamarin Android

10-10

mobileBackend = MobileBackendManager.Manager.GetDefaultMobileBackend(mCtx);
mAuthorization = mobileBackend.GetAuthorization(AuthType.BasicAuth);

Then you use the Authenticate method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

TextView username, password;
username = (AutoCompleteTextView)FindViewById(Resource.Id.username);
password = (EditText)FindViewById(Resource.Id.password);
String userName = username.Text;
String passWord = password.Text;
mAuthorization.Authenticate(mCtx, userName, passWord, new
AuthorizationCallback());

Here’s the definition for the callback.

private class AuthorizationCallback : Java.Lang.Object,
IAuthorizationCallback
{
 public void OnCompletion(ServiceProxyException exception)
 {
 Logger.Debug(TAG, "OnCompletion Auth Callback");
 if (exception != null)
 {
 Logger.Error(TAG, "Exception while receiving the Access
Token", exception);
 }
 else
 {
 Logger.Error(TAG, "Authorization successful");
 }
 }
}

Facebook

First you initialize the authorization agent and set the authentication type to Facebook.

ISocialAuthorizationAgent mAuthorization;
SocialMobileBackend socialMobileBackend;
socialMobileBackend =
SocialMobileBackendManager.Manager.GetDefaultMobileBackend(context);
mAuthorization =
socialMobileBackend.GetSocialAuthorization(SocialAuthType.Facebook);
mAuthorization.SetAuthType(AuthType.Facebook);

Using a CallbackManager object from Facebook’s SDK, initiate authentication.

ICallbackManager callbackManager;
mAuthorization.Setup(context, new FacebookCallback());

Chapter 10
Authenticating and Logging In Using the SDK for Xamarin Android

10-11

callbackManager = mAuthorization.CallBackManager;
mAuthorization.AuthenticateSocial(activity);

Here’s code you can use for the callback that is passed above.

private class FacebookCallback : Java.Lang.Object, IFacebookCallback
{
 public void OnSuccess(Java.Lang.Object loginResult)
 {
 Logger.Error(TAG, "facebook login successful.");
 }

 public void OnCancel()
 {
 }

 public void OnError(FacebookException error)
 {
 }
}

Override the OnActivityResult() method to use the callback.

protected override void OnActivityResult(int requestCode, Result
resultCode, Intent data)
{
 Logger.Debug(TAG, "In OnActivity Result onActivityResult");

 base.OnActivityResult(requestCode, resultCode, data);
 callBackManger.OnActivityResult(requestCode, (int)resultCode, data);
}

Calling Platform APIs Using the SDK for Xamarin Android
Once the mobile backend’s configuration info is loaded into the app and you have
made a call to get the mobile backend, you can use SDK classes for various platform
APIs.

Here are some code snippets that illustrate how to access these APIs with the SDK.

User Management
Getting a User

IAuthorizationAgent authorizationAgent = authentication.Authorization;
authorizationAgent.FetchCurrentUser(new UserRegistrationCallback());
private class UserRegistrationCallback : Java.Lang.Object,
IUserRegistrationCallback
{
 public void OnComplete(ServiceProxyException exception, User user)
 {
 if (exception == null)

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-12

 {
 mUser = user;
 setText("User " + mUser.Username + " details have been fetched
successfully.");
 }
 else
 {
 //Handle Error
 }
 }
}

Updating a User

//creating map with properties
IDictionary<string, Object> map = new Dictionary<string,Object>();
map.Add("age", 26);
map.Add("address", "india");
authorizationAgent.UpdateUser(new UserRegistrationCallback(), map);

private class UserRegistrationCallback : Java.Lang.Object,
IUserRegistrationCallback
{
 public void OnComplete(ServiceProxyException exception, User user)
 {

 if (exception == null)
 {
 setText("User " + user.Username + " details have been updated
successfully.");
 }
 else
 {
 /Handle Error
 }
 }
}

Location
Initialization

Location location =
(Location)mobileBackend.GetServiceProxy(Class.FromType(typeof(Location));

Places, Devices, and Assets

static Location location;
static LocationPlace place;
static LocationDevice device;
static LocationAsset asset;

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-13

location =
(Location)mobileBackend.GetServiceProxy(Class.FromType(typeof(Location)));

LocationPlaceQuery locationPlaceQuery = location.BuildPlaceQuery();

locationPlaceQuery.Name = "West";

locationPlaceQuery.OrderByAttributeType =
LocationDeviceContainerQuery.LocationDeviceContainerQueryOrderByAttributeTy
pe.LocationDeviceContainerQueryOrderByAttributeTypeName;
locationPlaceQuery.Format =
LocationObjectQuery.LocationObjectQueryFormatType.LocationObjectQueryFormat
TypeShort;

locationPlaceQuery.Execute(new LocationObjectQueryCallback());

LocationDeviceQuery locationDeviceQuery = location.BuildDeviceQuery();

locationDeviceQuery.Name = "Beacon";

locationDeviceQuery.OrderByAttributeType =
LocationDeviceQuery.LocationDeviceQueryOrderByAttributeType.LocationDeviceQ
ueryOrderByAttributeTypeName;
locationDeviceQuery.Format =
LocationObjectQuery.LocationObjectQueryFormatType.LocationObjectQueryFormat
TypeShort;

locationDeviceQuery.Execute(new LocationObjectQueryCallback());

LocationAssetQuery locationAssetQuery = location.BuildAssetQuery();

locationAssetQuery.Name = "Joe";

locationAssetQuery.OrderByAttributeType =
LocationDeviceContainerQuery.LocationDeviceContainerQueryOrderByAttributeTy
pe.LocationDeviceContainerQueryOrderByAttributeTypeName;
locationAssetQuery.Format =
LocationObjectQuery.LocationObjectQueryFormatType.LocationObjectQueryFormat
TypeShort;

locationAssetQuery.Execute(new LocationObjectQueryCallback());

Fetching a Place

private class LocationObjectQueryCallback : Java.Lang.Object,
ILocationObjectsQueryCallback
{

 public void OnComplete(LocationObjectQueryResult queryResult,
ServiceProxyException exception)
 {

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-14

 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 if (exception != null)
 {
 Logger.Debug(TAG, exception.Message);

 setText(exception.Message);
 }
 else
 {

 foreach (LocationObject locationobject in queryResult.Items)
 {

 if
(locationobject.GetType().Equals(typeof(LocationPlace))) {

 place = (LocationPlace)locationobject;

 location.FetchPlace(place.Id, new
LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, place.Name +" " +
place.HasChildren);
 }
 else
if(locationobject.GetType().Equals(typeof(LocationDevice)))
 {

 device = (LocationDevice)locationobject;

 location.FetchDevice(device.Id, new
LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, device.Name + " ");
 }
 else if
(locationobject.GetType().Equals(typeof(LocationAsset)))
 {

 asset = (LocationAsset)locationobject;

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-15

 location.FetchAsset(asset.Id, new
LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, asset.Name + " ");
 }

 }
 }
 }
}

private class LocationObjectFetchCallback : Java.Lang.Object,
ILocationObjectFetchCallback
{

 public void OnComplete(LocationObject locationObject,
ServiceProxyException exception)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 if (exception != null)
 {
 Logger.Debug(TAG, exception.Message);

 setText(exception.Message);
 }
 else
 {
 Logger.Debug(TAG, locationObject.Name);

 }

 lock (obj)
 {
 Monitor.PulseAll(obj);
 }

 }
}

Refreshing

private class LocationObjectQueryCallback : Java.Lang.Object,
ILocationObjectsQueryCallback
{

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-16

 public void OnComplete(LocationObjectQueryResult queryResult,
ServiceProxyException exception)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 if (exception != null)
 {
 Logger.Debug(TAG, exception.Message);

 setText(exception.Message);
 }
 else
 {

 foreach (LocationObject locationobject in queryResult.Items)
 {

 if
(locationobject.GetType().Equals(typeof(LocationPlace))) {

 place = (LocationPlace)locationobject;

 place.Refresh(new LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, place.Name +" " +
place.HasChildren);
 }
 else
if(locationobject.GetType().Equals(typeof(LocationDevice)))
 {

 device = (LocationDevice)locationobject;

 device.Refresh(new LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, device.Name + " ");
 }
 else if
(locationobject.GetType().Equals(typeof(LocationAsset)))
 {

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-17

 asset = (LocationAsset)locationobject;

 asset.Refresh(new LocationObjectFetchCallback());

 lock (obj)
 {
 Monitor.Wait(obj);
 }

 Logger.Debug(TAG, asset.Name + " ");
 }

 }
 }
 }
}

private class LocationObjectFetchCallback : Java.Lang.Object,
ILocationObjectFetchCallback
{

 public void OnComplete(LocationObject locationObject,
ServiceProxyException exception)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 if (exception != null)
 {
 Logger.Debug(TAG, exception.Message);

 setText(exception.Message);
 }
 else if(locationObject != null)
 {
 Logger.Debug(TAG, locationObject.Name);

 }

 lock (obj)
 {
 Monitor.PulseAll(obj);
 }

 }
}

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-18

Storage
Initialization

Storage storage =
(Storage)mobileBackend.GetServiceProxy(Class.FromType(typeof(Storage)));

Getting a Collection

StorageCollection storageCollection =
storage.GetStorageCollection("FullCoverage_Private");
StorageObject storageObject = storageCollection.Get("ab911696-7e61-4fcd-
a244-b26adb6183ba");
string str =
Encoding.UTF8.GetString(Decompress(storageObject.GetPayloadBytes()));

Getting an Object

storageObject = storageCollection.Get("d4400472-b912-4f7a-b4f5-
e32523e5c1f3");
Logger.Debug(TAG, "Storage Object: " + storageObject.DisplayName);

Getting All Objects

IList<StorageObject> list = storageCollection.Get(0, 100, true);

IEnumerator<StorageObject> iEnumerator = list.GetEnumerator();
while(iEnumerator.MoveNext()){
 storageObject = iEnumerator.Current;
 Logger.Debug(TAG, "Storage Object: " + storageObject.DisplayName);

}

Uploading a Text File

Java.Lang.String str = new Java.Lang.String("This is sample txt file");

storageObject = new StorageObject("textfile.txt");
storageObject.SetPayload(str.GetBytes(), "text/plain");
storageCollection.Put(storageObject);

Uploading an Image

System.IO.Stream imageBytes = getFileFromAssets("mcs_oracle.png");

storageObject = new StorageObject("mcs_oracle.png", imageBytes, "image/
jpeg");
var imagePosted = storageCollection.Post(storageObject);

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-19

Decompressing

static byte[] Decompress(byte[] data)
{
 using (var compressedStream = new MemoryStream(data))
 using (var zipStream = new GZipStream(compressedStream,
CompressionMode.Decompress))
 using (var resultStream = new MemoryStream())
 {
 zipStream.CopyTo(resultStream);
 return resultStream.ToArray();
 }
}

Notifications
Initialization

LocalBroadcastManager.GetInstance(context)
 .RegisterReceiver(new MBroadcastReceiver(),
 new IntentFilter(NotificationsConfig.RegistrationComplete));

Notifications notifications =
(Notifications)mobileBackend.GetServiceProxy(Java.Lang.Class.FromType(typeo
f(Notifications)));

Registering for Notifications

bool result = notifications.Initialize(context, "Sender ID");

Broadcast Receiver

private class MBroadcastReceiver : BroadcastReceiver
{

 public override void OnReceive(Context context, Intent intent)
 {

 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 ISharedPreferences prefs =
PreferenceManager.GetDefaultSharedPreferences(context);
 bool sentToken =
prefs.GetBoolean(NotificationsConfig.SentTokenToServer, false);
 if (sentToken)
 {
 Logger.Debug(TAG, "Token retrieved and sent to server! App can
use GCM");

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-20

 }
 else
 {
 Logger.Debug(TAG, "An error occurred while either fetching the
InstanceID");
 }

 }
}

Analytics
Initialization

static Analytics analyticsAgent =
 (Analytics)mobileBackend
 .GetServiceProxy(Class.FromType(typeof(Analytics)));
analyticsAgent.SetContext(activity);

Logging an Event

if (analyticsAgent != null)
 analyticsAgent.LogEvent("This is Event No. : " + i);

Setting Context Location

analyticsAgent.SetContextLocation("India", "Telangana", "Hyderabad",
"500081");

Flushing an Event

analyticsAgent.Flush();

App Policies
Loading the App Config and Getting Policies

if (mobileBackend != null)
{
 mobileBackend.LoadAppConfig(new AAppConfigCallBack());
 mProgressDialog = ProgressDialog.Show(activity, "Please Wait", "App
Config is being loaded.");

 lock(obj){
 Monitor.Wait(obj);
 }

 AppConfig oMCAppConfig = mobileBackend.AppConfig;

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

10-21

//Getting String:

 string str = oMCAppConfig.GetString("Test_String", "No value
configured");

 setText("AppConfig: String: " + str);

//Getting Number
 Number number = oMCAppConfig.GetNumber ("Test_number", new
Java.Lang.Double(1.0));

 setText("AppConfig: Number: " + number);

//Getting boolean
 bool boolean = oMCAppConfig.GetBoolean("Test_Boolean", false);

 setText("AppConfig: Boolean: " + boolean);

}

private class AAppConfigCallBack : AppConfigCallback
{
 public override void OnResult(Oracle.Cloud.Mobile.Utils.McsError
error, AppConfig config)
 {
 if (mProgressDialog != null && mProgressDialog.IsShowing)
 {
 mProgressDialog.Dismiss();
 }

 lock(obj){
 Monitor.PulseAll(obj);
 }
 }
}

Calling Custom APIs Using the SDK for Xamarin Android
The SDK provides the CustomHttpResponse class, the
GenericCustomCodeClientCallBack interface, and the InvokeCustomCodeJSONRequest
method in the authorization classes to simplify the calling of custom APIs in MCS. You
can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where the
request payload is JSON or empty and the response payload is JSON or empty.

You use GenericCustomCodeClientCallBack to create a handler for the response
(which is returned in the form of a CustomHttpResponse object.)

Then, to call the custom API, you call
InvokeCustomCodeJSONRequest(GenericCustomCodeClientCallBack
restClientCallback, JSONObject data, String functionName,
RestClient.HttpMethod httpMethod) on your Authorization object.

Chapter 10
Calling Custom APIs Using the SDK for Xamarin Android

10-22

To make a call to a custom API endpoint, you could use something like this:

IAuthorizationAgent mAuthorization =
MobileBackendManager.Manager.GetDefaultMobileBackend(context).Authorization
;

mAuthorization.Authenticate(mActivity, "user1", "pass1", new
AuthorizationCallback());

........
// after the user successfully authenticates, make a call to the custom
API endpoint
mAuthorization.InvokeCustomCodeJSONRequest(new
GenericCustomCodeClientCallBack(), null, "TaskApi/tasks",
RestClient.HttpMethod.Get);

private class GenericCustomCodeClientCallBack : Java.Lang.Object,
IGenericCustomCodeClientCallBack
{
 public void RequestCompleted(CustomHttpResponse response, JSONObject
data, Java.Lang.Exception exception)
 {
 Logger.Debug(TAG, response.HttpStatus + "");
 }
}

Chapter 10
Calling Custom APIs Using the SDK for Xamarin Android

10-23

11
Xamarin iOS Applications

If you use the Xamarin platform to develop iOS apps, you can use the SDK that Oracle
Mobile Cloud Service (MCS) provides for Xamarin iOS apps. This SDK simplifies
authentication with MCS and provides native wrapper classes for MCS platform APIs.

Getting the SDK for Xamarin iOS
To get the MCS client SDK for Xamarin iOS, go to the Oracle Technology Network’s
MCS download page.

To use this SDK, you should have the following software on your system:

• Microsoft Visual Studio, with support for Xamarin development.

• Xcode 9.1 or later and iphoneos 11.0.

See http://www.oracle.com/technetwork/java/javase/downloads/index.html for JDK
downloads.

Adding the SDK to a Xamarin iOS Project
1. If you haven’t already done so, extract the contents from the SDK zip.

2. In Visual Studio, create a Visual C# iOS app.

3. Add the SDK's DLL file to your app by right-clicking the project's References node
and selecting Edit References, clicking the .NET Assembly tab, and then
browsing to the IOS.dll file in the extracted SDK zip.

4. Add the configuration file to the app by right-clicking the project's root node and
selecting Add > Add Files and then navigating to the SDK's OMC.plist file.

5. Select the node for OMC.plist so that it's properties are displayed in the Properties
pane. Then make sure that the Build Action property is set to BundleResource.

6. Add the SynchStore.momd folder to the app by right-clicking the project's root node
and selecting Add > Add Existing Folder and then navigating to the SDK's
SynchStore folder.

7. For all of the files in the SynchStore.momd folder, make sure that the Build Action
property is set to BundleResource.

8. Open OMC.plist and fill in the environment details for the mobile backend that the
app will be using. See Configuring SDK Properties for Xamarin iOS.

Configuring SDK Properties for Xamarin iOS
To use the SDK in a Xamarin iOS project, you need to add the OMC.plist
configuration file to the app and fill it in with environment details for your mobile
backend. In turn, the SDK classes use this information to access the mobile backend
and construct HTTP headers for REST calls made to APIs.

11-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

You package the configuration file in the root of your app’s main bundle.

Here’s an example of the contents of the OMC.plist file. Pay careful attention to the
hierarchy of elements.

Here’s the source code for the same example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd"
<plist version="1.0">
<dict>
 <key>mobileBackends</key>
 <dict>
 <key>FixItFast_Customer</key>
 <dict>
 <key>default</key>
 <true/>
 <key>baseURL</key>
 <string>https://fif.cloud.oracle.com</string>
 <key>appKey</key>
 <string>ebfbc8ea-9173-442b-8a5e-2fae63c64422</string>
 <key>authorization</key>
 <dict>
 <key>authenticationType</key>
 <string>OAuth</string>
 <key>OAuth</key>
 <dict>
 <key>tokenEndpoint</key>
 <string>https://oam.oracle.com/oam/oauth2/tokens</string>
 <key>clientID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>clientSecret</key>
 <string>pFmzazXzNTBNVDyraQs7</string>
 </dict>
 </dict>
 </dict>
 </dict>
 <key>logLevel</key>

Chapter 11
Configuring SDK Properties for Xamarin iOS

11-2

 <string>debug</string>
</dict>
</plist>

Here are the key entries in the OMC.plist file. You can obtain the necessary
environment details from the Settings and Clients pages of the mobile backend.

• mobileBackends — a dictionary entry containing a nested dictionary for your
mobile backend such as FixItFast_Customer. (When you call OMCMobileBackend
in an app, you need to supply the value of that entry as a parameter to
OMCMobileBackendManager.) That entry, in turn, contains entries for appKey,
baseURL, authenticationType, mobileBackendID, anonymousKey, and, optionally,
networkConnectionTimeout. See the example below.

• baseURL — The URL your application uses to connect to its mobile backend.

• appKey — The application key, which is a unique string assigned to your app when
you register it as a client in MCS. See Registering an App as a Client in MCS. If
you have not registered the app as a client in MCS, assign a placeholder value for
this entry.

• authorization — Use this key to define the type of authentication the app will be
using and specify the required credentials. The contents of the authorization key
depend on the type of authentication.

– authenticationType — Defines the type of authentication mechanism being
used in your mobile application. Possible values are OAuth (for OAuth
Consumer), basic (for HTTP Basic), SSO, SSOTokenExchange and Facebook.
Include a dictionary for each supported authentication type with the required
credentials as explained in the sections that follow.

• networkConnectionTimeout — (Optional) The network timeout for API calls, in
seconds. Should you need to do any network performance tuning, you can add
this property, though you should use it with care. Keep in mind that app
responsiveness issues might be better addressed in the app design itself. The
default timeout is 60 seconds.

• logLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is error. Other possible values (in increasing level of detail) are
warning, info, and debug. It is also possible to set the value to none.

• logHTTPRequestBody — When set to true, the SDK will also log the HTTP and
HTTPS headers and body in the requests to MCS.

• logHTTPResponseBody — When set to true, the SDK will also log the HTTP and
HTTPS headers and body in responses from MCS.

• offlineAuthenticationEnabled — If set to true, offline login will be allowed.

The contents and sub-elements of the authorization dictionary depend on what kind
of authentication the app will be using.

OAuth Consumer

For OAuth, set the value of the authenticationType property to OAuth and fill in the
OAuth credentials provided by the mobile backend.

• tokenEndpoint — The URL of the OAuth server your application goes to, to get its
authentication token.

Chapter 11
Configuring SDK Properties for Xamarin iOS

11-3

• clientID — The unique client identifier assigned to all applications when they’re
first created in your mobile backend.

• clientSecret — The unique secret string assigned to all applications when
they’re first created in your mobile backend.

The resulting authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>
 <string>oauth</string>
 <key>OAuth</key>
 <dict>
 <key>tokenEndpoint</key>
 <string>https://oam.oracle.com/oam/oauth2/tokens</string>
 <key>clientID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>clientSecret</key>
 <string>pFmzazXzNTBNVDyraQs7</string>
 </dict>
 </dict>

SSO

For SSO, set the value of the authenticationType property to SSO and fill in the OAuth
credentials provided by the mobile backend. (For tokenEndpoint, you use the mobile
backend’s OAuth token endpoint.)

The resulting authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>
 <string>SSO</string>
 <key>SSO</key>
 <dict>
 <key>tokenEndpoint</key>
 <string>https://oam-server.oracle.com/oam/oauth2/tokens</string>
 <key>clientID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>clientSecret</key>
 <string>pFmzazXzNTBNVDyraQs7</string>
 </dict>
</dict>

SSO with a Third-Party Token

For SSO with a third-party token, set authenticationType to SSOTokenExchange and
fill in the appropriate credentials.

The resulting authorization property might look something like this:

<key>authorization</key>
<dict>

Chapter 11
Configuring SDK Properties for Xamarin iOS

11-4

 <key>authenticationType</key>
 <string>SSOTokenExchange</string>
 <key>SSOTokenExchange</key>
 <dict>
 <key>mobileBackendID</key>
 <string>ddb7ff5a-0d86-4b4a-8164-ddad03734249</string>
 <key>anonymousKey</key>

<string>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOnZrZWJxUmwuamE
wbTdu</string>
 </dict>
</dict>

HTTP Basic

For HTTP Basic authentication, set the value of the authenticationType property to
basic and fill in the HTTP Basic credentials provided by the mobile backend.

• mobileBackendID — The unique identifier assigned to a specific mobile backend. It
gets passed in an HTTP header in every REST call made from your application to
MCS, to connect it to the correct mobile backend. When calling platform APIs, the
SDK handles the construction of the mobileBackendID header for you.

• anonymousKey — When using HTTP Basic authentication, a unique string that
allows your app to access APIs that don’t require login. In this scenario, the
anonymous key is passed to MCS instead of an encoded user name and
password combination.

The resulting authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>
 <string>Basic</string>
 <key>Basic</key>
 <dict>
 <key>anonymousKey</key>

<string>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOml6LmQxdTlCaWF
rd2Nz</string>
 <key>mobileBackendID</key>
 <string>4fb9cabd-d0e2-40f8-87b5-d2d44cdd7c68</string>
 </dict>
</dict>

Facebook

For Facebook, set the value of the authenticationType property to Facebook and fill
in the HTTP Basic auth credentials provided by the mobile backend plus the
facebookAppID.

The resulting authorization property might look something like this:

<key>authorization</key>
<dict>
 <key>authenticationType</key>

Chapter 11
Configuring SDK Properties for Xamarin iOS

11-5

 <string>Facebook</string>
 <key>Facebook</key>
 <dict>
 <key>mobileBackendID</key>
 <string>11d1fc49-7574-4b24-82f3-74a3720ce154</string>
 <key>anonymousKey</key>

<string>UFJJTUVfREVDRVBUSUNPTl9NT0JJTEVfQU5PTllNT1VTX0FQUElEOml6LmQxdTlCaWF
rd2Nz</string>
 <key>facebookAppID</key>
 <string>154198719279</string>
 </dict>
</dict>

Loading a Mobile Backend's Configuration into a Xamarin
iOS App

For any calls to MCS APIs using the iOS SDK to successfully complete, you need to
have the mobile backend’s configuration loaded from the app’s OMC.plist file. You do
this using the OMCMobileBackend class:

OMCMobileBackend oMCMobileBackend =
OMCMobileBackendManager.SharedManager.MobileBackendForName("MBE_FullCoverag
e");

Authenticating and Logging In Using the SDK for Xamarin
iOS

Here is some sample code that you can use for authentication through MCS in your
iOS apps.

Oauth

You can use the following method to handle a user logging in with a user name and
password.

OMCAuthorization authorization = oMCMobileBackend.Authorization;
authorization.AuthenticationType = OMCAuthenticationType.OAuth;
authorization.Authenticate(username.Text, password.Text);

This method terminates the connection to MCS and clears the user name and
password from the iOS keychain:

authorization.Logout(HandleOMCAuthorizationLogoutCompletionBlock);

void HandleOMCAuthorizationLogoutCompletionBlock(NSError nsError)
{
 if(nsError == null){
 Console.WriteLine("Logout success!");

Chapter 11
Loading a Mobile Backend's Configuration into a Xamarin iOS App

11-6

 }
}

HTTP Basic

You can use the following method to handle a user logging in with a user name and
password.

OMCAuthorization authorization = oMCMobileBackend.Authorization;
authorization.AuthenticationType = OMCAuthenticationType.HTTPBasic;
authorization.Authenticate(username.Text, password.Text);

This method terminates the connection to MCS and clears the user name and
password from the iOS keychain:

authorization.Logout(HandleOMCAuthorizationLogoutCompletionBlock);

void HandleOMCAuthorizationLogoutCompletionBlock(NSError nsError)
{
 if(nsError == null){
 Console.WriteLine("Logout success!");
 }
}

SSO

For apps that allow login through enterprise SSO, use:

OMCAuthorization oMCAuthorization = oMCMobileBackend.Authorization;
oMCAuthorization.AuthenticationType = OMCAuthenticationType.Sso;
oMCAuthorization.AuthenticateSSO(this, true,
HandleOMCAuthorizationAuthCompletionBlock);

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in MCS, see Third-Party SAML and JWT
Tokens.

Once you have the token, use it to authenticate. The example below checks to see if
the token is already stored in MCS before logging in again.

Note:

The default expiration time for storing a third-party token in MCS is 6 hours.
You can adjust this time by changing the
Security_TokenExchangeTimeoutSecs policy.

OMCAuthorization oMCAuthorization = oMCMobileBackend.Authorization;
oMCAuthorization.AuthenticationType =

Chapter 11
Authenticating and Logging In Using the SDK for Xamarin iOS

11-7

OMCAuthenticationType.SSOTokenExchange;
NSError nSError = oMCAuthorization.AuthenticateSSOTokenExchange(Token);

oMCAuthorization.AuthenticateSSOTokenExchange(Token,
HandleOMCAuthorizationAuthCompletionBlock);

oMCAuthorization.AuthenticateSSOTokenExchange(Token, true,
HandleOMCAuthorizationAuthCompletionBlock);

oMCAuthorization.AuthenticateSSOTokenExchange(Token, true);

bool iSLoaded = oMCAuthorization.LoadSSOTokenExchange;

oMCAuthorization.ClearSSOTokenExchange();

Facebook

For apps that allow login through Facebook, use:

oMCAuthorization.AuthenticationType = OMCAuthenticationType.Facebook;
oMCAuthorization.AuthenticateSocial(HandleOMCAuthorizationAuthCompletionBlo
ck);

If you haven’t already set up the app and its mobile backend to use Facebook as the
identity provider, see Facebook Login in MCS.

Calling Platform APIs Using the SDK for Xamarin iOS
Once the mobile backend’s configuration info is loaded into the app and you have
made a call to get the mobile backend, you can make calls to SDK classes to access
platform features.

Here are some code snippets that illustrate how to access these APIs with the SDK.

User Management
Getting a User

OMCAuthorization oMCAuthorization = oMCMobileBackend.Authorization;
oMCAuthorization.GetCurrentUser(HandleOMCUserRegistrationCompletionBlockWit
hUser);
void HandleOMCUserRegistrationCompletionBlockWithUser(NSError nSError,
OMCUser oMCUser)
{
 if(nSError == null){
 output.Text = user.FirstName + " User details have been fetched
successfully";
 }
}

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-8

Updating a User

user.SetValueForKey(new NSNumber(26),new NSString("age"));
user.SetValueForKey(new NSString("address"), new NSString("india"));
oMCAuthorization.UpdateCurrentUser(user,HandleOMCUserRegistrationCompletion
Block);

void HandleOMCUserRegistrationCompletionBlock(NSError nSError)
{
 if (nSError == null)
 {
 //user = oMCUser;
 if (user != null)
 {
 if (username.Text == null)
 {
 username.Text = "Welcome " + user.FirstName;
 }
 else output.Text = user.FirstName + " User details have been
fetched successfully";
 }
 }
 else
 {
 output.Text = nSError.ToString();
 }
}

Location
Initialization

OMCLocation oMCLocation = oMCMobileBackend.Location;

Queries for Places, Devices, and Assets

private static OMCLocation oMCLocation;
private static OMCLocationPlace oMCLocationPlace;
private static OMCLocationDevice oMCLocationDevice;
private static OMCLocationAsset oMCLocationAsset;

oMCLocation = oMCMobileBackend.Location;
OMCLocationPlaceQuery oMCLocationPlaceQuery = oMCLocation.BuildPlaceQuery;
oMCLocationPlaceQuery.Name = "West";
oMCLocationPlaceQuery.ExecuteWithCompletionHandler(completionHandler);
OMCLocationAssetQuery oMCLocationAssetQuery = oMCLocation.BuildAssetQuery;

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-9

oMCLocationAssetQuery.Name = "joe";
oMCLocationAssetQuery.ExecuteWithCompletionHandler(completionHandler);

OMCLocationDeviceQuery oMCLocationDeviceQuery =
oMCLocation.BuildDeviceQuery;
oMCLocationDeviceQuery.Name = "Beacon";
oMCLocationDeviceQuery.ExecuteWithCompletionHandler(completionHandler);

Fetching

Action<OMCLocationObjectQueryResult, NSError> completionHandler = new
Action<OMCLocationObjectQueryResult,
NSError>((OMCLocationObjectQueryResult arg1, NSError arg2) =>
{
 if (arg2 == null)
 {
 OMCLocationObject[] LocationObjects = arg1.Items;
 OMCLocationPlace oMCLocationPlace;
 OMCLocationDevice oMCLocationDevice;
 OMCLocationAsset oMCLocationAsset;

 foreach (OMCLocationObject locationObject in LocationObjects)
 {
 Console.WriteLine("Location Object " +
locationObject.GetType() + "--> " + i + " is: " +
locationObject.ToString());

 if(locationObject.GetType().Equals(typeof(OMCLocationPlace))){

 oMCLocationPlace = (OMCLocationPlace)locationObject;

 oMCLocation.PlaceWithID(oMCLocationPlace.Id_,
placeCompletionHandler);
 }
 else if
(locationObject.GetType().Equals(typeof(OMCLocationDevice)))
 {

 oMCLocationDevice = (OMCLocationDevice)locationObject;

 oMCLocation.DeviceWithID(oMCLocationDevice.Id_,
deviceCompletionHandler);
 }
 else if
(locationObject.GetType().Equals(typeof(OMCLocationAsset)))
 {

 oMCLocationAsset = (OMCLocationAsset)locationObject;

 oMCLocation.AssetWithID(oMCLocationAsset.Id_,
assetCompletionHandler);
 }
 }
 }

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-10

});

private static void assetCompletionHandler(OMCLocationAsset arg0, NSError
arg1)
{
 if (arg1 == null)
 {
 Console.WriteLine("Location Asset " + arg0.ToString());
 }
}

private static void deviceCompletionHandler(OMCLocationDevice arg0,
NSError arg1)
{
 if (arg1 == null)
 {
 Console.WriteLine("Location Device " + arg0.ToString());

 }
}

private static void placeCompletionHandler(OMCLocationPlace arg0, NSError
arg1)
{
 if(arg1 == null){
 Console.WriteLine("Location Place " + arg0.ToString());
 }
}

Refreshing

Action<OMCLocationObjectQueryResult, NSError> completionHandler = new
Action<OMCLocationObjectQueryResult,
NSError>((OMCLocationObjectQueryResult arg1, NSError arg2) =>
{
 if (arg2 == null)
 {
 OMCLocationObject[] LocationObjects = arg1.Items;

 foreach (OMCLocationObject locationObject in LocationObjects)
 {
 Console.WriteLine("Location Object " +
locationObject.GetType() + "--> " + i + " is: " +
locationObject.ToString());

 if(locationObject.GetType().Equals(typeof(OMCLocationPlace))){

 oMCLocationPlace = (OMCLocationPlace)locationObject;

oMCLocationPlace.RefreshWithCompletionHandler(placeCompletionHandler);
 }
 else if

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-11

(locationObject.GetType().Equals(typeof(OMCLocationDevice)))
 {

 oMCLocationDevice = (OMCLocationDevice)locationObject;

oMCLocationDevice.RefreshWithCompletionHandler(deviceCompletionHandler);
 }
 else if
(locationObject.GetType().Equals(typeof(OMCLocationAsset)))
 {

 oMCLocationAsset = (OMCLocationAsset)locationObject;

oMCLocationAsset.RefreshWithCompletionHandler(assetCompletionHandler);

 }
 }
 }
});

private static void placeCompletionHandler(NSError arg0)
{
 if (arg0 == null)
 {
 Console.WriteLine("Location Place " + oMCLocationPlace.ToString());
 }
}

private static void deviceCompletionHandler(NSError arg0)
{
 if (arg0 == null)
 {
 Console.WriteLine("Location Device " +
oMCLocationDevice.ToString());

 }
}

private static void assetCompletionHandler(NSError arg0)
{
 if (arg0 == null)
 {
 Console.WriteLine("Location Asset " + oMCLocationAsset.ToString());
 }
}

Storage
Initialization

OMCStorage oMCStorage = oMCMobileBackend.Storage;

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-12

Getting a Collection

OMCStorageCollection oMCStorageCollection =
oMCStorage.GetCollection("SharedCollection");

Getting an Object

oMCStorageObject = collection.Get("Object Id");

System.Console.WriteLine("Storage Object1: " +
oMCStorageObject.ToString());

Getting All Objects from a Collection

NSMutableArray nSMutableArray = collection.Get(0, 100, true);
OMCStorageObject oMCStorageObject;
if (nSMutableArray != null && nSMutableArray.Count > 0)
{
 for (uint i = 0; i < nSMutableArray.Count; i++){
 oMCStorageObject = nSMutableArray.GetItem<OMCStorageObject>(i);
 System.Console.WriteLine("Storage Object1: " +
oMCStorageObject.ToString());
 }
}

Uploading a Text File

NSData text = "This is a sample Text file";
OMCStorageObject txtFile = new OMCStorageObject("Mytext.txt", text, "text/
plain");

collection.Put(txtFile);

Uploading an Image File

UIImage image = new UIImage("MyImage.png");
NSData data = image.AsPNG();
OMCStorageObject imageFile = new OMCStorageObject("MyImage", data, "image/
png");
collection.Put(imageFile);

Notifications
Initialization

OMCNotifications oMCNotifications = oMCMobileBackend.Notifications;

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-13

Registering for Notifications

oMCNotifications.RegisterForNotifications(appDelegate.DeviceToken,
HandleOMC_Notifications_SuccessBlock, HandleOMC_Notifications_ErrorBlock);

void HandleOMC_Notifications_SuccessBlock(NSHttpUrlResponse
nSHttpUrlResponse)
{
 if (nSHttpUrlResponse != null)
 {
 Console.WriteLine("Response from notification Server: " +
nSHttpUrlResponse.StatusCode);

 }
}

void HandleOMC_Notifications_ErrorBlock(NSError nSError)
{
 if (nSError != null)
 {
 Console.WriteLine("Error in fetching mobiel file: " +
nSError.LocalizedDescription);
 }
}

AppDelegate code

public NSData DeviceToken = string.Empty;

public override void RegisteredForRemoteNotifications(UIApplication
application, NSData deviceToken)
{
 DeviceToken = deviceToken; // Do something to storage deviceToken.

 Console.WriteLine("Device Token: " + DeviceToken.ToString());
}

public override void FailedToRegisterForRemoteNotifications(UIApplication
application, NSError error)
{
 Console.WriteLine("FailedToRegisterForRemoteNotifications.. :(");
}

public override void DidReceiveRemoteNotification(UIApplication
application, NSDictionary userInfo, Action<UIBackgroundFetchResult>
completionHandler)
{
 ProcessNotification(userInfo, false);

}

void ProcessNotification(NSDictionary options, bool fromFinishedLaunching)

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-14

{
 // Check to see if the dictionary has the aps key. This is the
notification payload you would have sent
 if (null != options && options.ContainsKey(new NSString("aps")))
 {
 //Get the aps dictionary
 NSDictionary aps = options.ObjectForKey(new NSString("aps")) as
NSDictionary;
 string alertTitle = string.Empty;
 string alert = string.Empty;
 string sound = string.Empty;
 int badge = -1;

 //Extract the alert text
 // NOTE: If you're using the simple alert by just specifying
 // " aps:{alert:"alert msg here"} ", this will work fine.
 // But if you're using a complex alert with Localization keys,
etc.,
 // your "alert" object from the aps dictionary will be another
NSDictionary.
 // Basically the JSON gets dumped right into a NSDictionary,
 // so keep that in mind.
 if (aps.ContainsKey(new NSString("alert")))
 alert = (aps[new NSString("alert")] as NSString).ToString();
 if (aps.ContainsKey(new NSString("alert")))
 alert = (aps[new NSString("alert")] as NSString).ToString();

 if (options.ContainsKey(new NSString("alertTitle")))
 alertTitle = (options[new NSString("alertTitle")] as
NSString).ToString();

 //Extract the sound string
 if (aps.ContainsKey(new NSString("sound")))
 sound = (aps[new NSString("sound")] as NSString).ToString();

 //Extract the badge
 if (aps.ContainsKey(new NSString("badge")))
 {
 string badgeStr = (aps[new NSString("badge")] as
NSObject).ToString();
 int.TryParse(badgeStr, out badge);
 }

 if (!fromFinishedLaunching)
 {
 //Manually show an alert
 if (!string.IsNullOrEmpty(alert))
 {
 UIAlertView avAlert = new UIAlertView("Notification",
alert, null, "OK", null);
 avAlert.Show();
 }
 }
 }
}

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-15

public override void ReceivedRemoteNotification(UIApplication application,
NSDictionary userInfo)
{
 ProcessNotification(userInfo, false);
}

public override bool FinishedLaunching(UIApplication application,
NSDictionary launchOptions)
{

 Window = new UIWindow(UIScreen.MainScreen.Bounds);

 ViewController viewController = new ViewController("LoginScreen",
null);
 Window.RootViewController = viewController;
 Window.MakeKeyAndVisible();

 if (UIDevice.CurrentDevice.CheckSystemVersion(8, 0))
 {
 var notificationSettings =
UIUserNotificationSettings.GetSettingsForTypes(
 UIUserNotificationType.Alert |
UIUserNotificationType.Badge | UIUserNotificationType.Sound, null
);

UIApplication.SharedApplication.RegisterUserNotificationSettings(notificati
onSettings);
 UIApplication.SharedApplication.RegisterForRemoteNotifications();
 }
 else
 {
 //==== register for remote notifications and get the device token
 // set what kind of notification types we want
 UIRemoteNotificationType notificationTypes =
UIRemoteNotificationType.Alert | UIRemoteNotificationType.Badge;
 // register for remote notifications

UIApplication.SharedApplication.RegisterForRemoteNotificationTypes(notifica
tionTypes);
 }

 return true;

}

Analytics
Initialization

OMCAnalytics oMCAnalytics = oMCMobileBackend.Analytics;

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-16

Logging an Event

oMCAnalytics.LogEvent("this is test event "+ i +" from xamarin");

Setting Context Location

oMCAnalytics.SetContextLocationCountry("india", "Telangana", "Hyderabad",
"500081");

Flushing an Event

oMCAnalytics.Flush();

App Policies
Loading the App Config and Getting Policies

oMCMobileBackend.AppConfigWithCompletionHandler(HandleOMCAppConfigCompletio
nBlock);

lock(obj){
 Monitor.Wait(obj);
}

OMCAppConfig oMCAppConfig = oMCMobileBackend.AppConfig;

//Getting String

String str = oMCAppConfig.StringForProperty("Test_String", "No value
configured");

Console.WriteLine("oMCAppConfig: String: " + str);

//Getting Number
NSNumber number = oMCAppConfig.NumberForProperty("Test_number", -1);

Console.WriteLine("oMCAppConfig: Number: " + number);

//Getting Boolean
Boolean boolean = oMCAppConfig.BooleanForProperty("Test_Boolean", false);

Console.WriteLine("oMCAppConfig: Boolean: " + boolean.ToString());

void HandleOMCAppConfigCompletionBlock(OMCAppConfig oMCAppConfig, NSError
arg1)
{

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

11-17

 if(arg1 == null){
 Console.WriteLine("oMCAppConfig: " + oMCAppConfig.ToString());
 }
}

Calling Custom APIs Using the SDK for Xamarin iOS
The SDK provides the CustomCodeClient class to simplify the calling of custom APIs
in MCS. You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint
where the request payload is JSON or empty and the response payload is JSON or
empty.

Using this class, you invoke a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

In addition you can provide a completion handler to be called when the method
invocation is complete (meaning that the handler runs asynchronously).

Use of CustomCodeClient might look something like this:

oMCMobileBackend.CustomCodeClient.InvokeCustomRequest("mcs_examples_sync_sa
lesplus/reminders", "get", null, HandleOMCCustomRequestCompletionHandler);

void HandleOMCCustomRequestCompletionHandler(NSError arg0,
NSHttpUrlResponse arg1, NSObject nSObject)
{
 if (nSObject != null)
 {
 System.Console.WriteLine("response object: " +
nSObject.ToString());
 }
}

Chapter 11
Calling Custom APIs Using the SDK for Xamarin iOS

11-18

Part III
Platform APIs

Oracle Mobile Cloud Service (MCS) comes with platform APIs built-in to provide
functionality that is commonly required in mobile apps. You can configure these
services directly within the MCS web interface and have your apps call those services
using REST APIs. Continue reading to learn how to use these services and the APIs
that access them.

• Mobile User Management

• Location

• Storage

• Data Offline and Sync

• Notifications

• Analytics

• Database

• App Policies

12
Mobile User Management

As a mobile app developer, you can use the Mobile Users API to get information about
the currently authenticated mobile, virtual, or social user. You also can use this API to
update the current mobile user's custom properties. These are the properties that
you’ve have added to the realm that the member belongs to. In addition, you can use
the Mobile Users Extended API to retrieve the currently authenticated mobile or virtual
user's roles.

We’ll show how to make direct REST calls to these APIs. You can learn more about
the APIs at REST APIs for Oracle Mobile Cloud Service.

You also can call this API from custom code, as shown in Accessing the Mobile Users
API from Custom Code.

User Types
The information that the API returns depends on what type of user you are inquiring
about. Here are the types of users:

• Mobile User: A member who’s been added to the realm that's associated with the
backend, as described in Set Up Mobile Users, Realms and Roles.

• Virtual User: These users pass a third-party token for authorization as described
in Enterprise Single Sign-On in MCS.

• Social User: These users have logged into the app from Facebook, as described
in Facebook Login in MCS.

12-1

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Getting User Information
If your app needs user information, such as user name or first and last name, you can
call the Mobile Users API to get that information.

You have two options for getting a user’s profile:

• You can make a direct REST call as described in this topic and detailed in REST
APIs for Oracle Mobile Cloud Service.

• You can call the ums.getUser(options, httpOptions) method from a custom API
implementation.

To get the currently authorized user’s profile via a direct REST call, send a GET request
to /mobile/platform/users/~. Here’s an example of using cURL to send the request:

curl -i \
-X GET \
-u joe.doe@example.com:mypass \
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce" \
https://fif.cloud.oracle.com/mobile/platform/users/~

The contents of the response body depends on the user type:

• When the user is a mobile user, the response contains the user name, first name,
last name, and email address as well as the custom properties that were added to
the realm that the user belongs to.

• When the user is a virtual user, the response contains the user name.

• When the user is a social user, the response contains the user's ID, identity
provider, and access token.

Here’s an example of a response for a mobile user:

{
 "username": "joe.doe@example.com",
 "firstName": "Joe",
 "lastName": "Doe",
 "email": "joe.doe@example.com",
 "locale": "en",
 "age": "39",
 "workPhone": "+19195550100",
 "mobilePhone": "+19195550101",
 "otherPhone": "+19195550102",
 "avatar": "DERFSKJAKJLSAJFLKASJDFLKADJF",
 "links": {
 { "rel": "canonical",
 "href": "/mobile/platform/users/~"
 }
 }
}

Chapter 12
Getting User Information

12-2

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Here’s an example of a response for a virtual user:

{
 "username": "username"
}

Here’s an example of a response for a social (Facebook) user:

{
 "username": "1 :623:165",
 "mobileExtended": {
 "identityProvider": {
 "facebook": {
 "accessToken":"CAAI...YZD"
 }
 }
 }
}

For mobile users, you can limit the response to specific properties by adding a query
string to the endpoint, such as fields=firstName,lastName. This argument is ignored
if the user is a virtual or social user. For example, this command requests the locale
property:

curl -i \
-X GET \
-u joe.doe@example.com:mypass \
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce" \
https://fif.cloud.oracle.com/mobile/platform/users/~?fields=locale

The response includes only the requested properties. For example:

{
 "locale": "en"
}

Getting User Roles
The Mobile Users Extended API lets you get a mobile or virtual user’s roles in addition
to the same information that you can get from the Mobile Users API. You can’t use this
API to get social user roles.

To learn how to get a user’s roles using custom code, see
ums.getUserExtended(options, httpOptions).

To get the roles via a direct Mobile Users Extended REST call, you make the same
request as you would with the Mobile Users API, but you use the /mobile/platform/
extended endpoint instead. For example:

curl -i \
-X GET \
-u joe.doe@example.com:mypass \

Chapter 12
Getting User Roles

12-3

-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce" \
https://fif.cloud.oracle.com/mobile/platform/extended/users/~

Here’s an example of a response for a mobile user:

{
 "lastName":"Doe",
 "username":"joe.doe@example.com",
 "email":"joe.doe@example.com",
 "roles":[
 "Customer",
 "Trial"
],
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/extended/platform/users/joe"
 },
 {
 "rel":"self",
 "href":"/mobile/extended/platform/users/joe"
 }
],
 "firstName":"Joe"
}

Updating Mobile User Custom Properties
You can update a mobile user’s custom properties. These are the properties that have
been added to the user schema for the user’s realm. You can’t update the standard
identity properties (username, firstName, lastName, and email).

To learn how to update a mobile user’s custom properties from custom code, see
ums.updateUser(fields, options, httpOptions).

To update a mobile user’s custom properties via a direct REST call, send a PATCH or
PUT to /mobile/platform/users/~. Include the properties with their new values in the
body of the request. For example:

curl -i \
-X PUT \
-u joe.doe@example.com:mypass \
-d users.json \
-H "Content-Type: application/json; charset=utf-8" \
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce" \
https://fif.cloud.oracle.com/mobile/platform/users/~

Here’s an example of the request body:

{
 "locale": "en_US",

Chapter 12
Updating Mobile User Custom Properties

12-4

 "age": "40"
}

The response includes all the properties. For example:

{
 "username": "joe.doe@example.com",
 "firstName": "Joe",
 "lastName": "Doe",
 "email": "joe.doe@example.com",
 "locale": "en_US",
 "age": "40",
 "workPhone": "+19195550100",
 "mobilePhone": "+19195550101",
 "otherPhone": "+19195550102",
 "avatar": "DERFSKJAKJLSAJFLKASJDFLKADJF",
 "links": {
 { "rel": "canonical",
 "href": "/mobile/platform/users/~"
 }
 }
}

Chapter 12
Updating Mobile User Custom Properties

12-5

13
Location

As a mobile app developer, you can use the Oracle Mobile Cloud Service (MCS)
Location API to access details about location devices, places and assets that have
been registered in MCS.

What Can I Do With Location?
Users today expect information to be presented based on their current situation and
individual needs and preferences. One of the most important contextual data points is
location. The impact of location-aware mobile apps on users and businesses is
growing faster every day.

• Everyone uses navigation apps for location data, including getting directions to
restaurants, airports, hospitals, and just about anything else needed in a
geographic area.

• You can implement location-based functionality in a wide range of apps, like
focused queries and location-aware history.

• Your apps can use location data to send notifications targeted to mobile devices in
a geographic area or a certain mobile user or asset only in a specific geographic
area.

• Location-aware applications can also contribute a lot to business intelligence and
analytics, including customer profiling and demographics, competitive analysis and
supply chain tracking.

This chapter discusses how to use these Location APIs to perform common tasks. For
more details on using the platform APIs, see REST APIs for Oracle Mobile Cloud
Service.

13-1

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Setting Up Location Devices, Places and Assets
Location devices, places and assets provide the tools you need to create location-
aware mobile apps.

• A location device is any device that provides location services, like a Bluetooth
proximity beacon. The following location protocols are currently supported:

– AltBeacon is an open source protocol for Bluetooth proximity beacons. For
more information and the full specification, see altbeacon.org and https://
github.com/AltBeacon/spec.

– Eddystone is Google’s open protocol for Bluetooth proximity beacons. For
details, see https://github.com/google/eddystone.

– iBeacon is the Apple protocol for Bluetooth proximity beacons. For details, see
https://developer.apple.com/ibeacon/.

• A place is a physical location associated with one or more location devices.

• An asset is a mobile physical object that’s associated with one or more location
devices.

To set up a location in MCS, define the related places and/or assets and register the
associated location devices in the MCS UI under Applications > Location. You can
also use the Location Management API to create, update and delete location devices,
places and assets from custom code. For details, see Accessing the Location
Management API from Custom Code.

Defining Places
A place is a physical location associated with one or more location devices. You can
define places through the UI individually or by uploading a CSV file. You can also use
the Location Management API to create, update and delete places from custom code.
For details, see Accessing the Location Management API from Custom Code.

Note:

To manage places in the MCS UI, you need to be assigned the
MobileEnvironment_LocationMgmt MCS team member role in the
environment.

1. Click to open the side menu and select Applications > Location.

2. From the Places tab, click New Place to define a place using the UI. This tab
shows all the places defined. To edit an existing place, select it in the list and click
Edit .

3. If you are creating a new place, enter a name, and an optional label and
description. If you enter a new label, it will be saved and can be used to categorize
other places, location devices and assets. Click Create.

4. On the Overview tab of the new Location Place Editor, enter the GPS coordinates
for the place. You can also define a geofence by radius or polygon. To associate
the place with another existing place, select that place from the Parent dropdown.

Chapter 13
Setting Up Location Devices, Places and Assets

13-2

5. Click the Attributes tab to define custom attributes for the place. Create new
attributes or copy them from an existing place. You can use attributes to associate
a content URI with the place, for example a coupon or flier that a mobile app
downloads when the user is nearby. Attributes can also be used to filter results in
queries that use the Location Platform API.

6. Click the Devices tab to associate location devices with the place. You can
register a new device from this page (Registering Location Devices) or select from
location devices already registered. A device can be associated with a single place
or asset, not both. By default, only the devices for the current place are displayed,
but you can expand the list by checking the box Show all devices associated with
children of this place.

7. When you are done configuring the place, click Save.

If a place has descendants, click > at the end of the table row to navigate to them.

Uploading Places Using a CSV File
You can upload multiple places using a CSV file.

1. From the Location : Places page, click Upload Places.

2. Browse to the .csv file and click Upload.

The CSV file for uploading places must follow this format:

#version=1.0
#name,#label,#description,#GPSPoint,#GPSCircle,#GPSPolygon,#list of
Attributes
name,label,description,lat:lon,lat:lon:radius,lat1:lon1;lat2:lon2;lat3:l
on3,key1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one type of place:

• For specific GPS coordinates (GPSPoint), include the latitude and longitude.

• For a circle geofence (GPSCircle), include the latitude and longitude of the
center point, and the radius. In Oracle Spatial, GPS circles are converted to
polygons, which might cause the radius to be recalculated.

• For a polygon geofence (GPSPolygon), include the latitude and longitude for
each corner of the polygon.

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below defines a GPSPoint.

#version=1.0
#name,#label,#description,#GPSPoint,#GPSCircle,#GPSPolygon,#list of
Attributes
FixitFast Redwood City Warehouse,Warehouse,FixitFast Warehouse in
Redwood City,37.8453:-121.7845,,,key1=val1,prop2=val2,prop3=val3

Chapter 13
Setting Up Location Devices, Places and Assets

13-3

Note:

The expected encoding for the CSV file is Unicode UTF-8, so it’s best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Defining Location Assets
An asset is a physical object that’s associated with one or more location devices,
typically something mobile and valuable like a forklift or hospital bed. You can define
location assets through the UI individually or by uploading a CSV file. You can also
use the Location Management API to create, update and delete location assets from
custom code. For details, see Accessing the Location Management API from Custom
Code.

Note:

To manage location assets in the MCS UI, you need to be assigned the
MobileEnvironment_LocationMgmt MCS team member role in the
environment.

1. Click to open the side menu and select Applications > Location.

2. From the Assets tab, click New Asset to define a location asset using the UI. This
tab shows all the assets defined. To edit an existing asset, select it in the list and
click Edit Asset.

3. If you are creating a new asset, enter a name, and a label and description if you
choose. Labels will be saved and can be used to categorize other location assets.
If the device(s) you want to associate with the asset are already registered, you
can select them on this page. (A device can be associated with a single place or
asset, not both.) Click Create.

4. On the Overview tab of the Location Asset Editor, you can update your entries.

5. Click the Attributes tab to define custom attributes for the asset. Create new
attributes or copy them from an existing asset. You can use attributes to associate
a content URI with the asset, for example a coupon or flier that a mobile app
downloads when the user is nearby. Attributes can also be used to filter results in
queries that use the Location Platform API.

6. When you are done configuring the asset, click Save.

Uploading Assets Using a CSV File
You can upload multiple assets using a CSV file.

1. From the Location : Assets page, click Upload asset file.

2. Browse to the .csv file and click Upload.

Chapter 13
Setting Up Location Devices, Places and Assets

13-4

The CSV file for uploading assets must follow the following format:

#version=1.0
#name,#description,#label,#list of Attributes
Name,Description,label,key1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3, as shown in the example below. Make sure to include
commas for any empty properties to define the entry correctly.

#version=1.0
#name,#description,#label,#list of Attributes
RC_WH_01_F01_B023,Beacon #23 in the FixItFast Warehouse in Redwood
City,beacon,
FiF Warehouse Forklift #6,MyMed DA332
forklift,forklift,EquipmentManufacturer=MyMed,MyMed serial
number=OU812-9845873
Hospital Bed #233,MyMed model 1225 hospital bed,hospital
bed,EquipmentManufacturer=MedBed,SJId=6754843090

Note:

The expected encoding for the CSV file is Unicode UTF-8, so it’s best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Registering Location Devices
A location device is any device that provides location services, like a Bluetooth
proximity beacon. You can define location devices through the UI or by uploading a
CSV file.

1. Click to open the side menu and select Applications > Location.

2. From the Devices tab, click New Device to register a location device using the UI.
This tab shows all the location devices defined. To edit an existing device, select it
in the list and click Edit. (You can also register devices from the Devices tab in the
Location Places Editor.)

3. If you are creating a new location device, enter a name and a description. Select
the Protocol:

• altBeacon

• Eddystone

• iBeacon

Chapter 13
Setting Up Location Devices, Places and Assets

13-5

Note:

The protocol can’t be changed after a device is registered.

Click Create.

4. On the Overview tab of the Location Device Editor, enter the identifying
information for the location device. The required values depend on the selected
protocol:

• For iBeacon, enter the UUID, Minor and Major values.

• For altBeacon, enter ID1, ID2 and ID3.

• For Eddystone, enter the Namespace, Instance and URL.

If the place and/or asset you want to associate with the device is already defined,
select it from the dropdown list. A device can be associated with a single place or
asset, not both.

5. Click the Attributes tab to define custom properties for the device. Create new
attributes or copy them from an existing device. You can use attributes to
associate a content URI with the device, for example a coupon or flier that a
mobile app downloads when the user is nearby. Attributes can also be used to
filter results in queries that use the Location Platform API.

6. When you are done configuring the device, click Save.

Uploading Location Devices Using a CSV File
You can upload multiple location devices using a CSV file.

1. From the Location > Devices page, click Upload Devices.

2. Browse to the .csv file and click Upload.

The CSV file for uploading devices must follow the following format:

#version=1.0
#name,#description,#uuid,#major,#minor,#id1,#id2,#id3,#namespace,#instan
ce,#url,#list of Attributes
Name,Description,uuid,major,minor,id1,id2,id3,namespace,instance,url,key
1=val1,key2=val2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one protocol type.
The required properties depend on the protocol type:

• For iBeacon, include uuid, major and minor properties.

• For altBeacon, include id1, id2 and id3 properties.

• For Eddystone, include the namespace, instance and URL.

Chapter 13
Setting Up Location Devices, Places and Assets

13-6

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below registers an iBeacon location device by
defining values for the uuid, major and minor properties.

#version=1.0
#name,#description,#uuid,#major,#minor,#id1,#id2,#id3,#namespace,#instan
ce,#url,#list of Attributes
RC_WH_01_F01_B001,Beacon on 1st Floor in FixitFast Warehouse in Redwood
City,B9407F30-F5F8-466E-AFF9-25556B57FE6D,
1.0,1.1,,,,,,,key1=val1,key2=val2,key3=val3

Note:

The expected encoding for the CSV file is Unicode UTF-8, so it’s best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Calling the Location API from Your App
Make your mobile apps location-aware by querying for and retrieving location devices,
places and assets using the Location API. You can use the client SDK for your
platform or access the API directly through REST endpoints.
Team members with the MobileEnvironment_System role can use the Location
Management REST API to add and maintain places, devices, and assets.

Querying for Location Devices, Places and Assets
The Location API allows you to write complex queries for location devices, places and
assets. You can call the REST endpoint directly or use the client SDK to construct a
query.

The available query parameters depend on the object type.

Querying for Location Devices
Query for location devices using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/devices?name={name} to query by
the device name.

• POST {baseUri}/mobile/platform/location/devices/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

name Filters results by a partial match of this string
with the name defined for the device in the UI.
Not case sensitive.

Chapter 13
Calling the Location API from Your App

13-7

Parameter Description

description Filters results by a partial match of this string
with the description defined for the device in
the UI. Not case sensitive.

search Filters results by a partial match of this string
with the name or description defined for the
device in the UI. Not case sensitive.

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the device in the UI.

protocol Filters results by device protocol type(s):
• iBeacon
• altBeacon
• eddystone

associatedAssetId The asset ID to search for. (Returns location
devices associated with the specified asset.)

listOfDevices An array of device IDs to search for.

iBeacon_uuid The UUID of the iBeacon device(s) to search
for.

iBeacon_major The major version of the iBeacon device to
search for.

iBeacon_minor The minor version of the iBeacon device to
search for.

altBeacon_id1 ID1 of the altBeacon to search for.

altBeacon_id2 ID2 of the altBeacon to search for.

altBeacon_id3 ID3 of the altBeacon to search for.

eddystone_namespace The namespace of the Eddystone device to
search for.

eddystone_instance The instance of the Eddystone device to
search for.

eddystone_url The URL of the Eddystone device to search
for.

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending
• :desc for descending
For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 500. Generally meant to be used with
offset for pagination.

Chapter 13
Calling the Location API from Your App

13-8

Parameter Description

format By default, the response is in long format and
results include the device id, name,
description, attributes, createdOn and
createdBy, as well as the place ID and
identifying details about the device. Specify
short to return only the device id, name,
description and protocol.

iBeacon

{
 "protocol":"iBeacon",
 "iBeacon_major": "2.0",
 "iBeacon_minor": "2.2",
 "iBeacon_uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D"
}

If the query is successful, the response will be 200, and the body will include the
matching location device and its associated place or asset if it has one. For example:

{
 "items": [
 {
 "id": 15,
 "createdOn": "2015-11-11T21:15:34.341+0000",
 "createdBy": "thomas.smith@fif.com",
 "modifiedOn": "2015-11-11T21:15:34.341+0000",
 "modifiedBy": "thomas.smith@fif.com",
 "name": "RC_WH_01_F01_B003",
 "description": "Beacon on 1st Floor in FixItFast Warehouse in
Redwood City",
 "place": {
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "description": "FixitFast Warehouse in Redwood City",
 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,
 "longitude": -121.1566
 }
 },
 "attributes" : {
 "EquipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/internal-tools/1.0/envs/dev/location/places/9876"
 },
 {
 "rel": "self",
 "href": "/internal-tools/1.0/envs/dev/location/places/9876"

Chapter 13
Calling the Location API from Your App

13-9

 }
]
 },
 "beacon": {
 "iBeacon": {
 "major": "2.0",
 "minor": "2.2",
 "uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Gimbal",
 "status": "Active",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Public"
 },
 },
 "totalResults": 1,
 "offset": 0,
 "limit": 20,
 "count": 1,
 "hasMore": false
}

The example below queries for altBeacon devices with “Warehouse” in the name or
description and specifies the short response format, ordered by name, with a limit of 5
items.

{
 "protocol":"altBeacon",
 "orderBy":"name",
 "limit":"5",
 "format":"short",
 "search":"Warehouse"
}

If the query is successful, the response is 200 and the body contains just the id, name,
description and protocol for the 5 returned devices.

{
 "items":[
 {
 "id":33,
 "name":"RC_WH_01_B09_C004",
 "description":"Beacon on 2nd Floor in FixItFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":12,
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon on 1st Floor in FixItFast Warehouse in
Redwood City",
 "protocol":"altBeacon"

Chapter 13
Calling the Location API from Your App

13-10

 },
 {
 "id":61,
 "name":"RC_WH_01_F01_B008",
 "description":"Beacon on 2nd Floor in Fix*tFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":58,
 "name":"RC_WH_02_F01_B011",
 "description":"Beacon on 1st Floor in FixitFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 },
 {
 "id":114,
 "name":"RC_WH_01_K22_A999",
 "description":"Beacon on 3rd Floor in FixitFast Warehouse in
Redwood City",
 "protocol":"altBeacon"
 }
],
 "totalResults":5,
 "offset":0,
 "limit":5,
 "count":5,
 "hasMore":false
}

Querying for Places
Query for places with specific parameters using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/places?name={name} to query by the
place name.

• POST {baseUri}/mobile/platform/location/places/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

name Filters results by a partial match of this string
with the name defined for the place in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the place in the
UI. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the place in the UI. Not case sensitive.

Chapter 13
Calling the Location API from Your App

13-11

Parameter Description

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the place in the UI.

label Filters results by a partial match of this string
with the label specified for the place in the UI.
Not case sensitive.

listOfPlaces An array of place IDs to search for.

descendantOf Specify a place ID to search for direct
descendants.

includeDescendantsInResult: all Entire Place descendant hierarchy is returned
in the results.

includeDescendantsInResult: direct Only direct (first level) descendants are
returned in the results.

includeDescendantsInResult: none No descendants are returned in the results.

nearestTo Specify a gpsPoint (latitude, longitude) to
return the closest place. This parameter can’t
be combined with other query parameters.

inGeoFence Specify a gpsCircle (latitude, longitude,
radius) to return all places within that
geofence.

descendantDevices Set to true to include the
descendantDevices property in the results,
which lists the devices associated with this
place and all its child places. These results are
always in short format.

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending
• :desc for descending
For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 500. Generally meant to be used with
offset for pagination.

format By default, the response is in long format and
results include the place id, name, description,
attributes, label, creation and modification
data, as well as the place address, and a list of
the devices within the place and the place’s
parent. Specify short to return only the place
id, name, description and label.

{
 "label":"block 1",
 "inGeoFence": {

Chapter 13
Calling the Location API from Your App

13-12

 "gpsCircle": {
 "latitude": 37.488179,
 "longitude": -122.229011,
 "radius": 32186
 }
 },
 "orderBy":"name:asc",
 "limit":100
}

If the query is successful, the response will be 200, and the body will include an array
of matching places. In this example, only two places matched the query:

{
 "items": [
 {
 "id": 16,
 "createdOn": "2016-03-08T22:09:19.968+0000",
 "createdBy": "joe",
 "modifiedOn": "2016-03-08T22:09:19.968+0000",
 "modifiedBy": "joe",
 "name": "l1b1",
 "label": "lot 1 block 1",
 "parentPlace": 15,
 "description": "Lot 1 block 1 New City",
 "hasChildren": false,
 "address": {
 "gpsCircle": {
 "longitude": -120.87449998,
 "latitude": 37.98560003,
 "radius": 29999.99999997
 }
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/16"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/16"
 }
]
 },
 {
 "id": 17,
 "createdOn": "2016-03-08T22:09:20.065+0000",
 "createdBy": "joe",
 "modifiedOn": "2016-03-08T22:09:20.065+0000",
 "modifiedBy": "joe",
 "name": "l2b1",
 "label": "lot2 block 1",
 "parentPlace": 15,
 "description": "Lot 2 block 1 New City",

Chapter 13
Calling the Location API from Your App

13-13

 "hasChildren": false,
 "address": {
 "gpsPolygon": {
 "vertices": [
 {
 "longitude": -121.7845,
 "latitude": 37.8453
 },
 {
 "longitude": -120.9853,
 "latitude": 37.1248
 },
 {
 "longitude": -121.7758,
 "latitude": 37.6983
 }
]
 }
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/17"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/17"
 }
]
 }
],
 "totalResults": 2,
 "offset": 0,
 "limit": 100,
 "count": 2,
 "hasMore": false
}

{
 "includeDescendantsInResult": "direct",
 "orderBy" : "name",
 "offset" : 0,
 "limit" : 10,
 "format" : "short"
}

If the query is successful, the response will be 200, and the body will include only the
first level descendants. In this example, only three descendants matched the query:

{
 "places": [
 {
 "id": 3331,

Chapter 13
Calling the Location API from Your App

13-14

 "name": "FixitFast Redwood City HQ Campus",
 "label": "campus",
 "description": "1st Floor in FixitFast Warehouse in Redwood
City"
 "children": [
 {
 "id": 3334,
 "name": "Building #1 FixitFast Redwood City HQ Campus",
 "description": "Building #1 on FixitFast Redwood City
Headquarters Campus",
 "label": "building",
 "children": []
 },
 {
 "id": 3335,
 "name": "Building #2 FixitFast Redwood City HQ Campus",
 "description": "Building #2 on FixitFast Redwood City
Headquarters Campus",
 "label": "building",
 "children": []
 },
 {
 "id": 3336,
 "name": "Building #3 FixitFast Redwood City HQ Campus",
 "description": "Building #3 on FixitFast Redwood City
Headquarters Campus",
 "label": "building",
 "children": []
 }
 }
]
}

Querying for Assets
Query for assets with specific parameters using the following REST endpoints:

• GET {baseUri}/mobile/platform/location/assets?name={name} to query by the
asset name.

• POST {baseUri}/mobile/platform/location/assets/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

name Filters results by a partial match of this string
with the name defined for the asset in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the asset in the
UI. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the asset in the UI. Not case sensitive.

Chapter 13
Calling the Location API from Your App

13-15

Parameter Description

attributes Filters results by a match of the name-value
pairs in the Attributes object, using the
attributes defined for the asset in the UI.

label Filters results by a partial match of this string
with the label specified for the asset in the UI.

listOfAssets An array of asset IDs to search for.

associatedDeviceId A device ID to search for. Returns the asset
associated with this device ID. When you use
this query parameter, don't combine it with
other parameters.

nearestTo Specify a gpsPoint (latitude, longitude) to
return the closest asset. Can’t be combined
with other parameters.

inGeoFence Specify a gpsCircle (latitude, longitude,
radius) to return all assets within that
geofence.

orderBy An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:
• :asc for ascending
• :desc for descending
For example, name:asc.

offset By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

limit By default, 40 items are returned. You can
specify a different maximum number of results,
up to 500. Generally meant to be used with
offset for pagination.

format By default, the response is in long format and
results include the asset id, name, description,
attributes, label, creation and modification
data, as well as the associated place, and the
IDs of associated devices. Specify short to
return only the asset id, name, description and
label.

{
 "label":"bed",
 "attributes":{
 "EquipmentManufacturer":"Example Company"
 },
 "orderBy":"createdOn:asc",
 "format":"long"
}

If the query is successful, the response will be 200, and the body will include an array
of matching assets:

{
 "items":[

Chapter 13
Calling the Location API from Your App

13-16

 {
 "id":333,
 "createdBy":"jdoe",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":244
 },
 "devices":[
 3409
],
 "attributes":{
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 }
 },
 {
 "id":888,
 "createdBy":"jdoe",
 "createdOn":"2015-10-16T09:24:41.354Z",
 "modifiedOn":"2015-10-16T09:24:41.354Z",
 "modifiedBy":"jdoe",
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":360
 },
 "devices":[
 658
],
 "attributes":{
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 }
 }
],
 "totalResults":2,
 "offset":0,
 "limit":100,
 "count":2,
 "hasMore":false
}

Using the SDK to Query for Location Objects: iOS
The OMCLocationQuery class in the iOS client SDK allows you to construct queries for
location devices, places and assets.

Chapter 13
Calling the Location API from Your App

13-17

To access the Location API through the iOS SDK, use [[OMCMobileBackendManager
sharedManager].defaultMobileBackend as described in Calling Platform APIs Using
the SDK for iOS.

Below is an example of using the iOS SDK to query for a place by name.

OMCLocation* location = [[OMCMobileBackendManager
sharedManager].defaultMobileBackend location];

NSString* searchString = @"store";

// search by name
// sort results by name, in ascending order
// results will be in "short" format
OMCLocationPlaceQuery* query = [location buildPlaceQuery];
query.name = searchString;
query.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
query.format = OMCLocationObjectQueryFormatTypeShort;

__block OMCLocationPlaceQueryResult* result;
do {
 result = nil;
 __block NSError* error = nil;
 __block BOOL executing = YES;
 [query executeWithCompletionHandler:^(OMCLocationPlaceQueryResult*
result_, NSError* error_) {
 result = result_;
 error = error_;
 executing = NO;
 }];

 while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate
dateWithTimeInterval:0.5 sinceDate:[NSDate date]]];
 }

 if (error) {
 // handle error...
 } else {
 for (OMCLocationPlace* place in result.items) {
 // process each place...
 NSLog(@"place name: %@", place.name);
 }
 }
 query = result.nextQuery;
} while ((result != nil) && result.hasMore);

For more information on place queries, see Querying for Places.

Chapter 13
Calling the Location API from Your App

13-18

Using the SDK to Query for Location Objects: Android
The LocationQuery class in the Android client SDK allows you to construct queries for
location devices, places and assets.

To access the Location API through the Android SDK, use the MobileBackendManager
class as described in Calling Platform APIs Using the SDK for Android.

Below is an example of using the Android SDK to query for a place by name:

Location location =
MobileBackendManager.getManager().getDefaultMobileBackend(mContext).getServ
iceProxy(Location.class);
Object lock = new Object();

String searchString = "store";
final AtomicReference<String> searchString = "store";
final AtomicReference<LocationObjectQueryResult> mResult = new
AtomicReference<LocationObjectQueryResult>();
final AtomicReference<ServiceProxyException> mError = new
AtomicReference<ServiceProxyException>();

// search by name
// sort results by name, in ascending order
// results will be in "short" format
LocationPlaceQuery query = location.buildPlaceQuery();
query.setName(searchString);
query.setOrderByAttributeType(LocationDeviceContainerQuery.LocationDeviceCo
ntainerQueryOrderByAttributeType
 .LocationDeviceContainerQueryOrderByAttributeTypeName);
query.setFormat(LocationObjectQuery.LocationObjectQueryFormatType.LocationO
bjectQueryFormatTypeShort);

do{
 query.execute(new LocationObjectsQueryCallback(){
 @Override
 void onComplete(LocationObjectQueryResult result,
ServiceProxyException exception){
 mError.set(exception);
 mResult.set(result);

 synchronized(lock){
 lock.notifyAll();
 }
 }
 });

 synchronized(lock) {
 lock.wait();
 }

 if(mError.get() != null){
 //handle error
 }

Chapter 13
Calling the Location API from Your App

13-19

 else{
 for(LocationObject object : mResult.get().getItems()){
 LocationPlace place = (LocationPlace) object;
 // process each place...
 }
 }

 query = mResult().get().getNextQuery();

} while(mResult.get() != null && mResult.get().hasMore());

For more information on place queries, see Querying for Places.

Retrieving Location Objects and Properties
Use the Location API to retrieve location devices, places and assets and their
associated properties.

The following REST endpoints allow you to retrieve location objects:

• Location devices: GET {baseUri}/mobile/platform/location/devices

• Assets: GET {baseUri}/mobile/platform/location/assets

• Places: GET {baseUri}/mobile/platform/location/places

You can retrieve an object by ID or by name:

• To retrieve an object by ID, include the ID in the path, for example: GET
{baseUri}/mobile/platform/location/devices/12345.

• To retrieve an object by name, pass the name of an existing object to the endpoint
in the name query parameter, for example GET {baseUri}/mobile/platform/
location/devices?name=RC_WH_01_F01_B001.

Using the SDK to Retrieve a Location Object: iOS
The examples below show how to use the client SDK to retrieve a place and its
properties by ID.

To access the Location API through the SDK, use the OMCMobileBackendManager class
as described in Calling Platform APIs Using the SDK for iOS.

The example below uses the place ID to retrieve the properties for the place:

OMCLocation* location = [[OMCMobileBackendManager
sharedManager].defaultMobileBackend location];

// query for all places
// sort results by name, in ascending order
// results will be in "short" format
OMCLocationPlaceQuery* query = [location buildPlaceQuery];
query.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
query.format = OMCLocationObjectQueryFormatTypeShort;

__block OMCLocationPlaceQueryResult* result = nil;
__block NSError* error = nil;

Chapter 13
Calling the Location API from Your App

13-20

__block BOOL executing = YES;
[query executeWithCompletionHandler:^(OMCLocationPlaceQueryResult*
result_, NSError* error_) {
 result = result_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeInterval:
0.5 sinceDate:[NSDate date]]];
}

// take the first item from the results
// it will be in "short" format...
OMCLocationPlace* shortPlace = result.items.firstObject;

// ...now, fetch the "entire" place directly
__block OMCLocationPlace* place = nil;
error = nil;
executing = YES;
[location placeWithID: shortPlace.id_
completionHandler:^(OMCLocationPlace* place_, NSError* error_) {
 place = place_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeInterval:
0.5 sinceDate:[NSDate date]]];
}

// process place...
NSLog(@"place name: %@", place.name);

If you’ve already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

...
// take the first item from the results
// it will be in "short" format...
OMCLocationPlace* place = result.items.firstObject;

// ...now, refresh the place
error = nil;
executing = YES;
[place refreshWithCompletionHandler:^(NSError* error_) {
 error = error_;
 executing = NO;
}];

while (executing) {

Chapter 13
Calling the Location API from Your App

13-21

 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeInterval:
0.5 sinceDate:[NSDate date]]];
}

// process place...
NSLog(@"place name: %@", place.name);

Using the SDK to Retrieve iBeacon Identifiers: iOS
The first step to monitoring a place that uses beacons is to retrieve the beacon
identifiers, as shown in the iOS client SDK example below.

CLLocationManager *locationManager = [[CLLocationManager alloc] init]; //
iOS CoreLocation object

OMCLocation* location = [[OMCMobileBackendManager
sharedManager].defaultMobileBackend location];

OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];

queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder = OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationPlac
eQuery *,OMCLocationPlace *>* queryResult, NSError * _Nullable queryError)
{
 OMCLocationPlace *place = queryResult.items.firstObject;

 [place devicesWithCompletionHandler:^(NSArray<OMCLocationDevice *>
*locationDevices, NSError * error) {
 // Following code assumes 1 device for place
 OMCLocationDevice *device = [locationDevices firstObject];
 OMCLocationIBeacon *beacon = (OMCLocationIBeacon*)device.beacon;
 NSUUID *beaconUuid = beacon.uuid;
 CLBeaconMajorValue beaconMajor =
(CLBeaconMajorValue)beacon.major.integerValue;
 CLBeaconMinorValue beaconMinor =
(CLBeaconMinorValue)beacon.minor.integerValue;

 CLBeaconRegion *beaconRegion = [[CLBeaconRegion
alloc]initWithProximityUUID:beaconUuid major:beaconMajor minor:beaconMinor
identifier:@"MyBeaconRegion"];
 beaconRegion.notifyOnEntry = YES;
 beaconRegion.notifyOnExit = YES;

 beaconRegion.delegate = // Assign instance of
CLLocationManagerDelegate to handle beacon events

Chapter 13
Calling the Location API from Your App

13-22

 [locationManager startMonitoringForRegion:beaconRegion]; //
Invokes CLLocationManagerDelegate didEnterRegion/didExitRegion
 [locationManager startRangingBeaconsInRegion:beaconRegion]; //
Invokes CLLocationManagerDelegate inRegion
 }];
}];

Using the SDK to Define a Geofence: iOS
You can use a geofence to define a monitoring area as a place, as shown in the iOS
client SDK example below.

CLLocationManager *locationManager = [[CLLocationManager alloc] init]; //
iOS CoreLocation object

OMCLocation* location = [[OMCMobileBackendManager
sharedManager].defaultMobileBackend location];

OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];

queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder = OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationPlac
eQuery *,OMCLocationPlace *>* queryResult, NSError * queryError) {
 OMCLocationPlace *place = queryResult.items.firstObject;

 OMCLocationGeoCircle *geocircle = (OMCLocationGeoCircle *)[place
address];
 OMCLocationGeoPoint *geopoint = [geocircle center];

 CLLocationDegrees latitude = [[geopoint latitude]doubleValue];
 CLLocationDegrees longitude = [[geopoint longitude]doubleValue];
 CLLocationDistance radius = [[geocircle radius]doubleValue];
 CLLocationCoordinate2D coordinate =
CLLocationCoordinate2DMake(latitude, longitude);

 CLCircularRegion *circularRegion = [[CLCircularRegion
alloc]initWithCenter:coordinate radius:radius
identifier:@"MyGeofenceRegion"];
 circularRegion.notifyOnEntry = YES;
 circularRegion.notifyOnExit = YES;

 circularRegion.delegate = // Assign instance of
CLLocationManagerDelegate to handle events

 [locationManager startMonitoringForRegion:circularRegion]; //
Invokes CLLocationManagerDelegate didEnterRegion/didExitRegion

Chapter 13
Calling the Location API from Your App

13-23

 }];
}];

Using the SDK to Retrieve Custom Attributes: iOS
Many location objects use custom attributes. The iOS client SDK makes it easy to
access these properties, as shown in the examples below.

Retrieving a Custom Attribute for a Place

The SDK example below retrieves a custom attribute for a place:

CLLocationManager *locationManager = [[CLLocationManager alloc] init]; //
iOS CoreLocation object

OMCLocation* location = [[OMCMobileBackendManager
sharedManager].defaultMobileBackend location];

OMCLocationPlaceQuery *queryPlace = [location buildPlaceQuery];
queryPlace.name = @"Chris's Emporium";
queryPlace.limit = @1;
// Order-bys are required as name is search by wildcard, not exact match
queryPlace.orderByAttribute =
OMCLocationDeviceContainerQueryOrderByAttributeTypeName;
queryPlace.orderByOrder = OMCLocationObjectQueryOrderByOrderTypeAscending;

[queryPlace
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationPlac
eQuery *,OMCLocationPlace *>* queryResult, NSError * queryError) {
 OMCLocationPlace *place = queryResult.items.firstObject;

 NSString *myCustomProperty = [place
attributeForKey:@"MyCustomProperty"];
 NSLog(@"My Custom Property = %@", myCustomProperty);
}];

Retrieving a Custom Attribute for a Location Device

The SDK example below is very similar to the one above, but uses
OMCLocationDevice to retrieve a custom attribute for a beacon:

OMCLocation* location = [[OMCMobileBackendManager
sharedManager].defaultMobileBackend location];

// Query iBeacon
OMCLocationDeviceQuery *queryDevice = [location buildDeviceQuery];
NSUUID *uuid = [[NSUUID alloc] initWithUUIDString:@"0AC59CA4-
DFA6-442C-8C65-22247851344C"];
NSNumber *major = @4;
NSNumber *minor = @200;
queryDevice.beacon = [OMCLocationIBeacon iBeaconWithUUID:uuid major:major
minor:minor];

Chapter 13
Calling the Location API from Your App

13-24

[queryDevice
executeWithCompletionHandler:^(OMCLocationObjectQueryResult<OMCLocationDevi
ceQuery *,OMCLocationDevice *>* queryResult, NSError * queryError) {
 OMCLocationDevice *device = queryResult.items.firstObject;

 // Retrieve device/beacon custom property
 NSString *customProperty = (NSString *) [device
attributeForKey:@"MyCustomProperty"];
}];

Using the SDK to Retrieve a Location Object: Android
To access the Location API through the Android client SDK, use the
MobileBackendManager class as described in Calling Platform APIs Using the SDK for
Android.

The example below uses the place ID to retrieve the properties for the place:

Location location =
MobileBackendManager.getManager().getDefaultMobileBackend(mContext).getServ
iceProxy(Location.class);
Object lock = new Object();

final AtomicReference<LocationObjectQueryResult> mResult = new
AtomicReference<LocationObjectQueryResult>();
final AtomicReference<LocationPlace> mError = new
AtomicReference<LocationPlace>();

// query for all places
// sort results by name, in ascending order
// results will be in "short" format
LocationPlaceQuery query = location.buildPlaceQuery();
query.setName(searchString);
query.setOrderByAttributeType(LocationDeviceContainerQuery.LocationDeviceCo
ntainerQueryOrderByAttributeType
 .LocationDeviceContainerQueryOrderByAttributeTypeName);
query.setFormat(LocationObjectQuery.LocationObjectQueryFormatType.LocationO
bjectQueryFormatTypeShort);

query.execute(new LocationObjectsQueryCallback(){
 @Override
 void onComplete(LocationObjectQueryResult result,
ServiceProxyException exception){
 mResult.set(result);

 synchronized(lock){
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}

Chapter 13
Calling the Location API from Your App

13-25

// take the first item from the results
// it will be in "short" format...
LocationPlace place = (LocationPlace) mResult.get().getItems().get(0);

// ...now, fetch the "entire" place directly
location.fetchPlace(place.getID(), new LocationObjectQueryCallback(){
 @Override
 void onComplete(LocationObject object, ServiceProxyException exception)
{
 LocationPlace detailedPlace = (LocationPlace) object;
 mPlace.set(detailedPlace);

 synchronized(lock){
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}
// process place...
Log.i(TAG, "place name is " + mPlace.get().getName());

If you’ve already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

...
// take the first item from the results
// it will be in "short" format...
LocationPlace place = (LocationPlace) mResult.get().getItems().get(0);

// ...now, refresh the place
place.refresh(new LocationObjectFetchCallback(){
 @Override
 void onComplete(LocationObject object, ServiceProxyException exception)
{
 if(exception != null)
 //handle error

 synchronized(lock) {
 lock.notifyAll();
 }
 }
});

synchronized(lock){
 lock.wait();
}
// process place...
Log.i(TAG, "place name is " + place.getName());

Chapter 13
Calling the Location API from Your App

13-26

14
Storage

Oracle Mobile Cloud Service (MCS) provides a Storage API for storing media in the
cloud. As a mobile app developer, you can use this API in your mobile app to store
and retrieve objects, such as files, text, images, and JSON objects.

What is the Storage API?
The Storage API enables your mobile app to store, update, retrieve, and delete media,
such as JSON objects, text files, and images, in collections in your MCS environment.
Storage is key based, and you can use roles to restrict access to a collection. You can
also grant anonymous access to shared collections to anyone who also has backend
access by adding the collection name to the Security_CollectionsAnonymousAccess
environment policy.

Note that this API isn’t intended to act as a database-as-a-service (DBaaS) solution by
storing business data used by external systems, nor is it intended to host HTML 5
applications as a content management system (CMS) would.

14-1

How Mobile Applications Access Collections
Mobile applications access collections through the Storage API. As a mobile
developer, you can access this API through the mobile client SDK, or directly through
REST calls. As a service developer, you can call the Storage API from the code that
you write to implement a custom API.

To access the Storage API through the mobile client SDK, you use a backend
manager class.

• For Android apps, you use the MobileBackendManager class as described below
and in Calling Platform APIs Using the SDK for Android.

• For iOS apps, you use the OMCMobileBackendManager class as described in
Calling Platform APIs Using the SDK for iOS.

• For JavaScript apps, you use the MobileBackendManager class as described in
Loading a Mobile Backend's Configuration into a JavaScript App.

Here is an example of using the backend manager class in an Android app to access a
collection.

try {
 Storage storage =

MobileBackendManager.getManager().getDefaultMobileBackend(this).getServiceP
roxy(Storage.class);
 StorageCollection imagesCollection =
 storage.getStorageCollection("FIF_Images");
 StorageObject imageToUpload =
 new StorageObject(null, imageBytes, "image/jpeg");
 StorageObject uploadedImage = imagesCollection.post(imageToUpload);
 } catch(ServiceProxyException e) {int errorCode = e.getErrorCode();
 ...
}

Chapter 14
What is the Storage API?

14-2

To call a Storage endpoint from custom code, you invoke the custom code SDK
method that calls the appropriate Storage API operation, as shown in the following
example:

// Get metadata about the objects in the attachments collection.
// List most recently modified first.
service.get('/mobile/custom/incidentreport/attachments',
 function (req, res) {
 req.oracleMobile.storage.getAll('attachments',
 {orderBy: 'modifiedOn:desc', sync: true}).then(
 function (result) {
 res.send(result.statusCode, result.result);
 },
 function (error) {
 res.send(error.statusCode, error.error);
 }
);
 });

For more information on how custom code can retrieve collection information and store
and retrieve objects, see Accessing the Storage API from Custom Code.

Shared and User Isolated Collections
A collection is either shared or user isolated.

When a collection is shared, no one owns the collection or an object, and the objects
are kept in a shared space. Those with certain mobile user roles, permissions, and
access to the backend, or anonymous access to the backend associated with the
collection, can update an object. Note that in both shared and user isolated collections,
each object has an ID that is unique to the collection.

When a collection is user isolated, users who have Read-Only (All Users) access
can read objects in other users’ spaces. Users with Read-Write (All Users) access
can both read and write objects in other users’ spaces. Anonymous access is not
permitted in user isolated collections.

Let's look at some examples of this behavior using the following scenarios:

Shared Collection

An online magazine is leveraging the Storage API as a way for authors to submit,
change, or read, articles. They’ve provisioned a shared collection called articles, as
shown in the figure below.

• Ben has contributed articles on bugs and bats, while Art has written about cows
and dogs.

• The dogs article is shared, allowing both Ben and Art to collaborate on it.

• Art and Ben are able to modify any article regardless of who originally submitted it.

• Dee can read all the articles, but she can't make changes.

However, if this shared collection is added to the
Security_CollectionsAnonymousAccess environment policy, then Ben, Art, Dee or
anyone who has access to the backend can submit, change, or read articles.

Chapter 14
What is the Storage API?

14-3

User Isolated Collection

An online magazine has provisioned a user isolated collection called Articles, as
shown in the following figure.

• Ben and Art can read and edit their articles, and upload new articles as well. They
can’t read or write each other's files.

• Dee can read only her article. Because her role is InactiveAuthor, which gives
her Read-Only permission, she can't upload any new articles.

• Eva, the editor, can make changes to any file and return it to the author's isolated
space.

• Raj, the publisher, can view all the articles, but he can't make changes.

• Because users are isolated, the authors don't have to worry about naming conflicts
with others. Objects in different isolation spaces can have the same name (as is
the case for the “dogs” articles by Dee and Art).

• Eva and Raj can access Ben, Art, and Dee’s objects only by specifying a user
qualification parameter. When Eva wants to make changes to Art’s article, the call
that enables her to write to Art’s user space must include Art’s ID.

Anonymous users don’t have access to user isolated collections. If a user isolated
collection is added to the Security_CollectionsAnonymousAccess environment policy,
it’s just ignored.

Chapter 14
What is the Storage API?

14-4

Permissions in Shared and User Isolated Collections

You can designate who can access and update objects in a collection by attaching
access permissions to mobile user roles, or for anonymous access, by adding the
shared collection name to the Security_CollectionsAnonymousAccess environment
policy.

For example, to include the Articles collection use
Security_CollectionsAnonymousAccess=Articles.

If the collection does not, or cannot permit anonymous access:

• Art and Ben’s Author mobile user role is associated with the Read-Write
permission.

– In the shared collection, they can read and update any article within the
shared collection.

– In the user isolated collection, they can read and update their own articles.

• In contrast, Dee has the InactiveAuthor mobile user role, which gives her Read-
Only permission.

– In the shared collection, Dee can read Art’s article about dogs, as well as
various articles from either Art or Ben about bugs, cows, and bats. Unlike Ben
or Art, she can’t delete articles or add new ones.

– In the user isolated collection, she can read her own article about dogs, but
she can’t read Art’s article about dogs.

• For user isolated collections, mobile user roles that are associated with the Read-
Only (All Users) permission can view any object. The Read-Write (All Users)
permission allows users to view and update objects in other users’ spaces.
Because her role as Editor has a Read-Write (All Users) permission, Eva can
read and edit various authors’ files, such as those authored by Ben and Art.

Chapter 14
What is the Storage API?

14-5

Note:

Although different mobile user roles can grant access to the same objects in
a collection, such as Eva (Editor), Ben (Author), and Art (also Author), in
the user isolated collection, the objects remain in their respective isolated
spaces.
When anonymous access is allowed on a shared collection, access and the
ability to update an object is granted to any authenticated user as well,
regardless of role. This means adding a collection name to the
Security_CollectionsAnonymousAccess environment policy overrides
permissions given through roles. Take care when allowing anonymous
access to a collection. Security is more limited than with role-based
permissions.

Working with Collections
Mobile apps can use only the collections that are associated with a mobile backend.

You can add existing collections to a mobile backend. You can also create new
collections as part of the process of creating a mobile backend. There’s a page for
each approach:

• The Storage page that you access by clicking > Applications > Storage can
be used to create collections and view a master list of all collections. To associate
one of the collections with a mobile backend, select the collection, click More, and
then select Associate Mobile Backends.

• The Storage page that you access from the Storage tab on a mobile backend
page lets you associate a collection with the mobile backend as well as create a
new collection that is associated with that mobile backend.

Using the Storage Configuration Pages
You can use the Storage pages to perform tasks such as create and configure a
collection, configure whether the collection is shared or user isolated, and associate a
collection with a mobile backend.

To open the Storage page for all collections, click to open the side menu. Next,
click Applications and then click Storage.

Using this page, you can create collections, edit existing ones, associate them with
mobile backends, and publish them. To find out more about collections, policies, and
other artifacts, see Lifecycle.

Chapter 14
Working with Collections

14-6

You can find out when the collections listed were created or updated and which mobile
backends are using them by first selecting a collection and then expanding Used By
and History.

To associate a collection with a mobile backend, select the collection, click More, and
then select Associate Mobile Backends.

To create or update collections for a specific mobile backend, click to open the
side menu. Next, click Applications and then Mobile Backends.

To find out if a mobile backend has collections assigned to it, click Storage on the
mobile backend page.

Chapter 14
Working with Collections

14-7

In addition to the tasks described here, you can also do the following tasks:

Task Description

Set Permissions Configure who can access the collection and how. See Adding
Access Permissions to a Collection.

Maintain Locally Stored
Objects

Set how long before the data stored locally on the device
becomes stale and needs to be refreshed. See Offline Data
Storage.

Test Test the endpoint operations that manage collections and their
objects. See Testing Runtime Operations Using the Endpoints
Page.

Deploy Deploy collections. See Collection Lifecycle.

Creating Collections
The following tasks enable you to create and update collections:

1. Defining a Collection

2. Adding Access Permissions to a Collection

3. Updating the Collection

4. Adding Objects to a Collection

Defining a Collection
The New Collection dialog lets you name a collection so that it can be identified in
REST calls and designate it as shared or user isolated.

1. Open the Storage page either from a mobile backend or by clicking Storage in the
side menu, and click New Collection.

2. Complete the New Collection dialog:

a. Enter a name for your collection. This name is used to form the Universal
Resource Identifier (URI) for the collection. Within the context of the API call,
the collection name is referred to as the collection ID:

{baseUri}/mobile/platform/storage/collections/{collection ID}

For example, for a collection named FiF_UploadedImages (cloud storage of
images uploaded from mobile apps), the URI call would look like this:

{baseUri}/mobile/platform/storage/collections/FiF_UploadedImages

For a closer look at Storage API syntax, see Storage API Endpoints.

b. Choose the collection type: Shared or User Isolated. You can’t change
the scope of the collection after you’ve set it. For details and examples, see
Shared and User Isolated Collections.

c. If needed, enter a short description for the purpose of the collection, to be
displayed in the list of collections.

3. Click Create.

Chapter 14
Working with Collections

14-8

Note:

When you initially create a collection, it’s in a draft state, in version 1.0.

• You can modify the collection name, access permissions, and its
contents. Remember, you can’t change the collection type after it’s
created.

• You can version a collection. You might want to increment a collection’s
major and minor version numbers when you publish it or when you add
new objects.

• While in the draft state, a collection can be moved to the trash from the
More menu.

Collection Metadata
In addition to the basic properties like size (in bytes), and description, the collection
metadata includes the collection name that identifies it for REST calls.

When you create a collection, the Storage API defines it using the following metadata:

Property Value Type Description

description string The short description. This is an optional
value.

Chapter 14
Working with Collections

14-9

Property Value Type Description

id string The collection name, which is used in the
uniform resource identifier (URI). For example:

{baseURI}/mobile/platform/storage/
collections/{collection}

The collection name is case-sensitive,
meaning that mycollection and
Mycollection are two different collections.

Adding Access Permissions to a Collection
Collection access is granted through an anonymous user setting in the environment
policy file, or managed by mobile user roles. Once a mobile user role is defined, you
can also grant which roles can read and write objects in the collection. To see what
mobile user roles are available, go to the Mobile User Management UI and click
Roles. To learn more about roles and mobile users, see Creating and Managing
Mobile User Roles and Creating Mobile Users and Assigning Roles.

Anonymous Access to Collections

Anonymous access is often given to users who just want to check information on an
app without logging in or needing an assigned role. Weather apps, where a user can
check their local weather, are a good example of this.

Likewise, you can grant anonymous access to your shared collection. Once a shared
collection is created, the administrator adds its name to the
Security_CollectionsAnonymousAccess policy. You can then read and write objects to
the shared collection via the REST API or the SDKs using anonymous access. To
read and write objects to the shared collection from the UI, grant Read-
Writepermission to any role on the collection’s properties page. For environment
policies, see Environment Policies and Their Values.

Keep in mind that when you add a shared collection to the policy, both anonymous
and named users have access and read/write privileges to the collection.

Note:

If you try to upload an object to a shared collection which allows anonymous
access, an error dialog appears. To work around this issue, in the Properties
page, specify any mobile user role for the collection’s Read-Write permission
type.

Role-Based Access to Collections

To define which mobile user roles can read and write objects in a collection:

1. In the Storage page, select a collection and then click Open.

2. In the Properties page, specify one or more mobile user roles for each permission
type.

• Read-Only and Read-Write access apply to all collections (shared or user
isolated).

Chapter 14
Working with Collections

14-10

• You can specify Read-Only (All Users) and Read-Write (All Users)
permissions only if the collection type is user-isolated.

Permission Shared User Isolated

Read-Only Read-only access to all of
the objects in a collection.
For example, both a field
technician and a
customer can read
promotional material like
coupons, but they can’t
update them.

Read-only access to a user
isolated collection. When the
Read-Only permission is applied
to user isolated collections, for
example, a customer can view
images (like a coupon), but he
can’t update them, or submit
additional ones (only a user with
Read-Write (All Users)
privileges can add an object to the
customer’s user space). Because
this is a user isolated collection,
the customer can view only his
images (or other customer-specific
objects that are intended only for
him). The Read-Only permission
also prevents him from adding
additional work orders or deleting
them.

Read-Write A user can override any
object in the collection.

A user can override the objects in
his isolated space. For example, a
customer can update the images of
broken appliances that he’s
submitted. Because this is a user
isolated collection, the images that
he can add (and update) are
intended only for him. Because
these images exist in his isolated
space, he can update these
objects, but no one else’s.
Likewise, he can add or delete
images, but can’t do this in anyone
else’s isolated space.

Read-Only (All Users) NA A user can read objects in all
spaces. For example, a field
technician can see the images
updated by any customer, but she
can’t update them, delete them, or
add new ones.

Read-Write (All Users) NA A user can override objects in all
spaces. If a field technician has
Read-Write (All Users)
permission, then she can update
work orders submitted by any
customer.

Chapter 14
Working with Collections

14-11

Note:

By default, mobile users can’t access a collection until they’ve been
assigned mobile user roles that are associated with the Read-Write,
Read-Only, Read-Write (All Users) or Read-Only (All Users)
permissions. Anonymous users can’t access a shared collection until the
collection has been added to the Security_CollectionsAnonymousAccess
environment policy. Anonymous users are automatically granted Read-
Write permissions.

Updating the Collection
You can update the name, description and access to a collection. You can’t however,
change the collection type.

1. On the Storage page, select a collection and then click Open.

2. Click Properties. (The Properties page opens by default when you first create a
collection. On subsequent visits, the Content page opens by default.)

3. Change the name, description or access as needed.

4. Click Save.

Offline Data Storage
The client SDK’s Sync Client library, in conjunction with the Storage library, enables
mobile apps to cache a collection’s objects for offline use and performance
improvement. The apps can then use the cached objects instead of re-retrieving them
from Storage, as described in How Synchronization Works with the Storage APIs. If a
collection’s content changes infrequently, then consider enabling those mobile apps to
cache the collection’s objects by selecting Enable the mobile client SDK to cache
collection data locally for offline use.

When Enable the mobile client SDK to cache collection data locally for offline
use is selected, the objects that a mobile app retrieves can remain in the cache for the
period set in the Sync_CollectionTimeToLive policy. This value is conveyed to the
app through the Oracle-Mobile-Sync-Expires response header. By default, the
timeout period is set for 24 hours (86,400 seconds).

To learn how to configure the timeout period, see Environment Policies.

Don’t select this option for time-critical data, where a cached value might be
misleading. For example, if the collection contains current stock prices, you shouldn’t
select this option, because users expect the latest value (or no value at all).

If your mobile app isn’t using the client SDK’s Storage library, and your app is caching
Storage objects, then you can take advantage of the following request and response
headers:

Chapter 14
Working with Collections

14-12

Type Header Description

Request Oracle-Mobile-Sync-
Agent

When this header is set to
true in the request, then the
response includes either
Oracle-Mobile-Sync-
Expires or Oracle-Mobile-
Sync-No-Store.

Response Oracle-Mobile-Sync-
Expires

Specifies when the returned
resource must be marked as
expired. Uses RFC 1123
format, for example EEE, dd
MMM yyyyy HH:mm:ss z for
SimpleDateFormat. This
value is determined by the
Sync_CollectionTimeToLi
ve policy.

Response Oracle-Mobile-Sync-No-
Store

When set to true, the client
mustn’t cache the returned
resource.

To learn more about data caching, see Data Offline and Sync.

Adding Objects to a Collection
You can populate a collection with objects.

These steps show how to add an object using the UI. When you add an object from
the UI, the ID is generated automatically. If you want to assign a specific ID to an
object, use the Storage API, the custom code SDK, or the client SDK for your mobile
platform. For details, see Storing an Object.

1. On the Storage page, select a collection and click Open.

• If this collection has no objects, click Upload Files and then browse to and
retrieve the object. Click Open.

• If this collection already has objects, click Upload in the Content page. Browse
to and retrieve the object. Click Open.

2. If the collection is shared, click Add. If you have the identity domain administrator
role, you can also upload to user isolated collections. Add the user realm and user
name to the User Name Required dialog, and click Ok. You can only select from
users whose roles have been granted permission to the collection. (Assign these
roles in the Properties page.)

3. To view the object data, select it from the list.

Tip:

To permanently remove an object from a collection, select it and click Delete.

Chapter 14
Working with Collections

14-13

Object Metadata
When you upload an object, the Content page displays basic metadata, such as size,
content type, version information, and who uploaded it. Using this page, you can also
delete unneeded objects, or filter them. Some functions in user isolated collections are
only available if you have the identity domain administrator role.

Property Value Type Description/Usage

ID string The object name, which is used for operations on a
single object. It is the last value specified in the
URI.

Content Length integer The size, in bytes.

Content Type media type The media type for the data, such as image/jpeg
for a JPEG image, or application/json for
JSON.

ETag string (an integer
in quotes, for
example, "17")

A value that represents the version of the object.
It's used with the If-Match and If-None-Match
HTTP request headers.

Created By user name The name of the user who uploaded the data.

Created On time stamp (In
ISO 8601)

The time that the object was most recently stored
on the server. Time stamps are stored in UTC.

Modify By user name The name of the user who modified the object.

Modified On time stamp (in
ISO 8601)

The time when the server received a request for an
object. Time stamps are stored in UTC.

User ID string For a user isolated collection, the ID of the user
whose space the object is in.

Managing Collections
You can update collections in terms of their contents, but you can’t change the type of
the collection. That is, if the collection is a user isolated collection, you can’t change it
to a shared collection.

Associating a Collection with a Backend
Associating a collection makes its contents available to a specific backend. The
associated collection is a dependency.

1. In the Storage page, select a collection.

2. Click More and then select Associate Mobile Backends.

Chapter 14
Working with Collections

14-14

3. In the Associate Backends dialog, select one or more backends from the list.

4. Click Add.

In the details pane, you can see any associated backends by expanding Used By.

You can also associate a collection with a backend this way:

1. Open the backend.

2. Click the Storage tab and then choose Select Collections.

3. Choose one or more collections from the Select Collections dialog, and then click
Select.

Removing a Collection from a Backend
You might want to disassociate a collection from a backend so that you can change
the backend's state without affecting the collection. Or you might want to disassociate
the collection and associate a different one.

1. In the Storage page, select a collection.

2. In the Details section on the right, view the Used By list.

Chapter 14
Working with Collections

14-15

3. To delete the association, click the X that follows the backend version number.

4. You’ll be prompted to remove the dependency. Click Remove.

To remove a collection from a backend:

1. Open the backend.

2. Open the Storage page.

3. Click the X adjacent to the collection that you want to remove.

4. In the Confirm Remove Dependency dialog, click Remove.

Calling the Storage API from Your App
To access the Storage API from your app code, you can use the SDK for your
platform.

For info on setting up the SDKs, see Connecting Your Application to a Mobile
Backend. For complete reference documentation of the SDKs, see Oracle Mobile
Cloud Service Help Center.

Here are some code snippets that you can use in your apps once you have your SDK
set up.

iOS

The code to retrieve an object might look like this:

- (void) downloadData{

 //fill in IDs for collection and object
 NSString* collection_Id = @"";
 NSString* object_Id = @"";

Chapter 14
Calling the Storage API from Your App

14-16

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mobilebooks
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mobilebooks

 // Get storage object
 AppDelegate* appDelegate = [[UIApplication sharedApplication]
delegate];
 OMCMobileBackend* mbe = [appDelegate myMobileBackend];
 OMCStorage* storage = [mbe storage];

 // Get your collection
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Get your object from your collection
 OMCStorageObject* aObject = [aCollection get:object_Id];

 // Get the data from payload of your object
 NSData* data = [aObject getPayloadData];

 lblDownloadStatus.text = @"Download finished";

}

Here’s code you can use to add an object:

- (void) uploadData{

 //Specify a text object to be added to a collection called
"myCollection"
 NSString* collection_Id = @"myCollection";
 NSString* payload = @"This is a simple text object";
 NSString* contentType = @"text/plain";

 if (payload == nil || [payload isEqualToString:@""]) {

 lblUploadStatus.text = @"There is nothing to upload";
 }
 else{

 // Get storage object
 AppDelegate* appDelegate = [[UIApplication sharedApplication]
delegate];
 OMCMobileBackend* mbe = [appDelegate myMobileBackend];
 OMCStorage* storage = [mbe storage];

 // Get collection where you want to upload new data
 OMCStorageCollection* aCollection = [storage
getCollection:collection_Id];

 // Create new data from payload
 NSData* payloadData = [payload
dataUsingEncoding:NSUTF8StringEncoding];
 OMCStorageObject* aObject = [[OMCStorageObject alloc]
setPayloadFromData:payloadData

withContentType:contentType];

Chapter 14
Calling the Storage API from Your App

14-17

 // Post data to collection
 [aCollection post:aObject];

 lblUploadStatus.text = @"Upload finished";
 }
}

Android

The code to retrieve an object might look like this:

private Storage mStorage;
private String collectionID = "YOUR_COLLECTION_ID";
private String objectID = "YOUR_OBJECT_ID";

...

try {
 //Initialize and obtain the storage client
 mStorage =
MobileBackendManager.getManager().getDefaultMobileBackend(this).getServiceP
roxy(Storage.class);
 //Fetch the collection
 StorageCollection collection =
mStorage.getStorageCollection(collectionID);
 //Fetch the object
 StorageObject object = collection.get(objectID);
 //Get the payload
 InputStream payload = object.getPayloadStream();
 //Display the image
 ImageView imageView = (ImageView) findViewById(R.id.imageView);
 imageView.setImageBitmap(BitmapFactory.decodeStream(payload));

} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Here’s code you can use to add an object:

private Storage mStorage;
private String collectionID = "YOUR_COLLECTION_ID";
private String mPayload = "YOUR_PAYLOAD";
private String mContentType = "YOUR_CONTENT_TYPE";

...
//Create or upload an object with specified ID, payload and content-Type
private void uploadObject(String id, String payload, String contentType){
 try {
 //Initialize and obtain the storage client
 mStorage =
MobileBackendManager.getManager().getDefaultMobileBackend(this).getServiceP
roxy(Storage.class);
 //Fetch the collection
 StorageCollection collection =

Chapter 14
Calling the Storage API from Your App

14-18

mStorage.getStorageCollection(collectionID);
 //Create an object with id, payload and content-Type explicitly
specified
 StorageObject object = new StorageObject(null, payload.getBytes(),
contentType);
 //Upload the object
 collection.post(object);
 } catch (ServiceProxyException e) {
 e.printStackTrace();
 }
}

Cordova and JS

Here’s code to retrieve an object:

function downloadData(){
 varcollectiondId = 'COLLECTION_ID';
 var objectId = 'OBJECT_ID';

 mcs
 .mobileBackend
 .storage
 .getCollection(collectionId, null)
 .then(getCollectionSuccess)
 .then(getObjectSuccess)
 .catch(error);

 function getCollectionSuccess(storageCollection)
{returnstorageCollection.getObject(objectId, 'json');
 }

 function getObjectSuccess(storageObject){
 console.log(storageObject.name);
 }

 function error(error){
 console.log(error.statusCode);
 }
 }

 function uploadData(){
 varcollectiondId = 'COLLECTION_ID';
 varobjectId = 'OBJECT_ID';
 varfileName = 'YOUR_FILE_NAME';
 varpayload = 'YOUR_PAYLOAD';
 var contentType = 'text/plain';

 mcs
 .mobileBackend
 .storage
 .getCollection(collectionId, null)
 .then(getCollectionSuccess)
 .then(getObjectSuccess)
 .catch(error);

Chapter 14
Calling the Storage API from Your App

14-19

 function getCollectionSuccess(storageCollection){var storageObject =
newmcs.StorageObject(collection);
 storageObject.setDisplayName(fileName);
 storageObject.loadPayload(payload, contentType);return
storageCollection.postObject(storageObject);
 }

 function postObjectSuccess(response){
 console.log(response.storageObject.id);
 }

 function error(error){
 console.log(error.statusCode);
 }
 }

Testing Runtime Operations Using the Endpoints Page
You can test client REST calls for collections manually through a command line tool or
utility, from a mobile app running on a device or simulator, or you can use the
Endpoints page to test various operations.

Using the Endpoints page for the Storage API, you can try out basic collection calls,
which would typically be exercised by a mobile app. These endpoints would be called
directly by calling REST APIs, indirectly (by calling the client SDK), or through custom
code. Instead of configuring a device or simulator, or entering the command manually,
you can test the API by first entering mobile app user credentials and parameters
appropriate to the call and then by clicking Test Endpoint. The page displays the
payload and the status code.

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-20

You can access the Endpoints page by clicking Storage in Platform APIs section that
is located at the bottom of the APIs page for a mobile backend. You can also open the
page by clicking Storage in the Platform APIs section at the bottom of the APIs page.

(You open this page by clicking to open the side menu. You then click
Applications> Mobile Backends and then APIs).

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-21

Storage API Endpoints
The Storage API has endpoints for retrieving, paginating, and ordering collections and
also for retrieving, updating, and removing objects.

Here, we give a brief overview of the Storage API endpoints. For detailed information,
see REST APIs for Oracle Mobile Cloud Service.

Getting a Single Collection
To get the metadata about a collection, such as ID, description, and whether it is user
isolated, call the GET operation on the {collection} endpoint as follows:

GET {baseUri}/mobile/platform/storage/collections/{collection}

For example, for a collection named images:

GET {baseUri}/mobile/platform/storage/collections/images

Getting All Collections Associated with a Mobile Backend
To get a list of the collections that are associated with a mobile backend, call the GET
operation on the collections endpoint as follows:

GET {baseUri}/mobile/platform/storage/collections

Storing an Object
The Storage API has two operations for creating objects. The operation that you use
depends on if you want to specify the object’s ID or you want the ID to be generated
automatically.

• To specify the ID, use PUT, and put the ID in the URI as described in Specifying
the Object Identifier. Note that you can use the If-None-Match header to ensure
that you don’t overwrite an object that has the same ID, as described in Creating
an Object (If One Doesn't Already Exist).

• To generate an ID, use POST as described in Generating an Object Identifier.

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-22

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

When you create an object using your own ID, remember that, for shared collections,
the ID must be unique to the collection. For user isolated collections, the ID must be
unique to the user’s space.

Always include the Content-Type header to specify the media type of the object being
stored. This property also specifies the media type to return when the object is
requested. If you don’t include this header, then the content type defaults to
application/octet-stream.

Note that Storage doesn’t transform or encode an object. Storage stores the exact
bytes that you send in the request. For example, you can’t send a Base-64 encoded
image and store it as a binary image by including a Content-Type header set to
image/jpeg and a Content-Encoding header set to base64. You can use a custom API
to perform the transformation for you, as shown in the code examples in
storage.store(collectionId, object, options, httpOptions).

Specifying the Object Identifier
When performing a PUT operation, the identifier of the object corresponds to the last
value specified in the URI. For example, to store an object with an ID called part1524:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Creating an Object (If One Doesn't Already Exist)
Put the wildcard (*) character in the request's If-None-Match header to force the PUT
operation to create the object with the specified object ID only if no other object exists
with that ID. Specifying the wildcard causes the call to fail if another object already
exists with the same ID. For example:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1542

Headers:
 If-None-Match: *

Generating an Object Identifier
To generate the identifier for an object and then store the object, use the POST
operation. Unlike the PUT operation, there’s no identifier specified at the end of the URI
for a POST operation. For example:

POST {baseUri}/mobile/platform/storage/collections/images/objects

The URI that accesses the newly created object is returned through the Location
header in the response, and the ID attribute is included in the response body.

What Happens When an Object is Created?
When an object is created:

• The content is stored.

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-23

• The value of the Content-Type field in the request is stored. (This becomes the
Content-Type field definition returned when the object is requested using a GET
operation.)

• An entity tag (ETag) value is assigned.

• The createdBy value is set to the user ID of the user who performed the create
operation.

• The createdOn value is set to the time the object was stored on the server.

Updating an Object
Objects are updated using the PUT operation. For the PUT call, specify the same
identifier that was specified or generated when the object was created. Because
objects are opaque, updating an object completely replaces the previous contents.

What Happens When an Object Is Updated?
When a PUT is performed on an object, the following occurs:

• The content is completely replaced.

• The value of the ETag changes.

• The modifiedBy value is set to the user ID for whom the mobile app performed the
PUT operation.

• The modifiedOn value is set to the time the object was stored on the server.

Optimistic Locking
Optimistic locking is a strategy to use when you want to update an object only if object
was not updated by someone else after you originally retrieved it. To implement this
strategy, do one of the following:

• Put the timestamp of when you last retrieved the object in the If-Unmodified-
Since header.

• Put the object’s ETag in the If-None-Match header.

For example, if the ETag value from the previous call is 2, then the PUT operation in the
following example is performed only when the If-None-Match value of "2" matches
the ETag of the object (part1524). If the versions don’t match, then the call’s PUT
operation isn’t performed and part1524 remains unchanged.

PUT{baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-None-Match: \"2\"

You can get a similar result using If-Unmodified-Since:

PUT {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-Unmodified-Since: Mon,30 Jun 2014 19:43:31 GMT

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-24

Retrieving Objects
You can get a list of the objects in a collection, and you can get an object.

Retrieving a List of Objects
To get the metadata about a set of objects in a collection, use the GET operation on
the /collections/{collection}/objects endpoint. This metadata includes the
object’s ID, its name, and size. The metadata also includes the canonical link and self
links. For a full list of properties, see Taking a Look at Object Metadata.

In this example, images is the name of a shared collection.

GET {baseURI}/mobile/platform/storage/collections/images/objects

If the collection is user isolated and you have READ_ALL or READ_WRITE_ALL access,
then you must include the user query parameter and specify which user's objects you
want listed, even if you want to see your own objects (use * to list all user’s objects).
Note that you provide the user’s ID, not the user name. For example:

GET {baseURI}/mobile/platform/storage/collections/images/objects?
user=0cea04ee-9e26-4de3-ad6b-00a66c8d3b96

Paging Through a List of Objects
If you don’t want to see all the results, or if you want to get the results in small blocks,
use the limit and offset query parameters to request a subset of items.

Use the limit parameter to restrict the number of items returned. The default is 100.
Define offset as the zero-based starting point for the returned items. The returned
JSON body contains links for retrieving both the next and previous sets of items.

The following example gets the metadata for 50 objects, starting with the 201st object.

Get {baseUri}/mobile/platform/storage/collections/images/objects?
offset=200&limit=50

Ordering
Use the orderBy parameter to control the order of the returned items. You can specify
which property to order on and specify whether to put the items in ascending (asc) or
descending (desc) order:

Get {baseUri}/mobile/platform/storage/collections/images/objects?
orderBy=contentLength:desc

You can sort by the name, modifiedBy, modifiedOn, createdBy, createdOn, or
contentLength property.

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-25

Note:

You can order by one property only (either asc or desc).

Querying
Use the q query parameter to restrict the list of returned objects to the value specified
for the id, name, createdBy, or modifiedBy attributes.

Get {baseUri}/mobile/platform/storage/collections/images/objects?q=part

The objects returned are based on a case-sensitive, partial match of the id, name,
createdBy, and modifiedBy attributes. With this example, the results might include an
item with an ID of part1524 and an item modified by bonapart.

Retrieving an Object
Use the GET operation to retrieve the entire object. When performing the GET operation,
the identifier (such as part1524 in the following example) is specified at the end of the
URI.

Storage always returns the exact bytes that were stored. If the Accepts header doesn’t
match the Content-Type that the object was stored with, then it returns a 406 status
code.

In this example, the object is returned only if the Etag does not match. You can use
this strategy prevent re-fetching an object if it hasn’t changed.

Get {baseUri}/mobile/platform/storage/collections/images/objects/part1524

Headers:
 If-None-Match: \"2\"

Deleting an Object
To remove an object from a collection, call the DELETE operation. Deleting an object is
permanent. There’s no way to restore an object after you call this operation.

DELETE {baseUri}/mobile/platform/storage/collections/images/objects/
part1524

To safely remove an object, use the If-None-Match header with the object’s ETag, or
the If-Unmodified-Since header with the timestamp of when you last retrieved the
object:

DELETE {baseUri}/mobile/platform/storage/collections/images/objects/
part1524

Headers:
 If-None-Match: \"2\"

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-26

As described in Updating an Object, you can use these headers to prevent overriding
a change that another user made after you originally retrieved the object.

Optimizing Performance
You can use these strategies to optimize performance when you retrieve an object:

• Check If Exists

• Get If Newer

• Reading Part of an Object (Chunking Data)

Check If Exists
To check if an object exists, use the HEAD operation instead of a GET operation. The
HEAD operation returns the same information except for the actual object value.

Put If Absent
You can use the If-None-Match header with a wildcard (*) value in a PUT operation to
store an object only when (or if) it isn’t already included in the collection.

When you use this strategy, the call executes only when the ETag is absent, which is
true only if the object does not exist.

PUT {baseUri}/mobile/platform/storage/collections/profiles/objects/uprofile

Headers:
 If-None-Match: *

In this example, if the uprofile object doesn’t have an ETag, then myProfile.txt is
stored as the uprofile object.

Get If Newer
If you have already retrieved an object, and you want to re-fetch it only if it has
changed, use the GET operation with the If-None-Match or If-Modified-Since header
to retrieve the object only if there has been a change since the last time the object was
fetched.

• If-None-Match

This example re-fetches the object only if the ETag is not 2.

GET {baseUri}/mobile/platform/storage/collections/images/objects/
part1542

Headers:
 If-None-Match: \"2\"

• If-Modified-Since

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-27

This example re-fetches the object only if it was modified after the date and time
specified. Otherwise, the response status is 304 not modified.

GET {baseUri}/mobile/platform/storage/collections/images/objects/
part1542

Headers:
 If-Modified-Since: Mon, 30 Jun 2014 19:43:31 GMT

Reading Part of an Object (Chunking Data)
If the mobile app needs to get a large object like a video file, you can use the Range
header to retrieve a subset of the object. This field lets the mobile app retrieve the data
in chunks, rather than all at once, by requesting a subset of bytes. Using this strategy,
you can start streaming a video, or start displaying the contents of a long list before
you fetch the whole object.

Here are examples of byte-range specifier values:

• First 100 bytes: bytes=0-99

• Second 100 bytes: bytes=100-199

• Last 100 bytes: bytes=-100

• First 100 and last 100 bytes: bytes=0-99,-100

This example gets the first 100 and last 100 bytes of a profile to display a preview of
the object’s contents:

GET {baseUri}mobile/platform/storage/collections/profiles/objects/uprofile

Headers:
 Range: bytes=0-99,-100

Chapter 14
Testing Runtime Operations Using the Endpoints Page

14-28

15
Data Offline and Sync

Mobile app developers can use the Data Offline and Sync features to build a client app
that enables the users to perform critical tasks when offline.

You can use the following APIs to build applications that cache REST resources for
offline use and then synchronize all offline changes with the server when the device
goes online again.

15-1

API Platforms Features

Sync Express • Cordova
• JavaScript

• Basic synchronization.
• Easy to use.
• Works with any REST API

where the resource name
alternates between plural
nouns and singular
resource identifiers (rid),
such as /items/{rid}/
subitems/{rid}.

• Requires minimal
changes to existing code.

• Works with any
JavaScript framework.

• When device reconnects,
sends change requests
one resource object at a
time.

• Always overwrites the
server version of the
object.

Synchronization • Android
• iOS

• Robust synchronization.
• Works with

synchronization-compliant
custom APIs.

• When device reconnects,
sends all changes in one
request.

• Provides choices for what
to do if the server version
of an object changes
while edits were made
offline (server wins, client
wins, preserve conflict).

• Provides choices for how
long to store resource
objects on the device,
when to refresh data from
the server, and which
resources can be edited
when offline.

• Automatically
synchronizes with the
Storage platform.

Building Apps that Work Offline Using Sync Express
The Javascript and Cordova client SDKs feature Sync Express, which enables you to
easily and quickly make your application work offline using your existing REST
requests. You can use this library for REST APIs where the resource name alternates

Chapter 15
Building Apps that Work Offline Using Sync Express

15-2

between plural nouns and singular resource identifiers (rid), such as /items/{rid}/
subitems/{rid}.

Adding Sync Express to Your App

To use Sync Express in your app, you must complete the following tasks.

• Copy both mcs.sync.min.js and mcs.min.js from the SDK into the directory
where you keep your JavaScript libraries.

• Use a script element to load mcs.sync.min.js. This must be the first script that
the app fetches and loads unless you add loki-cordova-fs-adapters.js, which
is explained next.

• Use either RequireJS or a script element to load mcs.min.js.

• From the command line, enter the following to add the cordova-plugin-network-
information plugin. This plugin enables Sync Express to detect if the device is
online or offline.

cordova plugin add cordova-plugin-network-information

When an application attempts to store more REST resources than the device’s cache
size allows, Sync Express throws a QUOTA_EXCEEDED_ERR exception. With Cordova
apps, you can install the cordova-plugin-file to increase the device’s cache size. This
plugin isn’t available for JavaScript web apps.

1. To install and use the cordova-plugin-file.

cordova plugin add cordova-plugin-file

2. Copy loki-cordova-fs-adapters.js from the SDK into the directory where you
keep your JavaScript libraries.

3. Add a script element to load loki-cordova-fs-adapter.js. This must be the first
script that the app fetches and loads. Then the app can load mcs.sync.min.js and
mcs.min.js as described above.

Configuring Your App to Use Sync Express

To enable Sync Express, add a syncExpress entry to
oracle_mobile_cloud_config.js, and use path elements in the policies array to
identify the endpoints that you want to activate Sync Express for. The name that you
use for a path parameter must exactly match the name of the property that uniquely
identifies a returned object. Use a colon to identify the path parameter, such
as :deptId.

Note:

The configuration file can have a syncExpress entry for Sync Express or a
sync entry for the Synchronization library, but it can’t have both.

Let’s say, for example, that you want to activate Sync Express for all calls to these
endpoints:

• /departments

Chapter 15
Building Apps that Work Offline Using Sync Express

15-3

• /departments/{deptId}

The department database object has these properties:

deptId: number
name: string

The response object for a department collection looks like this:

[
 {
 "deptId": 1,
 "name": "Department 1"
 },
 {
 "deptId": 2,
 "name": "Department 2"
 }
]

The corresponding syncExpress entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for both endpoints.

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackends": {
 "myBackend": {
 ...
 }
 }
 "syncExpress": {
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\\d+)?'
 }
]
 }
};

Now let’s say, for example, that you want to include calls to endpoints with
subcollections (nested entities), such as an employees within a department:

• /departments

• /departments/{deptId}

• /departments/{deptId}/employees

• /departments/{deptId}/employees/{empId}

The employee database object has these properties:

deptId: number
empId: number
name: string

Chapter 15
Building Apps that Work Offline Using Sync Express

15-4

The response object for an employee collection looks like this:

[
 {
 "empId": 1,
 "name": "John Doe"
 },
 {
 "empId": 2,
 "name": "Jane Doe"
 }
]

The corresponding syncExpress entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for all the endpoints.

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackends": {
 "myBackend": {
 ...
 }
 }
 "syncExpress": {
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\\d
+)/:_employees?/:empId(\\d+)?'
 }
]
 }
};

Sync Express provides some regular expressions for formulating the path
specification:

• Use a colon (:) plus the property name to indicate either a path parameter or the
name of the property that uniquely identifies each returned object (or both). For
example, for the /departments endpoint, you must include :deptId(\\d+) in the
path specification to indicate the unique identifier for a department resource, even
if the API didn’t have a /mobile/custom/myAPI/departments/{deptId} endpoint.

• Use a question mark (?) to indicate that the path parameter is optional.

• When a path segment represents a collection of children resources (a
subcollection), then you must precede the parameter name with a colon and an
underscore (:_) so that Sync Express stores the response objects in the client
cache as children objects that are associated with the parent object.

• By default, Sync Express assumes that the path parameter is a string. Use (\\d+)
to indicate that the path parameter must be a numeric value.

For example, given the /mobile/custom/myApi/departments/:deptId(\\d
+)/:_employees?/:empId(\\d+)? path specification:

Chapter 15
Building Apps that Work Offline Using Sync Express

15-5

• :deptId specifies a path parameter and also provides the name of the property in
the department object that uniquely identifies a department.

• The ? after :deptId(\\d+) indicates that this and subsequent parameters are not
required. Thus, the path specification applies to these endpoints:

– /mobile/custom/myApi/departments

– /mobile/custom/myApi/departments/{deptId}

– /mobile/custom/myApi/departments/{deptId}/employees

– /mobile/custom/myApi/departments/{deptId}/employees/{empId}

• (\\d+) indicates that the path parameter value must be numeric. If the object’s
deptId property is a string, then you’d use /mobile/custom/myApi/
departments/:deptId? instead.

• (:_employees) identifies a subcollection and indicates that all response objects
must be stored in the client cache as children of the specified deptId.

Configuring Your App to Handle items Arrays

If any response bodies wrap a collection in an items property, such as "items":
[{"id:":33},{"id:":34}], then you must add the Oracle REST handler to the
syncExpress entry in the configuration file, as shown in the following example:

var mcs_config = {
 "logLevel": mcs.LOG_LEVEL.INFO,
 "mobileBackends": {
 "myBackend": {
 ...
 }
 }
 "syncExpress": {
 "handler": "OracleRestHandler",
 "policies": [
 {
 "path": '/mobile/custom/myApi/departments/:deptId(\\d+)?'
 }
]
 }
};

Making Your App Synchronize Offline Changes Automatically

To make an app synchronize offline changes with the server automatically, add code
to refresh the user interface when the device re-connects (goes online) by making
explicit REST calls, which then flush pending changes automatically.

Building Apps that Work Offline Using the Synchronization
Library

Use the Synchronization library from Android and iOS mobile apps to enable the app
users to continue to use the app when offline.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-6

What Can I Do with the Synchronization Library?
When developing Android and iOS client apps, you, as a mobile app developer, might
often take these goals into consideration:

• Enable updates to app data on mobile devices when connectivity is intermittent or
non-existent.

• Improve performance by minimizing the amount of calls and data transported over
the wire.

The client SDK’s Synchronization library, with its data caching, support for offline
operations, and automated synchronization, enables you to achieve these goals when
you access custom API resources. In addition, through declarative policies, you can
design caching and synchronization policies for your custom APIs that you can apply
across your apps, and adjust without having to modify code.

Using the Synchronization Library to Enable Edits to App Data When the Mobile
Device Is Offline

As an example of how you can use the Synchronization library to enable app users to
read, create, update, and delete data when the mobile device is offline, consider some
apps that are designed for the Fix it Fast (FiF) company, which maintains in-house
appliances. The mobile app developer wants to ensure that the apps continue to work
even when there is no internet connection. For example:

• A customer uses an FiF mobile app to fill out the details for an incident report
regarding a basement furnace. She then goes to the basement to take a picture of
the furnace's barcode, attaches it to the report, and taps Send. Even though
there’s no internet connection in the basement, the app should enable the
customer to access, change, and send the incident report. As soon as the device
reconnects to the internet, the app should transmit the report and the attached
photo to the server.

• During the day, a technician reviews her job list, sorts the jobs by priority, driving
distance, and issue type, and adjusts the priorities as needed. As she completes a
job, she attaches notes to the incident report, and she updates the job status. She
expects to be able to do all these tasks even when she doesn't have access to the
internet. When her device is connected, she expects the app to synchronize her
offline modifications with the server, first synchronizing the essential information,
such as job status, and then synchronizing the less essential information, such as
her notes.

• After an unexpectedly long repair, the technician lowers the priority for customer
that is the furthest away, John Doe. Because she is offline, her modifications are
stored in the offline edits in the local cache. During the time she was offline, John
Doe called the office to report that his water heater was now leaking, and the office
changed his priority to high. When the technician goes back on line, the app
synchronizes the updates, and sees that there is a conflict. The app pops up a
notice about the conflict and asks the technician if she still wants to lower the
priority.

To implement these data offline requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
update, and conflict resolution policies in the configuration file.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-7

• To ensure that incident reports from the /incidents resource are always
available, that they can be modified while offline, and that the server is updated
with queued offline modifications as soon as the device resumes access, the
mobile app developer sets the following policies for the resource:

– Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM_SERVICE_IF_ONLINE).

– Update policy: Queue updates if offline and synchronize automatically when
the client app is back online (QUEUE_IF_OFFLINE)).

• To ensure that two technicians don't inadvertently update the same status or
priority for an /incidentstatus resource due to queued offline updates, the
mobile app developer sets the following policy:

– Conflict resolution policy: Don’t overwrite the server’s version with the local
version if there’s a conflict. The edited local version is kept in the offline edits
in the local cache, and the mobile app handles the conflict
(PRESERVE_CONFLICT).

Note:

This assumes that the code for this custom API returns the correct
information, such as the ETag that is used to detect conflicts, as
described in Returning Cacheable Data.

To learn about all the data offline policy options, see Synchronization Policies.

Using the Synchronization Library to Improve Performance

As an example of how you can use the Synchronization library to improve
performance, consider the FiF apps that we discussed previously.

• Before leaving the office every morning, the technicians start an FiF app on their
tablets, and pull a list of their jobs for the day. Because the customer information
such as name, phone, and address is static, the app can cache that data upon
startup and not re-retrieve it during the day to improve performance. Other
information, such as incident status and priority, must be kept current.

• Expired data needs to be cleared whenever the app is restarted.

• The finance department designed an API that supplies a customer's default credit
card information. Because the information is fairly static, mobile apps might
consider caching that information to improve performance. However, the finance
department wants to ensure that mobile apps never cache that information.

To implement these performance requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
expiration, and eviction policies in the configuration file.

• To cache the information from the /customer resource so that it's retrieved from
the server on startup, and, after that from the local cache only, the mobile app
developer sets the following policies:

– Expiration policy: Mark resources as expired when the client application
restarts (EXPIRE_ON_RESTART).

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-8

– Eviction policy: Delete expired resources from the local cache when the client
application restarts (EVICT_ON_EXPIRY_AT_STARTUP).

– Fetch policy: Fetch resource from the server only if it isn’t in the local cache or
is expired (FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY).

• To ensure that the priority and status from the /incidentstatus resource is
always available, but stays as current as possible:

– Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM_SERVICE_IF_ONLINE).

– Eviction policy: Delete expired resources from the local cache when the client
application restarts (EVICT_ON_EXPIRY_AT_STARTUP).

– Expiration policy: Mark a resource as expired when the client application
restarts. Update the local cache with the latest version from the server the next
time the client application calls the resource (EXPIRE_ON_RESTART).

• To ensure that none of the information from the /creditcards resource is cached,
the custom code that implements this API makes sure that all HTTP responses
include the Oracle-Mobile-Sync-No-Store header set to true.

To learn about all the data caching policy options, see Synchronization Policies. To
learn about the synchronization headers, see Defining Synchronization Policies and
Cache Settings in a Response Header.

Synchronization Library Process Flow
To help you understand how the parts fit together, here’s an explanation of how the
Synchronization library does the following:

• Manages objects in the local cache

• Uses synchronization policies to retrieve resources from either the local cache or
the server

• Handles object updates

When the mobile app makes a request through the Synchronization library to get data
from a custom API, the Synchronization library looks at the fetch policy setting to
determine whether to get the objects from the server or the local cache. Whenever the
Synchronization library fetches objects from the server, it refreshes the local cache
with the newly fetched objects.

Depending on the policy settings, the Synchronization library might also periodically
refresh expired items in the local cache using a background process.

When the user edits an object, the following occurs depending on whether the mobile
device is online or offline:

• Online edit: An update request is sent to the server.

• Offline edit: The edited object is stored in the offline edits in the local cache. When
the app goes online, a background process sends a request to update the
resource on the server.

If the conflict resolution policy is CLIENT_WINS, the update request includes an If-
Match header of * so that the server updates the resource without conflict. Otherwise
the request includes an If-Match header that is set to the ETag that was last returned
by the server.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-9

To learn more about the synchronization policy types and options and how to set
them, see Synchronization Policies.

Video: Overview of the Data Offline & Synchronization API
To learn more about how the Synchronization library uses caching to enable a client
app to work offline as well as improve performance, take a look at this video:

Video

Android Synchronization Library
This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

For detailed information about the library, see Oracle Mobile Cloud Service Android
SDK Reference.

Tip:

The client SDK ZIP file contains an examples folder, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Setting Up Your Mobile App for the Android Synchronization Library
1. Ensure that the AndroidManifest.xml file contains the following entries.

WRITE_EXTERNAL_STORAGE lets the Synchronization library maintain the local cache.
ACCESS_NETWORK_STATE lets the Synchronization library determine the connection
status.

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />

2. Ensure that the correct policies are in place for the mobile backend and API
endpoints as described in Synchronization Policy Levels and Precedence and
Defining Synchronization Policies Using a Configuration File.

3. As with all mobile apps, instantiate MobileBackendManager, and then instantiate
MobileBackend to manage connectivity, authentication, and other transactions
between your application and its associated mobile backend, including calls to
platform and custom APIs.

4. To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

try {
 Synchronization synchronization =
 MobileBackendManager.getManager().
 getDefaultMobileBackend(this).
 getServiceProxy(Synchronization.class);

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-10

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13339
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssa-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssa-index

} catch (ServiceProxyException e) {
 e.printStackTrace();
}

Fetching Resources
After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

1. To access an endpoint, instantiate MobileEndpoint for that endpoint. This
example instantiates an endpoint for /mobile/custom/incidentreport/
incidents.

// open Endpoint
MobileEndpoint endpoint =
 synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 MobileObject.class);

2. (Optional) Add objects or files to the collection. This example adds an object.

MobileObject newObject = endpoint.createObject();
JSONObject payload = new JSONObject();
// Set properties
try {
 payload.put("title", "incident 213");
 ...
} catch (JSONException e) {
 ...
}
newObject.initialize(null, endpoint, payload);
// Add incident
newObject.saveResource(new MobileEndpointCallback() {
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 //This function is called when the request completes
 ...
 }
});

3. Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

• FetchObjectBuilder

• FetchCollectionBuilder

• FetchFileBuilder

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-11

Here’s an example of creating a fetch builder for a collection.

FetchCollectionBuilder fetchCollectionBuilder = endpoint.fetchObjects();

In this example, we want to filter all the incidents for the signed-in technician
(which is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

fetchCollectionBuilder =
fetchCollectionBuilder.withQueryParameter("technician", username);

Tip:

You can call withQueryParameter as many times as you need to specify
all the query parameters.

4. Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated
with this fetch builder, the request includes the Oracle-Mobile-Diagnostic-
Session-ID header. The mDiagLogFilterTag string variable has been set to a
value that uniquely identifies requests that are made using this fetch builder.

fetchCollectionBuilder.withHeader("Oracle-Mobile-Diagnostic-Session-
ID", mDiagLogFilterTag);

5. Use the builder to execute the fetch.

fetchCollectionBuilder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 //This function is called when the request completes
 ...
 MobileObjectCollection collection = (MobileObjectCollection)
mobileResource;
 }
});

If the fetch policy is to fetch the data from the local cache, such as
FETCH_FROM_SERVICE_ON_CACHE_MISS, then it’s fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

6. The raw downloaded JSON object is exposed through the JsonObject property.
Use this property to set the appropriate values.

List objectsList = collection.getObjectsList();
MobileObject incidentMobileObject = (MobileObject)
objectsList.get(index);
JSONObject json = incidentMobileObject.getJsonObject();

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-12

// This updates incidentMobileObject
json.put("status", "completed");

7. Use one of the MobileObject save methods to save the changes on the server.

incident.saveResource(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 ...
 }
});

If the device isn’t connected to the internet, and the update policy is
UPDATE_IF_OFFLINE, then the library saves the changes to the local cache. The
Synchronization library sends the changes to the server automatically when the
device reconnects with the internet.

8. Use one of the MobileObject delete methods to delete an object.

incident.deleteResource(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 ...
 }
});

If the client is offline, then the library deletes the object in the local cache. It
deletes the object on the server when the client is online again.

Fetching Filtered Resources
You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as mobileResource objects, convert the objects to JSON
objects, and then filter the items. However, when the device is offline, your app can’t
filter the mobileResource objects in the local cache because the objects are just blobs
of data. The solution is to use a custom MobileObject. When you do this, the local
cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We’ll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom MobileObject class, you can use the
fetch builder’s queryFor method to specify the filter to use in the local cache. Note that
this method is for filtering JSON objects from the local cache. It doesn’t affect the way
that the Synchronization library retrieves results from the server. Whenever you
execute the fetch builder, the library first looks at the fetch policy setting to determine
whether to refresh the local cache. If the policy specifies that it must refresh the local
cache from the server, then it retrieves all the objects, regardless of the filter that you
specify using the queryFor method. Regardless of the fetch policy and whether it
refreshed the local cache, the library then uses the queryFor method to filter the data
in the local cache, and return the filtered results. That is, regardless of whether the

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-13

device is online or offline, and regardless of whether the library fetches data from the
server or uses the local cache, the queryFor method filters the results based on the
query property and value.

1. Create a class that extends MobileObject. Add a property for every field that you’ll
use in the app. Then override onDataLoad() and getPropertyNames() and create
getters and setters for the fields. Here’s an example of creating an
IncidentCustomMobileObject class.

public class IncidentCustomMobileObject extends MobileObject {
 private int id;
 private String title;
 private String technician;
 private String customer;
 private String status;
 private String priority;
 private String createdBy;
 private String createdOn;
 private String modifiedBy;
 private String modifiedOn;

 // This method tells the Synchronization library how to get the
values from the JSON object.
 @Override
 protected void onDataLoad(){
 try{
 if(jsonObject != null){
 title = jsonObject.has("title") ?
jsonObject.getString("title") : "";
 technician = jsonObject.has("technician") ?
jsonObject.getString("technician") : "";
 customer = jsonObject.has("customer") ?
jsonObject.getString("customer") : "";
 status = jsonObject.has("status") ?
jsonObject.getString("status") : "";
 createdBy = jsonObject.has("createdBy") ?
jsonObject.getString("createdBy") : "";
 createdOn = jsonObject.has("createdOn") ?
jsonObject.getString("createdOn") : "";
 modifiedBy = jsonObject.has("modifiedBy") ?
jsonObject.getString("modifiedBy") : "";
 modifiedOn = jsonObject.has("modifiedOn") ?
jsonObject.getString("modifiedOn") : "";
 priority = jsonObject.has("priority") ?
jsonObject.getString("priority") : "";
 }
 } catch (Exception e){
 e.printStackTrace();
 }
 }

 // The Synchronization library uses this method to determine the
column names and data
 // types for the database table for the local cache.
 @Override

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-14

 public void getPropertyNames(Map<String,PropertyType> properties,
List<List<String>> indexes){
 properties.put("title", PropertyType.String);
 properties.put("technician", PropertyType.String);
 properties.put("customer", PropertyType.String);
 properties.put("status", PropertyType.String);
 properties.put("createdBy", PropertyType.String);
 properties.put("createdOn", PropertyType.String);
 properties.put("modifiedBy", PropertyType.String);
 properties.put("modifiedOn", PropertyType.String);
 properties.put("priority", PropertyType.String);
 }

 //Getters and Setters

 public int getId() {
 return id;
 }

 public void setId(int id) {
 this.id = id;
 }

 public String getTitle() {
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String getTechnician() {
 return technician;
 }

 public void setTechnician(String technician) {
 this.technician = technician;
 }

 public String getCustomer() {
 return customer;
 }

 public void setCustomer(String customer) {
 this.customer = customer;
 }

 public String getStatus() {
 return status;
 }

 public void setStatus(String status) {
 this.status = status;
 }

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-15

 public String getPriority() {
 return priority;
 }

 public void setPriority(String priority) {
 this.priority = priority;
 }

 public String getCreatedBy() {
 return createdBy;
 }

 public void setCreatedBy(String createdBy) {
 this.createdBy = createdBy;
 }

 public String getCreatedOn() {
 return createdOn;
 }

 public void setCreatedOn(String createdOn) {
 this.createdOn = createdOn;
 }

 public String getModifiedBy() {
 return modifiedBy;
 }

 public void setModifiedBy(String modifiedBy) {
 this.modifiedBy = modifiedBy;
 }

 public String getModifiedOn() {
 return modifiedOn;
 }

 public void setModifiedOn(String modifiedOn) {
 this.modifiedOn = modifiedOn;
 }

}

2. Open the endpoint for the custom class.

MobileEndpoint endpoint =
 synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 IncidentCustomMobileObject.class);

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-16

3. When you create the fetch builder, use the queryFor method to add a query to
filter the results by status.

FetchCollectionBuilder fetchCollectionBuilder = endpoint.fetchObjects();
fetchCollectionBuilder = fetchCollectionBuilder.queryFor(
 "status",
 Comparison.Equals,
 "pending");

4. Fetch the data.

fetchCollectionBuilder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource){
 MobileObjectCollection collection = (MobileObjectCollection)
mobileResource
 }
})

5. The raw downloaded JSON object is exposed through the JsonObject property.
Use this property to access the appropriate values.

Incident incident = (Incident) collection.getObjectsList().get(index);
JSONObject json = incident.getJsonObject();
json.put("status", "completed");

6. Save and delete objects the same way you save and delete OMCMobileObject
objects.

//Save the object
incident.saveResource (new MobileEndpointCallback(){
});
...
// Delete the object
incident.deleteResource (new MobileEndpointCallback(){
});

Specifying Which Resources to Synchronize First
When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before
others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the MobileResource class’ pinResource method
to set a resource’s priority (MobileFile, MobileObject, and MobileObjectCollection
inherit from this class).

builder.execute(new MobileEndpointCallback(){
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 mobileResource.pinResource(PinPriority.High);

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-17

 }
});

Setting a Resource’s Synchronization Policies Programmatically
When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these
saved policies when you fetch the data and before you add, update, or delete a
resource.

Setting a Fetch Builder’s Synchronization Policy

You can use the fetch builder’s synchronization policy to override an endpoint’s
configured policies. When the library fetches the resource from the server, it saves the
fetch builder’s policy settings with the resource.

1. Create the fetch builder.

FetchCollectionBuilder fetchCollectionBuilder = endpoint.fetchObjects();

2. Create a SyncPolicy object and set the policies to override. This example
overrides all the policies:

SyncPolicy policy = new SyncPolicy();
policy.setFetchPolicy(SyncPolicy.FETCH_POLICY_FETCH_FROM_SERVICE_IF_ONLI
NE);
policy.setExpirationPolicy(SyncPolicy.EXPIRATION_POLICY_EXPIRE_ON_RESTAR
T);
policy.setEvictionPolicy(SyncPolicy.EVICTION_POLICY_EVICT_ON_EXPIRY_AT_S
TARTUP);
policy.setUpdatePolicy(SyncPolicy.UPDATE_POLICY_QUEUE_IF_OFFLINE);
policy.setConflictResolutionPolicy(SyncPolicy.CONFLICT_RESOLUTION_POLICY
_CLIENT_WINS);
policy.setNoCache(false);

3. Set the builder’s synchronization policy.

fetchCollectionBuilder = fetchCollectionBuilder.withPolicy(policy);

Changing a Resource Object’s Synchronization Policy

Sometimes, you’ll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.

1. Get the synchronization policy for the mobile resource object.

SyncPolicy policy = mIncidentMobileObject.getCurrentSyncPolicy();

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-18

2. Set the conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.
All other policies remain as is.

policy.setConflictResolutionPolicy(SyncPolicy.CONFLICT_RESOLUTION_POLICY
_CLIENT_WINS);

3. Set the mobile resource object’s synchronization policy. This change doesn't take
affect until you call saveResource (to perform an add or update). For a delete, you
must call reloadResource for the policy change to take affect before you call
deleteResource.

mIncidentMobileObject.setSyncPolicy(policy);

Detecting and Handling Conflicts
In Conflict Resolution Policies, you learn how to set the conflict resolution policy for the
custom API resources that your mobile app accesses. When the conflict resolution
policy that is in affect for a resource is PRESERVE_CONFLICT, the Synchronization library
doesn’t overwrite the server’s version with the local version if there’s a conflict.
Instead, an edited version is kept in the offline edits in the local cache, and the mobile
app is responsible for handling the conflict, such as programmatically merging the two
versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary’s device reconnects with the internet, and the Synchronization library
automatically sends Mary’s offline edit to the server. The server responds with a 412
Precondition Failed status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
it makes available both the modified object (from the offline edits in the local cache),
and the current server version to enable you to handle the conflict in your code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. You have two options for detecting and
handling conflicts that occur when a device reconnects:

• To detect and handle conflicts after the library finishes synchronizing offline edits
with the server, use the offlineResourceSynchronized method, as shown in the
first example. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

• To check whether a conflict occurs at the time that the library sends the offline edit
to the server (when the device is online), use the cacheResourceChanged method
to listen for online updates and deletes, as shown in the second example. The
callback for this method is called for each resource that the library updates or
deletes. Typically, you use this method to detect any resource change during a
background cache refresh so that you can refresh the UI with the change.
However, you also can use this method to detect and handle conflicts when the

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-19

library synchronizes the offline edits. Note that the callback is not called when the
library adds a new resource to the local cache.

Don’t initialize CachedResourceChanged more than once during the lifetime of the
application.

Detecting Conflicts When the Library Completes Synchronization

Here’s an example of using the Synchronization offlineResourceSynchronized
method to detect conflicts after the Synchronization library has finished synchronizing
the cache. In this example, the only mobile endpoint that the mobile app accesses is
the incidents endpoint. This example shows how to handle both custom and generic
MobileObject objects.

synchronization.offlineResourceSynchronized(new
SyncResourceUpdatedCallback() {
 @Override
 public void onResourceUpdated(String uri, MobileResource
mobileResource) {
 if (mobileResource == null) {
 Log.i("offlineResourceSync", "Resource for " + uri +
 "deleted from cache after offline synchronization");
 return;
 }

 String result = null;
 if (mobileResource.hasConflict()) {
 result = "with conflicts";
 } else if (mobileResource.hasOfflineUpdates()) {
 result = "with offline update";
 } else if (mobileResource.hasOfflineCommitError()) {
 result = "with error";
 } else {
 result = "successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if (mobileResource instanceof IncidentCustomMobileObject) {

 IncidentCustomMobileObject anIncident =
(IncidentCustomMobileObject) mobileResource;

 Log.i("offlineResourceSync", "Offline edits for " +
anIncident.getTitle()
 + " finished with result :" + result);

 // Incident has been synchronized with the service object.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 } else {

 // Process has finished.
 // MobileObject/MobileFile has been synchronized with the
service object.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-20

 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 }
 }
});

Detecting Conflicts When the Library Updates the Cache

Here’s an example of using the Synchronization cachedResourceChanged method to
detect conflicts whenever a cached resource is updated either from new data from the
service or an update or delete from the mobile app. In this example, the only mobile
endpoint that the mobile app accesses is the incidents endpoint. This example shows
how to handle both custom and generic MobileObject objects.

synchronization.cachedResourceChanged(new SyncResourceUpdatedCallback() {
 @Override
 public void onResourceUpdated(String uri, MobileResource
mobileResource) {
 if (mobileResource == null) {
 Log.i("cachedResourceChanged", "Resource for " + uri +
"deleted from cache");
 return;
 }

 String result = null;
 if (mobileResource.hasConflict()) {
 result = "with conflicts";
 } else if (mobileResource.hasOfflineUpdates()) {
 result = "with offline update";
 } else if (mobileResource.hasOfflineCommitError()) {
 result = "with error";
 } else {
 result = "successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if (mobileResource instanceof IncidentCustomMobileObject) {

 IncidentCustomMobileObject anIncident =
(IncidentCustomMobileObject) mobileResource;

 Log.i("cachedResourceChanged", "Cache changes for " +
anIncident.getTitle()
 + " finished with result :" + result);

 // Custom object changed in local cache. You can show a pop up
 // or reload the resources in the UI, such as in the main
thread.
 } else {

 Log.i("cachedResourceChanged", "Cache changes finished with
result :" + result);

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-21

 // OMCMobileObject, OMCMobileFile, or OMCMobileObjectCollection
 // object changed in local cache.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 }
 }
});

Reviewing and Discarding Offline Edits
You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

• Switch the app to work-offline mode and switch back to work-online mode.

• List the resources that have been changed while offline.

• Discard all offline edits.

• Discard a resource’s offline edits.

The Synchronization class provides the methods for reviewing and discarding offline
edits. As shown in the following steps, you use its getNetworkStatus and
setOfflineMode methods, along with the SyncNetworkStatus enumeration to switch
the work-offline mode on and off. You use its loadOfflineResources method to get all
the offline edits that haven’t been synchronized with the server, and its
discardOfflineUpdates method to discard all offline edits.

1. At application start-up, instantiate Synchronization and open the mobile endpoint.

try {
 synchronization =

MobileBackendManager.getManager().getDefaultMobileBackend(this).getServi
ceProxy(Synchronization.class);
 } catch(ServiceProxyException e) {
 e.printStackTrace();
 }
incidentsEndpoint = synchronization.openMobileEndpoint(
 "incidentreport",
 "incidents",
 MobileObject.class);

2. Add a Switch component to the layout.

<Switch
 android:id="@+id/workOfflineSwitch"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_alignParentBottom="true"
 ...
 android:onClick="changeWorkOfflineMode"
 android:text="Work Offline" />

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-22

3. Add the changeWorkOfflineMode function, which is called when
workOfflineSwitch is clicked. This method uses the Synchronization
getNetworkStatus method to determine the current network status, and the
setOfflineMode method to switch the work-offline mode on and off. When it calls
setOfflineMode, the library synchronizes all offline edits with the server
automatically. Note that calling setOfflineMode(true) when the device isn’t
connected to the internet has no effect.

public void changeWorkOfflineMode(View view) {
 SyncNetworkStatus syncNetworkStatus =
synchronization.getNetworkStatus();
 try {
 if (syncNetworkStatus == SyncNetworkStatus.SyncOffline) {
 // Because setOfflineMode() is a no-op when the device
 // is offline, don't allow user to switch modes when
offline.
 Toast.makeText(MainActivity.this,
 "No internet connection. " +
 "You can't switch the Work Offline mode on
or off when " +
 "there isn't an internet connection.",
 Toast.LENGTH_SHORT).show();
 } else {
 // Device is not in "real" offline mode.
 // Switch from work online to work offline, or switch from
work offline to work online
 // setOfflineMode(true) sets SyncNetworkStatus to
SyncOfflineTest
 // setOfflineMode(false) sets SyncNetworkStatus to
SyncOnline
 // (if the device is actually online)
 synchronization.setOfflineMode(syncNetworkStatus ==
SyncNetworkStatus.SyncOnline);
 }
 } catch (Exception e) {
 // Handle error
 }
}

4. Add code to the onCreate method to set the switch according to the current mode.

Switch workOfflineSwitch = (Switch)
findViewById(R.id.workOfflineSwitch);

workOfflineSwitch.setChecked(
 synchronization.getNetworkStatus() ==
SyncNetworkStatus.SyncOfflineTest);

5. Add code to display a list of the offline edits. You use the Synchronization
loadOfflineResources method to get the list. In this example, the mobile app

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-23

accesses only the incidents endpoint, and all the items in the offline edits list are of
type MobileObject.

//Display a list of offline edits
synchronization.loadOfflineResources(new SyncLocalLoadingCallback() {
 @Override
 public void onSuccess(List<MobileResource> resources) {
 // This list contains all the MobileResource objects in the
local edit cache
 // In this app, the only mobile endpoint is for incidents
 // So, only MobileObjects are in the edit cache
 for (MobileResource resource : resources) {
 // Put your code to add the incident to the display list
here
 }
 }

 @Override
 public void onError(String errorMessage) {
 //Handle the error
 }
});

6. Add a button to discard all offline edits. Use code like the following to discard the
edits.

final Button mDiscardEdits = (Button)
findViewById(R.id.buttonDiscardOfflineEdits);

mDiscardEdits.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 //Discard all offline edits:
 //Deletes all resources in the edit cache,
 //but keeps all resources in the local cache as is
 synchronization.discardOfflineUpdates(new
SyncDiscardOfflineResourceCallback() {
 @Override
 public void onError(String errorMessage) {
 //Handle the error
 }
 });
 }

});

7. The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's reloadResource
method with the discardOfflineUpdates parameter set to true and the
reloadFromService parameter set to false.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-24

In the following code example, arraySelectedResourcesToDiscardOfflineEdits
is a list of resources that were edited while offline and were selected for discarding
the edits.

try {
 for (int index = 0; index <
arraySelectedResourcesToDiscardOfflineEdits.length; index++) {

 MobileResource mobileResource =
arraySelectedResourcesToDiscardOfflineEdits[index];
 mobileResource.reloadResource(true, false, new
MobileEndpointCallback() {
 @Override
 public void onComplete(Exception exception, MobileResource
mobileResource) {
 if (exception != null) {
 // handle exception here
 } else {
 // handle success here
 }
 }
 });

 }
} catch (Exception ex) {
 // handle exception here
}

iOS Synchronization Library
This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

For detailed information about the library, see Oracle Mobile Cloud Service iOS SDK
Reference.

Tip:

The client SDK ZIP file contains an examples folder, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Setting Up Your Mobile App for the iOS Synchronization Library
1. Ensure that the correct policies are in place for the mobile backend and API

endpoints as described in Synchronization Policy Levels and Precedence and
Defining Synchronization Policies Using a Configuration File.

2. As with all mobile apps, instantiate OMCMobileBackendManager, and then
instantiate OMCMobileBackend to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend,
including calls to platform and custom APIs.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-25

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssi-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssi-index

3. To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

OMCSynchronization* synchronization = [mbe synchronization];
[synchronization initialize];

Fetching Resources
After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

1. To access an endpoint, instantiate OMCMobileEndpoint for that endpoint. This
example instantiates an endpoint for /mobile/custom/incidentreport/
incidents.

// open Endpoint
OMCMobileEndpoint* endpoint = [
 synchronization openEndpoint:OMCMobileObject.class
 apiName:@"incidentreport"
 endpointPath:@"incidents"
];

2. (Optional) Add objects or files to the collection. This example adds an object.

OMCMobileObject* newObject = [mobileEndpoint createObject];
 // Set properties
 [newObject addOrUpdateJsonProperty:@"title"
propertyValue:@"incident 213"];

 [newObject saveResourceOnSuccess:^(id mobileObject) {

 } OnError:^(NSError *error) {

 }];

3. Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

• OMCFetchObjectBuilder

• OMCFetchObjectCollectionBuilder

• OMCFetchFileBuilder

Here’s an example of creating a fetch builder for a collection.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-26

In this example, we want to get all the incidents for the signed-in technician (which
is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

[builder withParamName:@"technician" paramValue:username];

You can call withParamName as many times as you need to specify all the query
parameters.

4. Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated
with this fetch builder, the request includes the Oracle-Mobile-Diagnostic-
Session-ID header. The diagLogFilterTag string variable has been set to a value
that uniquely identifies requests that are made using this fetch builder.

[builder setRequestHeaders:[NSDictionary dictionaryWithObjectsAndKeys:
diagLogFilterTag, @"Oracle-Mobile-Diagnostic-Session-ID", nil]];

5. Use the builder to execute the fetch.

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 // This function is called when the request finishes successfully.
 // Get all the objects from the collection.
 NSArray* collection = [mobileObjectCollection getMobileObjects];
} OnError:^(NSError *error) {
 // This function is called when the request finishes with an error
}];

If the fetch policy is to fetch the data from the local cache, such as
FETCH_FROM_SERVICE_ON_CACHE_MISS, then it’s fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

6. The raw downloaded JSON object is exposed through the jsonObject property.
You can use this property to set the appropriate values, or use
addOrUpdateJsonProperty.

OMCMobileObject* incident = [collection objectAtIndex:index];
// You can access raw JSON
NSDictionary* json = [incident jsonObject];
// Or use the addOrUpdateJsonProperty method
[incident addOrUpdateJsonProperty:@"status" propertyValue:@"completed"];

7. Use one of the OMCMobileObject save methods to save the changes on the
server.

[incident saveResourceOnSuccess:^(id object){
 // Block that is called after the request finishes successfully
 ...
}OnError:^(NSError *error){
 // Block that is called after the request finishes with an error

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-27

 ...
}];

If the device isn’t connected to the internet, and the update policy is
UPDATE_IF_OFFLINE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

8. Use one of the OMCMobileObject delete methods to delete an object.

[incident deleteResourceOnError:^(NSError *error) {

}];

If the device isn’t connected to the internet, and the update policy is
UPDATE_IF_OFFLINE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

Fetching Filtered Resources
You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as mobileResource objects, convert the objects to JSON
objects, and then filter the items. However, when the device is offline, your app can’t
filter the mobileResource objects in the local cache because the objects are just blobs
of data. The solution is to use a custom MobileObject. When you do this, the local
cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We’ll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom MobileObject class, you can use the
fetch builder’s queryForProperty method to specify the filter to use in the local cache.
Note that this method is for filtering JSON objects from the local cache. It doesn’t
affect the way that the Synchronization library retrieves results from the server.
Whenever you execute the fetch builder, the library first looks at the fetch policy setting
to determine whether to refresh the local cache. If the policy specifies that it must
refresh the local cache from the server, then it retrieves all the objects, regardless of
the filter that you specify using the queryForProperty method. Regardless of the fetch
policy and whether it refreshed the local cache, the library then uses the
queryForProperty method to filter the data in the local cache, and return the filtered
results. That is, regardless of whether the device is online or offline, and regardless of
whether the library fetches data from the server or uses the local cache, the
queryForProperty method filters the results based on the query property and value.

1. Create a custom mobile object class that extends OMCMobileObject, define all the
properties that you need for your custom mobile object, and synthesize those
properties. Here’s an example of the incident.h header file for an Incident class.

#import <Foundation/Foundation.h>
#import "OMCMobileObject.h"

@interface Incident : OMCMobileObject {

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-28

}

// Properties
@property (nonatomic, retain) NSNumber* id
@property (nonatomic, retain) NSString* title;
@property (nonatomic, retain) NSString* customer;
@property (nonatomic, retain) NSString* status;
@property (nonatomic, retain) NSString* priority;
@end

2. When you initialize the mobile backend's synchronization service, use the
initializeWithMobileObjectEntities method to create database entities for the
Incident custom class.

NSArray* entities = [NSArray arrayWithObjects:[Incident class], nil];
[synchronization initializeWithMobileObjectEntities:entities];

You can include more than one custom object in the initialization.

3. Open the endpoint for the custom class.

OMMobileEndpoint* endpoint = [
 synchronization openEndpoint:Incident.class
 apiName:@"incidentreport"
 endpointPath:@"incidents"
];

4. When you create the fetch builder, use the queryForProperty method to add a
query to filter the results by status.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

[builder queryForProperty:@"status"
 comparision:Equals
 compareWith:@"pending"];

5. Fetch the data.

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 // This function is called when the request finishes successfully.
 // Get all the objects from the collection.
 NSArray* collection = [mobileObjectCollection getMobileObjects];
} OnError:^(NSError *error) {
 // This function is called when the request finishes with an error
}];

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-29

6. The raw downloaded JSON object is exposed through the jsonObject property.
You can use this property to set the appropriate values, or you can access the
properties directly.

Incident* incident = [collection objectAtIndex:index];
// You can access raw JSON
NSDictionary* json = [incident jsonObject];
// Or you can access the property directly
incident.status = @"completed";

7. Save and delete objects the same way you save and delete OMCMobileObject
objects.

//Save the object
[incident saveResourceOnSuccess:^(id object){

}OnError:^(NSError *error) {

}];
...
// Delete the object
[incident deleteResourceOnError:^(NSError *error) {

}];

Specifying Which Resources To Synchronize First
When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before
others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the OMCMobileResource class’ pinResource
method to set a resource’s priority (OMCMobileFile, OMCMobileObject, and
OMCMobileObjectCollection inherit from this class).

[builder executeFetchOnSuccess:^(OMCMobileObjectCollection
*mobileObjectCollection) {
 [mobileObjectCollection pinResource:High];
 // Get all the objects from the collection
 NSArray* objects = [mobileObjectCollection getMobileObjects];
} OnError:^(NSError *error) {
 // This function is called when the request finishes with an error
}];

Setting a Resource’s Synchronization Policies Programmatically
When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-30

saved policies when you fetch the data and before you add, update, or delete a
resource.

Changing a Fetch Builder’s Synchronization Policy

You can use the fetch builder’s synchronization policy to override an endpoint’s
configured policies. When the library fetches the resource from the server, it saves the
fetch builder’s policy settings with the resource.

1. Create the fetch builder.

OMCFetchObjectCollectionBuilder* builder = [endpoint
fetchObjectCollectionBuilder];

2. Create an OMCSyncPolicy object, and then set the policies that you want to
override. This example overrides all the policies:

OMCSyncPolicy* policy = [[OMCSyncPolicy alloc] init];
policy.fetch_Policy = FETCH_POLICY_FETCH_FROM_SERVICE_IF_ONLINE;
policy.expiration_Policy = EXPIRATION_POLICY_EXPIRE_ON_RESTART;
policy.eviction_Policy = EVICTION_POLICY_EVICT_ON_EXPIRY_AT_STARTUP;
policy.update_Policy = UPDATE_POLICY_QUEUE_IF_OFFLINE;
policy.conflictResolution_policy =
CONFLICT_RESOLUTION_POLICY_CLIENT_WINS;
policy.no_cache = false;

3. Set the builder’s synchronization policy.

[builder setSyncPolicy:policy];

Changing a Resource Object’s Synchronization Policy

Sometimes, you’ll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.

1. Get the synchronization policy for the mobile resource object. In this example,
anIncident is an OMCMobileObject.

OMCSyncPolicy* policy = [anIncident getCurrentSyncPolicy];

2. Set the conflict resolution policy to CONFLICT_RESOLUTION_POLICY_CLIENT_WINS.
All other policies remain as is.

policy.conflictResolution_policy =
CONFLICT_RESOLUTION_POLICY_CLIENT_WINS;

3. Set the mobile resource object’s synchronization policy. This change doesn't take
affect until you call saveResource (to perform an add or update). For a delete, you
must call reloadResource for the policy change to take affect before you call
deleteResource.

[anIncident setSyncPolicy:policy];

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-31

Detecting and Handling Conflicts
In Conflict Resolution Policies, you learn how to set the conflict resolution policy for the
custom API resources that your mobile app accesses. When the conflict resolution
policy that is in affect for a resource is PRESERVE_CONFLICT, the Synchronization library
doesn’t overwrite the server’s version with the local version if there’s a conflict.
Instead, an edited version is kept in the offline edits in the local cache, and the mobile
app is responsible for handling the conflict, such as programmatically merging the two
versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary’s device reconnects with the internet, and the library automatically sends
Mary’s offline edit to the server. The server responds with a 412 Precondition Failed
status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
the library makes available both the modified object (from the offline edits in the local
cache), and the current server version to enable you to handle the conflict in your
code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. You have two options for detecting and
handling conflicts that occur when a device reconnects:

• To detect and handle conflicts after the library finishes synchronizing offline edits
with the server, use the offlineResourceSynchronized method, as shown in the
first example. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

• To check whether a conflict occurs at the time that the library sends the offline edit
to the server (when the device is online), use the cacheResourceChanged method
to listen for online updates and deletes, as shown in the second example. The
callback for this method is called for each resource that the library updates or
deletes. Typically, you use this method to detect any resource change during a
background cache refresh so that you can refresh the UI with the change.
However, you also can use this method to detect and handle conflicts when the
library synchronizes the offline edits. Note that the callback is not called when the
library adds a new resource to the local cache.

Don’t initialize CachedResourceChanged more than once during the lifetime of the
application.

Detecting Conflicts When the Library Completes Synchronization

Here’s an example of using the OMCSynchronization offlineResourceSynchronized
method to detect conflicts after the library has finished synchronizing the cache. In this
example, the only mobile endpoint that the mobile app accesses is the incidents

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-32

endpoint. This example shows how to handle both custom and generic MobileObject
objects.

 [sync offlineResourceSynchronized:^(NSString *uri, id mobileResource) {

 if (!mobileResource) {
 NSLog(@"Resource for %@ deleted from cache after offline
synchronization ", uri);
 return;
 }

 NSString* result = nil;
 if (((OMCMobileResource*) mobileResource).hasConflicts) {
 result = @"with conflicts";
 }
 else if (((OMCMobileResource*)
mobileResource).hasOfflineCommitError) {
 result = @"with error";
 }
 else {
 result = @"successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if([mobileResource isKindOfClass:[Incident class]]) {

 Incident* anIncident = mobileResource;

 NSLog(@"Offline edits for %@ finished %@.", anIncident.title,
result);

 // Incident has been synchronized with the service object.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 // When mobileResource is a custom MobileObject class,
 // and hasConflicts is true,
 // then both the MobileObject class and its jsonObject
property
 // contain the local edited copy and the
 // jsonObjectPersistentState property contains the server copy
 }
 else {

 OMCMobileResource* aMobileResource = mobileResource;
 NSLog(@"Offline edits for resource %@ finished %@",
 aMobileResource.uri, result)

 // OMCMobileObject or OMCMobileFile has been synchronized
 // with the service object.

 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-33

 // When mobileResource is an OMCMobileObject,
 // and hasConflicts is true,
 // then its jsonObject property contains the local edited copy
and
 // its jsonObjectPersistentState property contains the server
copy
 }
 }];

Detecting Conflicts When the Library Updates the Cache

Here’s an example of using the OMCSynchronization cachedResourceChanged method
to detect conflicts whenever a cached resource is updated either from new data from
the service or an update or delete from the mobile app. In this example, the only
mobile endpoint that the mobile app accesses is the incidents endpoint. This
example shows how to handle both custom and generic MobileObject objects.

 [sync cachedResourceChanged:^(NSString *uri, id mobileResource) {

 if (!mobileResource) {
 NSLog(@"Resource for %@ deleted from cache ", uri);
 return;
 }

 NSString* result = nil;
 if (((OMCMobileResource*) mobileResource).hasConflicts) {
 result = @"with conflicts";
 }
 else if (((OMCMobileResource*)
mobileResource).hasOfflineUpdates) {
 result = @"with offline update";
 }
 else if (((OMCMobileResource*)
mobileResource).hasOfflineCommitError) {
 result = @"with error";
 }
 else {
 result = @"successfully";
 }

 // If you created a custom MobileObject class, you can access
properties directly
 if([mobileResource isKindOfClass:[Incident class]]) {

 Incident* anIncident = mobileResource;

 NSLog(@"Cache changes for %@ finished %@.", anIncident.title,
result);

 // Custom object changed in local cache. You can show a pop up
 // or reload the resources in the UI, such as in the main
thread.
 }
 else {

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-34

 OMCMobileResource* aMobileResource = mobileResource;
 NSLog(@"Cache changes for %@ finished %@.",
 aMobileResource.uri, result);
 // OMCMobileObject, OMCMobileFile, or
OMCMobileObjectCollection
 // object changed in local cache.
 // You can show a pop up or reload the resources in the UI,
 // such as in the main thread.

 }
 }];

Reviewing and Discarding Offline Edits
You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

• Switch the app to work-offline mode and switch back to work-online mode.

• List the resources that have been changed while offline.

• Discard all offline edits.

• Discard a resource’s offline edits.

The OMCSynchronization class provides the methods for working offline, and for
reviewing and discarding offline edits. As shown in the following steps, you use its
GetNetworkStatus and setOfflineMode methods, along with the SyncNetworkStatus
constants to switch the work-offline mode on and off. You use its
loadOfflineResourcesOnSuccess method to get all the offline edits that haven’t been
synchronized with the server, and its discardOfflineUpdatesOnError method to
discard all offline edits. You also can discard a specific resource’s offline updates by
calling the resource’s reloadResource method.

1. Add a button to switch between work-online mode and work-offline mode. Use
code like the following to switch modes when the user clicks the button. You use
the OMCSynchronization GetNetworkStatus method to determine the current
network status, and the setOfflineMode method to switch the work-offline mode
on and off. When you call setOfflineMode(false), the library synchronizes all
offline edits with the server automatically. Note that calling setOfflineMode when
the device isn’t connected to the internet has no effect.

- (IBAction) switchOfflineMode:(id)sender {

 // Get current status
 SyncNetworkStatus networkStatus = [synchronization
getNetworkStatus];

 if (networkStatus == SyncOffline) {

 UIAlertController *myAlertController = [UIAlertController
alertControllerWithTitle:@"Sorry!"
 message:@"You can't switch to Work Offline mode when there
isn't an internet connection."

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-35

 preferredStyle:UIAlertControllerStyleAlert];
 UIAlertAction* okBtn = [UIAlertAction
 actionWithTitle:@"OK"
 style:UIAlertActionStyleDefault
 handler:^(UIAlertAction * action)
 {
 [myAlertController
dismissViewControllerAnimated:YES

 completion:nil];
 }];
 [myAlertController addAction: okBtn];
 [self presentViewController:myAlertController
 animated:YES
 completion:nil];
 }
 else {

 [omcSynchronization setOfflineMode:(networkStatus ==
SyncOnline)];

 // Get updated status
 networkStatus = [omcSynchronization getNetworkStatus];

 if (networkStatus == SyncOfflineTest) {

 lblNetworkStatus.text = @"Working offline.";

 }
 else {

 lblNetworkStatus.text = @"";
 }
 }
}

2. Add code to display a list of the offline edits. You use the OMCSynchronization
LoadOfflineResourcesAsync() method to get the list. In this example, the mobile
app accesses only the incidents endpoint and all items in the offline edits list are of
type MobileObject.

[omcSynchronization loadOfflineResourcesOnSuccess:^(NSArray
*mobileResources) {

 for (OMCMobileResource* aResource in mobileResources) {
 // Put your code to add the incident to the display list
here
 }

} onError:^(NSError *error) {

 // Handle error here.

}];

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-36

3. Add a button to discard all offline edits. Use code like the following to discard the
edits.

// Discard all offline edits only.
// Resources remain in the cache with their persistent state (that is,
the server version).
[omcSynchronization discardOfflineUpdatesOnError:^(NSError *error) {
 // Handle error here
}

4. The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's reloadResource
method with the discardOfflineUpdates parameter set to YES and the
reloadFromService parameter set to NO.

In the following code example, arraySelectedResourcesToDiscardOfflineEdits
is a list of resources that were edited while offline and were selected for discarding
the edits.

for (int index = 0; index <
arraySelectedResourcesToDiscardOfflineEdits.count; index++) {

 OMCMobileResource* aResource =
[arraySelectedResourcesToDiscardOfflineEdits objectAtIndex:index];

 [aResource reloadResource:YES
 reloadFromService:NO
 onSuccess:^(id mobileResource) {

 // Offline edits succesfully discarded from a
resource.
 }];
}

Making Custom APIs Synchronizable
If your mobile app uses the Synchronization library to access a custom API offline,
then that API should follow the sync-compatibility guidelines and should return data in
a sync-compatible format. You also need to consider whether to configure
synchronization policies for some or all of its resources.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-37

Designing a Synchronization-Compatible API

As described in API Design Considerations, the custom API should follow these
guidelines to be synchronization compatible:

• The resource name should alternate between plural nouns and singular resource
identifiers (rid). For example: /items/{rid}/subitems/{rid}/.

• For pagination, use the limit and offset query parameters so that the
Synchronization library uses paged downloads correctly. If you don’t need to
support pagination, then you don’t need to specify these parameters.

• Use the orderBy query parameter to specify sorting. For example:
orderBy=propA,propB:desc,propC:asc.

• The API must contain all the necessary endpoints to support data synchronization.
For example, if you have an endpoint that returns a collection, then you must also
have an endpoint that returns a specific item in the collection. See Endpoint
Requirements for Sync Compatibility.

Implementing a Sync-Compatible API

As detailed in Implementing Synchronization-Compatible APIs, the custom API
implementation should follow these guidelines:

• For GET requests, use the custom code SDK’s setItem and addItem methods in
your API’s custom code to return data in a format that enables the Synchronization
library to more easily cache and synchronize the data in the client’s local cache.
Responses must include the Oracle-Mobile-Sync-Resource-Type header, and,
for single items, the ETag header.

• For PUT and DELETE requests, your code must honor the If-Match header as
follows:

– If the header contains an ETag value, and that value doesn’t match the ETag
on the server, then the code must not update or delete the item and must
return a 412 HTTP response status (precondition failed) to indicate that the
ETag does not match the server-side object’s ETag.

– If the header contains a value of * (asterisk), then the server-side's object
must be replaced by the request object (or deleted for a DELETE request).

• For PUT requests, responses must include the Oracle-Mobile-Sync-Resource-
Type and ETag headers. If the item was added, then it must include the Location
header. For example Location: /mobile/custom/incidentreport/incidents/1.

• For POST requests, responses must include the Oracle-Mobile-Sync-Resource-
Type, Location, and ETag headers.

• When you need to control data caching from the server side, use the Oracle-
Mobile-Sync-Evict, Oracle-Mobile-Sync-Expires, and Oracle-Mobile-Sync-No-
Store headers to override client side configuration.

Configuring Synchronization Policies for a Custom API

As described in Defining Synchronization Policies Using a Configuration File, you use
the configuration file to set the synchronization policies for each mobile backend that
your mobile app accesses. In addition to setting the overall (default) synchronization
policies for each mobile backend, consider the custom API’s resources that you’ll
access, and determine which, if any, need special synchronization policy configuration.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-38

Say, for example, that your default fetch policy is
FETCH_FROM_SERVICE_ON_CACHE_MISS. The custom API might have a resource for
which the mobile app always needs the most current data. In that case, you can use
the configuration file to specify the FETCH_FROM_SERVICE_IF_ONLINE fetch policy for
that specific resource. To learn about configuring synchronization policies on a
resource basis, see the Resource-Level Configuration section in Synchronization
Configuration File Structure. Note that you can define synchronization policies at the
default level and the resource level, and that you can override these programmatically,
To learn more, see Synchronization Policy Levels and Precedence.

Synchronization Policies

The Synchronization library uses several types of synchronization policies:

• Conflict Resolution Policies define how to handle offline edits if the server’s
version changed after the initial data was fetched from the server. For example, if
another client updated a resource, you might want the app’s updates to overwrite
the other client’s update.

• Eviction Policies designate when to delete expired resources in the local cache.
For example, you might want the app to delete all expired resources when the app
starts. Expiration and eviction policies work together to keep stale resources from
cluttering the cache. You can also use them to prevent users seeing out-of-date
data and, by inference, potentially harmful data. Note that these policies apply only
to resources in the local cache, not to server-side resources.

• Expiration Policies define how and when the Synchronization library marks
resources stored in the local cache as out-dated or stale. For example, you might
want all the resources to expire when the app is restarted so that the app fetches
the latest version of a resource from the server the first time the app uses it in that
session. The expiration policy only marks data, allowing you the option to display
stale data if the app is offline. To delete data, use the eviction policy.

• Fetch Policies define how the Synchronization library determines whether to
retrieve resources from the local cache or from the server. For example, if the
resource changes frequently, you might choose to always retrieve it from the
server unless the client is offline.

• Update Policies define what to do if the app modifies resources when the device is
offline. For example, you might want the app to put all changes that are made
while the device is offline in a queue and then synchronize the changes with the
server when the device goes online again.

In addition to configuring the synchronization policies, you also can configure the
cache settings for a mobile backend. You can configure the maximum size of the
cache and you can specify when and how to perform background cache refreshes.
See Synchronization Configuration File Structure.

You can specify synchronization policies for custom API resources at several levels:

• In the app’s configuration file, you can specify default synchronization policies for
all custom API endpoints that the library accesses through a specific mobile
backend.

• In the app’s configuration file, you can specify synchronization policies for specific
custom API endpoints.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-39

• In the custom API implementation, you can specify a resource’s synchronization
policies in a response header.

• In the app, you can specify a resource’s synchronization policies when you fetch
the data.

• In the app, you can specify a resource’s synchronization policies when you add,
update, or delete the resource.

When the Synchronization library fetches a resource from the server, it sets the
resource's synchronization policies according to your configuration, and then saves
those policies with the resource. When you configure a policy at more than one level,
the library uses precedence rules to determine which policy level to use. For example,
a response-header policy setting takes precedence over a fetch builder’s policy
setting. If a policy isn’t set at the response header or fetch builder level, then the library
uses the policy’s setting from the configuration file. First, the library looks for the policy
setting for the path that matches the fetch builder's endpoint. When there isn’t a policy
for the endpoint, then it uses the configuration file’s default policy. If a policy isn’t
specified at any level, then the Synchronization library’s hard-coded default policy is
used. The actual rules are somewhat more complex than summarized here. For
complete details see Synchronization Policy Levels and Precedence.

When the library does an automatic refresh, it always uses the
FETCH_POLICY_FETCH_FROM_SERVICE fetch policy. For all other policies, the refresh
process honors the response header values, if present, and, when not present, it uses
the policies that were saved with the resource.

When you fetch a resource and the library uses the resource from the cache instead of
from the server, then the resource's policies are not necessarily the policies that you
configured for the object's endpoint. For example, if the resource was fetched using a
fetch collection builder, then the resource's policies are the collection endpoint’s
policies and not the object’s endpoint policies. Thus, you can't be sure what the
resource's policies are. A cached resource’s policies depend on whether it was
originally fetched from the server as part of a collection, as an object, or as part of a
refresh.

Defining Synchronization Policies Using a Configuration File shows how to configure
default policies for the mobile backend and for endpoints (paths). Defining
Synchronization Policies and Cache Settings in a Response Header shows how a
custom API can use headers to control whether the response is cached, when it
should expire in the local cache, and when it should be evicted. The following platform-
specific topics show how to get and change a fetch builder’s policies and get and
change a mobile resource’s policies programmatically:

• Android: Setting a Resource’s Synchronization Policies Programmatically

• iOS: Setting a Resource’s Synchronization Policies Programmatically

Video: Introduction to the Data Offline & Sync Policies
If you want a high-level understanding of how to use synchronization policies to drive
data offline and synchronization capabilities, take a look at this video:

Video

Synchronization Policy Options
Here are the Synchronization library’s policy options for each policy type.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-40

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13340

Conflict Resolution Policies
Conflict resolution policies define what to do if, when updating a resource, it’s
discovered that the server version was updated after it was last requested. Say, for
example, that the client app retrieved a resource on startup. Soon after, someone else
updated the resource on the server. If the resource is then updated on the client app,
you might want the client updates to overwrite the updates made by someone else.

Policy Description

CLIENT_WINS Instructs the Synchronization library to
overwrite the server’s version with the local
version regardless of whether there is a
conflict.

PRESERVE_CONFLICT Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is kept in the offline edits in the local cache,
and the mobile app is responsible for handling
the conflict, such as programmatically merging
the two versions.

SERVER_WINS Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is removed from the offline edits in the local
cache.

Eviction Policies
Eviction policies designate when expired resources in the local cache will be deleted.
For example, you could set the eviction policy to EVICT_ON_EXPIRY_AT_STARTUP so
expired items are deleted when the app starts. Keep in mind that if a user didn’t use
the app for several days and it’s offline when it starts, the local cache could get
cleared.

These policies apply to resources in the local cache only, not to server-side resources.

Policy Description

EVICT_ON_EXPIRY_AT_STARTUP Instructs the Synchronization library to delete
expired resources from the local cache when
the client application restarts, and update the
local cache with the server copy the next time
it's called by the client application. This can
result in an empty cache, but this is
appropriate if the latest resource is required.

MANUAL_EVICTION Instructs the Synchronization library that
resources can’t be deleted from the local
cache automatically. To evict resources
manually, use an API.

Expiration Policies
Expiration policies define how and when the Synchronization library marks resources
stored in the local cache as out-dated or stale. For example, if your resources change

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-41

frequently, then you can set the policy to EXPIRE_ON_RESTART to ensure that the local
cache gets cleared periodically, and thus does not become too large.

Policy Description

EXPIRE_ON_RESTART Instructs the Synchronization library to mark a
resource as expired when the client
application restarts. The Synchronization
library updates the local cache with the latest
version from the server the next time it's called
by the client application.

EXPIRE_AFTER Instructs the Synchronization library to mark
resources as expired after the specified time
(in seconds) set for the expireAfter
parameter. When you use the EXPIRE_AFTER
policy, you must set a value for the
expireAfter property.

NEVER_EXPIRE Instructs the Synchronization library that
resources in the local cache can’t be marked
as expired.

Fetch Policies
Fetch policies define how the Synchronization library determines whether to retrieve
resources from the local cache or from the server. For example:

• If your data doesn’t change often, like a contact’s photo, then a good choice for the
fetch policy is FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY with an
EXPIRE_AFTER expiration policy set to a suitable timeout.

• If data will change very frequently and you always want the most current data, but
cached data is acceptable if the user is offline, then use
FETCH_FROM_SERVICE_IF_ONLINE.

Note that setting the noCache property to true in the configuration file, as described in
Synchronization Configuration File Structure, tells the Synchronization library to ignore
fetch policies and to not add data to the local cache.

Policy Description

FETCH_FROM_CACHE Instructs the Synchronization library to fetch
resources from the local cache only, not from
the server. Because the Synchronization
library retrieves resources directly from the
cache, this policy can be carried out whether
the client application is online or offline.

If a resource is not in the local cache, then the
Synchronization library returns null.

FETCH_FROM_SERVICE Instructs the Synchronization library to always
fetch resources directly from the server, not
from the local cache. The library can only
apply this policy when the client application is
online.

If the app is offline, the Synchronization library
returns null.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-42

Policy Description

FETCH_FROM_SERVICE_IF_ONLINE Instructs the Synchronization library to fetch
resources from the server when the client
application is online, and to fetch them from
the local cache when the app is offline.

FETCH_FROM_SERVICE_ON_CACHE_MISS Instructs the Synchronization library to fetch
resources from the local cache if it is present.

If a collection is empty, or if the requested
object isn’t in the local cache, then the
Synchronization library fetches it from the
server. If the app is offline, then the
Synchronization library returns null.

FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_
EXPIRY

Instructs the Synchronization library to fetch
resources from the local cache if they are
present and not expired. Make sure to set
expireAfter parameter to a suitable time
period.

If a collection is empty or has expired, or if the
resource isn’t in the local cache or has
expired, then the Synchronization library
fetches it from the server. If the app is offline,
then it returns null.

FETCH_FROM_CACHE_SCHEDULE_REFRESH Instructs the Synchronization library to fetch
resources from the local cache and schedule a
background refresh to update the cache with
the latest version from the server.

If a resource is not in the local cache, then the
Synchronization library returns null.

FETCH_WITH_REFRESH Instructs the Synchronization library to fetch
resources from the local cache if they exist
and are not expired, and schedule a
background refresh to update the cache with
the latest version from the server.

If a resource is not in the local cache or has
expired, then the Synchronization library
fetches it directly from the server. If the app is
offline, then it returns null.

Update Policies
Update policies define what the app should do if a resource is updated when the client
app is offline.

Policy Description

UPDATE_IF_ONLINE If the client app is offline when the update
request is sent, then the Synchronization
library returns an error.

QUEUE_IF_OFFLINE If the client app is offline when the update
request is sent, then the Synchronization
library queues the operation and updates the
local cache when the client app is back online.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-43

Video: Deep-Dive into the Data Offline & Sync Policies
If you want an overview of the ways you can configure synchronization policies, which
methods take precedence, and the outcomes of the various policies, take a look at this
video:

Video

Synchronization Policy Levels and Precedence
As described in Synchronization Policy Options, there are several policy types that you
can configure for custom APIs. You can configure these at the following levels, which
are listed in order of precedence, from highest to lowest. Note that the order of
precedence applies to both fetch and save calls to a mobile endpoint and
requestWithURI calls to a synchronization object.

• Response-level policies: The server can use HTTP response headers to transmit
expiration and eviction policies, as described in Defining Synchronization Policies
and Cache Settings in a Response Header. The server also can use a header to
instruct the client to not cache a response. These policies take precedence over
policies set for all other levels.

• Request-level policies: For requests made through an OMCMobileEndpoint, you
can call the fetch builder’s setPolicy method to set a policy at the request level.
For requests made using the requestWithURI method, you can use the
SyncPolicy object to set policies. Request-level policies take precedence over
policies set at the resource and mobile-backend levels.

• Resource-level policies: In the configuration file, you can define a set of policies
and associate the set with a resource path (URL). You can associate the set with a
specific endpoint, or you can use wildcard characters to associate the set with a
resource hierarchy (/* applies to all resources at the same level, and /** applies
to all resources at the same level and any nested levels), as described later in this
section. These policies take precedence over policies that are set at the mobile-
backend level.

When a policy type is defined for more than one resource level, then the
precedence is:

– A synchronization policy type that is defined for a specific endpoint takes
precedence over the same policy type setting for a path that has wildcard
characters. For example, if the URL is www.baseuri.com/mobile/custom/
incidentreport/incidents, and an eviction policy is set for both /mobile/
custom/incidentreport/incidents and /mobile/custom/incidentreport/
incidents/*, then the eviction policy for /mobile/custom/incidentreport/
incidents takes precedence.

– Policies that are defined for a path that has the /* wildcard take precedence
over policies for a path with the /** wildcard. For example, if the URL is /
mobile/custom/incidentreport/incidents/1, and an eviction policy is set
for both /mobile/custom/incidentreport/incidents/* and /mobile/custom/
incidentreport/incidents/**, then the eviction policy for /mobile/custom/
incidentreport/incidents/* takes precedence.

For information about setting resource-level policies, see Synchronization
Configuration File Structure.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-44

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13341

• Mobile backend-level default policies. You can override the default policies at the
request, response, and resource levels. These settings take precedence over the
Synchronization library default settings. For information about setting mobile
backend-level default policies, see Synchronization Configuration File Structure.

• Synchronization library default settings: For custom APIs, if a policy is not set at
the request, resource, or mobile-backend level, then the Synchronization library
default setting is used.

Here are the default policy settings:

Setting Synchronization Library Default Value

conflictResolutionPolicy PRESERVE_CONFLICT

evictionPolicy MANUAL_EVICTION

expirationPolicy EXPIRE_ON_RESTART

expireAfter Maximum integer value

fetchPolicy FETCH_FROM_SERVICE_IF_ONLINE

noCache false

updatePolicy QUEUE_IF_OFFLINE

Defining Synchronization Policies Using a Configuration File
You can define the synchronization policies for a custom API’s resource
programmatically, and you can use a configuration file to define the synchronization
policies for a mobile backend and the custom API resources that it uses. You typically
define the policies in the configuration file for the following reasons:

• You can change a policy without needing to change code.

• You can view all your policies in one place.

• If you access the same resource from several places in your code, you can ensure
that all accesses use the same policies.

The name of the configuration file differs by platform:

• Android: /assets/oracle_mobile_cloud_config.xml

• iOS: OMC.plist

Synchronization Configuration File Structure
To configure the Synchronization library for the custom API resources that are
accessed by a mobile backend, add the elements described in this section to its
synchronization element in the configuration file.

The following illustration shows the synchronization section from an OMC.plist file for
iOS.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-45

Cache Settings

To configure the cache settings for the mobile backend, add these elements in any
order directly under the mobile backend’s synchronization element. These settings
affect both custom API and storage resources.

Key Description Default

maxStoreSize The maximum size of the local
cache in megabytes. The
Synchronization library stops
storing resources when it
reaches this limit.

100

periodicRefreshPolicy Names the policy that instructs
the Synchronization library
when to refresh cached
resources. Use this attribute
for background refreshes. You
can set this to one of the
following options:

• PERIODIC_REFRESH_POL
ICY_REFRESH_NONE

• PERIODIC_REFRESH_POL
ICY_REFRESH_EXPIRED_
ITEM_ON_STARTUP

• PERIODIC_REFRESH_POL
ICY_PERIODICALLY_REF
RESH_EXPIRED_ITEMS

PERIODIC_REFRESH_POLICY
_REFRESH_NONE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-46

Key Description Default

periodicRefreshInterval Sets the interval, in seconds,
for refreshing cached
resources in the background.
The interval should be
appropriate to the policy
named by the
periodicRefreshPolicy
attribute.

When the
periodicRefreshPolicy is
PERIODIC_REFRESH_POLICY
_PERIODICALLY_REFRESH_E
XPIRED_ITEMS, then the
default is 120.

Here’s an example of adding cache settings to an OMC.plist file.

<key>synchronization</key>
<dict>
 <key>maxStoreSize</key>
 <integer>100</integer>
 <key>periodicRefreshPolicy</key>
 <string>PERIODIC_REFRESH_POLICY_PERIODICALLY_REFRESH_EXPIRED_ITEMS</
string>
 <key>periodicRefreshInterval</key>
 <integer>120</integer>

Synchronization Policy Settings

You can add the following settings at the resource and mobile-backend default levels.
These are explained in Synchronization Policy Options.

• conflictResolutionPolicy

• expirationPolicy

• expireAfter

• evictionPolicy

• fetchPolicy

• noCache

Resource-Level Configuration

To configure resource-level synchronization policies for custom APIs, first add a
policies node to the sychronization element.

Next, configure the policies for the specific resources:

• IOS: Add dictionary items to the policies array.

• Android: Add policy elements under policies.

You use the path element to identify the resource to associate the policy set with. You
can use the path to specify a policy set for a specific endpoint, or you can use wildcard
characters to associate the policy set with a hierarchy of resources:

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-47

Note:

You can begin your path with or without the forward slash (/).

• If there are no wildcard characters, then the request URL must match the string
exactly. For example, if <path> is set to /mobile/custom/incidentreport/
incident then www.baseuri.com/mobile/custom/incidentreport/incident
matches, but www.baseuri.com/mobile/custom/incidentreport/incidents does
not.

• /* matches 0 or more characters after the value in <Path> but does not include
lower resources in the hierarchy in the wildcard matching. For example, if <Path>
is set to /mobile/custom/incidentreport/incidents/* then both
www.baseuri.com/mobile/custom/incidentreport/incidents/report and
www.baseuri.com/mobile/custom/incidentreport/incidents/id match, but
www.baseuri.com/incidentreport/incidents/id/attachments does not.

• /** matches 0 or more characters after the value in <Path> including resources
lower in the hierarchy. For example, if <Path> is set to /mobile/custom/
incidentreport/incidents/**, then the following match:

– www.baseuri.com/mobile/custom/incidentreport/incidents

– www.baseuri.com/mobile/custom/incidentreport/incidents/id

– www.baseuri.com/mobile/custom/incidentreport/incidents/id/
attachments

Here’s an example of setting resource-level policies in an OMC.plist file.

<key>synchronization</key>
<dict>
 ...
 <key>policies</key>
 <array>
 <dict>
 <key>path</key>
 <string>/mobile/custom/incidentreport/technicians/**</string>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_IF_ONLINE</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>MANUAL_EVICTION</string>
 <key>conflictResolutionPolicy</key>
 <string>SERVER_WINS</string>
 </dict>
 ...
</dict>

Mobile Backend-Level Configuration

To define mobile backend-level synchronization policies, add a defaultPolicy
element. Then, for each type you want to configure, add a dictionary item for iOS, and
add a child element for Android.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-48

The next sections show examples for each platform.

Android Example Configuration File

The following example for Android is an excerpt from the
oracle_mobile_cloud_config.xml file.

<mobileBackends>
 <mobileBackend>
 ...
 <synchronization>
 <maxStoreSize>100</maxStoreSize>

<periodicRefreshPolicy>PERIODIC_REFRESH_POLICY_PERIODICALLY_REFRESH_EXPIRED
_ITEMS</periodicRefreshPolicy>
 <periodicRefreshInterval>120</periodicRefreshInterval>
 <policies>
 <policy>
 <path>/mobile/custom/incidentreport/technicians/**</path>
 <fetchPolicy>FETCH_FROM_SERVICE_IF_ONLINE</fetchPolicy>
 <expirationPolicy>EXPIRE_ON_RESTART</expirationPolicy>
 <evictionPolicy>MANUAL_EVICTION</evictionPolicy>
 <conflictResolutionPolicy>SERVER_WINS</
conflictResolutionPolicy>
 </policy>
 <policy>
 <path>/mobile/custom/incidentreport/incidents</path>
 <fetchPolicy>FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY</
fetchPolicy>
 <expirationPolicy>EXPIRE_ON_RESTART</expirationPolicy>
 <evictionPolicy>EVICT_ON_EXPIRY_AT_STARTUP</
evictionPolicy>
 <conflictResolutionPolicy>SERVER_WINS</
conflictResolutionPolicy>
 <updatePolicy>QUEUE_IF_OFFLINE</updatePolicy>
 <expireAfter>300</expireAfter>
 </policy>
 </policies>
 <defaultPolicy>
 <fetchPolicy>FETCH_FROM_SERVICE_ON_CACHE_MISS</fetchPolicy>
 <evictionPolicy>EVICT_ON_EXPIRY_AT_STARTUP</evictionPolicy>
 <expirationPolicy>EXPIRE_AFTER</expirationPolicy>
 <expireAfter>600</expireAfter>
 <conflictResolutionPolicy>CLIENT_WINS</
conflictResolutionPolicy>
 <noCache>false</noCache>
 </defaultPolicy>
 </synchronization>
 </mobileBackend>
</mobileBackends>

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-49

iOS Example Configuration File

The following example XML for iOS is an excerpt from the OMC.plist file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>mobileBackends</key>
 <dict>
 <key>myBackend/1.0</key>
 <dict>
 <key>synchronization</key>
 <dict>
 <key>maxStoreSize</key>
 <integer>100</integer>
 <key>periodicRefreshPolicy</key>

<string>PERIODIC_REFRESH_POLICY_PERIODICALLY_REFRESH_EXPIRED_ITEMS</string>
 <key>periodicRefreshInterval</key>
 <integer>120</integer>
 <key>policies</key>
 <array>
 <dict>
 <key>path</key>
 <string>/mobile/custom/incidentreport/technicians/**</string>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_IF_ONLINE</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>MANUAL_EVICTION</string>
 <key>conflictResolutionPolicy</key>
 <string>SERVER_WINS</string>
 </dict>
 <dict>
 <key>path</key>
 <string>/mobile/custom/incidentreport/incidents</string>
 <key>fetchPolicy</key>
 <string>FETCH_FROM_SERVICE_ON_CACHE_MISS_OR_EXPIRY</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_ON_RESTART</string>
 <key>evictionPolicy</key>
 <string>EVICT_ON_EXPIRY_AT_STARTUP</string>
 <key>conflictResolutionPolicy</key>
 <string>PRESERVE_CONFLICT</string>
 <key>updatePolicy</key>
 <string>QUEUE_IF_OFFLINE</string>
 </dict>
 </array>
 <key>defaultPolicy</key>
 <dict>
 <key>fetchPolicy</key>

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-50

 <string>FETCH_FROM_SERVICE_ON_CACHE_MISS</string>
 <key>evictionPolicy</key>
 <string>EVICT_ON_EXPIRY_AT_STARTUP</string>
 <key>expirationPolicy</key>
 <string>EXPIRE_AFTER</string>
 <key>expireAfter</key>
 <integer>600</integer>
 <key>conflictResolutionPolicy</key>
 <string>CLIENT_WINS</string>
 <key>updatePolicy</key>
 <false/>
 </dict>
 </dict>
 ...
</dict>
</plist>

Defining Synchronization Policies and Cache Settings in a Response Header
When you implement a custom API, you can fine tune caching for a response by
defining synchronization policies or basic cache settings in response headers.

To specify the basic synchronization and cache settings for a REST resource use the
following optional HTTP Headers:

Header Description

Oracle-Mobile-Sync-
No-Store

If set to true, the client does not cache the returned resource.

Oracle-Mobile-Sync-
Evict

Specifies the date and time after which the expired resource
should be deleted from the local cache. Uses RFC 1123 format,
for example EEE, dd MMM yyyyy HH:mm:ss z for
SimpleDateFormat.

The following synchronization policies are set for the resource
object that is created from the response:

• Eviction policy: EVICT_ON_EXPIRY_AT_STARTUP
• Expiration policy: EXPIRE_AFTER with the expireAfter

property set to date and time provided in the header value

.

Oracle-Mobile-Sync-
Expires

Specifies when the returned resource will be marked as expired.
Uses RFC 1123 format, for example EEE, dd MMM yyyyy
HH:mm:ss z for SimpleDateFormat.

Tracking Cache Hits with the Synchronization Library
The Synchronization library tracks cache hits and detects if the returned result came
from the cache. Use these OMCSynchronization methods to get data about cache hits
and misses:

• cacheHitCount: Returns the number of cache hits.

• cacheMissCount: Returns the number of cache misses.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

15-51

How Synchronization Works with the Storage APIs
When your mobile app accesses the Storage APIs, the client SDK automatically works
with the Storage library to refresh and synchronize the storage objects in the local
cache. You don’t need to add any code to enable synchronization with storage.

The client SDK enforces the following synchronization policies for the Storage APIs:

• Conflict resolution policy: SERVER_WINS

• Eviction policy: EVICT_ON_EXPIRY_AT_STARTUP

• Expiration policy: EXPIRE_AFTER 86400 seconds (24 hours).

You can use the Sync_CollectionTimeToLive environment policy to override the
number of seconds after which a Storage object expires. This value is conveyed to
the Storage library through the Oracle-Mobile-Sync-Expires response header.
See Offline Data Storage.

• Fetch policy: FETCH_FROM_SERVICE_IF_ONLINE

• Update policy: QUEUE_IF_OFFLINE

See Synchronization Policy Options for detailed descriptions of these synchronization
policies.

Just as with the custom API resources, you can use the configuration file to override
the default cache settings for storage resources on a mobile backend basis.

The default cache settings are:

• Maximum storage size in the local cache: 100 MB

• Periodic refresh policy: Don’t automatically refresh cached resources periodically

To learn how to configure the cache settings, see the Cache Settings section in
Synchronization Configuration File Structure.

Chapter 15
How Synchronization Works with the Storage APIs

15-52

16
Notifications

Oracle Mobile Cloud Service (MCS) provides a Notifications API to simplify sending
notifications to devices running your mobile apps. As a mobile app developer, you can
set up your mobile applications for notifications and use the Notifications API to send
notifications. As a service developer, you can add implementation code to your custom
APIs to trigger notifications.

What Can I Do with Notifications?
Notifications can provide the timely awareness of information and events that mobile
users seek. Notifications are short, specific, targeted messages sent to a mobile
application. The purpose of a notification is usually to tell users that there is new
information available. For example, a user who is running a shopping app might get
information about an upcoming sale.

You can send these targeted messages either on demand or on a predefined schedule
to:

• a specific device ID or a collection of device IDs (mostly useful for testing)

• a specific user or a collection of users

• all users and devices associated with a specific mobile backend

• devices or users for a given operating system (iOS, Android or Windows)

16-1

Note:

Push notifications should not be used to send critical or emergency
information, because network delays and other issues can make deliveries
untimely. However, for everyday uses like sports scores and upcoming sales,
notifications are great.

How Are Notifications Sent and Received?
As a mobile application developer, you configure your mobile app to receive
notifications over the network. Once your mobile app is configured and installed on a
device, it connects to its backend to receive notifications. The steps below summarize
the path that a notification takes.

1. You compose a notification, for example, "Hi! Our storewide sale is tomorrow," and
define a recipient for it. You can send the notification to a specific user or device or
set of users or devices, to everyone in the backend, or to a specific device type
(Android, iOS or Windows). You can send the notification immediately or schedule
it to be sent at a later date and time. When you POST a notification, an ID is
created for the message. You can use this ID to cancel a message if it hasn’t been
sent yet.

2. The notification is addressed to the associated device IDs and distributed to the
appropriate push networks for delivery.

3. The notification is received by the mobile application, and the owner of the device
gets it.

The notification service providers and their payload limits are:

• WNS: 5K

• FCM: 4K

• GCM: 4K

• APNS: 4K

• SMS: 1000 bytes

Chapter 16
How Are Notifications Sent and Received?

16-2

What is the Device ID or Notification Token?
The device ID, also known as the notification token, uniquely identifies the specific
instance of a mobile application associated with a specific device. This ID is used to
ensure that notifications are sent to the correct recipient.

A unique device ID is assigned when a mobile app registers a device during the device
handshake. After that point, the ID can be used to identify that specific recipient.
Multiple instances of the same mobile app on the same device have different device
IDs. The device ID changes periodically, but this is handled internally and is
transparent to the mobile app.

You can look up the device IDs registered with a mobile app in the Device Registry,
from the Notifications page for the associated backend in the UI. To register a specific
device ID to be used as a recipient address for notifications, you can use the REST
API. Keep in mind that sending a notification directly to a device ID is only useful for
testing. There are more efficient ways to send notifications to a specific group of users.
For details and examples, see Sending Notifications to and from Your App.

Setting Up a Mobile App for Notifications
Before you begin, you can install the client SDK’s Notifications library to simplify
development. The Notifications SDK library can be individually installed into your app,
or along with the other mobile client SDK libraries. For details on the SDKs, see The
SDKs.

The set up process is different for each platform:

• Setting Up Android Notifications

• Setting Up iOS Notifications

• Setting Up Windows Notifications

After you complete the set up steps for your platform, you have a few options for
sending notifications from MCS to your mobile app. See Sending Notifications to and
from Your App.

Now that you have registered the app client in OMCe, you have a few options for
sending notifications to your app, as shown in Sending Notifications to and from Your
App.

Setting Up Android Notifications
To set up your Android app for notifications, follow the steps below:

1. First, get credentials from the notification provider to establish your mobile app as
a known item on the network. See Android: Google API Key.

2. Create a client for your mobile app in MCS, and configure notifications profile(s) by
entering the network credentials you got in step 1. See Client Management.

3. Set up the app to connect to the notification provider from the mobile device and
establish rules for communication. See Setting Up a Device Handshake for
Android (FCM).

Chapter 16
Setting Up a Mobile App for Notifications

16-3

After you complete these steps, you have a few options for sending notifications from
MCS to your mobile app. See Sending Notifications to and from Your App.

Android: Google API Key
Configuring an Android mobile app for notifications requires Firebase Cloud
Messaging (FCM), formerly Google Cloud Messaging (GCM). GCM is being phased
out, so you should configure new apps with FCM. For information on migrating existing
apps, see Migrate a GCM Client App for Android to Firebase Cloud Messaging on
Google Developers.

For details on setting up your Android mobile application, see Set Up a Firebase Cloud
Messaging Client App on Android on Google’s developer site. This page includes
detailed instructions and a link to generate the required configuration file for your
project, as well as information on using the Instance ID API to create and update
registration tokens.

Note:

When you generate the configuration file for your app, make sure you
choose to enable the Cloud Messaging service.

FCM Notifications

For FCM notifications, in the Android app’s AndroidManifest.xml file, within the
<application> node, add the following entries:

<service
android:name="oracle.cloud.mobile.fcmnotifications.McsRegistrationIntentSer
vice" android:exported="false" />
<service
android:name="oracle.cloud.mobile.fcmnotifications.MCSFirebaseInstanceIDSer
vice">
 <intent-filter>
 <action android:name="com.google.firebase.INSTANCE_ID_EVENT"/>
 </intent-filter>
</service>

The FCM messaging library must be added as a dependent library in the application's
build file as described in Set up Firebase and FCM SDK. When generation is
complete, the Project Number (aka Sender ID) and server key are displayed. You
need these credentials to register the mobile app for notifications in MCS. They are
unique to the mobile app and can’t be used to send notifications to any other app. You
also need these values to get a registration token from FCM and set up the connection
with MCS, as described in Setting Up a Device Handshake for Android (FCM).

GCM Notifications

For GCM notifications, in the Android app’s AndroidManifest.xml file, within the
<application> node, add the following entries:

<service
android:name="oracle.cloud.mobile.notifications.McsRegistrationIntentServic

Chapter 16
Setting Up a Mobile App for Notifications

16-4

https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

e" android:exported="false" />
<service
android:name="oracle.cloud.mobile.notifications.GcmTokenRefreshListenerServ
ice" android:exported="false">
 <intent-filter>
 <action android:name="com.google.android.gms.iid.InstanceID" />
 </intent-filter>
</service>

Google Play Services must be added as a dependent library in the application's build
file, or these services will be flagged in error.

When generation is complete, the Project Number (aka Sender ID) and legacy
server key are displayed. You need these credentials to register the mobile app for
notifications in MCS. They are unique to the mobile app and can’t be used to send
notifications to any other app. You also need these values to get a registration token
from FCM and set up the connection with MCS, as described in Setting Up a Device
Handshake for Android (FCM).

Setting Up a Device Handshake for Android (FCM)
This section assumes you have already generated a configuration file for your app.
You will need the Sender ID (Project Number) you got when you configured your
project, as described in Android: Google API Key.

For FCM Notifications, an Android app needs to extend FirebaseMessagingService to
define a service for receiving Notifications. By overriding the onMessageReceived
method, you can perform actions based on the incoming message. For more
information on handling notifications in Android, see Receive Messages on Google
FCM Developers.

In your app’s src/main/AndroidManifest.xml file, just before the closing </
application> tag, register for the Notifications service, as shown below.

<application> ...
<service

android:name="oracle.cloud.mobile.fcmnotifications.MCSFirebaseMessagingServ
ice">
 <intent-filter>
 <action android:name="com.google.firebase.MESSAGING_EVENT"/>
 </intent-filter>
</service>
</application>

Set permissions to receive and display notifications by inserting these entries in the
Android manifest (somewhere above the <application> entry).

<uses-permission
android:name="android.permission.INTERNET"/>
<uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission
android:name="android.permission.WRITE_INTERNAL_STORAGE"/>

Chapter 16
Setting Up a Mobile App for Notifications

16-5

https://firebase.google.com/docs/cloud-messaging/android/receive

<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission
android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission
android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<application>

To establish communication and register for notifications, here’s what the device
handshake might look like in an Android app, using the client SDK:

...
import oracle.cloud.mobile.exception.ServiceProxyException;
import oracle.cloud.mobile.fcmnotifications.Notifications;
import oracle.cloud.mobile.mobilebackend.MobileBackendManager;

public class MainActivity extends Activity {
 private Notifications mNotification;

 @Override protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 this.registerNotificationClient();
}
//method that initializes and returns the Notifications client
private void registerNotificationClient(){
try {
 mNotification =
MobileBackendManager.getManager().getDefaultMobileBackend(this).getServiceP
roxy(Notifications.class);
 mNotification.initialize(this);
 } catch (ServiceProxyException e) {
 e.printStackTrace();
 }
}
}

Getting a FCM Registration Token

You also need the Sender ID to register your app with FCM to get a registration token.
The registration token is passed to OMCe, which packages it with the notification to tell
Google that your app and the device it runs on are legitimate recipients on the
network. Google provides the Instance ID API to handle registration tokens. See Set
Up a Firebase Cloud Messaging Client App on Android on Google Developers.

To set up a callback on successful registration, you could add code like the example
below:

public void onClick(View view) {
 try {
 //Registration process callback
 mRegistrationBroadcastReceiver = new BroadcastReceiver() {
 @Override

Chapter 16
Setting Up a Mobile App for Notifications

16-6

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

 public void onReceive(Context context, Intent intent) {
 SharedPreferences sharedPreferences =
 PreferenceManager.getDefaultSharedPreferences(context);
 boolean sentToken = sharedPreferences
 .getBoolean(NotificationsConfig.SENT_TOKEN_TO_SERVER,
false);
 if (sentToken) {
 Logger.debug(TAG, "Token retrieved and sent to server.");
 } else {
 Logger.debug(TAG, "An error occurred while registering the
device");
 }
 }
 };
 //call on successful registration
 LocalBroadcastManager.getInstance(mCtx).registerReceiver(
 mRegistrationBroadcastReceiver,
 new IntentFilter(NotificationsConfig.REGISTRATION_COMPLETE));
 //Initialization of MCS notifications service
 not = MobileBackendManager.getManager().getDefaultMobileBackend
 (mCtx).getServiceProxy(Notifications.class);
 boolean result = not.initialize(mCtx);
 } catch (ServiceProxyException e) {
 e.printStackTrace();
 }
}

After you’ve set up and registered your app, it can send and receive notifications. For
details and sample code, see Sending Notifications to and from Your App.
De-Registering a Device
To de-register a device for notifications, here’s what the code might look like in an
Android app, using the client SDK:

//Initialization of MCS notifications service
Notifications notifications =
MobileManager.getManager().getDefaultMobileBackend(getApplicationContext())
.getServiceProxy(Notifications.class);
boolean result = notifications.deregisterDevice(view.getContext());

Logger.debug(TAG, "unregister " + result);

Setting Up a Device Handshake for Android (GCM)
This section assumes you have already generated a configuration file for your app.
You will need the Sender ID (Project Number) you got when you configured your
project, as described in Android: Google API Key.

In addition to the device handshake, for GCM notifications an Android app needs to
extend GcmListenerService to define a receiver for the Notifications service. By
overriding the onMessageReceived method in the Android SDK, you can perform
actions based on the incoming message. See Simple Downstream Messaging on
Google Developers.

Chapter 16
Setting Up a Mobile App for Notifications

16-7

https://developers.google.com/cloud-messaging/downstream

In your app’s main/AndroidManifest.xml file, just before the closing </application>
tag, register service and broadcast receivers for the Notifications service, as shown
below.

<application>
...
 <receiver
android:name="oracle.cloud.mobile.notifications.Mcs2GcmListenerService"
 android:permission="com.google.android.c2dm.permission.SEND">
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE"/>
 <action
android:name="com.google.android.c2dm.intent.REGISTRATION"/>
 <category android:name="YOUR.PACKAGE.NAME"/>
 </intent-filter>
 <receiver>
</application>

Set permissions to receive and display notifications by inserting these entries in the
Android manifest (somewhere above the <application> entry).

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
<uses-permission android:name="android.permission.WRITE_INTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>
<permission android:protectionLevel="signature"
 android:name=YOUR.PACKAGE.NAME.permission.C2D_MESSAGE"/>
<uses-permission android:name="YOUR.PACKAGE.NAME.permission.C2D_MESSAGE"/>
<application>

To establish communication and register for notifications, here’s what the device
handshake might look like in an Android app, using the SDK:

...
import oracle.cloud.mobile.exception.ServiceProxyException;
import oracle.cloud.mobile.mobilebackend.MobileBackendManager;
import oracle.cloud.mobile.notifications.Notifications;

public class MainActivity extends Activity {
 private Notifications mNotification;
 private final String PROJECT_ID =
"PROJECT_ID_COPIED_FROM_GOOGLE_API_CONSOLE";

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 this.registerNotificationClient();
 ...
 }

Chapter 16
Setting Up a Mobile App for Notifications

16-8

//method that initializes and returns the Notifications client
 private void registerNotificationClient(){
 try {
 mNotification =
MobileBackendManager.getManager().getDefaultMobileBackend(this).getServiceP
roxy(Notifications.class);
 mNotification.initialize(this, PROJECT_ID);
 } catch (ServiceProxyException e) {
 e.printStackTrace();
 }
 }
...
}

Getting a GCM Registration Token

You also need the Sender ID to register your app with GCM to get a registration token.
The registration token is passed to MCS, which packages it with the notification to tell
Google that your app and the device it runs on are legitimate recipients on the
network.

To set up a callback on successful registration, you could add code like the example
below:

public void onClick(View view) {
 try {
 //Registration process callback
 mRegistrationBroadcastReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {

 SharedPreferences sharedPreferences =

PreferenceManager.getDefaultSharedPreferences(context);
 boolean sentToken = sharedPreferences
 .getBoolean(NotificationsConfig.SENT_TOKEN_TO_SERVE
R, false);
 if (sentToken) {
 Logger.debug(TAG, "Token retrieved and sent to
server!");
 } else {
 Logger.debug(TAG, "An error occurred while either
fetching the InstanceID");
 }
 }
 };

 //call on successful registration

LocalBroadcastManager.getInstance(getApplicationContext()).registerReceive
r(mRegistrationBroadcastReceiver,
 new
IntentFilter(NotificationsConfig.REGISTRATION_COMPLETE));

 //Initialization of notifications service

Chapter 16
Setting Up a Mobile App for Notifications

16-9

 not =
MobileBackendManager.getManager().getDefaultMobileBackend(view.getContext()
).getServiceProxy(Notifications.class);
 boolean result = not.initialize(view.getContext(), "714568881816");

 }
 catch (ServiceProxyException e) {
 e.printStackTrace();
 }
}

After you’ve set up and registered your app, it can send and receive notifications. For
details and sample code, see Sending Notifications to and from Your App.

Setting Up iOS Notifications
To set up your iOS app for notifications, follow the steps below:

1. First, get credentials from the notification provider to establish your mobile app as
a known item on the network. See iOS: Apple Secure Certificates.

2. Create a client for your mobile app in MCS, and configure notifications profile(s) by
entering the network credentials you got in step 1. See Client Management.

3. Set up the app to connect to the notification provider from the mobile device and
establish rules for communication. See Setting Up a Device Handshake for iOS.

After you complete these steps, you have a few options for sending notifications from
MCS to your mobile app. See Sending Notifications to and from Your App.

iOS: Apple Secure Certificates
Notifications require additional secure certificates from Apple, in addition to the
certificate used to set up your account. This section assumes you have an Apple
Developer account. For information on using notifications in iOS, see the Local and
Remote Notification Programming Guide on http://developer.apple.com.

Notifications make special use of Apple's network, so Apple wants extra security
protections. You need one of the following secure certificates:

• Apple Push Notification service SSL (Sandbox) certificate for developing and
testing your application with notifications while you do development. Sandbox
certificates are intended for automated QA environments where devices don’t
change often. In most cases, spam filters should be disabled.

• Apple Push Notification service SSL (Production) certificate for releasing your
application to Apple’s App Store. Apple requires this certificate before you can ship
your app to the public, but you can wait until your app is finished to get it.

The steps for getting a Sandbox or Production certificate are very similar to the steps
you used to get the first secure certificate when you set up your app. This section
assumes that you already set up your Apple developer account, got the required
secure certificate, and set up an Application ID and a Provisioning Profile.

1. If you didn’t enable notifications in your provisioning profile when you created your
App ID, go back and enable it now.

Chapter 16
Setting Up a Mobile App for Notifications

16-10

http://developer.apple.com/

2. Get your certificate(s) from the Apple Developer Center. Use the App ID you set
up when you created your app.

Note:

Follow Apple’s direction to create a Certificate Signing Request (CSR)
file, then export it to a .p12 file to upload it to MCS. Do not password
protect the .p12 secure certificate. (Leave the password field blank when
you save the .p12 file.)

You need your certificate to register the mobile app for notifications in MCS. It is
unique to the mobile app and can’t be used to send notifications to any other app.
Once you have configured these extra certificates, you can get a device token from
Apple and set up communication with MCS, described in Setting Up a Device
Handshake for iOS.

Setting Up a Device Handshake for iOS
As an iOS developer, to make a device handshake happen you need to add this code
to your Xcode project to get a device token, get a notifications object, and register your
app for notifications:

Note that the registration code should be called each time the app starts.

1. Get a device token from Apple.

if([application
respondsToSelector:@selector(registerUserNotificationSettings:)]){
 //use registerUserNotificationSettings for iOS 8 and later
 UIUserNotificationSettings *settings=[UIUserNotificationSettings
settingsForType:(UIUserNotificationTypeBadge
 |UIUserNotificationTypeSound
 |UIUserNotificationTypeAlert) categories:nil];
 [application registerUserNotificationSettings:settings];
} else {
 //We expect deprecation warnings here - this is for iOS 7.1 or
before
 [[UIApplication sharedApplication]
registerForRemoteNotificationTypes:
 (UIRemoteNotificationTypeBadge | UIRemoteNotificationTypeSound |
UIRemoteNotificationTypeAlert)];
}

After calling the above lines of code, the Apple Push Notification Service (APNS)
will call one of the delegate methods based on the success or failure to retrieve
the device token. If successful, one of the following methods is called:
didRegisterUserNotificationSettings: (iOS 8 or later) or
didRegisterForRemoteNotificationsWithDeviceToken: (iOS 7.1). In case of an
error, the didFailToRegisterForRemoteNotificationsWithEffor: method is
called.

Chapter 16
Setting Up a Mobile App for Notifications

16-11

2. Get the Notifications SDK object.

(OMCNotifications *) getOMCNotifications{
 OMCAuthorization *auth = [[OMCMobileBackendManager sharedManager]
mobileBackendForName:
 <Name_of_Mobile_Backend_from_OMC.Plist>].authorization;
 OMCNotifications* omcNOtifications=nil;
 NSError* err = [auth authenticate:<Username> password:<Password>];
 if (!err){
 omcNotifications = [[[OMCMobileBackendManager sharedManager]
mobileBackendForName:
 <Name_of_Mobile_Backend_from_OMC.Plist>] notifications];
 }
 return omcNotifications;
}

3. Register for notifications using the Notifications SDK object. Note that
omcNotifications is the object of OMCNotifications.class. .

[omcNotifications registerForNotifications:dataDeviceToken
 onSuccess:^(NSHTTPURLResponse *response){
 dispatch_asynch(dispatch_get_main_queue(),^{
 //Update UI here
 });
 } onError:^(NSError *error){
 dispatch_async(dispatch_get_main_queue(),^{
 //Update UI here
 });
 }];

Next, register your mobile app with the associated mobile backend, and enable
notifications. SeeRegistering an App as a Client in MCS.

After you’ve registered your app, it can receive notifications from a range of sources.
For details and sample code, see Sending Notifications to and from Your App.

Setting Up Windows Notifications
To set up your Windows app for notifications, follow the steps below:

1. First, get credentials from the notification provider to establish your mobile app as
a known item on the network. See Windows: WNS Credentials or Syniverse: SMS
Credentials.

2. Create a client for your mobile app in MCS, and configure notifications profile(s) by
entering the network credentials you got in step 1. See Client Management.

3. Set up the app to connect to the notification provider from the mobile device and
establish rules for communication. See Setting Up a Device Handshake for
Windows.

After you complete these steps, you have a few options for sending notifications from
MCS to your mobile app. See Sending Notifications to and from Your App.

Chapter 16
Setting Up a Mobile App for Notifications

16-12

Windows: WNS Credentials
Configuring a Windows mobile app for notifications requires a unique set of credentials
for Windows Push Notification Service (WNS). This section assumes you have a
Microsoft Developer account.

The following credentials are required to authenticate with WNS:

• Client ID (also called the Package SID)

• Client Secret (also called a secret key)

To get these credentials, register your mobile app in the Windows Store Dashboard,
accessible from the Windows Dev Center. For details on WNS, see WNS Overview on
MSDN.

You need these credentials to register the mobile app for notifications in MCS. They
are unique to the mobile app and can’t be used to send notifications to any other app.

Syniverse: SMS Credentials
To send Short Message Service (SMS) messages using the Syniverse Messaging
Service, the first step is to establish a profile on the Syniverse Developer Community,
where you subscribe to the service, register your app, and get credentials.

Creating a Profile on the Syniverse Developer Community

1. Go to the Syniverse Developer Community (developer.syniverse.com).

2. Click Sign Up in the top right corner of the site and enter the requested
information.

3. If you have an invitation code from a company in the Syniverse Developer
Community enter that into "Company invite code" field. If not, ignore this step.

4. Read and accept the Terms of Service.

5. Check the Captcha box and answer the challenges to prove you aren’t a robot.

6. Click Create profile.

7. When the confirmation email arrives, click the link in the email and verify your user
credentials.

Subscribing to the Syniverse Messaging Service

To use SMS in your apps using the SMS short code you got from Syniverse, you need
to subscribe to the Syniverse Messaging Service.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click your user name in the top right corner and select Company. Verify that your
accounts have a billing address associated with them.

3. Navigate to Service Offerings > Messaging Offering and click Subscriptions.

4. Click Subscribe and select “Initial account for [Your username]”

a. Read and accept the Terms of Service.

b. Select Confirm.

c. Verify that your account is listed in Subscriptions.

Chapter 16
Setting Up a Mobile App for Notifications

16-13

https://developer.microsoft.com/en-us/windows
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx
https://developer.syniverse.com/
https://developer.syniverse.com/

5. If you’re using a Syniverse-provisioned public channel to test messages, you also
need to add test phone numbers to the associated whitelist. (Whitelisting is only
necessary when testing SMS to U.S. or Canada phone numbers and isn’t required
for production apps.)

a. Click your user name in the top right corner and select Company.

b. On the Company page, click the Whitelist tab.

c. Click Add phone number and enter your phone number in the ITU-T E.164
format (i.e., +11234567890).

d. Click Send confirmation code to send a randomly generated number to the
phone number in a text message.

e. Retrieve the confirmation code from the text message and enter it in the
Confirmation code field. Click Add to confirm the phone number whitelist.

f. Verify that your phone number is included in the whitelist table with "Validated"
status.

Register Your App and Get Credentials

Before messages can be sent through the Syniverse Messaging Service, there must
be an application configured in the SDC platform. Once your app is registered, you
can generate the required credentials.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click Applications.

3. Click New application.

In the dialog:

a. Give your application a name and description and click Save.

b. Click the gear icon next to your app name and select Edit.

c. Click SDC Self Service and make sure all the options are selected.

d. Click Account & APIs and select the "Initial account for [Your username]"
from the Account dropdown.

Turn on the following services: Messaging, SDC Gateway Services, Event
Subscription Services, Voice & Messaging and Whitelisting Services.

e. Click Save.

4. Generate the required credentials:

Setting Up a Device Handshake for Windows
This section assumes you have already registered your mobile app with WNS,
described in Windows: WNS Credentials.

Here’s what a device handshake might look like in a Windows app, using the SDK:

...

using Oracle.Cloud.Mobile.Notifications;
using Windows.Networking.PushNotifications;

namespace MyWindowsApp

Chapter 16
Setting Up a Mobile App for Notifications

16-14

https://developer.syniverse.com/

{
 public sealed partial class MainPage : Page
 {
 public MainPage()
 {
 this.InitializeComponent();

 //
 // First login to MCS
 //
 var loginDialog = new LoginDialog();
 loginDialog.ShowAsync().ContinueWith((task) =>
RegisterForNotificationsAsync());
 }

 private async Task RegisterForNotificationsAsync()
 {
 var backend = ((App)App.Current).Backend;

 // Register for Push Notifications
 PushNotificationChannel channel =
 await
PushNotificationChannelManager.CreatePushNotificationChannelForApplicationA
sync();

 await
backend.GetService<Notifications>().RegisterForNotificationsAsync(channel.U
ri);
 }

 ...
 }
}

For details on requesting a channel URI and constructing the notification payload, see
Windows Push Notification Services (WNS) overview.

Next, register your mobile app with the associated MCS mobile backend, and enable
notifications. For detailed instructions, see Registering an App as a Client in MCS in
the Mobile Backends chapter.

After you’ve registered your app, it can receive notifications from a range of sources.
For details, see Sending Notifications to and from Your App.

Sending Notifications to and from Your App
Once you’ve set up and registered your mobile app, you can start sending notifications
and SMS messages.

• Send notifications and cancel scheduled notifications from the UI, which can be
useful for development.

• Use the Notifications API to send notifications to and from apps and devices all
over the place.

Chapter 16
Sending Notifications to and from Your App

16-15

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx

You can also check the status of your notifications in the UI or using the Notifications
API. For details, see Troubleshooting Notifications.

Testing Notifications from the MCS UI
MCS provides a notifications testing UI that allows you to send scheduled notifications
to a defined set of recipients.

1. Make sure you’re in the environment where you want to create the notification.

Click to open the side menu and select Applications > Mobile Backends.

2. On the Mobile Backends page, select the mobile backend that includes your
mobile app and click Open.

3. Click Notifications.

4. On the Notifications page, click the Send icon.

5. If your device isn’t registered yet, you can access the Device Registry by clicking
Manage Devices.

To register a device for SMS through the UI, you must have consent management
disabled in the associated MCS client profile as described in Client Management.
If you register a device for SMS through the UI and it fails, it’s probably a problem
with your Syniverse Developer Community setup. Make sure you completed all the
steps described in Syniverse: SMS Credentials.

6. Enter the notification message you want to send in plain text or a JSON payload. If
you enter JSON, it must conform to the notification provider’s requirements. If it is
not valid JSON, it will be sent as a plain text message.

7. Choose when to send the message.

• To send the notification immediately, leave the default Now.

• To schedule the notification for a later date and time, choose Later and select
the date and time for the notification to be sent.

8. Choose who to send the message to.

• To send the notification to everyone in the mobile backend, leave the default
All notifications-enabled mobile apps that use this mobile backend. A
single mobile backend may contain more than one version of a mobile
application, with implementations for different devices and networks. This
option sends to all notification-enabled clients, regardless of the network or
device.

• To define a filter by user name, platform type, device ID, Facebook ID, or any
combination, choose Filtered set of recipients. Under Match all of the
following, select the filter type from the dropdown list:

– Device ID: Send a notification to a single device ID or to multiple device
IDs at the same time. The device ID is a unique number assigned to a
mobile device during the device handshake. For SMS, the device ID is a
phone number. In general, sending a notification to a device ID is useful
for testing your application but not practical in bulk.

– Platform: Send to all recipients running on iOS, Android, Windows or
Web.

– Provider: Send to all recipients receiving APNS, GCM, FCM, WNS or
SMS notifications.

Chapter 16
Sending Notifications to and from Your App

16-16

– User: Send a notification to a single user or to a list of users.

– Facebook Unique ID: Send a notification to a Facebook user, by ID.

If the list of recipients gets too long, click the + button to add another filter and
continue your entries there. Filters can be mixed and matched for additional
selectivity.

9. Click Send.

Once you click Send, you can monitor the status of your notifications in the History
pane. For details, see Troubleshooting Notifications.

Cancelling a Scheduled Notification from the UI
The only notifications that can be cancelled are those that are scheduled for a future
time.

To cancel a scheduled notification, go to the Scheduled tab in the History pane and
click the X in the corner of the entry you want to remove. You will be prompted to
confirm the cancellation.

Sending Notifications Using the Notifications API
You can send notifications to mobile devices from your apps using the Notifications
API. Notifications have a maximum limit of 1,000 devices per call.
You can call Notifications REST API endpoints directly or use custom code in your
mobile app. This section details the REST endpoints. For information on using custom
code including examples and sample code, see Accessing the Notifications API from
Custom Code in the Calling APIs from Custom Code chapter.

To register a device ID for notifications, you can use the UI or the Notifications Device
Registration API as described in Registering a Device ID.

The /mobile/system/notifications/notifications endpoint allows you to send
notifications, cancel scheduled notifications, and check the status of sent notifications.

Note:

Calls to this endpoint must include these headers:

• Authorization: If you’re using basic authentication, this header should
include the name and password for a team member with the
MobileEnvironment_Notification role, encoded in Base64. For OAuth,
this header should include the access token. If you’re using OAuth, you
must also be a team member with the
MobileEnvironment_Notification role.

• Oracle-Mobile-Backend-ID: If you’re using basic authentication, you
must include this header. The mobile backend ID is listed on the Settings
tab for the mobile backend. For OAuth, this information is included in the
access token.

When you send a notification, you can specify any combination of the following for the
payload:

Chapter 16
Sending Notifications to and from Your App

16-17

• {"payload":""} A unified payload that includes well-formed JSON for each
supported notification provider (Google, Apple, Windows and Syniverse). For
details, see Sending a Notification Using a Unified Payload.

• {"template":""} A reusable payload template with defined parameters, used to
create payloads for each supported notification provider. The payload template
includes the following optional parameters: title, body, badge, sound and custom.
For details, see Sending a Notification Using a Payload Template.

• {"message":""} A plain-text message string. For details, see Sending a Text
Message Notification.

The unified payload is used if it exists, then the template, then the message, in that
order.

To send notifications to specific recipients, add an argument after the content of the
payload:

• To send to a user or a list of users, add the users argument. A user can be
defined by firstname:lastname or email address. Multiple users are listed as
tokens in an array, and there’s no limit on the number. For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "users":
["bob@acme.com", "sjones@xyz.net", "banana@peelme.com"]}'

• To send to everyone on the same mobile platform, add the platform (IOS,
ANDROID, WINDOWS or WEB). For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "platform":
"IOS"}'

• To send to a specific notification provider, add the provider (APNS, GCM or FCM,
WNS or SYNIVERSE). For example:

-d '{"message": "Hi! Our storewide sale is tomorrow.", "provider":
"APNS"}'

• To send to a specific device ID or a list of device IDs, add the
notificationTokens argument. Multiple IDs are listed as tokens in an array, and
there’s no limit on the number. For example:

-d '{"message": "Test of notifications feature.", "notificationTokens":
["2DD2D2-D2DDG44GD-GDGSDFZS3-3-3DFZSDFDS"]}'

To schedule a notification for a future date and time, add the sendOn argument. For
example:

-d '{"message": "Come to our discount sale today!", "sendOn":
"2015-06-15T6:00Z"}'

For further details, including HTTP response status codes and full schemas for the
request and response bodies, see the REST APIs for Oracle Mobile Cloud Service.

Chapter 16
Sending Notifications to and from Your App

16-18

Registering a Device ID
The Notifications Device Registration API lets you register the device ID of your mobile
app, which can then be used as a recipient address for sending notifications. This API
can also associate a user with the device ID, so the user name can also be used as a
target for notifications.

You can register a device ID (notificationToken) directly and send notifications
directly to that ID. You can also use this API to associate any user with the device ID.

The Notifications Device Registration API includes the following endpoints:

• POST /mobile/platform/devices/register

• POST /mobile/platform/devices/deregister

When you register a device, include these parameters:

• The mobileClient parameter identifies the client in the backend with three
properties:

– id: The Application ID assigned by the Google or Apple app store. (This is
different from the "App-Key".)

– version: The version of the mobile client that will receive the notifications,
currently 1.0.

– platform: "IOS" or "ANDROID" or "WINDOWS" or "WEB" (all caps)

• The notificationProvider parameter defines the service the notificationToken
is used for: "APNS" or "GCS" or “FCM” or "WNS" or "SYNIVERSE".

• The notificationToken parameter defines the token needed by the notification
service for sending calls. This token uniquely identifies the specific instance of a
mobile app associated with a specific device, and is used to ensure that
notifications are sent to the correct recipient. Encode in hexadecimal if necessary.

• The optional user parameter associates the device ID with the user name
provided. If the user parameter isn’t included, the device ID is associated with the
user who is logged in during the registration call.

Note:

To specify a different user name, the logged in user must be a team
member with the MobileEnvironment_Notifications role. Keep in mind
that registering a user name this way doesn’t validate the entry in the
Device Registry. If this results in duplicate user names, notifications
could be sent to multiple users. It’s up to the app to ensure that user
names are unique if that’s a requirement.

This example registers a device with the device ID MyAppToken:

curl -v
 -H "Authorization: Basic
VGVzdE1vYmlsZVVzZXIyYzE4YWRiZjMyMDg0ZWZkOWQyODM0NjA1OGNmExampleAuthString="

 -H "Oracle-Mobile-Backend-ID: 7cf06198-053e-4311-8186-cae145900d59"

Chapter 16
Sending Notifications to and from Your App

16-19

 -H "Content-Type:application/json"
 -d '{"mobileClient": {"id":
"MyClientac3d8baf1aa348b48d80e9b7fd026067","version": "1.0","platform":
"IOS"},"notificationProvider":"APNS","notificationToken":"03767dea-29ac-444
0-b4f6-75a755845ade","user":"JoeSmith"}'
 http://www.fixitfast.com:8080/mobile/platform/devices/register

If the REST operation to register the device is successful, you can expect to get a
response something like this:

Connected to fixitfast.com port (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'
POST /mobile/platform/devices/register/
Authorization: Basic
VGVzdE1vYmlsZVVzZXIyYzE4YWRiZjMyMDg0ZWZkOWQyODM0NjA1OGNmExampleAuthString=
User-Agent: curl/7.33.0
Host: fixitfast.com:8080
Accept: application/json
Content-Type: application/json
Oracle-Mobile-Backend-ID: 7cf06198-053e-4311-8186-cae145900d59
Content-Length: 32
upload completely sent off: 32 out of 32 bytes
HTTP/1.1 201 Created

The response includes a JSON payload that contains the device ID for the registered
device.

{
 "id": "7cf06198-053e-4311-8186-cae145900d59",
 "user": "JoeSmith",
 "notificationProvider":"APNS",
 "notificationToken":"03767dea-29ac-4440-b4f6-75a755845ade",
 "mobileClient": {"id":
"MyClientac3d8baf1aa348b48d80e9b7fd026067","version": "1.0","platform":
"IOS"},
 "modifiedOn": "2016-05-25T14:58:16.373Z"
}

Sending a Text Message Notification
The example below uses the Notifications REST API to send a simple notification to
everyone in the mobile backend. As noted above, the name and password sent in the
Authorization header must be a team member with the necessary permissions.

curl -X POST
 -H "Authorization: basic bWNzOldlbGNvbWUxKg=="
 -H "Accept: application/json"
 -H "Content-Type: application/json; charset=UTF-8"
 -H "Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d"
 -d '{"message": "Hi! Our storewide sale is tomorrow."}'
 http://www.FixItFast.com:8080/mobile/system/notifications/
notifications/

Chapter 16
Sending Notifications to and from Your App

16-20

If the notification is sent successfully, the response might look like the example below.
The body will be the JSON for the created notification.

Connected to FixItFast.com port (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'
POST /mobile/system/notifications/notifications/ HTTP/1.1
Authorization: Basic bWNzOldlbGNvbWUxKg==
User-Agent: curl/7.33.0
Host: newclothes.com:8080
Accept: application/json
Content-Type: application/json; charset=UTF-8
Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d
HTTP/1.1 201 Created

You could also get a status code of 400 (bad request) or 401 (unauthorized).

Sending a Notification Using a Unified Payload
A unified payload allows you to specify a different payload for each supported
notification provider using Notifications REST API. One or more of the following can be
defined under the services property:

• The apns payload must conform to APNS requirements.

• The gcm or fcm payload can contain arbitrary JSON properties.

• The wns payload property must contain a well-formed WNS payload.

• The syniverse payload property should contain the string to send as a SMS
message.

Note:

The payload template allows you to send provider-specific payloads without
defining the code. For details, see Sending a Notification Using a Payload
Template.

The following are simple examples that define payloads for FCM. An FCM object can
contain either a notification object or a data object. A notification object has a
predefined set of user-visible keys described in the FCM documentation. A data object
has custom key-value pairs.

Notification object:

{"notificationTokens": ["xxxxx"],"payload": {"services": {"fcm":
{"notification": {"title": "Sale On Now!","body": "50% off until Saturday"
 }
 }
 }
 }
}

Chapter 16
Sending Notifications to and from Your App

16-21

Data object:

 "notificationTokens": ["xxxxxx"],"payload": {"services": {"fcm":
{"data": {"acme1": "value1","acme2": "value2"
 }
 }
 }
 }
}

Sending a Notification Using a Payload Template
When you use a payload template with the Notifications REST API, the content you
enter is used to create a driver-specific payload for each supported notification
provider. The default payload template includes the following optional parameters.

Parameter Description Data Type Example

title The alert title. If a title
is specified, the body
parameter is also
required.

string "Sale On Now!"

body The alert body.
If only a body is
specified, the content
is used as the value
for the alert property
in the APNS and FCM
payloads.

string "50% off until
Saturday"

badge A number to badge
the notification with.
Android applications
don’t support badging,
so the number is not
passed in the payload.
If there is a
requirement to pass
the "badge" value, it
can be passed as part
of a custom data
payload.

number 43

Chapter 16
Sending Notifications to and from Your App

16-22

Parameter Description Data Type Example

sound The sound file to play
with the notification.
Only .wav format is
supported by APNS ,
WNS, and FCM.
• For APNS, the file

must be in the
app bundle.

• For WNS, the file
must be in the
app package (the
"ms-appx:///"
prefix is added
automatically).

• For FCM, the file
can be anywhere.

string "alert.wav"

custom Any required custom
data.

object
{
 "acme1":
"value1",
 "acme2":
["value2",
"value3"]
}

The example below shows a notification sent using FCM that includes all five
parameters and the resulting payload. An FCM object can contain either a notification
object or a data object. A notification object has a predefined set of user-visible keys
described in the FCM documentation. A data object has custom key-value pairs.

This specifies the default template:

{
 "template": {
 "name" : "#default",
 "parameters": {
 "title":"this is the title",
 "body":"this is the body",
 "sound":"alert.wav",
 "badge": 5,
 "custom":
{ "key1": "value1", "key2": "value2", "key3": ["value3.1", "value3.2"] }
}
 },

This payload is delivered in the same way as the following unified payload. As noted
above, Android apps don’t support badging, so your app can use the badge value in
other ways. Note that in this example, value is a string, so the value for key3 is
converted to a string.

Chapter 16
Sending Notifications to and from Your App

16-23

FCM driver payload:

"fcm": {
 "notification":
{ "title": "this is the title", "body": "this is the body", "sound":
"alert.wav" }
"data":
{ "key1": "value1", "key2": "value2", "key3": "[\"value3.1\",
\"value3.2\"]" }
}

Cancelling Scheduled Notifications
To cancel a scheduled notification, send DELETE to /mobile/system/notifications/
notifications/{id} with the ID assigned to the notification you want to cancel. For
this example, the notification ID is 113455.

curl -X DELETE
 -H "Authorization: Basic bWNzOldlbGNvbWUxKg=="
 -H "Oracle-Mobile-Backend-ID:1d97542d-51d6-4f18-897f-35053cfdfd2d"
 -H "Accept: application/json"
 -H "Content-Type: application/json; charset=UTF-8"
 http://www.fixitfast.com:8080/mobile/system/notifications/
notifications/113455

Troubleshooting Notifications
Sending a notification is an asynchronous process. Once you send a notification, it can
sit for minutes, hours, or maybe even days on an Apple, Google or Microsoft server
before it gets delivered to the mobile device. Even if a notification can’t be delivered,
there might be no error message returned. You have no control over a notification
once it gets sent, but these are some common notification problems:

• A secure certificate is missing, expired, or not located in the right place.

• The network credentials for the device don't match the credentials registered.

• A security identifier used in your code doesn’t match the identifier registered with
Google, Apple or Windows, or match what’s defined in your Android manifest or
iOS Xcode project.

• The wrong identifier has been entered into a form. For example, when you register
for notifications in a backend and it asks you for an API Key, you entered the
application key instead.

• An APNS mismatch between production/development flag and certificate, for
example uploading a production certificate but configuring the client saying it's a
development certificate.

• In FCM and GCM, the wrong API key or Project Number/Sender ID means the
user might have disabled notifications on their device.

MCS will automatically unregister the device if a notification is sent to it and the
notification provider reports the device ID as being bad. This can happen in a few
ways:

Chapter 16
Troubleshooting Notifications

16-24

• The most likely is that the token has expired. A device token lasts between 30 and
90 days depending on the provider. A mobile app should reregister the
notifications token every time the app starts up with both MCS and the notifications
provider to refresh it.

• The user deleted the app from their device

• The API key or certificate in MCS has gone bad by either expiring, or a new API
key or certificate was requested from Google/Apple and not uploaded.

• The user has reinstalled/updated their OS and hasn’t run the app since reloading
the OS.

• The token was mangled somehow during registration.

Checking Notification Status in the UI
Check the History pane, accessible from the Notifications page for your mobile
backend, to find out if your notifications were successfully sent.

Scheduled notifications are displayed in the Scheduled tab. To see a list of sent
notifications, click the Sent tab. If you don’t see the notifications you expect, click
Check for Updates.

The status you see in the History pane reflects the success rate of the notifications
that have been sent. You can quickly tell the status of each notification in the History
pane by the color in the left column:

• Green means that more than 70% of individual notifications in the batch were
accepted by the Apple and/or Google networks.

• Yellow means that less than 70% of individual notifications in the batch were
accepted.

• Red means that the batch failed to send successfully from MCS. In most cases,
there is a configuration error that needs to be fixed. See Troubleshooting
Notifications.

• Blue means a batch of notifications is currently being sent. In most cases, a Blue
indicator appears for only a few moments.

Given the large the number of recipients sent to a popular mobile application, there will
never be 100% success. For example, if a notification is directed to a user that has
recently lost her phone, the Apple or Google network won’t accept the notification for
delivery to the device. The default warning threshold is 70%, but you can change it in
the Notifications_DeviceCountWarningThreshold environment policy.

The Device Manager, also accessible from the Notifications page for your mobile
backend, lists all registered devices for the mobile backend with their device IDs/
notification tokens. If you don’t see your device, the network provider might have
specified that the device ID/notification token is invalid and should be deregistered.
Also, if a device hasn’t been reregistered in 60 days, it will be removed from the
registry. You can click Clear Registry to remove all registered devices from a mobile
backend to facilitate troubleshooting.

You can always look at the MCS logs to see if more information about a notification or

batch of notifications is available. Click to open the side menu and select
Administration > Logs. For details on the diagnostics tools available through MCS,
see Diagnostics.

Chapter 16
Troubleshooting Notifications

16-25

Checking Notification Status with the Notifications REST API
You can use the Notifications API to check the status of notifications.

Send GET to mobile/system/notifications/notifications with the ID of the
notification or using the status= query parameter. You can check for any notification
status: New, Scheduled, Sending, Error, Warning, or Sent. (The notification must have
been successfully sent.)

The example below checks for scheduled notifications.

curl -i
-X GET
-u team.user@example.com:Welcome1!
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce"
http://fif.cloud.oracle.com/mobile/system/notifications/notifications/?
status=Scheduled

If the query is successful, the response will be JSON listing the first 1000 notifications
found. You can specify a range using limit and offset parameters, for example,
limit=100&offset=400 would return notifications 400-499.

{
 "items": [
 {
 "id": 1234,
 "tag": "Marketing",
 "message": "This is the alert message.",
 "status": "Sent",
 "notificationTokens": ["APNSdeviceToken"],
 "createdOn": "2014-04-02T12:34:56.789Z",
 "platformCounts": [
 {
 "platform": "IOS",
 "deviceCount": 1,
 "successCount": 1
 }
],
 "links": [
 {
 "rel": "canonical",
 "href": "/notifications/1234"
 },
 {
 "rel": "self",
 "href": "/notifications/1234"
 }
]
 },
 {
 "id": 1235,
 "tag": "System",
 "message": "Update required.",
 "status": "Sent",

Chapter 16
Troubleshooting Notifications

16-26

 "processedOn": "2014-04-01T12:34:56.789Z",
 "notificationTokens": ["APNSdeviceToken"],
 "platformCounts": [
 {
 "platform": "IOS",
 "deviceCount": 1,
 "successCount": 1
 }
],
 "createdOn": "2014-04-03T58:24:12.345Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/notifications/1235"
 },
 {
 "rel": "self",
 "href": "/notifications/1235"
 }
]
 }
],
 "hasMore": false
 "links": [
 {
 "rel": "canonical",
 "href": "/notifications?offset=0&limit=2"
 },
 {
 "rel": "self",
 "href": "/notifications?offset=0&limit=1000"
 }
]
}

Chapter 16
Troubleshooting Notifications

16-27

17
Analytics

Oracle Mobile Cloud Service (MCS) provides an Analytics API to help you measure
patterns in app performance and usage. As a business development manager or
mobile program manager, you can use analytics to find out how to improve your apps.

What Can I Do With Analytics?
Use Analytics to gain insight into how (and how often) users use a mobile app at any
given time. The analytics reports generated enable you to see an application's
adoption rate, and find out which functions are used the most (or the least).

How Does MCS Create Analytics Reports?
MCS creates analytics reports from events, which describe how users interact with the
mobile app.

A mobile app developer can track the mobile app’s entire usage by raising events in
the mobile app code. For example, a mobile app for repair technicians might track
events like Work Order Dispatched, Work Order Accepted, Work Order Resolved, and
Work Order on Hold. To add further detail to an event, you can define properties that
describe an event’s characteristics. For the Work Order on Hold event, for example,
you might add properties for Customer Not Home or Parts on Order.

Tip:

Mobile program managers should decide which aspects of an app to track by
events early in the app development process.

17-1

Mobile backends receive events from the REST calls made from mobile apps. A
mobile app makes a single call, which includes a JSON payload that describes the
events along with such contextual information like a user’s location, the start and end
of a user session, and details about the user’s mobile device. You can craft the
payload yourself if you use straight REST calls, or use the mobile client SDK to
construct one for you. The SDK defines the user session and automatically applies the
user and system context that allows MCS to generate reports that describe the
number of users of the app, and how (and from where) they’re using it.

Note:

While the SDK enables Analytics to automatically generate reports that tell
you how many users your app has, or how much time they’re spending on it,
you must define events in the mobile app’s code if you want to see these
reports.

Enabling Your Mobile Apps to Report Event Data
MCS creates analytics reports from information conveyed in JSON payloads. The calls
that deliver the JSON payload to the Analytics API, which records event data, can be
either straight REST calls or REST calls made through the mobile client SDK. In either
case, MCS uploads and stores the JSON payload and then graphs it in a report.

Describing Analytics Events in JSON

The JSON payload describes the context for mobile app users in terms of both their
mobile devices and the events that track user interactions. These types of events are
known as custom events. A JSON payload has one or more of these custom events,
and is also constructed from a context event that provides user and system details, a
start session event, and end session event. The custom events are grouped within the
session events to describe an analytic session.

Within the mobile app code, developers can determine the point at which the app
flushes the custom events that have accumulated on the mobile device to the MCS
server. This content is considered to be a session that can be logged. Theoretically, an
analytic session can remain open for longer than a single batch update to the MCS
server. In other words, sessions can vary in length according to your event logging use
case: a session might be created to track event data for a single action or a set of

Chapter 17
Enabling Your Mobile Apps to Report Event Data

17-2

actions that comprise a task. You can also use a session to log the entire span of user
interactions within a user session. That said, the length of an analytic session
generally does not, and should not, equal that of a user session. Instead, create
analytic sessions that are short and concise. By keeping these sessions crisp, you’ll
maintain system performance and accurate event reporting.

Note:

The mobile client SDK tracks analytic sessions on a file system, which
means that a file grows as you add more events to a session. The MAFMCS
Utility, which allows mobile apps built using Oracle Mobile Application
Framework (MAF) to access MCS , enables sessions to be saved in
memory. However, saving sessions in memory might degrade memory
consumption when there are a large number of custom events (say, more
than 1000). Consequently, you might lose some event logging, because the
mobile app may crash before it can post events to MCS . See MAF Utility
Developer Guide.

Taking a Look at the JSON Payload

Within a JSON payload, events have the following properties:

• A name of fewer than 100 characters.

• A unique string defined for the sessionID property, which associates an event with
a particular session. If you create your own JSON, you must assign a unique string
to this property. The mobile client SDK ensures uniqueness by adding a text string
punctuated by hyphens known as a Universally Unique Identifier (UUID).

• A time stamp: Events are ordered by time stamp (though not strictly, because
events can share the same time stamp). The mobile client SDK generates the time
stamp automatically.

A JSON payload posted toMCS may look something like this:

[
 {
 "name":"context",
 "type":"system",
 "timestamp":"2013-04-12T23:20:54.345Z",
 "properties":{
 "userName":"jimSmith",
 "model":"iPhone5,1",
 "longitude":"-122.11663",
 "latitude":"37.35687",
 "timezone":"-14400",
 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28",
 "carrier":"AT&T"
 }
 },
 {
 "name":"sessionStart",

Chapter 17
Enabling Your Mobile Apps to Report Event Data

17-3

http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf
http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf

 "type":"system",
 "timestamp":"2013-04-12T23:20:55.052Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce"
 },
 {
 "name":"PurchaseFailed",
 "type":"custom",
 "timestamp":"2013-04-12T23:20:56.523Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce",
 "properties":{
 "cartContent":"WIDGET",
 "cartPrice":"$50,000"
 }

 {
 "name":"sessionEnd",
 "type":"system",
 "timestamp":"2013-04-12T23:25:55.052Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce"
 }

]

Every JSON payload must begin with a context event. In the preceding example, this
event is indicated by "name":"context" and includes properties that describe the
current context of the mobile app, such as user name and the longitude and latitude.
The context event is associated with each event that follows it, such as the session
start and end events that demarcate a session. It is also associated with events raised
in the mobile app code, such as PurchaseFailed in the preceding example.

Note:

Although you can add this context to events using straight REST calls, the
mobile client SDK adds both session and device context information to the
payload automatically.

Creating Your Own JSON Payload

If you don’t use the mobile client SDK, keep these tips in mind when composing the
JSON payload:

• Start each payload with a context event (indicated by "name":"context").

• Add a context event whenever the device's context changes — typically when the
longitude, latitude, or username properties need to change.

• You can randomly add the events within the payloads, but you must associate
every event raised in the mobile app code with sessionStart and sessionEnd
events just like PurchaseFailed in the preceding example, as noted by
“type”:”custom”.

Chapter 17
Enabling Your Mobile Apps to Report Event Data

17-4

Note:

Ensure that these events share the same sessionID value. When events
have the same sessionID value, theMCS server can approximate the
session even if part of the payload (like the endSession definition) isn’t
recorded by the database.

MCS responds with a 202 status code (Accepted) when it receives a complete and
syntactically correct REST call. Otherwise, it returns 400 (Bad Request) or 405
(Method not Allowed) responses.

Why Should I Use the Mobile Client SDK?

The mobile client SDK:

• Automatically defines the start and end of sessions and manages them using the
UUIDs that it assigns to the sessionID property.

• Adds the context event at the beginning of each payload.

• Adds such device properties as the username, latitude, and longitude for
context events.

Note:

On the server, the longitude and latitude values are translated into
city, country, postal code, and street. See Integrating Analytics into a
Mobile App Using the Mobile Client SDK.

• Marks events raised in mobile app code as custom (which is described in Tracking
Sessions and Logging Events for Mobile Apps) or system for session or context
events. The SDK also adds a timeStamp to each event.

Adding Location Properties to the context Event
The Oracle eLocation Service (maps.oracle.com) derives location from the longitude
and latitude properties in the JSON request body. These properties only work if your
mobile apps are used in countries where Oracle eLocation Service is available. For
countries where Oracle eLocation Services is unavailable, you can still enable MCS to
record the location data that allows countries to display in the Dashboard map by
adding location-related properties to the context event.

To enable requests to support country data, add any combination for the following
properties to the context event:

• locality — The mobile device's locality, such as city, township, or village.

• region — The mobile device's region, such as state, canton, or province.

• postalCode — The mobile device’s postal code.

• country — The mobile device’s GPS country. For some countries in the Asia-
Pacific region, you can use a two-letter identifier, such as JP (Japan), CN (China),
or KR (South Korea).

Chapter 17
Enabling Your Mobile Apps to Report Event Data

17-5

Note:

Do not include longitude and latitude in the context event if you define
any of these properties.

For example:

{
 "name":"context",
 "type":"system",
 "timestamp":"2013-04-12T23:23:34.345Z",
 "properties":{
 "userName":"GDoe321",
 "locality":"Aomi",
 "region":"Kanto",
 "postalCode":"135-0064",
 "country":"JP",
 "timezone":"-14400",
 "carrier":"AT&T",
 "model":"iPhone5,1",
 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28"
 }

Integrating Analytics into a Mobile App Using the Mobile
Client SDK

The oracle-cloud-mobile-analytics.jar and the libOMCAnalytics.a libraries
included in the mobile client SDK enable mobile apps deployed on Android and iOS
devices to post events to the Analytics API. These libraries become available to your
mobile app when you download the mobile client SDK and integrate it into the mobile
app. See Connecting Your Application to a Mobile Backend.

Understanding Different Types of Analytics Reports
The Analytics reports plot the frequency of incoming events against specified time
periods. These reports enable you to spot patterns in mobile app usage and
performance.

Chapter 17
Integrating Analytics into a Mobile App Using the Mobile Client SDK

17-6

Reports Uses

Events Find out how users use your app. You select which events
you want to track in the mobile app code. You can add
additional events by calling the Analytics API from custom
code. See Tracking Sessions and Logging Events for Mobile
Apps.

You can build conversion funnels that let you trace user
participation through a workflow path. See Improving User
Retention with Funnel Analysis.

API Calls Count

API Calls Response Time

Track app usage and performance, as well as how apps use
MCS .

New Users

Active Users

Session Count

Session Duration

Enables you to answer such questions about engagement
as:

• Is the app gaining or losing users?
• How often do users use the app and how long are the

user sessions?

My Reports Stores your saved report definitions.

Accessing the Analytics Reports
Click to open the side menu and then to open the dashboard. From here, you can
quickly explore the following:

• API Calls: See the number of calls to your app and the response times over
various time periods.

• Events: Track customer events, like putting an item into a cart and checking out.

• Funnels: Discover what events customers complete on their way to a goal, like
making a purchase or signing up for promos.

• Users: Find out who your new and active users are, and group them by properties
such as their zip code or country.

• Sessions: Learn how often and how long users are in your app.

• My Reports: Save analytics data insights as a report so you can return to it later.

While MCS displays data gathered from all of the mobile backends by default, you can
use the menus to isolate the activity for all versions of a selected mobile backend or
API.

Note:

Unless you have mobile cloud administrator privileges, you can see only the
analytics reports generated in environments to which you have been granted
access. For example, if you have access to only the Development
environment, then you can't see the usage and traffic data for mobile
backends in the Production environment.

Chapter 17
Accessing the Analytics Reports

17-7

The dashboard summarizes the user base and activity on a per-day basis. Click the
bar charts to access more detailed reports that help you draw conclusions about the
API traffic or app adoption rate. Accessing these reports from the menu lets you also
view detailed data on app use.

Chapter 17
Accessing the Analytics Reports

17-8

Tip:

For each report type (except funnels), you can view data plotted as a line
graph or as a grouped bar chart by toggling the display options at the bottom
of the page.

API Calls Reports
Click the API Calls menu to access the API endpoint reports. The API endpoint reports
track all of the APIs, or a particular API, over a specified period of time. The volume of
received calls indicates how much an app utilizes the MCS platform (and
consequently, how widely used the app may be). Selecting a time frame allows you to
see when traffic picks up or drops off. You can also drill down to specific endpoints to
see how frequently they have been called and the corresponding response times.

Note:

MCS automatically generates analytics data whenever an API is called. This
data accumulates over time and can use up all the available database space,
which can severely affect service. To mitigate the issue, have your mobile
cloud administrator modify the Analytics_ApiCallEventCollectionEnabled
policy in the policies.properties in your environment. Setting this policy to
false turns off automatic event generation. To avoid losing service, set this
policy to false before your storage capacity reaches full.

API Calls Count
The reports for API Calls Count let you view the traffic for one, or many, APIs for a
selected period of time. The report includes both successful and failed calls.

Chapter 17
API Calls Reports

17-9

API Calls Response Time
MCS measures the response time (in milliseconds) for an API call as starting when the
server receives the request and ending when the call returns the data to the mobile
app. The response time includes the time dispatching the call. You can compare the
response time for one (or all), APIs for a selected period of time. The bar graph
compares the response time against the number of calls.

Events Report
The Events report lets you focus on how to improve the mobile app user experience
and how to explore business opportunities. For example, the Events report can show
you not only how frequently users use an app's search function, but how frequently
users perform searches on specific devices and operating systems. By filtering an

Chapter 17
Events Report

17-10

event with the device and operating system properties, you can see when usage of the
app on a specific platform or device has outpaced usage on another. Declining usage
across an entire platform may indicate that the application requires optimization for
that platform.

Events reports aren’t limited to assessments of how a mobile app performs. You can
also use them to spot inefficiencies in your company’s processes, such as its supply
chain orchestration. To get an idea, say you are part of a mobile project team for an
appliance repair company. Its repair technicians use mobile apps to accept or reject
the work orders dispatched to them. They can also update the status of the work order
from open to closed, or from open to on hold. You need to investigate why orders are
left pending, or closed by frustrated customers. To do this, you can draw some
conclusions by viewing an event and filtering it by its properties. Because your mobile
app developer raised events in the app’s code to reflect the workflow outlined by your
work order processing use case, MCS can graph the occurrence of work orders on
hold. From this report, you can also see the reasons that prevent the fulfillment of an
order from the properties defined for this event, such as Parts Ordered.

To gain business intelligence, you can filter a report using the properties specific to an
event to discover user behavior and trends. For example, filters let you find out which
products customers search for most often. By cross-referencing this against the
location-specific reports for a mobile app, you can target your workforce, training, or
marketing efforts accordingly.

Events
MCS plots the events against time. You can select from among events and then
segment your search reports by creating filters. After you create a filter, click Done.

MCS applies the event name and the time-stamp properties as the default properties
for the Events report. You can filter events by the following properties, which MCS
applies automatically to events that are raised in the mobile app code:

• Device-related properties

– Operating system

– Operating system name

Chapter 17
Events Report

17-11

– Operating system version

– Operating system build

– Device model

– Device manufacturer

– Carrier

• Location Properties:

– Country

– State

– City

– Postal code

User and Session Reports
The user and session reports not only show you how many customers use a mobile
app, but also how long they use it. Are applications gaining users? Does the time
users spend using the app reflect its purpose?

When users authenticate, MCS gathers the events and plots the data points for these
reports that you use to spot trends both over time and by location. You can group the
data in these reports using the following properties:

• Client application

• Country

• State

• City

Chapter 17
User and Session Reports

17-12

• Postal code

Note:

Analytics creates reports for users only when sessions are used in the
mobile app code.

User Reports
If you have a number of mobile apps deployed in the field, you can use the New User
and Active User reports to find out which ones are gaining traction with new users,
which are sustaining their user base, and which are losing users.

Why User Counts Can Vary
MCS approximates user counts through user IDs and device IDs.

For the events sent from mobile apps, MCS identifies a user through a user ID (a
property provided by the OAuth token) or the mobile client SDK's Device ID header
(Oracle-Mobile-DEVICE-ID) when the user ID is not known (for example, for mobile
apps that do not require authentication). Although the Device ID reflects a user (not
the device manufacturer) it isn’t always interchangeable with the user ID: a single user
might access the same app using different devices (that is, a single user logging in
from two devices will be counted as two users). Because MCS uses the Device ID in
the absence of a user ID, the user counts are an approximation for mobile apps that
allow both authenticated and unauthenticated (that is, anonymous) users.

User Session Reports
The Session Count and Session Duration reports describe user engagement.

These reports reveal the time users spend on a mobile app, not only in terms of the
number of sessions, but also how much time users spend on the app. Although a
session may be seen as starting when a user brings an app to the front on the device's
springboard and ending when it's sent to the back, the concept of session may differ in
terms of platform and implementation, as described in Defining Sessions.

The user session reports let you assess if the app elicits the appropriate level of user
interaction. In other words, are user sessions intended to be short, as they are for
apps giving time and weather updates, or long, as they would be for shopping apps?

New Users
The New Users report lets you see the number of users (authenticated or anonymous)
for any (or all) mobile apps over a selected period of time.

When MCS receives an event from a previously unknown user (or from a device if the
user is anonymous), it notes the existence of a new user. Keep in mind that the New
Users report may not reflect the exact number of users if it includes both mobile apps
that require user authentication along with ones that allow users to access services
anonymously. See Why User Counts Can Vary.

Chapter 17
User and Session Reports

17-13

Active Users
MCS considers a user as active if it has previously received event data from the user
or the device.

The Active Users report lets you see the number of active users for any (or all) mobile
apps over a selected period of time. To find out the usage rate for a mobile app, you
first select it from the dropdown list and then select the Mobile Application property.
This property lets you compare the usage of two or more mobile apps. For reports that
include mobile apps which require authentication along with those that don't, the
number of actual users may not be accurate. See Why User Counts Can Vary.

Tip:

You can use the Mobile Application property to compare the adoption rate
for different versions of a mobile app.

Chapter 17
User and Session Reports

17-14

Session Count
The Session Count report lets you see how many times a mobile app has been used
over a selected period of time and location.

Session Duration
The Session Duration report lets you see the minimum, maximum, and average
session times for one, or all, mobile apps over a selected period of time and location.

Chapter 17
User and Session Reports

17-15

Improving User Retention with Funnel Analysis
Conversion funnels let you compare how many users start a workflow (say, a checkout
process, a user registration process, or a lead generation) against how many actually
complete it. A funnel segments a workflow into a sequence of steps designed to guide
users to some goal (or conversion). Typically, users drop off at each step of a
workflow; many may begin a checkout process, for example, but comparatively few
complete it. Funnel analytics show you the conversion rate for a workflow by showing
the number of users who drop off at various points.

Note:

For funnel analysis to be meaningful, you need to think about how events
can be assembled into work flows early in the development process. Defining
the appropriate events allows the right data to be collected.

Chapter 17
Improving User Retention with Funnel Analysis

17-16

Because funnels show you where users lose interest, you can use them to improve a
process or identify bugs in a workflow. Further, because you construct funnels from
the events raised for a mobile app, you can see where and why users are dropping off
by analyzing the event properties.

Creating a Funnel
To create a funnel, you first select a mobile app that has been released long enough
so that a meaningful amount of event data can be collected. After you select the app,
the events defined for it become available so that you can build a funnel from them.

1. Select a date range.

2. Add the events in sequential order to form the funnel steps.

Chapter 17
Improving User Retention with Funnel Analysis

17-17

Note:

MCS automatically displays the conversion rate for each event that you
select. By selecting these events, you can view their properties. Use the
filter and group by functions to analyze these properties.

Analyzing Funnels
After you've selected all of events for the process, take a look at the conversion rate.
You can select an event and then drill down on the property.

Tip:

If the conversion rates indicate a large decrease, select more events to find
out why.
For example, for a user registration workflow, select a signup failed event
and then select the detail view for the event. Use the filter and group by
options in the detailed report. You can group by system and custom
properties. For example, grouping the data by the property, reason, lets you
to see event data sorted by the attributes defined for this property, Duplicate
User ID and Incomplete Data.

You can take an iterative approach to refining your funnel. For example, deploy your
app long enough to collect a significant amount of data and then tweak the app
accordingly. Redeploy for a second round of adjustments and then select another date
range.

Chapter 17
Improving User Retention with Funnel Analysis

17-18

Creating Custom Analytics Reports
As a mobile program manager, you can keep an eye on the usage and health of your
mobile app on an ongoing basis by creating a suite of custom reports that you can run
whenever you want. MCS .

Say that you’ve launched the Fix-It-Fast (FiF) app in three cities. For each locale, you
also want to find out daily peak usage times and also segment the user data by age
group. To do this, you’d create a set of reports for the FiF app that include a New
Users report, an Active Users report as well as a daily Session Duration report and an
API calls report. MCS enables you to keep these reports on hand, organize them,
update them, or delete reports that you no longer need. And you can create new
reports as needed.

MCS organizes your custom reports into My Reports. To open My Reports:

1. Select the environment for your reports and then click to open the side menu.

2. Click Analytics to open the reports drawer.

3. Select My Reports.

Chapter 17
Creating Custom Analytics Reports

17-19

The My Reports page lists all of the reports that you’ve created for a particular
environment. That is, this page shows only the reports that you’ve created, not those
created by someone else.

Note:

Not only do your reports belong only to you, but they also belong to the
environment in which you created them. You can’t share a report across
environments. Instead, you have to replicate a report for each environment.

How Do I Create a Custom Analytics Report?
You can save your custom report definitions while you’re looking at an analytics page,
or from the My Reports page.

To create a report directly from a report page:

1. Select the environment.

Note:

You need to create separate sets of reports for each environment.

2. If needed, open Reports by clicking and then Analytics.

3. Choose the report type and apply any filters you need. Click Save.

Chapter 17
Creating Custom Analytics Reports

17-20

4. Complete the Save to My Reports dialog by entering a name and optionally, a
description. Click Save.

Note:

Keep in mind that you’re saving everything in page; not just the filter
criteria, but also the environment (Development, Staging, Production)

and also the chart style (line or bar).

You can run, edit, or delete the report from the My Reports page.

You can also create a report from the My Reports page. Click New Report and then
complete the dialog.

Chapter 17
Creating Custom Analytics Reports

17-21

Complete the dialog by giving the report definition a name and an optional description.
You also need to choose the type of report and the mobile backend (either All
Backends or a specific mobile backend).

If you have no report definitions saved in My Reports, you can use this same dialog to
create one. To access this dialog, click New Report.

Chapter 17
Creating Custom Analytics Reports

17-22

My Reports
The My Reports page displays all the report definitions (reports) that you’ve created for
a specific environment. From this page, you can organize your reports, run them,
update them, and delete them.

MCS creates a tile for each report definition. The front of each tile lists the information

that you provided when you created the report definition. Clicking flips the tile over
to reveal some additional information provided by MCS , such as the name of the
mobile app, the reporting period, and the type of report. The information on the back of
the tile varies depending on the type of report that you’ve defined. For example, an
event report includes not only the mobile app name and the reporting period, but the
selected endpoint as well.

Each tile has a menu which enables you to run, edit, or delete a report.

You can rearrange the reports to suit your needs by dragging and dropping the tiles.
For example, if you have a report you want to run first thing every morning, you can
drag it to the first position (right next to the New Report tile). You can also adjust the
display using these options:

• Any Backend—Displays all of the reports that you’ve created (including those
created using the All Backends filter).

• All Backends—Narrows the display to only the reports created using the All
Backends filter.

• By mobile backend—Displays only the reports created for a specific mobile
backend.

Chapter 17
Creating Custom Analytics Reports

17-23

How Do I Run a Custom Report?

To run a report, first click and then click Run.

The report opens on the My Reports page. Depending on the number of tiles in the
page, you may need to scroll down to see it.

How Do I Edit a Custom Report?

If you need to change something about your report, first click and then click Edit.

Chapter 17
Creating Custom Analytics Reports

17-24

You can’t change the report type, or the environment, but you can change the report
name, description, reporting period and any filtering criteria. When you’ve made your
changes, click Save. Click Reset to revert the report definition to its original state.

You can’t change the report type, but you can change the report name, description,
reporting period and any filtering criteria. When you’ve made your changes, click
Save. Click Reset to revert the report definition to its original state.

Tracking Sessions and Logging Events for Mobile Apps
The analytics libraries of the mobile client SDK enable the monitoring and measuring
of any event that has been defined for the mobile app.

Knowing which item the user added to a shopping cart is better than just knowing that
a user put some unnamed item in the cart. Likewise, you'd want to know which
products users search for rather than just knowing that they've performed a search. To
add this level of detail to your analysis, you can create events. You can further
segment reports by adding properties that describe these events in terms of something
that characterizes the event itself or an activity related to the event. Here’s an example
of what an event looks like in JSON form (which is the payload format for the
underlying REST calls that send event data to the service).

[
 ...
 {

Chapter 17
Tracking Sessions and Logging Events for Mobile Apps

17-25

 "name":"PurchaseFailed",
 "type":"custom",
 "timestamp":"2013-04-12T23:20:56.523Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce",
 "properties":{
 "cartContent":"WIDGET",
 "cartPrice":"$50,000"
 }
 ...

]

The mobile client SDK provides you with a shorter route to generating analytics reports
than does writing a straight REST call. After you’ve linked the mobile app to the
platform-specific SDK, you can enable analytics reporting for your app by adding code
that calls the analytics library and designates the beginning of the session before
flushing the events to the server.

Creating Events and Sessions Using the iOS Library
The libOMCAnalytics.a library includes classes for logging the events and sessions
from an iOS mobile app. You can also use the classes from this library to track
successful and failed posts.

Sessions provide a means of grouping the events raised in the mobile app code, as
the events logged between the start and end of a particular session belong to that
session. As discussed further in Designating Sessions, you can call instance methods
for starting and ending sessions as well as logging events to the service’s server.

Calling the Analytics Service
To call the Analytics service, import the OMCMobileBackend+OMC_Analytics.h and the
OMCAnalytics.h header files in addition to the ones noted in Calling APIs Using the
iOS SDK.

Designating Sessions
You can designate sessions by calling the startSession and endSession methods on
the OMCAnalytics object. The endSession method automatically flushes events, but
you can flush events explicitly by calling the flush method, which will post the
currently outstanding events to the service’s server.

Tip:

Use the flush method if you have a large number of events that are logged
between the start and end of a session.

The signatures for the startSession and endSession methods are as follows:

@interface OMCAnalytics : OMCServiceProxy

/** The Analytics service's delegate. */

Chapter 17
Tracking Sessions and Logging Events for Mobile Apps

17-26

@property (nonatomic, weak) id<OMCAnalyticsDelegate> delegate;

/**
 Starts an Analytics service session. If a session is already in progress,
then it continues. A new session is not created.
 */
[analytics startSession];

/**
 Stops the current Analytics service session. Does nothing if a session is
not in progress.
 */
 [analytics endSession];
/**
 Logs an Analytics service event with the specified name. If a session is
not in progress,
it starts a session. Copies the specified name before returning.
 @param name the event name
 */
- (void)logEvent:(NSString*)name;

/**
 Logs an Analytics service event with the specified name and properties.
 If a session is not in progress, then it starts a session.
 Copies the specified name and properties before returning.
 @param name the event name
 @param properties a dictionary of arbitrarily named properties for the
event
 */
- (void)logEvent:(NSString*)name properties:(NSDictionary*)properties;

/**
 Uploads all the posted events to the OMC Mobile Analytics REST service.
 */
- (void)flush;

@end

Note:

The startSession begins with the first logged event (even if no session has
been started). The endSession method flushes events to the service’s
server.

Associating a Session With Your Mobile App Being in the Foreground
A user session might correspond to the length of time that a user spends on the
mobile app when it runs in the foreground. To associate Analytics sessions when your
mobile app is running in the foreground, your app delegate should subclass
OMCAnalyticsApplicationDelegate. Doing this will automatically log the start of a
session when the mobile app moves the foreground and log the end of the session

Chapter 17
Tracking Sessions and Logging Events for Mobile Apps

17-27

when the mobile app moves to the background. In general, you don’t need to call
either startSession or endSession, as these are added automatically.

Adding Custom Properties to Events
You can describe an event more fully by adding one or more custom properties as
key-value pairs.

Note:

Both the key and the value must be strings.

You can add custom properties to an event by calling the logEvent:properties:
method and by passing a dictionary of property key-value pairs. For example:

[Analytics logEvent:@"Event name"];
properties:@{"customProp1":"value1", @"customProp2":@"value2"}];

Caution:

The following custom property names are reserved and can't be used for
your event property names.

• Carrier

• Count

• Country

• Day

• Hour

• Locality

• Manufacturer

• Minutes

• MobileAppKey

• Model

• Month

• OS

• OSVersion

• OSBuild

• PostalCode

• Region

• Week

• Year

Chapter 17
Tracking Sessions and Logging Events for Mobile Apps

17-28

Receiving the Status of Event Posts
As an optional feature, you can implement the OMCAnalyticsDelegate protocol to
receive notifications when the OMCAnalytics object posts events to the Analytics
REST service successfully or encounters errors. To do this, you must register a
delegate, an object that implements OMCAnalyticsDelegate with the OMCAnalytics
object. For example:

OMCAnalytics* analytics = [[OMCMobileBackendManager
sharedManager].defaultMobileBackend analytics];

analytics.delegate = myDelegate;

You can implement one or both of the following instance methods to receive event
status:

• Notifies the delegate that the OMCAnalytics object successfully posted events to
the Analytics REST service.

(void)analytics:(OMCAnalytics*)analytics
 didPostEvents:(NSURLRequest*)request
 response:(NSHTTPURLResponse*)response
 responseData:(NSData*)responseData;

• Notifies the delegate that the OMCAnalytics object encountered a specified error.

 (void)analytics:(OMCAnalytics*)analytics
didFailWithError:(NSError*)error

Creating Events and Sessions Using the Android Library
The oracle-cloud-mobile-analytics.jar library includes the Analytics and Event
classes that enable mobile apps to post events.

To enable the MCS to record your mobile app’s event data, this JAR must be placed in
the libs directory of your project.

The Analytics class is a singleton client object that exposes the Analytics API and
has the startSession, endSession, logEvent, and flush methods. To start and end
the sessions, which group events, and upload the events to the server, call these
methods in your mobile app’s code.

Method Description

startSession (Context context) Creates a new session.

logEvent (String name) Adds a new event. The logEvent method
starts a session automatically if one doesn’t
already exist.

logEvent (Event Event) Adds an existing event.

endSession (Context context) Ends the current session.

Chapter 17
Tracking Sessions and Logging Events for Mobile Apps

17-29

Method Description

flush Uploads events to the MCS ’s server. Calling
the endSession or flush methods uploads
all of the buffered events to the MCS server.
All event data is stored locally in JSON file
until one of these methods is called. If a
mobile app is offline, then it posts this file
when it reconnects with the service’s server.

The Context parameter in the startSession and endSession methods is the Android
Context class. See the Android Developers website http://developer.android.com.

Tip:

For long-running mobile apps, calling the flush method periodically not only
reduces the size of the payload in the JSON file posted to the MCS server,
but also keeps the MCS server up to date.

The following code snippet shows how to call the Analytics class methods.

public final class Analytics extends ServiceProxy {
 // Creates a new session and generates an $sessionStart Event.
 public void startSession(Context context);

 // Ends the current session and generates a $sessionEnd Event.
 public void endSession(Context context);

 // Adds a new Event object.
 public Event logEvent(String name);

 // Adds an existing Event object.
 public Event logEvent(Event event);

 // Forces the upload of buffered Events.
 public void flush();
}

The Event class’ methods create new events and their properties. As listed in the
following table, this class also has events for returning information about an event, like
its timestamp or its name.

Method Description

Event(String name, Date timestamp,
Map<String, String> properties)

Creates the new event.

addProperty (String name, String
value)

The key-value pairs are managed by the
HashMap interface. Call this method to add the
key-value for a property to the existing map of
event properties.

getProperty Returns the properties associated with the
event.

Chapter 17
Tracking Sessions and Logging Events for Mobile Apps

17-30

http://developer.android.com

Method Description

getProperties Returns a property.

getName Returns the name of the event.

getTimeStamp Returns the date on which the event was
recorded.

The following code snippet shows how to call these methods.

public final class Event {
 // Creates a new Event. Time stamp and properties can be null.
 public Event(String name, Date timestamp, Map<String, String>
properties)

 // Sets a key/value property for the Event.
 public Event addProperty(String name, String value);

 // Returns the Event's name.
 public String getName();

 // Returns the Event's properties.
 public HashMap<String, String> getProperties();

 // Returns the timestamp of the Event.
 public Date getTimestamp();

See Taking a Look at Events and Sessions in Android Apps for examples of using
these methods, as well as guidelines on how the mobile app code can reference a
mobile backend and the Analytics service.

Taking a Look at Events and Sessions in Android Apps
The following code samples show how to call the Analytics class’ method to add an
event called “ShoppingCartCancelled” to your mobile app code:

...

Analytics analytics = mbe.getServiceProxy(Analytics.class);

client.startSession(this); // "this" is the Android View.
//...
client.logEvent("ShoppingCartCanceled");
//...
client.endSession(this);

...

Instead of adding a series of lines, you can add an event as well as properties as a
single, fluent line of code:

...
mbe.getServiceProxy(Analytics.class).

Chapter 17
Tracking Sessions and Logging Events for Mobile Apps

17-31

 logEvent(new Event(this, "ShoppingCartCanceled").
 addProperty("cartSize", "2").
 addProperty("cartValue", "$50,000"));
...

Some general steps to follow when adding events to your Android app:

1. Add a reference to the MobileBackendManager class to access to the default
moblie backend (which is specified in the oracle_mobile_cloud_config.xml file):

try {

 MobileBackendManager mbem = mobileBackendManager.getmanager();
 MobileBackend mbe = mbem.getDefaultMobileBackend(this);

2. Because you need to log a custom event, you must reference the Analytics
service:

Analytics analytics = mbe.getServiceProxy(Analytics.class);

3. Create the event by calling the event constructor and pass in the name of the
event, such as "Work Order on Hold":

4. Call the logEvent method and pass the event:

5. Call the flush method to post events to the MCS server.

Tip:

To end the session and post all of the events to the MCS server, call
endSession instead.

Defining Sessions
Sessions, which can group events together, can vary in length: a session may
represent the entire lifespan of an application, or a function within the application.
Within your code, you can specify the start and end of sessions, as illustrated by the
ShoppingCartCancelled event shown in Creating Events and Sessions Using the
Android Library and the Purchase Start and Purchase Failed events in Creating
Events and Sessions Using the iOS Library. If you don't specify the start of a session,
the analytics libraries in the mobile client SDK create an implied session.

Exporting Event Data
The Analytics Export API lets you return event data or API call metadata as a JSON
object, which you can then import into a third-party tool. You may also want to export
event data before you permanently delete it by purging it from one or more mobile
backends.

For details on how to query the API and information about the responses, see REST
APIs for Oracle Mobile Cloud Service.

Chapter 17
Exporting Event Data

17-32

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

For details on how to query the API and information about the responses, see REST
APIs for Oracle Autonomous Mobile Cloud

For example, say you want to export data for a custom event called
MeanTimeResolution, which measures performance data for your team. To find out
how your team stacks up against an industry benchmark, you’d post a call to the
Analytics Export API to return the custom event data. Using a third-party tool, you can
mash up the MeanTimeResolution event data with the benchmark data and create
reports.

How Do I Request Event and API Logging Data?

You can return data as a JSON object by issuing a POST call to {baseUri}/mobile/
system/analyticsExport.

• If you are using basic authentication to connect to the mobile backend, see
Authenticating with HTTP Basic in Direct REST Calls.

• If you have OAuth enabled as the authentication mechanism for the mobile
backend, see Authenticating with OAuth in Direct REST Calls.

If you plan to use a third-party tool to pull the analytic data on a nightly basis, you
could use cURL or some other tool to run the automated job. Here’s some example
cURL code for basic authentication:

curl -i
-X POST
-u team.user@example.com:Welcome123
-d @export.json
-H "Content-Type: application/json; charset=utf-8"
-H "Oracle-Mobile-Backend-ID: ABCD9278-091f-41aa-9cb2-184bd0586fce"
http://fif.cloud.oracle.com/mobile/system/analyticsExport

In the request body, you can specify whether you want to return custom events, or
data from the API History Log by defining the required parameter, exportType. You
can also limit the number of items returned in the JSON object and set the date range
for the reporting period. A request body might look like this:

{
 "startDate": "2015-04-12",
 "endDate": "2015-05-12",
 "exportType": "Events",
 "name": "IncidentRaised",
 "offset": 0,
 "limit": 1000
}

Here are the request body properties.

Chapter 17
Exporting Event Data

17-33

http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-autonomous-cloud&id=msara-index
http://www.oracle.com/pls/topic/lookup?ctx=en/cloud/paas/mobile-autonomous-cloud&id=msara-index

Request Body
Parameters

Mandatory? Description Example

startDate and
endDate

No. If you don’t define
these values, then
MCS applies these
default values:
• startDate —

The first
timestamp of the
first event or API
call record.

• endDate —The
current system
time and date.

The start and end of
the reporting period,
expressed as YYYY-
MM-DD.

"startDate":
"2015-04-12",
"endDate":
"2015-05-12",

exportType Yes The type of data that
you want to export:
API calls or custom
events.

"exportType":
"APICalls",
"exportType":
"Events",

name No Depends on the value
for exportType:
• For APICalls,

refer to the
names listed in
the menus for the
API Endpoint
reports.

• For Events, the
name of a custom
event. Use the
menus in Events
report.

• For an API:
“name”:
“Analytics
Collector”,

• For a custom
event: “name”:
“IncidentRaise
d”,

offset No The zero-based index
of the first item that’s
returned. The default
value is zero (0).

"offset": 0

limit No The maximum number
of items returned by
your call. If you set a
limit that’s too high,
then MCS substitutes
a limit of 1000 (the
default value).

"limit": 500

A portion of the thousand items in the JSON payload that’s returned by the call in the
preceding example (a request for a custom event called IncidentsRaised) might look
like this:

{
 "items":[
 {
 "name":"IncidentRaised",
 "type":"custom",

Chapter 17
Exporting Event Data

17-34

 "timestamp":"2013-04-12T23:20:56.523Z",
 "sessionID":"2d64d3ff-25c7-4b92-8e49-21884b3495ce",
 "component":"Incidents",
 "mobileApplicationKey":"cd4b13b5-608c-4a18-9ef4-341fe4873063",
 "deviceId":"cd4b13b5-608c-4a18-9ef4-asdfasd",
 "backendName":"FixitFastCustomer",
 "backendversion":"1.0",
 "userName":"JDoe123",
 "locality":"San Francisco",
 "region":"CA",
 "country":"US",
 "postalCode":"95549",
 "timezone":"-14400",
 "carrier":"Verizon",
 "model":"iPhone5,1",
 "manufacturer":"Apple",
 "osName":"iPhone OS",
 "osVersion":"7.1",
 "osBuild":"13E28",
 "customProperties":{
 "Appliance Manufacturer":"Abc Corp",
 "Model Number":"M1234"
 }
 },
 ...
],
 "hasMore":true
}

The request body for a platform API (the Analytics Collector) might look like this:

{
 "startDate": "2015-04-12T01:20:55.052Z",
 "endDate": "2015-05-12T01:20:55.052Z",
 "exportType": "APICalls",
 "name": "Analytics Collector",
 "offset": 0,
 "limit" : 1000
}

A portion of the returned JSON payload might look like this:

{
 "items": [
 {
 "backendName": "FixItFastTechnician",
 "backendVersion": "1.0",
 "apiName":"analytics",
 "apiVersion": "1.0",
 "apiImplementationName": "analytics",
 "apiImplementationVersion": "1.0",
 "resourcePath": "/events",
 "requestMethod": "POST",
 "requestTime": "2013-04-12T23:20:56.523Z",

Chapter 17
Exporting Event Data

17-35

 "executionTime": 20,
 "responseCode": "202",
 "responseMessage": "",
 "responseErrorId": "",
 "responseErrorMessage": "",
 "type": "ServiceableREST",
 "ecid": "f2cd201e-535b-48d7-afe2-e85a1f30406b-00007b19",
 "rid": "0",
 "parameters" : {
 "x": "x1",
 "y": "y1"
 }
 }
 ...
],
 "hasMore": true
}

Purging Analytics Data
You can purge analytics data through either the MCS UI or your application.
Whichever method you choose, note that purging analytics data permanently removes
it from the selected mobile backend(s). Data that has been purged can not be
restored.

Purging Data through the MCS UI

First, export your data using the Export Data API before performing the purge. See
Exporting Event Data for details.

Administrators must be assigned to the Mobile Deploy role to purge analytics data
through the UI. To avoid server conflicts, you can run only one purge job at a time. Any
purge request made while a purge is in progress is ignored.

1. On the side menu, select Administration , then Data Management.

2. Select the date range to purge analytics data.

Click the calendar icon to select the date. The default time is 12 am, but you can
change it by clicking the clock icon.

3. Select All mobile backends, or individual backends.

Chapter 17
Purging Analytics Data

17-36

4. Once you enter a date range and at least one mobile backend, click Purge.

Look for the results of the purge action under Purge History.

Note:

The time to complete a purge action varies depending on the size of the
purge job. Large purge jobs can take some time to complete. Wait at least

five to ten minutes before refreshing () the purge history to see the latest
purge information.

Purging Data from an Application
Use the Analytics Data Management (ADM) API to make calls from your application to
permanently purge data from selected backends. Purge means this API both deletes
the data and “shrinks” the database that stores it in order to free up more space.

Like the purging feature you can use from the UI, the ADM API uses authentication,
roles, and realms for security. Administrators assigned to the Mobile System role can
purge MCS analytics data with the ADM API. You access this API through the mobile
client SDK, or directly through REST calls. To avoid MCS server conflicts, you can run
only one purge job at a time. MCS ignores purge requests made while a purge is in
progress.

To access the Analytics Data Management API through the mobile client SDK, use a
backend manager class.

• For Android apps, you use the MobileManager class as described in .

Calling Platform APIs Using the SDK for Android

• For iOS apps, you use the OMCMobileBackendManager class as described in .

Calling Platform APIs Using the SDK for iOS

• For Cordova and JavaScript apps, you use the mobileBackendManager class as
described in Calling Platform APIs Using the SDK for Cordova and Calling
Platform APIs Using the SDK for JavaScript.

For detailed information about the platform APIs, see REST APIs for Oracle
Mobile Cloud Service.

Chapter 17
Purging Analytics Data

17-37

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Troubleshooting Analytics Reports
MCS generates analytics reports based on artifacts created on the MCS server,
events defined in the mobile app code, and by the mobile client SDK. Depending on
these factors, none, or all, of the reports may be available.

Problem Solution

No reports When you first log into MCS , there aren’t any
reports because you have yet to create a
mobile backend for the mobile app.

Only the API Calls Count and API Calls
Response Time appear, but there are no user,
session, or event reports.

MCS creates two sets of mobile analytics
reports: reports for server activity and reports
for sessions and events defined in the mobile
app’s code. In this case, only the calls from
testing the endpoints are recorded, because
no data has yet been sent from the mobile
app.

Only the endpoint reports are available if
you’ve just created a mobile backend, but
haven’t yet registered a mobile app as its
client app. While you can call the endpoints of
Custom Code APIs directly by testing them,
MCS can’t chart session or events reports
because these calls don’t originate from a
registered mobile app, whose code defines
event and sessions.

MCS creates user, session, and event reports
when a registered mobile app that uses the
mobile client SDK (or has sessions defined in
its code) calls the Analytics API. Keep in mind
that if there isn't a mobile app to provide
events, then there will be no data for funnel
reports. In this case, MCS displays a page that
says, “You have no analytics data for this
mobile backend.”

API calls generate analytics data, eventually
using up database space resulting in system
issues or loss of service.

MCS automatically generates analytics data
for every API invocation. This data
accumulates over time and can use up all
available database space, which can result in
system instability or even complete loss of
service.

Before storage capacity reaches full, modify
the
Analytics_ApiCallEventCollectionEnab
led policy by setting the policy to false to
prevent automatic generation of analytics data
with each API call.

Chapter 17
Troubleshooting Analytics Reports

17-38

18
Database

Database APIs help you create and manage database tables for use in mobile apps.
As a service developer, you can call the Database Access API from custom API
implementations to create and access database tables, and use the Database
Management API to manage and view table metadata.

What Can I Do with Database APIs?
As noted above, there are two database APIs:

• The Database Access API, which is available only from custom code
implementations using the custom code SDK, lets you to create and access
database tables. For security reasons, you can’t call this API from client apps. To
try out calls to this API, open a custom API, go to the Custom Catalog, and then
click Database Access.

• The Database Management API can be accessed through custom code
implementations and HTTP REST calls to manage table metadata and deploy

tables. To try out calls to this API from the UI, click to open the side menu, and
click Applications > APIs. In the Platform APIs section at the bottom of the APIs
page, click Database Management.

This chapter discusses how to use these Database APIs to perform common tasks.
For more details on using the platform APIs, see REST APIs for Oracle Mobile Cloud
Service.

18-1

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Database Access API
All your mobile apps’ interactions with the Database Access API are made through
custom API implementations. You can’t access this API directly from client apps. This
section covers how to use the custom code SDK in a custom API implementation to
interact with the database. To learn about designing APIs, see Custom API Design. To
learn about implementing a custom API, see Implementing Custom APIs. For
complete details for each custom code SDK database method, see Accessing the
Database Access API from Custom Code .

Calling the Database Access API from Custom Code
Before we delve into how to implement a custom API to perform database tasks, let’s
go over a simplified description of how to call the Database Access API from custom
code. Here we talk about some API operations that you learn about later. While they
may not make sense now, these steps should give you some context for how you use
the operations that you will learn about.

To call the Database Access API from custom code, you add endpoints (resources)
and operations (methods) to the custom API, and then you add route definitions to
your custom code implementation for the custom API. We are going to talk about how
to implement the route definitions in the custom code.

To call the API from your custom code:

1. Add the route definition to the custom code.

You implement a route definition by calling the service method for the API’s
endpoint operation. Say, for example, that your API has a GET operation for the /
mobile/custom/FIF_Incidents/incidents endpoint. To implement this from your
custom code, you call service.get(). The service method’s arguments are the
URI and a function that takes both the request object and the response object as
arguments. For example:

service.get(
'/mobile/custom/FIF_Incidents/incidents', function (req, res) {
 // your code goes here
});

2. From the route definition, call the appropriate req.oracleMobile.database
method to send your request to the Database Access API, such as get(),
getAll(), or insert(). Accessing the Database Access API from Custom Code
describes the available methods and the arguments that each method takes, and
provides example code.

Here’s a complete route definition. This route definition calls the getAll() method,
which, in turn, calls the Database Access API’s GET /mobile/platform/database/
objects/{table} operation. When the getAll() method receives a response from
the API, it calls either the result function or the error function, depending on
whether an error occurred.

Chapter 18
Database Access API

18-2

https://docs.oracle.com/en/cloud/paas/mobile-suite/develop/calling-apis-custom-code.html#GUID-8E7C28B5-316A-415B-9382-43E250F05D28
https://docs.oracle.com/en/cloud/paas/mobile-suite/develop/calling-apis-custom-code.html#GUID-8E7C28B5-316A-415B-9382-43E250F05D28

Notice that the first argument is the name of the table, and that the second
argument is a JSON object that contains a fields property. This instructs the
getAll() method to return only the customer and status fields.

/**
 * GET CUSTOMER AND STATUS FOR ALL INCIDENTS
 */
service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

The response to this call would look like this:

{
 "items":[
 {
 "status":"Open",
 "customer":"Lynn Smith"
 },
 {
 "status":"Completed",
 "customer":"John Doe"
 }
]
}

Creating and Restructuring Database Tables
You might think that before you can access a database table, you need to first add it to
the schema. However, you can create a new table simply by adding a row to the table.
This action is referred to as a implicit table creation.

Note:

Typically, you take advantage of implicit table creation when you’re
developing your mobile app. When you deploy your mobile app to another
environment, you use explicit table creation to create the tables in that
environment as described in Database Management API.

You use the following methods to insert rows into a table:

• insert(): Add one or more rows.

Chapter 18
Database Access API

18-3

• merge(): Add or update one or more rows.

When you call these methods for a table that doesn’t exist, a new table with the row(s)
is created by deriving the table specifications from information in the object and
options arguments.

To specify the table structure:

• Call either insert() or merge(), both of which require table and object
arguments. In the object argument, which is a JSON object, include all the
columns that you want in the table, and provide mock or real data for each column.
The column type and size are based on the content. For example, if the value is
100 then the column will be NUMBER(3,0). Don’t worry about the size being too
small. If you later post 3.25, the column is resized to NUMBER(5,2), which is large
enough for both 100 and 3.25. Also don’t worry about adding all the columns that
you need. If you later decide you want more columns, then add the new columns
to a JSON object and send it in an insert() or merge() call. The table will be
restructured automatically to add the new columns.

Note:

The maximum size for a string column is 4000 characters. If you need to
store a larger string, then you can use the Storage API to store the
object.

Here’s an example of the JSON object:

{
 "incidentReport": 1,
 "title": "Water heater is leaking",
 "customer": "Lynn Smith",
 "address": "200 Oracle Parkway Redwood City, CA 94065",
 "phone": "(555) 212-4567",
 "technician": "jwhite",
 "status": "Open",
 "notes": "lynnf|Initial incident report description",
 "priority": 1,
 "imageLink": "http://link.to.storage"
}

• By default, a set of predefined columns are added and populated automatically
whenever you add or update a record using insert() or merge().

If you don’t want all these columns in your table, then use the extraFields
property in the optional options argument to specify which columns to include,
such as createdOn,createdBy (be sure to include id if you aren’t specifying a
primary key). If you later decide you want to add more predefined columns, you
can just add them to the extraFields property the next time you add a row.
If you don’t want any of these columns, then set the extraFields property to none.
However, if you don’t add any predefined columns when you create the table, then
you can’t add any later.

The predefined fields are:

Chapter 18
Database Access API

18-4

– id: The row key. This column is added only if both the primaryKeys and
extraFields properties are absent. The id is an integer set and incremented
automatically.

– createdBy: Who created it.

– createdOn: When it was created.

– modifiedBy: When it was last modified.

– modifiedOn: Who modified it last.

The dates are in W3C date-time format, and include hours, minutes, seconds, and
a decimal fraction of a second (YYYY-MM-DDThh:mm.ss.SSSZ).

• If you want a primary key, use the primaryKeys property in the options argument
to specify which columns to use for the primary key. For example,
incidentReport,technician. Note that the order that you list the fields is the
order that you use when you retrieve or update a row. Because you can’t retrieve
the primary key order from the table metadata, make sure that you document the
order of the primary fields.

You can see code examples for these two methods in the next section.

Note:

You also can use the Database Management API to create a table. However,
you typically use the Database Access API for the initial creation and then
use the Database Management API to copy the table structure to other
environments, as described in Copying Table Structures to Another
Environment.

The following table summarizes what aspects of a table can be changed implicitly:

Object Can It Change?

Table Name No. The name is set when the table is first created.

Primary Key No. The primary key is defined when the table is created.

Predefined Columns Yes. You can allow predefined columns in the table when it’s
created by the call. However, you can’t add these predefined
columns at a later point if the table was not originally intended
to use them. If predefined columns are allowed, then any of
them (other than id, that is) can be added by subsequent
calls.

Columns Yes. Although columns are created with the table, subsequent
calls can add columns. These calls can also alter the column
size. However, you can’t change the column type after the
table has been created.

Chapter 18
Database Access API

18-5

Note:

You can also disable implicit table creation. If the
Database_CreateTablesPolicy environment policy is neither allow (the
default setting) nor implicitOnly, adding a row to a non-existent table will
fail.

Preventing Passing SQL Using Implicit Table Creation
When the Database_CreateTablesPolicy environment policy is set to allow (default
setting) or implicitOnly, the Database Access API dynamically constructs SQL
statements that create and alter tables from user input.

To prevent users from using implicit table creation to pass SQL statements, set this
policy to either none or explicitOnly in the staging and production environments. You
should also do this in the development environment when:

• All the tables required by an application have been created.

• The mobile backend is ready to be deployed to another environment.

Adding and Updating Table Rows
You use the insert() and merge()methods to add and update rows:

• insert() adds one or more rows.

• merge() adds or updates one or more rows. Whether an add or update is
performed depends on whether the table uses id or primary key fields to uniquely
identify rows.

– id field: If you include an id property in the object, then the matching row is
updated if it exists. Otherwise a new row is added.

– Primary key fields: If the table uses primary key fields, the matching row is
updated if it exists. Otherwise, a new row is added.

Note:

If you submit a batch of rows, then all the rows must have the same set of
columns.

To call either of these methods:

• Pass the table name in the first argument.

• If the table doesn’t exist, and you want to limit which predefined columns to
include, set the extraFields property in the options argument. For example:

options =
 {'extraFields' : 'createdOn,createdBy'}

If you want all the predefined columns, omit this property. If you don’t want any
predefined columns, set it to none. It doesn’t hurt to include it in subsequent adds,

Chapter 18
Database Access API

18-6

but make sure you include it in your first add if you don’t want the full set of
predefined columns.

• If the table doesn’t exist, and you want to specify a primary key, make sure you set
the primaryKeys property in the options argument. For example:

options =
 { 'primaryKeys' : 'incidentReport,technician' }

The primary key list must be URL encoded.

• Put the row data in the request body in JSON format. The JSON object can
contain data for one row or several rows.

Here is an example of data for one row:

{
 "status" : "Open",
 "code" : "3"
}

Here is an example of data for multiple rows:

[
 {
 "status":"Open",
 "code":3},
 {
 "status":"Completed",
 "code":9}
]

Here’s an example of using the insert() method to add two rows to the FIF_Status
table. The first argument is the table name, and the second argument is the object
argument, which contains the rows to add to the table. The third argument is the
options argument, which specifies to not add any extra (predefined) fields, and to
create a primary key based on the code field.

service.post('/mobile/custom/incidentreport/initStatus', function (req,
res) {
 req.oracleMobile.database.insert(
 'FIF_Status',
 [
 {
 "status": "Closed",
 "code": "0"},
 {
 "status": "Completed",
 "code": "9"}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {

Chapter 18
Database Access API

18-7

 res.status(statusCode).send(error.error);
 }
);
});

Retrieving Table Rows
You can retrieve a single table row by its primary key or ID, and you can retrieve a set
of table rows.

To retrieve a row by its primary key or ID, call the get() method. You use the keys
argument to identify the row that you want.

• If the table uses the id column for the row key, then set keys to the row’s ID.

• If the table has a primary key, then set keys to the primary key values in the order
in which the primary keys were specified when the first row was added to the table
(which resulted in the creation of the table). Use an array for a composite key. For
example, if the options.primaryKeys property was set to
incidentReport,technician when the table was created, then the values must be
listed in that order, such as: ['5690','jwhite'].

Here’s an example of using the get() method to retrieve a row from the FIF_Incidents
table. The first argument is the table name, and the second argument is the keys
argument:

/**
 * GET INCIDENT BY ID
 */
service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

The response body looks like this:

{
 "items":[
 {
 "id":168,
 "title":"Oven not working",
 "technician":"jwhite",
 "status":"Open",
 "customer":"John Doe",
 "incidentReport":"5690",
 "createdBy":"jdoe",
 "createdOn":"2015-11-16T23:42:18.281823+00:00"

Chapter 18
Database Access API

18-8

 }
]
}

To get a set of rows from a table, call the getAll() method.

• To filter the rows, add the columns to search on and the values to match to the qs
property in the optional httpOptions argument. For example, this requests all the
incident reports for the technician J. White:

httpOptions.qs = {technician : 'jwhite'};

• To specify which columns to return, use the fields property in the options
argument.

For example, to get a quick phone list:

options={'fields' : 'customer,phone'}

Here’s an example of using getAll() to retrieve the customer and status fields for all
rows in the FIF_Incidents table that match the query string that’s specified in
httpOptions.qs.

/**
 * GET ALL INCIDENTS
 */
service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 httpOptions={};
 httpOptions.qs = {technician : 'jwhite'};
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}, httpOptions).then(
 function (result) {
 rres.status(statusCode).send (result.result);
 },
 function (error) {
 res.status(statusCode).send(error.error);
 }
);
 });

The response body looks like this:

{"items":[
 {"title":"Water heater is leaking",
 "technician":"jwhite",
 ,"customer":"Lynn Smith"
 ...
 "incidentReport":25
 "createdOn":"2015-03-05T12:10:15.171284-07:00"},
 {"title":"Dryer doesn't dry",
 "technician":"jwhite",
 ,"customer":"Lynn Smith"
 ...

Chapter 18
Database Access API

18-9

 "incidentReport":67
 "createdOn":"2015-08-07T14:22:37.171284-07:00"}
]}

Deleting Table Rows
To delete a row, you call the delete() method.

You use the keys argument to identify the row that you want to delete.

• If the table uses the id column for the row key, then set keys to the row’s ID.

• If the table has a primary key, then set keys to the primary key values in the order
in which the primary keys were specified when the first row was added to the table
(which resulted in the creation of the table). Use an array for a composite key. For
example, if the options.primaryKeys property was set to
incidentReport,technician when the table was created, then the values must be
listed in that order, such as: ['5690','jwhite'].

Here’s an example of deleting a row from the FIF_Incidents table. The first argument
to the delete() method is the table name, and the second argument is the keys
argument.

/**
 * DELETE INCIDENT BY ID
 */
service.delete('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.delete(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.send(result.statusCode, result.result);
 },
 function (error) {
 res.send(error.statusCode, error.error);
 }
);
 });

If the table has a primary key, then the response body looks like this:

{ "rowCount" : 1 }

If the id is the key value for the table, then the response body looks like this:

{"items":[{"id":42}]}

Database Management API
In addition to the Database Access API, there’s also a Database Management API,
which lets you manage the tables that you created through the Database Access API.
This API lets you view table metadata, create, drop, re-create tables, and create
indexes for them.

Chapter 18
Database Management API

18-10

You can use the Database Management API only if you have been granted the
database management role (Mobile_DbMgmt). If you don’t have this role, then you can’t
create a table or use the GET operation to see which tables have been created. You
don’t need this role to use the Database Access API. For more information about
roles, see Team Members.

You can access the Database Management API through custom API implementations

and HTTP REST calls. To try out calls to the API, click to open the side menu.
Next, click Applications then APIs. In the Platform APIs section located at the bottom
of the page, click Database Management . For further details about each API
operation, see Here, we give a brief overview of the Storage API endpoints. For
detailed information, see REST APIs for Oracle Mobile Cloud Service..

Creating a Table Explicitly
You can create a table from a JSON object using the POST method for the /mobile/
system/databaseManagement/tables endpoint. To restructure a table, use the PUT
method for the same endpoint. The PUT method drops the existing table and re-creates
it.

To create a table explicitly:

1. If you want to include predefined columns in the table, set the Oracle-Mobile-
Extra-Fields header to a comma-separated list of the columns to include from
amongst id, createdBy, createdOn, modifiedBy, and modifiedOn. If you don’t
want any of these columns, specify none. The id column, which is a row key, is
added to the table only if no primary key is specified.

2. Create the JSON object for the request body. The JSON attributes are:

• name: The table name.

• columns: An array of the table columns. For each column, specify:

– name: The column name.

– type: The data type. The binary data type is not supported.

– size: (Optional) The size or precision of the column.

– subSize: (Optional) For decimal columns, the scale of the column,
meaning the number of places after the decimal point.

• primaryKeys: An array of column names.

• requiredColumns: An array of column names.

3. Call the POST method for the /mobile/system/databaseManagement/tables
endpoint.

Here’s an example of a JSON object for creating a table. When used in a POST
request, a table called Movies is created with the specified columns and primary key.

{ "name" : "Movies",
 "columns": [
 {"name": "title", "type": "string", "size": 50},
 {"name": "synopsis", "type": "string"},
 {"name": "inTheaters", "type": "boolean"},
 {"name": "releaseDate", "type": "dateTime"},
 {"name": "runningTime", "type": "integer", "size": 3},

Chapter 18
Database Management API

18-11

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 {"name": "totalGross", "type": "decimal", "size": 10, "subSize": 2}],
 "primaryKeys" : ["title"],
 "requiredColumns": ["title", "releaseDate"]
}

The Database Management API creates and executes the following SQL statement
based on this request. In this case, the Oracle-Mobile-Extra-Fields request header
was set to none, so the table does not have any predefined fields.

CREATE TABLE "Movies" (
 "title" VARCHAR2(50) NOT NULL,
 "synopsis" VARCHAR2(4000),
 "inTheaters" CHAR(1),
 "releaseDate" TIMESTAMP NOT NULL,
 "runningTime" NUMBER(3,0),
 "totalGross" NUMBER(10,2),
 CONSTRAINT "Movies_PK" PRIMARY KEY ("title"))

This example also illustrates some of the data types allowed by the Database
Management API and the Database Access API:

Type Description Size / Subsize Database Type

string A JSON string Maximum of 4000
bytes

VARCHAR2

dateTime An ISO- or date-
formatted JSON string

TIMESTAMP

boolean A JSON boolean CHAR(1) “1” true,
“0” false

decimal A JSON number Precision (the total
number of digits).
Optional. / Scale
(number of decimal
digits). Optional.

• NUMBER
• NUMBER(size)
• NUMBER(*,subsi

ze)

integer A JSON number with
no decimal digits

NUMBER(size,0) and
NUMBER(*0)

The size and subSize attributes are optional. Don’t provide them for columns of type
dateTime and boolean. As a best practice, unless you have a valid business
constraint, don't provide size or subSize for integers and decimals because doing so
limits what values are acceptable and makes it harder to resize the column. When
possible, allow the database to size and store the value as efficiently as possible.
However, you should provide the size attribute for string columns. The maximum size
for a string column is 4000 characters. If you need to store a larger string, then you
can use the Storage platform to store the object.

Copying Table Structures to Another Environment
When you promote a mobile backend to a staging or production environment, you can
use the Database Management API’s operations to copy the table structures. These
are the table structures that you created either implicitly through calls to the insert()
and merge() methods or explicitly through the Database Management API.

Chapter 18
Database Management API

18-12

Note:

As noted above, only a team member with the database management role
(MobileEnvironment_DbMgmt) in the target environment can use the
Database Management API.

Typically, the flow to copy table structures to another environment is as follows:

1. Use the Database Management API’s GET operations to get the table metadata
from the source environment.

Note:

The metadata lists the primary key fields in alphabetical order, and not in
the order that you specified when the table was created. When you use
this metadata to recreate a table, you must reorder the fields correctly.

2. From the target environment in the MCS UI, export the environment policy file.

3. Change the Database_CreateTablesPolicy policy for the target environment to
explicitOnly. For information about updating environment policies, see
Environment Policies.

Note:

In a development environment, schema creation occurs implicitly
because Database_CreateTablesPolicy is set to allow by default
(*.*.Database_CreateTablesPolicy=allow). By the time the mobile
database is deployed to a staging environment, this policy should be
disabled to prevent tables from changing.

4. Import the environment policy file back into the target environment.

5. Create a cURL script that sets up the tables in the target environment with the
table metadata you retrieved in step 1, using POST commands to the /mobile/
system/databaseManagement/tables/{table} endpoint. Run the script to create
the tables.

Remember to reorder the primary fields in the correct order.

6. Repeat Step 3, but set the Database_CreateTablesPolicy policy to none.

Creating or Deleting an Index on a Table
To improve the speed of data retrieval, you can use the Database Management API to
create an index for a table. This API is also used to delete an index for a table.

To create a database index for an existing table:

Chapter 18
Database Management API

18-13

1. In the Platform APIs section located at the bottom of the APIs page, click
Database Management .

2. On the left panel, click Create an Index.

3. Fill in the name of the database table you want to index.

4. Click Use Example to use the example code for the index.

Chapter 18
Database Management API

18-14

5. In the example code, replace the index and column names with whatever names
you want to use.

6. In the Backend menu, select the backend, then version, you want to use to test
the API.

7. Select Current User for the authentication method.

8. Click Test Endpoint.

Chapter 18
Database Management API

18-15

You should receive a 201 response indicating your index has been created.

Note:

If you create an index on a table, then call PUT/mobile/system/
databaseManagement/tables, any user-defined indexes will be dropped.
However default indexes, like the one created on a primary key, will be
recreated.

Deleting an Index

The process for deleting an index is very much like creating one. Just choose Remove
an Index from the left panel. Then enter the names of the index and the table, as well
as the backend and authentication method. Finally, click Test Endpoint to see that the
index has been removed.

Chapter 18
Database Management API

18-16

19
App Policies

As a mobile app developer, you can use the App Policies API to create read-only
custom properties in a mobile backend and access them in your application with REST
calls.

What Are App Policies and What Can I Do With Them?
App policies are custom properties that you can define and adjust in a mobile backend
and then reference from your apps through a simple REST call. Once you have
defined an app policy, you can update its value anytime, even after you have
published the mobile backend. This lets you make changes to the appearance and
behavior of a deployed app without having to update the app itself.

19-1

Here are some of the things that you might use app policies for:

• Determining when a given feature is enabled in the app. For example, an app for a
retailer might have a feature to display a section for holiday sales that should only
be displayed when there is a current sale.

• Fonts, colors, names of images to use, and other things that are typically stored as
part of an app’s configuration.

• Timeout values for network calls. Having an app policy for this can allow your
mobile cloud administrator to tune app responsiveness based on prevailing
network performance.

Setting an App Policy
1. Make sure you're in the environment where you want to set the app policy.

2. Click to open the side menu and select Applications > Mobile Backends.

3. Open the backend. (Select it and click Open.)

4. Click the App Policies tab.

5. Click New Policy, fill in the property name, type, value, and description, and then
click Create.

The new app policy appears in a table on the page.
You can later use the Edit and Delete buttons in the table to edit the policy or remove
it entirely. After the mobile backend has been published, you can still change a policy’s
value, but you can not add, delete, or rename policies or change the policy type.

Chapter 19
Setting an App Policy

19-2

Note:

You can only set app policies and change their values from within the MCS
user interface. You can’t do this programmatically from app code.

Retrieving App Policies in App Code
You can retrieve information on the app policies associated with a mobile backend
using the REST API or any of the client SDKs. The REST API enables you to retrieve
an array of all of the policies for the mobile backend. The SDKs also enable you to
retrieve information on specific policies.

REST

Using the following call, you can retrieve all of the app policies associated with a
mobile backend.

GET {BaseURL}/mobile/platform/appconfig/client

The response body is a JSON object containing all of the app policies configured for
that mobile backend. For example, if the mobile backend contains fifTechReqTimeout,
fifTechWelcomeMsg, and fifTechBgImage policies, the response might look something
like this:

{
 "fifTechReqTimeout":100000,
 "fifTechWelcomeMsg":"Hello",
 "fifTechBgImage":"/mobile/platform/storage/collections/appObjects/
objects/bgImage42"
}

From there, you can process them in your app code.

Android SDK

To fetch app policies for the first time, you use the MobileBackend object’s
getAppConfig() method to return all app policies as a JSONObject:

JSONObject appPolicies = oracle.cloud.mobile.mobilebackend
 .MobileBackendManager.getMobileBackend().getAppCon
fig();

Once you have fetched the app policies, you can query the app config for the values of
individual properties.

To return the value of a specific app policy of type String, where myPolicyName is the
name of the policy and “No policy configured” is the string returned if myPolicyName
doesn’t exist:

String myPolicyValue =
oracle.cloud.mobile.mobilebackend.MobileBackendManager

Chapter 19
Retrieving App Policies in App Code

19-3

 .getMobileBackend().getAppConfig().getString(myPolic
yName, "No policy configured");

To return the value of a specific app policy of type Boolean, where myPolicyName is the
name of the policy and false is the value returned if myPolicyName doesn’t exist:

Boolean myPolicyValue =
oracle.cloud.mobile.mobilebackend.MobileBackendManager
 .getMobileBackend().getAppConfig().getBoolean(myPol
icyName, false);

To return the value of a specific app policy of type Integer, where myPolicyName is the
name of the policy and 0 is the value returned if myPolicyName doesn’t exist:

Integer myPolicyValue =
oracle.cloud.mobile.mobilebackend.MobileBackendManager
 .getMobileBackend().getAppConfig().getInt(myPolicyN
ame, 0);

iOS SDK

To fetch app policies for the first time, you use an ansynchronous callback. Here’s
some code that will fetch the app config from the mobile backend and loop until the
network call returns with either the app config or an error:

OMCMobileBackend* mbe = [[OMCMobileBackendManager sharedManager]
defaultMobileBackend];

__block OMCAppConfig* appConfig = nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[_mbe appConfigWithCompletionHandler:^(OMCAppConfig* appConfig_, NSError*
error_) {
 appConfig = appConfig_;
 error = error_;
 executing = NO;
}];

while (executing) {
 [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeInterval:
0.5 sinceDate:[NSDate date]]];
}

if (error != nil) {
 return;
}

Once you have fetched the app policies, you can query the app config for the values of
individual properties. You can also insert an optional parameter to return a value if the
policy is not found.

NSString* welcome = [appConfig stringForProperty:@"welcome"
default:@"bogus"];

Chapter 19
Retrieving App Policies in App Code

19-4

int timeout = [appConfig integerForProperty:@"TIMEOUT" default:42];
boolean enabled = [appConfig booleanForProperty:@"enableLocation"
default:NO];

Cordova SDK and JavaScript SDK

To fetch app policies, call loadAppConfig() on your mobile backend object, e.g.

backend = mcs.MobileBackendManager.getMobileBackend("JSBackend");
...
backend.loadAppConfig(success, error);

Updating an App Policy Value in a Published Mobile
Backend

Even after a mobile backend has been published, you can still change the value of an
app policy. However, you can not change its name or type.

1. Make sure you're in the environment where you want to update the app policy.

2. Click to open the side menu and select Applications > Mobile Backends.

3. Open the mobile backend. (Select it and click Open.)

4. Click the App Policies tab.

5. In the table of app policies, select the policy and click Edit.

6. Edit the value and click Save.

Chapter 19
Updating an App Policy Value in a Published Mobile Backend

19-5

Part IV
Custom APIs

This part contains the following chapters:

• Creating APIs Fast with the Express API Designer

• Custom API Design

• Implementing Custom APIs

• Calling APIs from Custom Code

20
Creating APIs Fast with the Express API
Designer

What is the Express API Designer?

The Express API Designer enables you to create an API using sample data. This data-
first approach lets you build an API quickly and with a minimum of effort. This designer
is an alternative to the API Designer, where less is generated but you have more
control of the API definition. See Which API Designer Should I Use? for a more
detailed comparison.

How Do You Get Started?

Using the Express API Designer, you get a set of generated endpoints when you paste
in a set of sample data that's formatted as a JSON instance. Within the context of the
API Designer, this collection of endpoints is known as a resource. Resources are the
building blocks of the API.

How Do You Use the API?

With your methods sketched in, you can then start using the API as part of your
development effort by testing its endpoints and taking a look at mock data that it
returns. Your service developers can implement a service for this API using JavaScript
and Node. For more design and customization options, use the API Designer instead.
See Custom API Design.

What are Resources?
A resource represents a real world object and the operations that can be performed
upon it. In other words, the GET, POST, and PUT operations on the /incidents
endpoint would simply be known as an “incident”.

How Do I Get Started with Resources?
When you add a resource to your API, MCS creates a set of CRUD methods on these
endpoints and constructs the JSON request and response schemas for you as well. To
find out more about creating these schemas on your own, see Creating Resources
with JSON Schemas, but if you want to see the ones that MCS creates for you, click
Export RAML () to download a a RAML file, or toggle between the designer and the
RAML document by selecting Enter RAML Source Display Mode ().

20-1

Creating An API
1. Click the side menu (), choose and then APIs.

2. Click New API and then choose Express API.

3. Complete the New Express API dialog by adding the API’s name, its display
name, and the description for the Service Catalog in the MAX Designer. When
you’re done, click Create.

By completing this dialog, you open the Express API Designer. The Express API
Designer defaults to its General page, where you can the change the API name or
description. Now you’re ready to add a resource.

4. Click Resources in the left navbar, then click New Resource to open the Create
Resource wizard.

Note:

When you click New Resource you create a top-level resource. This
resource can’t be selected as a child resource.

5. Describe your resource by adding a name, a display name, and a brief description.
Enter a display name in plural form for the collection.

Chapter 20
How Do I Get Started with Resources?

20-2

Tip:

The name and description that you enter here display in the Data Palette
in MAX.

When you add a resource to your API, MCS creates a set of CRUD methods on
these endpoints and constructs the JSON request and response schemas for you
as well. To find out more about creating these schemas on your own, see Creating
Resources with JSON Schemas, but if you want to see the ones that MCS creates
for you, click Export RAML () to download a a RAML file, or toggle between the
designer and the RAML document by selecting Enter RAML Source Display
Mode ().

Resources typically have two GET methods: one that returns a single item of an
object, and one that returns multiple items (a collection). If you select Also expose
a collection of these resources, MCS creates both GET methods and labels
them Find and List, respectively. If your API supports create actions (POSTs), you
need to add a collection.

Not all resources require both GET methods (or other methods that MCS creates
for you, like POST, PATCH, and DELETE). You can remove any methods you
don’t want from the Express API Designer after you’ve finished creating the
current resource.

6. Click Next and then add JSON arrays or instances of sample data in the Sample
Data page. This is the mock data that helps you test the API. Within MAX, the
mock data helps users visualize their app.

7. If you don’t want to add sample data now, click Finish to exit the Create Resource
wizard and go back to the Express API Designer. You can add fields and sample
data from here later on. Otherwise, click Next to review the fields created from the
sample data.

Chapter 20
How Do I Get Started with Resources?

20-3

Click the Sample Data tab to review the sample date you previously entered.
Don’t worry if field names or labels aren’t exactly what you want. You can edit all
these fields from the Express API Designer after you’re done creating the
resource.

8. Click Endpoints and review all the methods created for you. When you return to
the API Designer, you can select the methods that you want your resource to use.

9. Click Finish when you’re done.

After you’ve created your resource, the Express API Designer opens so you can select
the fields and methods you want to use to complete your resource. You can also
shape request and response payloads for your methods. See Completing Your
Resources.

To configure security for your API, export the RAML and then import it into the API
Designer.

Completing Your Resources
When you click Resources from the Express API Designer navbar (or when you click
Finish from the Create Resource wizard), you end up on the Overview tab in the
Express API Designer, where you refine your resources by doing the following:

• Changing the resource’s display name(s) and description.

• Creating reference or child relationships. You can learn more about peer and child
relationships in Referenced Resources.

• Toggle the Include Resource Collection option to allow (or prevent) the return of
multiple items from a collection. When you select this option, the General tab
displays the methods available to a collection: List (GET /items) and Create (a
POST call on a collection).

Chapter 20
How Do I Get Started with Resources?

20-4

These methods display as hyperlinks that open pages for editing the method’s
requests and responses. Shaping Payloads tells you more about editing methods.

Adding Additional Fields
1. Click the Fields tab.

For each resource, MCS creates a field called id. You can’t delete this field, whose
role is described in Fields.

2. If your resource needs more fields, click New Field and then complete the dialog
by defining the field name along with the display name and description. If you use
this API in MAX, the field names and descriptions that you enter here display in
the Service Catalog.

In addition to these display-related values, you also use this dialog to specify the
format (string, integer, geolocation coordinates, and so on) expected by this field. By
choosing the Reference field type, you can allow the field to reference the fields
defined for a peer or child resource that’s selected from the Reference Resource list.
You can find out more in Fields.

Shaping the Payload for Your Resource
Once you’ve defined the fields for your resource, you’re ready to select which fields
are sent to, and returned from, the service. This is known as shaping the request and
response payloads, which you can do as part of editing the methods.

1. Click a link in the Methods tab to open the Edit Method page.

2. Choose the request or a response type along with media type.

3. Click the Shaped option and move the fields you don't want to include in the
payload from the Selected Fields window to the Available Fields window.

By default, all of the fields are included in the payload. See Methods to learn about
custom methods and payloads.

4. Click OK to save your changes.

Chapter 20
How Do I Get Started with Resources?

20-5

See Shaping Payloads to find out about shaping data for different types of methods.

Adding More Sample Data
Use the Sample Data tab to add the mock data that helps you test your API. Mock
data also guides MAX users as they map field data to their UI components. While
MCS includes a row of sample data in the RAML document when you create fields
manually for your resource, it may not reflect the data returned by your service. You
can take a look at this sample data by toggling the RAML display mode option (). An
array of MCS-generated sample data might look like this:

[
 {
 "id": "id0",
 "amount": "amount0",
 "name": "name0",
 "date": "date0"
 },
 {
 "id": "id1",
 "amount": "amount1",
 "name": "name1",
 "date": "date1"
 },
 {
 "id": "id2",
 "amount": "amount2",
 "name": "name2",
 "date": "date2"
 }
]

To get started populating your resource with sample data:

1. Click New Row.

2. Complete the Create Sample Data dialog.

Because this template lets you enter sample values for all of the fields that you’ve
defined for the resource, your sample data stays in step with the field schema
definition.

Referenced Resources
Your resources can reference each other as peers; that is, they occupy the same
level. Suppose your API includes two resources that complement each other but are
distinct. For example, an API that returns CRM (Customer Relationship Management)
data might have two such resources: Accounts and Opportunities. The Accounts
resource includes a set of fields that describe different facets of an account, like the
company name and location. The information returned for these fields may relate to,
but doesn’t overlap, the information returned by Opportunities resource, whose fields
return data that allow status meters to measure the opportunity’s win percent. Your
API might include resources that reference each other in a different way, as a parent-
child relationship. The Accounts resource might have a subsidiary resource called

Chapter 20
How Do I Get Started with Resources?

20-6

Account Notes, which is wholly dependent on the Accounts resource. If you deleted
the Accounts resource, you’d delete the Account Notes resource along with it.

You can include the fields from a referenced resource in the payloads. When the
Opportunities resource references the Accounts resource, for example, its payload for
the Find Opportunities’ 200 response includes account.id and other fields defined for
the Accounts resource.

Referencing Resources
To reference a resource:

1. Click Resources.

Chapter 20
How Do I Get Started with Resources?

20-7

2. Click a resource.

3. Click Add () and then choose a child or a parent resource.

To reference a child resource, first click Add and then complete the Create
Resource dialog. MCS will create a set of method definitions for the child resource.
Next, choose the child resource from the Resource Name list.

4. Click the Fields tab. MCS lists the resource with the fields. You can choose this
resource (or other peer or child resources that you’ve reference in the API) for
reference fields.

5. Click the Methods tab and then click one of the links to open the Edit Method
page. By clicking Response–200 in the Edit Method page, you can take a look at
the referenced fields. Shaping Payloads describes these referenced fields, which
are noted as resource.field name (like accounts.region, for example).

The payloads for the POST and PATCH requests include the reference object
itself, not its individual fields. There are no fields (referenced or otherwise) for
either GET request because they don’t include payloads.

Chapter 20
How Do I Get Started with Resources?

20-8

6. Click Save.

After you’ve made your API available to MAX by publishing it, take a look at the MAX
Designer’s Service Catalog to see the various relationships between your resources.

Fields
Fields describe the different aspects of a resource. They are like properties: they
describe the data they hold by type (like a string, number, or reference) and format
(date-time, URI, and so on). Fields can behave differently depending on context (or
more specifically, on the payload definition).

Note:

The fields that populate list views in MAX are read-only, while the ones used
in form-based create and update screens can accept user input.

The Fields tab lets you take inventory of the fields for a selected object. It’s where you
can create a complete (or canonical) resource by defining all of the possible fields.
After you’ve completed the resource, you can decide which methods can accept and
return a subset of these fields by shaping the payloads in the Methods tab.

MCS adds the id field for you when you create a resource. Because of its role as a
UUID (universally unique identifier), this field acts as the primary key. You can’t delete
this field, change its field type from a string, or change it from being a primary key, but
by clicking Edit (), you can use the field editor to change its display name and
description to reflect the resource.

Chapter 20
How Do I Get Started with Resources?

20-9

Methods
MCS creates a set of CRUD (Create, Read, Update, and Delete) methods for you
when you create a resource. Using the Methods tab, you can select from among these
methods, add new ones, and shape the request and response payloads.

Selecting Methods

While all of the methods are selected by default, they may not all apply to your
resource. You can select the CREATE, POST, or PATCH methods as needed, but
because each resource needs at least one GET endpoint (or two if it’s exposed as a
collection), you can’t remove the GET methods.

Custom Methods

Custom methods (which are always POST methods) allow your resource to perform a
task or server-side action that falls outside of the functions enabled by the default set
of CRUD methods. For example, you can define a custom method that enables an
upload action on an Image component. Using the Fix-It-Fast app as an example, you
could define an action to close an incident that’s triggered by a swipe tile. Clicking
New Custom Method opens the Create Custom Method dialog that lets you define a
custom method on a nested resource (which MCS adds for you). After you’ve created
the method, you can use the Edit Method page to shape the payload of its request
body and add its responses for the 200 status code and the 500 status code. See
Shaping Payloads.

Chapter 20
How Do I Get Started with Resources?

20-10

You can delete a custom method, but you can’t delete any of the default set of
methods that MCS creates for you.

Shaping Payloads
The Edit Methods page not only lets you change the method’s display name and
description, but also allows you to shape its request and response bodies by including,
or excluding, the fields that filter the returned data and populate the create, update, list
and detail screens. You can open this page by clicking the method links in the
Overview or Methods tabs for a selected resource, or from the read-only list of all the
methods defined for the APIs that display in the Endpoints tab.

GET Payloads

There are no request bodies for GET methods; there are only response bodies. The
Edit Methods page lets you select filtering criteria for the data returned for a list or a
detail. In MAX, these surface as query parameters.

For each 200 response, MCS adds all of the fields that you created for the resource
per the default option, Complete. While you can choose this option for detail screens,
you might want to pare down the payload for a list screen by clicking the Shaped
option. You can then shuttle the fields that you don’t want from the Selected window to

Chapter 20
How Do I Get Started with Resources?

20-11

the Available window. When the subset of fields in the Selected window suits your
needs, click OK.

POST and PATCH Payloads

For POST and PATCH requests, you shape the payload with the fields that are sent to
these methods to create or update an item.

Media Types for Request and Response Bodies

As part of the payload configuration, you can set the content type as application/json,
application/octet-stream, or image/*. For binary streams, choose application/octet-
stream. See Enabling Uploadable Images .

Read-Only Fields
For POST and PATCH fields, you can create read-only fields by shaping the request
and response bodies. By including a field in both the request and response payloads,
you allow it to accept user input. By including it in the response body only, you confine
the field to read-only display.

By default, MCS adds the ID field to the response body because this field typically
holds a server-generated value that users shouldn’t edit. Other than the ID field, there

Chapter 20
How Do I Get Started with Resources?

20-12

may be other cases where your request and response bodies don’t align. For example,
to ensure that users can’t inadvertently compromise the integrity of your data by
updating the date field in an edit screen, you’d first add the field to the response
payload’s Selected window and then update the request payload by shuttling the date
field from the Selected window to the Available window.

Sample Data
The Sample Data tab displays all of the data used by a resource for any purpose. In
other words, the data is not specific to any method. As noted in Creating An API, you
can add this data manually, or derive it from the instances and arrays of sample data
that MCS uses to generate the both the resource’s fields and the resource itself.

By adding a single JSON instance similar to the following, you can complete the
resource by defining key-value pairs.

{ "desc":"Northern California Data Center",
 "region":"NA",
 "winpercent":95,
 "salesstage":"Closing",
 "revenue":550000,
 "products":"EXA-Data2, A420 Cable, I5 Routers, A10
Switchees",
 "expectedclose":"2016-07-09T02:40:25.328",
 "createddate":"2015-09-05T00:00:00.000"
 }

Chapter 20
How Do I Get Started with Resources?

20-13

Tip:

Because MCS creates the id field for each resource, you don’t need to
include it your JSON.

MCS does more than just create fields from the JSON: it infers their data types as well.
From the “revenue”: 550000, key-value pair in the above sample, for example, MCS
can interpret the field type as an integer rather than as a string.

You can create your top-level resources using this data-first approach. By nesting
instances, you can create multiple top-level resources and establish reference
relationships for them. The following example shows how nesting an instance creates
a peer resource called Account:

{ "desc":"Northern California Data Center",
 "region":"NA",
 "winpercent":95,
 "salesstage":"Closing",
 "revenue":550000,
 "products":"EXA-Data2, A420 Cable, I5 Routers, A10
Switchees",
 "expectedclose":"2016-07-09T02:40:25.328",
 "createddate":"2015-09-05T00:00:00.000",
 "account":{"name":"Acme Corporation",
 "website":"http://www.acme.com",
 "region":"IN",
 "address":"100 Main St",
 "city":"San Carlos",
 "state":"CA",
 "country":"USA",
 "formattedAddress": "100 Main St, San
Francisco, CA, USA"
 }
 }

Using arrays, you can create top-level resources along with multiple rows of sample
data:

[
 {
 "desc": "Anvils",
 "region": "NA",
 "winpercent": 30,
 "salesstage": "appointment",
 "revenue": "35000",
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Acme"
 }
 },
 {
 "desc": "Horns",
 "region": "SA",

Chapter 20
How Do I Get Started with Resources?

20-14

 "winpercent": 90,
 "salesstage": "closing",
 "revenue": 25000,
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Road Runner"
 }
 },
 {
 "desc": "Bank Vaults",
 "region": "EU",
 "winpercent": 25,
 "salesstage": "prospect",
 "revenue": 15000,
 "expectedclose": "2016-07-09T02:40:25.328",
 "account": {
 "name": "Coyote"
 }
 }
]

Note:

You can only create top-level resources with sample data, so you can’t add a
child resource by nesting an array. Referenced Resources tells you how to
add child resources.

As noted in Completing Your Resources, you can add or remove fields, or change the
field display name and data type using the field editor. Because you need to define a
value for each key, your resource’s GET methods will always return a full set of data.
In cases where this may not reflect real-world scenarios, you can edit your data using
the Sample Data tab. To find out more, see Adding More Sample Data.

Using the Express API Designer with MAX
While the Express API Designer can help you jump-start your API development, it’s
also the quickest way for you to develop APIs for use with Mobile Application
Accelerator (MAX).

MAX is a web-based development environment for mobile apps that caters to business
users. Resources developed in the Express API designer can be treated as business
objects that can be easily incorporated into MAX apps.

Tip:

You can learn more about the MAX App along with information on building,
testing, and distributing apps in Designing Your App. If you want hands-on
experience with using business objects to build a mobile app, follow the
Create a Mobile App in Record Time with MAX! tutorial.

Chapter 20
Using the Express API Designer with MAX

20-15

https://apex.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:17437

Who Uses MAX?
There are two types of MAX users:

• Mobile Cloud developers (mobile app developers and service developers), who
use MAX as part of their testing

• Business users, who create line-of-business (LoB) apps.

To create these apps, MAX users don’t need to know platform-specific languages, nor
do they even need to know anything about MCS in particular: a business user may be
completely unaware that a mobile backend manages the app that he’s building, or that
a custom code API enables his app to use enterprise data.

These users access MAX in different ways: developers access MAX from within by
clicking MAX Apps in the left navbar. Because they focus on building apps (rather
than the backend services that these apps consume), business users access MAX
directly after they log into . Unlike Mobile Cloud developers, business users are MAX-
only users: they’re granted the BusinessUser role, so they never see (and can't log
into it).

These users access MAX in different ways: developers access MAX from within MCS
by clicking MAX Apps in the left navbar. Because they focus on building apps (rather
than the backend services that these apps consume), business users access MAX
directly after they log into MCS. Unlike Mobile Cloud developers, business users are
MAX-only users: they’re granted the BusinessUser role, so they never see MCS (and
can't log into it).

Chapter 20
Using the Express API Designer with MAX

20-16

Enabling Uploadable Images
Users of MAX apps can upload images when the Image component is mapped to a
business object that includes an upload action. You can add this action by creating a
custom function for your business component, which is a POST method on a nested
resource. To create this action:

1. Click Add New Custom Method. The path for this custom method points to a
backend action. For example, the path for the POST might be something like/
opportunity/{id}/uploadpicture.

2. Because you’re sending binary streams through this API, you need to select
application/octet-stream as the media type for this method’s request in the Edit
Method page. This media type signals MAX that this action supports binary
streams.

3. In MAX’s Data Mapper, populate the Image component’s Source field with the
appropriate business object field.

4. To enable the action on the mapped field, clear the Read Only option in the Image
component’s Properties page. When you clear this property, MAX superimposes

an edit overlay () on the image component in the Preview. It allows MAX to
populate the Data tab’s Image Update Action menu with actions that support
binary streams.

Chapter 20
Using the Express API Designer with MAX

20-17

Tips for User-Friendly Business Objects in MAX
You can help business users pick services and map data by adding metadata in MCS.

...Is surfaced here in MAX

The service name and description in the Service Catalog:

Chapter 20
Using the Express API Designer with MAX

20-18

...Is surfaced here in MAX

• Business object name and description in the Data Palette:

• The Data Source page of the Add Data QuickStart and the Data Mapper:

Chapter 20
Using the Express API Designer with MAX

20-19

...Is surfaced here in MAX

• The field names and descriptions in the Fields tab of the Data Palette

• The Data page of the Add Data QuickStart and the Data Mapper:

Chapter 20
Using the Express API Designer with MAX

20-20

...Is surfaced here in MAX

The Actions tab of the Data Palette:

The Configure Action page of the Properties Inspector:

Chapter 20
Using the Express API Designer with MAX

20-21

...Is surfaced here in MAX

The Query page of the Add Data QuickStart and the Data Mapper:

• The Fields tab of the Data Palette. Reference objects are identified with a chain link ().

• The Data page of the Add Data QuickStart and the Data Mapper

Chapter 20
Using the Express API Designer with MAX

20-22

...Is surfaced here in MAX

The Related Objects tab of the Data Palette (under Reference Objects):

The Related Objects tab of the Data Palette (under Child Objects):

The Data Source page Data pages of the Data Mapper and the Add Data QuickStart for a detail screen.

Chapter 20
Using the Express API Designer with MAX

20-23

...Is surfaced here in MAX

• The Live Data view for both the Data Mapper and the Add Data QuickStart:

• The Preview:

Chapter 20
Using the Express API Designer with MAX

20-24

...Is surfaced here in MAX

Video: An Introduction to Mobile Application Accelerator (MAX)
To see how you can build, test, and publish mobile apps using MAX, take a look at this
video:

Video

Creating Resources with JSON Schemas
As an alternative to the Express API Designer, you can build an API with resources
using the API Designer.

If you use the API Designer instead of the Express API Designer, you need to enable
your API to surface in the MAX Designer by creating JSON schema definitions on its
endpoints. These schema define the resources, their fields, and their methods. You
can build these schemas from scratch, or you can import a RAML file (even the one
generated by the Express API Designer). To get a comprehensive view of creating an
API for MAX including adding JSON schemas, go through the tutorial, Shaping MCS
APIs for MAX .

Chapter 20
Creating Resources with JSON Schemas

20-25

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:16865
http://docs.oracle.com/cd/E65774_01/tutorials/tut_mcs_max_api/tut_mcs_max_api_0.html
http://docs.oracle.com/cd/E65774_01/tutorials/tut_mcs_max_api/tut_mcs_max_api_0.html

Tip:

Before you read on, take a look at the JSON schema specification.

Defining Fields in a Schema
To create fields, you need to define JSON schemas for the endpoint requests and
responses.

These schemas define the fields as property members, like name and website in the
following example:

{
"$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",
 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
…
}

They also designate the kind of data that the fields can hold and the kind of user input
and actions that they allow.

Chapter 20
Creating Resources with JSON Schemas

20-26

http://json-schema.org/documentation.html

Defining Field Types, Formats, and Enums
Define the kind of data that your field holds by using combinations of the JSON
schema type, format, and enum keywords.

Some things to keep in mind:

• Define enumerated values (enums) in the schema so that business users won’t
have to enter them as fixed values in the MAX Designer. For example:

"region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]

• When defining the field format for a date, we recommend UTC (Coordinated
Universal Time):

"properties": {
 "lastUpdatedOn": {
 "type": "string",
 "format": "date-time",
 "description": "When the incident was last updated"
 },

Field Formats

You can add constraints on the values that users enter by adding validators like
required, minlengnth, maxLength, minimum, and maximum to the property:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "postOpportunity",
 "type": "object",
 "allOf": [
 {"$ref": "opportunity"}
],
 "required": [
 "desc",

Chapter 20
Creating Resources with JSON Schemas

20-27

 "region"
]
}

For fields that require input in a special format like a phone number, use the pattern
keyword and then define a regular expression:

"pattern": "^(\\([0-9]{3}\\))?[0-9]{3}-[0-9]{4}$"

Example 20-1 Taking a Look at Properties in the JSON Schema

In the following example, a schema called account that defines of the base fields for a
business object. Notice the type keyword defines the kind of data allowed in each field
(string).

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",
 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "address": {
 "id": "address",
 "type": "string"
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
}

Chapter 20
Creating Resources with JSON Schemas

20-28

For a base object, the properties don’t include an ID (defined as aid in the following
example). IDs aren’t present when POST calls create records. Instead, the ID is
assigned by the server. The following schema defines a field for the account ID called
aid, which allows data to be returned by a GET call. In addition to the account ID, this
schema allows all of fields defined for the account schema as well, because it includes
the allOf keyword and assigns account as the pointer to the ref keyword.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }
 }
}

Defining Child Objects
By defining a schema for a nested resource, you can create a child object. Unlike a
reference (or peer) resource, a child object can’t exist on its own. It only has meaning
within the context of its parent resource.

The following schema defines a child object for the nested resource, /accounts/
{aid}/opportunities. In this example, the canonical (or base) link returns the child
object’s resource (opportunities). The links keyword gives the location for the child
resource, opportunities.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccountOpportunities",
 "type": "array",
 "items": {
 "$ref": "getOpportunities"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/opportunities?aid={aid}"
 }]
}

Tip:

You can have different links defined in an array.

Chapter 20
Creating Resources with JSON Schemas

20-29

This example shows a schema on another nested resource, /opportunities/{oid}/
notes to return the notes for a specific opportunity. In this case, the nested resources
defines a grandchild object using the ID (oid) as part of the canonical link:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getOpportunityNotes",
 "type": "array",
 "items": {
 "$ref": "getNotes"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/custom/CRM/notes?oid={oid}"
 }]
}

Defining Fields for List, Details, Create, and Update Screens
Field behaviors can be described as summary, creatable, and updatable, that is,
whether fields can accept user input, like those in a create or update screen, or appear
as a read-only field in a list component.

These behaviors – and their related collection, create, read, update, and delete actions
– are based on endpoints. By defining schemas for an endpoint’s request and
response, you tell MAX how it can use these fields to populate the different types of
screens created by the QuickStarts.

Every business object needs at least one endpoint. Some might require more than
one. For example, you can define GET and POST methods on a top-level resource
(like /employees). Its GET method allows users to return all of the fields defined in the
schema for the response. The schema defined for the POST method’s request defines
the fields that can be used to create an item. To return a specific item, define a GET
method on a nested resource (/items/{id}).

Note:

In MAX, POST methods are always used for fields used for create actions.
Read actions are always GET methods.

Chapter 20
Creating Resources with JSON Schemas

20-30

Field Behavior Description Used in These
MAX
Components

Method Tips

Collection Returns multiple
items (or records)
of the
object. Calls GET
 on the collection
resource (/
items) to return
all fields. See
Collection
Actions.

• List
Components

• DVT
Components

GET Specify the fields
that you want to
include in the
schema for a
collection
endpoint. Add
mock data field
values for the
request and the
response.

Read Gets a single
item of the
object. Calls GET
 on the item
resource (/
items/{id}) to
return the
properties for an
item. An object
can be a
singleton, in
which case this
calls GET on the
item resource (/
item). See
Collection
Actions.

Detail Screen
(read-only fields
in a Form
component)

GET

Create Creates a single
item of the
object. Calls POS
T on the
collection
resource (/
items) with a
request body that
contains all of the
creatable fields
(which can be
either required or
optional), along
with the user-
provided values.
This returns the
new object with
its new unique ID
(which can be
used
subsequently in a
read action). See
Create Actions.

Create Screen
(form fields)

POST Specify the fields
that should be
included in
Create screens in
the schema. Add
mock data field
values in the
request and
response.

Chapter 20
Creating Resources with JSON Schemas

20-31

Field Behavior Description Used in These
MAX
Components

Method Tips

Update Updates a single
item of the
object. Calls PAT
CH on the item
resource (/
items/
{id}) with one or
more updatable p
roperties. See
Update Actions.

Edit Screen (form
fields)

PATCH (and
sometimes, PUT)

Specify the fields
that users can
update in the
schema. Provide
mock data for the
field values for
the request and
response. You
should consider
using the PATCH
method because
it updates the
server with only
the fields that
have been
modified. See
Using the PUT
Method for
Update Actions.

Delete Deletes a single
item of the
object. Calls DEL
ETE on the item
resource (/
items/{id}).
See Delete
Actions.

DELETE

Collection Actions
Typically, collection actions are based on two different GET methods.

One endpoint returns a list of multiple items of the object using the top-level resource.
The other returns a particular item and uses a nested resource. Together, these two
endpoint definitions represent a single resource that supports both the collection and
read actions.

Chapter 20
Creating Resources with JSON Schemas

20-32

This example shows a schema for the response for collection action. In this case it’s a
GET method on the top-level resource, /accounts.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccounts",
 "type": "array",
 "items": {
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 },
 "name": {
 "id": "name",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
 }
}

This example shows the schema for the response of a read action, defined for a GET
action on a nested resource (/accounts/{aid}):

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }

Chapter 20
Creating Resources with JSON Schemas

20-33

 }
}

Defining a Collection Using a Single Resource

You can create a resource that returns a list of items using a GET endpoint on a single
resource. In this case (which is more the exception than the rule), there isn’t an
additional endpoint for retrieving an individual item. In the following example, the
Analytics resource has a collection action that returns a list of metrics (GET /stats).
However, it does not use an endpoint that points to a specific resource (like GET /
stats/{sequence}) to return an individual metric. The JSON response can be an array
or an object. Objects include information about the data set, such as the number of
items in the set, a token for the next set of items, and so on.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "stats",
 "title": "Analytics",
 "type": "object",
 "properties": {
 "metrics": {
 "type": "array",
 "description": "Metrics are individual measurements related to
incident activity, techncian performance",
 "items": {
 "type": "object",
 "properties": {
 "month": {
 "type": "string",
 "description": "Date Dimension for which a data point is
provided"
 },
 "technician": {
 "type": "string",
 "description": "Technician for whom the data is provided."
 },
 "radius": {
 "type": "number",
 "description": "radius in miles from the technician location,
where incidents were reported."
 },
 "incidentsAssigned": {
 "type": "number",
 "description": "Incidents Assigned to Technician"
 },
 "incidentsClosed": {
 "type": "number",
 "description": "Incidents Closed by Technician"
 }
 }
 }
 }
 }
}

Chapter 20
Creating Resources with JSON Schemas

20-34

Note:

MAX can only detect objects that have one top-level array. MAX can't detect
the primary collection when an object has more than one top-level array like
metrics2 in the following snippet. In cases like this, the MAX can't make this
collection available for data mapping.

{
 "count": 2,
 "metrics1": [
 {...}
],
 "metrics2": [
 {...}
]
}

Create Actions
You can add a create action by defining a POST method.

You can define the creatable fields in the JSON schemas for both the POST request
and response.

The following example shows a schema for the POST request called postAccount that
defines creatable fields from the referenced account schema. Some of the fields
returned from the account schema are optional, but in this schema, the name and
region are designated as required fields; app users can’t create a new item without
defining them.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "postAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "required": [
 "name",
 "region"
]
}

In addition to these required fields, the allOf keyword allows app users to add values
into any of the fields defined in the account schema (shown below) to create new
items. While the name and region fields (which are also defined in the account
schema) are required, the other fields are optional.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "account",

Chapter 20
Creating Resources with JSON Schemas

20-35

 "type": "object",
 "properties": {
 "name": {
 "id": "name",
 "type": "string"
 },
 "website": {
 "id": "website",
 "type": "string"
 },
 "region": {
 "id": "region",
 "type": "string",
 "enum": ["IN", "NA", "SA", "AP", "EU"]
 },
 "address": {
 "id": "address",
 "type": "string"
 },
 "city": {
 "id": "city",
 "type": "string"
 },
 "state": {
 "id": "state",
 "type": "string"
 },
 "country": {
 "id": "country",
 "type": "string"
 }
 }
}

Note:

In MAX, the POST method is the only way to enable create actions. Having a
POST method enables MAX to populate create screens with fields that allow
user input (creatable fields). If a business object doesn’t have a POST
method, then app users won’t be able to create items.

Read Only Fields

To create read-only fields in a form, define fields in the JSON schema for the POST
response that have no counterparts in the POST request schema. In the following
table, the getAccount schema, which is defined for the POST response, includes the
aid field, which holds the server-generated ID for an account. Because this is a read-
only value, one which app users shouldn’t update, it’s not included in the field
definitions of the POST request schema, postAccount, or the account schema that it
references.

Chapter 20
Creating Resources with JSON Schemas

20-36

Response Schema Request Schema

{
 "$schema": "http://json-
schema.org/draft-04/schema#",
 "id": "getAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "properties": {
 "aid": {
 "id": "aid",
 "type": "string"
 }
 }
}

{
 "$schema": "http://json-
schema.org/draft-04/schema#",
 "id": "postAccount",
 "type": "object",
 "allOf": [
 {"$ref": "account"}
],
 "required": [
 "name",
 "region"
]
}

Content Types for Creatable Fields

At runtime, mobile apps return the content types specified in the POST endpoint,
which can be application/json or application/x-www-form-urlencoded. You can
specify application/x-www-form-urlencoded as the content type for a creatable field
in the POST request, but also specify application/json as the content type for the
read only fields returned by the response.

Update Actions
You can allow users to update a field's value by defining a JSON schema on a PATCH
endpoint.

Schemas for PATCH endpoints enable MAX to populate edit screens (and other
forms) with updatable fields. When forms are modified using PATCH, only the fields
that users have updated are sent to the server, not the entire object.

Note:

When you define your PATCH endpoint, always specify the content in the
request body as type as application/json instead of the JSON patch
format (application/json-patch+json).

Using the PUT Method for Update Actions
In addition to the PATCH method, you can make fields editable by defining a JSON
schemas for the requests and responses of a PUT method.

Although you can use both PUT and PATCH for update actions, keep in mind that the
PUT method replaces all of the fields defined for a schema object (even if none of
them have been modified). That means that the request payload must include the
entire object. The request payload for the PATCH method, on the other hand, includes

Chapter 20
Creating Resources with JSON Schemas

20-37

only the fields that have changed. Because of this, we recommend using PATCH (if
the service supports it, that is).

Delete Actions
The delete action is defined for an object. It enables users to remove an entire record,
not just a field.

You can define a DELETE method on a nested resource like /accounts/{aid}, for
example.

Custom Actions
In addition to the CRUD actions, resources can also have custom actions that require
custom code, transactional semantics, or unique processing on the objects.

In general, custom actions don’t return a payload. Instead, they perform server-side
tasks and return success and failure responses.

Keep the following in mind when you create a custom action:

• Use POST methods for custom actions.

• Create the POST method for a nested resource like /incidents/{id}/
closeIncident.

• If needed, define a request body for the POST method.

• Use a JSON hyper-schema links property to define the sub-resource. For
example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "incident",
 "title": "Incident Detail",
 "type": "object",
 "properties": {...},
 "links": [
 {
 "rel": "self",
 "title": "Incident",
 "href": "/incidents/{id}",
 "method": "GET",
 "targetSchema": {"$ref": "incident"}
 },

Creating Mock Data
Creating mock data for the fields defined in your JSON schemas helps you test the
API. When you define these values, be sure that they align with the fields that you’ve
defined in your schema.

Chapter 20
Creating Resources with JSON Schemas

20-38

Note:

Take care when you define your mock data, because MCS doesn’t verify
mock data against a schema.

Which API Designer Should I Use?
When creating your APIs, you can use either the API Designer or the Express API
Designer. Which you choose boils down to a few important factors:

• If you want full control of the development process, choose the API Designer.

• If you’d rather get going fast with no coding, or you need to develop APIs to use
with the Mobile Application Accelerator (MAX), the Express API Designer is your
best bet.

This table highlights some of the key differences:

Category API Designer Express API Designer

Overview Enables you to define custom
APIs in a visual editor that
gives you control over
endpoint definition and
security. You can also define a
schema, resource types, and
traits. You implement the API
by writing a Node.js module.

Enables you to use sample
data to quickly create APIs
without writing any code.
Based on the sample data you
provide, the designer
generates resources with
GET, POST, PATCH,
CREATE, and DELETE
methods.

Chapter 20
Which API Designer Should I Use?

20-39

Category API Designer Express API Designer

Who’s it best for? • Developers who want to
craft, or explicitly design,
a custom API.

• Developers who prefer
working with the details,
such as defining the
method requests and
responses, configuring a
schema, and setting
security

The focus is on flexibility and
control of the development
process.

• Developers needing an
API with only the basic
CRUD operations (create,
read, update or delete),
who want to get up and
running quickly.

• Developers who want to
jump-start their API
designs before switching
to the API Designer for
fine-tuning.

• Developers creating APIs
for use with Mobile
Application Accelerator
(MAX).

The focus is on speed,
creating a spec to export to
the API Designer for further
development, and creating
APIs to use with MAX.

Can use to set secure
access?

Yes. You can add user
authentication and role-based
access to resources.

No. However, you can export
the RAML to the API Designer
and add role-based security
settings with the tools there.

MAX Friendly? Yes. But you must shape the
API to surface in the MAX
Designer by defining the
JSON schema (one built from
scratch, or a RAML file
generated by the Express API
Designer).

Yes. You create an API with
an object-centric focus. This
kind of API can be used out-
of-the-box to build mobile
apps with MAX.

Coding needed? Yes. After you define the
custom API’s REST endpoints
with the API Designer, you
then need to implement
internal logic through Node.js.

No, though you can modify the
generated implementation.

Chapter 20
Which API Designer Should I Use?

20-40

21
Custom API Design

In Oracle Mobile Cloud Service (MCS), you can create custom REST APIs that can be
used by your mobile apps. If you’re a mobile app developer, use the API Designer to
sketch out and test the endpoints that you define and then have a service developer fill
out the details of the API (add resource types or traits, provide a schema, and set the
access to the API and its endpoints), and implement it in JavaScript. If you’re a service
developer, use the API Designer to explicitly configure a complete API that you can
test with mock data. Alternatively, you can generate custom APIs from a REST or
Fusion Applications connectors without writing any code.

Unlike the MCS platform APIs, which provide a core set of known services, custom
APIs let you use Node.js to code any service your mobile app needs, published
through a REST interface. You can relay data by using an MCS connector to a
backend service, which transforms complex data into mobile-friendly payloads. By
using custom APIs to build a catalog of reusable services, you can save lots of time
that might otherwise be spent periodically re-creating and maintaining implementation
details in your mobile apps.

If you want to create an API quickly by providing sample data and letting MCS define a
set of endpoints for you, use the Express API Designer.

API Design Process
The API Designer guides you through the process of creating a custom API.

You can quickly create a draft version of the API in just a few steps:

21-1

1. Add the basics (name of the API, the message media type, and a brief
description).

2. Define an endpoint by setting a resource and at least one method for it.

3. Set access security.

4. Test your endpoint after you've defined at least one resource.

You can create mock data to quickly test and validate an endpoint even when you
haven’t completely finished configuring your API. When you define your message
body, you can provide placeholder values to verify that the correct data is being sent
or returned. See Testing API Endpoints Using Mock Data.

Completing Your Custom API

To fully complete your API, use the API Designer to help you add the essential
components for a robust API:

• Provide the API metadata (that is, the basic attributes of the API, which are the
API display name, API name, and short description) or, if you already have a
RAML document that contains the configuration of your API, then you can upload
it to the API Designer. All the information (metadata, resources, methods, and the
schema for the message body) is extracted from the RAML document and loaded
into the API Designer, letting you quickly proceed to testing your endpoints or
editing your API configuration. To provide a valid RAML file, see RAML.

• Add one or more root and nested resources.

• Add methods to act on the resources.

• Create a schema to describe the body of data.

• Test your endpoints during design time with sample data and make any changes
as needed.

• Allow anonymous access to your API or specify which roles can access it.

• Add documentation for your custom API

Chapter 21
API Design Process

21-2

Later on, as you create more APIs, you might find that you are repeatedly defining the
same methods, using the same parameters, etc. You can reduce the redundancy by
creating resource types and traits. If your API is still in the draft state, then you can go
back into your configuration and add the resource types and traits that you’ve defined.

The API Designer
The API Designer helps you configure a custom API with task-specific tabs that you
use to name your API, define its endpoints, set security, add API documentation, add
a schema, define resource types and traits, and test the API.

When you double-click an existing API, it automatically opens in the API Designer.
Only APIs in draft state can be edited. If you open a published API, then it’s displayed
as read-only information. To make changes to a published API, you need to create a
new version of it (see Creating a New Version of an API).

While you’re configuring the API, you can switch between the Design view and the
Source view. In the Design view (the default view), you enter values in fields. In the
Source view, you manually define the API’s properties in a source code editor. Click
Enter RAML Source Editor Mode to toggle between the Design and Source views.

If you already have a RAML document, then you can import it and edit it in the API
Designer. Click Upload a RAML Document or drag and drop your RAML document in
the New API dialog to download your API definition.

Chapter 21
The API Designer

21-3

Note:

If you came to the API Designer by clicking the APIs navigation link from a
mobile backend, the feature to upload a RAML document is not available.

MCS APIs are based on the RESTful API Modeling Language (RAML) standard. Once
you’ve begun to configure your API, MCS generates a RAML document of the
configuration. See RAML to learn more about it.

If you want to work on the RAML document outside of MCS, you can export it by

clicking Export RAML document at the top of the page.

Generating Custom APIs for Connectors
Oracle Mobile Cloud Service (MCS) can generate custom code from connectors to
connect to external services. As a service developer, you can select a Fusion
Applications connector or a REST connector that has been created with a valid
descriptor, generate the custom API, and use the generated API to make it easier to
call these services from the implementations of your custom APIs, or directly from a
mobile app.

A connector is a means of enabling a mobile backend to communicate with an external
service such as enterprise system or third-party APIs, which in turn, allows a mobile
app to interact with the functions of that service. A connector API is a configuration for
communicating with a specific external service to send and receive data.

As a service developer, you can generate a custom API that exposes the methods of a
connector API and provides a default implementation, without writing code.

The custom API is generated with an endpoint for each resource in the connector API,
and it is opened in the API Designer for you to continue to specify details of the API,
such as roles. The default implementation, passes through all the requests coming
from the generated custom API to the target connector API, is also generated and
assigned to the generated API. As soon as you have assigned roles to the API if they
are required for security on the connector you can use the implementation to test the
API. You can download and modify the implementation and then upload it.

Creating a Generated Custom API for a Connector

Being able to create a custom API for a connector means that it is much easier to
create a prototype which you use to test a connector. As you find things you want to
change, you can quickly make a change to the connector, and generate a new custom
API and implementation. Once you are satisfied you can generate a final version of the
custom API and implementation.

• First, you develop a REST connector or Fusion Applications connector that is
defined using a descriptor.

• Generate the custom API from the connector. It opens in the API Designer, where
you can define one or more roles or specify the authentication required by the API.

• You can immediately call the generated API from the mobile device. The default
implementation passes through all the requests coming from the generated API to
the target connector API.

Chapter 21
Generating Custom APIs for Connectors

21-4

• You will probably want to download the implementation and modify it to shape the
data returned.

• You may want to revisit the connector and make changes to the connector
resources or descriptor. If you do you must generate a new custom API and
implementation. If you make changes to the generated custom API, these changes
are not reflected in the connector. You should make the appropriate changes in
the connector and then generate the custom API and implementation again.

Limitations of Generated Custom APIs for Connectors

You can only generate a custom API for a REST or Fusion Applications connector
which is defined using a descriptor. You cannot generate a custom API for another
type of connector, or where the REST or Fusion Applications connector does not have
a descriptor.

If you want to send multipart form data or use the http options object, you might need
to replace the callConnector method in the implementation with your own code. See
Calling Connector APIs from Custom Code.

How Do I Generate a Custom API from a Connector
Before you can generate your custom API, you must have created the connector that
the API will be configured for. If the connector isn’t valid you’ll see a popup explaining
that you can only generate custom connector API code for:

• REST connectors that use a descriptor URL

• Fusion Applications connectors

Note:

Make sure that you have the descriptor defined for the connector, and that
you have selected the resources and methods you want to generate code
for. The connector should be as complete as possible

1. Make sure that you’re in the environment for which you want to generate the
custom API.

2. Click and select Applications > APIs from the side menu.

The Connectors page appears. Select the connector API you want to generate
custom code for. You can filter the list to see only the connector APIs that you're
interested in or click Sort to reorder the list.

3. Click More and from the drop-down list, select Generate Custom API.

The Generate Custom API dialog appears.

Chapter 21
Generating Custom APIs for Connectors

21-5

4. Provide the following information for the generated custom API:

a. Title: Enter a descriptive name (an API with an easy-to-read name that clearly
identifies the API makes it much easier to locate in the list of custom APIs).

For example, myCustomAPI.

Note:

The names you give to a custom API (the value you enter in the API
name field) must be unique among custom APIs.

b. Version: Enter a version number.

If you enter a version number that already exists, you'll get a message letting
you know that number is already in use.

c. Name: The title you entered is automatically entered here as the name. You
can change it if you want. This name is used a unique name for your custom
API.

By default, this name is appended to the relative base URI as the resource
name for the custom API. You can see the base URI below the Name field.

Note:

The custom API name must consist only of alphanumeric characters.
It can’t include special characters, wildcards, slashes /, or braces {}.

If you edit the name for the API here, the base URI is automatically updated.

Other than a new version of this custom connector API, no other custom
connector API can have the same resource name.

d. Description: You can accept the default description, or provide a brief
description, including the purpose of this API.

Chapter 21
Generating Custom APIs for Connectors

21-6

After you've filled in all the required fields, click Generate.

The draft API is generated and displayed in the General page of the API Designer
(see The API Designer) where you can continue to edit it.

You can find the new custom connector API listed under Applications > APIs.

Completing the Custom API
The generated API opens in the API Designer.

• An endpoint exists for all the resources selected in the connector, along with an
implementation that you can use to test the API.

• By default, security is set that login is required and security is enterprise level so
you need to add the roles that can access the API. See Security in Custom APIs

As soon as you assign appropriate roles, you can test the custom API.

Working with the Implementation
The default generated implementation passed through all requests. You can edit the
implementation to shape the data returned, which is useful if there is a lot of data.

1. Make sure that you’re in the environment where you can download the
implementation.

2. Click and select Applications > APIs from the side menu.

The APIs page appears. Select the custom API that you have generated. You can
filter the list to see only the custom APIs that you're interested in or click Sort to
reorder the list.

3. Click the Implementations navigation link, select the implementation which will
have the same name as the custom API, and click Download.

4. The download is a zip file with the default name <custom-api><version>.zip.
Expand it to a suitable location. The implementation files are:

• callConnector.js, passes the client’s request to the connector, and sends
back the connector’s response.

• <custom_api>.js , provides the main body of the scaffolding of the custom
API implementation. You can uncomment lines in this to shape the data
returned from the connector.

• <custom_api>.raml, the RAML definition of the custom API.

• package.json, the package descriptor file.

• ReadMe.md, has a description of the implementation files.

• samples.txt, code samples.

• swagger.json, the Swagger definition of the custom API.

• toolsConfig.json, used by the command-line development tools.

5. In an appropriate editor, open <custom_api>.js, which is the only file in the
generated implementation which you should edit.

Chapter 21
Generating Custom APIs for Connectors

21-7

To shape the response from the connector, uncomment the relevant lines and if
necessary change the type and limit. See the service.use examples in the
sample of <custom_api>.js below.

service.use(bodyParser.raw({type: 'application/octet-stream', limit:
'100mb'}));

and

service.use(bodyParser.text({type: 'text/*', limit: '1mb'}));

This is the first few lines of the <custom_api>.js generated implementation file.

// no need to add body-parser as a dependency in package.json - it's
provided by custom code container
var bodyParser = require('body-parser');

// passes client's request to the connector, sends back connector's
response
var callConnector = require('./callConnector.js');

/**
 * Mobile Cloud custom code service entry point.
 * @param {external:ExpressApplicationObject}
 * service
 * @see {@link http://expressjs.com/en/4x/api.html}
 */
module.exports = function(service) {

// uncomment if using customizer to customize binary request with
content-type 'application/octet-stream' - it will be parsed into a
Buffer and assigned to req.body. Otherwise these requests streamed
through (recommended approach if no customization is required).
//service.use(bodyParser.raw({type: 'application/octet-stream', limit:
'100mb'}));
// uncomment if using customizer to customize text request with text
content-type - it will be parsed into a string and assigned to
req.body. Otherwise these requests streamed through (recommended
approach if no customization is required).
//service.use(bodyParser.text({type: 'text/*', limit: '1mb'}));

// In the product UI, in Diagnostics -> Logs tab, ServerSetting button
allows to set backend log level: set your mbe log level to FINE (FINER,
FINEST) to see the generated custom code sdk calls.

 service.post('/mobile/custom/sample_api/emps', function(req,res) {
 // uncomment customizer to customize request and/or response
 callConnector(req, res/*,customizer*/);
 });

 service.get('/mobile/custom/sample_api/emps', function(req,res) {
 // uncomment customizer to customize request and/or response

Chapter 21
Generating Custom APIs for Connectors

21-8

 callConnector(req, res/*,customizer*/);
 });

...

There is a sample customizer in the same generated implementation file. You can edit
it and pass it as a last parameter to callConnector to override the request sent to the
connector and/or the connectors response. See the comments in the code for
examples of what you can do.

// Edit this sample customizer and pass it as a last parameter to
callConnector to override request sent to connector and/or connector's
response.
// Without customizer callConnector streams request to connector, then
connector's response is streamed back to client - recommended approach in
case no customization is required.
var customizer = {
 // allows to customize request sent to connector. If omitted then the
request streamed to the connector - recommended approach in case no
request customization is required.
 request: {
 // used - with post and put only - to customize request body
 // If not specified then request body is streamed directly to the
connector - no need to define this function unless you need to override
the payload.
 body: function(req) {
 console.log('customizer.request.body: req.body = ', req.body);
 var body = req.body;
 // OVERRIDE request body here - substitute this sample code:
 if (typeof body == 'string'){
 // to enable string parsing uncomment
service.use(bodyParser.text... - otherwise req.body would never be a string
 body += ' customized request';
 } else if (typeof body == 'object'){
 if (Buffer.isBuffer(body)){
 // to enable binary parsing uncomment
service.use(bodyParser.raw... - otherwise req.body would never be a Buffer
 body = Buffer.concat([Buffer.alloc(8, '00000000'),
body]);
 } else {
 // json parsing is enabled by default
 body['customized-request'] = true;
 }
 }
 console.log('customizer.request.body ->', body);
 return body;
 }/*,
 // advanced: uncomment to add options to connector request, see
https://github.com/request/request#requestoptions-callback
 options: function(req) {
 var options = {headers: {myHeader: 'myHeaderValue'}};
 console.log('customizer.request.options ->', options);
 return options;

Chapter 21
Generating Custom APIs for Connectors

21-9

 }*/
 },

Spec Out a Custom API
As a mobile developer, you might want to quickly spec out an API for your backend
then configure it later, or hand it to someone like the service developer to complete.
You can construct a functioning API with just a few steps: name your API, define an
endpoint, and test the endpoint. These next steps use a simplified FixItFast example. It
doesn’t show you how to add method parameters, or schemas, or resource types and
traits.

1. Make sure that you’re in the environment containing the mobile backend for which
you want to create a custom API.

2. Click and select Applications > Mobile Backends from the side menu.

3. Select the mobile backend that you want to associate the API with from the list of
backends and click Open.

4. Click the APIs navigation link.

5. Select New API > API.

The New API dialog opens. Here’s where you enter the basic information for your
API:

a. Enter a name in the API Display Name field that is easy to read and
describes your API. For example, FixItFast Incident Reports. This name
appears in the API Catalog, which other developers can see.

The name you give to a custom API (the values you enter in the API Display
Name and the API Name fields) must be unique. No two custom APIs can
have the same name.

b. Enter a name in the API Name field for the internal name of the API. It’s part
of the metadata of the API, that is, it appears in the custom API URI. It won’t
appear in the API Catalog, so you can use a more concise form of the display
name if you choose. For example, incidentreports.

c. Add a brief description that tells others what the API does.

6. Click Create.

The General page of the API Designer is displayed. If you want to change the
name of your API or its description, then you can do it here.

7. Select the default media type, that is, the content type of the message body. REST
APIs commonly use the application/json or the application/xml media type.

Chapter 21
Spec Out a Custom API

21-10

That’s all you need to do to set the basic information for your API. If you’d like, you
can choose a different icon to associate with the API display name or just go with
the default and select a different icon later.

8. Click Endpoints in the navigation bar to define endpoints for the API.

a. Click New Resource and enter the resource name and the display name of
the resource (the field next to the resource name field). For instance, you
could have contacts as the resource name and Customer contacts as the
display name. Resources are listed by their display names on the left side of
the API Test page. Enter a brief description of the resource so others can
understand what the resource does.

Tip: This image shows a “P” under the Methods link. When a method is
defined for an endpoint, an icon for the method appears below the Methods
link. The icons are a shortcut you can use later to quickly see what methods
are defined for the resource and you can go directly to the method definition
by clicking on an icon.

If you want to add another top-level resource, then click New Resource again
and enter names and descriptions.

b. (Optional) If you want to add a nested resource (a child resource of contacts),
click Add (+) next to the Resource name field. Enter a name, a display name,
and a description of the nested resource. Click Add (+) again to add more
nested resources if you need them.

Endpoints are what really define an API. They are the resources and the
methods that act on those resources.
If you want to know more about resources, see API Resources.

9. Click Methods next to the resource display name and define a method for the
resource.

For each method, you need to define a request and a response. You can add
parameters to filter the information for the request and response message bodies
if you need them.

Chapter 21
Spec Out a Custom API

21-11

a. Click Add Method, select an operation and, optionally, add a description of
the method in the Description field.

For example, you could select a POST method to create a customer and add
“Creates a customer” as the description. Notice that a POST icon appears
next to Add Method. All methods defined for a resource have icons displayed
at the top of the page. When you want to view or edit a specific method, just
click the icon for it.

b. Click Add Media Type and select the format of the request message body,
which is usually JSON or XML.

c. Add a schema (a template of the message body) or an example of the
message body using mock data. Click Example or click Schema to paste the
message body.

Here’s an example body you could use for the FixtItFast example:

{
 "AddressLine":"1 Main Street',
 "City":"Anytown",
 "UserName":"user",
 "FirstName":"Jim",
 "LastName":"Smith",
 "PostalCode":"12345"
}

d. Add a response body by clicking Add Response and selecting a response
code. Don’t forget to add a description for the response body.

Using the example, you would select 201 — Created for the POST method and
enter the following description: Request fulfilled, new customer added.

Chapter 21
Spec Out a Custom API

21-12

You can add parameters to filter information for the response body. You can
also enter a response message body. If you’re using the FixItFast example,
then a response body isn’t needed for the POST method.

e. Save your method definitions by going to the top of the Methods page and
clicking Save.

10. Set security access for your API by clicking Endpoints to get back to the
Endpoints page. From there, click the Security navigation link.

11. Switch Login Required to OFF so you don’t have to provide mobile user
credentials or access tokens for authentication and click Save.

See Security in Custom APIs to learn more about securing access to the API. Now
you’re ready to test your endpoint.

12. Click Test to go to the API testing page.

The endpoints defined for the API are listed on the left side of the page. Click an
endpoint to load it. You can see each method’s request and response
configurations for each resource.

You can check the definition of each method and if you want to modify a
parameter name or an example, enter the change in the box to the right of the
field. If you click Use Example by a message body, then the current body is
copied into the text editor and you can make any changes.

Chapter 21
Spec Out a Custom API

21-13

13. In the Authentication section, select the mobile backend that this API is associated
with and the mobile backend’s version number.

Because you set Login Required to OFF, you don’t need to specify the
authentication method or provide credentials.

If you defined more than one endpoint, then set the default test credentials so you
won’t have to fill out the Authentication field for each method. Click Default API
Designer Test Credentials at the top of the page and select the associated

mobile backend and its version number. When you click Save (), the values are
applied to the Authentication fields of each method.

14. Click Test Endpoint.

You can view the request and response status and data of the test under the
Response Status section. If you used the FixItFast example and your test was
successful, then you should see a 201 status.

That’s all you need to do to spec out your custom API. As long as the API is in a draft
state, you or a teammate can edit the API configuration as needed. For steps on how
to fully configure a custom API, see Creating a Complete Custom API.

Creating a Complete Custom API
Previously, you learned how to spec out an API using the API Designer. You gave a
name to the API, added at least one resource and method and tested your endpoint.
At this point you have a draft version of the API but it isn’t quite complete. In this
section, you’ll fill in more details (such as defining the method requests and response,
adding a schema, and setting secure access) to make a more robust API. Just in case

Chapter 21
Creating a Complete Custom API

21-14

you’re starting from scratch though or want more details about setting the basics, the
complete set of steps to creating a custom API are presented.

Click and select Applications > APIs from the side menu. If an API has already
been created (whether in a Draft or a Published state), you'll see a list of APIs. If no
custom APIs exist, then you'll see a page with the New API button. Click the API you
spec’d out already or click New API to get started.

Setting Up Your API
Let’s use the FixItFast example to create a custom API. In this example, you work for
the FixItFast appliance repair company. You need to find a way to track the repair calls
and responses. It would also be helpful to know which technicians are assigned to the
repair jobs. You want to create an API that lists the customer service calls based on
the customer who called to report the problem, the customer location, and the
technician assigned to the job. You’ll create the following API with the following
properties:

• An API called FIFIncidentReports

• A base URI: https://fif.mcs.cloud.oracle.com/mobile/custom/fif-
incidentreport/

• An application/json media type

• An icon to associate with the API display name (a PNG file that we selected)

When you click Create, a Draft state of the API is created and added to the list of
custom APIs.

First, set the basic characteristics for your API by going to the General page.

1. Make sure that you’re in the environment containing the mobile backend for which
you want to create a custom API.

2. Click and select Applications > APIs from the side menu.

3. Select New API > API.

You select API to craft custom APIs with the API Designer. Express API enables
you to create API quickly without having to write any code as long as you have
sample data to provide. See Creating An API to learn about the Express API
Designer. If you’re developing mobile apps with the Mobile Application Accelerator
(MAX), the Express API designer is the quickest way to develop APIs for use with
MAX. See Creating APIs Fast with the Express API Designer for information about
MAX.

4. Enter a name for the API in the API Display Name field that will appear in the list
of APIs (required).

The display name can contain alphanumeric characters and special characters
(! ? & @ () _ - . ‘ “). The name can’t begin with a space and can’t exceed
100 characters.
The name you give to a custom API (the values you enter in the API Display Name
and the API Name fields) must be unique among custom APIs. For example, if a
custom API exists with the API name My API, then you can’t create another
custom API with the same name.

5. Enter a name for the API in the API Name field that will appear in the API
configuration (required).

Chapter 21
Creating a Complete Custom API

21-15

This name is appended to the relative base URI as the resource name for the API.
The API name must begin with a letter (A - Z) and can contain numbers (0 - 9) and
underscores (_). The name can’t exceed 100 characters. A validation error
message is displayed if you enter a name that’s already in use.

If you edit the name of the API here, then the change will be made automatically to
the resource name in the local URI.

6. Add a brief description of your API and click Create.

You’re taken to the API Designer page where you can complete the basic
information for your API:

• Default media type for the payload (application/json is selected by default,
click the drop-down list to select another type).

• API Catalog Properties to make it easier for you and other developers to
locate the API. Provide a brief description of your API and select an icon to
associate with your API.

If you want to use your own icon, then you can upload an icon (it must be in a
PNG format) or if you’re creative, then you can download Photoshop
QuickStart to use an icon template to create an icon. You should be familiar
with using Photoshop to create an icon. Follow the icon guidelines for sizing
and color information. For sizing information, see the Full Palette Icon section
of the ALTA ICON STYLE chapter in the Oracle Alta Web Design Guide. You’ll
need a 48x48 icon image within a 70x70 canvas. For color guidelines, see the
Icon Palette section of the ALTA COLORS chapter of the same guide.

Now that you’ve provided the basic information, it’s time to define endpoints for your
API.

Defining Endpoints
You create resources to define the endpoints of your API. A resource is the crux of an
API. It has a type, some data associated with it, a relationship to other resources, and
contains one or more methods that act on it. A resource can be nearly anything: an
image, a text file, a collection of other resources, a logical transaction, a procedure,
etc. See API Resources.

1. Click the Endpoints navigation link to begin.

2. Click New Resource and add some basic information.

Chapter 21
Creating a Complete Custom API

21-16

http://www.oracle.com/webfolder/ux/middleware/alta_web_icon_guide/Alta-Icon-Style/Full-Palette-Icons.html
http://www.oracle.com/webfolder/ux/middleware/alta_web_icon_guide/Alta-Colors/Icon-Palette.html

Each time you click New Resource, you create a top-level (root) resource. If you
want to add a child (nested) resource, then click Add (+) next to the top-level
resource. Click X to delete a resource.

Note:

See the icons under the Methods links? Each time you define a method
for a resource, an icon for it appears under the Methods link. Use them
as a shortcut to see what methods have already been define for a
resource. Click on an icon to go directly to its definition on the Methods
page.

3. Provide the resource path, which is the URI (relative to the base URI). For
example, if the base URI is /mobile/custom/fif-incidentreport, then you could
add the resource, incidents, that is /mobile/custom/fif-incidentreport/
incidents.

4. Provide the display name, which is a name for the resource that makes it easy to
identify in the API documentation.

Resources are listed by their display names on the left side of the API Test page.

5. Provide a brief description of the resource.

After you enter a description, the URI is displayed below the description field.

6. (Optional) Provide a RAML resource type, which is the resource type
(resourcesType:). You don't need to specify a resource type. If you want to use a
resource type but you don't have one defined, then click the Types link and define
one. See Creating Resource Types.

When you create a method for a resource, a symbol for that method appears below
the Methods link. You can immediately see what methods have defined for a resource
if you need to examine a resource definition. Click on an icon to go directly to that
method definition.

Chapter 21
Creating a Complete Custom API

21-17

You can clear the clutter to locate a resource more quickly by switching to Compact
Mode (it's to the right of New Resource). The compact display hides the resource
description, resource type, and path.

Adding Methods to Your Resources
Methods are actions that can be performed on a resource. The Methods page shows
you one method at a time. After at least two methods are defined, you can click on the
icon for a method at the top of the page to see its details.

1. Add some methods to the resource by clicking Methods.

If the resource you're defining methods for has path parameters, then they are
displayed above Add Method.

a. (Optional) Click Required if you want the path parameters to be passed with
each method.

The parameter name is displayed.

b. Provide a display name for the parameter and example code.

c. From the drop-down list, select the valid value type for the parameter.

2. Click Add Method and select the method that you want:

Method Description

GET Retrieve or read a resource

POST Create a new resource

PUT Update a resource

DELETE Remove a resource

HEAD Read the HTTPS metadata

PATCH Perform a partial update of a resource

OPTIONS Request information, such as the options or requirements of the
resource

After you've selected a method, it’s no longer listed in the method list because you
use a method only once per resource (e.g., you can't define two DELETE methods
for a single resource). An icon for each method that you define is displayed at the
top of the page. Click on a method icon to go directly to its definition.

3. (Optional) You can enter a brief description of the method in the Description field.

4. (Optional) You can enter a display name for the method.

5. (Optional) Provide any traits to apply to the method.

If you don't have any resource traits defined, click <Endpoints to go back to the
main Resources page and click the Traits link to define one. Traits let you define a
collection of similar operations. See Creating Resource Traits.

After you’ve defined methods for the resource, you can define the requests and
responses for those methods. See Defining a Request for the Method and Defining a
Response for the Method.

Chapter 21
Creating a Complete Custom API

21-18

Defining a Request for the Method
Now that you've selected a method, define the request you're making of the service
that you want to connect to. For instance, if you selected a POST method, then now you
can define what to create. You do this by adding parameters and a request body,
which contains the description of the data to send to the service.

1. Click Request to define a request.

2. Click Add Parameter and select a parameter type: Query or Header. Select
Required if the parameter is required for the method.

a. Give the parameter a name and a display name.

b. Select a valid value type: String, Number, Integer, Date, or Boolean.

c. (Optional) Provide a description of the parameter and an example you can use
when you test the validity of the endpoint. For example, you could have a
resource, incidents, and add a query parameter, contact that takes a
number value, and another parameter, gps that takes a string value:

/incidents:
 get:
 description: |
 Retrieves all incident reports for the filters below.
 queryParameters:
 contact:
 displayName: Contact ID
 description: |
 filter reports by contact
 type: string
 example: |
 lynn@gmail.com

 required: false
 technician:
 displayName: Technician ID
 description: |
 filter reports by technician
 example: "joethetechnician"
 gps:
 displayName: gps
 description: |
 location of contact or technician
 example: "39.355589 -120.652492"

In this example, a GET method is defined with the query parameters, contact,
technician, and location.

d. (Optional) Click More Properties to add nested properties to the parameter.
Click Repeat to add multiples of the current parameter.

e. Click Add Parameter to add another top-level parameter for the method.

3. Depending on the method you selected, click Add Media Type and define the
method body. The body contains the data that you're sending to the server. For
instance if you’re defining a POST method, you’ll need to define the item you’re

Chapter 21
Creating a Complete Custom API

21-19

creating, such as a new customer listing or service request. If you’re defining a GET
method, you don’t need to send a method body so you don’t need to specify a
media type.

a. Select the media type for your method body, that is the format of the message
that you're sending, such as text, images, or web forms.

Depending on the type (for instance, you wouldn't enter a schema for an
image type), you have the option of adding a schema or an example, or both.
When defining a schema, add only the data necessary for the purpose of the
resource. That is, don’t add unnecessary data that will only slow down the
transmission and potentially increase the potential for errors.

b. (Optional) Click Schema and enter a schema (in JSON format) in the editor
pane. A schema is like a template for the body. It's what you use to define the
contents of the message.

For an example of a schema, see Providing a Schema.

c. (Optional) Click Example and enter an example (in JSON format) in the editor
pane, which is used by the mock implementation as a mock response for the
method. Using mock data can help you verify the behavior of your methods.
See Testing API Endpoints Using Mock Data. The example shows mock
values for the data being sent in the message body as defined in the POST
method of the incidents resource:

body:
 application/json:
 example: |
 {
 "Title": "Leaking Water Heater",
 "Username": "joh1017",
 "imageLink": "storage/collections/2e029813-d1a9-4957-a69a-
fbd0d7431d77/objects/6cdaa3a8-097e-49f7-9bd2-88966c45668f?
user=lynn1014",
 "Notes": "my water heater is broken"
 }

4. Click Add Media Type to add additional media types. If you decide that you don't
want the method, then click X in the banner to delete it.

Defining a Response for the Method
Depending on the request, you may or may not need a response. A response
describes the process for returning results from the service. You might want to define
a response that verifies that the data you requested was returned or you might want a
response that just acknowledges whether or not the request was received. Defining a
response is similar to defining a request. The main difference is that you'll need to
select a status code to let you know the result of the connection.

1. Click Response to define one or more responses.

2. Click Add Response and select the status code that you want returned.

A status code of 200 is provided by default but if that isn’t the code you want, then
select one from the drop-down list.

• 2xx indicates a successful connection

Chapter 21
Creating a Complete Custom API

21-20

• 3xx indicates a redirection occurred

• 4xx indicates a user error occurred

• 5xx indicates a server error occurred

To help whoever uses the API to understand the reason for a potential error in the
API you’re configuring, use an HTTP status code to return code that best matches
the error situation.

3. Provide a description of what the code designates.

4. Click Add Header, select a response Header or Query, provide the name of the
header or query and a display name for the header, and the valid value type for
the header.

5. Click Add Media Type and select the format of the response. Depending on the
media type you select, you can add parameters, schemas, or examples just as
you did for the Request body.

a. For text-based media type (e.g., application/json or text/xml), click
Schema to enter a schema (in JSON format) for the body.

As with the request body, add only pertinent data to the response body. Don’t
include more data than you actually need for the operation.

b. Click Example to add mock data (in JSON format) for your response body.
Use mock data to verify the behavior of your methods before testing with real
data. See Testing API Endpoints Using Mock Data.

c. For form-based media type (e.g., multipart/form-data), click Add
Parameter and select Required if the parameter is mandatory. Then provide
a name and select a value type. Optionally, you can give your parameter a
name.

d. For image-based media type (e.g., image/png), you don’t have to do anything
because there are no schemas or attributes to provide.

The following example shows that a response for the POST method of the incidents
resource was created with a status code of 201 indicating a new resource was
successfully created. The example also shows a return response format of
application/json, a Location header that was added, and the message body
containing mock data:

responses:
 201:
 description: |
 The request has been fulfilled and resulted in a new resource
 being created. The newly created resource can be referenced
 by the URI(s)returned in the entity of the response, with the
 most specific URI for the resource given by a Location header
 field.

 headers:
 Location:
 displayName: Location
 description: |
 Identifies the location of the newly created resource.

 type: string
 example: |

Chapter 21
Creating a Complete Custom API

21-21

 /20934

 required: true

 body:
 application/json:
 example: |
 {
 "id": 20934,
 "title": "Lynn's Leaking Water Heater",
 "contact": {
 "name": "Lynn Adams",
 "street": "45 O'Connor Street",
 "city": "Ottawa",
 "postalcode": "a1a1a1",
 "username": "johnbeta"
 },
 "status": "New",
 "driveTime": 30,
 "priority": "high",
 "notes": "My notes",
 "createdon": "2014-01-20 23:15:03 EDT",
 "imageLink": "storage/collections/2e029813-d1a9-4957-a69a-
fbd0d74331d77/objects/6cdaa3a8-097e-49f7--9bd2-88966c45668f?user=lynn1014"
 }

When you've defined your response, you can decide to test your endpoints (see
Testing API Endpoints Using Mock Data) or click <Endpoints in the navigation bar to
return to the main Resources page. From there, you can proceed to another page in
the API Designer to create a root, resource types or traits, or add API documentation.

If you decide you don't want the method, then click X in the banner to delete it.

Testing API Endpoints Using Mock Data
You can provide mock data in your request and response message bodies during the
design phase of your API configuration. This lets you examine the context of each call
without having to use real time data or interact with a real time service. For example,
to test whether your code correctly handles an invalid ID, you can add an example in
your request body with mock data containing an invalid ID. When you finish the test,
you can replace the example with other code to test some other aspect of the method.

In the FixItFast example, the mock data in the response body lets you verify if the
correct customer information is being returned. Here’s an example of mock data that
the service developer could create for the response body of the POST operation of the
contact resource in the FixItFast example:

{
 "id": 20934,
 "title": "Lynn's Leaking Water Heater",
 "contact": {
 "name": "Lynn Adams",
 "street": "45 O'Connor Street",
 "city": "Ottawa",
 "postalcode": "ala1a1"

Chapter 21
Creating a Complete Custom API

21-22

 "username":"johneta"
 }
 "status": "new",
 "driveTime": 30,
 "priority": "high",
 "createdon": "2015-04-23 18:12:03 EDT"
}

When you create a custom API, a mock implementation is created automatically. The
mock implementation lets you invoke the API from your mobile application before
you’ve implemented the custom code. This lets you develop and test the mobile
applications and the custom code simultaneously. If you’re satisfied with the
configuration, you can add a real implementation.

Until you create your first implementation, the default implementation is the mock
implementation. After you create a real implementation, it becomes the default
implementation for the API.

Click the Implementations navigation link to upload an implementation or to see any
existing implementations. You can change the default implementation on the
Implementations page. After you upload an implementation, you see a list of existing
implementations, which includes the mock implementation.

See Testing with Mock Data to learn more about testing an API with a mock
implementation. See Implementing Custom APIs to create a real API implementation.

For details on testing fully-implemented custom APIs, see Testing Your Custom API.

Providing a Schema
You have the option of adding a JSON schema, which describes the structure of your
data and is written in JSON. If you want to add a schema, go to the Schema page and
click New Schema. After you've defined at least one schema, you can select one from
the list.

To define a schema, provide:

• The schema name

• The schema definition (in JSON format) in the editor pane, which you can
manually enter or copy and paste into the editor

For example, a schema called schema# is defined as follows:

schemas:
- reports: |
 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "array",
 "description": "Incident Reports array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "description": "Unique id for the incident report",
 "type": "integer" },
 "title": { "description": "Title for the incident report",
 "type": "string" },

Chapter 21
Creating a Complete Custom API

21-23

 "createdon": { "description": "Date and time of creation",
 "type": "string" },
 "contact": { "decription": "Contact information of customer
filing the report",
 "type": "object",
 "properties": {
 "id" : { "description": "Unique id for the
customer",
 "type" : "string" },
 "name" : { "description": "First and last
name of contact",
 "type" : "string" },
 "street": { "description": "Street address of
contact",
 "type" : "string"},
 "city" : { "description": "City of contact",
 "type" : "string"},
 "postalcode" : { "description" : "Postalcdoe
of contact",
 "type": "string" }
 }
 },
 "status" : { "description": "The current status of the
incident",
 "type" : "string" },
 "priority" : { "description": "The current priority of the
incident",
 "type" : "string" },
 "driveTime" : {"description" : "Calculated field based on
location",
 "type" : "integer"},
 "imageLink" : { "description" : "Link to image from Storage",
 "type": "string" }
 },
 }
 }

Add more schemas to define by clicking New Schema. Click X to delete a schema.
See Schemas for details about the structure of a JSON schema.

Note:

You can define multiple schemas for use with the given API. Schemas are
specific to the API and aren’t shared across other APIs.

Security in Custom APIs
In MCS, an API is protected through its association with a mobile backend to allow
only authorized users and devices to access the API and its endpoints.

Chapter 21
Creating a Complete Custom API

21-24

For enterprise applications, you can use HTTP Basic Authentication, OAuth, or SSO
OAuth Token credentials to control user authentication and authorization of access to
resources:

• With OAuth, when you create a mobile backend or register with an existing mobile
backend, a set of OAuth consumer keys (that is, client credentials) consisting of a
client ID and client secret are generated for you. The values of these keys are
unique to the mobile backend (for information about authenticating with OAuth,
see Authenticating with OAuth in Direct REST Calls). You authenticate yourself to
the OAuth server by providing your client credentials and receive an access token
that is passed in each API call via a header. Only a user with a valid token can
access the API.

Alternatively, you can provide a Single Sign-On OAuth token provided by your
Remote Identity Provider if the Enable SSO option is selected for the mobile
backend. For information on how to enable single sign-on for a mobile backend,
see Authentication in MCS.

• With HTTP Basic Authentication, when a mobile backend is created, a mobile
backend ID and an anonymous access key are generated for it. You authenticate
yourself to MCS by providing these items, which are passed in each API call via a
header. You must provide this information to access the API. You can obtain the
mobile backend ID and anonymous access key from the mobile backend landing
page. Select the mobile backend associated with the API and expand the Keys
section. To learn more about authenticating with HTTP Basic, see Authenticating
with HTTP Basic in Direct REST Calls.

• With Social Identity, when you register an app with a social identity provider (for
example, Facebook), an access token is generated by the provider. You
authenticate yourself to MCS by specifying the social identity provider and
providing the access token.

To find out how to get an access token, see Getting a Facebook User Access
Token Manually.

To learn about authentication in MCS, see Enterprise Single Sign-On in MCS.

Setting Access to the API
You have the option of requiring developers to login and provide authentication
credentials to access the API.

• Set Login Required to OFF to allow access to the API from a mobile app as an
anonymous user. Also, you won’t need to use authentication credentials on the
API's Test page.

Chapter 21
Creating a Complete Custom API

21-25

This setting is particularly useful when you’re in the early phases of configuring
your API and you just want to validate some endpoints or when the data being
requested or received is from a service that doesn’t require security.

• Set Login Required to ON to require authenticated access to the API:

– Select Enterprise to set access for mobile users who login with their MCS
username and password or who have configured Single Sign-On
authentication providers.

When you set Login Required to ON and select Enterprise, the API Access
and Endpoint Access fields are exposed and you must select at least one role
to access the API. This ensures that only those mobile users that have the
selected role or roles can access the API endpoints. Click in the Roles field to
select one or more roles.

Optionally, you can further refine access to the API by selecting roles for
specific endpoints. Only mobile users having the role selected for a specific
endpoint can access it. For example, you can allow only users with a Mobile
Develop role to access the DELETE method. Click in the field for each endpoint
and select one or more roles.

– Select Social Identity to set access for mobile users who want to use their
social media accounts for authentication.

If you choose this setting, you can save your API configuration and move on to
the Test page. In addition to specifying the mobile backend and its version,
you’ll be asked to select the social authentication provider and provide the
access token generated for you by the selected provider.

Chapter 21
Creating a Complete Custom API

21-26

Note:

You can obtain information about the current mobile and social users by
including the ums.getUserExtended() method in the custom code for the
API. See Accessing the Mobile Users API from Custom Code.

Testing Your Custom API
To validate your API endpoints, the Test page lets you test with sample response data.
You’ll see a list of all the resources that you’ve defined on the left side of the page.
Use the Filter endpoints field to display only the resources that you want to test. You
test only one endpoint at a time.

Note:

A few things before you start testing your API:

• If Login Required is turned ON and Enterprise is selected, you must
have a role assigned that allows access to the API.

• If Login Required is turned ON and Enterprise or Social Identity is
selected, you must provide values for all fields in the Authentication
section of each method to test it.

• If Login Required is turned OFF, providing authentication credentials is
optional.

• Save your configuration before you test. If you haven’t, then you can
check the Always save before testing option in the Save Before
Testing confirmation dialog that appears when you click Test. That way,
any changes that you make to the API configuration are automatically
saved.

1. If you are in the design phase and just want to see if your endpoints are valid, or if
you want to test multiple endpoints during the session, then set the default API test
credentials.

a. Click Default API Designer Test Credentials at the top of the page.

b. Select a mobile backend to associate the API with and the version of the
mobile backend.

c. Select one the authentication method to use for testing:. HTTP Basic, OAuth
Consumer, Social, or Single-Sign On.

d. If Enterprise is selected on the Security page, mobile users must enter their
mobile user credentials (username and password).

Credentials for social identity or for single-sign on are not required.

e. Click Save ().

The mobile user credentials that you enter will be used as the default
credentials for all test calls made within Mobile Cloud Service.

Chapter 21
Creating a Complete Custom API

21-27

If you need to test only a few methods, skip Step 1 and fill out the fields in the
Authentication section for each method (see Step 5).

2. Select the method that you want to test from the list of endpoints on the left side of
the test page.

When you select an endpoint, the method banner for it is displayed with the base
URI is displayed below the operation name. If you provided an alternate name for
the operation, then that name appears, otherwise the default operation name is
shown. Only one method per endpoint is displayed at a time for testing.

3. Click Request.

4. Expand Parameters to view the query or header parameters that you provided.

a. (Optional) Click Example to view the example body, if you provided one. Enter
an alternate example to test with by clicking Use Example. The provided
example body is copied into the text box. You can edit the example as
needed.

b. (Optional) Click Schema to view the request body schema if you provided
one.

5. Click Response.

6. Expand the status code area and click Example or Schema to review the example
or schema for the response body, if you provided one.

7. Click Request again to enter Authentication information.

8. If Login Required is OFF, click Test Endpoint. Otherwise, skip this step and go to
the next step.

9. Expand Authenticationand, if Login Required is ON, select the mobile backend
and its version that are associated with this API and enter your authentication
credentials:

Chapter 21
Creating a Complete Custom API

21-28

• If Enterprise is selected, select the authentication method you want to use for
testing and provide your mobile user credentials.

• If Enterprise is selected and Single Sign-On is enabled for the associated
mobile backend, select Single Sign-On as the authentication method and
enter either the MCS-issued SSO OAuth token (hover over the ? icon and
follow the instructions) or the third-party issued SSO token that you obtained
from your trusted remote identity provider.

For information on configuring a Single Sign-On provider, see Configuring
Identity Management (SSO and OAuth).

• If Social Identity is selected, select a social authentication provider and enter
the access token that you got from your provider.

Note:

MCS automatically URI encodes the username and password that you
enter. An error can result if the username and password entries contain
special characters (that is, you’ve entered pre-URI encoded values). If
you enter values for these fields that are already encoded, another layer
of encoding is added. During authentication, these values are decoded
once, and the original encoded values are revealed, which will fail
authentication so don’t enter URI-encoded values for username and
password.

10. Click Test Endpoint.

Click Request to see the metadata for the transaction, such as header information
and the body of the request. Click Response to see the details of the response
returned. The response code tells you whether or not the connection was
successful.

Test each of your operations and modify them as needed to validate your endpoints.
When your custom API is completed, you can go to the APIs page and check out the
Implementations, Deployments, Used By, and History fields to find out how often the
API is being called, what mobile backends are using it, and more. See Managing an
API.
To learn how to get a Single Sign-On OAuth token, see Enterprise Single Sign-On in
MCS.

To find out how to get an access token from a social authentication provider, see
Getting a Facebook User Access Token Manually.

Creating Resource Types
A resource type is a partial resource definition that specifies a description and
methods and their properties. Resources that use a resource type inherit its properties,
such as its methods. You don't have to use a resource type, but if you find that you're
defining resources with the same methods, you can increase efficiency by defining
resource types to reduce the redundancy.
Using the incident report example, you might want to get reports from several
departments (billing, service technicians, and clerks). For each department, you want
to get a list of employees involved with a particular incident and you want the name,
ID, and extension number for each employee. You can define a resource type,
employee_contact that defines a GET method that retrieves all the personnel

Chapter 21
Creating a Complete Custom API

21-29

information that you need. Instead of defining an employee_contact for each branch of
the company, you can apply the employee_contact resource type to each incident
report resource.

Note:

Resource types can’t be used with nested resources.

You can define multiple resource types for use with the given API. Resource
types are specific to the API and aren’t shared across other APIs.

Adding a resource type through the API Designer is simple:

1. Click Types and then click New Resource Type.

The Types page is displayed:

2. Enter a name for the resource type.

For example, a resource type called orderinfo could be used each time appliance
parts are ordered.
Valid resource type names are character strings and can include underscore (_)
and hyphens (-). Camel case is allowed (for example, employeeContact). Don’t
include special characters, such as slashes, asterisks (*), and exclamation points
(!).

3. (Optional) Add a description of the type.

4. Enter a brief sentence that describes the purpose of the type in the Usage field,
then enter a description of the type in the Description field.

For example, a resource type called orderinfo , the usage might be: Defines a
standard parts order. The description might be: Always get model’s serial
number and part number.

5. Click Definition to define the resource type in the source editor.

6. Click Save when you’re done defining the type.

7. (Optional) Click Test to test your resource type.

Edit your definition as needed. When you’re finished, return to the Types page to
add another type or navigate to another page in the wizard.

The resource type is added to the list of available resource types for use with the given
API. To learn more about resource types, see Resource Types and Traits in the RAML
specification.

Chapter 21
Creating a Complete Custom API

21-30

http://raml.org/spec.html
http://raml.org/spec.html

Creating Resource Traits
A trait is a partial method definition that provides method-level properties such as a
description, headers, query string parameters, and responses. Define traits for
obtaining descriptive information like version numbers or vendor information. Methods
that use one or more traits inherit those traits' properties. As with resource types, if
you’re defining methods with the same attributes multiple times, then define a trait to
prepopulate a method with certain attributes. You don't have to use resource traits, but
they’re useful if you have several methods with the same operational structure.

Note:

You can define multiple resource traits for use with the given API. Resource
traits are specific to the API and aren’t shared across other APIs.

Here's how to define a resource trait:

1. In the API Designer, click the Traits navigation link and click New Trait.

The Traits page is displayed:

2. Enter a name for the trait.

For example, a resource trait called parts-inventory could define a standard
method of looking up the availability and location of specific parts.
Valid resource trait names are character strings and can include underscores (_)
and hyphens (-). Camel case is allowed (for example, applianceModel). Do not
include special characters, such as slashes, asterisks (*), and exclamation points
(!).

3. Enter a brief sentence that describes the purpose of the trait in the Usage field,
then enter a description of the trait in the Description field.

For example, if you have a trait called parts-inventory, the usage might be:
Apply to GET methods for all part requests. The description might be:
Always determine if parts are in stock and list warehouse locations.

4. Click Definition to define the resource trait in the source editor.

5. Click Save so you don't lose your work.

The resource trait is added to the list of available resource traits for use with the given
API. To learn more about resource traits, see Resource Types and Traits in the RAML
specification.

Chapter 21
Creating a Complete Custom API

21-31

http://raml.org/spec.html
http://raml.org/spec.html

Providing API Documentation
A good, even great API is useless without documentation describing it so others can
use the API too. While the API Designer can't write that documentation for you, you
can upload it through the API Designer so that the next time you or someone else
selects this API from the API Catalog, a full description of the API is available (its
purpose, its resources and schemas, the security policies that it uses, and helpful code
comments).

1. In the API Designer, click the Documentation navigation link and click
Documentation.

2. Enter a title for your API document.

3. You can either manually write your API documentation using Markdown syntax in
the source editor or copy and paste your documentation into the editor.

Click Markdown Reference to see how to use Markdown. It lets you write an
easy-to-read plain text that can easily be converted to structurally valid XHTML for
viewing in a browser. See How Do I Write in Markdown?

Here’s an example of part of the API documentation for the FIFIncidentReports
API:

Chapter 21
Creating a Complete Custom API

21-32

4. Click Save so you don't lose your work.

You can add more documentation by clicking New Title and adding content in the
editor field for that document. You can replace the default title provided by entering
text in the title field. Each time you click New Title, the title field and editor for the
most recent document is appended below the previous document. When you click
Save, only the current document is displayed. Click a title tab to view that
particular document.
To see the API documentation for a specific API, select the API from the API
Catalog, click Test, and then on the Test page, click the Overview tab.

Chapter 21
Creating a Complete Custom API

21-33

How Do I Write in Markdown?
Markdown is a simple set of syntax that you can use to produce basic formatting
structures such as section heads, paragraphs, ordered and itemized lists, block
quotes, and links.

Construct Markdown Output

Header:

Use hash marks (#) to denote
headers

#First-Level Heading

Second-Level Heading

Third-Level Heading

First-Level Heading

Second-Level Heading

Third-Level Heading

Paragraph:

Separate paragraphs with one or
more blank lines.

This is a paragraph.

This is a second paragraph.

This is a paragraph

This is a second paragraph.

Simple List:

Use +, -, or * followed by a space
to denote list items.

List markers are interchangeable.

- list item 1

+ list item 2

* list item 3

- list item 1

- list item 2

- list item 3

Nested List:

Use +, -, or * followed by a space
to denote list items and indent
nested list item by exactly four
spaces.

-list item 1

+ list item 1a

+ list item 1b

-list item 2

- list item1

- list item 1a

- list item 1b

- list item 2

Ordered List:

Precede each item with a
number in a consecutive
sequence followed by a space.

1. list item 1

2. list item 2

* list item 2a

* list item 2b

3. list item 3

1. list item 1

2. list item 2

2a. list item 2a

2b. list item 2b

3. list item 3

Emphasis Italics:

Wrap text with an asterisk (*) or
single underscore.

text

more text

text

more text

Emphasis Bold:

Wrap text with two asterisks (*)
or double underscores.

text

__more text__

text

more text

Inline code:

Use back quotes (`) around the
text.

This is an `inline code` example. This is an inline code example.

Code Block:

Indent each line by four spaces

Format a block of preformatted
code:

This is a code line.

Format a block of preformatted code:

This is a code line.

Links:

Put the link text in brackets,
followed immediately by the URL
in parentheses.

This is an [example link](http://
example.com).

This is an example link.

If you want to find out more about Markdown, see What is Markdown?

Chapter 21
Creating a Complete Custom API

21-34

http://whatismarkdown.com/

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean that the test failed. If
the operation was supposed to return a null response, then the response should show
a 4xx code.

For every message you send, MCS tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. By examining multiple messages, you can more
easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data.

Depending on your MCS access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page, allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To learn more about getting and understanding diagnostics, see Monitoring
Performance and Troubleshooting .

After you've configured your custom API, you can provide an API implementation, that
is, create your own custom code and add it to your mobile backend to access the API.
See Implementing Custom APIs.

API Design Considerations
When you configure your custom API, there are some things you can do to ensure you
have a well-formed API, including making sure that URLs and resources are well-
formed, that reasonable read and connect timeouts have been set, and, if you’re
providing a RAML file, that it’s correctly configured.

Here are some things to consider when you configure your API and some detailed
descriptions of more advanced constructs that you can use to refine your API.

Valid URLs
In creating your RESTful API, it's important that you define a valid URL. You can see
the URL for your API as you define it from the API name that you provide and the
resources and methods that you add. To ensure that you have a valid URL, it must
adhere to the following best practice guidelines:

• Provide a relevant and easily identifiable resource name. Using identifiers in your
URLs make for a more understandable resource than using a query string. Which
makes more sense to you, the resource name /customers/2223 or /customers/
api?type=customerid=2223?

• Resources can be grouped into a collection, so make the collection resource name
consistent with the attribute names used to refer to the collection.

Chapter 21
API Design Considerations

21-35

For example, if an attribute is a collection of favorite bookmarks, be obvious and
name the collection favoriteBookmarks instead of favoriteLinks.

• Always make the resource names plural nouns and alternate between plural
nouns and singular resource identifiers (rid): /services/1.0/items/{rid}/
subitems/{rid}/

For example: /customers/2223/orders/555

To ensure that the API is sync-compatible, always put the identifier immediately
after its related resource name as shown in the previous example, where 2223 is
the designation of a specific customer and 555 is the designation of a specific
order. A poorly formed URL to indicate a specific customer could look like this: /
customers/orders/2223/555 or /customers/orders/locations/2223.

• Use lowercase for resource names and use camel case for attribute names.

For example: /services/1.0/items?limit=10&totalResults=true

• Keep resource identifiers down to 32 characters or fewer due to the limitations of
some browsers.

• Keep URLs as short as possible. A long rambling URL is difficult to read and all
the more difficult to debug.

• When defining the URL, you can be as concrete or abstract as desired, but you
should use the curly brace {} notation to indicate URI parameters. This makes the
corresponding RAML more detailed and easier to test.

• Ensure that all date formats are in the form: YYYY-MM_DD[THH:mm:ss.sss]Z.

For example: 2014-10-07T18:35:50.123Z

• For pagination, use the limit and offset query parameters so that the
Synchronization library uses paged downloads correctly. If you don’t need to
support pagination, you don’t need to specify these parameters.

• To ensure sync compatibility, use the orderBy query parameter to specify sorting.
For example: “orderBy=propA,propB:desc,propC:asc”. In this example, the
default sort order is by ascending value.

For details on designing sync-compatible custom APIs, see Making Custom APIs
Synchronizable.

• Provide values for query parameters as a URL-encoded JSON string. For
example:

[
 {
 "property":"propertyName",
 //Supports Equals, NotEquals, LessThan, GreaterThan,
LessThanOrEqual,GreaterThanOrEqual
 "comparison":"Equals",
 "value":"Must be a string",
 },
 {
 "property":"Another clause, only support ANDS not ORs",
 ...
 }
]

Chapter 21
API Design Considerations

21-36

API Timeouts
Sometimes when an API fails, it’s due to a stream or connection timeout. Stream
timeouts happen when, after a successful connection to the server, data is being
transmitted and the network time outs before all the data can be sent or received.
Connection timeouts happen when the network connection is never made.

To ensure that connectors have sufficient time to make a connection and that data can
be transmitted, the HTTP read and connection timeouts should have smaller values
than the API timeout.

The Network_HttpRequestTimeout value determines the amount of time spent
transmitting an HTTP request before the operation times out. The default value is
40,000 ms. The value of this policy can affect your API timeout values, which should
be less than the value of the policy. Note that policy values are specific to a particular
environment. The value for this policy in a development environment can be different
from its value in a runtime environment. Your mobile cloud administrator can increase
or decrease the timeout value from the Administration tab.

If you have mobile cloud administrator privileges, then you can select an environment
in the Administration view and export the policies.properties file to see a list of the
current environment policies and their values. For information about API environment
policies and policy settings, see Oracle Mobile Cloud Service Environment Policies.
For information about environment policies in general, see Environment Policies.

API Resources
A key element of an API is the resource. A resource is the conceptual mapping to an
entity or to a set of entities and is identified by its relative base URI. In other words, a
resource is a thing (noun) that’s located at an address to which you want to transmit
information or receive information. It has at least one method (verb) that operates on it.
A method is what you use to retrieve, create, update, or delete a representation of a
resource. For example, GET incidents.

A top-level resource is a resource defined at the root level (also referred to as the root
resource). A resource that’s defined as a child of another resource is a nested
resource. Nested resources let you specify aspects of the parent resource. A nested
resource is identified by its URI relative to the parent resource URI. For example, let’s
say you have a root resource defined as .../incidents, and you have a nested
resource, {id}. The API definition in RAML looks like:

title: FIFIncidentReports
version: 1.0
baseURI: /mobile/custom/fif-incidentreport
protocols: [HTTPS]
mediatType: "application/json"
/incidents:
 displayName: Incident Reports
 get:
 description: |
 Retrieves all incident reports.
.
.
.

Chapter 21
API Design Considerations

21-37

/{id}:
 uriParameters:
 id:
 displayName: id
 description: |
 The unique id of the incident report.

A resource is always preceded with a slash (/), whether it’s a root or nested resource.
For information about constructing a valid RAML document, see RAML.

If you think of a resource as a collection of objects and a nested resource as an item in
that collection, then your resource path shows the parent resource in plural form and a
nested resource in singular form. For example:

.../mobile/custom/fif-incidentreport/incidents/{id}

The root resource is incidents and the instance of an incident is {id}. You can give
the resource an easy-to-read display name on the Endpoints page. If you don't provide
a display name, then the resource URI is used as the name.

A common practice when designing a resource is to have PUT and POST methods
return the same objects that are sent in the request.

URI Parameters
If you want to allow API calls that change or restrict the value of the relative base URI,
then you can override it by setting a base URI parameter. The URI of a resource can
contain parameters, which are variable elements, for example {id}.

Like resources, parameters have a name. The RAML generated for our fif-
incdentreport shows the resource parameter named id, a display name (id,
although the display name doesn't have to be the same as the parameter name), and
a value type (in this example, the value type is integer):

 /{id}:
 uriParameters:
 id: displayName: id
 description: |
 the unique id of the incident report

 type: integer
 required: true
 get:
 description: |
 Retrieves the incident report with the specified id.

You place the path parameter after the resource name. Use a semicolon to separate
multiple parameters. For parameters that can have multiple values, separate the
values with commas.

Chapter 21
API Design Considerations

21-38

In the example, the URI parameter /{id} is a variable that identifies a specific incident
report by its ID number. The parameter contains the properties displayName and type.
The URI would look like this:

.../fif-incidentreport/incidents/{id}

If the parameter, id, has a value of 1234, then the resulting URI would look like this:

.../fif-incidentreport/incidents/1234

Parameters can be added as part of the URI path as a child (nested) resource or
added as a query. There are no hard and fast rules to adding parameters to the URI
path versus adding parameters as a query. One possible consideration is whether the
parameter is essential to the request. For example, to get data for a specific report,
you would use an identifier (id) of the resource in the URI path as shown in the
previous fif-incidentreport URI example.

However, if you’re using the parameter as a filter to narrow down the data, then add it
in the query. For example, you would use technician as a query parameter .../
fif-incidentreport/incidents?technician=joe to filter reports only by a
particular technician.

Endpoint Requirements for Sync Compatibility
To ensure optimal synchronization of data when a custom API is used by the
Synchronization library on a client, the custom API must include a specific set of
server-side endpoints.

For example, let's say a custom API endpoint is defined that returns a collection of
Department records and is consumed by a client that uses the Synchronization library.
Records are retrieved from the collection endpoint, /Departments, and stored in the
client’s local cache by the library. Later on, the library identifies two records in the
cache that require updating because they’ve expired (/Departments/Finance and /
Departments/HR).

In this case, to get the most up-to-date data, the Synchronization library retrieves only
the records that need to be updated, and not the entire collection.

On the server side, via the associated Synchronization library, these endpoints are
called individually on behalf of the client. The data is returned to the client in a single
payload and response, saving multiple round trips for each required object.

To support this, the Synchronization library requires that the custom API includes GET
methods for both the collection resource (GET /{collection}) and the object resource
(GET /{collection}/{objectId}). That is, in our Department example, the following
endpoints are needed:

• GET /Departments

• GET /Departments/{DeptId}

To go a step further, if the offline API collection objects that were retrieved can be
modified, say by the addition, update, or deletion of an object, the Synchronization
library calls the appropriate custom code APIs to enact the change on the objects on
the server side. To support creating, updating, or deleting the object requires that the
following types of endpoints are implemented on the server-side custom API:

Chapter 21
API Design Considerations

21-39

• GET /{collection}

• GET /{collection}/{objectId}

• PUT /{collection}/{objectId}

• POST /{collection}

• DELETE /{collection}/{objectId}

The inclusion of the PUT, POST, and DELETE operations are optional. If, for example,
your application never deletes an object in a collection, you don’t need to implement
the DELETE operation.

Note:

The Synchronization library doesn’t support the PATCH operation.

See Making Custom APIs Synchronizable to learn more about configuring a sync-
compatible custom API.

Schemas
A JSON schema defines the structure of your API in a JSON-based data format. The
JSON schema can be used to validate JSON data. You can define a schema from the
Schema page. Let's look at the schema from the IncidentReports example:

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "array",
 "description": "Incident Reports array",
 "items": {
 "type": "object",
 "properties": {
 "id": { "description": "Unique id for the incident report",
 "type": "integer" },
 "title": { "description": "Title for the incident report",
 "type": "string" },
 "createdon": { "description": "Date and time of creation",
 "type": "string" },
 "contact": { "decription": "Contact information for customer
filing the report",
 "type": "object",
 "properties": {
 "id" : { "description": "Unique id for the
customer",
 "type" : "string" },
 "name" : { "description": "First and last
name of contact",
 "type" : "string" },
 "street": { "description": "Street address of
contact",
 "type" : "string"},
 "city" : { "description": "City of contact",
 "type" : "string"},

Chapter 21
API Design Considerations

21-40

 "postalcode" : { "description" : "Postalcdoe
of contact",
 "type": "string" }
 }
 },
 "status" : { "description": "The current status of the
incident",
 "type" : "string" },
 "priority" : { "description": "The current priority of the
incident",
 "type" : "string" },
 "driveTime" : {"description" : "Calculated field based on
location",
 "type" : "integer"},
 "imageLink" : { "description" : "Link to image from Storage",
 "type": "string" }
 },
 }
 }

This schema contains the following keywords:

• $schema: denotes that this schema is based on the draft v4 specification. It must
be located at the root of the JSON schema. You should always include this
keyword in your JSON schema.

• type: defines a JSON constraint, so the data must be an array.

• description: describes the contents of the schema.

• items: define the items in the array. In an incident report, we want to assign
attributes to each report. In this example, all items are of type object and each
object has a set of properties, such as report ID, title, contact info, status, priority
level, etc.

For a complete list of keywords to use in your JSON schema, see http://json-
schema.org/.

To add a schema for your API, see Providing a Schema.

RAML
When you create an API using the MCS interface, the API definition is stored as a
RAML document. RAML is a simple efficient way to describe RESTful APIs. REST
stands for Representational State Transfer (REST) and is a way to perform basic
operations (create, read, update or delete) information on a server using simple HTTP
calls.

You can also upload a RAML document that you create from scratch into the API
Designer. The API Designer takes the input that you provide and creates a RAML file
that documents the contents of the custom API. Note that the RAML defines only the
API itself, not the implementation of the API. You must create custom code using
JavaScript to implement the API. For information on how to implement an API, see
Implementing Custom APIs.

Chapter 21
API Design Considerations

21-41

http://json-schema.org/
http://json-schema.org/

Note:

The feature to upload a RAML document isn’t available if you came to the
API page by clicking APIs from the navigation list of a mobile backend.

If you upload a RAML file, then the values for the required Name fields are extracted
from the RAML file. You still have to add the short description. At a minimum, your
RAML file must include the API name, a base URI (/mobile/custom/apiname), and a
version number.

For your RAML file to be valid, it must specify a media type, base URI, the HTTPS
protocol, and a version number:

#%RAML 0.8

title: api_title
version: 1.0
protocols: [HTTPS]
baseURI: /mobile/custom/api_name
mediaType: application/json

Note:

MCS requires the HTTPS protocol for custom APIs. If you upload a RAML
document that configures the API using the HTTP protocol, then it’s
automatically edited to use HTTPS.

For new a API, a default version of 1.0 is automatically applied when you save the
configuration (unless the mobile cloud administrator has changed the value of the
Asset_DefaultInitialVersion environment policy). However, if you upload an API
configuration, then the version value displayed is taken from the file.

Note:

The version value uses a specific format. Versions are specified with an
integer. For example, in your RAML file specifying version: 2.0 is valid
while version: v2.0 isn’t.

RAML lets you define resource types and traits for describing resources and methods,
which results in a more succinct RESTful API by reducing repetition in the design. The
principle components of a RAML (.raml) document are:

• Basic API information consisting of:

– API Display Name: the easy—to—read name of the API, which appears in the
API list (for example, FIFIncident Reports)

– Base URI: The address of the resource (/mobile/custom for custom APIs)

Chapter 21
API Design Considerations

21-42

– API Name: name of the API (fif-incidentreport) in the configuration

– Short description: Brief description of your API

• Resource types and traits, which allow you to characterize resources to avoid
unnecessary repetition in the API definition

• Resources (the conceptual mappings to one or more entities), resource methods,
and schema

To ensure that your RAML document is correctly configured, follow these tips:

• Although RAML allows both HTTP and HTTPS protocols, MCS requires the
HTTPS protocol for custom APIs. If you upload a RAML document that configures
the API using the HTTP protocol, then it’s automatically edited to use HTTPS.

• If you define a top-level resource with an empty relative URI (that is, /:), then you
can’t add a subresource to it.

An error message will alert you that the structure is invalid. For example, the
following resource definitions will fail:

/:
 /reports:

You need to make reports a top-level resource:

/:
/reports:

• Top-level resources shouldn’t contain empty relative URI subresources, for
example:

/books:
 /:

• Avoid creating duplicate paths, for example:

/reports/{id}:
/reports:
 /{id}:

Multiple subresources in the resource name are valid. For example:

/reports:
 /county/branchid/reportissue:

• Add comments only in a property’s description: field. Adding a comment using a
comment line (for example, #report issue by technician) is not supported by
the RAML source editor. Comments added in a comment line are stripped out by
the parser.

For a thorough discussion about RAML, see http://raml.org/.

Chapter 21
API Design Considerations

21-43

http://raml.org/

Editing a Custom API
You can always edit an API as long as it’s in the Draft state. A published API can’t be
changed.

To edit a custom API:

1. Make sure that you’re in the environment containing the API you want to edit.

2. Click and select Applications > APIs from the side menu.

Now that at least one custom API exists, the APIs page is displayed.

3. Select the draft API that you want to edit and click Open.

You can filter the list by version number or status. You can also sort the list
alphabetically by name or by last modified date.

4. Edit the fields for general information, resource, schemas, traits, types, and
security policies as needed.

Each time you create a method for a resource, an icon for the method appears at
the top of the Methods page. Click on one of these icons to go directly to the
method definition:

On the Resources page, icons for the methods defined for the resource are
displayed below the Methods navigation link. You can quickly see what types of
methods have been defined for a resource. Click on an icon to go the method
definition:

Remember you can always click Save and Close to save your current changes
and finish the rest of your changes later.

Chapter 21
Editing a Custom API

21-44

5. Save your changes if you didn't select the option to always save the configuration
before testing when you created the API.

6. Test your changes.

Your edited version is still in a Draft state and you can continue to edit your custom
API until you’re satisfied with the configuration. At that point, you’re ready to publish
your custom API. See Publishing a Custom API. If you need to make a change to a
published API, you’ll have to create a new version of it. See Creating a New Version of
an API.

After you’ve published it, you can then deploy your API to other environments. See
API Lifecycle for information on specific parts of an API lifecycle. For general
information about lifecycle in MCS, see Lifecycle.

Video: End-to-End Custom API Demo
To see the process of designing and developing a custom API, including how it fits in
with a mobile backend and a connector, take a look at this video:

Video

Troubleshooting Custom APIs
When an incorrect value is entered in a field, a message window displays the error
and, depending on the field, the correct syntax or value type to use. In some cases
(such as when a malformed schema or RAML is uploaded), the error message
includes a Show Details link that displays a description of the error. See Viewing Log
Messages.

To learn more about common errors that can occur when you configure custom code,
see Common Custom Code Errors.

When troubleshooting an unexpected result, consider that the cause might be due to a
rerouting of the call to the mobile backend as described in Making Changes After a
Backend is Published (Rerouting). If the mobile backend was rerouted, check to see if
the following conditions were met:

• If the API was accessed using social identity, then the access token of the provider
that was entered in the Authentication header must be the access token of the
provider of the target mobile backend (that is, the mobile backend to which the
original mobile backend was redirected).

• If the API was accessed by a mobile user, then the user must be a member of the
realm that is associated with the target mobile backend (the mobile backend to
which the original mobile backend is being redirected).

Chapter 21
Video: End-to-End Custom API Demo

21-45

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13057

22
Implementing Custom APIs

As a service developer, you use the custom code service to implement the custom
APIs that your team creates for its mobile apps.

What Can I Do with Custom Code?
Using JavaScript, Node, and the custom code SDK, you can implement the APIs that
have been designed in the API Designer (or by means of a RAML document). Say, for
example, that your mobile app developer has designed the following API, which has
one resource (/incidents), and two endpoints (GET /incidents, and POST /
incidents).

#%RAML 0.8
title: IncidentReport
version: 2.0
baseUri: /mobile/custom/incidentreport
...
/incidents:
 displayName: Incident Reports
 get:
 description: |
 Retrieves all incident reports.
...
 post:
 description: |
 Creates a new incident report.

You, as the service developer, implement all the endpoints in the API. That is, you
write code to return incident reports for the first endpoint and to store incident reports
for the second endpoint.

Your custom API implementation can call platform APIs (such as Storage and
Notifications), other custom APIs, and external REST and SOAP web services. And it
can access the external web services either directly or through connectors.

Note:

To use your implementation (custom code) in a mobile backend, you must
first define the custom API as described in Custom API Design. The
implementation is then accessed by your apps through calls to the API's
endpoints.

22-1

How Does Custom Code Work?
Using the custom code service, you write JavaScript code to implement a custom API.
The coding model is based on Node, which is a JavaScript framework that enables
you to write server-side code and that provides a runtime environment for it. For each
API endpoint, which is the resource (URI) plus the HTTP method such as GET or POST,
you need a route definition that specifies how to respond to a client request to that
endpoint. In other words, for each URI and HTTP method combination in your API, you
need to add a JavaScript method to your custom code that handles the request. Route
definitions follow the coding style promoted by Express, which is a module that runs in
Node. We’ll show you how to write these methods.

After you’ve written your custom code, you package it as a Node module, and then
upload it.

For more information about route definitions, see Key JavaScript Constructs in Custom
Code. For information about the Express coding style, see http://expressjs.com/
starter/basic-routing.html. For information about Node, see www.nodejs.org. If
you’re interested in how the custom code service handles custom API requests and
responses, then see What Happens When a Custom API Is Called?

Note:

Note: The purpose of the examples in this chapter is to illustrate how to
interface with the custom code service. The examples are not intended to
teach best practices for writing Node.js REST API implementations.

What's the Foundation for the Custom Code Service?
The custom code SDK is available to custom API implementations and is what you
use to call platform APIs, connectors, and other custom APIs, as described in Calling
APIs from Custom Code. In addition, the custom code service is backed by the
following JavaScript libraries, which you can use when you implement your custom
API.

Chapter 22
How Does Custom Code Work?

22-2

http://expressjs.com/starter/basic-routing.html
http://expressjs.com/starter/basic-routing.html
http://www.nodejs.org

JavaScript
Library

Description

Node Node provides the backbone for the custom code service. When you implement
a custom API, you create a Node.js module.

Behind the scenes, a router module takes care of creating an HTTP server for a
Node instance and routing the HTTP calls that come from the service to the
custom API’s implementation that runs inside the instance. You don’t need to
write code for this.

Request Request is framework for Node that simplifies the making of HTTP calls. The
service wraps Request calls with additional code that’s necessary for the
custom code service.

Express Express is a lightweight web application framework for Node. The custom code
service uses it to expose API endpoints. To implement your custom API, you
write route definitions similar to how you would use Express to write routes for a
web app.

Bluebird The custom code service uses the Bluebird promises library to implement the
promises that the custom code SDK methods return.

Body-parser The custom code service uses this library to parse incoming request bodies.

Http-proxy-
agent

This module provides an http.Agent implementation that connects to a specified
HTTP proxy server.

Https-proxy-
agent

This module provides an http.Agent implementation that connects to a specified
HTTPS proxy server.

Express-
method-
override.

The custom code uses this library to override the method of a request based on
an X-HTTP-Method-Override header, a custom query parameter, or a post
parameter.

Agentkeepali
ve

This library is an implementation of http.Agent that keeps connections alive for
some time to reduce the number of times that TCP connections are closed,
which thus saves resources.

As shown in the next table, the default library versions depend on whether your
environment was provisioned from the current release or upgraded from an earlier
release. This table lists the default versions of the libraries for this release and the
prior release.

JavaScript Library Environment Provisioned
from Current Release

Environment Upgraded
from Prior Release

Node 8.9.4 6.10.0

Request 2.83.0 2.74.0

Express 4.16.2 4.14.0

Bluebird 3.5.1 3.4.6

Agentkeepalive 3.3.0 3.1.0

Body-parser 1.18.2 1.15.2

HTTP-proxy-agent 2.0.0 1.0.0

HTTPS-proxy-agent 2.1.0 1.0.0

Method-override 2.3.10 2.3.6

If your custom API implementation isn't compatible with the default library versions for
your environment, do one of the following to change the versions for that
implementation:

Chapter 22
How Does Custom Code Work?

22-3

• Add a node property to the configuration section in the custom API
implementation's package.json file as described in Declaring the Node Version.
You can set it to 0.10, 6.10 or 8.9. The Node version in the package.json file
overrides the CCC_DefaultNodeConfiguration environment policy for that custom
API implementation.

• Ask your mobile cloud administrator to change the node version that is specified
by the appropriate CCC_DefaultNodeConfiguration environment policy. The
choices are 0.10, 6.10, and 8.9. You can set this policy at different scopes, such
as environment scope, mobile backend scope, and API scope. Whenever you
change a CCC_DefaultNodeConfiguration environment policy, any custom API
implementation that uses that default configuration will change to the new version
no later than its second REST request after the version change.

Note:

The default maximum body size for all configurations is 1MB. To learn how to
increase the maximum body size, see Custom Code Problem parsing JSON:
Error: request entity too large.

Video: Node.js Technology Primer
If you don’t have experience with Node.js or you’d simply like to better understand how
it works with the custom code service, take a look at this video:

Video

Setting Up Tooling for Custom Code
The custom code service is based on Node. You don’t need to install Node on your
system to create custom API implementations, but you’ll need the tooling that it
provides, such as the Node package manager (npm). Having Node on your system
also makes it easier for you to write the code.

The nodejs.org website provides installers that contain the library and some
command-line tools, such as npm. You may wish to also install an integrated
development environment (IDE) with Node support for features such as syntax
highlighting and code completion. One free option is to install Eclipse (eclipse.org)
and then add the Nodeclipse plug-in (http://www.nodeclipse.org/).

Steps to Implement a Custom API
The main steps for defining and implementing a custom API are the following:

1. Define a custom API as described in Custom APIs.

2. Download a JavaScript scaffold for the API. This scaffold contains stub
implementations for your endpoints.

3. Within the scaffold, fill in the appropriate JavaScript code for each function that
corresponds with a given REST endpoint.

4. Package the finished JavaScript module.

Chapter 22
Setting Up Tooling for Custom Code

22-4

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13058
http://nodejs.org
http://eclipse.org
http://www.nodeclipse.org/

5. Upload the module to the API Designer.

Downloading a JavaScript Scaffold for a Custom API
After you create your custom API, you can download a scaffold that is based on your
API's RAML document, and then use the scaffold as a quick start for implementing
your custom API.

Note:

Instead of downloading the scaffold, you can have it pushed directly to a Git
repository. See Managing Custom Code in Git.

The scaffold comes in the form of a Node module, the key components of which are
the main JavaScript file that contains stub methods for each endpoint (resource plus
HTTP method), and a package.json file, which serves as the manifest for the module.

To download the scaffold:

1. Click to open the side menu, click Applications , and then click APIs.

2. Open the API that you want to download.

3. In the left navigation area of the API Designer, click Implementations.

4. Click JavaScript Scaffold to download the zip file.

If Git integration is enabled, the JavaScript Scaffold button is replaced by a drop-
down list. In this case, click JavaScript Scaffold and then select Download (if
you want to download the scaffold) or Push to Git Repository (if you want to
immediately start working with the scaffold in Git).

5. On your system, unzip the downloaded file.

Note:

If you later change the API, then you can download a new scaffold based on
the updated endpoints. However, any coding that you may have done and
uploaded previously won’t be reflected in the new scaffold.

Chapter 22
Downloading a JavaScript Scaffold for a Custom API

22-5

Writing Custom Code
The following sections show the constructs that are available to you and how to use
them in your code.

Key JavaScript Constructs in Custom Code
The scaffold zip that you download from the API Designer includes a main JavaScript
file, which contains the key constructs that you need to implement the custom API.
Here’s an example of a main JavaScript file for a custom API, which has these
resources (URIs):

• /incidents, which supports the GET and POST HTTP methods

• /incidents/:id, which supports the GET HTTP method

• /incidents/:id/uniquecode, which supports the GET HTTP method

// A
module.exports = function(service) {

 //B
 service.post('/mobile/custom/incidentreport/incidents',
function(req,res) {
 var result = {};
 var statusCode = 201;
 res.status(statusCode).send(result);
 });

 service.get('/mobile/custom/incidentreport/incidents',
function(req,res) {
 var result = {};
 var statusCode = 200;
 res.status(statusCode).send(result);
 });

 service.get('/mobile/custom/incidentreport/incidents/:id',
function(req,res) {
 var result = {};
 var statusCode = 200;
 res.status(statusCode).send(result);
 });

This example illustrates these main constructs:

• (A) module.exports = function (service) {implementation}

The module.exports statement is required at the beginning of all custom API
implementations. It’s used to export an anonymous function with a parameter
(service) through which the custom code service passes the object that’s used to
expose your endpoints. The service parameter is an instance of an Express
application object, and all the object’s functionality is available. Note that in

Chapter 22
Writing Custom Code

22-6

Express example code, this parameter is often called app. The anonymous
function contains all the API’s route definitions.

• (B) Route definitions

A route definition is an Express route method that associates an anonymous
callback function with an endpoint (resource plus HTTP method). Its signature
takes the following form:

service.HttpMethod('URI', function (req, res)

– service is the variable for the custom code service instance (or, in Express
terminology, the application instance), which was defined in the
module.exports = function (service) statement.

– HttpMethod is one of the following methods corresponding to standard REST
methods:

* get

* delete

* head

* options

* patch

* post

* put

– URI refers to resource defined in the API. Notice that while braces identify a
parameter in the API design for the resource, you use a colon to identify a
parameter in the uri. For example, if the resource is /incidentreport/
incidents/{id}, then you use '/mobile/custom/incidentreport/
incidents/:id' for the URI.

– function (req, res) is a callback through which HTTP request and HTTP
response objects are passed. It defines how the API responds to client
requests to that endpoint. The req variable provides access to the data in the
request and you can use the res variable to build the result. Node and
Express provide properties and functions for those two variables, which enable
you to retrieve information about their values and work with them. We talk
about some of these next.

For more information about the req and res objects, see http://
expressjs.com/4x/api.html#request and http://expressjs.com/4x/
api.html#response.

The following example is a route definition for the endpoint GET /incidentreport/
incidents/{id}/uniquecode, which generates a unique code.

service.get(
 '/mobile/custom/incidentreport/incidents/:id/uniquecode',
 function (req, res) {
 console.info('get /incidentreport/incidents/' +
 req.params.id + '/uniquecode');
 res.type('application/json');
 // status defaults to 200

Chapter 22
Writing Custom Code

22-7

http://expressjs.com/4x/api.html#request
http://expressjs.com/4x/api.html#request
http://expressjs.com/4x/api.html#response
http://expressjs.com/4x/api.html#response

 res.send({'code': req.params.id + '-' + new Date().valueOf()});
 });

Notice that the code example uses req.params.id to get the :id value from the
URI. Here are some of the request properties that you typically use in your code:

Property Description

req.body If the request’s content type is
application/JSON or application/x-
www-form-urlencoded then this property
contains the data that was submitted in the
request body in the form of a JavaScript
object. For information about accessing
other types of request bodies, see
Accessing the Body of the Request.

req.headers A map of header names and values. The
names are lower case. Often used to
transport extra information in the request,
such as an external identifier.

req.params An object that contains properties that map
to parameters in the endpoint’s URI. For
example, if the endpoint is
attachments/:collection/
objects/:objectid, then you use
req.params.collection and
req.params.objectid to get the
parameter values.
When you use the req.params object to
retrieve a parameter value, you must use
the same case as the parameter in the
endpoint. For example, if the endpoint
parameter is {id}, then you must use
req.params.id to get the value, and not
req.params.Id.

req.query The query string parameters that are passed
in the URI. For example, if the request is
GET /incidents?q=joe&order=desc
then you use req.query.q and
req.query.order to get the query
parameters.

Here are some methods that you typically use to inquire about the request:

Method Description

req.get(field) and
req.header(field)

Both these methods return the value for the
header named by field. For example,
req.header('content-type'). The
match is case-insensitive.
Note that req.header is an alias for
req.get.

Chapter 22
Writing Custom Code

22-8

Method Description

req.is(mimeType) Boolean method that you can use to find out
if the request’s Content-Type header
matches the mimeType. For example,
req.is('json').

Note:

The custom code service essentially creates Express application objects
and then configures them with service-specific functionality (such as
identity propagation and consolidated logging) before it passes them to
the custom API implementation logic for further configuration. You get
preconfigured Express application objects to which you add route-
specific business logic.

Here we discussed only the basic usage of Express features necessary to implement
the API by using routing methods to set up callbacks. However, the entirety of the
Express features are available for use in custom code. Consult the Express
documentation at http://expressjs.com/ to learn about the details, such as how to
implement URI parameter parsing, set up multiple callback handlers, and use third-
party middleware.

Accessing the Body of the Request
When requests that are received by the custom code have a content type of
application/x-www-form-urlencoded or application/json, the payload is converted
to a JavaScript object, which is then stored in req.body. For all other types, such as
image/jpeg or text/html, req.body is undefined. Examples of when this occurs is
when the body is a text file or an image. In those cases, when you need to access the
body from the incoming request’s handler, use the data event listener and end event
listener to save the body to a buffer.

The following example shows how to access the body for different content types:

if (req.is('json') || req.is('application/x-www-form-urlencoded'))
 {
 console.info('Request Body: ' + JSON.stringify(req.body));
 } else {
 var data = [];
 // Process a chunk of data. This may be called multiple times.
 req.on('data', function(chunk) {
 // Append to buffer
 data.push(chunk);
 }).on('end', function() {
 // process full message here
 var buffer = Buffer.concat(data);
 // Convert to base64, if required
 // var base64 = buffer.toString('base64');
 });
 }

Chapter 22
Writing Custom Code

22-9

http://expressjs.com/

To learn more about Node.js events and listeners, see https://nodejs.org/api/
events.html#events_events.

Inserting Logging Into Custom Code
You can use the Node console object to add logging messages to custom code, as
shown in this example:

console.info(i + ' Request to get ' + url);

These messages appear in the diagnostic logs.

The custom code service wraps the console object to enable finer-grained logging.
The following methods are available for logging messages at different levels:

• console.severe

• console.warning

• console.info

• console.config

• console.fine

• console.finer

• console.finest

By carefully applying log levels to the messages in your code, you can simplify how
you debug and administer the app. This allows you to add good debug messages, and
then log them only as necessary, such as during development or when diagnosing a
problem. For example, you might want to add the following log messages at the
suggested log levels:

Log Message Log Level

Function entry and exit Finest

Input, such as parameters that are sent with
the request

Fine

Caught exceptions Severe

Uncaught exceptions Fine

To set the level at which logging is enabled for a backend, from either the mobile

backend’s diagnostics page or the Administration page, click Logs, and then click
(Log Level).

To learn how to view the logs, see Accessing Logging Messages for Custom Code.

Chapter 22
Writing Custom Code

22-10

https://nodejs.org/api/events.html#events_events
https://nodejs.org/api/events.html#events_events

Note:

Node.js has a less granular set of native methods for logging, which are also
possible to use. The logging level of the native Node.js methods
console.log and console.dir is equivalent to console.info. The Node.js
method console.warn is equivalent to the custom-code method
console.warning. The Node.js method console.error is equivalent to the
custom-code method console.severe.

When you use console messages to locate problem code, know that the service’s
console calls are nonblocking. That is, there’s no guarantee that logging completes
before the next statement is executed. In the case of a problem that’s caused by an
infinite loop, you will most likely see only the first console message that’s in the block
of code before the infinite loop. Consider the following code, for example:

console.info("Log 1");
var myVar="any string";
console.info("Log 2");
myVar="a different string";
console.info("Log 3");
functionWithInfiniteLoop();

When this code is executed, it’s possible that only Log 1 appears in the diagnostic
logs. Therefore, to locate an infinite loop, you must have just one console message,
and you must put that message where you think it will flag the problem. If it doesn’t
flag the problem, then move the message and run another test until you identify the
problem code.

When you suspect an infinite loop, follow these steps:

1. Remove or comment out all console messages.

2. Add a logging statement as the last line before the return.

3. Ensure that the log level for your backend is set to the same level as your logging
statement, such as INFO for a console.info() message.

4. Test the endpoint.

5. Look in the diagnostic logs for your logging statement.

6. If you don’t see the message, move the logging statement up one line and test the
endpoint again.

7. Repeat the previous step until the message appears in the log.

At this point, you know that the problem statement is just below the logging
statement.

Chapter 22
Writing Custom Code

22-11

Tip:

If you have several lines of code, then you can reduce the number of tests by
putting the logging statement in the middle of the code block and then testing
the endpoint. If you don’t get the log message, then put the logging
statement in the middle of the top half. Otherwise, put the logging message
in the middle of the bottom half. Test the endpoint. Repeat the test by
dissecting the code blocks until you have narrowed the test to just two lines
of code.

Storing Data Locally
Don’t use the file system that’s associated with the virtual machine running the Node.js
instance to store data, even temporarily. The virtual machines that run Node.js
instances might fluctuate in number, meaning that data written to one instance's file
system might be lost when individual instances are started and stopped.

To store data from custom code, you can use the Database Access API, which is
described in Accessing the Database Access API from Custom Code, or the Storage
API, which is described in Accessing the Storage API from Custom Code.

Video: Working with Node - Common Code
For a demonstration of writing Node code to implement custom APIs, take a look at
the Oracle Mobile Platform video series on custom code, starting with this video:

Video

Implementing Synchronization-Compatible APIs
If your mobile app uses the Synchronization library to enable offline use, as described
in Data Offline and Sync, then here’s some information about how to make your
implementation compatible with the library.

Note:

To learn how to design your API so that it is compatible with the
Synchronization library, see Endpoint Requirements for Sync Compatibility
and API Design Considerations.

Video: Working with Custom APIs via Data Offline & Sync
If you want an overview of how to build your custom API to have synchronization-
compliant REST endpoints and data, take a look at this video:

Video

Chapter 22
Implementing Synchronization-Compatible APIs

22-12

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13059
http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13342

Requirements for a Synchronization-Compatible Custom API
To ensure that the Synchronization library can synchronize with your custom API’s
data, as described in Building Apps that Work Offline Using the Synchronization
Library, follow these rules:

Chapter 22
Implementing Synchronization-Compatible APIs

22-13

Method Response Body Response Headers Response HTTP
Status Codes

GET • To return a single
item, use
setItem() to put
the item in the
response, as
described in
Returning
Cacheable Data.
Note that this
method adds the
Oracle-Mobile-
Sync-Resource-
Type header to
the response and
sets it to item.

• To return a
collection, use
addItem() to
add the items to
the collection, as
described in
Returning
Cacheable Data.
Note that this
method
associates each
item with its
required URI and
ETag and sets
the Oracle-
Mobile-Sync-
Resource-Type
header to
collection.

If there’re no
items in the
collection, then
you must return a
body with empty
items, uris, and
etags arrays. For
example:

{
 items:[],
 uris:[],
 etags:[]
}

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a
single item, or
collection for
an array of items.
The setItem()
and addItem()
methods set this
header
automatically for
items and
collections. If the
response body is
a file, you
optionally can set
this header to
file.

• ETag: If the
Oracle-Mobile-
Sync-Resource-
Type header is
set to item or
file, then this
header must be
set to the item’s
ETag (in quotes).

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-
No-Store:
Optional. See
Specifying
Synchronization
and Cache
Policies.

No special
requirements

Chapter 22
Implementing Synchronization-Compatible APIs

22-14

Method Response Body Response Headers Response HTTP
Status Codes

PUT If the item stored on
the server is different
from the item in the
request body, such as
having a different ID in
the case of an add or
containing
automatically
calculated fields like
modifiedOn, then
return the stored item
in the response body.
Otherwise, returning
the item in the
response body is
optional.

• Location: If the
item was added,
then you must
include this
header, which
contains the
item’s URI.
Otherwise, this
header is
optional.

• ETag: Must
contain the item’s
ETag in quotes.

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a
single object. The
addItem()
method sets this
header
automatically. If
the response
body is a file, you
optionally can set
this header to
file.

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-
No-Store:
Optional. See
Specifying
Synchronization
and Cache
Policies.

Note that the value in
the If-Match header
value dictates the
actions to take and the
response code to
send. The
Synchronization
library sends * in the
If-Match header
when the conflict
resolution policy is
CLIENT_WINS. For all
other conflict
resolution policy
configurations (that is,
SERVER_WINS and
PRESERVE_CONFLICT)
, it sends the item’s
ETag. If the header
isn’t present or is null,
then assume *.

• If there’s an If-
Match header
and its value isn’t
*, then, if the
item’s ETag
doesn’t match the
header’s value,
return 412
Precondition
Failed.

• If the item to be
updated no longer
exists, then do
one of the
following:
– If the If-

Match
header is *,
then add the
item and
return 201
CREATED

– If there’s an
If-Match
header and
its value isn’t
*, then return
404 NOT
FOUND.

• If the item was
successfully
updated, then

Chapter 22
Implementing Synchronization-Compatible APIs

22-15

Method Response Body Response Headers Response HTTP
Status Codes

return one of the
standard PUT
codes, such as
200 OK or 204
No Content.

POST If the item stored in
the server is different
from the item in the
request body, then
include the stored item
in the response body.
Otherwise, returning
the item in the
response body is
optional. For example,
if the server adds
calculated fields such
as createdOn, then
return the stored item
in the response body.

• Location: Must
contain the item’s
URI.

• ETag: Must
contain the item’s
ETag in quotes.

• Oracle-Mobile-
Sync-Resource-
Type: Must be set
to item for a
single object. The
addItem()
method sets this
header
automatically. If
the response
body is a file, you
optionally can set
this header to
file.

• Oracle-Mobile-
Sync-Evict,
Oracle-Mobile-
Sync-Expires,
and Oracle-
Mobile-Sync-
No-Store:
Optional. See
Specifying
Synchronization
and Cache
Policies.

No special
requirements

Chapter 22
Implementing Synchronization-Compatible APIs

22-16

Method Response Body Response Headers Response HTTP
Status Codes

DELETE No special
requirements

No special
requirements

• If there’s an If-
Match request
header and its
value isn’t *, then
if the ETag of the
item to be deleted
doesn’t match the
header’s value,
return 412
Precondition
Failed.

Note that the
Synchronization
library sends * in
the If-Match
header when the
conflict resolution
policy is
CLIENT_WINS.
For all other
conflict resolution
policy
configurations, it
sends the item’s
ETag.

• If the item doesn’t
exist, then you
can return either
a 404 Not
Found or a 204
No Content. The
Synchronization
library process is
the same for both
codes.

• If the item was
successfully
deleted, then
return one of the
standard DELETE
codes, such as
200 OK, 202
Accepted, or 204
No Content.

If you want to learn more about how the Synchronization library uses the 412
Precondition Failed HTTP response status code and the If-Match header to
implement conflict resolution policies, see Synchronization Library Process Flow.
Basically, if the conflict resolution policy is CLIENT_WINS, then the If-Match header is
set to * to indicate that the server must update or delete the resource without conflict.
Otherwise, the If-Match header is set to the item’s ETag, and the custom code is
expected to return 412 Precondition Failed if the ETags don’t match.

Chapter 22
Implementing Synchronization-Compatible APIs

22-17

Tip:

Most methods require an ETag header in the response, and many methods
require that you compare the server version’s ETag with the value in the
request’s If-Match header. There are several node libraries that you can
use to create ETags. For example, the NPM etag library that is available
from https://www.npmjs.com/package/etag.

Returning Cacheable Data
The custom code SDK provides the following methods to format your data for use by
the Synchronization library. Using these methods enables the library to optimize
synchronization.

oracleMobile.sync Method Description

setItem(response, item) Set the response body to the item.

addItem(response, item, uri, etag) Add the item to a collection, which will be
returned in the response body in a cacheable
format.

clear(response) Undoes all calls to setItem and addItem .

For a response with a single JSON object, you use setItem to format the data, as
shown in this example, and you return the ETag value in the ETag header:

var etag = require('etag');
...
service.get('/mobile/custom/incidentreport/incidents/:id/syncUniquecode',
 function (req, res) {
 var item = {'code': req.params.id + '-' + new Date().valueOf()};
 res.setHeader('Etag', etag(JSON.stringify(item)));
 req.oracleMobile.sync.setItem(res,item);
 res.end();
});

For a JSON object that contains an array of items, you use addItem to add each item
to the response, as shown in the next example. Note that addItem attaches a URI and
an ETag value to each item in the response body. The URI must uniquely identify each
item.

var etag = require('etag');
...
service.get(
 '/mobile/custom/incidentreport/statusCodes',
 function (req, res) {
 var payload = {'inroute': 'Technician is on the way'};
 req.oracleMobile.sync.addItem(
 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/inroute',
 etag(JSON.stringify(payload))

Chapter 22
Implementing Synchronization-Compatible APIs

22-18

https://www.npmjs.com/package/etag

);
 payload = {'arrived': 'Technician is on premises'};
 req.oracleMobile.sync.addItem(
 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/arrived',
 etag(JSON.stringify(payload))
);
 payload = {'completed': 'Technician has left premises'};
 req.oracleMobile.sync.addItem(
 res,
 payload,
 '/mobile/custom/incidentreport/statusCodes/completed',
 etag(JSON.stringify(payload))
);
 res.end();
 });

The response body for the addItem example looks like this:

{
 "items": [
 {
 "inroute": "Technician is on the way"
 },
 {
 "arrived": "Technician is on premises"
 },
 {
 "completed": "Technician has left premises"
 }
],
 "uris": [
 "/mobile/custom/incidentreport/statusCodes/inroute",
 "/mobile/custom/incidentreport/statusCodes/arrived",
 "/mobile/custom/incidentreport/statusCodes/completed"
],
 "etags": [
 "\"26-5vTpRVIO9SakJoLYEQrQ0Q\"",
 "\"27-+lktOY9aA46ySRE0O/y5Aw\"",
 "\"2c-PSRg8Cxr2rYp/9BftCmDag\""
]
}

When you use setItem and addItem, the response also includes this header:

Chapter 22
Implementing Synchronization-Compatible APIs

22-19

Header Description Type

Oracle-Mobile-Sync-
Resource-Type

If the response body is JSON,
then the value is item if the
JSON object includes a single
item. The value is
collection if the JSON
object contains an array of
items. Note that when the
response is a file, you
optionally can set the value to
file. When this header isn’t
included in the response, the
Synchronization library
assumes that the type is file.
That is, when this header is
not set, then the
MobileResource that the
Synchronization library
fetchObjectBuilder and
fetchCollectionBuilder
methods return is of type
MobileFile.

String

Specifying Synchronization and Cache Policies
For the mobile apps that use the Synchronization library, you might want to override
their settings for whether to cache the data that you return and when to expire and
delete the data. For example, if the data contains private information, you might want
to prevent a mobile app from caching that data. This table shows the Oracle-Mobile-
Sync HTTP headers to override these settings.

Chapter 22
Implementing Synchronization-Compatible APIs

22-20

Header Description Type

Oracle-Mobile-Sync-
Evict

Specifies the date and time
after which the expired
resource should be deleted
from the app’s local cache.
Uses RFC 1123 format, for
example EEE, dd MMM
yyyyy HH:mm:ss z for
SimpleDateFormat.

The following synchronization
policies are set for the
resource object that is created
from the response:

• Eviction policy:
EVICT_ON_EXPIRY_AT_S
TARTUP

• Expiration policy:
EXPIRE_AFTER with the
expireAfter property
set to date and time
provided in the header
value

.

Number

Oracle-Mobile-Sync-
Expires

Specifies when to mark the
returned resource as expired.
Uses RFC 1123 format, for
example EEE, dd MMM
yyyyy HH:mm:ss z for
SimpleDateFormat.

Number

Oracle-Mobile-Sync-No-
Store

When set to true, instructs
the client to not cache the
resource.

Boolean

Calling Web Services and APIs from Custom Code
Your custom code will most likely need to access one or more of the following types of
APIs and services:

• Platform APIs: Your custom code can connect with platform services, such as
Storage, Notifications, and Location, through their APIs.

• Custom APIs: Your custom code can interact with all the other custom APIs that
are in your environment.

• Connector APIs: Your custom code can serve as wrappers for connector APIs.

• External web services: Typically, you create connector APIs with which to interact
with external services, but you also can connect with remote web services directly
from custom code.

Calling APIs from Custom Code discusses how to access platform, custom, and
connector APIs from custom code.

If you need to make a third-party web service call that doesn’t require you to shape the
data, and you don’t need integrated diagnostics, tracking, or analytics for that call, then

Chapter 22
Calling Web Services and APIs from Custom Code

22-21

you might choose to call the service directly instead of setting up a connector. You can
call a web service directly from your custom code using Node APIs such as the HTTP
API. For information about the Node HTTP API, see nodejs.org/api/http.html.

Note that HTTP and HTTPS are the only supported protocols for making calls to the
Internet from custom code.

Note:

If the third-party web service changes its API, then a connector requires just
one change, whereas with direct calls, you must make sure you find and
change all the direct calls. Also, consider that if you’re testing against a test
web service, you’ll have to modify the URLs for the direct calls when you
switch to the production service.

Packaging Custom Code into a Module
After you’ve written custom code to implement an API, and before you upload and
deploy it, follow these steps to package the implementation:

1. Declare the implementation version in the package.json manifest file.

2. Optionally declare the Node version in the package.json file.

3. Declare in the package.json file the API dependencies on other modules.

4. Run the Node.js package manager (npm) to download the dependencies.

5. Put all the implementation files in a zip file.

Required Artifacts for an API Implementation
An API implementation is packaged as a zip archive containing, at minimum, the
following artifacts:

• A root directory that has the name of the custom code module.

• The package.json file. Within this file, you specify in JSON format the name of the
module and any dependencies that your custom code has, such as any connector
APIs. See package.json Contents for information on the contents and syntax on
the package.json file.

Chapter 22
Packaging Custom Code into a Module

22-22

http://nodejs.org/api/http.html

Note:

By Node convention, this file must be within the root directory.

• At least one JavaScript file that contains the implementation code.

• If there are any additional modules that you are using (in addition to Express and
the base Node features), then a node_modules directory containing those modules.
See Packaging Additional Libraries with Your Implementation.

package.json Contents
Like all npm packages, custom API implementations require that you identify the
project and its dependencies in a package manifest named package.json. Here’s an
example of the syntax and the properties of a package.json file for a custom API
implementation:

{
 "name" : "incidentreports",
 "version" : "1.0.0",
 "description" : "FixItFast Incident Reports API",
 "main" : "incidentreports.js",
 "dependencies": {
 "async": "0.9.0"
 },
 "oracleMobile" : {
 "dependencies" : {
 "apis" : {"/mobile/custom/employees" : "3.5.1"},
 "connectors" : {"/mobile/connector/RightNow": "1.0"}
 }
 }
}

The key attributes are the following:

name
A descriptive name for the implementation. The name can contain only characters
that can be used in a URI. It may not start with a period (.) or underscore (_). The
value of this attribute in combination with the value of the version attribute must be
unique among all API implementations.

version
The version of the implementation. If you provide a new version of an implementation,
then this attribute should be incremented and the name value should stay the same.

description
An optional description of the implementation.

main
The name of the main JavaScript file that implements the API. If this file isn’t in the
same folder as the package.json file, then use a path name that’s relative to the
package.json folder.

Chapter 22
Packaging Custom Code into a Module

22-23

dependencies
The specification of dependencies to other Node modules required for the
implementation. When you have such dependencies, use npm to install those modules
in this directory. See Packaging Additional Libraries with Your Implementation.

oracleMobile / dependencies / api
The specification of the version for a custom API or a connector API that you
reference in your custom code.

Declaring the API Implementation Version
Use the version attribute in the package.json file for the custom code module to
specify the implementation version, as shown in the following example:

{
 "name" : "incidentreport",
 "version" : "1.0.0",
 "description" : "Incident Report Custom API",
 "main" : "incidentreport.js",
 "oracleMobile" : {
 "dependencies" : {
 "apis" : { },
 "connectors" : {"/mobile/connector/RightNow": "1.0"}
 }
 }
}

If you have previously uploaded an implementation and that implementation is still in
Draft state, then you can continue to upload modified implementations without
incrementing the version number. After you publish a version, that version is final. If
you want to make changes to a published implementation, then you must increment
the version number.

You can publish implementations independently of APIs, and you can increment their
version numbers separately as well. This lets you make changes to a published
implementation, such as minor modifications or bug fixes, without requiring the API
itself to be updated.

To create another version of an API implementation, change the version attribute,
such as "version": "1.0.1", and then upload a zip file of the modified
implementation. When you upload a new version of an implementation, it becomes the
default version (active implementation) for that API. You can change the default
version in the API’s Implementations page.

If the new version is backward-compatible, then use a minor incremental increase. For
example, if the previous version is 1.3, then the updated version number could be 1.4
or 1.7. If the new version isn’t backward-compatible, then use a major incremental
increase. For example, if the previous version is 1.3, then the updated version number
could be 2.0 or 2.1.

For more information about publishing and deploying APIs, see Lifecycle Scenarios.

Chapter 22
Packaging Custom Code into a Module

22-24

Declaring the Node Version
To use a version of the Node library other than the instance’s default version, add a
node property to the configuration section as shown in the following example:

{
 "name" : "incidentreport",
 "version" : "1.0.0",
 "description" : "Incident Report Custom API",
 "main" : "incidentreport.js",
 "oracleMobile" : {
 "configuration" : {
 "node" : "6.10" }
 }
}

To learn about the default Node version and the available node versions, see
CCC_DefaultNodeConfiguration in Environment Policies and Their Values.

Packaging Additional Libraries with Your Implementation
If your API implementation depends on other JavaScript modules, such as Async, then
you must add them to your custom code zip file. The additional modules aren’t shared
across APIs. For example, you must include the Async module in every
implementation package that uses it. Your implementation can't use any modules that
depend on installing a binary (executable) on the server.

1. In the package.json file for the implementation module, declare the modules that
the implementation module depends on. Specify both the module name and the
version number in the following format:

"dependencies": {
 "Module1Name":"VersionNumber",
 "Module2Name":"VersionNumber",
},

2. In the directory containing the package.json file for the custom code module, run:

npm install

This command downloads the stated dependencies from the public npm repository
and places them in the node_modules subdirectory.

Note:

If the module on which you’re creating the dependency is in a folder on
your file system instead of in the public npm repository, add the path to
the folder as an argument to the command:

npm install folder-name

Chapter 22
Packaging Custom Code into a Module

22-25

For more information on using the npm package manager, see https://
docs.npmjs.com/cli/install.

3. Package the whole folder containing the package.json file in a zip archive.

Uploading the Custom Code Module
1. On your system, prepare the required artifacts for the implementation, as

described in Required Artifacts for an API Implementation.

2. From the API Catalog, open the custom API that the custom code implements.

3. In the left navigation bar, click Implementations.

4. At the bottom of the API Implementation page, click Upload an implementation
archive, and then go to the implementation zip file on your system.

Note:

You also can upload an implementation from the command line. See Offline
Debugging with the MCS Custom Code Test Tools.

Managing Custom Code in Git
When you first generate a JavaScript scaffold for your implementation, you can have it
pushed directly to a Git repository.

Setting Up a Git Repository for Custom Code
As a mobile cloud administrator, you can specify a Git repository in which to store your
team’s custom API implementations. This enables your team’s developers to put their
API implementations under version control starting with the creation of the JavaScript
scaffold for the API.

You can use either an existing Git repository or create a new one in Oracle Developer
Cloud Service to use. To do the latter, see Using Git in Oracle Developer Cloud
Service in Using Developer Cloud Service.

Designating a Git Repository for Custom Code
If you already have a Git repository set up that you want to use for you team’s custom
code, you can specify that repository as the place where new JavaScript scaffolds are
pushed. To designate the Git repository, you need to have access permission for the
Administration page.

You can see if you have access to that page by clicking and checking to see if
there is an item for Administration as shown in the screenshot below.

Chapter 22
Uploading the Custom Code Module

22-26

https://docs.npmjs.com/cli/install
https://docs.npmjs.com/cli/install

1. Click to open the side menu and select Administration.

2. Click the link for Developer Cloud Service Git Integration.

3. In the dialog, enter the URL for the Git repository in the Source Code Git
Repository field and click Save.

Setting Up a Git Repository in Oracle Developer Cloud Service
If you don’t already have a Git repository for your custom code, you can set one up in
Oracle Developer Cloud Service.

1. Make sure that you have a user account in Oracle Developer Cloud Service.

If you have a user account, you will have received an email notification with your
account details.

If you don’t have a user account, contact your team’s identity domain administrator
to set up an account for you (and for anybody else who will be using the
repository). You need the Developer Service User role (DEVELOPER_USER) in Oracle
Developer Cloud Service.

2. Sign in to Oracle Developer Cloud Service.

3. Set up a project to hold the Git repository by following the steps at Creating a
Project in the Oracle Developer Cloud Service docs.

As part of creating the project, a Git repository will be created.

See Managing Git Repositories in Oracle Developer Cloud Service.

Generating a Scaffold in a Git Repository
1. Click to open the side menu, and then click APIs.

2. Open the API that you want to implement.

3. In the left navigation area of the API Designer, click Implementations.

4. Click New Implementation > Push to Git Repository.

Chapter 22
Managing Custom Code in Git

22-27

You can now clone the repository (or pull from the repository if you have already
cloned it) to fill in the scaffold with your custom code.

Testing and Debugging Custom Code
You can test and debug your custom code directly within the UI. It’s also possible to
test your custom code outside of the UI.

Testing with Mock Data
When you create a custom API, you get a mock implementation, which application
developers can use to test their mobile applications while you are implementing the
custom code. When you call an endpoint for a mock implementation, it returns the
request example, if one has been provided.

The mock implementation is the default implementation until you upload an
implementation. Whenever you upload an implementation, it is automatically deployed
as the default implementation. You can always change this, including reverting to the
mock implementation, for testing purposes. To change the default implementation,
select it on the Implementations page and click Set as Default.

You can create example (mock) data to provide default request and response bodies
for the test UI. You can use either the API Designer or the RAML to add example
(mock) data. To provide an example for an endpoint from the API Designer, from the
Endpoints page, go to the desired method, click either the Requests tab or the
Responses tab, select the appropriate media type, and then enter the mock data in
the Example tab.

Here is an example of providing mock data in the RAML.

/status:
 get:
 description: |
 Gets status of specified report.
 responses:
 200:
 description: |
 OK.
 body:
 application/json:
 example: |
 { "code": "New",
 "notes": "My hot water tank's model is AB234"
 }

Testing Custom Code from the UI
As soon as you upload your custom API implementation, you can test it by clicking
Test in the API Designer. You can also test from the API Catalog by selecting the API,
and then clicking Test.

The test page displays all the operations. Click an operation, fill out the necessary
fields, and then click Test Endpoint.

Chapter 22
Testing and Debugging Custom Code

22-28

If the API isn’t configured for anonymous access, then you must provide a user name
and the password. The user must have been assigned one of the roles that can
access the endpoint. If the endpoint doesn’t have any roles configured for it, then the
user must belong to a role that’s associated with the API. You can learn more about
roles and anonymous access at Security in Custom APIs.

Note:

The API must either allow anonymous access or be associated with at least
one role. If neither of these is true, then you’ll get an unauthenticated error.

For detailed steps on how to test the API, see Testing a Platform or Custom API from
the UI.

Offline Debugging with the MCS Custom Code Test Tools
Within the zip file of the client SDK for each platform is the mcs-tools.zip file, which
contains the MCS Custom Code Test Tools that you can use to iteratively debug your
custom code.

The core of the tools is an npm module that enables you to run an offline custom code
container, run tests on the code, and package and deploy an implementation back to
MCS.

Detailed instructions on using the tools are located in the README.MD file that is
packaged within the mcs-tools.zip.

You can get the client SDKs and the accompanying test tools from the Oracle
Technology Network’s MCS download page.

Other Tools for Testing Custom Code Outside of the UI
Besides the Custom Code Test Tools, you can use tools that were designed for testing
web services, such as cURL. To learn how to test your custom API from these tools,
see Testing Platform and Custom APIs Remotely.

Note:

The API must either allow anonymous access or be associated with at least
one role. If neither of these is true, then you will get an unauthenticated error.

Accessing Logging Messages for Custom Code
When your API implementation doesn’t return the expected results, use the diagnostic
logs to troubleshoot the problem.

To pinpoint where the error occurred, click to open the side menu. Next, click
Administration, and then click Request History. Next, find the request, click View

related log entries in the Related column, and then select Log Messages
Related by API Request. To see a message’s details, click the time stamp. From the

Chapter 22
Testing and Debugging Custom Code

22-29

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html

Message Details dialog, you can click the up and down arrows to see all the related
log messages.

You can get to the Request History page from either the Administration page or a
mobile backend’s Diagnostics page. Note that if there isn’t sufficient information in a
request to enable the service to determine the associated backend, then the related
log messages appear only in the Logs page that is available from the Administration
page.

Every message is tagged with a request correlation ID that associates all messages
for a request. When you view a message’s details, you can click the request
correlation ID to see the other messages for the same request.

If you don’t see any messages that help identify the source of the problem, then you

can change to a finer level for logging messages. Click Log Level in the Logs
page, change the log level for the mobile backend, and then rerun the test.

To learn about the different types of log messages and how to filter and correlate
messages, see Viewing Log Messages. For use cases for diagnosing custom code
and connector issues, see Diagnosing Custom Code.

Let's use the following endpoint to see how to custom code logging works. In this
code, the ums.updateUser method makes a PUT request to /platform/users/~.

service.put(
 '/mobile/custom/incidentreport/key',
 function (req, res) {
 req.oracleMobile.ums.updateUser({key: req.body.key}).then(
 function (result) {
 res.send(result.statusCode, result.result);
 },
 function (error) {
 res.send(error.statusCode, error.error);
 }
);
 });

The service always logs a message whenever a call ends, regardless of the log level
setting. In the following figure, the bottom (earliest) message was logged when the PUT
request to /platform/users/~ ended. The top (later) message was logged when the
service.put call to /mobile/custom/incidentreport/key ended.

Logging Request and Response Messages

If you would like to see the bodies of the requests and responses, then ask your
mobile cloud administrator to change the CCC_LogBody environment policy to true.
When you do this, the service logs a CCC message whenever a body is passed in a

Chapter 22
Testing and Debugging Custom Code

22-30

request or a response. The following figure shows the log entries for a request to the
example endpoint. In addition to the standard call messages, this log also has a
message for each of the following events (reading from the bottom (earliest) up):

• When the PUT /mobile/custom/incidentreport/key request was received.

• When the ums.updateUser method made the PUT /platform/users/~ request .

• When the response was returned by the PUT /platform/users/~ operation.

• When the response was returned by the PUT /mobile/custom/
incidentreport/key operation.

When you set the log level to Info, the service logs the request bodies with a
message type of INFO. Response bodies are logged with a message type that
corresponds to the response status. For example, if the response status is 401, then
the log message that contains the response body has a message type of WARNING.

Note that setting the CCC_LogBody environment policy to true might have a negative
effect on performance.

Note:

By default, the body is truncated after 512 characters. Use the
CCC_LogBodyMaxLength environment policy to change the maximum body
length. To always include the full message, no matter how long it is, set
CCC_LogBodyMaxLength to -1.

Getting More Details

To get the maximum amount of log messages, set the log level to FINEST. With this
level, the service logs the following messages:

• A FINEST message, which contains the HTTP verb and URI, whenever a request is
received by any of the custom API’s endpoints

• A FINEST message, which contains the HTTP verb, URI, and status code,
whenever a response is sent by any of the custom API’s endpoints

Chapter 22
Testing and Debugging Custom Code

22-31

• A FINEST message, which contains the HTTP verb and URI, whenever a request is
sent to another platform or custom API.

• A FINEST message, which contains the HTTP verb, URI, and status code,
whenever a response is received from a call to another platform or custom API.

If the CCC_LogBody environment policy is set to true and the log level is FINEST, then
the following occurs:

• If a request body exists, then the FINEST message that contains the request’s
HTTP verb and URI also shows the body.

• If a response body exists and the response status code is less than 400, then the
FINEST message that contains the HTTP verb, URI, and status code for the
response also shows the body.

• If a response body exists and the response status code is 400 or higher, then the
response body is logged in a separate message. Immediately after, it logs the
FINEST message for the response. The message type is either WARNING or SEVERE,
depending on the status code.

Note that setting the log level to FINEST might have a negative effect on performance.

Minimizing the Performance Cost of Logging Bodies

If you are concerned about the performance cost of logging bodies, but you want to
see the request and response bodies for exceptional cases, set the CCC_LogBody
environment policy to true, and set the logging level to WARNING or SEVERE. With these
settings, whenever there is a status code of 400 or higher, a message is logged for
both the request and the response. Both messages are logged at the time that the
response is received. The message type is WARNING or SEVERE, depending on the
status code. The message shows the body, if there is one.

Chapter 22
Testing and Debugging Custom Code

22-32

Creating Custom Log Messages

To help with debugging, you can use the console object in your code to generate your
own messages, as described in Inserting Logging Into Custom Code, and then view
them from the logs.

Troubleshooting Custom API Implementations
The following topics provide information about diagnosing and resolving common
problems in custom code.

Diagnosing Syntax Errors
If a request failure is caused by a syntax error, then the Message Detail dialog box for
the associated log message displays the module and line number where the error
occurs, as shown here:

Chapter 22
Troubleshooting Custom API Implementations

22-33

To learn about accessing log messages, see Viewing Log Messages.

If you’d like to see the stack traces for custom code syntax errors in request
responses, then ask your mobile cloud administrator to change the
CCC_SendStackTraceWithError environment policy to true. When you do this, you’ll
see a request response like the following example whenever a request results in a
syntax error in the custom code. The stack trace shows the line number where the
error occurred.

{"message": "Custom Code Problem: ReferenceError: nonExist is not defined
\n at /scratch/aime/mobile/mobile_ccc/custom_code_modules/
ccc2455344468806884059/incidentreports/incidentreports.js:354:17\n at
callbacks (/scratch/aime/mobile/mobile_ccc/mcs-node-router/node_modules/
express/lib/router/index.js:164:37)\n ..."
}

Common Custom Code Errors
The following topics discuss common errors, possible causes, and solutions.

Custom Code Problem parsing JSON: Error: request entity too large

This error is typically caused by a request body that’s larger than the JSON body
parser’s default maximum input, which is 1MB.

To change the JSON body parser limit for Node 6.10 and later, add this code to the
implementation’s main JavaScript file, and set the desired limit:

var bodyParser = require('body-parser');
module.exports = function(service) {

Chapter 22
Troubleshooting Custom API Implementations

22-34

 service._router.stack[3].handle = bodyParser.json({limit: '2mb'})
};

To change the JSON body parser limit for Node 0.10, add this code to the
implementation’s main JavaScript file, and set the desired limit:

var bodyParser = require('body-parser');
module.exports = function(service) {
 service.stack[3] = { route: "", handle: express.json({limit: '2mb'})
};

Custom Code Problem in oracleMobile.rest callback: Argument error,
options.body

The common cause for this error is assigning a JavaScript object to
optionsList.body, where optionsList is the first parameter in a call to
req.oracleMobile.rest.post(optionsList, handler).

The solution is to do one of the following:

• Store the object in options.json, instead of optionsList.body. This solution
automatically converts the object to a JSON string and sets relevant parts of the
request, such as the content type and length. For example:

optionsList.json = {first: 'John', last: 'Doe'};

• Use JSON.stringify to convert the object to a JSON string before setting the
optionsList.body value. For example:

optionsList.body = JSON.stringify(first: 'John', last: 'Doe'};
optionsList.headers = {'Content-Type': 'application/json');

Your custom code container is in the process of recovering from an unhandled
error in a earlier request

This issue occurs when a previous request results in an uncaught exception. When
you receive this response, rerun the current request. It should succeed as soon as the
system has recovered from the uncaught exception for the previous request.

You should examine the logs for the previous requests to see if you can find the cause
of the uncaught exception.

Connection fails due to untrusted URL

To protect client apps, the service passes all external URLs through McAfee Web
Gateway v7.x/6.9.x (Cloud), which requires that all external URLs are trusted. This
requirement applies to external service URLs for connector APIs as well as those that
you access directly from custom code.

Attempting to connect with an untrusted connector endpoint results in a 403 error,
which might be wrapped in a 500 error.

To resolve the issue, add the untrusted URL to the list of trusted URLS for McAfee
Web Gateway v7.x/6.9.x (Cloud) at http://trustedsource.org/. Note that the
process can take from three to five business days.

Chapter 22
Troubleshooting Custom API Implementations

22-35

http://trustedsource.org/

database.getAll(table, options, httpOptions) doesn’t return all the rows in a table

This issue occurs when there are more rows in the table than the Database_MaxRows
environment policy allows the service to return. The default value is 1000.

Ask your mobile cloud administrator to increase the Database_MaxRows value.

This mobile user doesn't have the necessary permissions to call this endpoint

In the UI, open the API and click Security. If Login Required is turned on and
Enterprise is selected, then look at the roles that have been configured. If no roles are
configured, then no one has permission to log in to the mobile backend. If one or more
roles are configured, ensure that the user has a necessary role.

What Happens When a Custom API Is Called?
You might be curious about how the service handles calls to a custom API. Here is a
high-level summary. When the service receives a custom API request, it sends the
request to the custom code service. The custom code service then directs the request
to one of the following:

• Custom code container for the API implementation: A container is a Node
instance. This container wraps the custom API implementation with JavaScript that
handles tasks such as server startup, authentication, authorization, and logging.
There is one container for each deployed version of an implementation for each
associated mobile backend version.

• Custom code agent: The agent controls the creation and destruction of custom
code containers, controls server startup, and exposes the REST endpoints for
creating and destroying a container.

Basically, a custom API implementation is launched on demand in a container that is
instantiated by the custom code agent. This container, which runs in Node, handles
the requests and returns the responses.

When the custom code calls a platform API or a connector API, it makes the call back
through the service, and then the service routes the call to that API. If the call is to a
different custom API, then the service routes the call to that API’s container if it exists,
or it creates the container and then routes the call to it.

Chapter 22
What Happens When a Custom API Is Called?

22-36

Chapter 22
What Happens When a Custom API Is Called?

22-37

23
Calling APIs from Custom Code

As a service developer, you might want to access platform APIs, connector APIs, and
other custom APIs from your custom code. The custom code SDK provides methods
that simplify making requests to these APIs.

How to Send Requests to MCS APIs
You use custom code SDK methods to send requests to MCS APIs. When you call
one of these methods, that method makes a RESTful HTTP call to the MCS API. This
SDK makes the HTTP calls mostly transparent to you, but you’ll see that a method's
arguments and its return value are similar to what you would see with a RESTful HTTP
request and response.

These methods and their arguments conform to a common pattern. This section
describes this pattern, and the following sections provide the details that are specific to
the API’s methods:

• Calling Platform APIs from Custom Code

• Calling Custom APIs from Custom Code

• Calling Connector APIs from Custom Code

Note:

Note: The purpose of the examples in this chapter is to illustrate how to
interface with the custom code service. The examples are not intended to
teach best practices for writing Node.js REST API implementations.

API Request Pattern
The custom code SDK methods that make requests to custom, platform, and
connector APIs follow this pattern:

req.oracleMobile.<service>.<method>(required arguments, options,
httpOptions)

The <service> identifies the API that you want to call.

• For platform APIs, this is the name of the platform, such as storage, ums, or
notification.

• For connector APIs, this can be either connectors or connectors.<api>. Later, we
discuss how to choose which one to use.

• For custom APIs, this can be either custom or custom.<api>. Later, we discuss
how to choose which one to use.

23-1

You use options to specify optional API-specific properties. The next section
discusses the options properties that are shared by many of these methods. Each
method description in the subsequent sections discusses additional options
properties that apply to that method, if any.

The httpOptions argument is like the Node.js http.request(options) argument. You
use this argument to pass properties not covered by required arguments and options.
For example, if you need to pass the timeout property to specify the number of
milliseconds to wait for a request to respond before terminating the request, then you
would pass it in httpOptions. Another example of when you use httpOptions is to
pass query parameters to a connector. To learn more about http.request(options),
go to the API documentation at https://github.com/mikeal/request and scroll down to
the section entitled "request(options, callback)".

Tip:

When you use httpOptions.qs to pass the query string, you can use
encodeURIComponent(<string>) for the qs value to ensure that your code
handles multibyte characters.

You can omit the options and httpOptions arguments. When you do so, they are
treated as null values. Any value that you provide in options that affects a parameter
in httpOptions overrides the httpOptions parameter. The methods ignore any
property in the options and httpOptions arguments that they do not support.

Note:

You might notice that you don’t need to worry about authentication when you
send requests to custom, platform, and custom APIs from custom code. The
service re-uses the access token that’s passed into the custom code and
takes care of authentication for you. With connectors, if you need to use
different credentials for the external service, you can use
options.externalAuthorization to pass the value to be used in the
Authorization header for the external service.

To learn how to send direct requests to third-party web services without going through
a connector, see Calling Web Services and APIs from Custom Code.

Common options Argument Properties
Several custom code SDK methods that access APIs accept an optional options
argument, which is a JSON object. Here are the options properties:

Chapter 23
How to Send Requests to MCS APIs

23-2

https://github.com/mikeal/request

Property Description Type Default Value

accept The value for the
Accept header. Use
this property to list the
media types that you
prefer for the
response body. Note
that for most methods,
the media type for a
response body is
application/json.

String Empty, which
indicates no
preference for
response type.

contentType The value for the
Content-Type
header. This property
specifies the content
type of the request
body. For most
methods, this is
application/json.

String Empty. Note that if the
inType is json, then
the service sets the
Content-Type
header to
application/json.

inType For Storage,
connector API, and
custom API SDK
functions that take a
request body, use this
option to specify
whether the request
body is json or
stream.
If json, then the
method sets the
Content-Type
header to
application/json
automatically.

You typically set this
property when the
custom code builds
the request body that
you are sending to the
API.

String Undefined. If this
property isn’t set, then
the method passes
the request body as is.
The request is
serviced by the Node
Request module,
which accepts a string
or a buffer.

Chapter 23
How to Send Requests to MCS APIs

23-3

Property Description Type Default Value

outType The response body
type. The value can
be one of the
following:
• json: Convert the

response body to
a JSON object.
Note that if there
are JSON parse
errors, then the
response body
remains a string.

• stream: Return
the response
body in a
readable stream
that can be piped.

• binary: Do not
convert the
response body to
a string.

• encoding:
Convert the
response body to
a string using the
specified
encoding.

This property is
supported only by the
Storage API and the
connector and custom
APIs. All other APIs
use the default
response behavior.

String Undefined. The
response body is
converted to a string
using the UTF8
encoding.

Chapter 23
How to Send Requests to MCS APIs

23-4

Property Description Type Default Value

encodeURI When true, encodes
the URI and the
following arguments
and properties:

• Encodes table,
keys, fields,
extraFields,
primaryKeys,
and sql
arguments and
properties for
database
methods

• Encodes
collectionId,
mobileName,
objectId,
orderBy, and
user arguments
and properties for
storage
methods.

This option is useful
for multibyte
characters.

Boolean false

API Response Patterns
The return value for a custom code SDK call to an API depends on the value of the
options.outType property.

• If the outType is stream, then, if there’s no error, the return value is a stream that
you can pipe, as shown in Handling a Stream.

• If the outType is undefined or any value other than stream, then the return value is
a promise object. To learn more about the promise object, see Handling a
Promise.

Handling a Stream
When the response is a stream, then, if there’s no error, the return value is a stream
that you can pipe. Otherwise, you can process the error as shown in this example:

 req.oracleMobile.storage.store('attachments', req, {
 mobileName: 'Technician Notes',
 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.status).send(error.message);
 })

Chapter 23
How to Send Requests to MCS APIs

23-5

 .on('response', function (response) {
 console.info('HEADERS received from response:', response.headers);
 })
 .pipe(res);

For more information about streaming, see https://github.com/request/request.

Handling a Promise
A promise provides access to the result of an asynchronous request. At the time a
promise is returned, the request may or may not have completed. Most custom code
SDK methods return promises. In the following examples, <promiseFunction>
represents a custom code SDK method that returns a promise, such as
req.oracleMobile.storage.getCollections.

When you call a promise function, you typically use the then function to handle the
success or failure as shown here:

<promiseFunction>.then(successFunction, errorFunction)

• <promiseFunction> is the call that returns a promise, such as
req.oracleMobile.storage.getCollections in the next code example.

• successFunction is a user-defined function that is called if the prior promise
function resolves successfully. This occurs when the request completes with a
response status code less than 400. The successFunction takes a single
argument, which is what the prior <promiseFunction> returned on success. With
custom code SDK methods, this is a JSON object with the following properties:

– result: The body of the result.

– statusCode: The HTTP status code.

– headers: A JSON object that contains all the HTTP response headers, such as
{accept-charset:'UTF-8',content-type:'application/json'}.

– contentType: The value of the Content-Type header if that header was
included in the response.

– contentLength: The value of the Content-Length header if that header was
included in the response.

• errorFunction is a user-defined function that is called if and when promise
function doesn’t resolve successfully. This is when the response status is equal to
or greater than 400, or if there is a severe error. The errorFunction takes a single
argument, which is what the <promiseFunction> returned on error. With custom
code SDK methods, this is a JSON object with the following properties:

– statusCode: The HTTP status code.

– error: The body of the error or the error message.

– headers: All the response HTTP headers.

Chapter 23
How to Send Requests to MCS APIs

23-6

https://github.com/request/request

Note:

The then function takes an optional progressFunction argument. However,
the custom code SDK doesn’t use this argument, and you can omit it from
the call.

Here’s an example of how to call a custom code SDK method to access a custom,
platform, or connector API and use then to handle the promise that it returns. In this
example:

• In this example, the <promiseFunction> is
req.oracleMobile.storage.getCollections. This is a function from the storage
component of the custom code SDK, which either resolves with a successful
promise or rejects with an error promise.

• If getCollections completes successfully, then it passes the successful promise
to the first argument for then, which is function(result).

• If getCollections results in an error, then it passes the error promise to the
second argument, which is function(error).

// Get metadata about the backend's collections.
service.get('/mobile/custom/incidentreport/collections',
 function (req, res) {
 req.oracleMobile.storage.getCollections({sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

A promise and its result can be assigned to a variable. This means that the result can
live longer than the function call alone, allowing you to chain multiple success and
failure functions calls against the result. For example, you can write code like this:

var collections = req.oracleMobile.storage.getCollections({sync: true});

collections.then(successFunction1, errorFunction1);
...
collections.then(successFunction2, errorFunction2);

Chapter 23
How to Send Requests to MCS APIs

23-7

Note:

Because the custom code SDK uses the Bluebird promises library, we
recommend that you use this library to process these promises. If you only
use the then() function from the promises library, then you don’t need to
include Bluebird in your package.
There are several promises libraries that you can choose from for your
custom code implementation, but the extent to which they will work with the
custom code SDK promises is not known. To learn more about Bluebird
promises, go to https://github.com/petkaantonov/bluebird.

The next sections show some common examples of ways in which you can handle
promises.

Chaining Calls
When you need to invoke a series of calls in a synchronous manner, waiting for one
operation to complete before starting the next one, then you can take advantage of the
fact that most custom code SDK methods return a promise. A promise handles some
of the complexity of making synchronous calls in an asynchronous environment like
Node, and provides a simple way to handle both success and failure cases through
callback methods.

As we discussed in API Response Patterns, the simplest way to extract the result of a
promise is to use the then function. In your custom code, you can provide two
arguments to the then function.

• A function to invoke on success, which takes a single argument – the success
promise.

• A function to invoke on error, which takes a single argument – the error promise.

Here’s an example of using the then function to handle the result of a promise
function. As you can see, it has two arguments:

• function(result), which sends the getById result.

• function(error), which sends the error message.

service.get('/mobile/custom/incidentreport/attachments/:id',
 function (req, res) {
 req.oracleMobile.storage.getById('attachments', req.params.id, {sync:
true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Chapter 23
How to Send Requests to MCS APIs

23-8

https://github.com/petkaantonov/bluebird

When you need to call more than one API operation from a route definition, you can
use then to chain the calls, so that one call completes successfully before the next one
is called. In this example, the route definition:

1. Posts an incident to the database and returns the result.

2. If the post completes successfully, gets the user info.

3. If the user info is retrieved successfully, posts an analytics event.

Notice that none of the then functions take a second argument (the error function). If
an error (rejected) promise is passed to a then function that doesn’t have a second
argument, then the code skips to the first then function with a second argument. In this
example, because there aren’t any, all errors trickle to the catch function.

service.post('/mobile/custom/incidentreport/incidents',
function (req, res) {

 /* Post the incident and send the response.
 * Then, if the post was successful,
 * get the username,
 * then use the username to post an event.
 *
 **/
 postIncident()
 .then(getUser)
 .then(postEvent)
 .catch(function (errorResult) {
 console.warn(errorResult);
 });

 function postIncident() {
 return req.oracleMobile.database.insert('FIF_Incidents', req.body)
 .then(
 function (successResult) {
 res.status(successResult.statusCode).send(successResult.result);
 // By default, Bluebird wraps this with a
 // resolved promise
 return {status: "resolved"};
 },
 function (errorResult) {
 res.status(errorResult.statusCode).send(errorResult.error);
 throw errorResult;
 }
);
 };

 function getUser() {
 return req.oracleMobile.ums.getUser({fields: 'username'});
 };

 function postEvent(successResult) {
 var userName = successResult.result.username;
 /*
 * Record the NewIncident event
 */
 var timestamp = (new Date()).toISOString();

Chapter 23
How to Send Requests to MCS APIs

23-9

 // Events are posted as an array
 var events = [];
 // Put events in context
 events.push(
 {name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {userName: userName}
 });
 // Start the session
 events.push(
 {name: 'sessionStart',
 type: 'system',
 timestamp: timestamp
 });
 // Add the custom event:
 events.push(
 {name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: req.body.customer}
 });
 // End the session:
 events.push(
 {name: 'sessionEnd',
 type: 'system',
 timestamp: timestamp
 });
 // Post the batch of events. Apply the passed-in session ID to all.
 // The postEvent result is returned by this function
 return req.oracleMobile.analytics.postEvent(
 events,
 {sessionId: req.header('oracle-mobile-analytics-session-id')});
 };
});

Joining Calls
Promise.join lets you make several asynchronous calls and then use the results after
all calls are complete. The promise that the join returns is an array of the results.

For example, the following code makes three calls to the incidentreport custom API
to get information for the result body. After all calls complete successfully, the then
function’s success handler extracts the necessary information to compile the result,
and then sends it.

Note that the join functions aren’t necessarily called in the order in which they occur
in the code. The only guarantee is that all the join functions successfully complete
before a success promise is returned.

/* Promise.join example
 *
 * Promise.join takes multiple promises as arguments.
 * If all promises succeed, then it returns a promise

Chapter 23
How to Send Requests to MCS APIs

23-10

 * that holds an array of the results of the promises.
 */
var Promise = require("bluebird");
module.exports = function(service) {
 ...
 service.get('/mobile/custom/incidentreport/
join/:custId/:incidentId/:techId', function (req, res) {
 // Three functions that return promises.
 var customer = req.oracleMobile.custom.incidentreport.get(
 "customers/" + req.params.custId, {outType: 'json'});
 var incident = req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.incidentId, {outType: 'json'});
 var technician = req.oracleMobile.custom.incidentreport.get(
 "technicians/" + req.params.techId, {outType: 'json'});

 Promise.join(customer, incident, technician).then(
 function (joinResult) {
 // Anonymous handler that's called if all 3 promises succeeded.
 // Harvest a piece of data from each promise result.
 var report = {
 customerContact: joinResult[0].result.email,
 description: joinResult[1].result.title,
 technicianContact: joinResult[2].result.email};
 res.type('application/json');
 res.status(200).send(report);
 },
 function (error) {
 // Anonymous handler to handle errors
 console.info(error);
 res.status(error.statusCode).send(error.error);
 }
);
 })
 ...
}

Waiting for a Dynamic Set of Calls to Complete
Use Promise.all when you have a dynamic set of calls and you must wait until all
calls complete before you take some action. If any of the promises in the array don’t
succeed, then the returned promise is rejected with the reason for rejection.

/* Promise.all example
 *
 * Promise.all takes an array of promises as an argument (promiseArray).
 * If all promises succeed, then it returns a promise that holds
 * an array of the results from the promiseArray's promises.
 */

var Promise = require("bluebird");
module.exports = function(service) {
...
 service.get('/mobile/custom/incidentreport/
all/:custId/:incidentId/:techId', function (req, res) {

Chapter 23
How to Send Requests to MCS APIs

23-11

 // Put the functions that return promises in the array
 promiseArray = [];
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "customers/" + req.params.custId, {outType: 'json'}));
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.incidentId, {outType: 'json'}));
 promiseArray.push(req.oracleMobile.custom.incidentreport.get(
 "technicians/" + req.params.techId, {outType: 'json'}));
 // Call Promise.all with the array
 Promise.all(promiseArray).then(
 function (allResult) {
 var report = {
 customerContact: allResult[0].result.email,
 description: allResult[1].result.title,
 technicianContact: allResult[2].result.email};
 res.type('application/json');
 res.status(200).send(report);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
 })
 ...
}

Creating a Function that Returns a Promise
Here are some examples of creating and using functions that return a promise. The
first example shows how to return a resolved promise and a rejected promise.

// Simple function that returns a resolved promise.
// Note the object passed to Promise.resolve is the
// object the promise is resolved with.
function resolve() {
 return Promise.resolve({status: "resolved"});
}

// Simple function that returns a rejected promise.
// The object passed to Promise.reject describes the error.
function reject() {
 return Promise.reject({error: "rejected"});
}

In this example, the compareEtags function takes a successful (resolved) promise as
its argument. It rejects the promise if the request had an ETag header and the ETag
for the result doesn’t match the ETag passed in the header.

var Promise = require("bluebird");
var etag = require('etag');
module.exports = function(service) {
...

Chapter 23
How to Send Requests to MCS APIs

23-12

 service.get('/mobile/custom/incidentreport/incidents/:id/ifmatch',
function (req, res) {
 function compareEtags(result) {
 thisEtag = result.headers.etag;
 if (req.header('if-match') &&
 thisEtag != req.header('if-match')) {
 return Promise.reject({
 statusCode: 412,
 error: "Precondition Failed" +". If-Match ETag: " +
req.header('if-match') + ", this Etag: " + thisEtag
 })
 } else {
 // result is already a resolved promise
 return result;
 }
 }
 // The custom code SDK get method returns a promise,
 // which is then passed to the custom function compareEtags.
 // On success, compareEtags passes the result from the get.
 // If there's an ETag header, then the function rejects the
 // promise if the result's ETag doesn't match.
 //
 // All rejections are caught by the last then.
 req.oracleMobile.custom.incidentreport.get(
 "incidents/" + req.params.id, {outType: 'json'})
 .then(compareEtags)
 .then(
 function (result) {
 // res.setHeader('Etag', etag(JSON.stringify(result.result)));
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });
...
}

Accessing Mobile Backend Information from Custom Code
The MBE API lets you inquire about the mobile backend that the request is coming
from.

This API has one method.

Chapter 23
Accessing Mobile Backend Information from Custom Code

23-13

mbe.getMBE()
This method retrieves information about the backend that made the request. Note that
this method is synchronous and doesn't return a promise.

Arguments

This method doesn’t have any required arguments and doesn’t take the options and
httpOptions arguments.

Response

The response body is a JSON object that contains the name, version, and id
properties.

Examples

Here’s an example of calling this method to get the backend’s name and version
number to pass to the Notifications API:

 service.get('/mobile/custom/incidentreport/notifications',
 function (req, res) {
 req.oracleMobile.notification.getAll({
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version})
 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the JSON object that the method returns:

{
 name: 'myMBE',
 version: '1.0',
 id: 'ab72abb7-b337-4673-8584-ca5163df5d24'
}

Calling Platform APIs from Custom Code
You can use the req.oracleMobile.<service> methods to call a platform API, where
<service> identifies the platform that you want to call. These subsections provide the
details for each platform:

• Accessing the Analytics API from Custom Code

• Accessing the App Policies API from Custom Code

• Accessing the Database Access API from Custom Code

Chapter 23
Calling Platform APIs from Custom Code

23-14

• Accessing the Devices API from Custom Code

• Accessing the Location API from Custom Code

• Accessing the Location Management API from Custom Code

• Accessing the Notifications API from Custom Code

• Accessing the Storage API from Custom Code

• Accessing the Mobile Users API from Custom Code

Further details, such as the HTTP response status codes and the schema for the
request and response bodies, can be found in REST APIs for Oracle Mobile Cloud
Service.

Accessing the Analytics API from Custom Code
The Analytics API lets you log runtime events, such as a user submitting an inquiry or
placing an item into a shopping cart, so that you can observe performance and usage
patterns.

For information about what you can do with the posted events and how you can report
on them, see Analytics.

This API has one method.

analytics.postEvent(events, options, httpOptions)
This method accepts a batch of events and validates them. If they are valid, they are
sent to the Analytics database. If one or more events in a batch are not valid, then no
events are sent to the Analytics database.

When adding events to the batch, keep the following in mind:

• There are two types of events — custom and system. Use the custom events to
record the events that you want to analyze. Use the system events to group your
custom events. Note that if you don't specify the event type, then the event
defaults to custom. To learn more about each type, see:

– Tracking Sessions and Logging Events for Mobile Apps

– Defining Sessions

• Events are JSON objects. All events must have a name and a timestamp, and
component and properties are optional.

• With custom events, you can add your own custom properties to properties. For
example:

{
 name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: 'Lynn White'}
}

Custom properties must be strings and the property names can’t be reserved
names. For the list of reserved names, see Adding Custom Properties to Events.

Chapter 23
Calling Platform APIs from Custom Code

23-15

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

• You can group events by session. For example, a session can mark the beginning
and ending of a function within the application or when an application starts and
stops. You start a session by adding a system event with the name sessionStart.
You use a sessionEnd event to end the session.

You use a user-defined session ID to associate events with a session. You have
two ways to specify a session ID for an event. You can add a sessionId property
to an event, and you can set the options.sessionId property. Here’s examples of
starting and stopping a session. In these examples, the session ID is set explicitly,
but you can also set it using options.sessionId.

{
 name: 'sessionStart',
 type: 'system',
 sessionId: '2d64d3ff-25c7-4b92-8e49-21884b3495ce',
 timestamp: timestamp
}
{
 name: 'sessionEnd',
 type: 'system',
 sessionId: '2d64d3ff-25c7-4b92-8e49-21884b3495ce',
 timestamp: timestamp
}

• If you want to provide context to a session, then precede the sessionStart event
with a system event named context. You can also intersperse context events with
custom events to indicate changes in context, such as a location change. Here’s
an example of a context event:

{
 name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {
 userName: 'joe',
 model: 'iPhone5,1',
 longitude: '-122.11663',
 latitude: '37.35687',
 manufacturer: 'Apple',
 osName: 'iPhone OS',
 osVersion: '7.1',
 osBuild: '13E28',
 carrier: 'ATT'
}

• To associate the batch of events with an application, include the
options.applicationKey property set to the application's key.

For information about what you can do with the posted events and how you can report
on them, see Analytics.

Arguments

events: Required. This is an array of event objects. To learn about the event
properties, see the POST /mobile/platform/analytics/events operation in REST
APIs for Oracle Mobile Cloud Service.

Chapter 23
Calling Platform APIs from Custom Code

23-16

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

applicationKey Identifies the
application key that
MCS assigns to your
application when you
register it with the
mobile backend. You
can find this key in the
Clients page for the
mobile backend. For
example, 9a5b4150-
c756-4758-87c3-
ec2814289799.

String None

deviceId Identifies the device.
This is the ID that is
returned when you
register the device
with MCS using the
Devices API.

String None

sessionId Specifies a default
session ID. Use a
session ID to group all
events by a user-
defined session.
When present, the
sessionID value in
the event object
overrides this value.

String None

Response

The response body is a JSON object with a message attribute. For example,
{"message":"1 events accepted for processing."}

Example

Here’s an example that records events when incidents are created. After it
successfully saves an incident in the database, it gets the user name for the context
event, and then it records the event. This example uses the promises then() function
to insure that each API call completes successfully before invoking the next, as
described in Chaining Calls.

In this example, the request body looks like this:

{
 title:'Water heater is leaking',
 technician:'jwhite',
 customer:'Lynn Smith'
}

Chapter 23
Calling Platform APIs from Custom Code

23-17

This code expects the request to include the session ID in the Oracle-Mobile-
Analytics-Session-ID header. It sets the options.sessionId property to this value.

service.post('/mobile/custom/incidentreport/incidents',
function (req, res) {

 /* Post the incident and send the response.
 * Then, if the post was successful,
 * get the username,
 * then use the username to post an event.
 *
 **/
 postIncident()
 .then(getUser)
 .then(postEvent)
 .catch(function (errorResult) {
 console.warn(errorResult);
 });

 function postIncident() {
 return req.oracleMobile.database.insert('FIF_Incidents', req.body)
 .then(
 function (successResult) {
 res.send(successResult.statusCode, successResult.result);
 // By default, Bluebird wraps this with a
 // resolved promise
 return {status: "resolved"};
 },
 function (errorResult) {
 res.send(errorResult.statusCode, errorResult.error);
 throw errorResult;
 }
);
 };

 function getUser() {
 return req.oracleMobile.ums.getUser({fields: 'username'});
 };

 function postEvent(successResult) {
 var userName = successResult.result.username;
 /*
 * Record the NewIncident event
 */
 var timestamp = (new Date()).toISOString();
 // Events are posted as an array
 var events = [];
 // Put events in context
 events.push(
 {name: 'context',
 type: 'system',
 timestamp: timestamp,
 properties: {userName: userName}
 });
 // Start the session

Chapter 23
Calling Platform APIs from Custom Code

23-18

 events.push(
 {name: 'sessionStart',
 type: 'system',
 timestamp: timestamp
 });
 // Add the custom event:
 events.push(
 {name: 'NewIncident',
 type: 'custom',
 component: 'Incidents',
 timestamp: timestamp,
 properties: {customer: req.body.customer}
 });
 // End the session:
 events.push(
 {name: 'sessionEnd',
 type: 'system',
 timestamp: timestamp
 });
 // Post the batch of events. Apply the passed-in session ID to all.
 // The postEvent result is returned by this function
 return req.oracleMobile.analytics.postEvent(
 events,
 {sessionId: req.header('oracle-mobile-analytics-session-id')});
 };
});

Accessing the App Policies API from Custom Code
The App Policies API lets you retrieve the app policies that have been set for the
current mobile backend. For example, a mobile backend might have app policies for
the string that appears in an app’s welcome message, the background color, and a
timeout value.

This API has one method.

appConfig.getProperties(httpOptions)
This method retrieves the app policies that have been set for a mobile backend. These
are the policies that you create from the mobile backend’s App Policies page.

See App Policies.

Arguments

This method doesn’t have any required arguments and doesn’t take the options
argument.

Response

The response body is a JSON object where the name/value pairs represent the app
policies.

Chapter 23
Calling Platform APIs from Custom Code

23-19

Examples

Here’s an example of calling this method:

service.get(
 '/mobile/custom/incidentreport/appPolicies',
 function (req, res) {
 req.oracleMobile.appConfig.getProperties().then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "fifBgColor": "blue",
 "fifWelcomeMessage": "Hello",
 "fifShowArg": true
}

Accessing the Database Access API from Custom Code
You can use the Database Access API to retrieve, add, update, and delete rows in a
database table. When you add a row, the API implicitly creates the table if it doesn't
exist.

This API has the following methods:

• database.delete(table, keys, options, httpOptions): Deletes a row.

• database.get(table, keys, options, httpOptions): Retrieves a row from a table.

• database.getAll(table, options, httpOptions): Retrieves specified fields from all
rows in a table.

• database.insert(table, object, options, httpOptions): Adds rows to a table.

• database.merge(table, object, options, httpOptions): Adds or updates rows in a
table.

For detailed information about how to use these methods to create and access
database tables, see Database.

database.delete(table, keys, options, httpOptions)
This method lets you delete a row from the table.

Arguments

table: Required. String. The name of the database table to delete the row from.

Chapter 23
Calling Platform APIs from Custom Code

23-20

keys: Required. String. If the table’s row key is id, then provide the id value.
Otherwise, provide the primary key values in the order in which the primary keys were
specified when the first row was added to the table (which resulted in the creation of
the table). Use an array for a composite key. For example, if the options.primaryKeys
property was set to incidentReport,technician when the table was created, then the
values must be listed in that order, such as ['5690','jwhite'].

options: Optional. JSON object. This object can have the following property in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
keys values. This
option can be useful
for multibyte values.

Boolean false

Response

The response body is a JSON object. If the table’s row key is id, then the response is
an array that contains the deleted row’s id value. Otherwise, the response is the
rowCount indicating if 0 or 1 row was deleted.

Examples

Here’s an example of calling the method to delete a record with the id specified in the
request URI:

service.delete('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.delete(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response for this request.

{"items":[{"id":42}]}

Note that if you have defined primary keys for the table (instead of using the system-
defined id column for the row key), then the response shows the rowCount of the
deleted rows. For example:

{
 "rowCount": 1
}

Chapter 23
Calling Platform APIs from Custom Code

23-21

database.get(table, keys, options, httpOptions)
This method lets you retrieve a row from a table.

Arguments

table: Required. String. The name of the database table to retrieve the row from.

keys: Required. String. If the table’s row key is id, then provide the id value.
Otherwise, provide the primary key values in the order in which the primary keys were
specified when the first row was added to the table (which resulted in the creation of
the table). Use an array for a composite key. For example, if the options.primaryKeys
property was set to incidentReport,technician when the table was created, then the
values must be listed in that order, such as ['5690','jwhite'].

options: Optional. JSON object. This object can have the following property in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
keys values. This
option can be useful
for multibyte values.

Boolean false

expectSingleResul
t

Set to true to return
an object instead of an
array and to return
404 (not found) if the
row for the specified
keys doesn’t exist.

Boolean false

Response

By default, the response body is a JSON object containing an items array with just
one item, which contains the column names and corresponding values. To return a
single object, include options.expectSingleResult in the request and set it to true.

Examples

Here’s an example of calling the method to retrieve the row with the id specified in the
request URI. Because the expectSingleResult option is omitted, the response body
will contain an array, and the response status will always be 200.

service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }

Chapter 23
Calling Platform APIs from Custom Code

23-22

);
 });

Here’s an example of the response for this request.

{
 "items":[
 {
 "id":2,
 "createdBy":"jdoe",
 "createdOn":"2018-01-31T20:14:24.4948+00:00",
 "modifiedBy":"jdoe",
 "modifiedOn":"2018-01-31T20:14:24.4948+00:00",
 "title":"Water heater is leaking",
 "technician":"jwhite",
 "status":"Open",
 "customer":"Lynn Smith",
 "incidentReport":"7890"
 }
]
}

Here’s an example of including the expectSingleResult option with a value of true.
The response body will contain an object, and the response status will be 404 if the
row doesn’t exist.

service.get('/mobile/custom/incidentreport/incidents/:id',
 function (req, res) {
 req.oracleMobile.database.get(
 'FIF_Incidents', req.params.id, {expectSingleResult:
true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response for this request.

{
 "id": 2,
 "createdBy": "jdoe",
 "createdOn": "2018-01-31T20:14:24.4948+00:00",
 "modifiedBy": "jdoe",
 "modifiedOn": "2018-01-31T20:14:24.4948+00:00",
 "title": "Water heater is leaking",
 "technician": "jwhite",
 "status": "Open",
 "customer": "Lynn Smith",

Chapter 23
Calling Platform APIs from Custom Code

23-23

 "incidentReport": "7890"
}

database.getAll(table, options, httpOptions)
This method lets you retrieve the specified fields from all the rows in a table.

Note:

The Database_MaxRows environment policy restricts the number of rows that
the service returns for this call. The default value is 1000. Ensure that this
value is sufficient for your needs. If your request doesn’t return all the rows
that you expected, ask your mobile cloud administrator to increase the
Database_MaxRows value.

Arguments

table: Required. String. The name of the tables to retrieve the rows from.

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table and
fields values. This
option can be useful
for multibyte values.

Boolean false

fields A comma separated
list of the fields to
return. For example,
customer, status.

String If you omit this
argument, then the
method returns all
fields.

Response

The response body is a JSON object containing an items array, where each item
represents a row, and contains the column names and corresponding values.

Examples

Here’s an example of calling the method to retrieve the customer and status fields
from the FIF_Incidents table:

service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {fields: 'customer,status'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);

Chapter 23
Calling Platform APIs from Custom Code

23-24

 }
);
 });

Here’s an example of the response for this request.

{
 "items":[
 {
 "status":"Open",
 "customer":"Lynn Smith"
 },
 {
 "status":"Completed",
 "customer":"John Doe"
 }
]
}

The /database/objects/{table} resource supports a query parameter to filter by
column values which rows to retrieve. This example uses the httpOptions argument
to pass a request query string that filters the results for a matching technician.

service.get('/mobile/custom/incidentreport/incidents',
function (req, res) {
 httpOptions={};
 httpOptions.qs = {technician : 'jwhite'};
 req.oracleMobile.database.getAll(
 'FIF_Incidents', {}, httpOptions).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

database.insert(table, object, options, httpOptions)
This method lets you add one or more rows to a table.

When the Database_CreateTablesPolicy environment policy is allow, then the
following actions can occur:

• If the table doesn't exist, then it is created.

• If a column doesn’t exist, then the table is altered to include it.

• If the value is larger than the column size, then the column is resized.

Ask your mobile cloud administrator about the Database_CreateTablesPolicy
environment policy setting.

Chapter 23
Calling Platform APIs from Custom Code

23-25

Arguments

table: Required. String. The name of the database table to add the row to.

object: Required. JSON object containing the table data. If you’re adding one row,
then you can use this format:

{
 status : 'Open',
 code : '3'
}

If you’re adding multiple rows, then use this format:

[
 {
 status:'Open',
 code:3},
 {
 status:'Completed',
 code:9}
]

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table,
extraFields, and
primaryKeys values.
This option can be
useful for multibyte
values.

Boolean false

extraFields For an implicit table
creation, optionally
provide a comma-
separated list that
specifies which
predefined columns to
include in the table
from amongst id,
createdBy,
createdOn,
modifiedBy, and
modifiedOn. For
example,
createdOn,created
By.
To not include any
predefined columns,
specify none.

String To include all the
predefined columns,
do not include this
property. Note that the
id column is added to
the table automatically
if both the
primaryKeys and
extraFields
properties are absent.

Chapter 23
Calling Platform APIs from Custom Code

23-26

Property Description Type Default

primaryKeys For an implicit table
creation, provide a
URL-encoded,
comma-separated list
specifying which
attributes of the JSON
object in the request
body constitute the
table's primary key.
For example,
lastName,firstNam
e.

N

o

t

e

:

B
e
c
a
u
s
e
y
o
u
c
a
n
’t
r
e
t
r
i
e
v
e
t
h
e
p
r
i
m
a
r
y

String If you do not specify a
primary key, then the
service adds an id
column to the table,
and generates the
column's values
automatically, as long
as you don’t also
include extraFields
without id in the list.

Chapter 23
Calling Platform APIs from Custom Code

23-27

Property Description Type Default

k
e
y
o
r
d
e
r
f
r
o
m
t
h
e
t
a
b
l
e
m
e
t
a
d
a
t
a
,
m
a
k
e
s
u
r
e
t
h
a
t
y
o
u
d
o
c
u
m
e
n
t
t
h
e

Chapter 23
Calling Platform APIs from Custom Code

23-28

Property Description Type Default

o
r
d
e
r
o
f
t
h
e
p
r
i
m
a
r
y
f
i
e
l
d
s
.

Response

The response body is a JSON object. If the table is indexed on id, then the response
is an array of the new rows’ id values. Otherwise, the response is the rowCount of the
records added.

Examples

Here’s an example of calling the method to add two rows. If the table doesn’t exist,
then the service creates it. This table doesn’t have extra fields, and its primary key is
code:

service.post('/mobile/custom/incidentreport/initStatus', function (req,
res) {
 req.oracleMobile.database.insert(
 'FIF_Status',
 [
 {
 status: 'Closed',
 code: '0'},
 {
 status: 'Completed',
 code: '9'}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);

Chapter 23
Calling Platform APIs from Custom Code

23-29

 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response for this request.

{
 "rowCount": 2
}

Note that if a table’s row key is the system-defined id column (instead of user-defined
primary keys), then the response shows the id values for the new rows. For example:

{"items":[{"id":42},{"id":43}]}

database.merge(table, object, options, httpOptions)
This method lets you add or update rows in a table. Whether the operation performs
an add or update depends on whether the table uses id or primary key fields to
uniquely identify rows.

• id field: If you include an id property in the table data in the object argument,
then the operation performs an update. Otherwise it adds the row.

• Primary key fields: If the table uses primary key fields, then the operation performs
an update if a row exists with matching primary key values. Otherwise, it adds the
row.

Note that if you submit a batch of rows, all the rows must have the same set of
columns.

When the Database_CreateTablesPolicy environment policy is allow, then the
following actions can occur:

• If the table doesn't exist, then it is created.

• If a column doesn’t exist, then the table is altered to include it.

• If the value is larger than the column size, then the column is resized.

Ask your mobile cloud administrator about the Database_CreateTablesPolicy
environment policy setting.

Arguments

table: Required. String. The name of the database table to add the row to.

object: Required. JSON object containing the table data. If you’re adding one row,
then you can use this format:

{
 status : 'Open',

Chapter 23
Calling Platform APIs from Custom Code

23-30

 code : '3'
}

If you’re adding multiple rows, then use this format:

[
 {
 status:'Open',
 code:'3'},
 {
 status:'Completed',
 code:'9'}
]

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the table,
extraFields, and
primaryKeys values.
This option can be
useful for multibyte
values.

Boolean false

extraFields For an implicit table
creation, optionally
provide a comma-
separated list that
specifies which
predefined columns to
include in the table
from amongst id,
createdBy,
createdOn,
modifiedBy, and
modifiedOn. For
example,
createdOn,created
By.
To not include any
predefined columns,
specify none.

String To include all the
predefined columns,
do not include this
property. Note that the
id column is added to
the table automatically
if both the
primaryKeys and
extraFields
properties are absent.

Chapter 23
Calling Platform APIs from Custom Code

23-31

Property Description Type Default

primaryKeys For an implicit table
creation, provide a
URL-encoded,
comma-separated list
specifying which
attributes of the JSON
object in the request
body constitute the
table's primary key.
For example,
lastName,firstNam
e.

N

o

t

e

:

B
e
c
a
u
s
e
y
o
u
c
a
n
’t
r
e
t
r
i
e
v
e
t
h
e
p
r
i
m
a
r
y

String If you do not specify a
primary key, then the
operation adds an id
column to the table,
and generates the
column's values
automatically, as long
as you don’t also
include extraFields
without id in the list.

Chapter 23
Calling Platform APIs from Custom Code

23-32

Property Description Type Default

k
e
y
o
r
d
e
r
f
r
o
m
t
h
e
t
a
b
l
e
m
e
t
a
d
a
t
a
,
m
a
k
e
s
u
r
e
t
h
a
t
y
o
u
d
o
c
u
m
e
n
t
t
h
e

Chapter 23
Calling Platform APIs from Custom Code

23-33

Property Description Type Default

o
r
d
e
r
o
f
t
h
e
p
r
i
m
a
r
y
f
i
e
l
d
s
.

Response

The response body is a JSON object. If the table is indexed on id, then the response
is an array of the new rows’ id values. Otherwise, the response is the rowCount.

Examples

Here’s an example of calling the method to add or update two rows. If the table doesn’t
exist, then the operation creates it. This table doesn’t have extra fields, and its primary
key is code:

service.post('/mobile/custom/incidentreport/initStatus', function (req,
res) {
 req.oracleMobile.database.merge(
 'FIF_Status',
 [
 {
 status: 'Closed',
 code: '0'},
 {
 status: 'Completed',
 code: '9'}
],
 {extraFields: 'none', primaryKeys: 'code'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },

Chapter 23
Calling Platform APIs from Custom Code

23-34

 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response for this request.

{
 "rowCount": 2
}

Note that if a table’s row key is the system-defined id column (instead of user-defined
primary keys), then the response shows the id values for the new rows. For example:

{"items":[{"id":42},{"id":43}]}

Accessing the Devices API from Custom Code
Use this API to configure which devices that are running a mobile app can receive
notifications.

This API has the following methods:

• devices.deregister(device, httpOptions): Deregister a mobile client instance that no
longer needs to receive notifications..

• devices.register(device, httpOptions): Register a mobile client instance that
receives notifications.

devices.deregister(device, httpOptions)
Call this method to deregister a a mobile client instance that no longer needs to
receive notifications.

Arguments

device: Required. JSON object that follows the root (mobile client instance) request
schema that’s shown for the POST /mobile/platform/devices/deregister operation
in REST APIs for Oracle Mobile Cloud Service.

If the notificationProvider property isn't provided, then the service assumes APNS
for iOS, GCM for Android, and WNS for Windows.

Examples

Here’s an example of calling this method to deregister a device.

service.post(
 '/mobile/custom/incidentreport/devices/deregister',
 function (req, res) {
 req.oracleMobile.devices.deregister(
 {
 "notificationToken": "b14d6dfbd9d56e09f098",

Chapter 23
Calling Platform APIs from Custom Code

23-35

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 "notificationProvider: "APNS",
 "mobileClient": {
 "id": "my.app.id",
 "platform": "IOS"
 }
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

devices.register(device, httpOptions)
Call this method to register a new device.

Arguments

device: Required. JSON object that follows the root (mobile client instance) request
schema that’s shown for the POST /mobile/platform/devices/register operation in
REST APIs for Oracle Mobile Cloud Service.

Response

The response body is a JSON object that follows the root (mobile client instance)
response schema that’s shown for the POST /mobile/platform/devices/register
operation in REST APIs for Oracle Mobile Cloud Service.

Examples

Here’s an example of calling this method to register a device.

service.post(
 '/mobile/custom/incidentreport/devices/register',
 function (req, res) {
 req.oracleMobile.devices.register(
 {
 "notificationToken": "b14d6dfbd9d56e09f098",
 "notificationProvider: "APNS",
 "mobileClient": {
 "id": "my.app.id",
 "version": "1.0",
 "platform": "IOS"
 }
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);

Chapter 23
Calling Platform APIs from Custom Code

23-36

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 }
);
 });

Here’s an example of the response body:

{
 "id": "27fee547-bdd0-4688-9497-475ec5ed0dfd",
 "notificationToken": "b14d6dfbd9d56e09f098",
 "notificationProvider: "APNS",
 "mobileClient": {
 "id": "my.app.id",
 "user": "joe",
 "version": "1.0",
 "platform": "IOS"
 },
 "modifiedOn": "2015-06-17T18:37:59.424Z"
}

Accessing the Location API from Custom Code
The Location API lets you query about location devices, their assets, and the places
where they’re located.

This API has the following methods:

• location.assets.getAsset(id, httpOptions): Retrieves the asset that matches the ID
or name.

• location.assets.query(queryObject, httpOptions): Retrieves the assets that match
the query parameters that you specify in the request body.

• location.devices.getDevice(id, httpOptions): Retrieves the device that matches the
ID or name.

• location.devices.query(queryObject, httpOptions): Retrieves the devices that
match the query parameters that you specify in the request body.

• location.places.getPlace(id, httpOptions): Retrieves the place that matches the ID
or name.

• location.places.query(queryObject, httpOptions): Retrieves the places that match
the query parameters that you specify in the request body.

You can learn about location devices, assets, and places in Location.

See Accessing the Location Management API from Custom Code for the methods to
add, delete, and update assets, devices, and places.

location.assets.getAsset(id, httpOptions)
Call this method to retrieve the asset that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

• String that contains the ID of the asset to retrieve.

Chapter 23
Calling Platform APIs from Custom Code

23-37

• JSON object that contains either the id property or the name property, where the
property value indicates the search value. If the object contains both properties,
then the SDK retrieves the asset with the matching name.

Response

The response body is a JSON object that follows the Asset schema that is shown for
the GET /mobile/platform/location/assets and GET /mobile/platform/location/
assets/{id} operations in REST APIs for Oracle Mobile Cloud Service

Examples

Here’s an example of calling this method to retrieve an asset by ID.

service.get(
 '/mobile/custom/incidentreport/assets/:id',
 function (req, res) {
 req.oracleMobile.location.assets.getAsset(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of calling this method to retrieve an asset by name.

service.get(
 '/mobile/custom/incidentreport/assets/:name',
 function (req, res) {
 req.oracleMobile.location.assets.getAsset({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "id":111,
 "createdOn":"2015-08-06T18:37:59.424Z",
 "createdBy":"jdoe",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",
 "name":"RC_WH_01_F01_B023",
 "label":"forklift",
 "description":"Forklift in the FixItFast Warehouse in Redwood City",
 "lastKnownLocation":{

Chapter 23
Calling Platform APIs from Custom Code

23-38

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 "gpsPoint":{
 "latitude":37.5548,
 "longitude":-121.1566
 }
 },
 "devices":[
 {
 "id":345,
 "createdOn":"2015-08-06T18:37:59.424Z",
 "createdBy":"jdoe",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "modifiedBy":"tsmith",
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon in FixitFast Warehouse in Redwood City",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"
 }
 },
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status":"Active",
 "visibility":"Public"
 },
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/345"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/345"
 }
]
 }
],
 "attributes":{
 "EquipmentManufacturer":"Abc Company",
 "beaconID":"AE2924505-66045"
 },
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/assets/111"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/111"
 }
]
}

Chapter 23
Calling Platform APIs from Custom Code

23-39

location.assets.query(queryObject, httpOptions)
Call this method to retrieve the assets that match the query parameters that you
specify in queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For
details, see the body parameter for the POST /mobile/platform/location/assets/
query operation in REST APIs for Oracle Mobile Cloud Service. If you don’t have any
query parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the
Asset schema that is shown for the POST /mobile/platform/location/assets/query
operation in REST APIs for Oracle Mobile Cloud Service. The result also contains
paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Examples

Here’s an example of calling this method. It returns all assets that have the string 1225
in the name or description (case-insensitive).

service.get(
 '/mobile/custom/incidentreport/assets,
 function (req, res) {
 req.oracleMobile.location.assets.query({"search":"1225"}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "items":[
 {
 "devices":[
 {
 "id":3401,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",

Chapter 23
Calling Platform APIs from Custom Code

23-40

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
3401"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/
3401"}
],
 "attributes":{
 "manufacturer":"Example Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"hospital bed",
 "lastKnownLocation":{
 "placeId":244},
 "id":333,
 "createdBy":"jdoe",
 "name":"hospital bed #233",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/assets/333"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/333"}
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"},
 "description":"model 1225 hospital bed"},
 {
 "devices":[
 {
 "id":648,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",

Chapter 23
Calling Platform APIs from Custom Code

23-41

 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
648"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/648"}
],
 "attributes":{
 "manufacturer":"Example Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"hospital bed",
 "lastKnownLocation":{
 "placeId":360},
 "id":888,
 "createdBy":"jdoe",
 "name":"hospital bed #233",
 "createdOn":"2015-10-16T09:24:41.354Z",
 "modifiedOn":"2015-10-16T09:24:41.354Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/assets/888"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/assets/888"}
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"},
 "description":"model 1225 hospital bed"}
],
 "totalResults":2,
 "offset":0,
 "count":2,
 "hasMore":false
}

Chapter 23
Calling Platform APIs from Custom Code

23-42

location.devices.getDevice(id, httpOptions)
Call this method to retrieve the device that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

• String that contains the ID of the device to retrieve.

• JSON object that contains either the id property or the name property, where the
property value indicates the search value. If the object contains both properties,
then the SDK retrieves the device with the matching name.

Response

The response body is a JSON object that follows the Location device schema that is
shown for the GET /mobile/platform/location/devices and GET /mobile/
platform/location/devices/{id} operations in REST APIs for Oracle Mobile Cloud
Service.

Examples

Here’s an example of calling this method to retrieve a device by ID.

service.get(
 '/mobile/custom/incidentreport/devices/:id',
 function (req, res) {
 req.oracleMobile.location.devices.getDevice(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of calling this method to retrieve a device by name.

service.get(
 '/mobile/custom/incidentreport/devices/:name',
 function (req, res) {

req.oracleMobile.location.devices.getDevice({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Chapter 23
Calling Platform APIs from Custom Code

23-43

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Here’s an example of the response body:

{
 "id": 12345,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-08T07:22:44.654Z",
 "modifiedBy": "tsmith",
 "name": "RC_WH_01_F01_B001",
 "description": "Beacon on 1st Floor in FixitFast Warehouse in Redwood
City",
 "place":
 {
 "id": 111,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-06T18:37:59.424Z",
 "modifiedBy": "jdoe",
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "parentPlace": 42,
 "description": "FixitFast Warehouse in Redwood City",
 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,
 "longitude": -121.1566
 }
 },
 "attributes" : {
 "equipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/111"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/111"
 }
]
 },
 "beacon": {
 "iBeacon" : {
 "uuid": "B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major": "1.0",
 "minor": "1.1"
 }
 },
 "attributes" : {
 "manufacturer": "Abc Company",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D"
 "status": "Active",
 "visibility": "Public"
 },

Chapter 23
Calling Platform APIs from Custom Code

23-44

 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/12345"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/12345"
 }
]
}

location.devices.query(queryObject, httpOptions)
Call this method to retrieve the devices that match the query parameters that you
specify in queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For
details, see the body parameter for the POST /mobile/platform/location/devices/
query operation in REST APIs for Oracle Mobile Cloud Service. If you don’t have any
query parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the
Location device schema that is shown for the POST /mobile/platform/location/
devices/query operation in REST APIs for Oracle Mobile Cloud Service The result
also contains paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Examples

Here’s an example of calling this method. It returns the devices that have the string
warehouse in either the name or description (case-insensitive).

service.get(
 '/mobile/custom/incidentreport/devices,
 function (req, res) {
 req.oracleMobile.location.devices.query({{ "search":
"Warehouse"}}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }

Chapter 23
Calling Platform APIs from Custom Code

23-45

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

);
 });

Here’s an example of the response body:

{
 "items":[
 {
 "id":33,
 "name":"RC_WH_01_B09_C004",
 "description":"Beacon on 2nd Floor NW in FixItFast Warehouse
in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":12,
 "name":"RC_WH_01_F01_B001",
 "description":"Beacon on 1st Floor SE in FixItFast Warehouse
in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":61,
 "name":"RC_WH_01_F01_B008",
 "description":"Beacon on 2nd Floor SW in FixItFast Warehouse
in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":58,
 "name":"RC_WH_02_F01_B011",
 "description":"Beacon on 1st Floor NW in FixitFast Warehouse
in Redwood City",
 "protocol":"altBeacon"},
 {
 "id":114,
 "name":"RC_WH_01_K22_A999",
 "description":"Beacon on 3rd Floor NW in FixitFast Warehouse
in Redwood City",
 "protocol":"altBeacon"}
],
 "totalResults":5,
 "offset":0,
 "count":5,
 "hasMore":false
}

location.places.getPlace(id, httpOptions)
Call this method to retrieve the place that matches the specified ID or name.

Arguments

id: Required. Must be one of the following:

• String that contains the ID of the place to retrieve.

Chapter 23
Calling Platform APIs from Custom Code

23-46

• JSON object that contains either the id property or the name property, where the
property value indicates the search value. If the object contains both properties,
then the SDK retrieves the place with the matching name.

Response

The response body is a JSON object that follows the Place schema that is shown for
the GET /mobile/platform/location/places and GET /mobile/platform/location/
places/{id} operations in REST APIs for Oracle Mobile Cloud Service.

Examples

Here’s an example of calling this method to retrieve a place by ID.

service.get(
 '/mobile/custom/incidentreport/places/:id',
 function (req, res) {
 req.oracleMobile.location.places.getPlace(req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of calling this method to retrieve a place by name.

service.get(
 '/mobile/custom/incidentreport/places/:name',
 function (req, res) {
 req.oracleMobile.location.places.getPlace({name:req.params.name}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "id": 111,
 "createdOn": "2015-08-06T18:37:59.424Z",
 "createdBy": "jdoe",
 "modifiedOn": "2015-08-06T18:37:59.424Z",
 "modifiedBy": "jdoe",
 "name": "FixitFast Redwood City Warehouse",
 "label": "FixitFast Warehouse",
 "parentPlace": 42,
 "description": "FixitFast Warehouse in Redwood City",

Chapter 23
Calling Platform APIs from Custom Code

23-47

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 "address" : {
 "gpsPoint" : {
 "latitude": 37.5548,
 "longitude": -121.1566
 }
 },
 "attributes" : {
 "equipmentManufacturer": "Abc Corp"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/111"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/111"
 }
]
}

location.places.query(queryObject, httpOptions)
Call this method to retrieve the places and, optionally, the associated devices that
match the query properties that you specify in the queryObject.

Arguments

queryObject: Required. String. The parameters that describe the desired results. For
details, see the body parameter for the POST /mobile/platform/location/places/
query operation in REST APIs for Oracle Mobile Cloud Service. If you don’t have any
query parameters, then use an empty body ({}).

Response

The response body is a JSON object that contains an array of items that follow the
Place schema that is shown for the POST /mobile/platform/location/places/query
operation in REST APIs for Oracle Mobile Cloud Service. The result also contains
paging information. For example:

"totalResults":2,
"offset":0,
"limit":40,
"count":2,
"hasMore":false

Examples

Here’s an example of calling this method. It returns all places that have the string
warehouse in the name or description (case-insensitive). By default, the response
includes the children array, which contains information about descendent places. In

Chapter 23
Calling Platform APIs from Custom Code

23-48

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

this request, the includeDescendantsInResult property is set to none. Therefore the
request doesn't include that array.

service.get(
 '/mobile/custom/incidentreport/places',
 function (req, res) {

req.oracleMobile.location.places.query({"search":"warehouse","includeDescen
dantsInResult":"none" }).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body:

{
 "items":[
 {
 "devices":[
 {
 "id":12345,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
12345"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/
12345"}
],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast
Warehouse in Redwood City"}

Chapter 23
Calling Platform APIs from Custom Code

23-49

],
 "label":"FixItFast Warehouse",
 "id":112,
 "createdBy":"jdoe",
 "name":"FixItFast Redwood City Warehouse",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-06T18:37:59.424Z",
 "address":{
 "gpsPoint":{
 "latitude":122,
 "longitude":37}},
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/places/112"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/places/112"}
],
 "attributes":{
 "hours":"9am-6pm"},
 "hasChildren":false,
 "parentPlace":42,
 "description":"FixItFast Warehouse in Redwood City"},
 {
 "devices":[
 {
 "id":111,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B001",
 "createdOn":"2015-08-06T18:37:59.424Z",
 "modifiedOn":"2015-08-08T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-AFF9-25556B57FE6D",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
111"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/111"}
],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 1st Floor in FixitFast

Chapter 23
Calling Platform APIs from Custom Code

23-50

Warehouse in Redwood City"},
 {
 "id":222,
 "createdBy":"jdoe",
 "name":"RC_WH_01_F01_B996",
 "createdOn":"2015-08-08T18:37:59.424Z",
 "modifiedOn":"2015-08-12T07:22:44.654Z",
 "beacon":{
 "iBeacon":{
 "uuid":"B9407F30-F5F8-466E-
AFF9-25552345908234DD0",
 "major":"1.0",
 "minor":"1.1"}},
 "modifiedBy":"tsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/devices/
222"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/devices/222"}
],
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-
DD36366F899D",
 "status":"Active",
 "visibility":"Public"},
 "description":"Beacon on 2nd Floor in FixitFast
Warehouse in Redwood City"}
],
 "label":"FixItFast Warehouse",
 "id":325,
 "createdBy":"jdoe",
 "name":"FixItFast Palo Alto Warehouse",
 "createdOn":"2015-08-06T19:27:59.424Z",
 "modifiedOn":"2015-08-06T19:27:59.424Z",
 "address":{
 "gpsCircle":{
 "latitude":123,
 "longitude":37,
 "radius":300}},
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/location/places/325"},
 {
 "rel":"self",
 "href":"/mobile/platform/location/places/325"}
],
 "attributes":{
 "hours":"9am-6pm"},
 "hasChildren":false,

Chapter 23
Calling Platform APIs from Custom Code

23-51

 "parentPlace":42,
 "description":"FixItFast Warehouse in Palo Alto"}
],
 "totalResults":2,
 "offset":0,
 "count":2,
 "hasMore":false
}

Accessing the Location Management API from Custom Code
The Location Management API lets you create, update, and delete location devices,
places, and assets.

You can learn about location devices, assets, and places in Location.

The Authorization request header for these methods must use OAUTH. Otherwise
the methods return a 404 HTTP status code.

This API has the following methods:

• location.assets.register(assets, context, httpOptions): Creates one or more assets.

• location.assets.remove(id, context, httpOptions): Deletes assets.

• location.assets.update(id, asset, context, httpOptions): Updates a single asset.

• location.devices.register(devices, context, httpOptions): Creates one or more
location devices.

• location.devices.remove(id, context, httpOptions): Deletes location devices.

• location.devices.update(id, device, context, httpOptions): Updates a single location
device.

• location.places.register(places, context, httpOptions): Creates one or more places.

• location.places.remove(id, context, httpOptions): Deletes places.

• location.places.removeCascade(id, context, httpOptions): Deletes the place that
matches the ID as well as all its child places.

• location.places.update(id, place, context, httpOptions): Updates a single place.

For methods to query and retrieve information about assets, devices, and places, see
Accessing the Location API from Custom Code.

Location Management Context Argument
All the Location Management API methods require a context argument, which is a
JSON object with the following properties. This information is required to get
authorization to manage location information. In addition, the mobile app must use
OAuth authorization.

Note that the custom code can call mbe.getMBE() to get the mobile backend
information.

Chapter 23
Calling Platform APIs from Custom Code

23-52

Property Desc Type

mbe The name of the mobile
backend.

String

username The name of a user who is an
MCS team member and has
the
MobileEnvironment_Syste
m role. Team members and
their roles are managed from
Oracle Cloud Infrastructure
Classic Console. SeeAssign
MCS Team Member Roles.

String

version The version of the mobile
backend.

String

Note:

If the Authorization request header doesn’t use OAuth, then the methods
return 404. If the username is not an MCS team member who has the
MobileEnvironment_System role, then the methods return 403.

location.assets.register(assets, context, httpOptions)
This method lets you create one or more assets.

Arguments

assets: Required. JSON object that follows the request root schema (Assets Array)
that is shown for the POST /mobile/system/locationManagement/assets operation in
REST APIs for Oracle Mobile Cloud Service. Here’s an example:

{
 "items":[
 {
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "lastKnownLocation":{
 "placeId":244
 },
 "devices":[
 1111
],
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"
 }
 }
]
}

Chapter 23
Calling Platform APIs from Custom Code

23-53

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

context: Required. JSON object as described in Location Management Context
Argument.

Response

The response body, which shows the stored assets, is a JSON object that follows the
response root schema (Assets Array) that is shown for the POST /mobile/system/
locationManagement/assets operation in REST APIs for Oracle Mobile Cloud
Service.

Examples

In this example, the request body would look like this:

{
 "userName":"anAdministrator",
 "assets": {
 "items":[
 {
 "name":"hospital bed #233",
 "label":"hospital bed",
 "description":"model 1225 hospital bed",
 "attributes":{
 "EquipmentManufacturer":"Example Company",
 "SJId":"6754843090"
 }
 }
]
 }
}

This example puts the username in the context object and passes assets as the
request body.

service.post('/mobile/custom/incidentreport/assets', function (req, res) {
 req.oracleMobile.location.assets.register(
 req.body.assets,
 {
 username: req.body.userName,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 }).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.sta).send(sCode, error.error);
 }
);
});

Chapter 23
Calling Platform APIs from Custom Code

23-54

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Here’s an example of the response body.

{
 "items": [
 {
 "id": 12,
 "createdOn": "2016-11-05T02:33:36.154Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-05T02:33:36.154Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": null,
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/12"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/assets/12"
 }
]
 }
]
}

location.assets.remove(id, context, httpOptions)
Use this method to delete assets.

Arguments

id: Required. IDs of the assets to remove. This argument can be either a single value
or an array of values.

context: Required. JSON object as described in Location Management Context
Argument.

Response

If you provide a single value, then the service doesn’t return a response body. The
status code is 204 if the asset was deleted and 404 if it doesn’t exist.

If you provide an array of IDs, then the status code is 200 for a successful request.
The response contains a batch object with an array of responses for the individual
delete requests. For schema details, see the Delete Multiple Assets operation in REST
APIs for Oracle Mobile Cloud Service.

Chapter 23
Calling Platform APIs from Custom Code

23-55

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Here’s an example:

{
 "batch":[
 {
 "body":{
 "id":353,
 "message":"asset was deleted successfully."},
 "code":200},
 {
 "body":{
 "id":354,
 "message":"asset was deleted successfully."},
 "code":200},
 {
 "body":{
 "id":355,
 "message":"asset not found."},
 "code":404}
]
}

Examples

In this example, if the id query parameter contains multiple IDs, then it converts the
query string into an array.

Note that the user name of the user who has the MobileEnvironment_System role is
passed in the user query parameter.

service.delete('/mobile/custom/location/assets', function(req,res) {
 var contextObject = {
 username: req.query.user,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 };
 var id = req.query.id.split(',');
 if (id.length == 0){
 id = req.query.id;
 }
 req.oracleMobile.location.assets.remove(
 id,
 contextObject
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Chapter 23
Calling Platform APIs from Custom Code

23-56

location.assets.update(id, asset, context, httpOptions)
This method lets you update an asset.

Arguments

id: Required. The ID of the asset. This ID must be an existing asset ID.

asset: Required. JSON object that follows the request root schema (Asset) that is
shown for the PUT /mobile/system/locationManagement/assets/{id} operation in
REST APIs for Oracle Mobile Cloud Service. Here’s an example:

{
 "lastKnownLocation":{
 "gpsPoint":{
 "latitude":37.5548,
 "longitude":-121.1566
 }
 },
 "devices":[
 11
]
}

context: Required. JSON object as described in Location Management Context
Argument.

Response

The response body, which shows the updated asset, is a JSON object that follows the
response root schema (Asset) that is shown for the PUT /mobile/system/
locationManagement/assets/{id} operation in REST APIs for Oracle Mobile Cloud
Service.

Examples

In this example, the request body would look like this:

{
 "userName":"anAdministrator",
 "asset":{
 "lastKnownLocation":{
 "gpsPoint":{
 "latitude":37.5548,
 "longitude":-121.1566
 }
 },
 "devices":[
 11
]
 }
}

Chapter 23
Calling Platform APIs from Custom Code

23-57

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

This example puts the username in the context object and passes asset as the
request body.

service.put('/mobile/custom/incidentreport/assets/:id', function (req,
res) {
 req.oracleMobile.location.assets.update(
 req.params.id,
 req.body.asset,
 {
 username: req.body.userName,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 }).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T21:26:38.318Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:18:24.157Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": {
 "gpsPoint": {
 "longitude": -121.1566,
 "latitude": 37.5548
 }
 },
 "devices": [
 {
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T18:01:18.531Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",

Chapter 23
Calling Platform APIs from Custom Code

23-58

 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "status": "Active",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Public"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"
 }
]
 }
],
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/assets/11"
 }
]
}

location.devices.register(devices, context, httpOptions)
This method lets you create one or more devices.

Arguments

devices: Required. JSON object that follows the request root schema (Devices Array)
that is shown for the POST /mobile/system/locationManagement/devices operation
in REST APIs for Oracle Mobile Cloud Service. Here’s an example:

{
 "items":[
 {
 "name":"RC_WH_01_F01_B006",
 "description":"Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",

Chapter 23
Calling Platform APIs from Custom Code

23-59

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 "asset":333,
 "beacon":{
 "altBeacon":{
 "id1":"B9407F30-F5F8-466E",
 "id2":"AFF9",
 "id3":"25556B57FE6D"
 }
 },
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status":"Active",
 "visibility":"Public"
 }
 }
]
}

context: Required. JSON object as described in Location Management Context
Argument.

Response

The response body, which shows the stored devices, is a JSON object that follows the
response root schema (Devices Array) that is shown for the POST /mobile/system/
locationManagement/devices operation in REST APIs for Oracle Mobile Cloud
Service.

Examples

In this example, the request body would look like this:

{
 "userName":"anAdministrator",
 "devices": {
 "items":[
 {
 "name":"RC_WH_01_F01_B006",
 "description":"Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon":{
 "altBeacon":{
 "id1":"B9407F30-F5F8-466E",
 "id2":"AFF9",
 "id3":"25556B57FE6D"
 }
 },
 "attributes":{
 "manufacturer":"Abc Company",
 "manufacturerId":"10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status":"Active",
 "visibility":"Public"
 }
 }
]

Chapter 23
Calling Platform APIs from Custom Code

23-60

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 }
}

This example puts the username in the context object and passes devices as the
request body.

service.post('/mobile/custom/incidentreport/devices, function (req, res) {
 req.oracleMobile.location.devices.register(
 req.body.devices,
 {
 username: req.body.userName,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 }).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "items": [
 {
 "id": 10,
 "createdOn": "2016-11-08T15:54:51.603Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T15:54:51.603Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B006",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "status": "Active",
 "visibility": "Public"
 },
 "links": [
 {
 "rel": "canonical",

Chapter 23
Calling Platform APIs from Custom Code

23-61

 "href": "/mobile/platform/location/devices/10"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/10"
 }
]
 }
]
}

location.devices.remove(id, context, httpOptions)
Use this method to delete devices.

Arguments

id: Required. IDs of the devices to remove. This argument can be either a single value
or an array of values.

context: Required. JSON object as described in Location Management Context
Argument.

Response

If you provide a single value, then the service doesn’t return a response body. The
status code is 204 if the device was deleted and 404 if it doesn’t exist.

If you provide an array of IDs, then the status code is 200 for a successful request.
The response contains a batch object with an array of responses for the individual
delete requests. For schema details, see the Delete Multiple Devices operation in
REST APIs for Oracle Mobile Cloud Service.

Here’s an example:

{
 "batch":[
 {
 "code":200,
 "body":{
 "id":121,
 "message":"device was deleted successfully."
 }
 },
 {
 "code":200,
 "body":{
 "id":122,
 "message":"device was deleted successfully."
 }
 },
 {
 "code":404,
 "body":{
 "id":123,
 "message":"device not found."

Chapter 23
Calling Platform APIs from Custom Code

23-62

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 }
 }
]
}

Examples

In this example, if the id query parameter contains multiple IDs, then it converts the
query string into an array.

Note that the user name of the user who has the MobileEnvironment_System role is
passed in the user query parameter.

service.delete('/mobile/custom/location/devices', function(req,res) {
 var contextObject = {
 username: req.query.user,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 };
 var id = req.query.id.split(',');
 if (id.length == 0){
 id = req.query.id;
 }
 req.oracleMobile.location.devices.remove(
 id,
 contextObject
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

location.devices.update(id, device, context, httpOptions)
This method lets you update a device.

Arguments

id: Required. The ID of the device. This ID must be an existing device ID.

device: Required. JSON object that follows the request root schema (Device) that is
shown for the PUT /mobile/system/locationManagement/device/{id} operation in
REST APIs for Oracle Mobile Cloud Service. Here’s an example:

{
 "attributes":{
 "status":"Inactive",
 "visibility":"Private"

Chapter 23
Calling Platform APIs from Custom Code

23-63

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 }
}

context: Required. JSON object as described in Location Management Context
Argument.

Response

The response body, which shows the updated device, is a JSON object that follows
the response root schema (Device) that is shown for the PUT /mobile/system/
locationManagement/devices/{id} operation in REST APIs for Oracle Mobile Cloud
Service.

Examples

In this example, the request body would look like this:

{
 "userName":"anAdministrator",
 "device":{
 "attributes":{
 "status":"Inactive",
 "visibility":"Private"
 }
 }
}

This example puts the username in the context object and passes device as the
request body.

service.put('/mobile/custom/incidentreport/device/:id', function (req,
res) {
 req.oracleMobile.location.device.update(
 req.params.id,
 req.body.device,
 {
 username: req.body.userName,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 }).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Chapter 23
Calling Platform APIs from Custom Code

23-64

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:45:47.545Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in Redwood
City",
 "asset": {
 "id": 11,
 "createdOn": "2016-11-08T21:26:38.318Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:18:24.157Z",
 "modifiedBy": "anAdministrator",
 "name": "hospital bed #233",
 "label": "hospital bed",
 "description": "model 1225 hospital bed",
 "lastKnownLocation": {
 "gpsPoint": {
 "longitude": -121.1566,
 "latitude": 37.5548
 }
 },
 "attributes": {
 "EquipmentManufacturer": "Example Company",
 "SJId": "6754843090"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/assets/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/assets/11"
 }
]
 },
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "status": "Inactive",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",
 "visibility": "Private"
 },
 "links": [

Chapter 23
Calling Platform APIs from Custom Code

23-65

 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"
 }
]
}

location.places.register(places, context, httpOptions)
This method lets you create one or more places.

Arguments

places: Required. JSON object that follows the request root schema (Places Array)
that is shown for the POST /mobile/system/locationManagement/places operation in
REST APIs for Oracle Mobile Cloud Service. Here’s an example:

{
 "items":[
 {
 "name":"FixItFast Redwood City Warehouse",
 "label":"FixItFast Warehouse",
 "parentPlace":42,
 "description":"FixItFast Warehouse in Redwood City",
 "address":{
 "gpsPoint":{
 "latitude":122,
 "longitude":37
 }
 },
 "devices":[
 12345
],
 "attributes":{
 "hours":"9am-6pm"
 }
 }
]
}

context: Required. JSON object as described in Location Management Context
Argument.

Response

The response body, which shows the stored places, is a JSON object that follows the
response root schema (Places Array) that is shown for the POST /mobile/system/
locationManagement/places operation in REST APIs for Oracle Mobile Cloud
Service.

Chapter 23
Calling Platform APIs from Custom Code

23-66

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Examples

In this example, the request body would look like this:

{
 "userName":"anAdministrator",
 "places": {
 "items":[
 {
 "name":"FixItFast Redwood City Warehouse",
 "label":"FixItFast Warehouse",
 "description":"FixItFast Warehouse in Redwood City",
 "address":{
 "gpsPoint":{
 "latitude":89,
 "longitude":37
 }
 },
 "attributes":{
 "hours":"9am-6pm"
 }
 }
]
 }
}

This example puts the username in the context object and passes places as the
request body.

service.post('/mobile/custom/incidentreport/places', function (req, res) {
 req.oracleMobile.location.places.register(
 req.body.places,
 {
 username: req.body.userName,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 }).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "items": [
 {

Chapter 23
Calling Platform APIs from Custom Code

23-67

 "id": 10,
 "createdOn": "2016-11-08T17:55:21.816Z",
 "createdBy": "john.doe",
 "modifiedOn": "2016-11-08T17:55:21.816Z",
 "modifiedBy": "john.doe",
 "name": "FixItFast Redwood City Warehouse",
 "label": "FixItFast Warehouse",
 "description": "FixItFast Warehouse in Redwood City",
 "hasChildren": false,
 "address": {
 "gpsPoint": {
 "longitude": 37,
 "latitude": 89
 }
 },
 "attributes": {
 "hours": "9am-6pm"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/10"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/10"
 }
]
 }
]
}

location.places.remove(id, context, httpOptions)
Use this method to delete places.

Arguments

id: Required. IDs of the places to remove. This argument can be either a single value
or an array of values.

context: Required. JSON object as described in Location Management Context
Argument.

Response

If you provide a single value, then the service doesn’t return a response body. The
status code is 204 if the place was deleted and 404 if it doesn’t exist.

If you provide an array of IDs, then the status code is 200 for a successful request.
The response contains a batch object with an array of responses for the individual
delete requests. For schema details, see the Delete Multiple Places operation in REST
APIs for Oracle Mobile Cloud Service.

Chapter 23
Calling Platform APIs from Custom Code

23-68

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Here’s an example:

{
 "batch":[
 {
 "body":{
 "id":222,
 "message":"place was deleted successfully."},
 "code":200},
 {
 "body":{
 "id":223,
 "message":"place was deleted successfully."},
 "code":200},
 {
 "body":{
 "id":224,
 "message":"place not found."},
 "code":404}
]
}

Examples

In this example, if the id query parameter contains multiple IDs, then it converts the
query string into an array.

Note that the user name of the user who has the MobileEnvironment_System role is
passed in the user query parameter.

service.delete('/mobile/custom/location/places, function(req,res) {
 var contextObject = {
 username: req.query.user,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 };
 var id = req.query.id.split(',');
 if (id.length == 0){
 id = req.query.id;
 }
 req.oracleMobile.location.places.remove(
 id,
 contextObject
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Chapter 23
Calling Platform APIs from Custom Code

23-69

location.places.removeCascade(id, context, httpOptions)
Use this method to delete a parent place and all its child places.

Arguments

id: Required. The ID of the place. This ID must be an existing place ID.

context: Required. JSON object as described in Location Management Context
Argument.

Examples

In this example, if the cascade query parameter is true, then the method calls
removeCascade() instead of remove().

Note that the user name of the user who has the MobileEnvironment_System role is
passed in the user query parameter.

service.delete('/mobile/custom/location/places/:id', function(req,res) {
 var contextObject = {
 username: req.query.user,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 };
 var removeFunc = req.oracleMobile.location.places.remove;
 if (req.query.cascade == 'true') {
 removeFunc = req.oracleMobile.location.places.removeCascade;
 }
 removeFunc(
 req.params.id,
 contextObject
).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
)
 });

location.places.update(id, place, context, httpOptions)
This method lets you update a place.

Arguments

id: Required. The ID of the place. This ID must be an existing place ID.

Chapter 23
Calling Platform APIs from Custom Code

23-70

place: Required. JSON object that follows the request root schema (Place) that is
shown for the PUT /mobile/system/locationManagement/place/{id} operation in
REST APIs for Oracle Mobile Cloud Service. Here’s an example:

{
 "address":{
 "gpsPoint":{
 "latitude":-121.1566,
 "longitude":37.5548
 }
 },
 "devices":[
 1111
]
}

context: Required. JSON object as described in Location Management Context
Argument.

Response

The response body, which shows the updated place, is a JSON object that follows the
response root schema (Place) that is shown for the PUT /mobile/system/
locationManagement/places/{id} operation in REST APIs for Oracle Mobile Cloud
Service.

Examples

In this example, the request body would look like this:

{
 "userName":"anAdministrator",
 "place":{
 "address":{
 "gpsPoint":{
 "latitude":-89,
 "longitude":37
 }
 },
 "devices":[
 11
]
 }
}

This example puts the username in the context object and passes place as the
request body.

service.put('/mobile/custom/incidentreport/place/:id', function (req, res)
{
 req.oracleMobile.location.place.update(
 req.params.id,
 req.body.place,
 {

Chapter 23
Calling Platform APIs from Custom Code

23-71

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 username: req.body.userName,
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version
 }).then(
 function (result) {
 res.type('application/json');
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.dir(error);
 res.status(error.statusCode).send(error.error);
 }
);
});

Here’s an example of the response body.

{
 "id": 11,
 "createdOn": "2016-11-08T23:36:55.371Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T23:37:45.576Z",
 "modifiedBy": "anAdministrator",
 "name": "FixItFast Redwood City Warehouse",
 "label": "FixItFast Warehouse",
 "description": "FixItFast Warehouse in Redwood City",
 "hasChildren": false,
 "address": {
 "gpsPoint": {
 "longitude": 37,
 "latitude": 89
 }
 },
 "devices": [
 {
 "id": 11,
 "createdOn": "2016-11-08T18:01:18.531Z",
 "createdBy": "anAdministrator",
 "modifiedOn": "2016-11-08T22:45:47.545Z",
 "modifiedBy": "anAdministrator",
 "name": "RC_WH_01_F01_B016",
 "description": "Beacon on 2nd Floor in FixitFast Warehouse in
Redwood City",
 "beacon": {
 "altBeacon": {
 "id1": "B9407F30-F5F8-466E",
 "id2": "AFF9",
 "id3": "25556B57FE6D"
 }
 },
 "attributes": {
 "manufacturer": "Abc Company",
 "status": "Inactive",
 "manufacturerId": "10D39AE7-020E-4467-9CB2-DD36366F899D",

Chapter 23
Calling Platform APIs from Custom Code

23-72

 "visibility": "Private"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/devices/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/devices/11"
 }
]
 }
],
 "attributes": {
 "hours": "9am-6pm"
 },
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/platform/location/places/11"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/location/places/11"
 }
]
}

Accessing the Notifications API from Custom Code
You can use the Notifications API to send a message to the mobile app users, such as
an alert about an upcoming event or news that the user might be interested in. You
can specify a target for the message such as a device, user, or operating system, and
you can schedule the message. You can also inquire about notifications, and delete
scheduled notifications that haven’t been sent.

For more information about the ways in which you can use notifications, see
Notifications.

This API has the following methods:

• notification.getAll(context, options, httpOptions): Retrieves all notifications.

• notification.getById(id, context, options, httpOptions): Retrieves a notification for a
specific notification ID.

• notification.post(notification, context, options, httpOptions): Creates a notification.

• notification.remove(id, context, options, httpOptions): Deletes a notification.

Notifications Context Argument
All the Notifications API methods require a context argument, which is a JSON object
with the following properties. This information is required to get authorization to send
and view the notifications.

Chapter 23
Calling Platform APIs from Custom Code

23-73

Note that the custom code can call mbe.getMBE() to get this information.

Property Desc Type

mbe The name of the mobile
backend that’s associated with
the notification.

String

mbeId (Optional) The ID of the
mobile backend that’s
associated with the
notification. When omitted, the
default is the mobile backend
id that the mobile application
is using.

String

version The version of the mobile
backend.

String

notification.getAll(context, options, httpOptions)
This method lets you retrieve the notifications that match your criteria. Only the
notifications that match ALL the criteria are returned.

Arguments

context: Required. JSON object as described in Notifications Context Argument.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

createdOnOrAfter Criteria: Filter by
createdOn on or after
the given UTC date/
time (in YYYY-DD-
MM[Thh:mm]Z format).

String None

createdOnOrBefore Criteria: Filter by
createdOn on or
before the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

limit The maximum number
of items to be
returned. If the
requested limit is too
large, then a lower
limit is substituted.

Integer None

offset The zero-based index
of the first item to
return.

Integer None

Chapter 23
Calling Platform APIs from Custom Code

23-74

Property Description Type Default

orderBy Specifies the ordering
for the query
operations. The
default sort order is
ascending by ID. The
format is: "orderBy"
"=" 1#(attr [":" "asc" |
"desc"]), where the
attr parameter may
be id, status, tag,
platform, sendOn,
createdOn, or
processedOn.

String None

processedOnOrAfte
r

Criteria: Filter by
processedOn on or
after the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

processedOnOrBefo
re

Criteria: Filter by
processedOn on or
before the given UTC
date/time (in YYYY-
DD-MM[Thh:mm]Z
format).

String None

q Filter results based on
a case-insensitive
partial match of this
string with the tag. For
example, q=market
returns notifications
with tag equal to
Marketing,
marketing, and
markets.

String None

sendOnOrAfter Criteria: Filter by
sendOn on or after the
given UTC date/time
(in YYYY-DD-
MM[Thh:mm]Z format).

String None

sendOnOrBefore Criteria: Filter by
sendOn on or before
the given UTC date/
time (in YYYY-DD-
MM[Thh:mm]Z format).

String None

status Criteria: Filter by
status

String None

tag Criteria: Filter by tag String None

Chapter 23
Calling Platform APIs from Custom Code

23-75

Response

The response body is a JSON object that follows the notificationPaging schema
that is shown for the GET /mobile/system/notifications/notifications operation
in REST APIs for Oracle Mobile Cloud Service.

Examples

Here’s an example of calling this method:

service.get('/mobile/custom/incidentreport/notifications',
 function (req, res) {
 req.oracleMobile.notification.getAll({
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version})
 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body.

{
 "items": [
 {
 "id": 2,
 "message": "Incident Updated: Broken Dryer",
 "users": [
 "J Doe"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:58:04.465Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/2"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/2"
 }
]
 },
 {
 "id": 3,
 "message": "Incident Updated: Malfunctioning Air Conditioner",
 "users": [

Chapter 23
Calling Platform APIs from Custom Code

23-76

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:58:07.413Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/3"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/3"
 }
]
 }
],
 "hasMore": false,
 "limit": 2,
 "count": 2,
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/?
offset=0&limit=2"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/"
 }
]
}

notification.getById(id, context, options, httpOptions)
This method lets you retrieve a specific notification by its ID.

Arguments

id: Required. String or integer. The generated notification ID.

context: Required. JSON object as described in Notifications Context Argument.

options: Optional. JSON object as described in Common options Argument
Properties.

Response

The response body is a JSON object that follows the notification schema that is
shown for the GET /mobile/system/notifications/notifications/{id} operation in
REST APIs for Oracle Mobile Cloud Service.

Chapter 23
Calling Platform APIs from Custom Code

23-77

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Examples

Here’s an example of calling the method to get a notification:

service.get('/mobile/custom/incidentreport/notifications/:id',
 function (req, res) {
 req.oracleMobile.notification.getById(req.params.id, {
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version})
 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body.

{
 "id": 1,
 "message": "Incident Updated: Leaky Faucet",
 "users": [
 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "status": "New",
 "createdOn": "2015-09-24T21:44:45.708Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/1"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/1"
 }
]
}

Chapter 23
Calling Platform APIs from Custom Code

23-78

notification.post(notification, context, options, httpOptions)
This method lets you create a notification.

Arguments

notification: Required. JSON object that follows the notificationCreate schema
that is shown for the POST /mobile/system/notifications/notifications operation
in REST APIs for Oracle Mobile Cloud Service. Here’s an example:

{
 message:'This is the alert message.',
 tag:'Marketing',
 notificationTokens:['APNSdeviceToken']
}

context: Required. JSON object as described in Notifications Context Argument.

options: Optional. JSON object as described in Common options Argument
Properties.

Response

The return value includes this header:

Header Description Type

Location Canonical resource URI for
the notification.

String

The response body, which shows the stored notification, is a JSON object that follows
the notification schema that is shown for the POST /mobile/system/
notifications/notifications operation in REST APIs for Oracle Mobile Cloud
Service.

Examples

In this example of posting a notification, the request body would look like this:
{incidentName: 'Leaky Faucet', customerName: 'Lynn Smith'}.

service.post('/mobile/custom/incidentreport/notifications',
 function (req, res) {
 var notification = {
 sendOn: '2016-06-25T6:00Z',
 message: 'Incident Updated: ' +
 req.body.incidentName,
 users: [req.body.customerName]
 };
 req.oracleMobile.notification.post(notification, {
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version})
 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);

Chapter 23
Calling Platform APIs from Custom Code

23-79

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of the response body.

{
 "id": 1,
 "message": "Incident Updated: Leaky Faucet",
 "users": [
 "Lynn Smith"
],
 "roles": [],
 "notificationTokens": [],
 "sendOn": "2016-06-25T06:00Z",
 "status": "New",
 "createdOn": "2015-06-24T21:44:45.708Z",
 "links": [
 {
 "rel": "canonical",
 "href": "/mobile/system/notifications/notifications/1"
 },
 {
 "rel": "self",
 "href": "/mobile/system/notifications/notifications/1"
 }
]
}

notification.remove(id, context, options, httpOptions)
This method lets you delete a notification. You can delete a notification only if its status
is Scheduled.

Arguments

id: Required. String or integer. The generated notification ID.

context: Required. JSON object as described in Notifications Context Argument.

options: Optional. JSON object as described in Common options Argument
Properties.

Example

Here’s an example of calling this method:

service.delete('/mobile/custom/incidentreport/notifications/:id',
 function (req, res) {
 req.oracleMobile.notification.remove(req.params.id, {
 mbe: req.oracleMobile.mbe.getMBE().name,
 version: req.oracleMobile.mbe.getMBE().version})

Chapter 23
Calling Platform APIs from Custom Code

23-80

 .then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Accessing the Storage API from Custom Code
The Storage API lets you store mobile application objects in the cloud. An object can
be text, JSON, or a binary object such as an image. These objects are grouped by
collection. To learn about collections and objects, see Storage.

This API has the following methods:

• storage.doesCollectionExist(collectionId, options, httpOptions): Indicates if a
collection exists, and, optionally, whether its ETag matches.

• storage.doesExist(collectionId, objectId, options, httpOptions): Indicates if an
object exists, and, optionally, whether its ETag matches.

• storage.getAll(collectionId, options, httpOptions): Returns the metadata for every
object in a collection.

• storage.getById(collectionId, objectId, options, httpOptions): Retrieves an object
and its metadata.

• storage.getCollection(collectionId, options, httpOptions): Retrieves metadata about
a collection.

• storage.getCollections(options, httpOptions): Returns metadata about each
collection that is available through the mobile backend.

• storage.remove(collectionId, objectId, options, httpOptions): Removes an object
from a collection.

• storage.store(collectionId, object, options, httpOptions): Adds an object and
automatically assigns an ID for it.

• storage.storeById(collectionId, objectId, object, options, httpOptions): Adds or
updates an object based on an ID that you specify.

storage.doesCollectionExist(collectionId, options, httpOptions)
You can use this method to determine whether a collection exists. You can also use it
to see if the collection matches (or does not match) an ETag.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Chapter 23
Calling Platform APIs from Custom Code

23-81

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId value.
This option can be
useful for multibyte
values.

Boolean false

ifMatch The call returns true
only if the ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

ifNoneMatch The call returns true
only if the ETag of the
corresponding object
does not match one of
the values specified
by this property.

String None

Response

This method returns a Boolean value.

Example

The following example uses this method to verify that the collection exists before it
stores an object in it.

req.oracleMobile.storage.doesCollectionExist('attachments').then(
 function(result){
 if (result) {
 req.oracleMobile.storage.store('attachments', {id: 'incident412-
pic'}, {inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 } else {
 res.status(404).send('Storage has not been configured for this app.
Please contact your admin.');
 };
 },
 function(error){
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 23
Calling Platform APIs from Custom Code

23-82

storage.doesExist(collectionId, objectId, options, httpOptions)
You can use this method to determine whether an object exists. You can also use it to
see if the object matches (or does not match) an ETag, or if it was modified after a
specified date.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The object being accessed. If the object was stored using
the storage.storeById() method, then this is the ID that was provided as the id
argument, and, if the object was stored using the storage.store() method, then the
ID was generated. When looking at the object metadata, this argument value
corresponds to the metadata’s id attribute.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

contentDispositio
n

This property lets you
specify the value of
the Content-
Disposition
response header.

String None

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option
can be useful for
multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

Chapter 23
Calling Platform APIs from Custom Code

23-83

Property Description Type Default

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in this
property. You can use
this property to reduce
the amount of data
that is transported by
not re-retrieving data if
it hasn’t changed.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property. You
can use this property
to reduce the amount
of data that is
transported by not re-
retrieving data if it
hasn’t changed.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property.

Date None

Chapter 23
Calling Platform APIs from Custom Code

23-84

Property Description Type Default

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to inquire
about objects in
another user’s space.

Response

This method returns a Boolean value.

Example

In this example, the code calls doesExist to see if the stored object still has the same
ETag as when it was last retrieved ("1").

req.oracleMobile.storage.doesExist('attachments', 'incident412-pic',
{ifMatch: '\"' + 1 + '\"'}).then(
 function (result) {
 res.status(200).send('Object has not changed.');
 },
 function (error) {
 res.status(412).send('Object was modified by someone else.');
 }
)

storage.getAll(collectionId, options, httpOptions)
This method returns the metadata for every object in a collection.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Chapter 23
Calling Platform APIs from Custom Code

23-85

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
orderBy, and user
values. This option
can be useful for
multibyte values.

Boolean false

limit The maximum number
of items to be
returned. If the
requested limit is
greater than 100, then
100 is used instead.

Integer None

offset The zero-based index
of the first item to
return.

Integer None

orderBy Use this property to
sort the results by
name, modifiedBy,
modifiedOn,
createdBy,
createdOn, or
contentLength. You
can append :asc
or :desc to specify
whether to sort in
ascending or
descending order. For
example,
modifiedOn:desc.

String None

q The items that are
returned are based on
a case-insensitive
partial match of the
id, name, createdBy
or modifiedBy
property of an item.
For example, if you
set this property to
sam, it could return an
object with an id of
axsam3 and an object
with a createdBy of
SAMANTHA.

String None

Chapter 23
Calling Platform APIs from Custom Code

23-86

Property Description Type Default

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the
Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

totalResults When this property is
present with a value of
true, then the
response body
contains the
totalResults
attribute with a value
that represents the
total number of items
in the collection. By
default, the response
does not contain this
value.

Boolean false

user This is the ID (not the
user name) of a user.
Use * (wildcard) to get
all users. This query
parameter allows a
user with READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to inquire
about objects in
another user’s space.

Response

The return value includes these headers:

Chapter 23
Calling Platform APIs from Custom Code

23-87

Header Description Type

Cache-Control Describes how the result may
be cached.

String

Oracle-Mobile-Sync-
Resource-Type

The Synchronization library
uses this header.

String

The response body is a JSON object that follows the response body schema that is
shown for the GET /mobile/platform/storage/collections/{collection}/objects
operation in REST APIs for Oracle Mobile Cloud Service.

Examples

Here’s an example of calling this method. The response lists the objects by modified
date, in descending order. Because the sync property is set to true, the client app can
cache the response.

// Get metadata about the objects in the attachments collection.
// List most recently modified first.
service.get('/mobile/custom/incidentreport/attachments',
 function (req, res) {
 req.oracleMobile.storage.getAll('attachments',
 {orderBy: 'modifiedOn:desc', sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

Here’s an example of a response body:

{
 "items":[
 {
 "eTag":"\"2\"",
 "id":"incident412-pic",
 "createdBy":"jdoe",
 "name":"Incident Picture",
 "createdOn":"2014-11-20T19:57:04Z",
 "modifiedOn":"2014-11-20T19:58:09Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
attachments/objects/profile-pic"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/

Chapter 23
Calling Platform APIs from Custom Code

23-88

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

attachments/objects/profile-pic"
 }
],
 "contentType":"image/png",
 "contentLength":937647
 },
 {
 "eTag":"\"1\"",
 "id":"incident131-pic",
 "createdBy":"jsmith",
 "name":"Incident Picture",
 "createdOn":"2014-11-20T18:27:02Z",
 "modifiedOn":"2014-11-20T18:27:02Z",
 "modifiedBy":"jsmith",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
attachments/objects/0683d48b-fdc5-4397-8ca2-824e2b0cae65"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/
attachments/objects/0683d48b-fdc5-4397-8ca2-824e2b0cae65"
 }
],
 "contentType":"image/jpeg",
 "contentLength":5266432
 }
],
 "hasMore":true,
 "limit":2,
 "offset":4,
 "count":2,
 "totalResults":7,
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
objects/"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=4&limit=2&orderBy=name:asc&totalResults=true"
 },
 {
 "rel":"prev",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=2&limit=2&orderBy=name:asc&totalResults=true"
 },
 {
 "rel":"next",
 "href":"/mobile/platform/storage/collections/attachments/
objects?offset=6&limit=2&orderBy=name:asc&totalResults=true"

Chapter 23
Calling Platform APIs from Custom Code

23-89

 }
]
}

storage.getById(collectionId, objectId, options, httpOptions)
This method retrieves an object and its metadata from a collection based on the object
identifier.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The object being accessed. If the object was stored using
the storage.storeById() method, then this is the ID that was provided as the id
argument, and, if the object was stored using the storage.store() method, then the
ID was generated. When looking at the object metadata, this argument value
corresponds to the metadata’s id attribute.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

contentDispositio
n

This property lets you
specify the value of
the Content-
Disposition
response header.

String None

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option
can be useful for
multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

Chapter 23
Calling Platform APIs from Custom Code

23-90

Property Description Type Default

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in this
property. You can use
this property to reduce
the amount of data
that is transported by
not re-retrieving data if
it hasn’t changed.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property. You
can use this property
to reduce the amount
of data that is
transported by not re-
retrieving data if it
hasn’t changed.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property.

Date None

range This property lets you
request a subset of
bytes. For example,
bytes=0–99 gets the
first 100 bytes.

String None

Chapter 23
Calling Platform APIs from Custom Code

23-91

Property Description Type Default

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the
Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are inquiring
about a shared
collection, there is no
default.
If you are inquiring
about an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to get an
object from another
user’s space.

Response

The return value includes these headers:

Header Description Type

Accept-Ranges This header indicates that byte
ranges may be provided when
requesting an object resource.

String

Cache-Control Describes how the result may
be cached.

String

Content-Disposition This response header is
returned if the options
argument included the
contentDisposition
property. The value for the
response header is the same
as the value for the property.

String

Chapter 23
Calling Platform APIs from Custom Code

23-92

Header Description Type

Content-Length The size of the object in bytes. Number

Content-Type The media type of the object,
such as image/jpeg.

String

Etag Each item has an ETag value.
This value changes each time
the item is updated. The value
includes the starting and
ending quotation marks (for
example, "2").

String

Last-Modified The date and time when the
resource was last modified.
This date is in RFC-1123
format. For example, Fri, 29
Aug 2014 12:34:56 GMT.

Date

Oracle-Mobile-
Canonical-Link

A relative URI that you can
use to uniquely reference this
object.

String

Oracle-Mobile-Created-
By

The user name of the user
who created the object.

String

Oracle-Mobile-Created-
On

The date and time, in ISO
8601 format (for example,
2014-06-30T01:02:03Z),
when the object was created.

String

Oracle-Mobile-Modified-
By

The user name of the user
who last modified the object.

String

Oracle-Mobile-Modified-
On

The date and time, in ISO
8601 format (for example,
2014-06-30T01:02:03Z),
when the object was last
modified.

String

Oracle-Mobile-Name The display name for the
object.

String

Oracle-Mobile-Self-Link A relative URI that you can
use to uniquely reference this
object within the specified
isolation level.

String

Oracle-Mobile-Sync-
Expires

This header is used by the
Synchronization library.

String

Oracle-Mobile-Sync-No-
Store

This header is used by the
Synchronization library.

Boolean

The response body is the stored object.

Example

Here is an example of calling this method. Because the sync property is set to true,
the client app can cache the response.

req.oracleMobile.storage.getById('attachments', 'incident412-notes',
{sync: true}).then(
 function (result) {

Chapter 23
Calling Platform APIs from Custom Code

23-93

 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

storage.getCollection(collectionId, options, httpOptions)
This method returns metadata about a particular collection.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId value.
This option can be
useful for multibyte
values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property.

String None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property.

String None

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the
Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

Chapter 23
Calling Platform APIs from Custom Code

23-94

Response

The return value includes these headers:

Header Description Type

Cache-Control Describes how the result may
be cached.

String

Etag Each item has an ETag value.
This value changes each time
the item is updated. The value
includes the starting and
ending quotation marks (for
example, "2").

String

The response body is a JSON object that follows the Collection schema that is
shown for the GET /mobile/platform/storage/collections/{collection} operation
in REST APIs for Oracle Mobile Cloud Service.

Examples

Here’s an example of calling this method. Because the sync property is set to true,
the client app can cache the response.

req.oracleMobile.storage.getCollection('attachments', {sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Here’s an example of a response body:

{
 "id":"attachments",
 "description":"Attachments for technician notes.",
 "contentLength":6205619,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments"}
]}

storage.getCollections(options, httpOptions)
This method returns metadata about each collection that is available through the
mobile backend.

Chapter 23
Calling Platform APIs from Custom Code

23-95

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Arguments

options: Optional. JSON Object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

limit The maximum number
of items to be
returned. If the
requested limit is too
large, then a lower
limit is substituted.

Integer None

offset The zero-based index
of the first item to
return.

Integer 0 (zero)

sync When this property is
present and has a
value of true, then
the return value
contains the
information required
by the
Synchronization
library to cache the
data locally for offline
use. You can get this
value from the
Oracle-Mobile-
Sync-Agent request
header, when present.

Boolean false

totalResults When this property is
present with a value of
true, then the then
the response body
contains the
totalResults
property with a value
that represents the
total number of items
in the collection. By
default, this property is
not returned.

Boolean false

Response

The return value includes these headers:

Header Description Type

Cache-Control Describes how the result may
be cached.

String

Oracle-Mobile-Sync-
Resource-Type

The Synchronization library
uses this header.

String

Chapter 23
Calling Platform APIs from Custom Code

23-96

The response body is an array of items in JSON format that follows the Collection
Array schema that is shown for the GET /mobile/platform/storage/collections
operation in REST APIs for Oracle Mobile Cloud Service.

Example

Here is an example of calling this method. Because the sync property is set to true,
the client app can cache the response.

req.oracleMobile.storage.getCollections({sync: true}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Here’s an example of a response body:

{
 "items":[
 {
 "id":"logs",
 "description":"Application logs.",
 "contentLength":0,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/logs"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/logs"}
]},
 {
 "id":"attachments",
 "description":"Attachments for technician notes.",
 "contentLength":6205619,
 "eTag":"\"1.0\"",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/
attachments"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/
attachments"}
]}
],
 "hasMore":false,
 "limit":100,
 "offset":0,

Chapter 23
Calling Platform APIs from Custom Code

23-97

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 "count":2,
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections?
offset=0&limit=100"}
]}

storage.remove(collectionId, objectId, options, httpOptions)
This method removes an object from a collection based on the object identifier.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. The ID of the object to remove.

options: Optional. JSON object. This object can have these properties in addition to
those listed in Common options Argument Properties:

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
objectId, and user
values. This option
can be useful for
multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property. You can use
this property to ensure
that the operation
succeeds only if the
object wasn't modified
after you last
requested it.

String None

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in property.

Date None

Chapter 23
Calling Platform APIs from Custom Code

23-98

Property Description Type Default

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property. You can use
this property to ensure
that the operation
succeeds only if no
one modified the
object after that time.

Date None

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are removing an
object in a shared
collection, there is no
default.
If you removing an
object in an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to remove
objects from another
user’s space.

Example

This example removes an object from the attachments collection:

service.delete('/mobile/custom/incidentreport/attachments/:id',
 function (req, res) {
 req.oracleMobile.storage.remove('attachments', req.params.id).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },

Chapter 23
Calling Platform APIs from Custom Code

23-99

 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
 });

storage.store(collectionId, object, options, httpOptions)
This method lets you store an object and have an identifier automatically assigned to
it.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

object: Required. Text, JSON object, file, or binary object. The object to store.

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties. Note that the
contentType property plays an important role for Storage, because that also specifies
the mediat type to when the object is requested. If you don't include the content, then
the content-type defaults to application/octet-stream.

Property Description Type Default

contentLength The size of the object
in bytes.

Number If the object is a string
or a buffer, then the
default is
object.length.
Otherwise, the default
is the sum of its
members’ lengths.

contentType The media type of
object being stored.
This property also
specifies the media
type to return when
the object is
requested.

String If the inType is json,
then the Content-
Type header is set to
application/json
automatically.
Otherwise, the default
isapplication/
octet-stream.

encodeURI Set to true to URI-
encode the
collectionId,
mobileName, and
user values. This
option can be useful
for multibyte values.

Boolean false

mobileName The display name for
the object. If you don't
include the display
name, the name is set
to the object identifier
that this method
generates
automatically.

String None

Chapter 23
Calling Platform APIs from Custom Code

23-100

Property Description Type Default

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are storing an
object in a shared
collection, there is no
default.
If you storing an object
in an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to store
objects in another
user’s space.

Response

The return value includes this header:

Header Description Type

Location The URI that corresponds to
the newly created object.

String

The response body is a JSON object that follows the schema shown for the response
body for the POST /mobile/platform/storage/collections/{collection}/objects
operation in REST APIs for Oracle Mobile Cloud Service.

Examples

In this example, requests can contain JSON objects, files, plain text, images, and so
forth. If the input is a JSON object then it must set inType to json, and pass in
req.body for the object. Otherwise, it sets inType to stream, and passes in req for the
object.

service.post('/mobile/custom/incidentreport/attachments',
function (req, res) {
 if (req.is('json')) {
 // Must specify JSON because there is no stream to pipe from req
 // as Express has read it into json and put it in req.body.
 req.oracleMobile.storage.store('attachments', req.body,
 {
 mobileName: 'Technician Notes',
 inType: 'json',
 outType: 'stream'
 })
 .on('error', function (error) {

Chapter 23
Calling Platform APIs from Custom Code

23-101

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 } else {
 // For streaming, send req instead of req.body
 req.oracleMobile.storage.store('attachments', req, {
 mobileName: 'Technician Notes',
 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 }
});

In this example, the request body contains a Base-64 encoded image. The code
converts it to a binary image before storing it. The request body would look like this:

{
 imageName: 'brokenWaterHose',
 base74EncodedImage: '/9j/4AAQSkZJRg...AFFFFAH/2Q=='
}

// Base 64
service.post('/mobile/custom/incidentreport/attachments',
 function (req, res) {
 // convert Base-64 encoded image to binary image
 image = new Buffer(req.body.base64EncodedImage);
 req.oracleMobile.storage.store('attachments', image,
 {
 contentType: 'image/jpeg',
 mobileName: req.body.imageName
 }
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
)
 })

Here’s an example of a response body:

{
 "eTag":"\"1\"",
 "id":"a95edb6f-539d-4bac-9ffa-78ff16b20516",
 "createdBy":"jdoe",
 "name":"Technician Notes",

Chapter 23
Calling Platform APIs from Custom Code

23-102

 "createdOn":"2014-11-20T15:53:05Z",
 "modifiedOn":"2014-11-20T15:53:05Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
objects/a95edb6f-539d-4bac-9ffa-78ff16b20516"
 },
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
objects/a95edb6f-539d-4bac-9ffa-78ff16b20516"
 }
],
 "contentType":"application/json",
 "contentLength":9377
}

storage.storeById(collectionId, objectId, object, options, httpOptions)
This method stores an object based on an ID that you specify. You can use it to add
an object using your own ID instead of one that is generated automatically, or to
update an existing object.

Arguments

collectionId: Required. String. The name of the collection. When you look at the
metadata for the collection, this value corresponds to the metadata’s id value.

objectId: Required. String. If you are adding an object, this is the ID to store the
object under. If you are updating an object, this is the ID of the object you are
replacing.

object: Required. Text, JSON object, file, or binary object. This is the object to store.

options: Optional. JSON object. This object can have the following properties in
addition to those listed in Common options Argument Properties.

Property Description Type Default

contentLength The size of the object
in bytes.

Number If the object is a string
or a buffer, then the
default is
object.length.
Otherwise, the default
is the sum of its
members’ lengths.

contentType The media type of
object being stored.
This property also
specifies the media
type to return when
the object is
requested.

String If the inType is json,
then the Content-
Type header is set to
application/json
automatically.
Otherwise, the default
isapplication/
octet-stream.

Chapter 23
Calling Platform APIs from Custom Code

23-103

Property Description Type Default

encodeURI Set to true to URI-
encode the
collectionId,
objectId,
mobileName, and
user values. This
option can be useful
for multibyte values.

Boolean false

ifMatch The call completes
successfully only if the
ETag of the
corresponding object
matches one of the
values specified in this
property. You can use
this property to ensure
that the operation
succeeds only if the
object wasn't modified
after you last
requested it.

String None

ifModifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object was modified
after the date
specified in property.

Date None

ifNoneMatch The call completes
successfully only if the
ETag of the
corresponding object
does not match one of
the values specified
by this property.

String None

ifUnmodifiedSince Date and time in
HTTP-date format. For
example, Mon, 30
Jun 2014 19:43:31
GMT. The request
completes
successfully only if the
object wasn't modified
after the date
specified in this
property. You can use
this property to ensure
that the operation
succeeds only if no
one modified the
object after that time.

Date None

Chapter 23
Calling Platform APIs from Custom Code

23-104

Property Description Type Default

mobileName The display name for
the object. If you don't
include the display
name, the name is set
to the object identifier.

String None

user This is the ID (not the
user name) of a user.
This query parameter
allows a user with
READ_ALL/
READ_WRITE_ALL
permission to access
another user's isolated
space. A user with
READ/READ_WRITE
permission may
access only their own
space.

String If you are storing an
object in a shared
collection, there is no
default.
If you storing an object
in an isolated
collection, and you
have READ_ALL/
READ_WRITE_ALL
permission, then the
signed-in user is
assumed unless you
include this property. If
you have READ_ALL/
READ_WRITE_ALL
permission for an
isolated collection, you
must include this
property to store
objects in another
user’s space.

Response

The response body is a JSON object that follows the schema shown for the response
body for the PUT /mobile/platform/storage/collections/{collection}/objects/
{object} operation in REST APIs for Oracle Mobile Cloud Service.

Examples

In this example, the request can contain JSON objects, files, plain text, images, and so
forth. If the input is a JSON object then it must set inType to json, and pass in
req.body for the object. Otherwise, it sets inType to stream, and passes in req for the
object.

service.put('/mobile/custom/incidentreport/attachments/:id',
function (req, res) {
 if (req.is('json')) {
 // Must specify JSON because there is no stream to pipe from req
 // as Express has read it into json and put it in req.body.
 req.oracleMobile.storage.storeById('attachments', req.params.id,
req.body,
 {
 contentLength: req.body.length,
 mobileName: 'Technician Notes',
 inType: 'json',
 outType: 'stream'
 })
 .on('error', function (error) {

Chapter 23
Calling Platform APIs from Custom Code

23-105

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 } else {
 // For streaming, send req instead of req.body
 req.oracleMobile.storage.storeById('attachments', req.params.id, req, {
 mobileName: 'Technician Notes',
 contentType: req.header('content-type'),
 inType: 'stream',
 outType: 'stream'
 })
 .on('error', function (error) {
 res.status(error.statusCode).send(error.message)
 })
 .pipe(res);
 }
});

Here’s an example of a response body:

{
 "eTag":"\"2\"",
 "id":"incident412-notes",
 "createdBy":"jdoe",
 "name":"Technician Notes",
 "createdOn":"2014-11-20T15:57:04Z",
 "modifiedOn":"2014-11-20T15:58:09Z",
 "modifiedBy":"jdoe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/storage/collections/attachments/
incident412-notes"},
 {
 "rel":"self",
 "href":"/mobile/platform/storage/collections/attachments/
incident412-notes"}
],
 "contentType":"application/json",
 "contentLength":9377
}

Accessing the Mobile Users API from Custom Code
The Mobile Users and Mobile Users Extended Operations APIs let you get information
about the current mobile, virtual, or social user. In addition, the Mobile Users API lets
you update a mobile user’s custom properties. Custom properties are properties that a
mobile cloud administrator has added to the user’s realm.

This API has the following methods:

• ums.getUser(options, httpOptions): Retrieves information about the current user.

• ums.getUserExtended(options, httpOptions): Retrieves information about the
current user. In addition, for mobile and virtual users, retrieves the user’s roles.

Chapter 23
Calling Platform APIs from Custom Code

23-106

• ums.updateUser(fields, options, httpOptions): Updates the current mobile user’s
custom properties.

ums.getUser(options, httpOptions)
This method lets you retrieve the information about the current user.

• When the user is a mobile user, this operation retrieves the user name, first name,
last name, and email address as well as the custom properties that were added to
the realm that the user belongs to.

• When the user is a virtual user, this operation retrieves the user name. To learn
about virtual users, see Configuring SAML Tokens for Virtual Users.

• When the user is a social user (that is, signed in using social identity), this
operation retrieves the user's ID, identity provider, and access token. To learn
about social users and social identity, see Facebook Login in MCS.

Arguments

options: Optional. JSON object. For mobile users, this object can have the following
property in addition to those listed in Common options Argument Properties:

Property Description Type Default

fields Specifies which user
properties to get. For
example, you can set
options.fields to
firstName,lastNam
e to retrieve just those
two values. This
property is ignored if
the current user
signed in using virtual
or social identity.

String None

Response

If the current user is a social user, then the response body includes the generated
username as well as the mobileExtended.identityProvider properties, as shown in
this example. To learn more about social identity see Facebook Login in MCS.

 "username": "1 :623:165",
 "mobileExtended": {
 "identityProvider": {
 "facebook": {
 "accessToken":"CAAI...YZD"
 }
 }
 }

If the current user is a virtual user, then the response body includes the username, as
shown in this example.

 "username": "a24x"

Chapter 23
Calling Platform APIs from Custom Code

23-107

In all other cases, the response body is a JSON object that contains one or more of
the following properties, depending on the value of the request’s options.fields
property.

• id

• email

• firstName

• lastName

• username

• Custom properties that have been added to the realm that the user belongs to.

Examples

Here’s an example of calling this method to get the user’s first and last name. In this
example, the user is a mobile user:

req.oracleMobile.ums.getUser({fields: 'firstName,lastName'}).then(
 function(result){
 res.send(result.statusCode, result.result);
 },
 function(error){
 res.send(error.statusCode, error.error);
 }
);

This example shows the response that you get when you set the options.fields
property to firstname,lastname:

{
 "firstName": "Joe",
 "lastName": "Doe"
}

Here’s an example of calling this method to get all the fields for a mobile user:

req.oracleMobile.ums.getUser().then(
 function(result){
 res.send(result.statusCode, result.result);
 },
 function(error){
 res.send(error.statusCode, error.error);
 }
);

Here’s an example of a response body for this request:

{
 "id":"295e450a-63f0-41fa-be43-cd2dbcb21598",
 "username":"joe",
 "email":"joe@example.com",
 "firstName":"Joe",

Chapter 23
Calling Platform APIs from Custom Code

23-108

 "lastName":"Doe",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/users/joe"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/users/joe"
 }
]
}

ums.getUserExtended(options, httpOptions)
This method lets you retrieve the information about the authorized user, including the
user's roles.

• When the user is a mobile user, this operation retrieves the user name, first name,
last name, roles, and email address as well as the custom properties that were
added to the realm that the user belongs to.

• When the user is a virtual user, this operation retrieves the user name and roles.
To learn about virtual users, see Configuring SAML Tokens for Virtual Users.

• When the user is a social user (that is, signed in using social identity), this
operation retrieves the user's ID, identity provider, and access token. To learn
about social users and social identity, see Facebook Login in MCS.

Arguments

options: Optional. JSON object. For mobile users, this object can have the following
property in addition to those listed in Common options Argument Properties:

Property Description Type Default

fields Specifies which user
properties to get. For
example, you can set
options.fields to
firstName,lastNam
e to retrieve just those
two values. This
property is ignored if
the current user
signed in using virtual
or social identity.

String None

Response

If the current user is a social user, then the response body includes the generated
username as well as the mobileExtended.identityProvider properties, as shown in
this example.

 "username": "1 :623:165",
 "mobileExtended": {
 "identityProvider": {

Chapter 23
Calling Platform APIs from Custom Code

23-109

 "facebook": {
 "accessToken":"CAAI...YZD"
 }
 }
 }

If the current user is a virtual user, then the response body includes the username and
roles properties, as shown in this example.

 "username": "a24x",
 "roles": [
 "Customer", "Trial"
]

In all other cases, the response body is a JSON object that contains one or more of
the following properties, depending on the value of the request’s options.fields
property.

• id

• email

• firstName

• lastName

• username

• roles (array)

• Custom properties that have been added to the realm that the user belongs to.

The response body also contains links to the API endpoint for the resource.

Examples

Here’s an example of calling this method to get a mobile user’s first and last name:

req.oracleMobile.ums.getUserExtended({fields: 'firstName,lastName'}).then(
 function(result){
 res.send(result.statusCode, result.result);
 },
 function(error){
 res.send(error.statusCode, error.error);
 }
);

This example shows the response that you get when you set the options.fields
property to firstname,lastname:

{
 "firstName": "Joe",
 "lastName": "Doe"
}

Chapter 23
Calling Platform APIs from Custom Code

23-110

Here’s an example of calling this method to get all the fields for a mobile user.

req.oracleMobile.ums.getUserExtended().then(
 function(result){
 res.send(result.statusCode, result.result);
 },
 function(error){
 res.send(error.statusCode, error.error);
 }
);

Here’s an example of a response body for this request:

{
 "id":"295e450a-63f0-41fa-be43-cd2dbcb21598",
 "username":"joe",
 "email":"joe@example.com",
 "firstName":"Joe",
 "lastName":"Doe",
 "roles": [
 "Customer", "Trial"
],
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/users/joe"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/users/joe"
 }
]
}

ums.updateUser(fields, options, httpOptions)
This method lets you update the custom properties that were added to the realm that
the mobile backend is associated with. Note that you can’t use this API to update the
built-in properties, such as username.

Arguments

fields: Required. A JSON object that contains name/value for custom fields to be
updated. For example:{birthdate: '07/21/71', language: 'en'}. Only primitive
data types are supported.

options: Optional. A JSON object as described in Common options Argument
Properties.

Response

The response body is a JSON object where the name/value pairs represent the user
properties. It also contains links to the API endpoint for the resource.

Chapter 23
Calling Platform APIs from Custom Code

23-111

Examples

Here’s an example of calling this method to update the custom property key. In this
example, the request body would look like this: {key: 'Ax47Y'}.

service.put(
 '/mobile/custom/incidentreport/key',
 function (req, res) {
 req.oracleMobile.ums.updateUser({key: req.body.key}).then(
 function (result) {
 res.send(result.statusCode, result.result);
 },
 function (error) {
 res.send(error.statusCode, error.error);
 }
);
 });

Here’s an example of a response body:

{
 "id":"295e450a-63f0-41fa-be43-cd2dbcb21598",
 "username":"joe",
 "email":"joe@example.com",
 "firstName":"Joe",
 "lastName":"Doe",
 "key":"Ax47Y",
 "links":[
 {
 "rel":"canonical",
 "href":"/mobile/platform/users/joe"
 },
 {
 "rel": "self",
 "href": "/mobile/platform/users/joe"
 }
]
}

Calling Custom APIs from Custom Code
The custom code SDK provides two namespaces for sending requests to other custom
APIs:

• oracleMobile.custom.<apiName>: To use the methods in this namespace, you
must explicitly declare in package.json a dependency on the custom API.

• oracleMobile.custom: To use the methods in this namespace, you don’t need to
explicitly declare in package.json a dependency on the custom API.

There are several reasons for declaring the dependency in package.json, such as
making it easier to track dependencies, and ensuring that dependent APIs are
published when you publish your API. To learn how to declare a dependency in

Chapter 23
Calling Custom APIs from Custom Code

23-112

package.json and the advantages for doing so, see Specifying the API Version in
Calls to Custom and Connector APIs.

The optional options argument can have this property in addition to those listed in
Common options Argument Properties.

Property Description Type Default

versionToInvoke The version of the
custom API.
When you use the
oracleMobile.cust
om namespace, you
must include this
option if the API
version is not declared
in package.json.

When you use the
oracleMobile.cust
om.<apiName>
namespace, the API
version must be
declared in
package.json, and
you optionally can use
this property to
override that version.

String The version that is
declared in the
package.json file.

Both namespaces provide methods for each HTTP operation, as shown in this table:

HTTP Operation oracleMobile.custom
Method

oracleMobile.custom.<apiNa
me> Method

GET get(apiName,
resourceName, options,
httpOptions)

get(resourceName,
options, httpOptions)

PUT put(apiName,
resourceName,
object, options,
httpOptions)

put(resourceName,
object, options,
httpOptions)

POST post(apiName,
resourceName,
object, options,
httpOptions)

post(resourceName,
object, options,
httpOptions)

DELETE del(apiName,
resourceName, options,
httpOptions)

del(resourceName,
options, httpOptions)

HEAD head(apiName,
resourceName, options,
httpOptions)

head(resourceName,
options, httpOptions)

OPTIONS options(apiName,
resourceName, options,
httpOptions)

options(resourceName,
options, httpOptions)

Chapter 23
Calling Custom APIs from Custom Code

23-113

HTTP Operation oracleMobile.custom
Method

oracleMobile.custom.<apiNa
me> Method

PATCH patch(apiName,
resourceName,
object, options,
httpOptions)

patch(resourceName,
object, options,
httpOptions)

Here are examples of how to call another custom API from custom code using both
namespaces . These examples call the motd custom API, and send a POST request to
its years/{year}/months/{month}/days resource.

 /**
 * oracle.Mobile.custom.<apiName> namespace example:
 *
 * <namespace>.post(<resource>, <body>, <options>)
 *
 * Note: Because it uses the
 * oracleMobile.custom.<apiName> namespace,
 * the dependency on the motd API must
 * be specified in package.json.
 * options.versionToInvoke isn't required. You can use
 * it to override the version that is declared in
 * package.json.
 */
 req.oracleMobile.custom.motd.post(
 'years/2018/months/1/days',
 req.body,
 {inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

 /**
 * oracle.Mobile.custom namespace example:
 *
 * post(<namespace>, <resource>, <body>, <options>)
 *
 * You must include the versionToInvoke option if
 * the API isn't declared in package.json.
 */
 req.oracleMobile.custom.post(
 'motd',
 'years/2018/months/1/days',
 req.body,
 {versionToInvoke: '1.0', inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },

Chapter 23
Calling Custom APIs from Custom Code

23-114

 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Calling Connector APIs from Custom Code
To use a connector, you must create a custom API and implement code that calls the
SDK’s connector methods. Here’s information about how to call a connector from
custom code.

Tip:

If your connector is a REST API that you created using a valid descriptor,
then you can create the custom API and its implementation automatically, as
described in How Do I Generate a Custom API from a Connector. If you use
the automatic-generation feature, you typically don’t need to know how to
use the SDK’s connector methods described here unless you are using the
customizer method that is in the generated code. For example, you might
need to use a customizer to pass options.externalAuthorization .
Sometimes, you might need to replace a call to the callConnector method
with your own code, such as when you need to send multipart form data or
the http options object.

The custom code SDK provides two namespaces for sending requests to connectors:

• oracleMobile.connectors.<connector>: To use the methods in this namespace,
you must explicitly declare in package.json a dependency on the connector. The
automatically generated implementations use this namespace.

• oracleMobile.connectors: To use the methods in this namespace, you don’t
need to explicitly declare in package.json a dependency on the connector.

There are several reasons for declaring the dependency in package.json, such as
making it easier to track dependencies, and ensuring that dependent APIs are
published when you publish your API. To learn how to declare a dependency in
package.json and the advantages for doing so, see Specifying the API Version in
Calls to Custom and Connector APIs.

The optional options argument can have these properties in addition to those listed in
Common options Argument Properties.

Chapter 23
Calling Connector APIs from Custom Code

23-115

Property Description Typ
e

Default

externalAuthorizati
on

If you haven’t configured a security
policy for the connector, then put the
Authorization value for the
external service in the
options.externalAuthorization
property. When this property is
present, the connector sets the
outgoing Authorization header
with the value in
options.externalAuthorization
property before it sends the request
to the external service.

Strin
g

None

versionToInvoke The version of the connector.
When you use the
oracleMobile.connectors
namespace, you must include this
option if the API version is not
declared in package.json.

When you use the
oracleMobile.connectors.<conn
ector> namespace, the API version
must be declared in package.json,
and you optionally can use this
property to override that version.

Strin
g

The version that is
declared in the
package.json file.
When you use the
oracleMobile.conn
ectors.<connector
> namespace, the
API version must be
declared in
package.json.

Both namespaces provide methods for each HTTP operation, as shown in this table:

HTTP Method oracleMobile.connectors
Signature

oracleMobile.connectors.<conne
ctor> Signature

GET get(connector,
resourceName, options,
httpOptions)

get(resourceName, options,
httpOptions)

PUT put(connector,
resourceName, object,
options, httpOptions)

put(resourceName, object,
options, httpOptions)

POST post(connector,
resourceName, object,
options, httpOptions)

post(resourceName, object,
options, httpOptions)

DELETE del(connector,
resourceName, options,
httpOptions)

del(resourceName, options,
httpOptions)

HEAD head(connector,
resourceName, options,
httpOptions)

head(resourceName, options,
httpOptions)

OPTIONS options(connector,
resourceName, options,
httpOptions)

options(resourceName,
options, httpOptions)

Chapter 23
Calling Connector APIs from Custom Code

23-116

HTTP Method oracleMobile.connectors
Signature

oracleMobile.connectors.<conne
ctor> Signature

PATCH patch(connector,
resourceName, object,
options, httpOptions)

patch(resourceName, object,
options, httpOptions)

Note:

You use the Network_HttpPatch environment policy to control the behavior
of PATCH requests.

• HEADER sends a POST request with an X-HTTP-Method-Override header
set to PATCH. This enables you to send PATCH requests when the target
server doesn’t support the PATCH method.

• LEGACY sends a PATCH request with an X-HTTP-Method-Override header
set to PATCH. This is consistent with the behavior of environments that
were provisioned before 18.2.3.

• METHOD sends a PATCH request without an X-HTTP-Method-Override
header set to PATCH.

For environments that were provisioned before 18.2.3, the default is LEGACY.
For environments that were provisioned on or after 18.2.3, the default is
METHOD. Here’s an example of using a policy setting to change the policy for
MyRESTConnector:

*.connector/MyRESTConnector(1.0).Network_HttpPatch=HEADER

To learn about viewing and changing environment policies, see Modifying an
Environment Policy.

Here’s an example of calling the /mobile/connector/globalweather connector using
the oracleMobile.connectors namespace:

req.oracleMobile.connectors.post('globalweather', 'GetWeather', body,
{inType: 'json', versionToInvoke: '1.0'}).then(
 function (result) {
 console.info("result is: " + result.statusCode);
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 console.info("error is: " + error.statusCode);
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 23
Calling Connector APIs from Custom Code

23-117

Here’s an example of calling the /mobile/connector/globalweather connector using
the oracleMobile.connectors.<connector> namespace.

req.oracleMobile.connectors.globalweather.post('GetWeather', body,
{inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Calling a Connector to a REST Web Service
You need the connector name and the resource name to call a REST API connector.
You form the resource name by removing the base URI from the endpoint. Say, for
example, that your git connector maps to https://example.com. To call https://
example.com/{owner}/{repo}/contents/{path}, set the resourceName to {owner}/
{repo}/contents/{path}.

You also need to pass the authorization in either options.externalAuthorization or
httpOptions.headers['oracle-mobile-external-authorization'] .

Here’s an example of sending a PUT request to a REST connector:

service.put('/mobile/custom/incidentreport/connectors/git/:owner/:repo/
contents/:path',
 function (req, res) {
 req.oracleMobile.connectors.idmsamples.put(
 'repos/' + req.params.owner + '/' + req.params.repo + '/contents/' +
req.params.path,
 req.body,
 {externalAuthorization: req.header('external-authorization'),
inType: 'json'},
 null).then(
 function (result) {
 // include the target service's response headers
 res.set(result.headers);
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

You use the httpOptions object to pass headers and query parameters to a
connector.

Chapter 23
Calling Connector APIs from Custom Code

23-118

Note:

A connector to a REST web service can have rules that set default query
parameters. If you specify values for those same parameters, then your
values take precedence and override the default parameters in the connector
rules.

Here’s an example of passing query parameters and headers in the httpOptions
object:

service.get('/mobile/custom/incidentreport/connectors/git/:owner/:repo/
contents/:path',
 function (req, res) {
 req.oracleMobile.connectors.idmsamples.get(
 'repos/' + req.params.owner + '/' + req.params.repo + '/contents/' +
req.params.path,
 {externalAuthorization: req.header('external-authorization')},
 {qs: {"branch": req.query.branch}, headers: {"accept":
req.header('accept')}}
).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);
});

Tip:

When you use httpOptions.qs to pass the query string, you can use
encodeURIComponent(<string>) for the qs value to ensure that your code
handles multibyte characters.

To learn how to create a connector to a REST service, see REST Connector APIs.

Calling a Connector to a SOAP Service
The body for a message that you send to a SOAP connector must be in either the
XML or JSON form of a SOAP envelope, with an optional Header, a required Body, and
an optional Fault.

JSON requests are translated automatically to XML, and XML responses are
translated to JSON. This means that you can interact with SOAP services without
having to work with XML. See How Does XML Get Translated into JSON? for
conditions that you should be aware of when the translation occurs.

If you choose to provide the message in XML, then remember to do the following:

Chapter 23
Calling Connector APIs from Custom Code

23-119

• To request that the response body is in XML format, set options.accept to
application/xml.

• When the request body is in XML format, set options.contentType to
application/xml; charset=utf-8.

• The XML in a request body must be wrapped in a SOAP envelope, which must
include any necessary SOAP headers, as shown in this example. If you configured
a security policy on a connector that requires a SOAP header to be sent in the
message, That header is added automatically so you don’t need to include it in
your message.

<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemad.xmlsoap.org/soap/
envelope">

 <SOAP-ENV:Header>
 <!-- Add any SOAP headers here -->
 </SOAP-ENV>

 <SOAP-ENV:Body>
 <!-- Add the Body element here -->
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

To see a sample message for a connector’s operation, go to the Test page for the
connector, select the operation, and then click Examples.

Note that with SOAP connectors, if your options.contentType property doesn’t
specify the character set, then UTF-8 is assumed.

Here’s an example of calling a connector to a SOAP service. In this example, the
request body is in JSON format:

service.get('/mobile/custom/incidentreport/connectors/
numberConvert/:number/words',
function (req, res) {
 var body = {
 Header: null,
 Body: {
 "NumberToWords": {
 "ubiNum": req.params.number
 }
 }
 };
 req.oracleMobile.connectors.post('numberConvert', 'words', body,
 {inType: 'json', versionToInvoke: '1.0'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 23
Calling Connector APIs from Custom Code

23-120

});

To learn how to create a connector to a SOAP service, see SOAP Connector APIs.

Calling Connectors that Require Form Data
If a connector’s operation requires a content type of multipart/form-data, use Multer
to pass the form data to the connector. Multer is a library for Node.js that handles
multipart form data.

To call a connector with a request body of type multipart/form-data:

1. Add multer as a dependency in package.json, as shown in the following
example, and then run npm install.

{
 "name": "sendformdata",
 "version": "1.0.0",
 "description": "Sends form data to a connector API.",
 "main": "sendformdata.js",
 "dependencies": {
 "multer": "latest"
 },
 ...
}

2. In the custom code, add the following statements:

var multer = require('multer');
var storage = multer.memoryStorage();
var upload = multer({storage: storage});

Multer adds the following objects to the incoming request body when it is of type
multipart/form-data:

• body: Contains the text fields that are in the form.

• files: Contains the files that are uploaded using the form.

3. In the method for the operation, pass upload.array as the second argument and
provide the name of the form’s file parameter and the maximum number of
uploaded files. For example:

service.post('/mobile/custom/SendFormData/upload',
upload.array("avatar", 12), function (req, res)

4. Extract the content from the body and files objects and pass it to the connector
via the httpOptions.formData object. Note that you must make the file object look
like a stream.

Here’s an example. In this example, the POST /mobile/custom/SendFormData/upload
operation requires the following form parameters:

• username, which is of type text.

Chapter 23
Calling Connector APIs from Custom Code

23-121

• avatar, which is of type file.

var multer = require('multer');
var storage = multer.memoryStorage();
var upload = multer({storage: storage});

module.exports = function (service) {

 service.post('/mobile/custom/SendFormData/upload',
upload.array("avatar", 12), function (req, res) {

 // Because the uploaded file is a buffer in memory, you must modify it
 // to look like a stream before you send it to the connector.
 var uploadedFile = {
 value: req.files[0].buffer,
 options: {
 filename: req.files[0].originalname,
 contentType: req.files[0].mimetype
 }
 };

 var formData = {
 username: req.body.username,
 avatar: uploadedFile
 };

 // FormData is the name of the connector.
 // The formData object is passed in the httpOptions argument.
 // The options.contentType is set to multipart/form-data automatically.
 req.oracleMobile.connectors.FormData.post("upload", null, null, {
 formData: formData
 }).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 });
 });
};

For information about Multer, see https://www.npmjs.com/package/multer.

Passing Headers to the Target Service
With the exception of the following headers, you must use httpOptions.headers to
pass headers and their values:

• Authorization: If the connector doesn’t have a connector Authorization header
rule, or if you don’t want to use the rule’s default value, then you must pass the
authorization information in either the options.externalAuthorization property
or the httpOptions.headers['oracle-mobile-external-authorization']
property, as shown here. See Security and REST Connector APIs.

• Connection: Don’t set this header.

Chapter 23
Calling Connector APIs from Custom Code

23-122

https://www.npmjs.com/package/multer

• Content-Length: Don’t set this header.

• Host: Don’t set this header.

• User-Agent: Don’t set this header.

Note:

The original request’s Accept value isn’t passed to the target service. To
pass the value to the target service, use either the
httpOptions.headers.accept property or the options.accept property.

The headers that you pass in your request override any related default values that are
set by connector rules.

Here’s an example that passes headers to the target service:

 var httpOptions={'headers':{}};
 // You must pass the Accept header if you don't want to use the target
server's default.
 if (req.header('accept')) {
 // You can pass the accept value using options.accept or
httpOptions.header, as shown here:
 httpOptions.headers.accept = req.header('accept');
 };
 // If the connector doesn't have an Authorization rule,
 // or if you don't want to use the rule's default,
 // pass the authorization information using
options.externalAuthorization or
 // httpOptions.headers.oracle-mobile-external-authorization.
 // Note the ['']syntax to prevent the hyphen from being interpreted as a
minus.
 if (req.header('external-authorization')) {
 httpOptions.headers['oracle-mobile-external-authorization'] =
 req.header('external-authorization');
 };
 // Pass any custom headers
 if (req.header('if-none-match')) {
 httpOptions.headers['if-none-match'] = req.header('if-none-match');
 };
 req.oracleMobile.connectors.git.get('repos/fixItFast/incidentreport/
contents/README.md',
 null,
 httpOptions).then(
 function (result) {
 // include the target service's headers
 res.set(result.headers);
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Chapter 23
Calling Connector APIs from Custom Code

23-123

Overriding SSL Settings for Connectors
You might encounter issues with external services, such as the service has an invalid
SSL certificate or it redirects the request but it doesn't preserve the cookies over the
redirect.

To resolve these issues, you use the options argument to customize the outgoing
HTTP requests, which go through a proxy. You can get the proxy from
req.oracleMobile.proxy.httpProxy. Here’s an example of how to override the
strictSSL setting in order to ignore SSL validation issues.

var res = {};
var options = {
 uri: req.body.externalURI,
 strictSSL: false,
 proxy: 'http://' + req.oracleMobile.proxy.httpProxy
}
req(options).pipe(res);

To learn more about request options, see https://github.com/request/
request#requestoptions-callback.

Specifying the API Version in Calls to Custom and
Connector APIs

When you call connector APIs or other custom APIs, you must always specify the API
version. You can specify the API version in one of the following ways:

• Explicitly state the version dependency in the implementation’s package.json file,
as shown here. You must do this if you are using methods in the
oracleMobile.connectors.<connector> or oracleMobile.custom.<apiName>
namespace.

{
 "name" : "incidentreports",
 "version" : "1.0.0",
 "description" : "FixItFast Incident Reports API",
 "main" : "incidentreports.js",
 "oracleMobile" : {
 "dependencies" : {
 "apis" : {"/mobile/custom/motd" : "1.0"},
 "connectors" : {"/mobile/connector/geocoder": "1.0"}
 }
 }
}

In this example, a call to any method in the oracleMobile.custom.motd
namespace uses version 1.0 by default.

For more information, see package.json Contents.

Chapter 23
Specifying the API Version in Calls to Custom and Connector APIs

23-124

https://github.com/request/request#requestoptions-callback
https://github.com/request/request#requestoptions-callback

• Include the options.versionToInvoke property in the request and set it to the
version that you want to use (represented as a string). If you specify the version
number this way, then it overrides what you may have specified in the
package.json file.

req.oracleMobile.custom.post(
 'motd',
 'years/2018/months/1/days',
 req.body,
 {versionToInvoke: '1.0', inType: 'json'}).then(
 function (result) {
 res.status(result.statusCode).send(result.result);
 },
 function (error) {
 res.status(error.statusCode).send(error.error);
 }
);

Note:

If you are using a method from the generic oracleMobile.rest
namespace, then put the version in the Oracle-Mobile-API-Version
header instead of the options.versionToInvoke property.

When you declare dependencies using the package.json file, then it’s easier to keep
track of those dependencies than when you use the options.versionToInvoke
property to declare dependencies. When you use package.json for this purpose, the
API Designer displays the dependencies in a table below the list of implementations.
When you prepare to publish your API, you’re prompted to publish any unpublished
dependent APIs.

However, if you use the options.versionToInvoke property to declare the version of a
dependent API, the API Designer won’t be aware of that dependency and won’t
prompt you with information when you publish the calling API. In this case, you’ll need
to remember to publish the dependent API yourself.

Using Generic REST Methods to Access APIs
Earlier versions of the custom code SDK used oracleMobile.rest methods to access
custom, platform, and connector APIs. To ensure backwards compatibility, these
methods continue to be available.

The legacy methods take two options: optionsList, which you use to pass request
details, and handler, which is an optional function to be executed by the method. If
you don’t include the handler argument, then the method returns a promise. A
promise represents the result of an asynchronous request. At the time it is issued, the
request may or may not have completed. You typically use a promise with the then
function.

If the handler function makes calls to other custom, platform, or connector APIs, then
you must follow Request.js conventions as described at https://github.com/request/
request.

Chapter 23
Using Generic REST Methods to Access APIs

23-125

https://github.com/request/request
https://github.com/request/request

This API has legacy and asynchronous methods for each HTTP operation, as shown
in the next table. The difference between the legacy and asynchronous methods is
that asynchronous methods don’t have a handler argument. They always return a
promise.

HTTP Operation oracleMobile.rest Methods

GET get(optionsList, handler)
getAsync(optionsList)

PUT put(optionsList, handler)
putAsync(optionsList)

POST post(optionsList, handler)
postAsync(optionsList)

DELETE del(optionsList, handler)
delAsync(optionsList)

HEAD head(optionsList, handler)
headAsync(optionsList)

OPTIONS options(optionsList, handler)
optionsAsync(optionsList)

PATCH patch(optionsList, handler)
patchAsync(optionsList)

Here’s an example of using an oracleMobile.rest method to access the Database
Service API. Notice how it uses optionsList to pass in the URI and query string, and
to convert the request body to JSON.

// The request body looks like this
// {title:'Water heater is leaking', technician:'jwhite',customer:'Lynn
Smith'}
service.post('/mobile/custom/incidentreport/incidents',
function (req, res) {

 var optionsList = {
 uri: '/mobile/platform/database/objects/FIF_Incidents',
 qs: req.query,
 json: req.body,
 headers: {
 'Oracle-Mobile-Extra-Fields': 'createdBy,createdOn'
 }
 };

 req.oracleMobile.rest.post(optionsList, function (error, response, body)
{
 var message = error ? error.message : body;
 res.status(response.statusCode).send(message);
 });
});

Chapter 23
Using Generic REST Methods to Access APIs

23-126

optionsList Argument
You use the optionsList argument to pass request details in oracleMobile.rest
calls, such as the URI, the body, and the headers. Here are some examples of the
options that you can configure:

body
This option contains the body for a patch, post, or put request. The value must be a
Buffer or a String unless OptionsList.json is set to true. If OptionsList.json is
true, then the body must be a JSON-serializable object. See also the json option in
this list.

headers
This option contains a list of HTTP headers. For example:

optionsList.headers=
{Content-Type : 'application/json;charset=UTF-8'};

Note:

When you use the json option, you do not need to provide the Content-Type
header. For all other cases, when the request has a body, include this
header and specify the charset.

json
This option can be used in two ways:

• To hold a JavaScript object. In this case, when the request is sent, the object is
converted to JSON and put in the HTTP body, and the Content-Type:
application/json header is added automatically.

• To indicate, by setting the value to true, that the optionsList.body value is a
JavaScript object. In this case, when the request is sent, the optionsList.body
value is converted to JSON and put in the HTTP body, and the Content-Type:
application/json;charset=UTF-8 header is added automatically.

timeout
This option specifies the number of milliseconds to wait for a request to respond
before terminating the request. If you don’t provide this option, then the timeout value
defaults to the time out that’s specified by the Network_HttpRequestTimeout
environment policy.
The value shouldn’t be greater than the Network_HttpRequestTimeout environment
policy for the environment that the implementation is deployed to. Ask your cloud
administrator for the value of this policy setting.
If the target URI is a connector, then the value should be greater than the
Network_HttpConnectTimeout and Network_HttpReadTimeout policies for the
connector. These values are displayed on the connector’s configuration page.

Chapter 23
Using Generic REST Methods to Access APIs

23-127

uri
This required option contains the URL fragment that uniquely identifies the API to call.
For example:

/mobile/platform/storage/collections/coll1/objects

In addition to the options listed here, you can provide any of the options that are
specified by the Request.js API. Go to the API documentation at https://
github.com/mikeal/request and scroll down to the section entitled
"request(options, callback)".

Learning About Platform, Custom, and Connector APIs
You can use the API catalog to learn about the platform, custom, and connector APIs.

To access the API catalog, click to open the side menu and then select APIs.

• To see the endpoints for a platform API, scroll to the bottom of the API Catalog,
and then select the API.

• To see the endpoints for a custom API or connector API, open a custom API, click
Implementations, and then click Custom Code API Catalog. From the Show list,
select Connector APIs or select Mobile APIs depending on the API type, and
then select the API to view its endpoints.

In addition to the API Catalog, REST APIs for Oracle Mobile Cloud Service provides
information about the platform APIs. For example, it provides cURL examples as well
as details about request and response bodies and headers.

Chapter 23
Learning About Platform, Custom, and Connector APIs

23-128

https://github.com/mikeal/request
https://github.com/mikeal/request
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Part V
Connector APIs

This part contains the following chapters:

• REST Connector APIs

• SOAP Connector APIs

• ICS Connector APIs

• Fusion Applications Connector APIs

24
REST Connector APIs

Oracle Mobile Cloud Service (MCS) enables you to create connector APIs to connect
to external REST services. You can then call these connector APIs from the
implementations of your custom APIs.

How REST Connector APIs Work
A REST connector API is an intermediary API for calling REST endpoints in enterprise
systems or third-part APIs. The connector API takes the form of a configuration that
gives your apps a standard way to connect to these REST services and take
advantage of the security, diagnostics, and other features provided by MCS.

The connector communicates and passes information between the client and the
server using the HTTPS protocol. The information passed can be in the form of XML
or JSON (but only in JSON for services based on Swagger descriptors).

The REST Connector API wizard walks you through creating REST Connector APIs,
from specifying a remote service and setting security policies to testing your endpoints.

REST Connector API Design Process
Here’s the process for designing a REST connector API:

1. Create REST Connector API. You create an API with the REST Connector API
wizard in MCS.

2. Authenticate Access to Descriptor Instances with Design Time Credentials.
The design time credentials are saved as a Credentials Store Framework (CSF)
key in MCS.

24-1

3. Connect to Descriptor Instance. If you provided a Swagger 2.0 descriptor URL,
a connection to the descriptor is made.

If you provide a remote service URL, you connect to the external service.

4. Discover Resources. After the credentials are authenticated, MCS downloads
and parses the descriptor and retrieves the metadata.

Note:

Currently only Swagger in JSON format is supported. Swagger metadata
in YAML format can’t be parsed.

5. Set Rules. Optionally, you can set rules after you have selected the desired
resources or after you have connected to the external service.

6. Examine and Set Resources. If a descriptor has been provided, the resources
are displayed and the desired resources to access from the custom code are
selected.

No resources are displayed if a remote service URL was provided.

7. Set Security Policies. You configure the Oracle Web Services Manager (Oracle
WSM) security policy to be used at runtime.

8. Test REST Connector API. You test the endpoint using mobile user credentials.

Why Use Connectors Instead of Direct Calls to External
Resources?

Using a REST Connector API provides you with the following benefits over making
direct calls from your app code to external resources:

• Allows for simplified declarative connection and policy configuration.

• With a Swagger descriptor, determines the available resources and creates
endpoints for you.

• Provides you with extensive diagnostic information as its tightly integrated with the
MCS diagnostics framework. Any outbound REST calls made through connector
APIs are logged, which greatly helps with debugging.

• Allows for tracking and analytics on remote API usage.

• Lets you define interaction with the service at design time when you test the
validity of your endpoints so that the terms of that interaction aren’t dependent on
user input at runtime. This protects both the end system and your mobile backend
from harm.

• Provides a consistent design approach among multiple connector types for
interacting with external services.

• With any change in the interface for a service, lets you can handle any necessary
updates, testing, and migration in one place.

Chapter 24
Why Use Connectors Instead of Direct Calls to External Resources?

24-2

Creating a REST Connector API
Use the REST Connector API wizard to create, configure, and test your connector API.

To get a basic working connector API, you can provide as little as a name for the
connector API and a URL to the external service.

From there, you can:

• Define rules to form specific requests or responses for the data that you want to
access.

• Configure client-side security policies for the service that you’re accessing.

• Test the connection and test the results of calls made to the connection.

You must create a custom API and implementation to enable your apps to call the
connector APIs. To generate the API and implementation automatically, see
Generating Custom APIs for Connectors. If you want to do this manually, create a
custom API with the appropriate resources, and then implement the custom code as
described at Calling Connector APIs from Custom Code.

Basic Connector Setup
You can create a functioning connector by completing the first two pages in the REST
Connector API wizard.

1. Make sure that you’re in the environment for which you want to create the REST
Connector API.

2. Click and select Applications > APIs from the side menu.

3. Click REST (if this is the first connector API to be created) or New Connector and
from the drop-down list, select REST.

4. Identify your new REST Connector API by providing the following:

a. API Display Name: The name as it will appear in the list of connector APIs.

b. API Name: The unique name for your connector API.

By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Other than a new version of this connector API, no other connector API can
have the same resource name.

c. Short Description: This description will be displayed on the Connectors page
when this API is selected.

5. Click Create.

6. In the General page of the REST Connector API dialog, set the timeout values:

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to
the remote URL. A value of 0mms means an infinite timeout is permitted.

Chapter 24
Creating a REST Connector API

24-3

The HTTP timeout values must be less than the
Network_HttpRequestTimeout environment policy, which has a default value
of 40,000 ms. To learn more about environment policies, see Environment
Policies.

Note:

If you have a mobile cloud administrator role in addition to your
service developer role, you can open the policies.properties
file to see the value for the network policies for the current
environment from the Administrator view. Otherwise, ask your mobile
cloud administrator for the values.

7. Click Descriptor and enter the connection info for the service.

If you provide a Swagger descriptor URL, the available resources are identified
and displayed, and you can select which ones you want.

Note:

Only standard internet access ports 80 and 443 are supported.
Connection to a service can't be made using a custom port.

8. Click Save.

9. Optionally, click Test, select authentication credentials, and make test calls to the
service.

From there, you can further configure the connector in the following ways:

• (If you have provided a descriptor on the Descriptor page) navigate to the
Resources page and select the methods for the exposed resources.

• Define rules.

• Set security policies.

To be sure your connector API configuration is valid, you should test it thoroughly (not
just from the Connector API Test page) before publishing it. That is, you should also
test the custom API (with its implementation) that uses this connector API. See Testing
and Debugging Custom Code. Essentially, if you’re ready to publish the connector
API, you should also be ready to publish the custom API that calls it.

If you’ve already published the connector API and then find that you need to change it,
you must create a new version of it. See Creating a New Version of a Connector.

Providing the Descriptor
If you provide a Swagger descriptor URL, the REST Connector API wizard can
examine the descriptive metadata and obtain resources and fields from it.

Note:

Only Swagger metadata in JSON format is currently supported.

Chapter 24
Creating a REST Connector API

24-4

If you don’t have a descriptor, simply select that option and enter the remote URL of
the external service.

1. On the Descriptor page, select the means by which the REST Connector wizard
reads the Swagger metadata:

• Web Address. Select this option to enter the URL of the Swagger metadata.

Click Oracle Cloud Service REST API Catalog to get a descriptor from the
Oracle Cloud Service REST API catalog. Copy the address for the descriptor
you want to the clipboard and paste it into the Location field.

• I don’t have a descriptor. Select this option to enter the URL of the external
REST service.

The remote URL is the address of the resource for the external service that
this connector API calls.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if your connector API is configured
correctly, the connection will fail. See Common Custom Code Errors.

The HTTPS protocol is used most often, but you can use HTTP if the web
service is on a nonsecure site.

Note:

When specifying a port, only standard internet access ports 80 and
443 are supported. Connection to a service can't be made using a
custom port.

You can optionally enter query parameters in the URL, for example:

https://maps.googleapis.com/maps/api/directions
https://maps.googleapis.com/maps/api/directions/json
https://maps.googleapis.com/maps/api/directions/location?
origin=Pasadena

Chapter 24
Creating a REST Connector API

24-5

http://trustedsource.org/

Typically, you set parameters in rules instead of in the Remote URL field, but
both ways are possible. See Setting Query Parameters in Remote URLs. To
learn more about setting rules, see Rules.

2. If your provided a descriptor URL, enter your basic authentication credentials (user
name and password) to access the descriptor if you selected the Web Address
option. Then you can proceed to the Resources page.

If you provided a remote URL, your next step is to set rules (optional) or select a
security policy.

Note:

If need to edit your configuration, the descriptor URL and design time
credentials you provided are preserved. However, if you provide a
different descriptor URL, you will need to enter the credentials to access
that descriptor instance.

3. Click Next to proceed.

Rules
You set rules to define the interactions between your mobile app and a service. Rules
provide a way for you to add default parameter values for all calls to resources on the
service, calls to a specific proxy path, and calls for certain types of operations (verbs).
This helps enforce consistent syntax of the URL string, saves the custom code
developer from having to insert these values, and makes it possible to track the
different calls through analytics.

You can create one or more rules. Each rule can have one or more parameters of type
Query and Header.

If no rules are applied, all calls are passed through the proxy to the existing service.

1. (If the connector is not already open) click and select Applications > APIs
from the side menu.

2. Select the connector API that you want to edit and click Open.

3. Select Roles.

4. Click New Rule.

5. Click Add Parameter and select a Query or Header parameter type and enter the
query or header name, and its value.

Chapter 24
Creating a REST Connector API

24-6

Note:

Although you can define rules to set certain headers by default, the rules
aren’t applied if the client that called the connector directly through
custom code or indirectly, such as from a web browser or mobile app,
has already set the same headers.

In particular, setting the format of the request body is usually done in the
custom code with the Content-Type header, not as a REST Connector
rule. Similarly, setting the format of the response body is also done in the
custom code with the Accept header, not as a REST Connector rule.

You can add as many parameters to a rule as you want but it's better not to
overload a rule with too many operations. A simpler rule construct is easier to
troubleshoot.

6. Expand Resources and edit the remote URL to provide a resource for the rule to
be applied to. The base URL value is what you entered in the setting basic
information step and it can’t be edited.

7. Select Do not apply to lower level resources if you want the rules applied only
to the resource level specified in the Remote URL.

8. (Optional) Unselect the HTTP methods that you don’t want applied to rules that
you just defined. By default, all methods are selected.

9. (Optional) Click New Rule to create another rule.

Note:

If you define a rule that conflicts with another rule, the first rule applied
takes precedence and the conflicting rule is ignored.

When you're done, click Save and then Next (>) to go to the next step in
configuring your connector API.

The description of the rule that you just defined is shown in the Rule banner just above
the Default Parameters section. For example, let's say the following values have been
provided:

• Remote URL = https://maps.googleapis.com/maps/api/directions/json?
origin=los+angeles&destination=seattle

• Local URI = myMapAPI

• Rule with the following parameter: Query:key:A3FAEAJ903022

• GET and PUT HTTP methods

The rule description would read as follows:

Chapter 24
Creating a REST Connector API

24-7

For GET to https://maps.googleapis.com/maps/api/directions/json?origin=los
+angeles&destination=seattle available at myMapAPI/directions, Include
Query:key=A3FAEAJ903022.

If no rules were created, the description would simply read:

For ALL METHODS to https://maps.googleapis.com/maps/api/directions
available at myMapAPI, No default parameters will be applied.

Now you have a base URI that maps to the existing service. Using our example:

mobile/connector/myMapAPI/directions/json?origin=los
+angeles&destination=seattle maps to https://maps.googleapis.com/maps/api/
directions/json?origin=los+angeles&destination=seattle

Selecting Endpoints
If you provided a descriptor, you’ll have access to the Resources page. Here’s where
you’ll be able to examine details about the resources that are included in your
connector configuration and select the endpoints that you want in your connector
configuration.

1. Review the runtime base URI of the external REST service.

This is the address of the runtime server that you’re executing against. It consists
of the runtime server port and the base path of the Swagger descriptor. For
example, if /documents/api/1.1 is the base path, then the URI would look like:

http://server.port/documents/api/1.1

Note:

This URI is extracted from the metadata if present. If the metadata
doesn’t contain the address, you must provide it or you won’t be able to
proceed to the next step in the connector configuration.

Chapter 24
Creating a REST Connector API

24-8

2. Select an endpoint to add it to your configuration.

Resources methods aren’t selected by default. If you want a particular endpoint,
select it. Un-selecting the resource, un-selects all of its methods.

When a method is selected, you can view its details, including its associated
methods. The Details panel displays the following information for the selected
resource:

• Description. The text content of the Swagger description value for the
method.

• Parameters. A list of the required and optional parameters to use when calling
the method.

• Responses. A list of the available responses that are returned when calling
the method.

Use the Filter field to locate a resource based on its name or description.

Click Select All to select all the resources. To start over, click Clear All.

Click Expand All to display all the associated methods for every resource.

3. Click Next to set the runtime security policy.

Security Policies and Overriding Properties
Before you finalize your connector API, you should consider how to handle its security.
You can use either security policies or authorization headers. Selecting a security
policy that describes the authentication scheme of the service to which you’re
connecting to is the recommended approach.
If you want to use headers, see Security and REST Connector APIs.

Every security policy has properties, called overrides, which you can configure. One
reason to override a policy configuration property is to limit the number of policies that
you have to maintain: rather than creating multiple policies with slightly varied
configurations, you can use the same generic policy and override specific values to
meet your requirements.

To select a security policy and set the policy overrides:

1. (If the connector is not already open) click and select Applications > APIs
from the side menu.

2. Select the connector API that you want to edit and click Open.

3. Select Security.

Chapter 24
Creating a REST Connector API

24-9

4. Select the security policy from the list of available policies and click the right arrow
to move it to the Selected Policies list.

Select only a single policy for your connector API. A description of a selected
policy is displayed below the list. To find out more about the supported security
policy types for the REST Connector API, see Security Policy Types for REST
Connector APIs.

5. Specify overrides, if applicable, to the selected policy if you don't want to use the
default values.

To override a property, enter or select a value other than the default. For a
description of policy properties, see Security Policy Properties.
To set a Credential Store Framework (CSF) Key value, see Setting a CSF Key. To
learn about credential keys and certificates, see CSF Keys and Web Service
Certificates.

6. Click Save to save your work or Save and Close to save your work and exit the
REST Connector API wizard.

7. Click Next (>) to go to the next step, testing the connector, Testing in Advanced
Mode.

Setting a CSF Key
If you want to authenticate the user, you must set the csf-key property. You must set
the csf-key property if you’ve selected http_basic_auth_over_ssl_client_policy,
http_samle20_token_bearer_client_policy, or
http_samle20_token_bearer__over_ssl_client_policy.

Note:

If you set the csf-key and the security policy has a subject.precedence
property, that property should be set to false. If you need to set
subject.precedence to true, you must also set the
propagate.identity.context property. In the latter case, don’t set csf-key.

Chapter 24
Creating a REST Connector API

24-10

Click Keys in the csf-key field in the Security Overrides section to open the Select
or Create a New API Key dialog.

Provide a CSF Key in one of the following ways:

• Select an existing key from the Available Keys list.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new basic (CSF) credentials key.

To create a new CSF key:

1. Click New Key.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter the user name and password (the user credentials) for the service to which
you are connecting.

Repeat the password in the confirmation field.

5. Click Save to add the key to the Available Keys list.

The key name value will appear as the override value on the Security page.

If you want to edit some aspect of an existing CSF key, select it from the Available
Keys list and modify the fields as needed. To learn more about CSF keys, see CSF
Keys and Web Service Certificates.

Testing the REST Connector API
Now that you've defined your REST Connector API and saved the configuration, you'll
want to verify that you’re able to actually send a request and receive the expected
results from the web service. Testing a connection is also an optional step but can
save you time by identifying and fixing problems now before you finalize the connector
API. The Test page lets you test one endpoint at a time.

If you provided a descriptor, you have two testing modes to choose from:

• Standard testing

If you provided descriptor metadata, the standard testing mode is displayed in
which the request and response bodies are generated from the descriptive
metadata and displayed in the Request and Response tabs. All you have to do is
select the parameters to test with for GET methods and include any HTTP
headers that you want to test with. See Testing in Standard Mode.

• Advanced testing

Alternatively, you can refine your testing by selecting Testing in Advanced Mode
(the test mode you enter if you provided a remote service URL). Without
descriptive metadata, you select the method and resource to test, include any
HTTP headers you want to include, and manually create the JSON body. See
Testing in Advanced Mode.

Chapter 24
Creating a REST Connector API

24-11

Testing in Standard Mode
If you provided descriptor metadata, you’ll automatically get the standard test page,
which lists all the available query parameters for you as well any example bodies or
schemas for the request and response payloads (if present in the metadata).
To test your connector with the endpoints exposed for you:

1. Click the Test navigation link.

2. Select the endpoint you want to test.

Endpoints are listed on the left side of the page. Enter a partial resource name in
the filter field to narrow the list to make it easier to find the endpoint you want.
When you select an endpoint, the method, the resource name, and the URI of
service is displayed on right side of the page.

3. Set the default test credentials if you’re in the design phase and just want to see if
your endpoints are valid, or if you want to test multiple endpoints during the
session.

Otherwise, skip this step and fill out the fields in the Authentication section for
each method you test.

a. Click Default Test Credentials at the top of the page.

b. Select a mobile backend to associate the API with and the version of the
mobile backend.

c. If both OAuth and HTTP Basic Authentication are enabled for the mobile
backend, select one in the Authentication Method field to use for testing.

d. Click Save to apply the credentials.

4. Click Request and expand Parameters.

When you select a GET method, all the available query parameters are displayed
on the Request tab.

a. For a GET method, enter a parameter value.

b. (Optional) Click Example to view the example body, if one was provided. For
methods other than GET, enter an alternate example to test with by clicking
Use Example. The provided example body is copied into the text bod. You
edit the example as needed.

c. (Optional) Click Schema to view the request body schema if one was
provided.

5. Expand HTTP Headers and click Add HTTP Header to add a header.

Select the header that you want to include for testing purposes and provide a
value in the text field.

6. Expand Authentication, select the mobile backend and its version that are
associated with this API, and enter your mobile user credentials. If both OAuth and
HTTP Basic Authentication are enabled for the mobile backend, select one in the
Authentication Method field to use for testing.

7. Click Response, expand the status code and click Example or Schema to review
the example or schema for the response body, if one was provided.

8. Click Test Endpoint.

Chapter 24
Creating a REST Connector API

24-12

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the test
for any reason, then click Cancel Test.

If you want to make changes to the testing parameters, click Reset to clear all the
fields.

To be sure your connector API configuration is valid, test it thoroughly (not just from
the Connector API Test page) before publishing it. You should also test the custom
API (with its implementation) that uses this connector API. Essentially, if you’re ready
to publish the connector API, then you should also be ready to publish the custom API
that calls it.
If you need to make changes to a connector API that's in the Published state, then
create a new version of it. For information on creating a new version, see Creating a
New Version of a Connector.

Testing in Advanced Mode
The advanced test page lets you manually set path parameters, add headers, and the
request and response payloads.

To manually configure a connector test:

1. Click the Test navigation link.

2. If you provided a descriptor, turn Test in Advanced Mode to On.

The advanced test page displays automatically if you provided a remote service
url.

3. Select the HTTP method that you want to test from the drop-down list.

4. Specify any resource path parameters in the Local URI field as needed for testing
purposes. For example:

directions/json?origin=los+angeles&destination=seattle

The field is automatically prefixed with the local URI that you defined when you
entered an API name. Following our example, the full contents of the field would
look like this:

myMapAPI /directions/json?origin=los+angeles&destination=seattle

Notice that if you defined any rules, the Rules Applied field (below the Body field)
displays numbers that correspond to the rules that are applicable for the selected
operation. The Remote URL field shows the exact string that will be passed to the
service for the test.

5. Add one or more request or response HTTP headers as needed.

These headers are for testing purposes only and won't be added to your REST
Connector API configuration.

6. Click in the HTTP Body field to create your message body (the payload) in the
source editor.

For example:

{
 "status":"ZERO_RESULTS",

Chapter 24
Creating a REST Connector API

24-13

 "routes":[]
}

Keep the content of the message body relevant to the purpose of the connector,
that is, don’t bloat the message by adding extraneous data. Including only
pertinent data in the message body facilitates quick transmission of the request or
response.

7. If the service that you're connecting to requires authentication, open the
Authentication section and enter your mobile user credentials for each method
you test. If you’re using default test credentials, you can skip this step.

With SAML-based security policies, the identity of the user making the call is
propagated to the external service. For other security policies such as HTTP Basic
Authentication and username token, the credentials used to authenticate with the
external service are provided in the policy overrides as CSF keys. Depending on
the operation that you’ve defined, you may have to enter specific credentials for
each operation or you might be able to use one set of credentials for all the
methods to authenticate your connector with the service.

8. Click Save as current mobile backend default credentials to save the user
name and password that you provide as the default.

9. If you’re in the design phase of creating your connector and you just want to see if
your endpoints are valid, click Default API Designer Test Credentials and select
a mobile backend that you’re registered with and its version number.

Optionally, you can enter your mobile user credentials (user name and password).
These default test credentials are persistent across all the methods that you test.
They remain valid during the current MCS session.

10. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, click Cancel Test.

Click Reset to clear the fields and modify the test parameters.

11. Click Done when you’ve finished testing your endpoints.

Getting the Test Results
Test results are displayed at the bottom of the Test REST API page. The result
indicator is the response status:

• 2xx: indicates a successful connection

• 3xx: indicates a redirection occurred

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

Here's a list of the more common status codes that you'll want to use:

Code Description

200 OK Successful connection.

201 CREATED Successful creation through either a PUT or POST operation.

Chapter 24
Creating a REST Connector API

24-14

Code Description

204 NO CONTENT Successful connection but no response body (used for DELETE
and UPDATE operations).

400 BAD REQUEST General error when fulfilling the request, causing an invalid
state, such as missing data or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the resource is
unavailable.

404 NOT FOUND Error due to the resource not being found.

405 METHOD NOT
ALLOWED

Error that although the requested URL exists, the HTTP method
isn’t applicable.

409 CONFLICT Error due to potential resource conflict caused, for example, by
duplicate entries

500 INTERNAL SERVER
ERROR

General error when an exception is thrown on the server side.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Click Response to see the details of the response returned.

Test each of your operations and modify them as needed to validate your endpoints.

After your connector API is tested, published, and deployed, you can go to the
Connectors page to see analytical information about it, such as how often the
connector is being called and what apps are using the connector. See Managing a
Connector.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

By examining multiple messages, you can more easily determine where issues occur.
For every message that you send, MCS tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. Click Logs on the Administration page to view
logging data. You can also retrieve records from Oracle Fusion Middleware Logging
using the call's ECID.

Depending on your MCS access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page, allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To obtain and understand diagnostic data, see Diagnostics.

Chapter 24
Creating a REST Connector API

24-15

Security and REST Connector APIs
MCS gives you the flexibility to configure a secure connection to external services
through the use of security policies or authorization headers.

Here are the different ways that you can configure a REST Connector API to
communicate with a secured service:

• Configure a security policy.

On the Security tab of the REST Connector UI, decide which policies describe how
the external service that you’re communicating with is secured, and configure it as
necessary. Configuring a security policy is the recommended practice and takes
precedence over setting or configuring authorization headers.

• Set the Oracle-Mobile-External-Authorization header on each request.

If you decide not to configure a security policy, then the next best course of action
is to set the Oracle-Mobile-External-Authorization header for every request
that the connector makes. When calling a connector API through custom code, an
MCS-specific authorization header is automatically set as the Authorization
header. This original Authorization header that’s set on the connector API
request is used to pass only MCS authorization and is never passed through to the
external service call. If you set Oracle-Mobile-External-Authorization on the
request, the value of this header will be set as Authorization on the request to
the external service. Set an Oracle-Mobile-External-Authorization header only
when the service that you’re connecting to is secured in a way that isn’t described
by an existing security policy. It won't take effect if one is configured. Passing the
Oracle-Mobile-External-Authorization header in the connector request takes
precedence over an Authorization header rule.

When setting this header, include BASIC to denote HTTP Basic Authorization or
BEARER to denote OAuth. For OAuth, setting this header is applicable in cases
where the OAuth token is passed by way of the Authorization header, such as in
the following cases:

– A REST connector is used to call another Oracle Cloud service. The same
access token that was used to authenticate with MCS is reused to
authenticate with the other service.

– An access token generated by a service is passed to an MCS custom code
call and set on a REST connector call to obtain the information about the
individual who received the access token as part of an enterprise mashup.

– A person logs on to Facebook and obtains a Facebook access token. The
token is passed to an MCS custom code call and set on a REST connector
call to retrieve the person’s friends list.

• Configure a rule for the Authorization header.

Lastly, when the Authorization header isn't already being set by other means,
you can create a rule to apply a default Authorization header. On the Rules tab
of the REST Connector UI, create a rule of type Header for Authorization and
provide a value. This approach isn’t recommended as usually the Authorization
header is dynamic or contains sensitive information (passwords). All sensitive
information should be stored in a CSF key, which is why you should configure a
security policy when possible.

Chapter 24
Security and REST Connector APIs

24-16

Security Policy Types for REST Connector APIs
You'll need to set a security policy to protect the information you want to send or
receive unless the service you’re accessing isn't a secure service or doesn’t support
security policies, in which case, you can’t set a security policy for the connector. When
determining what policies to set, consider whether the connection to the service
involves transmitting proprietary or sensitive information. Adding a security policy
ensures the authentication and authorization of the data transmitted.

From the Security page, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including OAuth2, SAML, and HTTP Basic
Authentication.

Security Policy Type Description

OAuth2 and the Client Credential Flow MCS supports OAuth2, a system where an
Authentication server acts as a broker
between a resource owner and the client who
wants to access that resources. Of the
different flows (security protocols) offered by
OAuth2, the Client Credentials Grant Flow is
used in MCS to secure REST connections.
This flow is used when the client owns the
resources (that is, the client is the resource
owner).

HTTP Basic Authentication HTTP Basic authentication allows an HTTP
user agent to pass a user name and password
with a request. It's often used with stateless
clients, which pass their credentials on each
request. It isn't the strongest form of security
though as basic authentication transmits the
password as plain text so it should only be
used over an encrypted transport layer such
as HTTPS.

Security Assertion Markup Language (SAML) SAML is an XML-based open standard data
format that allows the exchange of
authentication and authorization credentials
among a client, an identity provider, and a
service provider. The client makes a request of
the service provider. The service provider
verifies the identity of the client from the
identity provider. The identity provider obtains
credentials from the client and passes an
authentication token to the client, which the
client then passes to the service provider. The
identity provider verifies the validity of the
token for the service provider and the service
provider responds to the client.

Ask yourself the following questions to determine what kinds of security policies you
need:

• What are the basic requirements of your security policy? Do you need to only
authenticate or authorize users, or do you need both?

• If you need only authentication, do you need a specific type of token and where
will the token be inserted?

Chapter 24
Security Policy Types for REST Connector APIs

24-17

For a list of the security policies supported for REST Connector APIs, see Security
Policies for REST Connector APIs. For descriptions of security policy properties that
can be overridden, see Security Policy Properties.

CSF Keys and Web Service Certificates
Depending on the security policy that you selected, you may be able to override a
property that sets a CSF key or a Web Service Certificate. In MCS, the Oracle
Credential Store Framework (CSF) is used to manage credentials in a secure form. A
credential store is a repository of security data (credentials stored as keys) that certify
the authority of users and system components. A credential can hold user name and
password combinations, tickets, or public key certificates. This data is used during
authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or
create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Setting a CSF Key.

A Web Service Certificate allows the app to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. You override a
certificate key by selecting an alias from the drop-down list. The certificate key
available in some security policies for a REST Connector API is the
keystore.sig.csf.key, which is the alias for this property that’s mapped to the alias
of the key used for signing.

Important:

For security policies for REST Connector APIs, don’t override the default
value for the keystore.sig.csf.key property. Currently, orakey is the only
valid value for all certificate keys.

Not all security policies contain the same properties. When you select a policy, you
can see which properties are listed in the Policy Overrides. For example, if you
selected http_basic_auth_over_ssl_client_policy, then you’ll see that the policy
contains the csf-key property but none of the certificate keys. However, if you
selected http_saml20_token_bearer_over_ssl_client_policy, then you’ll see both
the csf-key and the keystore.sig.csf.key certificate key.

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security

Chapter 24
CSF Keys and Web Service Certificates

24-18

policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It’s also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Query and Header Parameters
A Query parameter is the most common type of parameter. Use it to filter, sort, and
search for information. Add a question mark (?) to the end of the URL followed by a
name-value pair. For example:

/directions/distance?origin=Los+Angeles&destination=Seattle

The query specifies that the information wanted is the distance from one location
(origin=Los+Angeles) to another (destination=Seattle).

You can see in the example above that the space in the query parameter, Los
Angeles, is encoded by a plus sign, (+). The
Url_PercentEncodeQueryParameterSpaces policy determines how spaces in query
parameters are encoded. If set to true, a space is encoded as a percent sign, (%). If
set to false (the default value), a space is encoded as a plus sign (+).

For example, if Url_PercentEncodeQueryParameterSpaces is set to true , the
outbound URL would be .../distance?origin=Los%Angeles&destination=Seattle.

Note:

If you specify a parameter in the custom code and you also specify that
same parameter in a REST connector rule, the parameter in the custom
code takes precedence and overrides the parameter’s value defined in the
rule.

Query parameters are usually set in rules, however, you can have query parameters in
the remote URL. In such cases, there’s a precedence order for how the parameters
are combined at runtime. See Setting Query Parameters in Remote URLs.

Use a Header parameter for outgoing requests. REST headers are a means of
providing HTTP metadata. For example, the header, Expires, can be used to specify
the amount of time after which a response is considered stale.

Setting Query Parameters in Remote URLs
You can add query parameters to the remote URL. If the remote URL contains a query
parameter and you’re adding query parameters to the runtime resource through rules,
then there is a precedence order of how the parameters are combined:

1. If you're adding a remote URL that has a query parameter U?qp=a to a runtime
resource /r, the query parameter should come after the runtime resource.

Chapter 24
Query and Header Parameters

24-19

For example, if you have the remote URL directions?origin=Pasadena and want to
specify the runtime resource /zones, the full URL should be directions/zones?
origin=Pasadena. Note that a simple concatenation of the URL isn’t done.

2. If you're combining a remote URL with a query parameter U?qp=a with a default rule
qp=b , both query parameters should come after the URL.

For example, if you have a remote URL directions/zones?origin=Pasadena and you
want to add the default rule destination=Anaheim, the resulting URL should be
directions/zones?origin=Pasadena&destination=Anaheim. It’s orthogonal to rules.

3. If you're combining a remote URL U?qp=a with a runtime request /r?qp=c, the
request parameter is appended to the URL.

For example, if you add the request /r?date=2015–04_07T14:30:00.000Z to the
remote URL directions/zones?origin=Pasadena, the result isdirections/zones?
origin=Pasadena&date=2015–04_07T14:30:00.000Z.

Adding Parameters

Parameters can be added as part of the URI path as a child (nested) resource or
added as a query. There are no hard and fast rules as to whether to add parameters to
the URI path or to add the parameters in a query. One possible consideration is
whether the parameter is essential to the request. For example, you could use an
identifier, id, to the directions resource in the URI path to get data for a specific
area. If you’re using the parameter as a filter to narrow down the data, then add it in
the query. For example, you could define office as a query parameter, .../
directions/zones?office=Inglewood, to filter locations of offices only in the
Inglewood area.

Besides the remote URL, you can set parameters in the following ways:

• Setting a rule

• Defining a request body

• Defining a test endpoint

• Creating custom code

The parameters are considered to be URL-encoded. If a parameter isn’t already URL-
encoded, it will be encoded when sent to the external service.

Editing a REST Connector API
If you need to change some aspect of a connector API, you can as long as it’s in the
Draft state. After you publish an API, the API can’t be changed. You’ll have to create a
new version of a published connector and make your changes to the new version.

To edit a REST Connector API:

1. Make sure that you’re in the environment containing the REST Connector API that
you want to edit.

2. Click and select Applications > APIs from the side menu.

3. Select the draft connector API that you want to edit and click Open.

4. Click Refresh () if you’re using the same descriptor and just want to get the
latest resources.

Chapter 24
Editing a REST Connector API

24-20

5. Click Save to test your changes immediately or click Save and Close to save your
current changes and finish the rest of your changes later.

6. Test your changes.

Using Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the
data returned from the call to the connector.

The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Troubleshooting REST Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to Administration in the
side menu and click Logs to see any system error messages or click Request History
to view the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and
the outbound connector calls made within a single mobile backend.

Sometimes a connection fails because the service URL provided is untrusted. You can
add the URL to the list of trusted URLs at trustedsource.org. To learn more about
what happens when you use an untrusted service URL and other common errors that
can occur when configuring your connector API, see Common Custom Code Errors.

Issues can also arise when connecting to an external service such as when the
service has an invalid SSL certificate or the request is redirected but the cookies aren’t
preserved over the redirect. You can resolve these issues by using the options
argument in custom code to customize the outgoing HTTP requests. See Overriding
SSL Settings for Connectors for details.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system
that doesn't support the latest versions of SSL, you can specify the SSL protocol to
use for the connector by setting the Security_TransportSecurityProtocols

Chapter 24
Using Your Connector API in an App

24-21

http://trustedsource.org/

environment policy. The policy takes a comma-separated list of TLS/SSL protocols, for
example: TLSv1, TLSv1.1, TLSv1.2. Any extra space around the protocol names is
ignored. You can use the SSLv2Hello protocol to debug connectivity issues with
legacy systems that don't support any TLS protocol. Note that this policy can’t be used
to enable SSLv3 endpoints. See Environment Policies and Their Values for a
description of the policy and the supported values. Be aware that this policy must be
manually added to a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

Chapter 24
Troubleshooting REST Connector APIs

24-22

25
SOAP Connector APIs

Oracle Mobile Cloud Service (MCS) enables you to create connector APIs to connect
to SOAP services. You can call these connector APIs from the implementations of
your custom APIs.

How SOAP Connector APIs Work
A SOAP connector API is an intermediary API for calling SOAP endpoints. The
connector API takes the form of a configuration that gives your apps a standard way to
connect to these SOAP endpoints and take advantage of the security, diagnostics, and
other features provided by MCS.

The key steps to creating a SOAP connector API are establishing a connection to an
external system, examining and selecting a set of possible interactions, and then
modeling them into a reusable API.

The SOAP Connector API wizard walks you through creating SOAP connector APIs,
from specifying the WSDL location of a remote service, setting a port, setting security
policies, to testing your endpoints.

SOAP Connector API Design Process
Here’s the process for designing a SOAP connector API:

1. A SOAP Connector API is created in MCS using the SOAP Connector API wizard
and is passed to the Asset catalog (the Asset catalog is a repository in MCS where
API information is stored). The connector API is added to the list of connector APIs
(using the API display name) on the Connectors Manage page on the
Development tab.

25-1

2. The WSDL location is passed to the WSDL Parser. The WSDL file describes how
the service is called, what the expected parameters are, and what data structures
are returned. From the data in the WSDL file a sample body is generated.

3. The WSDL Parser goes to the provided WSDL location to obtain the WSDL file.

4. All the available ports for the connector are extracted by the parser and returned to
the Asset catalog, after which, the port can be selected and the connector API
configurations, such as the endpoint URI and custom operation names, are
provided.

5. The Asset Catalog stores the security policies and the request and response
schemas.

Here’s how the runtime flow goes:

1. Custom code calls the SOAP Connector API. Information is then passed to the
connector implementation. The implementation extracts the JSON payload from
the request.

2. The schemas, security policies, and API configuration are passed to the Asset
catalog.

3. The implementation sends the JSON payload to the JSON translator to translate it
to XML using the schemas that are stored as part of the API configuration.

4. The JSON translator returns the payload in XML format.

5. A SOAP message is constructed from the XML, some HTTP headers (like
context-id) and security-related headers are added and the request is sent to the
external service.

6. An XML response is sent by the service back to the connector API. Step 3 and
Step 4 are repeated. The response is sent to the JSON translator by the connector
implementation to translate the XML response to JSON. The translated response
is sent to the connector API.

7. The connector API sends the JSON response back to the custom code.

Chapter 25
How SOAP Connector APIs Work

25-2

Why Use SOAP Connectors Instead of Direct Calls to
External Resources?

• Allows for simplified declarative connection and policy configuration.

• Allows calls to an external service, along with security policy setup and
credentials, to be encapsulated and used consistently across the mobile API.

• Provides automatic translation of JSON requests to XML and XML responses to
JSON, enabling you to interact with SOAP services without having to work
expressly with XML. In addition, it provides you with the ability to provide the
SOAP envelope itself, giving you the choice of using XML or JSON.

• Lets you dynamically modify HTTP timeout properties via the user interface
without having to bring down the service. This feature is particularly beneficial
when the external SOAP service or network connectivity suffers a slowdown.

• Provides you with extensive diagnostic information as its tightly integrated with the
MCS diagnostics framework. Any outbound calls made through connector APIs
are logged, which greatly helps with debugging.

• Allows for tracking and analytics on remote API usage.

• Lets you define interaction with the service at design time when you test the
validity of your endpoints so that the terms of that interaction aren’t dependent on
user input at runtime. This protects both the end system and your mobile backend
from harm.

• Provides a consistent design approach among multiple connector types for
interacting with external services.

• With any change in the interface for a service, lets you can handle any necessary
updates, testing, and migration in one place.

Creating a SOAP Connector API
Use the SOAP Connector API wizard to quickly configure your connector API by
providing a name and description, specifying a port, setting security policies, and
testing it.

Creating a connection to an existing SOAP service can be a simple two-step
operation:

1. Name your connector API.

2. Provide the WSDL of the external service.

Chapter 25
Why Use SOAP Connectors Instead of Direct Calls to External Resources?

25-3

Note:

A timeout can occur when downloading a large WSDL file or when
connecting to a WSDL over high latency networks, which prevents the
creation of the SOAP Connector API. To ensure the WSDL is downloaded,
set the following environment policies before you create the API:

• *.*.Network_HttpConnectTimeout

• *.*.Network_HttpReadTimeout

Set these policies in the development environment in which you’re creating
the SOAP Connector API. A mobile cloud administrator can export the
policies file from the Administration view, edit these values, and import the
modified file back to the development environment.

These policies affect only the connector APIs during design time. The
timeout values that you set while configuring a connector API take effect
during runtime.

To edit environment policies, see Modifying an Environment Policy.

You also have the ability to configure client-side security policies for the service that
you’re accessing and testing and checking the results of your connection.

As soon as it’s created, your connector API appears in the list of connector APIs.
When at least one connector API exists, you’re taken directly to the Connector API
landing page when you click Connectors from the side menu. From there, you can
select the connector API you want and edit it, publish it, create a new version or
update an existing version, deploy it if it has a Published state, or move it to the trash.
See Connector Lifecycle.

To call a connector API, you can create a custom API and configure the API’s
implementation to call the connector. See Calling Connector APIs from Custom Code.

Setting the Basic Information for Your SOAP Connector API
Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, the address to the remote service, and a
brief description:

1. Make sure that you’re in the environment where you want to create the SOAP
Connector API.

2. Click and selectApplications > APIs from the side menu.

The Connectors page appears. If no connector APIs have been created yet, you'll
see icons for each of the connector APIs that you can create. If at least one
connector API exists, you'll see the a list of all the connector APIs. You can filter
the list to see only the connector APIs that you're interested in or click Sort to
reorder the list.

3. Click SOAP or New Connector and select SOAP from the drop-down list.

Each time you create a SOAP Connector API, the New SOAP Connector API
dialog appears. This is where you enter the basic information for your new
connector API.

Chapter 25
Creating a SOAP Connector API

25-4

4. Identify your new SOAP Connector API by providing the following:

a. API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myOrderApi.

Note:

The names you give to a connector API (the value you enter in the
API name field) must be unique among connector APIs.

For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

b. API Name: Enter a unique name for your connector API.

For example, myorderapi.

By default, this name is appended to the base URI as the resource name for
the connector API. You can see the base URI below the API Name field.

The connector API name must consist only of lowercase alphanumeric
characters. It can’t include special characters, wildcards, slashes /, or curly
braces {}. A validation error message is displayed if you enter a name that’s
already in use.

If you enter a different name for the API here, the change will automatically be
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

c. WSDL Location: Enter the address of the existing SOAP service that this
connector API will call. For example: http://example.com/incidentreport/
reports.wsdl

You can also copy and paste a WSDL address into this field. To ensure the
WSDL you’re using is valid within the scope supported by MCS, see
Troubleshooting SOAP Connector APIs.

Chapter 25
Creating a SOAP Connector API

25-5

Note:

When specifying a port in the URL, only standard internet access
ports 80 and 443 are supported. Connection to a service can't be
made using a custom port.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured
correctly, the connection will fail. See Common Custom Code Errors.

d. Short Description: Provide a brief description, including the purpose of this
API.

The character count below this field lets you know many characters you can
add.

After you've filled in all the required fields, click Create, which displays the
General page of the SOAP Connector API dialog.

5. Set the timeout values:

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to
the remote URL. A value of 0mms means an infinite timeout is permitted.

The HTTP timeout values must be less than the
Network_HttpRequestTimeout environment policy, which has a default value
of 40,000 ms. To learn about environment policies, see Environment Policies.

Note:

If you have a mobile cloud administrator role in addition to your
service developer role, you can open the policies.properties file
to see the value for the network policies for the current environment
from the Administrator view. Otherwise, ask your mobile cloud
administrator for the values.

6. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, the click Save
and Close. You can always click Cancel at the top of the General, Port, and
Security wizard pages to cancel that particular configuration operation. You’ll be
taken back to the Connector APIs page.

7. Click Next (>) to go to the next step in configuring your connector API.

Chapter 25
Creating a SOAP Connector API

25-6

http://trustedsource.org/

After the basic information is provided, you can specify the interaction details for
your connector.

You can always edit your configuration when it's in a Draft state; however, after
you publish your connector API, no changes can be made to it. You can make
changes by creating a new version of an existing connector API. See Creating a
New Version of a Connector.

Selecting a Port
The services and their associated ports that are available for the WSDL that you
provided are listed on the Port page. A port is a set of actions that define the
collaboration and interaction with a web service. A service defines the operations and
structures of the WSDL and exposes those operations as explicit endpoints. Although
a WSDL can contain multiple ports, the SOAP Connector API can only use a single
port at a time. If you need to expose more than one port, you must create one SOAP
Connector API for each port.

On the Port page, you select a single port that lists the available operations for that
service. Optionally, you can provide alternate names for those operations to make
them more meaningful or easier to read.

1. Click the Port navigation link at the top of the SOAP Connector API wizard.

2. Select a port from the service you want in the list.

You can select only one port. Filter the list by entering a string in the Filter field
and click the magnifying glass .

The endpoint field is populated with the service and port endpoint (URL) that are
extracted from the WSDL. By default, the original operation name of the SOAP
service is used to form the REST resource at which the functionality of the
operation would be exposed by the SOAP Connector API.

For example, an operation, CreateIncident, of the service, IncidentReport and
port, ReportPort, can be mapped to the REST resource: /mobile/connector/
myIncidentReportAPI/CreateIncident.

This is the resource path to which custom code would send requests to. You could
expose it differently if you wanted to, for example as the REST resource: /mobile/
connector/myIncidentReportAPI/Create.

Note:

If you save the connector configuration without explicitly selecting a port,
the first available port for the WSDL is selected for you by default. This
action ensures your connector configuration is complete and valid for
testing purposes. You can always change the port as long as the
connector is in Draft state.

3. (Optional) Rename one or more operations to make them more meaningful.

All the operations available in the selected port are listed.

Each operation is mapped to the relative base URI that you entered. For example: the
operation Create maps to Create resource.

Click Next (>) to go to the next step in configuring your connector API.

Chapter 25
Creating a SOAP Connector API

25-7

Setting Security Policies and Overriding Properties for SOAP
Connector APIs

Select one or more security policies that describe the authentication scheme of the
service to which you’re connecting. The security policies have properties, called
overrides, which you can configure. One reason to override policy configuration
properties is to limit the number of policies that you have to maintain: rather than
creating multiple policies with slightly varied configurations, you can use the same
generic policy and override specific values to meet your requirements.

You don’t need to set all the overrides for a policy; however, you should be familiar
enough with a security policy to know which overrides to set.

1. Click the Security navigation link at the top of the SOAP Connector API wizard.

2. Select one or more security policies from the list of available policies and click the
right arrow to move them to the Selected Policies list.

For example, you might want to have wss10_message_protection_client_policy
for message protection and wss_username_token_client_policy for
authentication. Although you can move all the policies to the Selected Policies list,
it’s unlikely that all policies are required for your connector API.
To learn about supported security policy types for SOAP Connector APIs, see
Security Policy Types for SOAP Connector APIs .

3. Select a policy to read its description.

4. Specify any other overrides, if applicable, to the selected policy if you don't want to
use the default values.

To override a policy property, enter or select a value other than the default. For
descriptions of policy properties, see Security Policy Properties.
To set or create a csf-key property, see Setting a CSF Key. To learn about
credential keys and certificates, see CSF Keys and Web Service Certificates.

5. Click Save to save your work or Save and Close to save your work and exit the
SOAP Connector API wizard.

Before you can test your connection, you must save your configuration. If you
proceed to the testing page without saving the API configuration, you'll see a

Chapter 25
Creating a SOAP Connector API

25-8

dialog asking you to save it. You can check the Always save before testing
option to automatically perform a save operation for you every time you go to the
Testing page.

6. Click Next (>) to go to the next step, testing the connector API.

Setting a CSF Key

Click Keys in the csf-key field in the Security Overrides section to open the Select
or Create a New API Key dialog.

Provide an CSF key in one of the following ways:

• Select an existing key from the Available Keys list (a description of the selected
key is displayed below the list). The list displays only the basic credentials keys
supported by the given policy property.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new CSF credentials key.

To create a new key:

1. Click New Key.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter the user name and the password (the user credentials) for the service to
which you are connecting. Repeat the password in the confirmation field.

5. Click Save to add the key to the Available Keys list. You can create another key by
clicking New Key or edit an existing one. Save toggles to Select allowing you to
select a key in the list. Click Cancel to quit the task.

The key name value will appear as the override value on the Security page. Note
that the value of the key that you create pertains only to the environment in which
it’s set.

If you want to edit some aspect of an existing credentials (CSF) key, select it from the
Available Keys list and modify the fields as needed.

Chapter 25
Creating a SOAP Connector API

25-9

Setting a Web Service Certificate
Here the steps for setting the overrides for a Web Service certificate. However, for this
release, don’t override the values for keystore.sig.csf.key and
keystore.enc.csf.key because orakey is the only valid value for all of these
certificate keys.

1. Select a security policy.

The properties for the policy are displayed in the Policy Overrides section.

2. Select an alias from the drop-down list in the field for the certificate key (certificate
keys are denoted by the keystore prefix) and select an alias.

Unlike CSF Keys, you can’t modify a Web Service certificate. You can only select
a different alias. Only mobile cloud administrators can create a new Web Service
Certificate. If you don’t know the alias for the certificate you want, ask your mobile
cloud administrator for the alias.

Testing a SOAP Connector API
Now that you've defined your connector API, you might want to verify your endpoints
and ensure that you’re able to receive the expected results from the web service.
Testing a connection is also an optional step but can save you time by identifying and
fixing problems with your endpoints using the mock JSON body provided before you
finalize the connector API.

Testing Your Connector
Now its time to validate your connector. The Test page lets you test the connection to
a service using sample response data. You’ll see a list of all the operations that you
defined for the port.

1. Click the Test navigation link.

2. Select the operation that you want to test.

The base URI is displayed below the operation name. If you provided an alternate
name for the operation, that name appears, otherwise the default operation name
is shown.

3. Click Examples to see Request, Response, and Fault payload examples (in JSON
format).

These examples are generated based on the request and response definitions in
the WSDL file and can’t be edited. The request and response examples display a
message body. Fault examples may show one or more faults depending on the
operation. They display the error messages returned.

For example, here is what a sample GET request looks like:

{
 "Header": null,
 "Body": {
 "GetIncidentById" : {
 "IncidentId" : 2
 }

Chapter 25
Creating a SOAP Connector API

25-10

 }
 }
}

Here is the request in XML:

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:beta="http://xmlns.fixitfast.com/fif/beta">
 <soapenv:Header/>
 <soapenv:Body>
 <beta:GetIncidentById>
 <beta:IncidentId>2</beta:IncidentId>
 </beta:GetIncidentById>
 </soapenv:Body>
</soapenv:Envelope>

4. (Optional) Click Add HTTP Header to add one or more HTTP headers to apply to
the operation.

You can select a predefined header or a custom header. For each header, select a
header name and provide a value.

These headers are for testing purposes only and won't be added to your SOAP
Connector API configuration.

The default format for the request body and the response body is JSON. You can
set the format of one or both to XML if you prefer. See Using XML Instead of
JSON.

5. Use the sample JSON body provided to test your connector or create your XML
body in the source editor. A JSON sample body that you can edit is generated for
you from the operation that you’ve defined. For example:

 "Body" : {
 "CreateIncident" : {
 "Title" : "new title",
 "EmailAddress" : "jack@oracle.com",
 "ImageLink" : "http://example.com/something"
 }
 }

For comparison, here's what the body looks like in XML:

 <soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:beta="http://xmlns.fixitfast.com/fif/beta">
 <soapenv:Body>
 <beta:CreateIncident>
 <beta:Title>new title</beta:Title>
 <beta:EmailAddress>jack@oracle.com</beta:EmailAddress>
 <beta:ImageLink>something</beta:ImageLink>
 </beta:CreateIncident>
 </soapenv:Body>
 </soapenv:Envelope>

Chapter 25
Creating a SOAP Connector API

25-11

Click in the editor and enter your own body (in JSON or XML format) if you prefer.
To learn about JSON conventions and the mapping between JSON and XML, see
How Does XML Get Translated into JSON?

6. If you’ve selected a SAML-based security policy, open the Authentication section
and enter your mobile user credentials for each method that you test. If you’re
using default test credentials (Step 7), you can skip this step.

With SAML-based security policies, the identity of the user making the call is
propagated to the external service. For other security policies such as HTTP Basic
Authentication and username token, the credentials used to authenticate with the
external service are provided in the policy overrides as CSF keys. Depending on
the operation you’ve defined, you may have to enter specific credentials for each
operation or you might be able to use these credentials for all the methods to
authenticate your connector with the service.

7. Click Save as current mobile backend default credentials to save the user
name and password you provide as the default.

8. If you’re in the design phase of creating your connector and you just want to see if
your endpoints are valid, click Default API Designer Test Credentials and select
a mobile backend that you’re registered with and its version number.

Optionally, you can enter your mobile user credentials (user name and password).
These default test credentials are persistent across all the methods that you test.
They remain valid during the current MCS session.

9. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, click Cancel Test.

Click Reset to clear the fields and to change the header types and values and test
body.

10. Repeat Steps 1 through 4 for each method.

11. Click Done when you’ve finished testing your endpoints.

You’re returned to the Connector APIs page.

Getting the Test Results
After the test is run, the results are displayed at the bottom of the Test SOAP
Connector API page. The result indicator is the response status:

• 2xx - indicates a successful connection

• 3xx - indicates a redirection occurred

• 4xx - indicates a user error occurred

• 500 - indicates an internal server error

Here's a list of the more common status codes that you'll want to use:

Code Description

200 OK Successful connection.

401 UNAUTHORIZED Error due to missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the resource is
unavailable.

Chapter 25
Creating a SOAP Connector API

25-12

Code Description

500 INTERNAL SERVER
ERROR

General error when an exception is thrown on the server side or
when the service returns a SOAP fault response.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Click Response to see the details of the response returned. The response code tells
you whether the connection was successful.

Test each of your operations and modify them as needed to validate your endpoints.
After your connector API is tested, published, and deployed, you can go to the
Connectors page to see analytical information about it, such as how often the
connector is being called and what apps are using the connector. See Managing a
Connector.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

By examining multiple messages, you can more easily determine where issues occur.
For every message that you send, MCS tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID include an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. By examining multiple messages, you can more
easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data: the connector API call received by a
single MBE outbound connector API call.

Depending on your MCS access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To obtain and understand diagnostic data, see Diagnostics.

SOAP Connector API Design Tips
When you configure your SOAP Connector API, you want to ensure that you have a
well-formed API. You want to make a valid SOAP Connector API but you should
create an API that can be used and understood by others as well.

Here are some design recommendations to consider when you define a SOAP
Connector API:

• Most important, test your connector using the Test page after it’s created and at
every update.

Chapter 25
SOAP Connector API Design Tips

25-13

• When setting the read and connection timeouts for the connector API, you should
set them for a shorter duration than the API timeout. See API Timeouts.

• Provide an HTTPS endpoint wherever possible.

• When calling SOAP services protected with HTTP Basic Authentication, you
should configure the appropriate security policies on the Security page and store
credentials in a CSF key instead of providing the credentials from custom code.

• While writing custom code to call SOAP Connector APIs, make use of the sample
request and response payloads available in the Test page of the SOAP Connector
API wizard. See Calling Connector APIs from Custom Code.

• Keep the payload content relevant to the purpose of the connector, that is, don’t
bloat the payloads by adding extraneous data. Include only pertinent data in the
message body to facilitate quick transmission of the request or response.

• When you're working with complex WSDLs, refer to How Does XML Get
Translated into JSON? for a discussion of JSON translator limitations.

• Date formats should follow the ISO-8601 International Standard for date and time:
YYYY-MM_DD[THH:mm:ss.sss]Z. For example: 2014-10-07T18:35:50.123Z (see
Date and Time Formats for a description of the standard).

How Does XML Get Translated into JSON?
The WSDL file, which describes the service that you want to access, is an XML-based
protocol. The WSDL contains the XML schemas that define the structure of the SOAP
XML requests and responses.

While XML is a standard means of defining SOAP messages, it’s cumbersome and not
well-suited to data-interchange. JSON is the preferred format because it’s a lightweight
and easy-to-read and write data interchange format (compared to XML). It’s much
easier to handle JSON in (Node.js-based) custom code than XML. Here’s a
comparison of XML and JSON features:

XML JSON

Human readable Easier to read and write for developers and machines

Provides a structure to data
making it more informative

Same as XML

Easily processed due to
simplicity of data structure

Even simpler structure making it even easier to process

Structure of the data must be
translated into a document
structure

Structure is based on arrays and records

To make the transmission of data via SOAP Connector APIs possible, MCS uses a
JSON translator. The JSON translator uses a set of mapping conventions when
converting a JSON request into XML prior to passing the information to a remote
service and translates the XML response back into JSON to be passed on to the
mobile app.

MCS provides sample JSON messages that you can use as a template to construct
JSON requests and process JSON responses. A sample payload (body), which gets
created for you based on the information in the WSDL, is also translated into JSON.

Chapter 25
How Does XML Get Translated into JSON?

25-14

http://www.w3.org/TR/NOTE-datetime

If you choose to provide your own XML sample payload, then you should adhere to the
mapping conventions of XML to JSON to ensure a successful translation. The next
section demonstrates those mapping conventions.

XML - JSON Mapping Conventions
Oracle Mobile Cloud Service uses a XML - JSON mapping convention that is based on
the Badgerfish convention. The following example shows the mapping of XML
elements to JSON object properties:

XML JSON

... <Name>John</Name> { "Name" : "John" } ...

The next example shows how XML attributes are mapped to JSON object properties,
with property names starting with the @ symbol:

XML JSON

<... archived="true">...</...> ... { "@archived" : true } ...

When elements have attributes defined in the XML schema, text nodes are mapped to
an object property with the property name $. This is true even if at runtime the
attributes do not occur:

XML JSON

... <Name archived="true">John</
Name> ...

... { "@archived" : true, "$" : "John" } ...

Here you can see how nested XML elements become nested JSON objects:

XML JSON

...

<Address>

<City>Bangalore</City>

</Address>

...

{

...

"Address" : { "City" : "Bangalore" }

...

}

Here's how XML elements with maxOccurs > 1 in their schemas (that is, repeating
elements) become JSON arrays:

XML JSON

...

<Name>John</Name>

<Name>Susan</Name>

...

... { "Name" : ["John", "Susan"] } ...

In the SOAP Connector, the Envelope root element is not required in the JSON
message body. During the translation to JSON, XML root elements are dropped when

Chapter 25
XML - JSON Mapping Conventions

25-15

converting to JSON. In the reverse direction, a root element is added when converting
JSON to XML. This is done because JSON can have multiple top level object
properties which would result in multiple root elements which are not valid in XML:

XML JSON

<soap:Envelope xmlns:soap="http://
schemas.xmlsoap.org/soap/envelope/">

<soap:Header>..</soap:Header>

<soap:Body>..</soap:Body>

</soap:Envelope>

{

"Header":{...}

"Body":{...}

}

This example shows you how the JSON data types (boolean, string and number) are
supported. When converting XML to JSON, based on the type defined in the XML
schema, the appropriate JSON type is generated:

XML JSON

...

<Integer>10</Integer>

<String>string-value</String>

<Boolean>true</Boolean>

...

{

...

"Integer" : 10,

"String": "string-value",

"Boolean": true

...

}

All namespace information (ns declarations and prefixes) is dropped when converting
XML to JSON. On converting the JSON back to XML, the namespace information
(obtained from the schema) is added back to the XML:

XML JSON

<RootElement xmlns="http://xmlns.oracle.com/
test">

<Name>John</Name>

</RootElement>

{ "Name" : "John" }

If a property in an XML file has an empty value, the same property in the converted
JSON file shows an empty string:

XML JSON

<Customer active="false">

<Name>John</Name>

<Address>

<City/>

<State>AK</State>

</Address>

</Customer>

{

"@active":"false",

"Name":"John",

"Address":{

"City":null,

"State":"AK"

}

}

Chapter 25
XML - JSON Mapping Conventions

25-16

In the reverse scenario, if a JSON file contains a null value, for example "City":null,
the translation to XML shows an empty value: <City/>.

Mapping Limitations

The mapping is comprehensive but isn’t quite a one-to-one match. When creating a
message body in JSON, there are some conditons that you should be aware of to
ensure that the structure of the body is compliant with the JSON-XML mapping
convention. The following constructs aren’t handled by the JSON translator.

• A choice group with child elements belonging to different namespaces having the
same (local) name. This is because JSON doesn’t have any namespace
information.

• A sequence group with child elements having duplicate local names. For example,
<Parent><ChildA/><ChildB/>...<ChildA/>...</Parent>. This translates to an
object with duplicate property names, which isn’t valid.

• XML Schema Instance (xsi) attributes aren’t supported.

If you want to use a construct that isn’t supported by the translator, use XML and be
sure to wrap your XML in a SOAP envelope. To learn about JSON, see Introducing
JSON at http://json.org.

Using XML Instead of JSON
Using JSON isn’t required. You might prefer to use XML instead or you might
encounter XML schema constructs that aren’t supported by the translator. You can still
interact with the connector using XML requests and responses.

The response format is determined by the Accept header in custom code, which has a
default value of application/json. To set the format of the request body, add the
XML request body and set the contentType header in the custom code to
application/xml; charset=utf-8. If you want the response in XML format, change
the accept header value to application/xml. For example,

/**
 * The following example calls the 'CreateIncident' resource
 * on a SOAP connector named '/mobile/connector/RightNow'.
 * The request and response are in XML and not JSON.
 *
 */
var options = {
 contentType: 'appplication/xml;charset=UTF-8',
 accept: 'application/xml'
};

//Here we suppose an XML message has been
//stored in the XML variable
var body = xml;

req.oracleMobile.connectors.RightNow.post('CreateIncident', body,
options).then(
 function(result){
 //result.result contains the response XML
 res.status(result.statusCode, result.result);

Chapter 25
Using XML Instead of JSON

25-17

http://json.org/

 },
 function(error){
 res.status(500, error.error);
 }
);

Remember to wrap your XML in a SOAP envelope. Your XML request must contain
the entire SOAP envelope (including any SOAP headers):

<?xml version="1.0" ?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemad.xmlsoap.org/soap/
envelope">

 <SOAP-ENV:Header>
 <!-- Add any SOAP headers here -->
 </SOAP-ENV>

 <SOAP-ENV:Body>
 <!-- Add the Body element here -->
 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

If you configured a security policy on the connector that requires a SOAP header to be
sent in the message, that header is added automatically to the envelope you provide
so you don’t need to include it in your message. You can see an example of an XML
request wrapped in a SOAP envelope in Testing Your Connector.

Security Policy Types for SOAP Connector APIs
You'll need to set a security policy to protect the information you want to send or
receive unless the service you’re accessing isn't a secure service or doesn’t support
security policies, in which case, you can’t set a security policy for the connector.

When determining what policies to set, consider whether connection to the service
involves transmitting proprietary or sensitive information. A few reasons for adding
security policies are:

• Ensuring confidentiality by encrypting messages

• Ensuring the integrity of the data transmitted by using digital signatures

• Authenticating the source or destination

From the Security section, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including SAML, Username Token, and HTTP Basic
Authentication. Oracle WSM supports a wide range of security standards, including
Authentication Policies and Authorization.

Chapter 25
Security Policy Types for SOAP Connector APIs

25-18

Security Policy Type Description

HTTP Basic Authentication HTTP Basic authentication allows an HTTP user agent to pass
a user name and password with a request. It's often used with
stateless clients, which pass their credentials on each request. It
isn't the strongest form of security though because basic
authentication transmits the password as plain text so it should
be used only over an encrypted transport layer such as HTTPS.

Security Assertion Markup
Language (SAML)

SAML is an XML-based open standard data format that allows
the exchange of authentication and authorization credentials
among a client, an identity provider, and a service provider. The
client makes a request of the service provider. The service
provider verifies the identity of the client from the identity
provider. The identity provider obtains credentials from the client
and passes an authentication token to the client, which the
client then passes to the service provider. The identity provider
verifies the validity of the token for the service provider and the
service provider responds to the client.

Username Token A username token is supplied by a web services client as a
means of identifying the requestor by using a user name, and
optionally by using a password or password-equivalent to the
web services provider.

Ask yourself the following questions to determine what kinds of security policies you
need:

• What are the basic requirements of your security policy? Do you need to
authenticate or authorize users? Do you require only message protection, do you
need both?

• If you need only authentication, do you need a specific type of token and where
will the token be inserted?

• If you need both authentication and message protection, will message protection
be handled in the transport layer?

For a list of supported security policies, see Security Policies for SOAP Connector
APIs.

For descriptions of security policy properties that you can override, see Security Policy
Properties.

CSF Keys and Web Service Certificates
Depending on the security policy that you selected, you may be able to override a
property that sets a CSF key or a Web Service Certificate. In MCS, the Oracle
Credential Store Framework (CSF) is used to manage credentials in a secure form. A
credential store is a repository of security data (credentials stored as keys) that certify
the authority of users and system components. A credential can hold user name and
password combinations, tickets, or public key certificates. This data is used during
authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or

Chapter 25
CSF Keys and Web Service Certificates

25-19

create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Setting a CSF Key.

A Web Service Certificate allows the client to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. Web Service
Certificates are stored in the Oracle WSM keystore. You set the overrides by selecting
an alias from the drop-down list for the following properties:

• keystore.recipient.alias: The alias for this property is used to identify the
certificate in the keystore.

• keystore.sig.csf.key: The alias for this property is mapped to the alias of the
key used for signing. If no value is selected, the default value, orakey, is used (for
this release, the only valid value for this property is orakey).

• keystore.enc.csf.key: The alias for this property is mapped to the alias of the
private key used for decryption. If no value is selected, the default value, orakey,
is used (for this release, the only valid value for this property is orakey).

Not all security policies contain all three properties. When you select a policy, you can
see which properties are listed in the Policy Overrides. For example, if you selected
wss11_username_token_with_message_protection_client_policy, you’ll see that
you need to set only keystore.recipient.alias . However, if you selected
wss10_username_token_with_message_protection_client_policy, you’ll need to set
all three properties.

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It is also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Editing a SOAP Connector API
If you need to change some aspect of a connector API, you can as long as it’s in the
Draft state. After you publish an API, the API can’t be changed.

To edit a SOAP Connector API:

Chapter 25
Editing a SOAP Connector API

25-20

1. Make sure that you’re in the environment containing the SOAP Connector API that
you want to edit.

2. Click and selectApplications > Connectors from the side menu.

Since at least one connector API exists, the Connectors page is displayed.

3. Select the draft SOAP Connector API that you want to edit and click Open.

You can filter the list by version number or status. You can also sort the list
alphabetically by name or by last modified date.

4. Edit the fields for general information, ports, and security policies as needed.

Remember you can always click Save and Close to save your current changes
and finish the rest of your changes later.

5. Save your changes if you didn't select the option to always save the configuration
before testing when you created the API.

6. Test your changes.

Your edited version is still in a Draft state and you can continue to edit your connector
API until you’re satisfied with the configuration. At that point, you’re ready to publish
your connector API. A published connector API can’t be changed. If you need to make
changes, you can create a new version of the connector API. To create a new version,
publish, and deploy your connector API, see Connector Lifecycle.

Your edited version is still in a Draft state and you can continue to edit your connector
API until you’re satisfied with the configuration. At that point, you’re ready to publish
your connector API. A published connector API can’t be changed. If you need to make
changes, you can create a new version of the connector API.

Using Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the
data returned from the call to the connector.

The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Chapter 25
Using Your Connector API in an App

25-21

Troubleshooting SOAP Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to Administration in the
side menu and click Logs to see any system error messages or click Request History
to view the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and
the outbound connector calls made within a single mobile backend.

Sometimes a connection fails because the service URL provided is untrusted. You can
add the URL to the list of trusted URLs at trustedsource.org. To learn more about
what happens if you provide an untrusted URL and other common errors that can
occur when configuring your connector API, see Common Custom Code Errors.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system
that doesn't support the latest versions of SSL, you can specify the SSL protocol to
use for the connector by setting the Security_TransportSecurityProtocols
environment policy. The policy takes a comma-separated list of TLS/SSL protocols, for
example: TLSv1, TLSv1.1, TLSv1.2. Any extra space around the protocol names is
ignored. You can use the SSLv2Hello protocol to debug connectivity issues with
legacy systems that don't support any TLS protocol. Note that this policy can’t be used
to enable SSLv3 endpoints. See Environment Policies and Their Values for a
description of the policy and the supported values. Be aware that this policy must be
manually added to a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

SOAP Connector API Scope

To be sure you’re creating a valid SOAP Connector API in MCS, keep in mind the
following WSDL constraints:

• Only SOAP version 1.1 and WSDL version 1.2 are supported.

• Only the WS-Security standard is supported. Other WS-* standards, such as WS-
RM or WS-AT, aren’t supported.

• Only document style and literal encoding are supported.

• Attachments aren’t supported.

• Of the possible combinations of input and output message operations, only input-
output operations and input-only operations are supported. These operations are
described in the Web Services Description Language (WSDL) Version 1.2
specification.

Chapter 25
Troubleshooting SOAP Connector APIs

25-22

http://trustedsource.org/
https://www.w3.org/TR/2002/WD-wsdl12-20020709/

26
ICS Connector APIs

Oracle Mobile Cloud Service (MCS) enables you to create Integration Cloud Service
(ICS) connector APIs to access on-premises and cloud services through ICS. You can
then call these connector APIs from the implementations of your custom APIs.

You can also use SOAP connector APIs to connect to enterprise services. However,
using ICS together with ICS connector APIs has the following advantages:

• You write far less code.

• You connect to services more because the integrations are done for you.

• You let the connector API handle the details of interacting with Oracle Integration
Cloud Service.

ICS also makes it easy to map business objects from one application to another. For
example, a service can be created that synchronizes data from a purchase order
between Oracle Sales Cloud to an Oracle CPQ (Configure, Price, and Quote) Cloud
application.

How ICS Connector APIs Work
ICS connector APIS enable you to access services that you have exposed in
Integration Cloud Service (ICS).

ICS itself is a service designed to simplify connectivity between your services and
applications, both cloud-based and on premises. When you work with ICS, you work
with integrations that connect applications and map data between them.

You create an ICS connector API with the ICS Connector wizard, in which you enter
the SOAP proxy for the integration. Once you have done so, you are shown a list of

26-1

integrations that correspond with that proxy and can select one. For each ICS
integration, there is a single operation per endpoint. After you select the integration,
you can proceed to test the endpoint.

Once you have created an ICS connector API, you can call it from the implementation
of a custom API.

Note:

Only SOAP-based integrations are supported.

ICS Connector API Flow
Here’s the process for designing an ICS connector API:

1. Create ICS Connector API. You create an unbound ICS connector API with the
Integration Cloud Service Connector API wizard.

2. Authenticate with ICS Instance (Design Time Credentials). You pass design
time credentials to connect to the ICS instance. These credentials are the
username and password received when you subscribe to the Oracle Integration
Cloud Service.

3. Connect to the ICS Instance. MCS locates the ICS instance via the service URL
provided.

4. Discover the Integrations. When authentication is confirmed, a list of active
integrations in the ICS instance is displayed.

5. Select an Integration. You select an integration instance from a list of the
integrations.

Chapter 26
ICS Connector API Flow

26-2

6. Access the Integration (Runtime Credentials). You pass credentials to allow
access to the runtime instance of the integration. Runtime credentials are the
username and password you received from the ICS administrator that allow you to
run the integration.

7. Test the ICS Connector API. You test the endpoint using mobile user credentials.

Here’s how the connector API works at runtime:

1. The custom code implementation of one of your custom APIs calls the connector
API. Information is then passed to the connector implementation, and the
implementation extracts the payload from the request.

2. A connection is made to the ICS service via the service URL. The service verifies
the design-time credentials passed to it and the active integrations are exposed.

3. Runtime credentials are passed from ICS to either the on-premises agent or to a
single cloud service to access the selected service integration.

4. Information is passed back through the integration (and, for on-premises
applications, via the on-premises agent) to the connector API and back to the
custom API.

How Do I Create an ICS Connector API?
Creating an ICS Connector API consists of four stages:

1. Creation: You’ve named the API and provided a description. Once created the
API exists in a Draft state.

2. Connection: You’ve provided the URL to the ICS service and your design time
credentials, which give you access to the ICS service.

Chapter 26
How Do I Create an ICS Connector API?

26-3

Note:

The design time credentials can be saved so you only need to do it once
per ICS instance. It’s important to note that you can only use the
credentials that you saved. That is, if other developers want to access
this instance, they’ll have to enter their own credentials at least once
themselves.

3. Discovery: MCS locates the ICS service and obtains instances of the active
integrations available from the service.

4. Configure: You’ve selected (or created) a CSF key for the security policy and
provided your runtime credentials.

5. Test: Now you can test your endpoint to validate the connection to the service.

Setting the Basic Information for Your ICS Connector API
Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, a brief description, and connection timeout
settings.

1. Make sure that you’re in the right environment to create the connector.

2. Click and select Applications > APIs.

The Connectors page appears. If no connector APIs have been created yet, you'll
see a REST Connector icon, a SOAP Connector icon, and an ICS Connector icon.
If at least one connector API exists, you'll see a list of all the connector APIs. You
can filter the list to see only the connector APIs that you're interested in or click
Sort to reorder the list.

3. Click ICS (if this is the first connector API to be created) or New Connector and
from the drop-down list, select ICS.

Each time you create an ICS Connector API, the New ICS Connector API dialog
appears. This is where you enter the basic information for your new connector
API.

Chapter 26
How Do I Create an ICS Connector API?

26-4

4. Identify your new ICS Connector API by providing the following:

• API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myICSService.

For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

• API Name: Enter a unique name for your connector API. The default value is
a simplified form of the value that you entered for the API Display Name.

For example, myICSService.

By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Note:

The connector API name must consist only of alphanumeric
characters. It can’t include special characters, wildcards, slashes /,
or braces {}. A validation error message is displayed if you enter a
name that is already in use.

If you enter a different name for the API here, the change is automatically
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

• Short Description: Provide a brief description, including the purpose of this
API.

Chapter 26
How Do I Create an ICS Connector API?

26-5

This is the description of the API that will be displayed on the Connectors page
when this API is selected. The character count below this field lets you know
many characters you can add.

5. Click Create.

Tthe General page of the ICS Connector API wizard is displayed.

6. Set the timeout values if needed.

Connecting to the ICS instance can take several minutes. You can increase the
timeout values to reduce the chances of a connection time out but be aware that
the values that you apply at design time are also applied at runtime when the
connector calls on the instance. If you do set timeout values, be sure to save your
edits to the General page before proceeding to the next step of the wizard.

Note:

If you are in a non-development environment, set these values
appropriately for the environment that you’re working in. Alternatively,
don’t enter values for these fields and let the environment-level timeout
policies take effect.

If you’re a mobile cloud administrator, you can open the
policies.properties file to see the value for the network policies for the
environment that you’re working in from the Administrator page.
Otherwise, ask your mobile cloud administrator for the values. To learn
about environment policies, see Environment Policies.

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, the default value of 20
seconds is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to the
remote URL. A value of 0 mms means an infinite timeout is permitted.

7. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, click Save and
Close. You can always click Cancel at the top of the General, Integration, and
Runtime Security pages to cancel that particular configuration operation. You’ll be
taken back to the Connector APIs page.

8. Click Next (>) to go to the next step in configuring your connector API.

After the basic information is provided, you can specify the interaction details for
your connector API.

Chapter 26
How Do I Create an ICS Connector API?

26-6

You can always edit your configuration when it's in a Draft state. You can make
changes to a connector API that's in the Published state by creating a new version of
it. For information on creating a new version, see Creating a New Version of a
Connector.

Connecting to an Integration Cloud Service Instance
This is where you select the Integration Cloud Service (ICS) instance that you want or
create a connection to an ICS instance. If this is the first time that you’re creating an
ICS connector API, the Select Connection drop-down list won’t be available and you’ll
have to create a connection to the instance.

Making a connection consists of the following phases:

• Selecting or creating an ICS instance and authentication

• Connecting to the server hosting the active integrations

• Selecting the active integration

You perform or observe these operations on the Integrations page of the Integration
Cloud Service Connector API wizard.

Selecting or Creating an ICS Instance Connection
1. If at least one integration instance exists, select an integration instance from the

Select Connection drop-down list; otherwise, go to Step 2 to create an instance.

2. Enter a name to identify this Integration Cloud Service instance in the Connection
Name field.

This name will be added to the list of integration instances.

3. Enter the address of the server that hosts the integrations in the Service URL
field.

You get the URL of the service from the service administrator of the Oracle Cloud
Integration Service. The URL takes the form hostname/ics.

Chapter 26
How Do I Create an ICS Connector API?

26-7

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured correctly,
the connection will fail. See Common Custom Code Errors.

4. Enter your user name and password that you were given to access the integration.

These are the design time credentials that enable you to access the Oracle
Integration Cloud Service. These are the user name and password you received
when you subscribed to the service.

5. Select Remember My Credentials so that the next time you select or create an
integration instance, your credentials are already preloaded.

These credentials are specific to the individual MCS user and aren’t provided if
another MCS user tries to access the same integration instance.

6. Click Connect.

After you’ve created an integration instance, you’ll be able to select it from the Select
Connection drop-down list the next time you come back to the wizard.

Selecting an Active Integration
When the connection to the server hosting the integrations is made, the Integrations
page of the wizard displays all the active integrations where a single cloud service or
on-premises solution is exposed as an integration-friendly API. Non-active integrations
or integrations that push events from one cloud service or on-premises solution to
another aren’t listed. Each integration is displayed with its name, version, and
description.

1. Filter the list by entering part of its name, description, or integration type.

You can sort the list in either ascending or descending order based on name,
creation date, last update, or type.

2. Select the integration you want.

Chapter 26
How Do I Create an ICS Connector API?

26-8

http://trustedsource.org/

Click the information icon to see details about the integration including a link to the
WSDL for the integration.

Note:

Remember, that currently, only SOAP-based integrations are supported.

3. Click Save.

4. Click Next (>) to go to the next step in configuring your connector API.

Editing the ICS Connector API
If you go to the RunTime Security page and change your mind about the integration
you selected, you can go back and select a different integration. The list of integrations
you see might not be the latest available though. If you do go back, be sure to refresh
the page before selecting another integration. Also, you’ll have to re-authenticate
yourself to access the list of integrations if you didn’t save your credentials previously.

Note:

Once you’ve moved on to the Test page, you won’t be able to go back to the
Integrations page to select a different integration. If you return to the
Integrations page from the Test page, you’ll see only the integration that
you’ve selected.

1. Click Integrations in the navigation links at the top of the wizard.

The page displays only the integration you originally selected.

2. Click Refresh on the Integration page of the wizard.

3. Confirm the refresh action.

The Integrations page is displayed at the authentication phase. The connection
name and service URL you provided previously are shown as information only.

4. If you previously selected the Remember My Credentials option, click Connect.

If you didn’t select that option, enter your design time user credentials and click
Connect.
Credentials are saved securely in the MCS backend. You only need to save them
once for that user’s devices and browsers. Note that no sensitive information is
stored locally.

5. Select the active integration you want from the list after the connection is
completed.

Chapter 26
How Do I Create an ICS Connector API?

26-9

6. Click Save.

7. Click Next (>) to go to the next step in configuring your connector API.

Setting Runtime Security for the ICS Connector API
You must set the csf-key property with your runtime credentials to allow you access
and test the active integration.

Provide a CSF Key in one of the following ways:

• Click Select Existing and select an existing key from the Available Keys list in the
Select or Create a New API Key dialog. A description of the selected key is
displayed below the list. The list displays only the keys supported by the client
policy, which could be http_basic_auth_over_ssl_client_policy,
wss_http_token_over_ssl_client_policy,or
wss_username_token_over_ssl_client_policy.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Create a new basic (CSF) credentials key directly on the Security page.

For the steps on creating a key, see Creating a New CSF Key. Alternatively, you
can click Select Existing and create the key in the Select or Create a New API
Key dialog.

Regardless of which security policy is used, the ICS adapter API determines the
correct authentication mode. Once you’ve configured the ICS Connector API for a
given ICS instance, the runtime credentials that you provided for that instance are
remembered the next time you configure an ICS Connector API.

To learn about security policies for the ICS Connector, see Security and ICS
Connector APIs.

Chapter 26
How Do I Create an ICS Connector API?

26-10

Creating a New CSF Key
1. Click the Security navigation link.

2. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

3. Enter a brief description of the key's purpose.

4. Enter your runtime credentials for the service to which you are connecting.

Contact your ICS administrator to obtain the credentials used to call the Oracle
Integration Cloud Service at runtime. Most likely, you’ll only need to do this once
per ICS instance (all integrations are called with the same app credentials).

5. Repeat the password in the confirmation field.

6. Click Save to continue working in the dialog.

Click Save and Close to save your actions and return to the Security page. Click
Cancel to quit the task.

The key name value will appear as the override value on the Security page. Note that
the value of the key that you create pertains only to the environment in which it’s set.
If you want to edit some aspect of an existing CSF key, select it from the Available
Keys list and modify the fields as needed.

If you’ve already selected a key but then decide to create a new key, click Clear
Selected to clear all the fields.

To learn about CSF Keys, see CSF Keys.

Testing the ICS Connector API
When you’ve finished configuring your ICS Connector API, test the endpoint:

1. Click the Test navigation link.

There is only one endpoint per integration. The resource banner displays the
method, the resource name, and the URI of service.

2. Expand Examples to see examples of a request, response, and fault payloads
that were obtained from the WSDL.

Chapter 26
How Do I Create an ICS Connector API?

26-11

When you select a connection, all the fields on the page are populated with data
for that connection with the exception of credentials.

If this is the first time a connection is being created, skip this step and go to Step
3.

3. Add one or more request or response HTTP headers as needed.

4. Click in the HTTP Body field to create your message body (the payload) in the
source editor. For example:

{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "title":"Object",
 "description":"An object for this service",
 "type":"object"
}

5. Provide your runtime credentials for testing this endpoint:

a. Enter the name of the mobile backend associated with this connector API.

Chapter 26
How Do I Create an ICS Connector API?

26-12

b. Enter the version of the mobile backend.

c. (Optional) Enter your mobile user credentials, that is, your runtime credentials.

6. (Optional) Click Save as current mobile backend default credentials to allow
the ICS Connection API to remember your credentials. Only your credentials will
be stored. These credentials are applied when you test another ICS Connector
API, REST or SOAP Connector API, or a custom API.

7. Click Test Endpoint.

Test Endpoint toggles to Cancel Test. If you want to stop the test for any reason,
click Cancel Test.

8. Click Done when you’ve finished testing your endpoint.

You’re returned to the Connectors APIs page.

If you want to make changes to the testing parameters, click Reset to clear all the
fields.

Getting the Test Results
Test results are displayed at the bottom of the Test ICS API page. The result indicator
is the response status:

• 2xx: indicates a successful connection

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

The following table lists the most common status messages you’ll see:

Status Code Description

200 OK Successful connection.

Chapter 26
How Do I Create an ICS Connector API?

26-13

Status Code Description

400 BAD REQUEST General error when fulfilling the request,
causing an invalid state, such as missing data
or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication
token.

403 FORBIDDEN Error due to user not having authorization or if
the resource is unavailable.

500 INTERNAL SERVER ERROR General error when an exception is thrown on
the server side.

Click Request to see the metadata for the transaction, such as header information and
the body of the request.

Click Response to see the details of the response returned. The response code tells
you whether or not the connection was successful.

After your connector API is tested, published, and deployed, you can go to the
Connectors page to see analytical information about it, such as how often the
connector is being called and what apps are using the connector. See Managing a
Connector.

Getting Diagnostic Information
You can view the response code and returned data to determine if your endpoints are
valid. A response status other than 2xx doesn't necessarily mean the test failed. If the
operation was supposed to return a null response, a response should show a 4xx
code.

For every message that you send, MCS tags it with a correlation ID. A correlation ID
associates your request with other logging data. The correlation ID includes an
Execution Context ID (ECID) that’s unique for each request. With the ECID and the
Relationship ID (RID), you can use the log files to correlate messages across Oracle
Fusion Middleware components. By examining multiple messages, you can more
easily determine where issues occur. For example, you can retrieve records from
Oracle Fusion Middleware Logging using the call's ECID. From the Administration
page, you can click Logs to view logging data: the connector API call received by a
single MBE outbound connector API call.

Depending on your MCS access permissions, you or your mobile cloud administrator
can view the client and server HTTP error codes for your API's endpoints on the
Request History page allowing you to see the context of the message status when
you're trying to trace the cause of an error. Every message sent has a set of attributes
such as the time the event occurred, the message ID, the Relationship ID (RID), and
the Execution Context ID (ECID).

To obtain and understand diagnostic data, see Diagnostics.

Security and ICS Connector APIs
HTTP Basic Authentication is used for runtime security. Basic authentication allows an
HTTP user agent to pass a user name and password with a request and is often used
with stateless clients, which pass their credentials on each request.

Chapter 26
Security and ICS Connector APIs

26-14

ICS Connector APIs use one of the following security policies:

• http_basic_auth_over_ssl_client_policy. It includes the username and
password credentials in the HTTP header for outbound client requests. This policy
verifies that the transport protocol is HTTPS.

• wss_http_token_over_ssl_client_policy. The username and password
credentials are included in the HTTP header for outbound client requests. Also a
timestamp is sent to the SOAP security header. If the connector detects that the
ICS integration that’s being connected to is protected by the
wss_http_token_over_ssl_service_policy, the connector uses the
corresponding client policy. This policy verifies that the transport protocol is
HTTPS.

• wss_username_token_over_ssl_client_policy. The username and password
credentials are passed as SOAP headers and are added automatically by the
connector. If the security policy is defined in the WSDL for a SOAP-based
integration, this is the policy that’s used. This policy verifies that the transport
protocol is HTTPS.

Although you can set the Oracle-Mobile-External-Authorization header in custom
code to configure a secure connection, it isn’t necessary since authorization to connect
to a service is set when configuring the ICS Connector API.

CSF Keys
In MCS, the Oracle Credential Store Framework (CSF) is used to manage credentials
in a secure form. A credential store is a repository of security data (credentials stored
as keys) that certify the authority of users and system components. CSF lets you
store, retrieve, update, and delete credentials (security data) for a web service and
other apps.

A CSF key is a credentials key. It uses simple authentication (composed of the user
name and the password for the system to which you’re connecting) to generate a
unique key value. You can select an existing CSF key or create one through the Select
or Create a New API Key dialog. To select or create a CSF key, see Creating a New
CSF Key.

CSF keys and their values are specific to the environment in which they’re defined.
That is, if the Development environment is selected, then only the CSF keys and
certificates for the security policies in use by artifacts in that environment are listed in
the CSF Keys dialog. A different set of keys and certificates will be displayed in
another environment, such as Staging. It’s also possible for keys with the same key
name but with different values to exist in multiple environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

Using Your Connector API in an App
To use a connector in a mobile app, you need to have a custom API that can call the
connector API. Such a custom API could also contain additional logic to process the
data returned from the call to the connector.

Chapter 26
CSF Keys

26-15

The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

When you implement a custom API, you can view the available connectors in the API
Catalog tab in the API Designer. While creating your custom API, you might find it
beneficial to open the Test page of the connector API so that you can refer to any
headers, parameters, and schemas that you’ve configured for the connector API.

Troubleshooting ICS Connector APIs
System message logs are great sources for getting debugging information. Depending
on your role, you or your mobile cloud administrator can go to the Administration view
and click Logs to see any system error messages or click Request History to view
the client (4xx) and server (5xx) HTTP error codes for the API's endpoints and the
outbound connector calls made within a single mobile backend.

Here are some areas of particular interest when troubleshooting:

• Security Errors are Occurring

Take a look at the integration WSDL and see if you can determine what security
policy is being used. Use the SOAP connector directly to create a connector API
and test with different security policies.

• An Integration Isn’t Showing Up

Go to Oracle Integration Cloud Service and look at your integrations there. The
status must be activated, and the source connection type should be SOAP.

• Constructing a Valid ICS Instance URI

Your instance URI must begin with https:// and should end in /ics. Look for the
Email that you received when your user account was provisioned for the ICS
instance. From there, you can find the URI to reach the ICS UI. The same URI
should be used to create the connection in MCS.

• Identifying Where the Failure Is Occurring

As with other connectors generally finding where a fault was thrown can be
difficult. A 401 or 404 for instance could be returned by the test endpoint, MCS
itself, the ICS instance that MCS is connecting to, or the system to which ICS is
connecting.

401 and 404 errors are difficult because they return no message body that might
indicate where the error occurred. However, the headers associated with a 401
and 404 error can sometimes act as a signature to indicate where it originated

Chapter 26
Troubleshooting ICS Connector APIs

26-16

from. Likewise, trace the end-to-end flow by searching for corresponding log
entries at each step in the flow.

• Can’t Make a Connection Using Default Protocols

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound
connections. If you need to use an older version of a SSL protocol to connect to an
external system that doesn't support the latest versions of SSL, you can specify
the SSL protocol to use for the connector by setting the
Security_TransportSecurityProtocols environment policy. The policy takes a
comma-separated list of TLS/SSL protocols, for example: TLSv1, TLSv1.1,
TLSv1.2. Any extra space around the protocol names is ignored. You can use the
SSLv2Hello protocol to debug connectivity issues with legacy systems that don't
support any TLS protocol. Note that this policy can’t be used to enable SSLv3
endpoints. See Environment Policies and Their Values for a description of the
policy and the supported values. Be aware that this policy must be manually
added to a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

Chapter 26
Troubleshooting ICS Connector APIs

26-17

27
Fusion Applications Connector APIs

Oracle Mobile Cloud Service (MCS) enables you to create Fusion Applications (FA)
Connector APIs to connect to Oracle Fusion Applications. As a service developer, you
can create connector APIs to make it easier to call these external services from the
implementations of your custom APIs.

A Fusion Applications Connector API enables a mobile backend to use and expose
data from one or more resources available from an Oracle Fusion Applications
instance.

When configuring the connector API, you need to enter runtime credentials each time
you need to access a Fusion Applications service, but customers of Fusion
Applications-based services should only have to sign in once to the mobile app to
access the Oracle Cloud application. You can create an app that lets users sign in just
once with their identity domain credentials. To see how to set up single sign-in, see
Configuring Oracle Cloud Applications as the Identity Provider.

How Fusion Applications Connector APIs Work
A Fusion Applications Connector API enables a mobile backend to use and expose
data from resources available from Fusion-based software-as-a-service (SaaS)
instances, such as Oracle Human Capital Management Solution (HCM), Oracle
Supply Chain Management (SCM), and Oracle Customer Relationship Management
Solution (CRM). These suites of modular services help you with customer and
employee management, sales and supply chain management, and more.

Use the Fusion Applications Connector API wizard to quickly and easily create a
connector API with a customized selection of resources from a Fusion Applications
service or Fusion-based service.

27-1

Here are the some of the advantages to using a Fusion Applications Connector API:

• Makes it easier for customer to explore Fusion-based services through resource
discovery.

• Makes it easier for you to see all the resources, child resources, and resource
attributes available in a given resource instance.

• Lets you provide easy to identify and comprehend user-friendly names and
descriptions for the resources and their attributes in the connector.

• Provides a rich test client that lets you test with Fusion Applications query
parameters.

Fusion Applications Connector API Flow
Here’s how the design-time flow for a Fusion Applications Connector API design-time
goes:

1. Connector Creation phase. An unbound Fusion Applications Connector API is
created with the Fusion Applications Connector API wizard.

2. Connection phase. Design time credentials are passed and a connection to the
Fusion Applications instance is made. The design time credentials are saved in
the Credentials Store Framework (CSF) in MCS. The Fusion Applications service
description, the Fusion Applications Describe, is retrieved from the external
service.

3. Resource Discovery phase. MCS locates the Fusion Applications instance via
the Describe URL provided. When authentication is confirmed, MCS downloads
and parses the Describe resource and displays the list of resources exposed by
the Fusion Applications service. The resources list is examined and the desired
resources to access from the custom code are enabled.

In addition, descriptions for each attribute may be provided. Attribute values are
available only at runtime and can’t be changed during design time.

Chapter 27
Fusion Applications Connector API Flow

27-2

Whenever you enable or disable resources or refresh the list of available
resources, the changes are time stamped and tracked in a work area. Each
instance of the connector API has one work area and the contents of that work
area are saved as part of the configuration when the connector API is saved.

4. Attribute Setting phase. Attributes are selected or de-selected based on the
requirements for the connector. Values for resource attributes are modified as
needed.

5. Runtime Security phase. The Oracle Web Services Manager (Oracle WSM)
security policy to be used at runtime is configured.

6. Testing phase. The configuration is saved. The enabled resources are displayed
on the Test page and tested. Mobile user credentials are provided to test the
connector API.

Here’s how the runtime flow goes:

1. Custom code calls the Fusion Applications Connector API. Information is then
passed to the connector implementation. The implementation extracts the payload
from the request.

2. The connector implementation checks whether or not the resource is enabled. If
the endpoint is a GET request, a fields query parameter is added to the request so
that the attributes returned by the Fusion Applications service are limited to only
those attributes that were enabled for the resource at design time.

3. Runtime credentials (which are based on the security policies selected during
design time) are added to the request and the request is sent to the Fusion
Applications service.

4. Information is passed back from the Fusion Applications service to the connector
API and finally back to the custom code.

How Do I Create a Fusion Applications Connector API?
The Fusion Applications Connector API wizard will walk you through the following
stages of creating the connector API:

1. Setting Up the Basics. Name the API and provide a description. When you click
Create, the API exists in a Draft state.

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-3

2. Connecting To and Selecting Resources. Locate the Fusion Applications
service through the Describe URL that you provide and select the resources
available from the service.

3. Selecting Attributes. Choose the attributes for each resource and child resource.

4. Setting the Runtime Security. Select the runtime security policies you need to
connect to the runtime Fusion Applications instance.

5. Testing the Connector API. Test your endpoint to validate the connection to the
service.

Setting the Basic Information for Your Fusion Applications Connector
API

Before you begin configuring your connector, you must provide some initial basic
information like the connector API name, a brief description, and a local URI (from
which the connector API will available to the custom code):

1. Make sure that you’re in the right environment to create the connector.

2. Click and selectApplications > Connectors from the side menu.

The Connectors page appears. If no connector APIs have been created yet, you'll
see icons for REST, SOAP, ICS, and Fusion Applications. When at least one
connector API exists, you'll see the connector landing page where existing
connector APIs are listed. You can filter the list to see only the connector APIs that
you're interested in or click Sort to reorder the list.

3. Click Fusion Applications if this is the first connector API to be created or New
Connector and select Fusion Applications.

Each time you create a Fusion Applications Connector API, the New Fusion
Applications Connector API dialog appears. This is where you enter the basic
information for your new connector API.

4. Identify your new Fusion Applications Connector API by providing the following:

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-4

a. API Display Name: Enter a descriptive name (an API with an easy-to-read
name that qualifies the API makes it much simpler to locate in the list of
connector APIs).

For example, myFAServiceAPI.
For new connectors, a default version of 1.0 is automatically applied when you
save the configuration.

b. API Name: Enter a unique name for your connector API. The default value is a
simplified form of the value that you entered for the API Display Name.

For example, myFAServiceAPI.
By default, this name is appended to the relative base URI as the resource
name for the connector API. You can see the base URI below the API Name
field.

Note:

The connector API name must consist only of alphanumeric
characters. It can’t include special characters, wildcards, slashes /,
or braces {}. A validation error message is displayed if you enter a
name that is already in use.

If you enter a different name for the API here, the change is automatically
made to the resource name in the base URI.

Other than a new version of this connector API, no other connector API can
have the same resource name.

c. Short Description: Provide a brief description, including the purpose of this
API.

This is the description of the API that will be displayed on the Connectors page
when this API is selected. The character count below this field lets you know
many characters you can add.

After you've filled in all the required fields, click Create.The connector API is
created and the General page of the Fusion Applications Connector API wizard is
displayed.

5. Set the timeout values if needed.

Connecting to the Fusion Applications instance can take several minutes. You can
increase the timeout values to reduce the chances of a connection time out but be
aware that the values that you apply at design time are also applied at runtime
when the connector calls on the instance. If you do set timeout values, be sure to
save your edits to the General page before proceeding to the next step of the
wizard.

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-5

Note:

If you are in a non-development environment, set these values
appropriately for the environment that you’re working in. Alternatively,
don’t enter values for these fields and let the environment-level timeout
policies take effect.

If you’re a mobile cloud administrator, you can open the
policies.properties file to see the value of the network policies for the
environment that you’re working in from the Administration page.
Otherwise, ask your mobile cloud administrator for the values. To learn
about environment policies, see Environment Policies.

• HTTP Read Timeout: The maximum time (in milliseconds) that can be spent
on waiting to read the data. If you don’t provide a value, then the default value
(20 seconds) of the environment-level HTTP Read Timeout policy is applied.

• HTTP Connection Timeout: The time (in milliseconds) spent connecting to
the remote URL. A value of 0mms means an infinite timeout is permitted.

6. Click Save to save your current settings.

If you want to stop and come back later to finish the configuration, click Save and
Close. You can always edit your configuration when it's in a Draft state. You can
always click Cancel at the top of the General, Rules, and Security wizard pages to
cancel that particular configuration operation. You’ll be taken back to the
Connector APIs page.

7. Click Next (>) to go to the next step in configuring your connector API.

Connecting to a Fusion Applications Instance
This is where you specify the Oracle Fusion Applications instance that you want to
create a connection to via the Describe resource.

Making a connection consists of the following actions:

• Providing the Describe URL to access the metadata of the Fusion Applications
instance that you want

• Providing access authentication (that is, your design time credentials)

• Connecting to the server hosting the resources

You perform these operations on the Resources page of the Fusion Applications
Connector API wizard.

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-6

Creating a Fusion Applications Instance Connection
1. Click the Resources navigation link.

2. In the Describe URL field, enter the address of the describe resource where the
Oracle Fusion Applications instance can be accessed.

Use the describe resource to retrieve the metadata of a resource, which includes
the fields and attribute values in the resource, the resource operations, and any
child resources.
You get the Describe URL from the administrator of the Oracle Fusion
Applications.

The URL takes the form http://host:port/api-name/resources/version/
resource-path/describe.

For example: https://myhost:8080/CommonAPI/resources/1.1/incidents/
describe.

You can save time by verifying that the URL you’re providing is trusted at
trustedsource.org, otherwise, even if you’re connector API is configured correctly,
the connection will fail. See Common Custom Code Errors.

3. Enter the user name and password that you were given to access the resource.

These are the design time credentials that enable you to access the Oracle Fusion
Applications instance. You should’ve received these credentials when you
registered with Oracle Fusion Applications.

4. Click Connect.

The resources in the Fusion Applications instance are retrieved. Making the
connection can take a few minutes. You can stop the connection by clicking Abort
in the Connecting dialog to stop the process. You’ll be returned to the Resources
page.

After the connection is made, the Describe URL and your design time credentials are
preserved for this connector API.

Selecting Fusion Applications Resources
When the connection to the server hosting the resources is made, the Resources page
of the wizard displays a list of all the resources in the given Oracle Fusion Applications
resource instance. You create a custom configuration by selecting a combination of
top-level resources and child resources. You can see the address of the server hosting

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-7

http://trustedsource.org/

the fusion application services (http://host:port/api-name/resources/version) in the
Service Root field along with the design time credentials user name above the
resources.
A list of resources is displayed on one side of the Resources page. All the resources
are unselected by default. Select at least one resource to include it in your Fusion
Applications Connector API configuration. When you select a resources, its
description, resource paths, and any child resources are displayed in the right panel.

1. Select a resource to enable it and add it to the connector API configuration.

If the list is long, enter a resource name or its description in the Search field to
locate a resource.

When you perform a search and the resource is a child of another resource, it’s
displayed at the same level as the parent resource in the list. Child resources are
displayed in the form <parent_resource>/<child_resource>.

If you change your mind about a selection, you can disable a resource to exclude
it by selecting it again. If the resource has child resources, the parent resource and
all of its child resources are removed

2. Select a resource to see its details, including any child (nested) resources in the
right panel of the page.

The details panel always shows the top-level resource and all of its child resources
even if the resource you currently have selected in the resources list is not a top-
level resource.

Click Refresh to get the most up-to-date list of resources. When you click
Refresh, the current list of resources is discarded. To get the latest set of
resources, MCS must make a connection to the Describe resource again. You’ll
get a confirmation dialog asking you to confirm that you want to discard the current
set of resources. If you click Confirm, you’ll be taken back to the initial display of

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-8

the Resources page where you’ll have to re-enter the Describe URL and your
design time credentials.

3. (Optional) Provide a friendly name for the resource or a description in the Name
field in the Details section.

Friendly names for resources are displayed on the following Attributes page.

The Collection and Single Item paths for the top-level resource, which you can see
just above the child objects are the relative paths at which the resource collection
and the single item resource are available. These paths are relative to the service
root shown at the top of the page.

4. (Optional) Select individual child resources to include in your configuration.

Click Child Objects to include all the child resources of the selected top-level
resource in your configuration

All child resources are displayed at the same level. That is, nested child resources
are not visibly distinct in the list.

Each child resource is listed in the form of a relative path of the collection
containing the child resource.

Click Remove in the dialog box to continue or Cancel to stop the removal.

5. (Optional) Provide a friendly (identifiable) name for the child resource in the Name
field.

6. Click Next (>) to go to the next step in configuring your connector API.

Setting Resource Attributes
On the Attributes page, you can select the optional attributes you want for each of your
selected resources. Any required attributes are automatically added to the
configuration. Select a resource from the Resources list, view the available attributes
for the resource in the next column, and then select the specific attributes you want to
include in the connector configuration:

1. Click the Attributes navigation link.

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-9

On the Attributes page, you’ll see three columns. The first column, Resources, is
the list of resources you previously selected. The second column, Attributes, lists
all the attributes that you can select for a particular resource. The last column,
Selected Attributes, lists required and optional attributes that are pre-selected for
you. When you select an attribute in the second column, it’s added to the list of
selected attribute.

2. Select a resource from the Resources list.

3. Add an attribute for the selected resource in the Attributes to your configuration by
clicking Select Attribute:

Use your browser’s search function to locate specific attributes.

Click Select All to move all the attributes to the Selected Attributes list.

4. (Optional) Click an attribute in the Selected Attributes list and provide a friendly
name and description for it:

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-10

Click Remove All to clear all attributes except the required ones from the list.

5. Click Save to save your configuration.

If you change your mind about the attributes your want, remove the ones you don’t
want (don’t worry, they’ll be added back to the Attributes list) and make new
selections.

6. Click Next (>) to go to the step in configuring your connector API.

Editing the Fusion Applications Connector API
If you know that the resources available through the describe resource have changed,
you can refresh it to see the most up-to-date list of resources.

Note:

As long as the Fusion Applications connector API is in Draft state, you can
edit the connector configuration

1. Click the Resources navigation link.

The page displays only the resources you originally selected.

2. Click Refresh.

When you click Refresh on the Resources page, you’ll be told that the current
resources will be discarded. If you click Confirm in the dialog, you’ll be taken back
to the initial view of the Resources page, where you’ll have to re-enter the
Describe URL and your design time credentials. The URL is re-queried and the
latest resources are then displayed. The refresh action doesn’t change any of the
resource selections, friendly names, or descriptions that you’ve already provided.
However, if you connect to a different service by entering a different Describe
URL, you’ll see a completely new set of resources and you’ll have to provide
friendly names for the ones you select.

3. Confirm the refresh action.

The Resources page is displayed at the authentication phase. The Describe URL
and the design time credentials you provided previously are shown.

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-11

4. Click Connect to reconnect to the Fusion Applications service or enter a new
Describe URL and your design time credentials if you want to change to a different
Fusion Applications service.

5. Change the enabled settings for the resources as needed.

If you reconnected to the same service, your previous selections are kept.

6. Click Save.

7. Click Next (>) to go to the step in configuring your connector API.

Setting Runtime Security for the Fusion Applications Connector API
The Fusion Applications service determines the security policies used by the service.
You have the option of selecting the corresponding client policies for the connector
API from the Runtime Security page.

The Fusion Applications Connector API supports OAuth Authentication, HTTP Basic
Authentication, and Security Assertion Markup Language (SAML). To learn more
about these policies, see Security Policy Types for Fusion Applications Connector
APIs.

1. Click the Runtime Security navigation link.

2. Select one or more security policies and move them to the Selected Policies
column.

When you select a policy, you can see its description below the Available Policies
panel.

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-12

3. Specify values for the policy overrides for each policy (if applicable) if you don’t
want to use the default values.

To override a property, enter or select a value other than the default. For a
description of policy properties, see Security Policy Properties.
To set a Credential Store Framework (CSF) Key value, see Providing a CSF Key.

4. Click Save to save your work or Save and Close to save your work and exit the
Fusion Applications Connector API wizard.

5. Click Next (>) to go to the next step, testing the connector.

Providing runtime security credentials is necessary when you’re configuring the
connector, but you don’t want customers who run the mobile apps that use Fusion-
based services to have to enter credentials to access the services every time they sign
in to the app. To see how to allow mobile app users to sign in once, see Configuring
Oracle Cloud Applications as the Identity Provider.

Providing a CSF Key
You must set the csf-key property with your runtime credentials to allow you access
and test the active integration.

Provide a CSF Key in one of the following ways:

• Select an existing key from the Available Keys list in the Select or Create a New
API Key dialog. A description of the selected key is displayed below the list.

When you select the key, its name appears in the Key Name field. Click Select to
add the key. The other fields in the CSF Key Details pane are used only when
creating a key.

• Click New Key in the dialog and create a new basic (CSF) credentials key as
described in Create a New CSF Key.

To learn about CSF keys, see CSF Keys and Web Service Certificates.

Creating a New CSF Key
1. Click the keys icon in the csf-key field.

2. Click New Key in the Select or Create a New API KEy dialog box.

3. Enter a key name that is descriptive and easy-to-read. Note that after you create
the key, you can’t change the key name.

4. Enter a brief description of the key's purpose.

5. Enter your runtime credentials for the service to which you are connecting.

Contact your Fusion Applications administrator to obtain the credentials used to
call the Oracle Fusion Applications service at runtime. Most likely, you’ll only need
to do this once for each Fusion Applications instance (all services are called with
the same app credentials).

6. Repeat the password in the confirmation field.

7. Click Save to continue working in the dialog.

The key name value appears as the override value on the Security page. Note that
the value of the key that you create pertains only to the environment in which it’s
set.

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-13

If you want to edit some aspect of an existing CSF key, then select it from the
Available Keys list and modify the fields as needed. To learn about CSF Keys, see
CSF Keys and Web Service Certificates.

Setting a Web Service Certificate
Here the steps for setting the overrides for a Web Service certificate. However, for this
release, don’t override the values for keystore.sig.csf.key because orakey is the
only valid value for all of these certificate keys.

1. Select a security policy.

The properties for the policy are displayed in the Policy Overrides section.

2. Select an alias from the drop-down list in the field for the certificate key (certificate
keys are denoted by the keystore prefix) and select an alias.

Unlike CSF Keys, you can’t modify a Web Service certificate. You can only select
a different alias.

Only mobile cloud administrators can create a new Web Service Certificate. If you
don’t know the alias for the certificate you want, ask your mobile cloud administrator
for the alias. To set CSF keys and certificates from the Administration page, see CSF
Keys and Certificates..

Testing the Fusion Applications Connector API
When you’ve finished configuring your Fusion Applications Connector API, test the
endpoints. You test one endpoint at a time.

1. Click the Test navigation link.

2. Select the endpoint you want to test.

Endpoints are listed on the left side of the page. Enter a partial resource name in
the filter field to narrow the list to make it easier to find the endpoint you want.
When you select an endpoint, the method, the resource name, and the URI of
service is displayed on right side of the page.

3. Set the default test credentials if you’re in the design phase and just want to see if
your endpoints are valid, or if you want to test multiple endpoints during the
session. Otherwise, skip this step and fill out the fields in the Authentication
section for each method you test.

a. Click Default Test Credentials at the top of the page.

b. Select a mobile backend to associate the API with and the version of the
mobile backend.

c. If both OAuth and HTTP Basic Authentication are enabled for the mobile
backend, select one in the Authentication Method field to use for testing.

d. Click Save to apply the credentials.

4. Click Request and expand Parameters.

When you select a GET method, all the available query parameters are displayed
on the Request tab.

a. For a GET method, enter a parameter value.

You can enter a value in the empty field next to the parameter description to
test with or use the value, if any, provided in the example.

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-14

Ordinarily, when invoking Fusion Application services, you could use the
expand parameter to include the data for a child resource in a response when
querying the parent resource. However, in the Fusion Applications connector,
field parameters are implicitly added to the requests sent to the Fusion
Application service.

Note that the service is unable to handle the field parameters in the request
and the expand parameter when both are used together.

To ensure that data for both the parent and child resources are included in the
response, you must add field parameters that explicitly list the attributes for
both parent and child. For example, let’s say you had a parent resource,
employee, with the attributes FirstName and LastName and the child resources,
directReports, assignments, and photo with the respective attributes,
PersondId, AssignmentName, and Image. You’d add a field parameter with the
following values:

fields=FirstName, LastName; directReports:PersonId;
assignments:AssignmentName; photo:Image

If you do use the field parameter, be aware that the values that you provide
in the parameter override the selections you made on the Attributes page.

b. (Optional) Click Example to view the example body, if one was provided. For
methods other than GET, enter an alternate example to test with by clicking
Use Example. The provided example body is copied into the text box. You
can edit the example as needed.

c. (Optional) Click Schema to view the request body schema if one was
provided.

5. Expand HTTP Headers and click Add HTTP Header to add a header.

Select the header that you want to include for testing purposes and provide a
value in the text field.

6. Expand Authentication, select the mobile backend and its version that are
associated with this API, and enter your mobile user credentials. If both OAuth and

Chapter 27
How Do I Create a Fusion Applications Connector API?

27-15

Http Basic Authentication are enabled for the mobile backend, select one in the
Authentication Method field to use for testing.

7. Click Response.

8. Expand the status code and click Example or Schema to review the example or
schema for the response body, if you provided one.

9. Click Test Endpoint.

Test Endpoint toggles to Cancel Test when you click it. If you want to stop the
test for any reason, then click Cancel Test.
If you want to make changes to the testing parameters, click Reset to clear all the
fields.

To be sure your connector API configuration is valid, you should test it thoroughly (not
just from the Connector API Test page) before publishing it. You should also test the
custom API (with its implementation) that uses this connector API. Essentially, if you’re
ready to publish the connector API, then you should also be ready to publish the
custom API that calls it.
If you need to make changes to a connector API that's in the Published state, create a
new version of it. For information on creating a new version, see Creating a New
Version of a Connector.

Getting the Test Results
Test results are displayed at the bottom of the Test page. The result indicator is the
response status:

• 2xx: indicates a successful connection

• 4xx: indicates a user error occurred

• 5xx: indicates a server error occurred

Status Code Description

200 OK Successful connection.

400 BAD REQUEST General error when fulfilling the request,
causing an invalid state, such as missing data
or a validation error.

401 UNAUTHORIZED Error due to missing or invalid authentication
token.

404 NOT FOUND Error due to an invalid connector ID. An
associated connector with the given ID
couldn’t be found.

500 INTERNAL SERVER ERROR General error when an exception is thrown on
the server side.

Security Policy Types for Fusion Applications Connector
APIs

You'll need to set a security policy to protect the information you want to send or
receive. When determining what policies to set, consider whether the connection to the
service involves transmitting proprietary or sensitive information. Adding a security
policy ensures the authentication and authorization of the data transmitted.

Chapter 27
Security Policy Types for Fusion Applications Connector APIs

27-16

From the Security page, you can select one or more Oracle Web Services Manager
(Oracle WSM) security policies, including OAuth2, SAML, and HTTP Basic
Authentication.

Security Policy Type Description

OAuth2 and the Client Credential Flow MCS supports OAuth2, a system where an
Authentication server acts as a broker
between a resource owner and the client who
wants to access that resources. Of the
different flows (security protocols) offered by
OAuth2, the Client Credentials Grant Flow is
used in MCS to secure connections. This flow
is used when the client owns the resources
(that is, the client is the resource owner).

HTTP Basic Authentication HTTP Basic authentication allows an HTTP
user agent to pass a user name and password
with a request. It's often used with stateless
clients, which pass their credentials on each
request. It isn't the strongest form of security
though as basic authentication transmits the
password as plain text so it should only be
used over an encrypted transport layer such
as HTTPS.

Security Assertion Markup Language (SAML) SAML is an XML-based open standard data
format that allows the exchange of
authentication and authorization credentials
among a client, an identity provider, and a
service provider. The client makes a request of
the service provider. The service provider
verifies the identity of the client from the
identity provider. The identity provider obtains
credentials from the client and passes an
authentication token to the client, which the
client then passes to the service provider. The
identity provider verifies the validity of the
token for the service provider and the service
provider responds to the client.

For a list of the security policies supported for Fusion Applications Connector APIs,
see Security Policies for Fusion Applications Connector APIs. For descriptions of
security policy properties that can be overridden, see Security Policy Properties.

CSF Keys and Web Service Certificates
In MCS, the Oracle Credential Store Framework (CSF) is used to manage credentials
in a secure form. A credential store is a repository of security data (credentials stored
as keys) that certify the authority of users and system components. A credential can
hold user name and password combinations, tickets, or public key certificates. This
data is used during authentication and authorization.

CSF lets you store, retrieve, update, and delete credentials (security data) for a web
service and other apps. A CSF key is a credentials key. It uses simple authentication
(composed of the user name and the password for the system to which you’re
connecting) to generate a unique key value. You can select an existing CSF key or
create one through the Select or Create a New API Key dialog. To select or create a
CSF key, see Providing a CSF Key.

Chapter 27
CSF Keys and Web Service Certificates

27-17

A Web Service Certificate allows the client to securely communicate with the web
service. It can be a trusted certificate (that is, a certificate containing only a public key)
or a certificate that contains both public and private key information. Web Service
Certificates are stored in the Oracle WSM keystore. You set the overrides by selecting
an alias from the drop-down list for the property, keystore.sig.csf.key. The alias for
this property is mapped to the alias of the key used for signing. If no value is selected,
the default value, orakey, is used (for this release, the only valid value for this property
is orakey).

When you select a policy, you can see which properties are listed in the Policy
Overrides.

Note:

It isn’t necessary to set all the overrides for a policy; however, you should be
familiar enough with the security policies that you’ve selected to know which
overrides to set for each policy.

CSF keys, certificates, and their respective values are specific to the environment in
which they’re defined. That is, if there are multiple environments, A and B, and you’re
working in environment A, then only the CSF keys and certificates for the security
policies in use by artifacts in that environment are listed in the CSF Keys dialog. A
different set of keys and certificates will be displayed in environment B. It is also
possible for keys with the same key name but with different values to exist in multiple
environments.

A CSF key can be deployed to another environment, however, because CSF keys are
unique to an environment, only the key name and description are carried over to the
target environment. You won’t be able to use that key in the new environment until it’s
been updated with user name and password credentials by the mobile cloud
administrator.

To set CSF keys and certificates from the Administration page, see CSF Keys and
Certificates.

Using Your Fusion Application Connector API in an App
To use a connector in a mobile app, you first have to wrap calls to the connector API in
a custom API and deploy that API. Such a custom API could also contain additional
logic to process the data returned from the call to the connector.

This allows the app to access the connector's functionality by calling the custom API.
The syntax for a call to a connector API is the same as you would use when calling
any other API from custom API implementation code. See Calling Connector APIs
from Custom Code.

Alternatively, you can do this automatically. See Generating Custom APIs for
Connectors.

Chapter 27
Using Your Fusion Application Connector API in an App

27-18

You make calls to connector APIs using JavaScript code in the custom API's
implementation. When you implement a custom API, you can view the available
connectors and their details in a special version of the API Catalog that’s available to
custom APIs. (The API Catalog that’s available to client apps doesn’t contain
connector APIs.)

Troubleshooting Fusion Applications Connector APIs
A great source of debugging information are the system message logs. Depending on
your role, you or your mobile cloud administrator can go to the Administration view and
click Logs to see any system error messages or click Request History to view the
client (4xx) and server (5xx) HTTP error codes for the API's endpoints and the
outbound connector calls made within a single mobile backend.

By default, only TLSv1.1 and TLSv1.2 protocols are used for outbound connections. If
you need to use an older version of a SSL protocol to connect to an external system
that doesn't support the latest versions of SSL, you can specify the SSL protocol to
use for the connector by setting the Security_TransportSecurityProtocols
environment policy. The policy takes a comma-separated list of TLS/SSL protocols, for
example: TLSv1, TLSv1.1, TLSv1.2. Any extra space around the protocol names is
ignored. You can use the SSLv2Hello protocol to debug connectivity issues with
legacy systems that don't support any TLS protocol. Note that this policy can’t be used
to enable SSLv3 endpoints. See Environment Policies and Their Values for a
description of the policy and the supported values. Be aware that this policy must be
manually added to a policies.properties file that you intend to export.

Caution:

Be aware when setting the policy that older protocols are vulnerable to
security exploits.

You won't be able to test a Fusion Applications connector that hasn't been modified
since June 2017 unless you save the connector first. Saving the connector
regenerates the RAML from the descriptor. You can see when the connector was last
modified by selecting it on the Connectors page and expanding the History panel.

Chapter 27
Troubleshooting Fusion Applications Connector APIs

27-19

Part VI
Deployment and Lifecycle

This part contains the following chapters:

• MCS Environments

• Diagnostics

• Lifecycle

• Lifecycle Scenarios

• Managing an Artifact’s Lifecycle

• Testing APIs and Mobile Backends

• Packages

28
MCS Environments

Your team's Oracle Mobile Cloud Service (MCS) subscription consists of at least one
environment and offers distinct roles for team members.

As a mobile cloud administrator, you manage these environment service instances,
their associated policies, and the permissions that team members have within them.
To create and structure environments, see Create Mobile Environment Service
Instances.

Team Members
In most cases, developing a mobile application is a team effort. Mobile application
developers work closely with service developers and support personnel such as
program managers and administrators. MCS makes the complexities of a large
software development project easier to manage.

Depending on their assigned roles within an environment, team members can develop
mobile backends, custom code, custom APIs, and use built-in services, such as
Notifications, Storage, Analytics, and more. You can give team members wide access
to features, environments, and user information, or restrict them to a small set of
permissions. You must be an Oracle Cloud identity domain administrator to manage
MCS team member roles. To control the access of your team members and manage
the steps of your product development process using environments and roles, see
Assign MCS Team Member Roles.

To see how team members access the MCS UI, see What is My Environment? As a
mobile cloud administrator, you can manage artifacts and permissions in the
environment from the Administration UI as described in Administration View.

Note:

Team members are users with access to MCS development features; these
users are different from mobile users, the end users that access mobile
applications running on MCS. To manage mobile users, see Set Up Mobile
Users, Realms and Roles.

What is My Environment?
An environment is a predefined arena for working in MCS. Depending on your
implementation of MCS and your role, you have access to one or more environments.

If you have access to multiple environments, you can always tell which environment
you’re in by looking at the environment field at the top of the page:

28-1

To access environments, see Your Work Environment.

Each environment has its own set of policies that govern the behavior of artifacts
within that specific environment. To learn about environment policies, see Environment
Policies. CSF keys and security certificates are also unique to each environment, see
CSF Keys.

Your Work Environment
You work in one environment at a time. The first time you log in to MCS, you’re put in
the default environment set by the mobile cloud administrator. If you don’t have
permission to access the default environment but you do have access to another
environment, that environment is displayed instead. If MCS can’t determine which
environment to open, an environment selector dialog opens that lets you select the
environment.

After you’re logged in to MCS, you can select the environment you want to work in
from the environment drop-down list. The list only includes environments that you have
permission to access. To switch environments, see Changing Environments.

When you open the MCS side menu (click) and select an artifact from
Applications (for example Mobile Backends or Collections), you go to the top-level
page for that artifact type where you’ll see a list of those artifacts in the current
environment. When you select an artifact in the list, details for that artifact are
displayed. See Managing an Artifact’s Lifecycle.

When you log in to MCS again, you’re put in the environment that you were in when
your previous session was closed.

Changing Environments
You can always see which environment you’re in by looking at the top of the MCS
page. If you have access to multiple environments, you’ll see a drop-down list next to
the environment name.

If you need access to an environment that you don’t see in the list, contact your mobile
cloud administrator. See Changing Environment Views for the Administrator.

To change environments, click the environment name in the drop-down list. Be sure to
save any unfinished work before switching environments.

What Happens When You Change Environments?
This discussion presumes your instance of MCS has more than one environment.
When you switch to another environment, you’ll be moved to the same page that

Chapter 28
What is My Environment?

28-2

you’re currently viewing. That is, if you were on the Collections page in Environment A
(the source environment), you’ll be on the Collections page when you move to
Environment B (the target environment).

You won’t be able to access an artifact in another environment if one of the following
conditions exist:

• The target environment you want to switch to has been deleted.

For example, you’ve got an old bookmark to the details page for collection123 in
Environment B. When you go to the bookmark, you’re told Environment B can’t be
located. You’re no longer in any environment. Don’t worry, you’ve got some
options:

– You can select another environment. The Alternative environment field lists all
the environments for which you have access permission.

If collection123 exists in the environment that you select, you’ll be taken to
the details page of collection123 in that environment.

– You can click Home in the side menu to go back to the default environment.

In the default environment, you can click and select Applications >
Storage from the side menu to view the list of collections. If you don't see
Storage under Applications, you need to request access permission to
collections in the default environment from your mobile cloud administrator.

• You don’t have access permission for the target environment.

For example, you get a link to view the details for collection123 in Environment B
but you’re told that you can’t access the environment. You can select an
alternative environment from the list of environments that you can access.
Otherwise, contact your mobile cloud administrator to get access permission for
the target environment.

• You don’t have permission to view the artifact in the target environment.

For example, in Environment A you might be viewing analytical details on new
users. You switch to Environment B to see analytic details for new users in that
environment, but you’re told that you don’t have permissions to view that
information in Environment B. You need to request read permission from your
mobile cloud administrator for the artifact in the target environment or go to
another environment.

Administration View
If you’re a mobile cloud administrator, you can go to the Administration view by clicking

 and selecting Administration from the side menu. From the Administration view,
you can examine the details of an environment, such as its policies, CSF keys and
certificates, logs, and more. If you have a multi-environment instance of MCS, you can
click on a environment tab to see its details. If you’re viewing the default environment,
you’ll see Default in the upper right corner above the chart.

Chapter 28
Administration View

28-3

The green (healthy), amber (severe), and red (adverse) traffic-light indicators give you
a bird's eye view of how quickly and successfully requests are processed within each
environment over the last minute.

When you select an environment, the page plots a grouped bar chart comparing the
number of requests against response times. It also displays the number of client (4xx)
and server (5xx) errors and the number of pending requests for the selected
environment. When the indicators signal that the health of an environment has
declined from healthy to severe or even adverse, you can drill down from this page to
quickly diagnose the cause by viewing detailed logging information and error
messages. For details about diagnostics, see Diagnostics.

Each environment has its own set of policies and permissions. Policies govern the
behavior of artifacts within a specific environment. You can view the environment
policy settings for a particular environment by clicking Export in a selected
environment. See Environment Policies.

Permissions let you control which team members have access to which environments
and to specific functionality in those environments. You can assign access
permissions when you create a role. See Assign MCS Team Member Roles.

CSF keys and security certificates are also unique to each environment. See CSF
Keys and Certificates.

Chapter 28
Administration View

28-4

Changing Environment Views for the Administrator
If you have a multi-environment instance of MCS, you can easily and quickly view
details specific to an environment from the Administration view.

1. Click and select Administration from the side menu.

2. Click an environment tab to see information about it such as analytics or policies.

You can quickly verify whether the environment you’re currently viewing is the default
environment by looking at the upper right corner of the Administration page.

Setting the Default Environment
If you have a multi-environment instance of MCS, you can set a default environment
for users when they access MCS for the first time:

1. Click and select Administration from the MCS side menu.

2. Select an environment.

3. Click Settings next to the Default indicator.

4. (Optional) Enter a name if you want to change the current environment name.

The name should be 30 characters or less. You can use uppercase and lowercase
letters, the integers 1 through 9, and spaces.

5. Select Set as default for first-time user access.

Environment Policies
Environment policies are environment settings and artifact properties that are specific
to a particular environment. They let you override given values per environment.

Some things to note about environment policies:

• Policies can always be modified.

• Policies can never be published.

• Policies can’t be deployed across environments. The same policy can exist in
multiple environments at the same time but each instance of that policy is unique
to the environment containing it. For example, if your instance of MCS had
Development, Staging, and Production environments, they can all have a
Network_HttpRequestTimeout policy, but the policy in the Staging environment is
applicable only to the APIs in the Staging environment.

Chapter 28
Setting the Default Environment

28-5

Even though an artifact can’t be changed after it’s published, its behavior can still be
affected after it’s deployed to another environment. If you’re a mobile cloud
administrator, you have the flexibility to adjust policy values to better fit the required
behavior of artifacts in a particular environment. For instance, if you’re in a
development environment, you may be interested only in verifying that a connector’s
endpoints are valid. The timeout values aren’t much of a concern during the
experimental phase, but when you deploy that connector to the runtime environment,
it’s available for wide use and realistic timeout settings are required. You’ll want to
adjust the value of the Network_HttpRequestTimeout policy in the runtime
environment accordingly.

Only mobile cloud administrators can deploy an artifact and, therefore are the only
ones who can modify environment policies. You can modify policies when you deploy
an artifact (mobile backend, custom API, API implementation, connector, collection, or
realm) or by editing the policies.properties file for an environment directly from the
Administration view. To change policy settings, see Modifying an Environment Policy.
For descriptions of environment policies and their values, see Oracle Mobile Cloud
Service Environment Policies.

In general, you should use the policy’s default settings. Changing the setting of a
policy that has an environment scope can have adverse results. When you set a policy
at the environment level, the value for that policy is applied to the relevant artifacts in
that environment. For example, if you set the value of the
Sync_CollectionTimeToLive policy to a value other than the default in the runtime
environment, that value is applied to all mobile backends in that environment.

For information on a policy’s scope, see Environment Policy Scopes.

Environment Policy Names
A policy is simply a name-value pair. A policy name has the format
mbeArtifactIdentity.invocableArtifactIdentity.policyPropertyName, and each
part of the name has the following function:

• The first mbeArtifactIdentity binds the policy value to a specific mobile
backend.

• The second invocableArtifactIdentity binds the policy to an API, an API
implementation, or connector.

• The policyPropertyName is the short name of the policy, which usually indicates
the function of the policy, for example, Logging_Level or User_DefaultUserRole
(note that property names are initial-capped and preceded by a category).

You can set mbeArtifactIdentity and invocableArtifactIdentity in one of the
following ways:

• The artifact name and version, which matches the artifact of a particular type with
the given name and its version, for example, myMobileBackend(1.0.0).

• The artifact name alone, which matches all artifacts of the same type with the
given name and any version, for example, myMobileBackend.

• A wildcard denoted by an asterisk (*), which matches all artifacts of the particular
type.

Chapter 28
Environment Policies

28-6

Qualifying API Types

When you define a policy that affects an API, you must use a fully qualified name
(which consists of an API category and the API name). The API category can be one
of custom, connector, platform, or system. For example:

• *.custom/myAPI(1.0)

• *.connector/myAPI(1.0)

• *.platform/myAPI(1.0)

• *.system/myAPI(1.0)

Policy names for API implementations do not include category types. For example,
*.myAPIImpl(1.0).

Examples of Policy Names

Here are some examples of policy names and their meanings:

• myMBE(1.0).custom/myAPI(1.0).someProperty is applied to calls of a custom API
or API implementation named myAPI that has a version of 1.0 within the context of
a mobile backend named myMBE with a version of 1.0.

• myMBE(1.0).connector/myAPI(1.0).someProperty is applied to calls of a
connector API or API implementation named myAPI that has a version of 1.0 within
the context of a mobile backend named myMBE with a version of 1.0.

• myMBE.custom/myAPI(1.0).someProperty is applied to calls of a custom API or
API implementation named myAPI that has a version of 1.0 within the context of a
mobile backend named myMBE of any version.

• *.custom/myAPI(1.0).someProperty is applied to calls of a custom API or API
implementation named myAPI that has a version of 1.0 within the context of any
mobile backend.

• *.myAPIImpl(1.0).someProperty is applied to calls of an API implementation
named myAPIImpl that has a version of 1.0 within the context of any mobile
backend.

• *.*.someProperty is applied to calls of any API or API Implementation within the
context of any mobile backend. This name format denotes an environment wide
policy.

Policy Property Names

Property names should follow the format Category_PropertyName. Property names
should consist only of alphabetic characters and multi–part names should use
CamelCase capitals, for example, Network_HttpReadTimeout. Names should not
include the scope or an object type or unit of measure.

Environment Policy Scopes
When setting a policy, you should be aware of its scope. A policy’s scope refers to the
artifacts to which a policy setting applies. Each policy has a unique set of scopes for
which it’s valid. While some policies can be set at the environment-level and at the
artifact-level, it may make more sense to set them at one particular level. For instance,
the Connector_Endpoint policy stores the endpoint URL of a specific connector. This

Chapter 28
Environment Policies

28-7

policy must be set on an individual connector basis and should be set at the artifact-
level. The Network_HttpRequestTimeout policy on the other hand affects APIs and
connectors. It needs to be set at the environment-level so that it’s applied to all APIs
and connectors.

How you name a policy can determine its scope. Use the mbeAssetIdentity and the
invocableAssedIdentity parts of the name to set whether a policy has an
environment or artifact-level scope:

• Environment scope: Set both mbeAssetIdentity and the
invocableAssedIdentity as wildcards so that the policy is applied globally across
the environment.

Example: *.*.Logging_Level=800

• Mobile Backend scope: Set mbeAssetIdentity to a specific mobile backend and
set the invocableAssedIdentity as a wildcard so that the policy is applied to all
APIs and connectors called in the context of the given mobile backend. You make
this more specific by including the version of the mobile backend.

Example: MyMobilBackend(1.3).*.Logging_Level=800

• API scope: Set mbeAssetIdentity to a wildcard and set the
invocableAssedIdentity to a specific API so that the policy is applied to that
particular API when called in the context of the any mobile backend in that
environment. You make this more specific by including the version of the API.

Example: *.custom/MyApi(2.0).Logging_Level=800

• API Implementation scope: Set mbeAssetIdentity to a wildcard and set the
invocableAssedIdentity to a specific API implementation so that the policy is
applied to that particular implementation when called in the context of the any
mobile backend in that environment. You make this more specific by including the
version of the API.

Example: *.MyApiImpl(1.0).Logging_Level=800

• Connector scope: Set mbeAssetIdentity to a wildcard and set the
invocableAssedIdentity to a specific connector so that the policy is applied to
that particular connector when called in the context of the any mobile backend in
that environment. You make this more specific by including the version of the API.

Example: *.connector/MyConnector(2.2).Logging_Level=800

• Fully-qualified API scope: Set the mbeAssetIdentity to a specific mobile
backend and set the invocableAssedIdentity to a specific API so that the policy
is scoped at the fully qualified API level whenever the API is called within the
scope of the given mobile backend. You make this more specific by including the
versions of the mobile back and the API.

Example: MyMBE(1.3).custom/MyApi(2.0).Logging_Level=800

• Fully-qualified API Implementation scope: Set the mbeAssetIdentity to a
specific mobile backend and set the invocableAssedIdentity to a specific API
Implementation so that the policy is scoped at the fully qualified API
implementation level whenever the implementation is called within the scope of the
given mobile backend. You make this more specific by including the versions of
the mobile back and the API implementation.

Example: MyMobileBackend(1.3).MyApiImpl(1.0).Logging_Level=800

Chapter 28
Environment Policies

28-8

• Fully-qualified Connector scope: Set the mbeAssetIdentity to a specific mobile
backend and set the invocableAssedIdentity to a specific connector so that the
policy is scoped at the fully qualified connector level whenever the connector is
called within the scope of the given mobile backend. You make this more specific
by including the versions of the mobile back and the connector.

Example: MyMobileBackend(1.3).connector/
MyConnector(2.2).Logging_Level=800

For details about policy name formats, see Environment Policy Names.

Modifying an Environment Policy
MCS generates a policies.properties file for you. If you’re a mobile cloud
administrator, you can modify an environment policy by editing its value, saving your
changes, and importing the modified file from the Administration view.

1. Click and select Administration from the side menu.

2. Click the environment for which you want to edit policy values.

3. Click Export under Policies.

4. Edit the policies as needed for the selected environment and save the file.

5. Import the modified policies.properties.

Here’s an example of a policies.properties file in a development environment:

Chapter 28
Environment Policies

28-9

Removing Environment Policies
Let’s say you created an artifact some time ago that became obsolete and has been
purged. You want to reduce clutter in the policies.properties file by removing
policies defined for the obsolete artifact. You can delete the policies, however, the
process involves deleting all the policies within a given environment and replacing
them with the policies from the modified policies.properties file that you import. Be
very careful when deleting policies to ensure you don't remove the wrong ones.

To remove environment policies:

1. Click and select Administration from the side menu.

2. Be sure you're in the environment containing the policies you want to delete.

3. Click Export.

4. Make a copy of the exported policies.properties file.

Important: If, after you've imported the modified file, you find you've accidentally
deleted policies that you need, you can restore the environment back to its
previous state by deleting the all policies and importing the backup copy of the file.

5. Delete the policies you want to remove and save the file.

6. Select Delete all policies before import.

7. Import the modified policies.properties file.

All the previous environment policies are deleted and the environment contains only
the policies imported from your modified file.

CSF Keys and Certificates
MCS uses the Credential Store Framework (CSF) to manage credentials in a secure
form. CSF lets you store, retrieve, update, and delete credentials for a web service
and other apps.

CSF keys are credentials that certify the authority of users and system components
that are used during authentication and authorization. A CSF key uses basic
authentication (user name and password) to generate a unique key value.

Certificates, which are electronic documents that are used authenticate an individual
or organization, are stored in different keystores by type. Other certificates that you
can create using the CSF Keys & Certificates dialog are:

• Web Service Certificates, which can be trusted certificates (that is, a certificate
containing only a public key) or a certificate that contains both public and private
key information. Web Service Certificates are stored in the Oracle WSM Keystore.

• Token (Signing) Certificates, which are standard X509 certificates that are used to
securely sign all tokens issued by a federation server.

• Secure Sockets Layer (SSL) Certificates, which are trusted certificates that you
use to establish SSL communication with the external service. SSL Certificates are
stored in the Trust Keystore.

You can also create a token issuer, which allows identity tokens provided by trusted
third parties to be accepted and verified for authenticating mobile users. In the case of

Chapter 28
CSF Keys and Certificates

28-10

virtual users, identity tokens provided by third-party providers are used to both
authenticate and authorize mobile users.

CSF keys, certificates, and their values are specific to the environment in which they
are defined. It’s possible for keys with the same key name to exist with different values
in multiple environments. Only the CSF keys and certificates in use in the selected
environment are listed in the CSF Keys & Certificates dialog. A different set of keys
and certificates can be displayed when this dialog is opened in another environment.

Token Certificates and Token Issuers

If you have identity tokens that are provided by third parties, you can add Token Issuer
Certificate and Signing Authority Certificate information, along with any intermediate
certificates, to establish a chain of trust. This lets MCS accept and verify identity
tokens issued by third parties for authenticating mobile users.

Through the CSF Keys & Certificates dialog, you can do the following:

• Create a token certificate.

• Create a token issuer and associate certificates with that issuer.

• Create a data bound rule, a setting that specifies how third-party tokens are
processed per certificate.

Viewing Available CSF Keys, Certificates, and Token Issuers
As administrator, you manage the credential keys and certificates used by service
developers when setting security policies. You can view the details of CSF keys and
the definitions of certificates from the CSF Keys & Certificates dialog. You can also
edit the details of a CSF key (except for the key name and alias) and review the list of
available token issuers.

To view a key, certificate, or token issuer:

1. Click and select Administration from the side menu.

2. Click Keys & Certificates.

3. Click the CSF Keys, Certificates, or Token Issuer tab.

4. Select an alias in the Available Keys or Available Certificates list to view the
details of the key or certificate.

a. For CSF Keys, select Show only referenced keys with null values to see
only keys that are referenced by artifacts that have no credentials values.

If you edit the description, user name, or password of a CSF key (the key
name can’t be changed), click Save to save your changes and continue
working in the dialog. Click Save and Close to save your actions and return to
the main menu. Click Cancel to close the dialog without saving your changes.

b. For Web Service, Token, and SSL Certificates, click Export to save the
selected certificate to a file. You can then import the certificate for use in
another instance.

To add more CSF keys or certificates, see Configuring a CSF Key, Configuring a Web
Service or Token Certificate, and Configuring an SSL Certificate.

Chapter 28
CSF Keys and Certificates

28-11

Configuring a CSF Key
You can configure a new CSF key from the CSF Keys tab in the CSF Keys &
Certificates dialog.

1. Click the CSF Keys tab.

2. Click Add and provide the following values:

• Unique key name. This name can’t be changed after the key is created.

• User name and password for the external system that requires this key for
access.

3. Save the key.

Configuring a Web Service or Token Certificate
You can configure a new Web Service or Token Certificate from the Web Service and
Token Certificates tab in the CSF Keys & Certificates dialog. You can’t edit a
certificate after you’ve created it.

1. Click the Web Service and Token Certificates tab.

2. Click Add and provide the following information:

• Alias — Enter a unique name for the certificate.

• Content — Copy the certificate definition into the text field. You can get Web
Service certificate content from the system administrator of the service, or
token certificate content from the remote identity provider.

3. Save the certificate.

Note:

When a certificate is uploaded, it takes a few seconds before the certificate is
available. Token certificates can take up to ten minutes.

To delete a certificate, click X by the selected alias in the list of Available Certificates.
You can only delete certificates that you created.

Configuring an SSL Certificate
You can configure a new SSL Certificate from the SSL Certificates tab in the CSF
Keys & Certificates dialog. You can’t edit a certificate after you’ve created it.

1. Click the SSL Certificates tab.

2. Click Add and provide the following information:

• Alias — Enter a unique name for the certificate.

• Content — Copy the certificate definition into the text field. You can get Web
Service certificate content from the system administrator of the service, or
token certificate content from the remote identity provider.

3. Save the certificate.

Chapter 28
CSF Keys and Certificates

28-12

Note:

When a certificate is uploaded, it takes a few seconds before the certificate is
available.

To delete a certificate, click X by the selected alias in the list of Available Certificates.
You can only delete certificates that you created.

Disabling SSL Hostname Verification
Testing connectors can be difficult when they call an outbound service over SSL. If the
SSL certificate has an incorrect or missing hostname, the developer might not be able
to create the connector or might just have problems with testing.

You can make it easier to test a connector by turning off hostname verification for
outbound SSL connections through the Security_IgnoreHostnameVerification
policy.

Caution:

Turning off hostname verification is a security risk. Setting this policy to true
should be limited to development. When testing is complete, set the policy
back to its default value of false.

This policy is set globally (*.*.Security_IgnoreHostnameVerification) and will
affect all connectors. Setting the scope for a specific backend or connector is not
supported.

For more information on configuring policies, see Environment Policies.

Note:

Even if SSL hostname verification is disabled, you still need to import the
SSL certificate if it's self-signed.

Adding a Token Issuer
To authenticate users with third-party tokens, you need to register the token issuers
and associate them with their certificates.

After you’ve added at least one token certificate, use the steps below to add a token
issuer from the Keys & Certificates dialog:

1. Click the Token Issuers tab.

2. Click New Issuer.

3. Enter the name of the token issuer in the Name field under Issuer Details.

4. Click Add (+) and select at least one name from the Select Certificate Subject
Names dialog. All the certificates that have been uploaded are listed.

Chapter 28
CSF Keys and Certificates

28-13

5. Save the token issuer.

6. If the list on the Token Issuers tab doesn’t include your new issuer, click Save in
the tab to update the list.

7. (Optional) Click Rules to configure a rule for a certificate subject name.

Rules for Certificate Subject Names
You set rules to define filters, which determine whether or not a given token is
considered valid. The type of rules you can select depends on whether virtual users
are enabled or not.

If virtual users are disabled, you can set a User Mapping rule that specifies how the
token subject content is used to identify the user record in SIM.

If virtual users are enabled, you can set a Default Roles rules that lists one or more
default roles that are applied to all requests for all users. You can also define a Role
Attribute rule that can contain one or more attribute names. If the token role names are
different from MCS role names, you can additionally set role mapping rules to match
the token roles names to the MCS role names.

Filter rules can be applied regardless of whether virtual users are enabled or not. Filter
rules accept or reject a token based on whether its content matches the information in
the token certificate. To get a full description of all the rules, see Rule Types. Filter
rules can be applied regardless of whether virtual users are enabled or not. Filter rules
accept or reject a token based on whether its content matches the filter rules
associated with the token certificate.

Configuring Rules
Rules govern how tokens provided by token issuers are processed. If the token
provided by a token issuer doesn’t meet the criteria specified by the rule, the request is
rejected.

After you’ve added at least one token certificate and created a token issuer, you can
configure a rule for the certificate subject name from the Token Issuer tab in the Keys
& Certificates dialog.

1. On the Token Issuers tab, select a certificate subject name from the list.

2. Click Rules. As you add rules, the current number of rules is indicated on the
Rules button.

3. Select Enable Virtual User if you’re configuring rules for users that aren’t
registered.

With virtual users enabled, a token identifies a user with a record in Oracle Cloud,
but roles are associated with the user based on the default content in the token,
instead of on information in that account.

4. Under Add a New Rule, select the rule type.

5. Enter the required values for the rule type.

6. Click Add.

If you need to change a rule, just select it, make the updates and click Done. To delete
a rule, select the rule and click X.

Chapter 28
CSF Keys and Certificates

28-14

Rule Types
Filter Rule

The Filter rule consists of a token attribute and at least one value that must match the
value associated with the token. The name-id attribute represents the username
identified in the token, while the user.tenant.name attribute represents the tenant
name associated with the token.

Use a comma-separated list to enter multiple attribute values for either attribute. If
none of the values match, the token is deemed invalid. A value can contain a wildcard
(*) character.

For example:

• name-id=jack, jill, ann

• user.tenant.name=testing, development

You can configure only one Filter rule per token attribute (that is, you configure one
Filter rule with the name-id attribute and one Filter rule with the user.tenant.name
attribute).

User Mapping Rule

The User Mapping rule defines how tokens are mapped to users, either by user name
or email address. This rule is applicable only to JWT tokens, only if virtual users are
disabled.

The rule consists of a token attribute, name-id, that represents the username identified
in the token, and a user attribute name value of either uid or mail:

• uid is the user’s username in the associated Cloud Account (default behavior)

• mail is the user’s email address in the associated Cloud Account

You can configure only one User Mapping rule per issuer certificate name. If you don’t
configure a User Mapping rule, name matching is used (the default behavior).

Note:

For SAML tokens the User Mapping rule type is ignored and the default
behavior is to map the username in the token to the username in the
associated record.

Default Role Rule

The Default Role rule defines a list of roles to associate with users. This rule is
applicable only if virtual users are enabled.

The rule consists of a list of role names that are assigned to all users presenting
tokens verified using the corresponding token certificate. Use a comma-separated list
to enter multiple attribute values.

For example:role=technician, manager, tester

Chapter 28
CSF Keys and Certificates

28-15

You can configure only one Default Role rule per issuer certificate name. If you don’t
configure a Default Role rule, no roles are assigned to the requesting user unless
you’ve configured a Role Attribute rule.

Role Attribute Rule

Use the Role Attribute rule to determine which roles to assign by examining the
attributes in the token. If a Role Attribute role is defined, the token is searched for
attributes with names that match any of the values defined in the rule. If matches are
detected, the values of those token attributes are interpreted as roles and assigned to
the virtual user. This rule is applicable only if virtual users are enabled.

The rule consists of a comma-separated list of token attribute names used to derive
the roles that are assigned to users.

For example: employeelevel, QAgroup

You can configure only one Role Attribute rule per issuer certificate name, but you can
use this rule in combination with the Role Mapping rule. If you don’t configure a Role
Attribute rule, no roles are assigned to the requesting user unless you’ve configured a
Default Role rule.

Note:

If you configure both the Default Role rule and the Role Attribute rule and the
role attribute you defined is present in the token, the Default Role rule is
ignored. However, if the defined role attribute isn’t present, the roles
specified in the Default Roles rule are applied to the virtual user. Role
Mapping rules can also define which roles to use when no matches are
found.

Role Mapping Rule

The Role Mapping rule associates roles with role attributes in the token identified by
the Role Attribute rule. This rule is applicable only if virtual users are enabled.

The rule consists of an external role name, which is the value that should be found in
one or more token attributes, and a list of roles to which the external role names are
mapped. Use a comma-separated list to enter multiple attribute values.

For example: employee=technician, manager, tester

This example maps the external role name, employee, to the existing roles,
technician, manager, tester.

Note:

Role Mapping rules only work in conjunction with Role Attribute rules. If no
Role Attribute rule is defined, Role Mapping rules are ignored. If the names
of the token attributes configured in the Role Attributes rule don’t match the
external role names configured in the Role Mapping rule, the token attributes
are treated as role names and are assigned to the requesting user. If the role
names defined in the rule don’t correspond to any existing roles, the value is
ignored.

Chapter 28
CSF Keys and Certificates

28-16

You can configure as many Role Mapping rules per issuer certificate as you need, but
only one rule can be configured for each external role name. To map one external role
to multiple roles, use a single rule and include all the roles in a comma-separated list,
as shown in the example above.

Rule Examples
Here are some examples of setting different types of rules for certificate subject
names.

User Mapping Rule with a JWT Token, and a SIM User

The setup: You have a SIM user and a JWT token. The JWT token contains an
attribute called Subject with the value, mary.keane@fixitfast.com.

In the SIM, there’s a corresponding entry for the SIM user with the following attributes
and values:

uid mail roles

mkeane mary.keane@fixitfast.co
m

manager

You configure a User Mapping Rule with a token attribute value of name-id and user
attribute value of mail.

What happens: The token is mapped to the SIM entry, mary.keane@fixitfast.com,
and is assigned the role of manager.

User Mapping Rule, a SAML Token, and a SIM User

The setup: You have a SIM user and a SAML token. The SAML token contains an
attribute called Subject with the value, mary.keane@fixitfast.com.

In the SIM, there’s a corresponding entry for the SIM user with the following attributes
and values:

uid mail roles

mkeane mary.keane@fixitfast.co
m

manager

You configure a User Mapping Rule with a token attribute value of name-id and user
attribute value of mail.

What happens: Remember, for SAML tokens, the User Mapping Rule is ignored and
the default behavior of name matching is used, that is, you can only map the name-id
value in the token to the uid attribute in the SIM. The name-id is mapped to mkeane
and is assigned the role of manager.

Default Roles Rule and a Virtual User

The setup: You have a virtual user and a SAML token. The token contains a Subject
attribute with the value mary.keane.

You configure a Default Role rule with the values director and technician, which are
roles that have been defined in MCS.

Chapter 28
CSF Keys and Certificates

28-17

Rule Values

Default Role director, technician

What happens: The virtual user is assigned the roles of director and technician.

Role Attributes Rule and a Virtual User

The setup: You have a virtual user and a SAML token. The token contains a Subject
attribute with the value, mary.keane and a Custom-Roles attribute with the values,
director and technician.

You configure a Role Attributes rule with a token attribute called Custom-Roles.

What happens: A match is found between the token role attribute and the MCS role
you configured. The virtual user is assigned the roles of director and technician.

Role Attributes Rule with a Role Mapping Rule and a Virtual User

The setup: You have a virtual user and a SAML token. The token contains a Subject
attribute with the value, mary.keane and a token attribute called Custom-Roles with the
values, director and technician.

Rule Values

Custom-Roles director, technician

You configure a Role Attribute rule with a token attribute name also calledCustom-
Roles .

In addition, you configure a two Role Mapping rules, one with the external role name
director with the values supervisor and manager, and another with the external role
name of technician and the MCS role developer.

External Role Name MCS Roles

director supervisor, manager

technician developer

What happens: The virtual user is assigned the roles of supervisor, manager, and
developer.

What if you had configured only one Role Mapping rule, with the role name of
director with the MCS roles of supervisor and manager?That is, you didn’t configure
a Role Mapping rule for the external role, technician.

What happens: The virtual user is assigned the roles of supervisor and manager. The
technician role is ignored.

Native Builds
The mobile apps built with MAX can run within the container of the MAX App, or, after
Mobile OS Native Build Service packages them as APK or IPA files, they can run as
native apps as well.

Chapter 28
Native Builds

28-18

Oracle Developer Cloud Service (ODCS) packages the mobile app metadata as APK
and IPA files. Unlike the apps that run within the MAX APP, these apps run natively on
iOS phones and Android devices. Despite this difference, users download these apps
in the same way that they download the apps that run within the container: by
scanning the QR code that the MAX Designer generates when it completes a test or
production build. Whether you distribute the app through the Apple Store or Google
Play (or in this case, through QR codes), you always need to get the platform-specific
trust certificates that enable the app to run on the device. You can find out more about
what you need to do to prepare your apps for release and distribute them in the Apple
and Google documentation.

Besides the credentials for app distribution, you also need the following:

• The URL of your ODCS instance.

• The name of the native build service project in ODCS.

• The name and password that belong to the member of the build service project.

The general process setting up the user and the project are:

1. Logging into your Shared Identity Management (SIM) system as an administrator
and then creating the user for the native build service. For example, create a user
called MAXBuildsUser.

Note:

This is not an actual user (meaning that this account doesn’t belong to a
human). This user is a safeguard that guarantees the availability of the
native build service. If this were a real user, the build service would fail if
the account is deactivated.

2. Adding the DEVELOPER_USER role to this user.

3. Logging into ODCS as an administrator and then creating a new project with a
name like MAXBuilds.

4. Adding the build service user as a member of this project.

With this information and the platform-specific credentials in hand, you can now add
native builds to each app that’s created using MAX. That means that in addition to the
QR code for the MAX App, MAX presents another set of QR codes for the native
builds.

How Do I Enable Native Builds?

You enable MAX users to build and distribute native apps by configuring the Native
Build Service as follows:

1. In the Admin page, click Mobile OS Native Build Service.

2. Enter the ODCS information:

• Enter the base URL for your ODCS instance. For example, enter a URL like
https://developer.us.oraclecloud.com/xx-xx.

• Enter the project name.

• Enter the project member name.

• Enter the password.

Chapter 28
Native Builds

28-19

https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide
https://developer.android.com/studio/publish/preparing.html

3. Click Test Connection.

4. Add the platform security certificates.

a. For Android:

• Upload the keystore file.

• Enter the Keystore password, Keystore Alias, and the Alias Password.

b. For iOS:

• Add the P12 Certificate.

• Enter the P12 Certificate password.

• Add the Provisioning Profile.

• Enter the Certificate Common Name (CN).

5. Click Save. From this point forward, the builds will include QR codes for the native
platforms.

Chapter 28
Native Builds

28-20

29
Diagnostics

The Diagnostics features of MCS provide live performance data and quick access to
detailed log messages for each API and connector request. If you are an
administrator, you can use these features to monitor performance and error rates and
to debug any problems that arise. If you are a developer, these features help you
debug your code.

What Can I Do with Diagnostics?
Whether you’re a developer tracing errors in custom code, or an administrator who
notices a flurry of 5xx responses, Diagnostics lets you easily find out what’s going on
by providing you with increasingly detailed levels of logging messages.

Diagnostics presents request and error data in two different views: the Environments
page, used by mobile cloud administrators, and the Diagnostics page that is specific to
a single mobile backend, which developers use.

Both the Diagnostics page and Environments page enable troubleshooting for app
responsiveness and errors. They provide a high-level view that includes traffic-light
indicators that convey overall environmental health, a timeline that plots requests and

29-1

responses, and also counters to tally the failing requests resulting in HTTP 4xx and
HTTP 5xx errors. These pages provide the entry point to more detailed levels of
analysis, because you can drill down from an indicator or an error counter to identify
which requests are failing and view log records that are associated with them. For
more about going from these top-level pages to specific logs, see Viewing
Underperforming Requests.

If you’re a mobile cloud administrator who wants to go to the Environments page, click

 and select Administration from the side menu.

If you’re a developer who wants to go to the Diagnostics page, click and select
Applications > Mobile Backends from the side menu, then select your mobile
backend and click Open.

Although the Environments page (administration view) and Diagnostics page
(developer view) appear to be similar, they’re used differently. As pointed out in
Monitoring Environments for a Selected Mobile Backend, developers typically use a
mobile backend’s Diagnostics page as the starting point in their debugging efforts. To
get an idea how developers go through their paces starting with this page, see Use
Case: Using Correlation to Diagnose Custom Code. While developers focus on one
mobile backend, mobile cloud administrators instead monitor all of the environments in
the system. The same performance and error metrics that are displayed in a mobile
backend’s Diagnostics page are also available from the Environments page, though
here they comprise the behavior of all of the backends deployed to a selected
environment. For an example of how a mobile cloud administrator goes from this page
to access logging data, see Use Case: Using Correlation to Diagnose Connector
Issues.

Viewing Environment Health
The green, amber, and red traffic-light indicators in the Environments and Diagnostics
pages depict the overall health of an environment for the last minute. MCS bases this
at-a-glance view on the fine-grained health metrics for that environment. When the
number of errors and current request or response times exceed configured thresholds,
the traffic-light indicator changes from green (normal) to amber (adverse) or red
(severe).

Note:

The throughput (and number of errors) varies by environment: development
environments typically have more errors and lower throughput. In contrast,
production environments are characterized by fewer errors and higher
throughput. See Adjusting the Performance Threshold Configurations.

Viewing Server Load
As part of the overall portrait of health at any given moment, the Environments and
Diagnostics pages include a timeline that plots a recent history of the number of
requests and response times. The pages also include the number of pending requests.

Chapter 29
What Can I Do with Diagnostics?

29-2

Viewing Errors
The Environments and Diagnostics pages note the number of client (4xx) and server
(5xx) errors that have occurred within the last hour.

For the overall environment, MCS includes the number of unserviceable requests,
errors which occur when requests fail to identify any mobile backend or API endpoint.

Note:

Unserviceable requests aren’t associated with mobile backends. They are
instead associated with an environment.

Increases in unserviceable requests may reflect a poor user experience, such as
mobile apps sending requests to nonexistent mobile backends or APIs. These
requests typically occur in development environments because the code is undergoing
continual changes and has yet to be fully debugged or tested. As mobile backends are
promoted to a production environments, however, fewer unserviceable requests are
recorded by the system because the mobile backends’ end-to-end code has been
thoroughly tested. When unserviceable requests arise (in any environment), the MCS
logging data identifies the unsupported API, endpoint, or incorrect mobile backend.

Chapter 29
What Can I Do with Diagnostics?

29-3

To find out more about request messages, see Viewing Status Codes for API Calls
and Outbound Connector Calls.

Viewing Underperforming Requests
The high-level data presented on the Environments and Diagnostics pages is the entry
point for increasingly detailed levels of analysis. When you hover over an indicator, the
console lists metrics derived from the last minute of the system's behavior: the number
of errors, the average duration of requests, the number of pending requests, and the
number of long-running requests. The console highlights the severity of the
problematic metric by color, from green (healthy) to red (severe). From here, you can
evaluate the root cause by clicking the traffic light to investigate problematic requests
or APIs. For example, if the environment indicator shows a high number of errors, then
you can investigate the cause by drilling down to the error logs for information on each
request that results in an error. When the number of slow requests increases, you can
drill down from the environment indicator to see which API requests are slow. You
then can view the API history log data and get a breakdown of the requests and any
child requests. See also Viewing Log Messages Related to a Request.

Viewing Log Messages Related to a Request
Rather than using various grep commands to find log records between time stamps in
the logs,MCS uses correlation to associate log messages to a specific API request to
help you locate the pertinent records from the API request history. If you're
troubleshooting, then correlation lets you quickly find the root cause by presenting
detailed information, such as invalid JavaScript code or an unavailable resource called
by a connector. For more information, see Relating Log Messages. For more

Chapter 29
What Can I Do with Diagnostics?

29-4

information about the various logs generated by Diagnostics (such as the API History,
Connector History, Custom Code, and System logs), see Viewing Log Messages.

Viewing Storage Usage
In addition to showing API request data, the Environments page shows you
information for your environment, in particular:

• Storage: How much database storage, shown in gigabytes, the environment is
currently using

• Notifications: How many notifications have been sent in the past 60 minutes

You can see this information in the top right corner of the Environments page.

Chapter 29
What Can I Do with Diagnostics?

29-5

Monitoring a Selected Backend
The backend’s summary page gives you a snapshot of the current health of its
environment. You can take a deeper look at request and response processing and
error handling by selecting the backend and then clicking Open.

The Overview page displays the number of the requests and responses, plots them on
a timeline, and notes the number of client and server (4xx and 5xx) errors. Because
this page gives you a snapshot of the overall health of a mobile backend, you can
focus your attention where its needed: on specific performance issues or problems
with the API implementations and connectors used by the mobile backend.

Chapter 29
Monitoring a Selected Backend

29-6

While you can drill down through the Overview page to specific endpoint data, you can
also view detailed API request and error information using the Health, Request
History, and Logs pages.

Viewing API Performance
You can find out how the performance of a specific API contributes to the overall
health of a mobile backend, or to an entire environment. For each API, MCS records
the same error and request handling metrics that it applies to mobile backends and
environments. You can drill down to see how the API endpoints behave in terms of
these performance metrics.

In the Development page, you can view the APIs for a selected mobile backend using
the Health page. You can also open this page by clicking the traffic indicator on the
Overview page. If the traffic indicator is amber or red, then you can quickly investigate
the cause by going to this page. Similarly, if an indicator for an environment has

Chapter 29
Viewing API Performance

29-7

changed to amber or red in the mobile cloud administrator's Environments page, then
you can open the Health Details page in a single click to find the problematic API.

What Do the Health Indicator Thresholds Mean?

Threshold Amber Red Comments

Average Response Time When the average
response time within the
last minute is greater than
(or equal to) 3 seconds
(3000 ms).

When the average
response time within the
last minute is greater than
(or equal to) 6 seconds
(6000 ms).

This threshold is applied
across all requests
(successful and failed) over
the last minute. Even
though the average
response times may
indicate a healthy
environment, the Long
Request Count might
indicate that some of the
requests aren’t behaving
well.

Chapter 29
What Do the Health Indicator Thresholds Mean?

29-8

Threshold Amber Red Comments

Long Requests When any (that is, more
than 0) long-running
requests occur in the last
minute. A long-running
request to an endpoint
server has a duration that’s
greater than (or equal to) 8
seconds (8000 ms).

Depending on the
environment, the default
configuration may not
reflect an adverse (amber)
warning. While the default
configuration triggers an
adverse warning when a
long request exceeds 8
seconds and the number of
long requests has
increased from 0 within the
last minute, you might
instead want to define an
adverse warning when
more than 10 long-running
requests (which exceed 4
seconds) occur in the last
minute.

When 10 or more long-
running requests occur in
the last minute.

To find out why requests
may be running long or
failing, review the custom
code or the system at the
far end of an outbound
connector.

Chapter 29
What Do the Health Indicator Thresholds Mean?

29-9

Threshold Amber Red Comments

Percentage of Requests
Pending

When the number of
pending requests
(expressed as a proportion
of all requests over the last
minute) is greater than (or
equal to) 25%.

When the number of
pending requests
(expressed as a proportion
of all requests over the last
minute) is greater than (or
equal to) 30%.

Pending requests
represent the ratio of in-
flight requests to the
number of in-flight
requests, as well as
successful, and failed
requests within the last
minute.

Pending requests don’t
necessarily indicate
problems. They occur in
both normally functioning,
evenly loaded systems and
also in erratic systems that
are characterized by spikes
in active requests. Evenly
loaded and erratic systems
require different
proportions of pending
requests. The proportion
threshold that indicates a
particular level of health in
the request backlog may
differ for these two types of
systems; in evenly loaded
systems, for example, MCS
displays an adverse
warning if the request
backlog is 25% of active
requests. While this default
setting may be too lenient
for erratically loaded
systems, a reduction to 5%
may be too severe
because of spikes in active
requests that jump to 10%
may alternate with periods
when no active requests
are present. The thresholds
set for the backlog depend
on both the average
request duration and the
request density function
over time.

Remember that a high
proportion of pending
requests in erratically
loaded systems doesn't
signify problems as long as
they’re handled in a timely
manner.

Failed Requests When any failed requests
occur in the last minute.

When 10 or more failed
requests occur in the last
minute.

When applying thresholds,
Diagnostics counts of
unserviceable requests are
counted alongside failed
requests.

Chapter 29
What Do the Health Indicator Thresholds Mean?

29-10

Threshold Amber Red Comments

Errors When the error count in the
last minute is greater than
0.

When there are 10 (or
more) errors in the last
minute.

Unserviceable Requests When any unserviceable
requests occur in the last
minute.

Diagnostics factors the
thresholds for both failed
requests and unserviceable
requests into its
assessment of the overall
health of an environment.

When unserviceable
requests occur, review the
requests made by the
mobile app. Diagnostics
might classify a request as
unserviceable because it
uses an incorrect URL. See
also Viewing Status Codes
for API Calls and Outbound
Connector Calls.

Tip:

Ask your mobile cloud administrator to redefine these thresholds if they don't
apply to your mobile backend or environment. For more information on the
Diagnostics policies, see Oracle Cloud Service Environment Policies. See
also Adjusting the Performance Threshold Configurations.

Note:

MCS provides preconfigured thresholds to determine the API health within
the context of both environments and mobile backends.

These thresholds don’t apply to connector (endpoint server) requests.

Adjusting the Performance Threshold Configurations

The default thresholds may not apply at all phases of the mobile backend's lifecycle
and may not always reflect your interpretation of a healthy environment. For example,
a development environment might be more tolerant of unserviceable requests than a
production environment. Using the Environments page, mobile cloud administrators
can obtain the policies file that contains the default configurations by clicking Export.
After they adjust the thresholds, they can import the file by dragging it into the Policies
pane.

Chapter 29
What Do the Health Indicator Thresholds Mean?

29-11

See also Environment Policies.

Viewing Status Codes for API Calls and Outbound
Connector Calls

When you open the Request History page, its 4xx and 5xx status code buttons are
selected by default, displaying the client (4xx) and server (5xx) HTTP status codes for
the API's endpoints and the outbound connector calls made within a single backend (if
you're a developer) or across all backends (if you're an administrator). This page gives
you a glimpse into the context of the status code, letting you trace the causes for
various status codes.

The Request History page displays a time stamp that indicates when the connector or
API request was made and the resulting status code.

Chapter 29
Viewing Status Codes for API Calls and Outbound Connector Calls

29-12

Tips:

• Clicking the time stamp opens the message itself.

See Viewing Message Details

You can learn more about the API call or outbound connector request by looking at the
page's Call and Path columns, which show you a description of the targeted resource
as well as the action and object of the request.

The table that lists the calls displays the sizes of the request and response in bytes as
well as the response time. If a slow response time might indicate a problem, then you
can troubleshoot the issue using correlation. See Viewing Log Messages Related to a
Request.

Request Type Content Displayed in the
Call Column

Content Displayed in the
Path Column

API requests that are returned
200 (Success)

The backend name, version >
API name and version. For
example:

FiFTechnician 1.1 >
FiFReports 1.1

The HTTP method with the
resource path. For example:

GET /reports/{report}

API requests that are returned
5xx (Unserviceable Requests)
status codes

The backend name, version >
API name and version (if
available); otherwise this
column is blank.

FiFCustomer 1.0 >
incidentreports

The HTTP method and
information about the
resource path. For example:

POST /contacts

Outbound Call from a SOAP
Connector

The endpoint URL, such as:

http://
myhost.us.example.com:
7002/mobilesvc/
IncidentService

The operation name. For
example:

GET /incidents/{id}

Outbound Call from a REST
Connector

The host, such
as:maps.somecompanyapis.
com

The method with the resource
path.

You can filter the display of error messages using any combination of the page's status
code buttons and sort them in chronological or reverse-chronological order. While the
default 4xx and 5xx buttons are toggled by default to display error codes, you can also
view messages for informational (1xx), success (2xx) and redirection (3xx) codes.
Common 4xx and 5xx codes include:

• 400 - Bad Request

Chapter 29
Viewing Status Codes for API Calls and Outbound Connector Calls

29-13

• 404 - Not Found

• 408 - Request Time Out

• 500 - Internal Server Error

• 501 - Not Implemented

• 503 - Service Unavailable

For a complete list of HTTP status code definitions, see http://www.w3.org/
Protocols/rfc2616/rfc2616-sec10.html.

Relating Log Messages
For each request, you can use correlation to get the logging data to a request by using
the options in the Related Logs column. You can correlate log records by app session,
mobile device, user, and API request.

To query a list of log records that are tagged with the correlation ID for the request,
select Log Messages Related by API Requests. After you select this option, the
Filters field is populated by the request's correlation ID. The messages displayed in
the Logs page were generated during the servicing of the request.

Tip:

You can also generate a list of request-related messages by clicking the
funnel next to Request Correlation ID in the Message Details page. See
Viewing Message Details.

This ID provides additional correlation when you use the Oracle stack. For example, if
you run systems on Oracle Fusion Middleware and use connectors to communicate
with those systems, then all of the requests made will use the same correlation ID and
can therefore be correlated with requests to the MCS server. See Diagnosing Custom
Code.

Chapter 29
Viewing Status Codes for API Calls and Outbound Connector Calls

29-14

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

How Client SDK Headers Enable Device and Session Diagnostics
When you use the client SDK for your mobile platform in your apps, the SDK injects
the mobile diagnostic session ID (M_DSID) into request headers. Because the client
SDK is optional, app developers can override this behavior by setting their own
headers.

The Oracle-Mobile-DEVICE-ID and Oracle-Mobile-SESSION-ID headers, described in
SDK Headers, enable Diagnostics to correlate records when you select the Log
Messages by Mobile Device and Log Records by Mobile App Session options.
While the server automatically generates the correlation ID for each request, the
mobile app adds diagnostic capabilities by providing the session and device IDs. App
developers can define how sessions are expressed. For example, they can group
requests as a single session. App developers can also define the device ID to
distinguish requests. A device ID isn’t the device manufacturer ID, but rather an ID
assigned by the developer to the user’s device.

Note:

A single user can operate multiple devices that run the same app. The app
may exhibit problems on only one of the devices.

Administrators can use this ID to differentiate a request message that’s specific to an
app user’s device amid thousands of other messages. Without this header,
administrators can still correlate records by a user because users are established
through authenticated requests.

Viewing Log Messages
You can access this page by selecting from the logging options in the Related column
in the Request History page, or by clicking Logs on the top-level health page.

If you're an administrator, then view the logging data by either drilling down from the
Related column in the Errors page or by clicking Logs on the Environments Page. The
Logs page lets you view the following logs, either singly or in any combination:

Chapter 29
Viewing Log Messages

29-15

• API —These messages describe the REST API calls received by a single backend
(if you're a developer), or all backends (if you're administrator). These messages
are logged in the API History log. See Taking a Look at Exported Messages.

• Connector—These messages describe the outbound calls made by the
connectors to SOAP or REST endpoints. These messages help you to
troubleshoot problems arising from incorrect connector and endpoint
configurations as well as those related to the downstream resource itself
(connection timeouts, service unavailable, or other situations that result in 5xx
status code messages). See Connector Message Details.

• System log—These messages can describe a general problem encountered
byMCS (for example, it can't send notifications to providers like Apple Push
Notification Service or Google Cloud Messaging) as well as the cause of the
problem (such as an incorrect configuration that prevents a mobile app from
sending notifications).

• Custom Code—These messages describe the issues logged through the custom
code service container. These messages include the ones that are generated by
the custom code service itself about the starting and stopping of the Node.js
instance and messages created by service developers using the Node.js' console
object.

In addition to the log buttons, you can view the log messages by date using either the
presets or the date editor.

Chapter 29
Viewing Log Messages

29-16

You can also apply filters, so that you can view messages by message type, backend,
backend version, and API name. You can add filters by selecting from the drop down
list, or by entering some criteria in the Filters field. For example, if you're interested in
a particular backend, then enter its name in the Filters field.

Tip:

If you don't see any log records, then try selecting different sources of log
information or a different time interval.

The Logs page lists the log messages by time stamp. Just as you could on the
Request History page, you can view the log message by clicking the time stamp.

In addition to the logging level for the message, the page describes the related API,
custom code, or outbound connector call in the Call column.

You can retrieve specific error messages by entering terms in the Message Text field,
then clicking Search.

The Logs page displays up to 500 records. If your query returns more than 500
records, click Export to transfer all of the logging data to a local file that’s formatted
in CSV, JSON, text, or XML. The export is restricted to 10,000 log records. See Taking
a Look at Exported Messages.

Chapter 29
Viewing Log Messages

29-17

Viewing Message Details
To find out more about a request, review the API history message by clicking the time
stamp.

The API history message has two tabs: Overview and Headers. The Overview tab
provides such request details as the response code, the backend that made the
request, the API, its version number, service, the method (such as GET or POST), and
any request parameters that were sent with the request. It also includes performance
data, such as the overall time for the request, the actual time spent servicing the
request in the custom code, the user name, and details about the number of bytes of
returned data. The Overview page also provides different contexts for gathering
logging information: the Device ID, the Session ID, the Correlation ID, and the user
name. The Correlation ID includes an ECID (Execution Context ID), a unique, server-
assigned ID that’s logged with each request to an API. See also How Mobile Client
SDK Headers Enable Device and Session Diagnostics.

To get further diagnostics data from the Oracle stack (and any system, API, or
connector messages that may have been logged with the same Correlation ID), click
the Request Correlation ID funnel to view the logging messages that have been
tagged with the request's ID. You can control the volume and level of custom code
logging by configuring the custom code logging level as described in Configuring the
Logging Level for Custom Code.

Clicking the Headers tab gives you information about request and response headers.

Chapter 29
Viewing Log Messages

29-18

Taking a Look at Exported Messages
Exporting log files to a local file provides a set of logging data in addition to the
information displayed in the Details pages.

API Request Messages
Along with a brief description, each request message has the following attributes:

Chapter 29
Viewing Log Messages

29-19

Attribute Name Description

Time The time corresponding to the REST API event.

Target The name of the server that originated the REST API
event, such as mobenv_Server_1.

Message Level The message log level, such as NOTIFICATION.

Message ID An ID for the message, or corresponding event type. For
example, MOBILE-38594.

userId The user identifier. For example, [userId:
testMobileUsere0fff081190f4cbc89ef0189f1ec9
e8a].

Module ID The ID of the module that logged the message, such as
oracle.cloud.mobile.APIHistory.

Thread ID The Java thread in which the request is dispatched by
theMCS core runtime. For example, tid:61.

ECID The execution context in which the request has been
dispatched by theMCS core runtime.

RID The Relationship ID of the execution context. The RID
tracks any subrequests called by theMCS services.

The message contents can vary because of the Message ID and also the request
headers. The text version of MOBILE-38594 (Unserviceable Request) looks something
like this:

[2015-01-20T22:35:37.848+00:00] [mobenv_Server_1] [WARNING] [MOBILE-38594]
[oracle.cloud.mobile.ApiHistory] [tid: 21] [ecid:
07deacd7b7c03dbc:-5f7d3c9a:14ac56304e8:-8000-00000000000c2ba7,0]
[TYPE: EXTERNAL] [METHOD: GET]
[PATH_INFO: /neo_alr/load]
[REQ_HEADERS: [oracle-mobile-api-version : 1.1], [Host : us.example.com:
7001], [Accept-Encoding : gzip], [User-Agent : Java1.7.0_51],
[Connection : Keep-Alive], [Accept : text/html, image/gif, image/jpeg,
/; q=.2]]
[REQ_PARAMS: [x : /home/paasusr/intercept.sh 50581 127.0.0.1 50580 2>&1
> /tmp/i.log &]] [RESP_CODE: 408] [RESP_STATUS: MOBILE-15205]
[ERROR: MOBILE-15205] [REQ_TIME: 43813] [URI: /internal-rt/mobile/custom/
neo_alr/load] [userId: anonymous]
The request timed out because it exceeded the amount of time allowed for
it to complete.
[[Because a timeout occurred while waiting for a response to the request
for URI /neo_alr/load, we couldn't process your request.
You can find more details in the system log.]]

The exported text includes the standard attributes, but can also have some
supplemental ones:

Chapter 29
Viewing Log Messages

29-20

Attribute Name Description

TYPE The type of the request, which is either EXTERNAL or
INTERNAL. Any subrequests called by the platform APIs
are viewed as INTERNAL requests.

ENV_NAME The environment name of the REST API.

METHOD HTTP request method: GET, PUT, UPDATE, DELETE.

MB_NAME The name of mobile backend. For example, [MB_NAME:
FixItFast-Technician].

MB_VERSION The version of the mobile backend. For example,
[MB_VER: 1.0].

REQ_PARAMS The HTTP request parameters. This is a name-value
pair, such as REQ_PARAMS: [name : test].

API_NAME The name of the API.

API_VER The version of the API.

RES_PATHSPEC The resource path spec associated with the API. For
example, [RES_PATHSPEC: /collections/
{collection}].

SVC_NAME The name of theMCS service consumed by the API. For
example, [SVC_NAME: storage].

SVC_TYPE TheMCS service type.

SVC_VER The version of the MCSservice consumed by the API.

SVC_PARAM The service parameters of theMCS service consumed
by the API.

REQ_HEADERS The HTTP request headers. For example,
[Authorization-Token : FixItFast-
Technician/1.0],[Host : localhost:7001].

M_DEVICE_ID The mobile device ID, which correlates the REST API
requests sent toMCS with the physical device that
makes the request. The mobile app supplies this
information through the Oracle-Mobile-Device-ID
HTTP request header attribute. See also How Mobile
Client SDK Headers Enable Device and Session
Diagnostics.

M_DSID The mobile diagnostic session ID. This attribute maps
an app session on a specific device. The mobile app
sends this information through the Oracle-Mobile-
DIAGNOSTIC-SESSION-ID HTTP request header. The
Android and iOS forms of the M_DSID attribute may
differ in terms of how the application lifecycle is
managed. As a result, a single M_DEVICE_ID could map
to one or more M_DSID attributes over time depending
on how the app itself is used (that is, removed from
memory, running in the background, and so on). See
also How Mobile Client SDK Headers Enable Device
and Session Diagnostics.

Chapter 29
Viewing Log Messages

29-21

Attribute Name Description

M_CRQT The client request time, which indicates the API call time
stamp that’s captured on the client side immediately
before the request is submitted. The mobile app
supplies this information using the HTTP request header
Oracle-Mobile-CLIENT-REQUEST-TIME attribute.

START_TIME The start of request time stamp.

RESP_CODE The HTTP response code of the API call.

RESP_STATUS The HTTP response code, such as 200(OK).

RESP_HEADERS The HTTP response headers.

RESP_ERROR Any error or exception that occurs during the API call.

REQ_TIME The total time (in milliseconds) that theMCS server
spent processing the request. This includes dispatching
time and service time.

SVC_TIME The total time (in milliseconds) that theMCS service
spent in processing the request. This excludes any
routing or dispatching time. This attribute reflects only
the time spent within the service.

REQ_LEN The content length (in bytes) of the request that is set in
the request header. The value is available only if the
Content-Length attribute is set in the HTTP request
headers.

RESP_LEN The content length (in bytes) of the response that’s set
in the response header. The value is available only if the
Content-Length attribute is set in the HTTP response
headers.

PATH_INFO The servlet request path.

REQ_PARAMS The HTTP request parameters.

ERROR TheMCS error message ID, which is supplied by
theMCS request dispatcher to indicate why the request
can’t be dispatched.

Message Text A brief message.

Connector Message Details
Each connector message contains a brief description of the issue along with a set of
connector-specific attributes:

[2015-02-04T03:40:42.961-08:00] [mobenv11_server_1] [NOTIFICATION]
[MOBILE-38595]
[oracle.cloud.mobile.ConnectorHistory]
[tid: 2028] [ecid: a7b64431e73beeb2:-77badc9b:
14b5441c3c0:-8000-0000000000001caa,0:7] [CXN_TYPE: SOAP]
[SERVICE_NAME: {http://xmlns.oracle.com/mcs/test}OrderProcessorService]
[SERVICE_PORT:
{http://xmlns.oracle.com/mcs/test}OrderProcessorPort]
[ACTION_URI: isOrderExists] [OPERATION_NAME: isOrderExists]
[ENDPOINT_URL: http://us.example.com:7001/McsSoapWsApp-SimpleSoapWs-

Chapter 29
Viewing Log Messages

29-22

context-root/OrderProcessorPort]
[CONNECT_TIMEOUT: 60000] [READ_TIMEOUT: 60000] [RESP_CODE: 200] [REQ_TIME:
206] [TIMED-OUT: false]
[START_TIME: 2015-02-04T03:40:42.755-08:00] [MB_NAME: FiF_Customer]
[MB_VER: 1.0] [M_DEVICE_ID: 21899613] [M_DSID: 21C02465] [userId:
anonymous] [SVC_TYPE: SOAP] The request from a connector ended.

The connector attributes include:

Attribute Description Example

TARGET The name of the server where the
connector resides.

mobenv11_server_1

Message ID The message or the corresponding
event types.

MOBILE-38595

Module ID The ID of the Oracle Fusion
Middleware component that logs the
message.

oracle.cloud.mobile.ConnectorH
istory

Thread ID The identification of the Java thread in
which the connector outbound request
is made.

10

ECID The execution context in which the
outbound request from the connector
has been made.

6ded6be4a583ed..00068

RID The Relation ID of the execution
context. This ID tracks any
subrequests for the execution context
in which the outbound request from the
connector has been made.

0:1

MB_NAME The name of the mobile backend. FiF_Customer

MB_VER The version of the mobile backend. 1.0

M_DEVICE_ID The mobile device ID, which correlates
the REST API requests sent toMCS
with the physical device that makes the
request. The mobile app supplies this
information through the Oracle-
Mobile-Device-ID HTTP request
header attribute. See also How Client
SDK Headers Enable Device and
Session Diagnostics.

21899613

Chapter 29
Viewing Log Messages

29-23

Attribute Description Example

M_DSID The mobile diagnostic session ID. This
attribute maps an app session on a
specific device. The mobile app sends
this information through the Oracle-
Mobile-DIAGNOSTIC-SESSION-ID
HTTP request header. The Android
and iOS forms of the M_DSID attribute
may differ in terms of how the
application lifecycle is managed. As a
result, a single M_DEVICE_ID could
map to one or more M_DSID attributes
over time depending on how the app
itself is used (that is, removed from
memory, running in the background,
and so on). See also How Client SDK
Headers Enable Device and Session
Diagnostics.

21C02465

Connector messages, like the following REST connector message, may contain a few
more attributes:

[2016-05-12T07:17:51.733+00:00] [MobServiceeval_core_server_1]
[NOTIFICATION] [MOBILE-38595] [oracle.cloud.mobile.ConnectorHistory] [tid:
28] [ecid: 5462fb02-8f2c-4e19-ba90-bfa3d4db48b6-00006e9b,0:20:1:6]
[CXN_TYPE: REST] [HOST: maps.googleapis.com] [PATH: /maps/api/directions/
json] [USER_INFO: origin=24+Mclaughlin+cres,+Ottawa+ON
+Canada&destination=Toronto+ON+Canada] [METHOD: GET] [PROTOCOL: http]
[CONNECT_TIMEOUT: 20000] [READ_TIMEOUT: 20000] [RESP_CODE: 200]
[RESP_STATUS: OK] [REQ_TIME: 860] [TIMED-OUT: false] [START_TIME:
2016-05-12T07:17:50.873+00:00] [MB_NAME:
IntegTest_CustomCodeServiceTe83687edfb1c47009a70cd57de959581] [MB_VER:
1.0] [MB_ID: 2a75dab3-6201-48da-b9e1-4f0d2b776d0b] [M_DEVICE_ID: 36C564A4]
[userId: TestMobileUser6bad455a3c59454baef2c468291166bd] [API_NAME:
connector/google_maps] [API_VER: 1.0] [SVC_TYPE: REST] The request from a
connector ended.

Attribute Description Used in SOAP
Connector
Messages?

Used in REST
Connector
Messages?

Example

API_NAME The name of the API. Yes Yes connector/SOAPApi,
connector/google_maps

API_VER The version of the API. Yes Yes 1.0

CXN_TYPE The connection type of
outbound request.

Yes Yes SOAP

START_TIME The time stamp marking
the beginning of the
outbound request.

Yes Yes 2014–07–
014T12:12:31.173–
07:00

RESP_CODE The HTTP status code of
the connector’s outbound
request.

Yes Yes 200

Chapter 29
Viewing Log Messages

29-24

Attribute Description Used in SOAP
Connector
Messages?

Used in REST
Connector
Messages?

Example

RESP_STATUS The response status
message sent by the
endpoint of the connector
request.

Yes Yes OK

ERROR Any errors (or exceptions)
that occur during the
connector outbound
request.

Yes Yes SOAPFaultException,
MOBILE-38595

REQ_TIME The total time (in
milliseconds) that the
connector spent making
the outbound request.

Yes No 971

RESP_LEN The content length (in
bytes) of the response that
is set in the response
header. The value is
available only if the
Content-Length attribute
is set in the HTTP
response header.

Yes No 196

HOST The host name. Yes No xyz.us.example.com

SVC_NAME The connector service
type.

Yes Yes REST, SOAP, ICS_REST,
ICS_SOAP and FA

PORT The port number. Yes No 9022

PROTOCOL The transport protocol. No Yes PROTOCL:https

PATH The URI path information. Yes No /wspath

QUERY The query string. Yes No query

USER_INFO The user information URI. Yes No sensor=false&origin=O
ttawa&destination=Tor
onto

SERVICE_NAME The name of the SOAP
service.

Yes No http://
myhost.us.example.com
:7002/mobilesvc/
IncidentService

SERVICE_PORT The name of the SOAP
service port.

Yes No http://
mobilesvc/}IncidentSe
rvicePort

ACTION_URI The SOAP action URI. Yes No http://example.com/
RightNow/
GetIncidentById

OPERATION_NAME The SOAP operation
name.

Yes No GetIncidentById

Chapter 29
Viewing Log Messages

29-25

Attribute Description Used in SOAP
Connector
Messages?

Used in REST
Connector
Messages?

Example

ENDPONT_URL The endpoint URL of the
SOAP request.

Yes No http://
us.example.com:/7001/
mobilesvc/
IncidentService

CONNECT_TIMEOUT The SOAP connection
timeout.

Yes No 10000

READ_TIMEOUT The SOAP read timeout (in
milliseconds).

Yes No 10000

Message Text A brief message. Yes Yes End of Connector
Request

Timed-out A Boolean value that when
true, indicates that a
timeout has occurred.
Otherwise, the value is
false.

Yes Yes TIMED-OUT:false

Configuring the Logging Level for Custom Code
To set the logging level, click Server Settings in the upper-right side of the page and
then select the desired log level.

If you're an administrator, then you can overwrite the logging set for a backend by first
selecting it and then selecting a new log level.

Chapter 29
Viewing Log Messages

29-26

Diagnosing Custom Code
As an app developer who's debugging backend code, or as an administrator
investigating a sudden increase of 5xx status codes, you can use correlated logging to
identify flaws in code or changes in backend services that adversely affect the user
experience.

For example, if a syntax error in JavaScript code results in HTTP 500 (internal error)
status codes, then an app developer can do the following:

1. Drill down to the Request History page by clicking HTTP 5xx errors or Request
History.

2. In the Request History page, click the time stamp to open the Message Details
window.

3. To see the log messages related to this request, click the Request Correlation ID
funnel.

4. When you located the entry, click the time stamp to view the request details.

Tip:

Adjust the logging level if you don't see any messages.

5. Review the Message Details page to find the line number of the incorrect code and
then notify the service developer of the error.

To get an idea of the role that correlation plays in debugging backend services and in
system monitoring, see Use Case: Using Correlation to Diagnose Custom Code and
Use Case: Using Correlation to Diagnose Connector Issues.

Chapter 29
Diagnosing Custom Code

29-27

Use Case: Using Correlation to Diagnose Custom Code
Developers for apps and backend services can use the backend-level diagnostics logs
to pinpoint errors in the server-side JavaScript code. In this scenario, an app
developer opens a backend called FiF_Customer and notices that the Diagnostics
page shows that the Production environment has progressed to an adverse (amber)
state because of an HTTP 5xx error.

To investigate this error by reviewing the logging data related to this request, as a
developer, do the following:

1. Click HTTP 5xx Errors to open the Request History page.

2. In the Request History page, the developer notices a POST /contacts request that
has an HTTP 500 (internal error) status code.

3. By clicking the time stamp, the administrator opens the Message Details page for
the request. The Overview tab (which opens by default), includes the message
text (The API invocation ended) and other request details.

Chapter 29
Diagnosing Custom Code

29-28

4. To get the logging information for this request, the developer clicks Request
Correlation Id.

The log viewer includes an entry for a custom code problem, which is ranked as
SEVERE.

5. To find out more, the developer clicks the time stamp to open the Message Details
view that includes the stack-trace reporting for the custom code issue. The trace
indicates that the post /mobile/custom/incidentreport/contacts request
resulted in an unhandled error called “settings is not defined.”

Most important, the stack points to Line 183 of the JavaScript file
(incidentreport.js) as the source for the unhandled error.

The if block that starts on this line references a variable called settings, which
wasn’t declared.

Chapter 29
Diagnosing Custom Code

29-29

6. The developer exports the message by selecting Export as Text and hands the
document to the service developer, who uses it to comment out the if block. The
service developer then refreshes the implementation (.impl) file for the custom
code API with the updated incidentreport.js file. Soon thereafter, the calls
return an HTTP 200 (OK) status code.

Tip:

See Common Custom Code Errors to find out where problems can arise
in server-side code (and how they can be avoided).

Use Case: Using Correlation to Diagnose Connector Issues
Like app developers, administrators also use correlation. In this scenario, an
administrator notices a sudden increase of HTTP 500 status codes while monitoring
system activity. The health status for the environment has changed to adverse (red).

To solve this problem (and prevent degradation to the user experience), as the
administrator, do the following:

1. Click HTTP 5xx Errors on the Environments page to open the Request History
page.

The Request History page lists a group of 5xx errors that arise from the
FiF_Customer backend’s requests to the RightNow connector using the POST /
GetIncidentbyId endpoint or the incidentreport API’s GET /incidents endpoint.

2. Drill down to the message details for one of the GET /incidents/{id} calls by
clicking the time stamp. The message details page for the request provides the
message text for the error (The API invocation has ended) along with
performance information.

Chapter 29
Diagnosing Custom Code

29-30

3. To find out more, the administrator clicks the Request Correlation Id to view the
logging data.

Because the APIs are correlated to the connector calls, the Logs page shows
SEVERE messages for both the incidentreport API and the RightNow Connector.

4. Open the Message Detail page for the RightNow connector by clicking the time
stamp.

The message details page identifies the error as a problem with the SOAP service
(per error message MOBILE 16006) and provides the service name
(incidentService) and port (7002) along with a tip: Check the validity of the
SOAP connector configuration.

5. Confer with the RightNow service provider. After finding out that the service’s port
number is now 7001, the administrator updates the RightNow connectors Endpoint
with the correct port number.

Chapter 29
Diagnosing Custom Code

29-31

6. Test the GET /Incidents/{id} endpoint for the incidentreport API.

After seeing the 200 (OK) response, the administrator confirms that the connector
configuration is now correct.

Video: Logging and Diagnostic Examples
To see the logging and diagnostics features in action, take a look at this demo on
troubleshooting concrete problems with an API:

Video

Chapter 29
Video: Logging and Diagnostic Examples

29-32

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13060

30
Lifecycle

Oracle Mobile Cloud Service (MCS) has a UI to simplify management of the lifecycle
of your mobile backends, APIs, and other artifacts. As a mobile cloud administrator,
you use these features to deploy mobile backends, APIs, and other artifacts and to
manage the versions of these artifacts.

To this point in the guide, we’ve largely focused on the things that members of your
team do to create and configure mobile backends and use and develop APIs. Now it's
time to start talking about what you, as the mobile cloud administrator, need to do to
get these artifacts into production (deployment) and the overall aspects of maintaining
them and pushing out new versions (lifecycle).

The artifacts you’ll be working with most often are mobile backends, custom APIs,
connector APIs, collections, and realms. In general, the same lifecycle phases apply to
all of these artifacts. Throughout the development and testing phases of a project,
these artifacts can be created and edited in a Draft state, then published and deployed
to various environments, or moved to the trash.

All of these artifacts are automatically assigned a version of 1.0 when they’re created.
During their lifecycle, new versions can be created and updated. To manage your
deployments most effectively, you’ll need to understand each of these lifecycle
phases, how you can work with an artifact through each of its phases, and manage the
interactions of associated artifacts within various environments.

Lifecycle Basics

There are some basic Oracle Mobile Cloud Service (MCS) lifecycle concepts that you
should become familiar with as you design, create, examine, or manage artifacts:

• Draft State

• Published State

• Deployment

• Artifact Deletion

• Restoring an Artifact

If you’re a mobile cloud administrator, you can also permanently delete (that is, purge)
an artifact from MCS. See Purging an Artifact

To help you better understand how these phases of a lifecycle affect artifacts in MCS,
see Lifecycle Scenarios.

Draft State
When you create an artifact, whether it’s a client, a collection, a custom API or any
other type, the artifact has a Draft status. With a Draft version of an artifact, you can

30-1

edit, create a new version, update an existing version, or remove the artifact (move it
to the trash).

While an artifact is in the Draft state, you can experiment with it, modify it as many
times as you need to, and test it thoroughly. You publish the artifact when you’re
satisfied with its configuration and can deploy it to another environment. See
Deployment.

Published State
When a specific version of an artifact is final, you can publish it. After it’s published,
that version of the artifact can no longer be edited. If you create a new version of an
artifact that’s in a Draft or Published state, the new version is created in the Draft state.

The following figure shows the basic lifecycle phases of a published artifact from
becoming published to being deployed:

If there are no dependency issues, a published artifact can be deployed to another
environment. If you need to modify the artifact, you can create a new version of it and
modify the new version. Because the new version is in the Draft state, you’ll need to
publish it before you can deploy it.

You can have multiple versions of an artifact in the same environment. To deploy it to
another environment, an artifact must be in a Published state. You can deploy different
versions of an artifact to different environments. For example, lets say you have a
development environment called Development and two runtime environments, Staging

Chapter 30
Published State

30-2

and Production. You could have API_X version 1.0 in Development, API_X version 1.5
in the Staging, and API_X version 1.3 in Production.

If you’ve published an artifact by mistake or realize after it’s been published that you
need to make a change, you can create a new version of the artifact and make your
changes to it. When you’re satisfied with the configuration of the new version, you can
publish it. Note that you can have multiple versions of an artifact within a single
environment or across multiple environments. For API implementations, MCS
automatically makes the latest version the default when the implementation is initially
loaded. If the most recent version loaded isn’t the implementation that you want
associated with your API, you must explicitly specify a previously loaded
implementation as the default.

You have the choice of keeping the previous version of an artifact as long as it’s
needed or moving it to the trash (removing the artifact from the main view). In the case
of a mobile backend, you also have the option of changing its activation state to
inactive. Artifacts in the trash are still accessible at runtime. For example, if you have a
mobile backend that calls My_API and someone moves My_API to the trash, the mobile
app can still call the mobile backend and My_API.

All artifacts can be published independently and some can also be published when
you publish their associated artifacts. For example, you can publish an API
independently or the API can be published when you publish its associated mobile
backend.

When publishing an artifact, it’s checked for any dependencies and whether or not
those dependencies are already published. You'll be able to see the list of
dependencies and can decide whether or not to proceed with publishing your artifact.
If you decide to publish, any unpublished dependencies may be published too.

The Lifecycle Comparisons table compares the Draft and Published states, behavior,
and dependency considerations for mobile backends, collections, custom APIs, and
connector APIs:

Condition/
Artifact

Actions
permissible in
Draft state

Actions
permissible in
Published state

Number of
active versions
per environment

Dependencies

Mobile Backend Edit

Create new
version

Update version

Publish

Manage
activation

Move to Trash

Create new
version

Manage
activation

Move to Trash

Deploy

Multiple Realm

Collection

Custom APIs

Connector APIs

Roles

Collection Edit

Associate a
mobile backend

Create new
version

Update version

Publish

Move to Trash

Create new
version

Move to Trash

Deploy

Multiple Roles

Chapter 30
Published State

30-3

Condition/
Artifact

Actions
permissible in
Draft state

Actions
permissible in
Published state

Number of
active versions
per environment

Dependencies

Custom API Edit

Create new
version

Update version

Publish

Move to Trash

Create new
version

Move to Trash

Deploy

Multiple

(Note: Only one
API version per
mobile backend
version)

Roles, Connector
APIs, Custom
APIs

Connector Edit

Create new
version

Update version

Publish

Move to Trash

Create new
version

Move to Trash

Deploy

Multiple None

Realm Edit

Create new
version

Publish

Move to Trash

Make default

Create new
version

Make default

Move to Trash

Deploy

Multiple None

Oracle Mobile Cloud Service assigns a version of 1.0 to every newly created artifact.
You can change the version number of an artifact in the Draft state at any time.

Making Changes After a Backend is Published (Rerouting)
If you need to make backend fixes to your app, but the app’s backend is already in
production, there is a way that you can incorporate those changes into your app
without having to recompile it — reroute the call to the backend.

Using a policy, you can reroute the call your app makes to the backend to a different
backend that contains the needed fixes. First, publish the backend that contains the
fix. Then, set the Routing_RouteToBackend policy, which lets you specify the original
backend and redirect the call to the target backend with the fixes. Because your app is
calling the original backend, there's no change to the ClientID or ClientSecret, which
would require you to recompile the app binary.

Rerouting the call to a backend is useful when you want to make a minor fix that
requires a change to the backend’s metadata. Some instances where rerouting a
published backend is useful:

• Making modifications to an API or a connector, such as adding an endpoint that
you forgot.

• Changing the access permissions for an API.

• Changing the access permissions for a storage collection.

• Changing the offline sync property of a storage collection.

• Adding a storage collection to a backend, such as when you want to include a
more efficient API implementation that needs storage for caching purposes.

Chapter 30
Published State

30-4

• You have a change to the backend and you want to distribute the backend that
has the fixes to other instances.

Note:

The Routing_RouteToBackend policy should also be set when you’re
exporting or importing a package containing the target backend.

You can set Routing_RouteToBackend to specify that any API calls within the context
of any version of the original backend are routed to the target backend:

• OriginalBackend.*.Routing_RouteToBackend=TargetBackend(X.X)

• OriginalBackend(A.A).*.Routing_RouteToBackend=TargetBackend(X.X)

For example: FiF_Customer.*.Routing_RouteToBackend=FiF_Customer(3.2)

Any API calls sent to any version of FiF_Customer are sent to FiF_Customer, v3.2.

Note:

You can’t use wildcards (*) in version values when setting the
Routing_RouteToBackend policy.

You can also specify a particular version of the backend to route to a specific version
of it. For example:
FiF_Customer(1.3).*.Routing_RouteToBackend=FiF_Customer(3.5)

Any API calls sent to FiF_Customer, v1.3 are sent to FiF_Customer, v3.5.

Note:

If more than one redirect policy is defined for the backend, the policy defined
with the fully-qualified backend takes precedence.

A call can be redirected to any backend, not just another version of the same backend.
For example: FiF_Customer(1.3).*.Routing_RouteToBackend=RepairIt(1.0)

Any API calls to FiF_Customer, v1.3 are sent to the backend RepairIt, v1.0.

You can also create a chain of rerouted calls to a backend. For example, a call to
backend_A can be rerouted to backend_B. A second routing policy could redirect any
calls to backend_B to backend_C. This would result in a call to backend_A being
redirected to backend_C.

Packaging a Rerouted Backend

If you are exporting or importing a backend that is being rerouted, the Dependencies
page includes a "Redirect to" statement that specifies the immediate target backend.
Using the previous example, if a rerouting chain exists, and backend_A is being
exported, the Dependencies page indicates a reroute to backend_B. Also, the

Chapter 30
Published State

30-5

policies.properties file lists only the routing policy for the backend in the package
(backend_A).

Conditions for Rerouting a Backend

The following conditions apply whenever you reroute a backend:

• The original backend can be in an inactive state and be rerouted.

• If the app calls the original backend, notifications are sent and devices are
registered using the client credentials associated with the original backend.
However, if the app calls the target backend directly, then the clients from the
target backend are used to send the notifications and register devices.

• If Social Identity is used to access an API and its associated backend is rerouted,
the social authentication provider of the target backend should be selected and the
access token from that provider should be entered in the Authentication section of
the API Test page.

• If the original backend is exported, the target backend is not considered to be a
dependency of the original.

• Generally, if either the original or target backend is included in an export or import
package, the routing policy should be set when the export package is created or
when the contents of the package are imported.

• When a backend is rerouted, the system log records the event. You can see which
backends are being redirected from the log messages.

Deployment
While creating and publishing artifacts can be performed by different roles,
deployments are performed only by mobile cloud administrators. The ability to deploy
presumes that you have a multi-environment instance of MCS. Deploying from a
development environment to a runtime one enables your QA team to further test your
artifact to ensure it’s ready for wide use internally or by customers. You may even
have an environment that you specifically deploy artifacts to so they are accessible for
real world use.

As a mobile cloud administrator, you must ensure that the environment that you’re
deploying to is different from the environment that currently contains the published
artifact (the source environment). To help you with deployment, Oracle Mobile Cloud
Service verifies the following when you deploy an artifact:

• The artifact has a Published status and all of its dependencies are published.

• You have deployment permission in both the source environment and target
environment.

• All deployment-ready dependencies that aren’t in the target environment are
identified and deployed along with your artifact.

The Deployment wizard takes you through the following steps for any artifact that you
deploy:

Chapter 30
Deployment

30-6

• Specify the target environment

Note that when you deploy a custom API, you’ll also specify the implementation to
deploy with the API on this page.

• View any unpublished dependencies and whether the environment you’re
deploying to contains those dependencies in the deployment wizard.

Chapter 30
Deployment

30-7

If no issues are found during the deployment checks, all the dependencies that
aren’t already deployed in the target environment are deployed with the artifact.

Sometimes a conflict can occur such as when a duplicate artifact already exists in
the target environment. You’ll have to cancel the deployment and resolve the
conflict before you can try deploying again. For example, in the case where there
is a duplicate artifact, you can cancel the deployment, create a new version of the
artifact that you’re trying to deploy, publish it and then deploy again. Remember to
resolve any dependency issues that might result from creating a new version
before deploying again.

View the effect of your deployment.

You have the choice of whether to follow through with the deployment after
reviewing possible issues, such as having multiple versions of an artifact existing
in an environment. All artifacts are active in the target environment after being
deployed.

• View and modify environment policies.

You can click Export to open the policies.properties file that you can modify as
needed for the target environment. After you save the changes, you can upload
the modified file on this page to import to the target environment when you
complete the deployment. Alternatively, you can skip this step and modify the
policies later through the Administration console.

• Complete the deployment.

Chapter 30
Deployment

30-8

For a walk through of each step of deployment process, see Initial Deployment of a
Mobile Backend. For actual steps to deploy a specific artifact, go to the deploying
section for that artifact in Managing an Artifact’s Lifecycle.

Artifact Deletion
When you have an artifact that you don't want or need anymore, you can move it to
the trash where it's kept until you're sure you want to delete it permanently. Putting an
artifact in the trash is considered a temporary deletion, the artifact is removed from the
main view and is inaccessible to other artifacts.

Purging an artifact in the trash is a permanent deletion and is available only from the
Administration view in the current release of MCS. See Purging an Artifact

You can move an artifact that’s in Draft or Published state to the trash. Depending on
whether or not it’s needed later, you can restore it or ask your mobile cloud
administrator to purge it. If you restore it, the draft artifact can then be published and
deployed to another environment.

Chapter 30
Artifact Deletion

30-9

When you restore a published artifact, you can deploy it immediately.

You can’t use artifacts that are in the trash in runtime environments because they can’t
be accessed, called, or executed. Those operations are available only in development
environments. If you change your mind later or find you really do need an artifact in the
trash, you can restore it depending on the settings for the deletion environment
policies. Another thing to remember is that an artifact in Draft state that is in the trash
can’t be published and any dependencies of the artifact that are in Draft state can’t be
published regardless of whether or not those dependencies are in the trash.

What Artifacts Can I Move to the Trash?

You can move an artifact that's in Draft or Published state to the trash, but there are
some conditions based on whether dependencies are involved. An artifact that’s called
by another artifact has an upstream dependency. An artifact that calls another artifact
has a downstream dependency.

Let’s say you created an API called MyAPI. The mobile backend that calls it,
MyMobileBackend, is the upstream dependency ofMyAPI. The API calls its
implementation, MyAPIImpl. MyAPIImpl is the downstream dependency of MyAPI.

If an artifact has upstream dependencies and downstream dependencies, and those
dependencies are active (that is, not in the trash), you’ll have to resolve the
relationships to the dependencies before you can move the artifact to the trash. Here

Chapter 30
Artifact Deletion

30-10

are the dependency scenarios you’ll run into that affect whether or not you can move
an artifact to the trash and whether or not dependencies of the artifact are moved to
the trash:

Case 1, Artifact is a dependency of a published artifact: If the artifact you want to
remove is a dependency of a published artifact, you can't move the artifact in question
to the trash because it would break its relationship with the published artifact. For
example, you want to move MyAPI to the trash but you can’t because it’s a dependency
of MyMBE, which is published.

If you really need to move the artifact to the trash, you must break the relationship
between the artifacts first. For example, the custom API, MyAPI, is associated with the
published mobile backend, MyMBE, and you want to move MyAPI to the trash. You have
to break the relationship by moving MyMBE to the trash first, then moving MyAPI to the
trash. If you need MyMBE, create a new version of it first before moving the previous
version to the trash.

Case 2, Artifact has dependencies: If the artifact that you want to move to the trash
has tightly coupled dependencies (such as an API that’s associated with a real
implementation or a connector API and its implementation), clicking Trash moves the
API with its implementations to the trash.

Note:

You can’t move a mock implementation to the trash. If the API is associated
with a mock implementation, the relationship is broken and only the API is
moved to the trash.

Associated environment binding policies are removed along with the artifact and its
dependencies. If the artifacts are restored, the environment policies are also restored.

Case 3, Artifact has dependencies: If the artifact that you want to move to the trash
has dependencies that aren’t tightly coupled, you must disassociate the artifact from
its upstream and downstream dependencies before you can move it to the trash.

Only first-level upstream and downstream dependencies are considered. If there are
any second-level dependencies (for example, the API’s implementation calls a
connector), you’ll have to be aware of those relationships and resolve them prior to
moving the artifact to the trash.

If the artifact has a dependency on a role, the artifact can be moved to the trash but
not the role. Rule of thumb: Roles can’t be trashed.

Another condition that affects your ability to move an artifact to the trash or restore it
are the environment policies set by the mobile cloud administrator that affect whether
an artifact can be moved to the trash or restored. The mobile cloud administrator can
set the Asset_AllowTrash and Asset_AllowUntrash policies to one of these values:

• All

• None

• Draft

• Published

Chapter 30
Artifact Deletion

30-11

To learn about environment policies, see Oracle Mobile Cloud Service Environment
Policies.

For instructions on moving an artifact to the trash, see the topic for moving the specific
artifact to the trash in Managing an Artifact’s Lifecycle.

Dependencies That Affect a Move to the Trash
The following table lists the dependencies that are moved to the trash with the artifact.
The second column lists the possible dependencies that are associated with the
artifact but are not moved to the trash with the artifact. Those dependencies are
presented in the Move to Trash dialog as information only.

Artifact Dependencies
Moved to the Trash
With the Artifact

Dependency Not
Moved to the Trash
With the Artifact

Published Upstream
Artifact That
Prevents a Move to
the Trash

Realm None Mobile Backend Mobile Backend

Client None Mobile Backend None

Mobile Backend None APIs

Realm

Collections

Client

API API Implementation

Note: mock
implementations can’t
be moved to Trash.

Mobile Backend

API implementations
that invoke the API

Roles – Any role
associated with the
API is revoked. Roles
can’t be moved to
Trash.

Mobile Backend

API Implementation None API that is
implemented

APIs that are called by
the implementation

API that lists the
implementation as
active

Collection None Mobile Backend

Roles – Any role
associated with the
collection is revoked.
Roles can’t be moved
to Trash.

Mobile Backend

Connector None Mobile Backend

API implementations
that call the connector.

None

Restoring an Artifact
You might find that you need an artifact that’s been moved to the trash. Restored
artifacts retain the same state they had when they were moved to the trash. That is, an
artifact in Draft state that was moved to the trash will still be in Draft state when
restored.

As with moving an artifact to the trash, restoring an artifact has some considerations:

Chapter 30
Restoring an Artifact

30-12

• If the artifact has no naming or version conflict, you can restore it by simply

clicking the Trash () and selecting Restore from Trash from the Trash drawer

() and confirming the restoration action.

• If duplicate artifacts exist (that is, artifacts with the same name and version) and
one of these artifacts is in the trash, you can’t restore the artifact. You must
resolve the conflict first in one of the following ways and then restore the artifact:

– Move the active artifact to the trash and restore the one already in the trash.

– Change the version of the active artifact and then restore the one in the trash.

The following table lists the types of artifacts that can be restored and which
dependencies are restored from the trash with each type of artifact. The last column
lists the possible upstream and downstream dependencies of the artifact that are not
in the trash and that could be affected by the restoration. These items are displayed in
the Restore dialog as information only.

Artifact Dependencies Restored
With Artifact

Possible Artifact
Dependencies Not in the
Trash

Realm None Mobile Backend

Client None Mobile Backend

Mobile Backend None APIs

Realm

Collections

API Role Mobile Backend

API Implementation (non-
mock)

API implementation that calls
the API

API Implementation None API that is implemented

Collection Role Mobile Backend

Connector None Mobile Backend

Detailed instructions for restoring an artifact in the trash are included for each artifact
type in the chapters that follow.

Chapter 30
Restoring an Artifact

30-13

Restoring an Artifact from Administration
You can restore an artifact from the Trash menu as described above, or you can
restore deleted artifacts from the Administration view.

1. Click and select Administration from the side menu.

2. Click Deleted Artifacts.

3. Filter the list by selecting the type of artifacts you want to see. The default value is
All Artifacts.

You can also use the Filter field to further refine the list:

• By the name of the artifact.

• By version number.

• By the name of the person who moved the artifact to the trash.

4. Click the checkbox for each artifact you want to restore and click Restore.

To select all the items in the table at once, click the checkbox next to Artifact in
the table header. Click again to clear all selections.

Artifact selection isn’t persistent across pages. You can restore only the selected
artifacts on the current page. If you want to restore artifacts listed across multiple
pages, you’ll have to restore the artifacts on the current page and then go to the
next page.

Chapter 30
Restoring an Artifact

30-14

Purging an Artifact
So how do you permanently delete an artifact? You must be a mobile cloud
administrator and you purge it via the Deleted Artifacts tab from the Administration
view. When an artifact is purged, it no longer appears in the list of trashed items and
can’t be restored.

Just as dependencies can affect restoring an artifact, they affect purging an artifact
from the trash. If the artifact you want to purge has downstream dependencies, those
dependencies are deleted along with the artifact. For example, when you purge an API
in the trash, its implementation is deleted as well.

If the artifact is a downstream dependency of another artifact, you need to resolve the
dependency with the other artifact before you can purge it.

The following table shows you which dependencies will be purged with a each type of
artifact.

Artifact to Purge Dependencies Purged with
the Artifact

Dependencies Not Purged
with the Artifact

Realm None Mobile Backends

Mobile Backend None APIs

Realm

Collections

API API implementations

Note: Mock implementations
can’t be moved to the trash.

Roles

Note: Any role associated with
the API is revoked. Roles can’t
be moved to the trash.

Mobile Backends

API Implementations

Note: Mock implementations
can’t be moved to the trash.

Roles

Note: Any role associated with
the API is revoked. Roles can’t
be moved to the trash.

API Implementation None API implemented by the
implementation

Connector None Mobile Backends

Collection Roles

Note: Any role associated with
the API is revoked. Roles can’t
be moved to the trash.

Mobile Backends

API implementations that call
the connector

Purging Artifacts from Administration
To permanently remove an artifact, you need to purge it from the trash. You can only
purge artifacts from the Administration view.

1. Click and select Administration from the side menu.

2. Click Deleted Artifacts.

Chapter 30
Purging an Artifact

30-15

By default, the list shows all artifacts in the trash. Artifacts are displayed in a
descending order of when items were moved to the trash. You can change the
display to list artifacts in alphabetical order of the person who moved the artifacts
to the trash or by comments.

3. Filter the list by selecting the type of artifacts you want to see. The default value is
All Artifacts.

You can also use the Filter field to further refine the list:

• By the name of the artifact.

• By version number.

• By the name of the team member who moved the artifact to the trash.

You can also sort the order of the items in the trash by artifact, type, time the item
was moved to the trash, or by the person who moved the item to the trash.

4. Click the checkbox of each artifact that you want to purge and click Purge.

To select all the items in the table at once, click the checkbox next to Artifact in
the table header. Click again to clear all selections.

Artifact selection isn’t persistent across pages. You can purge only the selected
artifacts on the current page. If you want to purge artifacts listed across multiple
pages, purge the artifacts on the current page and then go to the next page.

Chapter 30
Purging an Artifact

30-16

31
Lifecycle Scenarios

The best way to understand the lifecycle of artifacts and how they interact with one
another is to walk through a few typical scenarios that involve versions, publishing,
and managing policies for various artifacts. Each scenario revolves around a mobile
app that uses a backend that has dependencies on collections and APIs.

The following scenarios should give you a sense of the interrelationships of artifacts
and how dependencies can affect the lifecycle of a backend and its possible effect on
an app:

• Bug Fix

• Rerouting a Mobile Backend

• New Features

Initial Deployment of a Mobile Backend
You can get a basic sense of the lifecycle flow in MCS by following the process of
deploying a mobile backend that’s in a development environment to a runtime
environment. We’ll use the FixItFast (FIF) example so you can see the
interrelationship between the mobile backend and its associated artifacts, which
consist of an API, its implementation, a connector, a user role, and a collection. You’ll
see how these relationships can affect the deployment process.

In this scenario, here are the actions you’ll perform:

• Resolve dependency issues that prevent you from publishing a mobile backend.

• Publish a mobile backend.

• Deploy the same mobile backend with all of its dependencies to another
environment.

Let’s say that you’ve created a mobile backend called FIF_Customer 1.0 and you’re
ready to deploy it. Before you deploy the mobile backend, let’s make a few
assumptions about the artifacts that you have in the Development environment:

• A mobile backend,FIF_Customer 1.0, is currently in the Draft state.

• An API, FIF_IncidentReports 2.0, is published and is associated with the mobile
backend.

• An API implementation, incidentreports 7.0.0 , is in the Draft state.

• A REST Connector API, RightNow 1.0 exists in the Draft state and is called by
both versions of the API implementation.

• A collection, FIF_Images 1.0 exists in the Published state and is also associated
with the mobile backend.

• A user role, Technician, exists and is also associated with the mobile backend.

The mobile backend is associated with the collection, the user role, and the API, which
makes them dependencies of the mobile backend. The API implementation is a

31-1

dependency of the API. The API implementation calls the connector, so the connector
is also a dependency of the mobile backend.

Publishing the Mobile Backend

To deploy FIF_Customer 1.0 , you need to publish it first. Only published artifacts can
be deployed. You select the mobile backend and click Publish. MCS performs a
dependency check. The API and the collection are already published and will be
picked up by the mobile backend, The API implementation and the connector are still
in the Draft state and they won’t be picked up.

Note:

Some artifacts can be published with their associated artifacts. For example,
if you’re publishing a mobile backend that has dependencies in the Draft
state associated with it, the Confirm Publish dialog shows you the
dependencies that are in Draft state and gives you the ability to publish those
dependencies with the mobile backend. If you don’t want to publish a listed
dependency, you’ll have to cancel the publish operation and disassociate the
mobile backend from it before you can try publishing the mobile backend
again. Be aware that some dependencies, like API implementations, won’t
be published with the main artifact and won’t be listed in the dialog.

Here’s what you do:

1. Cancel the Publish operation.

2. Publish the API implementation and the connector API.

3. Publish the mobile backend.

Canceling the publish operation for the mobile backend is easy. You just click Back in
the Publish dialog. Now you need to fix the dependency issues.

Publishing the Dependencies

You need to publish the API implementation and the connector. First, you’ll publish the
implementation. You go to the APIs page, select FIF_IncidentReports 2.0 and open
it. Next, you click on the Implementations navigation link. Although there are several
version of the implementation listed, the latest version, 7.0.0, is marked as the default
implementation for the API.

On the Implementations page, you select incidentreports 7.0.0 and click Publish.
Once again, a dependency check is performed and it reveals that the implementation
has a dependency on the RightNow connector, which is also in a Draft state. The
Publish dialog tells you that you can publish the implementation along with its
dependency. You know the connector has been tested and is ready to be published,
so you click Publish All.

Now you can finally get back to publishing the mobile backend. On the Mobile
Backends page, you select the mobile backend and click Publish. The dependency
check shows no issues, so you can proceed with the publishing operation.

Chapter 31
Initial Deployment of a Mobile Backend

31-2

Deploying the Mobile Backend

On the mobile backend page, you can see that FIF_Customer 1.0 is in a Published
state. Now you select the mobile backend and click Deploy. The Deployment wizard
opens and you can see from the navigation links, that deployment involves these
steps:

1. Selecting the target environment, that is, the environment to which you want to
deploy the artifact.

2. Identifying any dependencies that could prevent the deployment.

3. Examining any impact that deploying the mobile backend and its dependencies
could cause.

4. Setting some environment policies.

5. Deploying the artifacts.

Specify the Target Environment

The first thing you need to do is specify the target environment. The source
environment is the current environment containing the mobile backend and that field is
already filled in for you. You select Staging as the target environment and move on to
see the list of dependencies.

Note:

The target environment must always be different from the source
environment.

Reviewing Dependencies

The Dependencies page of the Deployment wizard lets you see all the artifacts the
backend depends on. This can include the user realm, APIs, API implementations,
connectors, collections, and roles. Each API being deployed also shows the
implementation associated with it. A state of deployment is also indicated for each
dependency:

• Deployed indicates the dependency is already deployed.

• Requires Deployment indicates the dependency will be deployed as part of the
current operation.

• Conflict indicates an issue exists with the dependency that affects its ability to be
deployed.

You can quickly scan the page and see that all the artifacts ready to be deployed.

Assessing the Effect of the Deployment

You move on to the Impact page of the wizard. The data displayed is informational
only and serves to warn you of any potential issues that might occur when the
backend is deployed. For example, deploying a new version of an API implementation
or a new version of a connector API might impact other mobile backends and the APIs
that currently use them. There might be multiple mobile backends and APIs that call
the particular API implementation or connector API.

Chapter 31
Initial Deployment of a Mobile Backend

31-3

In this scenario, no impacts are identified for your mobile backend and you can move
on to the Policies page. If there had been potential issues, you’d need to assess the
severity of the effects and whether you need to cancel the deployment to address the
issues or proceed.

Setting the Environment Policies

Policies are specific to an environment. The policy values that affect the performance
of your mobile backend in the Development environment will differ from those values
in the Staging environment. You might want to apply or not apply a policy in a
particular environment. You export a diff file to see what the differences are between
your source environment settings and your target environment settings.

In addition to the other policies that you have to set for deployment, you also want to
change the logging level value for the mobile backend. You click Edit to open an editor
displaying the policies.properties file to be used in Staging. You uncomment
the necessary policies along with the Logging_Level policy to include them in the
target environment, save your change, and then click Import to add the policies file to
the Staging environment.

Note:

Review the deployment steps for each type of artifact in Managing an
Artifact’s Lifecycle to see which policies need to be set.

Completing the Deployment

Now you’re ready to complete the deployment process by moving to the confirmation
page. You review the data and click Deploy. The mobile backend and its
dependencies are moved to the Staging environment where they can undergo more
testing before being deployed to the Production environment where they’ll be available
for consumption by mobile apps.

Bug Fix
This scenario shows how you can update an API implementation and associate it with
an API and add it to an already published backend.

One of the most common situations you face is when an issue in an API
implementation needs to be fixed. You want to add the fixed version to the mobile
backend but you have the following concerns: the mobile backend is published already
so you can’t modify it and you don’t want to create a new version of it, which would
force your customers to upload a whole new app due to a minor bug fix.

Chapter 31
Bug Fix

31-4

Note:

A key point to remember in this scenario is that you’re making a change to
the API implementation. Because the custom API and the implementation
are loosely coupled, you can associate the API with the newer version of the
implementation, even though the API itself is in the Published state. If the
published API had required a bug fix, regardless of whether the fix is a minor
one or a major one, you’d have to create a new version of the API and that
would mean having to create a new version of the mobile backend as well.
That particular scenario is demonstrated in the New Features scenario.

In this scenario, here are the actions you’ll perform:

• Make a minor change to the implementation

• Create a new version of the implementation and associate it with the custom API

• Publish the implementation

• Deploy the mobile backend

In this scenario, you have a mobile backend, FIF_Customer 2.0, that’s in a Published
state in the Development environment. It has the following dependencies:

• FIF_IncidentReports 2.0 (API) in the Published state

• incidentreport.js 7.0.0 (API implementation) that’s deployed to the Staging
environment

• RightNow 2.0 (REST Connector API) in the Published state

• Realm 1.0 (the default realm) that’s deployed to the Staging environment

• Customer_LC_0112 1.0 (Role) that’s deployed to the Staging environment

You need to make a small change to the API implementation. Let’s look at what you
need to do to deploy the mobile backend with a new version of the API
implementation:

Chapter 31
Bug Fix

31-5

The following sections describes each of these steps.

Creating a New Version

There’s a minor issue with the API implementation, incidentreport.js. It updates the
status of a given incident:

...
service.put(locations.apiBaseURI + 'incidents/:id/status',
function(req,res) {
 var agg = {};
 agg.incidentId = req.params.id;
 var functions = [
 wrapPutOrPost(incidentOperations.updateIncident, req, agg)
]
 async.series(functions, function(error, result){
 // we send the notification after the initial update
 notifyCustomerOfUpdate(req, agg.incidentId);
 res.end();
 })
 });
...

but a notification isn’t sent to the customer about the update. You edit the code and
save the file:

...service.put(locations.apiBaseURI + 'incidents/:id/status',
function(req,res) {
 var agg = {};
 agg.incidentId = req.params.id;
 var functions = [
 wrapPutOrPost(incidentOperations.updateIncident, req, agg)

Chapter 31
Bug Fix

31-6

]
 async.series(functions, function(error, result){
 // we send the notification after the initial update
 notifyCustomerOfUpdate(req, agg.incidentId);
 if (error && error != undefined){
 res.send(500, error);
 } else {
 res.send(200, result[0]);
 }
 res.end();
 })
 });

You’ve modified the API implementation so now you need to update the version
number of the implementation. The 7.0.0 version was published in our first scenario.
The change that you made doesn’t affect the basic behavior of the implementation and
doesn’t affect the behavior of the API, it’s a minor change. That is, this version of the
implementation is backward-compatible. You need to increment the minor value of the
version, so you open the manifest file, package.json, and change the version from
7.0.0 to 7.1.0 and save the file.

Uploading the Revised API Implementation

You create a new zip file containing the modified incidentreport.js and
package.json files. Then you upload the new version of the implementation by
selecting your API on the APIs landing page and opening it. Next, you click the
Implementations navigation link. On the Implementations page, you upload the 7.1.0
version. When you upload an implementation, it automatically becomes the default
implementation for the API.

On the Implementations page, you examine the dependencies for the revised
implementation and verify that the implementation is associated with incidentreport
2.0 API and the RightNow 2.0 connector API. Now that you’ve associated the revised
implementation with the API. Let’s see what happens if you try to deploy your mobile
backend now.

Publishing the API Implementation

You go back to the Mobile Backends landing page, select FIF_Customer 2.0, and click
Deploy. You set the target environment to Staging and go to the Dependencies page
of the Deployment wizard. Immediately you get an error message. You see that you
forgot to publish the 7.1.0 implementation. You have to cancel the deployment and go
back to the Implementations page.

You open the FIF_IncidentReports 2.0 API, click the Implementations navigation
link and select the incidentreport 7.1.0 implementation. From the menu above the
table, you click Publish. In MCS, the API and the API implementation can be
published independently of each other. This is in contrast to connectors, which are
tightly coupled with their implementations, that is, when a connector API is published,
its implementation is automatically published with it. Being able to publish an API
implementation separately from the API gives you the versatility to associate different
versions of APIs with different versions of the implementation.

Chapter 31
Bug Fix

31-7

Deploying the Mobile Backend

When you publish the implementation, a dependency search is performed and you see
a message that there are no dependency issues. Now you can try deploying the
mobile backend again. This time there are no error messages when you go back to the
Mobile Backends page, select FIF_Customer 2.0, click Deploy, set your target
environment, and go to the Dependencies page. The list of dependencies shows you
that a few artifacts require deployment. If you proceed with the deployment, those
artifacts will be deployed along with the mobile backend. You proceed to the Impact
page of the wizard and see that no effects have been identified for this deployment.
You can go to the Policies page.

Modifying the Environment Policies

Because you’re moving the mobile backend from the Development environment to the
Staging environment, there will be a few changes that you’ll need to make to the
policies file that will be used in the Staging environment. From the Policies page, you
can export a diff file in which you can see the policy differences between the
Development and Staging environments. You click Export and review the
policies.properties file that MCS generates:

#---
#MCS Policies. Comparison of: 'dev' and'stage'
#taken at:2015-01-14 13:21:00
#---

#The value of the dev
#*.RightNow(2.0).Connector_Endpoint=http\://myexamples.com\:7001/rightnow/reports...
#The value of the dev
#*.RightNow(2.0).Routing_BindApiToImpl=RightNow(2.0)
#The value of the dev
#*.RightNow(2.0).Security_OwsmPolicy=[]
#The value of the dev
#*.fif_incidentreports(2.0).Routing_BindApiToImpl=incidentreport(7.1.0)
.
.
.

#---

The first thing you notice is that the connector endpoint needs to be updated. In the
Development environment, you used a mock URL and now that the connector is
moving to Staging, you need to be able to test it using an actual address. You
uncomment the line

*.RightNow(2.0).Connector_Endpoint

and correct the remote URL.

Next, you check that the API is bound to the correct version of the implementation.
You see that it’s set to the 7.1.0 version. Everything else in the diff file looks fine. You
save your change. You also open the implementation’s manifest file by clicking the
package.json tab and verify that the implementation version is correct.

Back on the Policies page of the Deployment wizard, you click Upload Policy Diff and
upload your modified policies file. After that’s done, you go to the Confirmation page.
You review the deployment information: name of the mobile backend, the source and

Chapter 31
Bug Fix

31-8

target environments, the dependencies that will be deployed to the target environment,
and the policy.properties file that will be applied to the target environment.

Everything looks right and you click Deploy. You see that the deployment is
successful. On the Mobile Backends page, you select FIF_Customer 2.0 and see that
Staging is now listed under the Deployments section and that the 7.1.0 API
implementation is listed under dependencies.

The minor version change to the API implementation didn’t require a change in version
for the API, or the mobile backend. The fact that the API was already published wasn’t
an impediment to the deployment because the implementation could be published
independently and associated with the API.

Rerouting a Mobile Backend
As you work on improving your product, you might find that you need to make some
changes to it after you’ve already published your mobile backend. If the changes you
want to make affect only the metadata of the mobile backend (that is, you’re making
minimal changes that won’t require upgrading the mobile app that calls it), you can go
ahead with those changes by rerouting the call to that mobile backend to a backend
that has the updates.

You set the Routing_RouteToBackend environment policy to reroute the app’s call to
the original mobile backend to a new (target) backend. The app still calls the original
mobile backend but the call is redirected to a new version of the backend or to an
entirely different mobile backend that incorporates the changes. The app binary
doesn’t need to be recompiled because the app isn’t directly associated with the new
mobile backend. The app calls the original backend so there’s no change to the client
ID and client secret.

In this scenario, you’ll see how to redirect calls to a mobile backend. Let’s say you
need to change the permissions for a storage collection. The app calls the mobile
backend, FIF_Customer 4.1 which is already published and deployed to a runtime
environment called Production.

Assume you have the following setup:

• FIF_Customer 4.1

• FIF_IncidentReports 2.0API

• incidentreports.js 7.2.0 API implementation

• FIF_Parts 1.0 storage collection

• RightNow 2.0 REST Connector API

• Realm 1.1

All artifacts are published and deployed to a runtime environment.

Updating the Collection and Rerouting the Call to the Mobile Backend

You have a collection, FIF_Parts 1.0 which stores the images and serial numbers for
various parts used to fix appliances. You defined the collection to have a Shared
collection type. You’ve set Read-Only access permission to the Sales Representative
role and Read-Write to the Engineer role and associated it FIF_Customer 4.1 when
the mobile backend was still in Draft state.

Chapter 31
Rerouting a Mobile Backend

31-9

FiF_Customer 4.1 has been published and you realize you forgot to give Read-Write
permission to the Parts Manager role and FIF_Parts 1.0 is published.

Here’s how you can add the Parts Manager role to the Read-Write permission list and
get it associated with a mobile backend that your app can call (without having to
recompile your app):

• Create a new version of the FIF_Parts 1.0 collection, and call it FIF_Parts 1.5.

• Set the access permissions for FIF_Parts 1.5 just like you did for version 1.0 but
this time make sure to add the Parts Manager role to the Read-Write permission
list.

• Save the collection.

• Create a new version of the mobile backend, call it FIF_Customer 4.5.

The new 4.5 version of the backend will have all the artifact associations of the 4.1
version.

• On the mobile backend landing page, open FIF_Customer 4.5 , go to the Storage
page and disassociate it from the old FIF_Parts 1.0 and select FIF_Parts 1.5.

• After thorough testing, publish FIF_Customer 4.5. The publishing process lets you
publish any unpublished dependencies at the same time.

• Deploy the mobile backend to the Production environment, reviewing and
resolving any effects the deployment could have on other artifacts, and edit the
routing policy:

FIF_Customer(4.1).*.Routing_RouteToBackend=FIF_Customer(4.5)

When your app calls the mobile backend, it’s redirected to the new version of the
mobile backend that has the updated collection.

New Features
As you work on improving your product, at some point you’re going to add at least one
new major feature or make a major change to a feature. A major change will affect the
mobile backend, requiring you to create a new version that won’t be backward-
compatible with previous versions. Changes could consist of adding another
dependency or making a major change to the mobile backend or one of its
dependencies. This time, deploying your mobile backend will mean that any mobile
apps calling on the mobile backend will require that customer upgrade the application.

In this scenario, you introduce a new feature to your FIF_Customer 2.1 mobile
backend. Let’s assume you have the following artifacts:

• FIF_Customer 2.1 mobile backend already deployed to the Production
environment

• FIF_IncidentReports 2.0 API

• incidentreports.js 7.2.0 API implementation

• FIF_Images 1.0 storage collection

• RightNow 2.0 REST Connector API

• Realm 1.0

• Customer_LC_0112 1.0 user role

Chapter 31
New Features

31-10

Upgrading the Mobile Backend

You’ve been using FIF_IncidentReports 2.1 and now you’ve got a new and
improved version of it that you want the mobile backend to use. You’ve created a 3.0
version of it that will improve how the incident report data is obtained and you want to
make it available to the mobile app. The change in the major value of the version
number implies that the functionality of the API isn’t backward-compatible. The major
change in the API necessitates creating a new version of the API implementation,
which could affect any connector APIs that it calls, and definitely means that a new
version of the mobile backend is needed.

Here’s what you’ll need to do to add a new major feature:

• Create a new major version of the API.

• Create a new major version of the API implementation for the new API.

• Test the API and the new implementation.

• If necessary, create a new major or minor version of the connector API and test it
also.

• Create a new major version of the mobile backend by selecting the not backward-
compatible option, which automatically increments the major version value. (In this
scenario, the version will change from 2.1 to 3.0.)

• Select the new 3.0 version of the mobile backend, open it, and click the APIs
navigation link. You click X to remove the association with the old 2.0 version of
the API and click Select APIs to associate the new 3.0 version of the API.

Note:

You don’t need to define new user roles, a new collection, or a realm but
you will have to associate the roles and the collection with the new
version of the mobile backend.

• Publish the mobile backend after you’ve thoroughly tested all the components. The
publishing process lets you publish all the dependencies at the same time.

• Deploy the mobile backend to Staging, reviewing and resolving any effects the
deployment could have on other artifacts, and modifying environment policies as
needed.

The mobile apps that use FIF_Customer will have to upgrade to use the new version of
the mobile backend. Later on, you decide that it isn’t necessary to have a running 2.1
version because all the mobile apps have been upgraded to use the new version. You
select the FIF_Customer 2.1 mobile backend from the Mobile Backends page, and
select More > Manage Activation. In the Manage Activation dialog, you change the
state of the mobile backend to inactive. A mobile backend that’s in the inactive state
can’t accept requests from mobile apps. The activation state is specific to an
environment, so if you’ve deployed version 2.1 to Staging and then to Production,
you’ll need to change its activation state for each environment.

Chapter 31
New Features

31-11

32
Managing an Artifact’s Lifecycle

Mobile backends, APIs, and other artifacts in Oracle Mobile Cloud Service (MCS) each
have an independent lifecycle. As a mobile cloud administrator, you can manage the
versioning, deployment, and dependency management of each.

In most respects, how an artifact is managed after it’s created is the same regardless
of whether it’s a client, mobile backend, collection, connector API, or a custom API.
You‘ve learned how to create an artifact, then modify it, and test it. Now that you have
a viable artifact, it’s time to publish it, perhaps create new versions or update existing
versions and eventually deploy it to another environment for others to test and use.

We'll show you how to take each of these artifacts through its lifecycle phases:

• Realm Lifecycle

• Client Lifecycle

• Mobile Backend Lifecycle

• API Lifecycle

• API Implementation Lifecycle

• Connector Lifecycle

• Collection Lifecycle

Note:

Remember, to perform operations on artifacts, such as viewing, creating new
versions, editing, and so on in an environment, you need the following:

• Permission to perform the operation on the artifact

• Permission to access the environment containing the artifact

If you can’t access the environment containing the instance of the artifact you
want or if you can’t perform an operation on the artifact, ask your mobile
cloud administrator for permission.

Realm Lifecycle
Realms go through lifecycle stages similar to other artifacts. You begin by creating a
realm and publishing it.

You learned about realms in Creating Realms. Now it’s time to discover how to take a
realm through its lifecycle.

If you think you need a better understanding of how artifacts interrelate in the overall
MCS lifecycle before exploring the lifecycle of realms, see Lifecycle.

32-1

Publishing a Realm
Realms are created and tested in a development environment. They can then be
published and deployed to other environments.

1. Make sure you’re in the environment that contains the realm you want to publish.

2. Click and select Applications > Mobile User Management from the side
menu.

3. Click the Realms navigation link.

4. Select the realm to publish.

5. Click Publish.

(Optional) You can enter a justification for publishing the realm in the Comment
field.

After a realm is published, the user schema can’t be changed. Only data can be
updated, including adding or editing mobile user information.

Creating a New Version of a Realm
You can create a new version of a realm, which can be in a Draft or Published state.

1. Make sure you’re in the environment containing the realm you want.

2. Click and select Applications > Mobile User Management from the side
menu.

3. Click the Realms navigation link.

4. Select the realm.

5. In the right section, select More > New Version.

6. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

7. Click Create.

Deploying a Realm
You must have Oracle Cloud identity domain administrator permissions to deploy a
realm. Only the user schema is migrated during deployment. No mobile app user data
is migrated. In the target environment, the realm won’t have any users associated with
it.

Sometimes deploying a realm along with its mobile backend and all the dependencies
of that mobile backend can result in various permissions issues that can affect the
deployment process. You can avoid these issues by deploying just the realm first and
then deploying the mobile backends and its dependencies. This ensures that all the
dependencies in the underlying security systems are resolved before deploying your
mobile backend.

1. Make sure you’re in the environment containing the realm you want to deploy.

Chapter 32
Realm Lifecycle

32-2

2. Click and select Applications > Mobile User Management from the side
menu.

3. Click the Realms navigation link.

4. Select the realm to deploy.

5. In the right section, click Deploy.

The Source Environment field is read-only and automatically defaults to the
current environment of the mobile backend.

6. Specify the target environment.

Only the environments for which you have permission to deploy to are listed. If the
artifact you want to deploy has dependencies, you’ll have to resolve those
dependencies before attempting to deploy.

7. (Optional) Enter a comment about the deployment.

8. Click Dependencies.

The Dependencies page lists the artifacts that the realm is dependent on. You can
skip this page because realms don’t have dependencies on other artifacts.

9. Click Impact.

The Impact page lists artifacts in the target environment that will be affected when
the realm is deployed. The data displayed is for your information only. Assess the
effects and determine whether or not to proceed with the deployment.

10. Click Policies.

The Policies page is where you can view the policies in both the source and target
environments and edit policy values as needed.

a. Click Export to see a diff file of the policies.properties file showing the
policies in both the source and target environments.

b. (Optional) Edit a policy value as needed.

To get descriptions of environment policies, see Oracle Mobile Cloud Service
Environment Policies. If you need to know more about environment policies,
see Environment Policies.

c. If you modified the policies.properties file, click Import to load it into
the target environment.

The User_DefaultUserRealm policy sets the realm version associated with a
newly created mobile backend. In most cases, you’ll want to use the default
value, which is 1.0.
You might want to modify this policy if you create another realm, for example,
if you create a second realm and you want new mobile backends to be
automatically associated with it. Instead of setting it at deployment, you set
this policy at the environment level (that is, go to the Administrator view,
select the environment and set this policy by clicking Policies and editing the
policies.properties file. The value is applied to all realms created in that
environment, therefore, don’t set the value for a specific realm.)

11. Click Confirm and view the deployment configuration, then click Deploy.

To learn about deployment in MCS, see Deployment.

Chapter 32
Realm Lifecycle

32-3

Moving a Realm to the Trash
Remove a realm by moving it to the trash.

1. Make sure you’re in the environment containing the realm you want to remove.

2. Click and select Applications > Mobile User Management from the side
menu.

3. Click the Realms navigation link.

4. Select the realm you want to remove.

5. In the right section, select More > Move to Trash.

6. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

To learn how dependencies can affect moving an artifact to the trash, see
Dependencies That Affect a Move to the Trash. To restore a realm that’s in the trash,
see Restoring a Realm.

Restoring a Realm
1. Make sure that you're in the environment containing the realm you want to restore.

2. Click and select Applications > Mobile User Management from the side
menu.

3. Click the Realms navigation link.

4. Click Trash ().

5. In the list of items in the trash, click by the realm you want and select Restore
from Trash from the trash menu.

You can see an example of the trash menu in Restoring an Artifact.

6. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing a Realm
When at least one realm exists, you’ll be taken to the Mobile User Management page

every time you click and select Applications > Mobile User Management from
the side menu. On the left side of the page, you see a list of all the mobile backends,
their version numbers, and their Draft or Published state (mobile backends in Trash
aren’t displayed).

On the upper right side of the Realms page, you can open, test, publish, and deploy
your realm. You can view the user object properties defined for this realm also:

Chapter 32
Realm Lifecycle

32-4

• Click Trash to see which realms are in Trash.

• Click Open to see details about the selected realm.

• Click Publish to change the state of the realm from Draft to Published.

• Click Deploy to deploy the realm to another environment.

• Click More to create a new version, set the realm as the default realm, or move
the realm to the trash.

• Click User Object Properties to see information about the users assigned to the
realm.

On the lower side of the page, you can examine deployment, usage, and history
details:

• Expand Deployments to see the environments that contain the selected the
realm. You are only shown the environments that you have permission to access.

Click on an environment to switch to it.

• Expand Used By to see the list of mobile backends that are associated with the
realm.

• Expand History to quickly see the latest activity for the realm.

Client Lifecycle
If your mobile app uses push notifications or you want to use analytics to examine and
improve your app, you need a client. As a mobile developer, you associate a client,
which represents a mobile backend binary, with a mobile backend. Clients go through

Chapter 32
Client Lifecycle

32-5

similar lifecycle phases as other Mobile Cloud Service (MCS) artifacts with a few
differences.

MCS can help you manage a client’s lifecycle. You can publish, deploy, and export a
client. You can modify its version number and move it to the trash when you don’t
need it anymore. Clients are top-level artifacts and their relationships with mobile
backends can affect how clients and mobile backends are deployed, exported,
imported, and moved to trash. see Client Management for details on creating clients.

If you want a general understanding of how artifacts interrelate in the overall MCS
lifecycle, see Lifecycle.

Publishing a Client
When you’re satisfied with a client’s configuration, you can publish it but only if that
client is associated with a mobile backend.

1. Make sure you're in the environment containing the client you want to publish.

2. Click and select Applications > Client Management from the side menu.

3. Select the client that you want to publish.

4. Click Publish.

Dependencies are checked and if the associated mobile backend is in Draft state,
the confirmation dialog lists it and informs you that it will be published with the
client. If the mobile backend is already published, no dependencies are shown.
If the mobile backend has downstream dependencies in Draft state, those
dependencies will also be published. For example, MyClient 1.1 references
MyMobileBackend 1.0. MyMobileBackend has dependencies on published
MyAPI2.2 and unpublished MyAPI2.4. When you publish MyClient 1.1, the
confirmation dialog only lists MyMobileBackend1.0 as a dependency but MyAPI2.4
is also published.

5. Click Publish All.

If the mobile backend is in the trash, you won't be able to publish the client. Cancel
the publish operation, and either restore the mobile backend or associate the client
with a different mobile backend. Then try publishing the client again.

Usually, once an artifact is published it can't be changed. In the case of clients,
however, you can add or remove the notification profiles associated with the client
even if that client is published.

Updating the Version Number of a Client
When you create a client, you assign it a version number that is usually the version of
the mobile app that the client represents. You can update its version number at any
time if the client is in a Draft state. This is useful if a change to the binary was made
and you need a new version designation for the client.
If you need to modify the version number for a draft client, you just need to open that
client and change the value in the Version field.

1. Make sure you're in the environment containing the client you want.

2. Click and select Applications > Client Management from the side menu.

3. Open the client that you want to update from the list.

Chapter 32
Client Lifecycle

32-6

4. On the Settings page, change the value in the Version field.

You'll get a message letting you know if you enter a duplicate version number (a
version number that already exists for another client).

Creating a New Version of a Client
You can create a new version of a client regardless of whether it's in a Draft or
Published state. When you create a new version of a client, you’re basically cloning
the client configuration. You can then make changes to the new version. For example,
although a client can be associated with only one instance of a backend, that backend
can reference multiple clients. You could create new versions of a client, where each
client corresponds to a specific platform of a mobile app (iOS, Android, and Windows),
and then edit each client to reference the same backend.
Another reason for creating new versions is to create multiple clients for the same
platform if there are multiple mobile app binaries for the same platform that use the
same backend.

Note:

Unlike other artifacts, which require that the version number use the
Major.minor format, the version number for a client should be the same as
the mobile app binary that’s set by the app store. Depending on the version
of the mobile app binary, the version could take the format of Major.minor or
include an alphanumeric suffix with or without parentheses, a hyphen, space,
or full stop. For example:

• 1.2

• 1.2 build 3452

• 1.2 (3452)

• 1.2–3452

• 1.2.3 (01–Jun-2016)

1. Click and select Applications > Client Management from the side menu.

2. Select the client that you want and then select More > New Version.

3. Enter a version number. (The same as the mobile app binary set by the app store.)

4. Click Save.

The new version is created in a Draft state.

Deploying Clients
When you have a published client that you’re satisfied with, you can deploy it to
another MCS environment. The Deployment wizard takes you, the mobile cloud
administrator, through the process of specifying your target environment, identifying
any dependencies, and alerting you to any dependency issues. You'll have the
opportunity to view any possible effects that deploying the client could have on other
artifacts.

Chapter 32
Client Lifecycle

32-7

When you deploy a client, the associated mobile backend is automatically deployed
with it.

Note:

When you deploy a client, its associated mobile backend is automatically
deployed with it. However, if you’re deploying a mobile backend, the client
associated with it isn’t deployed.
If you deploy a mobile backend without a client associated with it, you’ll have
to create a client for it in the target environment.

After the client has been deployed, the copy of the client in the target environment is
assigned a new client ID and application key. Also the mobile backend associated with
it is given an anonymous access key if HTTP Basic Authentication is enabled or a
consumer key if OAuth is enabled. In addition, there's a different base URL for each
environment. You'll need to incorporate all of these details into the apps that use this
client.

You can view details for the client on the Clients page. The values applicable to that
environment are shown in the Keys section, which includes the client application key
value. To see the authentication and key information for the mobile backend, go to the
Mobile Backends page.

On the Clients page, select your published client and click Deploy to open the
Deployment wizard. Go to the links at the top of the wizard to complete these
deployment steps:

• Specifying a Target Environment for the Client

• dependencies

• policies

• Deploying the Client

To learn more about deployment in MCS, see Deployment.

Specifying a Target Environment for the Client
After a client is published, the Deploy action is enabled. This step shows you how to
designate a target environment.

1. Make sure you're in the environment containing the client you want to deploy.

2. Click and select Applications > Client Management from the side menu.

3. Select the published client.

4. In the right section, click Deploy.

The Source Environment field is read-only and automatically defaults to the
current environment of the client.

5. Select the target environment for your deployment.

Only the environments for which you have deployment permission are listed. If the
artifact you want to deploy has dependencies, you'll have to resolve those
dependencies before attempting to deploy.

Chapter 32
Client Lifecycle

32-8

6. (Optional) Enter a descriptive statement about the deployment.

Identifying Dependencies and Deployment Impact
The next two navigation links let you view all the dependencies related to the artifact
and whether they're currently deployed in the target environment. You can also see
what impact the deployment might have on other artifacts.
When you deploy a client, the mobile backend that it references is also deployed. You
can’t deploy a client unless it’s associated with a mobile backend.

1. Click Dependencies.

Lists artifacts that must already be deployed to the target environment and on
which the current artifact depends. You can see potential deployment issues, such
as version conflicts, missing implementations (depending on the artifact), and so
on. This gives you the opportunity to cancel the deployment and fix any potential
issues. Afterward, you can go back and deploy your artifact.

Note:

You won’t see profiles listed because profiles aren’t deployed with
clients. You’ll have to manually create the profiles you need in the target
environment after you deploy the client.

2. Click Impact.

Shows notifications of possible effects on the artifact. The data displayed here is
for your information only. Assess the effects and determine whether or not to
proceed with deployment. If there's an issue, you can cancel the deployment
process. After the issue is resolved, you can try deploying again.

Setting Environment Policies for Clients
Each environment has policies that govern the behavior of the artifacts within that
environment. Policies and policy values in one environment can differ from policies in
another environment. For instance, if you're deploying from a development
environment to a runtime environment, you might want a higher degree of logging
information in the runtime environment because your artifact will be thoroughly tested
there prior to being made publicly accessible. The Policies page is where you can view
the policies in both the source and target environments and edit policy values as
needed.

1. Click Policies.

2. Click Export to see a diff file of the policies.properties file showing the policies
in both the source and target environments.

To get a description of policies and their default values, see Oracle Mobile Cloud
Service Environment Policies. See Environment Policies for a general discussion
on environment policies.

3. If you modified the policies.properties file, click Import to load it into the target
environment.

To see what policies need to be updated in the target environment, go to the
deployment instructions for the specific artifacts.

Chapter 32
Client Lifecycle

32-9

Deploying the Client
View the basic details of your client deployment: the current environment, the target
environment, and any dependencies or policies. You can cancel or go back if you want
to make changes to your deployment. If you're satisfied, you can deploy the client.

1. Click Confirm.

The details of the deployment are displayed in a read-only section.

2. Click Deploy.

A confirmation page is displayed that informs you if the deployment succeeded.

After a successful deployment, you can return to the Clients page or go to the
Administration tab to review the policy settings in the target environment.
You can manually add notification profiles to the client in the target environment.

Moving a Client to the Trash
Remove a draft or published client by moving it to the trash. If the client is needed later
on, you can restore it from the trash.

Note:

Moving a client to the trash does not move the associated mobile backend or
any profiles referenced by the client to the trash.

1. Make sure you're in the environment containing the client you want to remove.

2. Click and select Applications > Client Management from the side menu.

3. Select the client, then select More > Move to Trash.

4. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

To find out how dependencies can affect moving an artifact to the trash, see
Dependencies That Affect a Move to the Trash. To restore a client that's in the trash,
see Restoring a Client.

Restoring a Client
1. Make sure that you're in the environment containing the client that you want to

restore.

2. Click and select Applications > Client Management from the side menu.

3. Click Trash ().

4. In the list of items in the trash, click by the client you want and select Restore
from Trash.

5. Click Restore in the confirmation dialog if there are no conflicts.

Chapter 32
Client Lifecycle

32-10

Restoring an artifact can cause conflicts if a duplicate exists. To find out more about
restoring an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing a Client
When at least one client exists, you'll be taken to the Clients page every time you click

 and select Applications > Client Management from the side menu. On the left
side of the page, you see a list of all the clients, their version numbers, and their Draft
or Published state (clients in the trash aren't displayed).

On the Clients page, you can open, test, publish, deploy, see the client dependencies,
history, and the environments containing the client:

• Click Open to see details about the selected client.

• Click Publish to change the state of the client.

• Click Deploy to deploy the client to another environment in the same MCS
instance.

• Click More to create a new version, export the client to another instance of MCS,
or move the client to the trash.

• Click Trash () to see which clients are in the trash.

• Expand Keys to obtain the values for the client ID and the application key.

To see application key and client ID information for clients deployed to another
environment, click on an environment in the Deployments section.

• Expand Notifications to see which push notifications, if any, are enabled for this
client.

On the lower right side of the page, you can view data about the selected client:

Chapter 32
Client Lifecycle

32-11

• Expand Dependencies to see the mobile backend that this client references.

Note:

Only the mobile backend is listed. If the mobile backend has downstream
dependencies, go to Applications > Mobile Backends and view them
from the Dependencies section of the selected mobile backend.

• Expand Deployments to see the environments that contain the client. Note:
You're only shown the environments that you have permission to access.

Click on an environment to switch to it.

• Expand History to quickly see the latest activity for the client.

Mobile Backend Lifecycle
You, the mobile developer, have created a mobile backend and now it's time to use it
by publishing and deploying it. Remember that after you publish it, it becomes
immutable, that is, you can't modify it.

If you want to make a change, you can create a new version of it. Because mobile
backends are tightly integrated with custom code, APIs, and other objects in Oracle
Mobile Cloud Service, you'll need to consider the relationships and dependencies on
those objects.

If you think you need a better understanding of how artifacts interrelate in the overall
MCS lifecycle before exploring the lifecycle of mobile backends, see Lifecycle.

Backend Lifecycle States
Relationships with other artifacts create dependencies. For example, your backend
might depend on other artifacts, such as collections or APIs. When any artifact
changes state, all dependent artifacts must also change states. Oracle Mobile Cloud
Service keeps track of any dependencies for you.

Chapter 32
Mobile Backend Lifecycle

32-12

Backends have the following activation states that determine whether they can be
updated, deleted, or whether or not a new version can be created:

• Active: Denotes the version of the backend is valid and active.

• Quiesce: Denotes the version of the backend has become quiet, that is, it no
longer supports new requests, and after all currently running requests are
completed, it’s changed to Inactive. This is a transitional state.

• Inactive: Denotes the version of the backend that’s present but not in an active
state (that is, not usable).

If a user tries to access an API through an inactive backend, a 404 code is
returned.

• Deleted: Denotes the version of the backend that’s been moved to the trash and
susceptible to a hard delete (actually removed from the repository).

Note:

Only mobile cloud administrators can purge (that is, permanently delete)
an item in the trash.

Publishing a Mobile Backend
Follow these steps to publish a mobile backend. When a backend is published, all
dependencies that aren’t yet published must also be published.

1. Make sure you’re in the environment containing the mobile backend you want to
publish.

2. Click and select Applications > Mobile Backends from the side menu.

3. Select the mobile backend that you want to publish.

4. Click Publish.

The Confirm Publish dialog opens:

5. In the Confirm Publish dialog, click Check Dependencies to reveal whether or not
the backend has dependencies and what those dependencies are so you'll know
how to proceed:

• If you don't have dependencies, a confirmation dialog is displayed. Click
Publish.

Chapter 32
Mobile Backend Lifecycle

32-13

• If any dependencies are found in the trash, they’re listed. Cancel the publish
operation, restore the dependent items from the trash, and restart the process.

• If there are dependencies in the Draft state, they’re listed in the confirmation
dialog. You have the option to publish all the dependent artifacts along with
your mobile backend. Click Publish All.

Published mobile backends can be deployed to your staging server or your production
server.

Updating the Version Number of a Backend
If you created a new version of a backend using the New Version dialog, you can
update its version number if it’s still in a Draft state. This is useful if you need to
designate a different version number for it before you publish it or you’ve made a
change to the configuration and you need a new version designation.

1. Make sure you’re in the environment containing the backend you want.

2. Click and select Applications > Mobile Backends from the side menu.

3. Select the backend you want to update from the list.

4. In the right section, select More > Update Version Number.

5. Enter a version number of the format Major.minor.

The previous version of the backend is displayed next to the field. You'll get a
message letting you know if you've entered an existing version number.

6. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

7. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of backends.

Creating a New Version of a Backend
When you create a new backend, the version is automatically set to 1.0. As long as
the backend is in a Draft state, you can change any aspect of it. As you develop your
backend, you can change the version's major and minor version values as you see fit.

You can use a published backend as a root for a new version.

1. Make sure you’re in the environment containing the backend.

2. Click and select Applications > Mobile Backends from the side menu.

3. Select the published backend.

4. In the right section, select More > New Version.

The new version is created in a Draft state.

Chapter 32
Mobile Backend Lifecycle

32-14

Note:

If the backend is associated with an API, you can’t associate another version
of that API with the backend, regardless of whether the backend is in a Draft
or Published state. You must create a new version of the backend and
associate it with the other API version.

Deploying Mobile Backends
The Deployment wizard takes you, the mobile cloud administrator, through the process
of specifying your target environment, identifying any dependencies, and alerting you
to any dependency issues, such as associated APIs that aren’t deployed yet. You’ll
have the opportunity to view any possible effect that deploying the mobile backend
could have on other artifacts. Because you’re deploying from one environment to
another, the policies applied to the mobile backend in the source environment may
need to change in the target environment. You can view and modify these policies
before you deploy your mobile backend.

After the mobile backend has been deployed, the copy of the mobile backend in the
target environment is assigned a new mobile backend ID and either an anonymous
access key if HTTP Basic Authentication is enabled or a consumer key if OAuth is
enabled. In addition, there’s a different base URL for each environment. You’ll want to
incorporate all of these details into the apps that use the mobile backend. You can
view these details on the Mobile Backends page. Select the mobile backend and click
one of the environments listed under the Deployments section. The values applicable
to that environment are shown in the Keys section.

Select your published mobile backend and click Deploy to open the Deployment
wizard. Go to the links at the top of the wizard to complete these deployment steps:

• Specifying a Target Environment for the Mobile Backend

• Identifying Dependencies and Deployment Effects

• Setting Environment Policies for Mobile Backends

• Deploying the Mobile Backend

To learn about deployment in MCS, see Deployment.

Specifying a Target Environment for the Mobile Backend
After a mobile backend is published, the Deploy action is enabled. This step shows
you how to designate a target environment.

1. Make sure you’re in the environment containing the mobile backend you want to
deploy.

2. Click and select Applications > Mobile Backends from the side menu.

3. Select the published mobile backend.

4. In the right section, click Deploy.

The Source Environment field is read-only and automatically defaults to the
current environment of the mobile backend.

5. Select the target environment for your deployment.

Chapter 32
Mobile Backend Lifecycle

32-15

Only the environments for which you have deployment permission are listed.

If the artifact you want to deploy has dependencies, you’ll have to resolve those
dependencies before attempting to deploy.

6. (Optional) Enter a descriptive statement about the deployment.

Identifying Dependencies and Deployment Effects
The next two navigation links let you view all the dependencies related to the artifact
and whether they’re currently deployed in the target environment. You can also see
what impact the deployment might have on other artifacts.

1. Click Dependencies.

Lists artifacts that must already be deployed to the target environment and on
which the current artifact depends. You can see potential deployment issues, such
as version conflicts, missing implementations (depending on the artifact), and so
on. This gives you the opportunity to cancel the deployment and fix any potential
issues. Afterward, you can go back and deploy your artifact.
If the call to the mobile backend that’s being deployed is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being deployed) is shown. The target mobile
backend is not a dependency of the original mobile backend, so it won’t be
automatically deployed. You must manually deploy the target mobile backend to
the target environment if it doesn’t exist there already.

2. Click Impact.

Shows notifications of possible effects on the artifact. The data displayed here is
for your information only. Assess the effects and determine whether or not to
proceed with deployment.
If there’s an issue, you can cancel the deployment process. After the issue is
resolved, you can try deploying again.

Setting Environment Policies for Mobile Backends
Each environment has policies that govern the behavior of the artifacts within that
environment. Policies and policy values in one environment can differ from policies in
another environment. For instance, if you’re deploying from a development
environment to a runtime environment, you might want a higher degree of logging
information in the runtime environment because your artifact will be thoroughly tested
there prior to being made publicly accessible. The Policies page is where you can view
the policies in both the source and target environments and edit policy values as
needed.

1. Click Policies.

2. Click Export to see a diff file of the policies.properties file showing the
policies in both the source and target environments.

Set the Sync_CollectionTimeoutToLive policy to specify the default amount of
time you want data in a storage collection to remain in the cache.

If the call to the mobile backend being deployed is rerouted to another backend,
set the Routing_RouteToBackend policy to specify the name and version of the
mobile backend being deployed (the original mobile backend) and the target
backend. The target backend is not automatically deployed with the original mobile
backend. Deploy the target mobile backend to the target environment if it doesn’t

Chapter 32
Mobile Backend Lifecycle

32-16

exist there already. See Making Changes After a Backend is Published
(Rerouting).

To get a description of policies and their default values, see Oracle Mobile Cloud
Service Environment Policies.

3. If you modified the policies.properties file, click Import to load it into the target
environment.

Deploying the Mobile Backend
View the basic details of your mobile backend deployment: the current environment,
the target environment, and any dependencies or policies. You can cancel or go back
if you want to make changes to your deployment. If you’re satisfied, you can deploy
the mobile backend.

1. Click Confirm.

The details of the deployment are displayed in a read-only section.

2. Click Deploy.

A confirmation page is displayed that informs you if the deployment succeeded.
For successful deployments, you can choose to return to the Mobile Backends
page or go to the Administration tab to review the policy settings in the target
environment.

Moving a Backend to the Trash
Remove a backend in a by moving it to the trash. A backend in the trash is no longer
listed but it’s still viable, that is, it could continue to serve requests. If the backend is
needed later on, you can restore it from the trash.

Note:

If a backend is referenced by a client, you can’t move that backend to the
trash. If the backend is in Draft state, you can disassociate it from the client
by opening the backend, selecting Clients in the navbar and clicking Delete
(X) for that client. Then you can move the backend to the trash.

An alternative to removing a backend is to deactivate it, in which case it no longer
services requests. See Deactivating a Mobile Backend for information.

1. Make sure you’re in the environment containing the backend you want to remove.

2. Click and select Applications > Mobile Backends from the side menu.

3. Select the backend.

4. In the right section, select More > Move to Trash.

5. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

Chapter 32
Mobile Backend Lifecycle

32-17

To find out how dependencies can affect moving an artifact to the trash, see
Dependencies That Affect a Move to the Trash. To restore a backend that’s in the
trash, see Restoring a Backend.

If you move a backend to the trash that has been redirected to another backend, the
redirection still occurs.

Restoring a Backend

1. Make sure that you're in the environment containing the backend that you want to
restore.

2. Click and select Applications > Mobile Backends from the side menu.

3. Click Trash ().

4. In the list of items in the trash, click by the backend you want and select
Restore from Trash.

5. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate exists. To find out more about
restoring an artifact when a duplicate artifact exists, see Restoring an Artifact.

Deactivating a Backend
If you want to stop access to a backend without deleting it, you can do so by
deactivating it. A deactivated backend can’t service any more requests. Deactivation is
most common for backends in a Published state that have been replaced by newer
versions and are no longer needed.

1. Make sure you’re in the environment containing the backend you want to
deactivate.

2. Click and select Applications > Mobile Backends from the side menu.

3. Select your backend and click Manage.

4. In the dialog that appears, select Inactive from the drop-down list to deactivate the
backend, or Active to reactivate an inactive backend.

5. Click Save.

If you deactivate a backend that has been redirected to another backend, the
redirection still occurs.

Managing a Mobile Backend
When at least one mobile backend exists, you’ll be taken to the Mobile Backends page

every time you click and select Applications > Mobile Backends from the side
menu. On the left side of the page, you see a list of all the mobile backends, their
version numbers, and their Draft or Published state (mobile backends in Trash aren’t
displayed).

On the upper right side of the Mobile Backends page, you can open, test, publish,
deploy, see runtime data about your mobile backend, and get authentication and
application key values:

Chapter 32
Mobile Backend Lifecycle

32-18

• Click Trash to see which mobile backends are in the trash.

• Click Open to see details about the selected mobile backend.

• Click Publish to change the state of the mobile backend from Draft to Published.

• Click Deploy to deploy the mobile backend to another environment.

• Click More to create a new version, update an existing version, change the
activation state, or move the mobile backend to the trash.

• Look in the Metrics section to see the number of calls to the API associated with
the mobile backend and the average response time.

• Expand Keys to obtain the values for the mobile backend ID, anonymous key
(click Show), and the application key for the associated client.

On the lower right side of the page, you view data about the selected mobile backend:

Chapter 32
Mobile Backend Lifecycle

32-19

• Expand Dependencies to see the artifacts the mobile backend is dependent on.

• Expand Deployments to see the environments that contain the selected the
mobile backend. You are only shown the environments that you have permission
to access.

Click on an environment to switch to it.

Click Manage to change the activation state of the mobile backend.

• Expand History to quickly see the latest activity for the selected mobile backend.

To see metrics information for mobile backends in another environment, for example
Staging, switch to it by selecting Staging from the environment drop-down list (across
from Metrics). Select Staging from the environment list across from Keys to see the
HTTP Basic Authentication values in the Staging environment for the Mobile Backend
ID, Anonymous Key, and Application Key fields.

To see metric and key information for mobile backends in the Production environment,
choose Production from the environment drop-down lists.

Mobile Client SDK Demo Applications
The mobile client SDK provides a single demo application, FixItFast, which runs on
each of the MCS-supported vendor platforms, iOS and Android.

FixItFast simulates an enterprise company application very close to what can be found
in the real world. Its purpose is to give application developers a good idea of what’s
possible and how this mobile application can be set up and run with MCS.

API Lifecycle
The lifecycle stages of custom APIs and API implementations are similar. Both
artifacts go through a design-time phase where each is created, tested, edited, and
then published.

The following figure shows the life stages of custom APIs and their implementations:

Chapter 32
API Lifecycle

32-20

When you create a new custom API, its version is automatically set to 1.0 and it’s
considered to be in a Draft state. In the Draft state, you can test and edit your API as
often as needed.

When you’re satisfied with your API configuration, publish it with the understanding
that a published API can’t be changed. APIs are implemented with custom code. To
make a change to a published API, create a new version of the API. For custom APIs,
you'll also need to create a new implementation for the new version.

As you develop your API, you can change the version's major and minor values as you
see fit, that is, creating a new version of your API or updating an existing version. After
you've implemented, tested, and published your API, you can deploy it to one or more
environments (for example, you can deploy from a development environment to one or
more runtime environments if you have multiple environments). Eventually, the API
may become obsolete, and you can move it to the trash.

If you think you need a better understanding of how artifacts interrelate in the overall
MCS lifecycle before exploring the lifecycle of custom APIs, see Lifecycle.

Publishing a Custom API
Before you can deploy a custom API, you must publish it first. As soon as it’s
published, the API can’t be changed. You can create a new version of it, but you
cannot edit it.

Note:

You must have an implementation associated with the API to publish it. A
mock implementation is provided by default. To associate an implementation
other than the mock implementation, open the API, and click
Implementations in the left navigation bar. Select the implementation you
want and click Set as Default.

1. Make sure you’re in the environment containing the custom API you want to
publish.

2. Click and select Applications > APIs from the side menu.

3. Select the draft API that you want to publish.

4. Click Publish.

You can enter a justification for publishing in the Comment field.

When the API is published, you’re returned to the APIs page where you can see the
updated status of your API.

Note:

Custom APIs can be published independently of implementations. When you
publish an API, the implementation isn’t published automatically. To
understand the relationship between custom APIs and their implementations,
see Custom APIs and API Implementations.

Chapter 32
API Lifecycle

32-21

Custom APIs and API Implementations
Oracle Mobile Cloud Service tracks a custom API as it's created, saved, published,
deployed, implemented, deactivated, and reactivated. Custom APIs can be published
independently or when a related mobile backend is published. The relationship
between custom APIs and their implementations is given in the following sections.

Scope and Version Format

Both custom APIs and API implementations have versions that use the format
Major.minor.

Active Versions

If you have multiple environments, each environment can contain multiple active
versions of a custom API.

Though there can be multiple active versions of an API implementation per
environment, only a single implementation version is mapped to a specific API version.

Draft and Published States

Both custom APIs and API implementation can have a Draft state or a Published state.
A custom API can be published independently or published when a related mobile
backend is published.

An API implementation can be published independently.

Actions Tracked by Oracle Mobile Cloud Service

MCS tracks the following operations for custom APIs: Create, Update, Publish, and
Move to Trash.

MCS tracks the following operations for API implementations: Create and Save.

Number of APIs Referenced From a Mobile Backend

A mobile backend can reference multiple APIs, with each API having a specific
version. That is, only one version of a given API can be referenced by a mobile
backend. For example, a mobile backend can’t reference both myAPI1.1 and
myAPI2.0, but it can reference both myAPI1.1 and yourAPI2.0.

An API implementation isn’t referenced directly by a mobile backend. The
implementation is referenced by the API version, which is in turn referenced by the
mobile backend.

Dependencies

A custom API is dependent on the active API implementation (as determined by the
environment policy).

An API implementation is dependent on the API that implements it and other APIs that
custom code call (as listed in the file manifest).

In reverse, mobile backends and API implementations are dependent on custom APIs.
For an API implementation, it is a dependency of any APIs that list it as the active or
default implementation.

Chapter 32
API Lifecycle

32-22

Environment Policy Attributes

A custom API is affected by the API version to implementation policy mapping and the
default API version setting.

An API implementation is affected by the number of node instances per virtual
machine and standard runtime policies such as read-only, log-levels, etc.

At deployment, the API version to implementation policy mapping must be set in the
target environment for a custom API. When deploying an API implementation, any
policy that is referenced must be defined in the target environment.

For descriptions of environment policies and their values, see Oracle Mobile Cloud
Service Environment Policies.

Updating the Version Number of an API
If you created a new version of an API using the New Version dialog, you can update
the version number of the API if it’s still in a Draft state. This is particularly useful if you
need to designate a different version number for it before you publish the API.

1. Make sure you’re in the environment containing the custom API you want.

2. Click and select Applications > APIs from the side menu.

3. Select the API you want.

4. Select More > Update Version Number.

5. Enter a version number of the format Major.minor.

The previous version of the API is displayed next to the field. You'll get a message
letting you know if you enter an existing version number.

6. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

7. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of APIs.

Creating a New Version of an API
You can make a new version of a custom API regardless of whether it’s in a Draft or
Published state. When you create a new version of a custom API, you are basically
cloning the API configuration and making changes to it alone. You can specify the
implementation to associate with the new version of the API. You can upgrade your
custom API easily by creating a new version of it:

1. Make sure you’re in the environment containing the custom API you want.

2. Click and select Applications > APIs from the side menu.

3. Select the API.

You can create a new version of a custom API whether it’s in a Draft or Published
state.

4. In the right section, select More > New Version.

Chapter 32
API Lifecycle

32-23

Oracle Mobile Cloud Service checks for any dependencies on other APIs and for
an associated implementation.

5. Enter a version number in the format Major.minor.

If you enter a version number that already exists, you'll get a message letting you
know that number is already in use.

6. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

7. Click Create.

A confirmation message is displayed. A draft of the new version is created and is
visible in the API Catalog.

Deploying APIs
To make a custom API accessible for use, it needs to be deployed to a runtime
environment. Generally, a custom API would get deployed at the same time as the
mobile backend with which it’s associated. When a new version of a custom API is
published, it can be deployed to a target environment.

If you deploy an artifact that depends on an API not currently in the target
environment, that API is automatically deployed, however, you won't be able to select
the implementation for that API. If that API can’t be deployed (due to version conflict or
not being in Published state, for example), the deployment process stops.

The Deployment wizard takes you, the mobile cloud administrator, through the process
of specifying your target environment, identifying any dependencies and alerting you to
any dependency issues, such as the implementation associated with the API is a mock
implementation. You’ll have the opportunity to view any possible effects that deploying
the API could have on other artifacts. Because you’re deploying from one environment
to another, the policies applied to the API in the source environment may need to
change in the target environment; you can view and modify these policies before you
deploy your API.

Select your published custom API and click Deploy to open the Deployment wizard.
Go to the links at the top of the wizard to complete these deployment steps:

• Specifying a Target Environment

• Identifying Dependencies and Deployment Effects

• Setting Environment Policies for APIs

• Deploying the API

To learn about deployment in MCS, see Deployment.

Specifying a Target Environment
After a custom API is published, the Deploy action is enabled.

1. Make sure you’re in the environment containing the custom API you want to
deploy.

2. Click and select Applications > APIs from the side menu.

3. Select the published custom API.

Chapter 32
API Lifecycle

32-24

4. Click Deploy.

The Deployment wizard opens on the Target page. The Source Environment is
read-only and automatically defaults to the current environment of the API.

5. Select the target environment for your deployment.

Only the environments for which you have deployment permission are listed.

If the artifact you want to deploy has dependencies, you’ll have to resolve those
dependencies before attempting to deploy.

6. Specify the implementation to associate with the API.

The default implementation is provided for you. If you don't want to use the default
or if the default is a mock implementation, select another published
implementation from the drop-down list.

You can deploy a custom API only if it’s associated with a published real
implementation (that is, it’s not a mock implementation). The dependencies check
in the next step shows the state of the associated implementation. If it isn’t
published or if you don’t have a real implementation associated with the API, you’ll
have to cancel the deployment and address the issue. Then you can try deploying
the API again.

7. Enter a description about the deployment.

Identifying Dependencies and Deployment Effects
The next two navigation links let you view all the dependencies related to the artifact
and whether they’re currently deployed in the target environment. You can also see
what impact the deployment might have on other artifacts.

1. Click Dependencies.

Lists artifacts that must already be deployed to the target environment and on
which the current artifact depends. You can see potential deployment issues, such
as version conflicts, missing implementations (depending on the artifact), and so
on. This gives you the opportunity to cancel the deployment and fix any potential
issues. Afterward, you can go back and deploy your artifact.
If the call to the mobile backend that’s being deployed is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being deployed) is shown. The target mobile
backend is not a dependency of the original mobile backend, so it won’t be
automatically deployed. You must manually deploy the target mobile backend to
the target environment if it doesn’t exist there already.

2. Click Impact.

Shows notifications of possible effects on the artifact. The data displayed here is
for your information only. Assess the effects and determine whether or not to
proceed with deployment.
If there’s an issue, you can cancel the deployment process. After the issue is
resolved, you can try deploying again.

Setting Environment Policies for APIs
Each environment has policies that govern the behavior of the artifacts within that
environment. Policies and policy values in one environment can differ from policies in
another environment. For instance, if you’re deploying from a development

Chapter 32
API Lifecycle

32-25

environment to a runtime environment, you might want a higher degree of logging
information in the runtime environment because your artifact will be thoroughly tested
there prior to being made publicly accessible. The Policies page is where you can view
the policies in both the source and target environments and edit policy values as
needed.

1. Click Policies.

2. Click Export to see a diff file of the policies.properties file showing the
policies in both the source and target environments.

3. (Optional) Edit a policy value as needed.

The policies that you’ll want to set at deployment are:

• Routing_BindAPIToImpl: Associates an implementation with the API.

• Network_HttpRequestTimeout: Sets the amount of time to read a request
before the operation times out. The default value is 40,000 ms.

For a description of API policies and their default values, see Oracle Mobile Cloud
Service Environment Policies. To learn about environment policies, including
scope and naming formats, see Environment Policies.

4. If you modified the policies.properties file, click Import to load it into the target
environment.

Deploying the API
View the basic details of your API deployment: the current environment, the target
environment, and any dependencies or policies. You can cancel or go back if you want
to make changes to your deployment. If you’re satisfied, you can deploy the API.

1. Click Confirm.

The details of the deployment are displayed in a read-only section.

2. Click Deploy.

A confirmation page is displayed that informs you if the deployment succeeded.
For successful deployments, you can choose to return to the APIs page or go to
the Administration tab to review the policy settings in the target environment.

Moving a Custom API to the Trash
Remove a custom API by moving it to the trash. If the API is needed later, you can
restore it from the trash.

1. Make sure that you're in the environment containing the custom API that you want
to remove.

2. Click and select Applications > APIs from the side menu.

3. Select the custom API you want to remove.

4. In the right section, select More > Move to Trash.

5. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

Chapter 32
API Lifecycle

32-26

Restoring a Custom API
1. Make sure that you're in the environment containing the custom API that you want

to restore.

2. Click and select Applications > APIs from the side menu.

3. Click Trash ().

4. Make sure APIs is selected in the trash drawer.

5. In the list of items in the trash, click by the API you want and select Restore
from Trash.

6. Click Restore in the confirmation dialog if there are no conflicts.

When you restore an API, its implementations are not restored with it. You’ll have to
manually restore the implementations you want and designate an implementation as
the default. Open the restored API, click Implementations from the navbar, and set
an implementation as the default.
Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing an API
After you create a custom API, you’ll want to edit it, publish it, see what
implementations are associated with it, in short, you want to be able to manage the
API and examine details of the APIs created by other service developers. The APIs
page gives you access to all these features.

When at least one custom API exists, you’ll be taken to the APIs page every time you

click and select Applications > APIs from the side menu. On the left side of the
page, you’ll see a list of all the custom APIs except for those in the trash. You can see
which APIs are in the Draft state and which are in the Published state. Every API is
listed by its name and version number.

The right side of the page is where you can open, test, publish, and examine data
about your custom API.

On the upper right side of the APIs page, you can perform the following actions:

• Click Open to view details and settings for the selected custom API.

• Click More to create a new version, update an existing version, or move an API to
the trash.

Chapter 32
API Lifecycle

32-27

• Expand Implementations to see what implementations are available, along with
their version numbers and whether they are in a Draft or Published state. Click
Manage to go directly to the Implementations page.

• Expand Deployments to see the environments that contain the selected the API.
You are only shown the environments that you have permission to access.

Click on an environment to switch to it.

On the lower right side of the page, you view data about the selected API:

• Expand Used By to see the list of the backends that call on the API.

Click All Usages to see the complete list.

• Expand the History section to quickly see the latest activity for the selected
custom API.

API Implementation Lifecycle
After you have an API implementation in a Draft state that’s configured and tested,
you’re ready to publish and deploy it to another environment. API implementations go
through the same lifecycle phases as APIs, in addition to being published and
deployed, new versions can be created, existing versions can be updated, and
obsolete implementations can be moved to the trash.

Remember that after an API implementation is published, it can’t be changed. If you’re
still configuring and testing the implementation, keep it in a Draft state until it’s ready
for the next phase of the lifecycle.

If you think you need a better understanding of how artifacts interrelate in the overall
MCS lifecycle before exploring the lifecycle of API implementations, see Lifecycle.

Publishing an API Implementation
You can publish an implementation that contains real, non-mock data from the API
Implementation page. Implementations can be published independently of APIs and
can have separate versions as well. This lets you make changes to a published
implementation, such as minor modifications or bug fixes, without requiring the API
itself to be updated.

1. Make sure you’re in the environment containing the API implementation that you
want to publish.

Chapter 32
API Implementation Lifecycle

32-28

2. Click and select Applications > APIs from the side menu.

3. Select the API associated with the implementation that you want to publish.

4. Expand Implementations in the right section and click Manage.

The API Implementation page is displayed:

You can see the list of dependencies by expanding the Dependencies section of
the API Implementation page. The API associated with the implementation and
any other APIs or connectors that the implementation calls are listed. You can see
which dependency is in a Draft state, a Published state, or is unresolved.

5. Select the implementation and click Publish.

A dependency search is performed. If unresolved dependencies are found, the
implementation can’t be published. Resolve the issue and try publishing the
implementation again.

If any API dependencies are declared through the Oracle-Mobile-API-Version
header instead of through the package.json file, the API Designer isn’t aware of
dependencies declared through the header and won’t prompt you with information
when you publish the calling API. In this case, you must remember to publish the
dependent API yourself.

6. If unpublished dependencies are found, click Publish All to publish all the listed
unpublished artifacts.

If you don’t want to publish all the dependencies with your implementation, click X
to cancel the operation. You can either publish the dependencies individually or
edit your implementation to remove them.

Chapter 32
API Implementation Lifecycle

32-29

When the implementation is published, the Deploy command is enabled.

Creating a New Version or Updating the Version of an API
Implementation

Implementations can be published independently of APIs and can have separate
versions as well. This lets you make changes to a published implementation, such as
minor modifications or bug fixes, without requiring the API itself to be updated. You
can create a new version of an API Implementation that is in a Draft or Published
state. If you want to make changes to a published implementation, you must create a
new version of it.

If you have previously uploaded an implementation with a given version specified and
that implementation is still in a Draft state, you can replace that version without
incrementing the version number. This might be desirable if you’ve uploaded the
implementation and find, after testing the implementation, that there are further
changes that you need to make before you can publish the changes. After you’ve
published a version, that version is final.

You can also update the version number of an implementation in a Draft state. The
process for both is the same. You set the version attribute in the implementation’s
package.json file.

1. Open the package.json file and change the version attribute. For example,
change “version”:”1.0” to “version”:”1.1”.

2. Upload a zip file of the modified implementation to the associated API version.

Some key points to know about implementation versions are:

• Implementation versions are maintained independently of API versions. When you
publish an API, the implementation isn’t published automatically.

• When you upload a new version of an implementation, it becomes the default
version (active implementation) for that API. You can change the default version in
the API’s Implementations page.

• The custom API’s Routing_BindApiToImpl policy defines the association between
an API version and the implementation version.

Deploying an API Implementation
When an API implementation is published, it can be deployed to a target environment.
Note that you must be a mobile cloud administrator to deploy an implementation. The
Deployment wizard takes you through the process of specifying your target
environment, identifying any dependencies and alerting you to any dependency
issues, such as connectors that the implementation is associated with. You’ll have the
opportunity to view any possible effect that deploying the API implementation could
have on other artifacts. Because you’re deploying from one environment to another,
the policies applied to the API implementation in the source environment may need to
change in the target environment; you can view and modify these policies before you
deploy your implementation.

Select your published custom API and click Deploy to open the Deployment wizard.
Go to the links at the top of the wizard to complete these deployment steps:

• Specifying a Target Environment for the Implementation

Chapter 32
API Implementation Lifecycle

32-30

• Identifying Dependencies and Deployment Impact

• Setting Environment Policies for an API Implementation

• Deploying the Implementation

To learn about deploying artifacts in MCS, see Deployment.

Specifying a Target Environment for the Implementation
1. Make sure you’re in the environment containing the API Implementation that you

want to deploy.

2. Click and select Applications > APIs from the side menu.

3. Select the API associated with the implementation that you want to deploy.

4. Expand Implementations on the right and click Manage.

5. Select the implementation on the API Implementation page and click Deploy.

The Source Environment field is read-only and automatically defaults to the
current environment of the API.

6. Select the target environment.

Only the environments for which you have deployment permission are listed.
If the artifact you want to deploy has dependencies, you’ll have to resolve those
dependencies before attempting to deploy.

7. (Optional) Enter a description about the deployment.

Identifying Dependencies and Deployment Effects
The next two navigation links let you view all the dependencies related to the artifact
and whether they’re currently deployed in the target environment. You can also see
what impact the deployment might have on other artifacts.

1. Click Dependencies.

Lists artifacts that must already be deployed to the target environment and on
which the current artifact depends. You can see potential deployment issues, such
as version conflicts, missing implementations (depending on the artifact), and so
on. This gives you the opportunity to cancel the deployment and fix any potential
issues. Afterward, you can go back and deploy your artifact.
If the call to the mobile backend that’s being deployed is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being deployed) is shown. The target mobile
backend is not a dependency of the original mobile backend, so it won’t be
automatically deployed. You must manually deploy the target mobile backend to
the target environment if it doesn’t exist there already.

2. Click Impact.

Shows notifications of possible effects on the artifact. The data displayed here is
for your information only. Assess the effects and determine whether or not to
proceed with deployment.
If there’s an issue, you can cancel the deployment process. After the issue is
resolved, you can try deploying again.

Chapter 32
API Implementation Lifecycle

32-31

Setting Environment Policies for an API Implementation
You’re almost ready to deploy the API implementation. Each environment has policies
that govern the behavior of the implementation within that environment. Policies and
policy values in one environment can differ from policies in another environment. For
instance, if you’re deploying from a development environment to a runtime
environment, you might want a higher degree of logging information in the runtime
environment because your artifact will be thoroughly tested there prior to being made
publicly accessible. The Policies page is where you can view the policies in both the
source and target environments and edit policy values as needed.

1. Click Policies.

2. Click Export to see a diff file of the policies.properties file showing the
policies in both the source and target environments.

3. (Optional) Edit a policy value as needed.

The policies that you’ll want to modify when you deploy an implementation are:

• CCC_Log_Body: Logs the request body when set to true ; useful for debugging
purposes. The default value is false.

• CCC_Log_Body_MaxLength: Sets the character limit in the request body to log.
The default value is 512. This policy is used with CCC_Log_Body.

In general, the default values for these policies should be sufficient.

For a description of environment policies and their default values, see Oracle
Mobile Cloud Service Environment Policies. To learn about environment policies,
including scope and naming formats, see Environment Policies.

4. If you modified the policies.properties file, click Import to load it into the
target environment.

Deploying the Implementation
View the basic details of your API implementation deployment: the current
environment, the target environment, and any dependencies or policies. You can
cancel or go back if you want to make changes to your deployment. If you’re satisfied,
you can deploy the implementation.

1. Click Confirm.

The details of the deployment are displayed in a read-only section.

2. Click Deploy.

You are taken back to the APIs page.

Moving an API Implementation to the Trash
Remove an API implementation by moving it to the trash. If the implementation is
needed later, you can restore it from the trash.

1. Make sure that you're in the environment containing the API implementation that
you want to remove.

2. Click and select Applications > APIs from the side menu.

Chapter 32
API Implementation Lifecycle

32-32

3. Select the API associated with the implementation.

4. Click Implementations in the API navigation bar.

5. Select the draft API implementation to remove.

6. Click Move to Trash.

Only real implementations (not mock implementations) can be moved to the trash.
If you’re moving the current default implementation to the trash, the next most
recent version of the implementation is automatically set to the default. If no other
implementations exist, the mock implementation is made the default.

7. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

To find out how dependencies can affect moving an artifact to the trash, see
Dependencies That Affect a Move to the Trash. To restore an API implementation
that’s in the trash, see Restoring an API Implementation.

Restoring an API Implementation
1. Make sure that you're in the environment containing the API implementation that

you want to restore.

2. Click and select Applications > APIs from the side menu.

3. Select the API associated with the implementation.

4. Click Trash ().

5. Select Implementations in the trash drawer.

6. In the list of items in the trash, click by the implementation you want and select
Restore from Trash.

7. Click Restore in the confirmation dialog if there are no conflicts.

If you’re restoring an implementation that was used by an API, the implementation
won’t be restored as the default (active) implementation for the API. You’ll have to
reset the implementation as the default from the Implementations page (select the API
and click Implementations in the navbar).
Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Connector Lifecycle
The lifecycle stages of all connectors are the same. Each type of connector goes
through a design-time phase where each is created, tested, edited, and then
published.

For all connectors, there are the creation phase, the testing and editing phase, the
publishing phase, and the deployment phase. When you create a new connector, its
version is automatically set to 1.0 and it’s considered to be in a Draft state. In the Draft
phase, you can test and edit your API as often as needed. When you’re satisfied with
your connector configuration, publish it with the understanding that a published
connector can’t be changed.

Chapter 32
Connector Lifecycle

32-33

As you develop your connector, you can change the version's major and minor values
as you see fit, that is, creating a new version of your API or updating an existing
version. After you've implemented, tested, and published your connector, you can
deploy it to one or more environments (for example, you can deploy from a design
time environment to one or more runtime environments if you have multiple
environments). Eventually, a connector may become obsolete, and you can move it to
the trash.

If you think you need a better understanding of how artifacts interrelate in the overall
MCS lifecycle before exploring the lifecycle of connectors, see Lifecycle.

Publishing a Connector
Before you can deploy a connector, you must publish it first:

1. Make sure you’re in the environment containing the connector you want to publish.

2. Click and select Applications > Connectors.

3. Select the draft connector that you want to publish.

4. Click Publish.

(Optional) You can enter a justification for publishing the connector in the
Comment field.

When the connector API is published, you’re returned to the Connectors page where
you can see the updated status of your connector.

Updating the Version Number of a Connector
If you created a new version of a connector using the New Version dialog, you can
update the version number of the connector if it’s still in a Draft state. This is
particularly useful if you want to create an alternate version of the current connector or
need to designate a different version number before you publish the connector.

1. Make sure you’re in the environment containing the connector you want to update.

2. Click and select Applications > Connectors from the side menu.

3. Select the connector from the list.

4. In the right section, select More > Update Version Number.

5. Enter a version number of the format Major.minor.

The previous version of the connector is displayed next to the field. You'll get a
message letting you know if you've entered an existing version number.

6. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

7. Click Update.

A confirmation message is displayed. A draft of the new version is added to the list
of connectors.

Chapter 32
Connector Lifecycle

32-34

Creating a New Version of a Connector
You can make a new version of a connector regardless of whether it’s in a Draft or
Published state. When you create a new version of a connector, you’re basically
cloning the connector configuration and making changes to it. You can make minor
changes or expand upon already defined functionality to create a backward-
compatible API. A major update, however, can result in a disruption of mobile services
to your customers due to invalid values being requested or returned, an inability to
read the same file formats as the previous version, and so on. Major changes,
therefore, aren’t backward-compatible.

1. Make sure you’re in the environment containing the connector you want.

2. Click and select Applications > Connectors from the side menu.

3. Select a connector from the list.

You can create a new version of a connector whether it is in a Draft or Published
state

4. In the right panel, select More > New Version.

5. Select whether the new version of the connector is backward-compatible with the
previous version (the default selection).

6. Enter a version number in the format Major.minor.

If you enter a version number that already exists, you'll get a message letting you
know that number is already in use.

7. (Optional) Add a brief description that states what distinguishes this version from
the previous one.

8. Click Create.

A confirmation message is displayed. A draft of the new version is added to the
Connector page.

Deploying Connectors
To make your connector accessible for use, it needs to be deployed to a runtime
environment. When a new version of a connector is published, it can be deployed to a
target environment. The Deployment wizard takes you, the mobile cloud administrator,
through the process of specifying your target environment, identifying any
dependencies, and alerting you to any dependency issues, such as an API
implementation that calls on the connector. You’ll have the opportunity to view any
possible effects that deploying the API could have on other artifacts. Because you’re
deploying from one environment to another, the policies applied to the API in the
source environment may need to change in the target environment; you can view and
modify these policies before you deploy your connector.

Select your published connector and click Deploy to open the Deployment wizard. Go
to the links at the top of the wizard to complete these deployment steps:

• Specifying a Target Environment

• Identifying Dependencies and Deployment Impact

• Setting Environment Policies for Connectors

Chapter 32
Connector Lifecycle

32-35

• Deploying the Connector

To learn about deploying artifacts in MCS, see Deployment.

Specifying a Target Environment
After a connector is published, the Deploy action is enabled.

1. Make sure you’re in the environment containing the connector you want to deploy.

2. Click and select Applications > Connectors from the side menu.

3. Click Deploy.

The Deployment wizard opens on the Target page. The Source Environment field
is read-only and automatically defaults to the current environment of the API.

4. Specify the target environment for your deployment.

Only the environments for which you have deployment permission are listed.

If the artifact you want to deploy has dependencies, you’ll have to resolve those
dependencies before attempting to deploy.

5. (Optional) Enter a description about the deployment.

Identifying Dependencies and Deployment Effects
The next two navigation links let you view all the dependencies related to the artifact
and whether they’re currently deployed in the target environment. You can also see
what impact the deployment might have on other artifacts.

1. Click Dependencies.

Lists artifacts that must already be deployed to the target environment and on
which the current artifact depends. You can see potential deployment issues, such
as version conflicts, missing implementations (depending on the artifact), and so
on. This gives you the opportunity to cancel the deployment and fix any potential
issues. Afterward, you can go back and deploy your artifact.
If the call to the mobile backend that’s being deployed is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being deployed) is shown. The target mobile
backend is not a dependency of the original mobile backend, so it won’t be
automatically deployed. You must manually deploy the target mobile backend to
the target environment if it doesn’t exist there already.

2. Click Impact.

Shows notifications of possible effects on the artifact. The data displayed here is
for your information only. Assess the effects and determine whether or not to
proceed with deployment.
If there’s an issue, you can cancel the deployment process. After the issue is
resolved, you can try deploying again.

Setting Environment Policies for Connectors
You’re almost done with the deployment. Each environment has policies that govern
the behavior of the artifacts within that environment. Policies and policy values in one
environment can differ from policies in another environment. For instance, if you’re
deploying from a development environment to a runtime environment, you might want

Chapter 32
Connector Lifecycle

32-36

a higher degree of logging information in the runtime environment because your
artifact will be thoroughly tested there prior to being made publicly accessible. The
Policies page is where you can view the policies in both the source and target
environments and edit policy values as needed.

1. Click Policies.

2. Click Export to see a diff file of the policies.properties file showing the
policies in both the source and target environments.

3. Uncomment the policies for the connector.

The policies that you’ll want to uncomment when you deploy a connector are:

• Connector_Endpoint: Stores the endpoint URL of the connector.

• Network_HttpReadTimeout: Sets the amount of time spent waiting to read
data.

• Network_HttpConnectTimeout: Sets the amount of time spent connecting to
the remote service.

• Routing_BindApiToImpl: Specifies the implementation to which the connector
API is bound.

• Security_OwsmPolicy : Specifies the security policy used for outbound
security.

Remember that when you deploy a connector, the credentials for any CSF
keys defined for the connector’s security policies aren’t carried over to the
target environment. You’ll want to tell your mobile cloud administrator to
update the CSF keys so they can be used in the target environment.

The initial values for these policies are set when the connector is created.

Note:

Be aware that the Connector_Endpoint and the Security_OwsmPolicy
policies should never be set at the environment level, that is, the values
for these policies shouldn’t be applied globally to all connectors within an
environment. These policies should be set specifically to individual
connectors.

For descriptions of environment policies and their default values, see Oracle
Mobile Cloud Service Environment Policies.

4. If you modified the policies.properties file, click Import to load it in the
target environment.

Chapter 32
Connector Lifecycle

32-37

To learn about environment policies, including scope and naming formats, see
Environment Policies.

Deploying the Connector
View the basic details of your API deployment: the current environment, the target
environment, and any dependencies or policies. You can cancel or go back if you want
to make changes to your deployment. If you’re satisfied, you can deploy the connector.

1. Click Confirm.

The details of the deployment are displayed in a read-only section.

2. Click Deploy.

A confirmation page is displayed that informs you if the deployment succeeded.
For successful deployments, you can choose to return to the Connectors page or
go to the Administration tab to review the policy settings in the target environment.

Moving a Connector to the Trash
Remove a connector by moving it to the trash. If the connector is needed later, you
can restore it from the trash.

1. Make sure that you’re in the environment containing the connector you want to
remove.

2. Click and select Applications > Connectors from the side menu.

3. Select the connector.

4. In the right section, select More > Move to Trash.

5. Click Trash in the confirmation dialog if there are no dependency issues.

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

To find out how dependencies can affect moving an artifact to the trash, see
Dependencies That Affect a Move to the Trash.

To restore a connector that’s in the trash, see Restoring a Connector.

Restoring a Connector
1. Make sure that you're in the environment containing the connector that you want

to restore.

2. Click and select Applications > Connectors from the side menu.

3. Click Trash ().

4. In the list of items in Trash, click by the connector you want and select Restore
from Trash.

5. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Chapter 32
Connector Lifecycle

32-38

Managing a Connector
After you create a connector, you’ll want to edit it, publish it, see what artifacts are
associated with it, in short, you want to be able to manage the connector and examine
details of the connectors created by other service developers. The Connectors page
gives you access to all these features.

When at least one connector exists, you’ll be taken to the Connectors page every time

you click and select Applications > Connectors from the side menu. On the left
side of the page, you see a list of all the connectors except for those in the trash. You
can see which connectors are in the Draft or Published state. Every connector is listed
by its name and version number.

The right side of the Connectors page is where you can open, test, publish, or
examine data about the connector:

On the right side of the page, you can perform the following actions:

• Click Open to see details about the selected connector.

• Click More to create a new version, update an existing version, or move an
connector to the trash.

• Expand Deployments to see the environments that contain the selected the
connector. You are only shown the environments that you have permission to
access.

Click on an environment to switch to it.

• Expand Used By to see the list of the implementations that call on the connector.

• Expand History to quickly see the latest activity for the connector.

Collection Lifecycle
The collection lifecycle involves moving from the Draft state to the Published state and
finally deploying to the outside world.

Publishing is the prerequisite to deploying a collection. After you publish a collection, it
can’t be modified. While you can publish a collection and also create a new version of
a collection, you can also remove a collection as described in Moving a Collection to
the Trash.

Chapter 32
Collection Lifecycle

32-39

If you think you need a better understanding of how artifacts interrelate in the overall
MCS lifecycle before exploring the lifecycle of collections, see Lifecycle.

Publishing a Collection
You create a collection within the context of a backend. When you’re satisfied with that
collection, you can publish it.

1. Make sure you’re in the environment containing the collection that you want to
deploy.

2. Click and select Applications > Storage from the side menu.

3. Select the collection you want to publish.

4. In the Details section on the right, click Publish.

Note:

You can publish a draft collection whenever you feel that it’s complete. After
it's published, however, it can't be changed.

A collection can also be published involuntarily when a backend associated with a
collection is published. If the associated collection isn’t yet published, it will be
published automatically to support the backend.

When a collection is published:

• Its metadata (its description and access roles) are frozen. To update the
collections metadata, you must create a new version.

• The major version (given the version that you arbitrarily defined) is incremented.

• It’s no longer in your personal development space. It’s available for anyone with
the proper permissions to associate with a backend.

• Instance data isn’t moved with the collection.

Note:

Instance data (such as actual user objects or actual collection objects
stored in collections) is typically created at runtime, or by user scripts or
code as part of a configuration. It isn't moved with the collection.

The published collection can be deployed to different environments.

Updating the Version Number of a Collection
When you update a version, the new number is backward-compatible and the
collection history continues.

1. Make sure you’re in the environment containing the collection that you want to
update.

Chapter 32
Collection Lifecycle

32-40

2. Click and select Applications > Storage from the side menu.

3. Select a collection.

4. In the Details section, select More > Update Version Number.

5. Specify an optional comment and click Update.

The collection history reflects the incremented number.

Creating a New Version of a Collection
You can’t copy a collection, but you can save yourself some time by creating a new
version of an existing collection. If you create a new version, you’ll have the same
data. It is possible to rename the collection and reset the version as long as the
collection is in a Draft state.

If you want a collection that starts with 1.0 and that has the same data as another
collection, you must make a new collection and import the data.

When you create a new version number, an independent collection is spawned from
that point with a new history that’s unrelated to the previous collection. Any data is
carried forward to the new version.

Note:

A collection can’t have more than one version of an object.

1. Make sure you’re in the environment containing the collection that you want.

2. Click and select Applications > Storage from the side menu.

3. Select a collection.

4. In the Details section on the right, select More > New Version.

5. Specify an optional comment and click Update.

Deploying a Collection
When a collection is published, it can be deployed to a target environment. The
Deployment wizard takes you, the mobile cloud administrator, through the process of
specifying your target environment, identifying any dependencies, and alerting you to
any dependency issues, such as the realm the collection is associated with. You’ll
have the opportunity to view any possible effect that deploying the collection could
have on other artifacts. Because you’re deploying from one environment to another,
the policies applied to the collection in the source environment may need to change in
the target environment; you can view and modify these policies before you deploy your
collection.

1. Make sure you’re in the environment containing the collection that you want to
deploy.

2. Click and select Applications > Storage from the side menu.

3. Select the collection that you want to deploy.

Chapter 32
Collection Lifecycle

32-41

4. In the right panel, click Deploy.

The Source Environment field is read-only and automatically defaults to the
current environment of the collection.

5. Specify the target environment.

Only the environments for which you have deployment permission are listed.

If the artifact you want to deploy has dependencies, you’ll have to resolve those
dependencies before attempting to deploy.

6. (Optional) Enter a comment about the deployment.

7. Skip Dependencies and move on to the Impact page.

The Dependencies page shows you the dependencies for the artifact being
deployed. Because collections have no dependencies, you can skip this page.

8. Click Impact.

The Impact page lists artifacts in the target environment that are affected when the
realm is deployed. The data displayed is for your information only. Assess the
effects and determine whether or not to proceed with the deployment.

9. Click Policies.

a. Click Export to see a diff file of the policies.properties file showing the
policies in both the source and target environments.

b. (Optional) Edit a policy as needed.

The policies that you’ll want to set at deployment are:

• Logging_Level: Sets the logging level.

• Sync_CollectionTimeToLive: Sets the amount of time that data requested
by a mobile application is stored in the cache.

For a description of environment policies and their default values, see Oracle
Mobile Cloud Service Environment Policies. To learn about environment
policies, including scope and naming formats, see Environment Policies.

c. If you modified the policies.properties file, click Import to load it into the
target environment.

10. Click Confirm and view the deployment configuration, then click Deploy.

Moving a Collection to the Trash
Remove a collection by moving it to the trash. Moving a collection to the trash means
it’s no longer listed but it’s still viable. If the collection is needed later, you can restore
it.

1. Make sure that you’re in the environment containing the collection you want to
remove.

2. Click and select Applications > Storage from the side menu.

3. Select the collection you want to remove.

4. In the Details section on the right, select More > Move to Trash.

5. Click Trash in the confirmation dialog if there are no dependency issues.

Chapter 32
Collection Lifecycle

32-42

If you think you or someone else might restore it later on, enter a brief comment
about why you're putting this item in the trash.

Although only a mobile cloud administrator can purge a collection (eliminate it
permanently), you can delete an object in a collection using the command-line
operation, DELETE.

To find out how dependencies can affect moving an artifact to the trash, see
Dependencies That Affect a Move to the Trash.

To restore a collection in the trash, see Restoring a Collection.

Restoring a Collection
1. Make sure that you're in the environment containing the collection that you want to

restore.

2. Click and select Applications > Storage from the side menu.

3. Click Trash ().

4. In the list of items in the trash, click by the collection you want and select
Restore from Trash.

5. Click Restore in the confirmation dialog if there are no conflicts.

Restoring an artifact can cause conflicts if a duplicate artifact already exists. To restore
an artifact when a duplicate artifact exists, see Restoring an Artifact.

Managing a Collection
After you create a collection, you’ll want to edit it, publish it, and in short, manage the
collection and examine details of collections created by other mobile developers. The
Storage page gives you access to all these features.

When at least one collection exists, you’ll be taken to the Storage page every time you

click and select Applications > Storage from the side menu. On the left side of
the page, you’ll see a list of all the collections except for those in the trash. You can
see which collections are in the Draft state and which are in the Published state. Every
collection is listed by its name and version number.

The upper right side of the page is where you can open, test, and publish, deploy, and
see which environments contain the selected collection:

• Click Open to see details about the selected collection.

• Click Publish to change the state of your collection from Draft to Published.

Chapter 32
Collection Lifecycle

32-43

• Click Deploy to deploy your published collection to another environment.

• Click More to create a new version, update an existing version, associate the
collection with a backend, or move a collection to the trash.

• Expand Deployments to see the environments that contain the selected the
collection. You are only shown the environments that you have permission to
access.

Click on an environment to switch to it.

On the lower right of the page, you can examine usage and history details:

• Expand Used By to see which backends are associated with the collection. To
disassociate the selected collection from an artifact that uses it, click X next to the
artifact’s name.

• Expand the History section to quickly see the latest activity for the selected
collection.

Chapter 32
Collection Lifecycle

32-44

33
Testing APIs and Mobile Backends

From the time that you begin implementing the specifications for a mobile app project
in Oracle Mobile Cloud Service (MCS) to when you deploy its components and
beyond, your team members will be involved in testing their work. Here’s an overview
of the various tests that your team might conduct for each phase of the project. We will
also talk about how to diagnose the issues that your tests expose.

Use Case: End-to-End Testing
In this scenario, FixItFast (FiF) is a company that supplies maintenance services for
large in-house appliances. To help facilitate speed and quality of service, FiF has
requested a set of mobile apps for communicating and coordinating service requests.
These mobile apps will be used by customers, customer representatives, and
technicians.

Eric, the enterprise architect at FiF, has been assigned the task to design a convenient
mobile interface for reporting household appliance issues. The interface must tie in
with the existing repair dispatch service and an appliance manual service. While the
MCS UI makes it easy for ad hoc testing, Eric puts strong emphasis on well-
documented, traceable, repeatable tests that can be easily automated. To encourage
his team to pursue his goals, when he designs the overall end-to-end mobile solution,
he puts significant effort into defining tests to address business rules, security,
scalability, and performance.

Using Eric’s specifications, Mia, the mobile app developer, designs the endpoints for
the custom API. One of the apps that uses the API is for customers, another is for
customer reps, and another is for the FiF technicians. Therefore, Mia must configure
the appropriate security for each endpoint. Some endpoints can be used by only one
role, and others can be used by two or more roles. She uses Eric’s test designs to
create the mock data for the API. She then uses the test UI to verify her design, being
sure to include security tests for any roles that she has associated with the endpoints.

As soon as the custom API is created with its mock data, Mia creates a mobile
backend and associates it with the API. She then uses a REST testing library to
implement the test suite that Eric designed for the API, and she performs the initial
regression tests, which, at this point, use the API’s mock data. From this point forward,
Mia will monitor the backend’s diagnostics page so that she can address runtime
issues early, especially those caused by reconfiguring storage, realms, API roles,
security policies, or service policies.

Before he starts implementing the code for the custom API, Jeff, the service
developer, creates the connectors for the web services that feed data to the API, such
as the repair dispatch service and the repair manual service. Jeff uses the test UI for
ad hoc verification that the connectors work as expected. He also wants to implement
formal tests for those connectors. These tests do nothing but check that the
connectors are in a good state. To build the tests, Jeff creates a custom API for each
connector. For each of his test APIs, he creates a module based on Node.js that
serves as a pass-through for the HTTP requests. He then creates connector tests and
adds them to the test suite to ensure that the connectors provide the expected results.

33-1

If issues arise, the tests can help detect whether the problem stems from the web
service or the code that uses the connector. After the connectors are moved to to a
runtime environment, the tests will be used to ensure that the web services that are
used by the connectors still work as expected.

It’s Jeff’s job to implement the code for the custom API that Mia designed. Before and
during custom code implementation, Jeff uses the test UI to perform ad hoc testing. He
also creates white box tests to cover code paths in depth. After each upload of the
implementation zip file, Jeff makes it a practice to run the original black box tests and
the new white box tests to ensure the integrity of the whole implementation. Jeff also
makes the tests available to the quality assurance team.

Amanda, the mobile cloud administrator, creates pre- and post-publish checklists for
the mobile backend, the associated APIs, the custom code implementation, and the
connectors that the APIs depends on. These checklists use the API, connector, and
mobile backend tests. Amanda is concerned not only with verifying functionality, but
also with verifying other specified characteristics such as timing. She also creates
checklists to be performed before and after moving to production, remembering that
the differences in environment security policies, service policies, and user
management configurations can introduce new issues.

Last, Amanda schedules automated tests to monitor for unexpected failures, such as
those caused by larger-than-expected requests or a connector that uses a third-party
web service that has become unavailable. These tests, along with the live
performance data that the Administration page provides, are part of Amanda’s toolbox
for ensuring a healthy system.

How Can I Test an API?
The Oracle Mobile Cloud Service (MCS) UI has test pages for testing the endpoints of
the platform, connector, and custom APIs. You also can use HTTP tools such as cURL
to test the platform and custom APIs remotely.

Testing a Platform or Custom API from the UI
Every platform and custom API has a test page that you can use to send a request to
any of the API endpoints and view the response.

Here’s how to test the API from a mobile backend:

1. Open the mobile backend.

2. Click APIs, and then select the API.

3. From the endpoints list on the left side of the Endpoints page, click the endpoint
that you want to test.

4. If the endpoint has parameters, then enter the required parameters and any
optional parameters that you want to test.

5. If the endpoint accepts a body, then provide the body or click Use Example.

6. In the Authentication section, select the authentication method. Ensure that you
use an authentication method that’s enabled for mobile backend that you selected.
You enable an authentication method on the backend’s Settings page.

7. If Login Required is turned on for the API (that is, anonymous access isn’t
allowed), then enter the credentials for the user that you want to test.

Chapter 33
How Can I Test an API?

33-2

The test page enforces all security constraints that are configured for the API in
the same way that they are enforced for a mobile client request. For example, if a
custom API requires enterprise login, then the mobile user must be in the realm
that’s associated with the mobile backend or the test will fail. In addition, if that
API, or the endpoint that you are testing, requires a specific role for access, the
mobile user must be granted that role for the test to succeed. Finally, if that API
and it's endpoints aren't configured for any roles, and the API is not set to allow
anonymous access, then no user can access the API. For more information, see
Setting Access to the API.

8. Click Test Endpoint.

The Response Status section displays the status and the response. Click Request
to see the request URI and headers.

The following topics provide more details about specific API types:

• Testing Your Custom API

• Testing API Endpoints Using Mock Data

• Testing APIs in a Mobile Backend with SSO Login

• Getting a Facebook User Access Token Manually

• Headers Needed for API Calls with Facebook Authentication

• Testing Runtime Operations Using the Endpoints Page for the Storage API

Testing a Connector API from the UI
Every connector has a test page that you can use to send a request to any of the API's
endpoints and view its response. This test page enables you to determine if the
connector is configured correctly. You can also use it to troubleshoot custom code that
uses the connector. If the custom code response is not what you expected, then you
can compare it with the test page response to determine whether your code introduced
a bug.

To lean how to test a connector from the UI, see Testing the REST Connector API.

Testing Platform and Custom APIs Remotely
The MCS test pages are great for ad hoc testing and the MCS Custom Code Test
Tools help with iterative testing and debugging of custom code. However, for formal
testing, you need to set up tests that access the platform and custom APIs remotely.
By formalizing the tests, you ensure that the entire test suite is exercised every run,
and that the expected results are documented. In addition, you can set up the tests to
run automatically. Another reason to run the tests remotely is that the MCS test UI
automates some actions or exercises them differently, such that the UI tests might not
represent true end-to-end simulations of external requests. For example, when you
test a custom API from the MCS UI, some of the authentication setup is done
automatically. Last, you must test remotely if you need to add or modify a header and
the UI does not provide a field for doing so.

The way you remotely access a platform or custom API endpoint depends on the type
of authentication that you want to use. See:

• Authenticating with HTTP Basic in Direct REST Calls

• Authenticating with OAuth in Direct REST Calls

Chapter 33
How Can I Test an API?

33-3

• Getting a Single Sign-On OAuth Token through a Browser

• Getting a Facebook User Access Token Manually

• Headers Needed for API Calls with Facebook Authentication

When you create a custom API, MCS creates a mock implementation that you can use
for testing before you implement the custom code. You also can use the mock
implementation to configure a response for a mobile application test case. After you
have uploaded an implementation, you can switch to the mock implementation for
testing purposes by making it the default. For more information, see Testing with Mock
Data.

If your request is in a test suite, then you can put the name of the test suite in the
Oracle-Mobile-Diagnostic-Session-ID header. The name appears as the app
session ID in the log messages. This lets you filter the log data on the Logs page by
entering the test suite name in the Search text box. Also, when you are viewing a
message’s details, you can click the app session ID in the message to view all the
messages with that ID. For more information about using the Oracle-Mobile-
Diagnostic-Session-ID header, see How Client SDK Headers Enable Device and
Session Diagnostics.

Troubleshooting Unexpected Test Results
When a test fails for a request, examine the response’s HTTP status code and the
returned data to identify the issue. Status codes in the 200 range indicate success.
Status codes in the 400 range indicate a client error where the calling client has done
something the server doesn't expect or won’t allow. Depending on the 4XX error, this
may require fixing custom code, giving a user the necessary privileges, or
reconfiguring the server to allow requests of that type, for example. Status codes in the
500 range indicate that the server encountered a problem that it couldn't resolve. For
example, the error might require reconfiguring server settings. Here are some common
standard HTTP error codes and their meanings:

Status Code Description

400 BAD REQUEST General error when fulfilling the request would cause an
invalid state, such as missing data or a validation error.

401 UNAUTHORIZED Error due to a missing or invalid authentication token.

403 FORBIDDEN Error due to user not having authorization or if the
resource is unavailable.

404 NOT FOUND Error due to the resource not being found.

405 METHOD NOT ALLOWED Error that although the requested URL exists, the HTTP
method isn’t applicable.

500 INTERNAL SERVER ERROR General error when an exception is thrown on the server
side.

To pinpoint where the error occurred, open the mobile backend, click Diagnostics,

and then click Requests. Next, find the request, click View related log entries in
the Related column, and then select Log Messages Related by API Request. To
see a message’s details, click the time stamp. From the Message Details dialog, you
can click the up and down arrows to see all the related log messages. Note that if
there isn’t sufficient information in a request to enable MCS to determine the

Chapter 33
Troubleshooting Unexpected Test Results

33-4

associated backend, then the related log messages appear only in the Logs page that
is available from the Administration page.

If you are a mobile cloud administrator, you can view the log from Administration
page. Click to open the side menu. Next, click Administration, and then click
Request History.

For details about how to use the diagnostic logs, see Viewing Log Messages.

If you don’t see any messages that help identify the source of the problem, you can

change to a finer level for logging messages. Click Log Level in the Logs page,
change the log level for the mobile backend, and then rerun the test. If you’re
troubleshooting custom code, then you can add your own log messages to the custom
code, as described in Inserting Logging Into Custom Code, to help identify the code
that’s causing the problem.

When troubleshooting an unexpected result, consider that the cause might be due to a
rerouting of the call to the mobile backend as described in Making Changes After a
Backend is Published (Rerouting). If the mobile backend was rerouted, check to see if
the following conditions were met:

• If the API was accessed using social identity, then the access token of the provider
that was entered in the Authentication header must be the access token of the
provider of the target mobile backend (that is, the mobile backend to which the
original mobile backend was redirected).

• If the API was accessed by a mobile user, then the user must be a member of the
realm that is associated with the target mobile backend (the mobile backend to
which the original mobile backend is being redirected).

Tip:

If, in a request, you set the Oracle-Mobile-Diagnostic-Session-ID header
to an identifier for the suite, that value is displayed in the message detail as
the app session ID. If you click the app session ID in a message detail, then
you can then click the up and down arrows to view all the messages for that
ID. You can also enter the ID in the Search field to display only the log
messages with that ID. For more information about using the Oracle-
Mobile-Diagnostic-Session-ID header, see How Client SDK Headers
Enable Device and Session Diagnostics.

These topics contain information about troubleshooting specific APIs:

• Troubleshooting Custom APIs

• Troubleshooting Custom API Implementations

• Troubleshooting REST Connector APIs

• Troubleshooting SOAP Connector APIs

• Troubleshooting ICS Connector APIs

• Troubleshooting Fusion Applications Connector APIs

• Troubleshooting Notifications

Chapter 33
Troubleshooting Unexpected Test Results

33-5

Monitoring Runtime Issues and System Health
In addition to monitoring the results of white box and black box testing, you, as a
mobile app developer or a mobile cloud administrator, will want to see live
performance data to immediately address runtime issues, such as poor response
times.

MCS provides two types of high-level monitoring consoles that display traffic-light
indicators that convey overall environmental health, timelines that plot requests and
responses, and counters of requests that result in HTTP 4xx and HTTP 5xx errors.

• The Health page, which is available from the Administration page, lets mobile
cloud administrators monitor and troubleshoot the overall system health.

• The mobile backend Diagnostics page lets mobile developers monitor a mobile
backend's health and troubleshoot issues with its associated mobile apps.

For in-depth information about these views and how you can use them, see Monitoring
a Selected Backend, Viewing API Performance, and Viewing Status Codes for API
Calls and Outbound Connector Calls.

Chapter 33
Monitoring Runtime Issues and System Health

33-6

Monitoring Overall Health

Green, amber, and red traffic-light indicators depict the overall health of an
environment for the last minute. MCS bases this view on the health metrics for that
environment. When the number of errors or the current request or response times
exceed configured performance thresholds, the console changes the indicator from
green (normal) to amber (adverse) or red (severe). For example, if the error count in
the last minute is greater than 0, then the indicator is amber. If there are more than 9
errors in the last minute, then the indicator is red. To learn about the thresholds and
how they affect the color of the indicators, see What Do the Health Indicator
Thresholds Mean?

To see more detailed metrics for the last minute, such as the number of errors, the
average duration of requests, the number of pending requests, and the number of
long-running requests, hover over the indicator.

Monitoring Server Load and Request Backlog

To help monitor the server load and request backlog, the timeline plots the request
counts and response times that occurred for the last hour, and the view displays the
count of pending requests. To investigate a performance issue, click Requests or
Request History to drill down to the request log.

Monitoring Mobile Backend and API Health

To see the error count, average response time, long request count, and percent
requests pending for a mobile backend, click the traffic-light indicator to view the
Health page. (The Health page shows all active mobile backends, whereas the
Diagnostics view for a mobile backend shows just that backend). To see the same
information for the mobile backend's APIs and their endpoints, expand the entry for the
mobile backend.

To investigate the cause of an error, click Logs to drill down to the error log. To
investigate a performance issue, click Requests or Request History to drill down to
the request log.

Chapter 33
Monitoring Runtime Issues and System Health

33-7

34
Packages

Oracle Mobile Cloud Service (MCS) lets you share and move bundles of related
artifacts built in MCS to another instance of MCS. You do this by exporting artifacts
along with their dependencies, which creates a package, and importing that package
to other instances of MCS.

The export process creates a package file (package-name.zip) containing a copy of
the artifact, its dependencies, and their local policies. You can also use the package
file as an archive for a set of related artifacts and store it outside of MCS. If artifacts in
the current instance of MCS are changed or accidentally deleted, you can retrieve their
original state from the package.

If you’re a mobile or service developer, you can export artifacts such as mobile
backends, collections, APIs and API implementations. You or another developer can
then import the artifacts into the target environment.

What’s a Package?
A package is a container for one or more artifacts. If an artifact has dependencies,
they’re also included in the package. For example, when you export a mobile backend,
a package is created that contains the mobile backend and its dependencies, such as
an API and its implementation, the connectors that the implementation calls, and
collections. If the artifact you export is an API that has only one dependency, its
implementation, then the package would contain just the API and its implementation.

Note:

While you can’t explicitly add roles to a package, if an artifact has roles
associated with it, they’ll be included in the package

Artifacts can be in Draft or Published states. When an artifact is imported, it retains the
state it had when the package was created (the source environment). That is, when an
artifact in Draft state is imported, it’s still in the Draft state in the new instance. The
same is true for artifacts in the Published state.

When the import process completes, the artifacts in the package are created in the
target environment and can go through all applicable lifecycle phases. For information
on artifact lifecycle phases, see Lifecycle.

For information on exporting a package, see Adding Artifacts to the Package. For
information on importing a package, see Uploading the Package.

Why Do I Want a Package?
With packages, you can easily share artifacts across different instances of MCS. For
example, you might find that you can use the same set of configured artifacts for

34-1

different apps. Instead of having to recreate the same set of artifacts with the same
configurations in another instance of MCS, you can export the artifacts (that is, create
a package) in the current instance and import them into the target instance of MCS
where work on the other app is being done.

Lets say Jeff, the service developer for Fix It Fast, has created a mobile backend that
lets a technician look up the latest service requests and find the location and contact
details for each customer. Fix It Fast has a subsidiary business called Restore It Fast,
which provides restoration services to customers with fire or water damage. It would
be helpful if the team at Restore It Fast could use that same mobile backend.

Jeff exports the mobile backend and all of its dependencies. He then notifies Jane, the
service developer at Restore It Fast, that the package is ready to import. Jane locates
and imports the package. She edits the environment policies for her MCS
environment. She saves significant time by having the essentials of the mobile
backend completed. She can begin testing right away and have the app ready to use
by Restore It Fast technicians.

Exporting a Package
Use the Export Package wizard to easily create a packaged set of artifacts that you
can export to other instances of MCS. The wizard shows you the dependencies
associated with artifacts and includes those dependencies in the package for you. In
addition to adding artifacts to the package, you’ll have the opportunity to modify local
environment policies.

The Export Package wizard walks you through the following steps to export a
package:

• Adding Artifacts to the Package

• Reviewing Dependencies During Export

• Setting Environment Policies During Export

• Completing the Export

Adding Artifacts to the Package
1. Make sure you’re in the environment where you want to create a package.

2. Click and select Applications > Packages from the side menu.

If there are existing import and export packages, you’ll see a list of packages.

Chapter 34
Exporting a Package

34-2

Uup arrow icons denote export packages. Down arrow icons denote import
packages.

Alternatively, you can go to an artifact’s landing page, select an artifact and
choose More > Export. That artifact is automatically added to the list of selected
artifacts. You can add more artifacts on the Content page of the Export wizard.

3. Click New Export.

4. On the Contents page of the Export wizard, click in the artifact Search field and
select an artifact from drop-down list to add it to the package.

You can also enter a name in the field. All artifacts with that character string are
displayed in the Selected Artifacts list. Click X to remove an artifact that you don’t
want included in the package.

5. Select an artifact to see its dependencies in the right panel.

Chapter 34
Exporting a Package

34-3

Note:

If you’re exporting a client, the mobile backend that it references and any
dependencies of the mobile backend are automatically added. However,
if you export a mobile backend, the client that references it isn’t
automatically added. Because a mobile backend can be referenced by
multiple clients, you’ll have to manually add the client you want by
entering its name in the Search and selecting it.
Also be aware that notification profiles associated with the client are not
included in the export or import package. You’ll have to manually create
the profiles in the target environment and associate them with the client.

6. Click Next (>) to go to the next step.

Reviewing Dependencies During Export
Here’s where you can examine everything that’s included in the export package. You
can expand the view of each artifact type to see all the artifacts and their status.
All artifacts are displayed under their respective types and top-level (root) artifacts are
not distinguished. That is, a custom API that’s listed could be a dependency of a
mobile backend or a top-level artifact itself.

1. Click Dependencies in the navigation links.

If the call to the mobile backend that’s being exported is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being exported) is shown. The target mobile
backend isn’t a dependency of the original mobile backend and won’t be
automatically exported. You must manually export the target mobile backend to
the target environment if it doesn’t exist there already.

Chapter 34
Exporting a Package

34-4

2. If you’re exporting APIs, expand API to see the associated API implementation for
each custom API.

3. Click Expand All or Collapse All to see the full list of artifacts or just the artifact
types.

4. Click Next (>) to go to the next step.

The Draft or Published state of the artifact and its dependencies are retained when the
package is imported to the target environment.

Setting Environment Policies During Export
Setting or changing policy values is an optional step during export. You don’t have to
change policy values here. Policies can be modified during import or from the
Administration page afterwards.
You can save some time by setting values now if you know what values will be
required. For example, if a connector API is in the package, you may want to change
the security policy. If a mobile backend is being exported, you may want to reset the
Sync_CollectionTimeoutToLive policy. Another example is if the call to the mobile
backend that’s being exported is rerouted to another mobile backend and you want to
ensure the rerouting occurs, you should set the Routing_RouteToBackend policy here
and specify the name and version of the original and target mobile backends. You’ll
also want to check if the intended target mobile backend exists; otherwise, you’ll need
to export it.

Note:

If a policy in the export package doesn’t already exist in the target, it will be
added during the import.

1. Click Policies in the navigation links and review the current policy values for the
artifacts in the package.

Chapter 34
Exporting a Package

34-5

Policies values with a cloud icon indicate the value is taken from source
environment. Pencil icons denote custom values.

2. (Optional) Select a policy and edit its value in one of the following ways:

• Click Edit above the policy table. In the Edit Policy dialog, you can select the
value that the policy currently has (Package file value) or enter a custom
value (Custom value). Click Null to set the custom value to null. Click Save to
enact the change.

• Right-click a policy in the table and select Set custom value to null or Edit to
enter a value in the Custom value field in the Edit Policy dialog.

Click Reset to revert back to the original value for that policy.

If you change your mind or make a mistake after modifying the policy values, click
Reset All to revert back to the original policy values.

3. Click Next (>) to go to the next step.

For descriptions of policies, see Oracle Mobile Cloud Service Environment Policies.

Completing the Export
Now that you’ve selected all the artifacts you want to export (and optionally, set any
environment policies), it’s time to create the package.

Note:

When you click Export, artifacts are added to the package in their current
state at that time. For example, if someone publishes an artifact while you’re
creating the export package, the package will contain the published instance
of that artifact.

1. Click Finish in the navigation links.

2. Enter a name for your package.

The default name is the name of the top-level artifact. The package name and
version must be a unique combination. No other package name can have the
same name and version number.

3. Enter a version number.

For example, enter 1.0 to designate it as the first version of this package.

Chapter 34
Exporting a Package

34-6

4. Enter documentation about this package.

Add documentation that informs whoever is importing the package about what it
contains and what tasks need to be performed before and after the package is
imported. The Export wizard automatically enters information about which roles
must exist in the target environment before the package can be imported.

You can manually write documentation for your export package using Markdown
syntax in the Documentation field or copy and paste your documentation into the
field. Markdown syntax lets you write an easy to-read plain text that can easily be
converted to structurally valid XHTML for viewing in a browser. See How Do I
Write in Markdown?

Click Preview below the field to see the formatted output.

5. Click Export.

6. Select the location to place the package from the file chooser.

You can edit the name of the package here. The file name has the format
package-name.zip.

Re-exporting a Package
Re-exporting lets you create a new package based on an existing package. Select a
package and select Re-export, which takes you through the Export Package wizard
where you can select more artifacts to include or remove some of the current artifacts.

1. Click and select Applications > Packages from the side menu.

2. Select an export package and click Re-export.

3. Follow the steps for exporting a package: selecting artifacts, reviewing
dependencies, optionally setting environment polices, naming the package and
providing documentation about the package. For steps on creating an export
package, see Exporting a Package.

Note:

Remember that the new package must have a unique package name
and version combination. That is, if the original package is MyPackage
1.0, the new package must have either a different name or version
number.

Importing a Package
Importing a package puts copies of the artifacts from the source environment into the
target environment. Before you proceed with the import, make sure the package name
and version are unique in the target environment. You won’t be able to import it if a
package with the same name and version already exists. During the import, you’ll be
able to verify the contents of the package, read the package documentation, and you’ll
also be able to set the values for policies being added to the target environment or
modify existing policies.

Also, if the package contains roles that will be created in the target environment, you
must be a team member with Oracle Cloud identity domain administrator permissions

Chapter 34
Re-exporting a Package

34-7

to import the package. Oracle Cloud identity domain administrator permissions are
required to create roles in an environment. See Set Up the Service.

The Import Package wizard walks you through the following steps for importing a
package:

• Uploading the Package

• Examining the Contents of the Import Package

• Setting Environment Policies During Import

Uploading the Package
When you upload the package, the contents of the package are immediately installed
in the target environment unless a conflict or some other error occurs during the
import. You can view the contents of the package and whether or not all of the
contents were successfully imported on the next page of the Import wizard.

1. Go to the environment where you want to import the package.

2. Click and select Applications > Packages from the side menu.

If there are existing packages, you’ll see them listed here. Packages with a green
up arrow denote export packages. Packages with a blue down arrow denote
import packages.

3. Click New Import.

4. Copy and paste (or drag) the package to the Upload page of the Import wizard.

After the package is uploaded, you can see the package name, version, and
information about the package. If you’ve uploaded the wrong package, click
Cancel to exit the import operation.

5. Click Next (>) to go to the next step.

Examining the Contents of the Import Package
On the confirmation page, you can see a list of the artifacts being imported and which
artifacts already exist in the target environment. You can also see what dependencies
are also being imported.

Chapter 34
Importing a Package

34-8

Note:

The notification profiles associated with a client are not included in the import
package. If you’re importing a client, you’ll have to re-create the notification
profiles in the target environment and associate them with the client. See
Creating a Profile.

1. Click Confirm in the navigation links.

2. Review artifacts the list of artifacts to be installed. Remember if there are roles in
the package that will be created in the target environment, you must have Oracle
Cloud identity domain administrator permissions to do the import. Only team
members with Oracle Cloud identity domain administrator permissions can create
roles.

If you don’t want the listed artifacts imported to the target environment, click
Cancel now. No changes will be made to the target environment.
If the call to the mobile backend that’s being imported is rerouted, the name and
version of the target mobile backend (as defined in the Routing_RouteToBackend
policy for the mobile backend being imported) is shown. The target mobile
backend isn’t a dependency of the original mobile backend and isn’t included in
the package. You must manually import the target mobile backend to the target
environment if it doesn’t exist there already.

3. Click Next.

The process of installing the contents of the package in the target environment
begins.

A conflict occurs when an artifact with the same name and version (but with a
different Universally Unique Identifier (UUID) value) exists in both the import
package and in the target environment. The import process can’t proceed if an
error occurs. Close the import wizard and resolve the issue by moving the existing
artifact in the target environment to the trash, changing its name or version, and
then try importing the package again. Alternatively, you can import the package to
a different instance of MCS.

The Import Results page shows the artifacts that have been installed.

Chapter 34
Importing a Package

34-9

When an artifact in the package has the same name, version, and UUID value as
one in the target environment, the artifact is marked as EXISTS on the results
page and is not imported.

Setting Environment Policies During Import
Here is where you can set or modify the environment policies in the target environment
for the packaged artifacts. Although the mobile cloud administrator can modify these
policies later, to ensure that operations can be performed correctly in the target
environment, you should update the policies here.
Even if you don’t modify values for existing environment policies, any policies
associated with the artifacts in the package that are new to the target environment are
added for you when you update.

Check the documentation included in the package to see if any recommended values
or policies are described. For descriptions of policies, see Oracle Mobile Cloud Service
Environment Policies.

1. Click the Policies navigation link.

If you really don’t want to modify environment policies, click Skip. Be aware
though that the import operation completes without updating any policy values or
adding any policies to the target environment.

2. Filter the policies displayed by selecting Mobile Backends or API/
Implementations from the selection list, or enter a policy name in the Search
field.

Select All Policies (the default value) to list all the environment policies
associated with the artifacts.

3. (Optional) Select a policy and edit its value in one of the following ways:

Chapter 34
Importing a Package

34-10

• Click Edit above the policy table. In the Edit Policy dialog, select Package file
value, Target system, or Custom value. If you want to set the value to null,
click Null next to the Custom value field.

Click Save to enact the change.

• Right-click a policy in the table and select Use value from target system, Set
custom value to null or Edit to enter a value in the Custom value field in the
Edit Policy dialog.

Click Reset to revert back to the original policy value.

If you change your mind or make a mistake, click Reset above the table to revert
all the policies to their original values. A package icon indicates the policy takes
the value it has in the package, a pencil icon indicates the policy has a custom
value, and a target icon indicates the policy takes its value from the target
environment.

4. Click Update to apply the changes to the policies and add any new policies to the
target environment.

Any policies in the policies list that don’t already exist in the target environment are
added. If you need to change any of the policy values after the import, your mobile
cloud administrator can change them through the Administration view.

A blue dot by a policy name indicates that it has been modified. Icons in the Update
Value column indicate if the value is taken from the package or if it was manually
changed. You can the values of existing policies in the Current Value column.

What Happens When You Import a Package?
Similar to deploying an artifact from one environment to another, when importing
artifacts from one instance of MCS to another, conflicts or errors can occur.

Some situations in which you can have a successful import:

Chapter 34
What Happens When You Import a Package?

34-11

• If all the artifacts being imported to the target environment in the new instance of
MCS are unique in name and version from any existing artifacts in that
environment, the import will be successful.

For example, a package contains the MyIncidentReports 1.1 API. The target
environment has a MyIncidentReports 1.5 API. There is no conflict because the
two APIs are different and MyIncidentReports 1.1 is successfully imported.

• Another successful import occurs even if some of the artifacts in the package
already exist in the target environment. That is, duplicate artifacts are in the target
environment.

For example, a package contains RightNow 1.1 connector. During the import
process, it’s determined that a duplicate connector already exists in the target
environment. It has the same name, version, and UUID values. The connector is
skipped and the rest of the artifacts are successfully imported

Here are instances where potential problems can occur:

• If a role associated with the artifacts in the package doesn’t exist in the target
environment, then it is added when the package is imported, but to do so requires
that you are a team member with Oracle Cloud identity domain administrator
permissions. If you don’t have Oracle Cloud identity domain administrator
permissions, the import will fail.

• If some of the artifacts in the package are similar to existing artifacts in the target
environment, that is they have the same name, version, but different UUID values,
the import process can’t complete.

For example, the package contains the published RightNow 2.0 connector and the
target environment also has a published RightNow 2.0 connector. They both have
the same name, version, but have different UUID values. You see a CONFLICT
message by the artifact and the import operation fails. When an import fails, all
changes made to the target environment are rolled back. All artifact attributes and
policy values are returned to their original values prior to the import.

You have two choices. You can create a new version of the connector in the
source environment, resolve any dependency issues, export the connector, and
then import it to the target environment. Otherwise, you can move the RightNow
2.0 connector that’s in the target environment to the trash and then proceed with
the import.

For descriptions of the possible results of importing a package, see Import Results.

Import Results
The import results that can occur are described here:

Import State Descriptions

Imported The artifact didn’t exist in the target
environment and was imported successfully.

Chapter 34
Import Results

34-12

Import State Descriptions

Not Imported The artifact wasn’t imported because of
conflict occurred or a missing artifact was
detected.

The import process was stopped and any
changes made prior to the error were rolled
back. The target environment is back to its
original state before the import.

Exists A duplicate artifact already exists in the target
environment, therefore, the artifact in the
package was skipped.

Privileges A required role or realm didn’t exist in the
target environment and the current user
doesn’t have Oracle Cloud identity domain
administrator permissions to create the role or
realm automatically during import.

Conflict A similar artifact (same name and version but
different UUID) exists in the target
environment.

The import process was stopped and any
changes made prior to the conflict were rolled
back. The target environment is back to its
original state before the import.

Exporting Updated Artifacts
What happens if you make upgrades to artifacts in your instance of MCS and you want
those upgrades in another instance of MCS? Lets say Jeff, at Fix it Fast, makes some
changes to MyIncidentReports1.1 API, which is in Draft state. Samir, who works at
Restore It Fast, would like to get the improved API.

When you import updated artifacts, you need to take steps to prevent a conflict. The
actions you take depend on the Draft or Published state of the artifacts. That could
mean you’ll have to move existing artifacts to the trash in the target environment or
create a new version of the artifact to export and then resolve any resulting
dependency issues with the new version of the artifact.

Following our example, Jeff exports MyIncidentReports1.1 API and its
implementation. However, before Samir can import the package, he moves his Draft
instance of MyIncidentReports1.1 to the trash to avoid a conflict during import.

Examining a Package
You can view the contents of a package from the Packages page. You can also re-
export a package, create a new version of an existing package, or move an export
package to the trash or the contents of an import.

1. Click and select Applications > Packages from the side menu.

2. Select a package and click View.

Chapter 34
Exporting Updated Artifacts

34-13

From the View page, you can look at the details, contents, and policies of a
package. You can also see the package details and content information on the
packages landing page.

3. Click Details to see the package metadata. the contents, policy settings, and the
version of MCS that contains the package.

Note:

You can only view the policy settings. You can’t change them.

4. Click Contents to see the package contents.

5. Click Policies to view the environment policies and associated with the package
contents and the policy values.

6. On the packages landing page, click History to see who created the selected
package and when.

Moving a Package to the Trash
When you move an export package to the trash, you’re moving just the record of the
package, to the trash. The artifacts remain in the source environment.
However, when you move an import package to the trash, what you’re actually doing is
moving the package (that is, the record of the package) and all the artifacts in the
package to the trash. Even artifacts in the Published state are moved to the trash. You
can manually restore each artifact if you need them.

1. Click and select Applications > Packages from the side menu.

2. Select a package and then select More > Move to Trash.

Note:

Roles can’t be deleted. Any roles associated with artifacts in the package
are revoked and remain in the target system.

3. Review the information in the confirmation dialog.

If an artifact is a dependency of several other artifacts, click More in the dialog to
see the full list.
You won’t be able to deploy any artifacts that have dependencies on an artifact in
the package that was moved to the trash.

Also if an artifact that’s in the package is a dependency of a published artifact
that’s not in the package, the move to the trash operation will fail.

4. Click Yes to move the package to the trash.

If you decide you need some or all of the artifacts that you’ve moved to the trash, you
can restore them as needed. Just go to the artifact’s landing page (for example, to

restore a mobile backend, go to the Mobile Backends page), click on Trash () and
select the item you want to restore. Select Restore from the Trash menu. Your mobile
cloud administrator can also restore these items from the Administration view.

Chapter 34
Moving a Package to the Trash

34-14

Environment Policy Settings for Packaged Artifacts
When you export artifacts, you save their configurations in a portable file (the package)
that can be sent to various instances. Only local policies are included in the package.
That is, only policies scoped for an artifact are available for editing and exporting. For
example, if you’re exporting a mobile backend called FIF_Technician 1.0 and an
environment policy has been defined for it that’s called
FIF_Technician(1.0).*.Logging_Level. That policy will be available for editing.
Environment-wide policies are not included in the package file. For example, if the
mobile backend uses *.*.Logging_Level, that policy won’t appear on the Policies
page. The mobile backend will be subject to the Logging_Level policy in the target
environment.

The environment policy settings for the artifacts are the values they have in the current
instance. Because environment policies are specific to each environment in each
instance, you might need to edit some of the policies before they can be used in their
new location.

During export and import, you’ll have the option to edit these values for the target
environment. If someone other than you is performing the import, you should
document which policies might need to be modified, and which might be overwritten,
and which might need to be added. You might also want to alert them to any roles or
realms that are required. To ensure the required policies are added to the target
environment.

If a policy that you set during export or import doesn’t exist in the target environment,
it’s added when you import the package.

Any required roles or realms that don’t exist in the target environment are
automatically created during the import but only if the person performing the import
operation is a team member that has been granted an Oracle Cloud identity domain
administrator role.

For descriptions of policies, see Oracle Mobile Cloud Service Environment Policies.

Chapter 34
Environment Policy Settings for Packaged Artifacts

34-15

Part VII
Reference

This part includes appendices for various pieces of reference material.

• HTTP Headers

• Oracle Mobile Cloud Service Environment Policies

• Security Policies for Connector APIs

• Identity Domain Relocation

• Writing Swift Applications Using the iOS Client SDK

• Supported Browsers and Languages

• Identity Provider Integration

• Migrate to Oracle Mobile Hub

A
HTTP Headers

You use headers to provide information (metadata) about the request or response or
about the data contained in the message body. Oracle Mobile Cloud Service (MCS)
provides custom request and response headers that you can use with the connector
APIs and in custom code. The HTTP headers, their descriptions, and the services that
use them are described in this chapter.

For detailed descriptions of standard HTTP headers, see Header Field Definitions.

API Headers
The following table lists the custom HTTP headers listed used by Oracle Mobile Cloud
Service (MCS) custom APIs and connector APIs.

Header Description API

Oracle-Mobile-API-Version The version of the connector or
custom API that is called from a
custom API implementation.

Use this header when the
dependency isn't declared in
package.json or when you
need to override the
dependency declared in
package.json. See
package.json Contents.

Custom API

REST and SOAP
Connector APIs

Oracle-Mobile-Backend-ID The ID of the mobile backend
issued by MCS, which enables
a mobile application to access
APIs associated with that
mobile backend.

This header is required when
you are using the HTTP Basic
Authentication. The value of the
ID (for the given environment) is
displayed in the Keys section of
the Mobile Backends page.

Custom API

A-1

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Header Description API

Oracle-Mobile-External-
Authorization

The request header used when
a security policy isn’t configured
for the connector. When this
header is set, the value of the
header is set as Authorization
on the request to the external
service.

Set the Oracle-Mobile-
External-Authorization
header only when the service
you’re connecting to is secured
in a way that isn’t described by
an existing security policy. The
header won't take effect if a
security policy is configured.
Setting this header takes
precedence over setting an
Authorization header and
creating a rule for it.

REST Connector API

SDK Headers
The public HTTP headers listed in the following table are used in the iOS and Android
SDKs to write calls in your app to mobile backend services.

Header names are case-insensitive and used the same way on both platforms. If you
choose to write custom headers, then they must begin with Oracle-Mobile-.

Header Description Service

Authorization For OAuth and SSO, contains
the OAuth token downloaded
from the OAuth Server.

For HTTP Basic and Facebook,
contains the Base64 encoding
of the user name and password.

Security

Oracle-Mobile-Analytics-
Session-ID

The current session to track
events.

Analytics

Oracle-Mobile-
Application-Key

The Application ID that’s used
to differentiate various
applications.

Analytics and Others

Oracle-Mobile-Backend-ID The ID of the mobile backend
issued by MCS, which enables
a mobile application to access
APIs associated with that
mobile backend.

This header is required when
you’re using the HTTP Basic
authentication or Facebook
login. The value of the ID (for
the given environment) is
displayed in the Keys section of
the Mobile Backends page.

Security

A-2

Header Description Service

Oracle-Mobile-Canonical-
Link

The canonical link for the object. Storage

Oracle-Mobile-Client-
Request-Time

The client timestamp at which
the request is made. The
timestamp is in UTC in the
format yyyy'-'MM'-'dd'-
T'HH':'mm':'ss':SSS'Z.

Diagnostics

Oracle-Mobile-Content-
Disposition

Arequest for the value of the
Content-Disposition HTTP
response header.

Storage

Oracle-Mobile-Created-By The user who initially created
the object. Corresponds to the
createdBy property in the
JSON representation of an
object.

Storage

Oracle-Mobile-Created-On The dateTime when the object
was initially created.
Corresponds to the createdOn
property in the JSON
representation of an object.

Storage

Oracle-Mobile-Device-ID The Device ID that’s used to
differentiate various mobile
devices.

Storage and Others

Oracle-Mobile-Diagnostic-
Session-ID

A unique ID to represent a user
app session. This is different
from an Analytics session in
terms of lifetime.

The SDK uses the process ID
(OS PID) for the header value.

Diagnostics

Oracle-Mobile-Extra-
Fields

Addition of a set of predefined
columns like createdBy,
createdOn, and modifiedBy,
which you can use to audit
mobile users’ interactions with
the database. See Creating a
Table Explicitly.

Database

Oracle-Mobile-Modified-By The user who last modified the
object. Corresponds to the
modifiedBy property in the
JSON representation of an
object.

Storage

Oracle-Mobile-Modified-On The dateTime when the object
was last modified. Corresponds
to the modifiedOn property in
the JSON representation of an
object.

Storage

Oracle-Mobile-Name The display name for the object.
Corresponds to the name
property in the JSON
representation of an object.

Storage

A-3

Header Description Service

Oracle-Mobile-Primary-
Keys

Addition of a primary key to
implicitly created schema.

Database

Oracle-Mobile-Self-Link The self link for the object. Storage

Oracle-Mobile-Social-
Access-Token

For Facebook login, contains
the Facebook access token.

Security

Oracle-Mobile-Social-
Identity-Provider

For Facebook login, contains
the value facebook.

Security

Oracle-Mobile-Sync-Evict Optional. The specification of
when a returned resource
should be evicted from the
cache, if set.

Uses RFC 1123
SimpleDateFormat, for
example "EEE, dd MMM yyyy
HH:mm:ss z"

Synchronization

Oracle-Mobile-Sync-
Expires

Optional. The specification of
when a returned resource
should expire in the cache, if
set.

Uses RFC 1123
SimpleDateFormat, for
example "EEE, dd MMM yyyy
HH:mm:ss z"

Synchronization

Oracle-Mobile-Sync-No-
Store

If set to true, the device
doesn’t cache the returned
resource.

Synchronization

Oracle-Mobile-Sync-
Resource-Type

An item for items or a
collection for collections;
omitted for files. When set to
item or collection, the
Content-Type header must be
application/json.

For collections, the JSON must
conform to the collection
envelope structure. This is the
custom header defined by the
Synchronization service.

See Defining Synchronization
Policies and Cache Settings in a
Response Header for details.

Synchronization

Oracle-Mobile-Sync-Agent Optional. Informs a sync-
compatible service (like
Storage) to generate compatible
collection formats. The value of
the header is not critical but the
client will set it to true.

Synchronization

A-4

B
Oracle Mobile Cloud Service Environment
Policies

This chapter lists the policies that you can configure for each of your environments
(such as Development, Staging, and Production) in Oracle Mobile Cloud Service
(MCS). Policies control a variety of things, including logging level, password expiration
times, means for restricting user access, and proxies. Policies can affect all artifacts of
a specific type within a particular environment when applied at the environment level,
or they can affect an individual artifact in the environment in which the policies are set.

Note:

The scope value shown is the narrowest level at which the property can be
set.

See Environments and Team Members to learn about environments and environment
policies.

Environment Policies and Their Values
Environment policies determine the behavior of various aspects of Oracle Mobile
Cloud Service (MCS). If you’re a mobile cloud administrator, you can view and modify
the environment policies in the policies.properties file by exporting the file for a
specific environment from the Administration page or by exporting the file when
deploying an artifact. See Environment Policies.

Policy Description Type Default
Value

Scope / Affects

Analytics_ApiCall
EventCollectionEn
abled

Enables or disables
automatic API call
analytics event
collection.

Boolean true Scope:
Environment

Affects: Analytics

Analytics_ApiCall
EventsAutoShrink

Enables or disables
database compact
shrink during the
automatic deletion of
analytics API call data
set by
Analytics_ApiCall
EventsDaysRetaine
d.

Boolean false Scope:
Environment

Affects: Analytics

B-1

Policy Description Type Default
Value

Scope / Affects

Analytics_ApiCall
EventsDaysRetaine
d

Determines how many
days analytics API call
raw event data is
retained in the
database.

Integer 1 Scope:
Environment

Affects: Analytics

Asset_AllowPurge Controls whether or
not Draft or Published
artifacts in the trash
can be purged.

Valid values are:
• All
• None
• Draft
• Published

String All Scope:
Environment

Affects: Realm,
Mobile Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_AllowTrash Controls whether or
not Draft or Published
artifacts can be
moved to the trash.

Valid values are:
• All
• None
• Draft
• Published

String All Scope:
Environment

Affects: Realm,
Mobile Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_AllowUntras
h

Controls whether or
not Draft or Published
artifacts can be
restored from the
trash.

Valid values are:
• All
• None
• Draft
• Published

String All Scope:
Environment

Affects: Realm,
Mobile Backend,
Custom API, API
Implementation,
Connector, and
Collection

Asset_DefaultInit
ialVersion

Sets the default
version for all newly
created assets.

String 1.0

Note:
Generally,
the default
value should
be used.

Scope:
Environment

Affects: all
artifacts that have
versions

B-2

Policy Description Type Default
Value

Scope / Affects

CCC_DefaultNodeCo
nfiguration

Sets the default
Node.js configuration
used by the API
implementation
(custom code).

Valid values are:
• 8.9: The service

uses node.js
8.9.4.

• 6.10: The service
uses node.js
6.10.10.

• 0.10: The service
uses node.js
0.10.25.

For the related
JavaScript library
versions, see What's
the Foundation for the
Custom Code
Service?.

String 0.10 for MCS
upgrades.

6.10 for new
instances of
MCS.

Scope:
Environment

Affects: Custom
Code

CCC_LogBody Determines whether
to log the body of a
request in custom
code. Bodies will be
logged in the following
circumstances:

• Logging level
== FINEST or
there is an
uncaught
exception.

• This property is
set to true.

Boolean false Scope: Mobile
Backend

Affects: Custom
Code

CCC_LogBodyMaxLen
gth

Sets the maximum
number of characters
to log if the custom
code is logging the
request body.

Integer 512 Scope: Mobile
Backend

Affects: Custom
Code

B-3

Policy Description Type Default
Value

Scope / Affects

CCC_MaxLoadPerCPU Maximum one minute
average load per
processor (in nodejs:
os.loadavg()[0] /
os.cpus().length)
allowed on custom
code VM, or 0 to
disable processor
load checks.

When the load per
processor exceeds
this threshold:

• Requests to
custom code are
rejected with
status 500, Low
Resources.

• New nodejs
containers are
not created

• Idle nodejs
containers are
closed faster than
normal

Double 1 Scope:
Environment

Affects: Custom
Code

CCC_MinFreeMemory
Megabytes

Minimal megabytes of
free memory (in
nodejs:
os.freemem()/
(1024*1024))
allowed on custom
code VM, or 0 to
disable minimum free
memory checks.

When free memory is
below this threshold:

• Requests to
custom code are
rejected with
status 500, Low
Resources.

• New nodejs
containers are
not created

• Idle nodejs
containers are
closed faster than
normal

Integer 256 Scope:
Environment

Affects: Custom
Code

B-4

Policy Description Type Default
Value

Scope / Affects

CCC_SendStackTrac
eWithError

Determines whether
or not to send the
stack trace from
Node.js with the
REST response from
the custom code
container indicating
that there is a code
problem.

Boolean false Scope: Mobile
Backend

Affects: Custom
Code

Connectors_Endpoi
nt

Stores the endpoint
URL of the particular
connector instance.

Set this policy when
deploying to another
environment by
uncommenting the
policy.

String There is no
default value
for this
policy.

The initial
value is set
when the
connector is
created.

Scope:
Connector

Affects:
Connectors

Connector_ICS_Con
nections

Identifies the JSON
document
representing
connections to each
configured ICS
instance.

String null Scope:
Environment

Affects: ICS
Connector

Database_CreateTa
blesPolicy

Controls whether the
Database API can
create, alter, or drop
tables implicitly
(implicitOnly)
using the operations
and JSON from
custom code calls.

Setting this policy to
explicitOnly
enables these
operations using the
Database
Management Service
API (and prohibits
operations enabled by
implicitOnly).

Setting the policy to
allow enables calls
from custom code that
perform implicit
operations.

Setting this policy to
none curtails implicit
table creation,
deletion, and updates.

String allow Scope:
Environment

Affects: Database
Service

B-5

Policy Description Type Default
Value

Scope / Affects

Database_MaxRows Sets the maximum
number of rows that
can be returned by a
single database
query.

Integer 1000 Scope:
Environment

Affects: Database
Service

Database_QueryTim
eout

Sets the number of
seconds to wait for a
database query to
return before
canceling it.

Integer 20 Scope:
Environment

Affects: Database
Service

Diagnostics_Avera
geRequestTimeErro
rThreshold

Sets the threshold for
the average time
spent servicing a
request. If the
average time spent
servicing a request
equals or exceeds this
threshold, then the
health of the system is
considered severe
(red).

Set this value higher
than the one set for
the
Diagnostics_Avera
geRequestTimeWarn
ingThreshold
policy, which sets the
adverse level of
system health.

Double 6000.0 Scope:
Environment

Affects:
Administration
Console

Diagnostics_Avera
geRequestTimeWarn
ingThreshold

Sets the threshold for
the average time
spent servicing a
request. If the time
spent servicing a
request equals or
exceeds this
threshold, then the
health of the system is
considered adverse
(amber).

Double 3000.0 Scope:
Environment

Affects:
Administration
Console

Diagnostics_Exclu
dedHttpHeadersInL
ogs

Creates a list of
headers that shouldn’t
be logged with each
API request in the API
History log file.

String Authorization
header,
cookie name

Scope:
Environment

Affects:
Administration
Console

B-6

Policy Description Type Default
Value

Scope / Affects

Diagnostics_LongR
equestCountErrorT
hreshold

Sets the threshold for
the number of long-
running requests. If
the number of long-
running requests
exceeds this
threshold, then the
system health is
considered severe
(red).

Set this value higher
than the one set for
the
Diagnostics_LongR
equestCountWarnin
gThreshold policy,
which sets the
adverse level of
system health.

Integer 10 Scope:
Environment

Affects:
Administration
Console

Diagnostics_LongR
equestCountWarnin
gThreshold

Sets the threshold for
the number of long-
running requests. If
the number of long-
running requests
exceeds this
threshold, then the
system health is
considered adverse
(amber). A long-
running request to an
endpoint server has a
duration that’s greater
than (or equal to) 8
seconds (8000 ms).

Integer 0 Scope:
Environment

Affects:
Administration
Console

Diagnostics_LongR
equestThreshold

Sets the threshold for
the amount of time
spent on a request to
an endpoint server. If
a request to an
endpoint server has a
duration that is
greater than (or equal
to) 8 seconds (8000
ms), then it's
considered a long-
running request.

Integer 8000 Scope:
Environment

Affects:
Administration
Console

B-7

Policy Description Type Default
Value

Scope / Affects

Diagnostics_Pendi
ngRequestErrorThr
eshold

Sets the threshold of
the proportion of
pending requests. If
the proportion of
pending requests
(which is expressed
as a percentage)
equals or exceeds this
threshold, then the
system health is
considered severe
(red).

The value should be
higher than the one
set for the
Diagnostics_Pendi
ngRequestWarningT
hreshold policy,
which sets the
adverse level of
system health.

Double 30

Generally,
the default
value should
be used.

Scope:
Environment

Affects:
Administration
Console

Diagnostics_Pendi
ngRequestWarningT
hreshold

Sets the threshold of
the proportion of
pending requests. If
the proportion of
pending requests
(which is expressed
as a percentage)
equals or exceeds this
threshold, then the
system health is
considered adverse
(amber).

Pending requests
represent the ratio of
in-flight requests to
the number of active
requests, successful
requests, and failed
requests within the
last minute.

Double 15 Scope:
Environment

Affects:
Administration
Console

B-8

Policy Description Type Default
Value

Scope / Affects

Diagnostics_Reque
stCountErrorThres
hold

Sets the threshold of
the proportion of failed
requests. If the
number of failed
requests (including
unserviceable
requests) equals or
exceed this threshold,
then the system
health is considered
severe (red).

The value should be
higher than the one
set for the
Diagnostics_Reque
stCountErrorThres
hold policy, which
sets the adverse level
of system health.

Integer 10 Scope:
Environment

Affects:
Administration
Console

Diagnostics_Reque
stCountWarningThr
eshold

Sets the threshold of
the proportion of failed
requests. If the
number of failed
requests (including
unserviceable
requests) equals or
exceeds this
threshold, then the
system health is
considered adverse
(amber).

Integer 0 Scope:
Environment

Affects:
Administration
Console

Logging_Level Sets the logging level. Integer 800 Scope: Mobile
Backend

Affects: Custom
APIs, Storage

Network_HttpConne
ctTimeout

Sets the amount of
time spent in
milliseconds (ms)
connecting to the
remote URL.

The value should be
less than the value of
Network_HttpReque
stTimeout.

Set this policy when
deploying to another
environment by
uncommenting the
policy.

Integer There is no
default value
for this
policy.

The initial
value is set
when the
connector is
created.

Scope:
Environment,
Mobile Backend,
Connector, Fully-
Qualified
Connector

Affects:
Connectors

B-9

Policy Description Type Default
Value

Scope / Affects

Network_HttpPatch Controls the behavior
of PATCH requests.

• HEADER sends a
POST request with
an X-HTTP-
Method-
Override header
set to PATCH.
This enables you
to send PATCH
requests when
the target server
doesn’t support
the PATCH
method.

• LEGACY sends a
PATCH request
with an X-HTTP-
Method-
Override header
set to PATCH.

• METHOD sends a
PATCH request
without an X-
HTTP-Method-
Override header
set to PATCH.

String For
environment
s that were
provisioned
before
18.2.3, the
default is
LEGACY. For
environment
s that were
provisioned
on or after
18.2.3, the
default is
METHOD.

Scope:
Environment

Affects:
Connectors

Network_HttpReadT
imeout

Sets the maximum
time (in milliseconds)
spent waiting to read
data.

The value should be
less than the value of
Network_HttpReque
stTimeout.

Set this policy when
deploying to another
environment by
uncommenting the
policy.

Integer There is no
default value
for this
policy.

The initial
value is set
when the
connector is
created.

Scope:
Environment,
Mobile Backend,
Connector, Fully-
Qualified
Connector

Affects:
Connectors

Network_HttpReque
stTimeout

Sets the amount of
time in milliseconds
(ms) on an HTTP
request before it times
out.

Set this policy when
deploying to another
environment.

Integer 40,000 ms Scope:
Environment

Affects: Custom
APIs

B-10

Policy Description Type Default
Value

Scope / Affects

Notifications_Dev
iceCountWarningTh
reshold

Defines the threshold
level (percentage) of
messages sent
successfully without
returning an error.

If the proportion of
messages accepted
by the service
provider is below the
threshold, then a
warning is displayed.
The default value is
70.0 (70%).

Set this policy per
environment as
needed.

Double 70.0

Note: For
testing
purposes
only,
consider
setting this
value to
100.0
(100%).

Scope:
Environment

Affects:
Notifications

Routing_BindAPITo
Impl

Determines which
core service to use to
resolve the API
request.

For connectors, set
this policy when
deploying to another
environment by
uncommenting the
policy.

String There is no
default value
for this
policy.

Scope: API

Affects: Custom
APIs, Connectors

Routing_BindAPITo
Mock

Resolves the API
request to a mock
service instead of the
implementation that’s
bound to the API.

Boolean false

Note: Do not
modify this
policy.

Scope: Fully-
Qualified API

Affects: Mobile
Backends,
Custom APIs

Routing_DefaultIm
plementation

Specifies the default
implementation for the
initially created API
(that is, the mock
service).

String MockService
/1.0

Note: Do not
modify this
policy.

Scope:
Environment

Affects: Custom
APIs

Routing_RouteToBa
ckend

Reroutes mobile API
calls made to a mobile
backend to the target
mobile backend
specified.

Allows backend fixes
(fixes that require a
new mobile backend)
to be delivered to the
mobile app without
requiring the mobile
app to be recompiled.

String There is no
default value
for this
policy.

Scope: Mobile
Backend

Affects:
Dispatcher

B-11

Policy Description Type Default
Value

Scope / Affects

Security_AllowOri
gin

Enables Cross Origin
Resource Sharing
(CORS) from HTML5
clients on an external
domain.

Supported values are:
• disallow
• url1, url2, url3

By providing
URLs as values,
specifies a
whitelist of URLs
from which cross-
site requests to
MCS APIs can be
made. If the
origin of the
cross-site request
matches one of
the patterns in
the whitelist, the
request is
allowed.
Otherwise,
access is
restricted.

The wildcard
character, *, can be
used when providing
URL values. However,
there are rules for its
use. See Securing
Cross-Site Requests
to MCS APIs for
detailed information.

String disallow

Note: When
dealing with
browser-
based
applications,
it’s highly
recommende
d that cross-
site access
to MCS APIs
either be
restricted
completely,
or be
restricted to
trusted
origins
where
legitimate
applications
are known to
be hosted to
prevent
vulnerability
to cross-site
attacks (e.g.,
Cross-Site
Request
Forgery).

Scope:
Environment

Affects: All cross
origin calls to a
given
environment

Security_AuthToke
nConfiguration

Provides a
configuration to
integrate with third-
party identify
providers through
which mobile app
users can
authenticate. See
JWT Tokens and
Virtual Users.

JSON object Scope:
Environment

Affects: Security

B-12

Policy Description Type Default
Value

Scope / Affects

Security_Collecti
onsAnonymousAcces
s

Sets a storage
collection to allow
anonymous access.
For each storage
collection listed in the
policy, anonymous
read and write access
will be allowed,
provided that the
correct anonymous
access key is defined
in the request
headers. Specifying
'*' as the version
allows anonymous
access to all versions
of the collection.

A comma-
separated
list of
storage
collections
following this
pattern:

<collecti
on1_name
>[(<versi
on>|*)]
[,<collec
tion2_nam
e>[(<vers
ion>|*)]]
[, ...]

No default
value

Scope: Storage
collections

Affects: The
collections and
versions listed in
the policy

Security_ExposeHe
aders

Provides a means for
browsers to access
the server whitelist
headers. By default,
Cross Origin
Resource Sharing
(CORS) disallows
accessing returned
headers by the
browser.

Applies to HTML5
clients accessing a
given resource from
an external domain.

String ""

Indicates
that no
response
headers are
to be
exposed to
the browser.

Scope:
Environment

Affects: All cross
origin calls to a
given
environment

Security_Identity
Providers

Stores identity
providers
configuration.

String Facebook
identity
provider
configuration

Scope:
Environment

Affects: Security

Security_IgnoreHo
stnameVerificatio
n

Disables the SSL host
name verification.

To be applied to
connectors (in
development
environments) that
call outbound services
using SSL certificates
with an invalid or
incomplete hostname.

Boolean false Scope:
Environment

Affects: REST,
SOAP, ICS, and
Fusion
Applications
Connectors

B-13

Policy Description Type Default
Value

Scope / Affects

Security_OwsmPoli
cy

Sets the security
policy used for
outbound security.

For connectors, set
this policy when
deploying to another
environment by
uncommenting the
policy.

Object There is no
default value
for this
policy.

The initial
value is set
when the
connector is
created.

Scope:
Connector

Affects:
Connectors

Security_SsoRedir
ectWhitelist

Lists the URL patterns
for the SSO
redirct_uri
parameter values that
are permitted.

String disallow Scope:
Environment,
Mobile Backend

Affects: SSO
Token Relay

Security_TokenExc
hangeTimeoutPolic
y

Defines the policy that
governs the expiration
time for MCS-issued
tokens generated as a
result of token
exchange.

Valid values are:

• FromTimeoutSe
cs - MCS-issued
token expiry time
is governed by
the
Security_Toke
nExchangeTime
outSecs policy.

• FromExternalT
oken - MCS-
issued token
expiry time is set
to the same time
as the external
token expiry time.

• FromExternalT
okenLimitedBy
TimeoutSecs -
MCS-issued
token expiry time
is set to the value
determined from
the
Security_Toke
nExchangeTime
outSecs policy
or the external
token expiry time,
whichever comes
first.

String FromTimeou
tSecs

Scope:
Environment

Affects: SSO
Token Exchange

B-14

Policy Description Type Default
Value

Scope / Affects

Security_TokenExc
hangeTimeoutSecs

Sets the token
expiration time for
SSO login.

Integer 216000 s Scope:
Environment

Affects: SSO
Token Relay

Security_Transpor
tSecurityProtocol
s

Specifies a list of the
TLS/SSL protocols
that should be used
for the outbound
connection for the
specific connector. By
default, only TLSv1.1
and TLSv1.2
protocols are used for
outbound
connections. This
property can be used
to override the system
defaults so that
connections can be
established to legacy
systems that don't
support new versions
of TLS/SSL.

Caution: Use this
property carefully as
older protocols are
more vulnerable to
security exploits.

Valid value is a
comma separated list
of the TLS/SSL
protocols. Note that
extra spaces around
the protocol names
are ignored. For
example, TLSv1,
TLSv1.1, TLSv1.2.

Supported protocols
are: SSLv2Hello,
TLSv1, TLSv1.1,
TLSv1.2.

String No default
value

Scope:
Connectors,
Fully-qualified
Connectors

Affects: All
Connectors

Sync_CollectionTi
meToLive

Sets the default
amount of time that
data requested by a
mobile app from a
storage collection
remains in the local
cache that’s used by
the Synchronization
library.

Integer 86400 s

Set this
policy per
environment
as needed.

Scope:
Environment

Affects: Storage

B-15

Policy Description Type Default
Value

Scope / Affects

Url_PercentEncode
QueryParameterSpa
ces

Controls how spaces
in query parameters
of a URL are
encoded. If set to true
encodes spaces as
%20; and encodes
them as + otherwise.
Spaces in other parts
of the URL are always
encoded as %20.

Boolean false Scope:
Connector

Affects: REST
Connector

User_AllowDynamic
UserSchema

Indicates if the user
schema can be
augmented when
unknown properties
are part of the user
data. This is used
when users are
imported into a realm
or when a user is
being updated. The
properties defining the
user that aren’t
already defined as
user properties are
automatically added
before importing the
users.

It isn’t possible to
augment the user
schema when the call
is coming from the
platform API,
regardless of the
policy.

Set this policy at the
environment level.

Boolean Development
environment:
True
Staging and
Production
environment
s: False

Scope:
Environment

Affects: Mobile
User
Management

User_DefaultUserR
ealm

Indicates the default
user realm. This is
used when creating a
new mobile backend.
The associated user
realm is the one
specified by this
policy.

You can reference
only an existing realm.

Set this policy at the
environment level.

String 1.0 Scope:
Environment

Affects: Mobile
User
Management

B-16

C
Security Policies for Connector APIs

Connecting to external services usually requires some degree of authentication and
authorization. When you configure a connector API, you have the option of specifying
the security policies to use when communicating with an external service (except for
ICS Connector APIs where the security policy is determined by the WSDL for SOAP-
based integrations).

Descriptions of the supported Oracle Web Services Manager (Oracle WSM) security
policies for the REST, SOAP, ICS, and Fusion Applications Connector APIs are
provided here. Additionally, the policy properties that you can override are also
described along with a mapping of policy properties to the policies that contain them.

Note that for connector APIs, only client policies are valid.

Security Policies for REST Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for
REST Connector APIs are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_poli
cy

Includes user name and password in an HTTP
Basic Authorization header.

http_jwt_token_client_policy Includes a JWT token in the HTTP header. A
JSON Web Token represents claims and is
generally used in Federated Identity systems
where the source and target have mutual trust
and a shared identity realm. The JWT token is
create automatically. The issuer name and
subject name are provided either
programmatically or declaratively through the
policy. You can specify the audience
restriction condition for this policy.

http_jwt_token_identity_switch_clien
t_policy

Includes JWT token in the HTTP header.
Similar to http_jwt_token_client_policy
but this policy also performs dynamic identity
switching by propagating a different identity
than the one based on authenticated Subject
(mobile user).

C-1

Security Policy Description

http_jwt_token_over_ssl_client_polic
y

Includes a JWT token in the HTTP header. A
JSON Web Token represents claims and is
generally used in Federated Identity systems
where the source and target have mutual trust
and a shared identity realm. The JWT token is
created automatically. The issuer name and
subject name are provided either
programmatically or declaratively through the
policy. You can specify the audience
restriction condition for this policy. This version
of the policy enforces that connections are
made over https.

http_saml20_token_bearer_client_poli
cy

Includes SAML 2.0 tokens in the HTTP
header. SAML provides single sign-on in that
multiple services can redirect a user to a
single identity provider, which supplies signed
assertion tokens. The SAML token with
confirmation method Bearer is created
automatically.

http_saml20_token_bearer_over_ssl_cl
ient_policy

Includes SAML 2.0 tokens in the HTTP
header. SAML provides single sign-on in that
multiple services can redirect a user to a
single identity provider, which supplies signed
assertion tokens. The SAML token with
confirmation method Bearer is created
automatically. This version of the policy
enforces that connections are made over
https.

oauth2_config_client_policy Provides information about the OAuth2 server,
which preforms authorization and issues the
access tokens.

You must set both this policy and oracle/
http_oauth2_token_client_policy
together.

http_oauth2_token_client_policy Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources..

You must set both this policy and oracle/
oauth2_config_client_policy together.

http_oauth2_token_over_ssl_client_po
licy

Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources.

You must set both this policy and oracle/
oauth2_config_client_policy together.
This version of the policy enforces that
connections are made over https.

C-2

Security Policies for SOAP Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security polices for
SOAP connectors are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_poli
cy

Includes credentials in the HTTP header for
outbound client requests. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

wss_http_token_client_policy Includes credentials in the HTTP header for
outbound client requests. The credentials can
be provided either programmatically or through
the current Java Authentication and
Authorization Service (JAAS) subject. This
policy can be applied to any HTTP-based
client. Note: Currently only HTTP Basic
Authentication is supported.

wss_http_token_over_ssl_client_polic
y

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

wss_saml_token_bearer_client_policy Includes the SAML Bearer token in outbound
SOAP request messages. The SAML token is
automatically created and is by default signed
with an enveloped signature. The issuer name
and subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject.

wss_saml_token_bearer_over_ssl_clien
t_policy

Includes SAML tokens in outbound SOAP
request messages. The SAML token with
confirmation method Bearer is automatically
created. The issuer name and subject name
are provided either programmatically or
through the current Java Authentication and
Authorization Service (JAAS) subject. The
policy also verifies that the transport protocol
provides SSL message protection. This policy
can be attached to any SOAP-based client

C-3

Security Policy Description

wss_saml20_token_bearer_over_ssl_cli
ent_policy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token
with confirmation method Bearer is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

wss_saml20_token_bearer_over_ssl_not
imestamp_client_policy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token
with confirmation method Bearer is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. The SOAP header contains no
timestamp. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

wss_saml20_token_over_ssl_client_pol
icy

Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction condition can be specified.
The policy also verifies that the transport
protocol provides SSL message protection.
This policy can be attached to any SOAP-
based client.

wss_username_token_client_policy Includes credentials in the WS-Security
UsernameToken header for all outbound
SOAP request messages. Only the plain text
mechanism is supported. The credentials can
be provided either programmatically, through
the Java Authentication and Authorization
Service (JAAS), or by a reference in the policy
to the configured credential store. This policy
can be attached to any SOAP-based client.

C-4

Security Policy Description

wss_username_token_over_ssl_client_p
olicy

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

wss10_message_protection_client_poli
cy

Provides message integrity and confidentiality
for outbound SOAP requests in accordance
with the WS-Security v1.0 standard. It uses
WS-Security's Basic 128 suite of asymmetric
key technologies, specifically RSA key
mechanism for message confidentiality, SHA-1
hashing algorithm for message integrity, and
AES-128 bit encryption. The keystore on the
client side is configured either on a per-
request basis or through the security
configuration. This policy doesn’t authenticate
or authorize the requestor.

wss10_saml_hok_token_with_message_pr
otection_client_policy

Provides message-level protection and a
SAML holder of key based authentication for
outbound SOAP messages in accordance with
the WS-Security 1.0 standard. It uses WS-
Security's Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouchers
confirmation. These credentials are provided
either programmatically or through the security
configuration.

wss10_saml_token_client_policy Includes SAML tokens in outbound SOAP
request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject.

C-5

Security Policy Description

wss10_saml_token_with_message_protec
tion_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 128
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-128 bit
encryption. The keystore on the client is
configured either on a per-request basis or
through the security configuration. A SAML
token, included in the SOAP message, is used
in SAML-based authentication with sender
vouchers confirmation. These credentials are
provided either programmatically or through
the security configuration.

wss10_saml20_token_client_policy Includes SAML V2.0 tokens in outbound
SOAP request messages. The SAML token is
automatically created. The issuer name and
subject name are provided either
programmatically or through the current Java
Authentication and Authorization Service
(JAAS) subject. Optionally, attesting entity and
audience restriction can be specified.

wss10_saml20_token_with_message_prot
ection_client_policy

Provides message-level protection and SAML
V2.0 based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 and SAML Token profile 1.1 standards. It
uses WS-Security's Basic 128 suite of
asymmetric key technologies, specifically RSA
key mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML V2.0 token, included in
the SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration.

C-6

Security Policy Description

wss10_x509_token_with_message_protec
tion_client_policy

Provides message-level protection and
certificate credential population for outbound
SOAP requests in accordance with the WS-
Security 1.0 standard. It uses WS-Security's
Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Authentication credentials are
included in the SOAP message through the
WS-Security binary security token. These
credentials are provided either
programmatically or through the security
configuration

wss10_saml_token_with_message_protec
tion_ski_basic256_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 256
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-256 bit
encryption. This policy uses the Subject Key
Identifier (ski) reference mechanism for an
encryption key in the request and for both
signature and encryption keys in the response.
The keystore on the client is configured either
on a per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration.

C-7

Security Policy Description

wss10_username_id_propagation_with_m
sg_protection_client_policy

Enables message-level protection (that is,
integrity and confidentiality) and identity
propagation for outbound SOAP requests
using mechanisms described in WS-Security
1.0. Message protection is provided using WS-
Security's Basic 128 suite of asymmetric key
technologies, specifically RSA key
mechanisms for confidentiality, SHA-1 hashing
algorithm for integrity and AES-128 bit
encryption. The keystore on the client side is
configured either on a per request basis or
through the security configuration. Credentials
(only user name) are included in outbound
SOAP request messages via a WS-Security
UsernameToken header. No password is
included. The user name included can be
provided either programmatically, via the
current JAAS Subject or by a reference in the
policy itself to the configured credential store.
This policy can be applied to any SOAP-based
client.

wss10_username_token_with_message_pr
otection_client_policy

Provides message-level protection (message
integrity and confidentiality) and authentication
for outbound SOAP requests in accordance
with the WS-Security v1.0 standard. It uses
WS-Security's Basic 128 suite of asymmetric
key technologies, specifically RSA key
mechanism for message confidentiality, SHA-1
hashing algorithm for message integrity, and
AES-128 bit encryption. The keystore on the
client side is configured either on a per-
request basis or through the security
configuration. Credentials are included in the
WS-Security UsernameToken header in the
outbound SOAP message. Only plain text
mechanism is supported. Credentials can be
provided either programmatically through the
current Java Authentication and Authorization
Service (JAAS) subject, or by a reference in
the policy to the configured credential store.
This policy can be attached to any SOAP-
based client.

C-8

Security Policy Description

wss10_username_token_with_message_pr
otection_ski_basic256_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
messages in accordance with the WS-Security
1.0 standard. It uses WS-Security's Basic 256
suite of asymmetric key technologies,
specifically RSA key mechanisms for message
confidentiality, SHA-1 hashing algorithm for
message integrity, and AES-256 bit
encryption. This policy uses the Subject Key
Identifier (ski) reference mechanism for
encryption key in the request and for both
signature and encryption keys in the response.
The keystore on the client is configured either
on a per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration.

wss11_x509_username_token_with_messa
ge_protection_client_policy

Provides message-level protection and
certificate-based authentication for outbound
SOAP requests in accordance with the WS-
Security 1.1 standard. Messages are protected
using WS-Security's Basic 128 suite of
symmetric key technologies, specifically RSA
key mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Credentials are included in the
WS-Security binary security token of the
SOAP message. These credentials are
provided either programmatically or through
the security configuration.

wss11_saml_token_identity_switch_wit
h_message_protection_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
requests in accordance with the WS-Security
1.1 standard. Messages are protected using
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration. This policy performs dynamic
identity switching by propagating a different
identity than the one based on an
authenticated Subject. This policy can be
attached to any SOAP-based client.

C-9

Security Policy Description

wss11_message_protection_client_poli
cy

Provides message integrity and confidentiality
for outbound SOAP requests in accordance
with the WS-Security 1.1 standard. It uses
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. This policy doesn’t authenticate
or authorize the requestor.

wss11_saml_token_with_message_protec
tion_client_policy

Provides message-level protection and SAML-
based authentication for outbound SOAP
requests in accordance with the WS-Security
1.1 standard. Messages are protected using
WS-Security's Basic 128 suite of symmetric
key technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client is configured either on a
per-request basis or through the security
configuration. A SAML token, included in the
SOAP message, is used in SAML-based
authentication with sender vouches
confirmation. These credentials are provided
either programmatically or through the security
configuration. This policy can be attached to
any SOAP-based client.

wss11_username_token_with_message_pr
otection_client_policy

Provides message-level protection and
authentication for outbound SOAP requests in
accordance with the WS-Security 1.1
standard. Messages are protected using WS-
Security's Basic 128 suite of symmetric key
technologies, specifically RSA key
mechanisms for message confidentiality,
SHA-1 hashing algorithm for message
integrity, and AES-128 bit encryption. The
keystore on the client side is configured either
on a per-request basis or through the security
configuration. Credentials are included in the
WS-Security UsernameToken header of
outbound SOAP request messages. Only the
plain text mechanism is supported. Credentials
are provided either programmatically through
the current Java Authentication and
Authorization Service (JAAS) subject or by a
reference in the policy to the configured
credential store. This policy can be attached to
any SOAP-based client.

C-10

Security Policies for ICS Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for ICS
Connector APIs are described in the following table:

Security Policy Description

http_basic_auth_over_ssl_client_poli
cy

Includes credentials in the HTTP header for
outbound client requests. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

wss_http_token_over_ssl_client_polic
y

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. This policy also
verifies that the transport protocol is HTTPS.
Requests over a non-HTTPS transport
protocol are refused. This policy can be
applied to any HTTP-based endpoint.

wss_username_token_over_ssl_client_p
olicy

Includes credentials in the HTTP header for
outbound client requests. The credentials are
provided either programmatically or through
the Java Authentication and Authorization
Service (JAAS) subject. It also verifies that the
outbound transport protocol is HTTPS. If a
non-HTTPS transport protocol is used, then
the request is refused. This policy can be
applied to any HTTP-based client.

Security Policies for Fusion Applications Connector APIs
The supported Oracle Web Services Manager (Oracle WSM) security policies for
REST Connector APIs are described in the following table:

Security Policy Description

wss_http_token_client_policy Includes credentials in the HTTP header for
outbound client requests. The credentials can
be provided either programmatically or through
the current Java Authentication and
Authorization Service (JAAS) subject. This
policy can be applied to any HTTP-based
client. Note: Currently only HTTP Basic
Authentication is supported.

C-11

Security Policy Description

wss_saml_token_bearer_over_ssl_clien
t_policy

Includes SAML tokens in outbound SOAP
request messages. The SAML token with
confirmation method Bearer is automatically
created. The issuer name and subject name
are provided either programmatically or
through the current Java Authentication and
Authorization Service (JAAS) subject. The
policy also verifies that the transport protocol
provides SSL message protection. This policy
can be attached to any SOAP-based client

oauth2_config_client_policy Provides information about the OAuth2 server,
which preforms authorization and issues the
access tokens.

You must set both this policy and oracle/
http_oauth2_token_client_policy
together.

http_oauth2_token_client_policy Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources..

You must set both this policy and oracle/
oauth2_config_client_policy together.

http_oauth2_token_over_ssl_client_po
licy

Includes OAuth2 access token in the request.
OAuth2 allows users to safely grant client
applications limited access to protected
resources.

You must set both this policy and oracle/
oauth2_config_client_policy together.
This version of the policy enforces that
connections are made over https.

Security Policy Properties
Every security policy has a set of attributes that defines it. Some of these attributes
can be overridden (see Setting Security Policies and Policy Overrides for REST
Connector APIs and Setting Security Policies and Policy Overrides for SOAP
Connector APIs). The following table lists the attributes that you can modify and their
descriptions:

Property Description

attesting.mapping.structure The mapping attribute used to represent the
attesting entity. Only the DN (distinguished name)
is currently supported. This attribute is applicable
only to sender vouches and then only to message
protection use cases. It isn’t applicable to SAML
over SSL policies.

C-12

Property Description

audience.uri Audience restriction. The following conditions are
supported:

• If not set, the service URL is used as the
audience URI

• If set to NONE (case insensitive), the audience
URI is set to null

• If set to a value other than NONE, the
audience URI is set to this value

authz.code The previously obtained OAuth2 authorization
code.

csf.key Credential Store key that maps to a user name and
password in the Oracle Platform Security Services
identity store.

csf.map Oracle WSM map in the credential store that
contains the CSF aliases.

federated.client.token The federated identity that enables you to
consolidate the multiple local identities that you’ve
configured among multiple service providers.
Allows you to log on at one service provider site
without having to re-authenticate or re-establish
your identity.

include.certificate The signer's certificate.

issuer.name Name of the JWT issuer. The default value is
www.oracle.com

keystore.enc.csf.key The alias and password used for storing the
decryption key password in the keystore. If you set
this value, then you can override it. If you do
override this value, then the key for the new value
must be in the keystore. That is, overriding the
value doesn’t free you from the requirement of
configuring the key in the keystore.

keystore.recipient.alias Keystore alias associated with the peer certificate.
The security runtime uses this alias to extract the
peer certificate from the configured keystore and to
encrypt messages to the peer. Valid value is
orakey.

keystore.sig.csf.key The alias and password used for storing the
signature key password in the keystore. This
property allows you to specify the signature key on
a per-attachment level instead of at the domain
level.

oauth2.client.csf.key The Credential Store Framework key to the OAuth2
client username and password. The client
credentials are the same on every request.

propagate.identity.context Propagation of the identity context from the web
service client to the web service, and then makes it
available ("publishes it") to other components for
authentication and authorization purposes. This is
applicable to both SAML and OAuth, but not to
HTTP Basic Authentication.

C-13

Property Description

redirect.uri The redirect URI specified when obtaining the
authorization code (set this property if setting
authz.code).

role SOAP role

saml.assertion.filename Name of the SAML token file.

saml.audience.uri Representation of the relying party, as a comma-
separated URI. This field accepts the following
wildcards:

• * in any location
• /* at the end of the URI
• .* at the end of the URI

saml.enveloped.signature.require
d

Flag that specifies whether the Bearer token is
signed using the domain signature key. You can
override the domain signature key using the private
signature key configured using
keystore.sig.csf.key. Set this flag to false (in
both the client and service policy) to have the
Bearer token be unsigned.

saml.issuer.name Name identifier for the issuer of the SAML token.

scope Ability for a user to grant the client application
access to specific resources rather than a blanket
authorization. .Passed to the OAuth2 server token
request

subject.precedence Identification of the authenticated principal. If set to
false, then allows use of a client-specific user name
rather than the authenticated subject. If set to true,
then the user name to create the SAML assertion is
obtained only from the Subject. Similarly, if set to
false, the user name to create the SAML assertion
is obtained only from the csf-key user name
property.

token.uri The OAuth2 server's token endpoint URI, which
issues the access tokens.

user.attributes User attributes related to the principal of the SAML
token. Attributes are added as a comma-separated
list. The attribute names that you specify must
exactly match valid attributes in the configured
identity store. The Oracle WSM runtime reads the
values for these attributes from the configured
identity store, and then includes the attributes and
their values in the SAML assertion.

user.roles.include (SOAP) Flag that specifies whether to include
SOAP roles.

(REST) User roles to be included in the token. If set
to true, then the authenticated user roles are
included in the token as private claims. The default
is false.

user.tenant.name Reserved for use with Oracle Cloud.

The following table shows which security policies have these attributes:

C-14

Property Security Policies Containing the Property

attesting.mapping.structure SOAP security policies:

wss10_saml20_token_with_message_protection_clien
t_policy

wss11_saml20_token_with_message_protection_clien
t_policy

audience.uri REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

authz.code REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

C-15

Property Security Policies Containing the Property

csf.key REST security policies:

http_basic_auth_over_ssl_client_policy

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

http_basic_auth_over_ssl_client_policy

wss_http_token_client_policy

wss_http_token_over_ssl_client_policy

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss_username_token_client_policy

wss_username_token_over_ssl_client_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20__token_with_message_protection_clie
nt_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

wss11_username_token_with_message_protection_cli
ent_policy

Fusion Applications security policies:

wss_http_token_client_policy

wss_saml_token_bearer_over_ssl_client_policy

ICS security policies:

http_basic_auth_over_ssl_client_policy

C-16

Property Security Policies Containing the Property

ICS security policies:

http_basic_auth_over_ssl_client_policy

Fusion Applications security policies:

wss_http_token_client_policy

wss_saml_token_bearer_over_ssl_client_policy

csf.map REST security policy:

http_jwt_token_identity_switch_client_policy

federated.client.token REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

include.certificate REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

issuer.name REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

C-17

Property Security Policies Containing the Property

keystore.enc.csf.key SOAP security policies:

wss10_message_protection_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_x509_token_with_message_protection_client_
policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss10_username_id_propagation_with_msg_protectio
n_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_x509_token_with_message_protection_client_
policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_message_protection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

wss11_username_token_with_message_protection_cli
ent_policy

C-18

Property Security Policies Containing the Property

keystore.recipient.alias SOAP security policies:

wss10_message_protection_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_x509_token_with_message_protection_client_
policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss10_username_id_propagation_with_msg_protectio
n_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_x509_token_with_message_protection_client_
policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_message_protection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

wss11_username_token_with_message_protection_cli
ent_policy

C-19

Property Security Policies Containing the Property

keystore.sig.csf.key REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss10_message_protection_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_x509_token_with_message_protection_client_
policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss10_username_id_propagation_with_msg_protectio
n_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_x509_token_with_message_protection_client_
policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_bearer_token_over_ssl_client_policy

C-20

Property Security Policies Containing the Property

oauth2.client.csf.key REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

propagate.identity.context REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_token_bearer_over_ssl_client_policy

C-21

Property Security Policies Containing the Property

redirect.uri REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

role REST security policy:

oauth2_config_client_policy

SOAP security policies:

wss_http_token_client_policy

wss_http_token_over_ssl_client_policy

wss_username_token_client_policy

wss_username_token_over_ssl_client_policy

wss10_message_protection_client_policy

wss10_x509_token_with_message_protection_client_
policy

wss10_username_id_propagation_with_msg_protectio
n_client_policy

wss10_username_token_with_message_protection_cli
ent_policy

wss10_username_token_with_message_protection_ski
_basic256_client_policy

wss11_message_protection_client_policy

ICS security policies:

wss_username_token_over_ssl_client_policy

Fusion Applications security policies:

wss_http_token_client_policy

http_oauth2_config_client_policy

saml.assertion.filename SOAP security policy:

wss10_saml_hok_token_with_message_protection_cli
ent_policy

C-22

Property Security Policies Containing the Property

saml.audience.uri REST security policies:

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

saml.enveloped.signature.required REST security policies:

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

C-23

Property Security Policies Containing the Property

saml.issuer.name REST security policies:

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

scope REST security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

C-24

Property Security Policies Containing the Property

subject.precedence REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

wss_saml_token_bearer_over_ssl_client_policy

token.uri REST security policy:

oauth2_config_client_policy

Fusion Applications security policies:

http_oauth2_config_client_policy

C-25

Property Security Policies Containing the Property

user.attributes REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_token_bearer_over_ssl_client_policy

C-26

Property Security Policies Containing the Property

user.roles.include REST security policies:

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

Fusion Applications security policies:

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_token_bearer_over_ssl_client_policy

C-27

Property Security Policies Containing the Property

user.tenant.name REST security policies:

http_basic_auth_over_ssl_client_policy

http_jwt_token_client_policy

http_jwt_token_identity_switch_client_policy

http_jwt_token_over_ssl_client_policy

http_saml20_token_bearer_client_policy

http_saml20_token_bearer_over_ssl_client_policy

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

SOAP security policies:

http_basic_auth_over_ssl_client_policy

wss_http_token_client_policy

wss_saml_token_bearer_client_policy

wss_saml_token_bearer_over_ssl_client_policy

wss_saml20_token_bearer_over_ssl_client_policy

wss_saml20_token_over_ssl_client_policy

wss_username_token_client_policy

wss_username_token_over_ssl_client_policy

wss10_saml_hok_token_with_message_protection_cli
ent_policy

wss10_saml_token_client_policy

wss10_saml_token_with_message_integrity_client_p
olicy

wss10_saml_token_with_message_protection_client_
policy

wss10_saml20_token_client_policy

wss10_saml20_token_with_message_protection_clien
t_policy

wss10_saml_token_with_message_protection_ski_bas
ic256_client_policy

wss11_saml_token_identity_switch_with_message_pr
otection_client_policy

wss11_saml_token_with_message_protection_client_
policy

wss11_saml20_token_with_message_protection_clien
t_policy

wss11_username_token_with_message_protection_cli
ent_policy

ICS security policies:

http_basic_auth_token_over_ssl_client_policy

http_username_token_over_ssl_client_policy

Fusion Applications security policies:

wss_http_token_client_policy

C-28

Property Security Policies Containing the Property

http_oauth2_token_client_policy

http_oauth2_token_over_ssl_client_policy

wss_saml_token_bearer_over_ssl_client_policy

C-29

D
Identity Domain Relocation

Task Who Does It? Where? More Information

1. Submit the identity domain
relocation.

Your company’s Oracle Cloud
account administrator.
Oracle Cloud Infrastructure

Classic Console > >
Users

See Identity Domain Overview
in Oracle Cloud
Understanding Identity
Concepts.

2. Set up SSO in the new
identity domain.

Your company’s Oracle Cloud
account administrator.
Oracle Cloud Infrastructure

Classic Console > >
Users

See Configuring Identity
Management (SSO and
OAuth).

3. Create (or recreate) team
members. You can export the
team members from the old
domain and import them into
the new domain.

A service administrator for
the MCS environment.

Oracle Cloud Infrastructure

Classic Console > >
Users

See Adding Users and
Assigning Roles in Getting
Started with Oracle Cloud.

4. Assign MCS team member
roles to define permissions.

A service administrator for
the MCS environment.

Oracle Cloud Infrastructure

Classic Console > >
Users

See Assign MCS Team
Member Roles.

5. Create (or recreate) mobile
users. As with team members,
you can export the mobile
users from the old domain and
import them into the new
domain.

A team member with the
Oracle Cloud identity domain
administrator role and the
mobile user configuration
(MobileEnvironment_Mobil
eUserConfig) and mobile
user management
(MobileEnvironment_Mobil
eUserMgmt) MCS team
member roles in the MCS
environment.

Oracle Cloud Infrastructure

Classic Console > >
Users

See Set Up Mobile Users,
Realms and Roles.

D-1

Task Who Does It? Where? More Information

6. Create (or recreate) mobile
user roles.

Realm role:
{serviceName}_MobileEnviron
ment_{realmName}_{version
using underscores}_Realm

Mobile user role:
{serviceName}_MobileEnviron
ment_{roleName}

N

o

t

e

:

R
o
l
e
n
a
m
e
s
a
r
e
c
a
s
e
s
e
n
s
it
i
v
e
a
n
d
m
u
s
t
m
a
t
c

A team member with the
Oracle Cloud identity domain
administrator role and the
mobile user configuration
(MobileEnvironment_Mobil
eUserConfig) and mobile
user management
(MobileEnvironment_Mobil
eUserMgmt) MCS team
member roles in the MCS
environment.

MCS > Applications >
Mobile User Management
and

Oracle Cloud Infrastructure

Classic Console > >
Users > Custom Roles

See Creating and Managing
Mobile User Roles.

D-2

Task Who Does It? Where? More Information

h
t
h
e
n
a
m
e
s
i
n
t
h
e
o
l
d
d
o
m
a
i
n
,
w
it
h
a
n
e
w
{
s
e
r
v
i
c
e
_
n
a
m
e
}
.

D-3

Task Who Does It? Where? More Information

7. Assign (or reassign) mobile
user roles.

A team member with the
Oracle Cloud identity domain
administrator role and the
mobile user configuration
(MobileEnvironment_Mobil
eUserConfig) and mobile
user management
(MobileEnvironment_Mobil
eUserMgmt) MCS team
member roles in the MCS
environment.

Oracle Cloud Infrastructure

Classic Console > >
Users

See Creating and Managing
Mobile User Roles.

8. Reset the credentials for the
OAuth Consumer for each
mobile backend by performing
a "refresh" on the MBE
Settings page, and enable
SSO if it was previously
enabled.

A team member with the
Oracle Cloud identity domain
administrator role and the
mobile user configuration
(MobileEnvironment_Mobil
eUserConfig) and mobile
user management
(MobileEnvironment_Mobil
eUserMgmt) MCS team
member roles in the MCS
environment.

MCS > Mobile Backends >
Settings

See Enterprise Single Sign-On
in MCS.

9. Update settings for mobile
apps.

A mobile app developer with
access to the mobile backend
and the mobile app.

Get the updated settings
below from the MCS UI and
modify them in the SDK config
file and your mobile app code
as necessary.

MCS > Mobile Backends >
Settings ...

See Mobile Backend
Authentication and Connection
Info and Authentication in
MCS.
For details on SDK
configuration, see the
following topics:
• Configuring SDK

Properties for Android
• Configuring SDK

Properties for Cordova
• Configuring SDK

Properties for iOS
• Configuring SDK

Properties for JavaScript

• API URLs > Environment URLs > Base
URL

• Token endpoint URLs
(OAuth and SSO)

> Environment URLs >
OAuth Token Endpoint

• Client ID and secret
(OAuth)

> Access Keys > OAuth
Consumer

• Anonymous key (HTTP
Basic authentication)

> Access Keys > HTTP
Basic > Anonymous Keys

10. Register (or reregister)
clients for notifications. You
can use the UI or the /
mobile/platform/
devices/register endpoint
in the REST API.

MCS > Applications > Client
Management

See Registering an App as a
Client in MCS and REST APIs
for Oracle Mobile Cloud
Service.

D-4

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

E
Writing Swift Applications Using the iOS
Client SDK

You can also use the Oracle Mobile Cloud Service iOS client SDK with Swift
applications.

Here are the general steps you take to work with Swift and the client SDK, using
Xcode as your IDE:

1. Add the bridging header files.

2. Add the SDK header files and libraries.

3. Add the Objective-C linker flag.

4. Compile and link your app using the iOS client SDK as you would any other iOS
project in Xcode.

Note:

Using the SDK with Swift has all the same dependencies as using the SDK
with Objective-C. For the list of dependencies, see iOS SDK Dependencies.

For more information on how to work effectively with Swift and Objective-C, see
Apple’s documentation: https://developer.apple.com/library/content/documentation/
Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html.

Adding the Bridging Header File
You need to use a bridging header file to import the header files of the Objective-C
public classes that your Swift app calls. All of the available public classes in the MCS
client SDK can be found in the SDK’s include folder.

To create a bridging header file in Xcode:

1. Select File > New... > File... and then from iOS/Source choose Header file using
the .h icon. You can give the bridging header file any name you choose.

Depending on the SDK classes that your app uses, the contents should look
something like the following:

#ifndef GettingStartedSwift_Bridging_Header_h
#define GettingStartedSwift_Bridging_Header_h

#import "OMCCore.h"
#import "OMCAuthorization.h"
#import "OMCMobileBackend.h"
#import "OMCMobileBackendManager.h"
#import "OMCServiceProxy.h"

E-1

https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html
https://developer.apple.com/library/content/documentation/Swift/Conceptual/BuildingCocoaApps/InteractingWithObjective-CAPIs.html

#import "OMCUser.h"

#import "OMCStorage.h"
#import "OMCMobileBackend+OMC_Storage.h"
#import "OMCStorageCollection.h"
#import "OMCStorageObject.h"

#import "OMCSynchronization.h"
#import "OMCMobileBackend+OMC_Synchronization.h"
#import "OMCFetchObjectCollectionBuilder.h"
#import "OMCMobileResource.h"
#import "OMCSyncGlobals.h"

#import "OMCAnalytics.h"
#import "OMCMobileBackend+OMC_Analytics.h"

#import "OMCNotifications.h"
#import "OMCMobileBackend+OMC_Notifications.h"

#import "OMCLocation.h"
#import "OMCMobileBackend+OMC_Location.h"

#endif /* GettingStartedSwift_Bridging_Header_h */

2. After you have created the header file, note the location of the file in the Build
Settings for the Objective-C Bridging Header setting.

It’s best to keep the header location specified relative to the project, rather than as
an absolute path, in case the project is shared.

Adding the SDK Headers and Libraries to a Swift App
The set of headers and libraries you add depends upon which of the client SDK’s
static libraries you include in your app. At a minimum, you need the libOMCCore.a and
libIDMMobileSDK.a libraries.

To add the SDK headers and libraries:

1. Download and unzip the SDK, as described in iOS Applications.

2. From the location where you’ve unzipped the SDK files, drag the libraries and
header files you want into your Swift project in Xcode.

Note:

The contents of the SDK libraries are hierarchically arranged by
category, so you’ll need to drag over entire folders to preserve the
includes of other headers.

3. Under the Build Phases settings, add the static libraries plus the iOS frameworks
required by the IDM library to the Link with Binary Libraries phase.

4. Add the header files to your search path. Under the project settings, configure the
Header Search Paths to include the location of the parent directory of the SDK

E-2

folders, that is, the parent directory of libOMCCore.a, libIDMMobileSDK.a, and so
on. Be sure to use a relative path to the project.

5. Edit the bridging header file to include the header files you’ll actually need for your
code.

This means that you'll also need to add headers that are used by the class you
wish to use.

For example, to make sure that all the methods of OMCAuthorization.h are
accessible, you’d also need to add OMAuthView.h, OMCUser.h
and OMDefinitions.h. Without these files in the bridging header file, some
methods and properties of OMCAuthorization won’t be visible, and the compiler
won’t warn you with errors.

Using SDK Objects in Swift Apps
The rules for converting from Objective-C to Swift are well described in the Apple
documentation. For general information on the relationship and usage of these two
languages together, be sure you look there.

Watch out for the following:

• The auto-complete feature of the Code Editor in Xcode generally works well
enough to get you the mappings. However, sometimes it puts the a label in the
first parameter that isn’t supposed to be there. Watch for it if you’re using auto-
complete.

• When Objective-C init methods come over to Swift, they take on native Swift
initializer syntax. This means the init prefix is sliced off and becomes a keyword
to indicate that the method is an initializer. See the Apple documentation for
complete details.

• Pay special attention to the ! and ? optional parameter specifications, as well as
any parametrized types in the declarations. The optional types are auto-
determined by the compiler when mapping Objective-C to Swift.

You should be able to compile and run your mobile app using Swift and the MCS client
SDK on both the Xcode Simulator and an actual device.

Here’s an example of Objective-C and the comparable Swift code that uses the MCS
client SDK.

The following Objective-C code to register a device token for Push notifications:

// Get notifications sdk object
OMCNotifications* notifications = [[appDelegate myMobileBackend]
notifications];

// Register device token with MCS server using notifications sdk
[notifications registerForNotifications:[appDelegate getDeviceTokenData]

 onSuccess:^(NSHTTPURLResponse *response) {

 NSLog(@"Device token registered successfully on MCS
server");

 dispatch_async(dispatch_get_main_queue(), ^{

E-3

 // Update UI here
 }) ;
 }

 onError:^(NSError *error) {

 NSLog(@"Error: %@", error.localizedDescription);

 dispatch_async(dispatch_get_main_queue(), ^{
 // Update UI here
 }) ;
 }];

might be written in the following way in Swift:

@IBAction func registerForPushNotifications() {

 // Get notifications sdk object
 let notifications = appDelegate.myMobileBackend().notifications();

 // Get device token first, and assign it here
 let deviceTokenData:NSData! = nil;

 // Register device token with MCS server using notifications sdk
 notifications.registerForNotifications(deviceTokenData, onSuccess:
{ (response:NSHTTPURLResponse!) in

 NSLog("Device token registered successfully on MCS server");

 dispatch_async(dispatch_get_main_queue()) {
 // Update UI here
 }

 }) { (error) in

 print("Error: %@", error.localizedDescription);
 };
}

E-4

F
Supported Browsers and Languages

Supported Browsers
This table describes the minimum requirements for web browsers that Oracle Mobile
Cloud Service supports.

Web Browser Version

Microsoft Internet Explorer 11

Google Chrome 43

Mozilla Firefox 37, 38

Apple Safari 8.0

Supported Languages
Oracle Mobile Cloud Service supports the following languages in its web interface:

• German (de)

• English (en)

• Spanish (es)

• French (fr)

• Italian (it)

• Japanese (ja)

• Korean (ko)

• Portuguese (pt)

• Chinese - Simplified (zh_CN)

• Chinese - Traditional (zh_TW)

F-1

G
Identity Provider Integration

Here are the steps you need to follow to integrate various third-party identity providers
with MCS.

Use Case: Configuring OKTA to Obtain a SAML Token
Here are the required fields that you must fill in if you’re configuring a SAML 2.0 app
from OKTA.

Assuming that you have a user role with administrator privileges in OKTA:

1. Log in to OKTA.

2. Click Admin.

3. Go to the Directory tab and specify the users to have access privileges to the
application:

• Select People to specify individual users

• Select Group to specify a group of users

By setting a group, you can later map a group of individuals to specific MCS
roles by setting Role Attribute rules in the Keys and Certificates dialog. See
Rule Types.

• Select Directory Integration, then Add Active Directory to include all the
users in the directory server

or, alternatively, select LDAP to include all the users in an LDAP directory
server

4. Go to the Applications tab and click Add Application to create a new SAML 2.0
application.

5. On the General Settings page, configure the SAML application.

You’ll see several fields to fill in. For the token to be viable with MCS, you must fill-
in the following fields:

• Single Sign-On URL. This is the redirect URL where the response from the
third-party IdP is sent. For example:

https://hostname:####/saml

• Audience URI. This is the intended audience of the SAML assertion. Set this
value to the MCS SSO token endpoint URL.

To exchange an externally-issued SAML token for an MCS-issued token that
can be used with subsequent MCS API calls, ensure that the audience value
specified in the token includes the MCS token exchange URL. The URL must
include a port number, even when a default port is being used. For example:

https://hostname:443/mobile/platform/sso/token

You construct this endpoint by appending /mobile/platform/sso/exchange-
token to your instance’s base URL. You can determine the base URL by

G-1

opening any mobile backend in MCS, clicking its Settings tab, and looking in
the Environment URLs section. For example:

https://hostname:443/mobile/platform/sso/exchange-token

• Group Statement. This is where you can add additional group attributes to
the token. In this field, you can filter which groups to add. There are different
types of filtering options that you can choose from. For instance, if you used a
naming convention for your group names, you can set an option (Regex or
Start with) to filter groups that begin with a specific prefix.

For example, say you defined several group of users, two groups for FixItFast
employees, FIF-group1 and FIF-group2, and a group for RepairItFast
employees, RIF-group1. If you enter FIF* as a value, only the users in the
FixItFast group are added to the token.

6. Once you’ve configured the app, go to the Single Sign-On page.

This is where you’ll get the token issuer name that you’ll enter into the Token
Issuer panel of token issuer. See Adding a Token Issuer.
You’ll also want to get token certificate contents from this page. Paste the
certificate contents in the Web Service and Token Certificates panel of the Keys
and Certificates dialog when you add a token certificate. See Configuring a Web
Service or Token Certificate.

Use Case: Configuring AD FS to Obtain a SAML Token
Configuring Active Directory Federation Services (AD FS) to obtain a SAML token
involves providing similar information as you would for configuring another identity
provider to obtain the token. You’ll configure an audience, provide a redirect URL to
obtain the token, and configure some rules.

In addition to having access to the AD FS server, you’ll need the following items:

• A defined set of users and groups.

• A Certificate Authority (CA) root certificate and a Signing Certificate from a valid
certificate authority. You’ll import these certificates into your AD FS instance.

These are the token certificates and corresponding private key that are imported
into AD FS so that it can generate and sign SAML tokens. These certificates must
also be added to the Token Certificates panel of the CSF Keys and Certificate
dialog in MCS so that MCS can validate the token. These are the token certificates
that will be associated with the token issuer in MCS.

For testing purposes, you can create a root certificate and a self-signing certificate as
shown in the following examples but don’t use them in a production environment.

Here’s an example of how to create a root certificate:

$ openssl req -x509 -nodes -days 3650 -subj "/C=US/ST=CA/L=Local/
O=SampleCA/OU=Self-Signed/CN=ca.test.local" -newkey rsa:2048 -keyout
testCARootPrivateKey.key -out testCARootCertificate.crt

G-2

Here’s an example of how to create a new key pair and the corresponding certificate:

$ openssl req -nodes -days 3650 -subj "/C=US/ST=CA/L=Local/O=SampleCA/
OU=Self-Signed/CN=sts-signing.test.local" -newkey rsa:2048 -keyout
testSigningPrivateKey.key -out testSigningCertificate.csr

$ openssl x509 -req -days 3650 -in testSigningCertificate.csr -CA ../ca/
testCARootCertificate.crt -CAkey ../ca/testCARootPrivateKey.key -
CAcreateserial -out testSigningCertificate.crt

$ openssl pkcs12 -export -out testSigningCertificate.pfx -inkey
testSigningPrivateKey.key -in testSigningCertificate.crt

Creating Users and Groups in AD FS

You need to create users and assign them to groups in AD FS. In MCS, these user
groups are mapped to existing MCS roles. This assumes that you have the AD FS
server installed.

Start AD and add users:

1. Select Tools > Active Directory Users and Computers.

2. Open the Active Directory and Users and Computers folder.

This is the directory where you’ll add users and groups.

3. Right-click the Users folder and select New > User.

4. In the New Object - User dialog, provide a first and last name for each user you
add and the user logon name. The logon name must match the user email
address for that user in MCS.

For example, if the user is John Smith, and his address is jsmith@local.domain,
the address must match the email address for user John Smith in MCS.

5. Click Next and then OK to add the user.

Repeat these steps for each user you want to add.

To add a group and assign a user to it:

1. Right-click the Users folder in the Active Directory and Users and Computers
directory and select New > Group.

2. In the New Object - Group dialog, enter a name for the group.

3. Leave the default settings of Global and Security, for Group Scope and Group
Type and click OK.

4. Right-click on the user name in the Active Directory and Users and Computers
directory and select Add to a group....

5. In the Select Group dialog, click Advanced.

6. In the advanced version of the Select Groups dialog, click Find Now.

7. Locate the group name from the Search results list, select it, and click OK.

8. Click OK in the Select Group dialog to complete the group assignment.

To verify that you’ve added the user to the correct group:

G-3

1. Click on the group name in the Active Directory and Users and Computers
directory to open the group’s properties dialog.

2. In the properties dialog, click Members and look to see if the user you added is
listed.

A group should have a corresponding role in MCS. The user assigned to the group
would then be assigned to the corresponding MCS role.

Configuring the SAML App in AD FS

After you’ve added your users and groups and have a valid root certificate and signing
certificate, you can configure the SAML token. You’ll begin by adding and configuring
a relying party trust. The relying party defines the way in which AD FS recognizes the
relying party application and issues claims to it.

1. From the Server Manager, select Tools > AD FS Management.

2. In the AD FS window, select Action > Add Relying Party Trust....

3. Click Start in the Add Relying Trust wizard.

4. On the Select Data Source panel, select Enter data about the relying party
trust manually option.

5. Click Next to go to the Specify Display Name panel.

6. Enter the name of your SAML app in the Display Name field.

This app name will be listed in the Trust Relationships > Relying Party Trust
directory after you add it.

7. Click Next to go to the Choose Profile panel.

8. Select AD FS profile (the default value).

This is the profile type that supports the SAML 2.0 protocol.

9. Click Next and Next again to go to the Configure URL panel.

You can upload the signing certificate on the Configure Certificate panel now or
upload it later. You don’t need to upload an encryption certificate unless you want
the SAML assertion encrypted as well as signed. Having an encrypted SAML
assertion can be useful in cases where sensitive data is added to the SAML
assertion claims.

10. Select Enable support for the SAML 2.0 Web SSO protocol and enter the
redirect URL in the Relying party SAML 2.0 SSO service URL field.

The redirect URL is the address where you want the request to post back to so
you can intercept the token.

11. Click Next to go to the Configure Identifiers panel.

12. Enter the SSO token endpoint in the Relying party trust identifier field and click
Add.

You construct this endpoint by appending /mobile/platform/sso/exchange-
token to your instance’s base URL. You can determine the base URL by opening
any mobile backend in MCS, clicking its Settings tab, and looking in the
Environment URLs section. For example:

https://hostname:443/mobile/platform/sso/exchange-token

G-4

This is how you specify the audience for the SAML assertion.

13. Click Next to go to the Configure Multi-factor Authentication Now panel.

Use the default setting, I do not want to configure multi-factor authentication
settings for this relying party trust.

14. Click Next to go to the Choose Issuance Authorization Rules panel.

Use the default setting, Permit all users to access this relying party.

15. Click Next to go to the Ready to Add Trust panel, click Next again.

16. Click Finish.

Leave the default setting, Open the Edit Claim Rules dialog for this relying
party trust to continue configuring your SAML app.

17. Click Close to exit the wizard.

The Edit Claim Rules dialog opens when you exit the wizard.

Configuring Claim Rules in AD FS

The next step to configure your SAML app is setting the claim rules. The claim rule
specifies how the values for LDAP attributes are mapped to the outgoing claim type.
You’ll use the Add Transform Claim Rule wizard available from the Edit Claim Rules
dialog to add AD claims and transform NameID transform rule which specify the claims
that are sent to the relying party.

1. Open the Relying Party Trust folder under the Trust Relationships directory
and right-click your app name. Then select Edit Claim Rules.

If you’re continuing on from the previous section, the Edit Claim Rules dialog
opens automatically when you exit the Add Relying Trust wizard.

2. Make sure the Issuance Transform Rules tab is open and click Add Rule to
open the Add Transform Claim Rule wizard.

3. In the Choose Rule Type tab, select the Send LDAP Attributes as Claims
template from the drop-down list.

4. Click Next to go to the Configure Claim Rule tab.

5. Enter a claim rule name. For example, AD Claims.

6. Select Active Directory as the Attribute store.

In the next set of steps, you’ll map the LDAP attributes to the outgoing claim types:

LDAP Attributes Outgoing Claim Type

E-Mail Addresses E-Mail Address

Token-Groups-Unqualified Name Group

User-Principal-Name Common Name

7. Open the LDAP Attributes list and select E-Mail Addresses.

8. Open the Outgoing Claim Type list and select E-Mail Address.

9. Repeat steps 7 and 8 to map Token-Groups-Unqualified Name to Group and to
map User-Principal-Name to Common Name.

10. Click Finish.

G-5

Configuring Transform Rules in AD FS

You set transform rules to map incoming claim types to outgoing claim types and
specify the action that determines what output should occur based on the values from
the incoming claim.

1. Open the Edit Claim Rules dialog and open the Issuance Transform Rules tab.

2. Click Add Rule to open the Add Transform Claim Rule wizard.

3. In the Choose Rule Type tab, select Transform an Incoming Claim.

4. Click Next to go to the Configure Claim Rule tab.

5. Perform the following actions on this tab:

• Enter Transform NameID for the transform claim rule.

• Select EMAIL ADDRESS for the incoming claim type.

• Select Name ID for the outgoing claim type.

• Leave as unspecified the ingoing and outgoing nameID formats.

• Select the Pass through all claim values option.

6. Click Finish.

7. Click Apply and OK in the Edit Claim Rules dialog.

Specifying the Signature Verification Certificate in AD FS

You must specify the signature verification certificates for requests from the relying
party trust.

1. Open the Relying Party Trusts folder, right-click your app name, and select
Properties.

2. In the properties dialog for your app, select Signature and click Add.

3. In the Select a Request Signature Verification Certificate dialog, navigate to
the directory where you stored (or created) the signing certificate and select the
certificate.

4. Click Open.

5. (Optional) Click the Endpoints tab in the app properties dialog and review the
SAML assertion endpoints.

Click the endpoint URL to view its details in the Edit Endpoint dialog. The
endpoint type should be SAML Assertion Consume. Set the Binding field for the
type of SAML response to receive:

• If the client expects a POST, set Binding to POST.

• If the client expects to receive the SAML Response as a GET parameter, set
Binding to Redirect.

Note:

There can be issues using a redirect in the case of long assertions
because some browsers have limits to the length of the URL.

G-6

Integrating Microsoft Azure Active Directory with Oracle Cloud
As an example of adding a remote identity provider, here is what you do to enable use
of Microsoft Azure Active Directory as the remote identity store for apps that use MCS
mobile backends and which have users that have Oracle Cloud accounts.

The general sequence of steps is:

1. In Azure, create an application and configure it to use single sign-on.

This application will provide the context for configuring the SSO relationship and
identify the set of users to whom that relationship is applicable.

2. In Oracle Cloud, configure Azure Active Directory as the identity provider.

3. In your Azure app, add the Oracle Cloud service provider information.

4. In your Azure app, assign users to access the app.

5. In Oracle Cloud, import the Azure users.

6. In Oracle Cloud, enable the SSO configuration.

7. In MCS, enable SSO in a mobile backend.

8. Test the SSO with a mobile backend.

This procedure assumes that you have a Windows Azure account with Azure Active
Directory Premium enabled.

Creating and Configuring the App in Azure that Will Serve as the Identity Store

The first step is to create an application in Azure and then configure that app to use
single sign-on. This app doesn’t have any end-user functionality.

1. Sign in to the Azure portal, browse to the directory you want to use, select
Applications, and click Add.

2. Select Add an application from the gallery.

3. Select Custom, select Add an unlisted application my organization is using,
provide a name, and save.

4. On the application page, click Configure single sign-on.

5. Select Microsoft Azure AD Single Sign-On and click Next.

6. On the Configure App Settings page, add values for Issuer and Reply URL.

These values are just temporary placeholders, so just enter any syntactically
correct URLs, such as https://www.example.com.

You will add the real values later once you have set up your Oracle Cloud account
to use Azure Active Directory as a remote identity provider.

7. On the Configure single sign-on at ... page, click Download Metadata (XML)
and save the file as IdP-Metadata.xml.

You will need this file to configure your Oracle Cloud account.

8. Check Confirm that you have configured single sign-on as described above.

9. In the next screen, confirm the notification email (optional) and save.

G-7

Configuring Azure Active Directory as the Identity Provider in Oracle Cloud

Now that you have set up the app in Azure to hold the identity store, you can configure
your Oracle Cloud account to use it.

The configuration you do here will determine how an Oracle Cloud user record is
identified from the information that Azure AD provides (via the SAML token).

1. Log in to Oracle Cloud, go to Users and then SSO Configuration and click
Configure SSO.

2. In the popup window, select Import identity provider metadata and load the
Azure metadata file (IdP-Metadata.xml) that you just downloaded from Azure.

3. From the SSO Protocol dropdown, select HTTP POST.

4. From the User Identifier dropdown, select one of the following to specify which
field in the Oracle Cloud user record you will use to match with the Azure AD
record.

• User’s Email Address

• User ID

5. From the Contained in dropdown, select the attribute from Azure AD (such as
user name or email address) that you want to be matched again the User Identifier
value above.

6. Click Save.

7. Under Configure your Identity Provider Information, make a note of the
Provider ID and Assertion Consumer Service URL values.

You will use these values when configuring the Azure App to work with Oracle
Cloud.

8. Click Export Metadata , select Provider Metadata, and save the file.

This metadata may come in handy later if configuration problems arise.

Adding the Oracle Cloud Service Provider Information to the Azure App

In this step, you go back to Azure and fill in the Oracle Cloud service provider
information that you just generated.

1. Go back to the Azure portal, and select your directory, then click Applications and
then on the application created before.

2. Click Configure single sign-on.

3. Select Microsoft Active Directory again, and then click Next.

4. In the Issuer field, enter the value of the Provider ID that you copied after
configuring Azure AD as an identity provider in Oracle Cloud.

5. In the Reply URL field, enter the value of the Assertion Consumer Service URL
that you copied above.

6. For the next steps, continue with the defaults and then save at the end.

G-8

Note:

If you have problems with the Issuer and Reply URL values, you can
double-check them in the metadata you exported after configuring Azure AD
as the identity provider in Oracle Cloud. The Provider ID (and thus the
Issuer) value should correspond with value of the entityID attribute of the
EntityDescriptor element. The Assertion Consumer Service URL (and
thus the Reply URL) value should correspond with the value of the
Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" attribute of
the AssertionConsumerService element.

Assigning Azure Users to Access Your App

Next you populate your Azure app with the users that you want to be able to log in via
the SSO feature.

1. In the Azure portal, navigate to your directory, click Applications and choose the
container application you created.

2. Go to the Users And Groups tab, search for the groups you would like to be able
to access MCS apps, and assign them by clicking the Assign button at the bottom
of the page.

Importing Users Into Your MCS Realm

And now you import those users into MCS, via Oracle Cloud.

1. Export the users from Azure, using the recommended method, depending on the
source of the users.

• If the users originate from an on-premises Active Directory installation, use the
standard Active Directory tools to export them.

• If the users originate from Azure directly, use Azure Windows Power Tools.

2. Insert those users into a CSV file, with the following structure: First Name, Last
Name, Email, User Login.

The User Login must match the same username used to log-in to Azure.

3. Import the users into Oracle Cloud and assign them the realm that you want to use
as described in Importing Groups of Mobile Users Into MCS Using Oracle Cloud.

Enabling the SSO Configuration

Once you have assigned users for your application in Azure AD, and have imported
those users into Oracle Cloud, enable the SSO Configuration by following these steps:

1. On the Single Sign-On (SSO) Configuration page in Oracle Cloud, navigate to
the Test your SSO section and click Test.

2. If that test is successful, navigate to theEnable SSO section of the page and click
Enable SSO.

Testing the SSO with an MCS Mobile Backend

Once SSO has been fully configured and enabled and you have enabled SSO in a
mobile backend, you can test it with that mobile backend.

G-9

If you haven’t yet enabled SSO in a mobile backend, see Enabling Single Sign-On for
a Mobile Backend.

To test SSO access to a mobile backend:

• Open a web browser and navigate to the following URL:

<environment URI>>/mobile/platform/sso/token?clientID=<OAuth client ID>

where <environment URI> is the URI used to access platform APIs for the given
MCS instance, and <OAuth client ID> can be obtained from the Settings page
for the given mobile backend.

G-10

H
Migrate to Oracle Mobile Hub

New features are being introduced into Mobile Hub and if you want to use those
features you will need to migrate your Oracle Mobile Cloud configurations from MCS to
Mobile Hub.

For more information, see Migrating to Oracle Mobile Hub.

H-1

Glossary

analytics
Enables mobile cloud administrators and mobile application developers to gauge the
success of a mobile application, respond to user preferences, and explore business
opportunities by observing patterns in performance and usage.

Analytics API
A platform API that allows mobile applications to collect custom events. Combined with
system analytics gathered by MCS, this information can be used to provide insight into
user engagement, usage patterns, and adoption rates of your mobile application.

anonymous access
Access to custom API endpoints without requiring users to log in. When allowing
anonymous access, an app authenticates itself by passing a mobile backend ID and
an anonymous access key instead of a user name and password.

anonymous key
A MCS-generated string used by a mobile application to get access (through HTTP
Basic authentication) to APIs that don’t require login.

anonymous user
A mobile user that can access custom APIs in MCS without logging in.

API
Application Program Interface. An interface description that provides the methods,
return values, and other parameters that make it possible to be implemented in written
code. In MCS, all APIs are RESTful APIs and their interface is described with a RAML
document.

API key
A Google identifier you can use to access Google public APIs. MCS uses the Google
Cloud Messaging system and the API key to send notifications to mobile applications
running on Android devices.

APNS
Apple Push Notifications Service. The Apple network service used to deliver
notifications from MCS to mobile applications running on iOS devices.

Glossary-1

Apple Feedback Service
An Apple service that monitors failures in the notifications sending process. The Apple
Feedback Service helps MCS keep its device registry up to date and ensures a higher
rate of successful notifications deliveries on the Apple network.

application ID
A unique string approved by a platform vendor to identify a given mobile application.
For Google, the application ID is the package name for the mobile application
assigned in the manifest file. For Apple, the application ID is the bundle identifier
assigned in the mobile application’s Xcode project. For Microsoft, the application ID is
the name you gave your app when you registered it in the Windows Dashboard.

application key
A unique ID issued by MCS to each mobile application registered in a mobile backend,
used for tracking purposes in Diagnostics and Analytics.

artifact
An artifact in MCS can be a mobile backend, a custom API, a connector API, a
collection, or a realm. An artifact exists in a specific environment and can be deployed
and versioned.

collection
An MCS user-defined container that is used to store mobile application data on an
MCS server. Data can be an image file, a text file, or a JSON payload. Using
collections allows for efficient sharing of data between mobile users sharing the same
mobile application, or by a single user sharing between several devices.

connector
A connector simplifies the task of connecting securely to a backend system, such as a
database, or a system based on SOAP or REST. Connectors produce a class of APIs;
you create an instance (using a wizard) and the result is a connector API.

connector API
An API produced as the result of using a connector. The API can then be invoked from
custom code to simplify the task of exchanging data with a backend system, such as a
database, or a system based on SOAP or REST.

correlation
A means of associating a given message with other messages logged for the same
request. MCStags this message with a Correlation ID. This ID includes an ECID. By
querying all of the log messages generated during that request, you can analyze what
happened to the request, as well as any problems that it encountered.

correlation ID
An ID that associates a request received by the server with other logging data. The
correlation ID appears in the Message Details view for a request and enables you to
filter the logging data by the ECID.

Glossary

Glossary-2

custom API
Any API that a developer creates in the API Designer and implements in MCS using
custom code they write themselves using those APIs.

custom event
A customer-defined analytic event generated by a mobile application to track a
significant event occurrence that is of value to a business, such as login, checkout, or
knowledge-based search.

Database API
A platform API that you can call from custom code to add, update, view, and delete
rows in a database table.

Database Management API
A platform API that you can use to add, replace, and drop database tables as well as
view the tables' metadata.

Data Offline and Sync API
A platform API that allows data to be locally available on a mobile device, by managing
the efficient caching and network synchronization of data with MCS.

deploy
Once an artifact is in a published state, it can be deployed from one MCS environment
to another. For example, a mobile backend that is in the published state can be
deployed from a Development environment into a Production environment.

device handshake
The start-up registration process between a mobile app, the platform’s network service
(such as GCM, FCM, or APNS), and MCS. The device handshake provides
authentication to MCS that the mobile application is trusted by the network and helps
facilitate the sending of notifications from MCS.

device registry
A mechanism instead of MCS that matches and keeps track of applications, users,
and devices. The device registry does this automatically, which frees MCS developers
from having to do it manually.

diagnostics
A feature that gathers and displays data relating to all traffic flowing through MCS,
such as incoming mobile API requests, outgoing connector requests, and other data
transactions. It also provides a way to view and control custom code log messages.
Diagnostics is the primary mechanism for mobile cloud administrators to diagnose
issues that may occur with the service.

Glossary

Glossary-3

Draft state
When an artifact is initially created in MCS, it is placed in a draft state. Only artifacts in
a draft state can be modified. As part of the MCS lifecycle, when artifacts in a draft
state are completed, they can be moved to a published state.

ECID
Execution Context ID. A globally unique identifier to correlate events or requests
associated with the same transaction in the Oracle technology stack.

endpoint
One end of a communication channel, for example, a URI. An API endpoint is a noun
(resource) and verb (HTTP method).

enterprise systems
On-premises or cloud-based processing systems that are integrated and extended by
a mobile backend through the use of MCS connectors.

environment
The runtime containers where artifacts and metadata are developed and deployed in
MCS. The default environments are Development, Staging, and Production.

ETag
The entity tag. A field value in an HTTP header that identifies a resource from a
specific web service endpoint. The ETag’s value represents the version of a resource.
For example, to avoid overriding an object in the mobile application’s cache, the
Storage API uses the ETag value in the If-Match and If-None-Match fields for GET
and HEAD operations.

funnel
Used in analytics, funnels provide a way to analyze sequences of events, to gain
insight into user behavior and usage of a mobile application.

GCM
Google Cloud Messaging. A network delivery system provided by Google, which is
being replaced by Google Firebase Messaging (FCM). It is used by MCS to deliver
notifications to targeted users running mobile applications developed with MCS on
Android devices. Both XMPP and HTTP are transport mechanisms supported by the
Google Cloud Messaging system.

GUID
Globally Unique Identifier. The unique identifier that gets generated for every stored
object in MCS. Any mobile user with the correct permissions can use this identifier to
access the associated data object in a collection.

Glossary

Glossary-4

JSON
Javascript Object Notation. An open standard format that uses human-readable text to
transmit data objects between a server and web application. Commonly used to attach
a body of content to a REST—based API transaction.

lifecycle
The overall process of maintaining MCS artifacts and managing versions of those
artifacts.

mobile app
An application resident on a mobile device. The mobile application can be an in-house
application developed using MCS for distribution to internal company employees or an
application released through a public store, such as the Google Play Store or the
Apple App Store.

mobile backend
A secure container of APIs and other resources for a defined set of mobile apps.
Mobile backend capabilities include platform APIs like storage, notifications, my profile
management, and analytics, as well functionality described by custom APIs.

mobile backend ID
An identifier issued by MCS that allows a mobile application to access APIs associated
with a mobile backend when authenticating with HTTP Basic authentication.

client SDK
A bundle of libraries, utilities, and wrapper classes that MCS provides for multiple
mobile platforms to simplify use of MCS features in your apps.

mobile user
The user of a mobile application built using MCS. A mobile user is granted access to
the mobile backend and platform APIs associated with the mobile application when it
gets installed on a device and the user is authenticated with MCS.

mobile user management
APIs and other functionality that allows you to manage mobile users, roles, realms,
and team members.

notification
A short, highly-tailored message sent to a specified set of recipients running a mobile
application on a mobile device.

Notifications API
A platform API that provides the ability to send short, tailored messages to different
groupings of recipients, immediately or on a schedule. Recipients can include
everyone in a specific mobile backend, a user or set of users, a specific device or
collection of devices, or a unique role.

Glossary

Glossary-5

platform APIs
APIs provided by MCS that simplify mobile app development. Features such as
Analytics, Mobile Object Storage, Notifications, and Data Offline are platform APIs.
Some platform APIs can be called by mobile applications, whereas others are called
exclusively from custom code.

Published state
When an artifact is in a published state in MCS it can no longer be modified. As part of
the MCS lifecycle, published artifacts can be deployed to a target environment.

RAML
RESTful API Modeling Language. A non-proprietary specification built on broadly used
standards, which is used to describe the structure of practically RESTful APIs. It is
capable of describing APIs that do not obey all the constraints of REST.

realm
A set of mobile users associated with a mobile backend. A realm exists within an
environment and helps manage roles, properties, devices, and mobile users access to
a mobile backend and associated platform APIs.

REST
Representational State Transfer. An internet software methodology used by MCS,
which defines a set of APIs and a transport mechanism (HTTP) for interacting with
those APIs.

REST connector
A type of connector API used to connect a mobile backend and its artifacts to a
backend system based on REST.

RESTful
A description of a software implementation that uses REST APIs and conforms to the
network transport, content body types, and other expectations of REST design.

RID
Relationship ID. An identifier that distinguishes the work done in one thread (and on
one process) from work done by any other threads or processes, on behalf of the
same request. The RID enables you to use log file entries to correlate messages from
one application or across components.

role
A set of permissions granted to a team member or mobile user. The permissions may
allow a mobile user access to a specific backend, or a team member access to certain
functionality within MCS. Both team members and mobile users have roles, but the
roles are different and not related to each other.

Glossary

Glossary-6

sender ID
A Google identifier used to identify a mobile application to the Google network. The
sender ID is assigned by Google and used only when sending notifications from MCS
to an Android application over the Google Cloud Messaging network, using XMPP.

SOAP
Simple Object Access Protocol. A protocol specification for exchanging structured
information in the implementation of web services.

SOAP connector
A type of connector API used to connect a mobile backend and its artifacts to a
backend system based on SOAP.

Storage API
A platform API that provides an easy-to-use, non-SQL, cloud-based mechanism for
mobile applications to store and share text and binary data.

Synchronization API
The API for data offline and sync functionality in mobile applications. It is exposed as
part of the MCS client SDKs and provides functionality to sync REST resources such
as JSON payloads from custom code, and view and edit these resources while the
mobile device is offline, as well as sync them back to the cloud when the device
comes online.

system analytic data
Data gathered by MCS about runtime events received from mobile applications
connected to mobile backends and from custom code.

team members
People who are authorized to log into MCS. These people include developers,
administrators, enterprise architects, and others working with MCS.

user isolation
The ability to isolate objects within a storage collection by user. This enables a mobile
application developer to create generic mobile applications without worrying about one
user’s storage conflicting with another’s.

Mobile User Management API
A platform API that provides the ability to manage mobile users, roles, and realms.

versioning
A new copy of an artifact, that is unique and distinct from the original artifact. MCS has
major versions of artifacts and minor versions. Minor versions are backward-
compatible, major versions are not.

Glossary

Glossary-7

virtual user
A user that does not have a corresponding record in Oracle Cloud's Shared Identity
Management (SIM). Virtual users are associated with a configured set of default roles
based either on the content in the token or by the application of a configured set of
roles.

XMPP
Extensible Messaging and Presence Protocol. An open source network messaging
framework used by Google and other cloud network vendors that provides custom
capabilities for messaging transmissions.

Zero Footprint SSO
A single sign-on (SSO) method that allows any mobile user that is able to authenticate
with a trusted external identity provider to be able to access MCS services, subject to
authorization configuration within the external identity provider, without requiring
corresponding accounts for such users to have been provisioned within Oracle Cloud's
Shared Identity Management (SIM).

Glossary

Glossary-8

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Resources
	Conventions

	Part I The Basics
	1 Get to Know Oracle Mobile Cloud Service
	Jump in with Mobile Backends
	Design Custom APIs
	Implement APIs
	Get the Data
	Use Platform APIs
	Call APIs from Your App Code
	Call Platform APIs with Mobile SDKs

	Set Up and Manage Your Mobile App Users
	Deploy Code between MCS Environments
	Monitor and Administer the Mobile Infrastructure
	Analyze Your Mobile Projects
	What About Security?
	Video: Security Overview

	Job Descriptions and Learning Paths
	Mobile App Developer
	Service Developer
	Enterprise Architect
	Mobile Cloud Administrator
	Mobile Program Manager

	2 Set Up the Service
	Where Do I Sign Up?
	What Do I Need To Do?
	Activate the Service
	Create Mobile Environment Service Instances
	Setting Up MCS Environments
	Setting Up MAX Environments

	Assign MCS Team Member Roles
	MCS Team Member Roles
	Distinguishing Between MAX Team Member Roles for Business Users and for Mobile App Developers
	Example Team Member Role Assignments

	Set Up Mobile Users, Realms and Roles
	Creating Realms
	Setting the Default Realm for an Environment
	Creating and Managing Mobile User Roles
	Creating Mobile Users and Assigning Roles
	Creating Individual Mobile Users for Testing
	Importing Groups of Mobile Users Into MCS Using Oracle Cloud
	Mobile Users for MAX
	Changing a Mobile User Password

	Configuring Identity Management (SSO and OAuth)
	Configuring Oracle Cloud Applications as the Identity Provider

	Get on Board

	Part II Setting up Mobile Apps
	3 Mobile Backends
	What Is a Mobile Backend and How Can I Use It?
	What's the Mobile Backend Development Process?
	Creating and Populating Mobile Backends
	Creating a Mobile Backend
	Mobile Backends for MAX Apps

	Mobile Backend Authentication and Connection Info
	Environments and Mobile Backends
	Realms and Mobile Backends
	Changing a Mobile Backend's Realm

	Getting Test Users for a Mobile Backend
	Associating APIs with a Mobile Backend
	Associating Storage Collections with a Mobile Backend
	Clients and Mobile Backends
	What Can I Change in a Mobile Backend?

	Video: Mobile Backend Design Considerations
	The SDKs
	Connecting Your App to a Mobile Backend

	4 Client Management
	How Clients Work in MCS
	Profiles
	Creating a Profile
	Registering an App as a Client in MCS
	Legacy Client Behavior

	5 Authentication in MCS
	OAuth Consumer Authentication in MCS
	HTTP Basic Authentication in MCS
	Enterprise Single Sign-On in MCS
	Third-Party SAML and JWT Tokens
	SAML Tokens and Virtual Users
	Configuring SAML Tokens for Virtual Users
	Registering the Token Issuer in MCS
	Associating Roles with a SAML Token
	Extracting the SAML Assertion
	Using a SAML Token to Authenticate with MCS
	Coding the SAML Token Exchange Manually

	JWT Tokens and Virtual Users
	Registering a JWT Token Issuer in MCS
	Minimal IdP Configuration
	IdP Configuration with Audience
	IdP Configuration with Audience and Username Attribute
	Associating Roles with a JWT Token
	Converting a JSON Object to One Line
	JWT Configuration Reference
	Obtaining a JWT Token Using an Embedded Browser
	Obtaining a JWT Token Using a System Browser
	Coding Your Android App to Obtain a JWT Token
	Coding Your iOS App to Obtain a JWT Token

	Using a JWT Token to Authenticate with MCS
	Coding the JWT Token Exchange Manually

	Mapping Users from a Third-Party IdP to Oracle Cloud Users
	Getting a Single Sign-On OAuth Token through a Browser

	Enabling Browser-Based SSO through MCS
	Enabling Single Sign-On for a Mobile Backend
	Getting an SSO Token Using Form Post Response Mode

	Testing APIs in a Mobile Backend with SSO Login
	Token Expiration for SSO Login

	Facebook Login in MCS
	Registering an App for Login Through Facebook
	Enabling Facebook Login in a Mobile Backend
	Configuring an App to Use Facebook Login
	Adding APIs to a Mobile Backend with Facebook Login
	Getting a Facebook User Access Token Manually
	Headers Needed for API Calls with Facebook Authentication

	Authenticating in Direct REST Calls
	Authenticating with OAuth in Direct REST Calls
	Authenticating with HTTP Basic in Direct REST Calls

	How OAuth Works in MCS
	Resource Owner Password Credentials Grant - Authenticated Access
	Client Credentials Grant - Unauthenticated Access

	Securing Cross-Site Requests to MCS APIs

	6 Android Applications
	Getting the SDK for Android
	Contents of the Android SDK
	Android SDK Dependencies

	Adding the SDK to an Android App
	Upgrading an Android App from SDK 17.x and Before
	Configuring SDK Properties for Android
	Configuring Your Android Manifest File
	Loading a Mobile Backend's Configuration into an Android App
	Authenticating and Logging In Using the SDK for Android
	Calling Platform APIs Using the SDK for Android
	Calling Custom APIs Using the SDK for Android
	Video: Configuring an Existing Android App to Work with Mobile Cloud

	7 iOS Applications
	Getting the SDK for iOS
	Contents of the iOS SDK
	Prerequisites for Developing iOS Apps
	Adding the SDK to an iOS App
	iOS SDK Interdependencies

	Configuring SDK Properties for iOS
	Loading a Mobile Backend's Configuration into an iOS App
	Authenticating and Logging In Using the SDK for iOS
	Calling Platform APIs Using the SDK for iOS
	Calling Custom APIs Using the SDK for iOS
	Video: Configuring an Existing iOS App to Work with Mobile Cloud

	8 Cordova Applications
	Getting the SDK for Cordova
	Contents of the Cordova SDK Bundle
	Adding the SDK to a Cordova App
	Configuring SDK Properties for Cordova
	Loading a Mobile Backend's Configuration in a Cordova App
	Authenticating and Logging In Using the SDK for Cordova
	Setting Up a Cordova App for FCM or GCM Notifications
	Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks
	Calling Platform APIs Using the SDK for Cordova
	Calling Custom APIs Using the SDK for Cordova

	9 JavaScript Applications
	Getting the SDK for JavaScript
	Contents of the JavaScript SDK Bundle
	Adding the SDK to a JavaScript App
	Configuring SDK Properties for JavaScript
	Loading a Mobile Backend's Configuration into a JavaScript App
	Authenticating and Logging In Using the SDK for JavaScript
	Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks
	Calling Platform APIs Using the SDK for JavaScript
	Avoiding Unsafe Header Errors

	Calling Custom APIs Using the SDK for JavaScript

	10 Xamarin Android Applications
	Getting the SDK for Xamarin Android
	Adding the SDK to a Xamarin Android Project
	Configuring SDK Properties for Xamarin Android
	Configuring Your AndroidManifest.xml File
	Loading a Mobile Backend's Configuration into a Xamarin Android App
	Authenticating and Logging In Using the SDK for Xamarin Android
	Calling Platform APIs Using the SDK for Xamarin Android
	User Management
	Location
	Storage
	Notifications
	Analytics
	App Policies

	Calling Custom APIs Using the SDK for Xamarin Android

	11 Xamarin iOS Applications
	Getting the SDK for Xamarin iOS
	Adding the SDK to a Xamarin iOS Project
	Configuring SDK Properties for Xamarin iOS
	Loading a Mobile Backend's Configuration into a Xamarin iOS App
	Authenticating and Logging In Using the SDK for Xamarin iOS
	Calling Platform APIs Using the SDK for Xamarin iOS
	User Management
	Location
	Storage
	Notifications
	Analytics
	App Policies

	Calling Custom APIs Using the SDK for Xamarin iOS

	Part III Platform APIs
	12 Mobile User Management
	User Types
	Getting User Information
	Getting User Roles
	Updating Mobile User Custom Properties

	13 Location
	What Can I Do With Location?
	Setting Up Location Devices, Places and Assets
	Defining Places
	Uploading Places Using a CSV File

	Defining Location Assets
	Uploading Assets Using a CSV File

	Registering Location Devices
	Uploading Location Devices Using a CSV File

	Calling the Location API from Your App
	Querying for Location Devices, Places and Assets
	Querying for Location Devices
	Querying for Places
	Querying for Assets
	Using the SDK to Query for Location Objects: iOS
	Using the SDK to Query for Location Objects: Android

	Retrieving Location Objects and Properties
	Using the SDK to Retrieve a Location Object: iOS
	Using the SDK to Retrieve iBeacon Identifiers: iOS
	Using the SDK to Define a Geofence: iOS
	Using the SDK to Retrieve Custom Attributes: iOS

	Using the SDK to Retrieve a Location Object: Android

	14 Storage
	What is the Storage API?
	How Mobile Applications Access Collections
	Shared and User Isolated Collections

	Working with Collections
	Using the Storage Configuration Pages
	Creating Collections
	Defining a Collection
	Collection Metadata

	Adding Access Permissions to a Collection
	Updating the Collection
	Offline Data Storage
	Adding Objects to a Collection
	Object Metadata

	Managing Collections
	Associating a Collection with a Backend
	Removing a Collection from a Backend

	Calling the Storage API from Your App
	Testing Runtime Operations Using the Endpoints Page
	Storage API Endpoints
	Getting a Single Collection
	Getting All Collections Associated with a Mobile Backend
	Storing an Object
	Specifying the Object Identifier
	Creating an Object (If One Doesn't Already Exist)
	Generating an Object Identifier
	What Happens When an Object is Created?

	Updating an Object
	What Happens When an Object Is Updated?
	Optimistic Locking

	Retrieving Objects
	Retrieving a List of Objects
	Paging Through a List of Objects
	Ordering
	Querying

	Retrieving an Object

	Deleting an Object
	Optimizing Performance
	Check If Exists
	Put If Absent

	Get If Newer
	Reading Part of an Object (Chunking Data)

	15 Data Offline and Sync
	Building Apps that Work Offline Using Sync Express
	Building Apps that Work Offline Using the Synchronization Library
	What Can I Do with the Synchronization Library?
	Synchronization Library Process Flow
	Video: Overview of the Data Offline & Synchronization API
	Android Synchronization Library
	Setting Up Your Mobile App for the Android Synchronization Library
	Fetching Resources
	Fetching Filtered Resources
	Specifying Which Resources to Synchronize First
	Setting a Resource’s Synchronization Policies Programmatically
	Detecting and Handling Conflicts
	Reviewing and Discarding Offline Edits

	iOS Synchronization Library
	Setting Up Your Mobile App for the iOS Synchronization Library
	Fetching Resources
	Fetching Filtered Resources
	Specifying Which Resources To Synchronize First
	Setting a Resource’s Synchronization Policies Programmatically
	Detecting and Handling Conflicts
	Reviewing and Discarding Offline Edits

	Making Custom APIs Synchronizable
	Synchronization Policies
	Video: Introduction to the Data Offline & Sync Policies
	Synchronization Policy Options
	Conflict Resolution Policies
	Eviction Policies
	Expiration Policies
	Fetch Policies
	Update Policies

	Video: Deep-Dive into the Data Offline & Sync Policies
	Synchronization Policy Levels and Precedence
	Defining Synchronization Policies Using a Configuration File
	Synchronization Configuration File Structure

	Defining Synchronization Policies and Cache Settings in a Response Header

	Tracking Cache Hits with the Synchronization Library

	How Synchronization Works with the Storage APIs

	16 Notifications
	What Can I Do with Notifications?
	How Are Notifications Sent and Received?
	What is the Device ID or Notification Token?

	Setting Up a Mobile App for Notifications
	Setting Up Android Notifications
	Android: Google API Key
	Setting Up a Device Handshake for Android (FCM)
	Setting Up a Device Handshake for Android (GCM)

	Setting Up iOS Notifications
	iOS: Apple Secure Certificates
	Setting Up a Device Handshake for iOS

	Setting Up Windows Notifications
	Windows: WNS Credentials
	Syniverse: SMS Credentials
	Setting Up a Device Handshake for Windows

	Sending Notifications to and from Your App
	Testing Notifications from the MCS UI
	Cancelling a Scheduled Notification from the UI

	Sending Notifications Using the Notifications API
	Registering a Device ID
	Sending a Text Message Notification
	Sending a Notification Using a Unified Payload
	Sending a Notification Using a Payload Template
	Cancelling Scheduled Notifications

	Troubleshooting Notifications
	Checking Notification Status in the UI
	Checking Notification Status with the Notifications REST API

	17 Analytics
	What Can I Do With Analytics?
	How Does MCS Create Analytics Reports?
	Enabling Your Mobile Apps to Report Event Data
	Adding Location Properties to the context Event

	Integrating Analytics into a Mobile App Using the Mobile Client SDK
	Understanding Different Types of Analytics Reports
	Accessing the Analytics Reports
	API Calls Reports
	API Calls Count
	API Calls Response Time

	Events Report
	Events

	User and Session Reports
	User Reports
	Why User Counts Can Vary

	User Session Reports
	New Users
	Active Users
	Session Count
	Session Duration

	Improving User Retention with Funnel Analysis
	Creating a Funnel
	Analyzing Funnels

	Creating Custom Analytics Reports
	How Do I Create a Custom Analytics Report?
	My Reports
	How Do I Run a Custom Report?
	How Do I Edit a Custom Report?

	Tracking Sessions and Logging Events for Mobile Apps
	Creating Events and Sessions Using the iOS Library
	Calling the Analytics Service
	Designating Sessions
	Associating a Session With Your Mobile App Being in the Foreground
	Adding Custom Properties to Events
	Receiving the Status of Event Posts

	Creating Events and Sessions Using the Android Library
	Taking a Look at Events and Sessions in Android Apps

	Defining Sessions

	Exporting Event Data
	Purging Analytics Data
	Troubleshooting Analytics Reports

	18 Database
	What Can I Do with Database APIs?
	Database Access API
	Calling the Database Access API from Custom Code
	Creating and Restructuring Database Tables
	Preventing Passing SQL Using Implicit Table Creation
	Adding and Updating Table Rows
	Retrieving Table Rows
	Deleting Table Rows

	Database Management API
	Creating a Table Explicitly
	Copying Table Structures to Another Environment
	Creating or Deleting an Index on a Table

	19 App Policies
	What Are App Policies and What Can I Do With Them?
	Setting an App Policy
	Retrieving App Policies in App Code
	Updating an App Policy Value in a Published Mobile Backend

	Part IV Custom APIs
	20 Creating APIs Fast with the Express API Designer
	What are Resources?
	How Do I Get Started with Resources?
	Creating An API
	Completing Your Resources
	Adding Additional Fields
	Shaping the Payload for Your Resource
	Adding More Sample Data

	Referenced Resources
	Referencing Resources

	Fields
	Methods
	Shaping Payloads
	Read-Only Fields

	Sample Data

	Using the Express API Designer with MAX
	Who Uses MAX?
	Enabling Uploadable Images
	Tips for User-Friendly Business Objects in MAX
	Video: An Introduction to Mobile Application Accelerator (MAX)

	Creating Resources with JSON Schemas
	Defining Fields in a Schema
	Defining Field Types, Formats, and Enums

	Defining Child Objects
	Defining Fields for List, Details, Create, and Update Screens
	Collection Actions
	Create Actions
	Update Actions
	Using the PUT Method for Update Actions

	Delete Actions
	Custom Actions

	Creating Mock Data

	Which API Designer Should I Use?

	21 Custom API Design
	API Design Process
	The API Designer
	Generating Custom APIs for Connectors
	How Do I Generate a Custom API from a Connector
	Completing the Custom API
	Working with the Implementation

	Spec Out a Custom API
	Creating a Complete Custom API
	Setting Up Your API
	Defining Endpoints
	Adding Methods to Your Resources
	Defining a Request for the Method
	Defining a Response for the Method
	Testing API Endpoints Using Mock Data
	Providing a Schema
	Security in Custom APIs
	Setting Access to the API

	Testing Your Custom API
	Creating Resource Types
	Creating Resource Traits
	Providing API Documentation
	How Do I Write in Markdown?

	Getting Diagnostic Information

	API Design Considerations
	Valid URLs
	API Timeouts
	API Resources
	URI Parameters

	Endpoint Requirements for Sync Compatibility
	Schemas
	RAML

	Editing a Custom API
	Video: End-to-End Custom API Demo
	Troubleshooting Custom APIs

	22 Implementing Custom APIs
	What Can I Do with Custom Code?
	How Does Custom Code Work?
	What's the Foundation for the Custom Code Service?
	Video: Node.js Technology Primer

	Setting Up Tooling for Custom Code
	Steps to Implement a Custom API
	Downloading a JavaScript Scaffold for a Custom API
	Writing Custom Code
	Key JavaScript Constructs in Custom Code
	Accessing the Body of the Request
	Inserting Logging Into Custom Code
	Storing Data Locally
	Video: Working with Node - Common Code

	Implementing Synchronization-Compatible APIs
	Video: Working with Custom APIs via Data Offline & Sync
	Requirements for a Synchronization-Compatible Custom API
	Returning Cacheable Data
	Specifying Synchronization and Cache Policies

	Calling Web Services and APIs from Custom Code
	Packaging Custom Code into a Module
	Required Artifacts for an API Implementation
	package.json Contents

	Declaring the API Implementation Version
	Declaring the Node Version
	Packaging Additional Libraries with Your Implementation

	Uploading the Custom Code Module
	Managing Custom Code in Git
	Setting Up a Git Repository for Custom Code
	Designating a Git Repository for Custom Code
	Setting Up a Git Repository in Oracle Developer Cloud Service

	Generating a Scaffold in a Git Repository

	Testing and Debugging Custom Code
	Testing with Mock Data
	Testing Custom Code from the UI
	Offline Debugging with the MCS Custom Code Test Tools
	Other Tools for Testing Custom Code Outside of the UI
	Accessing Logging Messages for Custom Code

	Troubleshooting Custom API Implementations
	Diagnosing Syntax Errors
	Common Custom Code Errors

	What Happens When a Custom API Is Called?

	23 Calling APIs from Custom Code
	How to Send Requests to MCS APIs
	API Request Pattern
	Common options Argument Properties
	API Response Patterns
	Handling a Stream
	Handling a Promise
	Chaining Calls
	Joining Calls
	Waiting for a Dynamic Set of Calls to Complete
	Creating a Function that Returns a Promise

	Accessing Mobile Backend Information from Custom Code
	mbe.getMBE()

	Calling Platform APIs from Custom Code
	Accessing the Analytics API from Custom Code
	analytics.postEvent(events, options, httpOptions)

	Accessing the App Policies API from Custom Code
	appConfig.getProperties(httpOptions)

	Accessing the Database Access API from Custom Code
	database.delete(table, keys, options, httpOptions)
	database.get(table, keys, options, httpOptions)
	database.getAll(table, options, httpOptions)
	database.insert(table, object, options, httpOptions)
	database.merge(table, object, options, httpOptions)

	Accessing the Devices API from Custom Code
	devices.deregister(device, httpOptions)
	devices.register(device, httpOptions)

	Accessing the Location API from Custom Code
	location.assets.getAsset(id, httpOptions)
	location.assets.query(queryObject, httpOptions)
	location.devices.getDevice(id, httpOptions)
	location.devices.query(queryObject, httpOptions)
	location.places.getPlace(id, httpOptions)
	location.places.query(queryObject, httpOptions)

	Accessing the Location Management API from Custom Code
	Location Management Context Argument
	location.assets.register(assets, context, httpOptions)
	location.assets.remove(id, context, httpOptions)
	location.assets.update(id, asset, context, httpOptions)
	location.devices.register(devices, context, httpOptions)
	location.devices.remove(id, context, httpOptions)
	location.devices.update(id, device, context, httpOptions)
	location.places.register(places, context, httpOptions)
	location.places.remove(id, context, httpOptions)
	location.places.removeCascade(id, context, httpOptions)
	location.places.update(id, place, context, httpOptions)

	Accessing the Notifications API from Custom Code
	Notifications Context Argument
	notification.getAll(context, options, httpOptions)
	notification.getById(id, context, options, httpOptions)
	notification.post(notification, context, options, httpOptions)
	notification.remove(id, context, options, httpOptions)

	Accessing the Storage API from Custom Code
	storage.doesCollectionExist(collectionId, options, httpOptions)
	storage.doesExist(collectionId, objectId, options, httpOptions)
	storage.getAll(collectionId, options, httpOptions)
	storage.getById(collectionId, objectId, options, httpOptions)
	storage.getCollection(collectionId, options, httpOptions)
	storage.getCollections(options, httpOptions)
	storage.remove(collectionId, objectId, options, httpOptions)
	storage.store(collectionId, object, options, httpOptions)
	storage.storeById(collectionId, objectId, object, options, httpOptions)

	Accessing the Mobile Users API from Custom Code
	ums.getUser(options, httpOptions)
	ums.getUserExtended(options, httpOptions)
	ums.updateUser(fields, options, httpOptions)

	Calling Custom APIs from Custom Code
	Calling Connector APIs from Custom Code
	Calling a Connector to a REST Web Service
	Calling a Connector to a SOAP Service
	Calling Connectors that Require Form Data
	Passing Headers to the Target Service
	Overriding SSL Settings for Connectors

	Specifying the API Version in Calls to Custom and Connector APIs
	Using Generic REST Methods to Access APIs
	optionsList Argument

	Learning About Platform, Custom, and Connector APIs

	Part V Connector APIs
	24 REST Connector APIs
	How REST Connector APIs Work
	REST Connector API Design Process

	Why Use Connectors Instead of Direct Calls to External Resources?
	Creating a REST Connector API
	Basic Connector Setup
	Providing the Descriptor
	Rules
	Selecting Endpoints
	Security Policies and Overriding Properties
	Setting a CSF Key

	Testing the REST Connector API
	Testing in Standard Mode
	Testing in Advanced Mode

	Getting the Test Results
	Getting Diagnostic Information

	Security and REST Connector APIs
	Security Policy Types for REST Connector APIs
	CSF Keys and Web Service Certificates
	Query and Header Parameters
	Setting Query Parameters in Remote URLs

	Editing a REST Connector API
	Using Your Connector API in an App
	Troubleshooting REST Connector APIs

	25 SOAP Connector APIs
	How SOAP Connector APIs Work
	SOAP Connector API Design Process

	Why Use SOAP Connectors Instead of Direct Calls to External Resources?
	Creating a SOAP Connector API
	Setting the Basic Information for Your SOAP Connector API
	Selecting a Port
	Setting Security Policies and Overriding Properties for SOAP Connector APIs
	Setting a CSF Key
	Setting a Web Service Certificate

	Testing a SOAP Connector API
	Testing Your Connector
	Getting the Test Results
	Getting Diagnostic Information

	SOAP Connector API Design Tips
	How Does XML Get Translated into JSON?
	XML - JSON Mapping Conventions
	Using XML Instead of JSON
	Security Policy Types for SOAP Connector APIs
	CSF Keys and Web Service Certificates
	Editing a SOAP Connector API
	Using Your Connector API in an App
	Troubleshooting SOAP Connector APIs

	26 ICS Connector APIs
	How ICS Connector APIs Work
	ICS Connector API Flow
	How Do I Create an ICS Connector API?
	Setting the Basic Information for Your ICS Connector API
	Connecting to an Integration Cloud Service Instance
	Selecting or Creating an ICS Instance Connection
	Selecting an Active Integration
	Editing the ICS Connector API
	Setting Runtime Security for the ICS Connector API
	Creating a New CSF Key
	Testing the ICS Connector API
	Getting the Test Results
	Getting Diagnostic Information

	Security and ICS Connector APIs
	CSF Keys
	Using Your Connector API in an App
	Troubleshooting ICS Connector APIs

	27 Fusion Applications Connector APIs
	How Fusion Applications Connector APIs Work
	Fusion Applications Connector API Flow
	How Do I Create a Fusion Applications Connector API?
	Setting the Basic Information for Your Fusion Applications Connector API
	Connecting to a Fusion Applications Instance
	Creating a Fusion Applications Instance Connection
	Selecting Fusion Applications Resources
	Setting Resource Attributes
	Editing the Fusion Applications Connector API
	Setting Runtime Security for the Fusion Applications Connector API
	Providing a CSF Key
	Creating a New CSF Key
	Setting a Web Service Certificate

	Testing the Fusion Applications Connector API
	Getting the Test Results

	Security Policy Types for Fusion Applications Connector APIs
	CSF Keys and Web Service Certificates
	Using Your Fusion Application Connector API in an App
	Troubleshooting Fusion Applications Connector APIs

	Part VI Deployment and Lifecycle
	28 MCS Environments
	Team Members
	What is My Environment?
	Your Work Environment
	Changing Environments
	What Happens When You Change Environments?

	Administration View
	Changing Environment Views for the Administrator

	Setting the Default Environment
	Environment Policies
	Environment Policy Names
	Environment Policy Scopes
	Modifying an Environment Policy
	Removing Environment Policies

	CSF Keys and Certificates
	Viewing Available CSF Keys, Certificates, and Token Issuers
	Configuring a CSF Key
	Configuring a Web Service or Token Certificate
	Configuring an SSL Certificate
	Disabling SSL Hostname Verification
	Adding a Token Issuer
	Rules for Certificate Subject Names
	Configuring Rules
	Rule Types
	Rule Examples

	Native Builds

	29 Diagnostics
	What Can I Do with Diagnostics?
	Viewing Environment Health
	Viewing Server Load
	Viewing Errors

	Viewing Underperforming Requests
	Viewing Log Messages Related to a Request
	Viewing Storage Usage

	Monitoring a Selected Backend
	Viewing API Performance
	What Do the Health Indicator Thresholds Mean?
	Adjusting the Performance Threshold Configurations

	Viewing Status Codes for API Calls and Outbound Connector Calls
	Relating Log Messages
	How Client SDK Headers Enable Device and Session Diagnostics

	Viewing Log Messages
	Viewing Message Details
	Taking a Look at Exported Messages
	API Request Messages
	Connector Message Details

	Configuring the Logging Level for Custom Code

	Diagnosing Custom Code
	Use Case: Using Correlation to Diagnose Custom Code
	Use Case: Using Correlation to Diagnose Connector Issues

	Video: Logging and Diagnostic Examples

	30 Lifecycle
	Draft State
	Published State
	Making Changes After a Backend is Published (Rerouting)

	Deployment
	Artifact Deletion
	Dependencies That Affect a Move to the Trash

	Restoring an Artifact
	Restoring an Artifact from Administration

	Purging an Artifact
	Purging Artifacts from Administration

	31 Lifecycle Scenarios
	Initial Deployment of a Mobile Backend
	Bug Fix
	Rerouting a Mobile Backend
	New Features

	32 Managing an Artifact’s Lifecycle
	Realm Lifecycle
	Publishing a Realm
	Creating a New Version of a Realm
	Deploying a Realm
	Moving a Realm to the Trash
	Restoring a Realm
	Managing a Realm

	Client Lifecycle
	Publishing a Client
	Updating the Version Number of a Client
	Creating a New Version of a Client
	Deploying Clients
	Specifying a Target Environment for the Client
	Identifying Dependencies and Deployment Impact
	Setting Environment Policies for Clients
	Deploying the Client

	Moving a Client to the Trash
	Restoring a Client
	Managing a Client

	Mobile Backend Lifecycle
	Backend Lifecycle States
	Publishing a Mobile Backend
	Updating the Version Number of a Backend
	Creating a New Version of a Backend
	Deploying Mobile Backends
	Specifying a Target Environment for the Mobile Backend
	Identifying Dependencies and Deployment Effects
	Setting Environment Policies for Mobile Backends
	Deploying the Mobile Backend

	Moving a Backend to the Trash
	Restoring a Backend
	Deactivating a Backend
	Managing a Mobile Backend
	Mobile Client SDK Demo Applications

	API Lifecycle
	Publishing a Custom API
	Custom APIs and API Implementations
	Updating the Version Number of an API
	Creating a New Version of an API
	Deploying APIs
	Specifying a Target Environment
	Identifying Dependencies and Deployment Effects
	Setting Environment Policies for APIs
	Deploying the API

	Moving a Custom API to the Trash
	Restoring a Custom API
	Managing an API

	API Implementation Lifecycle
	Publishing an API Implementation
	Creating a New Version or Updating the Version of an API Implementation
	Deploying an API Implementation
	Specifying a Target Environment for the Implementation
	Identifying Dependencies and Deployment Effects
	Setting Environment Policies for an API Implementation
	Deploying the Implementation

	Moving an API Implementation to the Trash
	Restoring an API Implementation

	Connector Lifecycle
	Publishing a Connector
	Updating the Version Number of a Connector
	Creating a New Version of a Connector
	Deploying Connectors
	Specifying a Target Environment
	Identifying Dependencies and Deployment Effects
	Setting Environment Policies for Connectors
	Deploying the Connector

	Moving a Connector to the Trash
	Restoring a Connector
	Managing a Connector

	Collection Lifecycle
	Publishing a Collection
	Updating the Version Number of a Collection
	Creating a New Version of a Collection
	Deploying a Collection
	Moving a Collection to the Trash
	Restoring a Collection
	Managing a Collection

	33 Testing APIs and Mobile Backends
	Use Case: End-to-End Testing
	How Can I Test an API?
	Testing a Platform or Custom API from the UI
	Testing a Connector API from the UI
	Testing Platform and Custom APIs Remotely

	Troubleshooting Unexpected Test Results
	Monitoring Runtime Issues and System Health

	34 Packages
	What’s a Package?
	Why Do I Want a Package?
	Exporting a Package
	Adding Artifacts to the Package
	Reviewing Dependencies During Export
	Setting Environment Policies During Export
	Completing the Export

	Re-exporting a Package
	Importing a Package
	Uploading the Package
	Examining the Contents of the Import Package
	Setting Environment Policies During Import

	What Happens When You Import a Package?
	Import Results
	Exporting Updated Artifacts
	Examining a Package
	Moving a Package to the Trash
	Environment Policy Settings for Packaged Artifacts

	Part VII Reference
	A HTTP Headers
	API Headers
	SDK Headers

	B Oracle Mobile Cloud Service Environment Policies
	Environment Policies and Their Values

	C Security Policies for Connector APIs
	Security Policies for REST Connector APIs
	Security Policies for SOAP Connector APIs
	Security Policies for ICS Connector APIs
	Security Policies for Fusion Applications Connector APIs
	Security Policy Properties

	D Identity Domain Relocation
	E Writing Swift Applications Using the iOS Client SDK
	Adding the Bridging Header File
	Adding the SDK Headers and Libraries to a Swift App
	Using SDK Objects in Swift Apps

	F Supported Browsers and Languages
	Supported Browsers
	Supported Languages

	G Identity Provider Integration
	Use Case: Configuring OKTA to Obtain a SAML Token
	Use Case: Configuring AD FS to Obtain a SAML Token
	Integrating Microsoft Azure Active Directory with Oracle Cloud

	H Migrate to Oracle Mobile Hub

	Glossary
	analytics
	Analytics API
	anonymous access
	anonymous key
	anonymous user
	API
	API key
	APNS
	Apple Feedback Service
	application ID
	application key
	artifact
	collection
	connector
	connector API
	correlation
	correlation ID
	custom API
	custom event
	Database API
	Database Management API
	Data Offline and Sync API
	deploy
	device handshake
	device registry
	diagnostics
	Draft state
	ECID
	endpoint
	enterprise systems
	environment
	ETag
	funnel
	GCM
	GUID
	JSON
	lifecycle
	mobile app
	mobile backend
	mobile backend ID
	client SDK
	mobile user
	mobile user management
	notification
	Notifications API
	platform APIs
	Published state
	RAML
	realm
	REST
	REST connector
	RESTful
	RID
	role
	sender ID
	SOAP
	SOAP connector
	Storage API
	Synchronization API
	system analytic data
	team members
	user isolation
	Mobile User Management API
	versioning
	virtual user
	XMPP
	Zero Footprint SSO

