Oracle® Cloud
Using Oracle Mobile Cloud Service

Release 18.4.3
E93987-04
September 2019

ORACLE"

Oracle Cloud Using Oracle Mobile Cloud Service, Release 18.4.3

E93987-04

Copyright © 2015, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Authors: Patrick Keegan, John Bassett, Chris Kutler, Jennifer Shipman, Susan Post

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXVi
Documentation Accessibility XXVi
Related Resources XXVi
Conventions XXVil

Part | The Basics

1 Get to Know Oracle Mobile Cloud Service
Jump in with Mobile Backends 1-2
Design Custom APIs 1-4
Implement APIs 1-5
Get the Data 1-6
Use Platform APIs 1-8
Call APIs from Your App Code 1-8
Call Platform APIs with Mobile SDKs 1-9
Set Up and Manage Your Mobile App Users 1-10
Deploy Code between MCS Environments 1-10
Monitor and Administer the Mobile Infrastructure 1-12
Analyze Your Mobile Projects 1-12
What About Security? 1-13
Video: Security Overview 1-13
Job Descriptions and Learning Paths 1-14
Mobile App Developer 1-14
Service Developer 1-15
Enterprise Architect 1-16
Mobile Cloud Administrator 1-16
Mobile Program Manager 1-17

ORACLE iii

2 Set Up the Service

Where Do | Sign Up? 2-1
What Do | Need To Do? 2-1
Activate the Service 2-2
Create Mobile Environment Service Instances 2-2
Setting Up MCS Environments 2-3
Setting Up MAX Environments 2-3
Assign MCS Team Member Roles 2-4
MCS Team Member Roles 2-5
Distinguishing Between MAX Team Member Roles for Business Users and for
Mobile App Developers 2-7
Example Team Member Role Assignments 2-8
Set Up Mobile Users, Realms and Roles 2-11
Creating Realms 2-11
Setting the Default Realm for an Environment 2-12
Creating and Managing Mobile User Roles 2-12
Creating Mobile Users and Assigning Roles 2-13
Creating Individual Mobile Users for Testing 2-13
Importing Groups of Mobile Users Into MCS Using Oracle Cloud 2-14
Mobile Users for MAX 2-15
Changing a Mobile User Password 2-15
Configuring Identity Management (SSO and OAuth) 2-16
Configuring Oracle Cloud Applications as the Identity Provider 2-16
Get on Board 2-17

Part || Setting up Mobile Apps

3 Mobile Backends

What Is a Mobile Backend and How Can | Use It? 3-1
What's the Mobile Backend Development Process? 3-2
Creating and Populating Mobile Backends 3-2
Creating a Mobile Backend 3-3
Mobile Backends for MAX Apps 3-3

Mobile Backend Authentication and Connection Info 3-3
Environments and Mobile Backends 3-4
Realms and Mobile Backends 3-5
Changing a Mobile Backend's Realm 3-5

Getting Test Users for a Mobile Backend 3-5
Associating APIs with a Mobile Backend 3-6

ORACLE iv

Associating Storage Collections with a Mobile Backend 3-6

Clients and Mobile Backends 3-7

What Can | Change in a Mobile Backend? 3-7
Video: Mobile Backend Design Considerations 3-7
The SDKs 3-8
Connecting Your App to a Mobile Backend 3-8

4 Client Management

How Clients Work in MCS 4-1
Profiles 4-2
Creating a Profile 4-2
Registering an App as a Client in MCS 4-3
Legacy Client Behavior 4-4

5 Authentication in MCS

OAuth Consumer Authentication in MCS 5-2
HTTP Basic Authentication in MCS 5-2
Enterprise Single Sign-On in MCS 5-2
Third-Party SAML and JWT Tokens 5-3
SAML Tokens and Virtual Users 5-3

JWT Tokens and Virtual Users 5-8
Mapping Users from a Third-Party IdP to Oracle Cloud Users 5-25

Getting a Single Sign-On OAuth Token through a Browser 5-25
Enabling Browser-Based SSO through MCS 5-26
Enabling Single Sign-On for a Mobile Backend 5-27

Getting an SSO Token Using Form Post Response Mode 5-27
Testing APIs in a Mobile Backend with SSO Login 5-28
Token Expiration for SSO Login 5-30
Facebook Login in MCS 5-30
Registering an App for Login Through Facebook 5-30
Enabling Facebook Login in a Mobile Backend 5-31
Configuring an App to Use Facebook Login 5-31
Adding APIs to a Mobile Backend with Facebook Login 5-31
Getting a Facebook User Access Token Manually 5-32
Headers Needed for API Calls with Facebook Authentication 5-33
Authenticating in Direct REST Calls 5-33
Authenticating with OAuth in Direct REST Calls 5-33
Authenticating with HTTP Basic in Direct REST Calls 5-34
How OAuth Works in MCS 5-35

ORACLE Y

Resource Owner Password Credentials Grant - Authenticated Access 5-36
Client Credentials Grant - Unauthenticated Access 5-38
Securing Cross-Site Requests to MCS APIs 5-39

6 Android Applications

Getting the SDK for Android 6-1
Contents of the Android SDK 6-1

Android SDK Dependencies 6-2
Adding the SDK to an Android App 6-2
Upgrading an Android App from SDK 17.x and Before 6-3
Configuring SDK Properties for Android 6-4
Configuring Your Android Manifest File 6-8
Loading a Mobile Backend's Configuration into an Android App 6-9
Authenticating and Logging In Using the SDK for Android 6-9
Calling Platform APIs Using the SDK for Android 6-14
Calling Custom APIs Using the SDK for Android 6-15
Video: Configuring an Existing Android App to Work with Mobile Cloud 6-16

7 IOS Applications

Getting the SDK for iOS 7-1
Contents of the iOS SDK 7-1
Prerequisites for Developing iOS Apps 7-2
Adding the SDK to an iOS App 7-2

iOS SDK Interdependencies 7-3
Configuring SDK Properties for iOS 7-4
Loading a Mobile Backend's Configuration into an iOS App 7-8
Authenticating and Logging In Using the SDK for iOS 7-9
Calling Platform APIs Using the SDK for iOS 7-11
Calling Custom APIs Using the SDK for iOS 7-12
Video: Configuring an Existing iOS App to Work with Mobile Cloud 7-13

8 Cordova Applications

Getting the SDK for Cordova 8-1
Contents of the Cordova SDK Bundle 8-1
Adding the SDK to a Cordova App 8-2
Configuring SDK Properties for Cordova 8-2
Loading a Mobile Backend's Configuration in a Cordova App 8-6
Authenticating and Logging In Using the SDK for Cordova 8-6
Setting Up a Cordova App for FCM or GCM Notifications 8-9

ORACLE vi

Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks 8-11
Calling Platform APIs Using the SDK for Cordova 8-12
Calling Custom APIs Using the SDK for Cordova 8-13

O JavaScript Applications

Getting the SDK for JavaScript 9-1
Contents of the JavaScript SDK Bundle 9-1
Adding the SDK to a JavaScript App 9-1
Configuring SDK Properties for JavaScript 9-2
Loading a Mobile Backend's Configuration into a JavaScript App 9-4
Authenticating and Logging In Using the SDK for JavaScript 9-4
Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks 9-6
Calling Platform APIs Using the SDK for JavaScript 9-6

Avoiding Unsafe Header Errors 9-8
Calling Custom APIs Using the SDK for JavaScript 9-8

10 Xamarin Android Applications

Getting the SDK for Xamarin Android 10-1
Adding the SDK to a Xamarin Android Project 10-1
Configuring SDK Properties for Xamarin Android 10-3
Configuring Your AndroidManifest.xml File 10-7
Loading a Mobile Backend's Configuration into a Xamarin Android App 10-8
Authenticating and Logging In Using the SDK for Xamarin Android 10-8
Calling Platform APIs Using the SDK for Xamarin Android 10-12
User Management 10-12
Location 10-13
Storage 10-19
Notifications 10-20
Analytics 10-21
App Policies 10-21
Calling Custom APIs Using the SDK for Xamarin Android 10-22

11 Xamarin iOS Applications

Getting the SDK for Xamarin iOS 11-1
Adding the SDK to a Xamarin iOS Project 11-1
Configuring SDK Properties for Xamarin iOS 11-1
Loading a Mobile Backend's Configuration into a Xamarin iOS App 11-6
Authenticating and Logging In Using the SDK for Xamarin iOS 11-6
Calling Platform APIs Using the SDK for Xamarin iOS 11-8

ORACLE vii

User Management

11-8

Location 11-9
Storage 11-12
Notifications 11-13
Analytics 11-16
App Policies 11-17
Calling Custom APIs Using the SDK for Xamarin iOS 11-18
Part Il Platform APIs
12 Mobile User Management
User Types 12-1
Getting User Information 12-2
Getting User Roles 12-3
Updating Mobile User Custom Properties 12-4
13 Location
What Can | Do With Location? 13-1
Setting Up Location Devices, Places and Assets 13-2
Defining Places 13-2
Uploading Places Using a CSV File 13-3
Defining Location Assets 13-4
Uploading Assets Using a CSV File 13-4
Registering Location Devices 13-5
Uploading Location Devices Using a CSV File 13-6
Calling the Location API from Your App 13-7
Querying for Location Devices, Places and Assets 13-7
Querying for Location Devices 13-7
Querying for Places 13-11
Querying for Assets 13-15
Using the SDK to Query for Location Objects: iOS 13-17
Using the SDK to Query for Location Objects: Android 13-19
Retrieving Location Objects and Properties 13-20
Using the SDK to Retrieve a Location Object: iOS 13-20
Using the SDK to Retrieve a Location Object: Android 13-25
ORACLE viii

14 Storage

What is the Storage API? 14-1
How Mobile Applications Access Collections 14-2
Shared and User Isolated Collections 14-3

Working with Collections 14-6
Using the Storage Configuration Pages 14-6
Creating Collections 14-8

Defining a Collection 14-8
Adding Access Permissions to a Collection 14-10
Updating the Collection 14-12
Offline Data Storage 14-12
Adding Objects to a Collection 14-13
Managing Collections 14-14
Associating a Collection with a Backend 14-14
Removing a Collection from a Backend 14-15

Calling the Storage API from Your App 14-16

Testing Runtime Operations Using the Endpoints Page 14-20
Storage API Endpoints 14-22
Getting a Single Collection 14-22
Getting All Collections Associated with a Mobile Backend 14-22
Storing an Object 14-22

Specifying the Object Identifier 14-23
Creating an Object (If One Doesn't Already Exist) 14-23
Generating an Object Identifier 14-23

What Happens When an Object is Created? 14-23
Updating an Object 14-24
What Happens When an Object Is Updated? 14-24
Optimistic Locking 14-24
Retrieving Objects 14-25
Retrieving a List of Objects 14-25
Retrieving an Object 14-26
Deleting an Object 14-26
Optimizing Performance 14-27
Check If Exists 14-27

Get If Newer 14-27
Reading Part of an Object (Chunking Data) 14-28

15 Data Offline and Sync

Building Apps that Work Offline Using Sync Express 15-2
Building Apps that Work Offline Using the Synchronization Library 15-6

ORACLE

What Can | Do with the Synchronization Library? 15-7
Synchronization Library Process Flow 15-9
Video: Overview of the Data Offline & Synchronization API 15-10
Android Synchronization Library 15-10
Setting Up Your Mobile App for the Android Synchronization Library 15-10
Fetching Resources 15-11
Fetching Filtered Resources 15-13
Specifying Which Resources to Synchronize First 15-17
Setting a Resource’s Synchronization Policies Programmatically 15-18
Detecting and Handling Conflicts 15-19
Reviewing and Discarding Offline Edits 15-22
iOS Synchronization Library 15-25
Setting Up Your Mobile App for the iOS Synchronization Library 15-25
Fetching Resources 15-26
Fetching Filtered Resources 15-28
Specifying Which Resources To Synchronize First 15-30
Setting a Resource’s Synchronization Policies Programmatically 15-30
Detecting and Handling Conflicts 15-32
Reviewing and Discarding Offline Edits 15-35
Making Custom APIs Synchronizable 15-37
Synchronization Policies 15-39
Video: Introduction to the Data Offline & Sync Policies 15-40
Synchronization Policy Options 15-40
Video: Deep-Dive into the Data Offline & Sync Policies 15-44
Synchronization Policy Levels and Precedence 15-44
Defining Synchronization Policies Using a Configuration File 15-45
Defining Synchronization Policies and Cache Settings in a Response
Header 15-51
Tracking Cache Hits with the Synchronization Library 15-51
How Synchronization Works with the Storage APIs 15-52
16 Notifications
What Can | Do with Notifications? 16-1
How Are Notifications Sent and Received? 16-2
What is the Device ID or Notification Token? 16-3
Setting Up a Mobile App for Notifications 16-3
Setting Up Android Notifications 16-3
Android: Google API Key 16-4
Setting Up a Device Handshake for Android (FCM) 16-5
Setting Up a Device Handshake for Android (GCM) 16-7
Setting Up iOS Notifications 16-10

ORACLE

iOS: Apple Secure Certificates 16-10

Setting Up a Device Handshake for iOS 16-11

Setting Up Windows Noatifications 16-12
Windows: WNS Credentials 16-13
Syniverse: SMS Credentials 16-13

Setting Up a Device Handshake for Windows 16-14
Sending Notifications to and from Your App 16-15
Testing Notifications from the MCS Ul 16-16
Cancelling a Scheduled Noatification from the Ul 16-17
Sending Notifications Using the Notifications API 16-17
Registering a Device ID 16-19
Sending a Text Message Notification 16-20
Sending a Notification Using a Unified Payload 16-21
Sending a Notification Using a Payload Template 16-22
Cancelling Scheduled Notifications 16-24
Troubleshooting Notifications 16-24
Checking Notification Status in the Ul 16-25
Checking Notification Status with the Notifications REST API 16-26

17 Analytics

What Can | Do With Analytics? 17-1
How Does MCS Create Analytics Reports? 17-1
Enabling Your Mobile Apps to Report Event Data 17-2
Adding Location Properties to the context Event 17-5
Integrating Analytics into a Mobile App Using the Mobile Client SDK 17-6
Understanding Different Types of Analytics Reports 17-6
Accessing the Analytics Reports 17-7
API Calls Reports 17-9
API Calls Count 17-9
API Calls Response Time 17-10
Events Report 17-10
Events 17-11
User and Session Reports 17-12
User Reports 17-13
Why User Counts Can Vary 17-13

User Session Reports 17-13
New Users 17-13
Active Users 17-14
Session Count 17-15
Session Duration 17-15

ORACLE Xi

Improving User Retention with Funnel Analysis 17-16
Creating a Funnel 17-17
Analyzing Funnels 17-18

Creating Custom Analytics Reports 17-19
How Do | Create a Custom Analytics Report? 17-20
My Reports 17-23

How Do | Run a Custom Report? 17-24
How Do | Edit a Custom Report? 17-24

Tracking Sessions and Logging Events for Mobile Apps 17-25

Creating Events and Sessions Using the iOS Library 17-26
Calling the Analytics Service 17-26
Designating Sessions 17-26
Associating a Session With Your Mobile App Being in the Foreground 17-27
Adding Custom Properties to Events 17-28
Receiving the Status of Event Posts 17-29

Creating Events and Sessions Using the Android Library 17-29
Taking a Look at Events and Sessions in Android Apps 17-31

Defining Sessions 17-32

Exporting Event Data 17-32

Purging Analytics Data 17-36

Troubleshooting Analytics Reports 17-38

18 Database

What Can | Do with Database APIs? 18-1

Database Access API 18-2
Calling the Database Access API from Custom Code 18-2
Creating and Restructuring Database Tables 18-3

Preventing Passing SQL Using Implicit Table Creation 18-6
Adding and Updating Table Rows 18-6
Retrieving Table Rows 18-8
Deleting Table Rows 18-10

Database Management API 18-10
Creating a Table Explicitly 18-11
Copying Table Structures to Another Environment 18-12
Creating or Deleting an Index on a Table 18-13

19 App Policies
What Are App Policies and What Can | Do With Them? 19-1
Setting an App Policy 19-2

ORACLE

Xii

Retrieving App Policies in App Code 19-3
Updating an App Policy Value in a Published Mobile Backend 19-5
Part IV Custom APIs
20 Creating APIs Fast with the Express API Designer

What are Resources? 20-1
How Do | Get Started with Resources? 20-1
Creating An API 20-2
Completing Your Resources 20-4
Adding Additional Fields 20-5
Shaping the Payload for Your Resource 20-5

Adding More Sample Data 20-6
Referenced Resources 20-6
Referencing Resources 20-7

Fields 20-9
Methods 20-10
Shaping Payloads 20-11
Read-Only Fields 20-12
Sample Data 20-13
Using the Express API Designer with MAX 20-15
Who Uses MAX? 20-16
Enabling Uploadable Images 20-17
Tips for User-Friendly Business Objects in MAX 20-18
Video: An Introduction to Mobile Application Accelerator (MAX) 20-25
Creating Resources with JISON Schemas 20-25
Defining Fields in a Schema 20-26
Defining Field Types, Formats, and Enums 20-27
Defining Child Objects 20-29
Defining Fields for List, Details, Create, and Update Screens 20-30
Collection Actions 20-32

Create Actions 20-35

Update Actions 20-37

Delete Actions 20-38

Custom Actions 20-38
Creating Mock Data 20-38
Which API Designer Should | Use? 20-39

ORACLE

Xiii

21 Custom API Design

API Design Process 21-1
The API Designer 21-3
Generating Custom APIs for Connectors 21-4
How Do | Generate a Custom API from a Connector 21-5
Completing the Custom API 21-7
Working with the Implementation 21-7
Spec Out a Custom API 21-10
Creating a Complete Custom API 21-14
Setting Up Your API 21-15
Defining Endpoints 21-16
Adding Methods to Your Resources 21-18
Defining a Request for the Method 21-19
Defining a Response for the Method 21-20
Testing API Endpoints Using Mock Data 21-22
Providing a Schema 21-23
Security in Custom APIs 21-24
Setting Access to the API 21-25

Testing Your Custom API 21-27
Creating Resource Types 21-29
Creating Resource Traits 21-31
Providing APl Documentation 21-32
How Do | Write in Markdown? 21-34

Getting Diagnostic Information 21-35
API Design Considerations 21-35
Valid URLs 21-35
API| Timeouts 21-37
API Resources 21-37
URI Parameters 21-38
Endpoint Requirements for Sync Compatibility 21-39
Schemas 21-40
RAML 21-41
Editing a Custom API 21-44
Video: End-to-End Custom APl Demo 21-45
Troubleshooting Custom APIs 21-45

22 Implementing Custom APIs

What Can | Do with Custom Code? 22-1
How Does Custom Code Work? 22-2
What's the Foundation for the Custom Code Service? 22-2

ORACLE Xiv

Video: Node.js Technology Primer 22-4

Setting Up Tooling for Custom Code 22-4
Steps to Implement a Custom API 22-4
Downloading a JavaScript Scaffold for a Custom API 22-5
Writing Custom Code 22-6
Key JavaScript Constructs in Custom Code 22-6
Accessing the Body of the Request 22-9
Inserting Logging Into Custom Code 22-10
Storing Data Locally 22-12
Video: Working with Node - Common Code 22-12
Implementing Synchronization-Compatible APIs 22-12
Video: Working with Custom APIs via Data Offline & Sync 22-12
Requirements for a Synchronization-Compatible Custom API 22-13
Returning Cacheable Data 22-18
Specifying Synchronization and Cache Policies 22-20
Calling Web Services and APIs from Custom Code 22-21
Packaging Custom Code into a Module 22-22
Required Artifacts for an API Implementation 22-22
package.json Contents 22-23
Declaring the API Implementation Version 22-24
Declaring the Node Version 22-25
Packaging Additional Libraries with Your Implementation 22-25
Uploading the Custom Code Module 22-26
Managing Custom Code in Git 22-26
Setting Up a Git Repository for Custom Code 22-26
Designating a Git Repository for Custom Code 22-26

Setting Up a Git Repository in Oracle Developer Cloud Service 22-27
Generating a Scaffold in a Git Repository 22-27
Testing and Debugging Custom Code 22-28
Testing with Mock Data 22-28
Testing Custom Code from the Ul 22-28
Offline Debugging with the MCS Custom Code Test Tools 22-29
Other Tools for Testing Custom Code Outside of the Ul 22-29
Accessing Logging Messages for Custom Code 22-29
Troubleshooting Custom API Implementations 22-33
Diagnosing Syntax Errors 22-33
Common Custom Code Errors 22-34
What Happens When a Custom API Is Called? 22-36

ORACLE XV

23 Calling APIs from Custom Code

How to Send Requests to MCS APIs

APl Request Pattern

Common options Argument Properties

API Response Patterns
Handling a Stream
Handling a Promise

Accessing Mobile Backend Information from Custom Code
mbe.getMBE()
Calling Platform APIs from Custom Code

Accessing the Analytics API from Custom Code
analytics.postEvent(events, options, httpOptions)

Accessing the App Policies API from Custom Code
appConfig.getProperties(httpOptions)

Accessing the Database Access API from Custom Code
database.delete(table, keys, options, httpOptions)
database.get(table, keys, options, httpOptions)
database.getAll(table, options, httpOptions)
database.insert(table, object, options, httpOptions)
database.merge(table, object, options, httpOptions)

Accessing the Devices API from Custom Code
devices.deregister(device, httpOptions)
devices.register(device, httpOptions)

Accessing the Location API from Custom Code
location.assets.getAsset(id, httpOptions)
location.assets.query(queryObiject, httpOptions)
location.devices.getDevice(id, httpOptions)
location.devices.query(queryObject, httpOptions)
location.places.getPlace(id, httpOptions)
location.places.query(queryObiject, httpOptions)

Accessing the Location Management API from Custom Code
Location Management Context Argument
location.assets.register(assets, context, httpOptions)
location.assets.remove(id, context, httpOptions)
location.assets.update(id, asset, context, httpOptions)
location.devices.register(devices, context, httpOptions)
location.devices.remove(id, context, httpOptions)
location.devices.update(id, device, context, httpOptions)
location.places.register(places, context, httpOptions)
location.places.remove(id, context, httpOptions)

ORACLE

23-1

23-1

23-2

23-5

23-5

23-6
23-13
23-14
23-14
23-15
23-15
23-19
23-19
23-20
23-20
23-22
23-24
23-25
23-30
23-35
23-35
23-36
23-37
23-37
23-40
23-43
23-45
23-46
23-48
23-52
23-52
23-53
23-55
23-57
23-59
23-62
23-63
23-66
23-68

XVi

location.places.removeCascade(id, context, httpOptions) 23-70
location.places.update(id, place, context, httpOptions) 23-70
Accessing the Notifications API from Custom Code 23-73
Notifications Context Argument 23-73
notification.getAll(context, options, httpOptions) 23-74
notification.getByld(id, context, options, httpOptions) 23-77
notification.post(notification, context, options, httpOptions) 23-79
notification.remove(id, context, options, httpOptions) 23-80
Accessing the Storage API from Custom Code 23-81
storage.doesCollectionExist(collectionld, options, httpOptions) 23-81
storage.doesExist(collectionld, objectld, options, httpOptions) 23-83
storage.getAll(collectionld, options, httpOptions) 23-85
storage.getByld(collectionld, objectld, options, httpOptions) 23-90
storage.getCollection(collectionld, options, httpOptions) 23-94
storage.getCollections(options, httpOptions) 23-95
storage.remove(collectionld, objectld, options, httpOptions) 23-98
storage.store(collectionld, object, options, httpOptions) 23-100
storage.storeByld(collectionld, objectld, object, options, httpOptions) 23-103
Accessing the Mobile Users API from Custom Code 23-106
ums.getUser(options, httpOptions) 23-107
ums.getUserExtended(options, httpOptions) 23-109
ums.updateUser(fields, options, httpOptions) 23-111

Calling Custom APIs from Custom Code 23-112
Calling Connector APIs from Custom Code 23-115
Calling a Connector to a REST Web Service 23-118
Calling a Connector to a SOAP Service 23-119
Calling Connectors that Require Form Data 23-121
Passing Headers to the Target Service 23-122
Overriding SSL Settings for Connectors 23-124
Specifying the API Version in Calls to Custom and Connector APIs 23-124
Using Generic REST Methods to Access APIs 23-125
optionsList Argument 23-127
Learning About Platform, Custom, and Connector APIs 23-128

Part V. Connector APIs
24 REST Connector APIs

How REST Connector APIs Work 24-1
REST Connector API Design Process 24-1
Why Use Connectors Instead of Direct Calls to External Resources? 24-2

ORACLE

XVii

Creating a REST Connector API 24-3

Basic Connector Setup 24-3
Providing the Descriptor 24-4
Rules 24-6
Selecting Endpoints 24-8
Security Policies and Overriding Properties 24-9
Setting a CSF Key 24-10

Testing the REST Connector API 24-11
Testing in Standard Mode 24-12
Testing in Advanced Mode 24-13

Getting the Test Results 24-14
Getting Diagnostic Information 24-15
Security and REST Connector APIs 24-16
Security Policy Types for REST Connector APIs 24-17
CSF Keys and Web Service Certificates 24-18
Query and Header Parameters 24-19
Setting Query Parameters in Remote URLS 24-19
Editing a REST Connector API 24-20
Using Your Connector API in an App 24-21
Troubleshooting REST Connector APls 24-21

25 SOAP Connector APIs

How SOAP Connector APIs Work 25-1
SOAP Connector API Design Process 25-1
Why Use SOAP Connectors Instead of Direct Calls to External Resources? 25-3
Creating a SOAP Connector API 25-3
Setting the Basic Information for Your SOAP Connector API 25-4
Selecting a Port 25-7
Setting Security Policies and Overriding Properties for SOAP Connector APIs 25-8
Setting a CSF Key 25-9

Setting a Web Service Certificate 25-10

Testing a SOAP Connector API 25-10
Testing Your Connector 25-10

Getting the Test Results 25-12

Getting Diagnostic Information 25-13

SOAP Connector API Design Tips 25-13
How Does XML Get Translated into JSON? 25-14
XML - JSON Mapping Conventions 25-15
Using XML Instead of JSON 25-17
Security Policy Types for SOAP Connector APIs 25-18

ORACLE Xviii

CSF Keys and Web Service Certificates 25-19

Editing a SOAP Connector API 25-20
Using Your Connector API in an App 25-21
Troubleshooting SOAP Connector APIs 25-22

26 ICS Connector APIs

How ICS Connector APIs Work 26-1
ICS Connector API Flow 26-2
How Do | Create an ICS Connector API? 26-3
Setting the Basic Information for Your ICS Connector API 26-4
Connecting to an Integration Cloud Service Instance 26-7
Selecting or Creating an ICS Instance Connection 26-7
Selecting an Active Integration 26-8
Editing the ICS Connector API 26-9
Setting Runtime Security for the ICS Connector API 26-10
Creating a New CSF Key 26-11
Testing the ICS Connector API 26-11
Getting the Test Results 26-13

Getting Diagnostic Information 26-14
Security and ICS Connector APIs 26-14
CSF Keys 26-15
Using Your Connector API in an App 26-15
Troubleshooting ICS Connector APIs 26-16

27 Fusion Applications Connector APIs

How Fusion Applications Connector APIs Work 27-1
Fusion Applications Connector API Flow 27-2
How Do | Create a Fusion Applications Connector API? 27-3
Setting the Basic Information for Your Fusion Applications Connector API 27-4
Connecting to a Fusion Applications Instance 27-6
Creating a Fusion Applications Instance Connection 27-7
Selecting Fusion Applications Resources 27-7
Setting Resource Attributes 27-9
Editing the Fusion Applications Connector API 27-11
Setting Runtime Security for the Fusion Applications Connector API 27-12
Providing a CSF Key 27-13
Creating a New CSF Key 27-13

Setting a Web Service Certificate 27-14

Testing the Fusion Applications Connector API 27-14

ORACLE XixX

Getting the Test Results 27-16

Security Policy Types for Fusion Applications Connector APIs 27-16
CSF Keys and Web Service Certificates 27-17
Using Your Fusion Application Connector API in an App 27-18
Troubleshooting Fusion Applications Connector APIs 27-19

Part VI Deployment and Lifecycle

28 MCS Environments

Team Members 28-1
What is My Environment? 28-1
Your Work Environment 28-2
Changing Environments 28-2
Administration View 28-3
Changing Environment Views for the Administrator 28-5
Setting the Default Environment 28-5
Environment Policies 28-5
Environment Policy Names 28-6
Environment Policy Scopes 28-7
Modifying an Environment Policy 28-9
Removing Environment Policies 28-10
CSF Keys and Certificates 28-10
Viewing Available CSF Keys, Certificates, and Token Issuers 28-11
Configuring a CSF Key 28-12
Configuring a Web Service or Token Certificate 28-12
Configuring an SSL Certificate 28-12
Disabling SSL Hostname Verification 28-13
Adding a Token Issuer 28-13
Rules for Certificate Subject Names 28-14
Configuring Rules 28-14
Rule Types 28-15
Rule Examples 28-17
Native Builds 28-18

29 Diagnostics

What Can | Do with Diagnostics? 29-1
Viewing Environment Health 29-2
Viewing Server Load 29-2
Viewing Errors 29-3

ORACLE XX

30

31

Viewing Underperforming Requests 29-4
Viewing Log Messages Related to a Request 29-4
Viewing Storage Usage 29-5
Monitoring a Selected Backend 29-6
Viewing API Performance 29-7
What Do the Health Indicator Thresholds Mean? 29-8
Adjusting the Performance Threshold Configurations 29-11
Viewing Status Codes for API Calls and Outbound Connector Calls 29-12
Relating Log Messages 29-14
How Client SDK Headers Enable Device and Session Diagnostics 29-15
Viewing Log Messages 29-15
Viewing Message Details 29-18
Taking a Look at Exported Messages 29-19
Configuring the Logging Level for Custom Code 29-26
Diagnosing Custom Code 29-27
Use Case: Using Correlation to Diagnose Custom Code 29-28
Use Case: Using Correlation to Diagnose Connector Issues 29-30
Video: Logging and Diagnostic Examples 29-32
Lifecycle
Draft State 30-1
Published State 30-2
Making Changes After a Backend is Published (Rerouting) 30-4
Deployment 30-6
Artifact Deletion 30-9
Dependencies That Affect a Move to the Trash 30-12
Restoring an Artifact 30-12
Restoring an Artifact from Administration 30-14
Purging an Artifact 30-15
Purging Artifacts from Administration 30-15
Lifecycle Scenarios
Initial Deployment of a Mobile Backend 31-1
Bug Fix 31-4
Rerouting a Mobile Backend 31-9
New Features 31-10

ORACLE

XXi

32 Managing an Artifact’s Lifecycle

Realm Lifecycle

Publishing a Realm

Creating a New Version of a Realm
Deploying a Realm

Moving a Realm to the Trash
Restoring a Realm

Managing a Realm

Client Lifecycle

Publishing a Client

Updating the Version Number of a Client

Creating a New Version of a Client

Deploying Clients
Specifying a Target Environment for the Client
Identifying Dependencies and Deployment Impact
Setting Environment Policies for Clients
Deploying the Client

Moving a Client to the Trash

Restoring a Client

Managing a Client

Mobile Backend Lifecycle

Backend Lifecycle States

Publishing a Mobile Backend

Updating the Version Number of a Backend
Creating a New Version of a Backend
Deploying Mobile Backends

Specifying a Target Environment for the Mobile Backend

Identifying Dependencies and Deployment Effects
Setting Environment Policies for Mobile Backends
Deploying the Mobile Backend

Moving a Backend to the Trash

Restoring a Backend

Deactivating a Backend

Managing a Mobile Backend

Mobile Client SDK Demo Applications

API Lifecycle

Publishing a Custom API

Custom APIs and APl Implementations
Updating the Version Number of an API
Creating a New Version of an API

ORACLE

32-1
32-2
32-2
32-2
32-4
32-4
32-4
32-5
32-6
32-6
32-7
32-7
32-8
32-9
32-9
32-10
32-10
32-10
32-11
32-12
32-12
32-13
32-14
32-14
32-15
32-15
32-16
32-16
32-17
32-17
32-18
32-18
32-18
32-20
32-20
32-21
32-22
32-23
32-23

XXii

Deploying APIs 32-24

Specifying a Target Environment 32-24
Identifying Dependencies and Deployment Effects 32-25
Setting Environment Policies for APIs 32-25
Deploying the API 32-26
Moving a Custom API to the Trash 32-26
Restoring a Custom API 32-27
Managing an API 32-27
API Implementation Lifecycle 32-28
Publishing an APl Implementation 32-28
Creating a New Version or Updating the Version of an APl Implementation 32-30
Deploying an API Implementation 32-30
Specifying a Target Environment for the Implementation 32-31
Identifying Dependencies and Deployment Effects 32-31
Setting Environment Policies for an APl Implementation 32-32
Deploying the Implementation 32-32
Moving an APl Implementation to the Trash 32-32
Restoring an API Implementation 32-33
Connector Lifecycle 32-33
Publishing a Connector 32-34
Updating the Version Number of a Connector 32-34
Creating a New Version of a Connector 32-35
Deploying Connectors 32-35
Specifying a Target Environment 32-36
Identifying Dependencies and Deployment Effects 32-36
Setting Environment Policies for Connectors 32-36
Deploying the Connector 32-38
Moving a Connector to the Trash 32-38
Restoring a Connector 32-38
Managing a Connector 32-39
Collection Lifecycle 32-39
Publishing a Collection 32-40
Updating the Version Number of a Collection 32-40
Creating a New Version of a Collection 32-41
Deploying a Collection 32-41
Moving a Collection to the Trash 32-42
Restoring a Collection 32-43
Managing a Collection 32-43

ORACLE XXiii

33 Testing APIs and Mobile Backends

Use Case: End-to-End Testing 33-1
How Can | Test an API? 33-2
Testing a Platform or Custom API from the Ul 33-2
Testing a Connector API from the Ul 33-3
Testing Platform and Custom APIs Remotely 33-3
Troubleshooting Unexpected Test Results 33-4
Monitoring Runtime Issues and System Health 33-6

34 Packages

What's a Package? 34-1
Why Do | Want a Package? 34-1
Exporting a Package 34-2
Adding Artifacts to the Package 34-2
Reviewing Dependencies During Export 34-4
Setting Environment Policies During Export 34-5
Completing the Export 34-6
Re-exporting a Package 34-7
Importing a Package 34-7
Uploading the Package 34-8
Examining the Contents of the Import Package 34-8
Setting Environment Policies During Import 34-10
What Happens When You Import a Package? 34-11
Import Results 34-12
Exporting Updated Artifacts 34-13
Examining a Package 34-13
Moving a Package to the Trash 34-14
Environment Policy Settings for Packaged Artifacts 34-15

Part VIl Reference

A HTTP Headers

API| Headers A-1
SDK Headers A-2

ORACLE XXiV

B Oracle Mobile Cloud Service Environment Policies

Environment Policies and Their Values B-1
C Security Policies for Connector APIs
Security Policies for REST Connector APIs C-1
Security Policies for SOAP Connector APIs C-3
Security Policies for ICS Connector APIs C-11
Security Policies for Fusion Applications Connector APIs C-11
Security Policy Properties C-12
D Identity Domain Relocation
E Writing Swift Applications Using the iOS Client SDK
Adding the Bridging Header File E-1
Adding the SDK Headers and Libraries to a Swift App E-2
Using SDK Obijects in Swift Apps E-3
F Supported Browsers and Languages
Supported Browsers F-1
Supported Languages F-1
G Identity Provider Integration
Use Case: Configuring OKTA to Obtain a SAML Token G-1
Use Case: Configuring AD FS to Obtain a SAML Token G-2
Integrating Microsoft Azure Active Directory with Oracle Cloud G-7

H Migrate to Oracle Mobile Hub

Glossary

ORACLE"

XXV

Preface

Preface

Welcome to Using Oracle Mobile Cloud Service.

This guide is intended for all users of Oracle Mobile Cloud Service, whether you are a
mobile app developer, service developer, enterprise architect, mobile cloud
administrator, or mobile program manager.

Audience

Using Oracle Mobile Cloud Service is intended for those people who are implementing
their company’s mobile application strategy, including mobile application developers,
API developers, system administrators, and business analysts.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=accé&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Resources

* What's New in Oracle Mobile Cloud Service

* Oracle Mobile Cloud Service Getting Started Tutorials

* Oracle Mobile Cloud Service Videos

* REST API for Oracle Mobile Cloud Service

* Oracle Mobile Cloud Service Android SDK Reference

e Oracle Mobile Cloud Service iOS SDK Reference

e Oracle Mobile Cloud Service Windows SDK Reference
* Oracle Mobile Cloud Service Cordova SDK Reference

* Oracle Mobile Cloud Service JavaScript SDK Reference
* Oracle Mobile Cloud Service Known Issues

* Using Mobile Application Accelerator

ORACLE XXVi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mobilegs
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mobilevideos
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssa-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssi-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssw-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssc-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssj-index

Conventions

The following text conventions are used in this guide:

ORACLE

Preface

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLS, code

in examples, text that appears on the screen, or text that you enter.

XXVii

The Basics

This part contains the following chapters:

e Get to Know Oracle Mobile Cloud Service

e Set Up the Service

ORACLE

Get to Know Oracle Mobile Cloud Service

ORACLE

Welcome to Oracle Mobile Cloud Service (MCS)! MCS is a cloud-based service that
provides a unified hub for developing, deploying, maintaining, monitoring, and
analyzing your mobile apps and the resources that they rely on.

Mobile Backend

Platform APls
Maobile User Mgmt Storage
—_—
Data Offline & Sync Maotifications
Analytics Database
App Policies Location
+
Custom Connectors On-Premises
0> APl ™ sopp | REST | ICS FA [o Cloud
Mobile Service

Applications

Your entry point into MCS depends on your role in your team’s mobile project.

If you are a mobile app developer, you use MCS to line up and test the resources
you need for your apps to work. This includes selecting from MCS platform APls and
custom APIs and collaborating with other team members to create new custom APIs.

If you are a service developer, you write Node.js-based JavaScript code to
implement the custom APIs required by the mobile app developers on your team. You
might also find yourself collaborating with mobile app developers to fine-tune API
designs and creating connector APIs to connect to enterprise systems.

If you are the team’s enterprise architect, you establish where desired data and
functionality will come from, security and environment policies, and the roles and
permissions of team members.

If you are the team’s mobile program manager, you use the Analytics features to
track usage patterns.

If you are a mobile cloud administrator, you work within the Administration tab to
monitor the services in production, use the Diagnostics features to drill down and
pinpoint problems, and handle other admin tasks such as the adding and removing of
users.

To get a more concrete idea of how all of this works, let's imagine you work for a
company called FixltFast (FiF) that supplies maintenance services for large in-house
appliances. To help facilitate speed and quality of service, FiF management wants to
roll out a mobile app which customers can use to quickly initiate a service request and

1-1

Chapter 1
Jump in with Mobile Backends

provide key information, such as by scanning the bar code of the defective appliance.
They'll call this app FiF_Customer.

':- Imcidant Repon

BIoied mated hidner

200 D0 -DETHEZEE ST
Cofd winer

01 0 -DETHEZ S 2T ADTE
I ki g @ rired g P A,

Here’s how your team would use Oracle Mobile Cloud Service to develop that app and
get the most out of it.

Jump in with Mobile Backends

As a mobile app developer, your first task is to set up a mobile backend for the app.

A mobile backend is a logical grouping of custom APIs, users, storage collections, and
other resources that serves as a cloud-based companion to one or more related
mobile apps. Within a mobile backend, you organize and develop resources that will
be used by your apps (which they access as REST web services). The mobile
backend also provides the security context (backed by an OAuth client ID/Client secret
pair or by HTTP Basic authentication credentials) for accessing those services from
the mobile app.

When you need apps for the same purpose on multiple platforms, all of those apps
can use the same mobile backend. Likewise, completely different apps that rely on the
same resources can share a mobile backend.

The screenshot below shows the Settings page of a mobile backend.

ORACLE 1-2

Chapter 1
Jump in with Mobile Backends

= ORACLE Mobile Cloud Service DEVELOPMENT ~ uimcs@mobile oracle.com v

APPLICATIONS > MOBILE BACKENDS > FiF_Customer 1.0

Diagnostics
@ Settings

[cients

oK aeis

Storage

.9.
¢ Users

Notifications

Ei App Policies

FiF_Customer Customer application for communicating with FixItFast.

Access Keys ©

HTTP Basic () Refresh Revoke

Mobile Backend ID 26778934-0156-4941-82aa-e96be2bfcc1 3
Anonymous Key Show

OAuth Consumer c Refresh Revoke
Client ID c490b55b-1fda-4296-950d-71903fddi051
Client Secret Show

Enable Single Sign-On @

Environment URLs @

Base URL http://slc01pvp.us.oracle.com:8001
OAuth Token Endpoint http://slc09kia.us.oracle.com:14100/oam/oauth2/tokens
Social Login @

o Facebook

At development time, here are some of the things you do with a mobile backend:

Browse and select the APIs to be available for the apps and test their endpoints
with mock data.

Create object storage collections and enable offline data caching.

Specify a user realm within which you manage the mobile app users who are
allowed to access the applications associated with the mobile backend.

Set up notifications for your apps using the services provided by the platform
vendors (such as Apple Push Notifications Service (APNS) for iOS, Google Cloud
Messaging (GCM) for Android, and Windows Push Notification Services (WNS)). If
you set up natifications for multiple platforms, you can initiate a single notification
and have it delivered to apps on multiple platforms.

Later, at deployment time, the mobile backend serves as a deployment unit with
dependency management for all of the artifacts you need to support the set of mobile

apps.

However, before you do any of this for the FiF_Customer app that we introduced
earlier, assume you're going to create a custom API to handle much of the app’s
heavy lifting.

ORACLE

1-3

Chapter 1
Design Custom APIs

Design Custom APIs

ORACLE

Especially if your company is new to MCS, one of the first things you'll need to do is
start creating your own set of REST APIs to provide building blocks for your apps.

API creation is divided into two parts: designing and implementing. Let’s talk about
designing first.

When you design a REST API, you express the functionality that you expect in terms
of resources, along with the HTTP methods they accept, and media types for the
request and response bodies. In other words, you essentially define the formats for
making a request on the API and for what kind of data is returned in the response.
This definition is stored in a RAML (RESTful APl Modeling Language) document. You
don't actually fill in the details of how the data is produced and where it comes from
right away. Those details are worked out later in the implementation.

For the previously-mentioned FiF_Customer app, you'll need an API for generating
and logging incident reports. Let’s call the APl i nci dentreports. This report will
consist of data entered by the customer, including a photo of the appliance’s bar code
and a description of the problem.

As the centerpiece to this API, you could define a resource called i nci dent s to
represent all incident reports. For that resource, you would have a GET method to
retrieve all incidents and a POST to create a nhew incident. Further, you could define
parameters for querying based on given criteria, such as the incident ID.

For the bodies of the requests sent to the i nci dent s endpoint and responses returned
from it, you'll define the media types (such as appl i cati on/j son) that they accept and
then provide examples for those bodies. Those examples serve as mock data that is
used when you (and eventually the users of your API) test the way the API works in a
mobile backend.

1-4

Chapter 1
Implement APIs

< All APls Incident Report 1.0 Save Test

£ Rescurces linciderts 1
@ Cesigner

€ Add Method @

o
GET Incident
Riltps: (il eemcte comijversion) mobilstcuslomincidentrepontincdents

}{' Implemeniations

RAML Traits

Request Responses Add Response
4 Response 200- 0K v 4

Dascription
F Header (0] Add Header
4 Body Add Madla Type
 Media Type applcatonison T
Exampia Schama

Once you are happy with the structure of the API, a service developer can get to work
on coding the implementation.

Implement APIs

As a service developer, you will work on APIs that have been sketched out for you by

app developers (or perhaps on APIs that you have designed yourself). Once you have
a set of endpoints to work with (like / mobi | e/ cust onl i nci dentreport/inci dents, as

outlined above), you can start implementing them with custom code.

This custom code takes the form of Node.js-based JavaScript. For each API
implementation, you create a Node.js module. Within each module, you write a route
definition for each endpoint that specifies how to respond to a client request to that
endpoint. These route definitions are based on conventions promoted by the
Express.js web framework for Node.js. You can also include other Node.js libraries in
the module to support your custom code.

Let's go back to the GET method on the incidents resource that we were just talking
about. Imagine that you have created a route definition for it that retrieves the incidents

ORACLE 1-5

Chapter 1
Get the Data

via the Database Access API. The custom code implementing the endpoint might look
something like this:

/**
* GET ALL I NCI DENTS
x|
service. get('/mobilel/custonincidentreport/incidents', function (req, res)

[1call to custom code SDK, which handles the interaction with the
Dat abase Access AP
reg. oracl ehbbi | e. dat abase. get Al | (
"FIF_Incidents").then(
function (result) {
res.send(result.statusCode, result.result);
1
function (error) {
res.send(500, error.error);

1

In the real world, your implementations will probably need additional logic and perhaps
need to aggregate data with multiple API calls, but this sample should give you an idea
of the basic mechanisms involved.

In much of your custom code, you'll probably also need to access various enterprise
resources that reside outside of MCS, such as databases, CRM software, and other
cloud services and legacy systems. Read on to learn more about accessing those
resources and shaping them for use in your mobile apps.

Get the Data

ORACLE

Chances are that the main purpose of many of your custom APIs is to pull data into
your app from various business applications and other systems maintained by your
company, whether cloud or on-premises. As a service developer, your challenge is to
do so in a way that's manageable, especially if you don’t have detailed knowledge of
the systems or the interfaces needed to access them. MCS answers this problem with
connector APIs.

1-6

ORACLE

Chapter 1
Get the Data

Reusable connector
API for service,
defined in wizard

Data Customn API
that uses connector

.dlspla‘_\,-'ed APl to interact
in app with service
"
e
App code calling
“(_f > custom API
-

Connector APIs provide a bridge between your custom APIs and the enterprise
services you want to process with those APIs. Using the REST, SOAP, and ICS
(Integration Cloud Service) connector types, you create connector APIs for each data
source that you want to access. You define a connector API by filling in info on the
target resource, creating rules for the call parameters to "shape" the returned data so
that it works well in a mobile context, and specifying security policies. The result is a
reusable service that's exposed as a straightforward REST API that you can view in
the Custom Code API Catalog. Service developers can call this connector from their
custom code just like they would any other APl and do not have to worry about tricky
specifics like security policies and identity propagation.

For the Incident Report API, there are a number of resources that you'll want to
interact with, such as an API for geolocation and customer data through your
company’s CRM software. In this example, the custom code calls a connector called
Ri ght Nowto add an incident report to an Oracle Service Cloud instance that is used to
manage customer service interactions.

/**

* The following exanple calls the 'Createlncident' resource
* on a SOAP connector naned '/ nobil e/ connector/Ri ght Now .
* */
req. oracl eMobi | e. connect ors. Ri ght Now. post (' Creat el nci dent ",
{Body: {Createlncident: req.body}}).then(
function(result){
res.send(result.statusCode, result.result);

b

1-7

);

Chapter 1
Use Platform APls

function(error){
res.send(500, error.error);

}

Note:

When you use connector APls in your apps, you get other MCS advantages
when your apps call the API, including diagnostics to measure API
performance and API call analytics to evaluate how mobile apps are used.

Use Platform APIs

In addition to custom APIs, you can use MCS platform REST APIs in your apps. You
can call these APIs directly from your apps and/or via the implementation code of
custom APIs. You can also access many of them through MCS’s SDKs for the iOS,
Android, Windows, Cordova, and JavaScript platforms.

The available platform APIs include the following:

Storage to work with collections and objects (such as images and documents) that
you associate with your mobile backend.

You set up collections in the web interface (and optionally populate them). Then
you can use API calls to add, modify, and delete objects in those collections.

Mobile User Management to store and retrieve data related to mobile users.

Location to define location devices and places and query for them from your
mobile apps.

Notifications for writing code to send notifications to your mobile apps.

Analytics Collector to initiate logging of specified events in the running apps.
These logged events are collected and can be viewed through the prism of various
reports in the Analytics tab in the MCS user interface.

Database Access to access an Oracle Cloud database with REST calls. For
security reasons, you can access the Database Access operations only from
custom API implementations by using the custom code SDK, as described in
Accessing the Database Access API from Custom Code. You can't make direct
requests from client applications.

Database Management to add, view, replace, and drop tables that are created
(and updated) automatically when you POST or PUT a JSON object using
Database Access API.

App Policies to retrieve application configuration properties that you have set in
the mobile backend.

Call APIs from Your App Code

Once you have selected the custom APIs to use in your mobile backend, you can call
their REST endpoints from your mobile app code. Platform APls are automatically
available for all mobile backends, but calling them works the same way as calling
custom APIs.

ORACLE

1-8

Chapter 1
Call APIs from Your App Code

Here is a call from some Android app code to use the i nci dent report custom API to
post an incident.

String url = "http://<MCS_SERVER>: <PORT>/ mobi | e/ cust ont i nci dent report/
i nci dents";

HtpCient httpdient = new Defaul tHtpdient();
Htt pPost post = new HttpPost(url);
post . addHeader (" Cont ent - Type", "application/json");
post . addHeader (" Aut hori zati on", basic bW\zQ dl bG\vbWIxKg==) ;
try {
JSONGhj ect newi nci dent Report = new JSONObj ect () ;
newl nci dent Report. put (" Emai | Address", email);
newl nci dent Report. put ("1 mageLi nk", i mageLi nk);
post.setEntity(new StringEntity(new ncidentReport.toString()));
Ht t pResponse response = httpCient.execute(post);
Stat usLine statusLine = response. get St at usLi ne();
if (statusLine.getStatusCode() == HtpStatus. SC OK) {
Il Success

}
}catch (Exception e) {

}

And here is an example of using the Storage API in an Android app to post to a
collection called Fi F_I mages that has been associated with your mobile backend:

String url = "http://<MCS_SERVER>: <PORT/ nobi | e/ pl at f or nf st or age/
col I ections/Fl F_I mages/ obj ects”;

HtpCient httpdient = new Defaul tHtpCdient();

Htt pPost post = new HttpPost(url);

post.setEntity(new ByteArrayEntity(imgeBytes));

post . addHeader (" X- Backend- Token", "FixItFast_Customer/1.0");
post . addHeader (" Cont ent - Type", "image/|jpeg");

post . addHeader (" Aut hori zation", "basic bWz dl bGWbWKg==");
Ht t pResponse response = httpclient.execute(post);

Stat usLi ne statusLine = response. get St at usLine();
if (statusLine.getStatusCode() == HttpStatus. SC CREATED) {
/1 I'mage upl oaded successfully

}

Call Platform APIs with Mobile SDKs

ORACLE

In addition to being able to call MCS APIs with straight REST calls, MCS provides
SDKs to simplify use of some of the platform APIs in native code.

Here’s some code for an Android app that uses the SDK classes (St or ageCol | ecti on
and St or agebj ect) for object storage.

Storage storage =

1-9

Chapter 1
Set Up and Manage Your Mobile App Users

Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(cont ext) . get Ser vi
ceProxy(Storage. cl ass);
try {
StorageCol | ection i magesCol [ection =
storage. get St orageCol | ecti on("FI F_I nages");
Storagehj ect image = i magesCol | ection. get (" 3x4nple- st Or 4g3- Obj 3ct -
k3y");
byte[] imageBytes = imge. get Payl oadBytes();
}catch (ServiceProxyException e) {
int errorCode = e.getErrorCode();

A similar call with the iOS SDK might look like:

AppDel egat e* appDel egate = [[U Application sharedApplication] delegate];
OMCMobi | eBackend* nbe = [appDel egat e myMobi | eBackend];
OMCSt or age* storage = [nbe storage];

OMCSt or ageCol | ection* aCol | ection = [storage get Col | ection: FIF_ | mages];
OMCSt or agehj ect* ahj ect = [aCol | ection get: 3x4nple-stOr4g3-0bj 3ct - k3y];
NSDat a* data = [a(hj ect get Payl oadDat a] ;

Set Up and Manage Your Mobile App Users

With the app just about ready to go, it's now time the person on your team who has the
Oracle Cloud identity domain administrator role to set up the users of the app. To
manage the users of your mobile apps, you set up user realms. A realm is a collection
of mobile app users with similar properties. Each mobile backend in an environment is
associated with one realm. However, a realm can be used by multiple environments
and multiple mobile backends. (Keep reading for more information on environments.)

You can also set up roles, which are sets of permissions that you can assign to users
to control which users have permissions to what APIs and other resources. For
example, you could have a role for customer service reps that provides them
permissions to access the APIs that are needed for their job, such as for assigning
cases. Similarly, you could have a role for technicians that allows them to access APIs
relevant to their job, such as getting notifications for open cases and marking a case
as resolved.

If you already have an identity provider for the future users of your apps, you can use
MCS’s Enterprise Single Sign-On support to enable those users to log in to apps that
use MCS mobile backends. Similarly, you can use MCS's support for Facebook login
for consumer apps.

Deploy Code between MCS Environments

ORACLE

Once your code is developed and your mobile backend is configured, it's time to
proceed with deployment.

An environment is a predefined arena for working in MCS. You develop artifacts
(mobile backends, APIs, and user realms) or custom code in a development

1-10

Chapter 1
Deploy Code between MCS Environments

environment and deploy to a runtime environment for testing and distribution. You can
work in one environment at a time.

For example, if you have a three-environment setup, you might use it this way:

e Designate one as a development environment to create your mobile backend,
define custom APIs, create new services using custom code, set up storage for
your collections, and so on. Typically, such an environment is where your team
does most of its development work, and it isn't exposed to end users.

e Designate one as a staging environment where you can deploy completed project
code for testing. Team members with broad permissions in the development
environment might have no access to this staging environment if testing is handled
by another team.

« Designate one as a production environment where you can promote fully tested
code for real world distribution through an app store, such as the Apple App Store
or Google Play Store. Not many team members need access to the published
project code in this environment.

For more information about environments, see MCS Environments.

Production

Deploy

Publish

Conneciors Collections Haalms

When you deploy, you follow this process:

1. Publish numbered versions of your artifacts, essentially freezing them, so those
versions can no longer be edited. To make a change to a published artifact, you
need to create a new version, make necessary changes, and publish again.

2. Set (or verify) dependencies between relevant artifacts, such as between API
versions and their implementation versions.

ORACLE 1-11

Chapter 1
Monitor and Administer the Mobile Infrastructure

3. Set (or verify) environment policies to determine things such as what security
credentials are associated with the environment, what versions of an app can
access the mobile backend, timeouts, etc.

4. Push the artifacts to the target environment.

To release updates, you simply create a new version in your development
environment and follow the deployment process again.

Monitor and Administer the Mobile Infrastructure

As the mobile cloud administrator, you use the Administration tab in the user interface
to monitor the health and performance of your apps in all of your environments,
particularly Production. The Administration tab provides graphical and tabular data on
the server load and the request backlog. If any problems arise in production, you can
view logs of server and app activity, filter them, and drill down to identify any trouble

spots.
= ORACLE Moblle Cloud Service Dowslogmen umesBnshls aracke som
AL IHISTRATION
8 Storage Ktifuawons Seal
O e D
Duvelopiranl Dewelopment & D Daraut)

W Fequmd Cound
B Ruiporas Tew e

B -
Fendisg Requesis HTTP dux Erross HTTF S Ervors i
Lot Houw 2t LY Depoyed Assens
Policies @

Analyze Your Mobile Projects

Once your apps are in production, the mobile program manager can step in to
evaluate long-term usage and performance patterns in your mobile backends.

MCS comes with a host of built-in metrics such as API calls, API call response time,
new users, active users, session count, and session duration.

ORACLE 1-12

Chapter 1
What About Security?

“— ORACLE Moblle Cloud Ssrvics

Development g s=ifS exemplecon

ANALYTICS > AP CALLS All Backends

API Calls Count AF| Calls Response Tise

M m“m M 1Y | ML DIMENS fh onesis o

Sap 34, 2014

Tolal Caits CalsDay

You can also track any custom events that have been created in your apps using the
Analytics API. For example, imagine your app uses the Analytics API to post an event
each time a mobile app user creates a new incident report and capture properties such
as appliance type, make, model, and model year. You could then generate graphs and
tables based on those events and filter the data in any number of ways, such as how
many incident reports were filed for water heaters every month for the last year.

What About Security?

Oracle Mobile Cloud Service is designed with enterprise-grade security baked in.

Security begins at the level of the mobile backend. For an app to access any
resources through a mobile backend, its user first has to be authenticated with the
mobile backend, whether it is using OAuth, enterprise single sign-on (SSO), Facebook
login, or HTTP Basic authentication. See Authentication in MCS for the details.

Once a user is authenticated, access to APIs is controlled through MCS’s mobile user
management features. Realms allow mobile apps to use a shared set of users and
data, and roles define permissions that control user access to APIs and resources
from those mobile apps. For an introduction to users, roles and realms in MCS, see
Set Up Mobile Users, Realms and Roles.

Security for custom APIs can be configured individually for each API. On the Security
tab in the API Designer, you can decide whether or not an API can be accessed
anonymously (without a user login). If you choose No, you can define the authorization

policy by specifying which roles can access the API or specific endpoints. For details,
see Security in Custom APIs.

MCS connector APIs also have access to security functionality, which is especially
important if the connection involves transmitting proprietary or sensitive information.
For details, see Security Policy Types for REST Connector APIs and Security Policy
Types for SOAP Connector APIs.

Video: Security Overview

This video illustrates the key security aspects of MCS:

@Video

ORACLE 1-13

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13061

Chapter 1
Job Descriptions and Learning Paths

Job Descriptions and Learning Paths

Let's take a few moments to talk about the various jobs (e.g. mobile developer, service
developer, etc.) that we introduced at the beginning of the chapter. MCS is designed to
meet the needs of widely disparate team roles, so the way you interact with MCS
depends on your given responsibilities. To help you better understand how your
responsibilities fit with MCS, here’s more specific detail about what we mean by each
job and links to the parts of the guide that are most relevant to those jobs.

Mobile App Developer

ORACLE

As a mobile app developer, it's your job to create new applications for the iOS and
Android platforms. Often these apps incorporate existing enterprise functionality, which
you'll need to optimize for phones and tablets.

To make things easier, you'll want to leverage existing APIls wherever possible. You
can find our built-in APIs for common functions (like storage, mobile user
management, notifications, and analytics) in Oracle Mobile Cloud Service’s API
Catalog, as well as APIs that other team members have created. When the API you
need isn’'t available, use the API Designer to sketch out the API quickly and supply
some mock data. Then you can go back to work on your app and let the service
developer fill in the details (or do it yourself, if you prefer).

Here are the sections you’'ll be most interested in.
» For creating a mobile backend and setting up your apps to work with it:
— Mobile Backends
— Connecting Your App to a Mobile Backend
— Android Applications
— iOS Applications
— Cordova Applications
— JavaScript Applications
* For working with platform APIs:

— Working with Mobile Users (for info on having test users created for you) in the
Mobile User Management chapter

— Location
— Storage (for setting up object storage collections that your app can use)
— Data Offline (for caching of data on your device)

— Notifications (for setting up and sending push naotifications for both iOS and
Android apps)

— Enabling Your Applications to Report Event Data in the Analytics chapter

— App Policies (for referencing custom properties that you have defined in a
mobile backend)

* For getting the ball rolling on designing APIs that you'll need in your apps:
— Designing Custom APIs

1-14

Chapter 1
Job Descriptions and Learning Paths

» For info on the diagnostics features that may help you as you are testing your
apps against your mobile backend:

— Monitoring Performance and Troubleshooting

* For learning about the Oracle Mobile Application Accelerator to create mobile apps
with visual tools:

— Creating APIs Fast with the Express API Designer

If you haven't gone through them already, here are some tutorials to help you get
started quickly:

» Mobile Backends (Access this tutorial by logging into MCS and clicking Get
Started on the home page.)

* Custom APIs

e Storage

* Mobile User Management
* Notifications

Here are some other resources that you may want to look at:

e This video overview of the API designer shows you how to quickly sketch out an
API design, which you can then pass to a service developer for implementation.

e The YouTube channel for Oracle Mobile Platform, which contains instructional
videos covering a plethora of MCS topics, including designing and testing mobile
backends, security, registering and configuring notifications, the storage API
(including testing and examples), creating custom reports with the Analytics API,
building connectors, and more.

Service Developer

ORACLE

As a service developer, your primary task in Oracle Mobile Cloud Service is to write
the JavaScript code that implements the custom APIs that your organization's mobile
apps rely on. These APIs might draw on existing enterprise services, platform APIs
provided by Oracle Mobile Cloud Service, or other APIs your team has developed in
Oracle Mobile Cloud Service.

In addition, you may be called upon to work with mobile developers to refine APIs
they’'ve already sketched out, and to create connector APIs that make it easier for your
custom APIs to access enterprise resources.

Here are the chapters you’'ll be most interested in.

e For fine-tuning API designs and writing their implementation code:
— Custom API Design
— Implementing Custom APIs
— Calling APIs from Custom Code
— Database

» For creating connector APIs to access the enterprise system data:
— REST Connector APIs
— SOAP Connector APIs

1-15

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_customapis
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_storage
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_usermanage
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_notifications
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10456
http://bit.ly/oramobilesub

Chapter 1
Job Descriptions and Learning Paths

— ICS Connector APIs

» For info on testing your apps against your mobile backend:
— Diagnostics
— Testing APIs and Mobile Backends

» For creating packages that contain mobile backends, APIs, and other artifacts and
then exporting and importing those packages:

— Packages

If you haven't gone through them already, here are some tutorials to help you get
started quickly:

* Mobile Backends (Access this tutorial by signing into MCS and clicking Get
Started on the home page.)

e Custom APIs
¢ Connectors

You may also want to subscribe to The YouTube channel for Oracle Mobile Platform,
which contains instructional videos covering all of the areas above.

Enterprise Architect

As the enterprise architect, you're concerned with designing a secure and scalable
mobile solution for your business. It's your job to determine what can be built, where
desired data and functionality will come from, and what security and environment
policies need to be implemented. You're particularly attuned to establishing best
practices, consistency, and reusability in your resources and repeatability in your
processes.

In addition to establishing the mobile architecture, you also oversee how apps are
deployed initially, updated, and patched.

You will be most interested in the following topics:
» Getting the Service Set Up

e Lifecycle

* What About Security?

You may also want to subscribe to the YouTube channel for Oracle Mobile Platform,
which contains instructional videos covering all of the areas above.

Mobile Cloud Administrator

ORACLE

As the mobile cloud admin, you are responsible for setting up MCS for your team
members and making sure that it keeps clicking both for the team members working
with MCS and the end users of your apps. In your day-to-day work, you monitor the
Administration tab to make sure that the service is running smoothly. When you detect
issues or when problems are reported to you, the built-in diagnostics tools help you
identify and fix the problems.

You will be most interested in the following chapters:

* Set Up the Service

1-16

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_customapis
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_connectors
http://bit.ly/oramobilesub
http://bit.ly/oramobilesub

Chapter 1
Job Descriptions and Learning Paths

» Lifecycle (for learning about the main principles of deployment and lifecycle of
mobile backends, APIs, and other artifacts)

* Managing an Artifact’s Lifecycle (for the steps on versioning, deploying, and
patching)

» Diagnostics (for using diagnostics and logs)
* App Policies (for adjusting app policies for already-deployed apps)

If you haven't gone through it already, you may want to look at the Mobile User
Management tutorial, which shows how to quickly set up an additional realm.

You might also want to look at this video on managing your mobile deployments as
well as the YouTube channel for Oracle Mobile Platform, which contains instructional
videos covering all of the areas above.

Mobile Program Manager

ORACLE

As the mobile program manager, you're responsible for the success of your mobile
strategy. You want to know how many people are using your applications, and how
they’re using them. To achieve that, you will probably want to use Oracle Mobile Cloud
Service's Analytics features to track standard metrics (such as registered and active
users, number of transactions, etc.) and create your own events to track.

You will be most interested in the following chapter:
e Analytics

In addition, you may be interested in looking at this video on MCS’s Analytics and the
YouTube channel for Oracle Mobile Platform.

1-17

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_usermanage
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsgs_usermanage
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10579
http://bit.ly/oramobilesub
https://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:10080
http://bit.ly/oramobilesub
http://bit.ly/oramobilesub

Set Up the Service

Here’s what you need to know to get your team set up with Oracle Mobile Cloud
Service (MCS), including activating the service, creating a service instance, and
assigning team members. Be sure to go through this chapter carefully to make sure
that you have fully configured the service for what your team needs.

Where Do | Sign Up?

If you haven't already purchased a subscription to Oracle Mobile Cloud Service (MCS)
and would like to, you can do so in either of these ways:

e Visit https://shop.oracle.com and enter Mobi | e Cl oud Ser vi ce into the Search
field to display the purchase options.

» Contact your sales representative. If you don’t know who that is, go to the Oracle
Contact List and click Live Sales Chat.

You can purchase a metered or non-metered subscription. For an overview, see
Overview of Oracle Cloud Subscriptions in Getting Started with Oracle Cloud.

You can also sign up for a trial by following these steps:

1. Navigate to https://cloud.oracle.com/en_US/tryit and click Get started for free.
2. Click Sign up.
3. Fill out the online form to create an Oracle account.

See Requesting a Free Oracle Cloud Promotion if you have any questions on how
to fill out the form.

Once the request is approved, you will receive an email with details for logging in (and
changing your password).

What Do | Need To Do?

ORACLE

MCS setup activities are divided between team members with the following
administrative roles, assigned in Oracle Cloud.

Task Who Does It? How Do | Do It?
Activate the service and Your company’s Oracle Cloud See Activate the Service
designate administrators account administrator. This

person is designated by your
Oracle sales representative
when you sign up with Oracle
Cloud.

2-1

https://shop.oracle.com/
http://www.oracle.com/us/corporate/contact/global-070511.html
http://www.oracle.com/us/corporate/contact/global-070511.html
https://cloud.oracle.com/en_US/tryit

Chapter 2
Activate the Service

Task Who Does It? How Do | Do It?

Create one or more service For non-metered service, itis See Create Mobile
instances (environments) and the account administrator or Environment Service
assign a service administrator service administrator Instances
designated by the account
administrator.

For metered service, it is the
service administrator.

Assign MCS team member A service administrator for ~ See Assign MCS Team
roles to define permissions the MCS environment. Member Roles

Set up mobile users, realms A team member with the See Set Up Mobile Users,
and roles Oracle Cloud identity domain Realms and Roles

administrator role and the
mobile user configuration
(Mobi | eEnvi ronment _Mobi |
eUser Confi g) and mobile
user management

(Mobi | eEnvi ronment _Mobi |
eUser Mgnt) MCS team
member roles in the MCS
environment.

Set up MCS for MAX Your company’s MCS service See Setting Up MAX
administrator. Environments, Distinguishing
Between MAX Team Member
Roles for Business Users and
for Mobile App Developers
and Mobile Users for MAX

Log in to MCS All MCS team members. See Get on Board

Activate the Service

When your company submits an order for MCS, your sales representative designates
an account administrator, who is the activator for the service. If you're that person,
you'll receive an activation email to get started. If this is your first time logging in to
Oracle Cloud, you'll be prompted to change your temporary password.

* Open the activation email and click Cloud Account Services Setup.

If you have a non-metered subscription, you've subscribed to an entitlement to create
service instances of MCS (environments), so your first task is to create those
environments based on your business needs, described next in Create Mobile
Environment Service Instances

If you have a metered subscription, your first task is to assign MCS roles to your team,
described in Assign MCS Team Member Roles.

Create Mobile Environment Service Instances

ORACLE

MCS uses environments to define the behavior of artifacts and control access to
development and administrative features. As an account or service administrator, you
define these environments, assign predefined MCS team member roles, and configure
environment policies. For example, if you have more than one environment, you could
designate one as a development environment and one as a production environment.

2-2

Chapter 2
Create Mobile Environment Service Instances

» Development could be an environment where you create your mobile backend,
define your custom APIs, create new services using custom code, set up storage
for your collections, and so on. It's the primary environment where you’ll do most
of your work.

* Production could be a completely separate environment, into which you can
promote your completed project code for testing or public access. Developers and
team members with broad permissions and easy access to features in the
development environment might have little or no access to a production (or
staging) environment where specific testing can be done by another team. You
could also further separate the production environment to promote fully tested
code for use by applications.

To create your mobile environment service instances:

1. Open the welcome email you received after being assigned as the service
entitlement administrator and click My Account.

You'll be prompted to change your temporary password.

2. Inthe Oracle Cloud Infrastructure Classic Console, click the Create Instance
button next to Mobile Cloud Service in the list of services and complete the wizard
that appears.

Allow up to three hours for the instance to be created.

Upon creation of your first environment, an MCS Portal instance is also created
and your environment is associated with it.

3. For any additional environments you want to create, repeat step 2 of this
procedure and associate them with the MCS Portal instance using the
Associations dropdown in the wizard.

If you need more detailed information on the wizard, see Creating Service Instances in
Getting Started with Oracle Cloud.

Setting Up MCS Environments

If you're assigned as service administrator for the mobile environment service
instance, you're granted all MCS team member roles in the environment so you can
start setting up the environment:

» To assign team member roles, open the welcome email you received when you
were assigned as service administrator and follow the link to Oracle Cloud My
Services. From the Oracle Cloud Infrastructure Classic Console, click the

navigation menu === in the top left corner, and choose Users.

* From the Users page you can assign team member roles for the environment as
described in Assign MCS Team Member Roles.
* To monitor activity, access administrative features and define environment

policies, go to MCS, click === and open Administration from the side menu. For
more information on using these features, see MCS Environments.

Setting Up MAX Environments

MAX (Mobile Application Accelerator) is a development tool that enables business
users to create, test, and publish mobile apps without writing code. You can find out

ORACLE 2-3

Chapter 2
Assign MCS Team Member Roles

more about MAX and how it's used in Creating APIs Fast with the Express API
Designer.

MCS doesn’t support multiple development and production environments for MAX.
You can only assigh one MAX development environment and one production
environment.

A business user builds and tests apps in the MAX development environment. The
Mobi | eEnvi ronment _Busi nessUser role in the development environment limits
business users to the MAX Ul only. MCS team members with the
Mobi | eEnvi ronnent _Devel op role in the environment also have access to MAX
features.

* A business user or MCS team member can use MAX to publish apps by promoting
them to the MAX production environment, making them available to other people
in the organization. This requires the Mobi | eEnvi ronnent _MAXAppl i cat i onDepl oy
role in the environment.

For more information on MAX roles, see Distinguishing Between MAX Team Member
Roles for Business Users and for Mobile App Developers.

Tip:

Instead of accepting the default names for the MAX development and
production environments, choose names that make them easy to identify.
You might consider a MAX-themed naming convention and choose simple
names to help you associate MAX roles with the correct environment service
instances.

Environment Settings

Environment Name ~

MAX_Developmen

This is the default envirenment for first-time user access.

When users first access Moble Cloud Service, the defautt environment is Selected
for them.

Assign MCS Team Member Roles

As a service administrator, you use the predefined MCS team member roles to grant
permissions and capabilities to your team members in each environment. Team
members and their roles are managed from Oracle Cloud Infrastructure Classic
Console.

ORACLE 2.4

Chapter 2
Assign MCS Team Member Roles

< Note:

A service administrator can assign MCS roles to existing team members.
To create new team members, you need to be assigned the identity domain
administrator role in Oracle Cloud by the account administrator.

As account administrator, be judicious about granting the identity domain
administrator role. It's required to create team members and mobile users,
but it also grants broader permissions over your MCS instance in Oracle
Cloud.

To add users and assign them roles:
1. Sign in to your Oracle Cloud account.

I
2. On the Oracle Cloud Infrastructure Classic Console, click the navigation menu ===
in the top left corner, and choose Users.

3. For each team member, click Add and fill in the name, email, and other required
information.

4. Inthe Simple Role Selection section, select roles for each user.

For development environments, it's generally a good idea to assign team members
all of the MCS roles described below in development environments (except for the
Mobi | eEnvi ronnent _Busi nessUser role) to make sure that they can complete all of
the development activities. (Use the Mbi | eEnvi r onment _Busi nessUser only for
team members you want to go straight to Mobile Application Accelerator (MAX)
without seeing the rest of the MCS interface.)

For production environments, most team members should have more limited
access.

If you need more detailed instructions, see Adding Users and Assigning Roles in
Getting Started with Oracle Cloud.

MCS Team Member Roles

ORACLE

MCS team member roles are predefined and can’t be created or customized. Team
members must be assigned at least one of the roles in the table below in each
environment they should have access to.

Role Name Privileges Available Actions
MCS Team Member Access to the MCS Ul. All team * Access the MCS Ul
(Mobi | ePort al _Team members.

Menber) The MCS Ul is represented by an

environment in Oracle Cloud, called
the MCS Ul service. All team
members must be granted this role in
the MCS Ul service in addition to
roles granted in other MCS

environments.
Mobile Analytics Read-only access to analyticsdata « View analytics data and
(Mobi | eEnvi ronment for the environment. define custom reports

_Anal ytics)

2-5

ORACLE

Chapter 2

Assign MCS Team Member Roles

Role Name

Privileges

Available Actions

Mobile Database
Management

(Mobi | eEnvi r onnent
_Dbnt)

Mobile Deploy

(Mobi | eEnvi ronnent
_Depl oy)

Mobile Develop
(Mobi | eEnvi ronnent
_Devel op)

Mobile Location
Management

(Mobi | eEnvi ronnent
_Locati onMgnt)

Mobile System
(Mobi | eEnvi ronnent

_System

Mobile User
Configuration

(Mobi | eEnvi ronnent
_Mobi | eUser Confi g)

Mobile User
Management

(Mobi | eEnvi ronnent
_Mobi | eUser Mynt)

Use the Database Management API
to to view, create, and drop tables.

Control artifact versions deployed
within the environment and configure
artifact policies and instance data.

Create, configure and publish new
artifacts, such as mobile APIs and
custom code. Create and test mobile
apps using MAX. This role is only
useful in development environments.

Create, configure and delete location
artifacts such as assets, devices and
places so applications can query
location data.

Access the Location Management
API from custom code.

Define realms and roles for mobile
users so applications can use role-
based access policies.

You must also be granted the role of
identity domain administrator in
Oracle Cloud to manage roles and
realms.

Manage mobile users within a realm,
including creating mobile users and
assigning roles.

You must also be granted the role of
identity domain administrator in
Oracle Cloud to manage users.

Access the database
Migrate data

Deploy versioned artifacts
Create, modify and remove
artifact policies

Modify artifact instance
data

Create a draft of an artifact
Modify artifact metadata
Publish an artifact

Test custom code by
creating mobile apps using
Mobile Application
Accelerator (MAX)

View location devices,
places and assets from the
ul

Create location devices,
places, and assets from the
ul

Modify location devices,
place, and assets from the
ul

Delete location devices,
places, and assets from the
ul

Create location devices,
places, and assets from
custom code

Modify location devices,
place, and assets from
custom code

Delete location devices,
places, and assets from
custom code

Create a role

Delete a role

Create a realm

Modify a realm (draft/

publish)

— Add a user attribute

— Remove a user
attribute

Create, update, suspend,
activate and remove mobile
users

Assign mobile roles to
mobile users

Reset a mobile user’'s
password

2-6

Chapter 2
Assign MCS Team Member Roles

Role Name Privileges Available Actions
Mobile Monitor Read-only access to diagnostics e View diagnostic data and
(Mobi | eEnvi ronment data for the environment. define custom reports
_Monitor)
Mobile Notifications Send and receive notifications inthe < Create (send) and query for
(Mobi | eEnvi ronnent environment. notifications
_Notifications)
Business User Access to the Mobile Application e Create and test mobile
(Mobi | eEnvi ronment Accelerator (MAX) development UL. apps using MAX

Busi nessUser) Blocks access to the rest of the MCS
h Ul.

Never grant the Business User
role to a MCS mobile app or
service developer or assign it to a
production environment.

MAX Mobile App Access to the MAX production e Publish mobile apps using
Deployment environment and MAX application MAX

(Mobi | eEnvi ronnent deployment features.

_MAXAppl i cat i onDe

pl oy)

The naming convention for Oracle Cloud roles that correspond to MCS team member
roles is: { servi ceNane}. {r ol enane}. For example, in the environment with service
name pai d1247nobsvc002dev the name of the Oracle Cloud role for the

Mobi | eEnvi ronnment _Depl oy team member role would be

pai d1247mobsvc002dev. Mobi | eEnvi ronment _Depl oy. Service names for MCS
environments are listed on the Oracle Cloud Infrastructure Classic Console.

You might see some extra roles in the list in Oracle Cloud, including a Mobile Team
Management role in several environments and extra Mobile Monitor and Mobile User
Management roles in the Ul environment. You don’t need to assign those roles to
anyone, as they aren’t used in this release.

Team member roles are different from the mobile user roles that you assign to end
users of your apps. For details on mobile user roles, see Creating and Managing
Mobile User Roles.

Distinguishing Between MAX Team Member Roles for Business Users
and for Mobile App Developers

ORACLE

MAX (Mobile Application Accelerator) is a development tool for business users, but
MCS mobile app and service developers can also use MAX to test custom code. You
can find out more about MAX and how it's used in Creating APIs Fast with the Express
API Designer.

To set up MCS so both business users and MCS developers can use MAX, take care
in assigning roles. Both business users and MCS developers need the

Mobi | ePortal _Team\Venber role to access the mobile portal, but these two types of
users access MAX differently.

e The Mobi | eEnvi ronment _Busi nessUser role must only be assigned to a business
user in the MAX development environment so they can bypass the rest of MCS.
Business users with this role are MAX-only users and can't even see the MCS UI.

2-7

Chapter 2
Assign MCS Team Member Roles

Never assign this role to a MCS mobile app or service developer or to a production
environment.

e The Mobi | eEnvi ronment _Devel op role grants access to MAX from within the MCS
Ul. To make sure that MCS mobile app and service developers can open the
Applications page and aren't trapped in MAX, always assign them the
Mobi | eEnvi ronnent _Devel op role, and not the Mobi | eEnvi ronnent _Busi nessUser
role.

e The Mobi | eEnvi ronment _MAXAppl i cat i onDepl oy role in the MAX production
environment enables both business users and MCS developers to publish apps
using MAX. When this role is assigned, MAX is included on the Applications page
for the environment.

To find out more about accessing MAX, see Who Uses MAX?

Example Team Member Role Assignments

ORACLE

This table shows one way you could assign MCS team member roles by environment
for the common jobs described in Get to Know Oracle Mobile Cloud Service. All team
members also need to be assigned the Mobi | ePortal _Team\enber role in the MCS Ul
service.

Caution:

When creating team member accounts for Mobile Application Accelerator
(MAX), be sure to keep the roles and their associated environments straight.
Do not grant the MAX Busi nessUser role to MCS mobile app or service
developers or they will be limited to the MAX Ul and won'’t have access to
MCS development features. Also, the MAX development environment is
identified by the Mobi | eEnvi ronment _Busi nessUser role, so take care when
choosing the service instance name in the Oracle Cloud Infrastructure
Classic Console. Do not assign this role to the MAX production environment.

2-8

ORACLE

Chapter 2

Assign MCS Team Member Roles

Job

Development
Environment Roles

Staging
Environment Roles

Production
Environment Roles

enterprise architect

mobile cloud
administrator

Mobi | eEnvi r onnment
_Anal yti cs,

Mobi | eEnvi r onnment
_Dbwynt,

Mobi | eEnvi r onment
_Depl oy,

Mobi | eEnvi r onnment
_Devel op,

Mobi | eEnvi r onnment
_LocationMynt,
Mobi | eEnvi r onment
_System

Mobi | eEnvi r onnment
_Mobi | eUser Confi g

Mobi | eEnvi r onnment
_Mobi | eUser Mynt
Mobi | eEnvi r onment
_Monitor,

Mobi | eEnvi r onnment
_Notifications

Mobi | eEnvi r onment
_Anal yti cs,

Mobi | eEnvi r onnment
_Dbwynt

Mobi | eEnvi r onment
_Depl ooy,

Mobi | eEnvi r onnment
_Devel op,

Mobi | eEnvi r onnment
_LocationMynt,
Mobi | eEnvi r onment
_System

Mobi | eEnvi r onnment
_Mobi | eUser Confi g

Mobi | eEnvi r onnment
_Mobi | eUser Mynt
Mobi | eEnvi ronnment
_Moni tor,

Mobi | eEnvi r onnment
_Notifications

Mobi | eEnvi r onnment
_Anal yti cs,

Mobi | eEnvi r onnment
_Dbwynt

Mobi | eEnvi r onment
_Depl oy,

Mobi | eEnvi r onnment
_Locati onWynt,
Mobi | eEnvi r onnment
_System

Mobi | eEnvi r onment
_Mobi | eUser Confi g

Mobi | eEnvi r onment
_Mobi | eUser Mynt
Mobi | eEnvi r onnment
_Monitor,

Mobi | eEnvi r onment
_Notifications

Mobi | eEnvi r onment
_Anal yti cs,

Mobi | eEnvi r onnment
_Dbwynt

Mobi | eEnvi r onment
_Depl ooy,

Mobi | eEnvi r onnment
_Locati onWynt,
Mobi | eEnvi r onnment
_System

Mobi | eEnvi r onment
_Mobi | eUser Confi g

Mobi | eEnvi r onment
_Mobi | eUser Mynt
Mobi | eEnvi r onnment
_Monitor,

Mobi | eEnvi ronnment
_Notifications

Mobi | eEnvi r onnment
_Notifications

Mobi | eEnvi r onment
_Anal yti cs,

Mobi | eEnvi r onnment
_Dbwynt

Mobi | eEnvi r onment
_Depl ooy,

Mobi | eEnvi r onnment
_Locati onWynt,
Mobi | eEnvi r onnment
_System

Mobi | eEnvi r onment
_Mobi | eUser Confi g

Mobi | eEnvi r onment
_Mobi | eUser Mynt
Mobi | eEnvi r onnment
_Monitor,

Mobi | eEnvi ronnment
_Notifications

2-9

Chapter 2
Assign MCS Team Member Roles

Job Development Staging Production
Environment Roles Environment Roles Environment Roles

mobile app developer Mbbi | eEnvi ronnent Mobi | eEnvi ronment Mobi | eEnvi r onment

and service developer Anal yti cs, _Anal ytics, _Notifications,
Mobi | eEnvi ronment Mobi | eEnvi ronnent Mbi | eEnvi r onment
_DbMynt _Mobil eUsergnt, MAXAppl i cati onDe
Mobi | eEnvi ronnent Mobi | eEnvironnent pl oy
_Depl oy, _Monitor,
Mobi | eEnvi ronment Mobi | eEnvi ronnent
_Devel op, _Notifications
Mobi | eEnvi r onnment
_LocationMnt,
Mobi | eEnvi r onment
System

K/bbi | eEnvi r onment
_Mobi | eUser Confi g

Mobi | eEnvi r onnment
_Mobi | eUser Mynt
Mobi | eEnvi r onment
_Moni tor,

Mobi | eEnvi r onnment
_Notifications,

mobile program Mobi | eEnvi ronment Mobi | eEnvi ronnent Mobi | eEnvi r onnment
manager _Anal ytics, _Anal ytics, _Anal yti cs,

Mobi | eEnvi ronment Mobi | eEnvi ronnent Mobi | eEnvi r onment

_DbMynt, _Notifications _Notifications

Mobi | eEnvi r onment

_Depl oy,

Mobi | eEnvi r onnment

_Devel op,

Mobi | eEnvi r onnment

_LocationMynt,

Mobi | eEnvi r onment

_System

Mobi | eEnvi r onnment

_Mobi | eUser Confi g

Mobi | eEnvi r onnment
_Mobi | eUser Mynt
Mobi | eEnvi r onment
_Monitor,

Mobi | eEnvi r onnment
_Notifications

business user Mobi | eEnvi ronment N/A Mobi | eEnvi r onnment
_Busi nessUser _MAXAppl i cationDe
pl oy

Remember, to create new team members or mobile users, a team member also needs
to be granted the identity domain administrator role in Oracle Cloud.

ORACLE 2-10

Chapter 2
Set Up Mobile Users, Realms and Roles

Set Up Mobile Users, Realms and Roles

Mobile users are your customers — the ones who use the mobile apps built with
MCS. Organize your mobile users by setting up realms that define the user schema,
and creating roles to grant access permissions. It's a good idea to define some realms
and roles before app developers start working with MCS. You can also set up some
initial mobile users for testing and maybe import larger groups of mobile users.

Note:

To manage mobile users, roles and realms, you need to be assigned the
mobile user configuration (Mobi | eEnvi ronment _Mobi | eUser Confi g) and
mobile user management (Mbbi | eEnvi ronment _Mobi | eUser Mynt) MCS team
member roles in the environment, as well as the identity domain
administrator role in Oracle Cloud.

Manage mobile users, realms and roles in MCS from Applications > Mobile User
Management.

Creating Realms

ORACLE

A realm is a container for managing mobile users within an environment. Each realm
includes a user schema that defines the user data that can be stored and made
accessible to mobile apps. You can define custom properties for a user schema, but
the following properties are required:

e user name
e password

e first name

e last name

e e-mail

To create a new realm, start in a development environment. Available realms are listed
under Mobile User Management in the side menu.

1. Make sure you're in the development environment where you want to create the
realm.

2. Click === to open the side menu and select Applications > Mobile User
Management.

3. Click the Realms navigation link.
4. To create a realm, click New Realm.

5. Enter a unique name and an optional description. The realm name can't be
changed after the realm is created.

6. If you want to add a custom property to the user schema, click New Field.

a. Enter a unique name for the field and an optional description.

2-11

Chapter 2
Set Up Mobile Users, Realms and Roles

You can't use any of the following reserved field names: fi r st name, | ast nane,
emai |, user name, passwor d, cr eat edOn, cr eat edBy, nodi fi edOn, nodi fi edBy,
id,roles,andlinks.

b. Select the appropriate data Type for the field: string, number, date or Boolean.
c. Click Create to add the new field to the user schema.

7. When you've finished, click Save to save your changes to the realm and return to
the Realms tab.

After a realm is published, the user schema can’t be changed. Realms can’t be
deleted from MCS.

Realms are deployed automatically with the associated mobile backend. Only the user
schema is deployed; no user data is migrated. For detailed information on publishing
and deploying realms, see Realm Lifecycle. If you want to change the realm
associated with an existing mobile backend, see Changing a Mobile Backend's Realm.

Setting the Default Realm for an Environment

When you create a new mobile backend, it's automatically associated with the default
realm for the environment. You can set this default realm to any available realm in the
environment.

1. Make sure you're in the environment where you want to set the default realm.
I
2. Click === to open the side menu and select Applications > Mobile User
Management.

3. Click the Realms navigation link.

4. Select the realm that you want to make the new default. Click More and select
Make default realm.

Creating and Managing Mobile User Roles

Mobile user roles allow you to define permissions for your apps and assign them to
mobile users. You can define as many roles as you need, and you can assign multiple
roles to the same mobile user.

A mobile app can allow different access to mobile users with different roles. You could
assign a Technician role to a mobile technician to grant access to specific features of
the company's mobile app, and a Salesperson role to a sales rep to grant access to
different features. The same mobile technician could have a Customer role in the
company’s supply ordering app where the sales rep has no role assigned.

To create and manage mobile user roles:

1. Make sure you're in the environment where you want to create the role(s).

2. Click === to open the side menu and select Applications > Mobile User
Management.

ORACLE 2-12

Chapter 2
Set Up Mobile Users, Realms and Roles

< Note:

Though it's possible to create and delete mobile user roles from My
Services in Oracle Cloud, you should handle all operations on mobile
user roles from Mobile User Management in the MCS UI.

3. Click the Roles page. From here you can view and edit available mobile user roles
and create new roles. As soon as you create a role, it's added to the list on the
Roles page and you can define access permissions.

* Role names are case-sensitive.

* Roles are deployed automatically with any object that references them.

Once you've defined roles, you can use them throughout MCS:

e Assign roles to individual mobile users from the Mobile Users page in MCS, or
use Oracle Cloud to batch assign roles to groups of mobile users, described in
Importing Groups of Mobile Users Into MCS Using Oracle Cloud.

» Assign specific permissions for objects and resources to the roles you've defined,
as described in Adding Access Permissions to a Collection.

» Restrict access to APIs and individual methods, as described in Setting Access to
the API.

Creating Mobile Users and Assigning Roles

From the Mobile Users page in MCS Mobile User Management, you can create and
edit users and assign roles, search for an existing user, and reset a user’'s password to
a system-generated temporary password that is sent to the user’'s email address.
Remember, you can only create mobile users if you have the identity domain
administrator role in Oracle Cloud.

For more thorough testing or for production, you'll probably want to import a group of
users. To import groups of users into MCS, use Oracle Cloud to batch assign them to
a realm. You can also use Oracle Cloud to batch assign mobile user roles. For
detailed instructions, see Importing Groups of Mobile Users Into MCS Using Oracle
Cloud.

Note:

In all cases, when you a create mobile users, they are sent a temporary
password. The new users need to use this temporary password to log into
the Oracle Cloud Infrastructure Classic Console, change the password, and
set up their challenge questions before they can be recognized as an MCS
mobile user.

Creating Individual Mobile Users for Testing

ORACLE

You can use the MCS Ul to create individual mobile users and assign roles. Here are
the steps for quickly creating a test user. Some steps include suggested values that
will allow app developers to seamlessly complete the Get Started with Mobile
Development tutorial on the MCS home page.

2-13

© a0 »

Chapter 2
Set Up Mobile Users, Realms and Roles

Make sure you're in the environment where you want to create the mobile user(s).

Click === to open the side menu and select Applications > Mobile User
Management.

Click Mobile Users.
Select the Realm where you want to create the user.
Click the New User button.

Enter a unique user name and fill in the remaining fields in the dialog, including an
email address where you can retrieve the generated password.

The available fields may vary depending on the realm where you're creating the
user. The Get Started with Mobile Development tutorial uses the user name Joe.

" Note:

Both user name and email address must be unique across all services in
Oracle Cloud.

If you haven't created the role you need yet, you can add a new role to the
environment by clicking Create Role on the right side of the dialog.

The Get Started with Mobile Development tutorial uses the role name Techni ci an
for the user Joe.

Click Create again to create the new mobile user.

An email is sent from Oracle Cloud to the address you entered with a temporary
password.

(Optional) Assign roles to an individual mobile user from the Mobile Users page in
MCS.

You can only assign a mobile user to one realm via the MCS Mobile Users page, but
you can associate mobile users with multiple realms using Oracle Cloud. For more
thorough testing or for production, you'll also probably want to import a group of mobile
users.

Importing Groups of Mobile Users Into MCS Using Oracle Cloud

ORACLE

You can use Oracle Cloud to import a group of users into MCS or assign MCS roles to
a group of users, using the steps below. MCS mobile user realms and roles are both
represented by custom roles in Oracle Cloud. As with all mobile user operations in this
section, you need the identity domain manager role in Oracle Cloud to complete these
steps.

1.

Create the MCS realm and mobile user roles you want to assign to the group of
users, if you haven't already. For detailed instructions, see Creating Realms and
Creating and Managing Mobile User Roles.

Create a group of mobile users in Oracle Cloud using a comma-separated values
(CSV) file.

For detailed information on batch importing users, including the related CSV files,
see Importing a Batch of User Accounts in Getting Started with Oracle Cloud.

2-14

Chapter 2
Set Up Mobile Users, Realms and Roles

3. Import the users into MCS by assigning the group to the Oracle Cloud custom role
that represents the MCS realm you created in step 1.

The naming convention for Oracle Cloud custom roles that represent MCS realms
is: { servi ceNane} _Mobi | eEnvi ronment _{real mane} _{version with dots as
under scor es} _Real mwhere {servi ceNane} is the service name of the
environment in Oracle Cloud. You can find the service names for all MCS
environments on the Oracle Cloud Infrastructure Classic Console. For example,
for the default realm version 1.0 in the environment with service name
“3240930apod” the custom role in Oracle Cloud would be

3240930apod_Mobi | eEnvi ronment _Default _1 0 _Real m or for the MyCustomers
realm version 2.5 in the environment with service name “poeo342ed” it would be
poeo342ed_Mobi | eEnvi ronment _MyCust oners_2 5 Real m For detailed
instructions, see Assigning One Role to Many Users in Getting Started with Oracle
Cloud.

4. (Optional) Assign MCS mobile user roles to the group by assigning Oracle Cloud
custom roles using the same process you did for the realm in the previous step.

The naming convention for Oracle Cloud custom roles that represent MCS mobile
user roles is: { servi ceNane} _Mobi | eEnvi ronment _{r ol enane}. For example, for a
role named “APIRole” in the environment with service name “poeo342ed” the
custom role in Oracle Cloud would be poeo342ed_Nobi | eEnvi ronment _API Rol e.

Mobile Users for MAX

In addition to their team member accounts, MAX (Mobile Application Accelerator)
business users need mobile user accounts to test and use their mobile apps. For
details on MAX team member roles, see Distinguishing Between MAX Team Member
Roles for Business Users and for Mobile App Developers. For more information about
MAX, see Using the Express API Designer with MAX.

Role Definition

test user A test user account enables MAX users to
preview apps using live data. It also enables
them to generate the QR code that identifies
the test version of an app. For more
information on creating a test user account,
see Creating Individual Mobile Users for
Testing.

mobile user Mobile user accounts enable everyone
(business users, MCS developers, and mobile
app users) to log in to MAX and use published
mobile apps. Anyone who tests or uses a
mobile app built using MAX needs a mobile
user account. For more information, see
Importing Groups of Mobile Users Into MCS
Using Oracle Cloud.

Changing a Mobile User Password

As mobile cloud administrator, you can change a mobile user’s password from the
Mobile Users page in MCS Mobile User Management. Mobile users can change their
own passwords from Oracle Cloud Identity Self Service.

ORACLE 2-15

Chapter 2
Set Up Mobile Users, Realms and Roles

Click === to open the side menu and select Applications > Mobile User
Management.

Click Mobile Users.

Select the mobile user on the Mobile Users page and click the Reset password
button. MCS will send an email with a temporary password to the email address
associated with the user.

Configuring Identity Management (SSO and OAuth)

MCS allows you to use single sign-on (SSO) with OAuth so your mobile apps can use
your own identity provider (IdP) for authentication.

If you want to use a third-party IdP as your identity store (without any
corresponding accounts for your users in Oracle Cloud), you can use SAML and
JWT tokens for authentication. See Third-Party SAML and JWT Tokens.

If you want to use a third-party IdP in conjunction with Oracle Cloud user accounts,
configure the connection between Oracle Cloud and the identity provider from the
Users page in Oracle Cloud Infrastructure Classic Console. For detailed
instructions, see Managing Single Sign On in Administering Oracle Cloud Identity
Management.

Configuring Oracle Cloud Applications as the Identity Provider

If your team will be creating mobile apps that are designed for users of Fusion
Applications-based services such as Oracle Sales Cloud, Oracle HCM Cloud, and
Oracle ERP Cloud, you will probably want to enable those users to sign in to the
mobile app once and not have to re-enter credentials to access the Oracle Cloud
application.

ORACLE

For your mobile app and service developers to be able to create such apps where the
user only needs to sign in once, you need to get the following things in place:

1.

Have your MCS instance provisioned in the same identity domain as the Oracle
Cloud application service that your apps will access.

Enable SSO for the identity domain and set the Oracle Cloud application service
as the identity provider.

Enable sign—on with identity domain credentials. This enables team members to
sign in with their Oracle Cloud credentials. Otherwise, they would be prompted to
log in with credentials for the Oracle Cloud application service (which they might
not have).

The steps for this are:

a. In Oracle Cloud Infrastructure Classic Console, go to the SSO Configuration
page.

b. Go to the Enable Sign In to Oracle Cloud Services with Identity Domain
credentials section and click Enable.

" Note:

You can only designate one identity provider to be used with SSO.

2-16

Chapter 2
Get on Board

Once the services are set up in the same identity domain and SSO has been enabled,
the mobile app developer can do the following to enable the app user’s login
credentials to propagate to the Oracle Cloud application:

» Create a Fusion Applications connector API to connect to the Oracle Cloud
application service.

* Within the connector API, designate the appropriate security policy to handle
authentication and authorization with the service.

* Create a custom API that calls the connector API.

e Create a mobile backend, enable it to use SSO, and associate the custom API
with it.

Get on Board

Once you're assigned a role in MCS, you can log in and get to work. To open MCS
from the Oracle Cloud Infrastructure Classic Console, click the Open Service
Console link in the MobilePortalService box. (This link is only accessible to team
members with administrative roles.)

" Note:

If you see an error when you try to access MCS, you probably don’t have all
the roles you need. Ask your service administrator to assign you the
necessary MCS roles.

ORACLE 2-17

Setting up Mobile Apps

ORACLE"

Mobile Backend

Platform APls

Mobile User Mgmit Storage
_—
Data Offline & Sync Motifications
Analytics Database
App Policies Location
4
Custom Connectors
Y APIS ™ soap | REST | Ics
Applications

This part contains the following chapters:

Mobile Backends
Authentication in MCS
Android Applications

iOS Applications

Cordova Applications
JavaScript Applications
Xamarin Android Applications

Xamarin iOS Applications

FA

On-Premises
— or Cloud
Service

Mobile Backends

Oracle Mobile Cloud Service (MCS) is built around the concept of mobile backends,
which enables you, as a mobile app developer, to develop and deploy groupings of
APIs that are designed to support a specific set of mobile apps. You can then
associate one or more apps with the mobile backend to access those APIs.

Mobile Backend

 Mobile Backend

Platiorm APls
Mobile User Mgmt Storage
Lo
Data Offline & Sync Motifications
Analytics Database
App Policies Location
+
Custom Connectors On-Premises
— 1=l APIs — —= or Cloud
Mobile SOAP REST ICS FA Service
Applications

What Is a Mobile Backend and How Can | Use It?

ORACLE

A mobile backend is a secure grouping of APIs and other resources for a set of mobile
apps. Within a mobile backend, you select the APIs that you want available for those
apps. For any apps that you want to receive notifications, you can also register the
appropriate credentials for the given network (e.g. APNS, GCM, or WNS) in the mobile
backend.

You can have multiple backends, each serving a set of applications. In addition, you
can have APIs that are used by multiple backends.

When an app accesses APls through MCS, it is always in the context of a mobile
backend. The app authenticates with credentials (OAuth Consumer or HTTP Basic
Authentication) specific to the mobile backend or through an identity store (or social
login provider) that is mediated by your mobile backend. If the called API includes calls
to other APIs within the backend, the identity and credentials of the original caller are
propagated through the chain of calls.

You don't have to start your work in MCS with a mobile backend (for example, you
could start developing custom APIs or set up storage collections first without
associating them with any mobile backends). But you may find it useful to do so.
Working in mobile backends helps you visualize the resources available for the target
apps and how they will work together. In addition, you can use the mobile backend's
security context to test calls to your APIs, even in the earliest stages of development.

3-1

Chapter 3
What's the Mobile Backend Development Process?

What's the Mobile Backend Development Process?

Generally speaking, using MCS entails developing APIs, grouping them in mobile
backends, and developing mobile apps that use these mobile backends. The
development model is flexible, allowing you to work on APIs, mobile backends, and
mobile apps largely in parallel.

As shown in this figure, the general workflow includes steps both for creating and filling
out the mobile backend and for setting up your app to work with the mobile backend.

Mobile Backend Mobile Apps
Create Add SDK
Associate with Realm Insert Credentials in
Config Files
Add APls .
Develop App,
Add Collections Incorporate Calls to
APls via Backend
Register Client Apps
(optional) Test Calls to
Mobile Backend

Creating and Populating Mobile Backends

You create and populate mobile backends directly in Oracle Mobile Cloud Service.
Once you have created a mobile backend, you can associate APIs and Storage
collections with it, and register client apps that will use the mobile backend.

Associate
with Realm

Create Mobile i T

Hackend Add Collections

Reqgister Client
Apps (optional)

ORACLE" 3-2

Chapter 3
Creating and Populating Mobile Backends

Creating a Mobile Backend

1. Make sure you're in the environment where you want to create the mobile
backend.

2. Click === to open the side menu and select Applications > Mobile Backends.
3. Click New Mobile Backend.

4. Enter a name for the mobile backend and a description.

Mobile Backends for MAX Apps

A mobile backend is created on the fly whenever a Mobile Application Accelerator
(MAX) user creates an app. These mobile backends are named with a MAX_ prefix,
followed by the name of the MAX app itself, another underscore (_) and an App ID.
For example, MAX_myMAXApp_0123_a4563. (MCS inserts underscores if a MAX
app’s name includes spaces: My MAX APP becomes My_MAX_App, for example.)
Use the Mobile Application Accelerator filtering option to locate these mobile
backends. Although these mobile backends are created automatically and are already
associated with a client app (that is, a MAX App), you can use the Settings page to
update them just as you would with any other mobile backend. For example, you can
add SSO support to your MAX apps.

4+ New Mobile Backend

Filte Q T Name Ascending
Filter By
MAX_MyMAXApp_d0b67f2b_b233_ Active
Generated by MAX Draft
Inactive
Published

Page 1 of1 (10f1items)

Mobile Cloud Service
Mobile Application Accelerator

EO OOoOOO

Mobile Backend Authentication and Connection Info

ORACLE

The following authentication and connection details are generated when you create a
mobile backend and are displayed on the mobile backend’s Settings page. Your apps
use these details to connect to and authenticate with APIs associated with that mobile

backend. These credentials can be used by every application associated with that
mobile backend.

Environment URLs

3-3

Chapter 3
Creating and Populating Mobile Backends

— The Base URL is needed for all API calls. This URL is distinct for each
environment that you have provisioned.

— The OAuth Token Endpoint is the URL that your app needs to use to make
OAuth token requests.

— A SSO Token Endpoint is also provided if you enable OAuth and then enable
single sign-on (SSO) for your mobile backend. Your app would use this URL to
obtain a single sign-on OAuth token in order to login through a remote identity
provider.

A set of Authentication Keys, which your app needs to access APIs through the
mobile backend. Keys are generated for both OAuth Consumer and HTTP Basic
authentication. Use the toggle switch next to each to enable or disable access
through that protocol.

A set of Access Keys, which your app needs to access APIs through the mobile
backend. Keys are generated for both OAuth Consumer and HTTP Basic
authentication. Use the toggle switch next to each to enable or disable access
through that protocol. For OAuth, you can also enable SSO in order to allow your
company’s identity provider to be used authenticate users.

OAuth Consumer keys are generated in the form of a client ID and a client
secret. These two values are unique to this mobile backend.

HTTP Basic Authentication keys are generated for you in the form of a mobile
backend ID and an anonymous key.

These keys are also unique by environment. When you deploy a mobile backend
to a different environment, a new set of keys is generated for the copy of the
mobile backend that is added to the target environment.

If you suspect that these credentials have been compromised (such as by an
application handling them insecurely), click Refresh to replace the credentials with
new ones or click Revoke to cancel the existing credentials without generating
replacements.

Note:

Think twice before refreshing or revoking credentials, since these actions
will block any calls that any existing apps make through the mobile
backend. To get the apps working properly again after credentials have
been revoked or refreshed, you need to rebuild the apps with the new
credentials and redeploy them.

For details on using the various authentication methods, see Authentication in MCS.

To make it easier to incorporate these details in your apps, use the MCS SDKs for
your app platforms. See The SDKs.

Environments and Mobile Backends

ORACLE

All work on mobile backends takes place in the context of an environment. You can
use a separate environment for each phase in the mobile backend lifecycle, such as
development, testing, and production.

Typically you create a mobile backend in an environment that you have designated for
development, publish that mobile backend, and then deploy it to another environment

3-4

Chapter 3
Creating and Populating Mobile Backends

for testing. Once thoroughly tested, you would then deploy the mobile backend to your
production environment.

For more on environments, see What is My Environment?.

Realms and Mobile Backends

A realm is the security context for a set of users that defines a set of properties that
contain information on the user, such as user ID and user name as well as any custom
information that is relevant to the purpose of the apps using that realm.

You can have different realms for different purposes. Each mobile backend in an
environment can be associated with only one realm, but multiple mobile backends can
be associated with the same realm, allowing them to use a shared set of users and
data. When you create a mobile backend, it is assigned to the default realm for the
environment.

You can change the realm associated with a mobile backend from the Users tab of the
mobile backend. Realms are typically handled by users with the Oracle Cloud identity
domain administrator role. If you don’t have that role and you need to change the
mobile backend’s realm, contact someone who does have that role. For details on the
default realm, see Setting the Default Realm for an Environment.

Even when a mobile backend is configured to allow login through enterprise SSO, it
needs a realm that contains records for the users that log in through SSO. In this case,
the realm would define only the properties needed to match the user records with
those in the identity provider (such as user name or email address).

" Note:

When you change the realm for a mobile backend, the user properties and
user data also change. Make sure that the new realm includes all the
properties required by any mobile apps in the mobile backend.

Changing a Mobile Backend's Realm

1. Make sure you're in the environment where you want to change the realm.

2. Click === to open the side menu and select Applications > Mobile Backends.
3. Open the mobile backend. (Select it and click Open.)

4. Click the Users tab. This tab lets you search for and manage users, and change
the realm for the mobile backend.

Getting Test Users for a Mobile Backend

ORACLE

You'll probably find it useful to have one or more test users set up in the realm
associated with your mobile backend. Among other things, this will make it easier to try
out APIs in your mobile backend. As an app developer, you probably don't have the
permissions necessary to create test users, but a person on your team with the Oracle
Cloud identity domain administrator role can.

To see if you have any test users:

3-5

2.
3.
4.

Chapter 3
Creating and Populating Mobile Backends

Make sure you're in the environment where you want to work with test users.

Click === to open the side menu and select Applications > Mobile Backends.
Select your mobile backend and click Open.

In the left navbar, click Users.

If you don’t have any test users, see Creating Individual Mobile Users for Testing for
information on creating them.

Associating APIs with a Mobile Backend

Once you have a mobile backend, you can use the API Catalog to select the custom
APIs you want to access through that mobile backend. The APl Catalog provides
detail on each API endpoint and its documentation, as well as an opportunity to test
the endpoint with mock data to see what it does.

1.

o o p W N

Make sure you're in the environment containing the draft mobile backend.

Click === to open the side menu and select Applications > Mobile Backends.
Select your mobile backend and click Open.

In the left navbar, click APls.

Click Select APlIs.

Optionally, click an API's name to view its endpoints.

At this stage, you can click Test Endpoint to see how the API works with mock
data. To do so, you also need to provide a user name and password. If you don’t
yet have a test user, see Creating Test Users for info on creating one.

For custom APIls, you can also specify that the API can be accessed without a
user login. See Testing Your Custom API for more details.

Click the + (Add) icon for each API that you want to include.

< Note:

Platform APIs (for Storage, Mobile User Management, Analytics, etc.) are
automatically available in your mobile backends. If an API with the
functionality that you are looking for isn’t available, you can design such an
API yourself. See Custom API Design.

Associating Storage Collections with a Mobile Backend

You can associate a mobile backend with collections so that your mobile apps can
work with data in those collections using the MCS platform’s Storage API.

ORACLE

To associate your mobile backend with an existing collection:

1.

2.
3.

Make sure you're in the environment containing the draft mobile backend.

Click === to open the side menu and select Applications > Mobile Backends.

Select your mobile backend and click Open.

3-6

Chapter 3
Video: Mobile Backend Design Considerations

4. Inthe left navbar of the mobile backend, click Storage.
5. Click Select Collections.

6. Start typing the name of the collection that you want to add, select the collection
from the drop-down list, and click Select.

For more on collections, including creating them, see Storage.

Clients and Mobile Backends

You can associate apps with a mobile backend by registering them as clients in MCS
and then picking the mobile backend for them to use. In the process, you can also set
up notifications profiles for the clients to use. See Client Management for information

on registering clients.

What Can | Change in a Mobile Backend?

If you haven't yet published your mobile backend, you can change the following things
that are associated with the mobile backend at any time:

* Registered clients

* Notifications credentials

e Custom APIs (and their implementations)

* Any connector APIs that are called from custom API implementations
e Storage collections

e Userrealm

* App policies

Once you have published a mobile backend, its content is frozen. At that point, you
would need to create a new version of the mobile backend to make any changes. See
Mobile Backend Lifecycle if you are interested in a rundown of publishing, deploying,
and versioning mobile backends.

Note:

Though you can’t change the list of app policies in a published mobile
backend, you can change their values.

Video: Mobile Backend Design Considerations

ORACLE

Before you start creating mobile backends, you should spend some time analyzing
what your apps need from the mobile backends, what different apps will have in
common, and what kind of approach will be easiest to maintain. To help you think
about these questions, watch the following video on the Oracle Mobile Platform
channel on YouTube:

@Video

3-7

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13043

The SDKs

Chapter 3
The SDKs

MCS provides client SDKs for multiple platforms to help you use MCS APIs in your
apps. The SDKs simplify app development in the following ways:

« Simplify the passing of access keys and environment details in all of your API
calls, including for custom APIs. All APIs in MCS are REST APIs that are called
with an HTTPS request, including headers containing security credentials and
mobile backend environment details. With each SDK, you use a configuration file
to hold these values in one place so that they do not have to be hard-coded into
each API call.

» Provide wrapper classes for key endpoints in the platform APIs.
* Set up the network connection between your mobile app and its mobile backend.

You can get the SDKs from the Oracle Technology Network’s MCS download page.

For specific info on each SDK, see Android Applications, iOS Applications, Cordova
Applications, JavaScript Applications, Xamarin Android Applications, and Xamarin iOS
Applications.

There is also a utility for accessing MCS from Oracle Mobile Application Framework
(MAF) apps that is available in a MAF sample app. Go to the Oracle Mobile
Application Framework Samples page to get the sample and download the MAF MCS
Utility Developer Guide to learn more about using it.

Note:

For information on using the REST APIs directly, see the platform's REST
API reference docs.

Connecting Your App to a Mobile Backend

ORACLE

Once you have a mobile backend set up and a client application registered with that
mobile backend, you need to configure your app code to access the mobile backend.

Connecting your app to a mobile backend involves these basic steps:

e Adding the SDK libraries to your app. (This step is optional, but highly
recommended.)

e Adding a configuration file to your app to hold environment information that your
app needs to access the mobile backend. The SDK classes that you use to make
calls to the mobile backend use the values in this file so that you don’t have to
manually include them in each of your calls.

e Adding calls to MCS APIs in your app.

The APIs available include MCS platform APIs and any custom APIs that you or
other members of your team have developed in MCS.

e Testing your app.

3-8

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/developer-tools/maf/learnmore/mafsamples-2227357.html
http://www.oracle.com/technetwork/developer-tools/maf/learnmore/mafsamples-2227357.html
http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf
http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Chapter 3
Connecting Your App to a Mobile Backend

For platform-specific details on setting up your apps, see:

iOS Applications
Android Applications
Cordova Applications

JavaScript Applications

ORACLE

Client Management

To simplify handling of notifications and management of the application lifecycle in
Oracle Mobile Cloud Service (MCS), you can register your mobile apps in MCS as
clients and associate them with a mobile backend and a Notifications profile. When it
comes time to deploy an app, you can deploy the client you have registered and have
its associated mobile backend and its dependencies deployed as well.

Registering a client accomplishes the following things:
* Enables you to store the ID that is needed for the app store.
* Enables the app to receive notifications via MCS.

* Simplifies lifecycle management of the app and its associated mobile backend and
related artifacts.

* Enables collection of data specific to that app through the Analytics API.

How Clients Work in MCS

ORACLE

Here are the principles behind client registration in MCS:

* Aclientin MCS represents a single version of a single app binary.

For example, if you have both iOS and Android versions of an app, you would
register a client for each. Similarly, if you provide an upgraded version of the app,
you would create a new client to hold its metadata.

* When you register a client, you specify metadata such as the application ID that is
required by the platform vendor’s app store, the app version number, and a profile
that contains notifications credentials.

* Once the client is registered an application key is generated. In turn, you can use
this key in your apps to access the client metadata. Each of the SDKs has a
configuration file where you can insert this application key.

* Aclient can only be associated with one version of a mobile backend.

This means that when you create a new version of a mobile backend, that mobile
backend doesn’t inherit any clients that you associated with the previous version of
the mobile backend. So, as you create new versions of your mobile apps that use
a new version of a mobile backend, you should create corresponding clients in
MCS.

* Aclient can be published and deployed in a way similar to other artifacts. When a
client is deployed, its mobile backend and other dependencies are deployed with
it.

For a rundown on publishing, deploying, and versioning clients, see Client
Lifecycle.

4-1

Profiles

Chapter 4
Profiles

Profiles serve as a place to store credentials for notification services. After you create
a profile, you can associate it with multiple clients.

Creating a Profile

You create profiles to hold notification credentials that your clients need.

ORACLE

To create a profile:

1.

Make sure you're in the environment where you want to create the profile.

Click === to open the side menu and select Applications > Client Management.
Click Profiles.

In the New Profile dialog:

Fill in the Name. This can be whatever name that will help you identify the
profile most easily.

Select the Notification Service.

Fill in the rest of the dialog with the information required by the notification
service. For details on getting credentials from your naotification provider,
including any additional setup steps, see Setting Up a Mobile App for
Notifications.

For Apple Push Notification Services (APNS), you need to register a certificate
obtained from the Apple Developer portal.

For Firebase Cloud Messaging (FCM) and Google Cloud Messaging (GCM),
you must register server credentials obtained from the Developers Console for
an Android application. (However, providing the package name is optional,
because credentials may or may not be scoped to a specific app.)

For Windows Notification Service (WNS), you register your app in the
Windows Store Dashboard to get the credentials required to authenticate with
the Windows Notification Service.

For Syniverse (SMS), fill in the required fields:

— Channel ID or sender address. A Channel represents a collection of
sender addresses, for example, a set of SMS short codes that can be
used to send text-based messages. A sender address can be any long
code, short code or alphanumeric ID that applications can send SMS
messages from. You can use your own sender address or purchase a
sender address owned by Syniverse. When sending messages via a
Channel, the Syniverse Messaging API service chooses the most
appropriate sender address for each message and recipient. To get a
Syniverse-provisioned test channel ID for testing SMS in the U.S. or
Canada, go to your Syniverse Dashboard > Service Offerings >
Messaging Accounts > Public Channels (U.S. apps must use the “US MT
Test Channel”). To test in the U.S. or Canada, you also need to whitelist
test phone numbers as described in Setting Up a Mobile App for
Notifications.

4-2

Chapter 4
Registering an App as a Clientin MCS

— The authentication keys you got from Syniverse: Consumer Key,
Consumer Secret and Access Token.

— By default, consent management is handled by Syniverse, but if you want
your app to handle consent management or you want to register devices
through the MCS UI, deselect Consent Management Enabled.

5. Click Create.

Once a profile is created, you can add it to a client by opening the client, selecting its
Profiles tab, and clicking Select Profile.

You can add a profile to any client whose platform is valid for the profile's notification
service and whose application ID matches that of the profile. If an FCM or GCM profile
does not specify a package name, the profile may be used with any Android client.

Registering an App as a Client in MCS

1. Copy the bundle ID (for iOS), package name (for Android), or application ID (for
Windows) so that you have it ready when creating the client.

Once you create a client, you can’t change this value, and the value needs to
match that of the profile that you associate with the client.

" Note:

You might find it more convenient to create your profiles before
registering the clients so that you have these credentials in hand when
creating the client. Also, you might have multiple clients that use the
same profile.

2. Make sure you're in the environment containing the version of the client you want
to register.

3. Click === to open the side menu and select Applications > Client Management.
4. Click New Client.
5. Inthe New Client dialog:

e Fill'in the Client Display Name and Client Name.

These can be whatever names that will help you identify the client most easily.
The former can have spaces and the latter can't.

In most places in the user interface, the client display name is used. The client
name is used for clients in packages and the trash.

» Select the Platform (iOS, Android, Windows, or Web).

e Fillin the Version Number field. This version must match the version number
of the app as registered with your platform vendor.

* Fill'in the fully-qualified app ID. You obtain this from the platform vendor.
For Apple, it is the Bundle ID assigned to the application in the Xcode project.

For Google, it is the Package Name for the application as declared in its
manifest file.

ORACLE 4.3

Chapter 4
Legacy Client Behavior

For Microsoft, it is the Application ID you gave your app when you registered
it in the Windows Dashboard.

For Web, it can be any unique identifier that distinguishes it from other web
applications that you register.

6. Click Create.

7. On the Settings page, select a mobile backend to associate with the client from
the Mobile Backend dropdown.

8. Click the Profiles tab and select one or more notifications profiles that you want to
associate with the client.

Note:

If the notifications profile is for the notifications service of the app’s
vendor (e.g. APNS for an iOS app or FCM for an Android app), the app
ID (bundle ID for iOS, package name for Android, or package SID for
Microsoft) for the profile must match the app ID specified for the client. A
client can only be associated with a single SMS profile.

Legacy Client Behavior

ORACLE

In versions of MCS previous to 16.4.1, there were some differences in how clients
were handled:

* Client registrations and notifications profiles were not divided. Instead of referring
to notifications profiles, client registrations held notifications credentials directly.

* Client registrations could apply to multiple versions of a mobile backend.

When your environment was upgraded to 16.4.1, these differences were reconciled in
the following way:

* Any existing clients were split into clients and profiles.

* For any client that was associated with multiple versions of a mobile backend, the
client only remained associated with the version of the mobile backend in which it
was created.

4-4

Authentication in MCS

ORACLE

In Oracle Mobile Cloud Service (MCS), all resources are secured and can only be
accessed by authenticated users that are authorized to access those resources. As a
mobile app developer, you enable one or more authentication methods in the mobile
backend and then write app code to use one of these methods.

The authentication methods available are:

OAuth Consumer
HTTP Basic
Enterprise Single Sign-On (SSO)

This method includes variants for browser-based SSO and use of third-party
tokens.

Facebook Login

Before getting into the specifics of each authentication method, let's go over how
authentication relates to authorization:

Authentication is the process of identifying an individual, usually based on a user
name and password, often in combination with other credentials such as an
application key. Authentication ensures that the user is who he or she claims to
be. This chapter explains how to use these features in your mobile apps.

Authorization is the process of determining what an individual has permission to
do. After the user gains access through authentication, the system grants access
according to the settings configured for the user. The MCS Mobile User
Management features let you configure an intelligent authorization policy based on
user roles. For an introduction to MCS Mobile User Management, see Set Up
Mobile Users, Realms and Roles.

Login

¥
Authentication Authenticated . Authorization N Authorized User
(Who are you?) User (What rights do you hawe?) (Access rights)
¥
Access
Resources

5-1

Chapter 5
OAuth Consumer Authentication in MCS

OAuth Consumer Authentication in MCS

The ability to use OAuth as your authentication mechanism is built in to all mobile
backends and enabled by default. Whenever you create a mobile backend, the OAuth
Consumer keys are generated for you.

To enable or disable OAuth Consumer as an authentication method:

1. Open the mobile backend and select the Settings page.
2. Under Access Keys, set the OAuth Consumer switch to ON or OFF.

For details on the access keys and environment details provided, see Mobile Backend
Authentication and Connection Info.

Once you have these keys, you can use them in your apps. When using the MCS SDK
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the mobile backend. If you are coding the REST calls manually,
see Authenticating with OAuth in Direct REST Calls.

HTTP Basic Authentication in MCS

The ability to use HTTP Basic as your authentication mechanism is built in to all
mobile backends and enabled by default.

To enable or disable HTTP Basic as an authentication method:

1. Open the mobile backend and select the Settings page.
2. Under Access Keys, set the HTTP Basic switch to ON or OFF.
When switched to ON, the access keys that you need are displayed.

For details on the access keys and environment details provided, see Mobile Backend
Authentication and Connection Info.

Once you have these keys, you can use them in your apps. When using the MCS SDK
for a given mobile platform, you insert these access keys in the configuration file
provided by the SDK and then the SDK uses them when constructing calls to REST
APIs associated with the mobile backend. If you are coding the REST calls manually,
see Authenticating with HTTP Basic in Direct REST Calls.

Enterprise Single Sign-On in MCS

ORACLE

If you want to use your own identity provider to authenticate users of your apps, you
can enable Oracle Cloud’s single sign-on (SSO) capability to connect with that identity
provider and then configure your mobile backends to use it. This is particularly useful if
you are rolling out apps for your company’s employees and you want them to be able
to sign into the apps using their existing employee login credentials. Similarly, this
could work for consumer applications where the customers already have user
accounts for corresponding web applications.

You can set up SSO to work in either of the following ways:

e Third-Party SAML and JWT tokens. The app obtains a token from a trusted 3rd-
party issuer, makes an API call to the MCS token exchange endpoint, and

5-2

Chapter 5
Enterprise Single Sign-On in MCS

receives back an MCS-issued token, which you include as a bearer token on each
subsequent MCS API call.

Browser-Based SSO through MCS. The app opens the MCS SSO URL in a
browser and, after a series of redirects, displays the login screen of the remote
identity provider. Once the user successfully enters their credentials, they receive
an OAuth token, which you include as a bearer token on each subsequent MCS
API call.

In the case of JWT tokens, MCS uses the OpenlD Connect discovery protocol.

Third-Party SAML and JWT Tokens

MCS supports the use of tokens from third-party providers in two cases:

With zero footprint SSO, where no user accounts are stored in Oracle Cloud.
Instead, all of the information for the user, including user roles, is derived from the
third-party token. Such users are referred to as virtual users.

With a token that identifies a user that has been provisioned in both Oracle Cloud
and the third-party IdP. Roles are assigned to the users in MCS.

SAML Tokens and Virtual Users

If you have users set up in a third-party IdP that supports the SAML 2.0 spec, you can
authenticate those users in MCS via SAML tokens.

ORACLE

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in Oracle Cloud):

1.

You configure your mobile backend to use HTTP Basic authentication. (This is
required for you to be able to get the token.)

You do this by selecting the backend in MCS, selecting the backend’s Settings
page, and setting the switch for HTTP Basic Authentication to ON.

Note:

To test authentication through the API Test page, you'll need to enable
SSO for your mobile backend. You can check if your instance of MCS is
configured for SSO from the Settings page of the mobile backend. Select
the Enable Single Sign-On option if it's not selected. If you don't see
the Enable Single Sign-On checkbox, you need to enable SSO for your
Oracle Cloud account. See Configuring Identity Management (SSO and
OAuth). After SSO is set up, you may need to log out and back into MCS
for it to take effect.

Your administrator configures the IdP to generate a SAML token when the user
logs in.

Your administrator registers the third-party token issuer and one or more token
certificates in MCS.

As part of this process, she can also associate MCS roles with tokens in one of the
following ways.

* By designating MCS roles to be associated with all tokens based on a given
certificate.

5-3

Chapter 5
Enterprise Single Sign-On in MCS

By deriving role names (that match existing MCS roles) from given token
attributes.

By mapping given token attribute values to existing MCS roles (where the
attribute values don’t already match the MCS names).

4. You code your app to do the following:

a.

b.

C.

Obtain a token from the third-party IdP upon user login.

Send that token to an MCS token exchange endpoint to get an MCS-issued
token in return.

Use the MCS token for all subsequent API calls to MCS.

Configuring SAML Tokens for Virtual Users

To enable the authentication of virtual users via SAML tokens, you need to create a
SAML app in your IdP. This is a special app that mediates the creating and passing of
the SAML tokens.

Though the workflow varies by I1dP, you generally need to do the following key tasks:
1. Create a SAML 2.0 app.
2. Configure the SAML 2.0 app by specifying the following:

a.

C.

Redirect URL.

You'll configure your app to use the redirect URL to obtain the token. How the
token is obtained depends on the operating system you use (iOS or Android) .
Avoid entering an address to an actual live site. Use a fictitious address URL
request, for example,

http://host name/ mobi | e/ pl at f or m sso/ r edi r ect

Be sure the redirect URL you provide is formed correctly, that is it should
match the expected redirect URL value.

Audience.

SAML tokens have the concept of an audience. An audience is the intended
recipient of the SAML response (the token). It restricts the set of URLs against
which the token can be used. You configure the audience to the URL for the
MCS SSO token endpoint.

You construct this endpoint by appending / mobi | e/ pl at f or mf sso/ exchange-
t oken to your instance’s base URL. You can determine the base URL by
opening any mobile backend in MCS, clicking its Settings tab, and looking in
the Environment URLS section.

An assertion that lists the applicable roles for the user.

For concrete examples, see Use Case: Configuring OKTA to Obtain a SAML Token
and Use Case: Configuring AD FS to Obtain a SAML Token.

Registering the Token Issuer in MCS

ORACLE

Before your apps can use tokens issued by a third-party IdP to authenticate with a
backend, an administrator needs to register the IdP as a token issuer in MCS. Here
are the steps:

1. In MCS, click — and select Administration from the side menu.

5-4

10.
11.

12.
13.
14.

15.

16.

Chapter 5
Enterprise Single Sign-On in MCS

Select an environment and click Keys & Certificates.

Click the Web Service and Token Certificates tab.

Click Add and provide the following information:

* Inthe Alias field, enter a unique identifiable name for the certificate.

* Inthe text field, paste the definition of the token certificate that was provided
by the identity provider.

Click Save.

Wait for the token certificate to be propagated in the system. This should take no
longer than 10 minutes.

Click the Token Issuers tab.

Click New Issuer.

Enter the name of the token issuer in the Name field under Issuer Details.
Next to the Certificate Subject Names panel, click Add (+) .

From the Select Certificate Subject Names dialog, select at least one hame and
click Save.

Typically the name is the subject name of the token certificate you added
previously.

Back on the Token Issuers tab, click Rules.
Select Enable Virtual User.

Optionally, create a User Mapping rule to designate the name of the token’s
attribute that identifies the user.

See Configuring Rules for information on creating rules.

Optionally, designate user roles and mappings. The next topic has more
information on how this works.

Click Save and Close.

Associating Roles with a SAML Token

ORACLE

If you want to set up role-based access for users that authenticate with SAML tokens,
you do so when registering the token issuer in MCS. You have the following
possibilities:

Use roles already defined in the token that match the names of MCS roles.

You do this by creating a Role Attribute rule and providing a comma-separated
list of token attribute names. The roles are then derived from the values of these
attributes.

If the role names defined in the token don’t match role names defined in MCS,
provide a mapping between the two.

You do this by:

1. Creating a Role Attribute rule and providing a comma-separated list of token
attributes that contain the role names.

2. Creating a Role Mapping rule to create a mapping between a role derived
from the token (via the role attribute rule) with one or more MCS user roles.

5-5

Chapter 5
Enterprise Single Sign-On in MCS

You can create multiple mappings.

* Apply one or more MCS roles to all tokens issued with a given certificate (unless
roles were already applied via the role attribute or role mapping rules).

You do this by creating a Default Role rule.

See Configuring Rules for the steps to create rules.

Extracting the SAML Assertion

After you've obtained a SAML token from an IdP, you need to decode it to extract the
SAML assertion from its response. You then GZIP compress that assertion and
base64 encode it again before submitting it to the MCS token exchange to receive an
MCS token.

One way to extract the assertion is to follow these steps:
1. Open a browser and enter the address for the identity provider:

For example, if you configured a SAML token with AD FS: https://
domain_name/ adf s/ | s/ i dpi ni ti atedsi gnon

You're taken to the Test Local Federation page.

2. Enter the user name and password credentials for the user you created and click
Sign In.

3. After the page refreshes, select the SAML app you created and click Sign in
again.

You are redirected to the endpoint URL and the SAML token is displayed in the
browser URL field.

4. Copy the response beginning with SAM. Response=.

5. Since you'll need to base64 decode and inflate the SAML response, go to a SAML
decoder tool such as SAML Decoder at https://www.samltool.com/decode.php.

6. Go tothe base64 Decode and Inflate page and paste the response into the
Decode and Inflate XML field.

7. Click DECODE AND INFLATE XML.

8. Extract the SAML assertion from the XML field.
9. Gzip compress the extracted assertion.

10. Base64 encode the assertion.

Now you can call the token exchange, pass the assertion, and receive the MCS token.

Using a SAML Token to Authenticate with MCS

ORACLE

Once you have obtained a valid SAML token, you can use it to authenticate with MCS.
You do so by passing the token to MCS’s token exchange endpoint. In exchange, you
get an OAuth token issued by MCS that can be used for subsequent API calls during
the session.

MCS's client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

5-6

https://www.samltool.com/decode.php

Chapter 5
Enterprise Single Sign-On in MCS

Android

private AuthorizationAgent mAuthorization;
private MbileBackend nobil eBackend;

try {
mobi | eBackend = Mobi | eBackendManager . get Manager () . get Mobi | eBackend(this);
} catch (ServiceProxyException e) {
e.printStackTrace();

}

mAut hori zation = nobi | eBackend. get Aut hori zati on(Aut hType. TOKENAUTH) ;

iOS

-(voi d) authenticateSSOTokenExchange: (NSString*) token
st oreAccessToken: (BOOL) storeToken
conpl etionBl ock: (OMCError Conpl eti onBl ock)
conpl eti onBl ock;

Cordova and JavaScript

mcs. mobi | eBackend. set Aut henti cati onType(ncs. AUTHENTI CATI ON_TYPES. t oken) ;
mcs. mobi | eBackend. aut hori zati on. aut henti cat e(token). t hen(cal | back). cat ch(er
ror Cal | back);

Coding the SAML Token Exchange Manually

ORACLE

If you are not using a client SDK, you need to manually code your app to exchange
that token for an MCS token, with which you then authenticate.

1. Inthe app’s login sequence, call the MCS token exchange endpoint to exchange
the third-party token for an MCS-issued OAuth token:

* The token exchange request is a simple GET request with no parameters.
e It must include an Authorization header of the form:
Aut hori zation: Bearer external-token

* It must also include the or acl e- nobi | e- backend- i d header with the value of
the Basic Auth mobile backend ID for the mobile backend that you're using.

The token exchange endpoint is formed by starting with the base URL for your
environment (which you can get from the Settings page of a mobile backend) and
appending / nobi | e/ pl at f or m sso/ exchange- t oken.

2. Inall REST calls to MCS APIs, include the given token in the Aut hori zati on
header.

The header takes the form Bear er access-t oken.

The access-token value includes the mobile backend ID from the original request
so you don’t have to include the ID in a separate header.

5-7

Chapter 5
Enterprise Single Sign-On in MCS

JWT Tokens and Virtual Users

If you have users set up in a third-party IdP that supports JWT, you can authenticate
those users in MCS via JWT tokens.

Here are the general steps to get this to work with virtual users (in other words, without
having to also provision the users in Oracle Cloud):

1.

You configure your backend to use both HTTP Basic and OAuth Consumer
authentication.

You can do this by selecting the backend in MCS, selecting the backend’s
Settings page, and setting the switches for HTTP Basic and OAuth Consumer
authentication to ON.

Your administrator configures the IdP to generate a JWT token when the user logs
in.

Your administrator registers the third-party token issuer via a policy in MCS.

As part of this process, she can also associate MCS roles with tokens in one of the
following ways.

e By designating MCS roles to be associated with all tokens based on a given
certificate.

e By deriving role names (that match existing MCS roles) from given token
attributes.

e By mapping given token attribute values to existing MCS roles (where the
attribute values don’t already match the MCS names).

You code your app to do the following:
a. Obtain a token from the third-party IdP upon user login.

b. Send that token to an MCS token exchange endpoint to get an MCS-issued
token in return.

c. Use the MCS token for all subsequent API calls to MCS.

Note:

This mode of integrating with an I1dP is based on enhanced features that are
specific to working with JWT tokens (such as JWKS support) and includes
other features, such as the ability to configure allowed audience values and
username attribute. You can also use the process that is used for integrating
with SAML-based IdPs, though this provides you with less flexibility. See
SAML Tokens and Virtual Users.

Registering a JWT Token Issuer in MCS

ORACLE

Before your apps can use JWT tokens issued by a third-party IdP to authenticate with
a backend, an administrator needs to register the |dP as a token issuer in MCS. Here's
how it works:

1.

You create a configuration that holds information that is needed to integrate with
the token issuer. This integration takes the form of a JSON object.

5-8

Chapter 5
Enterprise Single Sign-On in MCS

2. You flatten the configuration into a single line.

3. You insert the configuration as the value of the
Security_Aut hTokenConfi gurati on policy.

See Modifying an Environment Policy.

The following several topics provide some examples of creating the configuration file
for a token issuer.

Minimal IdP Configuration

Here is an example of a configuration file that covers a basic use case, where:
* The user name can be derived from the token’s sub claim.

e The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

e You are using MCS's virtual user (zero footprint) capability so that you don’'t need
to have corresponding records for the user in Oracle Cloud.

e User roles are specified in a token attribute named r ol es.

* The token’s audience (aud) claim is set to the JWT auth token endpoint for your
MCS instance (MCS- BASE- URL/ mobi | e/ pl at f or nf aut h/ t oken) so there is no need
to override the default audience validation behavior.

{
"issuers": |
{
"i ssuerName": "TOKEN- | SSUER- URL",
"jwks": {
"discoveryUri": "TOKEN-| SSUER- URL/ . wel | - known/ openi d- confi gurati on"
b
"virtual User Enabl ed": true,
"rol eAttributes": |
“rol es"
]
}
]
}

|dP Configuration with Audience

Here is an example of a configuration file that covers a basic use case, where:

* The user name can be derived from the token’s sub claim.

e The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

* You are using MCS’s virtual user (zero footprint) capability so that you don’'t need
to have corresponding records for the user in Oracle Cloud.

* User roles are specified in a token attribute named r ol es.

ORACLE 5-9

Chapter 5
Enterprise Single Sign-On in MCS

* The token’s audience (aud) claim is set to GUI D- 12345678- ABCD- EFAB-
CDEF- 123456789ABC (which is a value that does not match MCS'’s auth token

endpoint).
{
"issuers": |
{
"i ssuerName": "TOKEN- | SSUER- URL",
"audi ence": [
" QU D- 12345678- ABCD- EFAB- CDEF- 123456789ABC"
] ’
"jwks": {
"discoveryUri": "TOKEN-| SSUER- URL/ . wel | - known/ openi d- confi gurati on"
}1
"virtual User Enabl ed": true,
"rol eAttributes": |
“rol es"
]
}
]
}

|dP Configuration with Audience and Username Attribute

Here is an example of a configuration file that covers a basic use case, where:
* The username is specified in the uni que_nane claim (rather than the sub claim).

e The token issuer is configured so that you can use discovery to obtain the issuer's
current keys and/or certificates.

e You are using MCS's virtual user (zero footprint) capability so that you don’'t need
to have corresponding records for the user in Oracle Cloud.

e User roles are specified in a token attribute named r ol es.

* The token’s audience (aud) claim is set to GUI D- 12345678- ABCD- EFAB-
CDEF- 123456789ABC (which is a value that does not match MCS'’s auth token

endpoint).
{
"issuers": [
{
"issuerName": "BASE- TOKEN- | SSUER- URL",
"usernaneAttribute": "unique_name",
"audi ence": [
" QU D- 12345678- ABCD- EFAB- CDEF- 123456789ABC"
] L]
"jwks": {
"di scoveryUri": "BASE- TOKEN | SSUER- URL/ . wel | - known/ openi d-
configuration”

}

n

i rtual User Enabl ed": true,
"roleAttributes": [

ORACLE 5-10

Chapter 5
Enterprise Single Sign-On in MCS

Associating Roles with a JWT Token

If you want to set up role-based access for users that authenticate with JWT tokens,
you do so when registering the token issuer in MCS via the
Security_Aut hTokenConfi gurati on policy. You have the following possibilities:

Use roles already defined in the token that match the names of MCS roles.

You do this by creating arol eAttri but es array for the issuer and populate it with
claims in the token that you want to derive roles from.

If the role names defined in the token don’t match role names defined in MCS,
provide a mapping between the two.

You do this by:

1. Creatingarol eAttributes array for the issuer and populate it with claims in
the token that you want to derive roles from.

2. Creating ar ol eMappi ngs array rule to create a mapping between a role
derived from the token (via the rol eAt t ri but es array) with one or more MCS
user roles.

You can create multiple mappings.

Apply one or more MCS roles to all tokens issued with a given certificate (unless
roles were already applied viarol eAttri but es orrol eMappi ngs).

You do this by creating a def aul t Rol es array.

Apply one or more MCS roles to all tokens issued with a given certificate (whether
or not roles were already applied via r ol eAttri but es or r ol eMappi ngs).

You do this by creating an i ssuer Rol es array.

See JWT Configuration Reference for details on the syntax of the configuration file.

Converting a JSON Object to One Line

You might find it useful to have some tools to convert JSON objects from multi-line
objects to single-line objects and vice versa. Here are some examples of Python
commands that you can use for that purpose,

ORACLE

To output the JISON content in file / scrat ch/j snit h/ aut hTokenConfi g.j son as a
single line:

cat /scratch/jsnith/authTokenConfig.json | python -c "inport
j son, sys; obj =j son. | oad(sys. stdin);print json.dunmps(obj);"

5-11

Chapter 5
Enterprise Single Sign-On in MCS

To output the JISON content in file / scrat ch/j sm t h/ aut hTokenConfi g. j son in “pretty
print" form:

cat /scratch/jsmth/authTokenConfig.json | python -c "inport
j son, sys; obj =j son. | oad(sys. stdin); print json.dunps(obj, indent=4,
sort _keys=Fal se) ;'

JWT Configuration Reference

Here are the fields that can be used in the JSON object that serves as the
configuration for a JWT identity provider.

Root Fields

i ssuers — Required. A JSON array of trusted issuers objects. Each trusted issuer
is defined as a JSON object, with a combination of the following fields.

pol i cyM nRel oadl nt erval — Optional. If a token exchange request is received,
and the specified issuer is not found in the configuration cache, the configuration
cache will automatically be reloaded from the stored policy in order to check for
changes, unless the amount of time since the last configuration cache reload is
less than the pol i cyM nRel oadl nt er val . The default value for this interval is 10
seconds. The pol i cyM nRel oadl nt er val configuration field can be used to
override the default value with a specified integer value in seconds.

pol i cyMaxRel oadl nt erval — Optional. If a token exchange request is received, if
the elapsed time since the last time the configuration cache was reloaded is in
excess of pol i cyMaxRel oadl nt erval , the configuration cache will automatically be
reloaded from the stored policy in order to check for changes. The default value for
this interval is 120 seconds. The pol i cyMaxRel oadl nt er val configuration field can
be used to override the default value with a specified integer value in seconds.

certificatesM nRel oadl nterval — Optional. If a token exchange request is
received, and a required certificate is not found in the certificates cache, the
certificates cache will automatically be reloaded from Oracle Keystore Service
(KSS) in order to check for changes, unless the amount of time since the last
certificates cache reload is less than the certi fi cat esM nRel oadl nterval . The
default value for this interval is 10 seconds. The certificat esM nRel oadl nt er val
configuration field can be used to override the default value with a specified
integer value in seconds.

certificatesMaxRel oadl nterval — Optional. If a token exchange request is
received, if the elapsed time since the last time the certificates cache was
reloaded is in excess of certi fi cat esMaxRel oadl nt erval , the certificates cache
will automatically be reloaded from KSS in order to check for changes. The default
value for this interval is 300 seconds. The certi fi cat esMaxRel oadl nt er val
configuration field can be used to override the default value with a specified
integer value in seconds.

Issuer Fields

ORACLE

i ssuer Name — Required. A JSON string which specifies the issuer name. This
value must match the value of the i ss claim in tokens from the associated token
issuer.

5-12

ORACLE

Chapter 5
Enterprise Single Sign-On in MCS

enabl ed — Optional. A JSON boolean which can be used to enable or disable the
token issuer. If the token issuer is disabled, any attempt to exchange a token from
that issuer will fail. The default value is t r ue.

audi ence — Optional. A JSON array of string values, specifying valid audience
values for the external token. If the external token contains an aud claim and none
of the associated values exactly matches one of the values in the specified list,
then the external token will be treated as invalid.

The default behavior if this field is not specified (or contains an empty list) is to
compare the aud values in the external token to the following values:

— base- URL

— base-URL/

— base-URL/nobi | e

— base- URL/ nobi | e/

— base- URL/ mobi | e/ pl at form

— base- URL/ nobi | e/ pl at f or mf

— base- URL/ mobi | e/ pl atfornf auth

— base- URL/ nobi | e/ pl at f or mf aut h/

— base- URL/ nobi | e/ pl at f or nf aut h/ t oken
— base- URL/ nobi | e/ pl at f or nf aut h/ t oken/

If none of the aud values in the external token match any of the above values, the
external token will be treated as invalid.

vi rt ual User Enabl ed — Optional. If t r ue the virtual user (zero footprint) feature is
enabled for this issuer, meaning your users can authenticate with third-party
tokens without having corresponding user accounts in Oracle Cloud. The default
value is f al se.

usernameAttri but e — Optional. A JSON string specifying the name of a JIWT
token claim from which a username is extracted. If no value is provided, the value
of the sub claim will be used as the username.

requi red i ent Aut h — Optional. A JSON boolean which can be used to configure
whether client authentication is required for this token issuer.

— Ifthe value is t r ue, full client authentication is required.

— Ifthe value is f al se, a token exchange request can contain a cl i ent-i d value
in the POST body, with no cl i ent _secret value provided. This is intended
only for cases where devices are not able to protect the cl i ent _secret.

The default value is t r ue.

clientldAttribute — Optional. A JSON string specifying the name of a JWT
token claim which contains the client ID of the OAuth client on the external token
issuer which was used to obtain the external token. If acl i ent1dAttri but e value
is specified, the specified attribute is present in a token, and its value matches the
username associated with the token, then the token exchange request will be
rejected, because client tokens shouldn’t be exchanged for MCS user tokens.

IfnoclientldAttribute value is provided, this check will not be performed.

5-13

ORACLE

Chapter 5
Enterprise Single Sign-On in MCS

t okenTi meout Seconds — Optional. A JSON integer specifying the token lifetime
(i.e. fromi at to exp) in seconds for MCS tokens issued in exchange for tokens
from this issuer. If this field is not specified, the token lifetime will be governed by
the Security_TokenExchangeTi meout Secs policy. If the
Security_TokenExchangeTi meout Secs policy has not been defined, the default
token lifetime is 28800 seconds (i.e. 8 hours).

The token lifetime is also governed by the t okenTi meout Pol i cy.

t okenTi meout Pol i cy — Optional. A JSON string specifying the policy used to
control the token lifetime (i.e. from i at to exp) for MCS tokens issued in exchange
for tokens from this issuer. Three policy values are supported:

— Fronili meout Secs — The token lifetime is governed by the
t okenTi meout Seconds value.

— FronEtxt ernal Token — The MCS-issued token will expire at the same time the
external token being exchanged will expire (i.e. t okenTi meout Seconds is
ignored).

— Frontxt ernal TokenLi m t edByTi neout Secs — The MCS-issued token will
expire at the same time the external token being exchanged or after the token
timeout value, whichever comes first.

If this field is not specified, the token timeout policy lifetime will be governed by the
Security_TokenExchangeTi meout Pol i cy policy. If

the Security_TokenExchangeTi meout Pol i cy policy has not been defined, the
default token timeout policy is Fr onili meout Secs.

j wks— Optional. A JSON object which specifies the URI(s) and other configuration
options associated with loading keys and/or certificates from the external token
issuer on the fly.

Use this object if you are using a discovery URI to load keys and/or certificates
(and you are not using a certi fi cat eSubj ect Nanes object).

See jwks Fields for the options.

certificateSubject Names — Optional. A JSON array of strings containing a list of
the certificate subject names of certificates that have been uploaded into MCS
through the Administration tab’s Keys and Certificates page. (See Configuring a
Web Service or Token Certificate.)

Use this object if you are not using a discovery URI to load keys and/or certificates
(and therefore are not using a j wks object).

filters — Optional. A JSON array of filter objects. Each filter is defined as a
JSON object, with a combination of these fields:

— name — Required. A JSON string specifying the name of an attribute or claim
to which the filter will be applied.

— type — Optional. A JSON string specifying whether the filter is an i ncl ude
filter or an excl ude filter.

An include filter is satisfied if the token contains a value which matches one or
more of the specified filter values (i.e. presence of a "match" causes the filter
to be satisfied). An exclude filter is satisfied if the token does not contains a
value which matches any of the specified filter values (i.e. absence of a
"match" causes the filter to be satisfied).

The default value is i ncl ude.

5-14

Chapter 5
Enterprise Single Sign-On in MCS

— val ues — Required. A JSON array of string values which will be compared to
the value of the attribute or claim in the external token as identified by the name
field.

Filter values may contain the * character as a wildcard for matching purposes.

Each filter in the array must be satisfied in order for the external token to be
considered valid.

¢ Note:

If a filter is specified incorrectly or incompletely (e.g. missing name,
invalid type, missing or empty values array) the filter will always be
considered to be not satisfied. The rationale is that the admin who
configured the filter was trying to filter out something, and if we cannot
figure out what that something is, it is better to err on the side of caution,
and reject the external token.

* all owedMes — Optional. A JSON array of JISON objects which identify mobile
backends can be used with this token issuer.

You can specify a mobile backend including the name and ver si on, or by including
justclientld.

If this field isn’t specified, the issuer can be used with any mobile backend.
Here are the possible entries:

— name — Optional. A JSON string specifying the name of a mobile backend. If
you include this field, you must also include ver si on.

— version — Optional. A JSON string specifying the mobile backend version. If
you include this field, you must also include nane.

— clientld— Optional. A JSON string specifying the OAuth client ID of a
mobile backend.

e userMappi ngAttri but e — Optional. A JSON string identifying the user attribute
used to search for an Oracle Cloud user to be associated with the token
exchange.

This attribute is ignored if vi rt ual User Enabl ed is set to t r ue.
The string can have one of the following values:

— ui d — Search for an Oracle Cloud user whose username matches the
username extracted from the external token.

— mai | — Search for an Oracle Cloud user whose email address matches the
username extracted from the external token.

The default value is ui d.

ORACLE 5-15

ORACLE

Chapter 5
Enterprise Single Sign-On in MCS

< Note:

If a usernaneAttri but e hasn’t been configured, the username extracted
from the external token will be the value of the sub claim. If a

user nameAtt ri but e has been configured, the username extracted from
the external token will be the value of the whatever claim is identified by
the user naneAtt ri but e value.

def aul t Rol es — Optional. A JSON array of strings, where each string is the hame
of an MCS role which should be granted to a virtual user in the case where no

rol eAttribut es value has been configured or where arol eAttri but es value is
configured but the specified attributes are either absent from the external token or
are empty.

i ssuer Rol es — Optional. A JSON array of strings, where each string is the name
of an MCS role which should be always granted to a virtual user when a token
from this external issuer is exchanged. The difference between default roles and
issuer roles is that default roles are granted only when no roles have been found
during processing of role attributes, while issuer roles are always granted.

rol eAttributes — Optional. A JSON array of strings where each string is the

name of a token attribute (i.e. claim) which should be searched for role values. If a
specified token attribute is not present in the external token, no roles will be added
for that attribute. Otherwise, the token attribute value will be processed as follows:

— If the token attribute value contains a JSON string, the string value will be
granted as a role, subject to role mapping (see ther ol eMappi ngs field).

— If the token attribute value contains a JSON array of JSON string values, each
of the string values will be granted as a role, subject to role mapping.

Ifnorol eAttributes array is provided, the external token will not be searched for
roles, and the roles to be granted to the user will be based on def aul t Rol es
and/or i ssuer Rol es configuration, where provided.

r ol eMappi ngs — Optional. A JSON array of role mapping objects, each of which
specifies a mapping from a token role value (i.e. a value obtained from

rol eAttributes) and one or more MCS roles. Use this field when the values
derived from role attributes do not match MCS role names.

Here are the fields for a role mapping object:
— tokenRol e — Required. A JSON string specifying a token role name.

— mappedRol es — Required. A JSON array of string values. Each string value
should match an MCS role name.

jwks Fields

di scoveryUri — Optional. A JSON string specifying the URI from which the token
issuer's discovery information can be loaded. The discovery information provided
by the external token issuer must be in accordance with the following specification:

http://openid.net/specs/openid-connect-discovery-1_0.html

The discovery URI for a token issuer will typically be of the form base-url /. wel | -
known/ openi d- confi gur ati on, but MCS does not require this to be the case.

5-16

http://openid.net/specs/openid-connect-discovery-1_0.html

ORACLE

Chapter 5
Enterprise Single Sign-On in MCS

If a di scoveryUri is configured for a token issuer, the MCS token exchange
service will make a GET request to that URL to obtain the discovery information as
needed. Once the discovery information has been obtained, MCS will typically use
the j wks_uri value specified in the discovery information to obtain the issuer's
current keys and/or certificates.

If no di scoveryUri is configured, then a j wksUri value must be configured.

j wksUri — Optional. A JSON string specifying the URI from which the token
issuer's JWKS information can be loaded. The information provided by the
external token issuer must be in accordance with the following specification:

https://tools.ietf.org/html/rfc7517

If ajwksUri is configured for a token issuer, the MCS token exchange service will
make a GET request to that URL to obtain the current keys and/or certificates for
that issuer as needed.

If both a di scoveryUri and ajwksUri are specified in the configuration, the
configured j wksUri value will be used, overriding the value in the issuer's
discovery information.

al | owHt t p — Optional. A JSON boolean indicating that HTTP di scoveryUri and
jwksUri values should be allowed.

For security reasons, di scoveryUri and jwksUri values for external token issuers
in production should always use HTTPS URLSs, so that the server providing the
information can be verified using its SSL certificate. However, in certain non-
production test scenarios, it may be helpful to allow HTTP URIs to be used.

The default value is f al se.

m nRel oadl nt erval — Optional. If a token exchange request is received, and the
key and/or certificate needed to validate the external token cannot be found, MCS
will automatically reload the discovery and JWKS information in order to check for
changes (e.g. key rotation), unless the amount of time since the discovery/JWKS

reload is less than this value (in seconds, expressed as an integer).

The default value is 60.

maxRel oadl nt er val — Optional. If a token exchange request is received and if the
elapsed time since the last time the discovery and JWKS information was reloaded
is in excess of this value (in seconds, expressed as an integer), the discovery and
JWKS information will automatically be reloaded from the external token issuer in
order to check for changes.

The default value is 28800 (i.e. 8 hours).

connect Ti mout — Optional. A JSON integer specifying the default connect
timeout for discovery and/or JWKS requests. The default is 30 seconds.

readTi meout — Optional. A JSON integer specifying the default read timeout for
discovery and/or JWKS requests. The default is 60 seconds

t1 sVersi ons — Optional. A JSON array of string values, listing the SSL/TLS which
will be allowed when connecting to the external token issuer for Discovery and/or
JWKS requests. Valid version names are:

- SSL
— SSLv2
— SSLv3

5-17

https://tools.ietf.org/html/rfc7517

Chapter 5
Enterprise Single Sign-On in MCS

- TLS

— TLSv1

— TLSv11

— TLSv1.2

The default value is [" TLSv1. 1", "TLSv1.2"].

Note:

Older SSL/TLS versions are considered insecure, and should be
avoided.

e authorizationHeader — Optional. A JSON string specifying an Authorization
header value which should be included in discovery and/or JWKS requests. In
most cases, discovery and JWKS web pages are public and no authorization is
required. This property is intended primarily for test purposes (e.g. when setting up
a custom service to act as a discovery and/or JWKS endpoint).

Obtaining a JWT Token Using an Embedded Browser

ORACLE

If you use an embedded browser to obtain JWT tokens, you'll need to perform the
following actions:

1. Create a delegate object (for iOS) or client (for Android) to intercept the web
request that contains the token. The delegate (or client) implements a method that
allows your app to preview any web requests. For iOS, create a
U WebVi ewDel egat e object. For Android, create a VbVi ewCl i ent object.

2. Register the delegate or client object with the embedded browser.

3. Modify the method to look for a redirect URL or a form post URL, depending on
how the IdP is configured to deliver it.

When the specified request is located, the method should extract the token from
the query string (or post body) and indicate to the browser to stop the request and
close or hide the browser.

For either iOS or Android, you'll need a web view class, a delegate (or client) class,
and the delegate (or client) implementation method name.

For iOS, use the Ul WbVi ew object and the U WebVi ewDel egat e method:

#pragma mark - Ul WebVi ewDel egat e

- (BOQL) webVi ew: (Ul VebVi ew *) webVi ew shoul dSt art LoadW t hRequest :
(NSURLRequest *)
request navigationType: (U WebVei wNavi gat i onType) navi gati onType

For Android, use the WebVi ew client and the WebVewCl i ent method:

public class MainActivity extends Activity {
private Activity nCtx;
private static final String TAG = "TokenExchange";
private String renotel DPURL = "https://host nane/ nobil e/ pl at f or m sso/

5-18

Chapter 5
Enterprise Single Sign-On in MCS

redirect/sam";

private VebVi ew my\WebView = nul |;

@verride

protected void onCreate(Bundl e savedl nstanceState) {
super . onCr eat e(savedl nst anceState) ;
set Content Vi ew(R | ayout . cont ent _mai n) ;
mtx = MainActivity.this;
my\ebVi ew = (WebView) findViewByl d(R id.webview);

initWebView);
}
private class MyBrowser extends WebViewdient {
@verride
public void onRecei vedSsl Error (\WebVi ew view, Ssl ErrorHandl er
handl er,

Ssl Error error){
handl er. proceed();
}
@verride
public void onPageStarted(VWebView view, String url, Bitmap
favicon) {
super. onPageStarted(view, url, favicon);
if(url.contains("http://local host:port")) {
Il get value of SAM.Response formfield
myVebVi ew. | oadUr | ("j avascri pt:wi ndow. Ht m Vi ewer . showHTM." +
"(' <htm >' +document . get El enent sByNane(' SAMLResponse') [0] . val ue+' </

htni>');");
}
}
}
class MyJavaScriptinterface
{

@avascriptinterface
@uppr ess\War ni ngs("unused")
public void showHTM (String htm){
Log.i (TAG "===== htm is "+htm);
String sam Token = htm.substring(htm.indexOf("<htm >") + 6,
htm . indexOr ("</htm >"));
Log.i (TAG "SAML Token =" + sanl Token);
runOnUi Thr ead(new Runnabl e() {
@verride
public void run() {
my\WebVi ew. st opLoadi ng();
my\WebVi ew. set Vi si bility(View | NVISIBLE);
my\ebVi ew. dest roy();
finish();
}
1Ok
}
}
private void initWebView){
my\VebVi ew. set WebVi ewd i ent (new MyBrowser());
my\ebVi ew. get Settings(). setJavaScri pt Enabl ed(true);
my\ebVi ew. addJavascriptlnterface(new MyJavaScriptInterface(),
"Hm Viewer");
my\ebVi ew. get Settings(). set LoadWt hOvervi ewMbde(true);

ORACLE 5-19

Chapter 5
Enterprise Single Sign-On in MCS

my\WebVi ew. get Settings(). set UseW deVi ewPort (fal se);
my\ebVi ew. | oadUr | (renot el DPURL) ;
}
private void showMessage(final String message){
runOnUi Thr ead(new Runnabl e() {
@verride
public void run() {
Toast . makeText (Mt x, message, Toast.LENGTH LONG) . show();

When the app is launched, it's directed to the r enot el DPURL (the redirect URL). When
you enter your login credentials, the page is redirected. The onPageSt art ed method
intercepts the response and the showHTM. method retrieves the token

Obtaining a JWT Token Using a System Browser

If you use a system browser to obtain the token, your app must relinquish control to
the system browser app. When the login process is complete, you'll need to return
control to your app. You can return control via a redirect to a custom app scheme for
which your app has registered.

For either iOS or Android, you'll need to perform the following actions:

1. Register the custom scheme for your app as dictated by the operating system. The
custom scheme URL tells the mobile OS that requests to the given scheme should
be sent to your app.

2. Edit your app to handle the redirection. You'll need to implement a method to
handle the incoming redirect, which contains the token.

Coding Your Android App to Obtain a JWT Token

ORACLE

For Android apps, you need to register a custom URL scheme and then code the app
to handle requests associated with that scheme. You do this by editing the
Andr oi dMani fest. xm file:

<activity android:name=". MinActivity">
<intent-filter>
<action android: name="androi d.intent.action. VIEW/>
<category androi d: name="androi d. i ntent. cat egory. DEFAULT"/ >
<category androi d: name="androi d. i ntent. cat egory. BROASABLE"/ >
<data androi d: scheme="htt p"
androi d: host ="nyt est. conf
androi d: pat hPrefix="/"/>
<lintent-filter>
<lactivity>

The following example shows how to extract the token from the custom URL scheme
in the Android activity class:

@verride
protected void onCreate(Bundl e savedl nstanceState) {

5-20

Chapter 5
Enterprise Single Sign-On in MCS

super . onCr eat e(savedl nst anceState) ;

set Content Vi ew(R | ayout . content _mai n);

Ui uri = getintent().getData();

if(uri '=null) {
String token = uri.get QueryParameter("token");
Logger. debug(TAG "token is : " + token);

When you open the link to nmyt est . com you'll have the option to open the link with the
app. This will launch the Android activity from where the JWT token is retrieved.

Coding Your iOS App to Obtain a JWT Token

ORACLE

To obtain a third-party token via a system browser for an iOS app, you need to
perform the following actions:

1.

Declare a custom URL scheme by editing the app’s | nf 0. pl i st configuration file.

The scheme tells the mobile operating system to route to your app the request that
contains the token.

Edit your app to implement the method to handle requests associated with that
scheme.

To register a custom URL scheme with your iOS app, you must include the
CFBundl eURLTypes in your app’s | nf o. pl i st file. CFBundl eURLTypes is an array of
dictionaries. Each dictionary defines a URL scheme that the app supports.
CFBundl eURLTypes contains the following keys:

CFBundl eURLNane - a string that contains the abstract name of the URL scheme.
This name should be unique. To ensure the name is unique, specify it as a reverse
DNS style of identifier, such as com conpany. nyschene.

This string is also used as a key in your app’s I nfoPl i st. strings file. The value
of the key is the human-readable scheme name.

CFBundl eURLSchenes - An array of string s that contain the URL scheme names.
For example: http, mail to, tel, and sns.

Note:

If multiple third-party apps register to handle the same URL scheme,
there’s no way to determine which app is given the scheme.

Here’s an example of how to implement support for the custom URL scheme:

<key>CFBundl eURLTypes</ key>
<array>

<di ct >
<key>CFBundl eURLNanme</ key>
<string>oracl e. cl oud. nobi | e. URLDenp</ string>
<key>CFBundl eURLSchenes</ key>
<array>
<string>url deno</string>
<larray>

5-21

Chapter 5
Enterprise Single Sign-On in MCS

<key>CFBundl eTypeRol e</ key>
<string>Vi ewer</string>
</dict>
<larray>

This stipulates that any URL specifying the scheme, ur| Schene, is redirected to your
app.

When the iOS system browser encounters a URL with this custom scheme, it launches
your app, if necessary, and passes the URL to your app delegate. To handle incoming
URLSs, your app delegate must implement the appl i cati on: openURL: opti ons:
method. For example:

- (BOQL) application: (U Application*)application
openURL: (NSURL*) ur |

opti ons:
(NSDi cti onary<Ul Appl i cati onOpenURLOpt i onsKey, i d>*) opti ons
{
NSLog(@ Open URL: %@, url.absoluteString);
NSLog(@ Open URL options: %@, options);
if ([url.scheme isEqual ToString: @urldenn"]) {
[self viewController].incomngURL = url;
return YES
}
return NG
}

This implementation parses the incoming URL and extracts a ‘token’ query argument
and stores it in an instance variable for later use. The implementation assumes the
token is passed via the URL’s query string. Your implementation might differ and the
token could be stored somewhere else in the URL. After your app extracts the token
from the URL, the token can be exchanged for an MCS-issued token.

If you're not familiar with creating URL schemes or implementing them in your app,
see Apple’s documentation, specifically Using URL Schemes to Communicate with
Apps.

Using a JWT Token to Authenticate with MCS

ORACLE

Once you have obtained a valid JWT token, you can use it to authenticate with MCS.
You do so by passing the token to MCS'’s token exchange endpoint. In exchange, you
get a token issued by MCS that can be used for subsequent API calls during the
session.

MCS'’s client SDKs support authentication via the token exchange. Here is some
sample code you can use with those SDKs.

Android

private AuthorizationAgent mAuthorization;
private Mobil eBackend mobi |l eBackend,;

try {
mobi | eBackend = Mbbi | eBackendManager . get Manager () . get Mobi | eBackend(t hi s);

5-22

https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1
https://developer.apple.com/library/content/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/Inter-AppCommunication/Inter-AppCommunication.html#//apple_ref/doc/uid/TP40007072-CH6-SW1

Chapter 5
Enterprise Single Sign-On in MCS

} catch (ServiceProxyException e) {
e.printStackTrace();

}

mAut hori zation = nobi | eBackend. get Aut hori zati on(Aut hType. TOKENAUTH) ;

iOS

-(voi d) authenticateSSOTokenExchange: (NSString*) token
st oreAccessToken: (BOOL) storeToken
conpl etionBl ock: (OMCError Conpl eti onBl ock)
conpl etionBl ock;

Cordova and JavaScript

mcs. nobi | eBackend. set Aut henti cati onType(ncs. AUTHENTI CATI ON_TYPES. t oken) ;
mcs. nobi | eBackend. aut hori zati on. aut henti cat e(token). t hen(cal | back). catch(er
ror Cal | back);

Coding the JWT Token Exchange Manually

ORACLE

Once your mobile administrator has registered an IdP as a token issuer in your
environment and you have code in your app to acquire a 3rd-party token, you can use
the MCS client SDK for your platform to handle the complete login sequence.

If you are not using a client SDK, you need to code your app to exchange that token
for an MCS token, with which you then authenticate.

In the app’s login sequence, you call the MCS token exchange endpoint to exchange
the third-party token for an MCS-issued OAuth token.

The token exchange request is an HTTP POST request, with an appl i cati on/ x/ wa
form url encoded request body, to the token exchange URL: base- URL/ mobi | e/
pl at f or m aut h/ t oken.

The token exchange request must provide:

* The external token (a.k.a. "user assertion") being exchanged in the form
assertion=external -token.

» Client authentication for the MCS mobile backend for which a new token is being
requested, to prove that it is a valid user of that mobile backend.

Client authentication can be provided in any of the following ways:

« Encodetheclient_idandclient_secret in basic auth form in the Authorization
header.

In this case, the following headers are required:

Cont ent - Type: application/x/ wwwform url encoded
Aut hori zation: Bearer Base64(client_id:client_secret)

5-23

Chapter 5
Enterprise Single Sign-On in MCS

And the body of the POST must contain these values:

grant _type=urn:ietf:parans: oauth: grant-type:jw-bearer
assertion=external -token

e Encodetheclient idandclient_secret asapplication/x/ ww-form
ur | encoded form values in the POST body.

In this case, the following header is required:

Cont ent - Type: appl i cation/x/ wwwformurl encoded

And the body of the POST must contain these values:

grant _type=urn:ietf:parans:oauth:grant-type:jw-bearer
assertion=external -token

client_id=client-id

client_secret=client-secret

If this option is used, the cl i ent _secret can be omitted if the requi reC i ent Aut h
value in the configuration is set to f al se for the given issuer. This option is
provided for clients that are unable to securely protect a client secret value. Even if
the client _secret is omitted, the client i d value must still be provided, in order
to identify the MCS mobile backend for which a token is being requested.

* Provide a valid client assertion as an appl i cati on/ x/ ww f or m ur | encoded form
value in the POST body.

In this case, the following header is required:

Cont ent - Type: appl i cation/x/ wwwformurl encoded

And the body of the POST must contain these values, where cl i ent - t oken is
client token obtained from Oracle Cloud for the OAuth client associated with the
MCS mobile backend for which a user token is being requested.

grant _type=urn:ietf:params:oauth: grant-type:jw -bearer
assertion=external -token
client_assertion_type=urn:ietf:parans:oauth:client-assertion-type:jw-
bearer

client_assertion=client-token

If the token exchange is successful, the response will have a 200 status, and will
include an appl i cati on/j son body similar to this:

{

"access_token":"123456789i JKV1Q LAOKI CIhbGeci O JI Uzl 1Ni J9. abcdefi O Jgh2Ui LAO
KI CJI eHAl O EzMDA4MTkz ODAsDQogl mhOdHAGLY9I eGFt cCxl Lm\vbS9pc19yb2901 j pOcnVi f Q
. dBj f t JeZ4CVP- mB92K27uhbUJULplr WWLgFWFOE] Xk",

"token_type":"Bearer",

"id_ token":null,

"expires_in":28800 }

ORACLE 5-24

Chapter 5
Enterprise Single Sign-On in MCS

Mapping Users from a Third-Party IdP to Oracle Cloud Users

It is also possible to have enable authentication with 3rd-party tokens where there are
matching records for the users in Oracle Cloud. This enables you to apply roles to
users directly in MCS.

For this matching to work, the following conditions apply:

e The Oracle Cloud users have been assigned to the realm that your mobile
backend uses.

e When registering the token issuer in MCS, your mobile administrator didn’t select
the Enable Virtual User option.

e In SAML tokens, the subject must identify the user’'s username as defined in
Oracle Cloud.

e In JWT tokens, the sub or prn attributes must identify either the user’'s username
or email address as defined in Oracle Cloud.

User roles can be applied in any of these ways:

e By assigning roles to individual users on the Applications > Mobile User
Management page of MCS.

e By doing batch assignments of roles in the Oracle Cloud Infrastructure Classic
Console. To do this, you need to have the identity domain administrator role for
your account in Oracle Cloud.

e By having your administrator, in the process of registering the IdP as a token
issuer in MCS, specify one or more mobile roles to give to users authenticated
with this IdP (via the default role rule).

e By having your administrator, in the process of registering the IdP as a token
issuer in MCS, create rules to map information extracted from the token (such as
role names) to MCS mobile roles (via role attribute rules).

If the role names defined in the IdP don’t match the role names defined in MCS,
your administrator can configure role apping rules to map the token role names to
the MCS role names.

If you want to use this approach but don't yet have user accounts set up in Oracle
Cloud, follow the instructions at Importing Groups of Mobile Users Into MCS Using
Oracle Cloud.

Getting a Single Sign-On OAuth Token through a Browser

ORACLE

For an app to authenticate through a single sign-on identity provider, it first needs to
get an SSO OAuth token. Using the MCS SDK for your platform simplifies this
process. However, if you are making the REST calls directly from your app (or you are
testing API calls using another tool, such as cURL or Postman), you need to get the
token manually.

1. On the mobile backend’s Settings page, gather the following information:
e (OAuth Consumer) Client ID
 Base URL

2. Form the SSO token endpoint by appending / nobi | e/ pl at f or M sso/ exchange-
t oken to the base URL.

5-25

Chapter 5
Enterprise Single Sign-On in MCS

Form a URL that combines the SSO token endpoint and a query parameter for the
client ID. For example:

<SSO Token_Endpoi nt >?cl i ent | D=<client | D>

Open a private or incognito browser window, paste the URL into the address bar,
and press Enter.

(You need to use an incognito or private window because cookies stored in your
browser for whatever reason, such as from having logged in to MCS, will interfere
with your SSO token request.)

In the page that appears, enter the SSO user name and password and press
Enter.

Open a private or incognito browser window, paste the URL into the address bar,
and press Enter.

The browser window will then display your token.

You can use this in any REST calls you make to APIs through that mobile
backend.
" Note:

If you want to obtain a new token, do it from a fresh incognito or private
window. If you use the same window from which you previously obtained a
token, the correct token might not be returned.

Enabling Browser-Based SSO through MCS

Setting up browser-based single sign-on (SSO) in MCS consists of steps both in MCS
and in the Oracle Cloud Infrastructure Classic Console. To follow these steps, you
need to have the identity domain administrator role for your Oracle Cloud account.

ORACLE

To set up SSO for a group of users, you need to:

1.
2.

Create a realm in MCS for those users by following the steps at Creating Realms.
Configure your Oracle Cloud identity domain to allow SSO.

To do so, go to the Users section of the Oracle Cloud Infrastructure Classic
Console. See Configuring ldentity Management (SSO and OAuth). After SSO is
set up, you may need to log out and back into MCS for it to take effect.

Create user accounts in Oracle Cloud for the app users and have them assigned
to the realm that you have just set up.

These accounts correspond with the user accounts in your identity provider but
only contain limited information, such as user name and email address. The
password is not stored in the Oracle Cloud user account.

To get user accounts set up, follow the instructions at Importing Groups of Mobile
Users Into MCS Using Oracle Cloud.

(Optional) Assign the roles to the users that they need to access the APIs. (This
step assumes that the given APIs are role-based.)

5-26

Chapter 5
Enterprise Single Sign-On in MCS

This step is not a prerequisite for developing APIs and mobile backends that use
SSO as the authentication method. However, you might find it convenient to
assign roles to the mobile users as they are created, especially if your team has
decided on the mobile user roles to create and what users and APIs to associate
them with.

In addition, as an identity domain administrator, you can do batch assignments of
roles in the Oracle Cloud Infrastructure Classic Console. Mobile app developers
can use the Mobile User Management interface in MCS to assign roles, but only
one at a time. This is useful for testing purposes, but might be cumbersome when
setting up more than a handful of users.

Note:

If you're not sure whether your instance of MCS is already configured to
allow SSO, you can quickly check by opening the Settings page of any
mobile backend, enabling OAuth Consumer authentication, and looking for
the Enable SSO checkbox under the OAuth settings. If SSO isn’t configured
for your identity domain, you'll see the message SSO is not set up for your
Oracle Cloud account.

Enabling Single Sign-On for a Mobile Backend

1. Open the mobile backend and select the Settings page.

2. Under Access Keys, make sure OAuth Consumer is enabled.
The Enable Single Sign-On checkbox appears.

3. Select Enable Single Sign-On.

Note:

If the Enable Single Sign-On checkbox does not appear, you need to
enable SSO for your Oracle Cloud account. See Configuring Identity
Management (SSO and OAuth).

After you enable single sign-on, an SSO token endpoint is displayed under
Environment URLs. You use this token endpoint to obtain the SSO authentication
token. When using the MCS SDK for a given mobile platform, you insert this token
endpoint into the configuration file provided by the SDK and SDK code handles the
obtaining of the token.

Getting an SSO Token Using Form Post Response Mode

ORACLE

If you want to use MCS'’s SSO login feature with browser-based apps, you use the
form post response type to get the OAuth token from the SSO token relay and have it
posted back to the app through a redirect URI.

So that you don’t make yourself vulnerable to having OAuth tokens generated on your
behalf and then sent to a URI out of your control, you also have to specify acceptable
values for the redirect URI in the Security_SsoRedirect Wi tel i st environment

policy.

5-27

Chapter 5
Enterprise Single Sign-On in MCS

To code the call to the SSO token relay:

1. On the mobile backend’s Settings page, gather the following information:
* (OAuth Consumer) Client ID
e SSO token endpoint

2. Inyour code, form a URL that combines the SSO token endpoint, a query
parameter for the client ID, and a parameter for the redirect URI. For example:

<SSO Token_Endpoi nt >?client|D=<client | D>& edirect uri=<Redirect URI >

From your code, call that URL.

When that URL is called, the app user is redirected to a login page where they can
sign in.
To set the Security_SsoRedirect Wiitelist environment policy, see Modifying an
Environment Policy.

The value for the Security_SsoRedirect Wi telist environment policy is a comma-
separated list of simple URL patterns. For example:

https://ww. exanmpl e.com https://*. exanpl e2. com

The pattern ht t ps: / / ww. exanpl e. comwill match the URLs https://
www. exanpl e. coml pat hl, htt ps://www. exanpl e. com pat hl/ pat h2, and so on.

Similarly, the pattern htt p: // wwv. exanpl e. con pat h1 will match URLs http://
www. exanpl e. coml pat hl, http://ww. exanpl e. coni pat hl/ pat h2, http://

www. exanpl e. coni pat hl/ pat h2/ pat h3 and so on, but will not match URL http://
www. exanpl e. cont ot her - pat h.

Here are some other rules for the environment policy value:

* You must include the port, unless you are using the default port for the URL
scheme. For example, the pattern htt p: / / ww. exanpl e. commatches the URL
http://ww. exanmpl e. comor the URL http://ww. exanpl e. com 80, but not
http: // ww. exanpl e. com 8080.

* You can use an asterisk (*) as a wildcard character within a URL segment but it
doesn't apply across dot (.), forward slash (/), or colon (:) characters.

For example, htt ps://exanpl e*: 8080 would match htt ps: // exanpl e- sour ce:
8080, but it wouldn’t match htt ps: // exanpl e. com 8080. This restriction is
designed to prevent matching unintended sites. (Imagine something like http://
exanpl e. i npost er. com 8080 which you would not want your wildcard to match.)

e Simple path values don'’t require a wildcard. For example, if a redirect URI of
https://exanpl e. com apps/ cust oner is passed to the mobile backend and
compared to the white list value in the above policy example, it will be accepted.

e The protocol (https:// in the above example) must be included.

Testing APIs in a Mobile Backend with SSO Login

Once you add an API to a mobile backend with SSO login enabled, you can use the
API tester with SSO as the authentication method. This helps you ensure that the API

ORACLE 5-28

ORACLE

Chapter 5
Enterprise Single Sign-On in MCS

call works end to end. You can test with the MCS-issued SSO token or a token from a
third-party provider.

To test a custom API with SSO login:

Click = and select Applications > Mobile Backends from the side menu.
Select your mobile backend and click Open.
In the left navbar of the mobile backend, select APIs.

Click the API that you want to test.

g @ b P

If the user that you plan to authenticate in the test has not yet been assigned the
role that is needed to access the API, click the Security navigation link and switch
Login Required to OFF.

6. Click the Endpoints navigation link and scroll to the endpoint that you want to test.
7. From the Authentication Method dropdown, select Single Sign-On Token .
8. Obtain a valid SSO token for the mobile backend.

If you are using web SSO, the fastest way to do this is to:

a. Mouse over the info tip next to the Single Sign-On Token field, select the
token endpoint URL that is in the info tip, and select Copy from your browser’s
menu (pressing Ctrl-C might not work).

x

Open the following URL in an incognito or private
browser window:

Request Response ,)

9 P http://fixitfast.mcs.cloud.us.oracle.comymobile/plat

form/sso/token?clientID=0b92436b-a166-4554-

4 Authentication bec8-c2edfa07do93c

Provide the mobile backend, version, ¢ Vhen the single sign-on OAuth foken is generated, copy ust also spe
and paste it here
You can also paste a single sign-on token generated v

from a trusted third party issuer here.

Right-click or double tap and select Copy to copy the
URL to the clipboard.

Tell me how to get a single sign-on token

Q- Single Sign-On Token Copy and paste an unexpired S50 foken

b. Open a private or incognito browser window, paste the URL into the address
bar, and press Enter.

c. Inthe page that appears, enter the SSO user name and password and press
Enter.

The token should appear in the page that is returned.
9. Inthe Single Sign-On Token, text field, paste the SSO token.

If you have a token from your third-party provider, you can paste it in this field to
authentication.

10. Click Test Endpoint.

If successful, a test response will appear with an appropriate HTTP code, such as
200.

5-29

Chapter 5
Facebook Login in MCS

Token Expiration for SSO Login

When you use SSO as your login mode, the token expires after six hours by default,
meaning that the app user will need to log in again after that time. The length of the
timeout is governed by the Security_TokenExchangeTi meout Secs policy, which is
given in seconds. See Environment Policies for information on changing the policy.

Facebook Login in MCS

You can configure mobile backends to enable users to log in through Facebook. This
mode of authentication is particularly useful for apps targeting consumers (as opposed
to employees of your business).

When you enable users to log in to an app through Facebook, you can do the following
things in the app:

* Call any custom APIs that allow access with a social identity login.

* In the implementation code of such custom APIs, use the custom code SDK to call
MCS platform APIs (with the exception of any APIs that are role-based).

» Register for notifications.

The main steps for setting up an app to use Facebook for login are:

1. Registering the app itself with Facebook.

2. Configuring Facebook login in the mobile backend that the app will be using.

Note:

This mobile backend can only be used for Facebook login. If you wish to
have apps access the mobile backend using different authentication
methods, you must create a separate mobile backend for that purpose.

3. Configuring the app itself to use Facebook for logging in.

4. In the mobile backend, adding custom APIs that allow access through Facebook
login.

Register App Enable Configure App Add Custom
with —= Facebook Login in —= to Use —= APIs Enabled for
Facebook Mobile Backend Facebook Login Social Login

Registering an App for Login Through Facebook

Before you can enable login through Facebook, you need to register your app with
Facebook using the Facebook SDK for your platform. From the registration process

ORACLE 5-30

Chapter 5
Facebook Login in MCS

Facebook will give you a Facebook app ID and secret which you will next configure in
MCS.

For details, see Facebook’s documentation at https://developers.facebook.com/docs/
apps/register.

Enabling Facebook Login in a Mobile Backend

Once you have registered your app with Facebook, you can enable Facebook login in
a mobile backend.

1. In MCS, open the mobile backend and select the Settings page.
2. Under Social Login, switch on Facebook.

3. Inthe Facebook Settings dialog, enter the app ID and app secret that you
obtained when registering the app with Facebook.

4. On the same page, make sure that HTTP Basic authentication is enabled.

(HTTP Basic authentication is needed for the first part of the authentication
process when the app requests the Facebook access token.)

" Note:

If you also want to make an app accessible through any other authentication
method, create a separate mobile backend for which Facebook Login is not
enabled. Then, in the configuration file provided by the MCS client SDK for
the given platform (e.g. OMC. pl i st for iOS and

oracl e_mobil e _cloud_config.xm for Android), add the details for that
mobile backend. The app can then use both mobile backends, depending on
how the user authenticates.

Configuring an App to Use Facebook Login

Once you have registered your app with Facebook and have configured a mobile
backend to work with Facebook login, you can configure your app to log users in with
their Facebook identities. You need to:

* Specify that Facebook is the identity provider.
* Provide the Facebook App ID.
* Provide the mobile backend ID and HTTP Basic anonymous key.

The easiest way to get this working is by using the MCS client SDK for the app’s
platform, which enables you to specify all of the credentials in a single configuration
file. See The SDKs.

Adding APIs to a Mobile Backend with Facebook Login

You can add the following types of APIs to a mobile backend configured for Facebook
login.

e Custom APIs that have the Login Required switch set to OFF.

ORACLE 5-31

https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/apps/register

Chapter 5
Facebook Login in MCS

Custom APIs that have the Login Required switch set to ON and the Social
Login switch set to ON.

Any MCS platform APIs endpoints that allow anonymous access. The Analytics
Collector, App Policies, Devices, MCS, and Location APIs all have endpoints that
can be accessed anonymously. The Database Access API and Notifications API
can be accessed from any custom API, including custom APIs that allow
anonymous access.

To add an API to a mobile backend with Facebook login:

1.

Make sure that the API allows social login. For custom APIs, you can check by
following these steps:

a. Click = and select Applications > APIs from the side menu.
b. Select the API that you want to add and click Open.

c. Inthe API Designer, select the Security tab and check the settings.

Note:

APIs that you design for use with Facebook login can not be used
with other authentication types. If you want an API's functionality to
be available for apps with Facebook login and apps that are based
on other types of authentication (such as OAuth, enterprise SSO, or
HTTP Basic anonymous access), you need separate variants of the
API, each with the appropriate security settings. For more
information on API security, see Security in Custom APIs.

Add the API to the mobile backend:

a. Click = and select Applications > Mobile Backends from the side menu.
b. Select your mobile backend and click Open.

c. Inthe left navbar of the mobile backend, select APIs.

d. Click Select APIs.

e. Click the + (Add) icon for the API.

Getting a Facebook User Access Token Manually

ORACLE

For an app to authenticate through Facebook, it needs to get a user access token from
Facebook. Using the MCS client SDK for your platform simplifies this process.

However, if you are testing an API with the API tester or another tool (such as cURL or
Postman) or making the REST calls directly from your app, you need to get the user
access token yourself. If you are the person who registered the app with Facebook,
you can do this by following these steps:

1.

Log into your Facebook account (the one with which you registered the mobile
app).

Navigate to https://developers.facebook.com/tools/accesstoken/ and find your app.

Click the You need to grant permissions to your app to get an access token
link to generate the token. A token is generated for you on the next page.

5-32

https://developers.facebook.com/tools/accesstoken/

Chapter 5
Authenticating in Direct REST Calls

< Note:

If you anticipate testing the app over a period of several weeks, you might
find it convenient to extend the validity of your access token. You can do so
by clicking Extend Access Token.

For more information, see Facebook’s documentation on user access tokens at https://
developers.facebook.com/docs/facebook-login/access-tokens#usertokens.

Headers Needed for API Calls with Facebook Authentication

When you call custom APIs from apps that use Facebook login, headers need to be
passed to handle authentication. If you are using the SDKs for your platform, these
headers are constructed for you based on values that you have entered into the SDK’s
configuration file.

If you are making REST calls to the APIs directly from your app (or from a separate
tool, such as cURL), you need to add the following headers in your calls manually:

e Authorization: Basic {anonynousKey}

e (Oacl e-Mbil e-Backend-1D: {nobil eBackendl D}

e Oacle-Mbile-Social-ldentity-Provider : facebook

e (Oacle-Mbile-Social -Access-Token : { YOUR FACEBOOK USER ACCESS TOKEN}

Authenticating in Direct REST Calls

When your app uses the MCS client SDK, you store the authentication credentials in
one place so that you don’t need to manually insert them into each call. In addition, the
SDK handles the encoding of the username and password. However, if you are
making the REST calls directly from your app (or you are testing API calls using
another tool, such as cURL or Postman), you need to handle the authentication in
each call. The value you send in the Aut hori zat i on header depends on the type of
authentication.

Authenticating with OAuth in Direct REST Calls

ORACLE

When you have OAuth enabled as an authentication mechanism for a mobile backend,
an app can authenticate itself by sending the mobile backend’s OAuth credentials
(client ID and client secret) plus a user name and password to get an OAuth access
token. If the API that is being called does not require a logged-in user, then the user
name and password are not needed. The app then uses the OAuth token to make
REST calls to APIs in the mobile backend.

You need the following information from the Settings page for the mobile backend:
e OAuth token endpoint

+ ClientID

* Client secret

If the API is configured to require login, you also need the user name and password for
a mobile user.

5-33

https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens
https://developers.facebook.com/docs/facebook-login/access-tokens#usertokens

Chapter 5
Authenticating in Direct REST Calls

To construct a REST call to authenticate via OAuth:

1.

Send the request to retrieve an access token:
a. Base64 encode the clientlD:clientSecret string.

b. Setthe Aut hori zati on header to Basi ¢ client id:client secret-Base64-
encoded-string.

c. Setthe Content-Type to appl i cation/ x- wwform url encoded;
charset =utf- 8.

d. Set the request body to the appropriate grant type:

e For access without a logged-in user, use:
grant _type=client credentials

» For access with a logged-in user, use:
grant _t ype=passwor d&user name=user nane&passwor d=passwor d. The user
name and password must be URL encoded.

e. POST the request to the OAuth token endpoint. For example, in cURL:

curl -i

-H "Authorization: Basic clientld:clientSecret-encoded-string"

-H "Content-Type: application/x-wwformurlencoded; charset=utf-8"
-d "grant _type=client credentials"

--request POST oaut hTokenEndpoi nt

In the response, find the access_t oken property, as shown below (the value is
truncated in this example).

{"oracle_client_assertion_type":"urn:ietf:paranms:oauth:client-assertion-
type:jw-bearer",

"expires_in": 604800,

"token_type":"Bearer",

"oracle_tk context":"client_assertion",
"access_token":"eyJhbGei G J...FlgFi A"}

Copy the access_t oken property’s value into the value of the Aut hori zati on
header.

The header takes the form Bear er access_t oken.

Authenticating with HTTP Basic in Direct REST Calls

When you have HTTP Basic enabled as an authentication mechanism for a mobile
backend, an app can authenticate itself by sending the mobile backend ID, a user
name, and a password. You pass the username and password as a Base64—encoded
string. If the API that is being called is set to allow anonymous access, then you pass
an anonymous access key instead of a user name and password.

ORACLE

Remember, if your app uses the MCS client SDK, the authentication credentials are
stored in one place so you don't need to manually insert them.

To authenticate with MCS using HTTP Basic, you send a method to any platform
endpoint with these headers:

5-34

Chapter 5
How OAuth Works in MCS

* (Oacl e-Mbil e-Backend- | D: The mobile backend ID is listed on the Settings tab
for the mobile backend.

e Authorization: Basic: For basic authentication this header should include the
mobile user's name and password encoded in Base64 or the anonymous key. If
the anonymous key is available, it will also be displayed on the Settings tab for the
mobile backend.

For example:

curl -X GET
-H "Aut hori zation: Basic {Base64 of
mobi | eUser nane: nobi | eUser Passwor d} or {anonynousKey}"
-H "Oracl e- Mobi | e- Backend- 1 D: {nobi | eBackendl D} "
{baseUri}/ nobil e/ platform users/~

For this call, the response would be one of the following:

e Inthe case of 200: Success, the payload returned from MCS contains a JSON
object with the user information.

* Incase of an error, a JSON error message is returned.

For more information about Base64 encoding, see Base64 Decode and Encode.

How OAuth Works in MCS

ORACLE

This section provides some background on how MCS takes advantage of OAuth. You
don’t necessarily need to read this section to do your work, but you might find the
conceptual background useful.

OAuth 2.0 is explicitly designed with REST in mind. It supports a variety of different
client types that access REST APIs, including mobile apps. Secured APIs are made
available only after a mobile app presents a valid OAuth access token.

Oracle Mobile Cloud Service's implementation of OAuth uses a model with the
following roles:

* Resource Owner: The resource owner is responsible for entering credentials to
grant authorizations to protected resources. The resource owner is often the app
user.

* Mobile Application: The mobile app is the client that accesses protected resources
and makes calls to secure APIs.

* MCS Server: The MCS server provides the interface for accessing the protected
resources.

* OAuth Server: The OAuth server manages authorizations by the resource owner
and issues access tokens. Typically, this role is also handled by the MCS server.

In OAuth 2.0, the client uses an access token issued by the OAuth server to access
protected resources hosted by the MCS server.

1. The mobile app sends credentials to the OAuth server in an HTTP header.
2. The OAuth server returns an access token.

3. The mobile app uses the access token to access secure MCS APIs.

5-35

https://www.base64encode.org/

Chapter 5
How OAuth Works in MCS

Mobile
Application
MCS Server
Call MCS APls °
using access token = MCS API
MCS API

;.
«+—{ 2 — Return access token
1}~ Pass credentials and
request access token

QAuth Server
»

This enables MCS to manage permissions and grant applications access to services
without requiring a separate login for each individual service. Credentials are issued
for each mobile backend. Each mobile app registered with the mobile backend uses
those credentials to authenticate with any API associated with that mobile backend.

Before a mobile application can access MCS APIs, it must first register with the MCS
OAuth server. The registration is typically a one-time task and is done when the mobile
backend is created. Once registered, the registration remains valid unless revoked.
For details on registering a mobile app with a mobile backend, see Registering
Applications.

For every custom API in Mobile Cloud Service, the mobile developer decides whether
or not authentication is required. This determines which OAuth flow is used.

* Resource Owner Password Credentials Grant - Authenticated Access

» Client Credentials Grant - Unauthenticated Access

Resource Owner Password Credentials Grant - Authenticated Access

The resource owner password credentials grant flow is suitable for highly trusted
mobile applications because the client could abuse the credentials, or they could
unintentionally be disclosed to an attacker. This grant type requires direct access to
user credentials, but credentials are used for a single request and are exchanged for
an access token. This grant type can eliminate the need for the mobile app to store
user credentials for future use, by exchanging them for a long-lived access token or
refresh token.

< Note:

If you want to use a refresh token, you need to use a 3rd-party identity
provider. MCS’s OAuth server does not support refresh tokens.

ORACLE 5-36

ORACLE

Chapter 5
How OAuth Works in MCS

Resource
Owner
Resource
Owner password
credentials
Resource Owner
¥ password credentials :]
Glient Authorization

Server

1 Access Token

(opticnal Refresh Token)

The resource owner password credentials grant flow involves the following steps:

1. The mobile app prompts the user (resource owner) to enter a username and
password.

2. The mobile app authenticates with the OAuth server through the token endpoint
and requests an access token using the credentials entered by the user. The
request contains the following parameters:

e grant_type — Required. Must be set to passwor d.
e usernane — Required. The username of the resource owner (user).
* password — Required. The password of the resource owner (user).
e scope — Optional. The scope of the authorization.

3. The OAuth server validates the credentials and issues an access token.
e access_token
e token_type

e expires_in (the number of seconds before the access token is no longer
valid; expiration is optional)

4. The mobile app passes the access token to the MCS service, which validates the
token and grants access.

For example, the mobile app makes the following HTTP request using transport-layer
security:

POST /token HTTP/ 1.1

Host: server.exanpl e.com

Aut hori zation: Basic czZCaGRSa3FOM pn\WDFMQFOM2IW
Content - Type: application/x-ww«formurl encoded

grant _t ype=passwor d&user nanme=j ohndoe&passwor d=A3ddj 3w

After the OAuth server accepts these values, it returns the following response with an
access token:

HTTP/ 1.1 200 K

Content - Type: application/json; charset =UTF-8
Cache-Control : no-store

Pragma: no-cache

{

5-37

Chapter 5
How OAuth Works in MCS

"access_t oken": " 2Yot nFZFEj r 1zCsi cMApAA",
"t oken_type": "exanpl e",
"expires_in":3600,

"exanpl e_paraneter": "exanpl e_val ue"

}

Client Credentials Grant - Unauthenticated Access

ORACLE

The client credentials grant flow can be used when the authorization scope is limited to
protected resources under the control of the mobile app. A registered trusted app is
allowed to obtain an access token by providing only the client credentials to the OAuth
server.

Client Authorization
L4

Client App OAuth Server

Access Token

This flow is applicable in the following situations:

e The mobile app is requesting access to protected resources under its control. For
example, unauthenticated access to APIs in the Mobile Backend, such as when a
mobile banking app retrieves a list of ATMs based on location.

e The mobile app is requesting access to a protected resource where authorization
has been previously arranged with the OAuth server.

The client credentials grant flow involves the following steps:

1. The mobile app authenticates with the OAuth server through the token endpoint
and requests an access token. The request contains the following parameters:

e grant_type — Required. Must be settoclient _credentials.
* scope — Optional. The scope of the authorization.
2. The OAuth server validates the credentials and issues an access token.
The access token has the following parameters:
* access_token
e token_type

e expires_in (the number of seconds before the access token is no longer
valid; expiration is optional)

3. The mobile app passes the access token to the service. The service accepts the
token and allows access.

For example, the mobile app makes the following HTTP request using transport-layer
security

POST /token HTTP/1.1
Host: server.exanpl e. com
Aut hori zation: Basic czZCaGRSa3FOMzpnWDFMQnFOM2IW

5-38

Chapter 5
Securing Cross-Site Requests to MCS APIs

Content - Type: application/x-ww«form url encoded
grant _type=client_credentials

The OAuth server MUST authenticate the client. It returns the following response with
an access token:

HTTP/ 1.1 200 X

Content - Type: application/json; charset =UTF-8
Cache-Control : no-store

Pragma: no-cache

{

"access_t oken": " 2Yot nFZFEj r 1zCsi cMHAA",

"t oken_type": "exanpl e",

"expires_in": 3600,

"exanpl e_paraneter": "exanpl e_val ue"

}

Securing Cross-Site Requests to MCS APIs

ORACLE

In addition to setting authentication methods, it's very important that you manage
cross-origin resource sharing (CORS) for access to MCS APIs. You do so through the
Security_Al I owOri gi n environment policy.

For browser-based applications, particularly those that use Single-Sign On (SSO)
authentication, you should either not allow cross-site access at all or restrict access
only to trusted origins where authorized applications are known to be hosted to
mitigate vulnerability to Cross-Site Request Forgery (CSRF) attacks. If you're not using
browser-based applications, it's best to use the default value, di sal | ow, for
Security Al owOrigin.

Control cross-site access by setting the Security Al | owOr i gi n environment policy
value to either di sal | ow (the default value) or to a comma separated list of URL
patterns, which specifies a whitelist of trusted URLs from which cross-site requests
can be made. If the origin of a cross-site request matches at least one of the patterns
in the whitelist, the request is allowed.

For example, the URL value for Security_Al | owOri gi n might look like this:
https://nyexanpl e.com https://*. exanpl e. com https://*. exanpl e2. com
When specifying a URL, note the following:

* You must include the port, unless you are using the default port for the URL
scheme. For example, the pattern htt p: / / ww. exanpl e. commatches the URL
http://ww. exanmpl e. comor the URL htt p://ww. exanpl e. com 80, but not
http:// ww. exanpl e. com 8080.

* When specifying values for Security_ Al |l owOr i gi n, don’t include path parts and
don't include a trailing forward slash, '/ ’, character. For example, the pattern
http:// ww. exanpl e. coml won't match htt p: // www. exanpl e. com

* You can use an asterisk (*) as a wildcard character within a URL segment but it
doesn't apply across dot (.), forward slash (/), or colon (;) characters.

For example, if the URL is ht t ps: // exanpl e. exanpl e. com 8080, the following
patterns match:

— https://*. exanpl e. com 8080

— https://*.exanpl e.com*

5-39

Chapter 5
Securing Cross-Site Requests to MCS APIs

— https://ex*. exanpl e. com *
These patterns, however, won’t match:
— https://*. exanpl e. cont

— https://exanpl e*.oracle.com*

These restrictions are designed to prevent matching unintended sites.

< Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security AllowOrigintohttp://1ocal host:[port], but be sure to update
the value in production.

ORACLE 5-40

Android Applications

If you are an Android app developer, you can use the SDK that Oracle Mobile Cloud
Service (MCS) provides for Android. This SDK simplifies authentication with MCS and
provides native wrapper classes for MCS platform APIs.

Getting the SDK for Android

To get the MCS client SDK for Android, go to the Oracle Technology Network’s MCS
download page.

To use the MCS SDK for Android, you should have the following software on your
system:

Android Studio, or the standalone Android SDK Tools from Google.

See https://developer.android.com/studio/index.html for info on getting and using
Android Studio.

Java Development Kit (JDK) 1.7.0_67 or compatible.

See http://www.oracle.com/technetwork/java/javase/downloads/index.html for JDK
downloads.

Contents of the Android SDK

The following SDK libraries (JAR files) are included in the Android SDK:

ORACLE

mcs—andr oi d- sdk- shar ed- <ver si on- nunber >. j ar - The base library for the SDK,
including functionality required by the other libraries as well as utility classes for
accessing and authenticating with mobile backends.

nts- andr oi d- sdk-anal yti cs-<versi on- nunber >. j ar - The Analytics library,
which lets you insert custom events into your code that can then be collected and
analyzed from the Analytics console.

mcs- andr oi d- sdk- | ocat i on- <ver si on- nunber >. j ar - The Location library, which
lets you access details about location devices that have been registered in MCS
and the places and assets they are associated with.

ncs- andr oi d- sdk-fcm noti fications-<version-nunber>.jar - The Notifications
library for FCM, which lets you set up your application to receive notifications sent
from your mobile backend. If your app still uses GCM, the SDK also

includes / gcn nts- andr oi d- sdk-noti fi cati ons-<versi on-nunber>. jar. (The
two notifications modules can't be used at the same time.)

mcs- andr oi d- sdk- soci al - <ver si on- nunber >. j ar - The Social Login library,
which allows you to set up your app to use Facebook login.

ncs- andr oi d- sdk- st or age- <ver si on- nunber >. j ar - The Storage library, which
lets you write code to access storage collections that are set up with your mobile
backend.

6-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
https://developer.android.com/studio/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 6
Adding the SDK to an Android App

* nts-androi d- sdk- sync- <ver si on-nunber >. j ar - The Sync Client library, which
allows you to cache application data when the device running your app is
disconnected from the network, then sync up the data when the network
connection is reestablished.

e | DM\bbi | eSDK. j ar - The identity management library used by all applications.

The SDK also includes these tools and examples:

e nts-tools.zip-The MCS Custom Code Test Tools, a set of command line tools
for debugging custom APIs that you have associated with your app's mobile
backend. Detailed instructions are located in the READVME file included in the zip.

e nobil e-1o0g-downl oad. zi p - A command-line tool that allows you to download logs
from MCS for viewing or archiving.

e oracle_nobile_cloud_config.xm - A sample configuration file. You can adjust its
properties based on the environment details of the mobile backend that your app
will use and then copy the file to the asset s folder you created when adding the
SDK to your app.

« exanpl es. zi p - Sample mobile apps that demonstrate how to use the SDK.

e Javadoc. zi p - Complete SDK API documentation. You can also reference the API
documentation online: https://docs.oracle.com/en/cloud/paas/mobile-cloud/mcssa/
index.html

Android SDK Dependencies

The SDK is modular, so you can package just the libraries that your app needs. Just
be aware of the following dependencies:

Every Android application developed for MCS must have the shared (or acl e-
mobi | e_andr oi d_shar ed- <ver si on- nunber >. j ar) and | DM\bbi | eSDK. j ar libraries.

If the Storage library is installed, the Sync Client library must also be installed.

Adding the SDK to an Android App

ORACLE

1. If you haven't already done so, unzip the Android SDK zip.

2. Copy the SDK jars into the / | i bs folder in your app's project. If this folder doesn't
exist, create it at the same level in your hierarchy as your / src and / bui | d folders.

3. Decide which notifications library you need (FCM or GCM) and delete the .jar you
are not using: ncs- andr oi d- sdk-fcm noti fi cati ons-<versi on- nunber>. j ar
or / gcm necs-androi d- sdk-noti fi cati ons-<versi on-nunber>. jar. These
modules can’t be used at the same time.

4. In the source tree for the application, create a folder called / asset s (at the same
level as the /j ava and / r es folders).

5. Inthe SDK bundle, locate the oracl e_mobi | e_cl oud_confi g. xnl file and copy it to
the / asset s folder.

6. Inyour app's buil d. gradl e file, make sure the following are among the
dependencies registered so that the SDK libraries are available to the app.

dependenci es {
compile fileTree(dir: "libs', include: ['*.jar"])

6-2

https://docs.oracle.com/en/cloud/paas/mobile-cloud/mcssa/index.html
https://docs.oracle.com/en/cloud/paas/mobile-cloud/mcssa/index.html

7.

Chapter 6
Upgrading an Android App from SDK 17.x and Before

conpile 'org.slf4j:slf4j-jdkl4:1.7.13'
}

Open /asset s/ oracl e_nobile_cloud_config.xm and fill in the environment
details for the mobile backend that the app will be using. See Configuring SDK
Properties for Android.

Upgrading an Android App from SDK 17.x and Before

ORACLE

1.

Remove the following SDK jar files from the | i bs folder in your app's project (if
they exist):

e | DM\bbi | eSDK. j ar

e | DM\bbi | eSDK. zi p

* nts-android-sdk-vanal ytics-<version>.jar

e nts-androi d- sdk- vl DVMBDK- <versi on>. j ar

e nts-android-sdk-vl ocation-<version>.jar

e nts-android-sdk-vnotifications-<version>. jar

e nts-androi d-sdk-vshared- <version>.jar

e nts-androi d- sdk-vsoci al - <version>. | ar

e nts-androi d- sdk- vst or age- <ver si on>. j ar

e nts-android-sdk-vsync-<version>.jar

Unzip the new MCS Android SDK zip if you haven't already.
Copy the new SDK jar files into the | i bs folder in your app's project.

Decide which notifications library you need (FCM or GCM) and delete the .jar you
are not using: nts- andr oi d- sdk-fcm noti fi cati ons-<versi on- nunber>. j ar

or / gcm ncs- andr oi d- sdk-noti fi cati ons-<versi on-nunber>. jar. These
modules can'’t be used at the same time.

In your app's set tings. gradl e file, make sure that | DM\Vbbi | eSDK is NOT an
include. (Remove it ifitis.)

In your app's bui | d. gr adl e file, make sure the following is removed from the
dependencies registered:

conpi | e project(':|DWbbileSDK')
In your app's bui | d. gradl e file, add the following to the dependencies registered:

conpile "org.slf4j:slf4j-jdk14:1.7.13

So, the final dependencies should include:
dependenci es {

conpile fileTree(dir: "libs', include: ['*.jar'])
conpile "org.slf4j:slfdj-jdkl4:1.7.13'

6-3

Chapter 6
Configuring SDK Properties for Android

Follow the rest of the instructions in this chapter to configure SDK properties and your
Android manifest file.

Configuring SDK Properties for Android

ORACLE

To use the SDK in an Android app, you need to add the

oracl e_mobi | e_cl oud_config. xm configuration file to the app and fill it in with
environment details for your mobile backend. In turn, the SDK classes use the
information provided in this file to access the mobile backend and construct HTTP
headers for REST calls made to APIs.

You package the configuration file in your app’s main bundle in the asset s folder at the
same level as the j ava and r es folders. For example, in the demo application
Fi xI t Fast, it's in / app/ src/ mai n/ asset s.

The following code sample shows the structure of a
oracl e_mobil e_cl oud_config. xm file.

<nobi | eBackends>
<nobi | eBackend>
<nbeName>MBE NAME</ nbeName>
<nbeVer si on>MBE_VERSI ON</ mheVer si on>
<def aul t >t rue</ def aul t >
<appKey>APPLI CATI ON_KEY</ appKey>
<baseUr | >BASE_URL</ baseUr| >
<net wor kConnect i onTi meQut >CONNECTI ON_TI MEQUT</ net wor kConnect i onTi meQut >
<enabl eAnal yti cs>true</ enabl eAnal ytics>
<enabl eLogger >t r ue</ enabl eLogger >
<aut hori zation>
<of f | i neAut hent i cati onEnabl ed>t r ue</ of f | i neAut henti cat i onEnabl ed>
<aut henti cati onType>AUTH_TYPE</ aut henti cati onType>
<oaut h>
<o0Aut hTokenEndPoi nt >0AUTH_URL</ 0Aut hTokenEndPoi nt >
<oAut hC i ent | d>CLI ENT | D</ oAut hC i ent | d>
<oAut hQ i ent Secr et >CLI ENT_SECRET</ oAut hCl i ent Secr et >
</ oaut h>
<basi c>
<mobi | eBackendl D>MOBI LE_BACKEND | D</ nobi | eBackend| D>
<anonymousKey>ANONYMOUS_KEY</ anonymousKey>
</ basi c>
</aut hori zation>
<I-- additional properties go here -->
</ nobi | eBackend>
</ nobi | eBackends>

Here’s a list of the file’s elements. The values that you need to fill in for a given mobile
backend can be found on the Settings and Clients pages for that mobile backend.

* nobi |l eBackends — The config file’s root element, containing one or more
mobi | eBackend elements.

* nobi | eBackend — The element for a mobile backend.
* nbeName — The name of the mobile backend associated with your app.

e nbeVersi on — The version number of your app (for example, 1. 0).

6-4

Chapter 6
Configuring SDK Properties for Android

 default — Iftrue, that mobile backend is treated as the default and thus can be
easily referenced using the get Def aul t Mobi | eBackend(Cont ext cont ext) method
in the SDK’s Mobi | eBackendManager class.

* appKey — The application key, which is a unique string assigned to your app when
you register it as a client in MCS. This key is only required if you are using
notifications. See Registering an App as a Client in MCS.

* baselUr] — The URL your app uses to connect to its mobile backend.

* networkConnecti onTi meQut — (Optional) The connection timeout value in
seconds. The default is 60 seconds. This element was added in 17.4.5.

e enabl eLogger — When set to tr ue, logging is included in your app.

* enabl eAnal yti cs — When set to t r ue, analytics on the app’s use can be
collected.

e authorization — Use the sub-elements of this element to define the
authentication the app will be using and specify the required credentials.

— offlineAut henticationEnabl ed — If set to t rue, offline login will be allowed.
For this to work, you also need to add the following to the app’s
Andr oi dMani fest . xml file:

<recei ver androi d: name="or acl e. cl oud. nobi | e. net wor k. Net wor kHel per"
<intent-filter>
<action androi d: name="andr oi d. net. conn. CONNECTI VI TY_CHANGE" />
<lintent-filter>
</receiver>

— authenticationType — Define the kind of authentication mechanism being
used to connect your app to MCS. Possible values are oaut h (for OAuth
Consumer) , basi ¢ (for HTTP Basic), sso, t okenAut h (for SSO token
exchange), and f acebook (for logging in with Facebook credentials). If this
element isn't specified, OAuth Consumer is used. The other contents and sub-
elements of the aut hori zat i on element depend on the type of authentication.

OAuth Consumer

For OAuth, set the value of the <aut hent i cati onType> element to oaut h and fill in the
OAuth credentials provided by the mobile backend.

» 0Aut hTokenEndPoi nt — The URL of the OAuth server your app goes to, to get its
authentication token.

* oAuthdient|d— The unique client identifier assigned to all apps when they're
first created in your mobile backend.

e oAuthdient Secret — The unique secret string assigned to all apps they're first
created in your mobile backend.

The resulting aut hor i zat i on element might look something like this:

<aut hori zation>
<of f1i neAut henti cati onEnabl ed>t rue</ of f| i neAut hent i cati onEnabl ed>
<aut henti cati onType>oaut h</ aut henti cationType>
<oaut h>
<oAut hTokenEndPoi nt >ht t p: // oam server. or acl e. conf oam oaut h2/ t okens</
oAut hTokenEndPoi nt >

ORACLE 6-5

ORACLE

Chapter 6
Configuring SDK Properties for Android

<o0Aut hd i ent | d>f 2d3cabc- 7e6f - 4d1c- aabc- a2f 3caf 7ec4e</ oAut hd i ent | d>
<oAut hC i ent Secr et >vZMRkgni | bhNUi PnSRT2</ oAut hd i ent Secr et >
</ oaut h>
</ aut hori zati on>

Enterprise SSO

For SSO, set the value of the <aut hent i cati onType> element to sso, fill in the OAuth
credentials provided by the mobile backend, and add the ssoTokenEndpoi nt .

The resulting aut hori zat i on element might look something like this:

<aut hori zati on>
<of fI'i neAut henti cat i onEnabl ed>t rue</ of f | i neAut henti cat i onEnabl ed>
<aut henti cationType>sso</ aut henticati onType>
<oaut h>
<oAut hTokenEndPoi nt >host / mobi | e/ pl at f or m sso/ t oken</ oAut hTokenEndPoi nt >
<oAut hd i ent >f 2d3cabc- 7e6f - 4d1c- aabc- a2f 3caf 7ec4e</ oAut hd i ent >
<oAut hC i ent Secr et >vZMRkgni | bhNUi PnSRT2</ oAut hd i ent Secr et >
<ssoTokenEndpoi nt >ht t ps: // devel opnent -
mespntrial 90. mobi | eenv. oracl e. com 443/ mobi | e/ pl at f or m sso/ t oken</
ssoTokenEndpoi nt >
</ oaut h>
</ aut hori zati on>

SSO with a Third Party Token

For SSO with a third-party token, set the value of the <aut henti cati onType> element
to t okenAut h. You also need to fill in authentication credentials provided by the mobile
backend, depending on how you have integrated the token issuer.

If you are using JWT tokens and have integrated the token issuer by registering a
configuration via a policy in MCS, you need to nest the mobile backend’s OAuth
credentials. The resulting aut hori zat i on element might look something like this:

<aut hori zation>
<of f1i neAut henti cati onEnabl ed>t rue</ of f| i neAut henti cati onEnabl ed>
<aut henti cati onType>t okenAut h</ aut henti cati onType>
<oaut h>
<oAut hTokenEndPoi nt >ht t p: // oam server. or acl e. con oam oaut h2/ t okens</
oAut hTokenEndPoi nt >
<oAut hC i ent | d>f 2d3cabc- 7e6f - 4d1c- aabc- a2f 3caf 7ec4e</ oAut hd i ent | d>
<oAut hd i ent Secr et >vZMRkgni | bhNUi PnSRT2</ oAut hdl i ent Secr et >
</ oaut h>
</aut hori zation>

If you have integrated the IdP token issuer by uploading certificates into MCS, you
need to nest the mobile backend’s HTTP Basic credentials. The resulting
aut hori zati on element might look something like this:

<aut hori zati on>
<of fI i neAut henti cati onEnabl ed>t r ue</ of f | i neAut henti cat i onEnabl ed>
<aut henti cati onType>t okenAut h</ aut henti cati onType>
<basi c>

6-6

Chapter 6
Configuring SDK Properties for Android

<mobi | eBackendl D>6d3744b8- cab2- 479¢c- 998b- ebba2c31560f </ mobi | eBackendl D>
<anonymousKey>UFJJTUVf REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ anonynousKey>
</ basi ¢>
</ aut hori zati on>

HTTP Basic

For HTTP Basic authentication, you need to set the value of the
<aut henti cati onType> element to basi ¢ and fill in the HTTP Basic auth credentials
provided by the mobile backend.

* nobi | eBackendl D— The unique identifier assigned to a specific mobile backend. It
gets passed in an HTTP header of every REST call made from your app to MCS,
to connect it to the correct mobile backend. When calling platform APIs, the SDK
handles the construction of the authentication headers for you.

e anonymusKey — A unique string that allows your app to access APlIs that don’t
require login. In this scenario, the anonymous key is passed to MCS instead of an
encoded user name and password combination.

The resulting aut hori zat i on element might look something like this:

<aut hori zati on>
<of fI i neAut henti cati onEnabl ed>t r ue</ of f | i neAut henti cat i onEnabl ed>
<aut henti cati onType>basi c</ aut henti cati onType>
<basi c>
<nobi | eBackendl D>6d3744h8- cab2- 479c- 998h- ebba2¢31560f </ nobi | eBackendl D>
<anonymousKey>UFJJ TUVFf REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ anonymousKey>
</ basi c>
</ aut hori zation>

Facebook

For Facebook login, you need to set the value of the <aut henti cati onType> element
to f acebook, fill in the HTTP Basic auth credentials provided by the mobile backend,
and add the f acebook element, where you specify the Facebook credentials.

o facebookAppl d — The Facebook application ID.

e scopes — You can use this element to specify Facebook permissions (optional).

The resulting aut hori zat i on element might look something like this:

<aut hori zati on>
<of f|i neAut henti cati onEnabl ed>t rue</ of f| i neAut henti cati onEnabl ed>
<aut henti cati onType>f acebook</ aut henti cati onType>
<basi c>
<nobi | eBackendl D>6d3744hb8- cab2- 479c- 998b- ebba2¢31560f </ nobi | eBackend| D>
<anonymousKey>UFJJTUVF REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ anonymousKey>
</ basi ¢>
<facebook>
<f acebookAppl d>123456789012345</ f acebookAppl d>
<scopes>public_profile,user _friends,emil,user_|ocation,user_birthday</
scopes>
</ f acebook>
</ aut hori zation>

ORACLE .

Chapter 6
Configuring Your Android Manifest File

Configuring Your Android Manifest File

ORACLE

Permissions for operations such as accessing the network and finding the network
state are controlled through permission settings in your application's manifest file,
Andr oi dMani f est . xmi . These permissions are required:

e perm ssion. | NTERNET — Allows your app to access open network sockets.

e perm ssion. ACCESS NETWORK STATE — Allows your app to access information
about networks.

Other permissions are optional. For example, the Analytics platform API uses location
to provide detailed information about the usage and performance of your app. If you're
including the Analytics library from the SDK, you’ll want to add these permissions as
well.

e perm ssion. ACCESS COARSE_LOCATI ON— Allows your app to access approximate
location information, derived from sources such as wi-fi and cell tower positions.

e perm ssion. ACCESS_FI NE_LOCATI ON— Allows your app to access precise location
information, derived from sources such as GPS.

For more information about permissions in your Android application, see Android
Manifest Permissions in the Google documentation.

Add the permissions at the top of your Andr oi dMani f est. xnl file, as shown in the
following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<mani fest xn ns:androi d="http://schemas. androi d. com apk/ res/ andr oi d"
package="or acl e. cl oud. mobi | e. phot obox" >
<uses- pern ssi on andr oi d: name="andr oi d. per m ssi on. | NTERNET" />
<uses- pern ssi on
andr oi d: name="andr oi d. per m ssi on. ACCESS_NETWORK_STATE" />
<uses- permn ssi on
andr oi d: name="andr oi d. per m ssi on. ACCESS_FI NE_LOCATI ON" />
<uses- permn ssi on
andr oi d: name="andr oi d. per m ssi on. ACCESS_COARSE_LOCATI ON" />
</ mani f est >

6-8

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

Chapter 6
Loading a Mobile Backend's Configuration into an Android App

< Note:

Versions of the SDK before 17.4.5 used a NetworkHelper class that is no
longer required. If your manifest file includes the following section, it can be
deleted:

<appl i cati on>
<recei ver
androi d: name="or acl e. cl oud. nobi | e. net wor k. Net wor kHel per"
<intent-filter>
<action
androi d: name="andr oi d. net . conn. CONNECTI VI TY_CHANGE" />
<lintent-filter>
</receiver>

(...)

</ application>

Adding the SDK to your application may require you to configure your

Andr oi dMani fest. xm file to add new permissions or activities. For example, if you
add the Notifications individual SDK library, you may also need to add a new
broadcast receiver. For more information, see Setting Up a Mobile App for
Notifications.

Loading a Mobile Backend's Configuration into an Android

App

For any calls to MCS APIs using the Android SDK to successfully complete, you need
to have the mobile backend’s configuration loaded from the app’s

oracl e _mobile_cloud_config.xm file. You do this using the Mobi | eBackendManager
and Mobi | eBackend classes:

Mbbi | eBackendManager . get Manager () . get Mobi | eBackend(" My_Backend_Nane")

Authenticating and Logging In Using the SDK for Android

ORACLE

Here is some sample code that you can use for authentication through MCS in your
Android apps.

OAuth Consumer

First you initialize the authorization agent and set the authentication type to CAUTH.

private AuthorizationAgent mAuthorization;

private MbileBackend nobil eBackend;

Context nmCtx = get ApplicationContext();

mobi | eBackend =

Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(mt x) ;
mAut hori zation = nobi | eBackend. get Aut hori zat i on(Aut hType. CAUTH) ;

6-9

ORACLE

Chapter 6
Authenticating and Logging In Using the SDK for Android

Then you use the aut hent i cat e method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

Text Vi ew user name, password;

username = (TextView) findViewByld(R id.usernane);

password = (TextView) findViewByld(R id.password);

String userName = usernane. get Text().toString();

String passWrd = password. get Text().toString();

mAut hori zati on. aut henti cat e(mt x, userName, passWrd, nLoginCall back);

Here's the definition for the callback.

Aut hori zationCal | back mlogi nCal | back = new Aut hori zationCal | back() {
@verride
public void onConpl eti on(Servi ceProxyException exception) {
Log. d(TAG "OnConpl etion Auth Call back");
if (exception !=null) {
Log. e(TAG "Exception while receiving the Access Token",
exception);
} else {
Log. e(TAG "Authorization successful");
}

}
}

Enterprise SSO

First you initialize the authorization agent and set the authentication type to SSO. (For
SSO third-party token exchange, see the next example.)

private AuthorizationAgent mAut horization;

private MobileBackend mobil eBackend;

Context nmCtx = getApplicationContext();

mobi | eBackend =

Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(nt x) ;
mAut hori zation = nobi | eBackend. get Aut hori zat i on(Aut hType. SSO) ;

Then you create a thread to handle the authentication call and its callback.

private final Object |ock = new Qoject();
new Thread(new Runnabl e() {
@verride
public void run() {
mAut hori zati on. aut henti cat eSSQ(nCt x, cooki es. i sChecked(), new
Aut hori zationCal | back() {
@verride
public void onConpl etion(ServiceProxyException exception) {
if (exception != null)
Logger . debug(TAG "Exception " +
exception. get Message());
el se {
Logger . debug(TAG "SSO Auth Succeeded");

6-10

Chapter 6
Authenticating and Logging In Using the SDK for Android

}

synchroni zed (1 ock) {
lock. notifyAll();

}
}
b
synchroni zed (lock) {
try {
lock.wait();

} catch (InterruptedException e) {
e.printStackTrace();

}
}
}
}).start();

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in MCS, see Third-Party SAML and JWT
Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call.

private AuthorizationAgent mAut horization;
private Mobil eBackend mobil eBackend,;

Context nCtx = get ApplicationContext();

mobi | eBackend =

Mbbi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(mt x) ;
mAut hori zation = nobi | eBackend. get Aut hori zati on(Aut hType. TOKENAUTH) ;
mAut hori zati on. aut hent i cat eUsi ngTokenExchange(nCt x, token, fal se,
m_ogi nCal | back) ;

Here’s the callback:

Aut hori zationCal | back mlogi nCal | back = new Aut hori zationCal | back() {
@verride
publ i ¢ voi d onConpl etion(ServiceProxyException exception) {
if (exception == null) {
/110g event with Analytics
mAnal yti csAgent. | ogEvent ("Login with 3rd party token
successful ly");
mAnal yti csAgent. flush();

[lredirect to another Activity after |ogin
Intent intent = new Intent(mttx, ContentActivity.class);
startActivity(intent);

} else {
Log. e(TAG "Exception during token exchange:", exception);

ORACLE 6-11

Chapter 6
Authenticating and Logging In Using the SDK for Android

finish();

};

SSO with a Third-Party Token — Staying Logged In

You can also code the app to keep the user logged in, even when closing and
restarting the app.

In the above example, the aut henti cat eUsi ngTokenExchange() method is called with
the third parameter (st or eToken) set to f al se. If you set this parameter to t r ue and
the token exchange is successful, the MCS token is stored in a secure store and the
user remains logged in until the token expires.

You can then use the | 0adSSOTokenExchange method on the Aut hori zat i on object to
load the stored token. If a token can't be retrieved from the secure store, the method
returns f al se.

Here’s some code that tries to load a saved token and, if it fails, restarts the
authentication process:

try {
mAut hori zation =

Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(nt x) . get Aut hori z
ation();
i f (!mAut horization. | o0adSSOTokenExchange(ntx)) {
[luser not logged in, so need to initiate |ogin
mAut hor i zat i on. aut hent i cat eUsi ngTokenExchange(nCt x, token, true,
m_ogi nCal | back) ;

}

When you have the token stored in the secure store, it remains associated with the
mobile backend that the app originally used. Therefore, if the app is updated to use a
different mobile backend (or mobile backend version), you need to clear the saved
token and re-authenticate.

mAut hori zati on. cl ear SSOTokenExchange(nt x) ;
mAut hori zati on. aut henti cat eUsi ngTokenExchange(mCt x, token, true,
m_ogi nCal | back) ;

" Note:

The default expiration time for a stored token that was obtained through
token exchange is 6 hours. You can adjust this time by changing the
Security_ TokenExchangeTi meout Secs policy.

HTTP Basic Authentication

The code for handling login with HTTP Basic is nearly the same as the code for
OAuth.

ORACLE 6-12

ORACLE

Chapter 6
Authenticating and Logging In Using the SDK for Android

First you initialize the authorization agent and set the authentication type to
BASI C_AUTH.

private AuthorizationAgent mAut horization;

private Mobil eBackend mobil eBackend,;

Context nCtx = get ApplicationContext();

mobi | eBackend =

Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(mt x) ;
mAut hori zation = nobi| eBackend. get Aut hori zat i on(Aut hType. BASI C_AUTH)

Then you use the aut hent i cat e method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

Text Vi ew user name, password;
username = (TextView) findViewByld
password = (TextView) findViewByld
String userName = usernane. get Text().toString();

String passWrd = password. get Text().toString();

mAut hori zati on. aut henti cate(mt x, userName, passWrd, nLoginCall back);

R id. usernane);
R id. password);

—_ e~ — —~

Here's the definition for the callback.

Aut hori zationCal | back miogi nCal | back = new Aut hori zationCal | back() {
@verride
public void onConpl eti on(Servi ceProxyException exception) {
Log. d(TAG "OnConpl etion Auth Cal | back");
if (exception !=null) {
Log. e(TAG "Exception while receiving the Access Token", exception);
} else {
Log. e(TAG "Authorization successful");
}
}
}

Facebook
For Facebook login, you use classes in the oracl e_nobi | e_androi d_soci al library.

First you initialize the authorization agent and set the authentication type to Facebook.

private AuthorizationAgent mAuthorization;

private Social Mobil eBackend soci al Mobi | eBackend;

Context nmCtx = get ApplicationContext();

soci al Mbi | eBackend =

Soci al Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(nCt x) ;
mAut hori zation = soci al Mobi | eBackend. get Aut hori zati on(Aut hType. Facebook) ;
mAut hori zati on. set Aut hType(Aut hType. Facebook) ;

Using a Cal | backManager object from Facebook’s SDK, initiate authentication.

private CallbackManager cal | backManager;
mAut hor i zat i on. set up(get Appl i cati onContext (), call back);

6-13

Chapter 6
Calling Platform APIs Using the SDK for Android

cal I backManager = mAut hori zati on. get Cal | BackManager ();
mAut hori zati on. aut henti cat eSoci al (Xt x) ;

Here’s code you can use for the cal | back that is passed above.

private FacebookCal | back<Logi nResult> cal | back = new
FacebookCal | back<Logi nResul t >() {

@verride

publ i ¢ void onSuccess(Logi nResult |oginResult) {

Log. e(TAG "facebook |ogin successful.");

}

@verride

public void onCancel () {

}

@verride

publ i ¢ voi d onError(FacebookException e) {

}
b

Override the onActi vi t yResul t () method to use the callback.

@verride
public void onActivityResult(int requestCode, int resultCode, Intent data)

{
super. onAct i vi t yResul t (request Code, resultCode, data);

cal I backManager . onAct i vi t yResul t (request Code, resultCode, data);

Calling Platform APIs Using the SDK for Android

ORACLE

Once the mobile backend’s configuration info is loaded into the app, you can make
calls to SDK classes.

The root class in the Android SDK is the Mobi | eBackendManager . An instance of
Mobi | eBackendManager manages one or morehbbi | eBackend objects. A

Mobi | eBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined. In turn, a

Mobi | eBackend instance manages instances of Servi cePr oxy. These instances
correspond to platform services in MCS (for example, Analytics, Notifications, Sync,
and so on).

The Mbi | eBackend instance retrieves the information it needs about each mobile
backend (the mobile backend name, version, and ID, as well as authentication
information) from the app’s oracl e_nobi | e_cl oud_confi g. xm file.

Here’s an example of how you would use these classes to make calls into the
Analytics API to create a new analytics event. The Servi cePr oxy instance created
here manages calls to the Analytics platform API, including the constructing of the
HTTP headers with the mobile backend credentials necessary to access the API:

byte[] imgeBytes = new byte[0];
try {

6-14

Chapter 6
Calling Custom APIs Using the SDK for Android

Anal ytics analytics =
Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(t hi s) . get Servi ceP
roxy(Anal ytics.class);
Event custonEvent = new Event ("App Submission", new Date(), null);
cust onEvent . addProperty("1mage Attached", new
Bool ean(i mageBytes.length > 0).toString());
anal ytics. | ogEvent (cust onEvent);
anal ytics. flush();
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();

}
Here’s how you could upload an image using the Storage API:

try {

Storage storage =
Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(t hi s) . get Servi ceP
roxy(Storage. cl ass);

St orageCol | ection imagesCol | ection =
storage. get St orageCol | ecti on("FI F_I nages");

St orageoj ect inmageToUpl oad = new Storageoj ect (null, imageBytes,
"imagel | peg");

St orageoj ect upl oadedl nage = i magesCol | ecti on. post (i mageToUpl oad) ;
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();

}
And here’s how you could retrieve an image using the Storage API:

try {
Storage storage =

Mbbi | eBackendManager . get Manager (). get Def aul t Mobi | eBackend(t hi s). get Servi ceP
roxy(Storage. cl ass);

St orageCol | ection i magesCol | ection =
storage. get St orageCol | ecti on("FI F_I nages");

St orageoj ect inmage = i magesCol | ection. get (" 3x4nmple- st Or 4g3- Obj 3ct -
k3y");byte[] inmageBytes = i mage. get Payl oadBytes();
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();

}...

For more information on the individual platform APIs, see Platform APIs.

Calling Custom APIs Using the SDK for Android

ORACLE

The SDK provides the Cust ontt t pResponse class, the

Ceneri cCust onCoded i ent Cal | Back interface, and the i nvokeCust onCodeJ SONRequest
method in the authorization classes to simplify the calling of custom APIs in MCS. You
can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where the
request payload is JISON or empty and the response payload is JSON or empty.

You use Generi cCust onCodeCl i ent Cal | Back to create a handler for the response
(which is returned in the form of a Cust onHt t pResponse object.)

6-15

Chapter 6
Video: Configuring an Existing Android App to Work with Mobile Cloud

Then, to call the custom API, you call

i nvokeCust omCodeJSONRequest (Gener i cCust onCoded i ent Cal | Back
restdientCall back, JSONObject data, String functionNang,
RestClient. Htt pMet hod httpMethod) on your Aut hori zat i on object.

To make a call to a custom API endpoint, you could use something like this:

i mport org.json. JSONObj ect ;

i nport oracl e. cloud. nobi | e. cust ontode. Cust ontHt t pResponse;

i nport oracle. cloud. nobi | e. cust ontode. Generi cCust onCoded i ent Cal | Back;
i mport oracl e. cloud. mobi | e. nobi | ebackend. Mobi | eBackendManager ;

final GenericCustonCodeCd ientCallBack genericCustonCoded ientCallBack =
new CGeneri cCust onCodeC i ent Cal | Back() {
@verride
public void request Conpl et ed(Cust ontHt t pResponse response, JSONChj ect
data, Exception e) {
bool ean get Response = (response. get HtpStatus() >=200 &&
response. get H t pStat us() <300);

Il wite any logic based on above response
}
b
Aut hori zati onAgent authorization =
Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(mCont ext). get Aut h
orization();

aut hori zation. aut henti cat e(nCont ext, "userl", "passl", successCall back);

/1 after the user successfully authenticates, make a call to the custom
APl endpoi nt

aut hori zati on. i nvokeCust onCodeJSONRequest (generi cCust onCodeCl i ent Cal | Back,
nul I, "TaskApi/tasks", RestCient.HttpMethod. GET);

Video: Configuring an Existing Android App to Work with
Mobile Cloud

For a demonstration on how to configure an Android app to use mobile backends and
call MCS platform APIs, see this video on YouTube channel for the Oracle Mobile
Platform:

@Video

ORACLE 6-16

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13055

I0OS Applications

ORACLE

If you are an iOS app developer, you can use the client SDK that Oracle Mobile Cloud
Service (MCS) provides for iOS. This SDK simplifies authentication with MCS and
provides Objective-C wrapper classes for MCS platform APIs.

Getting the SDK for 10S

To get the MCS client SDK for iOS, go to the Oracle Technology Network's MCS
download page.

Contents of the I0S SDK

The iOS SDK contains the following items:

Docunent ati on - Contains web-browser based documentation (htm . zi p) and a
docset for browsing and accessing context-sensitive help from Xcode

(oracl e. mobi | e. cl oud. Mobi | e_C i ent _SDK. docset . zi p). To use htmi . zi p, unzip
the file and browse the main page from i ndex. ht ml . To use the docset, unzip the
file into the usual location for Xcode docsets, typically something like ~/ Li brary/
Devel oper/ Shar ed/ Document at i on/ DocSet s, where ~ is your home directory.

This folder also contains a sample copy of the OVC. pl i st file that you will need to
add to your app and populate with the configuration details for your mobile
backend.

rel ease-i phoneos - Release versions of the static libraries and header files. Also
contains SyncStore initialization data. The static libraries are Universal (fat)
binaries that contain ar mv7* code and support both the iPhone Simulator and real
devices. The following static libraries are included:

— |ibOMCCore. a - The Core static library file shared by all iOS applications.
Contains the common libraries required by all other libraries.

— |ibOMCAnal ytics. a - The Analytics static library file, which allows you to insert
events in your code that can then be collected and analyzed from the Analytics
console.

— |ibOMCLocati on. a - The Location library, which lets you access details about
location devices that have been registered in MCS and the places and assets
they are associated with.

— |ibOMCNotifications.a- The Notifications static library file, which allows you
to set up your application to receive notifications sent from your mobile
backend.

— | i bOMCSt or age. a - The Storage static library file, which allows you to write
code to access storage collections that are set up with your mobile backend.

— |ibOMCSynchroni zati on. a - The Data Offline static library file, which allows
you to cache application data when the device running your app is

7-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html

Chapter 7
Prerequisites for Developing iOS Apps

disconnected from the network, then synchronize the data when the network
connection is reestablished.

thirdParty - The static library (I i bl DMVbbi | eSDK. a), headers, and resource
strings for the identity management (IDM) library.

ncs-tool s. zi p - The MCS Custom Code Test Tools, a set of command line tools
for debugging custom APIs that you have associated with your app's mobile
backend. Detailed instructions are located in the READVE file included in the zip.

Prerequisites for Developing 1I0S Apps

Before you start developing your app, you need to do some basic setup, such as
adding iOS SDK frameworks, modifying configuration settings, and other steps.

Here's what we assume:

You're familiar with Xcode as your development environment. If you're just
starting, see https://developer.apple.com/xcode/.

You've already obtained the following things from Apple:
— An Apple Developer account.

— A unique secure certificate installed on your Mac or iPad (that is, on the
machine where you'll be developing your app).

— An Application ID, which is used as the bundle identifier for your application in
Xcode.

— A Provisioning Profile. If you intend to install the Notifications static library from
the client SDK and receive notifications in your iOS app, your Provisioning
Profile must be enabled for notifications.

If you haven't done these things yet, see the iOS developer documentation at
http://developer.apple.com.

Note:

You can also use the client SDK with Swift apps. See Writing Swift
Applications Using the iOS SDK.

Adding the SDK to an iOS App

ORACLE

1.

Unzip the download file, oracl e_nobi | e_i os_sdk-{n}. zi p (where {n} is the
version number of the SDK) into some directory on your machine.

Drag and drop the contents of the zip to the Xcode project navigator.
* Select Copy items if heeded.

* Select Create Groups.

* Click Finish.

Once the . a file for a specific library has been copied into your application’s
development tree in Xcode, the corresponding platform API is available to your
app through SDK calls. At this point, all of the SDK’s static libraries are available to

7-2

https://developer.apple.com/xcode/
http://developer.apple.com

Chapter 7
Adding the SDK to an iOS App

your app. However, you need to complete the next steps so that the Identity
Management library works properly.

Select the target for your project, select the Build Phases tab, expand Link
Binary with Libraries, click the + button, and add the following frameworks:

e SystenConfiguration. framework

e Security.framework

e Corelocati on. framework

Add the - (bj Cflag to the Other Linker Flags settings.

Expand the Docunent at i on folder of the unpacked zip, copy the OVC. pl i st file,
and place it in the root of your app’s main application bundle.

Fill in your mobile backend environment details. See Configuring SDK Properties
for iOS.

If you are using Xcode 7 or higher, you need to account for the Application
Transport Security (ATS) policy, which enforces remote communications to be
over HTTPS.

For development purposes only, add the following key in app’s I nf 0. pl i st file to
turn off the ATS policy for the app.

<key>NSAppTr ansport Securi t y</ key>
<di ct>
<key>NSAl | owsAr bi traryLoads</ key>
<true/>
</dict>

¢ Note:

You shouldn't use this setting in production. To make sure you provide
optimal security for your app, study Apple's documentation for
NSAppTransportSecurity and follow Apple's recommendations for
disabling ATS for specific domains and applying proper security
reductions for those domains.

I0S SDK Interdependencies

The client SDK is modular, so you can package just the libraries that your app needs.
Just be aware of the following dependencies:

ORACLE

Every app must have the | i bOMCCor e. a static library file.

If your app uses | i bOMCSt or age. a, you must also include
|'i 1 bOMCSynchroni zati on. a.

If your app uses | i | bOMCSynchr oni zat i on. a, you must also include the
SyncSt or e. mond folder, which contains initialization data.

If your app uses | i bOMCCxAEngagenent . a, you must also include
| i bOMCCxAAnal yti cs. a.

7-3

https://developer.apple.com/library/ios/documentation/General/Reference/InfoPlistKeyReference/Articles/CocoaKeys.html

Chapter 7
Configuring SDK Properties for i0OS

Configuring SDK Properties for I0S

ORACLE

To use the SDK in an iOS app, you need to add the OMC. pl i st configuration file to the
app and fill it in with environment details for your mobile backend. In turn, the SDK
classes use this information to access the mobile backend and construct HTTP
headers for REST calls made to APIs.

You package the configuration file in the root of your app’s main bundle.

Here’s an example of the contents of the OVC. pl i st file. Pay careful attention to the
hierarchy of elements.

Key Type Value
v Root Dictionary (2 items)
¥ mobileBackends Dictionary (1 item)
v FixltFast_Customer Dictionary (4 items)
appKey String ebfbcBea-9173-442b-8a5e-2fae63c64422
v authorization Dictionary (2 items)
authenticationType String oauth
v OAuth Dictionary (3 items)
tokenEndpoint String https://oam.oracle.com/oam/oauth2/tokens
clientlD String ddb7{f5a-0d86-4b4a-8164-ddad03734249
clientSecret String pFmzazXzNTBNVDyraQs7
baseURL String https://fif.cloud.oracle.com
default Boolean YES
logLevel String debug

Here’s the source code for the same example:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://ww. appl e. com
DTDs/ PropertyList-1.0.dtd"
<plist version="1.0">
<di ct>
<key>nobi | eBackends</ key>
<di ct >
<key>Fi xI t Fast _Cust omer </ key>
<di ct>
<key>def aul t </ key>
<true/>
<key>baseURL</ key>
<string>https://fif.cloud. oracle.conk/string>
<key>appKey</ key>
<string>ebf bcB8ea- 9173- 442b- 8a5e- 2f ae63c64422</ string>
<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>QAut h</string>
<key>QAut h</ key>
<di ct >
<key>t okenEndpoi nt </ key>
<string>https://oam oracl e. conf oam oaut h2/t okens</string>

7-4

ORACLE

Chapter 7
Configuring SDK Properties for iOS

<key>client | D</ key>
<string>ddb7f f 5a- 0d86- 4b4a- 8164- ddad03734249</ string>
<key>cl i ent Secr et </ key>
<string>pFrmeazXzNTBNVDyr aQs7</ string>
</dict>
</dict>
</dict>

</dict>

<key>l| ogLevel </ key>

<string>debug</string>

</dict>
</plist>

Here are the key entries in the OVC. pl i st file. You can obtain the necessary
environment details from the Settings and Clients pages of the mobile backend.

mobi | eBackends — a dictionary entry containing a nested dictionary for your
mobile backend such as Fi x| t Fast _Cust oner . (When you call OVCMbbi | eBackend
in an app, you need to supply the value of that entry as a parameter to

OVCMWobi | eBackendManager .) That entry, in turn, contains entries for appKey,
baseURL, aut henti cati onType, nobi | eBackend! D, anonynmousKey, and, optionally,
net wor kConnect i onTi meout . See the example below.

baseURL — The URL your application uses to connect to its mobile backend.

appKey — The application key, which is a unique string assigned to your app when
you register it as a client in MCS. See Registering an App as a Client in MCS. If
you have not registered the app as a client in MCS, assign a placeholder value for
this entry.

net wor kConnect i onTi neout — (Optional) The network timeout for API calls, in
seconds. Should you need to do any network performance tuning, you can add
this property, though you should use it with care. Keep in mind that app
responsiveness issues might be better addressed in the app design itself. The
default timeout is 60 seconds.

| ogLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is err or . Other possible values (in increasing level of detail) are
war ni ng, i nf o, and debug. It is also possible to set the value to none.

| ogHTTPRequest Body — When set to t r ue, the SDK will also log the HTTP and
HTTPS headers and body in the requests to MCS.

| ogHTTPResponseBody — When set to t r ue, the SDK will also log the HTTP and
HTTPS headers and body in responses from MCS.

aut hori zati on — Use this key to define the type of authentication the app will be
using and specify the required credentials. The contents and sub-elements of the
aut hori zati on key depend on the type of authentication.

— authenticationType — Defines the type of authentication mechanism being
used in your mobile application. Possible values are QAut h (for OAuth
Consumer), basi ¢ (for HTTP Basic), SSO, SSOTokenExchange and Facebook.
Include a dictionary for each supported authentication type with the required
credentials as explained in the sections that follow.

— of flineAuthenticationEnabl ed — If setto t rue, offline login will be allowed.
Offline login is not supported for OAuth so this key will be ignored.

7-5

Chapter 7
Configuring SDK Properties for iOS

OAuth Consumer

For OAuth, set the value of the aut hent i cati onType property to OAut h and fill in the
OAuth credentials provided by the mobile backend.

e tokenEndpoi nt — The URL of the OAuth server your application goes to, to get its
authentication token.

« clientl D— The unique client identifier assigned to all applications when they're
first created in your mobile backend.

* clientSecret — The unigue secret string assigned to all applications when
they're first created in your mobile backend.

The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>oaut h</string>
<key>QAut h</ key>
<di ct>
<key>t okenEndpoi nt </ key>
<string>https://oam oracl e. conf oan oaut h2/t okens</stri ng>
<key>client | D</ key>
<string>ddb7ff 5a- 0d86- 4b4a- 8164- ddad03734249</ stri ng>
<key>cl i ent Secr et </ key>
<string>pFnzazXzNTBNVDyr aQs7</ string>
</dict>
</dict>

SSO

For SSO, set the value of the aut henti cati onType property to SSOand fill in the OAuth
credentials provided by the mobile backend. (For t okenEndpoi nt , you use the mobile
backend’s OAuth token endpoint.)

The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>SSO</ string>
<key>SSO</ key>
<di ct >
<key>t okenEndpoi nt </ key>
<string>https://oamserver. oracle.com oanl oaut h2/t okens</stri ng>
<key>client | D</ key>
<string>ddb7f f 5a- 0086- 4b4a- 8164- ddad03734249</ string>
<key>cl i ent Secr et </ key>
<string>pFmeazXzNTBNVDyr aQs7</ stri ng>
</dict>
</dict>

ORACLE 7-6

ORACLE

Chapter 7
Configuring SDK Properties for iOS

SSO with a Third-Party Token

For SSO with a third-party token, set aut hent i cati onType to SSOTokenExchange and
fill in the appropriate credentials. You also need to fill in auth credentials provided by
the mobile backend, depending on how you have integrated the token issuer.

If you are using JWT tokens and have integrated the token issuer by registering a
configuration via a policy in MCS, you need to nest the mobile backend’s HTTP Basic
credentials and then include the mobile backend’s OAuth credentials as a separate
key. The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>SSOTokenExchange</ string>
<key>SSOTokenExchange</ key>
<di ct >
<key>nobi | eBackendl D</ key>
<string>ddb7f f 5a- 0d86- 4b4a- 8164- ddad03734249</ string>
<key>anonynousKey</ key>

<st ri ng>UFJJTUVF REVDRVBUSUNPTI 9NTOJJ TEVF QUSPTI | NT1VTXOFQUEI EOnZr ZWxUmwant
wbTdu</string>
</dict>
<key>QAut h</ key>
<di ct >
<key>t okenEndpoi nt </ key>
<string>https://p2mbl1813rclf.identity. dcl.c9dev2. oracl ecorp. com oam
oaut h2/t okens</string>
<key>cl i ent | D</ key>
<string>c437cled-fef 0- 4e88- 802c- b85525f a0d6d</ st ri ng>
<key>cl i ent Secr et </ key>
<string>M HoeHcRr W DLi KcHIC8</ st ri ng>
</dict>
</dict>

If you have integrated the IdP token issuer by uploading certificates into MCS, you
need to nest the mobile backend’s HTTP Basic credentials. The resulting
aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>SSOTokenExchange</ st ri ng>
<key>SSOTokenExchange</ key>
<di ct>
<key>nobi | eBackendl D</ key>
<string>ddb7f f 5a- 0086- 4b4a- 8164- ddad03734249</ stri ng>
<key>anonynousKey</ key>

<st ri ng>UFJJ TUVF REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | NT1VTXOFQUEl EOnZr ZW x Umwiank
wbTdu</ st ring>

7-7

Chapter 7
Loading a Mobile Backend's Configuration into an iOS App

</dict>
</dict>

HTTP Basic

For HTTP Basic authentication, set the value of the aut henti cati onType property to
basi ¢ and fill in the HTTP Basic credentials provided by the mobile backend.

e nobi | eBackendl D— The unique identifier assigned to a specific mobile backend. It
gets passed in an HTTP header in every REST call made from your application to
MCS, to connect it to the correct mobile backend. When calling platform APIs, the
SDK handles the construction of the nobi | eBackend! D header for you.

e anonymusKey — When using HTTP Basic authentication, a unique string that
allows your app to access APIs that don’t require login. In this scenario, the
anonymous key is passed to MCS instead of an encoded user name and
password combination.

You can also enable offline login for Basic authentication by setting the
of fI i neAut henti cati onEnabl ed property to true.

The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>Basi c</string>
<key>of f | i neAut henti cati onEnabl ed</ key>
<true/>
<key>Basi c</ key>
<di ct>
<key>anonymousKey</ key>

<st ri ng>UFJJTUVE REVDRVBUSUNPTI 9NTOJJ TEVF QUSPTI | NT1VTXOFQUEI EOM 6LmQxd Tl CaWF
rd2Nz</ string>
<key>nobi | eBackendl D</ key>
<string>4f b9cabd- dOe2- 40f 8- 87b5- d2d44cdd7¢c68</ st ring>
</dict>
</dict>

Loading a Mobile Backend's Configuration into an i0S App

ORACLE

For any calls to MCS APIs using the iOS SDK to successfully complete, you need to
have the mobile backend'’s configuration loaded from the app’s OVC. pl i st file. You do
this using the OMCMbbi | eBackend class:

/**

* Returns the nobile backend named "FixltFast _Custoner” that is
configured in the OMC.plist file

*|

- (OVCMobi | eBackend *) nyMobi | eBackend{

return [[OMCMbbi | eBackendManager shar edManager]
mobi | eBackendFor Nane: @ Fi x| t Fast _Cust omer "] ;

7-8

Chapter 7
Authenticating and Logging In Using the SDK for iOS

Authenticating and Logging In Using the SDK for I0S

ORACLE

Here is are some methods you can use for authentication through MCS in your iOS
apps. All of code given uses the OMCAut hori zat i on. h class and relies on the following
imports:

#i nport " OMCCor e/ OMCAut hori zati on. h"
#i nport " OMCCor e/ OMCMbbi | eBackend. h"
#i nport " OMCCor e/ OMCMbbi | eBackendManager . h"

OAuth Consumer and HTTP Basic

You can use the following method to handle a user logging in with a user name and
password.

- (void) authenticate: (NSString *)userName
password: (NSString *)password
conpl etionBl ock: (OMCAut hori zat i onAut hConpl et i onBI ock)
conpl eti onBl ock;

This method terminates the connection to MCS and clears the user name and
password from the iOS keychain:

-(void) logout: (OMCAuthorizationLogout ConpletionBlock) conpletionBl ock;

SSO

For apps that allow login through enterprise SSO, use:

-(void) authenticateSSO (U ViewController*) presentingViewController
cl ear Cooki es: (BOCQL) cl ear Cooki es
conpl eti onBl ock: (OMCAut hori zat i onAut hConpl et i onBl ock)
conpl eti onBl ock;

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in MCS, see Third-Party SAML and JWT
Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call.

-(voi d) authenticat eSSOTokenExchange: (NSString*) token
st oreAccessToken: (BOOL) storeToken
conpl etionBl ock: (OMCAut hori zat i onAut hConpl et i onBl ock)
conpl eti onBl ock;

7-9

Chapter 7
Authenticating and Logging In Using the SDK for iOS

-(NSError*) authenticateSSOTokenExchange: (NSString*) token
st oreAccessToken: (BOOL) st oreToken;

SSO with a Third-Party Token — Staying Logged In

You can also code the app to keep the user logged in, even when closing and
restarting the app.

In the aut hent i cat eSSOTokenExchange method, if st or eAccessToken is set to YES, the
token is stored in secure store and the user remains logged in until the token expires.

You can use the | 0adSSOTokenExchange() method in the app launch sequence to load
the token from the keychain. (If a token can'’t be retrieved, the method returns NO).

Here’'s some code that tries to load a saved token and, if it fails, restarts the
authentication process:

OMVCAut hori zation* auth;
if ([auth | oadSSOTokenExchange]){
NSLog(@ ## Token al ready found, login skipped.");

}
el sef
[aut h aut henti cat eSSOTokenExchange: t hi rdPartyToken
st oreAccessToken: YES
conpl etionBl ock: ~(NSError * _Nullable error) {
if(error){
'/ Show error popup
}
el se{
/1 Login success.
}
H
}

When you have the token stored in the secure store, it remains associated with the
mobile backend that the app originally used. Therefore, if the app is updated to use a
different mobile backend (or mobile backend version), you need to clear the saved
token (using cl ear SSOTokenExchange) and re-authenticate.

< Note:

The default expiration time for a stored token that was obtained through
token exchange is 6 hours. You can adjust this time by changing the
Security_TokenExchangeTi meout Secs policy.

ORACLE 7-10

Chapter 7
Calling Platform APIs Using the SDK for iOS

Calling Platform APIs Using the SDK for i0S

ORACLE

Once the mobile backend’s configuration info is loaded into the app, you can make
calls to SDK classes based on the iOS Core library classes.

The iOS Core library (I i bOMCCor e. a) provides three public interfaces that are common
across all other iOS libraries:

e OMCMbbi | eBackendManager
e OMCMbbi | eBackend
o OMCServi ceProxy

The root class in the SDK is the OMCMbbi | eBackendManager . An instance of

OVCMbbi | eBackendManager manages one or more OMCMVbbi | eBackend objects. An
OMCMbbi | eBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined. In turn, an

OMCMobi | eBackend instance manages instances of OMCSer vi cePr oxy. These instances
correspond to platform services in MCS (for example, Analytics, Notifications, and so
on).

It retrieves the information it needs about each mobile backend (the mobile backend
name and ID, as well as authentication information) from the app’s OVC. pl i st file.

Here’s an example of using these classes to call APIs.

/1 Get nobile backend, here "FixltFast_Customer" is your backend name
fromthe OMC. plist configuration.

OMCMbbi | eBackend* mbe = [[OMCMbbi | eBackendManager shar edManager]

mobi | eBackendFor Name: @ Fi x| t Fast _Cust omer™];

/I Authenticate with your credentials; if returns nil, then authenticated
successful l'y.
NSError* error = [nbe.authorization authenticate: @usernanme”
password: @ password"];
/1 Get analytics client
OMCAnal ytics* analytics = [nbe anal ytics];

/1 Get storage client
OMCSt or age* storage = [nbe storage];

[/ Cet notifications client
OMCNot i fications* notifications = [nbe notifications];

To access the required headers to compile the preceding code, you need to import the
following headers into your code:

#i nport "OMCMobi | eBackend. h"

#i nport " OMCMbbi | eBackendManager . h"

#i nport "OMCAut hori zation. h"

#i nport "OMCAnal ytics. h"

#i nport " OMCMbbi | eBackend+OMC_Anal yti cs. h"
#i nport "OMCSt or age. h"

7-11

Chapter 7
Calling Custom APIs Using the SDK for iOS

#i nport " OMCMbbi | eBackend+OMC_St or age. h"
#inport "OMCNotifications. h"
#i nport " OMCMbbi | eBackend+OMC Noti fi cations”

Note:

Methods written in Objective-C that are used in the MCS SDK for iOS can
also be mapped to Swift. For more information, see Writing Swift
Applications Using Mobile Client SDK.

Calling Custom APIs Using the SDK for 10S

ORACLE

The SDK provides the OMCCust onCodeC i ent class to simplify the calling of custom
APIs in MCS. You can call a REST method (GET, PUT, POST, or DELETE) on an

endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

Using this class, you invoke a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

In addition you can provide a completion handler to be called when the method
invocation is complete (meaning that the handler runs asynchronously).

If the completion handler is set, it will be invoked in the Ul (main) thread upon
completion of the method invocation, allowing update of Ul items. The completion
block will contain the format-specific data for a JSON object, namely an NSDi ct i onary
or NSArr ay. Use the completion block for any returned data or errors, HTTP or system.

All of the required MCS headers, such as Aut hori zat i on (assuming the user has
authenticated), will automatically be inserted into the request.

Use of OMCCust onCodeCl i ent might look something like this:

#i nport " OMCCor e/ OMCMbbi | eBackend. h"
#i nport " OMCCor e/ OMCCust onCodeC i ent . h"

/1 A GET, PUT, POST, or DELETE nethod may be specified here - sent or
returned JSON data object may be nil as appropriate.
OMCMbbi | eBackend *backend = ...
OMCCust omCodeCl i ent *ccC ient = backend. cust onCoded i ent;
NSDi ctionary *jsonPayload = @ @ nyKey", @nyVal ue"};
[ccCient invokeCustonRequest: @ API2/endpoint2"
net hod: " @UT"
data: jsonPayl oad,
conpl etion: ~(NSError* error,
NSHTTPURLResponse *response,
id responseData) {
Il error will be nil if no problems occurred, otherwise it wll
contain the error object
Il response will be conplete HTTP response
Il response data will be Map or Array for JSON object if success

7-12

Chapter 7
Video: Configuring an Existing i0S App to Work with Mobile Cloud

or nil if error

H

Video: Configuring an Existing i0S App to Work with Mobile
Cloud

For a demonstration on how to configure an iOS app to use mobile backends and call
MCS platform APIs, see this video on YouTube channel for the Oracle Mobile
Platform:

'®' Video

ORACLE' 713

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13056

Cordova Applications

If you develop hybrid apps based on the Apache Cordova framework, you can use the
client SDK that Oracle Mobile Cloud Service (MCS) provides for Cordova. This SDK
simplifies authentication with MCS and provides Cordova wrapper classes for MCS
platform APIs as well as libraries for Data Offline and Sync and Sync Express.

If you are new to Cordova itself and still need to set it up on your system, you can
follow the Getting Started with JET Hybrid Apps tutorial for an end-to-end look at
creating a Cordova app and connecting it with a mobile backend.

Note:

This SDK supports Cordova apps for the iOS and Android platforms. Apps
for Microsoft Windows are not supported.

Getting the SDK for Cordova

To get the MCS client SDK for Cordova, go to the Oracle Technology Network’s MCS
download page.

Contents of the Cordova SDK Bundle

ORACLE

The Cordova SDK contains the following items:

e jsdocs. zi p— The compiled documentation for the library.

e nts.js — The uncompressed version of the SDK. This version contains code
comments and is best used as you are developing and debugging your app.

* nts.sync.js — The uncompressed version of the SDK Data Offline and Sync and
Sync Express libraries.

e nts.nin.js — The compressed version of the SDK. Use this version when you
deploy the completed app.

e nts.sync.mn.js — The compressed version of the SDK Data Offline and Sync
and Sync Express libraries.

e oracle_mobile_cloud_config.js — An MCS configuration file, in which you can
insert environment and authentication details for the mobile backends that your
app will access.

e oracle mobile js sdk _cookies _cordova_pl ugi n[VERSI O] . zi p — A Cordova
plugin that's necessary if you are developing Cordova apps that authenticate with
MCS via SSO.

* \pako — This folder includes the pako JavaScript library, which is required to use
SSO with a third-party token.

8-1

https://apexapps.oracle.com/pls/apex/f?p=44785:24:0:::24:P24_CONTENT_ID,P24_PREV_PAGE:16851,1
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html

Chapter 8
Adding the SDK to a Cordova App

* nts-tools.zip-The MCS Custom Code Test Tools, a set of command line tools
for debugging custom APIs that you have associated with your app's mobile
backend. Detailed instructions are located in the README file included in the zip.

Adding the SDK to a Cordova App

1. If you haven't already done so, unzip the Cordova SDK zip.

2. Copynts.nin.js andoracl e_nobile_cloud _config.js into the directory where
you keep your JavaScript libraries.

3. Fill in your mobile backend details in oracl e_mobi | e_cl oud_config.js. See
Configuring SDK Properties for Cordova.

4. If you will be using SSO or Facebook authentication in your apps, add the Cordova
i nappbr owser to your project:

cordova plugin add cordova- pl ugi n-i nappbr owser -save
5. If you will be using SSO in your apps, install the
oracl e_mobi | e_j s_sdk_cooki es_cordova_pl ugi n plugin:
a. Unzip oracl e_nobil e_js_sdk_cooki es_cordova_pl ugi n[VERSI ON . zi p.

b. Atthe command line, type:

cordova plugin add <PLUG N_FOLDER>

where <PLUGIN_FOLDER> is the path to the unpacked plugin.

6. Load nts.mn.js inyour app using RequireJS or a HTML script tag.

Note:

In addition to nts. m n. j s, if your app uses Sync Express,

ncs. sync. min. j s must be fetched and executed as the first script in the
main page of your app, before any other script, including RequireJS. For
detailed instructions on adding Sync Express to your app, see Building
Apps that Work Offline Using Sync Express.

Configuring SDK Properties for Cordova

To use the SDK in a Cordova app, add the oracl e_nobil e_cl oud_config.js
configuration file to the app and fill it in with environment details for your mobile
backend. The SDK classes draw on this file for the details needed to access the
mobile backend and use them to construct HTTP headers for REST calls made to
APIs.

ORACLE 8-2

Chapter 8
Configuring SDK Properties for Cordova

< Note:

If any of your apps will be browser-based, you need to manage cross-origin
resource sharing (CORS) for access to MCS APIs. See Securing Browser-
Based Apps Against Cross-Site Request Forgery Attacks.

Package the configuration file in the same folder as the nts. min. j s file.

The following example shows the structure of a generic
oracl e_mobi |l e_cl oud_config.js file:

var nts_config = {
"l ogLevel ": nts.LOG LEVEL. | NFQ,
"l ogHTTP": true,
"mobi | eBackends": {
"YOUR _BACKEND NAME": {
"defaul t": true,
"baseUr|": "YOUR BACKEND BASE URL",
"applicationKey": "YOUR_BACKEND_APPLI CATI ON_KEY",
"aut horization": {
"basi cAuth": {
"backendl d": "YOUR BACKEND | D',
"anonynousToken": " YOUR_BACKEND ANONYMOUS TOKEN'

b

"oAuth": {
"clientld": "YOUR CLIENT_ID',
"clientSecret": "YOUR_C | ENT_SECRET",
"t okenEndpoi nt": "YOUR_TOKEN_ENDPQO NT"

}

"facebookAut h": {

"facebookAppl d": "YOUR_FACEBOOK APP_I D',
"backendl d": "YOUR BACKEND | D',

"anonynousToken": " YOUR_BACKEND ANONYMOUS TOKEN'

b
"ssoAut h": {
"clientld": "YOUR CLIENT_ID',
"clientSecret": "YOUR_CLIENT_SECRET",
"t okenEndpoi nt": "YOUR_TOKEN_ENDPQO NT"
b
"t okenAut h": {
"backendl d": "YCOUR BACKEND | D'
}

}
}
¥
"syncExpress": {
“handl er": "Oracl eRest Handl er",
"policies": [
{
"path": '/nobile/custonm firstApi/tasks/:id(\\d+)?",
b

{
"path": '/ nobilelcuston secondApi/tasks/:id(\\d+)?

ORACLE 8-3

ORACLE

Chapter 8
Configuring SDK Properties for Cordova

]
}
};

Here’s a list of the file’s elements. The values that you need to fill in for a given mobile
backend can be found on the Settings and Clients pages for that mobile backend. For
details on sync elements, see Building Apps that Work Offline Using Sync Express.

* |loglLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is nts. LOG_LEVEL. | NFO (where only important events are
logged). Other possible values are nts. LOG_LEVEL. ERROR (only errors are logged)
and nts. LOG_LEVEL. VERBCSE.

e | ogHTTP — When set to true, enables additional logging capability that includes
the complete HTTP headers and body in requests and responses to MCS.

* nobi | eBackends — The config file's root element, containing a JSON object for
each mobile backend.

* DbaseUr] — The URL your app uses to connect to its mobile backend.

« applicationKey — The application key, which is a unique string assigned to your
app when you register it as a client in MCS. See Registering an App as a Client in
MCS.

e authorizati on — JSON object containing the authentication details for
connecting your app to MCS. In turn, it must contain one or more objects of type
basi cAut h, oAut h, ssoAut h, t okenAut h or f acebookAut h. The contents of the
object depend on the type of authentication.

OAuth Consumer

For OAuth, nest an oAut h object within the aut hori zat i on object and fill in the OAuth
credentials provided by the mobile backend.

* clientl D— The unique client identifier assigned to all apps when they’re first
created in your mobile backend.

» clientSecret — The unigue secret string assigned to all apps they're first created
in your mobile backend.

* tokenEndpoi nt — The URL of the OAuth server your app goes to, to get its
authentication token.

The resulting aut hori zat i on property might look something like this:

"authorization": {
"oAuth": {
“client|D': "b20a34b4- e646- 44dc- a787- 3a8715f 4bb46",
“clientSecret": "chlkehuDPYsaosPEMYE2",
"t okenEndpoint": "http://abc09xyz. oracl e. com 14100/ oanf oaut h2/t okens",
}
}

HTTP Basic

For HTTP Basic, nest a basi cAut h object within the aut hori zat i on object and fill in
the HTTP Basic credentials provided by the mobile backend.

8-4

ORACLE

Chapter 8
Configuring SDK Properties for Cordova

* backendl d — The unique identifier assigned to a specific mobile backend.

e anonymousToken — A unique string that allows your app to access APlIs that don’t
require login. In this scenario, the anonymous key is passed to MCS instead of an
encoded user name and password combination.

The resulting aut hori zat i on property might look something like this:

"aut horization": {

"basi cAuth": {
"backendl d": "3bl13ad5-07dc-4143-8h6a-a2ef 62al75¢c1",
"anonymousToken":

" UFJJTUVF REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | NTLVTXOFQUE! EOnZr ZW x UnwuanEwb Tdu"

}
}

SSO

For SSO, nest an ssoAut h object within the aut hori zat i on object and fill in the OAuth
credentials provided by the mobile backend. The resulting aut hori zat i on property
might look something like this:

"aut horization": {
"ssoAuth": {
"clientID': "b20a34b4-e646- 44dc- a787- 3a8715f 4bb46",
“clientSecret": "chlkehuDPYsaosPEM/E2",
"t okenEndpoint": "http://abc09xyz. oracl e. com 14100/ oam oaut h2/t okens",

}
}

SSO with a Third-Party Token

For SSO with a third-party token, nest a t okenAut h object within the aut hori zati on
object and fill in credentials, depending on how you have the token issuer integrated
with MCS.

If you are using JWT tokens and have integrated the token issuer by registering a
configuration via a policy in MCS, you need to include the mobile backend ID and the
OAuth credentials for the backend. The resulting aut hori zat i on property might look
something like this:

"aut horization": {
"t okenAuth": {
"backendl d": "3bll3ad5-07dc-4143-8h6a-a2ef 62a175¢c1",
“clientld": "b20a34b4-e646-44dc-a787- 3a8715f 4bb46",
"clientSecret": "chlkehuDPYsaosPEM/E2" }

If you have integrated the IdP token issuer by uploading certificates into MCS you just
nest the mobile backend ID. The resulting aut hori zat i on property might look
something like this:

"aut horization": {
"t okenAuth": {

8-5

Chapter 8
Loading a Mobile Backend's Configuration in a Cordova App

"backendl d": "3bll13ad5-07dc-4143-8b6a- a2ef 62a175c1",

}
}

Facebook

For Facebook login, nest a f acebookAut h object within the aut hori zat i on object, fill in
the HTTP Basic credentials provided by the mobile backend, and add the
f acebookAppl d. The resulting aut hori zat i on property might look something like this:

"aut horization": {

"basi cAuth": {
"backendl d": "3bl13ad5-07dc-4143- 8bh6a- a2ef 62a175¢cl",
"anonynmousToken":

" UFJJTUVF REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | NT1VTXOFQUE! EOnZr ZW x UnwuanEwb Tdu"
"facebookAppld": "123456789012"
}
}

Loading a Mobile Backend's Configuration in a Cordova App

For any calls to MCS APIs using the Cordova SDK to successfully complete, you need
to have the mobile backend’s configuration loaded. You do this using the
mobi | eBackendManager and nobi | eBackend objects.

The root object in the SDK is the nts. nobi | eBackendManager . The

ncts. mobi | eBackendManager object manages one or more mobi | eBackend objects. A
mobi | eBackend object is used to manage connectivity, authentication, and other
interactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined.

Use nmobi | eBackendManager . set Conf i g to specify a configuration, defined in a local
JavaScript object or in the app’s oracl e_nobi | e_cl oud_config. | s file. This
configuration includes info such as the mobile backend name and version, base URL,
and authentication details.

Here’s some code you can insert into the app class to retrieve data from the
oracl e _mobile_cloud_config.js file:

function initializeMCS(){
ncs. mobi | eBackendManager . pl at f orm = new nts. CordovaPl at form();
ncs. mobi | eBackendManager . set Confi g(ncs_config);
backend = nts. nobi | eBackendManager . get Mobi | eBackend(" YOUR_BACKEND NAME") ;
i f(backend !'= null){
backend. set Aut henti cati onType("oAuth");

}
}

Authenticating and Logging In Using the SDK for Cordova

ORACLE

Here are some examples of using the Cordova SDK'’s Aut hori zat i on class.

8-6

ORACLE

Chapter 8
Authenticating and Logging In Using the SDK for Cordova

OAuth and HTTP Basic

Get the mobile backend and set the authentication type to oAut h (or basi cAut h).

function initializeMCS(){
mcs. mobi | eBackendManager . pl at f orm = new nts. Cor dovaPl at form();
mcs. mobi | eBackendManager . set Confi g(ncs_config);
ncsBackend =
mcs. mobi | eBackendManager . get Mobi | eBackend(" YOUR_BACKEND NAME") ;
i f(mcsBackend !'= null){
nmcsBackend. set Aut henti cati onType(" oAuth");

}
}

Then add a function that calls Aut hori zati on. aut hent i cat e and pass it the MCS
mobile backend and a user name and password.

function |ogin(usernanme, password){
return ncsBackend
.authorization
.authenticate(usernane, password)
.then(succeed)
.catch(failed);

function succeed(response){
| ogAnal yticsEvent();
consol e. | og(response. statusCode + " with nessage:
return response;

}

function failed(response){
consol e. | og(response. statusCode + " with nessage:
return response;

}
}

n

+ response. dat a);

n

+ response. dat a);

SSO

Get the mobile backend and set the authentication type to ssoAut h.

function initializeMCS(){
ncs. nobi | eBackendManager . pl at f orm = new ncs. CordovaPl at f orn() ;
ncs. nobi | eBackendManager . set Confi g(ncs_config);
mcsBackend =
mecs. mobi | eBackendManager . get Mobi | eBackend(" YOUR_BACKEND NAME") ;
if (nmcsBackend !'= null) {
ncsBackend. set Aut henti cati onType("ssoAuth");
}
b

8-7

ORACLE

Chapter 8
Authenticating and Logging In Using the SDK for Cordova

Then add a function that calls Aut hori zat i on. aut henti cat e.

function ssoLogin() {
mcsBackend. aut hori zation. aut henticate(). t hen(
function (response) {
consol e. | og(response. st at usCode +
}) . catch(
function (response) {
consol e. | og(response. st at usCode +

i

n n

with nmessage: " + response.data);

n n

with message: " + response.data);

SSO with a Third-Party Token

To use SSO with a third-party token, first your app needs to get a token from the third-
party token issuer. The way you can obtain the token varies by issuer. For detailed
information on obtaining third-party tokens and configuring identity providers in MCS,
seeThird-Party SAML and JWT Tokens.

Get the mobile backend and set the authentication type to t okenAut h.

function initializeMCS(){
ncs. nobi | eBackendManager . pl at f orm = new nts. Cor dovaPl at f orn() ;
ncs. nobi | eBackendManager . set Confi g(ncs_config);
ncsBackend =
mcs. mobi | eBackendManager . get Mobi | eBackend(" YOUR BACKEND NAME") ;
if (ncsBackend !'= null) {
nmcsBackend. set Aut henti cati onType("t okenAuth");
}
b

Then pass the token you got from the third-party token issuer to a function that calls
Aut hori zati on. aut henti cat e.

function ssoLogi nToken() {
mcsBackend. Aut hori zati on. aut henti cat e(t hi rdPartyToken) .t hen(
function() {
consol e. | og("MCS aut henticate() worked");
}
). catch(

function() {

consol e. | og("MCS aut henticate() FAILED");

1

Facebook

Get the mobile backend and set the authentication type to f acebookAut h.

function initializeMCS(){
ncs. nobi | eBackendManager . pl at f orm = new nts. CordovaPl at form();
mcs. nobi | eBackendManager . set Confi g(ncs_config);
ncsBackend =

ncs. nobi | eBackendManager . get Mobi | eBackend(" YOUR BACKEND NAME") ;

8-8

Chapter 8
Setting Up a Cordova App for FCM or GCM Notifications

if (nmcsBackend !'= null) {
ncsBackend. set Aut henti cati onType("facebookAuth");

}1
Then add a function that calls Aut hori zat i on. aut henti cat e.

function facebookLogin() {
mcsBackend. aut hori zation. aut henticate(). t hen(
function (response) {
consol e. | og(response. st at usCode +
}) . catch(
function (response) {
consol e. | og(response. st at usCode +

i

with message: " + response.data);

with message: " + response.data);

Setting Up a Cordova App for FCM or GCM Notifications

If you want to use Firebase Cloud Messaging (FCM) or Google Cloud Messaging
(GCM) in a Cordova app, follow the instructions below.

For more information on using notifications in MCS, see Natifications.

FCM

These steps configure a Cordova app to use Firebase Cloud Messaging (FCM).

1. Create a project in Firebase. Record the Server Key and Sender ID (Project
Number), and download the googl e- servi ce. j son file. For details on setting up a
Firebase project, see Set Up a Firebase Cloud Messaging Client App on Android
on Google’s developer site.

2. Create a client for your mobile app and configure notifications profile(s) by entering
the credentials you got in step 1. See Client Management.

3. Copy the googl e- servi ce. j son file you downloaded in step 1 to the root of your
project, typically app/ .
4. Add following lines to the application config.xml in the pl at f or mtag for Android:

e cordova-android 7.0 or above:

<pl at f or m nane="andr oi d" >

<resource-file src="googl e-services.json" target="app/googl e-
services.json" />
</pl atfornp

e cordova-android 6.x or earlier:
<pl at f or m name="andr oi d" >
<resource-file src="googl e-services.json" target="googl e-

services.json" />
</platfornp

ORACLE 8-9

https://firebase.google.com/docs/cloud-messaging/android/client

ORACLE

Chapter 8
Setting Up a Cordova App for FCM or GCM Notifications

5. Add the phonegap- pl ugi n- push Cordova plugin to your application.
cordova plugin add phonegap- pl ugi n- push
6. From the application code, after the device ready event, register the device.

const push = PushNotification.init({
android: { }
1K

push.on('registration', (data) => {

backend. notifications.regi sterForNotifications(data.registrationld,
appl d, appVersion, 'FCM);
1)

push.on('notification', (data) => {
/'l data. message,
/] data.title,
/'l data.count,
/'l data. sound,
/'l data.inmage,
/1 data.additional Data
consol e. | og(data);

1

push.on('error', (e) => {
consol e. error(e. nessage) ;

19K
function success(data) {
consol e. | og(' Regi stered successfully');

}

7. For next steps and more information, see Setting Up Android Notifications and
Sending Notifications to and from Your App.

GCM

These steps configure a Cordova app to use Google Cloud Messaging (GCM).

" Note:

Google Cloud Messaging (GCM) is being phased out, so new apps should
be configured with FCM.

1. Open your project in Google console and record the API Key and Sender ID
(Project Number).

2. Create a client for your mobile app and configure notifications profile(s) by entering
the credentials you got in step 1. See Client Management.

8-10

Chapter 8
Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks

Add the phonegap- pl ugi n- push Cordova plugin to your application.

cordova plugin add phonegap- pl ugi n- push@1.9.0 --variable
SENDER_| D="SENDER | D_FROM FI RST_STEP"

From the application code, after the device ready event, register the device.

const push = PushNotification.init({
androi d: {
sender | D; " SENDER | D_FROM FI RST_STEP"
}
1)

push.on('registration', (data) => {

backend. notifications.regi sterForNotifications(data.registrationld,
appl d, appVersion, 'GCM);
1)

push.on('notification', (data) => {
/'l data. message,
/] data.title,
/'l data.count,
/'l data. sound,
/'l data.inmage,
/1 data.additional Data
consol e. | og(data);

1

push.on('error', (e) =>{
consol e. error(e. nessage) ;
1}
function success(data) {
consol e. | og(' Regi stered successfully');

}

For next steps and more information, see Setting Up Android Notifications and
Sending Notifications to and from Your App.

Securing Browser-Based Apps Against Cross-Site Request
Forgery Attacks

ORACLE

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to MCS APIs to protect against Cross-Site Request
Forgery (CSRF) attacks. Do this by setting the Security_A | owOri gi n environment to
either di sal | ow (the default value) or to a comma-separated whitelist of trusted URLs
from which cross-site requests can be made. For more information and details on how
to use the wildcard character (*), see Securing Cross-Site Requests to MCS APIs.

8-11

Chapter 8
Calling Platform APIs Using the SDK for Cordova

< Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security AllowOrigintohttp://local host:[port], butbe sure to update
the value in production.

Calling Platform APIs Using the SDK for Cordova

ORACLE

Once you include the SDK libraries in your application, and adjust configuration
settings, you're ready to use the SDK classes in your apps.

The root object in the Cordova SDK is the nts. mobi | eBackendManager . An instance of
ncs. mobi | eBackendManager manages one or more nobi | eBackend objects. A

nmobi | eBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined. In turn, a

mobi | eBackend instance manages instances of Ser vi cePr oxy. These instances
correspond to platform services in MCS (for example, Analytics, Notifications, Offline
Data, and so on).

Here’s an example of how you could use these classes to get a Storage collection in
the mobile backend, create a storage object (in this case, a text file), and then upload
that object to the collection. The code here manages calls to the Storage API,
including the constructing of the HTTP headers with the mobile backend credentials
necessary to access the API:

var backend;
var collection_id = ' YOUR STORAGE COLLECTI ON_NAME' ;

function uploadTextFile() {

return getCol |l ection()
.then(success);

function success(col | ection){
var obj = new nts. Storageject(collection);
obj . set Di spl ayNane("JSFil e. txt");
obj . | oadPayl oad("Hel o World from Oracle Mbile Coud Service Cordova
SDK", "text/plain");

return post Object(collection, obj).then(function(object){

return readChject(col l ection, object.id);

¥
}

}

function getCollection(){
[/return a storage collection with the nane assigned to the
collection_id variable.
return backend
.storage
.getCol l ection(collection_id, null)

8-12

Chapter 8
Calling Custom APIs Using the SDK for Cordova

.then(onCet Col | ecti onSuccess)
.catch(onGet Col | ecti onFai | ed);

function onGet Col | ecti onSuccess(collection){
consol e. | og(' onGet Col | ecti onSuccess:', collection);
return coll ection;

}

function onGet Col | ecti onFail ed(response){
consol e. | og(' onGet Col | ectionFailed:', response);
return response. st at usCode;
}
}

function postChject(collection, obj){
return col | ection
. post Obj ect (obj)
.t hen(onPost bj ect Success)
. cat ch(onPost Qbj ect Fai | ed) ;

function onPost Qbj ect Success(object){
consol e. | og("' onPost (hj ect Success:', object);
return object;

}

function onPost Qbj ect Fai | ed(response) {
consol e. | og(' onPost (hj ect Fail ed: ', response);
return response. st at usCode;
}
}

For more information on the individual platform APIs, see Platform APIs.

Calling Custom APIs Using the SDK for Cordova

ORACLE

The SDK provides the Cust onCode class to simplify the calling of custom APIs in MCS.
You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where
the request payload is JSON or empty and the response payload is JSON or empty.

To call a custom API endpoint, you could use something like this:

mcs. mobi | eBackendManager . pl at f orm = new nts. CordovaPl at f orn() ;
mcs. mobi | eBackendManager . set Confi g(nts_config);
backend = nts. nobi | eBackendManager . get Mobi | eBackend(" Cor dovaJSBackend");

backend. Cust onCode. i nvokeCust omCodeJ SONRequest (" TaskApi 1/t asks/ 100" ,
"GET" , null).then(function(response){

/1 The response paranmeter returns the status code and HTTP payl oad from
the HTTP REST Cal |.

consol e. | og(response) ;

Il Exanple: { statusCode: 200, data: {} }

I/ Depends on the response format defined in the API.

}).catch(function(response){

8-13

ORACLE

Chapter 8
Calling Custom APIs Using the SDK for Cordova

/1 The response paraneter returns the status code and HTTP payl oad, if
available, or an error message, fromthe HTTP REST Call.
consol e. | og(response);
/*
Exanpl e:
{ statusCode: 404,
data: {
"type":"http://ww. w3.org/Protocol s/rfc2616/rfc2616-
secl0. ht m #sec10. 4. 1",
"status":404,"title":"APl not found",
"detail":"We cannot find the APl cordovaJSApi 2 in Mbile Backend
Cor dovaJSBackend(1.0). Check that this Mbile Backend is associated with
the API.",
"0: ecid":"005Bojj hp2j 2FSHLI ug8yf 00052t 000Jao, 0:2",
"0: errorCode": " MBI LE-57926", "o:errorPath":"/mobil e/ cust on cordovalSApi 2/
tasks" } }
*/
/| Depends on the response format defined in the APIl.

1

8-14

JavaScript Applications

If you develop JavaScript-based mobile apps, you can use the client SDK that Oracle
Mobile Cloud Service (MCS) provides for JavaScript. This SDK simplifies
authentication with MCS and provides JavaScript wrapper classes for MCS platform
APIs.

This SDK is primarily geared toward browser-based apps but can also be used for
hybrid frameworks. If you develop Cordova-based apps, use the Cordova SDK. See
Cordova Applications.

Getting the SDK for JavaScript

To get the MCS client SDK for JavaScript, go to the Oracle Technology Network’s
MCS download page.

Contents of the JavaScript SDK Bundle

The JavaScript SDK contains the following items:

j sdocs. zi p - The compiled documentation for the library.

ncs. j s - The uncompressed version of the SDK. This version contains code
comments and is best used as you are developing and debugging your app.

ncs. sync. j s - The uncompressed version of the Sync Express library.

ncs. mn. j s - The compressed version of the SDK. Use this version when you
deploy the completed app.

ncs. sync. nin. j s - The compressed version of the Sync Express library.

oracle_mobil e_cl oud_config.js - The MCS configuration file. In this file, you
insert environment and authentication details for the mobile backends that your
app will access.

\ pako - This folder includes the pako JavaScript library, which is required to use
SSO with a third-party token.

ncs-tool s. zi p - The MCS Custom Code Test Tools, a set of command line tools
for debugging custom APIs that you have associated with your app's mobile
backend. Detailed instructions are located in the README file included in the zip.

Adding the SDK to a JavaScript App

ORACLE

If you haven't already done so, unzip the JavaScript SDK zip.

Copy nts.nin.js andoracle_nobile_cloud _config.js into the directory where
you keep your JavaScript libraries.

Fill in your backend details in oracl e_nmobi | e_cl oud_config.|s.

9-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html

Chapter 9
Configuring SDK Properties for JavaScript

Configuring SDK Properties for JavaScript

ORACLE

To use the SDK in a JavaScript app, you need to add the

oracl e_mobi | e_cl oud_confi g.js configuration file to the app and fill it in with
environment details for your mobile backend. In turn, the SDK classes draw on this file
for the details needed to access the mobile backend and use them to construct HTTP
headers for REST calls made to APIs.

You package the configuration file in the same folder as the nts. min. j s file.

The following example shows the structure of a generic
oracl e_mobil e_cl oud_config.js file:

var ncs_config = {
"l ogLevel ": nts. LOG LEVEL. | NFQ,
"l ogHTTP": true,
"nobi | eBackends": {
" YOUR_BACKEND_NAME": {
"defaul t": true,
"baseUr|": "YOUR _BACKEND BASE URL",
"applicationKey": "YOUR_BACKEND_APPLI CATI ON_KEY",
"authorization": {
"basi cAuth": {
"backendl d": "YOUR _BACKEND | D',
"anonynousToken": "YOUR_BACKEND ANONYMOUS TOKEN'

Here’s a list of the file’s elements. The values that you need to fill in for a given mobile
backend can be found on the Settings and Clients pages for that mobile backend.

* |ogLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is nts. LOG_LEVEL. | NFO (where only important events are
logged). Other possible values are nts. LOG_LEVEL. ERRCR (only errors are logged)
and nts. LOG_LEVEL. VERBOSE.

| ogHTTP — When set to true, enables additional logging capability that includes
the complete HTTP headers and body in requests and responses to MCS.

* nobi | eBackends — The config file’s root element, containing a JSON object for
each mobile backend.

e baselUr] — The URL your app uses to connect to its mobile backend.

« applicationKey — The application key, which is a unique string assigned to your
app when you register it in MCS.

e backendl d — The unique identifier assigned to a specific mobile backend.

e anonymusToken — A unique string that allows your app to access APlIs that don’t
require login. In this scenario, the anonymous key is passed to MCS instead of an
encoded user name and password combination.

9-2

ORACLE

Chapter 9
Configuring SDK Properties for JavaScript

e authorizati on — JSON object containing the authentication details for
connecting your app to MCS. In turn, it must contain one or more objects of type
basi cAut h, oAut h, or t okenAut h. The contents of the object depend on the type of
authentication.

HTTP Basic

For HTTP Basic, you need to nest an basi cAut h object within the aut hori zati on
object and fill in the HTTP Basic credentials provided by the mobile backend. The
resulting authorization property might look something like this:

"aut hori zation": {

"basi cAuth": {
"backendl d": "3bl13ad5-07dc-4143-8h6a-a2ef 62a175¢c1",
"anonymousToken":

" UFJJTUVF REVDRVBUSUNPTI 9NTOJJTEVE QUSPTI | NTIVTXOFQUE EOnZr ZW) x UmaianEwb Tdu”

}
}

OAuth Consumer

For OAuth, you need to nest an oAut h object within the aut hori zat i on object and fill
in the OAuth credentials provided by the mobile backend. The resulting authorization
property might look something like this:

"aut horization": {
"oAuth": {
"clientID': "b20a34b4-e646- 44dc- a787- 3a8715f 4bb46",
“clientSecret": "chlkehuDPYsaosPEM/E2",
"t okenEndpoint": "http://abc09xyz. oracl e. com 14100/ oan oaut h2/t okens",
}
}

SSO with a Third-Party Token

For SSO with a third-party token, nest a t okenAut h object within the aut hori zati on
object and fill in credentials, depending on how you have the token issuer integrated
with MCS.

If you are using JWT tokens and have integrated the token issuer by registering a
configuration via a policy in MCS, you need to include the mobile backend ID and the
OAuth credentials for the backend. The resulting aut hori zat i on property might look
something like this:

"aut horization": {
"tokenAuth": {
“backendl d": "3bl13ad5-07dc-4143-8h6a- a2ef 62a175c1",
“clientld": "b20a34b4-e646-44dc-a787- 3a8715f 4bbh46",
“clientSecret": "chlkehuDPYsaosPEM/E2" }

9-3

Chapter 9
Loading a Mobile Backend's Configuration into a JavaScript App

If you have integrated the IdP token issuer by uploading certificates into MCS you just
nest the mobile backend ID. The resulting aut hori zat i on property might look
something like this:

"aut horization": {
"tokenAuth": {
"backendl d": "3b113ad5- 07dc- 4143- 8h6a- a2ef 62a175¢c1",

}
}

Loading a Mobile Backend's Configuration into a JavaScript

App

For any calls to MCS APIs using the JavaScript SDK to successfully complete, you
need to have the mobile backend’s configuration loaded. You do this using the
mobi | eBackendManager and nobi | eBackend objects.

The root object in the SDK is the nts. nobi | eBackendManager . The

ncts. mobi | eBackendManager object manages one or more mobi | eBackend objects. A
mobi | eBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined.

Using mobi | eBackendManager . set Confi g, you specify a configuration that is defined in
the app’s oracl e_nobi | e_cl oud_confi g. | s file. This configuration includes info such
as the mobile backend name and version, base URL, and authentication details.

Here’s some code you can insert into the app class establish the mobile backend and
retrieve data from the oracl e_nobil e_cl oud _config. | s file.

ncs. nobi | eBackendManager . pl at f orm = new nts. Browser Pl at forn();
ncs. nobi | eBackendManager . set Confi g(nts_config);

t his. backend =
mcs. mobi | eBackendManager . get Mobi | eBackend(" YOUR BACKEND NAME") ;

Authenticating and Logging In Using the SDK for JavaScript

ORACLE

Here are some examples of how to use the Aut hori zat i on class of the JavaScript
SDK in your code.

OAuth and HTTP Basic

Get the mobile backend and set the authentication type to oAut h or basi cAut h.

function initializeMCS(){
ncs. nobi | eBackendManager . set Confi g(ncs_config);
ncsBackend =
mcs. mobi | eBackendManager . get Mobi | eBackend(" YOUR BACKEND NAME") ;
i f(ncsBackend !'= null){
ncsBackend. set Aut henti cati onType(" oAuth");

9-4

Chapter 9
Authenticating and Logging In Using the SDK for JavaScript

Then add a function that calls Aut hori zati on. aut henti cat e and pass it a user name
and password.

function |ogin(usernanme, password){

var deferred = $q.defer();

mcsBackend. Aut hori zati on. aut henti cat e(user name, password, success,
failed);

return deferred. prom se;

function success(response, dat a) {
deferred.resol ve();
| ogAnal yti csEvent();

}

function failed(statusCode, data){
deferred.reject();

}
}

SSO with a Third-Party Token

To use SSO with a third-party token, first your app needs to get a token from the third-
party token issuer. The way you can obtain the token varies by issuer. For detailed
information on obtaining third-party tokens and configuring identity providers in MCS,
see Third-Party SAML and JWT Tokens.

" Note:

Third-party token exchange requires the pako JavaScript library, so make
sure to add it to your app. Pako is distributed with the SDK in the \pako
subdirectory.

Get the mobile backend and set the authentication type to t okenAut h.

function initializeMCS(){
mcs. mobi | eBackendManager . pl atf orm = new nts. JSPl atforn();
mcs. mobi | eBackendManager . set Confi g(ncs_config);
ncsBackend =
mcs. mobi | eBackendManager . get Mobi | eBackend(" YOUR_BACKEND NAME") ;
if (nmcsBackend !'= null) {
ncsBackend. set Aut henti cati onType("t okenAuth");

}
b

ORACLE 9-5

Chapter 9
Securing Browser-Based Apps Against Cross-Site Request Forgery Attacks

Then pass the token you got from the third-party token issuer to a function that calls
Aut hori zati on. aut henti cat e.

mcsBackend. Aut hori zati on. aut henti cat e(t hi rdPartyToken) .t hen(
function() {
consol e. | og("MCS aut henticate() worked");
}
). cat ch(
function() {
consol e. | og("MCS aut henticate() FAILED');

}
);

Securing Browser-Based Apps Against Cross-Site Request
Forgery Attacks

If any of your apps will be browser-based, you need to manage cross-origin resource
sharing (CORS) for access to MCS APIs to protect against Cross-Site Request
Forgery (CSRF) attacks. Do this by setting the Security_ Al | owOri gi n environment to
either di sal | ow (the default value) or to a comma-separated whitelist of trusted URLs
from which cross-site requests can be made. For more information and details on how
to use the wildcard character (*), see Securing Cross-Site Requests to MCS APIs.

Note:

For convenience, during the development of a browser-based application or
during testing of a hybrid application running in the browser, you can set
Security AllowOrigintohttp://1ocal host:[port], but be sure to update
the value in production.

Calling Platform APIs Using the SDK for JavaScript

ORACLE

Once you include the SDK libraries in your application, and adjust configuration
settings, you're ready to use the SDK classes in your apps.

The root class in the JavaScript SDK is the nts. mobi | eBackendManager . An instance
of ncs. mobi | eBackendManager manages one or morenobi | eBackend objects. A

mobi | eBackend object is used to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend, including
calls to platform APIs and any custom APIs you have defined. In turn, a

mobi | eBackend instance manages instances of Ser vi cePr oxy. These instances
correspond to platform services in MCS (for example, Analytics, Notifications, Offline
Data, and so on).

It retrieves the information it needs about each mobile backend (such as the mobile
backend name and authentication information) from the app’s
oracl e_mobil e_cl oud_config.js file.

Here’s an example of how you could use these classes to get a Storage collection in
the mobile backend, create a storage object (in this case, a text file), and then upload

9-6

ORACLE

Chapter 9
Calling Platform APIs Using the SDK for JavaScript

that object to the collection. The code here manages calls to the Storage API,
including the constructing of the HTTP headers with the mobile backend credentials
necessary to access the API:

var backend;
var collection_id = ' YOUR STORAGE COLLECTI ON_NAME' ;

function uploadTextFile() {

return getCol | ection()
.then(success);

function success(col | ection){
I/create new Storage object and set its name and payl oad
var obj = new nts. Storageject(collection);
obj . set Di spl ayNane("JSFile.txt");
obj . 1 oadPayl oad("Hel lo World from Oracle Mbile Coud Service
Javascript SDK', "text/plain");

return post Object(collection, obj).then(function(object){

return readQoj ect(collection, object.id);

¥
}

}

function getCollection(){
var deferred = $q.defer();

[lreturn a storage collection with the name assigned to the
collection_id variable.

backend. St orage. get Col | ection(col l ection_id, null,
onCet Col | ectionSuccess, onCet Col | ectionFail ed);

return deferred. prom se;

function onCet Col | ectionSuccess(collection){
deferred.resol ve(col | ection);

}

function onGet Col | ecti onFail ed(statusCode, headers, data){
def erred. rej ect (st at usCode) ;

}
}

function postChject(collection, obj){
var deferred = $q.defer();

//post an object to the collection
col I ection. post Qbj ect (obj, onPost Cbj ect Success, onPost Obj ect Fai | ed) ;

return deferred. prom se;

function onPost Obj ect Success(object){
def erred. resol ve(object);

}

9-7

Chapter 9
Calling Custom APIs Using the SDK for JavaScript

function onPost Qbj ect Fai | ed(st atusCode, headers, data){
def erred. rej ect (st at usCode);
}

}

For more information on the individual platform APIs, see Platform APIs.

Avoiding Unsafe Header Errors

When you have JavaScript web apps that call the Storage APIs, you need to set the
Security ExposeHeader s policy to allow headers returned by these APIs to be
accessed by the browser. For example, setting the value of that policy to the following
would allow you to use all Storage API endpoints:

.. Security ExposeHeader s=Oracl e- Mobi | e- Cr eat ed- By, Oracl e- Mobi | e- Cr eat ed-

On, Oracl e- Mobi | e- Modi fi ed- By, Or acl e- Mobi | e- Modi fi ed- On, Accept -
Encodi ng, Or acl e- Mobi | e- Nane, ETag

For instructions on setting policies, see Environment Policies.

Calling Custom APIs Using the SDK for JavaScript

ORACLE

The SDK provides the Cust onCode class to simplify the calling of custom APIs in MCS.
You can use this class to call a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

To make a call to a custom API endpoint, you could use something like this:

mcs. nobi | eBackendManager . set Confi g(ncs_config);
backend = nts. nobi | eBackendManager . get Mobi | eBackend(" JSBackend") ;

backend. Cust onCode. i nvokeCust omCodeJ SONRequest (" TaskApi 1/t asks/ 100" ,
"GET" , null, function(statusCode, data){
ncs. _Logger. log(ncs. LOG LEVEL. I NFO, statusCode);
/1 The statusCode paranmeter returns the status code fromthe HTTP REST
Call.
ncs. _Logger. | og(ncs. LOG LEVEL. | NFO, data);
I/ The data paranmeter is the HTTP payload fromthe server, if available,
or an error nessage.
Exanpl e:
stat usCode: 200,
data: {}
/I Depends on the response format defined in the API.
b
function(statusCode, data){
ncs. _Logger. | og(ncs. LOG LEVEL. I NFO, statusCode);
/1 The statusCode paranmeter returns the status code fromthe HTTP REST
Call.
ncs. _Logger. | og(ncs. LOG LEVEL. | NFO, data);
[/ The data paranmeter is the HTTP payload fromthe server, if available,

9-8

ORACLE

Chapter 9
Calling Custom APIs Using the SDK for JavaScript

or an error nessage.
Exanpl e:
stat usCode: 404,
data: {
"type":"http:// wwmv w3. org/Protocol s/rfc2616/rfc2616-
secl0. ht m #sec10. 4. 1",
"status":404,"title":"APl not found",
"detail":"We cannot find the APl JSApi2 in Mbbile Backend
JSBackend(1.0). Check that this Mbile Backend is associated with the
APl . ",
"0: ecid":"005Bojj hp2j 2FSHLI ug8yf 00052t 000Jao, 0:2",
"0: errorCode": " MBI LE-57926", "o:errorPath":"/mobil e/ cust om JSApi 2/t asks" }
/| Depends on the response format defined in the API.

1

9-9

Xamarin Android Applications

If you use the Xamarin platform to develop Android apps, you can use the SDK that
Oracle Mobile Cloud Service (MCS) provides for Xamarin Android apps. This SDK
simplifies authentication with MCS and provides native wrapper classes for MCS
platform APIs.

Getting the SDK for Xamarin Android

To get the MCS client SDK for Xamarin Android, go to the Oracle Technology
Network’'s MCS download page.

To use this SDK, you should have the following software on your system:
* Microsoft Visual Studio, with support for Xamarin development.

» Java Development Kit (JDK) 1.7.0_67 or compatible.

See http://www.oracle.com/technetwork/java/javase/downloads/index.html for JDK
downloads.

Adding the SDK to a Xamarin Android Project

ORACLE

1. If you haven't already done so, extract the contents from the SDK zip.
2. In Visual Studio, create a Visual C# Android app.

3. Make sure you can connect to the internet from Visual Studio connection so that
NuGet packages are reachable.

4. Add GCM and Facebook dependencies to your project:

» If a Packages node appears in the Solution Explorer for your project, do the
following:

a. Right-click the Packages node.

b. Type GCMin the search field, select Xamar i n. Googl ePl aySer vi ces. Gcm
(not Crossl i ght. Xanari n. Googl ePl ayServi ces. GCM), and click Add
Package. The remaining GCM dependencies will be added automatically.

c. Accept the terms to add the packages successfully.

d. Add Xamari n. Facebook. Andr oi d by searching for it in the NuGet
packages and adding it in the same way you added the GCM packages.

e If a Packages node doesn't appear in the Solution Explorer for your project,
do the following:

a. Select Tools > NuGet Package Manager > Manage NuGet Packages
for Solution.

b. Select the Browse tab.

10-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

ORACLE

Chapter 10
Adding the SDK to a Xamarin Android Project

c. Type GCMin the search field, select Xanari n. Googl ePl ayServi ces. Gcm

(not Crossl i ght. Xanari n. Googl eP

ayServi ces. GCM), select the checkbox

for your app, and click Install. The remaining GCM dependencies will be

added automatically.

d. After previewing the changes, click OK.

e. Add Xamari n. Facebook. Andr oi d by searching for it in the NuGet
packages and adding it in the same way you added the GCM packages.

At the end make sure you have all the below dependencies. If any of them are
missing, search for them in the NuGet package manager.

<packages>

<package id="Bolts" version="1.4.0.1"

tar get Fr amewor k="ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.

Ani mat ed. Vect or. Dr awabl e"

version="25.4.0.2" targetFranmewor k="rmonoandr oi d71" />

<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" rnonoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" rnonoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" rmonoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.
t ar get Fr amewor k=" ronoandr oi d71" />
<package id="Xamarin. Androi d. Support.

Annot ati ons" version="25.4.0.2"
Conpat " version="25.4.0.2"
Core.U" version="25.4.0.2"
Core. Utils" version="25.4.0.2"
Cust onifabs" version="25.4.0. 2"
Desi gn" version="25.4.0.2"
Fragment" version="25.4.0.2"
Medi a. Conpat " version="25.4.0.2"
Transition" version="25.4.0.2"
v4" version="25.4.0.2"

v7. AppConpat " versi on="25.4.0. 2"
v7.CardView' version="25.4.0.2"

v7. Recycl er Vi ew'

version="25.4.0.2" targetFranmewor k="monoandr oi d71" />

<package id="Xamarin. Androi d. Support.

Vect or. Dr awabl e"

version="25.4.0.2" targetFranmework="monoandr oi d71" />

<package i d="Xamarin. Bui | d. Downl oad"
t ar get Fr amewor k="ronoandr oi d80" />

version="0.4.7"

<package i d="Xamarin. Facebook. Androi d" version="4.26.0"

t ar get Fr amewor k="ronoandr oi d80" />

<package i d="Xamarin. Googl e. ZXi ng. Core" version="3.3.0"

t ar get Fr amewor k="ronoandr oi d80" />

<package i d="Xamarin. Googl ePl ayServi ces. Base" version="42.1021.1"

tar get Fr amewor k="ronoandr oi d71" />

<package i d="Xamarin. Googl ePl ayServi ces. Basement" version="42.1021. 1"

tar get Fr amewor k="ronoandr oi d71" />

10-2

10.

Chapter 10
Configuring SDK Properties for Xamarin Android

<package i d="Xamarin. Googl ePl ayServi ces. Gcnf' versi on="42.1021. 1"
t ar get Fr amewor k=" rmonoandr oi d71" />
<package i d="Xamarin. Googl ePl ayServices.lid" version="42.1021. 1"
t ar get Fr amewor k=" rmonoandr oi d71" />
<package i d="Xamarin. Googl ePl ayServi ces. Tasks" version="42.1021. 1"
t ar get Fr amewor k=" rmonoandr oi d71" />
</ packages>

Add the SDK's DLL file to your app by right-clicking the project's References node
and selecting Edit References or Add Reference (depending on which menu
item is available).

* If you select Edit References, click the .NET Assembly tab, and then browse
to the Androi d. dl | file in the extracted SDK zip.

e If you select Add Reference, click the Browse tab, click the Browse button,
and then navigate to the Androi d. dl | file in the extracted SDK zip.

Add the configuration file to the app by right-clicking the project's Assets node and
selecting either Add > Add Files or Add > Existing File (depending which is
available) and then navigating to the SDK's or acl e_nobi | e_cl oud_confi g. xn

file.

Select the node for oracl e_mobi | e_cl oud_confi g. xm so that it's properties are
displayed in the Properties pane. Then make sure that the Build Action property
is set to Andr oi dAsset .

Open oracl e_nobi |l e_cl oud_confi g. xm and fill in the environment details for the
mobile backend that the app will be using. See Configuring SDK Properties for
Xamarin Android.

Update the Andr oi dMani fest. xml file with the necessary properties as detailed in
Configuring Your AndroidManifest.xml File.

Configuring SDK Properties for Xamarin Android

To use the SDK in an Android app, you need to add the

ORACLE

or

acl e_mobi | e_cl oud_confi g. xm configuration file to the app and fill it in with

environment details for your mobile backend. In turn, the SDK classes use the
information provided in this file to access the mobile backend and construct HTTP
headers for REST calls made to APlIs.

The following code sample shows the structure of a

or

acl e_mobi |l e_cl oud_config. xm file:

<mobi | eBackends>

<nobi | eBackend>

<nbeName>MBE NAME</ nbeName>

<nbeVer si on>MBE_VERSI ON</ mheVer si on>

<def aul t >t rue</ def aul t >

<appKey>APPLI CATI ON_KEY</ appKey>

<baseUr | >BASE_URL</ baseUr| >

<enabl eAnal yti cs>true</enabl eAnal ytics>

<enabl eLogger >t r ue</ enabl eLogger >

<aut hori zation>
<of f i neAut hent i cati onEnabl ed>t r ue</ of f | i neAut henti cat i onEnabl ed>
<aut henti cati onType>AUTH_TYPE</ aut henti cati onType>

10-3

ORACLE

Chapter 10
Configuring SDK Properties for Xamarin Android

<oaut h>
<oAut hTokenEndPoi nt >0AUTH_URL</ 0Aut hTokenEndPoi nt >
<oAut hC i ent | d>CLI ENT | D</ oAut hCl i ent | d>
<oAut hQ i ent Secr et >CLI ENT_SECRET</ oAut hCl i ent Secr et >
</ oaut h>
<basi c>
<nmobi | eBackendl D>MOBI LE_BACKEND | D</ nobi | eBackend| D>
<anonymousKey>ANONYMOUS_KEY</ anonymousKey>
</ basi c>
</aut hori zation>
<I-- additional properties go here -->
</ mobi | eBackend>
</ nmobi | eBackends>

Here’s a list of the file’s elements. The values that you need to fill in for a given mobile
backend can be found on the Settings and Clients pages for that mobile backend.

* nobi |l eBackends — The config file’s root element, containing one or more
mobi | eBackend elements.

* nobi | eBackend — The element for a mobile backend.
* nheName — The name of the mobile backend associated with your app.
* nbeVersi on — The version number of your app (for example, 1. 0).

« default — Iftrue, that mobile backend is treated as the default and thus can be
easily referenced using the get Def aul t Mobi | eBackend(Cont ext cont ext) method
in the SDK’s Mobi | eBackendManager class.

e appKey — The application key, which is a unique string assigned to your app when
you register it as a client in MCS. See Registering an App as a Client in MCS.

* baseUr] — The URL your app uses to connect to its mobile backend.
* enabl eLogger — When set to t r ue, logging is included in your app.

e enabl eAnal yti cs — When set to t r ue, analytics on the app’s use can be
collected.

e authorization— Use the sub-elements of this element to define the
authentication the app will be using and specify the required credentials.

— of flineAuthenticationEnabl ed — If set to t r ue, offline login will be allowed.
For this to work, you also need to add the following to the app’s
Andr oi dMani fest . xm file:

<receiver android: name="or acl e. cl oud. nobi | e. net wor k. Net wor kHel per"
<intent-filter>
<action androi d: name="andr oi d. net. conn. CONNECTI VI TY_CHANGE" />
<lintent-filter>
</receiver>

— authenticationType — Define the kind of authentication mechanism being
used to connect your app to MCS. Possible values are oaut h (for OAuth
Consumer) , basi ¢ (for HTTP Basic), sso, t okenAut h (for SSO token
exchange), and f acebook (for logging in with Facebook credentials). If this
element isn't specified, OAuth Consumer is used. The other contents and sub-
elements of the aut hori zati on element depend on the type of authentication.

10-4

ORACLE

Chapter 10
Configuring SDK Properties for Xamarin Android

OAuth Consumer

For OAuth, set the value of the <aut henti cati onType> element to oaut h and fill in the
OAuth credentials provided by the mobile backend.

e 0Aut hTokenEndPoi nt — The URL of the OAuth server your app goes to, to get its
authentication token.

e oAuthdient — The unique client identifier assigned to all apps when they're first
created in your mobile backend.

e 0Authdient Secret — The unique secret string assigned to all apps they’re first
created in your mobile backend.

The resulting aut hori zat i on element might look something like this:

<aut hori zati on>
<of fI i neAut henti cati onEnabl ed>t r ue</ of f | i neAut hent i cat i onEnabl ed>
<aut henti cati onType>oaut h</ aut henti cati onType>
<oaut h>
<oAut hTokenEndPoi nt >ht t p: // oam ser ver. or acl e. conf oant oaut h2/ t okens</
oAut hTokenEndPoi nt >
<oAut hQ i ent >f 2d3cabc- 7e6f - 4d1c- aabc- a2f 3caf 7ec4e</ oAut hd i ent >
<oAut hC i ent Secr et >vZMRkgni | bhNUi PnSRT2</ oAut hd i ent Secr et >
</ oaut h>
</ aut hori zation>

Enterprise SSO

For SSO, set the value of the <aut henti cati onType> element to sso, fill in the OAuth
credentials provided by the mobile backend, and add the ssoTokenEndpoi nt .

The resulting aut hori zat i on element might look something like this:

<aut hori zation>
<of f1i neAut henti cati onEnabl ed>t rue</ of f| i neAut henti cat i onEnabl ed>
<aut henti cationType>sso</ aut henti cationType>
<oaut h>
<oAut hTokenEndPoi nt >host / mobi | e/ pl at f or m sso/ t oken</ oAut hTokenEndPoi nt >
<oAut hC i ent >f 2d3ca5c¢- 7e6f - 4d1c- aabc- a2f 3caf 7ec4e</ oAut hC i ent >
<oAut hC i ent Secr et >vZMRkgni | bhNUi PnSRT2</ oAut hd i ent Secr et >
<ssoTokenEndpoi nt >ht t ps: // devel opnent -
mespnt rial 90. nobi | eenv. oracl e. com 443/ mobi | e/ pl at f or mf sso/ t oken</
ssoTokenEndpoi nt >
</ oaut h>
</aut hori zation>

SSO with a Third Party Token

For SSO with a third-party token, set the value of the <aut henti cati onType> element
to t okenAut h and fill in the HTTP Basic auth credentials provided by the mobile
backend (described next).

10-5

ORACLE

Chapter 10
Configuring SDK Properties for Xamarin Android

The resulting aut hori zat i on element might look something like this:

<aut hori zation>
<of fli neAut henti cati onEnabl ed>t rue</ of f| i neAut hent i cat i onEnabl ed>
<aut henti cati onType>t okenAut h</ aut henti cati onType>
<basi c>
<nmobi | eBackendl D>6d3744b8- cab2- 479¢c- 998b- ebba2c31560f </ mobi | eBackendl D>
<anonymousKey>UFJJTUVf REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ anonynousKey>
</ basi ¢>
</ aut hori zati on>

HTTP Basic

For HTTP Basic authentication, you need to set the value of the
<aut henti cati onType> element to basi ¢ and fill in the HTTP Basic auth credentials
provided by the mobile backend.

* nobi | eBackendl D— The unique identifier assigned to a specific mobile backend. It
gets passed in an HTTP header of every REST call made from your app to MCS,
to connect it to the correct mobile backend. When calling platform APIs, the SDK
handles the construction of the authentication headers for you.

e anonymusKey — A unique string that allows your app to access APIs that don’t
require login. In this scenario, the anonymous key is passed to MCS instead of an
encoded user name and password combination.

The resulting aut hor i zat i on element might look something like this:

<aut hori zati on>
<of fI i neAut henti cati onEnabl ed>t r ue</ of f | i neAut henti cat i onEnabl ed>
<aut henti cati onType>basi c</ aut henti cati onType>
<basi c>
<nobi | eBackendl D>6d3744h8- cab2- 479c- 998h- ebba2c31560f </ nobi | eBackend| D>
<anonymousKey>UFJJTUVFf REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ anonymousKey>
</ basi c>
</ aut hori zation>

Facebook

For Facebook login, you need to set the value of the <aut henti cati onType> element
to f acebook, fill in the HTTP Basic auth credentials provided by the mobile backend,
and add the f acebook element, where you specify the Facebook credentials.

o facebookAppl d — The Facebook application ID.

e scopes — You can use this element to specify Facebook permissions (optional).

The resulting aut hori zat i on element might look something like this:

<aut hori zati on>
<of fI i neAut henti cati onEnabl ed>t r ue</ of f | i neAut hent i cat i onEnabl ed>
<aut henti cati onType>f acebook</ aut henti cati onType>
<basi ¢>
<nobi | eBackendl D>6d3744h8- cab2- 479c- 998b- ebba2¢31560f </ nobi | eBackendl D>
<anonymousKey>UFJJTUVF REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | </ anonymousKey>
</ basi c>

10-6

Chapter 10
Configuring Your AndroidManifest.xml File

<f acebook>
<f acebookAppl d>123456789012345</ f acebookAppl d>
<scopes>public_profile,user_friends, email,user_|ocation,user_birthday</
scopes>
</ f acebook>
</ aut hori zati on>

Configuring Your AndroidManifest.xml File

Permissions for operations such as accessing the network and finding the network
state are controlled through permission settings in Andr oi dvani f est. xm . These
permissions are required:

e perm ssion. | NTERNET — Allows your app to access open network sockets.

e perm ssion. ACCESS NETWORK STATE — Allows your app to access information
about networks.

Other permissions are optional. For example, the Analytics platform API uses location
to provide detailed information about the usage and performance of your app. If you're
using the Analytics library from the SDK, you'll want to add these permissions as well.

e perm ssion. ACCESS COARSE_LOCATI ON— Allows your app to access approximate
location information, derived from sources such as wi-fi and cell tower positions.

e perm ssion. ACCESS FI NE_LOCATI ON— Allows your app to access precise location
information, derived from sources such as GPS.

For more information about permissions in your Android application, see Android
Manifest Permissions in the Google documentation.

Add the permissions at the top of your Andr oi dMani f est. xnl file, as shown in the
following example:

<?xm version="1.0" encodi ng="UTF-8"?>
<mani fest xni ns: androi d="http://schemas. andr oi d. com apk/ r es/ andr oi d"
package="or acl e. cl oud. nobi | e. phot obox" >
<uses- perni ssion androi d: name="andr oi d. per mi ssi on. | NTERNET" />
<uses- perm ssi on
andr oi d: name="andr oi d. per m ssi on. ACCESS_NETWORK_STATE" />
<uses- perm ssion
andr oi d: name="andr oi d. per m ssi on. ACCESS_FI NE_LOCATI ON" />
<uses- perm ssi on
andr oi d: name="andr oi d. per m ssi on. ACCESS_COARSE_LOCATI ON' />
<appl i cation>
<recei ver androi d: nane="oracl e. cl oud. nmobi | e. net wor k. Net wor kHel per"
<intent-filter>
<action androi d: name="andr oi d. net. conn. CONNECTI VI TY_CHANGE" />
<lintent-filter>
</receiver>
(...)
</ application>
</ mani f est >

ORACLE 10-7

http://developer.android.com/reference/android/Manifest.permission.html
http://developer.android.com/reference/android/Manifest.permission.html

Chapter 10
Loading a Mobile Backend's Configuration into a Xamarin Android App

If you are using the Notifications API in your app, you may also need to add a
broadcast receiver element. See Setting Up a Mobile App for Notifications.

Loading a Mobile Backend's Configuration into a Xamarin
Android App

For any calls to MCS APIs using the Xamarin Android SDK to successfully complete,
you need to have the mobile backend’s configuration loaded from the app’s

oracl e_mobi |l e_cl oud_config.xm file. You do this using the Mobi | eBackendManager
class:

Mobi | eBackendManager . Manager . Get Mobi | eBackend(cont ext, " GCVBackend") ;

Authenticating and Logging In Using the SDK for Xamarin

Android

ORACLE

Here is some sample code that you can use for authentication through MCS in your
Xamarin Android apps.

OAuth Consumer

First you initialize the authorization agent and set the authentication type to QAUTH.

Mobi | eBackend nobi | eBackend;

| Aut hori zat i onAgent mAut hori zati on;

mobi | eBackend = Mobi | eBackendManager . Manager . Get Def aul t Mobi | eBackend(nCt x) ;
mAut hori zation = nobi | eBackend. Get Aut hori zat i on(Aut hType. Caut h) ;

Then you use the aut hent i cat e method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

Text Vi ew username, password;

username = (Aut oConpl et eText Vi ew) Fi ndVi ewByl d(Resour ce. | d. user nane) ;
password = (EditText)Fi ndVi ewByl d(Resource. | d. password);

String userName = usernane. Text;

String passWrd = password. Text;

mAut hori zation. Aut henti cat e(nmCtx, userName, pass\Word, new

Aut hori zationCal | back());

Here's the definition for the callback.

Aut hori zation Cal | Back
private class AuthorizationCallback : Java.Lang. Object,
| Aut hori zat i onCal | back

{
publ i ¢ void OnConpl etion(Servi ceProxyException exception)

{

if (exception != null)

10-8

ORACLE

Chapter 10
Authenticating and Logging In Using the SDK for Xamarin Android

{
Logger. Error (TAG "Exception while receiving the Access

Token", exception);

}
el se
{
Logger. Error (TAG "Authorization successful");
}
}
}
Enterprise SSO

mAut hori zati on. aut henti cat eSSQ(nCt x, fal se, new Aut hori zati onCal | back());

private class AuthorizationCallback : Java.Lang. Object,
| Aut hori zat i onCal | back

{
public void OnConpl eti on(Servi ceProxyException exception)
{
if (exception != null)
Logger. Debug(TAG "Exception " + exception. Message;
el se
{
Logger . Debug(TAG "SSO Auth Succeeded");
}
}
}

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in MCS, see Third-Party SAML and JWT
Tokens.

Once you have the token, initialize the authorization agent and use the token in your
authorization call. The example below checks to see if the token is already stored in
MCS before logging in again.

< Note:

The default expiration time for storing a third-party token in MCS is 6 hours.
You can adjust this time by changing the
Security TokenExchangeTi meout Secs policy.

| Aut hori zati onAgent mAut hori zati on;

Mobi | eBackend nobi | eBackend;

mobi | eBackend = Mobi | eBackendManager . Manager . Get Def aul t Mobi | eBackend(nCt x) ;
mAut hori zation = nobi | eBackend. Get Aut hori zati on(Aut hType. Tokenaut h) ;

10-9

ORACLE

Chapter 10
Authenticating and Logging In Using the SDK for Xamarin Android

/1 Check whether credential exists in secure store
Bool ean isCredential Loaded = mAut hori zati on. LoadSSOTokenExchange(ntt x) ;

i f(isCredential Loaded){
/1 Credentials found in secure store - redirect to main activity
Logger.Info(TAG "Credentials got |oaded successfully fromsecure
store.");
Intent intent = new Intent(mtx, typeof(ContentActivity));
StartActivity(intent);

} else {
/] Credentials not found - authenticate using token exchange
Logger.Info(TAG "Credentials could not be found in secure store.");
mAut hori zat i on. Aut hent i cat eUsi ngTokenExchange(nCt x, token, true,
m_ogi nCal | back) ;

}

Here's the callback:

private class AuthorizationCallback : Java.Lang. Object,
| Aut hori zat i onCal | back
{
public void OnConpl eti on(Servi ceProxyException exception)
{
if (exception == null)
{
//1og event with Analytics
mAnal yti csAgent. LogEvent ("Login with 3rd party token
successful ly");
mAnal yti csAgent. Fl ush();

[lredirect to another Activity after |ogin
Intent intent = new Intent(mtx, typeof(ContentActivity));
LoginActivity.activity. StartActivity(intent);

} else {
Logger. Error (TAG "Exception during token exchange:",
exception);
Logi nActivity.activity.Finish();
}
}
}

HTTP Basic Authentication

The code for handling login with HTTP Basic is nearly the same as the code for
OAuth.

First you initialize the authorization agent and set the authentication type to
BASI C_AUTH.

Mobi | eBackend nobi | eBackend;
| Aut hori zati onAgent mAut hori zati on;

10-10

ORACLE

Chapter 10
Authenticating and Logging In Using the SDK for Xamarin Android

mobi | eBackend = Mobi | eBackendManager . Manager . Get Def aul t Mobi | eBackend(mt x) ;
mAut hori zation = nobi | eBackend. Get Aut hori zati on(Aut hType. Basi cAut h) ;

Then you use the Aut hent i cat e method to attempt authentication. The call includes
parameters for Android context, user name, password, and a callback that completes
the authorization process.

Text Vi ew user name, password;

username = (Aut oConpl et eText Vi ew) Fi ndVi ewByl d(Resour ce. | d. user nane) ;
password = (EditText)Fi ndVi ewByl d(Resource. | d. password);

String userName = usernane. Text;

String passWrd = password. Text;

mAut hori zation. Aut henti cat e(mCt x, userName, passWrd, new

Aut hori zationCal | back());

Here's the definition for the callback.

private class AuthorizationCallback : Java.Lang. Object,
| Aut hori zat i onCal | back

{
public void OnConpl eti on(Servi ceProxyException exception)

{
Logger . Debug(TAG "OnConpl etion Auth Cal | back");
if (exception != null)
{
Logger. Error (TAG "Exception while receiving the Access
Token", exception);

}
el se
{
Logger. Error (TAG "Authorization successful");
}
}
}
Facebook

First you initialize the authorization agent and set the authentication type to Facebook.

| Soci al Aut hori zati onAgent mAut hori zati on;

Soci al Mobi | eBackend soci al Mbi | eBackend,;

soci al Mbi | eBackend =

Soci al Mobi | eBackendManager . Manager . Get Def aul t Mobi | eBackend(cont ext);
mAut hori zation =

soci al Mobi | eBackend. Get Soci al Aut hori zati on(Soci al Aut hType. Facebook) ;
mAut hori zati on. Set Aut hType(Aut hType. Facebook) ;

Using a Cal | backManager object from Facebook’s SDK, initiate authentication.

| Cal | backManager cal | backManager ;
mAut hori zati on. Set up(cont ext, new FacebookCal | back());

10-11

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

cal | backManager = mAut hori zati on. Cal | BackManager ;
mAut hori zat i on. Aut henti cat eSoci al (activity);

Here’s code you can use for the cal | back that is passed above.

private class FacebookCal | back : Java.Lang. Qbject, |FacebookCal | back
{

publ i ¢ void OnSuccess(Java. Lang. Obj ect | ogi nResul t)

{
}

publ i ¢ void OnCancel ()

{
}

publ i ¢ void OnError(FacebookException error)

{
}

Logger. Error (TAG "facebook |ogin successful.");

Override the OnAct i vi t yResul t () method to use the callback.

protected override void OnActivityResult(int requestCode, Result
resul t Code, Intent data)

{

Logger. Debug(TAG "In OnActivity Result onActivityResult");

base. OnActi vityResul t (request Code, resul t Code, data);

cal I BackManger. OnActivityResul t (request Code, (int)resultCode, data);
}

Calling Platform APIs Using the SDK for Xamarin Android

Once the mobile backend’s configuration info is loaded into the app and you have
made a call to get the mobile backend, you can use SDK classes for various platform
APIs.

Here are some code snippets that illustrate how to access these APIs with the SDK.

User Management

ORACLE

Getting a User

| Aut hori zati onAgent aut horizationAgent = authentication. Authorization;
aut hori zati onAgent . Fet chCurrent User (new User Regi strationCal | back());
private class UserRegistrationCallback : Java. Lang. Obj ect,

| User Regi strationCal | back

{
publ i ¢ void OnConpl et e(Servi ceProxyException exception, User user)

{

if (exception == null)

10-12

Location

ORACLE

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

mser = user;
set Text ("User " + miser.Username + " details have been fetched
successfully.");

}

el se

{
}

[/ Handl e Error

Updating a User

[lcreating map with properties

I Dictionary<string, Object> map = new Dictionary<string, Cbject>();
map. Add("age", 26);

map. Add("address", "india");

aut hori zati onAgent . Updat eUser (new User Regi strationCal | back(), map);

private class UserRegistrationCallback : Java.Lang. bject,
| User Regi strationCal | back
{
publ i ¢ void OnConpl et e(Servi ceProxyException exception, User user)

{

if (exception == null)

{

set Text ("User " + user. Usernane +
successfully.");

detail s have been updated

}
el se
/Handl e Error
}
}
}
Initialization

Location location =
(Locati on) mobi | eBackend. Get Ser vi ceProxy(C ass. FronType(typeof (Location));

Places, Devices, and Assets

static Location |ocation;
static LocationPlace place;
static LocationDevice device;
static LocationAsset asset;

10-13

ORACLE

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

location =
(Locati on) mobi | eBackend. Get Servi ceProxy(C ass. FronType(typeof (Location)));

LocationPl aceQuery | ocationPl aceQuery = | ocation. Buil dPl aceQuery();
| ocationPl aceQuery. Name = "Weést";

| ocationPl aceQuery. OrderByAttributeType =

Locat i onDevi ceCont ai ner Query. Locat i onDevi ceCont ai ner Quer yOr der ByAttri but eTy
pe. Locati onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;

| ocationPl aceQuery. Format =

Locati onQhj ect Query. Locat i onCbj ect Quer yFor mat Type. Locat i onChj ect Quer yFor mat
TypeShort;

| ocationPl aceQuery. Execut e(new Locati onCbj ect QueryCal | back());
Locat i onDevi ceQuery | ocationDevi ceQuery = | ocation. Bui |l dDevi ceQuery();
| ocationDevi ceQuery. Name = "Beacon";

| ocationDevi ceQuery. OrderByAttributeType =

Locat i onDevi ceQuery. Locat i onDevi ceQuer yOr der ByAttri but eType. Locat i onDevi ceQ
ueryOrder ByAttri but eTypeNane;

| ocationDevi ceQuery. Format =

Locati onQhj ect Query. Locat i onCbj ect Quer yFor mat Type. Locat i onCbj ect Quer yFor mat
TypeShort;

| ocationDevi ceQuery. Execut e(new Locat i onChj ect QueryCal | back());

LocationAsset Query | ocationAsset Query = | ocation. Buil dAsset Query();
| ocationAsset Query. Name = "Joe";

| ocationAsset Query. OrderByAttributeType =

Locat i onDevi ceCont ai ner Query. Locat i onDevi ceCont ai ner Quer yOr der ByAttri but eTy
pe. Locat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeName;

| ocationAsset Query. Format =

Locati onQhj ect Query. Locat i onCbj ect Quer yFor mat Type. Locat i onCbj ect Quer yFor mat
TypeShort;

| ocationAsset Query. Execut e(new Locati onCbj ect QueryCal | back());

Fetching a Place

private class LocationQbjectQeryCallback : Java.Lang. Ovj ect,
| LocationChj ect sQueryCal | back
{

public void OnConpl et e(Locat i onChj ect QueryResult queryResul t,
Servi ceProxyException exception)

{

10-14

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

if (mProgressDialog !'= null &&% nProgressDial og. | sShowi ng)

{
nProgressDi al og. Di smiss();

}

if (exception !'= null)

{
Logger . Debug(TAG, exception. Message);
set Text (except i on. Message) ;

}

el se

{

foreach (LocationQObject |ocationobject in queryResult.Itens)

{

if
(1 ocationobject. CGet Type() . Equal s(typeof (LocationPl ace))) {

pl ace = (LocationPl ace)l ocationobject;

[ocation. FetchPl ace(pl ace.1d, new
Locat i onQhj ect Fet chCal | back());

[ock (obj)
{

}

Logger. Debug(TAG pl ace. Name +" " +

Moni t or. Wi t (obj);

pl ace. HasChi | dren);
}

el se
i f(locationobject. GetType().Equal s(typeof (LocationDevice)))

{

devi ce = (LocationDevice)l ocationobject;

[ocation. Fet chDevi ce(device.ld, new
Locati onQbj ect Fet chCal | back());

l'ock (obj)

{ Moni tor. Vit (obj);

}

Logger . Debug(TAG device. Name + " ");
LI se if

(1 ocationobject. Get Type() . Equal s(typeof (Locati onAsset)))
{

asset = (LocationAsset)l ocationobject;

ORACLE 10-15

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

[ocation. Fet chAsset (asset.ld, new
Locati onQbj ect Fet chCal | back());

[ock (obj)
{

}

Logger . Debug(TAG asset. Name + " ");

Moni tor. Wi t (obj);

private class LocationQbjectFetchCall back : Java. Lang. Ovj ect,
| Locati onObj ect Fet chCal | back

{

publ i ¢ void OnConpl et e(Locat i onChj ect | ocationChject,
Servi ceProxyException exception)

{

if (mProgressDialog !'= null &&% nProgressDial og. | sShowi ng)

{
nProgressDi al og. Di smi ss();

}

if (exception !'= null)

{
Logger . Debug(TAG, exception. Message);
set Text (except i on. Message) ;

}

el se

{
Logger . Debug(TAG | ocati onQbj ect. Name);

}

[ock (obj)

{
Moni t or. Pul seAl | (obj);

}

}
}
Refreshing

private class LocationQbjectQeryCallback : Java.Lang. Ovj ect,
| LocationChj ect sQueryCal | back

{

ORACLE 10-16

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

publ i c void OnConpl et e(Locat i onChj ect Quer yResul t queryResul t,
Servi ceProxyException exception)

{

if (mProgressDialog !'= null &&% nProgressDial og. | sShowi ng)

{
nProgressDi al og. Di smiss();

}

if (exception !'= null)

{
Logger . Debug(TAG, exception. Message);
set Text (except i on. Message) ;

}

el se

{

foreach (LocationQObject |ocationobject in queryResult.Itens)

{

if
(1 ocationobject. CGet Type() . Equal s(typeof (LocationPl ace))) {

pl ace = (LocationPl ace)l ocationobject;
pl ace. Refresh(new Locati onQoj ect Fet chCal | back());

[ock (obj)
{

}

Logger. Debug(TAG pl ace. Name +" " +

Moni tor. Wi t (obj);

pl ace. HasChi | dren);
}

el se
i f(locationobject. GetType().Equal s(typeof (LocationDevice)))

{

devi ce = (LocationDevice)l ocationobject;
devi ce. Ref resh(new Locat i onQbj ect Fet chCal | back());

[ock (obj)
{

}

Logger . Debug(TAG, device. Name + " ");

Moni tor. Wi t (obj);

}

else if
(1 ocationobject. Get Type() . Equal s(typeof (Locati onAsset)))

{

ORACLE 10-17

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

asset = (LocationAsset)l ocati onobject;
asset . Refresh(new Locati onObj ect Fet chCal | back());

[ock (obj)
{

}

Logger . Debug(TAG asset. Name + " ");

Moni tor. Wi t (obj);

}

private class LocationQbjectFetchCall back : Java. Lang. Ovj ect,
| Locati onObj ect Fet chCal | back

{

publ i ¢ void OnConpl et e(Locat i onChj ect | ocationChject,
Servi ceProxyException exception)

{ if (mProgressDialog !'= null &&% nProgressDial og. | sShowi ng)
{ nProgressDi al og. Di smi ss();
}
if (exception !'= null)
{ Logger . Debug(TAG, exception. Message);
set Text (except i on. Message) ;
}else if(locationCbject = null)
{ Logger . Debug(TAG | ocati onQbj ect. Name);
}
[ock (obj)
{ Moni t or. Pul seAl | (obj);
}
}

ORACLE 10-18

Storage

ORACLE

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

Initialization

Storage storage =
(Storage) mobi | eBackend. Get Servi ceProxy(d ass. FronType(typeof (Storage)));

Getting a Collection

St orageCol | ection storageCol lection =

storage. Get St orageCol | ecti on("Ful | Coverage_Private");

St oragehj ect storageChj ect = storageCol | ection. Get ("ab911696- 7e61- 4f cd-
a244-bh26adh6183ba") ;

string str =

Encodi ng. UTF8. Get St ri ng(Deconpr ess(st oragehj ect . Get Payl oadBytes()));

Getting an Object

storageChj ect = storageCol | ection. Get ("d4400472- b912- 4f 7a- b4f 5-
€32523e5¢1f3");
Logger. Debug(TAG "Storage bject: " + storageChject.DisplayNane);

Getting All Objects

I Li st <StorageQbject> list = storageCollection.Get(0, 100, true);

| Enumrer at or <St or ageQbj ect > i Enunerator = |ist. GetEnunerator();
whi | e(i Enuner at or . MoveNext ()) {

storageCbj ect = iEnunerator. Current;

Logger. Debug(TAG "Storage hject: " + storageQbject.DisplayNane);
}

Uploading a Text File

Java. Lang. String str = new Java.Lang. String("This is sanple txt file");
storageChj ect = new StorageQbject("textfile. txt");

storagehj ect. Set Payl oad(str. GetBytes(), "text/plain");
storageCol | ection. Put (st oragehject);

Uploading an Image
System | O Stream i mageBytes = get Fil eFromAsset s("nts_oracl e. png");
storageChj ect = new St orageQbj ect ("nts_oracl e. png", inmageBytes, "inage/

jpeg”);
var imagePosted = storageCol | ection. Post (storageQhject);

10-19

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

Decompressing

static byte[] Deconpress(byte[] data)

using (var conpressedStream = new MenoryStreanm data))

using (var zipStream = new GZi pStrean(conpressedStream
Conpr essi onMbde. Deconpr ess))

using (var resultStream = new MermoryStrean())

{
zi pStream CopyTo(resultStrean;
return resultStream ToArray();
}
}
Notifications
Initialization

Local Broadcast Manager . Get | nst ance(cont ext)
. Regi st er Recei ver (new MBroadcast Recei ver (),
new IntentFilter(NotificationsConfig.RegistrationConplete));

Notifications notifications =
(Notifications)nobil eBackend. Get Servi ceProxy(Java. Lang. O ass. Fronilype(typeo
f(Notifications)));

Registering for Notifications

bool result = notifications.Initialize(context, "Sender ID");

Broadcast Receiver

private class MBroadcast Receiver : BroadcastReceiver

{
public override void OnRecei ve(Context context, Intent intent)
{
if (mProgressDialog !'= null &&% nProgressDial og. | sShowi ng)
{ nProgressDi al og. Di smiss();
}

| Shar edPref erences prefs =

Pref erenceManager . Get Def aul t Shar edPr ef er ences(cont ext);
bool sentToken =

prefs. Get Bool ean(Noti ficationsConfig. Sent TokenToServer, false);
i f (sentToken)

{

use GCM');

Logger. Debug(TAG "Token retrieved and sent to server! App can

ORACLE 10-20

Chapter 10
Calling Platform APIs Using the SDK for Xamarin Android

}

el se

{
Logger. Debug(TAG "An error occurred while either fetching the

I nstancel D');

}

Analytics

Initialization

static Analytics anal yticsAgent =

(Anal ytics) mobi | eBackend

. Get Servi ceProxy(d ass. FroniType(t ypeof (Anal ytics)));
anal yti csAgent. Set Cont ext (activity);

Logging an Event

if (analyticsAgent != null)
anal yticsAgent. LogEvent ("This is Event No. @ " + i);

Setting Context Location

anal yti csAgent. Set Cont ext Location("India", "Telangana", "Hyderabad",
"500081");

Flushing an Event

anal yti csAgent. Fl ush();

App Policies
Loading the App Config and Getting Policies

if (nobileBackend !'= null)

{
mobi | eBackend. LoadAppConfi g(new AAppConfi gCal | Back());

mProgressDi al og = ProgressDi al og. Show(activity, "Please VWit", "App
Config i s being | oaded.");
I ock(obj){
Moni t or. Wai t (obj);
}

AppConfig oMCAppConfig = nobil eBackend. AppConfi g;

ORACLE 10-21

Chapter 10
Calling Custom APIs Using the SDK for Xamarin Android

[/ Cetting String:

string str = oMCAppConfig. GetString("Test_String", "No val ue
configured");

set Text ("AppConfig: String: " + str);

[/ CGetting Nunber
Nunber nunber = oMCAppConfi g. Get Nunber ("Test_nunber", new
Java. Lang. Doubl e(1.0));

set Text (" AppConfig: Nunber: " + nunber);

[/ CGetting bool ean
bool bool ean = oMCAppConfi g. Get Bool ean(" Test _Bool ean", fal se);

set Text (" AppConfig: Boolean: " + bool ean);

}

private class AAppConfigCal | Back : AppConfigCal | back

{
public override void OnResult(Oracle.C oud. Mobile.Wils.MsError

error, AppConfig config)

{
if (mProgressDialog !'= null && nProgressDial og. | sShowi ng)
{
nProgressDi al og. Di smi ss();
}
I ock(obj){
Moni t or. Pul seAl | (obj);
}
}

Calling Custom APIs Using the SDK for Xamarin Android

ORACLE

The SDK provides the Cust onHt t pResponse class, the

CGeneri cCust onCoded i ent Cal | Back interface, and the | nvokeCust onCodeJ SONRequest
method in the authorization classes to simplify the calling of custom APIs in MCS. You
can call a REST method (GET, PUT, POST, or DELETE) on an endpoint where the
request payload is JSON or empty and the response payload is JSON or empty.

You use Generi cCust onmCodeC i ent Cal | Back to create a handler for the response
(which is returned in the form of a Cust ontt t pResponse object.)

Then, to call the custom API, you call

I nvokeCust omCodeJ SONRequest (Gener i cCust onCodeC i ent Cal | Back
restCientCal | back, JSONObject data, String functionNaneg,
RestClient. Htt pMet hod httpMethod) on your Aut hori zati on object.

10-22

ORACLE

Chapter 10
Calling Custom APIs Using the SDK for Xamarin Android

To make a call to a custom API endpoint, you could use something like this:

| Aut hori zati onAgent mAut horization =
Mobi | eBackendManager . Manager . Get Def aul t Mobi | eBackend(cont ext). Aut hori zati on

mAut hori zation. Aut henticate(mActivity, "userl", "passl", new
Aut hori zationCal | back());

/1 after the user successfully authenticates, make a call to the custom
APl endpoi nt

mAut hori zati on. | nvokeCust onCodeJ SONRequest (new

Generi cCust onCoded i ent Cal | Back(), null, "TaskApi/tasks",

Rest Client. Htt pMet hod. Get);

private class GenericCustonCodeC ientCallBack : Java.lang. Obj ect,
| Generi cCust onCoded i ent Cal | Back

{
publ i ¢ voi d Request Conpl et ed(Cust onHt t pResponse response, JSONChj ect

data, Java.Lang. Exception exception)

{
}

Logger. Debug(TAG, response. HtpStatus + "");

10-23

Xamarin iI0S Applications

If you use the Xamarin platform to develop iOS apps, you can use the SDK that Oracle
Mobile Cloud Service (MCS) provides for Xamarin iOS apps. This SDK simplifies
authentication with MCS and provides native wrapper classes for MCS platform APIs.

Getting the

SDK for Xamarin 10S

To get the MCS client SDK for Xamarin iOS, go to the Oracle Technology Network’s
MCS download page.

To use this SDK, you should have the following software on your system:

Adding the

Microsoft Visual Studio, with support for Xamarin development.
Xcode 9.1 or later and iphoneos 11.0.

See http://www.oracle.com/technetwork/java/javase/downloads/index.html for JDK
downloads.

SDK to a Xamarin i0OS Project

If you haven't already done so, extract the contents from the SDK zip.
In Visual Studio, create a Visual C# iOS app.

Add the SDK's DLL file to your app by right-clicking the project's References node
and selecting Edit References, clicking the .NET Assembly tab, and then
browsing to the | OS. dI | file in the extracted SDK zip.

Add the configuration file to the app by right-clicking the project's root node and
selecting Add > Add Files and then navigating to the SDK's OMC. pl i st file.

Select the node for OMC. pl i st so that it's properties are displayed in the Properties
pane. Then make sure that the Build Action property is set to Bundl eResour ce.

Add the SynchsSt or e. mond folder to the app by right-clicking the project's root node
and selecting Add > Add Existing Folder and then navigating to the SDK's
SynchSt or e folder.

For all of the files in the SynchSt or e. nond folder, make sure that the Build Action
property is set to Bundl eResour ce.

Open OVC. pl i st and fill in the environment details for the mobile backend that the
app will be using. See Configuring SDK Properties for Xamarin iOS.

Configuring SDK Properties for Xamarin iI0S

To use the SDK in a Xamarin iOS project, you need to add the OMC. pl i st
configuration file to the app and fill it in with environment details for your mobile
backend. In turn, the SDK classes use this information to access the mobile backend
and construct HTTP headers for REST calls made to APIs.

ORACLE

11-1

http://www.oracle.com/technetwork/topics/cloud/downloads/mobile-cloud-service-3636470.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Chapter 11
Configuring SDK Properties for Xamarin iOS

You package the configuration file in the root of your app’s main bundle.

Here’s an example of the contents of the OVC. pl i st file. Pay careful attention to the

hierarchy of elements.

Key Type
v Root Dictionary
v mobileBackends Dictionary
v FixltFast_Customer Dictionary
appKey String
W authorization Dictionary
authenticationType String
v OAuth Dictionary
tokenEndpoint String
clientlD String
clientSecret String
baseURL String
default Boolean
logLevel String

Here’s the source code for the same example:

<?xm version="1.0" encodi ng="UTF-8"?>

Value

(2 items)

(1 item)

(4 items)
ebfbcBea-9173-442b-8a5e-2fae63c64422
(2 items)

oauth

(3 items)
https://oam.oracle.com/oam/oauth2/tokens
ddb7{f5a-0d86-4b4a-8164-ddad03734249
pFmzazXzNTBNVDyraQs7
https://fif.cloud.oracle.com

YES

debug

<! DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://ww. appl e. com

DTDs/ PropertyList-1.0.dtd"
<plist version="1.0">
<di ct>
<key>nobi | eBackends</ key>
<di ct >
<key>Fi x| t Fast _Cust omer </ key>
<di ct>
<key>def aul t </ key>
<true/>
<key>baseURL</ key>

<string>https://fif.cloud. oracle.conk/string>

<key>appKey</ key>

<string>ebfbcB8ea- 9173- 442b- 8a5e- 2f ae63c64422</ string>

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>QAut h</string>
<key>QAut h</ key>
<di ct >
<key>t okenEndpoi nt </ key>

<string>https://oam oracl e. conf oam oaut h2/t okens</string>

<key>client | D</ key>

<string>ddb7f f 5a- 0d86- 4b4a- 8164- ddad03734249</ string>

<key>cl i ent Secr et </ key>

<string>pFrmeazXzNTBNVDyr aQs7</ string>

</dict>
</dict>
</dict>
</dict>
<key>l| ogLevel </ key>

ORACLE

11-2

ORACLE

Chapter 11
Configuring SDK Properties for Xamarin iOS

<string>debug</string>

</dict>
</plist>

Here are the key entries in the OVC. pl i st file. You can obtain the necessary
environment details from the Settings and Clients pages of the mobile backend.

mobi | eBackends — a dictionary entry containing a nested dictionary for your
mobile backend such as Fi x| t Fast _Cust oner . (When you call OMCMobi | eBackend
in an app, you need to supply the value of that entry as a parameter to

OVCMWobi | eBackendManager .) That entry, in turn, contains entries for appKey,
baseURL, aut henti cati onType, nobi | eBackend! D, anonynmousKey, and, optionally,
net wor kConnect i onTi meout . See the example below.

baseURL — The URL your application uses to connect to its mobile backend.

appKey — The application key, which is a unique string assigned to your app when
you register it as a client in MCS. See Registering an App as a Client in MCS. If
you have not registered the app as a client in MCS, assign a placeholder value for
this entry.

aut hori zat i on — Use this key to define the type of authentication the app will be
using and specify the required credentials. The contents of the aut hori zati on key
depend on the type of authentication.

— authenticationType — Defines the type of authentication mechanism being
used in your mobile application. Possible values are QAut h (for OAuth
Consumer), basi ¢ (for HTTP Basic), SSO, SSOTokenExchange and Facebook.
Include a dictionary for each supported authentication type with the required
credentials as explained in the sections that follow.

net wor kConnect i onTi neout — (Optional) The network timeout for API calls, in
seconds. Should you need to do any network performance tuning, you can add
this property, though you should use it with care. Keep in mind that app
responsiveness issues might be better addressed in the app design itself. The
default timeout is 60 seconds.

| ogLevel — Determines how much SDK logging is displayed in the app’s console.
The default value is err or . Other possible values (in increasing level of detail) are
war ni ng, i nf o, and debug. It is also possible to set the value to none.

| ogHTTPRequest Body — When set to t r ue, the SDK will also log the HTTP and
HTTPS headers and body in the requests to MCS.

| ogHTTPResponseBody — When set to t r ue, the SDK will also log the HTTP and
HTTPS headers and body in responses from MCS.

of fI i neAut henti cati onEnabl ed — If set to t r ue, offline login will be allowed.

The contents and sub-elements of the aut hori zat i on dictionary depend on what kind
of authentication the app will be using.

OAuth Consumer

For OAuth, set the value of the aut henti cati onType property to QAut h and fill in the
OAuth credentials provided by the mobile backend.

t okenEndpoi nt — The URL of the OAuth server your application goes to, to get its
authentication token.

11-3

ORACLE

Chapter 11
Configuring SDK Properties for Xamarin i0OS

* clientl D— The unique client identifier assigned to all applications when they're
first created in your mobile backend.

e clientSecret — The unigue secret string assigned to all applications when
they're first created in your mobile backend.

The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>oaut h</string>
<key>QAut h</ key>
<di ct>
<key>t okenEndpoi nt </ key>
<string>https://oam oracl e. conf oam oaut h2/t okens</stri ng>
<key>client | D</key>
<string>ddb7f f 5a- 0d86- 4b4a- 8164- ddad03734249</ st ri ng>
<key>cl i ent Secr et </ key>
<string>pFnmeazXzNTBNVDyr aQs7</ string>
</dict>
</dict>

SSO

For SSO, set the value of the aut henti cati onType property to SSOand fill in the OAuth
credentials provided by the mobile backend. (For t okenEndpoi nt , you use the mobile
backend’s OAuth token endpoint.)

The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>
<string>SSO</ string>
<key>SSO</ key>
<di ct >
<key>t okenEndpoi nt </ key>
<string>https://oam server. oracle. com oanl oaut h2/t okens</stri ng>
<key>cl i ent|D</ key>
<string>ddb7f f 5a- 0d86- 4b4a- 8164- ddad03734249</ st ri ng>
<key>cl i ent Secr et </ key>
<string>pFreazXzNTBNVDyr aQs7</ stri ng>
</dict>
</dict>

SSO with a Third-Party Token

For SSO with a third-party token, set aut henti cati onType to SSOTokenExchange and
fill in the appropriate credentials.

The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>

11-4

ORACLE

Chapter 11
Configuring SDK Properties for Xamarin iOS

<key>aut henti cati onType</ key>
<string>SSOTokenExchange</ string>
<key>SSOTokenExchange</ key>
<di ct>
<key>nobi | eBackendl D</ key>
<string>ddb7f f 5a- 0086- 4b4a- 8164- ddad03734249</ string>
<key>anonymousKey</ key>

<st ri ng>UFJJTUVE REVDRVBUSUNPTI 9NTOJJ TEVF QUSPTI | NT1VTXOFQUEI EOnZr ZWxUmwant
wbTdu</string>

</dict>
</dict>

HTTP Basic

For HTTP Basic authentication, set the value of the aut henti cati onType property to
basi ¢ and fill in the HTTP Basic credentials provided by the mobile backend.

e nobi | eBackendl D— The unique identifier assigned to a specific mobile backend. It
gets passed in an HTTP header in every REST call made from your application to
MCS, to connect it to the correct mobile backend. When calling platform APIs, the
SDK handles the construction of the nobi | eBackend! D header for you.

e anonymusKey — When using HTTP Basic authentication, a unique string that
allows your app to access APIs that don’t require login. In this scenario, the
anonymous key is passed to MCS instead of an encoded user name and
password combination.

The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct >
<key>aut henti cati onType</ key>
<string>Basic</string>
<key>Basi c</ key>
<di ct>
<key>anonynousKey</ key>

<st ri ng>UFJJTUVE REVDRVBUSUNPTI 9NTOJJTEVF QUSPTI | NT1VTXOFQUEI EOM 6LmxdTI CaWF
rd2Nz</ string>
<key>nobi | eBackendl D</ key>
<string>4f b9cabd- d0e2- 40f 8- 87b5- d2d44cdd7¢c68</ string>
</dict>
</dict>

Facebook

For Facebook, set the value of the aut henti cati onType property to Facebook and fill
in the HTTP Basic auth credentials provided by the mobile backend plus the
facebookAppl D.

The resulting aut hori zat i on property might look something like this:

<key>aut hori zat i on</ key>
<di ct>
<key>aut henti cati onType</ key>

11-5

Chapter 11
Loading a Mobile Backend's Configuration into a Xamarin iOS App

<string>Facebook</string>

<key>Facebook</ key>

<di ct>
<key>nobi | eBackendl D</ key>
<string>11d1f c49- 7574- 4b24- 82f 3- 74a3720cel54</ string>
<key>anonymousKey</ key>

<st ri ng>UFJJTUVE REVDRVBUSUNPTI 9NTOJJ TEVF QUSPTI | NT1VTXOFQUE! EOM 6LmQxd Tl CaWF
rd2Nz</ string>
<key>f acebookAppl D</ key>
<string>154198719279</stri ng>
</dict>
</dict>

Loading a Mobile Backend's Configuration into a Xamarin

10S App

For any calls to MCS APIs using the iOS SDK to successfully complete, you need to
have the mobile backend'’s configuration loaded from the app’s OVC. pl i st file. You do
this using the OMCMbbi | eBackend class:

OMCMbbi | eBackend oMCMobi | eBackend =
OMCMbbi | eBackendManager . Shar edManager . Mobi | eBackendFor Nane(" MBE_Ful | Cover ag
eH) ;

Authenticating and Logging In Using the SDK for Xamarin

10S

ORACLE

Here is some sample code that you can use for authentication through MCS in your
iOS apps.

Oauth

You can use the following method to handle a user logging in with a user name and
password.

OMCAut hori zation authorization = oMoWbi | eBackend. Aut hori zati on;
aut hori zation. Aut henti cati onType = OMCAut henti cati onType. QAut h;
aut hori zation. Aut henti cat e(user nanme. Text, password. Text);

This method terminates the connection to MCS and clears the user name and
password from the iOS keychain:

aut hori zati on. Logout (Handl eOMCAut hor i zat i onLogout Conpl et i onBl ock) ;

voi d Handl eOMCAut hori zat i onLogout Conpl et i onBl ock(NSError nsError)
{

if(nsError == null){
Consol e. Wit eLi ne("Logout success!");

11-6

Chapter 11
Authenticating and Logging In Using the SDK for Xamarin iOS

HTTP Basic

You can use the following method to handle a user logging in with a user name and
password.

OVCAut hori zati on aut hori zati on = oMCMbbi | eBackend. Aut hori zati on;

aut hori zation. Aut henti cati onType = OMCAut henti cati onType. HTTPBasi c;
aut hori zation. Aut henti cat e(user nanme. Text, password. Text);

This method terminates the connection to MCS and clears the user name and
password from the iOS keychain:

aut hori zat i on. Logout (Handl eOMCAut hor i zat i onLogout Conpl et i onBl ock) ;

voi d Handl eOMCAut hori zat i onLogout Conpl et i onBl ock(NSError nsError)

{
if(nsError == null){
Consol e. Wit eLi ne("Logout success!");
}
}
SSO

For apps that allow login through enterprise SSO, use:

OMCAut hori zation oMCAut horizati on = oMCMVbbi | eBackend. Aut hori zati on;
OMCAut hori zati on. Aut henti cati onType = OMCAut henti cati onType. Sso;
OMCAut hori zati on. Aut henticateSSQ(this, true,

Handl eOMCAut hori zat i onAut hConpl et i onBl ock) ;

SSO with a Third-Party Token

First, your app needs to get a token from the third-party token issuer. The way you can
obtain the token varies by issuer. For detailed information on obtaining third-party
tokens and configuring identity providers in MCS, see Third-Party SAML and JWT
Tokens.

Once you have the token, use it to authenticate. The example below checks to see if
the token is already stored in MCS before logging in again.

" Note:

The default expiration time for storing a third-party token in MCS is 6 hours.
You can adjust this time by changing the
Security TokenExchangeTi meout Secs policy.

OMCAut hori zati on oMCAut hori zati on = oMCMbbi | eBackend. Aut hori zati on;
OoMCAut hori zati on. Aut henti cati onType =

ORACLE 11-7

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

OMCAut hent i cati onType. SSOTokenExchange;
NSError nSError = oMCAut horization. Aut henti cat eSSOTokenExchange(Token);

oMCAut hor i zat i on. Aut hent i cat eSSOTokenExchange(Token,
Handl eOMCAut hori zat i onAut hConpl et i onBl ock) ;

oMCAut hor i zat i on. Aut hent i cat eSSOTokenExchange(Token, true,
Handl eOMCAut hori zat i onAut hConpl et i onBl ock) ;

oMCAut hor i zat i on. Aut hent i cat eSSOTokenExchange(Token, true);

bool i SLoaded = oMCAut hori zati on. LoadSSOTokenExchange;

oMCAut hor i zat i on. O ear SSOTokenExchange() ;

Facebook
For apps that allow login through Facebook, use:
OoMCAut hori zati on. Aut henti cati onType = OMCAut henti cati onType. Facebook;

OoMCAut hori zat i on. Aut hent i cat eSoci al (Handl eOMCAut hori zat i onAut hConpl eti onBl o
ck);

If you haven't already set up the app and its mobile backend to use Facebook as the
identity provider, see Facebook Login in MCS.

Calling Platform APIs Using the SDK for Xamarin i0OS

Once the mobile backend’s configuration info is loaded into the app and you have
made a call to get the mobile backend, you can make calls to SDK classes to access
platform features.

Here are some code snippets that illustrate how to access these APIs with the SDK.

User Management

ORACLE

Getting a User

OMCAut hori zati on oMCAut hori zati on = oMCMbbi | eBackend. Aut hori zat i on;
OoMCAut hor i zat i on. Get Curr ent User (Handl eOMCUser Regi st rat i onConpl eti onBl ockW t
hUser);
voi d Handl eOMCUser Regi st rat i onConpl eti onBl ockW t hUser (NSError nSError,
OMCUser oMCUser)
{

if(nSError == null){

output. Text = user.FirstNane + " User details have been fetched

successful I y";

}
}

11-8

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

Updating a User

user . Set Val ueFor Key(new NSNunber (26), new NSString("age"));

user. Set Val ueFor Key(new NSString("address"), new NSString("india"));

OMCAut hor i zat i on. Updat eCurrent User (user, Handl eOMCUser Regi st rat i onConpl eti on
Bl ock);

voi d Handl eOMCUser Regi strat i onConpl et i onBl ock(NSError nSError)
{
if (nSError == null)
{
[luser = oMCUser;
if (user !'=null)
{

if (username. Text == null)

{
}

el se output.Text = user.FirstName +
fetched successful ly";

}

usernane. Text = "Wel cone " + user. First Nane;

n

User details have been

}

el se

{
}

output. Text = nSError.ToString();

Location

Initialization

OMCLocati on oMCLocati on = oMCMWobi | eBackend. Locat i on;

Queries for Places, Devices, and Assets

private static OMCLocation oMCLocati on;

private static OVCLocationPl ace oMCLocationPl ace;
private static OVCLocationDevi ce oMCLocati onDevi ce;
private static OMCLocationAsset oMCLocationAsset;

oMCLocation = oMCMbbi | eBackend. Locat i on;

OMCLocat i onPl aceQuery oMCLocati onPl aceQuery = oMCLocati on. Bui | dPl aceQuery;
oMCLocat i onPl aceQuery. Name = "W\est";

oMCLocat i onPl aceQuery. Execut eW t hConpl eti onHandl er (conpl eti onHandl er) ;
OMCLocat i onAsset Query oMCLocati onAsset Query = oMCLocati on. Bui | dAsset Query;

ORACLE 11-9

ORACLE

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

oMCLocat i onAsset Query. Name = "joe";
oMCLocat i onAsset Query. Execut eW t hConpl et i onHandl er (conpl eti onHandl er);

OMCLocat i onDevi ceQuery oMCLocat i onDevi ceQuery =

oMCLocat i on. Bui | dDevi ceQuery;

oMCLocat i onDevi ceQuery. Nane = "Beacon";

oMCLocat i onDevi ceQuery. Execut eW t hConpl et i onHandl er (conpl et i onHandl er) ;

Fetching

Action<OMCLocat i onChj ect QueryResul t, NSError> conpl eti onHandl er = new
Acti on<OMCLocat i onChj ect Quer yResul t,
NSErr or >((OMCLocat i onChj ect QueryResult argl, NSError arg2) =>

{
if (arg2 == null)

{
OMCLocat i onChj ect[] LocationChjects = argl.|tens;

OMCLocat i onPl ace oMCLocati onPl ace;
OMCLocat i onDevi ce oMCLocat i onDevi ce;
OMCLocat i onAsset oMCLocati onAsset ;

foreach (OMCLocationChject |ocationChject in Locationjects)
{
Consol e. WiteLine("Location Qbject " +
| ocationChject. Get Type() + "-->" +i + " is: " +
| ocationChject. ToString());
i f(locationCbject. GetType().Equal s(typeof (OMCLocati onPl ace))){

oMCLocationPl ace = (OMCLocationPl ace)l ocation(hj ect;

oMCLocat i on. Pl aceWt hl D{ oMCLocat i onPl ace. Id_,
pl aceConpl eti onHandl er);

else if
(1 ocationQbject. Cet Type(). Equal s(typeof (OMCLocat i onDevi ce)))

oMCLocat i onDevi ce = (OMCLocat i onDevi ce)l ocati onhj ect;

oMCLocat i on. Devi ceW t hl D{ oMCLocat i onDevice. 1 d_,
devi ceConpl eti onHandl er);
}

else if
(1 ocationQbject. Cet Type(). Equal s(typeof (OMCLocat i onAsset)))

oMCLocat i onAsset = (OMCLocationAsset)| ocationhject;

oMCLocat i on. Asset Wt hl D{ oMCLocat i onAsset. I d_,
asset Conpl eti onHandl er);
}
}

11-10

ORACLE

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

1
private static void assetConpl eti onHandl er (OMCLocat i onAsset arg0, NSError
argl)
{

if (argl == null)

{

Consol e. Wi teLine("Location Asset " + arg0.ToString());
}

}

private static void devi ceConpl etionHandl er (OMCLocat i onDevi ce argo,
NSError argl)

{

if (argl == null)

{

Consol e. Wi teLine("Location Device " + arg0.ToString());

}
}
private static void placeConpl eti onHandl er (OMCLocat i onPl ace arg0, NSError
argl)
{

if(argl == null){
Consol e. Wi teLine("Location Place " + arg0.ToString());
}

Refreshing

Action<OMCLocat i onChj ect QueryResul t, NSError> conpl eti onHandl er = new
Acti on<OMCLocat i onChj ect Quer yResul t,
NSErr or >((OMCLocat i onChj ect QueryResult argl, NSError arg2) =>

{
if (arg2 == null)

{
OMCLocat i onChj ect[] LocationChjects = argl.|tens;
foreach (OMCLocationChject |ocationChject in Locationjects)
{
Consol e. WiteLine("Location Qbject " +
| ocationChject. Get Type() + "-->" +i + " is: " +
| ocationChject. ToString());

i f(locationCbject. GetType().Equal s(typeof (OMCLocati onPl ace))){

oMCLocationPl ace = (OMCLocationPl ace)l ocationhj ect;

oMCLocat i onPl ace. Ref reshW t hConpl et i onHandl er (pl aceConpl eti onHandl er) ;
}

elseif

11-11

Storage

ORACLE

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

(1 ocationQbject. Cet Type() . Equal s(typeof (OMCLocat i onDevi ce)))
{

oMCLocat i onDevi ce = (OMCLocati onDevi ce)l ocati onhj ect ;

oMCLocat i onDevi ce. Ref reshW t hConpl et i onHandl er (devi ceConpl eti onHandl er);

}
else if

(1 ocationQbject. Cet Type() . Equal s(typeof (OMCLocat i onAsset)))
{

oMCLocat i onAsset = (OMCLocati onAsset)| ocationject;

oMCLocat i onAsset . Ref reshW t hConpl et i onHandl er (asset Conpl et i onHandl er) ;

}
}
}
1
private static void placeConpleti onHandl er (NSError arg0)
{
if (arg0 == null)
{
Consol e. Wi telLine("Location Place " + oMCLocationPl ace. ToString());
}
}
private static void devi ceConpl etionHandl er (NSError arg0)
{

if (arg0 == null)

{
Consol e. Wi teLine("Location Device " +
oMCLocat i onDevi ce. ToString());

}
}
private static void assetConpl eti onHandl er (NSError arg0)
{
if (arg0 == null)
{
Consol e. Wi telLine("Location Asset " + oMCLocationAsset. ToString());
}
}
Initialization

OMCSt or age oMCSt or age = oMCMbbi | eBackend. St or age;

11-12

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

Getting a Collection

OMCSt or ageCol | ection oMCSt or ageCol | ection =
OMCSt or age. Get Col | ecti on(" SharedCol | ection");

Getting an Object

OMCSt orageChj ect = col | ection. Get ("Qbject 1d");

System Consol e. WitelLine("Storage Objectl: " +
OMCSt or agehj ect. ToString());

Getting All Objects from a Collection

NSMut abl eArray nSMut abl eArray = col | ection. Get(0, 100, true);
OMCSt or age(hj ect oMCSt or ageQhj ect ;
if (nSMiutableArray !'= null && nSMiutabl eArray. Count > 0)

{
for (uint i =0; i < nSWtableArray. Count; i++){
OMCSt or ageChj ect = nSMut abl eArray. Get | t emkOMCSt or ageQhj ect >(i);
System Consol e. WiteLine("Storage hjectl: " +
oMCSt or agehj ect. ToString());

}
}
Uploading a Text File
NSData text = "This is a sanple Text file";
OMCSt or ageQbj ect txtFile = new OMCSt orageQhj ect ("Mtext.txt", text, "text/
plain");
col lection. Put(txtFile);
Uploading an Image File
U I mage i mage = new Ul I mage(" Ml mage. png");
NSDat a data = i mage. ASPNQ) ;

OMCSt or agehj ect imageFil e = new OMCSt or ageQbj ect ("Ml nage", data, "image/

png");
col I ection. Put(inageFile);

Notifications

Initialization

OVCNot i fi cations oMCNotifications = oMCMbbi | eBackend. Noti fi cations;

ORACLE 11-13

ORACLE

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

Registering for Notifications

OMCNot i fi cations. Regi sterForNotifications(appDel egate. Devi ceToken,
Handl eOMC Noti fi cations_SuccessBl ock, Handl eOMC Notifi cations_ErrorBl ock);

voi d Handl eOMC Noti ficati ons_SuccessBl ock(NSHt t pUr | Response
nSHt t pUr | Response)

{
if (nSHttpUlResponse != null)
{
Consol e. WiteLine("Response fromnotification Server: " +
nSHt t pUr | Response. St at usCode) ;
}
}
voi d Handl eOMC_Not i fications_ErrorBl ock(NSError nSError)
{
if (nSError !'= null)
{
Consol e. WiteLine("Error in fetching mobiel file: " +
nSError. Local i zedDescri ption);
}
}

AppDelegate code

public NSData DeviceToken = string. Enpty;

public override void RegisteredForRenot eNotifications(Ul Application
application, NSData devi ceToken)

{

Devi ceToken = devi ceToken; // Do something to storage deviceToken.

Consol e. WiteLine("Device Token: " + DeviceToken. ToString());
}

public override void Fail edToRegi st er For Renot eNot i fi cations(Ul Application
application, NSError error)

{
}

public override void Di dRecei veRenpt eNoti fication(U Application
application, NSDictionary userlnfo, Action<U BackgroundFetchResult>
conpl eti onHandl er)

{

Consol e. WiteLine("Fail edToRegi st er For RenoteNotifications.. :(");

ProcessNotification(userlinfo, false);

}

voi d ProcessNotification(NSDictionary options, bool fronFinishedLaunching)

11-14

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

{
/] Check to see if the dictionary has the aps key. This is the
notification payl oad you woul d have sent
if (null I'= options && options. Contai nsKey(new NSString("aps")))
{
/1 Get the aps dictionary
NSDi ctionary aps = options. Cbj ect For Key(new NSString("aps")) as
NSDi cti onary;
string alertTitle = string. Enpty;
string alert = string. Enpty;
string sound = string. Enpty;
int badge = -1;

[/Extract the alert text

Il NOTE: |f you're using the sinple alert by just specifying

Il " aps:{alert:"alert msg here"} ", this will work fine.

/1 But if you're using a conplex alert with Localization keys,
etc.,

Il your "alert" object fromthe aps dictionary will be another
NSDi ctionary.

/1 Basically the JSON gets dunped right into a NSDictionary,

Il so keep that in mnd.

if (aps.ContainsKey(new NSString("alert")))

alert = (aps[new NSString("alert")] as NSString).ToString();
if (aps.ContainsKey(new NSString("alert")))
alert = (aps[new NSString("alert")] as NSString).ToString();

if (options. ContainsKey(new NSString("alertTitle")))
alertTitle = (options[new NSString("alertTitle")] as
NSString). ToString();

[/ Extract the sound string
if (aps. ContainsKey(new NSString("sound")))
sound = (aps[new NSString("sound")] as NSString).ToString();

[/ Extract the badge
if (aps. ContainsKey(new NSString("badge")))

{
string badgeStr = (aps[new NSString("badge")] as
NSQhj ect). ToString();
int. TryParse(badgeStr, out badge);

}

i f (!fronFini shedLaunching)

[/ Manual Iy show an al ert
if (!string.IsNullOrEnpty(alert))
{
UAertViewavAl ert = new U Al ertView"Notification",
alert, null, "OK', null);
avAl ert. Show();

ORACLE 11-15

Analytics

ORACLE

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

public override void ReceivedRenoteNotification(Ul Application application,
NSDi ctionary userlnfo)

{
}

ProcessNotification(userlinfo, false);

public override bool FinishedLaunchi ng(Ul Application application,
NSDi ctionary | aunchQpti ons)

{

W ndow = new U W ndow(Ul Scr een. Mai nScr een. Bounds) ;

Vi ewControl I er viewController = new ViewController("LoginScreen",
null);

W ndow. Root Vi ewControl [er = viewController;

W ndow. MakeKeyAndVi si bl e();

i f (Ul Device. CurrentDevi ce. CheckSyst enVersion(8, 0))

{
var notificationSettings =
U User Noti ficationSettings. GetSettingsFor Types(
U UserNotificationType. Alert |
U User Noti ficationType. Badge | U UserNotificationType. Sound, null

)

Ul Appl i cation. SharedAppl i cation. Regi sterUserNotificationSettings(notificati
onSettings);
Ul Appl i cati on. SharedAppl i cation. Regi st er For Renot eNot i fi cations();
}

el se

{

|/====register for renote notifications and get the device token
Il set what kind of notification types we want
U Renot eNot i fi cationType notificationTypes =
U Rermot eNot i ficationType. Alert | U RenoteNotificationType. Badge;
Il register for renote notifications

Ul Appl i cation. SharedAppl i cati on. Regi st er For Remot eNot i fi cati onTypes(notifica

tionTypes);
}

return true;

Initialization

OMCAnal ytics oMCAnal ytics = oMCMbbi | eBackend. Anal yti cs;

11-16

Chapter 11
Calling Platform APIs Using the SDK for Xamarin iOS

Logging an Event

OMCAnal ytics. LogEvent("this is test event "+ i +" fromxamarin");

Setting Context Location

oMCAnal yti cs. Set Cont ext Locati onCountry("india", "Tel angana", "Hyderabad",
"500081");

Flushing an Event

oMCAnal yti cs. Fl ush();

App Policies

ORACLE

Loading the App Config and Getting Policies

oMCMobi | eBackend. AppConfi gW t hConpl et i onHandl er (Handl eOMCAppConf i gConpl eti o
nBl ock) ;

I ock(obj){

Moni t or. Wi t (obj);
}

OMCAppConfi g oMCAppConfig = oMCMbbi | eBackend. AppConfi g;

[/Cetting String

String str = oMCAppConfig. StringForProperty("Test_String”, "No val ue
configured");

Consol e. Wi teLine("oMCAppConfig: String: " + str);

[/ Getting Nunmber

NSNumber nunber = oMCAppConfi g. Nunber For Property("Test _number”, -1);
Consol e. Wi teLi ne("oMCAppConfig: Number: " + nunber);

/1 CGetting Bool ean

Bool ean bool ean = oMCAppConfi g. Bool eanFor Property("Test _Bool ean", fal se);

Consol e. Wi teLi ne("oMCAppConfig: Bool ean: " + bool ean. ToString());

voi d Handl eOMCAppConf i gConpl et i onBl ock(OMCAppConfi g oMCAppConfi g, NSError
argl)
{

11-17

Chapter 11
Calling Custom APIs Using the SDK for Xamarin iOS

if(argl == null){
Consol e. Wi teLine("oMCAppConfig: " + oMCAppConfig. ToString());
}
}

Calling Custom APIs Using the SDK for Xamarin I0S

ORACLE

The SDK provides the Cust onCoded i ent class to simplify the calling of custom APIs
in MCS. You can call a REST method (GET, PUT, POST, or DELETE) on an endpoint
where the request payload is JSON or empty and the response payload is JSON or
empty.

Using this class, you invoke a REST method (GET, PUT, POST, or DELETE) on an
endpoint where the request payload is JSON or empty and the response payload is
JSON or empty.

In addition you can provide a completion handler to be called when the method
invocation is complete (meaning that the handler runs asynchronously).

Use of Cust onCoded i ent might look something like this:

oMCMobi | eBackend. Cust onCoded i ent . | nvokeCust onRequest (" nts_exanmpl es_sync_sa
| esplus/rem nders", "get", null, Handl eOMCCust omRequest Conpl eti onHandl er);

voi d Handl eOMCCust onRequest Conpl et i onHandl er (NSError ar g0,
NSHt t pUr | Response argl, NSObj ect nSQhject)

{
if (nSChject '= null)
{
System Consol e. WiteLine("response object: " +
nSChj ect. ToString());
}
}

11-18

Part Il
Platform APIs

Oracle Mobile Cloud Service (MCS) comes with platform APIs built-in to provide
functionality that is commonly required in mobile apps. You can configure these
services directly within the MCS web interface and have your apps call those services
using REST APIs. Continue reading to learn how to use these services and the APIs
that access them.

Platform APls

Mobile Backend

obl Usor
o oin e

oo ot

Custom Connectors }_‘ On-Premises

™ [sowe][mest {8 J[Fa JI7 Sonee

Mobile
Applications

* Mobile User Management
* Location

e Storage

» Data Offline and Sync

* Notifications

* Analytics

* Database

* App Policies

ORACLE

Mobile User Management

As a mobile app developer, you can use the Mobile Users API to get information about
the currently authenticated mobile, virtual, or social user. You also can use this API to
update the current mobile user's custom properties. These are the properties that
you've have added to the realm that the member belongs to. In addition, you can use
the Mobile Users Extended API to retrieve the currently authenticated mobile or virtual

user's roles.

Mobile User Mgmt

Mobile Backend
Platform APls
" Mobile User Mgmt

Data Offline & Sync

Analytics
App Policies
A
Custom Connectors
—»= APIs —
Mobile R
Applications

Storage
Motifications
Database
Location
On-Premises

—= or Cloud
Semvice

REST ICS FA

We'll show how to make direct REST calls to these APIs. You can learn more about
the APIs at REST APIs for Oracle Mobile Cloud Service.

You also can call this API from custom code, as shown in Accessing the Mobile Users

API from Custom Code.

User Types

The information that the API returns depends on what type of user you are inquiring

ORACLE

about. Here are the types of users:

 Mobile User: A member who's been added to the realm that's associated with the
backend, as described in Set Up Mobile Users, Realms and Roles.

* Virtual User: These users pass a third-party token for authorization as described

in Enterprise Single Sign-On in MCS.

* Social User: These users have logged into the app from Facebook, as described

in Facebook Login in MCS.

12-1

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Chapter 12
Getting User Information

Getting User Information

If your app needs user information, such as user name or first and last name, you can
call the Mobile Users API to get that information.

You have two options for getting a user’s profile:

e You can make a direct REST call as described in this topic and detailed in REST
APIs for Oracle Mobile Cloud Service.

* You can call the ums.getUser(options, httpOptions) method from a custom API
implementation.

To get the currently authorized user’s profile via a direct REST call, send a GET request
to / mobi | e/ pl at f or m user s/ ~. Here’s an example of using cURL to send the request:

curl -i \

-X GET \

-u j oe. doe@xanpl e. com nypass \

-H "Oracl e- Mobi | e- Backend- | D: ABCD9278- 091f - 41aa- 9ch2- 184bd0586f ce” \
https://fif.cloud.oracle.con nmobile/platformusers/~

The contents of the response body depends on the user type:

* When the user is a mobile user, the response contains the user name, first name,
last name, and email address as well as the custom properties that were added to
the realm that the user belongs to.

* When the user is a virtual user, the response contains the user name.

* When the user is a social user, the response contains the user's ID, identity
provider, and access token.

Here's an example of a response for a mobile user:

{

"usernane": "joe.doe@xanple.cont,
"firstName": "Joe",
"l ast Nane": "Doe",

"email": "joe.doe@xanple.cont,
"locale": "en",
"age": "39",

“wor kPhone": "+19195550100",
"nobi | ePhone": "+19195550101",
"ot her Phone": "+19195550102",
"avatar": " DERFSKJAKJLSAJFLKASIDFLKADIF",
"links": {

{ "rel": "canonical",

“href": "/mobilelplatfornm users/~"

}

}
}

ORACLE 12-2

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Chapter 12
Getting User Roles

Here’s an example of a response for a virtual user:

{
}

“usernane": "username"

Here's an example of a response for a social (Facebook) user:

{
"username": "1 :623:165",
"nobi | eExt ended”: {
"identityProvider": {
"facebook": {
"accessToken": "CAAl...YZD'
}
}
}
}

For mobile users, you can limit the response to specific properties by adding a query
string to the endpoint, such as fi el ds=fi rst Nane, | ast Nane. This argument is ignored
if the user is a virtual or social user. For example, this command requests the | ocal e

property:
curl -i \
-X GET \
-u j oe. doe@xanpl e. com nypass \

-H "Oracl e- Mobi | e- Backend- 1 D: ABCD9278- 091f - 41aa- 9cb2- 184bd0586f ce" \
https://fif.cloud.oracle.com mobile/platformusers/~?fields=locale

The response includes only the requested properties. For example:

{
}

"l ocal e": "en

Getting User Roles

ORACLE

The Mobile Users Extended API lets you get a mobile or virtual user’s roles in addition
to the same information that you can get from the Mobile Users API. You can’t use this
API to get social user roles.

To learn how to get a user’s roles using custom code, see
ums.getUserExtended(options, httpOptions).

To get the roles via a direct Mobile Users Extended REST call, you make the same
request as you would with the Mobile Users API, but you use the / nobi | e/ pl at f or nf
ext ended endpoint instead. For example:

curl -i \

-X GET \
-u j oe. doe@xanpl e. com nmypass \

12-3

Chapter 12
Updating Mobile User Custom Properties

-H "Oracl e- Mbi | e- Backend- I D. ABCD9278- 091f - 41aa- 9ch2- 184bd0586f ce” \
https://fif.cloud.oracle.conm nobile/platformn extended/ users/~

Here’s an example of a response for a mobile user:

{
"l ast Nane": " Doe",
“usernane":"joe. doe@xanpl e. cont',
“email":"joe. doe@xanpl e. cont',
“roles":|
"Cust onmer ",
"Trial"
1,
“links":[
{
“rel":"canonical ",
“href":"/mobil e/ ext ended/ pl at f or nf users/j oe"
¥
{
"rel":"self",
“href"."/mobil e/ ext ended/ pl at f or nf users/j oe"
}
1,
“firstName":"Joe"
}

Updating Mobile User Custom Properties

You can update a mobile user’s custom properties. These are the properties that have
been added to the user schema for the user’s realm. You can't update the standard
identity properties (user nane, first Name, | ast Nane, and emai |).

To learn how to update a mobile user’s custom properties from custom code, see
ums.updateUser(fields, options, httpOptions).

To update a mobile user’s custom properties via a direct REST call, send a PATCH or
PUT to / nobi | e/ pl at f or mf user s/ ~. Include the properties with their new values in the
body of the request. For example:

curl -i \

-X PUT \

-u j oe. doe@xanpl e. com mypass \

-d users.json \

-H "Content-Type: application/json; charset=utf-8" \

-H "Oracl e- Mbi | e- Backend- I D. ABCD9278- 091f - 41aa- 9cbh2- 184bd0586f ce” \
https://fif.cloud.oracle.con nobile/platformusers/~

Here’s an example of the request body:

{

"locale": "en_US',

ORACLE 12-4

ORACLE

n

age": "40"

The response includes all the properties

{

"usernane": "joe.doe@xanpl e. con',
“firstName": "Joe",

"l ast Nane": "Doe",

"emai|l": "joe.doe@xanple. coni',
"locale": "en_US',

"age": "40",

"wor kPhone": "+19195550100",

"mobi | ePhone": "+19195550101",

"ot her Phone": "+19195550102",

Chapter 12

Updating Mobile User Custom Properties

. For example:

"avatar": " DERFSKJAKJLSAJFLKASJDFLKADJF",

“links": {
{ "rel": "canonical",

"href": "/nobilelplatfornm users/~"

}
}
}

12-5

Location

As a mobile app developer, you can use the Oracle Mobile Cloud Service (MCS)
Location API to access details about location devices, places and assets that have
been registered in MCS.

Location
Mobile Backend
Platform APls
Mobile User Mgmt Storage
—_»
Data Offline & Sync Motifications
Analytics Database
App Policies | Location
1._
Custom Connectors On-Premises
iy — AR coap M ResT flics flFa ™ oF Clowd
Mobile Service
Applications

What Can | Do With Location?

ORACLE

Users today expect information to be presented based on their current situation and
individual needs and preferences. One of the most important contextual data points is
location. The impact of location-aware mobile apps on users and businesses is
growing faster every day.

e Everyone uses navigation apps for location data, including getting directions to
restaurants, airports, hospitals, and just about anything else needed in a
geographic area.

* You can implement location-based functionality in a wide range of apps, like
focused queries and location-aware history.

e Your apps can use location data to send notifications targeted to mobile devices in
a geographic area or a certain mobile user or asset only in a specific geographic
area.

e Location-aware applications can also contribute a lot to business intelligence and
analytics, including customer profiling and demographics, competitive analysis and
supply chain tracking.

This chapter discusses how to use these Location APIs to perform common tasks. For
more details on using the platform APIs, see REST APIs for Oracle Mobile Cloud
Service.

13-1

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Chapter 13
Setting Up Location Devices, Places and Assets

Setting Up Location Devices, Places and Assets

Location devices, places and assets provide the tools you need to create location-
aware mobile apps.

* Alocation device is any device that provides location services, like a Bluetooth
proximity beacon. The following location protocols are currently supported:

— AltBeacon is an open source protocol for Bluetooth proximity beacons. For
more information and the full specification, see altbeacon.org and https://
github.com/AltBeacon/spec.

— Eddystone is Google’s open protocol for Bluetooth proximity beacons. For
details, see https://github.com/google/eddystone.

— IiBeacon is the Apple protocol for Bluetooth proximity beacons. For details, see
https://developer.apple.com/ibeacon/.

* A place is a physical location associated with one or more location devices.

* An asset is a mobile physical object that's associated with one or more location
devices.

To set up a location in MCS, define the related places and/or assets and register the
associated location devices in the MCS Ul under Applications > Location. You can
also use the Location Management API to create, update and delete location devices,
places and assets from custom code. For details, see Accessing the Location
Management API from Custom Code.

Defining Places

ORACLE

A place is a physical location associated with one or more location devices. You can
define places through the Ul individually or by uploading a CSV file. You can also use
the Location Management API to create, update and delete places from custom code.
For details, see Accessing the Location Management API from Custom Code.

Note:

To manage places in the MCS Ul, you need to be assigned the
Mobi | eEnvi ronment _Locati onMgnt MCS team member role in the
environment.

1. Click === to open the side menu and select Applications > Location.

2. From the Places tab, click New Place to define a place using the Ul. This tab
shows all the places defined. To edit an existing place, select it in the list and click
Edit .

3. If you are creating a new place, enter a name, and an optional label and
description. If you enter a new label, it will be saved and can be used to categorize
other places, location devices and assets. Click Create.

4. On the Overview tab of the new Location Place Editor, enter the GPS coordinates
for the place. You can also define a geofence by radius or polygon. To associate
the place with another existing place, select that place from the Parent dropdown.

13-2

7.

Chapter 13
Setting Up Location Devices, Places and Assets

Click the Attributes tab to define custom attributes for the place. Create new
attributes or copy them from an existing place. You can use attributes to associate
a content URI with the place, for example a coupon or flier that a mobile app
downloads when the user is nearby. Attributes can also be used to filter results in
gueries that use the Location Platform API.

Click the Devices tab to associate location devices with the place. You can
register a new device from this page (Registering Location Devices) or select from
location devices already registered. A device can be associated with a single place
or asset, not both. By default, only the devices for the current place are displayed,
but you can expand the list by checking the box Show all devices associated with
children of this place.

When you are done configuring the place, click Save.

If a place has descendants, click > at the end of the table row to navigate to them.

Uploading Places Using a CSV File

ORACLE

You can upload multiple places using a CSV file.

1.
2.

From the Location : Places page, click Upload Places.
Browse to the .csv file and click Upload.

The CSV file for uploading places must follow this format:

#version=1.0

#nane, #l abel , #descri pti on, #GPSPoi nt , #GPSCi r cl e, #GPSPol ygon, #l i st of
Attributes

nane, | abel , description,lat:lon,lat:lon:radius,latl:lonl;lat2:1on2;lat3:l
on3, keyl=val 1, key2=val 2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one type of place:
» For specific GPS coordinates (GPSPoi nt), include the latitude and longitude.

e For a circle geofence (GPSGi r ¢l e), include the latitude and longitude of the
center point, and the radius. In Oracle Spatial, GPS circles are converted to
polygons, which might cause the radius to be recalculated.

» For a polygon geofence (GPSPol ygon), include the latitude and longitude for
each corner of the polygon.

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below defines a GPSPoi nt .

#version=1.0

#nane, #| abel , #descri pti on, #GPSPoi nt , #GPSCi r cl e, #GPSPol ygon, #l i st of
Attributes

Fi xit Fast Redwood City Warehouse, War ehouse, Fi xi t Fast \\rehouse in
Redwood City, 37.8453:-121. 7845, ,, keyl=val 1, prop2=val 2, prop3=val 3

13-3

Chapter 13
Setting Up Location Devices, Places and Assets

< Note:

The expected encoding for the CSV file is Unicode UTF-8, so it's best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Defining Location Assets

An asset is a physical object that's associated with one or more location devices,
typically something mobile and valuable like a forklift or hospital bed. You can define
location assets through the Ul individually or by uploading a CSV file. You can also
use the Location Management API to create, update and delete location assets from
custom code. For details, see Accessing the Location Management API from Custom
Code.

" Note:

To manage location assets in the MCS Ul, you need to be assigned the
Mobi | eEnvi ronnent _Locati onMynt MCS team member role in the
environment.

1. Click === to open the side menu and select Applications > Location.

2. From the Assets tab, click New Asset to define a location asset using the Ul. This
tab shows all the assets defined. To edit an existing asset, select it in the list and
click Edit Asset.

3. If you are creating a new asset, enter a name, and a label and description if you
choose. Labels will be saved and can be used to categorize other location assets.
If the device(s) you want to associate with the asset are already registered, you
can select them on this page. (A device can be associated with a single place or
asset, not both.) Click Create.

4. On the Overview tab of the Location Asset Editor, you can update your entries.

5. Click the Attributes tab to define custom attributes for the asset. Create new
attributes or copy them from an existing asset. You can use attributes to associate
a content URI with the asset, for example a coupon or flier that a mobile app
downloads when the user is nearby. Attributes can also be used to filter results in
gueries that use the Location Platform API.

6. When you are done configuring the asset, click Save.

Uploading Assets Using a CSV File

You can upload multiple assets using a CSV file.
1. From the Location : Assets page, click Upload asset file.

2. Browse to the .csv file and click Upload.

ORACLE 13-4

Chapter 13
Setting Up Location Devices, Places and Assets

The CSV file for uploading assets must follow the following format:

#version=1.0
#name, #description, #l abel , #/ist of Attributes
Name, Description, | abel , keyl=val 1, key2=val 2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3, as shown in the example below. Make sure to include
commas for any empty properties to define the entry correctly.

#version=1.0

#nane, #description, #l abel , #ist of Attributes

RC_WH 01_F01_B023, Beacon #23 in the Fix|tFast Warehouse in Redwood
G ty, beacon,

Fi F Warehouse Forklift #6, MyMed DA332

forklift,forklift, Equi pment Manufacturer=M/Med, MyMed seri al

nunber =CUB12- 9845873

Hospital Bed #233, M/Med nodel 1225 hospital bed, hospital

bed, Equi pment Manuf act ur er =MedBed, SJI d=6754843090

" Note:

The expected encoding for the CSV file is Unicode UTF-8, so it's best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Registering Location Devices

ORACLE

A location device is any device that provides location services, like a Bluetooth
proximity beacon. You can define location devices through the Ul or by uploading a
CSV file.

1. Click === to open the side menu and select Applications > Location.

2. From the Devices tab, click New Device to register a location device using the Ul.
This tab shows all the location devices defined. To edit an existing device, select it
in the list and click Edit. (You can also register devices from the Devices tab in the
Location Places Editor.)

3. If you are creating a new location device, enter a name and a description. Select
the Protocol:

+ altBeacon
 Eddystone

 iBeacon

13-5

6.

Chapter 13
Setting Up Location Devices, Places and Assets

< Note:

The protocol can't be changed after a device is registered.

Click Create.

On the Overview tab of the Location Device Editor, enter the identifying
information for the location device. The required values depend on the selected
protocol:

* For iBeacon, enter the UUID, Minor and Major values.
* For altBeacon, enter ID1, ID2 and ID3.
« For Eddystone, enter the Namespace, Instance and URL.

If the place and/or asset you want to associate with the device is already defined,
select it from the dropdown list. A device can be associated with a single place or
asset, not both.

Click the Attributes tab to define custom properties for the device. Create new
attributes or copy them from an existing device. You can use attributes to
associate a content URI with the device, for example a coupon or flier that a
mobile app downloads when the user is nearby. Attributes can also be used to
filter results in queries that use the Location Platform API.

When you are done configuring the device, click Save.

Uploading Location Devices Using a CSV File

You can upload multiple location devices using a CSV file.

1.
2.

ORACLE

From the Location > Devices page, click Upload Devices.

Browse to the .csv file and click Upload.

The CSV file for uploading devices must follow the following format:
#version=1.0

#name, #descri pti on, #uui d, #maj or, #m nor, #i d1, #i d2, #i d3, #nanespace, #i nst an
ce #url,#list of Attributes

Name, Descri ption, uui d, maj or, m nor,idl,id2,id3, namespace, i nstance, url, key
1=val 1, key2=val 2

The first line specifies the version, and the second line is for usability. Any line that
starts with # is considered a comment line and is ignored.

The data starts on line 3. For each line of data, you can define one protocol type.
The required properties depend on the protocol type:

e ForiBeacon, include uui d, maj or and ni nor properties.
» For altBeacon, include i d1, i d2 and i d3 properties.

e For Eddystone, include the namespace, i nst ance and URL.

13-6

Chapter 13
Calling the Location API from Your App

Make sure to include commas for any empty properties to define the entry
correctly. For example, the CSV file below registers an iBeacon location device by
defining values for the uui d, maj or and mi nor properties.

#version=1.0

#nane, #descri ption, #uui d, #maj or, #m nor, #i d1, #i d2, #i d3, #namespace, #i nst an
ce #url,#list of Attributes

RC WH 01_F01 B001, Beacon on 1st Floor in FixitFast Wrehouse in Redwood
City, B9407F30- F5F8- 466E- AFF9- 25556B57FE6D,
1.0,1.1,,,,,,, keyl=val 1, key2=val 2, key3=val 3

< Note:

The expected encoding for the CSV file is Unicode UTF-8, so it's best to
use a text editor to edit CSV files. Opening a CSV file in Excel or another
spreadsheet application can corrupt the encoding or add extra lines. If
you use another application to edit your CSV files, confirm that the
encoding is correct in a text editor before uploading the file.

Calling the Location API from Your App

Make your mobile apps location-aware by querying for and retrieving location devices,
places and assets using the Location API. You can use the client SDK for your
platform or access the API directly through REST endpoints.

Team members with the Mobi | eEnvi ronment _Syst emrole can use the Location
Management REST API to add and maintain places, devices, and assets.

Querying for Location Devices, Places and Assets

The Location API allows you to write complex queries for location devices, places and
assets. You can call the REST endpoint directly or use the client SDK to construct a

query.

The available query parameters depend on the object type.

Querying for Location Devices

ORACLE

Query for location devices using the following REST endpoints:

CGET {baseUri}/mobile/platfornilocation/devices?name={ narme} to query by
the device name.

POST {baseUri}/nobilel/platforn | ocation/devices/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

nane Filters results by a partial match of this string

with the name defined for the device in the Ul.
Not case sensitive.

13-7

Chapter 13
Calling the Location API from Your App

Parameter Description

description Filters results by a partial match of this string
with the description defined for the device in
the Ul. Not case sensitive.

search Filters results by a partial match of this string
with the name or description defined for the
device in the Ul. Not case sensitive.

attributes Filters results by a match of the name-value
pairs in the At t ri but es object, using the
attributes defined for the device in the Ul.

pr ot ocol Filters results by device protocol type(s):

associ at edAsset | d

listCf Devices
i Beacon_uui d

i Beacon_maj or
i Beacon_mi nor

al t Beacon_i d1
al t Beacon_i d2
al t Beacon_i d3
eddyst one_nanespace

eddyst one_i nst ance
eddyst one_ur|

order By

of f set

limt

ORACLE

* iBeacon
* al tBeacon
* eddystone

The asset ID to search for. (Returns location
devices associated with the specified asset.)

An array of device IDs to search for.

The UUID of the iBeacon device(s) to search
for.

The major version of the iBeacon device to
search for.

The minor version of the iBeacon device to
search for.

ID1 of the altBeacon to search for.
ID2 of the altBeacon to search for.
ID3 of the altBeacon to search for.

The namespace of the Eddystone device to
search for.

The instance of the Eddystone device to
search for.

The URL of the Eddystone device to search
for.

An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:

* rasc for ascending

* . desc for descending
For example, nane: asc.

By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

By default, 40 items are returned. You can
specify a different maximum number of results,
up to 500. Generally meant to be used with

of f set for pagination.

13-8

ORACLE

Chapter 13
Calling the Location API from Your App

Parameter Description

for mat By default, the response is in | ong format and
results include the device id, name,
description, attributes, createdOn and
createdBy, as well as the place ID and
identifying details about the device. Specify
short to return only the device id, name,
description and protocol.

i Beacon
{

"protocol ":"iBeacon",

"i Beacon_major": "2.0",

"i Beacon_mnor": "2.2",

"i Beacon_uui d": "B9407F30- F5F8- 466E- AFF9- 25556B57FE6D"
}

If the query is successful, the response will be 200, and the body will include the
matching location device and its associated place or asset if it has one. For example:

{
"items": [
{
"id": 15,
"createdOn": "2015-11-11T21: 15: 34. 341+0000",
"createdBy": "thomas.snmith@if.cont,
"modi fiedOn": "2015-11-11T21: 15: 34. 341+0000",
"nodi fiedBy": "thomas.smth@if.conl',
"nane": "RC_WH 01_F01_B003",
"description": "Beacon on 1st Floor in FixltFast Wrehouse in
Redwood City",

“place": {
"name": "FixitFast Redwood City Warehouse",
"l abel ": "FixitFast Warehouse",

"description": "FixitFast Warehouse in Redwood City",
"address" : {
"gpsPoint" @ {
"latitude": 37.5548,
"longitude": -121.1566
}
¥
"attributes" : {
"Equi pment Manuf acturer™": "Abc Corp"

}l
"links": [
{
“rel": "canonical",
"href": "/internal -tool s/1.0/envs/dev/location/places/9876"
}1
{
"rel": "self",
"href": "/internal -tool s/1.0/envs/dev/location/places/9876"

13-9

ORACLE

Chapter 13
Calling the Location API from Your App

}
]
1
"beacon": {
"i Beacon": {
“mgjor": "2.0",
"mnor": "2.2",
"uui d": "B9407F30- F5F8- 466E- AFF9- 25556B57FE6D"
}
b
"attributes": {
"manufacturer": "G nbal ",
"status": "Active",
"manuf acturerld": "10D39AE7- 020E- 4467- 9CB2- DD36366F899D",
"visibility": "Public"
b
1
"total Results": 1,
"of fset": O,
"limt": 20,
“count": 1,
"hasMre": fal se

The example below queries for al t Beacon devices with “Wr ehouse” in the name or
description and specifies the short response format, ordered by name, with a limit of 5
items.

{
“protocol ":"al t Beacon",
“orderBy": "nane",
"limt":"5",
“format":"short",
"search": " Warehouse"

}

If the query is successful, the response is 200 and the body contains just the id, name,
description and protocol for the 5 returned devices.

{
"items": [
{
"id":33,
"nane": " RC_WH 01_B09_C004",
"description":"Beacon on 2nd Floor in FixltFast Warehouse in
Redwood City",
"protocol ":"al t Beacon"
I3
{
"id":12,
"name":"RC_WH 01_F01_B001",
"description":"Beacon on 1st Floor in FixltFast Warehouse in
Redwood City",
"protocol ":"al t Beacon"

13-10

Chapter 13
Calling the Location API from Your App

b
{
"id": 61,
"nanme":"RC_WH 01_F01_B008",
"description":"Beacon on 2nd Floor in Fix*tFast \Wrehouse in
Redwood City",
"protocol ":"al t Beacon"
b
{
"id": 58,
"nanme":"RC_WH 02_F01_BO11",
"description":"Beacon on 1st Floor in FixitFast Wrehouse in
Redwood City",
"protocol ":"al t Beacon"
b
{
"id": 114,
"nanme":"RC_WH 01_K22_A999",
"description":"Beacon on 3rd Floor in FixitFast Warehouse in
Redwood City",
"protocol ":"al t Beacon"
}
I
"total Resul ts":5,
"offset":0,
"limt":s,
“count":5,

"hashore": fal se

Querying for Places

Query for places with specific parameters using the following REST endpoints:

e CET {baseUri}/mobilel/platforn|ocation/places?name={nane} to query by the
place name.

e POST {baseUri}/mobile/platform|ocation/places/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

nane Filters results by a partial match of this string
with the name defined for the place in the UL.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the place in the
Ul. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the place in the Ul. Not case sensitive.

ORACLE 13-11

ORACLE

Chapter 13
Calling the Location API from Your App

Parameter Description

attributes Filters results by a match of the name-value
pairs in the At t ri but es object, using the
attributes defined for the place in the Ul.

| abel Filters results by a partial match of this string
with the label specified for the place in the UI.
Not case sensitive.

listOfPlaces An array of place IDs to search for.

descendant Cf
i ncl udeDescendant sl nResul t: all
i ncl udeDescendant sl nResul t: direct

i ncl udeDescendant sl nResul t: none
near est To

i nGeoFence

descendant Devi ces

order By

of f set

limt

f or mat

Specify a place ID to search for direct
descendants.

Entire Place descendant hierarchy is returned
in the results.

Only direct (first level) descendants are
returned in the results.

No descendants are returned in the results.

Specify a gpsPoi nt (latitude, longitude) to
return the closest place. This parameter can’t
be combined with other query parameters.

Specify a gpsCi r cl e (latitude, longitude,
radius) to return all places within that
geofence.

Setto true to include the

descendant Devi ces property in the results,
which lists the devices associated with this
place and all its child places. These results are
always in short format.

An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:

* :asc for ascending

* . desc for descending
For example, nane: asc.

By default, 0 to start results at the first item.
Specify an offset number to start results in a
different place.

By default, 40 items are returned. You can
specify a different maximum number of results,
up to 500. Generally meant to be used with

of f set for pagination.

By default, the response is in | ong format and
results include the place id, name, description,
attributes, label, creation and modification
data, as well as the place address, and a list of
the devices within the place and the place’s
parent. Specify short to return only the place
id, name, description and label.

{
"l abel ":"block 1",

"i nGeoFence": {

13-12

ORACLE

Chapter 13
Calling the Location API from Your App

"gpsCircle": {
"latitude": 37.488179,
"longitude": -122.229011,
"radius": 32186

}
}

"orderBy": "nane: asc",
“limt":100

If the query is successful, the response will be 200, and the body will include an array
of matching places. In this example, only two places matched the query:

"items": [
{
"id": 16,
"createdOn": "2016-03-08T22; 09: 19. 968+0000",
"createdBy": "joe",
"modi fiedOn": "2016-03-08T22: 09: 19. 968+0000",
"nodi fiedBy": "joe",
"name": "I 1bl",
"label": "lot 1 block 1",
"parent Pl ace": 15,
"description": "Lot 1 block 1 New City",
"hasChildren": false,
"address": {
"gpsCGircle": {

“longitude": -120.87449998,

“latitude": 37.98560003,

“radius": 29999. 99999997

}
}l
"links": [
{
“rel": "canonical",
“href": "/mobilelplatfornllocation/places/16"
}l
{
"rel": "self",
“href": "/mobilelplatfornilocation/places/16"
}
]
}v
{
"id": 17,

"createdOn": "2016-03-08T22: 09: 20. 065+0000",
"createdBy": "joe",

"modi fiedOn": "2016- 03-08T22: 09: 20. 065+0000",
"nodi fiedBy": "joe",

"name": "I 2bl",

"l'abel": "lot2 block 1",

"parent Pl ace": 15,

"description": "Lot 2 block 1 New City",

13-13

ORACLE

Chapter 13

Calling the Location API from Your App

"hasChi | dren": fal se,
"address": {

"gpsPol ygon": {
"vertices": [

{
"longitude": -121.7845,
"latitude": 37.8453
I3
{
"l ongitude": -120.9853,
"latitude": 37.1248
I3
{
"longitude": -121.7758,
"latitude": 37.6983
}
]
}
b
"links": [
{
“rel": "canonical ",
“href": "/mobile/platform|ocation/places/17"
¥
{
“rel": "self",
“href": "/mobile/platform|ocation/places/17"
}
]
}
1,
"total Results": 2,
"of fset": O,
“limt": 100,
“count": 2,

"hashbre": false

"incl udeDescendant sl nResul t": "direct",
“orderBy" : "
"of fset" : 0,
"limt" : 10,
“format" : "short"

nane-,

If the query is successful, the response will be 200, and the body will include only the
first level descendants. In this example, only three descendants matched the query:

{

"places": [

{
"id": 3331,

13-14

Chapter 13
Calling the Location API from Your App

"name": "FixitFast Redwood City HQ Campus",
"l abel ": "canmpus",
"description": "1st Floor in FixitFast \Wrehouse in Redwood
Gty"
“children": [
{
"id": 3334,
"name": "Building #1 FixitFast Redwood Gty HQ Campus",
"description": "Building #1 on FixitFast Redwood City
Headquarters Canpus”,
"l abel ": "building",
“children": []

"id": 3335,

"name": "Building #2 FixitFast Redwood Gty HQ Canpus",

"description": "Building #2 on FixitFast Redwood City
Headquarters Canpus”,

"l abel ": "building",

“children": []

"id": 3336,

"name": "Building #3 FixitFast Redwood Gty HQ Campus",

"description": "Building #3 on FixitFast Redwood City
Headquarters Canpus”,

"l abel ": "building",

“children": []

Querying for Assets

Query for assets with specific parameters using the following REST endpoints:

e CET {baseUri}/mobilel/platforn|ocation/assets?name={nane} to query by the
asset name.

e POST {baseUri}/mobile/platform|ocation/assets/query to query using
parameters in a JSON payload as described below.

To define your query, include a JSON payload with the following options:

Parameter Description

nane Filters results by a partial match of this string
with the name defined for the asset in the UI.
Not case sensitive.

description Filters results by a partial match of this string
with the description defined for the asset in the
Ul. Not case sensitive.

search Filters results by a partial match of this string
with the name, label or description defined for
the asset in the Ul. Not case sensitive.

ORACLE 13-15

ORACLE

Chapter 13
Calling the Location API from Your App

Parameter Description

attributes Filters results by a match of the name-value
pairs in the At t ri but es object, using the
attributes defined for the asset in the Ul.

| abel Filters results by a partial match of this string
with the label specified for the asset in the UI.

listOf Assets An array of asset IDs to search for.

associ at edDevi cel d

near est To

i nGeoFence

orderBy

of f set

limt

f or mat

A device ID to search for. Returns the asset
associated with this device ID. When you use
this query parameter, don't combine it with
other parameters.

Specify a gpsPoi nt (latitude, longitude) to
return the closest asset. Can’t be combined
with other parameters.

Specify a gpsCi r cl e (latitude, longitude,
radius) to return all assets within that
geofence.

An enumeration of the field(s) to order results
by. Can include any top-level attribute. Append
the direction to order results by:

* :asc for ascending

* . desc for descending
For example, nane: asc.

By default, O to start results at the first item.
Specify an offset number to start results in a
different place.

By default, 40 items are returned. You can
specify a different maximum number of results,
up to 500. Generally meant to be used with

of f set for pagination.

By default, the response is in | ong format and
results include the asset id, name, description,
attributes, label, creation and modification
data, as well as the associated place, and the
IDs of associated devices. Specify short to
return only the asset id, name, description and
label.

"l abel ":"bed",
"attributes":{

"Equi pment Manuf act urer”: " Exanpl e Conpany"

}

n n.on

“format":"long"

rderBy":"createdOn: asc",

If the query is successful, the response will be 200, and the body will include an array

of matching assets:

“items": |

13-16

Chapter 13
Calling the Location API from Your App

"id":333,
"createdBy":"jdoe"
"createdOn": "2015- 08- 06T18: 37: 59. 4247"
"modi fiedOn":"2015-08- 06T18: 37: 59. 4247"
"nodi fi edBy": " doe"
"nanme": "hospital bed #233"
"l abel ":"hospital bed"
"description":"nmodel 1225 hospital bed",
"l ast KnownLocati on": {
"placel d": 244
b
"devices": [
3409
1
"attributes":{
"Equi pment Manuf acturer": "Exanpl e Conpany",
"SJld": "6754843090"

"id":888,
"createdBy":"jdoe"
"createdOn": "2015- 10- 16T09: 24: 41. 354Z"
"modi fiedOn":"2015- 10- 16T09: 24: 41. 3547"
"nodi fi edBy": " doe"
"nanme": "hospital bed #233"
"l abel ":"hospital bed"
"description":"nmodel 1225 hospital bed",
"l ast KnownLocati on": {
“placel d": 360
b
"devices":|[
658
1,
"attributes":{
"Equi pment Manuf acturer": "Exanpl e Conpany",
"SJld": "6754843090"

}
1,
"total Results": 2,
"of fset":0
“limt":100,
"count": 2,
"hasMore": fal se

Using the SDK to Query for Location Objects: iOS

The OMCLocat i onQuery class in the iOS client SDK allows you to construct queries for
location devices, places and assets.

ORACLE 13-17

Chapter 13
Calling the Location API from Your App

To access the Location API through the iOS SDK, use [[OVCMbbi | eBackendManager
shar edManager] . def aul t Mobi | eBackend as described in Calling Platform APIs Using
the SDK for iOS.

Below is an example of using the iOS SDK to query for a place by name.

OMCLocati on* |ocation = [[OMCMobi | eBackendManager
shar edManager] . def aul t Mobi | eBackend | ocati on] ;

NSString* searchString = @store";

/'l search by nane

/I sort results by name, in ascending order

[/ results will be in "short" format

OMCLocat i onPl aceQuery* query = [l ocation buil dPl aceQuery];
query. name = searchString;

query.orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;
query.format = OMCLocati onChj ect Quer yFor mat TypeShort ;

__block OMCLocat i onPl aceQueryResul t* result;
do {
result =nil;
__block NSError* error = nil;
__block BOOL executing = YES;
[query execut eWthConpl etionHandl er:~(OMCLocat i onPl aceQuer yResul t *
result _, NSError* error_) {
result =result_;
error = error_;
executing = NO

s

while (executing) {
[[NSRunLoop current RunLoop] runUntil Date: [NSDat e
dateWthTinelnterval : 0.5 sinceDate:[NSDate date]]];

}
if (error) {
Il handle error...
} else {
for (OMCLocationPlace* place in result.itens) {
/'l process each place...
NSLog(@ pl ace name: %@, place.nane);
}
}

query = result.nextQuery;
} while ((result I'=nil) && result.hasMre);

For more information on place queries, see Querying for Places.

ORACLE 13-18

Chapter 13
Calling the Location API from Your App

Using the SDK to Query for Location Objects: Android

ORACLE

The Locat i onQuery class in the Android client SDK allows you to construct queries for
location devices, places and assets.

To access the Location API through the Android SDK, use the Mbi | eBackendManager
class as described in Calling Platform APIs Using the SDK for Android.

Below is an example of using the Android SDK to query for a place by name:

Location location =

Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(mCont ext). get Serv
i ceProxy(Location. class);

bj ect 1 ock = new Chject();

String searchString = "store";

final Atoni cReference<String> searchString = "store";

final Aton cReference<LocationChject QueryResult> nResult = new
At oni cRef erence<Locat i onQhj ect Quer yResul t >() ;

final Aton cReference<ServiceProxyException> nError = new

At oni cRef er ence<Ser vi ceProxyException>();

/1 search by nane
/1 sort results by name, in ascending order
[l results will be in "short" format
LocationPl aceQuery query = | ocation. buil dPl aceQuery();
query. set Name(searchString);
query. set Order ByAttri but eType(Locati onDevi ceCont ai ner Query. Locat i onDevi ceCo
nt ai ner QueryOrder ByAttri but eType
. Locat i onDevi ceCont ai ner Quer yOr der ByAttri but eTypeNane) ;
query. set For mat (Locat i onCbj ect Query. Locat i onQbj ect Quer yFor mat Type. Locat i onO
bj ect Quer yFor mat TypeShort);

do{
query. execut e(new Locati onQhj ect sQueryCal | back() {
@verride
voi d onConpl et e(Locati onQhj ect QueryResult result,
Servi ceProxyException exception){
nError. set(exception);
nmResul t. set(result);

synchroni zed(| ock) {
lock.notifyAll();

}
}
1
synchroni zed(1 ock) {
[ock.wait();
}

if(nError.get() '= null){
/'handl e error

}

13-19

Chapter 13
Calling the Location API from Your App

el se{
for(LocationChject object : nResult.get().getltens()){
LocationPl ace place = (LocationPlace) object;
/I process each place...

}
query = mResul t().get().get Next Query();

} while(nResult.get() !'= null && nResult.get().hasMre());

For more information on place queries, see Querying for Places.

Retrieving Location Objects and Properties

Use the Location API to retrieve location devices, places and assets and their
associated properties.

The following REST endpoints allow you to retrieve location objects:

e Location devices: GET {baselUri}/ nobile/platforntlocation/devices
e Assets: GET {baseUri}/mobile/platform|ocation/assets

e Places: GET {baseUri}/mobile/platfornilocation/places

You can retrieve an object by ID or by name:

* To retrieve an object by ID, include the ID in the path, for example: GET
{baseUri}/nobile/platfornilocation/devices/12345.

» To retrieve an object by name, pass the name of an existing object to the endpoint
in the name query parameter, for example GET {baseUri}/ mobil e/ pl atform
| ocation/ devi ces?name=RC VWH 01 _FO1 B0O1.

Using the SDK to Retrieve a Location Object: i0OS

ORACLE

The examples below show how to use the client SDK to retrieve a place and its
properties by ID.

To access the Location API through the SDK, use the OMCMbbi | eBackendManager class
as described in Calling Platform APIs Using the SDK for iOS.

The example below uses the place ID to retrieve the properties for the place:

OMCLocation* |ocation = [[OMCMobi | eBackendManager
shar edManager] . def aul t Mobi | eBackend | ocati on] ;

/'l query for all places

/'l sort results by nane, in ascending order

[/ results will be in "short" format

OMCLocat i onPl aceQuery* query = [l ocation buil dPl aceQuery];
query.orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;
query.format = OMCLocati onChj ect Quer yFor mat TypeShort ;

__block OMCLocationPl aceQueryResult* result = nil;
__block NSError* error = nil;

13-20

ORACLE

Chapter 13
Calling the Location API from Your App

__block BOOL executing = YES;
[query execut eWthConpl eti onHandl er: ~(OMCLocat i onPl aceQuer yResul t *
result , NSError* error_) {

result = result_;

error = error_;

executing = NO

H

while (executing) {
[[NSRunLoop current RunLoop] runUntil Date:[NSDate dateWthTi melnterval:
0.5 sinceDate:[NSDate date]]];

}

/] take the first itemfromthe results
[/ it will be in "short" format...
OMCLocat i onPl ace* shortPlace = result.items.firstChject;

[l ...now, fetch the "entire" place directly
__block OMCLocationPl ace* place = nil;
error = nil;

executing = VES;

[location placeWthlD: shortPlace.id_

conpl eti onHandl er: ~(OMCLocat i onPl ace* place_, NSError* error_) {
pl ace = place_;
error = error_;
executing = NO

H

while (executing) {
[[NSRunLoop current RunLoop] runUntil Date:[NSDate dateWthTinelnterval :
0.5 sinceDate:[NSDate date]]];

}

Il process place...
NSLog(@ pl ace name: %@, place. name);

If you've already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

/1 take the first itemfromthe results
/1 it will be in "short" format...
OMCLocationPl ace* place = result.itens.firstQbject;

[l ...now, refresh the place

error = nil;

executing = VES,

[place refreshWthConpl etionHandl er:~(NSError* error_) {
error = error_;
executing = NO

H

while (executing) {

13-21

Chapter 13
Calling the Location API from Your App

[[NSRunLoop current RunLoop] runUntil Date:[NSDate dateWthTimelnterval:
0.5 sinceDate:[NSDate date]]];

}

/1 process place...
NSLog(@ pl ace name: %@, place.name);

Using the SDK to Retrieve iBeacon Identifiers: i0OS

ORACLE

The first step to monitoring a place that uses beacons is to retrieve the beacon
identifiers, as shown in the iOS client SDK example below.

CLLocati onManager *|ocationManager = [[CLLocationManager alloc] init]; //
i OS CoreLocation object

OMCLocation* |ocation = [[OMCMobi | eBackendManager
shar edManager] . def aul t Mobi | eBackend | ocati on] ;

OMCLocat i onPl aceQuery *queryPlace = [l ocation buil dPl aceQuery];

queryPl ace. nane = @Chris's Enporiunt;

queryPlace.limt = @.,;

[l Order-bys are required as nane is search by wildcard, not exact match
queryPl ace. orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;

queryPl ace. order ByOrder = OMCLocat i onQhj ect Quer yOr der ByOr der TypeAscendi ng;

[queryPl ace

execut eWt hConpl eti onHandl er: ~(OMCLocat i onChj ect Quer yResul t <OMCLocat i onPl ac
eQuery * OMCLocationPlace *>* queryResult, NSError * _Nullable queryError)
{

OMCLocationPl ace *place = queryResult.itens.firstQbject;

[pl ace devicesWthConpl eti onHandl er: ~(NSArray<OMCLocat i onDevi ce *>
*| ocationDevices, NSError * error) {
/1 Followi ng code assunes 1 device for place

OMCLocat i onDevi ce *device = [l ocationDevices firstject];
OMCLocat i onl Beacon *beacon = (OMCLocati onl Beacon*) devi ce. beacon;
NSUUI D *beaconUui d = beacon. uui d;
CLBeaconMj or Val ue beaconMjor =

(CLBeaconMyj or Val ue) beacon. maj or. i nt eger Val ue;
CLBeaconM nor Val ue beaconM nor =

(CLBeaconM nor Val ue) beacon. mi nor. i nt eger Val ue;

CLBeaconRegi on *beaconRegi on = [[CLBeaconRegi on
al loc]initWthProximtyUU D beaconUui d maj or: beaconMgj or i nor: beaconM nor
identifier: @MBeaconRegi on"];

beaconRegi on. noti fyOnEntry = YES;

beaconRegi on. noti fyOnExit = YES;

beaconRegi on. del egate = // Assign instance of
CLLocat i onManager Del egate to handl e beacon events

13-22

Chapter 13
Calling the Location API from Your App

[l ocationManager startNbnitoringForRegi on: beaconRegion]; //
I nvokes ClLLocati onManager Del egat e di dEnt er Regi on/ di dExi t Regi on
[l ocationManager startRangi ngBeaconsl nRegi on: beaconRegi on]; //
I nvokes ClLLocationManager Del egate inRegi on
H
Hi

Using the SDK to Define a Geofence: i0OS

ORACLE

You can use a geofence to define a monitoring area as a place, as shown in the iOS
client SDK example below.

CLLocati onManager *|ocationManager = [[CLLocationManager alloc] init]; //
i OS CoreLocation object

OMCLocation* |ocation = [[OMCMobi | eBackendManager
shar edManager] . def aul t Mobi | eBackend | ocati on] ;

OMCLocat i onPl aceQuery *queryPlace = [l ocation buil dPl aceQuery];

queryPl ace.nane = @Chris's Enporiunt;

queryPlace.linit = @;

/1 Order-bys are required as nane is search by wildcard, not exact match
queryPl ace. orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAt t ri but eTypeNane;

queryPl ace. order ByOrder = OMCLocat i onQhj ect Quer yOr der ByQr der TypeAscendi ng;

[queryPl ace
execut eWt hConpl eti onHandl er: ~(OMCLocat i onChj ect Quer yResul t <OMCLocat i onPl ac
eQuery *, OMCLocationPl ace *>* queryResult, NSError * queryError) {

OMCLocat i onPl ace *place = queryResult.itens.firstQbject;

OMCLocationGeoCircle *geocircle = (OMCLocationGeoCircle *)[place
address] ;
OMCLocat i onGeoPoi nt *geopoint = [geocircle center];

CLLocationDegrees latitude = [[geopoint |atitude]doubleVal ue];
CLLocat i onDegrees |ongitude = [[geopoint |ongitude]doubl eVal ue];
CLLocationDi stance radi us = [[geocircle radius]doubl eval ue] ;
CLLocat i onCoor di nat e2D coordi nate =

CLLocat i onCoor di nat e2DVake(| atitude, |ongitude);

CLCircularRegion *circul arRegion = [[CLGi rcul ar Regi on
alloc]initWthCenter:coordinate radius:radius
identifier: @MGeof enceRegi on"];

circul arRegion. notifyOnEntry = YES,

circul arRegion. notifyOnExit = YES;

circul arRegi on. del egate = // Assign instance of
CLLocat i onManager Del egate to handl e events

[l ocationManager startMonitoringForRegion:circul arRegion]; //
I nvokes CLLocationManager Del egat e di dEnt er Regi on/ di dExi t Regi on

13-23

Chapter 13
Calling the Location API from Your App

s
H

Using the SDK to Retrieve Custom Attributes: iOS

ORACLE

Many location objects use custom attributes. The iOS client SDK makes it easy to
access these properties, as shown in the examples below.

Retrieving a Custom Attribute for a Place

The SDK example below retrieves a custom attribute for a place:

CLLocati onManager *|ocationManager = [[CLLocationManager alloc] init]; //
i OS CoreLocation object

OMCLocation* |ocation = [[OMCMobi | eBackendManager
shar edManager] . def aul t Mobi | eBackend | ocati on] ;

OMCLocat i onPl aceQuery *queryPlace = [l ocation buil dPl aceQuery];

queryPl ace. nane = @Chris's Enporiunt;

queryPlace.linmt = @,

[l Order-bys are required as nane is search by wildcard, not exact match
queryPl ace. orderByAttribute =

OMCLocat i onDevi ceCont ai ner Quer yOr der ByAtt ri but eTypeNane;

queryPl ace. order ByOrder = OMCLocat i onQhj ect Quer yOr der ByQr der TypeAscendi ng;

[queryPl ace

execut eWt hConpl eti onHandl er: ~(OMCLocat i onChj ect Quer yResul t <OMCLocat i onPl ac

eQuery *, OMCLocationPl ace *>* queryResult, NSError * queryError) {
OMCLocationPl ace *place = queryResult.itens.firstQbject;

NSString *myCust onProperty
attribut eFor Key: @ MyCust onProperty"];
NSLog(@M Custom Property = %@, myCustonProperty);

[place

H

Retrieving a Custom Attribute for a Location Device

The SDK example below is very similar to the one above, but uses
OMCLocat i onDevi ce to retrieve a custom attribute for a beacon:

OMCLocation* |ocation = [[OMCMobi | eBackendManager
shar edManager] . def aul t Mobi | eBackend | ocati on] ;

/1 Query iBeacon

OMCLocat i onDevi ceQuery *queryDevi ce = [l ocation buil dDevi ceQuery];

NSUUID *uuid = [[NSUUID al I oc] initWthUU DString: @O0AC59CA4-

DFAB- 442C- 8C65- 22247851344C"] ;

NSNurmber *maj or = @;

NSNunber *minor = @O0O0;

queryDevi ce. beacon = [OMCLocat i onl Beacon i BeaconW t hUUI D: uui d maj or : maj or
mnor:mnorj;

13-24

Chapter 13
Calling the Location API from Your App

[queryDevi ce

execut eWt hConpl et i onHandl er: ~(OMCLocat i onChj ect Quer yResul t <OMCLocat i onDevi

ceQuery *, OMCLocati onDevi ce *>* queryResult, NSError * queryError) {
OMCLocat i onDevi ce *device = queryResult.itens.firstbject;

Il Retrieve devicel/beacon custom property
NSString *custonmProperty = (NSString *) [device
attribut eFor Key: @ MyCust onProperty"];

H

Using the SDK to Retrieve a Location Object: Android

ORACLE

To access the Location API through the Android client SDK, use the
Mobi | eBackendManager class as described in Calling Platform APIs Using the SDK for
Android.

The example below uses the place ID to retrieve the properties for the place:

Location location =

Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(nCont ext). get Serv
i ceProxy(Location.class);

bj ect 1ock = new Chject();

final AtonicReference<LocationChjectQueryResult> nResult = new
At oni cRef erence<Locat i onQhj ect Quer yResul t >() ;

final Atoni cReference<LocationPlace> nError = new

At oni cRef erence<Locat i onPl ace>() ;

/1 query for all places
/1 sort results by nane, in ascending order
[/ results will be in "short" format
LocationPl aceQuery query = | ocation. buil dPl aceQuery();
query. set Name(searchString);
query. set Order ByAttri but eType(Locati onDevi ceCont ai ner Query. Locat i onDevi ceCo
nt ai ner Quer yQr der ByAttri but eType
. Locat i onDevi ceCont ai ner Quer yOr der ByAttri but eTypeNane) ;
query. set For mat (Locat i onChj ect Query. Locat i onQbj ect Quer yFor mat Type. Locat i onO
bj ect Quer yFor mat TypeShort);

query. execut e(new LocationChj ect sQueryCal | back(){

@wverride
voi d onConpl et e(Locati onObj ect QueryResult result,
Servi ceProxyException exception){
mResul t. set(result);

synchroni zed(| ock) {
| ock. notifyAll();
}

}
1

synchroni zed(| ock) {
lock.wait();
}

13-25

ORACLE

Chapter 13
Calling the Location API from Your App

/] take the first itemfromthe results
[/ it will be in "short" format...
LocationPl ace place = (LocationPlace) nResult.get().getltens().get(0);

[l ...now, fetch the "entire" place directly
| ocation.fetchPlace(place.getlD(), new LocationQObjectQueryCallback(){
@verride

voi d onConpl et e(Locati onQbj ect object, ServiceProxyException exception)

{
LocationPl ace detailedPl ace = (LocationPl ace) object;
nPl ace. set (det ai | edPl ace);
synchroni zed(! ock) {

[ock.notifyAl'l();
}
}
1

synchroni zed(| ock) {
lock.wait();
}
/1 process place...
Log.i (TAG "place nanme is " + nPlace.get().getName());

If you've already retrieved an object, you can use an SDK refresh method to get the
latest properties. The code below uses refresh to retrieve the latest properties for a
place:

Il take the first itemfromthe results
[/ it will bein "short" format...
LocationPlace place = (LocationPlace) nResult.get().getltens().get(0);

/1 ...now, refresh the place
pl ace. refresh(new Locati onQbj ect Fet chCal | back() {
@verride
voi d onConpl et e(Locati onQbj ect object, ServiceProxyException exception)
{
i f(exception !'=null)
[/handl e error
synchroni zed(l ock) {
[ock. notifyAll();
}
}
1K

synchroni zed(|I ock) {
lock.wait();

}

/'l process place...
Log.i (TAG "place name is " + place.getName());

13-26

Storage

Oracle Mobile Cloud Service (MCS) provides a Storage API for storing media in the
cloud. As a mobile app developer, you can use this API in your mobile app to store
and retrieve objects, such as files, text, images, and JSON objects.

Storage
Mobile Backend

Platiorm APls

Mobile User Mgmt Storage
-
Data Offline & Sync Motifications
Analytics Database
App Policies Location
[
Custom Connectors On-Premises
L APls = soap | REST | ICS FA 7| o Clowd
Mobile Service
Applications

What is the Storage API?

The Storage API enables your mobile app to store, update, retrieve, and delete media,
such as JSON objects, text files, and images, in collections in your MCS environment.
Storage is key based, and you can use roles to restrict access to a collection. You can
also grant anonymous access to shared collections to anyone who also has backend
access by adding the collection name to the Security CollectionsAnonymousAccess

environment policy.

Note that this API isn’t intended to act as a database-as-a-service (DBaaS) solution by
storing business data used by external systems, nor is it intended to host HTML 5

applications as a content management system (CMS) would.

ORACLE

14-1

Chapter 14
What is the Storage API?

Oracle Mobile Cloud Service
Storage API
Cli A Collections
Client App PUT X
SDK GUID Chbjects Objects

Image Files JSON Payloads

How Mobile Applications Access Collections

ORACLE

Mobile applications access collections through the Storage API. As a mobile
developer, you can access this API through the mobile client SDK, or directly through
REST calls. As a service developer, you can call the Storage API from the code that
you write to implement a custom API.

To access the Storage API through the mobile client SDK, you use a backend
manager class.

e For Android apps, you use the Mbi | eBackendManager class as described below
and in Calling Platform APIs Using the SDK for Android.

* For iOS apps, you use the OMCMobi | eBackendManager class as described in
Calling Platform APIs Using the SDK for iOS.

e For JavaScript apps, you use the Mbi | eBackendManager class as described in
Loading a Mobile Backend's Configuration into a JavaScript App.

Here is an example of using the backend manager class in an Android app to access a
collection.

try {
Storage storage =

Mobi | eBackendManager . get Manager (). get Def aul t Mobi | eBackend(t hi s) . get Servi ceP
roxy(Storage. cl ass);
St orageCol | ection imagesCol | ection =
storage. get St orageCol | ecti on("FI F_I nages");
St orageoj ect i mageToUpl oad =
new Storagehject (null, imageBytes, "imageljpeg");
St orageoj ect upl oadedl nage = i magesCol | ecti on. post (i mageToUpl oad) ;
} catch(ServiceProxyException e) {int errorCode = e.getErrorCode();

14-2

Chapter 14
What is the Storage API?

To call a Storage endpoint from custom code, you invoke the custom code SDK
method that calls the appropriate Storage API operation, as shown in the following
example:

/] Get metadata about the objects in the attachments collection
/1 List most recently nodified first.
service. get (' /mobil e/ custom incidentreport/attachnents'
function (req, res) {
req. oracl eMobil e. storage. get All (" attachnents',
{orderBy: 'nodifiedOn:desc', sync: true}).then(
function (result) {
res.send(result.statusCode, result.result);
b
function (error) {
res.send(error.statusCode, error.error);

1)

For more information on how custom code can retrieve collection information and store
and retrieve objects, see Accessing the Storage API from Custom Code.

Shared and User Isolated Collections

ORACLE

A collection is either shared or user isolated.

When a collection is shared, no one owns the collection or an object, and the objects
are kept in a shared space. Those with certain mobile user roles, permissions, and
access to the backend, or anonymous access to the backend associated with the
collection, can update an object. Note that in both shared and user isolated collections,
each object has an ID that is unique to the collection.

When a collection is user isolated, users who have Read-Only (Al Users) access
can read objects in other users’ spaces. Users with Read-Wite (Al Users) access
can both read and write objects in other users’ spaces. Anonymous access is not
permitted in user isolated collections.

Let's look at some examples of this behavior using the following scenarios:

Shared Collection

An online magazine is leveraging the Storage API as a way for authors to submit,
change, or read, articles. They've provisioned a shared collection called articles, as
shown in the figure below.

e Ben has contributed articles on bugs and bats, while Art has written about cows
and dogs.

e The dogs article is shared, allowing both Ben and Art to collaborate on it.
e Artand Ben are able to modify any article regardless of who originally submitted it.
e Dee can read all the articles, but she can't make changes.

However, if this shared collection is added to the
Security Col | ecti onsAnonynousAccess environment policy, then Ben, Art, Dee or
anyone who has access to the backend can submit, change, or read articles.

14-3

Chapter 14
What is the Storage API?

Ben Art Dee
User Role Permission
t}ugs l COWS l dogs B Ben Author R
bats | r.Io-;lsl [| Art Author RW
Deg InactveAuthor READ
Articles

User Isolated Collection

An online magazine has provisioned a user isolated collection called Articles, as
shown in the following figure.

Ben and Art can read and edit their articles, and upload new articles as well. They
can't read or write each other's files.

Dee can read only her article. Because her role is | nacti veAut hor, which gives
her Read- Onl y permission, she can't upload any new articles.

Eva, the editor, can make changes to any file and return it to the author's isolated
space.

Raj, the publisher, can view all the articles, but he can't make changes.

Because users are isolated, the authors don't have to worry about naming conflicts
with others. Obijects in different isolation spaces can have the same name (as is
the case for the “dogs” articles by Dee and Art).

Eva and Raj can access Ben, Art, and Dee’s objects only by specifying a user
qualification parameter. When Eva wants to make changes to Art’s article, the call
that enables her to write to Art’s user space must include Art's ID.

Anonymous users don't have access to user isolated collections. If a user isolated
collection is added to the Security_Col | ecti onsAnonynousAccess environment policy,
it's just ignored.

ORACLE

14-4

ORACLE

Chapter 14
What is the Storage API?

Dee
User Role Permission
|| Ban Author RwW
|| Eva Editor RAW-ALL
] Art Author RwW

Dea InactveAuthor READ

Raj Publisher READ-ALL

Articles

Permissions in Shared and User Isolated Collections

You can designate who can access and update objects in a collection by attaching
access permissions to mobile user roles, or for anonymous access, by adding the
shared collection name to the Security_Col | ecti onsAnonynmousAccess environment

policy.

For example, to include the Arti cl es collection use
Security_Col | ectionsAnonynousAccess=Arti cl es.

If the collection does not, or cannot permit anonymous access:

Art and Ben’s Aut hor mobile user role is associated with the Read- Wi te
permission.

— Inthe shared collection, they can read and update any article within the
shared collection.

— Inthe user isolated collection, they can read and update their own articles.

In contrast, Dee has the | nact i veAut hor mobile user role, which gives her Read-
Onl'y permission.

— Inthe shared collection, Dee can read Art’s article about dogs, as well as
various articles from either Art or Ben about bugs, cows, and bats. Unlike Ben
or Art, she can't delete articles or add new ones.

— Inthe user isolated collection, she can read her own article about dogs, but
she can't read Art’s article about dogs.

For user isolated collections, mobile user roles that are associated with the Read-
Only (Al Users) permission can view any object. The Read-Wite (Al Users)
permission allows users to view and update objects in other users’ spaces.
Because her role as Edi t or has a Read-Wite (Al Users) permission, Eva can
read and edit various authors’ files, such as those authored by Ben and Art.

14-5

Chapter 14
Working with Collections

< Note:

Although different mobile user roles can grant access to the same objects in
a collection, such as Eva (Edi t or), Ben (Aut hor), and Art (also Aut hor), in
the user isolated collection, the objects remain in their respective isolated
spaces.

When anonymous access is allowed on a shared collection, access and the
ability to update an object is granted to any authenticated user as well,
regardless of role. This means adding a collection name to the

Security Col | ecti onsAnonynousAccess environment policy overrides
permissions given through roles. Take care when allowing anonymous
access to a collection. Security is more limited than with role-based
permissions.

Working with Collections

Mobile apps can use only the collections that are associated with a mobile backend.

You can add existing collections to a mobile backend. You can also create new
collections as part of the process of creating a mobile backend. There’s a page for
each approach:

* The Storage page that you access by clicking == > Applications > Storage can
be used to create collections and view a master list of all collections. To associate
one of the collections with a mobile backend, select the collection, click More, and
then select Associate Mobile Backends.

* The Storage page that you access from the Storage tab on a mobile backend
page lets you associate a collection with the mobile backend as well as create a
new collection that is associated with that mobile backend.

Using the Storage Configuration Pages

You can use the Storage pages to perform tasks such as create and configure a
collection, configure whether the collection is shared or user isolated, and associate a
collection with a mobile backend.

To open the Storage page for all collections, click =t open the side menu. Next,
click Applications and then click Storage.

Using this page, you can create collections, edit existing ones, associate them with
mobile backends, and publish them. To find out more about collections, policies, and
other artifacts, see Lifecycle.

ORACLE 14-6

Chapter 14
Working with Collections

DEVELOPMENT €~ ORACLE Mobile Cloud Service

DEVELOPMENT ~ ragnar.smith @example.com «
Home APPLICATIONS > STORAGE 1
Storage API FIF_Deals 1.0 o
o e ET. TR Open Publish More ~
APls
Connectors Filter Q Eilter » Deployments @
Storage Name Ascending v 4 Used By
ALzl DRAFT Mobile FIF_Technician 1.0 x
Backend
Mobile FIF_Customer 1.0 x
Impart Backend
FIF_UserData 1.0 DRAFT
» History

Administration

Page 1 of1(1-2of 2 items)

You can find out when the collections listed were created or updated and which mobile

backends are using them by first selecting a collection and then expanding Used By
and History.

4 Used By
Maobile Backend FIF_Technician 1.0 %
Maobile Backend FIF_Customer 1.0 x
4 History

= Updated by Chis 3 minutes ago

4 Created version 1.0 by Chris 9 minutes ago

To associate a collection with a mobile backend, select the collection, click More, and
then select Associate Mobile Backends.

To create or update collections for a specific mobile backend, click =t open the
side menu. Next, click Applications and then Mobile Backends.

To find out if a mobile backend has collections assigned to it, click Storage on the
mobile backend page.

DEVELOPMENT €~ ORACLE’ Mobile Cloud Service DEVELOPMENT ~ ragnar Smith@ example com +

APPLICATIONS > MOBILE BACKENDS > FIF Technician 1.0

& Diagnostics s Selected Collections (1) & selectCollections |) New Collection
—]

Storage API
75 Settings Filter Collections Q Sort by Name Ascending v
o AP FIF_Deals P
V 1.0 DRAFT
0
s Users
B2 nNotifications
Administration
= AppPolicies

ORACLE

14-7

Chapter 14
Working with Collections

In addition to the tasks described here, you can also do the following tasks:

Task Description

Set Permissions Configure who can access the collection and how. See Adding
Access Permissions to a Collection.

Maintain Locally Stored Set how long before the data stored locally on the device

Objects becomes stale and needs to be refreshed. See Offline Data
Storage.

Test Test the endpoint operations that manage collections and their
objects. See Testing Runtime Operations Using the Endpoints
Page.

Deploy Deploy collections. See Collection Lifecycle.

Creating Collections

The following tasks enable you to create and update collections:

1
2
3.
4

Defining a Collection

Adding Access Permissions to a Collection
Updating the Collection

Adding Objects to a Collection

Defining a Collection

The New Collection dialog lets you name a collection so that it can be identified in
REST calls and designate it as shared or user isolated.

1.

3.

ORACLE

Open the Storage page either from a mobile backend or by clicking Storage in the
side menu, and click New Collection.

Complete the New Collection dialog:

a. Enter a name for your collection. This name is used to form the Universal
Resource Identifier (URI) for the collection. Within the context of the API call,
the collection name is referred to as the collection ID:

{baseUri}/ nobil e/ platfornistorage/collections/{collection |D}

For example, for a collection named FiF_Uploadedimages (cloud storage of
images uploaded from mobile apps), the URI call would look like this:

{baseUri}/ nobil e/ pl atform storage/ col | ections/Fi F_Upl oadedl mages

For a closer look at Storage API syntax, see Storage API Endpoints.

b. Choose the collection type: Shar ed or User | sol at ed. You can’'t change
the scope of the collection after you've set it. For details and examples, see
Shared and User Isolated Collections.

c. If needed, enter a short description for the purpose of the collection, to be
displayed in the list of collections.

Click Create.

14-8

Chapter 14
Working with Collections

New Collection x

Collections provide a way to group and manage related data objects. You can
control who has permission to upload files, or to use the files in a collection.

* Collection Name FIF_Deals 1.0

Collection Type User Isolated @

The collection type cant be changed after the collection
is created.

Short Description | Displayed in the collections lisf. 100 character

Create

< Note:

When you initially create a collection, it's in a draft state, in version 1.0.

* You can modify the collection name, access permissions, and its
contents. Remember, you can’t change the collection type after it's
created.

e You can version a collection. You might want to increment a collection’s
major and minor version numbers when you publish it or when you add
new objects.

* While in the draft state, a collection can be moved to the trash from the
More menu.

Collection Metadata

In addition to the basic properties like size (in bytes), and description, the collection
metadata includes the collection name that identifies it for REST calls.

When you create a collection, the Storage API defines it using the following metadata:

Property Value Type Description
description string The short description. This is an optional
value.

ORACLE 14-9

Chapter 14
Working with Collections

Property Value Type Description

id string The collection name, which is used in the
uniform resource identifier (URI). For example:
{baseURI }/ nobi | e/ pl at f or nf st or age/
col l ections/{collection}
The collection name is case-sensitive,
meaning that mycol | ecti on and
Mycol | ecti on are two different collections.

Adding Access Permissions to a Collection

ORACLE

Collection access is granted through an anonymous user setting in the environment
policy file, or managed by mobile user roles. Once a mobile user role is defined, you
can also grant which roles can read and write objects in the collection. To see what
mobile user roles are available, go to the Mobile User Management Ul and click
Roles. To learn more about roles and mobile users, see Creating and Managing
Mobile User Roles and Creating Mobile Users and Assigning Roles.

Anonymous Access to Collections

Anonymous access is often given to users who just want to check information on an
app without logging in or needing an assigned role. Weather apps, where a user can
check their local weather, are a good example of this.

Likewise, you can grant anonymous access to your shared collection. Once a shared
collection is created, the administrator adds its name to the
Security_CollectionsAnonymousAccess policy. You can then read and write objects to
the shared collection via the REST API or the SDKs using anonymous access. To
read and write objects to the shared collection from the Ul, grant Read-

Wit epermission to any role on the collection’s properties page. For environment
policies, see Environment Policies and Their Values.

Keep in mind that when you add a shared collection to the policy, both anonymous
and named users have access and read/write privileges to the collection.

< Note:

If you try to upload an object to a shared collection which allows anonymous
access, an error dialog appears. To work around this issue, in the Properties
page, specify any mobile user role for the collection’s Read- Wit e permission

type.

Role-Based Access to Collections

To define which mobile user roles can read and write objects in a collection:
1. Inthe Storage page, select a collection and then click Open.

2. In the Properties page, specify one or more mobile user roles for each permission
type.

* Read-Only and Read- Wit e access apply to all collections (shared or user
isolated).

14-10

Chapter 14
Working with Collections

* You can specify Read-Only (Al Users) and Read-Wite (Al Users)
permissions only if the collection type is user-isolated.

Permission Shared

User Isolated

Read-Only Read-only access to all of
the objects in a collection.
For example, both a field
technician and a
customer can read
promotional material like
coupons, but they can’t
update them.

Read-only access to a user
isolated collection. When the
Read- Onl y permission is applied
to user isolated collections, for
example, a customer can view
images (like a coupon), but he
can’t update them, or submit
additional ones (only a user with
Read-Wite (Al Users)
privileges can add an object to the
customer’s user space). Because
this is a user isolated collection,
the customer can view only his
images (or other customer-specific
objects that are intended only for
him). The Read- Onl y permission
also prevents him from adding
additional work orders or deleting
them.

Read-Write A user can override any
object in the collection.

A user can override the objects in
his isolated space. For example, a
customer can update the images of
broken appliances that he’s
submitted. Because this is a user
isolated collection, the images that
he can add (and update) are
intended only for him. Because
these images exist in his isolated
space, he can update these
objects, but no one else’s.
Likewise, he can add or delete
images, but can’t do this in anyone
else’s isolated space.

Read-Only (All Users) NA

A user can read objects in all
spaces. For example, a field
technician can see the images
updated by any customer, but she
can’t update them, delete them, or
add new ones.

Read-Write (All Users) NA

A user can override objects in all
spaces. If a field technician has
Read-Wite (Al Users)
permission, then she can update
work orders submitted by any
customer.

ORACLE

14-11

Chapter 14
Working with Collections

< Note:

By default, mobile users can't access a collection until they’ve been
assigned mobile user roles that are associated with the Read- Wi te,
Read- Only, Read-Wite (Al Users) orRead-Only (Al Users)
permissions. Anonymous users can't access a shared collection until the
collection has been added to the Security CollectionsAnonymousAccess
environment policy. Anonymous users are automatically granted Read-
Wite permissions.

Updating the Collection

You can update the name, description and access to a collection. You can’t however,
change the collection type.

1. On the Storage page, select a collection and then click Open.

2. Click Properties. (The Properties page opens by default when you first create a
collection. On subsequent visits, the Content page opens by default.)

3. Change the name, description or access as needed.

4. Click Save.

Offline Data Storage

The client SDK’s Sync Client library, in conjunction with the Storage library, enables
mobile apps to cache a collection’s objects for offline use and performance
improvement. The apps can then use the cached objects instead of re-retrieving them
from Storage, as described in How Synchronization Works with the Storage APIs. If a
collection’s content changes infrequently, then consider enabling those mobile apps to
cache the collection’s objects by selecting Enable the mobile client SDK to cache
collection data locally for offline use.

When Enable the mobile client SDK to cache collection data locally for offline
use is selected, the objects that a mobile app retrieves can remain in the cache for the
period set in the Sync_Col | ecti onTi meToLi ve policy. This value is conveyed to the
app through the Or acl e- Mobi | e- Sync- Expi r es response header. By default, the
timeout period is set for 24 hours (86,400 seconds).

To learn how to configure the timeout period, see Environment Policies.

Don't select this option for time-critical data, where a cached value might be
misleading. For example, if the collection contains current stock prices, you shouldn’t
select this option, because users expect the latest value (or no value at all).

If your mobile app isn't using the client SDK'’s Storage library, and your app is caching
Storage objects, then you can take advantage of the following request and response
headers:

ORACLE 14-12

Adding Objects to a Collection

ORACLE

Chapter 14
Working with Collections

Type

Header

Description

Request

Oracl e- Mobi | e- Sync-
Agent

When this header is set to

t rue in the request, then the
response includes either

O acl e- Mobi | e- Sync-

Expi res or O acl e- Mobi | e-
Sync- No- Store.

Response

Oracl e- Mobi | e- Sync-
Expires

Specifies when the returned
resource must be marked as
expired. Uses RFC 1123
format, for example EEE, dd
MW yyyyy HH. nm ss z for
Si npl eDat eFor mat . This
value is determined by the
Sync_Col | ectionTi neTolLi
ve policy.

Response

Or acl e- Mobi | e- Sync- No-
Store

When set to t r ue, the client
mustn’t cache the returned
resource.

To learn more about data caching, see Data Offline and Sync.

You can populate a collection with objects.

These steps show how to add an object using the Ul. When you add an object from
the Ul, the ID is generated automatically. If you want to assign a specific ID to an
object, use the Storage API, the custom code SDK, or the client SDK for your mobile
platform. For details, see Storing an Object.

1. On the Storage page, select a collection and click Open.

» If this collection has no objects, click Upload Files and then browse to and
retrieve the object. Click Open.

» If this collection already has objects, click Upload in the Content page. Browse
to and retrieve the object. Click Open.

2. If the collection is shared, click Add. If you have the identity domain administrator
role, you can also upload to user isolated collections. Add the user realm and user
name to the User Name Required dialog, and click Ok. You can only select from
users whose roles have been granted permission to the collection. (Assign these
roles in the Properties page.)

3. To view the object data, select it from the list.

Tip:

To permanently remove an object from a collection, select it and click Delete.

14-13

Object Metadata

Chapter 14
Working with Collections

When you upload an object, the Content page displays basic metadata, such as size,
content type, version information, and who uploaded it. Using this page, you can also
delete unneeded objects, or filter them. Some functions in user isolated collections are
only available if you have the identity domain administrator role.

Property Value Type Description/Usage

ID string The object name, which is used for operations on a
single object. It is the last value specified in the
URI.

Content Length integer The size, in bytes.

Content Type media type The media type for the data, such as i mage/ j peg

for a JPEG image, or appl i cati on/j son for
JSON.

ETag string (an integer A value that represents the version of the object.
in quotes, for It's used with the | f - Mat ch and | f - None- Mat ch
example, "17") HTTP request headers.
Created By user name The name of the user who uploaded the data.
Created On time stamp (In The time that the object was most recently stored
ISO 8601) on the server. Time stamps are stored in UTC.
Modi fy By user name The name of the user who modified the object.
Modi fied On time stamp (in The time when the server received a request for an
ISO 8601) object. Time stamps are stored in UTC.
User ID string For a user isolated collection, the ID of the user

whose space the object is in.

Managing Collections

You can update collections in terms of their contents, but you can’t change the type of
the collection. That is, if the collection is a user isolated collection, you can’t change it

to a shared collection.

Associating a Collection with a Backend

Associating a collection makes its contents available to a specific backend. The

associated collection is a dependency.

1. Inthe Storage page, select a collection.

2. Click More and then select Associate Mobile Backends.

ORACLE

14-14

Chapter 14
Working with Collections

DEVELOPMENT €= ORACLE Moile Cloud Service DEVELOPMENT + ragner.smith @example.com ~
=
Home APPLICATIONS > STORAGE &
Storags API FIF_Deals 1.0 g
Q) New Collection Open Publish m
New Version
Connectors Fitter Q Filter by state » Deployments @ Update Version Number
arage Export
Storage Name Ascending + b Used By e
Associate Mobile Backends
ser Management FIF_Deals 1.0 DRAFT
» History Move to Tr
Import
FIF_UserData 1.0 DRAFT

Page 1 of1(1-20f2items)

3. Inthe Associate Backends dialog, select one or more backends from the list.

Associate Mebile Backends

Associate your collection with one or more mobile backends.

A mobile backend stores application objects and resources in its dependent
collections, which the client application accesses for data storage and retrieval.

Mobile Backends FiFTechnician 1.0 % FiFCustomer 1.0 X

Add

4. Click Add.

In the details pane, you can see any associated backends by expanding Used By.
You can also associate a collection with a backend this way:

1. Open the backend.

2. Click the Storage tab and then choose Select Collections.

3. Choose one or more collections from the Select Collections dialog, and then click
Select.

Removing a Collection from a Backend

You might want to disassociate a collection from a backend so that you can change
the backend's state without affecting the collection. Or you might want to disassociate
the collection and associate a different one.

1. Inthe Storage page, select a collection.

2. In the Details section on the right, view the Used By list.

ORACLE 14-15

Chapter 14
Calling the Storage API from Your App

DEVELOPMENT €= ORACLE' Mobile Cloud Service DEVELOPMENT ~ ragnar.smith@example.com
=
o APPLICATIONS > STORAGE]
Storage API FIF_Deals 1.0
© New Collection Open Publish More ~
X » Deployments @
Name Ascending ¥ 4 Used By
FIF_Deals 1.0 DRAFT Mobile FIF_Technician 1.0 %
Backend
Mobile FIF_Customer 1.0 X
Backend
FIF_UserData 1.0 DRAFT
4 History
Administration Page 1 of1 (12 0f2items) m [Updated by chris 3 minutes ago

< Created version 1.0 by chris o minutes ago

3. To delete the association, click the X that follows the backend version number.

Confirm Remove Dependency x
A }
/ Are you sure you want to remove this dependency?

Mobile backend FiF_Customer 1.0 will no longer be able to access collection
FiFUserData 1.0

Remove | ! Cancel !

N
4. You'll be prompted to remove the dependency. Click Remove.
To remove a collection from a backend:

1. Open the backend.

2. Open the Storage page.

3. Click the X adjacent to the collection that you want to remove.
4

In the Confirm Remove Dependency dialog, click Remove.

Calling the Storage API from Your App

To access the Storage API from your app code, you can use the SDK for your
platform.

For info on setting up the SDKs, see Connecting Your Application to a Mobile
Backend. For complete reference documentation of the SDKs, see Oracle Mobile
Cloud Service Help Center.

Here are some code snippets that you can use in your apps once you have your SDK
set up.

i0OS
The code to retrieve an object might look like this:
- (void) downl oadDat a{

[Ifill in IDs for collection and object

NSString* collection_ld = @";
NSString* object Id = @";

ORACLE 14-16

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mobilebooks
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mobilebooks

Chapter 14
Calling the Storage API from Your App

/] CGet storage object

AppDel egat e* appDel egate = [[U Application sharedApplication]
del egat e] ;

OMCMobi | eBackend* nmbe = [appDel egat e myMbbi | eBackend];

OMCSt or age* storage = [nbe storage];

/] Get your collection
OMCSt or ageCol | ection* aCol l ection = [storage
get Col I ection:collection_ld];

/] Get your object fromyour collection
OMCSt or agehj ect * aoj ect = [aCol | ection get:object _Id];

/] Get the data from payl oad of your object
NSDat a* data = [a(bj ect get Payl oadDat a] ;

| bl Downl oadSt at us. text = @ Downl oad fini shed";

Here’s code you can use to add an object:
- (void) upl oadDat af

I/ Specify a text object to be added to a collection called
"nmyCol | ection"

NSString* collection Id = @nyCol | ection";

NSString* payload = @This is a sinple text object";

NSString* content Type = @text/plain";

if (payload == nil || [payload isEqual ToString: @"]) {

[bl Upl oadSt atus.text = @There is nothing to upload";
}

el se{

Il Get storage object

AppDel egat e* appDel egate = [[U Application sharedApplication]
del egate];

OMCMobi | eBackend* mbe = [appDel egat e nmyMbi | eBackend];

OMCSt or age* storage = [nbe storage];

Il Get collection where you want to upload new data
OMCSt or ageCol | ection* aCol | ection = [storage
get Col l ection: col l ection_ld];

/1 Create new data from payl oad

NSDat a* payl oadData = [payl oad
dat aUsi ngEncodi ng: NSUTF8St ri ngEncodi ng] ;

OMCSt or agehj ect * aChj ect = [[OMCSt or ageQbj ect al | oc]
set Payl oadFr onDat a: payl oadDat a

wi t hCont ent Type: cont ent Type] ;

ORACLE 14-17

ORACLE

Chapter 14
Calling the Storage API from Your App

Il Post data to collection
[aCol | ection post:aQbject];

[bl Upl oadSt atus.text = @Upl oad finished";

Android

The code to retrieve an object might look like this:

private Storage nStorage;
private String collectionlD = "YOUR COLLECTION ID";
private String objectID = "YOUR OBJECT |ID';

try {
[lNlnitialize and obtain the storage client

nSt orage =
Mobi | eBackendManager . get Manager (). get Def aul t Mobi | eBackend(t hi s) . get Servi ceP
roxy(Storage. cl ass);
[/ Fetch the collection
StorageCol | ection collection =
St or age. get St orageCol | ecti on(col | ectionlD);
/I Fetch the object
St oragehj ect object = collection.get(objectlD);
/1 Get the payl oad
| nput Stream payl oad = obj ect. get Payl oadStreant();
/IDisplay the inage
| mgeVi ew i mageView = (1 mageView) findViewByld(R id.inmageView;
i mgeVi ew. set | mageBi t map(Bi t mapFact ory. decodeSt r ean(payl oad)) ;

} catch (ServiceProxyException e) {
e.printStackTrace();
}

Here’s code you can use to add an object:

private Storage nttorage;

private String collectionlD = "YOUR COLLECTION | D";
private String nPayl oad = "YOUR PAYLOAD';

private String nmContent Type = "YOUR CONTENT_TYPE";

//Create or upload an object with specified ID, payload and content-Type
private void upl oadQvject(String id, String payload, String contentType){
try {

[llnitialize and obtain the storage client

nSt or age =
Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(t hi s) . get Servi ceP
roxy(Storage. cl ass);

I/ Fetch the collection

StorageCol I ection collection =

14-18

ORACLE

Chapter 14
Calling the Storage API from Your App

St or age. get St orageCol | ection(col | ectionl D);

//Create an object with id, payload and content-Type explicitly
specified

Storagehj ect object = new StorageQhject(null, payl oad. getBytes(),
cont ent Type) ;

/1 Upl oad the object

col I ection. post (obj ect);

} catch (ServiceProxyException e) {
e.printStackTrace();

}

Cordova and JS

Here’s code to retrieve an object:

function downl oadDat a() {
varcol lectiondld = ' COLLECTION I D ;
var objectld = 'OBJECT_ID ;

. mobi | eBackend

. storage

.getCol I ection(collectionld, null)
.then(get Col | ectionSuccess)
.then(get Cbj ect Success)
.catch(error);

function getCol | ectionSuccess(storageCollection)
{returnstorageCol | ection. get Ohj ect (objectld, 'json");

}

function get Obj ect Success(storagej ect){
consol e. | og(storagehj ect. nane);

}

function error(error){
consol e. | og(error. statusCode);

}
}

function upl oadDat a(){
varcol lectiondld = ' COLLECTION I D ;
varobjectld = ' OBJECT ID ;
varfileName = ' YOUR_FI LE_NAME' ;
varpayl oad = ' YOUR PAYLOAD ;
var contentType = "text/plain';

. mobi | eBackend

. storage

.getCol I ection(collectionld, null)
.then(get Col | ectionSuccess)
.then(get Cbj ect Success)
.catch(error);

14-19

Chapter 14
Testing Runtime Operations Using the Endpoints Page

function getCollectionSuccess(storageCollection){var storageChject =
newrcs. St orageQbj ect (col | ection);
storageoj ect . set Di spl ayNanme(fil eNane);
storagevj ect . | oadPayl oad(payl oad, content Type);return
storageCol | ecti on. post Qbj ect (st orageChj ect) ;

}

function post Chject Success(response){
consol e. | og(response. storagej ect.id);

}

function error(error){
consol e. | og(error.statusCode);

}
}

Testing Runtime Operations Using the Endpoints Page

ORACLE

You can test client REST calls for collections manually through a command line tool or
utility, from a mobile app running on a device or simulator, or you can use the
Endpoints page to test various operations.

Using the Endpoints page for the Storage API, you can try out basic collection calls,
which would typically be exercised by a mobile app. These endpoints would be called
directly by calling REST APIs, indirectly (by calling the client SDK), or through custom
code. Instead of configuring a device or simulator, or entering the command manually,
you can test the API by first entering mobile app user credentials and parameters
appropriate to the call and then by clicking Test Endpoint. The page displays the
payload and the status code.

14-20

Chapter 14
Testing Runtime Operations Using the Endpoints Page

= ORACLE' mobile Cloud Service DEVELOPMENT v fagnarsmith@example.com ~

£ APls = Storage 1.0

Storage 1.0

Store and control access to application data.

Base URI hitp://example com/mobile/platform/storage

Endpoints (9) Documentation
Filter endpoints Q

A List of Collections
GET /collections
A Single Collection
HEAD /collections/{collection}
GET /collections/{collection}
A List of Objects
GET /collectionsHcollect
POST JeollectionsHcollecti
A Single Object
HEAD /collections/{collecti
GET /collectionsHcollecti
PUT /collectionsH{collecti.

DELETE /collections#{collecti

* Default Test Credentials

GET /collections
hitp:/fexample com/mobile/platform/storage/collections

4 This operation returns a list of the collections that are available through the mobile backend that this request is associated with.

Example

curl -X CET [AUTHENTIICATION HEADERS]} {EOST]}/mobile/platform/storage/collections

Permissions

To perform the GET operation, you must be a user that is a member of the realm that is associated with the mobile backend used o make the

request.

Request Response

4 Parameters Description Test Console
QUERY
offset number

Specify the index where you want to start browsing
the list of tems. If you don't specify an offset, then
the offset defaults to o, which is the first item in the
list. The response contains the offset used, and alko
a link to get the previous set of items.

Example - Zoffset=200

The following example shows a response to a
request that specified an offset of 200 tems.

You can access the Endpoints page by clicking Storage in Platform APIs section that
is located at the bottom of the APIs page for a mobile backend. You can also open the
page by clicking Storage in the Platform APIs section at the bottom of the APIs page.

(You open this page by clicking = to open the side menu. You then click
Applications> Mobile Backends and then APIs).

4 ORACLE wobile Cloud Service DEVELOPMENT ~ ragnarsmith@example.com

APPLICATIONS > MOBILE BACKENDS > FixitFast_Technician 1.0

Appications

Mobile Backends.

— = Sortby Name Ascending v E
& settings

[P

FIF Incidents £ X
Incident Reports
V1.0 DRAFT

User Manage! = Storage

Import

% Users

Analytics

B3 notifications.

Administration

ORACLE

= AppPoicies

4 Platform APls

@ The SDKs you downioad for your mobile applications automatically include the following piatform APIs. Click on an APIto expiore its X
&ndpoints. and documentation. Click Configurs to start defining data for your mobils backend

) User Management Storgge MNotifications Device... Data Offline
i} oetails sboutyour mobile . to spplication data - runRing your app to. application datafor >

=pps curent users, receive natifications. affiine use.

Configurs.
Configure.

14-21

Chapter 14
Testing Runtime Operations Using the Endpoints Page

Storage API Endpoints

The Storage API has endpoints for retrieving, paginating, and ordering collections and
also for retrieving, updating, and removing objects.

Operations for Operations
retrieving a list thatapply toa
of collections. list of objects.

{baseuri} /mobile/platform/storage/collections/{collection}/objects/{object}

The collection The object
ID, used with ID, used for
operations operations
that thatapply to
correspond to asingle
asingle object.

collection.

Here, we give a brief overview of the Storage API endpoints. For detailed information,
see REST APIs for Oracle Mobile Cloud Service.

Getting a Single Collection

To get the metadata about a collection, such as ID, description, and whether it is user
isolated, call the GET operation on the {col | ecti on} endpoint as follows:

GET {baseUri}/ nobil e/ platforn storage/collections/{collection}

For example, for a collection named i mages:

GET {baseUri}/ nobil e/ platforn storage/collections/inages

Getting All Collections Associated with a Mobile Backend

To get a list of the collections that are associated with a mobile backend, call the GET
operation on the col | ecti ons endpoint as follows:

GET {baseUri}/nobil e/ pl atforni storage/collections

Storing an Object

The Storage API has two operations for creating objects. The operation that you use
depends on if you want to specify the object’s ID or you want the ID to be generated
automatically.

e To specify the ID, use PUT, and put the ID in the URI as described in Specifying
the Object Identifier. Note that you can use the | f - None- Mat ch header to ensure
that you don’t overwrite an object that has the same ID, as described in Creating
an Object (If One Doesn't Already Exist).

* To generate an ID, use POST as described in Generating an Object Identifier.

ORACLE 14-22

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcsra-index

Chapter 14
Testing Runtime Operations Using the Endpoints Page

When you create an object using your own ID, remember that, for shared collections,
the ID must be unique to the collection. For user isolated collections, the ID must be
unique to the user’s space.

Always include the Cont ent - Type header to specify the media type of the object being
stored. This property also specifies the media type to return when the object is
requested. If you don't include this header, then the content type defaults to
application/octet-stream

Note that Storage doesn’t transform or encode an object. Storage stores the exact
bytes that you send in the request. For example, you can't send a Base-64 encoded
image and store it as a binary image by including a Cont ent - Type header set to

i mage/ j peg and a Cont ent - Encodi ng header set to base64. You can use a custom API
to perform the transformation for you, as shown in the code examples in
storage.store(collectionld, object, options, httpOptions).

Specifying the Object Identifier

When performing a PUT operation, the identifier of the object corresponds to the last
value specified in the URI. For example, to store an object with an ID called part 1524:

PUT {baseUri}/nobile/platforn storage/collections/images/ objects/part1524

Creating an Object (If One Doesn't Already EXxist)

Put the wildcard (*) character in the request's | f - None- Mat ch header to force the PUT
operation to create the object with the specified object ID only if no other object exists
with that ID. Specifying the wildcard causes the call to fail if another object already
exists with the same ID. For example:

PUT {baseUri}/nobile/platforni storage/collections/images/objects/ part1542

Header s:
| f-None-Match: *

Generating an Object Identifier

To generate the identifier for an object and then store the object, use the POST
operation. Unlike the PUT operation, there’s no identifier specified at the end of the URI
for a PCST operation. For example:

PCST {baseUri}/ nobil e/ pl atforni storage/collections/imges/objects

The URI that accesses the newly created object is returned through the Locat i on
header in the response, and the | D attribute is included in the response body.

What Happens When an Object is Created?

When an object is created:

e The content is stored.

ORACLE 14-23

Chapter 14
Testing Runtime Operations Using the Endpoints Page

* The value of the Cont ent - Type field in the request is stored. (This becomes the
Cont ent - Type field definition returned when the object is requested using a GET
operation.)

* An entity tag (ETag) value is assigned.

e The creat edBy value is set to the user ID of the user who performed the create
operation.

e The creat edOn value is set to the time the object was stored on the server.

Updating an Object

Objects are updated using the PUT operation. For the PUT call, specify the same
identifier that was specified or generated when the object was created. Because
objects are opaque, updating an object completely replaces the previous contents.

What Happens When an Object Is Updated?

When a PUT is performed on an object, the following occurs:

* The content is completely replaced.
e The value of the ETag changes.

e The nodi fi edBy value is set to the user ID for whom the mobile app performed the
PUT operation.

* The nodi fi edOn value is set to the time the object was stored on the server.

Optimistic Locking

ORACLE

Optimistic locking is a strategy to use when you want to update an object only if object
was not updated by someone else after you originally retrieved it. To implement this
strategy, do one of the following:

» Put the timestamp of when you last retrieved the object in the | f - Unnmodi f i ed-
Si nce header.

e Putthe object’'s ETag in the | f - None- Mat ch header.

For example, if the ETag value from the previous call is 2, then the PUT operation in the
following example is performed only when the | f - None- Mat ch value of " 2" matches
the ETag of the object (part 1524). If the versions don’t match, then the call’'s PUT
operation isn’t performed and part 1524 remains unchanged.

PUT{ baseUri}/ mobi |l e/ pl at f or nf st orage/ col | ecti ons/i mages/ obj ect s/ part 1524

Header s:
| f-None-Match: \"2\"

You can get a similar result using | f - Unnodi fi ed- Si nce:

PUT {baseUri}/ nobil e/ platforn storage/coll ections/images/objects/part1524

Header s:
| f-Unnodi fied-Since: Mn,30 Jun 2014 19:43:31 GVl

14-24

Chapter 14
Testing Runtime Operations Using the Endpoints Page

Retrieving Objects

You can get a list of the objects in a collection, and you can get an object.

Retrieving a List of Objects

To get the metadata about a set of objects in a collection, use the GET operation on
the /col I ections/{col | ection}/objects endpoint. This metadata includes the
object’s ID, its name, and size. The metadata also includes the canonical link and self
links. For a full list of properties, see Taking a Look at Object Metadata.

In this example, i mages is the name of a shared collection.

GET {baseURI }/ nobi | e/ pl atf orni st orage/ col | ecti ons/i nages/ obj ect s

If the collection is user isolated and you have READ ALL or READ WRI TE_ALL access,
then you must include the user query parameter and specify which user's objects you
want listed, even if you want to see your own objects (use * to list all user’s objects).
Note that you provide the user’s ID, not the user name. For example:

GET {baseURl }/ nobi | e/ pl at forni st orage/ col | ecti ons/i mages/ obj ects?
user =0cea04ee- 9e26- 4de3- ad6h- 00a66¢8d3b96

Paging Through a List of Objects

Ordering

ORACLE

If you don’t want to see all the results, or if you want to get the results in small blocks,
use thelimt and of f set query parameters to request a subset of items.

Use the | i m t parameter to restrict the number of items returned. The default is 100.
Define of f set as the zero-based starting point for the returned items. The returned
JSON body contains links for retrieving both the next and previous sets of items.

The following example gets the metadata for 50 objects, starting with the 201st object.

Get {baseUri}/nobilel/platforn storage/collections/inmages/objects?
of f set =200&! i i t =50

Use the or der By parameter to control the order of the returned items. You can specify
which property to order on and specify whether to put the items in ascending (asc) or
descending (desc) order:

Get {baseUri}/nobile/platform storage/collections/imges/objects?
or der By=cont ent Lengt h: desc

You can sort by the nare, nodi fi edBy, modi fi edOn, cr eat edBy, creat edOn, or
cont ent Lengt h property.

14-25

Querying

Chapter 14
Testing Runtime Operations Using the Endpoints Page

< Note:

You can order by one property only (either asc or desc).

Use the q query parameter to restrict the list of returned objects to the value specified
for the i d, nane, cr eat edBy, or nodi f i edBy attributes.

Get {baseUri}/nobile/platform storage/collections/imges/objects?q=part

The objects returned are based on a case-sensitive, partial match of the i d, nane,
creat edBy, and nodi fi edBy attributes. With this example, the results might include an
item with an ID of part 1524 and an item modified by bonapart .

Retrieving an Object

Use the GET operation to retrieve the entire object. When performing the GET operation,
the identifier (such as part 1524 in the following example) is specified at the end of the
URI.

Storage always returns the exact bytes that were stored. If the Accept s header doesn’t
match the Cont ent - Type that the object was stored with, then it returns a 406 status
code.

In this example, the object is returned only if the Etag does not match. You can use
this strategy prevent re-fetching an object if it hasn’t changed.

Get {baseUri}/nobilel/platform storage/collections/images/objects/part1524

Headers:
| f-None-Match: \"2\"

Deleting an Object

ORACLE

To remove an object from a collection, call the DELETE operation. Deleting an object is
permanent. There’s no way to restore an object after you call this operation.

DELETE {baseUri}/ mobi | e/ pl at f orni st orage/ col | ections/images/ obj ect s/
part 1524

To safely remove an object, use the | f - None- Mat ch header with the object’s ETag, or
the | f - Unnodi fi ed- Si nce header with the timestamp of when you last retrieved the
object:

DELETE {baseUri}/ mobi |l e/ pl at f or m st orage/ col | ections/i mages/ obj ects/
part 1524

Header s:
| f-None-Match: \"2\"

14-26

Chapter 14
Testing Runtime Operations Using the Endpoints Page

As described in Updating an Object, you can use these headers to prevent overriding
a change that another user made after you originally retrieved the object.

Optimizing Performance

You can use these strategies to optimize performance when you retrieve an object:
* Check If Exists
* Get If Newer

» Reading Part of an Object (Chunking Data)

Check If Exists

Put If Absent

Get If Newer

ORACLE

To check if an object exists, use the HEAD operation instead of a GET operation. The
HEAD operation returns the same information except for the actual object value.

You can use the | f - None- Mat ch header with a wildcard (*) value in a PUT operation to
store an object only when (or if) it isn't already included in the collection.

When you use this strategy, the call executes only when the ETag is absent, which is
true only if the object does not exist.

PUT {baseUri}/ mobile/platform storage/collections/profiles/objects/uprofile

Header s:
| f-None-Match: *

In this example, if the upr of i | e object doesn’'t have an ETag, then nyProfile.txt is
stored as the uprof i | e object.

If you have already retrieved an object, and you want to re-fetch it only if it has
changed, use the GET operation with the | f - None- Mat ch or | f - Modi fi ed- Si nce header
to retrieve the object only if there has been a change since the last time the object was
fetched.

¢ [If-None-Match

This example re-fetches the object only if the ETag is not 2.

GET {baseUri}/ nobil e/ pl atform storage/ col |l ections/images/objects/
part 1542

Header s:
| f-None-Match: \"2\"

¢ If-Modified-Since

14-27

Chapter 14
Testing Runtime Operations Using the Endpoints Page

This example re-fetches the object only if it was modified after the date and time
specified. Otherwise, the response status is 304 not nodifi ed.

GET {baseUri}/ nobil e/ pl atform storage/collections/imges/objects/
part 1542

Header s:
| f-Mdified-Since: Mn, 30 Jun 2014 19:43:31 G\l

Reading Part of an Object (Chunking Data)

If the mobile app needs to get a large object like a video file, you can use the Range
header to retrieve a subset of the object. This field lets the mobile app retrieve the data
in chunks, rather than all at once, by requesting a subset of bytes. Using this strategy,
you can start streaming a video, or start displaying the contents of a long list before
you fetch the whole object.

Here are examples of byte-range specifier values:

e First 100 bytes: byt es=0-99

e Second 100 bytes: byt es=100- 199

e Last 100 bytes: byt es=- 100

* First 100 and last 100 bytes: byt es=0- 99, - 100

This example gets the first 100 and last 100 bytes of a profile to display a preview of

the object’s contents:

GET {baseUri}nmobile/platform storage/collections/profiles/objects/uprofile

Headers:
Range: bytes=0-99, -100

ORACLE 14-28

Data Offline and Sync

Mobile app developers can use the Data Offline and Sync features to build a client app
that enables the users to perform critical tasks when offline.

Data Offline & Sync

Mobile Backend

Platiorm APls
Maobile User Mgmt Storage
-
Data Offline & Sync Motifications
Analytics Database
App Policies Location
A
Custom Connectors On-Premises
— = APls — SOAP REST Ics EA — or Cloud
Mobile Semvice

Applications

You can use the following APIs to build applications that cache REST resources for
offline use and then synchronize all offline changes with the server when the device
goes online again.

ORACLE 15-1

Chapter 15
Building Apps that Work Offline Using Sync Express

API Platforms Features
Sync Express e Cordova e Basic synchronization.
e JavaScript Easytouse.

* Works with any REST API
where the resource name
alternates between plural
nouns and singular
resource identifiers (rid),
suchas/items/{rid}/
subitens/{rid}.

* Requires minimal
changes to existing code.

* Works with any
JavaScript framework.

* When device reconnects,
sends change requests
one resource object at a
time.

* Always overwrites the
server version of the

object.
Synchronization e Android * Robust synchronization.
e iOS * Works with
synchronization-compliant
custom APIs.

« When device reconnects,
sends all changes in one
request.

» Provides choices for what
to do if the server version
of an object changes
while edits were made
offline (server wins, client
wins, preserve conflict).

» Provides choices for how
long to store resource
objects on the device,
when to refresh data from
the server, and which
resources can be edited
when offline.

e Automatically
synchronizes with the
Storage platform.

Building Apps that Work Offline Using Sync Express

The Javascript and Cordova client SDKs feature Sync Express, which enables you to
easily and quickly make your application work offline using your existing REST
requests. You can use this library for REST APIs where the resource name alternates

ORACLE 15-2

ORACLE

Chapter 15
Building Apps that Work Offline Using Sync Express

between plural nouns and singular resource identifiers (rid), such as/itens/{rid}/
subi tens/{rid}.

Adding Sync Express to Your App
To use Sync Express in your app, you must complete the following tasks.

e Copy both nts. sync. min.js and nts. mn. js from the SDK into the directory
where you keep your JavaScript libraries.

* Useascript elementto load nts. sync. nmin. j s. This must be the first script that
the app fetches and loads unless you add | oki - cor dova- f s- adapt ers. j s, which
is explained next.

» Use either RequireJS or a scri pt element to load nts. nin.js.

* From the command line, enter the following to add the cordova-plugin-network-
information plugin. This plugin enables Sync Express to detect if the device is
online or offline.

cordova plugin add cordova- pl ugi n- network-inf ormation

When an application attempts to store more REST resources than the device’s cache
size allows, Sync Express throws a QUOTA EXCEEDED ERR exception. With Cordova
apps, you can install the cordova-plugin-file to increase the device’s cache size. This
plugin isn’t available for JavaScript web apps.

1. To install and use the cordova-plugin-file.
cordova plugin add cordova-plugin-file
2. Copy | oki-cordova-fs-adapters.js fromthe SDK into the directory where you

keep your JavaScript libraries.

3. Add a script element to load | oki - cor dova- f s- adapt er. j s. This must be the first
script that the app fetches and loads. Then the app can load nts. sync. nin.js and
mes. nmin. j s as described above.

Configuring Your App to Use Sync Express

To enable Sync Express, add a syncExpr ess entry to

oracle_mobi |l e _cloud_config.js, and use pat h elements in the pol i ci es array to
identify the endpoints that you want to activate Sync Express for. The name that you
use for a path parameter must exactly match the name of the property that uniquely
identifies a returned object. Use a colon to identify the path parameter, such

as :deptld.

Note:

The configuration file can have a syncExpr ess entry for Sync Express or a
sync entry for the Synchronization library, but it can’t have both.

Let's say, for example, that you want to activate Sync Express for all calls to these
endpoints:

e /departments

15-3

ORACLE

Chapter 15
Building Apps that Work Offline Using Sync Express

e /departments/{deptld}

The department database object has these properties:

dept 1 d: nunber
nanme: string

The response object for a department collection looks like this:

{

“deptld": 1,

“name": "Departnent 1"
¥
{

“deptld": 2,

“nane": "Department 2"
}

The corresponding syncExpr ess entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for both endpoints.

var nts_config = {
"l ogLevel ": nrs. LOG LEVEL. | NFO
"nobi | eBackends": {

"nmyBackend": {
}
}
"syncExpress": {
"policies": [
{
"path": '/ nobile/custom myApi/departnents/:deptld(\\d+)?
}
]
}

}s

Now let’s say, for example, that you want to include calls to endpoints with
subcollections (nested entities), such as an employees within a department:

e /departnments

e /departments/{deptld}

e /departnents/{deptld}/enployees

e /departnents/{deptld}/enpl oyees/{enpld}
The employee database object has these properties:
dept | d: nunber

enpl d: nunmber
name: string

15-4

ORACLE

Chapter 15
Building Apps that Work Offline Using Sync Express

The response object for an employee collection looks like this:

{
“enpld": 1,
“name": "John Doe"
1
{
“enpld": 2,
"nane": "Jane Doe"
}

The corresponding syncExpr ess entry would look like this. Notice that you need only
one entry in the configuration file to activate Sync Express for all the endpoints.

var nts_config = {
"l ogLevel ": nrs. LOG LEVEL. | NFO
"nobi | eBackends": {

"nyBackend": {
1
1
"syncExpress": {
"policies": [
{

"path": '/ nobile/custon myApi/departments/:deptld(\\d
+)/: _enpl oyees?/ :enpl d(\\d+)?
}
]
1
b

Sync Express provides some regular expressions for formulating the path
specification:

e Use a colon (:) plus the property name to indicate either a path parameter or the
name of the property that uniquely identifies each returned object (or both). For
example, for the / depar t ment s endpoint, you must include : dept 1 d(\\ d+) in the
path specification to indicate the unique identifier for a department resource, even
if the API didn’t have a / mobi | e/ cust oml nyAPI / depart nent s/ { dept | d} endpoint.

e Use a question mark (?) to indicate that the path parameter is optional.

* When a path segment represents a collection of children resources (a
subcollection), then you must precede the parameter name with a colon and an
underscore (: _) so that Sync Express stores the response objects in the client
cache as children objects that are associated with the parent object.

* By default, Sync Express assumes that the path parameter is a string. Use (\\ d+)
to indicate that the path parameter must be a numeric value.

For example, given the / nobi | e/ cust ot nyApi / depart nent s/ : dept I d(\\d
+)/: _enpl oyees?/ : enpl d(\\ d+) ? path specification:

15-5

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

» :deptld specifies a path parameter and also provides the name of the property in
the department object that uniquely identifies a department.

e The ? after : dept I d(\\ d+) indicates that this and subsequent parameters are not
required. Thus, the path specification applies to these endpoints:

— [/ nobil el cust onf nyApi / depart ment s

— [nobi | e/ cust ont nyApi / depart ment s/ {dept | d}

— I nobil el cust onf nyApi / depar t ment s/ {dept | d}/ enpl oyees

— [/ nobil e/ cust om nyApi / depar t ment s/ {dept | d}/ enpl oyees/ { enpl d}

e (\\d+) indicates that the path parameter value must be numeric. If the object’s
dept | d property is a string, then you’d use / nobi | e/ cust onf nyApi /
depart nents/: dept | d? instead.

* (:_enpl oyees) identifies a subcollection and indicates that all response objects
must be stored in the client cache as children of the specified dept I d.

Configuring Your App to Handle items Arrays

If any response bodies wrap a collection in an i t ens property, such as"itens":
[{"id:":33},{"id:":34}], then you must add the Oracle REST handler to the
syncExpr ess entry in the configuration file, as shown in the following example:

var ncs_config = {
"l ogLevel ": nts. LOG LEVEL. | NFQ,
"nobi | eBackends": {
“nyBackend": {

}
}
"syncExpress": {
"handl er": "Oacl eRest Handl er",
“policies": [
{
"path": '/ nobile/custon nyApi/departnents/:deptld(\\d+)?
}
]
}
}s

Making Your App Synchronize Offline Changes Automatically

To make an app synchronize offline changes with the server automatically, add code
to refresh the user interface when the device re-connects (goes online) by making
explicit REST calls, which then flush pending changes automatically.

Building Apps that Work Offline Using the Synchronization
Library

Use the Synchronization library from Android and iOS mobile apps to enable the app
users to continue to use the app when offline.

ORACLE 15-6

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

What Can | Do with the Synchronization Library?

ORACLE

When developing Android and iOS client apps, you, as a mobile app developer, might
often take these goals into consideration:

* Enable updates to app data on mobile devices when connectivity is intermittent or
non-existent.

* Improve performance by minimizing the amount of calls and data transported over
the wire.

The client SDK’s Synchronization library, with its data caching, support for offline
operations, and automated synchronization, enables you to achieve these goals when
you access custom API resources. In addition, through declarative policies, you can
design caching and synchronization policies for your custom APIs that you can apply
across your apps, and adjust without having to modify code.

Using the Synchronization Library to Enable Edits to App Data When the Mobile
Device Is Offline

As an example of how you can use the Synchronization library to enable app users to
read, create, update, and delete data when the mobile device is offline, consider some
apps that are designed for the Fix it Fast (FiF) company, which maintains in-house
appliances. The mobile app developer wants to ensure that the apps continue to work
even when there is no internet connection. For example:

e A customer uses an FiF mobile app to fill out the details for an incident report
regarding a basement furnace. She then goes to the basement to take a picture of
the furnace's barcode, attaches it to the report, and taps Send. Even though
there’s no internet connection in the basement, the app should enable the
customer to access, change, and send the incident report. As soon as the device
reconnects to the internet, the app should transmit the report and the attached
photo to the server.

e During the day, a technician reviews her job list, sorts the jobs by priority, driving
distance, and issue type, and adjusts the priorities as needed. As she completes a
job, she attaches notes to the incident report, and she updates the job status. She
expects to be able to do all these tasks even when she doesn't have access to the
internet. When her device is connected, she expects the app to synchronize her
offline modifications with the server, first synchronizing the essential information,
such as job status, and then synchronizing the less essential information, such as
her notes.

e After an unexpectedly long repair, the technician lowers the priority for customer
that is the furthest away, John Doe. Because she is offline, her modifications are
stored in the offline edits in the local cache. During the time she was offline, John
Doe called the office to report that his water heater was now leaking, and the office
changed his priority to high. When the technician goes back on line, the app
synchronizes the updates, and sees that there is a conflict. The app pops up a
notice about the conflict and asks the technician if she still wants to lower the
priority.

To implement these data offline requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
update, and conflict resolution policies in the configuration file.

15-7

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

To ensure that incident reports from the /i nci dent s resource are always
available, that they can be modified while offline, and that the server is updated
with queued offline modifications as soon as the device resumes access, the
mobile app developer sets the following policies for the resource:

— Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM SERVI CE_| F_ONLI NE).

— Update policy: Queue updates if offline and synchronize automatically when
the client app is back online (QUEUE_| F_OFFLI NE)).

To ensure that two technicians don't inadvertently update the same status or
priority for an /i nci dent st at us resource due to queued offline updates, the
mobile app developer sets the following policy:

— Conflict resolution policy: Don't overwrite the server’s version with the local
version if there’s a conflict. The edited local version is kept in the offline edits
in the local cache, and the mobile app handles the conflict
(PRESERVE_CONFLI CT).

Note:

This assumes that the code for this custom API returns the correct
information, such as the ETag that is used to detect conflicts, as
described in Returning Cacheable Data.

To learn about all the data offline policy options, see Synchronization Policies.

Using the Synchronization Library to Improve Performance

As an example of how you can use the Synchronization library to improve
performance, consider the FiF apps that we discussed previously.

Before leaving the office every morning, the technicians start an FiF app on their
tablets, and pull a list of their jobs for the day. Because the customer information
such as name, phone, and address is static, the app can cache that data upon
startup and not re-retrieve it during the day to improve performance. Other
information, such as incident status and priority, must be kept current.

Expired data needs to be cleared whenever the app is restarted.

The finance department designed an API that supplies a customer's default credit
card information. Because the information is fairly static, mobile apps might
consider caching that information to improve performance. However, the finance
department wants to ensure that mobile apps never cache that information.

To implement these performance requirements, the mobile app developer uses the
Synchronization library to fetch and update data, and sets the appropriate fetch,
expiration, and eviction policies in the configuration file.

To cache the information from the / cust oner resource so that it's retrieved from
the server on startup, and, after that from the local cache only, the mobile app
developer sets the following policies:

— Expiration policy: Mark resources as expired when the client application
restarts (EXPI RE_ON_RESTART).

15-8

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

— Euviction policy: Delete expired resources from the local cache when the client
application restarts (EVI CT_ON_EXPI RY_AT_STARTUP).

— Fetch policy: Fetch resource from the server only if it isn't in the local cache or
is expired (FETCH_FROM SERVI CE_ON_CACHE_M SS_OR_EXPI RY).

* To ensure that the priority and status from the /i nci dent st at us resource is
always available, but stays as current as possible:

— Fetch policy: Fetch resources from the server when the client application is
online, and fetch them from the local cache when the app is offline
(FETCH_FROM SERVI CE_| F_ONLI NE).

— Eviction policy: Delete expired resources from the local cache when the client
application restarts (EVI CT_ON_EXPI RY_AT_STARTUP).

— Expiration policy: Mark a resource as expired when the client application
restarts. Update the local cache with the latest version from the server the next
time the client application calls the resource (EXPI RE_ON_RESTART).

* To ensure that none of the information from the / cr edi t car ds resource is cached,
the custom code that implements this APl makes sure that all HTTP responses
include the Or acl e- Mobi | e- Sync- No- St or e header setto true.

To learn about all the data caching policy options, see Synchronization Policies. To
learn about the synchronization headers, see Defining Synchronization Policies and
Cache Settings in a Response Header.

Synchronization Library Process Flow

ORACLE

To help you understand how the parts fit together, here’s an explanation of how the
Synchronization library does the following:

* Manages objects in the local cache

» Uses synchronization policies to retrieve resources from either the local cache or
the server

* Handles object updates

When the mobile app makes a request through the Synchronization library to get data
from a custom API, the Synchronization library looks at the fetch policy setting to
determine whether to get the objects from the server or the local cache. Whenever the
Synchronization library fetches objects from the server, it refreshes the local cache
with the newly fetched objects.

Depending on the policy settings, the Synchronization library might also periodically
refresh expired items in the local cache using a background process.

When the user edits an object, the following occurs depending on whether the mobile
device is online or offline:

* Online edit: An update request is sent to the server.

» Offline edit: The edited object is stored in the offline edits in the local cache. When
the app goes online, a background process sends a request to update the
resource on the server.

If the conflict resolution policy is CLI ENT_W NS, the update request includes an | f -

Mat ch header of * so that the server updates the resource without conflict. Otherwise
the request includes an | f - Mat ch header that is set to the ETag that was last returned
by the server.

15-9

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

To learn more about the synchronization policy types and options and how to set
them, see Synchronization Policies.

Video: Overview of the Data Offline & Synchronization AP

To learn more about how the Synchronization library uses caching to enable a client
app to work offline as well as improve performance, take a look at this video:

1::'E:}Video

Android Synchronization Library

This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

For detailed information about the library, see Oracle Mobile Cloud Service Android
SDK Reference.

Tip:

The client SDK ZIP file contains an exanpl es folder, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Setting Up Your Mobile App for the Android Synchronization Library

1. Ensure that the Andr oi dMani f est. xnl file contains the following entries.
VIRl TE_EXTERNAL_STORAGE lets the Synchronization library maintain the local cache.
ACCESS_NETWORK_STATE lets the Synchronization library determine the connection
status.

<uses- perm ssion

andr oi d: nane="andr oi d. per nmi ssi on. WRI TE_EXTERNAL_STORAGE" />
<uses- perm ssion

andr oi d: nane="andr oi d. per nm ssi on. ACCESS_NETWORK_STATE" />

2. Ensure that the correct policies are in place for the mobile backend and API
endpoints as described in Synchronization Policy Levels and Precedence and
Defining Synchronization Policies Using a Configuration File.

3. As with all mobile apps, instantiate Mbi | eBackendManager , and then instantiate
Mobi | eBackend to manage connectivity, authentication, and other transactions
between your application and its associated mobile backend, including calls to
platform and custom APIs.

4. To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

try {
Synchroni zation synchroni zation =

Mobi | eBackendManager . get Manager () .
get Def aul t Mobi | eBackend(t hi s).
get Servi ceProxy(Synchroni zati on. cl ass) ;

ORACLE 15-10

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13339
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssa-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssa-index

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

} catch (ServiceProxyException e) {
e.printStackTrace();

}

Fetching Resources

ORACLE

After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

1.

To access an endpoint, instantiate Mbi | eEndpoi nt for that endpoint. This
example instantiates an endpoint for / nobi | e/ cust onf i nci dent report/
i nci dents.

/1 open Endpoi nt
Mobi | eEndpoi nt endpoi nt =
synchroni zat i on. openMobi | eEndpoi nt (
“incidentreport”,
"incidents",
Mobi | eQhj ect . cl ass);

(Optional) Add objects or files to the collection. This example adds an object.

Mobi | eChj ect newQbj ect = endpoi nt. createject();
JSONQbj ect payl oad = new JSONOoj ect () ;
/I Set properties

try {
payl oad. put ("title", "incident 213");

} catch (JSONException e) {

}

newlbj ect.initialize(null, endpoint, payload);

/1 Add incident

new(bj ect . saveResour ce(new Mobi | eEndpoi nt Cal | back() {

@verride
public void onConpl et e(Exception exception, MbileResource
mobi | eResource) {
[/ This function is called when the request conpletes

}
1

Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

e FetchQbj ectBuil der
e FetchCol | ectionBuil der
e FetchFil eBuil der

15-11

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

Here’s an example of creating a fetch builder for a collection.

Fet chCol | ectionBui | der fetchCollectionBuilder = endpoint.fetchChjects();

In this example, we want to filter all the incidents for the signed-in technician
(which is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

fetchCol | ectionBuil der =
fetchCol | ectionBuil der.w thQueryParameter("technician", usernane);

Tip:

You can call wi t hQuer yPar anet er as many times as you need to specify
all the query parameters.

Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated
with this fetch builder, the request includes the Or acl e- Mobi | e- Di agnosti c-
Sessi on- 1 D header. The nDi agLogFi | t er Tag string variable has been set to a
value that uniquely identifies requests that are made using this fetch builder.

fetchCol | ectionBuil der.w t hHeader (" Oracl e- Mobi | e- Di agnost i c- Sessi on-
I D', nDiagLogFilterTag);

Use the builder to execute the fetch.

fetchCol | ectionBui | der. execut e(new Mobi | eEndpoi nt Cal | back() {
@verride
publ i ¢ void onConpl et e(Exception exception, MbileResource
mobi | eResour ce) {
[/ This function is called when the request conpletes

Mobi | eQbj ect Col | ection collection = (MbileCbjectCollection)
mobi | eResour ce;
}
1)

If the fetch policy is to fetch the data from the local cache, such as

FETCH _FROM SERVI CE_ON_CACHE_M SS, then it's fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

The raw downloaded JSON object is exposed through the JsonChj ect property.
Use this property to set the appropriate values.

Li st objectsList = collection.getbjectsList();

Mobi | eChj ect inci dent Mobil eCbj ect = (Mbil eCbject)

obj ect sLi st . get (i ndex) ;

JSONObj ect json = incident Mbil ethject. get JsonChj ect();

15-12

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

/1 This updates incidentMbileject
json.put("status", "conpleted");

7. Use one of the Mbi | e(bj ect save methods to save the changes on the server.

i nci dent . saveResour ce(new Mbi | eEndpoi nt Cal | back() {

@verride
publ i ¢ void onConpl et e(Exception exception, MobileResource
mobi | eResour ce) {

}
1

If the device isn’t connected to the internet, and the update policy is

UPDATE_| F_OFFLI NE, then the library saves the changes to the local cache. The
Synchronization library sends the changes to the server automatically when the
device reconnects with the internet.

8. Use one of the Mbi | eChj ect delete methods to delete an object.

i nci dent . del et eResour ce(new Mobi | eEndpoi nt Cal | back() {
@verride
publ i ¢ void onConpl et e(Exception exception, MobileResource
mobi | eResource) {

}
1

If the client is offline, then the library deletes the object in the local cache. It
deletes the object on the server when the client is online again.

Fetching Filtered Resources

ORACLE

You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as nobi | eResour ce objects, convert the objects to JSON
objects, and then filter the items. However, when the device is offline, your app can’t
filter the nobi | eResour ce objects in the local cache because the objects are just blobs
of data. The solution is to use a custom Mbi | etbj ect . When you do this, the local
cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We'll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom Mbi | eQbj ect class, you can use the
fetch builder’s quer yFor method to specify the filter to use in the local cache. Note that
this method is for filtering JSON objects from the local cache. It doesn't affect the way
that the Synchronization library retrieves results from the server. Whenever you
execute the fetch builder, the library first looks at the fetch policy setting to determine
whether to refresh the local cache. If the policy specifies that it must refresh the local
cache from the server, then it retrieves all the objects, regardless of the filter that you
specify using the quer yFor method. Regardless of the fetch policy and whether it
refreshed the local cache, the library then uses the quer yFor method to filter the data
in the local cache, and return the filtered results. That is, regardless of whether the

15-13

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

device is online or offline, and regardless of whether the library fetches data from the
server or uses the local cache, the quer yFor method filters the results based on the
query property and value.

1.

Create a class that extends Mbi | eQbj ect . Add a property for every field that you'll
use in the app. Then override onDat aLoad() and get Propert yNames() and create
getters and setters for the fields. Here’s an example of creating an

I nci dent Cust om\bbi | eChj ect class.

public class IncidentCustonm\bbil eCbject extends Mbilehject {
private int id;
private String title;
private String technician;
private String custoner;
private String status;
private String priority;
private String createdBy;
private String createdOn;
private String nodifiedBy;
private String nodifiedOn;

[/ This method tells the Synchronization |ibrary how to get the
val ues fromthe JSON object.
@verride
protected void onDatalLoad(){
tryf
if(jsontoject !'= null){
title = json(oject.has("title") ?
jsonvject.getString("title") : "";
techni ci an = jsonQbj ect. has("technician") ?
j son(bj ect.getString("technician") : "";
cust omer = jsonQbj ect. has("custoner") ?
j sonvj ect.get String("custoner") : "";
status = jsonbject. has("status") ?
jsonvj ect.get String("status") : "";
createdBy = json(bject.has("createdBy") ?
j sonQbj ect.get String("createdBy") : "";
createdOn = json(vj ect.has("createdOn") ?
j son(bj ect.get String("createdOn") : "";
modi fiedBy = jsonQbj ect. has("nodifiedBy") ?
j sonQvj ect. get String("nodifiedBy") : "";
modi fi edOn = j sonbj ect. has(" nodi fi edOn") ?
j sonQvj ect.get String("nmodifiedOn") @ "";
priority = jsonCbject.has("priority") ?

nn

jsonQbj ect.getString("priority") : ;

} catch (Exception e){
e.printStackTrace();

}

}

/1 The Synchronization library uses this method to determne the
col utm names and data

/] types for the database table for the local cache.

@verride

15-14

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

publ i ¢ voi d get PropertyNames(Map<String, PropertyType> properties,

Li st <Li st<String>> i ndexes) {

properties.put("title", PropertyType.String);
properties.put("technician", PropertyType.String);
properties.put("customer”, PropertyType.String);
properties.put("status", PropertyType.String);
properties.put("createdBy", PropertyType.String);
properties.put("createdOn", PropertyType.String);
properties. put ("modifiedBy", PropertyType.String);
properties. put("modifiedOn", PropertyType.String);
properties.put("priority", PropertyType.String);

}

|/ CGetters and Setters

public int getld() {

return id;

}

public void setld(int id) {
this.id =id;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public String getTechnician() {
return technician;

}

publ i c void setTechnician(String technician) {
this.technician = technician;

}

public String getCustomer() {
return customer;

}

publ i c void setCustomer(String custonmer) {
this.customer = custoner;

}

public String getStatus() {
return status;

}

public void setStatus(String status) {
this.status = status;

}

15-15

ORACLE

2.

}

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

public String getPriority() {
return priority;

}

public void setPriority(String priority) {
this.priority = priority;
}

public String getCreatedBy() {
return createdBy;

}

public void setCreatedBy(String createdBy) {
this.createdBy = createdBy;

}

public String get CreatedOn() {
return createdOn;

}

public void setCreatedOn(String createdOn) {
this.createdOn = createdOn;

}

public String getMdifiedBy() {
return nodifiedBy;

}

public void setMdifiedBy(String nodifiedBy) {
this.modi fiedBy = nodifiedBy;
}

public String getMdifiedOn() {
return nmodifiedOn;

}

public void setMdifiedOn(String nodifiedOn) {
this.nodifiedOn = nodifiedOn;
}

Open the endpoint for the custom class.

Mobi | eEndpoi nt endpoint =

synchroni zat i on. openMobi | eEndpoi nt (

“incidentreport”,
“incidents",
I nci dent Cust omvbbi | etoj ect . cl ass);

15-16

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

3. When you create the fetch builder, use the quer yFor method to add a query to
filter the results by status.

Fet chCol | ectionBui | der fetchCollectionBuilder = endpoint.fetchCbjects();
fetchCol | ectionBuil der = fetchCol | ecti onBuil der. queryFor (

"status",

Conpar i son. Equal s,

"pending");

4. Fetch the data.

fetchCol | ectionBui | der. execut e(new Mbi | eEndpoi nt Cal | back() {
@wverride

public void onConpl et e(Excepti on exception, MbileResource

mobi | eResour ce) {
Mobi | eQbj ect Col | ection col | ection = (MbileCbjectCollection)

mobi | eResour ce

}
})

5. The raw downloaded JSON object is exposed through the JsonChj ect property.
Use this property to access the appropriate values.

I ncident incident = (Incident) collection.getjectsList().get(index);
JSONObj ect json = incident.getJsonject();
json.put ("status", "conpleted");

6. Save and delete objects the same way you save and delete OMCMobi | eQbj ect
objects.

[/ Save the object
i nci dent . saveResource (new Mbbi | eEndpoi nt Cal | back(){

IO

/| Delete the object
i nci dent . del et eResour ce (new Mbi | eEndpoi nt Cal | back() {

IO

Specifying Which Resources to Synchronize First

ORACLE

When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before
others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the Mobi | eResour ce class’ pi nResour ce method
to set a resource’s priority (Mobi | eFi | e, Mobi | etbj ect, and Mobi | eQbj ect Col | ecti on
inherit from this class).

bui | der. execut e(new Mbi | eEndpoi nt Cal | back() {

@verride
public void onConpl et e(Excepti on exception, MbileResource
mobi | eResour ce) {
mobi | eResour ce. pi nResour ce(PinPriority. H gh);

15-17

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

}
1

Setting a Resource’s Synchronization Policies Programmatically

When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these
saved policies when you fetch the data and before you add, update, or delete a
resource.

Setting a Fetch Builder’s Synchronization Policy

You can use the fetch builder's synchronization policy to override an endpoint’s
configured policies. When the library fetches the resource from the server, it saves the
fetch builder’s policy settings with the resource.

1. Create the fetch builder.

Fet chCol | ectionBui | der fetchCollectionBuilder = endpoint.fetchCbjects();

2. Create a SyncPol i cy object and set the policies to override. This example
overrides all the policies:

SyncPol i cy policy = new SyncPolicy();
policy. set Fet chPol i cy(SyncPol i cy. FETCH POLI CY_FETCH FROM SERVI CE_I F_ONLI

NE) ;

pol i cy. set ExpirationPolicy(SyncPolicy. EXPI RATI ON_POLI CY_EXPI RE_ON_RESTAR
7

pol i cy. set Evi ctionPolicy(SyncPolicy. EVI CTI ON_POLI CY_EVI CT_ON_EXPI RY_AT S
TARTUP) ;

pol i cy. set Updat ePol i cy(SyncPol i cy. UPDATE_PCLI CY_QUEUE_| F_OFFLI NE) ;
policy. set ConflictResol utionPolicy(SyncPolicy. CONFLI CT_RESCLUTI ON_PCLI CY
_CLIENT_WNS);

policy. set NoCache(f al se);

3. Set the builder’s synchronization policy.

fetchCol | ectionBuilder = fetchCol |l ectionBuilder.w thPolicy(policy);

Changing a Resource Object’s Synchronization Policy

Sometimes, you'll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLI CT_RESOLUTI ON_PCLI CY_CLI ENT_W NS.

1. Get the synchronization policy for the mobile resource object.

SyncPol i cy policy = mncidentMbilehject.get Current SyncPolicy();

ORACLE 15-18

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

2. Set the conflict resolution policy to CONFLI CT_RESCLUTI ON_POLI CY_CLI ENT_W NS.
All other policies remain as is.

policy. set ConflictResol utionPolicy(SyncPolicy. CONFLI CT_RESCLUTI ON_PCLI CY
_CLIENT_WNS);

3. Set the mobile resource object’s synchronization policy. This change doesn't take
affect until you call saveResour ce (to perform an add or update). For a delete, you
must call r el oadResour ce for the policy change to take affect before you call
del et eResour ce.

m nci dent Mobi | eQbj ect . set SyncPol i cy(policy);

Detecting and Handling Conflicts

In Conflict Resolution Policies, you learn how to set the conflict resolution policy for the
custom API resources that your mobile app accesses. When the conflict resolution
policy that is in affect for a resource is PRESERVE_CONFLI CT, the Synchronization library
doesn’t overwrite the server’s version with the local version if there’s a conflict.
Instead, an edited version is kept in the offline edits in the local cache, and the mobile
app is responsible for handling the conflict, such as programmatically merging the two
versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary’s device reconnects with the internet, and the Synchronization library
automatically sends Mary’s offline edit to the server. The server responds with a 412
Precondi tion Fail ed status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
it makes available both the modified object (from the offline edits in the local cache),
and the current server version to enable you to handle the conflict in your code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’'s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. You have two options for detecting and
handling conflicts that occur when a device reconnects:

* To detect and handle conflicts after the library finishes synchronizing offline edits
with the server, use the of fI i neResour ceSynchr oni zed method, as shown in the
first example. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

e To check whether a conflict occurs at the time that the library sends the offline edit
to the server (when the device is online), use the cacheResour ceChanged method
to listen for online updates and deletes, as shown in the second example. The
callback for this method is called for each resource that the library updates or
deletes. Typically, you use this method to detect any resource change during a
background cache refresh so that you can refresh the Ul with the change.
However, you also can use this method to detect and handle conflicts when the

ORACLE 15-19

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

library synchronizes the offline edits. Note that the callback is not called when the
library adds a new resource to the local cache.

Don't initialize CachedResour ceChanged more than once during the lifetime of the
application.

Detecting Conflicts When the Library Completes Synchronization

Here’s an example of using the Synchroni zati on of f| i neResour ceSynchr oni zed
method to detect conflicts after the Synchronization library has finished synchronizing
the cache. In this example, the only mobile endpoint that the mobile app accesses is
the i nci dent s endpoint. This example shows how to handle both custom and generic
Mobi | eQbj ect objects.

synchroni zati on. of f| i neResour ceSynchr oni zed(new
SyncResour ceUpdat edCal | back() {
@verride
publi ¢ voi d onResourceUpdat ed(String uri, MobileResource
mobi | eResource) {
if (nobileResource == null) {
Log.i("of flineResourceSync", "Resource for " + uri +
"del eted fromcache after offline synchronization");
return;

}

String result = null;

i f (nobileResource. hasConflict()) {
result = "with conflicts";

} else if (nobileResource. hasOfiflineUpdates()) {
result = "with offline update";

} else if (nobileResource.hasCiflineCommitError()) {
result = "with error";

} else {
result = "successfully";

}

Il 1f you created a custom MbileQbject class, you can access
properties directly
i f (nobileResource instanceof |ncidentCustombbileChject) {

I nci dent Cust onvbbi | eQbj ect anl ncident =
(I'nci dent Cust omvbbi | eChj ect) nobi | eResour ce;

Log.i("of flineResourceSync", "Cffline edits for " +
anincident.getTitle()
+ " finished with result :" + result);

/'l I'ncident has been synchronized with the service object.
/'l You can show a pop up or reload the resources in the U,
/1 such as in the main thread.

} else {
/1 Process has finished.

/'l Nobil eCbject/MbileFile has been synchronized with the
service object.

ORACLE 15-20

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

/1 You can show a pop up or reload the resources in the U,
/1 such as in the main thread.

}
1

Detecting Conflicts When the Library Updates the Cache

Here’'s an example of using the Synchroni zat i on cachedResour ceChanged method to
detect conflicts whenever a cached resource is updated either from new data from the
service or an update or delete from the mobile app. In this example, the only mobile
endpoint that the mobile app accesses is the i nci dent s endpoint. This example shows
how to handle both custom and generic Mbi | eChj ect objects.

synchroni zat i on. cachedResour ceChanged(new SyncResour ceUpdat edCal | back() {
@verride
publ i ¢ voi d onResourceUpdat ed(String uri, MbileResource
mobi | eResource) {
i f (nobileResource == null) {
Log. i ("cachedResour ceChanged", "Resource for
"del eted from cache");
return;

+uri +

}

String result = null;

i f (mobileResource. hasConflict()) {
result = "with conflicts";

} else if (nobileResource. hasOiflineUpdates()) {
result = "with offline update";

} else if (nobileResource.hasOflineCommitError()) {
result = "with error";

} else {
result = "successfully";

}

Il 1f you created a custom MbileQbject class, you can access
properties directly
i f (mobileResource instanceof |ncidentCustomvbbileChject) {

I nci dent Cust onvbbi | eQbj ect anl ncident =
(I'nci dent Cust omvbbi | eChj ect) nobi | eResour ce;

Log. i ("cachedResour ceChanged", "Cache changes for " +
anincident.getTitle()
+ " finished with result :" + result);

/1 Custom object changed in local cache. You can show a pop up
Il or reload the resources in the U, such as in the main

t hr ead.
} else {
Log. i ("cachedResour ceChanged", "Cache changes finished with
result :" + result);

15-21

1

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

/1 OMCMbbi | eQhj ect, OMCMbbi |l eFile, or OMCMbbi | eCbject Col | ection
/1 object changed in local cache.

/1 You can show a pop up or reload the resources in the U,

/1 such as in the main thread.

}

Reviewing and Discarding Offline Edits

ORACLE

You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

Switch the app to work-offline mode and switch back to work-online mode.
List the resources that have been changed while offline.
Discard all offline edits.

Discard a resource’s offline edits.

The Synchr oni zat i on class provides the methods for reviewing and discarding offline
edits. As shown in the following steps, you use its get Net wor kSt at us and

set 0 f i neMbde methods, along with the SyncNet wor kSt at us enumeration to switch
the work-offline mode on and off. You use its | oadOf f | i neResour ces method to get all
the offline edits that haven’t been synchronized with the server, and its

di scardOf f i neUpdat es method to discard all offline edits.

1.

At application start-up, instantiate Synchr oni zat i on and open the mobile endpoint.

try {
synchroni zation =

Mbbi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(t hi s). get Servi
ceProxy(Synchroni zation. cl ass);
} catch(ServiceProxyException e) {
e.printStackTrace();
}

i nci dent sEndpoi nt = synchroni zati on. openhbbi | eEndpoi nt (
"incidentreport”,
"incidents",
Mobi | eQhj ect . cl ass);

Add a Swi t ch component to the layout.

<Swi tch
androi d: i d="@i d/ workOf flineSwtch"
androi d: | ayout _wi dt h="wrap_content"
andr oi d: | ayout _hei ght="wrap_content"
androi d: | ayout _al i gnParent Bott om="t r ue"

andr oi d: ond i ck="changeWr kO f | i neMbde"
androi d: text="Wrk Ofline" />

15-22

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

Add the changeWr kO f | i neMbde function, which is called when

wor kOF f i neSwi t ch is clicked. This method uses the Synchroni zati on

get Net wor kSt at us method to determine the current network status, and the

set O f | i neMbde method to switch the work-offline mode on and off. When it calls
set O f | i neMbde, the library synchronizes all offline edits with the server
automatically. Note that calling set O f | i neMbde(t rue) when the device isn't
connected to the internet has no effect.

public void changeWr kO flineMde(View view) {
SyncNet wor kSt at us syncNet wor kSt at us =
synchroni zati on. get Net wor kSt at us() ;
try {
i f (syncNetworkStatus == SyncNetworkStatus. SyncOifline) {
/] Because setOFflineMde() is a no-op when the device
[l is offline, don't allow user to swtch nmodes when
of f1ine.
Toast . makeText (Mai nActivity.this,
"No internet connection. " +
"You can't switch the Work Ofline node on
or off when " +
“there isn't an internet connection."”,
Toast . LENGTH_SHORT) . show() ;
} else {
/1 Device is not in "real" offline node.
[l Switch fromwork online to work offline, or switch from
work offline to work online
/1 setOfflineMbde(true) sets SyncNetworkStatus to
SyncOF f i neTest
[l setOflineMbde(false) sets SyncNetworkStatus to
SyncOnl i ne
/I (if the device is actually online)
synchroni zation. set O f | i neMbde(syncNet wor kSt at us ==
SyncNet wor kSt at us. SyncOnl i ne) ;
}
} catch (Exception e) {
/'l Handl e error

}
}

Add code to the onCr eat e method to set the switch according to the current mode.

Switch workOFflineSwitch = (Switch)
findViewByl d(R.id.workOfiflineSw tch);

wor kKOFf1i neSwi t ch. set Checked(
synchroni zati on. get Net wor kSt at us() ==
SyncNet wor kSt at us. SyncOf f | i neTest);

Add code to display a list of the offline edits. You use the Synchroni zati on
| oadOf f | i neResour ces method to get the list. In this example, the mobile app

15-23

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

accesses only the incidents endpoint, and all the items in the offline edits list are of
type Mobi | eQbj ect .

[IDisplay a list of offline edits
synchroni zation. | oadO f| i neResour ces(new SyncLocal Loadi ngCal | back() {
@verride
publ i ¢ voi d onSuccess(Li st <Mbil eResource> resources) {
[l This list contains all the MbileResource objects in the
I ocal edit cache
Il In this app, the only nobile endpoint is for incidents
Il So, only Mbilehjects are in the edit cache
for (MobileResource resource : resources) {
/1 Put your code to add the incident to the display Iist
here

}

@verride
public void onError(String errorMessage) {
//Handl e the error

}
1

Add a button to discard all offline edits. Use code like the following to discard the
edits.

final Button nDiscardEdits = (Button)
findviewByl d(R id. buttonDi scardOfflineEdits);

mDi scar dEdi ts. set OnCl i ckLi stener (new Vi ew. OnCl i ckLi stener() {
@verride
public void ondick(Viewv) {
[/Discard all offline edits:
I/Deletes all resources in the edit cache,
/1but keeps all resources in the local cache as is
synchroni zati on. di scardOf f| i neUpdat es(new
SyncDi scardO f | i neResour ceCal | back() {
@verride
public void onError(String errorMessage) {
[/ Handl e the error

The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's r el oadResour ce
method with the di scardO f | i neUpdat es parameter set to t r ue and the

r el oadFr onBer vi ce parameter set to f al se.

15-24

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

In the following code example, arraySel ect edResour cesToDi scardOf f | i neEdi ts
is a list of resources that were edited while offline and were selected for discarding
the edits.

try {
for (int index = 0; index <
arraySel ect edResour cesToDi scardO flineEdits. | ength; index++) {

Mobi | eResour ce mobi | eResource =
arraySel ect edResour cesToDi scardOf f | i neEdi t s[i ndex];
mobi | eResour ce. rel oadResour ce(true, fal se, new
Mbbi | eEndpoi nt Cal | back() {
@verride
public void onConpl et e(Exception exception, MbileResource
mobi | eResour ce) {
if (exception !=null) {
Il handl e exception here
} else {
Il handl e success here

}

}
1

}
} catch (Exception ex) {

/1 handl e exception here

}

I0S Synchronization Library

This section shows how to use the Synchronization library to implement several of the
common data offline tasks for working with a custom API’s resources.

For detailed information about the library, see Oracle Mobile Cloud Service iOS SDK
Reference.

Tip:

The client SDK ZIP file contains an exanpl es folder, which contains the
source code for the SalesPlus app. This app illustrates many of the
synchronization features that are described in this section.

Setting Up Your Mobile App for the iOS Synchronization Library

ORACLE

1.

Ensure that the correct policies are in place for the mobile backend and API
endpoints as described in Synchronization Policy Levels and Precedence and
Defining Synchronization Policies Using a Configuration File.

As with all mobile apps, instantiate OMCMbbi | eBackendManager , and then
instantiate OMCMbbi | eBackend to manage connectivity, authentication, and other
transactions between your application and its associated mobile backend,
including calls to platform and custom APIs.

15-25

http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssi-index
http://www.oracle.com/pls/topic/lookup?ctx=cloud&id=mcssi-index

3.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

To access the custom APIs from the Synchronization library, get the mobile
backend's synchronization service.

OMCSynchr oni zati on* synchroni zation = [nbe synchronization];
[synchroni zation initialize];

Fetching Resources

ORACLE

After you set up your app to work with data offline, you use the mobile endpoint class
to open endpoints to custom code API resources, and you use fetch builders to
synchronize data retrieval and modifications with the local cache automatically. A fetch
builder enables you to specify how to fetch the data, and then enables you to execute
the fetch.

1.

To access an endpoint, instantiate OMCMohi | eEndpoi nt for that endpoint. This
example instantiates an endpoint for / nobi | e/ cust ont i nci dent report/
i nci dents.

/'l open Endpoi nt

OMCMobi | eEndpoi nt* endpoint = [

synchroni zati on openEndpoi nt : OMCMobi | eQbj ect . ¢l ass
api Nane: @i nci dentreport”

endpoi nt Pat h: @i nci dents”

l;

(Optional) Add objects or files to the collection. This example adds an object.

OMCMobi | eQbj ect* new(hj ect = [nobi | eEndpoi nt createj ect];
Il Set properties
[newdbj ect addOr Updat eJsonProperty: @title"

propertyVal ue: @i nci dent 213"];

[new(bj ect saveResourceOnSuccess: (i d nobileCbject) {

} OnError:~(NSError *error) {

H:

Use a fetch builder to specify how to fetch the objects from the endpoint. The fetch
builder method that you use depends on whether you want to retrieve an object, a
collection, or a file:

e OMCFet chbj ect Bui | der

e OMCFet chhj ect Col | ecti onBui | der

o OMCFet chFi | eBui | der

Here’s an example of creating a fetch builder for a collection.

OMCFet chCbj ect Col | ecti onBui | der* buil der = [endpoi nt
fet chQoj ect Col | ecti onBui | der];

15-26

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

In this example, we want to get all the incidents for the signed-in technician (which
is the same as the user name). The API provides a query parameter for
technician, so we can tell the builder to add that query parameter to the request:

[buil der withParamNane: @t echnician" paranVal ue: usernane] ;

You can call wi t hPar anName as many times as you need to specify all the query
parameters.

Add necessary headers.

In this example, to enable easy searching for all diagnostic log entries associated
with this fetch builder, the request includes the Or acl e- Mobi | e- Di agnosti c-

Sessi on- | D header. The di agLogFi | t er Tag string variable has been set to a value
that uniquely identifies requests that are made using this fetch builder.

[buil der setRequestHeaders: [NSDictionary dictionaryWthChjectsAndKeys:
di agLogFi | terTag, @ Oracl e-Mbile-Diagnostic-Session-1D", nil]];

Use the builder to execute the fetch.

[bui | der execut eFet chOnSuccess: *(OMCMbhi | eChj ect Col | ection
*nobi | eChj ect Col | ection) {
/1 This function is called when the request finishes successfully.
Il Get all the objects fromthe collection.
NSArray* col | ection = [nobilejectCol |l ection getMbilelhjects];
} OnError:~(NSError *error) {
/1 This function is called when the request finishes with an error

H

If the fetch policy is to fetch the data from the local cache, such as

FETCH_FROM SERVI CE_ON_CACHE M SS, then it's fetched from the local cache if
available. In all other cases, the collection is fetched from the server if the policy
allows. If the noCache setting is false, then the results are saved to a local cache.

The raw downloaded JSON object is exposed through the j sonChj ect property.
You can use this property to set the appropriate values, or use
addOr Updat eJsonProperty.

OMCMbbi | eQbj ect* incident = [collection objectAtlndex:index];

/1 You can access raw JSON

NSDi ctionary* json = [incident jsonQbject];

/1 O use the addOr Updat eJsonProperty nethod

[incident addOrUpdat eJsonProperty: @status" propertyVal ue: @conpl eted"];

Use one of the OMCMbbi | eOhj ect save methods to save the changes on the
server.

[incident saveResourcenSuccess: *(id object){
Il Block that is called after the request finishes successfully

}OnError: A(NSError *error){
/1 Block that is called after the request finishes with an error

15-27

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

N

If the device isn’t connected to the internet, and the update policy is

UPDATE_| F_OFFLI NE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

8. Use one of the OMCMVbhi | e(oj ect delete methods to delete an object.

[incident del eteResourceOnError:~(NSError *error) {

H

If the device isn't connected to the internet, and the update policy is

UPDATE_| F_OFFLI NE, then the library saves the changes to the local cache. The
changes are sent to the server automatically when the device reconnects with the
internet.

Fetching Filtered Resources

ORACLE

You might have an app that filters which items it displays. For example, an FiF app
might want to display all incidents with a status of new. When the device is online, your
code can fetch the items as nobi | eResour ce objects, convert the objects to JISON
objects, and then filter the items. However, when the device is offline, your app can'’t
filter the nobi | eResour ce objects in the local cache because the objects are just blobs
of data. The solution is to use a custom Mbi | e(oj ect . When you do this, the local
cache stores the data in a table with a column for each of the custom object’s fields,
which enables your mobile app to query data in the local cache based on field values.
We'll use the incident list in the FiF example to illustrate how to do this. In this
example, the users must be able to filter the incident list by status.

When you open a mobile endpoint on a custom Mbi | eQbj ect class, you can use the
fetch builder’s quer yFor Proper t y method to specify the filter to use in the local cache.
Note that this method is for filtering JSON objects from the local cache. It doesn't
affect the way that the Synchronization library retrieves results from the server.
Whenever you execute the fetch builder, the library first looks at the fetch policy setting
to determine whether to refresh the local cache. If the policy specifies that it must
refresh the local cache from the server, then it retrieves all the objects, regardless of
the filter that you specify using the quer yFor Pr oper t y method. Regardless of the fetch
policy and whether it refreshed the local cache, the library then uses the

quer yFor Property method to filter the data in the local cache, and return the filtered
results. That is, regardless of whether the device is online or offline, and regardless of
whether the library fetches data from the server or uses the local cache, the

quer yFor Property method filters the results based on the query property and value.

1. Create a custom mobile object class that extends OMCMVobi | eQbj ect , define all the
properties that you need for your custom mobile object, and synthesize those
properties. Here's an example of the i nci dent . h header file for an | nci dent class.

#i nport <Foundat i on/ Foundati on. h>
#i nport " OMCMobi | e(oj ect. h"

@nterface Incident : OMCMobil eChject {

15-28

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

}

/] Properties

@roperty (nonatomic, retain) NSNumber* id
@roperty (nonatomic, retain) NSString* title;
@roperty (nonatomic, retain) NSString* customer;
@roperty (nonatomic, retain) NSString* status;
@roperty (nonatomic, retain) NSString* priority;
@nd

2. When you initialize the mobile backend's synchronization service, use the
initializeWthhobileObjectEntities method to create database entities for the
I nci dent custom class.

NSArray* entities = [NSArray arrayWthQbjects:[Incident class], nil];
[synchroni zation initializeWthMbileCQbjectEntities:entities];

You can include more than one custom object in the initialization.

3. Open the endpoint for the custom class.

OW\bbi | eEndpoi nt* endpoint = [
synchroni zati on openEndpoi nt: I nci dent. cl ass
api Name: @i nci dentreport”
endpoi nt Pat h: @i nci dent s"

1;

4. When you create the fetch builder, use the quer yFor Property method to add a
query to filter the results by status.

OMCFet chChj ect Col | ecti onBui | der* bui | der = [endpoi nt
fetchOoj ect Col | ecti onBui | der];

[buil der queryForProperty: @status"
conpari sion; Equal s
conpar eWth: @ pendi ng"] ;

5. Fetch the data.

[bui | der execut eFet chOnSuccess: *(OMCMbbi | eCbj ect Col | ecti on
*nobi | eCbj ect Col l ection) {
[/ This function is called when the request finishes successfully.
Il Get all the objects fromthe collection.
NSArray* collection = [nobileCQbjectCol | ection get Mbil ebjects];
} OnError:~(NSError *error) {
[/ This function is called when the request finishes with an error

E

ORACLE 15-29

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

6. The raw downloaded JSON object is exposed through the j son(bj ect property.
You can use this property to set the appropriate values, or you can access the
properties directly.

Incident* incident = [collection objectAtlndex:index];
Il You can access raw JSON

NSDi ctionary* json = [incident jsonQbject];

/1 O you can access the property directly
incident.status = @conpleted";

7. Save and delete objects the same way you save and delete OMCMobi | eQbj ect
objects.

/] Save the object
[incident saveResour ceOnSuccess: *(id object){

}OnError: ~(NSError *error) {

s

/1 Delete the object
[incident del eteResourceOnError:~(NSError *error) {

s

Specifying Which Resources To Synchronize First

When a mobile app reconnects with the internet, the library synchronizes the local
cache with the server. If you want the library to synchronize some resources before
others, such as statuses before images, then pin the resources with the applicable
priorities.

When you fetch the resource, you use the OMCMbbi | eResour ce class’ pi nResour ce
method to set a resource’s priority (OMCMVobi | eFi | e, OMCMVbbI | ehj ect , and
OMCMobi | eQbj ect Col | ecti on inherit from this class).

[bui | der execut eFet chOnSuccess: *(OMCMbbi | eCbj ect Col | ecti on
*mobi | eCbj ect Col l ection) {
[mobi | etoj ect Col | ecti on pinResource: H gh] ;
Il Get all the objects fromthe collection
NSArray* objects = [nobil e(bject Col | ection get Mbil eChjects];
} OnError:~(NSError *error) {
[l This function is called when the request finishes with an error

H

Setting a Resource’s Synchronization Policies Programmatically

When you fetch a resource, the Synchronization library saves with the resource object
the synchronization policies that are specified in the configuration file. These saved
policies are associated with that resource object for its lifetime. You can change these

ORACLE 15-30

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

saved policies when you fetch the data and before you add, update, or delete a
resource.

Changing a Fetch Builder’s Synchronization Policy

You can use the fetch builder’s synchronization policy to override an endpoint’s
configured policies. When the library fetches the resource from the server, it saves the
fetch builder’s policy settings with the resource.

1. Create the fetch builder.

OMCFet chChj ect Col | ecti onBui | der* bui | der = [endpoi nt
fetchOoj ect Col | ecti onBui | der];

2. Create an OMCSyncPol i cy object, and then set the policies that you want to
override. This example overrides all the policies:

OMCSyncPol i cy* policy = [[OMCSyncPolicy alloc] init];
policy.fetch_Policy = FETCH POLI CY_FETCH FROM SERVI CE_| F_ONLI NE;
policy.expiration_Policy = EXPI RATI ON_PCLI CY_EXPI RE_ON RESTART;
policy.eviction Policy = EVICTION POLI CY_EVI CT_ON EXPI RY_AT STARTUP,
policy.update Policy = UPDATE POLI CY_QUEUE | F_OFFLI NE;
policy.conflictResol ution policy =

CONFLI CT_RESOLUTI ON_POLI CY_CLI ENT_WNS;

policy.no _cache = fal se;

3. Set the builder’'s synchronization policy.

[bui | der setSyncPolicy: policy];

Changing a Resource Object’s Synchronization Policy

Sometimes, you'll need to change the synchronization policy for a mobile resource
object (such as a mobile object, mobile collection, or mobile file) before you send an
add, update, or delete to the server. This example sets the mobile resource object’s
conflict resolution policy to CONFLI CT_RESOLUTI ON_POLI CY_CLI ENT_W NS.

1. Get the synchronization policy for the mobile resource object. In this example,
anl nci dent is an OMCMobi | eQoj ect .

OMCSyncPol i cy* policy = [anlncident getCurrentSyncPolicy];

2. Set the conflict resolution policy to CONFLI CT_RESCLUTI ON_POLI CY_CLI ENT_W NS.
All other policies remain as is.

policy.conflictResol ution policy =
CONFLI CT_RESOLUTI ON_POLI CY_CLI ENT_WNS;

3. Set the mobile resource object’s synchronization policy. This change doesn't take
affect until you call saveResour ce (to perform an add or update). For a delete, you

must call r el oadResour ce for the policy change to take affect before you call
del et eResour ce.

[anl ncident set SyncPolicy: policy];

15-31

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

Detecting and Handling Conflicts

ORACLE

In Conflict Resolution Policies, you learn how to set the conflict resolution policy for the
custom API resources that your mobile app accesses. When the conflict resolution
policy that is in affect for a resource is PRESERVE_CONFLI CT, the Synchronization library
doesn’t overwrite the server’s version with the local version if there’s a conflict.
Instead, an edited version is kept in the offline edits in the local cache, and the mobile
app is responsible for handling the conflict, such as programmatically merging the two
versions.

A conflict occurs when the object on the server was updated after you retrieved it, and
thus is no longer the version that you tried to update. For example, Mary uses her app
to change an incident status at 4:00 p.m. However, her device is offline, so the change
is stored in the offline edits in the local cache. At 4:30, Tom updates the same incident.
At 5:00, Mary’s device reconnects with the internet, and the library automatically sends
Mary’s offline edit to the server. The server responds with a 412 Precondition Fail ed
status to indicate the conflict.

When a conflict happens, the library marks the modified object as having conflicts, and
the library makes available both the modified object (from the offline edits in the local
cache), and the current server version to enable you to handle the conflict in your
code.

If the device is online when the library sends an update or delete to the server, then
the mobile app can handle the conflict as soon as it receives the response. However,
when the user makes edits when the device is offline, there’s no way to know if there
are conflicts. You can't check for conflicts until the device reconnects and the library
synchronizes the offline edits with the server. You have two options for detecting and
handling conflicts that occur when a device reconnects:

* To detect and handle conflicts after the library finishes synchronizing offline edits
with the server, use the of fI i neResour ceSynchr oni zed method, as shown in the
first example. After the library finishes synchronizing all offline edits, it calls this
method for each offline edit that it synchronized.

* To check whether a conflict occurs at the time that the library sends the offline edit
to the server (when the device is online), use the cacheResour ceChanged method
to listen for online updates and deletes, as shown in the second example. The
callback for this method is called for each resource that the library updates or
deletes. Typically, you use this method to detect any resource change during a
background cache refresh so that you can refresh the Ul with the change.
However, you also can use this method to detect and handle conflicts when the
library synchronizes the offline edits. Note that the callback is not called when the
library adds a new resource to the local cache.

Don't initialize CachedResour ceChanged more than once during the lifetime of the
application.

Detecting Conflicts When the Library Completes Synchronization

Here’s an example of using the OMCSynchr oni zat i on of f | i neResour ceSynchr oni zed
method to detect conflicts after the library has finished synchronizing the cache. In this
example, the only mobile endpoint that the mobile app accesses is the i nci dent s

15-32

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

endpoint. This example shows how to handle both custom and generic Mobi | eQbj ect
objects.

[sync of flineResourceSynchronized: *(NSString *uri, id nobileResource) {

if (!nobileResource) {
NSLog(@ Resource for %@del eted from cache after offline
synchroni zation ", uri);
return;

}

NSString* result = nil;
if (((OMCMobileResource*) nobil eResource).hasConflicts) {
result = @with conflicts";
}
else if (((OVCMbbileResource*)
mobi | eResour ce). hasO flineCommitError) {
result = @with error";

}
el se {

result = @successfully";
}

Il 1f you created a custom MbileQbject class, you can access
properties directly
i f([mobi | eResource isKindOfd ass:[Incident class]]) {
I ncident* anlncident = nobileResource;

NSLog(@COffline edits for 9%@finished %@", anlncident.title,

result);
/1 I'ncident has been synchronized with the service object.
/1 You can show a pop up or reload the resources in the U,
/1 such as in the main thread.
/1 \When mobi | eResource is a custom Mbil eCbject class,
/1 and hasConflicts is true,
/1 then both the MbileCbject class and its jsonChject
property
/1 contain the local edited copy and the
/1 jsonQbjectPersistentState property contains the server copy
}
el se {

OVCMobi | eResour ce* aMbbi | eResource = mobi | eResour ce;
NSLog(@COffline edits for resource %@finished %@,
aMobi | eResource. uri, result)

/1 OMC\bbi | ethj ect or OMCMbbi | eFil e has been synchronized
/1 with the service object.

/1 You can show a pop up or reload the resources in the U,
Il such as in the main thread.

15-33

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

/1 \When mobi | eResource is an OMCMbbi | e(bj ect

/1 and hasConflicts is true,

/1 then its jsonCbject property contains the local edited copy
and

/1 its jsonQbjectPersistentState property contains the server

copy

s

}

Detecting Conflicts When the Library Updates the Cache

Here’'s an example of using the OMCSynchr oni zat i on cachedResour ceChanged method
to detect conflicts whenever a cached resource is updated either from new data from
the service or an update or delete from the mobile app. In this example, the only
mobile endpoint that the mobile app accesses is the i nci dent s endpoint. This
example shows how to handle both custom and generic Mbi | eQbj ect objects.

[sync cachedResour ceChanged: *(NSString *uri, id nobileResource) {

if (!nobileResource) {
NSLog(@ Resource for %@del eted fromcache ", uri);
return;

}

NSString* result =nil;
if (((OMCMobileResource*) nobil eResource).hasConflicts) {
result = @with conflicts";
}
else if (((OVCMobil eResource*)
mobi | eResour ce). hasO fl i neUpdates) {
result = @with offline update";
}
else if (((OVCMobil eResource*)
mobi | eResour ce) . hasOf flineCommitError) {
result = @with error";

}
el se {

result = @successful ly";
}

Il 1f you created a custom MbileQbject class, you can access
properties directly
i f ([mobi | eResource isKindOd ass:[Incident class]]) {
I ncident* anlncident = nobil eResource;

NSLog(@ Cache changes for %@finished %@", anlncident.title,

result);
/1 Custom object changed in local cache. You can show a pop up
Il or reload the resources in the U, such as in the main
t hread.
}
el se {

15-34

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

OMCMbbi | eResour ce* aMobi | eResource = nobi | eResour ce;
NSLog(@ Cache changes for %@fini shed %@",
aMobi | eResource. uri, result);
/1 OMC\Wbbi | ethj ect, OMCMbbi | eFile, or
OMCMbbi | eQbj ect Col | ecti on
/1 object changed in local cache.
/1 You can show a pop up or reload the resources in the U,
/1 such as in the main thread.

}
s

Reviewing and Discarding Offline Edits

ORACLE

You might want to enable a mobile user to work offline while they make their changes,
and then switch back to working online when the user has completed making changes,
is satisfied with the end result, and is ready for the Synchronization library to
synchronize with the server. The code examples in this section show how to:

e Switch the app to work-offline mode and switch back to work-online mode.
e List the resources that have been changed while offline.

» Discard all offline edits.

» Discard a resource’s offline edits.

The OMCSynchr oni zat i on class provides the methods for working offline, and for
reviewing and discarding offline edits. As shown in the following steps, you use its
Cet Net wor kSt at us and set O f | i neMbde methods, along with the SyncNet wor kSt at us
constants to switch the work-offline mode on and off. You use its

| oadOF f 1 i neResour cesOnSuccess method to get all the offline edits that haven’t been
synchronized with the server, and its di scar dO f | i neUpdat esOnEr r or method to
discard all offline edits. You also can discard a specific resource’s offline updates by
calling the resource’s r el oadResour ce method.

1. Add a button to switch between work-online mode and work-offline mode. Use
code like the following to switch modes when the user clicks the button. You use
the OMCSynchr oni zat i on Get Net wor kSt at us method to determine the current
network status, and the set O f | i neMbde method to switch the work-offline mode
on and off. When you call set O f | i neMbde(f al se), the library synchronizes all
offline edits with the server automatically. Note that calling set O f | i neMbde when
the device isn’t connected to the internet has no effect.

- (IBAction) switchOflineNbde: (id)sender {

/] Get current status
SyncNet wor kSt at us networkStatus = [synchroni zati on
get Net wor kSt at us] ;

if (networkStatus == SyncOfline) {
U AlertController *myAlertController = [U AlertController
alertControllerWthTitle: @Sorry!"

message: @ You can't switch to Wrk O fline nmode when there
isn't an internet connection."

15-35

ORACLE

2.

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

preferredStyle: U AlertControllerStyleAlert];
U Al ert Action* okBtn = [U Al ertAction
actionWthTitle: @ X"
style: U AlertActionStyl eDefaul t
handl er: (U Al ert Action * action)
{
[myAl ertControl | er
di smi ssVi enControl | er Ani mat ed: YES

conpletion:nil];
H
[myAlertControl | er addAction: okBtn];
[sel f presentViewController:nmyAlertController
ani mat ed: YES
conpl etion:nil];

}
el se {
[ontSynchroni zation set O flinehMbde: (networ kSt atus ==
SyncOnline)];
Il Get updated status
networ kSt at us = [ontSynchroni zati on get Net wor kSt at us] ;
if (networkStatus == SyncOfflineTest) {
[bl NetworkStatus.text = @Wrking offline.";
}
el se {
| bl NetworkStatus.text = @";
}
}

}

Add code to display a list of the offline edits. You use the OMCSynchr oni zat i on
LoadOr f | i neResour cesAsync() method to get the list. In this example, the mobile
app accesses only the incidents endpoint and all items in the offline edits list are of
type Mobi | e(bj ect .

[oncSynchroni zation | oadOf fli neResour cesOnSuccess: *(NSArray
*nobi | eResour ces) {

for (OMCMobi | eResource* aResource in nobil eResources) {

/1 Put your code to add the incident to the display Iist
here

}

} onError:~(NSError *error) {

/! Handl e error here.

E

15-36

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

3. Add a button to discard all offline edits. Use code like the following to discard the
edits.

/1 Discard all offline edits only.

/1 Resources remain in the cache with their persistent state (that is,

the server version).

[oncSynchroni zation discardOf flineUpdat esOnError: ~(NSError *error) {
[/ Handl e error here

}

4. The previous step shows how to discard all offline updates. You also can discard
offline updates for a specific resource. You call the resource's r el oadResour ce
method with the di scardO f | i neUpdat es parameter set to YES and the
r el oadFr onBer vi ce parameter set to NO.

In the following code example, ar r aySel ect edResour cesToDi scardOf flineEdits
is a list of resources that were edited while offline and were selected for discarding
the edits.

for (int index = 0; index <
arraySel ect edResour cesToDi scardO flineEdits. count; index++) {

OMCMbbi | eResour ce* aResource =
[arraySel ect edResour cesToDi scardOf fIineEdits object Atlndex:index];

[aResource rel oadResource: YES
r el oadFr onfer vi ce: NO
onSuccess: (i d mobi | eResource) {

/I Offline edits succesfully discarded froma
resource.
H
}

Making Custom APIs Synchronizable

If your mobile app uses the Synchronization library to access a custom API offline,
then that API should follow the sync-compatibility guidelines and should return data in
a sync-compatible format. You also need to consider whether to configure
synchronization policies for some or all of its resources.

Design Implement Configure Sync Enable Data
Sync-Compatible — Sync-Compatible — Policies for » Synchronization
Custorm API Custorm API Custom AP with Custormn API

ORACLE 15-37

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

Designing a Synchronization-Compatible API

As described in API Design Considerations, the custom API should follow these
guidelines to be synchronization compatible:

* The resource name should alternate between plural nouns and singular resource
identifiers (rid). For example: /itens/{rid}/subitens/{rid}/.

* For pagination, use the | i nit and of f set query parameters so that the
Synchronization library uses paged downloads correctly. If you don't need to
support pagination, then you don't need to specify these parameters.

e Use the or der By query parameter to specify sorting. For example:
or der By=pr opA, propB: desc, propC: asc.

e The API must contain all the necessary endpoints to support data synchronization.
For example, if you have an endpoint that returns a collection, then you must also
have an endpoint that returns a specific item in the collection. See Endpoint
Requirements for Sync Compatibility.

Implementing a Sync-Compatible API

As detailed in Implementing Synchronization-Compatible APIs, the custom API
implementation should follow these guidelines:

» For CET requests, use the custom code SDK'’s set | t emand addl t emmethods in
your API's custom code to return data in a format that enables the Synchronization
library to more easily cache and synchronize the data in the client’s local cache.
Responses must include the Oracl e- Mobi | e- Sync- Resour ce- Type header, and,
for single items, the ETag header.

» For PUT and DELETE requests, your code must honor the | f - Mat ch header as
follows:

— If the header contains an ETag value, and that value doesn’t match the ETag
on the server, then the code must not update or delete the item and must
return a 412 HTTP response status (precondition failed) to indicate that the
ETag does not match the server-side object’'s ETag.

— If the header contains a value of * (asterisk), then the server-side's object
must be replaced by the request object (or deleted for a DELETE request).

* For PUT requests, responses must include the Or acl e- Mobi | e- Sync- Resour ce-
Type and ETag headers. If the item was added, then it must include the Locat i on
header. For example Location: /mobil e/ custontinci dentreport/incidents/1.

* For POST requests, responses must include the Or acl e- Mobi | e- Sync- Resour ce-
Type, Locati on, and ETag headers.

* When you need to control data caching from the server side, use the O acl e-
Mobi | e- Sync- Evi ct, Oracl e- Mobi | e- Sync- Expi res, and Or acl e- Mobi | e- Sync- No-
St or e headers to override client side configuration.

Configuring Synchronization Policies for a Custom API

As described in Defining Synchronization Policies Using a Configuration File, you use
the configuration file to set the synchronization policies for each mobile backend that
your mobile app accesses. In addition to setting the overall (default) synchronization
policies for each mobile backend, consider the custom API’'s resources that you'll
access, and determine which, if any, need special synchronization policy configuration.

15-38

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

Say, for example, that your default fetch policy is

FETCH_FROM SERVI CE_ON_CACHE_M SS. The custom APl might have a resource for
which the mobile app always needs the most current data. In that case, you can use
the configuration file to specify the FETCH_FROM SERVI CE_| F_ONLI NE fetch policy for
that specific resource. To learn about configuring synchronization policies on a
resource basis, see the Resource-Level Configuration section in Synchronization
Configuration File Structure. Note that you can define synchronization policies at the
default level and the resource level, and that you can override these programmatically,
To learn more, see Synchronization Policy Levels and Precedence.

Synchronization Policies

ORACLE

The Synchronization library uses several types of synchronization policies:

e Conflict Resolution Policies define how to handle offline edits if the server’s
version changed after the initial data was fetched from the server. For example, if
another client updated a resource, you might want the app’s updates to overwrite
the other client’s update.

» Eviction Policies designate when to delete expired resources in the local cache.
For example, you might want the app to delete all expired resources when the app
starts. Expiration and eviction policies work together to keep stale resources from
cluttering the cache. You can also use them to prevent users seeing out-of-date
data and, by inference, potentially harmful data. Note that these policies apply only
to resources in the local cache, not to server-side resources.

e Expiration Policies define how and when the Synchronization library marks
resources stored in the local cache as out-dated or stale. For example, you might
want all the resources to expire when the app is restarted so that the app fetches
the latest version of a resource from the server the first time the app uses it in that
session. The expiration policy only marks data, allowing you the option to display
stale data if the app is offline. To delete data, use the eviction policy.

e Fetch Policies define how the Synchronization library determines whether to
retrieve resources from the local cache or from the server. For example, if the
resource changes frequently, you might choose to always retrieve it from the
server unless the client is offline.

e Update Policies define what to do if the app modifies resources when the device is
offline. For example, you might want the app to put all changes that are made
while the device is offline in a queue and then synchronize the changes with the
server when the device goes online again.

In addition to configuring the synchronization policies, you also can configure the
cache settings for a mobile backend. You can configure the maximum size of the
cache and you can specify when and how to perform background cache refreshes.
See Synchronization Configuration File Structure.

You can specify synchronization policies for custom API resources at several levels:

* Inthe app’s configuration file, you can specify default synchronization policies for
all custom API endpoints that the library accesses through a specific mobile
backend.

* Inthe app’s configuration file, you can specify synchronization policies for specific
custom API endpoints.

15-39

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

* Inthe custom APl implementation, you can specify a resource’s synchronization
policies in a response header.

* Inthe app, you can specify a resource’s synchronization policies when you fetch
the data.

* Inthe app, you can specify a resource’s synchronization policies when you add,
update, or delete the resource.

When the Synchronization library fetches a resource from the server, it sets the
resource's synchronization policies according to your configuration, and then saves
those policies with the resource. When you configure a policy at more than one level,
the library uses precedence rules to determine which policy level to use. For example,
a response-header policy setting takes precedence over a fetch builder’s policy
setting. If a policy isn’t set at the response header or fetch builder level, then the library
uses the policy’s setting from the configuration file. First, the library looks for the policy
setting for the path that matches the fetch builder's endpoint. When there isn't a policy
for the endpoint, then it uses the configuration file’s default policy. If a policy isn’t
specified at any level, then the Synchronization library’s hard-coded default policy is
used. The actual rules are somewhat more complex than summarized here. For
complete details see Synchronization Policy Levels and Precedence.

When the library does an automatic refresh, it always uses the

FETCH PCLI CY_FETCH FROM SERVI CE fetch policy. For all other policies, the refresh
process honors the response header values, if present, and, when not present, it uses
the policies that were saved with the resource.

When you fetch a resource and the library uses the resource from the cache instead of
from the server, then the resource's policies are not necessarily the policies that you
configured for the object's endpoint. For example, if the resource was fetched using a
fetch collection builder, then the resource's policies are the collection endpoint’s
policies and not the object’'s endpoint policies. Thus, you can't be sure what the
resource's policies are. A cached resource’s policies depend on whether it was
originally fetched from the server as part of a collection, as an object, or as part of a
refresh.

Defining Synchronization Policies Using a Configuration File shows how to configure
default policies for the mobile backend and for endpoints (paths). Defining
Synchronization Policies and Cache Settings in a Response Header shows how a
custom API can use headers to control whether the response is cached, when it
should expire in the local cache, and when it should be evicted. The following platform-
specific topics show how to get and change a fetch builder’s policies and get and
change a mobile resource’s policies programmatically:

e Android: Setting a Resource’s Synchronization Policies Programmatically

* iOS: Setting a Resource’s Synchronization Policies Programmatically

Video: Introduction to the Data Offline & Sync Policies

If you want a high-level understanding of how to use synchronization policies to drive
data offline and synchronization capabilities, take a look at this video:

® Video

Synchronization Policy Options

Here are the Synchronization library’s policy options for each policy type.

ORACLE 15-40

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13340

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

Conflict Resolution Policies

Conflict resolution policies define what to do if, when updating a resource, it's
discovered that the server version was updated after it was last requested. Say, for
example, that the client app retrieved a resource on startup. Soon after, someone else
updated the resource on the server. If the resource is then updated on the client app,
you might want the client updates to overwrite the updates made by someone else.

Policy Description

CLI ENT_W NS Instructs the Synchronization library to
overwrite the server’s version with the local
version regardless of whether there is a
conflict.

PRESERVE_CONFLI CT Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is kept in the offline edits in the local cache,
and the mobile app is responsible for handling
the conflict, such as programmatically merging
the two versions.

SERVER_W NS Instructs the Synchronization library to not
overwrite the server’s version with the local
version if there’s a conflict. The edited version
is removed from the offline edits in the local
cache.

Eviction Policies

Eviction policies designate when expired resources in the local cache will be deleted.
For example, you could set the eviction policy to EVI CT_ON_EXPI RY_AT_STARTUP so
expired items are deleted when the app starts. Keep in mind that if a user didn’t use
the app for several days and it's offline when it starts, the local cache could get
cleared.

These policies apply to resources in the local cache only, not to server-side resources.

Policy Description

EVI CT_ON_EXPI RY_AT_STARTUP Instructs the Synchronization library to delete
expired resources from the local cache when
the client application restarts, and update the
local cache with the server copy the next time
it's called by the client application. This can
result in an empty cache, but this is
appropriate if the latest resource is required.

MANUAL_EVI CTI ON Instructs the Synchronization library that
resources can't be deleted from the local
cache automatically. To evict resources
manually, use an API.

Expiration Policies

ORACLE

Expiration policies define how and when the Synchronization library marks resources
stored in the local cache as out-dated or stale. For example, if your resources change

15-41

Fetch Policies

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

frequently, then you can set the policy to EXPI RE_ON_RESTART to ensure that the local
cache gets cleared periodically, and thus does not become too large.

Policy Description

EXPI RE_ON_RESTART Instructs the Synchronization library to mark a
resource as expired when the client
application restarts. The Synchronization
library updates the local cache with the latest
version from the server the next time it's called
by the client application.

EXPI RE_AFTER Instructs the Synchronization library to mark
resources as expired after the specified time
(in seconds) set for the expi reAfter
parameter. When you use the EXPI RE_AFTER
policy, you must set a value for the
expi reAft er property.

NEVER_EXPI RE Instructs the Synchronization library that
resources in the local cache can’t be marked
as expired.

Fetch policies define how the Synchronization library determines whether to retrieve
resources from the local cache or from the server. For example:

e If your data doesn’t change often, like a contact’s photo, then a good choice for the
fetch policy is FETCH_FROM SERVI CE_ON_CACHE M SS_OR_EXPI RY with an
EXPI RE_AFTER expiration policy set to a suitable timeout.

e If data will change very frequently and you always want the most current data, but
cached data is acceptable if the user is offline, then use
FETCH_FROM SERVI CE_| F_ONLI NE.

Note that setting the noCache property to t r ue in the configuration file, as described in
Synchronization Configuration File Structure, tells the Synchronization library to ignore
fetch policies and to not add data to the local cache.

Policy Description

FETCH_FROM CACHE Instructs the Synchronization library to fetch
resources from the local cache only, not from
the server. Because the Synchronization
library retrieves resources directly from the
cache, this policy can be carried out whether
the client application is online or offline.

If a resource is not in the local cache, then the
Synchronization library returns null.

FETCH_FROM SERVI CE Instructs the Synchronization library to always
fetch resources directly from the server, not
from the local cache. The library can only
apply this policy when the client application is
online.

If the app is offline, the Synchronization library
returns null.

15-42

Chapter 15

Building Apps that Work Offline Using the Synchronization Library

Policy

Description

FETCH_FROM SERVI CE_| F_ONLI NE

Instructs the Synchronization library to fetch
resources from the server when the client
application is online, and to fetch them from
the local cache when the app is offline.

FETCH_FROM SERVI CE_ON_CACHE_M SS

Instructs the Synchronization library to fetch
resources from the local cache if it is present.

If a collection is empty, or if the requested
object isn't in the local cache, then the
Synchronization library fetches it from the
server. If the app is offline, then the
Synchronization library returns null.

FETCH_FROM SERVI CE_ON_CACHE_M SS_CR_
EXPI RY

Instructs the Synchronization library to fetch
resources from the local cache if they are
present and not expired. Make sure to set
expi reAft er parameter to a suitable time
period.

If a collection is empty or has expired, or if the
resource isn't in the local cache or has
expired, then the Synchronization library
fetches it from the server. If the app is offline,
then it returns null.

FETCH_FROM CACHE_SCHEDULE_REFRESH

Instructs the Synchronization library to fetch
resources from the local cache and schedule a
background refresh to update the cache with
the latest version from the server.

If a resource is not in the local cache, then the
Synchronization library returns null.

FETCH W TH_REFRESH

Instructs the Synchronization library to fetch
resources from the local cache if they exist
and are not expired, and schedule a
background refresh to update the cache with
the latest version from the server.

If a resource is not in the local cache or has
expired, then the Synchronization library
fetches it directly from the server. If the app is
offline, then it returns null.

Update Policies

Update policies define what the app should do if a resource is updated when the client

app is offline.

Policy

Description

UPDATE_I F_ONLI NE

If the client app is offline when the update
request is sent, then the Synchronization
library returns an error.

QUEUE_I F_OFFLI NE

If the client app is offline when the update
request is sent, then the Synchronization
library queues the operation and updates the
local cache when the client app is back online.

ORACLE

15-43

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

Video: Deep-Dive into the Data Offline & Sync Policies

If you want an overview of the ways you can configure synchronization policies, which
methods take precedence, and the outcomes of the various policies, take a look at this
video:

@ Video

Synchronization Policy Levels and Precedence

ORACLE

As described in Synchronization Policy Options, there are several policy types that you
can configure for custom APIs. You can configure these at the following levels, which
are listed in order of precedence, from highest to lowest. Note that the order of
precedence applies to both fetch and save calls to a mobile endpoint and

request Wt hURI calls to a synchronization object.

» Response-level policies: The server can use HTTP response headers to transmit
expiration and eviction policies, as described in Defining Synchronization Policies
and Cache Settings in a Response Header. The server also can use a header to
instruct the client to not cache a response. These policies take precedence over
policies set for all other levels.

e Request-level policies: For requests made through an OVCMobi | eEndpoi nt, you
can call the fetch builder’s set Pol i cy method to set a policy at the request level.
For requests made using the r equest Wt hURI method, you can use the
SyncPol i cy object to set policies. Request-level policies take precedence over
policies set at the resource and mobile-backend levels.

* Resource-level policies: In the configuration file, you can define a set of policies
and associate the set with a resource path (URL). You can associate the set with a
specific endpoint, or you can use wildcard characters to associate the set with a
resource hierarchy (/ * applies to all resources at the same level, and / ** applies
to all resources at the same level and any nested levels), as described later in this
section. These policies take precedence over policies that are set at the mobile-
backend level.

When a policy type is defined for more than one resource level, then the
precedence is:

— A synchronization policy type that is defined for a specific endpoint takes
precedence over the same policy type setting for a path that has wildcard
characters. For example, if the URL is www. baseuri . con mobi | e/ cust o
i nci dentreport/incidents, and an eviction policy is set for both / mobi | e/
custoniinci dentreport/incidents and/nobil e/ custoniinci dentreport/
i nci dent s/ *, then the eviction policy for / mobi | e/ cust oni i nci dent report/
i nci dent s takes precedence.

— Policies that are defined for a path that has the / * wildcard take precedence
over policies for a path with the / ** wildcard. For example, if the URL is /
mobi | e/ cust on i nci dentreport/incidents/ 1, and an eviction policy is set
for both / mobi | e/ cust onli nci dentreport/inci dents/* and/ mobi | e/ cust om
i nci dentreport/incidents/**, then the eviction policy for / mobi | e/ cust om
i nci dentreport/incidents/* takes precedence.

For information about setting resource-level policies, see Synchronization
Configuration File Structure.

15-44

http://apexapps.oracle.com/pls/apex/f?p=44785:265:0::::P265_CONTENT_ID:13341

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

* Mobile backend-level default policies. You can override the default policies at the
request, response, and resource levels. These settings take precedence over the
Synchronization library default settings. For information about setting mobile
backend-level default policies, see Synchronization Configuration File Structure.

* Synchronization library default settings: For custom APIs, if a policy is not set at
the request, resource, or mobile-backend level, then the Synchronization library
default setting is used.

Here are the default policy settings:

Setting Synchronization Library Default Value
conflict Resol utionPolicy PRESERVE_CONFLI CT

evi ctionPolicy MANUAL_EVI CTI ON
expirationPolicy EXPI RE_ON_RESTART

expireAfter Maximum integer value

fetchPolicy FETCH_FROM SERVI CE_| F_ONLI NE
noCache fal se

updat ePol i cy QUEUE_I F_OFFLI NE

Defining Synchronization Policies Using a Configuration File

You can define the synchronization policies for a custom API’s resource
programmatically, and you can use a configuration file to define the synchronization
policies for a mobile backend and the custom API resources that it uses. You typically
define the policies in the configuration file for the following reasons:

* You can change a policy without needing to change code.
* You can view all your policies in one place.

e If you access the same resource from several places in your code, you can ensure
that all accesses use the same policies.

The name of the configuration file differs by platform:

e Android: / asset s/ oracl e_mobi | e_cl oud_confi g. xm
e I0S: OVC pli st

Synchronization Configuration File Structure

To configure the Synchronization library for the custom API resources that are
accessed by a mobile backend, add the elements described in this section to its
synchroni zat i on element in the configuration file.

The following illustration shows the synchronization section from an OVC. pl i st file for
iOS.

ORACLE 15-45

¥ synchronization (+1-]
max5toreSize
periodicRefreshPolicy
periodicRefreshinterval
¥ policies
¥ Item 0
path
fetchPolicy
expirationPolicy
evictionPolicy
conflictResolutionPolicy
¥ ltem 1
path
fetchPolicy
expirationPolicy
evictionPolicy
conflictResolutionPolicy
updatePolicy
¥ defaultPolicy
fetchPolicy
evictionPolicy
expirationPolicy
expireAfter
conflictResolutionPolicy
noCache

Cache Settings

Dictionary
Number
String
Number
Array
Dictionary
String
String
String
String
String
Dictionary
String
String
String
String
String
String
Dictionary
String
String
String
String
String
Boolean

Chapter 15

Building Apps that Work Offline Using the Synchronization Library

& (5 items)
100
PERIODIC_REFRESH_POLICY_PERIODICALLY _REFRESH_EXPIRED_ITEMS
120
(2 items)
(5 items)
Jmobilefcustomjtechnicians/**
FETCH_FROM_SERVICE_IF_ONLINE
EXPIRE_ON_RESTART
MANUAL_EVICTION
SERVER_WINS
(6 items)
Jmobile/custom/fincidentReportsfincidents
FETCH_FROM_SERVICE_ON_CACHE_MISS
EXPIRE_ON_RESTART
EVICT_ON_EXPIRY_AT_STARTUP
PRESERVE_CONFLICT
QUEUE_IF_OFFLINE
(6 items)
FETCH_FROM_SERVICE_ON_CACHE_MISS
EVICT_ON_EXPIRY_AT_STARTUP
EXPIRE_AFTER
600
CLIENT_WINS
NO —

To configure the cache settings for the mobile backend, add these elements in any
order directly under the mobile backend’s synchr oni zat i on element. These settings
affect both custom API and storage resources.

Key

Description

Default

maxSt or eSi ze

The maximum size of the local

100

cache in megabytes. The
Synchronization library stops
storing resources when it
reaches this limit.

peri odi cRefreshPolicy

Names the policy that instructs PERI ODI C_ REFRESH PQOLI CY

the Synchronization library

_REFRESH_NONE

when to refresh cached
resources. Use this attribute
for background refreshes. You
can set this to one of the
following options:

PER! ODI C_REFRESH_POL
| CY_REFRESH_NONE
PERI ODI C_REFRESH_POL
| CY_REFRESH_EXPI RED_
| TEM ON_STARTUP

PERI ODI C_REFRESH_POL
| CY_PERI ODI CALLY_REF
RESH_EXPI RED_| TEMS

ORACLE

15-46

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

Key Description Default

periodi cRefreshinterval Sets the interval, in seconds, When the
for refreshing cached peri odi cRef reshPol i cy is
resources in the background. PERI ODI C REFRESH POLI CY
The interval should be PERI CDI EALLY REERESH E
appropriate to the policy)_(PI RED | TEMS, %en the -

named by the
peri odi cRef reshPol i cy
attribute.

default is 120.

Here’s an example of adding cache settings to an OMC. pl i st file.

<key>synchroni zat i on</ key>
<di ct>

<key>maxSt or eSi ze</ key>

<i nt eger>100</i nt eger>

<key>peri odi cRef reshPol i cy</ key>

<string>PERI ODI C_REFRESH_PCLI CY_PERI ODI CALLY_REFRESH EXPI RED | TEMS</
string>

<key>peri odi cRef reshl nt erval </ key>

<i nteger>120</i nt eger>

Synchronization Policy Settings

You can add the following settings at the resource and mobile-backend default levels.
These are explained in Synchronization Policy Options.

e conflictResol utionPolicy
e expirationPolicy

e expireAfter

e evictionPolicy

e fetchPolicy

 noCache

Resource-Level Configuration

To configure resource-level synchronization policies for custom APIs, first add a
pol i ci es node to the sychroni zati on element.

Next, configure the policies for the specific resources:
* 10S: Add dictionary items to the pol i ci es array.
e Android: Add pol i cy elements under pol i ci es.

You use the pat h element to identify the resource to associate the policy set with. You
can use the path to specify a policy set for a specific endpoint, or you can use wildcard
characters to associate the policy set with a hierarchy of resources:

15-47

ORACLE

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

< Note:

You can begin your path with or without the forward slash (/).

» If there are no wildcard characters, then the request URL must match the string
exactly. For example, if <pat h> is set to / nobi | e/ cust on i nci dent report/
i nci dent then www. baseuri . conml nobi | e/ cust onti nci dentreport/incident
matches, but www. baseuri . com nobi | e/ cust oml i nci dent report/inci dents does
not.

* /* matches 0 or more characters after the value in <Pat h> but does not include
lower resources in the hierarchy in the wildcard matching. For example, if <Pat h>
is set to / mobi | e/ cust ond i nci dentreport/inci dents/* then both
www. baseuri . coml nobi | e/ custonti nci dentreport/incidents/report and
www. baseuri . com nobi | e/ cust ol i nci dentreport/incidents/id match, but
www. baseuri. conlincidentreport/incidents/id/attachments does not.

» /** matches 0 or more characters after the value in <Pat h> including resources
lower in the hierarchy. For example, if <Pat h> is set to / nobi | e/ cust onf
i nci dentreport/incidents/**, then the following match:

— ww. baseuri . com nmobil e/ cust om i nci dentreport/incidents
— www. baseuri . com mobi | e/ custom i nci dentreport/incidents/id

— ww. baseuri. com mobi | e/ cust omi nci dentreport/incidents/id/
attachnents

Here’s an example of setting resource-level policies in an OVC. pl i st file.

<key>synchr oni zat i on</ key>
<di ct>

<key>pol i ci es</ key>
<array>
<di ct>
<key>pat h</ key>
<string>/mobi | e/ cust ond i nci dentreport/technicians/**</string>
<key>f et chPol i cy</ key>
<string>FETCH FROM SERVI CE_| F_ONLI NE</ st ri ng>
<key>expirationPol i cy</ key>
<string>EXPI RE_ON_RESTART</stri ng>
<key>evi cti onPol i cy</ key>
<string>MANUAL_EVI CTl ON</ st ri ng>
<key>confli ct Resol utionPol i cy</ key>
<string>SERVER W NS</stri ng>
</dict>

</dict>
Mobile Backend-Level Configuration

To define mobile backend-level synchronization policies, add a def aul t Pol i cy
element. Then, for each type you want to configure, add a dictionary item for iOS, and
add a child element for Android.

15-48

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

The next sections show examples for each platform.

Android Example Configuration File

The following example for Android is an excerpt from the
oracle_mobile_cloud_config.xm file.

<mobi | eBackends>
<mpbi | eBackend>

<synchr oni zat i on>
<maxSt or eSi ze>100</ maxSt or eSi ze>

<peri odi cRef reshPol i cy>PERI ODI C_REFRESH POLI CY_PERI ODI CALLY_REFRESH EXPI RED
_|I TEMS</ peri odi cRef reshPol i cy>
<peri odi cRef reshl nt erval >120</ peri odi cRef reshl nt erval >
<pol i ci es>
<pol i cy>
<pat h>/ mobi | e/ cust on i nci dent report/techni ci ans/ **</ pat h>
<fet chPol i cy>FETCH_FROM SERVI CE_| F_ONLI NE</ f et chPol i cy>
<expirationPol i cy>EXPI RE_ON_RESTART</ expi rati onPol i cy>
<evi ctionPol i cy>MANUAL_EVI CTI ON</ evi ct i onPol i cy>
<conflictResol utionPol i cy>SERVER W NS</
conflictResol utionPolicy>
</ policy>
<pol i cy>
<pat h>/ mobi | e/ cust onl i nci dent report/inci dent s</ pat h>
<f et chPol i cy>FETCH_FROM SERVI CE_ON_CACHE_M SS_OR_EXPI RY</
fetchPol i cy>
<expirationPol i cy>EXPI RE_ON_RESTART</ expi rati onPol i cy>
<evi ctionPol i cy>EVI CT_ON_EXPI RY_AT_STARTUP</
evi ctionPolicy>
<conflictResol utionPol i cy>SERVER W NS</
conflictResol utionPolicy>
<updat ePol i cy>QUEUE | F_OFFLI NE</ updat ePol i cy>
<expi r eAf t er >300</ expi reAfter >
</ policy>
</policies>
<def aul t Pol i cy>
<f et chPol i cy>FETCH FROM SERVI CE_ON_CACHE_M SS</ f et chPol i cy>
<evi ctionPol i cy>EVI CT_ON_EXPI RY_AT_STARTUP</ evi cti onPol i cy>
<expi rationPol i cy>EXPI RE_AFTER</ expi rati onPol i cy>
<expi r eAf t er >600</ expi reAf t er >
<conflictResol utionPolicy>CLI ENT_W NS</
conflictResol utionPolicy>
<noCache>f al se</ noCache>
</ defaul t Pol i cy>
</ synchroni zati on>
</ nobi | eBackend>
</ mobi | eBackends>

ORACLE 15-49

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

iOS Example Configuration File

The following example XML for iOS is an excerpt from the OMC. pl i st file.

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://ww. appl e. con
DTDs/ PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>nobi | eBackends</ key>
<di ct >
<key>myBackend/ 1. 0</ key>
<di ct>
<key>synchroni zat i on</ key>
<dict>
<key>maxSt or eSi ze</ key>
<i nt eger >100</i nt eger >
<key>peri odi cRef reshPol i cy</ key>

<string>PERI ODI C_REFRESH PCLI CY_PERI ODI CALLY_REFRESH EXPI RED_| TEMS</ st ri ng>
<key>peri odi cRef reshl nt erval </ key>
<i nteger>120</i nt eger >
<key>pol i ci es</ key>
<array>
<di ct>
<key>pat h</ key>
<string>/mobil e/ cust on i nci dentreport/technicians/**</string>
<key>f et chPol i cy</ key>
<string>FETCH FROM SERVI CE | F_ONLI NE</ stri ng>
<key>expi rationPol i cy</ key>
<string>EXPI RE_ON_RESTART</string>
<key>evi cti onPol i cy</ key>
<string>MANUAL_EVI CTI ON</ st ri ng>
<key>conf | i ct Resol uti onPol i cy</ key>
<string>SERVER W NS</ st ring>
</dict>
<di ct>
<key>pat h</ key>
<string>/nobil e/ cust on i nci dentreport/incidents</string>
<key>f et chPol i cy</ key>
<string>FETCH_FROM SERVI CE_ON_CACHE_M SS_OR _EXPI RY</ st ri ng>
<key>expi rationPol i cy</ key>
<string>EXPI RE_ON_RESTART</string>
<key>evi cti onPol i cy</ key>
<string>EVI CT_ON_EXPI RY_AT_STARTUP</ stri ng>
<key>conf | i ct Resol uti onPol i cy</ key>
<string>PRESERVE_CONFLI CT</stri ng>
<key>updat ePol i cy</ key>
<string>QUEUE | F_OFFLI NE</stri ng>
</dict>
<larray>
<key>def aul t Pol i cy</ key>
<di ct >
<key>f et chPol i cy</ key>

ORACLE 15-50

Chapter 15
Building Apps that Work Offline Using the Synchronization Library

<string>FETCH FROM SERVI CE_ON CACHE M SS</string>
<key>evi cti onPol i cy</ key>

<string>EVI CT_ON_EXPI RY_AT_STARTUP</ stri ng>
<key>expi rationPol i cy</ key>

<string>EXPI RE_AFTER</ stri ng>

<key>expi r eAf t er </ key>

<i nt eger >600</i nt eger >

<key>conf i ct Resol uti onPol i cy</ key>

<string>CLI ENT_W NS</string>

<key>updat ePol i cy</ key>

<fal se/>
</dict>
</dict>

</dict>
</plist>

Defining Synchronization Policies and Cache Settings in a Response Header

When you implement a custom API, you can fine tune caching for a response by
defining synchronization policies or basic cache settings in response headers.

To specify the basic synchronization and cache settings for a REST resource use the
following optional HTTP Headers:

Header

Description

Oracl e- Mobi | e- Sync-
No- St ore

If settot r ue, the client does not cache the returned resource.

Oracl e- Mobi | e- Sync-
Evi ct

Specifies the date and time after which the expired resource

should be deleted from the local cache. Uses RFC 1123 format,

for example EEE, dd MW yyyyy HH nm ss z for

Si npl eDat eFor mat .

The following synchronization policies are set for the resource

object that is created from the response:

e Eviction policy: EVI CT_ON_EXPI RY_AT_STARTUP

* Expiration policy: EXPl RE_AFTER with the expi r eAf t er
property set to date and time provided in the header value

Oracl e- Mobi | e- Sync-
Expires

Specifies when the returned resource will be marked as expired.
Uses RFC 1123 format, for example EEE, dd MW yyyyy
HH. nm ss z for Si npl eDat eFor mat .

Tracking Cache Hits with the Synchronization Library

The Synchronization library tracks cache hits and detects if the returned result came
from the cache. Use these OMCSynchr oni zat i on methods to get data about cache hits

ORACLE

and misses:

» cacheHi t Count : Returns the number of cache hits.

e cacheM ssCount : Returns the number of cache misses.

15-51

Chapter 15
How Synchronization Works with the Storage APIs

How Synchronization Works with the Storage APIs

ORACLE

When your mobile app accesses the Storage APIs, the client SDK automatically works
with the Storage library to refresh and synchronize the storage objects in the local
cache. You don't need to add any code to enable synchronization with storage.

The client SDK enforces the following synchronization policies for the Storage APIs:
e Conflict resolution policy: SERVER W NS

» Euviction policy: EVI CT_ON_EXPI RY_AT_STARTUP

» Expiration policy: EXPI RE_AFTER 86400 seconds (24 hours).

You can use the Sync_Col | ecti onTi meToLi ve environment policy to override the
number of seconds after which a Storage object expires. This value is conveyed to
the Storage library through the O acl e- Mobi | e- Sync- Expi r es response header.
See Offline Data Storage.

e Fetch policy: FETCH_FROM SERVI CE_I F_ONLI NE
* Update policy: QUEUE | F_OFFLI NE

See Synchronization Policy Options for detailed descriptions of these synchronization
policies.

Just as with the custom API resources, you can use the configuration file to override
the default cache settings for storage resources on a mobile backend basis.

The default cache settings are:
e Maximum storage size in the local cache: 100 MB
» Periodic refresh policy: Don’'t automatically refresh cached resources periodically

To learn how to configure the cache settings, see the Cache Settings section in
Synchronization Configuration File Structure.

15-52

Notifications

Oracle Mobile Cloud Service (MCS) provides a Notifications API to simplify sending
notifications to devices running your mobile apps. As a mobile app developer, you can
set up your mobile applications for notifications and use the Notifications API to send
notifications. As a service developer, you can add implementation code to your custom
APIs to trigger notifications.

Notifications

Mobile Backend

Platform APls
Mobile User Mgmt Storage
L :
Data Offline & Sync Motifications
Analytics Database
App Policies Location
i
Custom Connectors On-Premises
L APIs = soap | REST | ICS FA |7 % Clow
Mobile Service

Applications

What Can | Do with Notifications?

Notifications can provide the timely awareness of information and events that mobile
users seek. Notifications are short, specific, targeted messages sent to a mobile
application. The purpose of a notification is usually to tell users that there is new
information available. For example, a user who is running a shopping app might get
information about an upcoming sale.

You can send these targeted messages either on demand or on a predefined schedule
to:

» aspecific device ID or a collection of device IDs (mostly useful for testing)
» aspecific user or a collection of users
» all users and devices associated with a specific mobile backend

» devices or users for a given operating system (iOS, Android or Windows)

ORACLE 16-1

Chapter 16
How Are Notifications Sent and Received?

< Note:

Push notifications should not be used to send critical or emergency
information, because network delays and other issues can make deliveries
untimely. However, for everyday uses like sports scores and upcoming sales,
notifications are great.

How Are Notifications Sent and Received?

As a mobile application developer, you configure your mobile app to receive
notifications over the network. Once your mobile app is configured and installed on a
device, it connects to its backend to receive notifications. The steps below summarize
the path that a notification takes.

ORACLE

1.

You compose a notification, for example, "Hi! Our storewide sale is tomorrow," and
define a recipient for it. You can send the notification to a specific user or device or
set of users or devices, to everyone in the backend, or to a specific device type
(Android, iOS or Windows). You can send the notification immediately or schedule
it to be sent at a later date and time. When you POST a notification, an ID is
created for the message. You can use this ID to cancel a message if it hasn’t been
sent yet.

The notification is addressed to the associated device IDs and distributed to the
appropriate push networks for delivery.

The notification is received by the mobile application, and the owner of the device
gets it.

The notification service providers and their payload limits are:

* WNS: 5K
* FCM: 4K
« GCM: 4K
* APNS: 4K

¢ SMS: 1000 bytes

o “ Hil Our
* Hil Qur storewide
Th» storewide (Tl saleis
. sale is ’ tomorrow. "
tfomorrow. ™
Application Device
Developer Owner

16-2

Chapter 16
Setting Up a Mobile App for Notifications

What is the Device ID or Notification Token?

The device ID, also known as the notification token, uniquely identifies the specific
instance of a mobile application associated with a specific device. This ID is used to
ensure that notifications are sent to the correct recipient.

A unique device ID is assigned when a mobile app registers a device during the device
handshake. After that point, the ID can be used to identify that specific recipient.
Multiple instances of the same mobile app on the same device have different device
IDs. The device ID changes periodically, but this is handled internally and is
transparent to the mobile app.

You can look up the device IDs registered with a mobile app in the Device Registry,
from the Notifications page for the associated backend in the Ul. To register a specific
device ID to be used as a recipient address for natifications, you can use the REST
API. Keep in mind that sending a natification directly to a device ID is only useful for
testing. There are more efficient ways to send natifications to a specific group of users.
For details and examples, see Sending Natifications to and from Your App.

Setting Up a Mobile App for Notifications

Before you begin, you can install the client SDK’s Notifications library to simplify
development. The Notifications SDK library can be individually installed into your app,
or along with the other mobile client SDK libraries. For details on the SDKs, see The
SDKs.

The set up process is different for each platform:
e Setting Up Android Notifications

e Setting Up iOS Notifications

e Setting Up Windows Notifications

After you complete the set up steps for your platform, you have a few options for
sending natifications from MCS to your mobile app. See Sending Natifications to and
from Your App.

Now that you have registered the app client in OMCe, you have a few options for
sending notifications to your app, as shown in Sending Notifications to and from Your

App.

Setting Up Android Notifications

ORACLE

To set up your Android app for notifications, follow the steps below:

1. First, get credentials from the notification provider to establish your mobile app as
a known item on the network. See Android: Google API Key.

2. Create a client for your mobile app in MCS, and configure notifications profile(s) by
entering the network credentials you got in step 1. See Client Management.

3. Set up the app to connect to the notification provider from the mobile device and
establish rules for communication. See Setting Up a Device Handshake for
Android (FCM).

16-3

Chapter 16
Setting Up a Mobile App for Notifications

After you complete these steps, you have a few options for sending notifications from
MCS to your mobile app. See Sending Notifications to and from Your App.

Android: Google API Key

ORACLE

Configuring an Android mobile app for notifications requires Firebase Cloud
Messaging (FCM), formerly Google Cloud Messaging (GCM). GCM is being phased
out, so you should configure new apps with FCM. For information on migrating existing
apps, see Migrate a GCM Client App for Android to Firebase Cloud Messaging on
Google Developers.

For details on setting up your Android mobile application, see Set Up a Firebase Cloud
Messaging Client App on Android on Google’s developer site. This page includes
detailed instructions and a link to generate the required configuration file for your
project, as well as information on using the Instance ID API to create and update
registration tokens.

¢ Note:

When you generate the configuration file for your app, make sure you
choose to enable the Cloud Messaging service.

FCM Notifications

For FCM notifications, in the Android app’s AndroidManifest.xml file, within the
<appl i cati on> node, add the following entries:

<service
andr oi d: nane="or acl e. cl oud. mobi | e. f crmot i fi cati ons. McsRegi strati onl nt ent Ser
vice" android: exported="fal se" />
<service
andr oi d: nane="or acl e. cl oud. mobi | e. f crmot i fi cati ons. MCSFi r ebasel nst ancel DSer
vice">
<intent-filter>
<action android: name="com googl e. firebase. | NSTANCE | D EVENT"/>
<lintent-filter>
</ service>

The FCM messaging library must be added as a dependent library in the application's
build file as described in Set up Firebase and FCM SDK. When generation is
complete, the Project Number (aka Sender ID) and server key are displayed. You
need these credentials to register the mobile app for notifications in MCS. They are
unique to the mobile app and can’t be used to send notifications to any other app. You
also need these values to get a registration token from FCM and set up the connection
with MCS, as described in Setting Up a Device Handshake for Android (FCM).

GCM Notifications

For GCM natifications, in the Android app’s AndroidManifest.xml file, within the
<appl i cati on> node, add the following entries:

<service
andr oi d: nane="or acl e. cl oud. mobi | e. noti ficati ons. McsRegi strationlntent Servic

16-4

https://developers.google.com/cloud-messaging/android/android-migrate-fcm
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

Chapter 16
Setting Up a Mobile App for Notifications

e" android: exported="fal se" />
<service
andr oi d: name="or acl e. cl oud. nobi | e. noti fications. GcnifokenRef r eshLi st ener Serv
i ce" android: exported="fal se">
<intent-filter>
<action android: name="com googl e. androi d. gns.iid.|nstancelD" />
<lintent-filter>
</ service>

Google Play Services must be added as a dependent library in the application's build
file, or these services will be flagged in error.

When generation is complete, the Project Number (aka Sender ID) and legacy
server key are displayed. You need these credentials to register the mobile app for
notifications in MCS. They are unique to the mobile app and can’t be used to send
notifications to any other app. You also need these values to get a registration token
from FCM and set up the connection with MCS, as described in Setting Up a Device
Handshake for Android (FCM).

Setting Up a Device Handshake for Android (FCM)

ORACLE

This section assumes you have already generated a configuration file for your app.
You will need the Sender ID (Project Number) you got when you configured your
project, as described in Android: Google API Key.

For FCM Natifications, an Android app needs to extend Fi r ebaseMessagi ngSer vi ce to
define a service for receiving Notifications. By overriding the onMessageRecei ved
method, you can perform actions based on the incoming message. For more
information on handling notifications in Android, see Receive Messages on Google
FCM Developers.

In your app’s src/ mai n/ Andr oi dMani f est. xm file, just before the closing </
appl i cati on> tag, register for the Notifications service, as shown below.

<application> ...
<service

andr oi d: nane="or acl e. cl oud. nobi | e. f comot i fi cati ons. MCSFi r ebaseMessagi ngSer v
ice">
<intent-filter>
<action androi d: name="com googl e. fi rebase. MESSAG NG _EVENT"/ >
<lintent-filter>
</ service>
</ application>

Set permissions to receive and display notifications by inserting these entries in the
Android manifest (somewhere above the <appl i cati on> entry).

<uses- perm ssion

andr oi d: nane="andr oi d. per mi ssi on. | NTERNET"/ >

<uses- perm ssion

andr oi d: nane="andr oi d. per ni ssi on. ACCESS_NETWORK_STATE"/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per ni ssi on. WRI TE_| NTERNAL_STORAGE"/ >

16-5

https://firebase.google.com/docs/cloud-messaging/android/receive

ORACLE

Chapter 16
Setting Up a Mobile App for Notifications

<uses- perm ssion

andr oi d: nane="andr oi d. per nm ssi on. WRl TE_EXTERNAL_STORAGE"/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per ni ssi on. ACCESS_FI NE_LOCATI ON'/ >
<uses- perm ssion

andr oi d: nane="andr oi d. per nm ssi on. ACCESS_CQOARSE_LOCATI ON'/ >
<appl i cation>

To establish communication and register for notifications, here’s what the device
handshake might look like in an Android app, using the client SDK:

i mport oracl e.cloud. mobi | e. exception. Servi ceProxyExcepti on;
i nport oracle.cloud. nobile. fcrmotifications.Notifications;
i mport oracl e. cloud. mobi | e. nobi | ebackend. Mobi | eBackendManager ;

public class MainActivity extends Activity {
private Notifications mNotification;

@verride protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nst anceState) ;
setContent View(R | ayout . activity_main);
this.registerNotificationOient();

[Imethod that initializes and returns the Notifications client
private void registerNotificationdient(){
try {

mNot i fication =
Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(t hi s) . get Servi ceP
roxy(Notifications.class);

mNotification.initialize(this);
} catch (ServiceProxyException e) {
e.printStackTrace();

}

Getting a FCM Registration Token

You also need the Sender ID to register your app with FCM to get a registration token.
The registration token is passed to OMCe, which packages it with the notification to tell
Google that your app and the device it runs on are legitimate recipients on the
network. Google provides the Instance ID API to handle registration tokens. See Set
Up a Firebase Cloud Messaging Client App on Android on Google Developers.

To set up a callback on successful registration, you could add code like the example
below:

public void onCick(View view {

try {
I/ Regi stration process call back
nRegi strati onBroadcast Recei ver = new Broadcast Receiver() {

@verride

16-6

https://firebase.google.com/docs/cloud-messaging/android/client
https://firebase.google.com/docs/cloud-messaging/android/client

Chapter 16
Setting Up a Mobile App for Notifications

public void onReceive(Context context, Intent intent) {
Shar edPr ef erences sharedPref erences =
Pref erenceManager . get Def aul t Shar edPr ef er ences(cont ext);
bool ean sent Token = sharedPref erences
. get Bool ean(Noti ficationsConfig. SENT_TOKEN TO SERVER,
fal se);
if (sentToken) {
Logger . debug(TAG "Token retrieved and sent to server.");
} else {
Logger . debug(TAG "An error occurred while registering the
device");
}
}
b
[/call on successful registration
Local Broadcast Manager . get I nst ance(nCt x) . r egi st er Recei ver (
mRegi strati onBroadcast Recei ver,
new IntentFilter(NotificationsConfig. REG STRATI ON_COVPLETE));
[/1nitialization of MCS notifications service
not = Mbbil eBackendManager . get Manager (). get Def aul t Mobi | eBackend
(mtx) . get Servi ceProxy(Notifications.class);
bool ean result = not.initialize(mtx);
} catch (ServiceProxyException e) {
e.print StackTrace();

After you've set up and registered your app, it can send and receive notifications. For
details and sample code, see Sending Notifications to and from Your App.
De-Registering a Device

To de-register a device for notifications, here’s what the code might look like in an
Android app, using the client SDK:

[Ilnitialization of MCS notifications service

Notifications notifications =

Mobi | eManager . get Manager () . get Def aul t Mobi | eBackend(get Appl i cati onContext())
. get Servi ceProxy(Notifications.class);

bool ean result = notifications. deregisterDevice(view getContext());

Logger. debug(TAG "unregister " + result);

Setting Up a Device Handshake for Android (GCM)

ORACLE

This section assumes you have already generated a configuration file for your app.
You will need the Sender ID (Project Number) you got when you configured your
project, as described in Android: Google API Key.

In addition to the device handshake, for GCM notifications an Android app needs to
extend Ccnli st ener Servi ce to define a receiver for the Notifications service. By
overriding the onMessageRecei ved method in the Android SDK, you can perform
actions based on the incoming message. See Simple Downstream Messaging on
Google Developers.

16-7

https://developers.google.com/cloud-messaging/downstream

Chapter 16
Setting Up a Mobile App for Notifications

In your app’s nai n/ Andr oi dMani f est. xm file, just before the closing </ appl i cati on>
tag, register service and broadcast receivers for the Notifications service, as shown
below.

<appl i cation>

<receiver
androi d: name="or acl e. cl oud. nobi | e. notifications. Mcs2GenLi st ener Servi ce"
andr oi d: perm ssi on="com googl e. andr oi d. c2dm per ni ssi on. SEND" >
<intent-filter>
<action androi d: name="com googl e. andr oi d. c2dm i nt ent . RECEIl VE"/ >
<action
andr oi d: nane="com googl e. andr oi d. c2dm i nt ent . REG STRATI ON'/ >
<cat egory androi d: nane="YOUR PACKAGE. NAME"/ >
<lintent-filter>
<recejver>
</ appl i cation>

Set permissions to receive and display notifications by inserting these entries in the
Android manifest (somewhere above the <appl i cat i on> entry).

<uses- perm ssi on androi d: name="andr oi d. per m ssi on. | NTERNET"/ >
<uses- perm ssi on androi d: nanme="andr oi d. per m ssi on. ACCESS_NETWORK_STATE"/ >
<uses- perm ssi on androi d: nane="andr oi d. per m ssi on. WRI TE_| NTERNAL_STORAGE"/ >
<uses- perm ssi on androi d: nane="andr oi d. per m ssi on. WRI TE_EXTERNAL_STORAGE"/ >
<uses- perm ssi on androi d: nanme="andr oi d. per m ssi on. ACCESS_FI NE_LOCATI ON'/ >
<uses- perm ssi on androi d: nane="andr oi d. per m ssi on. ACCESS_COARSE_LOCATI ON'/ >
<permi ssion androi d: protectionLevel ="si gnat ure"

andr oi d: nane=YOUR. PACKAGE. NAME. per i ssi on. C2D_MESSAGE"/ >
<uses- perm ssi on androi d: nane="YOUR PACKAGE. NAME. per ni ssi on. C2D_MESSAGE"/ >
<appl i cation>

To establish communication and register for notifications, here’s what the device
handshake might look like in an Android app, using the SDK:

i nport oracl e.cloud. mobi | e. exception. Servi ceProxyExcepti on;
i nport oracl e. cloud. mobi | e. nobi | ebackend. Mobi | eBackendManager ;
i nport oracle.cloud. nobile.notifications.Notifications;

public class MainActivity extends Activity {
private Notifications mNotification;
private final String PROJECT_ID =

"PRQJECT_| D_COPI ED_FROM GOOGLE_API _CONSOLE";

@verride

protected void onCreate(Bundl e savedl nstanceState) {
super. onCr eat e(savedl nstanceState);
set Content Vi em(R | ayout . activity_main);

this.registerNotificationGient();

ORACLE 16-8

ORACLE

Chapter 16
Setting Up a Mobile App for Notifications

[/method that initializes and returns the Notifications client
private void registerNotificationdient(){
try {
m\oti fication =
Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(t hi s) . get Servi ceP
roxy(Notifications.class);
mNotification.initialize(this, PROJECT ID);
} catch (ServiceProxyException e) {
e.print StackTrace();

}

Getting a GCM Registration Token

You also need the Sender ID to register your app with GCM to get a registration token.
The registration token is passed to MCS, which packages it with the notification to tell
Google that your app and the device it runs on are legitimate recipients on the
network.

To set up a callback on successful registration, you could add code like the example
below:

public void ondick(View view {
try {
I/ Regi stration process cal | back
nmRegi strati onBroadcast Recei ver = new Broadcast Recei ver () {

@verride
public void onReceive(Context context, Intent intent) {

Shar edPr ef er ences shar edPr ef erences =

Pref er enceManager . get Def aul t Shar edPr ef er ences(cont ext);
bool ean sent Token = sharedPref erences
. get Bool ean(Noti ficationsConfig. SENT_TOKEN TO SERVE
R false);
if (sentToken) {
Logger . debug(TAG, "Token retrieved and sent to
server!");
} else {
Logger . debug(TAG "An error occurred while either
fetching the InstancelD');
}
}
b
[/call on successful registration
Local Broadcast Manager . get I nst ance(get Appl i cati onCont ext()).regi sterReceive
r (mRegi strationBroadcast Recei ver,
new

IntentFilter(NotificationsConfig. REG STRATI ON_COVPLETE));

[llnitialization of notifications service

16-9

Chapter 16
Setting Up a Mobile App for Notifications

not =
Mobi | eBackendManager . get Manager () . get Def aul t Mobi | eBackend(vi ew. get Cont ext ()
). get Servi ceProxy(Notifications.class);

bool ean result = not.initialize(view getContext(), "714568881816");

catch (ServiceProxyException e) {
e.print StackTrace();

After you've set up and registered your app, it can send and receive notifications. For
details and sample code, see Sending Notifications to and from Your App.

Setting Up i0OS Notifications

To set up your iOS app for notifications, follow the steps below:

1. First, get credentials from the notification provider to establish your mobile app as
a known item on the network. See iOS: Apple Secure Certificates.

2. Create a client for your mobile app in MCS, and configure notifications profile(s) by
entering the network credentials you got in step 1. See Client Management.

3. Set up the app to connect to the natification provider from the mobile device and
establish rules for communication. See Setting Up a Device Handshake for iOS.

After you complete these steps, you have a few options for sending notifications from
MCS to your mobile app. See Sending Natifications to and from Your App.

iOS: Apple Secure Certificates

ORACLE

Notifications require additional secure certificates from Apple, in addition to the
certificate used to set up your account. This section assumes you have an Apple
Developer account. For information on using notifications in iOS, see the Local and
Remote Notification Programming Guide on http://developer.apple.com.

Notifications make special use of Apple's network, so Apple wants extra security
protections. You need one of the following secure certificates:

e Apple Push Notification service SSL (Sandbox) certificate for developing and
testing your application with notifications while you do development. Sandbox
certificates are intended for automated QA environments where devices don’t
change often. In most cases, spam filters should be disabled.

e Apple Push Notification service SSL (Production) certificate for releasing your
application to Apple’s App Store. Apple requires this certificate before you can ship
your app to the public, but you can wait until your app is finished to get it.

The steps for getting a Sandbox or Production certificate are very similar to the steps
you used to get the first secure certificate when you set up your app. This section
assumes that you already set up your Apple developer account, got the required
secure certificate, and set up an Application ID and a Provisioning Profile.

1. If you didn’t enable notifications in your provisioning profile when you created your
App ID, go back and enable it now.

16-10

http://developer.apple.com/

Chapter 16
Setting Up a Mobile App for Notifications

Get your certificate(s) from the Apple Developer Center. Use the App ID you set
up when you created your app.

Note:

Follow Apple’s direction to create a Certificate Signing Request (CSR)
file, then export it to a . p12 file to upload it to MCS. Do not password
protect the . p12 secure certificate. (Leave the password field blank when
you save the . p12 file.)

You need your certificate to register the mobile app for notifications in MCS. It is
unique to the mobile app and can’t be used to send notifications to any other app.
Once you have configured these extra certificates, you can get a device token from
Apple and set up communication with MCS, described in Setting Up a Device
Handshake for iOS.

Setting Up a Device Handshake for iOS

ORACLE

As an iOS developer, to make a device handshake happen you need to add this code
to your Xcode project to get a device token, get a notifications object, and register your
app for notifications:

Note that the registration code should be called each time the app starts.

1.

Get a device token from Apple.

if([application
respondsToSel ector: @el ector(regi sterUserNotificationSettings:)]){
/luse registerUserNotificationSettings for iCS 8 and |ater
U UserNotificationSettings *settings=[U UserNotificationSettings
settingsFor Type: (U UserNotificationTypeBadge
| UlUser Noti ficationTypeSound
| UlUser NotificationTypeAl ert) categories:nil];
[application registerUserNotificationSettings:settings];
} else {
/I expect deprecation warnings here - this is for iOS 7.1 or
bef ore
[[U Application sharedApplication]
regi st er For Renot eNot i fi cati onTypes:
(Ul Renpt eNot i fi cationTypeBadge | U RenoteNotificationTypeSound |
U Rerot eNot i ficationTypeA ert)];

}

After calling the above lines of code, the Apple Push Notification Service (APNS)
will call one of the delegate methods based on the success or failure to retrieve
the device token. If successful, one of the following methods is called:

di dRegi sterUser Noti ficationSettings: (iOS 8 or later) or

di dRegi st er For Renot eNot i fi cati onsW t hDevi ceToken: (iOS 7.1). In case of an
error, the di dFai | ToRegi st er For Renot eNot i fi cati onsWt hEf f or: method is
called.

16-11

Chapter 16
Setting Up a Mobile App for Notifications

2. Get the Notifications SDK object.

(OMCNot i fications *) get OMCNoti fications{

OMCAut hori zation *auth = [[OMCMobi | eBackendManager shar edManager]
mobi | eBackendFor Nane:

<Nare_of Mbobi | e_Backend_from OMC. Pl i st>]. authori zati on;

OMCNot i fi cations* omcNQtifications=nil;

NSError* err = [auth authenticate: <Username> passwor d: <Passwor d>] ;

if (lerr){

ontNotifications = [[[OMCMobi | eBackendManager shar edManager]
mobi | eBackendFor Nane:
<Name_of Mobi | e_Backend from OMC. Plist>] notifications];
}

return oncNotifications;

}

3. Register for naotifications using the Notifications SDK object. Note that
oncNoti fications is the object of OMCNot i fi cati ons. cl ass. .

[oncNotifications registerForNotifications:dataDevi ceToken
onSuccess: *(NSHTTPURLResponse *response){
di spat ch_asynch(di spatch_get _mai n_queue(), ~{
[I'Update U here
IO
} onError: (NSError *error){
di spat ch_async(di spatch_get main_queue(), *{
[I'Update U here
IO
s

Next, register your mobile app with the associated mobile backend, and enable
notifications. SeeRegistering an App as a Client in MCS.

After you've registered your app, it can receive notifications from a range of sources.
For details and sample code, see Sending Notifications to and from Your App.

Setting Up Windows Notifications

ORACLE

To set up your Windows app for natifications, follow the steps below:

1. First, get credentials from the notification provider to establish your mobile app as
a known item on the network. See Windows: WNS Credentials or Syniverse: SMS
Credentials.

2. Create a client for your mobile app in MCS, and configure notifications profile(s) by
entering the network credentials you got in step 1. See Client Management.

3. Set up the app to connect to the notification provider from the mobile device and
establish rules for communication. See Setting Up a Device Handshake for
Windows.

After you complete these steps, you have a few options for sending notifications from
MCS to your mobile app. See Sending Notifications to and from Your App.

16-12

Chapter 16
Setting Up a Mobile App for Notifications

Windows: WNS Credentials

Configuring a Windows mobile app for notifications requires a unique set of credentials
for Windows Push Notification Service (WNS). This section assumes you have a
Microsoft Developer account.

The following credentials are required to authenticate with WNS:
* Client ID (also called the Package SID)

* Client Secret (also called a secret key)

To get these credentials, register your mobile app in the Windows Store Dashboard,
accessible from the Windows Dev Center. For details on WNS, see WNS Overview on
MSDN.

You need these credentials to register the mobile app for natifications in MCS. They
are unique to the mobile app and can’t be used to send natifications to any other app.

Syniverse: SMS Credentials

ORACLE

To send Short Message Service (SMS) messages using the Syniverse Messaging
Service, the first step is to establish a profile on the Syniverse Developer Community,
where you subscribe to the service, register your app, and get credentials.

Creating a Profile on the Syniverse Developer Community

1. Go to the Syniverse Developer Community (developer.syniverse.com).

2. Click Sign Up in the top right corner of the site and enter the requested
information.

3. If you have an invitation code from a company in the Syniverse Developer
Community enter that into "Company invite code" field. If not, ignore this step.

Read and accept the Terms of Service.
Check the Captcha box and answer the challenges to prove you aren’t a robot.

Click Create profile.

N o a »

When the confirmation email arrives, click the link in the email and verify your user
credentials.

Subscribing to the Syniverse Messaging Service

To use SMS in your apps using the SMS short code you got from Syniverse, you need
to subscribe to the Syniverse Messaging Service.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click your user name in the top right corner and select Company. Verify that your
accounts have a billing address associated with them.

3. Navigate to Service Offerings > Messaging Offering and click Subscriptions.
4. Click Subscribe and select “Initial account for [Your username]”

a. Read and accept the Terms of Service.

b. Select Confirm.

c. Verify that your account is listed in Subscriptions.

16-13

https://developer.microsoft.com/en-us/windows
https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx
https://developer.syniverse.com/
https://developer.syniverse.com/

Chapter 16
Setting Up a Mobile App for Notifications

If you're using a Syniverse-provisioned public channel to test messages, you also

need to add test phone numbers to the associated whitelist. (Whitelisting is only
necessary when testing SMS to U.S. or Canada phone numbers and isn’t required
for production apps.)

a
b.

C.

Click your user name in the top right corner and select Company.
On the Company page, click the Whitelist tab.

Click Add phone number and enter your phone number in the ITU-T E.164
format (i.e., +11234567890).

Click Send confirmation code to send a randomly generated number to the
phone number in a text message.

Retrieve the confirmation code from the text message and enter it in the
Confirmation code field. Click Add to confirm the phone number whitelist.

Verify that your phone number is included in the whitelist table with "Validated"
status.

Register Your App and Get Credentials

Before messages can be sent through the Syniverse Messaging Service, there must
be an application configured in the SDC platform. Once your app is registered, you
can generate the required credentials.

1. Log in to the Syniverse Developer Community (developer.syniverse.com).

2. Click Applications.

3. Click New application.

In the dialog:

a
b.

0

e.

Give your application a name and description and click Save.
Click the gear icon next to your app name and select Edit.
Click SDC Self Service and make sure all the options are selected.

Click Account & APIs and select the "Initial account for [Your username]"
from the Account dropdown.

Turn on the following services: Messaging, SDC Gateway Services, Event
Subscription Services, Voice & Messaging and Whitelisting Services.

Click Save.

4. Generate the required credentials:

Setting Up a Device Handshake for Windows

ORACLE

This section assumes you have already registered your mobile app with WNS,
described in Windows: WNS Credentials.

Here’s what a device handshake might look like in a Windows app, using the SDK:

using Oracle.oud. Mbile. Notifications;
usi ng W ndows. Net wor ki ng. PushNot i fi cati ons;

nanespace MyW ndowsApp

16-14

https://developer.syniverse.com/

Chapter 16
Sending Notifications to and from Your App

{ public sealed partial class MainPage : Page
{ public MainPage()
{ this.InitializeConmponent();
Il
/] First loginto MCS
Il

var |oginDialog = new Logi nDial og();
| ogi nDi al og. ShowAsync(). ContinueWth((task) =>
Regi ster For Not i fi cati onsAsync());
}

private async Task RegisterForNotificationsAsync()

{
var backend = ((App)App. Current). Backend;

/1 Register for Push Notifications
PushNot i fi cati onChannel channel =
awai t
PushNot i fi cati onChannel Manager . Cr eat ePushNot i fi cat i onChannel For Appl i cati onA
sync();

awai t
backend. Get Servi ce<Notifications>(). RegisterForNotificationsAsync(channel.U
ri);
}

For details on requesting a channel URI and constructing the notification payload, see
Windows Push Notification Services (WNS) overview.

Next, register your mobile app with the associated MCS mobile backend, and enable
notifications. For detailed instructions, see Registering an App as a Client in MCS in
the Mobile Backends chapter.

After you've registered your app, it can receive notifications from a range of sources.
For details, see Sending Notifications to and from Your App.

Sending Notifications to and from Your App

ORACLE

Once you've set up and registered your mobile app, you can start sending notifications
and SMS messages.

e Send notifications and cancel scheduled notifications from the Ul, which can be
useful for development.

* Use the Notifications API to send notifications to and from apps and devices all
over the place.

16-15

https://msdn.microsoft.com/en-us/library/windows/apps/xaml/hh913756.aspx

ORACLE

Chapter 16
Sending Notifications to and from Your App

You can also check the status of your notifications in the Ul or using the Notifications
API. For details, see Troubleshooting Notifications.

Testing Notifications from the MCS Ul

MCS provides a notifications testing Ul that allows you to send scheduled notifications
to a defined set of recipients.

1.

Make sure you're in the environment where you want to create the notification.

Click === to open the side menu and select Applications > Mobile Backends.

On the Mobile Backends page, select the mobile backend that includes your
mobile app and click Open.

Click Notifications.
On the Notifications page, click the Send icon.

If your device isn't registered yet, you can access the Device Registry by clicking
Manage Devices.

To register a device for SMS through the Ul, you must have consent management
disabled in the associated MCS client profile as described in Client Management.
If you register a device for SMS through the Ul and it fails, it's probably a problem
with your Syniverse Developer Community setup. Make sure you completed all the
steps described in Syniverse: SMS Credentials.

Enter the notification message you want to send in plain text or a JSON payload. If
you enter JSON, it must conform to the natification provider’s requirements. If it is
not valid JSON, it will be sent as a plain text message.

Choose when to send the message.
e To send the natification immediately, leave the default Now.

* To schedule the notification for a later date and time, choose Later and select
the date and time for the notification to be sent.

Choose who to send the message to.

e To send the natification to everyone in the mobile backend, leave the default
All notifications-enabled mobile apps that use this mobile backend. A
single mobile backend may contain more than one version of a mobile
application, with implementations for different devices and networks. This
option sends to all notification-enabled clients, regardless of the network or
device.

e To define a filter by user name, platform type, device ID, Facebook ID, or any
combination, choose Filtered set of recipients. Under Match all of the
following, select the filter type from the dropdown list:

— Device ID: Send a notification to a single device ID or to multiple device
IDs at the same time. The device ID is a unique number assigned to a
mobile device during the device handshake. For SMS, the device ID is a
phone number. In general, sending a notification to a device ID is useful
for testing your application but not practical in bulk.

— Platform: Send to all recipients running on iOS, Android, Windows or
Web.

— Provider: Send to all recipients receiving APNS, GCM, FCM, WNS or
SMS notifications.

16-16

Chapter 16
Sending Notifications to and from Your App

— User: Send a notification to a single user or to a list of users.
— Facebook Unique ID: Send a notification to a Facebook user, by ID.

If the list of recipients gets too long, click the + button to add another filter and
continue your entries there. Filters can be mixed and matched for additional
selectivity.

9. Click Send.

Once you click Send, you can monitor the status of your notifications in the History
pane. For details, see Troubleshooting Notifications.

Cancelling a Scheduled Notification from the Ul

The only notifications that can be cancelled are those that are scheduled for a future
time.

To cancel a scheduled notification, go to the Scheduled tab in the History pane and
click the X in the corner of the entry you want to remove. You will be prompted to
confirm the cancellation.

Sending Notifications Using the Notifications AP

ORACLE

You can send notifications to mobile devices from your apps using the Notifications
API. Notifications have a maximum limit of 1,000 devices per call.

You can call Notifications REST API endpoints directly or use custom code in your
mobile app. This section details the REST endpoints. For information on using custom
code including examples and sample code, see Accessing the Notifications API from
Custom Code in the Calling APIs from Custom Code chapter.

To register a device ID for notifications, you can use the Ul or the Notifications Device
Registration API as described in Registering a Device ID.

The / nobi | e/ system notifications/notifications endpointallows you to send
notifications, cancel scheduled notifications, and check the status of sent notifications.

" Note:

Calls to this endpoint must include these headers:

e Authorization: If you're using basic authentication, this header should
include the name and password for a team member with the
Mobi | eEnvi ronment _Not i fi cati on role, encoded in Base64. For OAuth,
this header should include the access token. If you're using OAuth, you
must also be a team member with the
Mobi | eEnvi ronment _Noti fi cati on role.

e (Oracl e- Mobi | e- Backend- | D: If you're using basic authentication, you
must include this header. The mobile backend ID is listed on the Settings
tab for the mobile backend. For OAuth, this information is included in the
access token.

When you send a natification, you can specify any combination of the following for the
payload:

16-17

ORACLE

Chapter 16
Sending Notifications to and from Your App

(TR

{"payl oad":""} A unified payload that includes well-formed JSON for each
supported notification provider (Google, Apple, Windows and Syniverse). For
details, see Sending a Natification Using a Unified Payload.

{"tenplate":""} Areusable payload template with defined parameters, used to
create payloads for each supported notification provider. The payload template
includes the following optional parameters: titl e, body, badge, sound and cust om
For details, see Sending a Notification Using a Payload Template.

n.un

{"message":""} A plain-text message string. For details, see Sending a Text
Message Notification.

The unified payload is used if it exists, then the template, then the message, in that
order.

To send notifications to specific recipients, add an argument after the content of the
payload:

To send to a user or a list of users, add the user s argument. A user can be
defined by first nane: | ast name or email address. Multiple users are listed as
tokens in an array, and there’s no limit on the number. For example:

-d "{"nessage": "H! Qur storewide sale is tomorrow.", "users":
["bob@cne. conl', "sjones@yz.net", "banana@eel me.conf']}'

To send to everyone on the same mobile platform, add the pl at f or m(10OS,
ANDROID, WINDOWS or WEB). For example:

-d "{"nmessage": "H'! Qur storewide sale is tomorrow.", "platforni:

n | %II } 1

To send to a specific notification provider, add the provi der (APNS, GCM or FCM,
WNS or SYNIVERSE). For example:

-d "{"message": "H! Qur storewide sale is tomorrow.", "provider":

n AP'\ISII } 1

To send to a specific device ID or a list of device IDs, add the
notificationTokens argument. Multiple IDs are listed as tokens in an array, and
there’s no limit on the number. For example:

-d '{"nmessage": "Test of notifications feature.", "notificationTokens":
[" 2DD2D2- D2DDGA4GD- GDGSDFZS3- 3- 3DFZSDFDS"] }!

To schedule a notification for a future date and time, add the sendOn argument. For
example:

-d ' {"message": "Come to our discount sale today!", "sendOn":
"2015- 06- 15T6: 00Z2"}'

For further details, including HTTP response status codes and full schemas for the
request and response bodies, see the REST APIs for Oracle Mobile Cloud Service.

16-18

Chapter 16
Sending Notifications to and from Your App

Registering a Device ID

The Notifications Device Registration API lets you register the device ID of your mobile
app, which can then be used as a recipient address for sending notifications. This API
can also associate a user with the device ID, so the user name can also be used as a
target for notifications.

You can register a device ID (noti fi cati onToken) directly and send notifications
directly to that ID. You can also use this API to associate any user with the device ID.

The Notifications Device Registration API includes the following endpoints:
e PCST /mobile/platforn devices/register
e POST /nobil e/ platform devi ces/ deregi ster

When you register a device, include these parameters:

e The nobi |l ed i ent parameter identifies the client in the backend with three
properties:

— id: The Application ID assigned by the Google or Apple app store. (This is
different from the "App-Key".)

— versi on: The version of the mobile client that will receive the notifications,
currently 1.0.

— platform"lOS" or "ANDROID" or "WINDOWS" or "WEB" (all caps)

e ThenotificationProvider parameter defines the service the noti fi cati onToken
is used for: "APNS" or "GCS" or “FCM” or "WNS" or "SYNIVERSE".

e ThenotificationToken parameter defines the token needed by the notification
service for sending calls. This token uniquely identifies the specific instance of a
mobile app associated with a specific device, and is used to ensure that
notifications are sent to the correct recipient. Encode in hexadecimal if necessary.

e The optional user parameter associates the device ID with the user name
provided. If the user parameter isn’t included, the device ID is associated with the
user who is logged in during the registration call.

Note:

To specify a different user name, the logged in user must be a team
member with the Mobi | eEnvi ronment _Not i fi cati ons role. Keep in mind
that registering a user name this way doesn't validate the entry in the
Device Registry. If this results in duplicate user names, notifications
could be sent to multiple users. It's up to the app to ensure that user
names are unique if that's a requirement.

This example registers a device with the device ID MyAppToken:
curl -v
-H "Authori zati on: Basic
VGVzdELvYm sZWzZXI yYzE4YWR Zj MyMDg0ZWZk ONQy ODMONj ALOGNExanpl eAut hSt ri ng="

-H "Oracl e- Mbbi | e-Backend-1 D 7cf 06198- 053e- 4311- 8186- cae145900d59"

ORACLE 16-19

Chapter 16
Sending Notifications to and from Your App

-H "Cont ent - Type: appl i cati on/j son"
-d "{"mobileCient": {"id":
"Myd i ent ac3d8baf 1aa348b48d80e9b7f d026067", "version": "1.0","platforni:
"1 08"}, "notificationProvider":"APNS', "notificationToken":"03767dea- 29ac- 444
0- b4f 6- 75a755845ade", "user": "JoeSm th"}'
http://ww. fixitfast.com 8080/ nobile/platform devices/register

If the REST operation to register the device is successful, you can expect to get a
response something like this:

Connected to fixitfast.comport (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'

POST / mobi | e/ pl at f or ml devi ces/regi ster/

Aut hori zation: Basic

VGVzdELvYn sZWzZXI yYzEAYWRi Zj MyNDg0ZWZk OAQy ODMDN; A1OGNEXanpl eAut hSt ri ng=
User-Agent: curl/7.33.0

Host: fixitfast.com 8080

Accept: application/json

Cont ent - Type: application/json

Oracl e- Mobi | e- Backend- I D 7cf 06198- 053e- 4311- 8186- cae145900d59
Content - Length: 32

upl oad conpletely sent off: 32 out of 32 bytes

HTTP/ 1.1 201 Created

The response includes a JSON payload that contains the device ID for the registered
device.

"id": "7cf06198-053e-4311-8186-cael45900d59",
"user": "JoeSmth",
"notificationProvider":"APNS',
"notificationToken":"03767dea- 29ac- 4440- b4f 6- 75a755845ade",
"nobileCient": {"id":
"Myd i ent ac3d8baf 1aa348b48d80e9h7f d026067", "version": "1.0","platforni':
"108"},
"nodi fi edOn": "2016- 05- 25T14: 58: 16. 373Z"
}

Sending a Text Message Notification

ORACLE

The example below uses the Notifications REST API to send a simple notification to
everyone in the mobile backend. As noted above, the name and password sent in the
Aut hori zat i on header must be a team member with the necessary permissions.

curl -X POST
-H "Authorization: basic bW\zA dl bG\vbWxKg=="
-H "Accept: application/json”
-H "Content-Type: application/json; charset=UTF-8"
-H "Oracl e- Mobi | e- Backend- | D: 1d97542d- 51d6- 4f 18- 897f - 35053cf df d2d"
-d "{"nmessage": "Hi! Qur storewide sale is tonorrow "}’
http://ww. Fi xI t Fast. com 8080/ nobi | e/ systenf notifications/
notifications/

16-20

Chapter 16
Sending Notifications to and from Your App

If the notification is sent successfully, the response might look like the example below.
The body will be the JSON for the created notification.

Connected to FixltFast.comport (10.176.45.198) port 8080 (#0)
Server auth using Basic with user 'lucy'

PCST / nobi | e/ system notifications/notifications/ HTTP/ 1.1

Aut hori zation: Basic bW\zd dl bG\vbWUxKg==

User-Agent: curl/7.33.0

Host: newcl ot hes. com 8080

Accept: application/json

Cont ent - Type: application/json; charset=UTF-8

Oracl e- Mobi | e- Backend- | D: 1d97542d- 51d6- 4f 18- 897f - 35053cf df d2d
HTTP/ 1.1 201 Created

You could also get a status code of 400 (bad request) or 401 (unauthorized).

Sending a Notification Using a Unified Payload

ORACLE

A unified payload allows you to specify a different payload for each supported
notification provider using Notifications REST API. One or more of the following can be
defined under the ser vi ces property:

e The apns payload must conform to APNS requirements.
e The gcmor f cmpayload can contain arbitrary JSON properties.
e The wns payload property must contain a well-formed WNS payl oad.

* The syni ver se payload property should contain the string to send as a SMS
message.

¢ Note:

The payload template allows you to send provider-specific payloads without
defining the code. For details, see Sending a Notification Using a Payload
Template.

The following are simple examples that define payloads for FCM. An FCM object can
contain either a notification object or a data object. A notification object has a
predefined set of user-visible keys described in the FCM documentation. A data object
has custom key-value pairs.

Notification object:

{"notificationTokens": ["xxxxx"],"payload": {"services": {"fcni':
{"notification": {"title": "Sale On Now ", "body": "50% off until Saturday"
}
}
}
}
}

16-21

Data object:

Chapter 16

Sending Notifications to and from Your App

"notificationTokens": ["xxxxxx"],"payload": {"services": {"fcni:
{"data": {"acnel": "valuel","acme2": "val ue2"

}
}
}
}
}

Sending a Notification Using a Payload Template

ORACLE

When you use a payload template with the Notifications REST API, the content you
enter is used to create a driver-specific payload for each supported notification
provider. The default payload template includes the following optional parameters.

Parameter

Description Data Type

Example

title

body

badge

The alert title. If a title string
is specified, the body
parameter is also

required.

The alert body. string
If only a body is

specified, the content

is used as the value

for the al ert property

in the APNS and FCM
payloads.

A number to badge number
the notification with.
Android applications
don’t support badging,
so the number is not
passed in the payload.
If there is a
requirement to pass
the "badge" value, it
can be passed as part
of a custom data
payload.

"Sale On Now "

"50% of f until
Sat ur day"

43

16-22

ORACLE

Chapter 16
Sending Notifications to and from Your App

Parameter Description Data Type Example

sound The sound file to play string "alert.wav"
with the notification.

Only .wav format is

supported by APNS ,

WNS, and FCM.

e For APNS, the file
must be in the
app bundle.

. For WNS, the file
must be in the
app package (the
"ms-appx://I
prefix is added
automatically).

. For FCM, the file
can be anywhere.

custom Any required custom object
data. {
"acnel":
"val uel",
"acme2":
["val ue2",
"val ued"]

}

The example below shows a natification sent using FCM that includes all five
parameters and the resulting payload. An FCM object can contain either a notification
object or a data object. A notification object has a predefined set of user-visible keys
described in the FCM documentation. A data object has custom key-value pairs.

This specifies the default template:

{
"tenplate": {
"nane" : "#default",
"parameters": {
"title":"this is the title",
"body":"this is the body",
"sound":"al ert.wav",
"badge": 5,
“custont:
{ "keyl": "valuel", "key2": "value2", "key3": ["value3.1", "value3.2"] }

}
b

This payload is delivered in the same way as the following unified payload. As noted
above, Android apps don't support badging, so your app can use the badge value in
other ways. Note that in this example, value is a string, so the value for key3 is
converted to a string.

16-23

Chapter 16
Troubleshooting Notifications

FCM driver payload:

"fend: {

"notification":

{ "title": "this is the title", "body": "this is the body", "sound":
"alert.wav" }

"data":

{ "keyl": "valuel", "key2": "value2", "key3": "[\"value3.1\",
\"value3.2\"]" }

}

Cancelling Scheduled Notifications

To cancel a scheduled notification, send DELETE to / nobi | e/ syst eml noti fi cati ons/
notifications/{id} with the ID assigned to the notification you want to cancel. For
this example, the notification ID is 113455.

curl -X DELETE
-H "Authori zation: Basic bW\zQ dl bG\vbWxKg=="
-H "Oracl e- Mobi | e- Backend- | D: 1d97542d- 51d6- 4f 18- 897f - 35053cf df d2d"
-H "Accept: application/json”
-H "Content-Type: application/json; charset=UTF-8"
http://ww. fixitfast.com 8080/ nobile/systentnotifications/
notifications/ 113455

Troubleshooting Notifications

ORACLE

Sending a notification is an asynchronous process. Once you send a notification, it can
sit for minutes, hours, or maybe even days on an Apple, Google or Microsoft server
before it gets delivered to the mobile device. Even if a notification can’t be delivered,
there might be no error message returned. You have no control over a notification
once it gets sent, but these are some common notification problems:

* A secure certificate is missing, expired, or not located in the right place.
* The network credentials for the device don't match the credentials registered.

» A security identifier used in your code doesn’t match the identifier registered with
Google, Apple or Windows, or match what's defined in your Android manifest or
iOS Xcode project.

* The wrong identifier has been entered into a form. For example, when you register
for notifications in a backend and it asks you for an API Key, you entered the
application key instead.

* An APNS mismatch between production/development flag and certificate, for
example uploading a production certificate but configuring the client saying it's a
development certificate.

* In FCM and GCM, the wrong API key or Project Number/Sender ID means the
user might have disabled notifications on their device.

MCS will automatically unregister the device if a notification is sent to it and the
notification provider reports the device ID as being bad. This can happen in a few
ways:

16-24

Chapter 16
Troubleshooting Notifications

* The most likely is that the token has expired. A device token lasts between 30 and
90 days depending on the provider. A mobile app should reregister the
notifications token every time the app starts up with both MCS and the notifications
provider to refresh it.

* The user deleted the app from their device

* The API key or certificate in MCS has gone bad by either expiring, or a new API
key or certificate was requested from Google/Apple and not uploaded.

* The user has reinstalled/updated their OS and hasn’t run the app since reloading
the OS.

* The token was mangled somehow during registration.

Checking Notification Status in the Ul

ORACLE

Check the History pane, accessible from the Notifications page for your mobile
backend, to find out if your notifications were successfully sent.

Scheduled notifications are displayed in the Scheduled tab. To see a list of sent
notifications, click the Sent tab. If you don’t see the notifications you expect, click
Check for Updates.

The status you see in the History pane reflects the success rate of the notifications
that have been sent. You can quickly tell the status of each natification in the History
pane by the color in the left column:

Green means that more than 70% of individual notifications in the batch were
accepted by the Apple and/or Google networks.

¢ Yellow means that less than 70% of individual notifications in the batch were
accepted.

* Red means that the batch failed to send successfully from MCS. In most cases,
there is a configuration error that needs to be fixed. See Troubleshooting
Notifications.

* Blue means a batch of notifications is currently being sent. In most cases, a Blue
indicator appears for only a few moments.

Given the large the number of recipients sent to a popular mobile application, there will
never be 100% success. For example, if a notification is directed to a user that has
recently lost her phone, the Apple or Google network won’t accept the notification for
delivery to the device. The default warning threshold is 70%, but you can change it in
the Noti fi cations_Devi ceCount War ni ngThr eshol d environment policy.

The Device Manager, also accessible from the Notifications page for your mobile
backend, lists all registered devices for the mobile backend with their device IDs/
notification tokens. If you don’'t see your device, the network provider might have
specified that the device ID/notification token is invalid and should be deregistered.
Also, if a device hasn’t been reregistered in 60 days, it will be removed from the
registry. You can click Clear Registry to remove all registered devices from a mobile
backend to facilitate troubleshooting.

You can always look at the MCS logs to see if more information about a notification or

batch of notifications is available. Click === to open the side menu and select
Administration > Logs. For details on the diagnostics tools available through MCS,
see Diagnostics.

16-25

Chapter 16
Troubleshooting Notifications

Checking Notification Status with the Notifications REST API

ORACLE

You can use the Notifications API to check the status of notifications.

Send GET to nobi | e/ system notifications/notifications with the ID of the
notification or using the st at us= query parameter. You can check for any notification
status: New, Schedul ed, Sendi ng, Error, Wr ni ng, or Sent . (The notification must have
been successfully sent.)

The example below checks for scheduled notifications.

curl -i

-X GET

-u team user @xanpl e. com Vel conel!

-H "Oracl e- Mobi | e- Backend- | D: ABCD9278- 091f - 41aa- 9ch2- 184bd0586f ce"
http://fif.cloud.oracle.conf nobile/systenfnotifications/notifications/?
st at us=Schedul ed

If the query is successful, the response will be JSON listing the first 1000 notifications
found. You can specify a range using limit and offset parameters, for example,
I'i m t=100&of f set =400 would return notifications 400-499.

{
"items": [
{
“id": 1234,
"tag": "Marketing",
"message": "This is the alert nessage.",
"status": "Sent",
"notificationTokens": ["APNSdeviceToken"],
“createdOn": "2014-04-02T12: 34:56. 789Z",
"platfornmCounts": |
{
"platfornf: "10S",
"devi ceCount": 1,
"successCount": 1
}
1,
"links": [
{
“rel": "canonical",
“href": "/notifications/1234"
¥
{
“rel": "self",
“href": "/notifications/1234"
}
]
¥
{
"id": 1235,
"tag": "Systent,

"message": "Update required.",
“status": "Sent",

16-26

Chapter 16
Troubleshooting Notifications

"processedOn": "2014-04-01T12: 34: 56. 789Z"
“notificationTokens": ["APNSdeviceToken"],

“platformCounts": |

{
"platfornm: "10S8",

“deviceCount": 1
"successCount": 1
}
1,
"createdOn": "2014-04-03T58:24:12. 3457"
“links": [

{

“rel": "canonical",
“"href": "/notifications/1235"

1
{
“rel": "self",
“href": "/notifications/1235"
}
]
}
1,
"hasMre": fal se
"links": [
{
“rel": "canonical",
“href": "/notifications?offset=0&imt=2"
1
{
“rel": "self",
“href": "/notifications?offset=08&imt=1000"
}
]
}

ORACLE 16-27

Analytics

Oracle Mobile Cloud Service (MCS) provides an Analytics API to help you measure
patterns in app performance and usage. As a business development manager or
mobile program manager, you can use analytics to find out how to improve your apps.

Analytics
Maobile Backend
Platform APls
Mobile User Mgmt Storage
———
Data Offline & Sync Motifications
' Analytics Database
App Policies Location
1._
Custom Connectors On-Premises
il — ORI coap M ResT flice flra ™ o Clowd
Mobile Service
Applications

What Can | Do With Analytics?

Use Analytics to gain insight into how (and how often) users use a mobile app at any
given time. The analytics reports generated enable you to see an application's
adoption rate, and find out which functions are used the most (or the least).

How Does MCS Create Analytics Reports?

MCS creates analytics reports from events, which describe how users interact with the
mobile app.

A mobile app developer can track the mobile app’s entire usage by raising events in
the mobile app code. For example, a mobile app for repair technicians might track
events like Work Order Dispatched, Work Order Accepted, Work Order Resolved, and
Work Order on Hold. To add further detail to an event, you can define properties that
describe an event's characteristics. For the Work Order on Hold event, for example,
you might add properties for Customer Not Home or Parts on Order.

) Tip:

Mobile program managers should decide which aspects of an app to track by
events early in the app development process.

ORACLE 17-1

Chapter 17
Enabling Your Mobile Apps to Report Event Data

Mobile backends receive events from the REST calls made from mobile apps. A
mobile app makes a single call, which includes a JSON payload that describes the
events along with such contextual information like a user’s location, the start and end
of a user session, and details about the user’s mobile device. You can craft the
payload yourself if you use straight REST calls, or use the mobile client SDK to
construct one for you. The SDK defines the user session and automatically applies the
user and system context that allows MCS to generate reports that describe the
number of users of the app, and how (and from where) they’re using it.

Cracle Mobile Cloud Service

Analytics i Analytics
. "-:IZ;KI REST Request —» . AIE"I
- with event data
(JSON) ¥
Analytics . Analytics - Analytics
Database Reports Engine Reports
< Note:

While the SDK enables Analytics to automatically generate reports that tell
you how many users your app has, or how much time they’re spending on it,
you must define events in the mobile app’s code if you want to see these
reports.

Enabling Your Mobile Apps to Report Event Data

ORACLE

MCS creates analytics reports from information conveyed in JSON payloads. The calls
that deliver the JSON payload to the Analytics API, which records event data, can be
either straight REST calls or REST calls made through the mobile client SDK. In either
case, MCS uploads and stores the JSON payload and then graphs it in a report.

Describing Analytics Events in JSON

The JSON payload describes the context for mobile app users in terms of both their
mobile devices and the events that track user interactions. These types of events are
known as custom events. A JSON payload has one or more of these custom events,
and is also constructed from a context event that provides user and system details, a
start session event, and end session event. The custom events are grouped within the
session events to describe an analytic session.

Within the mobile app code, developers can determine the point at which the app
flushes the custom events that have accumulated on the mobile device to the MCS
server. This content is considered to be a session that can be logged. Theoretically, an
analytic session can remain open for longer than a single batch update to the MCS
server. In other words, sessions can vary in length according to your event logging use
case: a session might be created to track event data for a single action or a set of

17-2

ORACLE

Chapter 17
Enabling Your Mobile Apps to Report Event Data

actions that comprise a task. You can also use a session to log the entire span of user
interactions within a user session. That said, the length of an analytic session
generally does not, and should not, equal that of a user session. Instead, create
analytic sessions that are short and concise. By keeping these sessions crisp, you'll
maintain system performance and accurate event reporting.

Note:

The mobile client SDK tracks analytic sessions on a file system, which
means that a file grows as you add more events to a session. The MAFMCS
Utility, which allows mobile apps built using Oracle Mobile Application
Framework (MAF) to access MCS , enables sessions to be saved in
memory. However, saving sessions in memory might degrade memory
consumption when there are a large number of custom events (say, more
than 1000). Consequently, you might lose some event logging, because the
mobile app may crash before it can post events to MCS . See MAF Utility
Developer Guide.

Taking a Look at the JSON Payload

Within a JSON payload, events have the following properties:

A nane of fewer than 100 characters.

A unique string defined for the sessi onl D property, which associates an event with
a particular session. If you create your own JSON, you must assign a unigue string
to this property. The mobile client SDK ensures uniqueness by adding a text string
punctuated by hyphens known as a Universally Unique Identifier (UUID).

A time stamp: Events are ordered by time stamp (though not strictly, because
events can share the same time stamp). The mobile client SDK generates the time
stamp automatically.

A JSON payload posted toMCS may look something like this:

[

"name":"context",
"type":"systent,
"timestanp":"2013-04-12T23: 20: 54. 345Z",
"properties":{
"userNane":"jinBnith",
"nodel ":"i Phone5, 1",
"l ongitude":"-122. 11663",
"latitude":"37.35687",
"timezone":"-14400",
"manuf acturer": " Appl e",
"osName": "i Phone OS",
"osVersion":"7.1",
"osBui | d":"13E28",
"carrier":"AT&T"

}

"name": "sessionStart",

17-3

http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf
http://download.oracle.com/otn_hosted_doc/maf/mafmcsutility-api-doc-082015.pdf

Chapter 17
Enabling Your Mobile Apps to Report Event Data

"type":"systent,
"tinmestanp":"2013-04-12T23: 20: 55. 052Z",
"sessionl D':"2d64d3f f - 25¢7- 4b92- 8e49- 21884bh3495ce"

"name": " Pur chaseFai | ed",
"type":"custont,
"timestanp":"2013-04-12T23: 20: 56. 5237",
"sessionl D':"2d64d3f f-25¢c7-4b92- 8e49- 21884b3495ce",
"properties":{
“cartContent": "W DGET",
"cartPrice":"$50, 000"

"nane": "sessi onEnd",
"type":"systent,
"timestanp":"2013-04-12T23: 25: 55. 0527",

"sessionl D':"2d64d3f f - 25¢7- 4b92- 8e49- 21884bh3495ce"

Every JSON payload must begin with a context event. In the preceding example, this
event is indicated by "name": "cont ext" and includes properties that describe the
current context of the mobile app, such as user name and the longitude and latitude.
The context event is associated with each event that follows it, such as the session
start and end events that demarcate a session. It is also associated with events raised

in the mobile app code, such as Pur chaseFai | ed in the preceding example.

" Note:

Although you can add this context to events using straight REST calls, the
mobile client SDK adds both session and device context information to the
payload automatically.

Creating Your Own JSON Payload

If you don’t use the mobile client SDK, keep these tips in mind when composing the
JSON payload:

e Start each payload with a context event (indicated by "name": "context™").

* Add a context event whenever the device's context changes — typically when the
| ongi tude, | atitude, or user name properties need to change.

* You can randomly add the events within the payloads, but you must associate
every event raised in the mobile app code with sessi onStart and sessi onEnd
events just like Pur chaseFai | ed in the preceding example, as noted by

“type”:"custont.

ORACLE 17-4

Chapter 17
Enabling Your Mobile Apps to Report Event Data

< Note:

Ensure that these events share the same sessi onl D value. When events
have the same sessi onl D value, theMCS server can approximate the
session even if part of the payload (like the endSessi on definition) isn’t
recorded by the database.

MCS responds with a 202 status code (Accepted) when it receives a complete and
syntactically correct REST call. Otherwise, it returns 400 (Bad Request) or 405
(Method not Allowed) responses.

Why Should | Use the Mobile Client SDK?
The mobile client SDK:

* Automatically defines the start and end of sessions and manages them using the
UUIDs that it assigns to the sessi onl D property.

e Adds the context event at the beginning of each payload.

e Adds such device properties as the user nane, | atitude, and | ongi t ude for
context events.

Note:

On the server, the | ongi t ude and | ati t ude values are translated into
city, country, postal code, and street. See Integrating Analytics into a
Mobile App Using the Mobile Client SDK.

* Marks events raised in mobile app code as cust om(which is described in Tracking
Sessions and Logging Events for Mobile Apps) or syst emfor session or context
events. The SDK also adds a ti meSt anp to each event.

Adding Location Properties to the context Event

ORACLE

The Oracle eLocation Service (maps.oracle.com) derives location from the | ongi t ude
and | atit ude properties in the JSON request body. These properties only work if your
mobile apps are used in countries where Oracle eLocation Service is available. For
countries where Oracle eLocation Services is unavailable, you can still enable MCS to
record the location data that allows countries to display in the Dashboard map by
adding location-related properties to the cont ext event.

To enable requests to support country data, add any combination for the following
properties to the cont ext event:

e locality — The mo