
Field Service

Integrating with Outbound API

Field Service
Integrating with Outbound API

F75101-05

Copyright © 2023, Oracle and/or its affiliates.

Authors: The Field Service Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected
by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display in any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report
them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then
the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or
activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or
accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to
the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release,
display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs(including any operating system, integrated
software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract. The
terms governing the U.S. Government’s use of Oracle cloud services are defined by the applicable contract for such services. No other rights are
granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for
use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware
in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks
or registered trademarks of SPARC International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products, and services from third parties. Oracle
Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible
for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

The business names used in this documentation are fictitious, and are not intended to identify any real companies currently or previously in existence.

Field Service
Integrating with Outbound API

Contents

Preface .. i

1 Introduction 1
Document Purpose ... 1

Scope of the Document ... 1

Target Audience ... 1

Accessing the APIs .. 1

Glossary .. 2

2 Outbound API Overview 3
Outbound Interface Overview ... 3

3 Workflows 7
Workflows ... 7

4 Implementation Guidelines 17
Implementation Guidelines ... 17

5 Outbound Interface Entities and Structures 19
User Authentication Structure ... 19

Mandatory and Optional Properties .. 20

Authentication .. 20

6 Outbound API Methods Description 21
Outbound API Methods Description .. 21

7 Updating Properties and Processing Activities with 'data' 37
Updating Properties and Processing Activities with 'data' ... 37

Field Service
Integrating with Outbound API

8 Previous Versions 39
Previous Versions ... 39

9 Appendix A 41
Appendix A – Middleware_Simple.WSDL .. 41

10 Appendix B 43
Appendix B – Middleware_Advanced.WSDL .. 43

Field Service
Integrating with Outbound API

Preface

Preface
This preface introduces information sources that can help you use the application and this guide.

Using Oracle Applications

To find guides for Oracle Applications, go to the Oracle Help Center.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website.

Videos included in this guide are provided as a media alternative for text-based topics also available in this guide.

Diversity and Inclusion

Oracle is fully committed to diversity and inclusion. Oracle respects and values having a diverse workforce that increases
thought leadership and innovation. As part of our initiative to build a more inclusive culture that positively impacts our
employees, customers, and partners, we're working to remove insensitive terms from our products and documentation.
We're also mindful of the necessity to maintain compatibility with our customers' existing technologies and the need to
ensure continuity of service as Oracle's offerings and industry standards evolve. Because of these technical constraints,
our effort to remove insensitive terms is ongoing and will take time and external cooperation.

Contacting Oracle

Access to Oracle Support
Customers can access electronic support through Oracle Support. For information, visit My Oracle Support or visit
Accessible Oracle Support if you are hearing impaired.

Comments and Suggestions
Please give us feedback about Oracle Applications Help and guides. Please take one of the following surveys:

• For web-based user guide, Web-based User Guide Survey

• For tutorial feedback, Tutorial Survey

i

http://docs.oracle.com/
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
https://support.oracle.com
https://www.oracle.com/corporate/accessibility/learning-support.html#support-tab
http://ora-gcp1.custhelp.com/ci/documents/detail/5/2295/12/369d658f1a7917d7400a4e1af2bef7eaac486b07
http://ora-gcp1.custhelp.com/ci/documents/detail/5/2296/12/43f59803d4b334caea4e74d1546a10a0d99ff420

Field Service
Integrating with Outbound API

Preface

ii

Field Service
Integrating with Outbound API

Chapter 1
Introduction

1 Introduction

Document Purpose

The document is to provide understanding of the basic Outbound API goals, its methods, and relevant SOAP
transactions.

Scope of the Document
This document primarily describes the API that is used by the Outbound Interface of Oracle Field Service (OFS) for
exchanging information (sending requests and accepting responses) with external systems. It also gives an overview of
how the Oracle Field Service Outbound Interface works.

The recommended use for the Outbound Interface is for time-based notifications (for example, notifications to
customers) typically using the Reminder and Change notification triggers. For all other system events (for example,
Route changes, Activity status changes, Inventory changes, Service Request

changes, and so on), it is recommended to use the Core API/Events REST API for integration.

Target Audience

The document is intended for developers and programmers working with the OFS Outbound Interface in order to
integrate OFS with external systems.

Accessing the APIs
To access the APIs, you must use the https://<instance_name>.fs.ocs.oraclecloud.com URL scheme.

Note: All old URL schemes such as, companyname.etadirect.com, na.etadirect.com, eu.etadirect.com, and so on are
deprecated.

For example, to access the Inbound WSDL API, the URL per the new scheme is https://
<instance_name>.fs.ocs.oraclecloud.com/soap/inbound/?wsdl.

The instance name is available on the About page of Oracle Field Service. Alternatively, you can use the alternate
instance name displayed in the service console.

1

Field Service
Integrating with Outbound API

Chapter 1
Introduction

Glossary

Glossary Terms

Term Explanation

Activity

Entity of the Oracle Field Service system that represents any time-consuming activity of the resource

Message

Communications within software (which may or may not be readable by humans), as well as person-to-
person communications delivered via computer software

Middleware

Software that is used to integrate Oracle Field Service with external systems. Middleware uses Oracle
Field Service API to interact with Oracle Field Service

Resource

Element in the resource tree representing a defined company asset

Resource Tree

Hierarchy of company resources, showing “parent-child” relationships

Route

List of activities assigned to a resource for a specific date, or a list of non-scheduled activities assigned
to a resource

SOAP

Lightweight protocol for information exchange in a decentralized, distributed environment

SOAP 1.1

see http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

SOAP Client

Application or part of application that sends SOAP requests to SOAP Service

SOAP Service

Application or part of application that receives SOAP requests sent by SOAP Client

User

1) Person using Oracle Field Service

2) Entity used for authentication and authorization, allowing people or external software to access
Oracle Field Service

Visit

Group of activities related to the same customer that generate one customer notification for a case,
 instead of one notification for an activity

2

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

Field Service
Integrating with Outbound API

Chapter 2
Outbound API Overview

2 Outbound API Overview

Outbound Interface Overview
Outbound API is used for interaction between the OFSC message engine and external Middleware.

Middleware is the software that needs to be developed in order to integrate OFSC with external system(s).

Message Engine
The Message Engine is a part of the OFSC platform designed for creation of messages and their preliminary processing
prior to delivery.

OFSC Message Engine is highly configurable and can initiate sending messages triggered by different events that take
place in the OFSC system (such as activity creation, cancellation, completion, or reassignment; inventory installation,
de-installation, exchange or hit, messages initiated by the user of the OFSC system) or the state of the system at a
specific moment of time (activity is not started on time etc.).

Creation of Messages by Message Engine
Message Engine has a set of predefined triggers associated with various events in OFSC. Once a certain event happens
an appropriate trigger is activated and the Message Engine initiates the corresponding Message Scenario.

Message Scenario consists of one or more Starting Steps and zero or more Inner Steps.

• Starting Steps are executed once when the scenario is executed.

• Inner steps (result handlers) are optionally executed to handle results of Starting Steps or other Inner Steps.

A message is generated whenever a step is executed.

Each message step has the 'Notification Method' property, which defines where messages are sent. Following is the list
of some of the Notification Methods:

• E-mail – email notification message – handled internally in OFSC

• External System – message sent to Middleware

Note: only the External System method is related to the Outbound SDK. Other methods are listed here as part of the
Message Engine description.

Message Status
Any message generated by OFSC at any moment of time has a Message Status. Message statuses define the flow of
message processing. Message statuses are divided into:

3

Field Service
Integrating with Outbound API

Chapter 2
Outbound API Overview

Final:

This status means that the message processing is finished and requires no further processing. OFSC will neither send
any further requests nor expect any incoming requests regarding this message.

Non-final:

These statuses notify the system that the message processing is not finished.

Message Statuses may be changed by Middleware and by OFSC internal processes. The processing ends when the
message reaches one of the final message statuses.

List of message statuses:

• falsemethod (final) – set by OFSC if the message itself or an associated object (activity, for example) has no
fields required for processing by the appropriate method. For example, there is no e-mail address defined for
the E-mail method. This status is not applied to the Outbound API messages.

• obsolete (final) – set by OFSC if the message is no longer relevant. For example, the day before a message was
generated to inform the customer about an activity, but the activity had been cancelled before such message
was delivered.

• delivered (final) – set by Middleware to signify that the message processing is finished. While 'sent' and
'delivered' statuses are very similar, in most cases 'sent' is used when there is no evidence that the final
recipient (person or system) received the message while 'delivered' is used when the receipt is confirmed.

• failed (final unless 'attempts' > 1) – set by Middleware to signify that the message delivery has failed, may be
set by OFSC when an error occurs and the message did not reach its recipient.

• sent (final) – set by Middleware to signify that the message was received by Middleware and there will be no
further status updates.

• new (non-final) – initial status after a message is created, processing has not started.

• sending (non-final) – set by Middleware to signify that the message was received by Middleware but its
processing is not finished and there will be further status updates.

Note: messages with the 'failed' status can be returned to the 'new' status and resent for processing (configurable in the
'Step' properties). The 'failed' status is only considered final when there are no retries (default – no retries).

Following diagram reflects state transitions and also includes the final statuses which are set by OFSC itself – gray
arrows.

4

Field Service
Integrating with Outbound API

Chapter 2
Outbound API Overview

Not all statuses may be used in a specific OFSC implementation.

5

Field Service
Integrating with Outbound API

Chapter 2
Outbound API Overview

6

Field Service
Integrating with Outbound API

Chapter 3
Workflows

3 Workflows

Workflows
Outbound API supports two kinds of workflow: Simple and Advanced.

Simple Workflow is used when Middleware operates in a synchronous mode with OFSC, while Advanced workflow is
used when Middleware operates in an asynchronous mode with OFSC.

Choosing between Simple and Advanced Workflow
This section will help you understand which workflow will fit your project best.

Below are some descriptive features of the Outbound API which we recommend you consider when making your
decision.

Throughput: Outbound performance depends on the amount of messages that can be transmitted per second. If this
number is too low, then Outbound will not work properly which may result in the systems (OFSC and External) getting
out of sync.

When Middleware receives a request with several messages, it will not receive other messages until it returns a SOAP
response for the first batch.

So if Middleware takes 1 second to process each message, then OFSC will not send more than 3600 messages per hour.

For example after a routing run, the routing process generates a message for each activity it moved. If there were 10K
activities in a bucket, it would send 10K messages, which would be processed in 3 hours at the rate of 1 message per
second.

Batch sending: To achieve faster processing speed, OFSC sends messages in batches of 10 or more messages.

This means that if 50 messages are received by Middleware, then quickly put into queue and the response is returned in
1 second, then a single message gets sent effectively in 0.02 seconds.

Middleware internal queue: To achieve faster processing speed, Middleware can implement an internal queue.

When messages arrive at Middleware from OFSC, Middleware can quickly put messages into internal queue, then return
the SOAP response to OFSC immediately. Middleware can then process messages in the queue asynchronously.

This way, 10K messages will be sent from OFSC in less than 5 minutes (assuming a batch of 50 messages is put to the
queue in 1 second).

Timeouts. If the SOAP response from Middleware is not returned within 30 seconds, then OFSC considers it a
connection failure, aborts the transaction, and resends the messages later.

For example, if a request contains a batch of 50 messages and each of them takes 1 second to be processed, then the
whole request will never be processed – OFSC will drop the connection and resend the same messages repeatedly, until
they expire in OFSC.

So Middleware must guarantee that it returns every SOAP response within 30 seconds.

Message cancellation

7

Field Service
Integrating with Outbound API

Chapter 3
Workflows

For messages that take very long time to be sent away, it makes sense to use the Advanced Workflow, even if the result
is not relevant to OFSC. The reason behind it is that OFSC may know that a message is no longer relevant (e.g. the
Activity was rescheduled and the message should be postponed/changed).

When using Advanced workflow, OFSC sends a 'drop_message' request in this case, notifying Middleware that the
message no longer needs to be delivered.

This feature can reduce your expenses by canceling obsolete but costly messages and is only available in Advanced
workflow.

Workflow parameters

Scenario Advanced workflow Simple workflow Comments

• Message processing
takes long time

• OFSC is notified of
the result at the end
of processing

#

#

OFSC can receive notifications of message
processing result in Advanced workflow only.

• Message processing
takes long time

• OFSC is not notified
of the result at the
end of processing

#

#

When using Simple workflow, Middleware must
implement internal queue, put messages there,
 and return response ASAP.

• Message processing
is very fast

• response to OFSC is
only returned after
all messages are
processed

#

#

Simple workflow can be used only if processing a
batch of messages takes the same amount of time
as putting them to the internal queue.

• Message processing
takes long time

• processing may be
cancelled by OFSC
due to new data

#

#

In Advanced workflow, OFSC can send a 'drop_
message' command to notify Middleware that the
message is obsolete.

Simple Workflow (No Delivery Confirmation)
In this workflow Middleware performs the task of delivering messages to the Backend, but does not notify OFSC of the
result.

Simple workflow:

• OFSC sends a 'send_message' SOAP request to Middleware

• The Middleware response contains a final message status: 'sent' or 'failed'

• OFSC will not send any further requests and will not expect any requests regarding this message

• Middleware guarantees the message delivery to the final recipient

8

Field Service
Integrating with Outbound API

Chapter 3
Workflows

When the Simple workflow is implemented, special focus should be on the performance of the 'send_message'
processing. OFSC will not send the next outbound message until it gets the response for the previous message. If
Middleware interacts with systems where it has no control over the performance and time delays may appear, this may
create a queue of messages on the OFSC side.

Middleware Requirements for Simple Workflow
Middleware must implement a SOAP Service using Middleware_Simple. WSDL file provided with this SDK.

The Middleware SOAP Service will implement one method:

• send_message – this method is called by OFSC to send messages to Middleware.

Middleware must respond to 'send_message' requests from OFSC with one of the following statuses:

• sent – message queued for processing

• failed – message failed to be queued for processing

9

Field Service
Integrating with Outbound API

Chapter 3
Workflows

Advanced Workflow (With Delivery Confirmation)
In this workflow Middleware will attempt to deliver messages to the Backend and will notify OFSC of the message
processing result afterwards.

The Advanced workflow keeps OFSC in control of the message processing even after the message was received
by Middleware (and up to the moment it is actually processed). This workflow is optimal for the integrations where
message delivery takes significant time, for example, integration with IVRs. OFSC can generate hundreds of messages
but their processing is limited by the number of voice channels available and the call duration.

Advanced workflow:

• OFSC sends a 'send_message' request to Middleware

• The Middleware response contains non-final message status 'sending' or final status 'failed'

• If 'failed' was returned, then the processing is finished, otherwise:

• OFSC will wait for some time expecting to receive the 'set_message_status' request from Middleware

• Middleware should send a 'set_message_status' request notifying OFSC of the result of processing. It should
set the final status: 'delivered', 'failed', or 'sent'.

10

Field Service
Integrating with Outbound API

Chapter 3
Workflows

Sequence Diagrams of Advanced Workflow

Optimistic Scenario: No Failures or Significant Delays

11

Field Service
Integrating with Outbound API

Chapter 3
Workflows

Error Scenario: Message Lost

12

Field Service
Integrating with Outbound API

Chapter 3
Workflows

Error Scenario: Result not Received in Time

13

Field Service
Integrating with Outbound API

Chapter 3
Workflows

Middleware Requirements for Advanced Workflow

Middleware SOAP Service for Advanced Workflow
Middleware must implement SOAP Service using Middleware_Advanced.WSDL file provided with this SDK.

The Middleware SOAP Service will implement three operations:

• send_message – this method is called by OFSC to send messages to Middleware.

• get_message_status – this method is called by OFSC to check if the message is still being processed.

• drop_message – this method is called by OFSC to indicate that message is obsolete and its processing can be
stopped.

The Middleware must respond to 'send_message' requests from OFSC with one of the following 2 statuses:

• sending – message queued for processing

• failed – message failed to be queued for processing

The Middleware must respond to 'get_message_status' requests from OFSC with one of the following codes:

• OK if the message is still being processed. OFSC will continue sending 'get_message_status' requests
periodically

• NOT FOUND if the message is not found. OFSC will mark this message as 'failed'

• ERROR if an unexpected error has occurred. OFSC will mark this message as 'failed'

Middleware SOAP Service for Advanced Workflow
Middleware must implement a SOAP Client that connects to OFSC at address:

https://{INSTANCE}.etadirect.com/soap/outbound/?wsdl

In this URL {INSTANCE} is a subdomain that may change. For example the integration may be done on one instance
while the production will run on another instance. The WSDL contents will be the same at both instances, but the
endpoint is different.

Middleware SOAP Client must send the following request to OFSC:

• set_message_status – notify OFSC of the message processing result.

14

Field Service
Integrating with Outbound API

Chapter 3
Workflows

The 'set_message_status' should set message status to one of the following final statuses:

• delivered – message processed successfully.

15

Field Service
Integrating with Outbound API

Chapter 3
Workflows

16

Field Service
Integrating with Outbound API

Chapter 4
Implementation Guidelines

4 Implementation Guidelines

Implementation Guidelines
These guidelines are to help developers with their integration using the Outbound API.

Middleware Availability
Customers are responsible for ensuring their middleware is always available to receive messages from Oracle Field
Service.

If the middleware is unavailable, it is possible that the messages could time-out or reach the maximum number of
retries resulting in messages not being sent.

In such situations there is no mechanism available in Oracle Field Service to resend those messages. Customers that
cannot ensure their middleware availability should consider using the Core API - Events (REST service).

Middleware Must Return All Responses Immediately
Responses to 'send_message', 'get_message_status', and 'drop_message' must be returned immediately.

When Middleware receives a message via 'send_message' operation and it needs to do some time-consuming
processing, Middleware must return the response with 'sent', 'sending', or 'failed' status and then continue with
processing in another thread or process.

Middleware implementation must not engage in any long processing before SOAP response has been returned to OFSC.

This is because Middleware will not receive any more messages on this message scenario step until it returns the SOAP
response. Blocking during the SOAP call means that the messages will be processed very slowly and likely slower than
they are generated.

Middleware Must Support Bulk SOAP Operations
In order to reduce the number of SOAP requests between the OFSC platform and Middleware, all methods in the
Outbound API support bulk data. That is, each SOAP request can contain the data related to several messages. Also, a
response record provides a separate execution result on a per message basis.

It is important when implementing SOAP Service to interpret the <messages> element as array. This may not be
noticeable in the initial test with a single message, but the SOAP Service that does not have this feature will fail
eventually.

The same applies for Middleware SOAP Client for advanced workflow. It should send 'set_message_status' requests
periodically with all messages for a given period (e.g. every few seconds). It should not send each message status
individually as it arrives to Middleware.

Example of 'send_message' bulk request (details omitted for clarity)

<env:Envelope>
 <env:Body>

17

Field Service
Integrating with Outbound API

Chapter 4
Implementation Guidelines

 <send_message xmlns="urn:toatech:agent">
 <user>...</user>
 <messages>
 <message> <!-- message payload -->
 </message> <message> <!-- message payload -->
 </message> <message> <!-- message payload --> </message>
 ... <!-- more messages -->
 </messages>
 </send_message>
 </env:Body>
</env:Envelope>

18

Field Service
Integrating with Outbound API

Chapter 5
Outbound Interface Entities and Structures

5 Outbound Interface Entities and Structures

User Authentication Structure
All API methods use the 'user' structure as authentication to determine the permissions of the Oracle Field Service client
company user.

All customers can use the Client_ID and Client_Secret instead of login and password to populate the User
Authentication Structure with credentials:

1. Register an application.
a. In the Field Service Manage interface, click Configuration and select Applications.
b. In the left pane, click the plus icon to open the New application window, specify the Application Name

and Application ID, and click Submit.
c. Under Authentication settings, select the Authenticate using Client ID/Client Secret check box.
d. Click Save.

2. Select the application and under Authentication settings section, click Show Client ID / Client secret to view
the Client ID and Client Secret.

3. Make a note of the Client ID and Client Secret.

The following table describes the Oracle Field Service SOAP authentication structure mandatory fields.

Authentication Structure Fields

Name Type Description

now

string

current time in ISO 8601 format

company

string

case-insensitive identifier of the Client for which data is to be retrieved. provided by Oracle
during integration.

login

string

The client ID of the application.

auth_string

string

authentication hash; The value of this field must be computed as follows:

auth_string = SHA256(now + SHA256(CLIENT_SECRET+SHA256(CLIENT_ID)));

For example:

<user>

<now>CURRENT_TIME</now>

<login>CLIENT_ID</login>

<company>INSTANCE_NAME</company>

<auth_string>SHA256(CURRENT_TIME + SHA256(CLIENT_SECRET + SHA256(CLIENT_ID)))</auth_string>

19

Field Service
Integrating with Outbound API

Chapter 5
Outbound Interface Entities and Structures

</user>

Mandatory and Optional Properties
Each request sent by the Outbound API includes properties which are necessary for the request to be processed
correctly and those which are only sent when certain value(s) are needed. In this respect, properties fall under either of
the following two types:

Optional: the property is not necessary for the request to be processed correctly; if such property is not sent, the
request will not return an error; the 'Required' column contains 'No' for such property.

Mandatory: the property must be sent in the request; if a mandatory property is invalid or missing, the request is
rejected with a corresponding error; the 'Required' column contains 'Yes' for such property.

Authentication
The 'user' structure is used for the request authentication. The relevant error is returned if the authentication fails.

Authentication fails if

Number Login Description

1

now

is different from the current time on the server and this difference exceeds the
predefined time-window (30 minutes by default)

2

company

cannot be found in the Oracle Field Service

3

login

cannot be found for this company

4

application is not authorized to use this API

5

auth_string

when auth_string is not equal to: SHA256(now + SHA256(Client_Secret
+SHA256(Client_ID)));;

Otherwise authentication is successful and the request is processed further.

Note: The specifics of the 'user' structure processing differ for different methods used in the Outbound API. Please
refer to the description of each method for details.

20

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

6 Outbound API Methods Description

Outbound API Methods Description
The Outbound API uses the following methods:

Outbound API Method Description

Methods Description

send_message the method is called by OFSC to send messages to Middleware

drop_message the method is called by OFSC to indicate that message is obsolete and its processing can be stopped

get_message_status the method is called by OFSC to check if the message is still being processed

set_message_status the method is used to notify OFSC of the message processing result

'send_message' Method
When an internal event or state in the OFSC system triggers a new message transaction (for example, an activity is
cancelled or not started in time), the OFSC system establishes an HTTP connection with the Middleware and uses the
'send_message' SOAP method.

Note:
• the 'send_message' transaction execution time is critical, so it is important that 'send_message' does not

contain very complex logics so that your system does not create significant delays between the transactions

• as the actual data transfer can be rather time-consuming, the Middleware should have an internal queue
implemented.

• in normal circumstances the standard waiting time between message creation and before it's sent is from 30
seconds up to 90 seconds

'send_message' Request
The 'send_message' request specifies the parent application for the message and the message to be sent. The
'send_message' request contains the following parameters:

21

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

'send_message' request parameters

Name Required Description

user

No

'user' node

Note: the 'user' structure may be ignored in the 'send_
message' request

messages

Yes

array of 'message' elements each containing data for a single
message

'message' Element of 'send_message' Request
The 'messages' array is a set of 'message' elements. Each 'message' element contains message fields. The list of fields is
configured in the course of implementation:

'message' element parameters

Field Required Description

app_host

app_port

app_url

Yes

three fields that define SOAP API location of the calling application.

The address may be used to submit message results ('set_messages_status')

Note: These fields may be ignored by Middleware as the SOAP API location of
OFSC endpoint is known beforehand.

message_id

Yes

unique ID of the message in the OFSC system used in all other methods to
refer to this message

integer number that cannot be empty

32-bit integer

address

No

message destination

for email – corresponds to the recipient's e-mail address specified for the
corresponding message step

for external system – the field is empty

send_to

No

time limit for sending the message

date and time field represented in GMT (YYYY-MM-DD HH24:MI:SS); value
sent in the field is defined in the message step configuration of OFSC and
defines the latest time by which message has to be sent

agents that deal with a back office system usually should ignore this field,
 unless it is a part of the solution defined with OFSC

subject

No

filled and preprocessed templates for 'subject' and 'body'

22

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

Field Required Description

text blocks defined in message step configuration that contain all fields
required for the information transfer (activity fields, inventory fields, etc.)

body

No

format and content of the text blocks are defined in the course of
implementation, but can be changed via OFSC Manage.

'send_message' Request Example
If you select the Allow basic access authentication check box from the Message Scenario, Delivery Channels screen,
then the user credentials are sent using the standard HTTP header "Authorization" in the request. Also, the <user>
SOAP structure is sent in the body of the request. The client application can either use the standard HTTP header
"Authorization" or the <user> SOAP structure to send user credentials in the request.

Authorization: Basic YnJjLnJvb3Q6MQ==
Host: 10.175.207.217
Content-Length: 832
Accept-Charset: utf-8
SOAPAction: "agent_service/send_message"
Keep-Alive: 0
User-Agent: TOA Server
Connection: close
Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="UTF-8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:toatech:agent">
 <soapenv:Body>
 <urn:send_message>
 <urn:user>
 <urn:now>2011-11-23T15:50:23+00:00</urn:now>
 <urn:login>user_name</urn:login>
 <urn:company>company_name</urn:company>
 <urn:auth_string>67c5900a04abc54132a52da8a2320be2</urn:auth_string>
 </urn:user>
 <urn:messages>
 <urn:message>
 <urn:app_host>service.example.com</urn:app_host>
 <urn:app_port>443</urn:app_port>
 <urn:app_url>/soap/</urn:app_url>
 <urn:message_id>2006</urn:message_id>
 <urn:address>someone@examplemail.com</urn:address>
 <urn:send_to>2011-11-24 01:59:00</urn:send_to>
 <urn:subject></urn:subject>
 <urn:body>{
 "appt_number" : "XXX1234",
 "name":"Rakesh Ivanov",
 "phone": "1234567"
 }</urn:body>
 </urn:message>
 </urn:messages>
 </urn:send_message>
 </soapenv:Body>
</soapenv:Envelope>

If you do not select the Allow basic access authentication check box, the standard HTTP header is not used in the
request and the client application can use the <user> SOAP structure for authentication.

Host: 10.175.207.217

23

http://schemas.xmlsoap.org/soap/envelope/

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

Content-Length: 832
Accept-Charset: utf-8
SOAPAction: "agent_service/send_message"
Keep-Alive: 0
User-Agent: TOA Server
Connection: close
Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:toatech:agent">
 <soapenv:Body>
 <urn:send_message>
 <urn:user>
 <urn:now>2011-11-23T15:50:23+00:00</urn:now>
 <urn:login>user_name</urn:login>
 <urn:company>company_name</urn:company>
 <urn:auth_string>67c5900a04abc54132a52da8a2320be2</urn:auth_string>
 </urn:user>
 <urn:messages>
 <urn:message>
 <urn:app_host>service.example.com</urn:app_host>
 <urn:app_port>443</urn:app_port>
 <urn:app_url>/soap/</urn:app_url>
 <urn:message_id>2006</urn:message_id>
 <urn:address>someone@examplemail.com</urn:address>
 <urn:send_to>2011-11-24 01:59:00</urn:send_to>
 <urn:subject></urn:subject>
 <urn:body>{
 "appt_number" : "XXX1234",
 "name":"Rakesh Ivanov",
 "phone": "1234567"
 }</urn:body>
 </urn:message>
 </urn:messages>
 </urn:send_message>
 </soapenv:Body>
</soapenv:Envelope>

'send_message' Response
When the middleware accepts the 'send_message' request it has to return the 'message_response'.

Note: Responses to 'send_message' must be returned as soon as possible.

This structure contains the following parameter fields:

'send_message' response parameters

Name Required Description

message_id

Yes

'message_id' value from the request

status

Yes

new value of the 'status' field. Possible values are:

for messages that do not pass validation the status is 'failed'

24

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

Name Required Description

for messages that are correct but do not require actual transfer to the
back office system the status is 'sent'

for messages that require data transfer to the back office system the
status is 'sending' (and the messages are placed on the internal queue
of the middleware)

for messages successfully delivered to the back office system the status
is 'delivered'

Note: this is a standard set of statuses to be returned and their sending
conditions, but for each project it should be agreed with implementation

description

No

new value of the 'description' field;

customer-specific additional value that along with Message Status can
influence the flow of a message scenario. For example Message Status
'Failed' can differ subject to its descriptions.

Note: set of possible descriptions should be agreed with
implementation

data

No

new value of the 'data' field – used only if so required by OFSC solution
(e.g. can be used to assign values to activity and inventory properties,
cancel activities and set them as 'non-scheduled' as described in more
details below)

external_id

No

new value of 'external_id' field – identifier of the message in the internal
queue (usually not used)

duration

No

new value of 'duration' field for the message record in OFSC (usually not
used)

sent

No

actual time when the message was sent: GMT YYYY-MM-
DDTHH24:MI:SS+00:00 format date and time

fault_attempt

No

number of the remaining attempts to resend the message in case the
notification has failed

this way the external system can change the number of the remaining
attempts (e.g. stop or continue resending until success)

unless there is a particular need to use the functionality, the field should
be omitted, so that the fault attempt logic remains in accordance with
the corresponding message scenario step

Note: resending in this case does not create a new message, the same
message (with the same id) is being resent.

stop_further_attempts

No

this field should be set to '1' which means that notification attempts are
stopped. No other values should be used

time_delivered_start

No

time_delivered_end No

time delivered interval (promised to the customer) in HH:MM:SS format

if 'status' returned is 'delivered' or 'sent', the fields are updated for
activity/visit

25

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

Name Required Description

'send_message' Response Example
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:urn="urn:toatech:agent">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:send_message_response>
 <urn:message_response>
 <urn:message_id>2006</urn:message_id>
 <urn:status>sent</urn:status>
 <urn:description>everything is fine</urn:description>
 </urn:message_response>
 </urn:send_message_response>
 </soapenv:Body>
</soapenv:Envelope>

'drop_message' Method
The 'drop_message' method is used to remove messages from the agent internal queue, if message sending should be
canceled (e.g if the activity has been canceled or deleted).

Note: Sometimes a situation may occur when there is no real need for the method. Not to change the workflow, a
simple method can be implemented that always returns an error.

'drop_message' Request
The 'drop_message' request specifies the message to be dropped and contains the following fields:

'send_message' request parameters

Name Required Description

user

No

'user' node
Note: the 'user' structure may be ignored in the 'drop_message' request

messages

Yes

array of 'message' elements each containing data for a single message

'message' Element of 'drop_message' Request
The 'messages' array is a set of 'message' element. Each 'message' element contains just one field:

26

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

'message' element parameters

Field Required Description

message_id Yes ID of the message to be removed

'drop_message' Request Example
If you select the Allow basic access authentication check box from the Message Scenario, Delivery Channels screen,
then the user credentials are sent using the standard HTTP header "Authorization" in the request. Also, the <user>
SOAP structure is sent in the body of the request. The client application can either use the standard HTTP header
"Authorization" or the <user> SOAP structure to send user credentials in the request.

Authorization: Basic YnJjLnJvb3Q6MQ==
Host: 10.175.207.217
Content-Length: 832
Accept-Charset: utf-8
SOAPAction: "agent_service/send_message"
Keep-Alive: 0
User-Agent: TOA Server
Connection: close
Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:toatech:agent">
<SOAP-ENV:Body>
 <ns1:send_message xmlns="urn:toatech:agent">
 <soapenv:Body>
 <urn:drop_message>
 <urn:user>
 <urn:now>2011-11-23T15:50:23+00:00</urn:now>
 <urn:login>user_name</urn:login>
 <urn:company>company_name</urn:company>
 <urn:auth_string>67c5900a04abc54132a52da8a2320be2</urn:auth_string>
 </urn:user>
 <urn:messages>
 <urn:message>
 <urn:message_id>2006</urn:message_id>
 </urn:message>
 <urn:message>
 <urn:message_id>2007</urn:message_id>
 </urn:message>
 </urn:messages>
 </urn:drop_message>
 </soapenv:Body>
</soapenv:Envelope>

If you do not select the Allow basic access authentication check box, the standard HTTP header is not used in the
request and the client application can use the <user> SOAP structure for authentication.

Host: 10.175.207.217
Content-Length: 832
Accept-Charset: utf-8
SOAPAction: "agent_service/send_message"
Keep-Alive: 0
User-Agent: TOA Server
Connection: close
Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="UTF-8"?>

27

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:toatech:agent">
<SOAP-ENV:Body>
 <ns1:send_message xmlns="urn:toatech:agent">
 <soapenv:Body>
 <urn:drop_message>
 <urn:user>
 <urn:now>2011-11-23T15:50:23+00:00</urn:now>
 <urn:login>user_name</urn:login>
 <urn:company>company_name</urn:company>
 <urn:auth_string>67c5900a04abc54132a52da8a2320be2</urn:auth_string>
 </urn:user>
 <urn:messages>
 <urn:message>
 <urn:message_id>2006</urn:message_id>
 </urn:message>
 <urn:message>
 <urn:message_id>2007</urn:message_id>
 </urn:message>
 </urn:messages>
 </urn:drop_message>
 </soapenv:Body>
</soapenv:Envelope>

'drop_message' Response
The 'drop_message' response is an array of one or more 'message_response' nodes.

Note: Responses to 'drop_message' must be returned as soon as possible.

Each 'message_response' node contains the following fields:

'drop_message' response parameters

Name Required Description

message_id

Yes

ID of the message

result

Yes

node that contains transaction result description

'result' Node of 'drop_message' Response
Each result node contains the following elements

'result' node parameters

Field Required Description

code

Yes

message removal (from the internal middleware queue) result code. Possible values
are:

NOT FOUND – message ID is unknown to the agent

28

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

Field Required Description

OK – message successfully removed

ERROR – either the message is under processing at the moment or an internal agent
error occurred

desc

No

error description

'drop_message' Response Example
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:urn="urn:toatech:agent">
 <soapenv:Body>
 <urn:drop_message_response>
 <urn:message_response>
 <urn:message_id>2006</urn:message_id>
 <urn:result>
 <urn:code>OK</urn:code>
 </urn:result>
 </urn:message_response>
 <urn:message_response>
 <urn:message_id>2007</urn:message_id>
 <urn:result>
 <urn:code>ERROR</urn:code>
 <urn:desc>Cannot drop the message. The message is under processing at the moment.</urn:desc>
 </urn:result>
 </urn:message_response>
 </urn:drop_message_response>
 </soapenv:Body>
</soapenv:Envelope>

'get_message_Status' Method
The 'get_message_status' method is used to retrieve the message status from the agent internal queue (when the
message handling status has not been returned to OFSC in time). The maximum lifetime of messages in 'sending' state
is 60 minutes.

'get_message_status' Request
The 'get_message_status' request specifies the message for which the status is to be retrieved and contains the
following fields:

'get_message_status' request parameters

Name Required Description

user

No

'user' node
Note: the 'user' structure may be ignored in the 'get_message_status'
request

messages

Yes

array of 'message' elements each containing data for a single message

29

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

'message' Element of 'get_message_status' Request
The 'messages' array is a set of 'message' elements. Each 'message' element contains just one field:

'message' element parameters

Field Required Description

message_id

Yes

ID of the message the status of which is to be returned

'get_message_status' Request Example
If you select the Allow basic access authentication check box from the Message Scenario, Delivery Channels screen,
then the user credentials are sent using the standard HTTP header "Authorization" in the request. Also, the <user>
SOAP structure is sent in the body of the request. The client application can either use the standard HTTP header
"Authorization" or the <user> SOAP structure to send user credentials in the request.

Authorization: Basic YnJjLnJvb3Q6MQ==
Host: 10.175.207.217
Content-Length: 832
Accept-Charset: utf-8
SOAPAction: "agent_service/send_message"
Keep-Alive: 0
User-Agent: TOA Server
Connection: close
Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:toatech:agent">
<SOAP-ENV:Body>
 <ns1:send_message xmlns="urn:toatech:agent">
 <user>
 <now>2017-05-24T11:32:04+00:00</now>
 <company>kh01_i1</company>
 <login>brc.root</login>
 <auth_string>9ee269f38b7d1ae685c4fdebbfd90693</auth_string>
 </user>
 <messages>
 <message>
 <app_host>example.oracle.com</app_host>
 <app_port>10113</app_port>
 <app_url>/outbound/</app_url>
 <message_id>9948341</message_id>
 <address></address>
 <send_to>2017-05-24 11:36:04</send_to>
 <subject></subject>
 <body></body>
 </message>
 </messages>
 </ns1:send_message>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

If you do not select the Allow basic access authentication check box, the standard HTTP header is not used in the
request and the client application can use the <user> SOAP structure for authentication.

Host: 10.175.207.217

30

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

Content-Length: 832
Accept-Charset: utf-8
SOAPAction: "agent_service/send_message"
Keep-Alive: 0
User-Agent: TOA Server
Connection: close
Content-Type: text/xml; charset=utf-8
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:ns1="urn:toatech:agent">
<SOAP-ENV:Body>
 <ns1:send_message xmlns="urn:toatech:agent">
 <user>
 <now>2017-05-24T11:32:04+00:00</now>
 <company>kh01_i1</company>
 <login>brc.root</login>
 <auth_string>9ee269f38b7d1ae685c4fdebbfd90693</auth_string>
 </user>
 <messages>
 <message>
 <app_host>example.oracle.com</app_host>
 <app_port>10113</app_port>
 <app_url>/outbound/</app_url>
 <message_id>9948341</message_id>
 <address></address>
 <send_to>2017-05-24 11:36:04</send_to>
 <subject></subject>
 <body></body>
 </message>
 </messages>
 </ns1:send_message>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

'get_message_status' Response
The 'get_message_status' message response is an array of one or more 'message_response' nodes.

Note: Responses to 'get_message_status' must be returned as soon as possible.

Each 'message_response' node contains the following fields:

'get_message_status' response parameters

Name Required Description

message_id

Yes

ID of the message

result

Yes

element that contains transaction result description

'result' Node of 'get_message_status' Response
The 'messages' array is a set of 'message' elements. Each 'message' element contains message fields. The list of fields is
configured in the course of implementation:

31

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

'message' element parameters

Field Required Description

code

Yes

message removal (from the internal middleware queue) result code. Possible
values are:

NOT FOUND – message ID is unknown to the agent

OK (desc = WAITING) – message sending has not yet been started

OK (desc = SENDING) – message is being processed at the moment

ERROR – an internal agent error occurred

desc

No

error description

'get_message_status' Response Example
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:urn="urn:toatech:agent">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:get_message_status_response>
 <urn:message_response>
 <urn:message_id>2006</urn:message_id>
 <urn:result>
 <urn:code>OK</urn:code>
 <urn:desc>WAITING</urn:desc>
 </urn:result>
 </urn:message_response>
 <urn:message_response>
 <urn:message_id>2007</urn:message_id>
 <urn:result>
 <urn:code>OK</urn:code>
 <urn:desc>SENDING</urn:desc>
 </urn:result>
 </urn:message_response>
 <urn:message_response>
 <urn:message_id>2006</urn:message_id>
 <urn:result>
 <urn:code>OK</urn:code>
 <urn:desc>NOT FOUND</urn:desc>
 </urn:result>
 </urn:message_response>
 </urn:get_message_status_response>
 </soapenv:Body>
</soapenv:Envelope>

'set_message_status' Method
The 'set_message_status' method is the only method used by OFSC SOAP API. The method returns transaction results.

If as the result of 'send_message' method, Middleware has returned status = 'sending', OFSC SOAP API method
'set_message_status' is used to return the result after the actual end of the transaction. Middleware can also use this
method to update fields of the message in the OFSC system. One call of this method can be used to set the status for
several messages.

32

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

'set_message_status' Request
The 'set_message_status' request defines the message for which the status is to be set and contains the following
fields:

'set_message_status' request parameters

Name Required Description

user

No

'user' structure

messages

Yes

array of 'message' elements each containing data for a single
message

'set_message_status' Request 'messages' Array
The 'messages' array is a set of one or more 'message' nodes. Each 'message' node contains:

'set_message_status' request 'messages' array parameters

Field Required Description

message_id

Yes

'message_id' value from the 'send_message' request

status

Yes

new value of the 'status' to be set for the message; possible case-sensitive values
are:

sending – message still in the internal queue of the Middleware waiting to be
delivered (another call of 'set_message_status' will be required later to set the final
status of the delivery)

delivered – message successfully transferred to the back office system

failed – transaction failed

sent – message sent but there is no way to confirm that it has reached the final
recipient (for example E-mails)

Note: these are the default statuses to be returned, though for each specific
project they may be agreed at the implementation phase.

description

No

new value of the 'desc' field

customer-specific additional value that along with Message Status can influence
the flow of a message scenario e.g Message Status 'failed' can differ subject to its
descriptions.

data

No

new value of the 'data' field

external_id

No

ID of the message in the external system

duration No new value of the 'duration' field

33

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

Field Required Description

sent

No

new value of the 'sent' field

fault_attempt

No

number of the remaining attempts to resend the message in case the notification
has failed

this way the external system can change the number of the remaining attempts
(e.g.stop or continue resending until success)

unless there is a particular need to use the functionality, the field should be
omitted, so the fault attempt logic remains in accordance to the corresponding
message scenario step

Note: resending in this case does not create a new message, the same message
(with the same id) is being resent.

stop_further_attempts

No

this field should be set to '1' which means that notification attempts are stopped.
No other values should be used

time_delivered_start

No

time_delivered_end

No

time delivered interval (promised to the customer) in HH:MM:SS format

if 'status' returned is 'delivered' or 'sent', the fields are updated for activity/visit

'set_message_status' Request Example
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:urn="urn:toatech:agent">
 <soapenv:Header/>
 <soapenv:Body>
 <urn:set_message_status>
 <user>
 <now>2011-11-23T15:50:23+00:00</now>
 <login>user_name</login>
 <company>company_name</company>
 <auth_string>67c5900a04abc54132a52da8a2320be2</auth_string>
 </user>
 <messages>
 <message>
 <message_id>2006</message_id>
 <status>failed</status>
 <description>WRONG_TIME</description>
 <data>Night time</data>
 </message>
 <message>
 <message_id>2007</message_id>
 <status>delivered</status>
 <description>COMPLETED</description>
 <data></data>
 <duration>14</duration>
 <sent>2011-11-29T12:54:22+00:00</sent>
 </message>
 <message>
 <message_id>2008</message_id>
 <status>failed</status>
 <description>WRONG_TIME</description>
 <data>Night time</data>
 </message>

34

http://schemas.xmlsoap.org/soap/envelope/

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

 </messages>
 </urn:set_message_status>
 </soapenv:Body>
</soapenv:Envelope>

'set_message_status' Response
The 'set_message_status' response is an array of 'message_response' nodes. Each 'message_response' node contains
the following elements:

'set_message_status' response parameters

Name Required Description

message_id

Yes

ID of the message

result

Yes

node that contains transaction result description

'result' Node of 'set_message_status' Response
Each result node contains the following elements

'result' node parameters

Field Required Description

code

Yes

Message status retrieval result code. Possible values are:

NOT FOUND – message ID is unknown to the agent

OK – message has been updated

desc

No

code description

'set_message_status' Response Example
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:urn="urn:toatech:agent">
 <soapenv:Header/>
 <soapenv:Body>
 <ns1:set_message_status_response>
 <message_response>
 <message_id>2006</message_id>
 <result>
 <code>OK</code>
 </result>
 </message_response>
 <message_response>
 <message_id>2007</message_id>
 <result>
 <code>OK</code>
 </result>
 </message_response>
 <message_response>

35

Field Service
Integrating with Outbound API

Chapter 6
Outbound API Methods Description

 <message_id>2007</message_id>
 <result>
 <code>NOT FOUND</code>
 </result>
 </message_response>
 </ns1:set_message_status_response>
 </soapenv:Body>
</soapenv:Envelope>

36

Field Service
Integrating with Outbound API

Chapter 7
Updating Properties and Processing Activities with 'data'

7 Updating Properties and Processing
Activities with 'data'

Updating Properties and Processing Activities with 'data'

A message processing result returned by an agent in the 'send_message' response or via the 'set_message_status' call,
can be processed by the OFSC system to perform the following actions:

• update all company-defined properties of activity, inventory, resource, user, as well as a specific set of activity
fields. Properties are updated by entity-related triggers, for example, resource properties are updated by
resource-related triggers, etc.

• cancel activities and set non-scheduled activities

The fields to be assigned and the corresponding values are passed in the 'data' field.

The #params? string is used as a delimiter between 'data' itself and the passed parameters. The format of the
parameter line is similar to URL. The & character is used as a delimiter between different parameters. Names and values
of parameters are URL encoded.

Updating Fields and Properties
All company-defined properties of inventory and activity can be updated with the agent's response:

• To update the company-defined property the 'data' node should contain the following string:

 #params?property label=value to be set

• For example to set 'cconfirmed' property to '1' the data should contain:

 #params?cconfirmed=1

Only a predefined set of activity fields can be updated with the agent's response:

• The fields that can be updated are (values in the list a labels of the fields):

• email

• sms

• cell (synonym for 'sms')

• phone

• appt_number

• customer_number

• customer_name

• address

• city

37

Field Service
Integrating with Outbound API

Chapter 7
Updating Properties and Processing Activities with 'data'

• state

• zip

• To update the field from the list, the 'data' node should contain the following string:

 #params?field label=value to be set

• For example to set 'phone' field to '123456' the data should contain:

 #params?phone=123456

Note: fields 'address', 'city', 'state' and 'zip' are used by geocoding and, therefore, must contain valid values of the
customer's address, city of residence, state and zip/post code. Other values will not be resolved correctly by the
geocoding server fields 'cell' and 'phone' should contain only numbers. Their values are validated, and if any strings
other than numbers have been entered, such strings are removed. If a value is entered as a string with no numbers, an
empty value is set for the field

Managing Activities
Activities can be cancelled or set unscheduled with the agent's response:

• To cancel an activity the 'data' node should contain the following string:

 #params?action=cancel_activity

• To set an activity unscheduled the 'data' node should contain the following string:

 #params?action=unschedule_activity

Bulk Action
One middleware response can contain several updates, delimited with the '&' sign. For example, to set 'cconfirmed'
property to '1', 'phone' field to '123456' and make activity unscheduled, the 'data' node should contain the following
string:

 #params?cconfirmed=1&phone=123456&action=unschedule_activity

Note: The total length of the 'data' field cannot exceed 255 characters.If a submitted 'data' value exceeds the limit, it
can be correctly processed but will be truncated in the database.

38

Field Service
Integrating with Outbound API

Chapter 8
Previous Versions

8 Previous Versions

Previous Versions
The Outbound API in Oracle 16.2 is fully compatible with the Outbound API of ETAdirect versions 4.2, 4.3, 4.4 and 4.5.
The only change is that the 'device' field of the message engine transactions has gone obsolete. If sent, the field will be
ignored.

39

Field Service
Integrating with Outbound API

Chapter 8
Previous Versions

40

Field Service
Integrating with Outbound API

Chapter 9
Appendix A

9 Appendix A

Appendix A – Middleware_Simple.WSDL
The file Middleware_Simple.WSDL should be provided as part of the SDK.

41

Field Service
Integrating with Outbound API

Chapter 9
Appendix A

42

Field Service
Integrating with Outbound API

Chapter 10
Appendix B

10 Appendix B

Appendix B – Middleware_Advanced.WSDL
The file Middleware_Advanced.WSDL should be provided as part of the SDK.

43

Field Service
Integrating with Outbound API

Chapter 10
Appendix B

44

	Integrating with Outbound API
	Preface
	Using Oracle Applications
	Documentation Accessibility
	Diversity and Inclusion
	Contacting Oracle

	Introduction
	Document Purpose
	Scope of the Document
	Target Audience
	Accessing the APIs
	Glossary

	Outbound API Overview
	Outbound Interface Overview
	Message Engine
	Creation of Messages by Message Engine
	Message Status

	Workflows
	Workflows
	Choosing between Simple and Advanced Workflow
	Simple Workflow (No Delivery Confirmation)
	Middleware Requirements for Simple Workflow
	Advanced Workflow (With Delivery Confirmation)
	Sequence Diagrams of Advanced Workflow
	Optimistic Scenario: No Failures or Significant Delays
	Error Scenario: Message Lost
	Error Scenario: Result not Received in Time
	Middleware Requirements for Advanced Workflow
	Middleware SOAP Service for Advanced Workflow
	Middleware SOAP Service for Advanced Workflow

	Implementation Guidelines
	Implementation Guidelines
	Middleware Must Return All Responses Immediately
	Middleware Must Support Bulk SOAP Operations

	Outbound Interface Entities and Structures
	User Authentication Structure
	Mandatory and Optional Properties
	Authentication

	Outbound API Methods Description
	Outbound API Methods Description
	'send_message' Method
	'send_message' Request
	'message' Element of 'send_message' Request
	'send_message' Request Example

	'send_message' Response
	'send_message' Response Example

	'drop_message' Method
	'drop_message' Request
	'message' Element of 'drop_message' Request
	'drop_message' Request Example

	'drop_message' Response
	'result' Node of 'drop_message' Response
	'drop_message' Response Example

	'get_message_Status' Method
	'get_message_status' Request
	'message' Element of 'get_message_status' Request
	'get_message_status' Request Example

	'get_message_status' Response
	'result' Node of 'get_message_status' Response
	'get_message_status' Response Example

	'set_message_status' Method
	'set_message_status' Request
	'set_message_status' Request 'messages' Array
	'set_message_status' Request Example

	'set_message_status' Response
	'result' Node of 'set_message_status' Response
	'set_message_status' Response Example

	Updating Properties and Processing Activities with 'data'
	Updating Properties and Processing Activities with 'data'
	Updating Fields and Properties
	Managing Activities
	Bulk Action

	Previous Versions
	Previous Versions

	Appendix A
	Appendix A – Middleware_Simple.WSDL

	Appendix B
	Appendix B – Middleware_Advanced.WSDL

