
Oracle® Database
SODA for PL/SQL Developer's Guide

Release 18c
E84719-04
February 2019



Oracle Database SODA for PL/SQL Developer's Guide, Release 18c

E84719-04

Copyright © 2018, 2019, Oracle and/or its affiliates. All rights reserved.

Primary Author: Drew Adams

Contributors: Douglas McMahon, Maxim Orgiyan, Srikrishnan Suresh

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are
"commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the
programs, including any operating system, integrated software, any programs installed on the hardware,
and/or documentation, shall be subject to license terms and license restrictions applicable to the programs.
No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron,
the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro
Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.



Contents

 Preface

Audience vii

Documentation Accessibility vii

Related Documents vii

Conventions viii

1   SODA for PL/SQL Prerequisites

2   SODA for PL/SQL Overview

3   Using SODA for PL/SQL

3.1 Getting Started with SODA for PL/SQL 3-2

3.2 Creating a Document Collection with SODA for PL/SQL 3-5

3.3 Opening an Existing Document Collection with SODA for PL/SQL 3-7

3.4 Checking Whether a Given Collection Exists with SODA for PL/SQL 3-7

3.5 Discovering Existing Collections with SODA for PL/SQL 3-8

3.6 Dropping a Document Collection with SODA for PL/SQL 3-9

3.7 Creating Documents with SODA for PL/SQL 3-10

3.8 Inserting Documents into Collections with SODA for PL/SQL 3-15

3.9 SODA for PLSQL Read and Write Operations 3-17

3.10 Finding Documents in Collections with SODA for PL/SQL 3-18

3.11 Replacing Documents in a Collection with SODA for PL/SQL 3-24

3.12 Removing Documents from a Collection with SODA for PL/SQL 3-27

3.13 Indexing the Documents in a Collection with SODA for PL/SQL 3-29

3.14 Getting a Data Guide for a Collection with SODA for PL/SQL 3-32

3.15 Handling Transactions with SODA for PL/SQL 3-33

4   SODA Collection Configuration Using Custom Metadata

4.1 Getting the Metadata of an Existing Collection 4-2

iii



4.2 Creating a Collection That Has Custom Metadata 4-3

Index

iv



List of Examples

3-1 Getting Started Run-Through 3-4

3-2 Sample Output for Getting Started Run-Through 3-4

3-3 Creating a Collection That Has the Default Metadata 3-6

3-4 Opening an Existing Document Collection 3-7

3-5 Checking for a Collection with a Given Name 3-7

3-6 Printing the Names of All Existing Collections 3-8

3-7 Dropping a Document Collection 3-10

3-8 Creating a Document with JSON Content 3-13

3-9 Creating a Document with Document Key and JSON Content 3-14

3-10 Inserting a Document into a Collection 3-16

3-11 Inserting a Document into a Collection and Getting the Result Document 3-16

3-12 Finding All Documents in a Collection 3-19

3-13 Finding the Unique Document That Has a Given Document Key 3-20

3-14 Finding Multiple Documents with Specified Document Keys 3-20

3-15 Finding Documents with a Filter Specification 3-21

3-16 Specifying Pagination Queries with Methods skip() and limit() 3-22

3-17 Specifying Document Version 3-23

3-18 Counting the Number of Documents Found 3-23

3-19 Replacing a Document in a Collection, Given Its Key, and Getting the Result Document 3-25

3-20 Replacing a Particular Version of a Document 3-25

3-21 Removing a Document from a Collection Using a Document Key 3-27

3-22 Removing a Particular Version of a Document 3-28

3-23 Removing Documents from a Collection Using Document Keys 3-28

3-24 Removing JSON Documents from a Collection Using a Filter 3-29

3-25 Creating a B-Tree Index for a JSON Field with SODA for PL/SQL 3-30

3-26 JSON Search Indexing with SODA for PL/SQL 3-30

3-27 Dropping an Index with SODA for PL/SQL 3-31

3-28 Getting a Data Guide with SODA for PL/SQL 3-32

3-29 Transaction Involving SODA Document Insertion and Replacement 3-33

4-1 Getting the Metadata of a Collection 4-2

4-2 Default Collection Metadata 4-2

4-3 Creating a Collection That Has Custom Metadata 4-3

v



List of Tables

3-1 Getter Methods for Documents (SODA_DOCUMENT_T) 3-12

vi



Preface

This document describes how to use Simple Oracle Document Access (SODA) for C.

• Audience

• Documentation Accessibility

• Related Documents

• Conventions

Audience
This document is intended for users of Simple Oracle Document Access (SODA) for
PL/SQL.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents
For more information, see these Oracle resources:

• https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/ for
complete information about SODA and its implementations

• Oracle Database Introduction to Simple Oracle Document Access (SODA) for
general information about SODA

• Oracle as a Document Store for general information about using JSON data in
Oracle Database, including with SODA

• Oracle Database JSON Developer’s Guide for information about using SQL and
PL/SQL with JSON data stored in Oracle Database

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at OTN Registration.

vii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://docs.oracle.com/en/database/oracle/simple-oracle-document-access/


If you already have a user name and password for OTN then you can go directly to the
documentation section of the OTN Web site at OTN Documentation.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Preface

viii



1
SODA for PL/SQL Prerequisites

SODA for PL/SQL is an integral part of Oracle Database, starting with Release 18c
(18.1). The database is the only prerequisite for using SODA for PL/SQL, but some
features are available only starting with particular database releases.

The following features were added to SODA for PL/SQL in Oracle Database Release
18.3. You need that database release or later to use them:

• Data-type SODA_OPERATION_T

• Indexing

• JSON data guide

1-1



2
SODA for PL/SQL Overview

SODA for PL/SQL is a PL/SQL API that implements Simple Oracle Document
Access (SODA). You can use it with PL/SQL to perform create, read (retrieve),
update, and delete (CRUD) operations on documents of any kind, and you can use it
to query JSON documents.

SODA is a set of NoSQL-style APIs that let you create and store collections of
documents in Oracle Database, retrieve them, and query them, without needing to
know Structured Query Language (SQL) or how the data in the documents is stored in
the database.

Oracle Database supports storing and querying JSON data. To access this
functionality, you need structured query language (SQL) with special JSON SQL
operators. SODA for PL/SQL hides the complexities of SQL/JSON programming.

The remaining topics of this document describe various features of SODA for PL/SQL.

Note:

• This book provides information about using SODA with PL/SQL
applications, and it describes all SODA features currently available for
use with PL/SQL. To use SODA for PL/SQL you also need to understand
SODA generally. For such general information, please consult Oracle
Database Introduction to Simple Oracle Document Access (SODA).
Some features described in that book are not yet available with SODA
for PL/SQL.

• This book does not provide general information about PL/SQL, including
reference information about the SODA for PL/SQL methods and
constants. For such information, please consult Oracle Database
PL/SQL Language Reference.

See Also:

Oracle Database JSON Developer’s Guide for information about using SQL
and PL/SQL with JSON data stored in Oracle Database

2-1



3
Using SODA for PL/SQL

How to access SODA for PL/SQL is described, as well as how to use it to perform
create, read (retrieve), update, and delete (CRUD) operations on collections.

(CRUD operations are also called “read and write operations” in this document.)

• Getting Started with SODA for PL/SQL
How to access SODA for PL/SQL is described, as well as how to use it to create a
database collection, insert a document into a collection, and retrieve a document
from a collection.

• Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.create_collection to create a
document collection with the default metadata.

• Opening an Existing Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.open_collection to open an existing
document collection.

• Checking Whether a Given Collection Exists with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.open_collection to check for the
existence of a given collection. It returns a SQL NULL value if a collection with the
specified name does not exist; otherwise, it returns the collection object.

• Discovering Existing Collections with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.list_collection_names to discover
existing collections.

• Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document
collection.

• Creating Documents with SODA for PL/SQL
You use a constructor for PL/SQL object type SODA_DOCUMENT_T to create SODA
documents.

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method
(member function) insert_one() or insert_one_and_get(). These methods
create document keys automatically, unless the collection is configured with client-
assigned keys and the input document provides the key.

• SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of
SODA_COLLECTION_T. You can chain together SODA_OPERATION_T methods, to
specify read and write operations against a collection.

• Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATION_T terminal method get_one() or get_cursor() to
find one or multiple documents in a collection, respectively. You can use terminal
method count() to count the documents in a collection. You can use nonterminal
methods, such as key(), keys(), and filter(), to specify conditions for a find
operation.

3-1



• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method
replace_one() or replace_one_and_get() with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() and filter().

• Removing Documents from a Collection with SODA for PL/SQL
You can remove documents from a collection by chaining together
SODA_OPERATION_T method remove() with nonterminal method key(), keys(), or
filter() to identify documents to be removed. You can optionally make use of
additional nonterminal methods such as version().

• Indexing the Documents in a Collection with SODA for PL/SQL
You index the documents in a SODA collection with SODA_COLLECTION_T method
create_index(). Its input parameter is a textual JSON index specification. This
can specify support for B-tree, spatial, full-text, and ad hoc indexing, and it can
specify support for a JSON data guide.

• Getting a Data Guide for a Collection with SODA for PL/SQL
You use SODA_COLLECTION_T method get_Data_Guide() to get a data guide for a
collection. A data guide is a JSON document that summarizes the structural and
type information of the JSON documents in the collection. It records metadata
about the fields used in those documents.

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a
SQL COMMIT statement. If you want to roll back changes, use a SQL ROLLBACK
statement.

3.1 Getting Started with SODA for PL/SQL
How to access SODA for PL/SQL is described, as well as how to use it to create a
database collection, insert a document into a collection, and retrieve a document from
a collection.

Note:

Don’t worry if not everything in this topic is clear to you on first reading. The
necessary concepts are developed in detail in other topics. This topic should
give you an idea of what is involved overall in using SODA.

Follow these steps to get started with SODA for PL/SQL:

1. Ensure that the prerequisites have been met for using SODA for PL/SQL. See 
SODA for PL/SQL Prerequisites.

2. Identify the database schema (user account) used to store collections, and grant
database role SODA_APP to that schema:

GRANT SODA_APP TO schemaName;

3. Use PL/SQL code such as that in Example 3-1 to do the following:

Chapter 3
Getting Started with SODA for PL/SQL

3-2



a. Create and open a collection (an instance of PL/SQL object type
SODA_COLLECTION_T), using the default collection configuration (metadata).

b. Create a document with particular JSON content, as an instance of PL/SQL
object type SODA_DOCUMENT_T.

c. Insert the document into the collection.

d. Get the inserted document back. Its other components, besides the content,
are generated automatically.

e. Print the unique document key, which is one of the components generated
automatically.

f. Commit the document insertion.

g. Find the document in the collection, by providing its key.

h. Print some of the document components: key, content, creation timestamp,
last-modified timestamp, and version.

4. Drop the collection, cleaning up the database table that is used to store the
collection and its metadata:

SELECT DBMS_SODA.drop_collection('myCollectionName') AS drop_status 
FROM DUAL;

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database
table. In addition to the documents that are stored in its table, a
collection has metadata, which is also persisted in Oracle Database.
Dropping the table underlying a collection does not also drop the
collection metadata.

Note:

If a PL/SQL subprogram that you write invokes subprograms that are in
package DBMS_SODA, and if your subprogram has definer (owner) rights, then
a database administrator (DBA) must grant role SODA_APP to your
subprogram. For example, this code grants role SODA_APP to procedure
my_soda_proc, which is owned by database schema (user) my_db_schema:

GRANT SODA_APP TO PROCEDURE my_db_schema.my_soda_proc;

See Also:

Oracle Database Security Guide for information about role SODA_APP

Chapter 3
Getting Started with SODA for PL/SQL

3-3



Example 3-1    Getting Started Run-Through

DECLARE
    collection      SODA_COLLECTION_T;
    document        SODA_DOCUMENT_T;
    foundDocument   SODA_DOCUMENT_T;
    result_document SODA_DOCUMENT_T;
    docKey          VARCHAR2(100);
    status          NUMBER;
BEGIN
    -- Create a collection.
    collection := DBMS_SODA.create_collection('myCollectionName');

    -- The default collection has BLOB content, so create a BLOB-based 
document.
    document := SODA_DOCUMENT_T(
                  b_content => utl_raw.cast_to_raw('{"name" : 
"Alexander"}'));

    -- Insert the document and get it back.
    result_document := collection.insert_one_and_get(document);

    -- The result document has auto-generated components, such as key and 
version,
    -- in addition to the content.  Print the auto-generated document key.
    docKey := result_document.get_key;
    DBMS_OUTPUT.put_line('Auto-generated key is ' || docKey);

    -- Commit the insert
    COMMIT;

    -- Find the document in the collection by its key
    foundDocument := collection.find_one(docKey);

    -- Get and print some document components: key, content, etc.
    DBMS_OUTPUT.put_line('Document components:');
    DBMS_OUTPUT.put_line('  Key: ' || foundDocument.get_key);
    DBMS_OUTPUT.put_line('  Content: '
                         || 
utl_raw.cast_to_varchar2(foundDocument.get_blob));
    DBMS_OUTPUT.put_line('  Creation timestamp: ' || 
foundDocument.get_created_on);
    DBMS_OUTPUT.put_line('  Last-modified timestamp: '
                         || foundDocument.get_last_modified);
    DBMS_OUTPUT.put_line('  Version: ' || foundDocument.get_version);
END;
/

Example 3-2    Sample Output for Getting Started Run-Through

Example 3-1 results in output similar to this. The values of the auto-generated
components will differ in any actual execution.

Auto-generated key is 96F35328CD3B4F96BF3CD01BCE9EBDF5
Document components:

Chapter 3
Getting Started with SODA for PL/SQL

3-4



  Key: 96F35328CD3B4F96BF3CD01BCE9EBDF5
  Content: {"name" : "Alexander"}
  Creation timestamp: 2017-09-19T01:05:06.160289Z
  Last-modified timestamp: 2017-09-19T01:05:06.160289Z
  Version: FD69FB6ACE73FA735EC7922CA4A02DDE0690462583F9EA2AF754D7E342B3EE78

3.2 Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.create_collection to create a document
collection with the default metadata.

Example 3-3 uses PL/SQL function DBMS_SODA.create_collection to create a
collection that has the default metadata.

The default collection metadata has the following characteristics.

• Each document in the collection has these document components:

– Key

– Content

– Creation timestamp

– Last-modified timestamp

– Version

• The collection can store only JSON documents.

• Document keys are automatically generated for documents that you add to the
collection.

The default collection configuration is recommended in most cases, but collections are
highly configurable. When you create a collection you can specify things such as the
following:

• Storage details, such as the name of the table that stores the collection and the
names and data types of its columns.

• The presence or absence of columns for creation timestamp, last-modified
timestamp, and version.

• Whether the collection can store only JSON documents.

• Methods of document key generation, and whether document keys are client-
assigned or generated automatically.

• Methods of version generation.

This configurability also lets you map a new collection to an existing database table.

To configure a collection in a nondefault way, supply custom collection metadata,
expressed in JSON, as the second argument to DBMS_SODA.create_collection.

If you do not care about the details of collection configuration then pass only the
collection name to DBMS_SODA.create_collection — no second argument. That
creates a collection with the default configuration.

If a collection with the same name already exists then it is simply opened and its
handle is returned. If custom metadata is provided and it does not match the metadata

Chapter 3
Creating a Document Collection with SODA for PL/SQL

3-5



of the existing collection then the collection is not opened and an error is raised. (To
match, all metadata fields must have the same values.)

Note:

Unless otherwise stated, the remainder of this documentation assumes that
a collection has the default configuration.

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about the default naming of a collection table

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL function DBMS_SODA.create_collection

Example 3-3    Creating a Collection That Has the Default Metadata

This example creates collection myCollectionName with the default metadata.

DECLARE
    collection  SODA_Collection_T;
BEGIN
    collection := DBMS_SODA.create_collection('myCollectionName');   
END;
/

Related Topics

• Getting the Metadata of an Existing Collection
You use SODA_COLLECTION_T method get_metadata() to get all of the metadata for
a collection, as a JSON document.

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata,
as JSON data, to PL/SQL function DBMS_SODA.create_collection.

• Checking Whether a Given Collection Exists with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.open_collection to check for the
existence of a given collection. It returns a SQL NULL value if a collection with the
specified name does not exist; otherwise, it returns the collection object.

Chapter 3
Creating a Document Collection with SODA for PL/SQL

3-6



3.3 Opening an Existing Document Collection with SODA for
PL/SQL

You can use PL/SQL function DBMS_SODA.open_collection to open an existing
document collection.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about PL/SQL function DBMS_SODA.open_collection

Example 3-4    Opening an Existing Document Collection

This example uses PL/SQL function DBMS_SODA.open_collection to open the
collection named myCollectionName and returns a SODA_COLLECTION_T instance that
represents this collection. If the value returned is NULL then there is no existing
collection named myCollectionName.

DECLARE
    collection  SODA_COLLECTION_T;
BEGIN
    collection := DBMS_SODA.open_collection('myCollectionName');
END;
/

3.4 Checking Whether a Given Collection Exists with SODA
for PL/SQL

You can use PL/SQL function DBMS_SODA.open_collection to check for the existence
of a given collection. It returns a SQL NULL value if a collection with the specified name
does not exist; otherwise, it returns the collection object.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about PL/SQL function DBMS_SODA.open_collection

Example 3-5    Checking for a Collection with a Given Name

This example uses DBMS_SODA.open_collection to try to open an existing collection
named myCollectionName. It prints a message if no such collection exists.

DECLARE
    collection SODA_COLLECTION_T;

Chapter 3
Opening an Existing Document Collection with SODA for PL/SQL

3-7



BEGIN
    collection := DBMS_SODA.open_collection('myCollectionName');
    IF collection IS NULL THEN
        DBMS_OUTPUT.put_line('Collection does not exist');
    END IF;
END;
/

Related Topics

• Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.create_collection to create a
document collection with the default metadata.

3.5 Discovering Existing Collections with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.list_collection_names to discover existing
collections.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about PL/SQL function DBMS_SODA.list_collection_names

Example 3-6    Printing the Names of All Existing Collections

This example uses PL/SQL function DBMS_SODA.list_collection_names to obtain a
list of the collection names. It then iterates over that list, printing out the names.

DECLARE
    coll_list  SODA_COLLNAME_LIST_T;
BEGIN
    coll_list := DBMS_SODA.list_collection_names;
    DBMS_OUTPUT.put_line('Number of collections: ' || 
to_char(coll_list.count));
    DBMS_OUTPUT.put_line('Collection List: ');
    IF (coll_list.count > 0) THEN
        -- Loop over the collection name list
        FOR i IN
            coll_list.first .. coll_list.last
        LOOP
            DBMS_OUTPUT.put_line(coll_list(i));
        END LOOP;  
    ELSE   
        DBMS_OUTPUT.put_line('No collections found');
    END IF;
END;
/

Chapter 3
Discovering Existing Collections with SODA for PL/SQL

3-8



3.6 Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document collection.

Caution:

Do not use SQL to drop the database table that underlies a collection.
Dropping a collection involves more than just dropping its database table. In
addition to the documents that are stored in its table, a collection has
metadata, which is also persisted in Oracle Database. Dropping the table
underlying a collection does not also drop the collection metadata.

Note:

Day-to-day use of a typical application that makes use of SODA does not
require that you drop and re-create collections. But if you need to do that for
any reason then this guideline applies.

Do not drop a collection and then re-create it with different metadata if there
is any application running that uses the collection in any way. Shut down any
such applications before re-creating the collection, so that all live SODA
objects are released.

There is no problem just dropping a collection. Any read or write operation on
a dropped collection raises an error. And there is no problem dropping a
collection and then re-creating it with the same metadata. But if you re-create
a collection with different metadata, and if there are any live applications
using SODA objects, then there is a risk that a stale collection is accessed,
and no error is raised in this case.

Note:

Commit all writes to a collection before using DBMS_SODA.drop_collection.
For the drop to succeed, all uncommitted writes to the collection must first be
either committed or rolled back — you must explicitly use SQL COMMIT or
ROLLBACK.. Otherwise, an exception is raised.

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about PL/SQL function DBMS_SODA.drop_collection

Chapter 3
Dropping a Document Collection with SODA for PL/SQL

3-9



Example 3-7    Dropping a Document Collection

This example uses PL/SQL function DBMS_SODA.drop_collection to drop collection
myCollectionName.

If the collection cannot be dropped because of uncommitted write operations then an
exception is thrown. If the collection is dropped successfully, the returned status is 1;
otherwise, the status is 0. In particular, if a collection with the specified name does not
exist, the returned status is 0 — no exception is thrown.

DECLARE
    status  NUMBER := 0;
BEGIN
    status := DBMS_SODA.drop_collection('myCollectionName');
END;
/

Related Topics

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a
SQL COMMIT statement. If you want to roll back changes, use a SQL ROLLBACK
statement.

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method
(member function) insert_one() or insert_one_and_get(). These methods
create document keys automatically, unless the collection is configured with client-
assigned keys and the input document provides the key.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method
replace_one() or replace_one_and_get() with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() and filter().

3.7 Creating Documents with SODA for PL/SQL
You use a constructor for PL/SQL object type SODA_DOCUMENT_T to create SODA
documents.

SODA for PL/SQL represents a document using an instance of PL/SQL object type
SODA_DOCUMENT_T. This object is a carrier of document content and other document
components, such as the document key.

Here is an example of the content of a JSON document:

{ "name" :    "Alexander",
  "address" : "1234 Main Street",
  "city" :    "Anytown",
  "state" :   "CA",
  "zip" :     "12345"
}

Chapter 3
Creating Documents with SODA for PL/SQL

3-10



A document has these components:

• Key

• Content

• Creation time stamp

• Last-modified time stamp

• Version

• Media type ("application/json" for JSON documents)

You create a document by invoking one of the SODA_DOCUMENT_T constructors. The
constructors differ according to the content type of the documents they create:
VARCHAR2, CLOB, or BLOB.

You can write a document of a given content type only to a collection whose content
column has been defined for documents of that type. For example, you can write
(insert or replace) only a document with content type BLOB to a collection whose
contentColumn has a sqlType value of BLOB. (BLOB is the default content type for a
collection.)

There are different ways to invoke a document constructor:

• You can provide the document key, as the first argument.

In a collection, each document must have a key. You must provide the key when
you create the document only if you expect to insert the document into a collection
that does not automatically generate keys for inserted documents. By default,
collections are configured to automatically generate document keys.

• You must provide the document content. If you also provide the document key
then the content is the second argument to the constructor.

If you provide only the content then you must specify both the formal and actual
content parameters, separated by the association arrow (=>): v_content =>
actual, c_content => actual, or b_content => actual, for content of type
VARCHAR2, CLOB, or BLOB, respectively.

• You can provide the document media type, which defaults to "application/json".
Unless you provide all of the parameters (key, content, and media type) you must
specify both the formal and actual media-type parameters, , separated by the
association arrow (=>): media_type => actual.

Parameters that you do not provide explicitly default to NULL.

Providing only the content parameter can be useful for creating documents that you
insert into a collection that automatically generates document keys. Providing only the
key and content can be useful for creating documents that you insert into a collection
that has client-assigned keys. Providing (the content and) the media type can be
useful for creating non-JSON documents (using a media type other than
"application/json").

However you invoke a SODA_DOCUMENT_T constructor, doing so sets the components
that you provide (the content, possibly the key, and possibly the media type) to the
values you provide for them. And it sets the values of the creation time stamp, last-
modified time stamp, and version to a SQL NULL value.

Object type SODA_DOCUMENT_T provides getter methods (also known as getters), which
each retrieve a particular component from a document. (Getter get_data_type()

Chapter 3
Creating Documents with SODA for PL/SQL

3-11



actually returns information about the content component, rather than the component
itself.)

Table 3-1    Getter Methods for Documents (SODA_DOCUMENT_T)

Getter Method Description

get_created_on() Get the creation time stamp for the document,
as a VARCHAR2 value.

get_key() Get the unique key for the document, as a
VARCHAR2 value.

get_last_modified() Get the last-modified time stamp for the
document, as a VARCHAR2 value.

get_media_type() Get the media type for the document, as a
VARCHAR2 value.

get_version() Get the document version, as a VARCHAR2
value.

get_blob() Get the document content, as a BLOB value.

The document content must be BLOB data, or
else an error is raised.

get_clob() Get the document content, as a CLOB value.

The document content must be CLOB data, or
else an error is raised.

get_varchar2() Get the document content, as a VARCHAR2
value.

The document content must be VARCHAR2
data, or else an error is raised.

get_data_type() Get the data type of the document content, as
a PLS_INTEGER value. The value is
DBMS_SODA.DOC_VARCHAR2 for VARCHAR2
content, DBMS_SODA.DOC_BLOB for BLOB
content, and DBMS_SODA.DOC_CLOB for CLOB
content.

Immediately after you create a document, the getter methods return these values:

• Values provided to the constructor

• "application/json", for method get_media_type(), if the media type was not
provided

• NULL for other components

Each content storage data type has an associated content-component getter method.
You must use the getter method that is appropriate to each content storage type:
get_varchar2() for VARCHAR2 storage, get_clob() for CLOB storage, and get_blob()
for BLOB storage. Otherwise, an error is raised.

Example 3-8 creates a SODA_DOCUMENT_T instance, providing only content. The media
type defaults to "application/json", and the other document components default to
NULL.

Chapter 3
Creating Documents with SODA for PL/SQL

3-12



Example 3-9 creates a SODA_DOCUMENT_T instance, providing the document key and
content. The media type defaults to "application/json", and the other document
components default to NULL.

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of SODA documents

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for restrictions that apply for SODA documents

• Oracle Database PL/SQL Packages and Types Reference for
information about object type SODA_DOCUMENT_T constructors and getter
methods

Example 3-8    Creating a Document with JSON Content

This example uses SODA_DOCUMENT_T constructors to create three documents, one of
each content type. The example provides only the document content (which is the
same for each).

The content parameter is different in each case; it specifies the SQL data type to use
to store the content. The first document creation here uses content parameter
v_content, which specifies VARCHAR2 content; the second uses parameter c_content,
which specifies CLOB content; the third uses parameter b_content, which specifies
BLOB content.

After creating each document, the example uses getter methods to get the document
content. Note that the getter method that is appropriate for each content storage type
is used: get_blob() for BLOB content, and so on.

The document with content type BLOB would be appropriate for writing to the collection
created in Example 3-3, because that collection (which has the default metadata)
accepts documents with (only) BLOB content. The other two documents would not be
appropriate for that collection; trying to insert them would raise an error.

DECLARE
    v_doc  SODA_DOCUMENT_T;
    b_doc  SODA_DOCUMENT_T;
    c_doc  SODA_DOCUMENT_T;
BEGIN
    -- Create VARCHAR2 document
    v_doc := SODA_DOCUMENT_T(v_content => '{"name" : "Alexander"}');
    DBMS_OUTPUT.put_line('Varchar2 Doc content: ' || v_doc.get_varchar2);
    
    -- Create BLOB document
    b_doc := SODA_DOCUMENT_T(
               b_content => utl_raw.cast_to_raw('{"name" : "Alexander"}'));
    DBMS_OUTPUT.put_line('Blob Doc content: ' ||
                         utl_raw.cast_to_varchar2(b_doc.get_blob));

    -- Create CLOB document
    c_doc := SODA_DOCUMENT_T(c_content => '{"name" : "Alexander"}');

Chapter 3
Creating Documents with SODA for PL/SQL

3-13



    DBMS_OUTPUT.put_line('Clob Doc content: ' || c_doc.get_clob);
END;
/

Example 3-9    Creating a Document with Document Key and JSON Content

This example is similar to Example 3-8, but it provides the document key (myKey) as
well as the document content.

DECLARE
    v_doc  SODA_DOCUMENT_T;
    b_doc  SODA_DOCUMENT_T;
    c_doc  SODA_DOCUMENT_T;
BEGIN
    -- Create VARCHAR2 document
    v_doc := SODA_DOCUMENT_T('myKey' , v_content => '{"name" : 
"Alexander"}');
    DBMS_OUTPUT.put_line('Varchar2 Doc key: ' || v_doc.get_key);
    DBMS_OUTPUT.put_line('Varchar2 Doc content: ' || v_doc.get_varchar2);
        
    -- Create BLOB document
    b_doc := SODA_DOCUMENT_T('myKey' ,
                             b_content => utl_raw.cast_to_raw('{"name" : 
"Alexander"}'));
    DBMS_OUTPUT.put_line('Blob Doc key: ' || b_doc.get_key);
    DBMS_OUTPUT.put_line('Blob Doc content: ' ||
                         utl_raw.cast_to_varchar2(b_doc.get_blob));
    
    -- Create CLOB document
    c_doc := SODA_DOCUMENT_T('myKey' , c_content => '{"name" : 
"Alexander"}');
    DBMS_OUTPUT.put_line('Clob Doc key: ' || c_doc.get_key);
    DBMS_OUTPUT.put_line('Clob Doc content: ' || c_doc.get_clob);
END;
/

Related Topics

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method
(member function) insert_one() or insert_one_and_get(). These methods
create document keys automatically, unless the collection is configured with client-
assigned keys and the input document provides the key.

• Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATION_T terminal method get_one() or get_cursor() to
find one or multiple documents in a collection, respectively. You can use terminal
method count() to count the documents in a collection. You can use nonterminal
methods, such as key(), keys(), and filter(), to specify conditions for a find
operation.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method
replace_one() or replace_one_and_get() with nonterminal method key() to

Chapter 3
Creating Documents with SODA for PL/SQL

3-14



uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() and filter().

• Removing Documents from a Collection with SODA for PL/SQL
You can remove documents from a collection by chaining together
SODA_OPERATION_T method remove() with nonterminal method key(), keys(), or
filter() to identify documents to be removed. You can optionally make use of
additional nonterminal methods such as version().

3.8 Inserting Documents into Collections with SODA for
PL/SQL

To insert a document into a collection, you invoke SODA_COLLECTION_T method
(member function) insert_one() or insert_one_and_get(). These methods create
document keys automatically, unless the collection is configured with client-assigned
keys and the input document provides the key.

Both method insert_one() and method insert_one_and_get() insert a document
into a collection and automatically set the values of the creation time stamp, last-
modified time stamp, and version (if the collection is configured to include these
components and to generate the version automatically, as is the case by default).

When you insert a document, any document components that currently have NULL
values (as a result of creating the document without providing those component
values) are updated to have appropriate, automatically generated values. Thereafter,
other SODA operations on a document can automatically update the last-modified
timestamp and version components.

In addition to inserting the document, insert_one_and_get returns a result document,
which contains the generated document components, such as the key, and which
does not contain the content of the inserted document.

Note:

If the collection is configured with client-assigned document keys (which is
not the default case), and the input document provides a key that identifies
an existing document in the collection, then these methods throw an
exception.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method insert_one()

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method insert_one_and_get()

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_DOCUMENT_T getter methods

Chapter 3
Inserting Documents into Collections with SODA for PL/SQL

3-15



Example 3-10    Inserting a Document into a Collection

This example creates a document and inserts it into a collection using
SODA_COLLECTION_T method insert_one() .

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    status      NUMBER;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');
    document := SODA_DOCUMENT_T(
                  b_content => utl_raw.cast_to_raw('{"name" : 
"Alexander"}'));

    -- Insert a document
    status := collection.insert_one(document);
END;
/

Example 3-11    Inserting a Document into a Collection and Getting the Result
Document

This example creates a document and inserts it into a collection using method
insert_one_and_get(). It then gets (and prints) each of the generated components
from the result document (which contains them). To obtain the components it uses
SODA_DOCUMENT_T methods get_key(), get_created_on(), get_last_modified(), and
get_version().

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    ins_doc     SODA_DOCUMENT_T;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');
    document := SODA_DOCUMENT_T(
                  b_content => utl_raw.cast_to_raw('{"name" : 
"Alexander"}'));
    ins_doc := collection.insert_one_and_get(document);

    -- Insert the document and get its components
    IF ins_doc IS NOT NULL THEN
        DBMS_OUTPUT.put_line('Inserted document components:');
        DBMS_OUTPUT.put_line('Key: ' || ins_doc.get_key);
        DBMS_OUTPUT.put_line('Creation timestamp: ' || 
ins_doc.get_created_on);
        DBMS_OUTPUT.put_line('Last modified timestamp: '
                             || ins_doc.get_last_modified);
        DBMS_OUTPUT.put_line('Version: ' || ins_doc.get_version);
    END IF;
END;
/

Chapter 3
Inserting Documents into Collections with SODA for PL/SQL

3-16



Related Topics

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a
SQL COMMIT statement. If you want to roll back changes, use a SQL ROLLBACK
statement.

• Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document
collection.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method
replace_one() or replace_one_and_get() with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() and filter().

3.9 SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of SODA_COLLECTION_T.
You can chain together SODA_OPERATION_T methods, to specify read and write
operations against a collection.

Note:

Data type SODA_OPERATION_T was added to SODA for PL/SQL in Oracle
Database 18.3. You need that database release or later to use it.

You typically use SODA_OPERATION_T to specify all SODA read and write operations
other than inserts. You chain together SODA_OPERATION_T nonterminal methods to
narrow the scope or otherwise condition or qualify a read or write operation.

Nonterminal methods return the same SODA_OPERATION_T instance on which they are
invoked, which allows you to chain them together. The nonterminal methods are
key(), keys(), filter(), version(), skip(), and limit().

A SODA_OPERATION_T terminal method at the end of the chain carries out the actual
read or write operation. The methods for read operations are get_cursor(),
get_one(), and count(). The methods for write operations are replace_one(),
replace_one_and_get(), and remove().

Unless documentation states otherwise, you can chain together any nonterminal
methods, and you can end the chain with any terminal method. However, not all
combinations make sense. For example, it does not make sense to chain method
version() together with methods that do not uniquely identify the document, such as
keys().

Related Topics

• Finding Documents in Collections with SODA for PL/SQL
You can use SODA_OPERATION_T terminal method get_one() or get_cursor() to
find one or multiple documents in a collection, respectively. You can use terminal
method count() to count the documents in a collection. You can use nonterminal

Chapter 3
SODA for PLSQL Read and Write Operations

3-17



methods, such as key(), keys(), and filter(), to specify conditions for a find
operation.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method
replace_one() or replace_one_and_get() with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() and filter().

• Removing Documents from a Collection with SODA for PL/SQL
You can remove documents from a collection by chaining together
SODA_OPERATION_T method remove() with nonterminal method key(), keys(), or
filter() to identify documents to be removed. You can optionally make use of
additional nonterminal methods such as version().

See Also:

Oracle Database PL/SQL Packages and Types Reference for information
about SODA_OPERATION_T, including each of its methods

3.10 Finding Documents in Collections with SODA for
PL/SQL

You can use SODA_OPERATION_T terminal method get_one() or get_cursor() to
find one or multiple documents in a collection, respectively. You can use terminal
method count() to count the documents in a collection. You can use nonterminal
methods, such as key(), keys(), and filter(), to specify conditions for a find
operation.

Note:

Data type SODA_OPERATION_T was added to SODA for PL/SQL in Oracle
Database 18.3. You need that database release or later to use it.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method find()

• Oracle Database PL/SQL Packages and Types Reference for
information about data type SODA_OPERATION_T and its methods

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_DOCUMENT_T getter methods

• Oracle Database SQL Language Reference for information about SQL/
JSON function json_query

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-18



Example 3-12    Finding All Documents in a Collection

This example uses SODA_COLLECTION_T methods find() and getCursor() to obtain a
cursor for a query result list that contains each document in a collection. It then uses
the cursor in a WHILE statement to get and print the content of each document in the
result list, as a string. Finally, it closes the cursor.

It uses SODA_DOCUMENT_T methods get_key(), get_blob(), get_created_on(),
get_last_modified(), and get_version(), to get the document components, which it
prints. It passes the document content to SQL/JSON function json_query to pretty-
print (using keyword PRETTY).

Note:

To avoid resource leaks, close any cursor that you no longer need.

DECLARE
    collection    SODA_COLLECTION_T;
    document      SODA_DOCUMENT_T;
    cur           SODA_CURSOR_T;
    status        BOOLEAN;
BEGIN
    -- Open the collection to be queried
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Open the cursor to fetch the documents
    cur := collection.find().get_cursor();

    -- Loop through the cursor
    WHILE cur.has_next
    LOOP
      document := cur.next;
      IF document IS NOT NULL THEN
          DBMS_OUTPUT.put_line('Document components:');
          DBMS_OUTPUT.put_line('Key: ' || document.get_key);
          DBMS_OUTPUT.put_line('Content: ' || 
json_query(document.get_blob, '$' PRETTY));
          DBMS_OUTPUT.put_line('Creation timestamp: ' || 
document.get_created_on);
          DBMS_OUTPUT.put_line('Last modified timestamp: ' || 
document.get_last_modified);
          DBMS_OUTPUT.put_line('Version: ' || document.get_version);
      END IF;
    END LOOP;

    -- IMPORTANT: You must close the cursor, to release resources.
    status := cur.close;
END;
/

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-19



Example 3-13    Finding the Unique Document That Has a Given Document Key

This example uses SODA_COLLECTION_T methods find(), key(), and get_one() to find
the unique document whose key is "key1".

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Find a document using a key
    document := collection.find().key('key1').get_one;

    IF document IS NOT NULL THEN
        DBMS_OUTPUT.put_line('Document components:');
        DBMS_OUTPUT.put_line('Key: ' || document.get_key);
        DBMS_OUTPUT.put_line('Content: ' || JSON_QUERY(document.get_blob, 
'$' PRETTY));
        DBMS_OUTPUT.put_line('Creation timestamp: ' || 
document.get_created_on);
        DBMS_OUTPUT.put_line('Last modified timestamp: ' || 
document.get_last_modified);
        DBMS_OUTPUT.put_line('Version: ' || document.get_version);
    END IF;
END;
/

Example 3-14    Finding Multiple Documents with Specified Document Keys

This example defines key list myKeys, with (string) keys "key1", "key2", and "key3". It
then finds the documents that have those keys, and it prints their components.
SODA_COLLECTION_T method keys()  specifies the documents with the given keys.

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    cur         SODA_CURSOR_T;
    status      BOOLEAN;
    myKeys      SODA_KEY_LIST_T;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Set the keys list
    myKeys := SODA_KEY_LIST_T('key1', 'key2', 'key3');

    -- Find documents using keys
    cur := collection.find().keys(myKeys).get_cursor;

    -- Loop through the cursor
    WHILE cur.has_next
    LOOP
      document := cur.next;

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-20



      IF document IS NOT NULL THEN
          DBMS_OUTPUT.put_line('Document components:');
          DBMS_OUTPUT.put_line('Key: ' || document.get_key);
          DBMS_OUTPUT.put_line('Content: ' || 
json_query(document.get_blob, '$' PRETTY));
          DBMS_OUTPUT.put_line('Creation timestamp: ' || 
document.get_created_on);
          DBMS_OUTPUT.put_line('Last modified timestamp: ' || 
document.get_last_modified);
          DBMS_OUTPUT.put_line('Version: ' || document.get_version);
      END IF;
    END LOOP;
    status := cur.close;
END;
/

Example 3-15    Finding Documents with a Filter Specification

SODA_COLLECTION_T method filter() provides a powerful way to filter JSON
documents in a collection. Its parameter is a JSON query-by-example (QBE, also
called a filter specification).

The syntax of filter specifications is an expressive pattern-matching language for
JSON documents. This example uses only a very simple QBE, just to indicate how you
make use of one in SODA for PL/SQL.

This example does the following:

1. Creates a filter specification that looks for all JSON documents whose name field
has value "Alexander".

2. Uses the filter specification to find the matching documents.

3. Prints the components of each document.

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    cur         SODA_CURSOR_T;
    status      BOOLEAN;
    qbe         VARCHAR2(128);
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Define the filter specification (QBE)
    qbe := '{"name" : "alexander"}';

    -- Open a cursor for the filtered documents
    cur := collection.find().filter(qbe).get_cursor;

    -- Loop through the cursor
    WHILE cur.has_next
    LOOP
      document := cur.next;
      IF document IS NOT NULL THEN
          DBMS_OUTPUT.put_line('Document components:');

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-21



          DBMS_OUTPUT.put_line('Key: ' || document.get_key);
          DBMS_OUTPUT.put_line('Content: ' || 
JSON_QUERY(document.get_blob, '$' PRETTY));
          DBMS_OUTPUT.put_line('Creation timestamp: ' || 
document.get_created_on);
          DBMS_OUTPUT.put_line('Last modified timestamp: ' || 
document.get_last_modified);
          DBMS_OUTPUT.put_line('Version: ' || document.get_version);
      END IF;
    END LOOP;
    status := cur.close;
END;
/

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an introduction to SODA filter specifications

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about SODA filter specifications

Example 3-16    Specifying Pagination Queries with Methods skip() and limit()

This example uses SODA_COLLECTION_T methods filter(), skip() and limit() in a
pagination query.

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    cur         SODA_Cursor_T;
    status      BOOLEAN;
    qbe         VARCHAR2(128);
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Define the filter
    qbe := '{"name" : "Alexander"}';

    -- Find all documents that match the QBE, skip over the first 1000 of 
them,
    -- limit the number of returned documents to 100
    cur := collection.find().filter(qbe).skip(1000).limit(100).get_cursor;

    -- Loop through the cursor
    WHILE cur.has_next
    LOOP
      document := cur.next;
      IF document IS NOT NULL THEN
          DBMS_OUTPUT.put_line('Document components:');
          DBMS_OUTPUT.put_line('Key: ' || document.get_key);

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-22



          DBMS_OUTPUT.put_line('Content: ' ||
                               JSON_QUERY(document.get_blob, '$' PRETTY));
          DBMS_OUTPUT.put_line('Creation timestamp: ' || 
                               document.get_created_on);
          DBMS_OUTPUT.put_line('Last modified timestamp: ' ||
                               document.get_last_modified);
          DBMS_OUTPUT.put_line('Version: ' || document.get_version);
      END IF;
    END LOOP;
    status := cur.close;
END;
/

Example 3-17    Specifying Document Version

This example uses SODA_COLLECTION_T method version() to specify the document
version. This is useful for implementing optimistic locking, when used with the terminal
methods for write operations.

You typically use version() together with method key(), which specifies the
document. You can also use version() with methods keyLike() and filter(),
provided they identify at most one document.

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Find a particular version of the document that has a given key
    document := collection.find().key('key1').version('version1').get_one;

    IF document IS NOT NULL THEN
        DBMS_OUTPUT.put_line('Document components:');
        DBMS_OUTPUT.put_line('Key: ' || document.get_key);
        DBMS_OUTPUT.put_line('Content: ' ||
                             JSON_QUERY(document.get_blob, '$' PRETTY));
        DBMS_OUTPUT.put_line('Creation timestamp: ' || 
document.get_created_on);
        DBMS_OUTPUT.put_line('Last modified timestamp: ' ||
                             document.get_last_modified);
        DBMS_OUTPUT.put_line('Version: ' || document.get_version);
    END IF;
END;
/

Example 3-18    Counting the Number of Documents Found

This example uses SODA_COLLECTION_T method count() to get a count of all of the
documents in the collection. It then gets a count of all of the documents that are
returned by a filter specification (QBE).

DECLARE
    collection  SODA_COLLECTION_T;

Chapter 3
Finding Documents in Collections with SODA for PL/SQL

3-23



    num_docs    NUMBER;
    qbe         VARCHAR2(128);
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Get a count of all documents in the collection
    num_docs := collection.find().count;
    DBMS_OUTPUT.put_line('Count: ' || num_docs);
    
    -- Set the filter
    qbe := '{"name" : "Alexander"}';

    -- Get a count of all documents in the collection that match a filter 
spec
    num_docs := collection.find().filter(qbe).count;
    DBMS_OUTPUT.put_line('Count: ' || num_docs);
END;
/

Related Topics

• SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of
SODA_COLLECTION_T. You can chain together SODA_OPERATION_T methods, to
specify read and write operations against a collection.

3.11 Replacing Documents in a Collection with SODA for
PL/SQL

You can chain together SODA_OPERATION_T replace-operation method replace_one()
or replace_one_and_get() with nonterminal method key() to uniquely identify a
document to be replaced. You can optionally make use of additional nonterminal
methods such as version() and filter().

Note:

Data type SODA_OPERATION_T was added to SODA for PL/SQL in Oracle
Database 18.3. You need that database release or later to use it.

In addition to replacing the content, methods replace_one() and
replace_one_and_get() update the values of the last-modified timestamp and the
version. Replacement does not change the document key or the creation timestamp.

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

3-24



See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method find()

• Oracle Database PL/SQL Packages and Types Reference for
information about data type SODA_OPERATION_T and its methods

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method replace_one()

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method replace_one_and_get()

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_DOCUMENT_T getter methods

Example 3-19    Replacing a Document in a Collection, Given Its Key, and Getting
the Result Document

This example replaces a document in a collection, given its key. It then gets (and
prints) the key and the generated components from the result document. To obtain the
components it uses SODA_DOCUMENT_T methods get_key(), get_created_on(),
get_last_modified(), and get_version().

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    new_doc     SODA_DOCUMENT_T;
BEGIN
    collection := DBMS_SODA.open_collection('myCollectionName');
    document := SODA_DOCUMENT_T(
                  b_content => utl_raw.cast_to_raw('{"name" : "Sriky"}'));
    new_doc := collection.find().key('key1').replace_one_and_get(document);

    IF new_doc IS NOT NULL THEN
        DBMS_OUTPUT.put_line('Document components:');
        DBMS_OUTPUT.put_line('Key: ' || new_doc.get_key);
        DBMS_OUTPUT.put_line('Creation timestamp: ' || 
new_doc.get_created_on);
        DBMS_OUTPUT.put_line('Last modified timestamp: ' ||
                             new_doc.get_last_modified);
        DBMS_OUTPUT.put_line('Version: ' || new_doc.get_version);
    END IF;
END;
/

Example 3-20    Replacing a Particular Version of a Document

To implement optimistic locking when replacing a document, you can chain together
methods key() and version(), as in this example.

DECLARE
    collection  SODA_COLLECTION_T;

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

3-25



    document    SODA_DOCUMENT_T;
    new_doc     SODA_DOCUMENT_T;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Replace version 'version1' of the document that has key 'key1'
    new_doc := SODA_DOCUMENT_T(
                  b_content => utl_raw.cast_to_raw('{"name" : "Sriky"}'));
    document := 
collection.find().key('key1').version('version1').replace_one_and_get(new_d
oc);

    IF document IS NOT NULL THEN
        DBMS_OUTPUT.put_line('Document components:');
        DBMS_OUTPUT.put_line('Key: ' || document.get_key);
        DBMS_OUTPUT.put_line('Content: ' ||
                             JSON_QUERY(document.get_blob, '$' PRETTY));
        DBMS_OUTPUT.put_line('Creation timestamp: ' || 
document.get_created_on);
        DBMS_OUTPUT.put_line('Last modified timestamp: ' ||
                             document.get_last_modified);
        DBMS_OUTPUT.put_line('Version: ' || document.get_version);
    END IF;
END;
/

Related Topics

• SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of
SODA_COLLECTION_T. You can chain together SODA_OPERATION_T methods, to
specify read and write operations against a collection.

Related Topics

• Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a
SQL COMMIT statement. If you want to roll back changes, use a SQL ROLLBACK
statement.

• Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document
collection.

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method
(member function) insert_one() or insert_one_and_get(). These methods
create document keys automatically, unless the collection is configured with client-
assigned keys and the input document provides the key.

Chapter 3
Replacing Documents in a Collection with SODA for PL/SQL

3-26



3.12 Removing Documents from a Collection with SODA for
PL/SQL

You can remove documents from a collection by chaining together SODA_OPERATION_T
method remove() with nonterminal method key(), keys(), or filter() to identify
documents to be removed. You can optionally make use of additional nonterminal
methods such as version().

Note:

Data type SODA_OPERATION_T was added to SODA for PL/SQL in Oracle
Database 18.3. You need that database release or later to use it.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method find()

• Oracle Database PL/SQL Packages and Types Reference for
information about data type SODA_OPERATION_T and its methods

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_OPERATION_T method remove()

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method remove_one()

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_DOCUMENT_T getter methods

Example 3-21    Removing a Document from a Collection Using a Document Key

This example removes the document whose document key is "key1". The removal
status (1 if the document was removed; 0 if not) is returned and printed.

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    status      NUMBER;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Remove document that has key 'key1'
    status := collection.find().key('key1').remove;

    -- Count is 1 if  document was found
    IF status = 1 THEN
        DBMS_OUTPUT.put_line('Document was removed!');

Chapter 3
Removing Documents from a Collection with SODA for PL/SQL

3-27



    END IF;
END;
/

Example 3-22    Removing a Particular Version of a Document

To implement optimistic locking when removing a document, you can chain together
methods key() and version(), as in this example.

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    status      NUMBER;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Remove version 'version1' of the document that has key 'key1'.
    status := collection.find().key('key1').version('version1').remove;

    -- Count is 1, if specified version of document with key 'key1' is 
found
    IF status = 1 THEN
        DBMS_OUTPUT.put_line('Document was removed!');
    END IF;
END;
/

Example 3-23    Removing Documents from a Collection Using Document Keys

This example removes the documents whose keys are key1, key2, and key3.

DECLARE
    collection  SODA_COLLECTION_T;
    document    SODA_DOCUMENT_T;
    cur         SODA_CURSOR_T;
    num_docs    NUMBER;
    myKeys      SODA_KEY_LIST_T;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Define the keys list
    myKeys := SODA_KEY_LIST_T('key1','key2','key3');

    -- Remove documents using keys
    num_docs := collection.find().keys(myKeys).remove;

    DBMS_OUTPUT.put_line('Number of documents removed: ' || num_docs);
END;
/

Chapter 3
Removing Documents from a Collection with SODA for PL/SQL

3-28



Example 3-24    Removing JSON Documents from a Collection Using a Filter

This example uses a filter to remove the JSON documents whose greeting field has
value "hello". It then prints the number of documents removed.

DECLARE
    collection  SODA_COLLECTION_T;
    num_docs    NUMBER;
    qbe         VARCHAR2(128);
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Define the filter specification
    qbe := '{ "greeting" : "hello" }';

    -- Get a count of all documents in the collection that match the QBE
    num_docs := collection.find().filter(qbe).remove;
    DBMS_OUTPUT.put_line('Number of documents removed: ' || num_docs);
END;
/

Related Topics

• SODA for PLSQL Read and Write Operations
A SODA_OPERATION_T instance is returned by method find() of
SODA_COLLECTION_T. You can chain together SODA_OPERATION_T methods, to
specify read and write operations against a collection.

3.13 Indexing the Documents in a Collection with SODA for
PL/SQL

You index the documents in a SODA collection with SODA_COLLECTION_T method
create_index(). Its input parameter is a textual JSON index specification. This can
specify support for B-tree, spatial, full-text, and ad hoc indexing, and it can specify
support for a JSON data guide.

Note:

SODA for PL/SQL support for indexing was added in Oracle Database 18.3.
You need that database release or later to use this SODA feature.

You drop an index on a SODA collection with SODA_COLLECTION_T method
drop_Index().

A JSON search index is used for full-text and ad hoc structural queries, and for
persistent recording and automatic updating of JSON data-guide information.

An Oracle Spatial and Graph index is used for GeoJSON (spatial) data.

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

3-29



See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for an overview of using SODA indexing

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for information about SODA index specifications

• Oracle Database JSON Developer’s Guide for information about JSON
search indexes

• Oracle Database JSON Developer’s Guide for information about
persistent data-guide information as part of a JSON search index

• Oracle Database JSON Developer’s Guide for information about spatial
indexing of GeoJSON data.

Example 3-25    Creating a B-Tree Index for a JSON Field with SODA for PL/SQL

This example creates a B-tree non-unique index for numeric field address.zip of the
JSON documents in collection myCollectionName.

DECLARE
    collection  SODA_COLLECTION_T;
    spec        VARCHAR2(700);
    status      NUMBER;
BEGIN
    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Define the index specification
    spec := '{"name"   : "ZIPCODE_IDX",
              "fields" : [{"path"     : "address.zip",
                           "datatype" : "number",
                           "order"    : "asc"}]}';
    -- Create the index
    status := collection.create_index(spec);
    DBMS_OUTPUT.put_Line('Status: ' || status);
END;
/

Example 3-26    JSON Search Indexing with SODA for PL/SQL

This example indexes the documents in collection myCollectionName for ad hoc
queries and full-text search (queries using QBE operator $contains), and it
automatically accumulates and updates data-guide information about your JSON
documents (aggregate structural and type information). The index specification has
only field name (no field fields).

DECLARE
    collection  SODA_COLLECTION_T;
    spec        VARCHAR2(700);
    status      NUMBER;
BEGIN

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

3-30



    -- Open the collection
    collection := DBMS_SODA.open_collection('myCollectionName');

    -- Define the index specification
    indexSpec := '{"name" : "SEARCH_AND_DATA_GUIDE_IDX"}';
               
    -- Create the index
    status := collection.create_index(indexSpec);
    DBMS_OUTPUT.put_Line('Status: ' || status);
END;
/

The simple index specification it uses is equivalent to this one, which makes explicit
the default values:

{"name" : "SEARCH_AND_DATA_GUIDE_IDX",
 "dataguide" : "on",
 "search_on" : "text_value"}

If you instead wanted only ad hoc (search) indexing then you would explicitly specify a
value of "off" for field dataguide. If you instead wanted only data-guide support then
you would explicitly specify a value of "none" for field search_on.

Note:

To create a data guide-enabled JSON search index, or to data guide-enable
an existing JSON search index, you need database privilege CTXAPP and
Oracle Database Release 12c (12.2.0.1) or later.

Example 3-27    Dropping an Index with SODA for PL/SQL

To drop an index on a SODA collection, just pass the index name to
SODA_COLLECTION_T method drop_index(). This example drops index myIndex.

DECLARE
    coll    SODA_COLLECTION_T;
    status  NUMBER;
BEGIN
    -- Open the collection
    coll := dbms_soda.open_Collection('myCollectionName');

    -- Drop the index using name
    status := coll.drop_index('myIndex');
    DBMS_OUTPUT.put_Line('Status: ' || status);
END;
/

Chapter 3
Indexing the Documents in a Collection with SODA for PL/SQL

3-31



3.14 Getting a Data Guide for a Collection with SODA for
PL/SQL

You use SODA_COLLECTION_T method get_Data_Guide() to get a data guide for a
collection. A data guide is a JSON document that summarizes the structural and type
information of the JSON documents in the collection. It records metadata about the
fields used in those documents.

Note:

SODA for PL/SQL support for JSON data guide was added in Oracle
Database 18.3. You need that database release or later to use this SODA
feature.

Before you can obtain a data guide for your collection you must create a data guide-
enabled JSON search index on it. Example 3-26 shows how to do that.

Example 3-28    Getting a Data Guide with SODA for PL/SQL

This example gets a data guide for collection MyCollectionName using
SODA_COLLECTION_T method get_Data_Guide(). It then uses SQL/JSON function
json_query to pretty-print the content of the data-guide document. Finally, it frees the
temporary LOB used for the data-guide document.

DECLARE
    collection   SODA_COLLECTION_T;
    dataguide    CLOB;
BEGIN
    -- Open the collection.
    collection := dbms_soda.open_Collection('myCollectionName');
    
    -- Get the data guide for the collection.
    dataguide := collection.get_Data_Guide;
    DBMS_OUTPUT.put_line(json_query(dataguide, '$' pretty));
    
    -- Important: Free the temporary LOB.
    IF dbms_lob.isTemporary(dataguide) = 1
    THEN
        dbms_lob.freeTemporary(dataguide);
    end if;   
END;
/

Chapter 3
Getting a Data Guide for a Collection with SODA for PL/SQL

3-32



3.15 Handling Transactions with SODA for PL/SQL
As usual in PL/SQL and SQL, you can treat individual SODA read and write
operations, or groups of them, as a transaction. To commit a transaction, use a SQL
COMMIT statement. If you want to roll back changes, use a SQL ROLLBACK statement.

SODA operations DBMS_SODA.create_collection and DBMS_SODA.drop_collection
do not automatically commit before or after they perform their action. This differs from
the behavior of SQL DDL statements, which commit both before and after performing
their action.

One consequence of this is that, before a SODA collection can be dropped, any
outstanding write operations to it must be explicitly committed or rolled back — you
must explicitly use SQL COMMIT or ROLLBACK. This is because
DBMS_SODA.drop_collection does not itself issue commit before it performs its action.
In this, the behavior of DBMS_SODA.drop_collection differs from that of a SQL DROP
TABLE statement.

See Also:

• Oracle Database SQL Language Reference for information about the
SQL COMMIT statement

• Oracle Database SQL Language Reference for information about the
SQL ROLLBACK statement

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method insert_one()

Example 3-29    Transaction Involving SODA Document Insertion and
Replacement

This example shows the use of SQL COMMIT and ROLLBACK statements in an
anonymous PL/SQL block. It opens a SODA collection, inserts a document, and then
replaces its content. The combination of the document insertion and document content
replacement operations is atomic: a single transaction.

DECLARE
    collection SODA_COLLECTION_T;
    status NUMBER;
BEGIN
    collection := DBMS_SODA.open_collection('myCollectionName');
    status := collection.insert_one(
                SODA_Document_T(
                  b_content => 
utl_raw.cast_to_raw('{"a":"aval","b":"bval","c":"cval"}'));
    status := collection.replace_one('key1', 
SODA_DOCUMENT_T('{"x":"xval","y":"yval"}'));
    -- Commit the transaction
    COMMIT;
    DBMS_OUTPUT.put_line('Transaction is committed');
-- Catch exceptions and roll back if an error is raised

Chapter 3
Handling Transactions with SODA for PL/SQL

3-33



EXCEPTION
  WHEN OTHERS THEN
    DBMS_OUTPUT.put_line (SQLERRM);
    ROLLBACK;
    DBMS_OUTPUT.put_line('Transaction has been rolled back');
END;
/

Related Topics

• Dropping a Document Collection with SODA for PL/SQL
You use PL/SQL function DBMS_SODA.drop_collection to drop a document
collection.

• Inserting Documents into Collections with SODA for PL/SQL
To insert a document into a collection, you invoke SODA_COLLECTION_T method
(member function) insert_one() or insert_one_and_get(). These methods
create document keys automatically, unless the collection is configured with client-
assigned keys and the input document provides the key.

• Replacing Documents in a Collection with SODA for PL/SQL
You can chain together SODA_OPERATION_T replace-operation method
replace_one() or replace_one_and_get() with nonterminal method key() to
uniquely identify a document to be replaced. You can optionally make use of
additional nonterminal methods such as version() and filter().

Chapter 3
Handling Transactions with SODA for PL/SQL

3-34



4
SODA Collection Configuration Using
Custom Metadata

SODA collections are highly configurable. You can customize collection metadata, to
obtain different behavior from that provided by default.

Note:

You can customize collection metadata to obtain different behavior from that
provided by default. However, changing some components requires
familiarity with Oracle Database concepts, such as SQL data types. Oracle
recommends that you do not change such components unless you have a
compelling reason. Because SODA collections are implemented on top of
Oracle Database tables (or views), many collection configuration
components are related to the underlying table configuration.

For example, if you change the content column type from BLOB (the default
value) to VARCHAR2 then you must understand the implications (content size
for VARCHAR2 is limited to 32K bytes, character-set conversion can take place,
and so on).

• Getting the Metadata of an Existing Collection
You use SODA_COLLECTION_T method get_metadata() to get all of the metadata for
a collection, as a JSON document.

• Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata,
as JSON data, to PL/SQL function DBMS_SODA.create_collection.

See Also:

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for general information about SODA document collections and
their metadata

• Oracle Database Introduction to Simple Oracle Document Access
(SODA) for reference information about collection metadata components

4-1



4.1 Getting the Metadata of an Existing Collection
You use SODA_COLLECTION_T method get_metadata() to get all of the metadata for a
collection, as a JSON document.

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method get_metadata()

• Oracle Database SQL Language Reference for information about SQL/
JSON function json_query

Example 4-1    Getting the Metadata of a Collection

This example shows the result of invoking SODA_COLLECTION_T method
get_metadata() on the collection with the default configuration that was created using 
Example 3-3. (It also uses SQL/JSON function json_query, with keyword PRETTY, to
pretty-print the JSON data obtained.)

DECLARE
    collection  SODA_COLLECTION_T;
BEGIN
    collection := DBMS_SODA.open_collection('myCollectionName');
    IF collection IS NULL THEN
        DBMS_OUTPUT.put_line('Collection does not exist');
    ELSE
        DBMS_OUTPUT.put_line('Metadata: '
                             || json_query(collection.get_metadata, '$' 
PRETTY));
    END IF;
END;
/

Example 4-2    Default Collection Metadata

{
   "schemaName" : "mySchemaName",
   "tableName" : "myTableName",
   "keyColumn" :
   {
      "name" : "ID",
      "sqlType" : "VARCHAR2",
      "maxLength" : 255,
      "assignmentMethod" : "UUID"
   },
   "contentColumn" :
   {
      "name" : "JSON_DOCUMENT",
      "sqlType" : "BLOB",

Chapter 4
Getting the Metadata of an Existing Collection

4-2



      "compress" : "NONE",
      "cache" : true,
      "encrypt" : "NONE",
      "validation" : "STANDARD"
   },
   "versionColumn" :
   {
     "name" : "VERSION",
     "method" : "SHA256"
   },
   "lastModifiedColumn" :
   {
     "name" : "LAST_MODIFIED"
   },
   "creationTimeColumn" :
   {
      "name" : "CREATED_ON"
   },
   "readOnly" : false
}

4.2 Creating a Collection That Has Custom Metadata
To create a document collection that has custom metadata, you pass its metadata, as
JSON data, to PL/SQL function DBMS_SODA.create_collection.

The optional second argument to PL/SQL function DBMS_SODA.create_collection is a
SODA collection specification. It is JSON data that specifies the metadata for the
new collection.

If a collection with the same name already exists then it is simply opened and its
handle is returned. If the custom metadata provided does not match the metadata of
the existing collection then the collection is not opened and an error is raised. (To
match, all metadata fields must have the same values.)

See Also:

• Oracle Database PL/SQL Packages and Types Reference for
information about PL/SQL function DBMS_SODA.create_collection

• Oracle Database PL/SQL Packages and Types Reference for
information about SODA_COLLECTION_T method get_metadata()

• Oracle Database SQL Language Reference for information about SQL/
JSON function json_query

Example 4-3    Creating a Collection That Has Custom Metadata

This example creates a collection with custom metadata that specifies two metadata
columns, named KEY (for document keys), and JSON (for document content type
JSON). The key assignment method is CLIENT, and the content-column SQL data type
is VARCHAR2. The example uses SODA_COLLECTION_T method get_metadata() to get

Chapter 4
Creating a Collection That Has Custom Metadata

4-3



the complete metadata from the newly created collection, which it passes to SQL/
JSON function json_query to pretty-print (using keyword PRETTY).

DECLARE
    collection SODA_COLLECTION_T;
    metadata VARCHAR2(4000) :=
      '{"keyColumn" : {"name" : "KEY",  "assignmentMethod": "CLIENT" },
        "contentColumn" : { "name" : "JSON", "sqlType": "VARCHAR2" } }';
BEGIN
    collection := DBMS_SODA.create_collection('myCustomCollection', 
metadata);
    DBMS_OUTPUT.put_line('Collection specification: ' ||
                         json_query(collection.get_metadata, '$' PRETTY));
END;
/

This is the pretty-printed output. The values of fields for keyColumn and contentColumn
that are not specified in the collection specification are defaulted. The values of fields
other than those provided in the collection specification (keyColumn and
contentColumn) are also defaulted. The value of field tableName is defaulted from the
collection name. The value of field schemaName is the database schema (user) that is
current when the collection is created.

Collection specification: {
  "schemaName" : "mySchemaName",
  "tableName" : "myCustomCollection",
  "keyColumn" :
  {
    "name" : "KEY",
    "sqlType" : "VARCHAR2",
    "maxLength" : 255,
    "assignmentMethod" : "CLIENT"
  },

"contentColumn" :
  {
    "name" : "JSON",
    "sqlType" : "VARCHAR2",
    "maxLength" : 4000,
    "validation" : "STANDARD"
  },
  "readOnly" : false
}

Related Topics

• Creating a Document Collection with SODA for PL/SQL
You can use PL/SQL function DBMS_SODA.create_collection to create a
document collection with the default metadata.

Chapter 4
Creating a Collection That Has Custom Metadata

4-4



Index

C
chaining together SODA_OPERATION_T

methods, 3-17
collection configuration, 4-1
collection metadata

custom, 4-3
getting, 4-2

collections
checking existence, 3-7
creating, 3-5

with custom metadata, 4-3
discovering, 3-8
dropping, 3-9
opening, 3-7

during creation, 3-5
committing a transaction, 3-33
components of SODA documents, 3-10
create_collection function

transaction handling, 3-33
creating collections, 3-5

with custom metadata, 4-3
creating documents, 3-10

D
database role SODA_APP, 3-2
DBMS_SODA package subprograms

create_collection
example, 3-5
transaction handling, 3-33

drop_collection
example, 3-9
transaction handling, 3-33

list_collection_names
example, 3-8

open_collection
example, 3-7

DBMS_SODA.DOC_BLOB constant, 3-10
DBMS_SODA.DOC_CLOB constant, 3-10
DBMS_SODA.DOC_VARCHAR2 constant, 3-10
deleting collections

See dropping collections
deleting documents from collections

See removing documents from collections

discovering collections
checking existence, 3-7
listing, 3-8

documents
components, 3-10
creating, 3-10
finding in collections, 3-18
inserting into collections, 3-15
metadata, 3-10
removing from collections, 3-27
replacing in collections, 3-24

drop_collection function
example, 3-9
transaction handling, 3-33

dropping collections, 3-9

E
existing collection, checking for, 3-7

F
filter() SODA_COLLECTION_T method, 3-18
find() SODA_COLLECTION_T method, 3-18
finding documents in collections, 3-18

G
get_blob() SODA_DOCUMENT_T method, 3-10
get_clob() SODA_DOCUMENT_T method, 3-10
get_created_on() SODA_DOCUMENT_T

method, 3-10
get_cursor() SODA_COLLECTION_T method,

3-18
get_data_type() SODA_DOCUMENT_T method,

3-10
get_key() SODA_DOCUMENT_T method, 3-10
get_last_modified() SODA_DOCUMENT_T

method, 3-10
get_media_type() SODA_DOCUMENT_T

method, 3-10
get_metadata() SODA_COLLECTION_T method,

4-2
get_one() SODA_COLLECTION_T method, 3-18

Index-1



get_varchar2() SODA_DOCUMENT_T method,
3-10

get_version() SODA_DOCUMENT_T method,
3-10

getter methods, document, 3-10
getting collection metadata, 4-2
getting document components, 3-10

H
handling transactions, 3-33

I
insert_one_and_get() SODA_COLLECTION_T

method, 3-15
insert_one() SODA_COLLECTION_T method,

3-15
inserting documents into collections, 3-15

L
list_collection_names function

example, 3-8
listing collections, 3-8

M
metadata of collections

getting, 4-2
metadata of documents

getting, 3-10

N
nonterminal SODA methods, definition, 3-17

O
open_collection function

example, 3-7
opening collections, 3-7

during creation, 3-5

P
prerequisites for using SODA for PL/SQL, 1-1

R
read and write operations, 3-17
remove() SODA_OPERATION_T method, 3-27
removing documents from collections, 3-27
replace_one_and_get() SODA_OPERATION_T

method, 3-24
replace_one() SODA_OPERATION_T method,

3-24
replacing documents in collections, 3-24
role SODA_APP, 3-2
rolling back a transaction, 3-33

S
SODA_APP database role, 3-2
SODA_COLLECTION_T methods

filter(), 3-18
find(), 3-18
get_cursor(), 3-18
get_metadata(), 4-2
get_one(), 3-18
insert_one_and_get(), 3-15
insert_one(), 3-15

SODA_DOCUMENT_T methods
get_blob(), 3-10
get_clob(), 3-10
get_created_on(), 3-10
get_data_type(), 3-10
get_key(), 3-10
get_last_modified(), 3-10
get_media_type(), 3-10
get_varchar2(), 3-10
get_version(), 3-10

SODA_DOCUMENT_T object type and
constructors, 3-10

SODA_OPERATION_T methods, 3-17
remove(), 3-27
replace_one_and_get(), 3-24
replace_one(), 3-24

T
terminal SODA methods, definition, 3-17
transaction handling, 3-33

W
write and read operations, 3-17

Index

Index-2


	Contents
	List of Examples
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 SODA for PL/SQL Prerequisites
	2 SODA for PL/SQL Overview
	3 Using SODA for PL/SQL
	3.1 Getting Started with SODA for PL/SQL
	3.2 Creating a Document Collection with SODA for PL/SQL
	3.3 Opening an Existing Document Collection with SODA for PL/SQL
	3.4 Checking Whether a Given Collection Exists with SODA for PL/SQL
	3.5 Discovering Existing Collections with SODA for PL/SQL
	3.6 Dropping a Document Collection with SODA         for PL/SQL
	3.7 Creating Documents with SODA for PL/SQL
	3.8 Inserting Documents into Collections with SODA for PL/SQL
	3.9 SODA for PLSQL Read and Write         Operations
	3.10 Finding Documents in Collections with SODA         for PL/SQL
	3.11 Replacing Documents in a Collection with         SODA for PL/SQL
	3.12 Removing Documents from a Collection with         SODA for PL/SQL
	3.13 Indexing the Documents in a Collection         with SODA for PL/SQL
	3.14 Getting a Data Guide for a Collection with         SODA for PL/SQL
	3.15 Handling Transactions with SODA for PL/SQL

	4 SODA Collection Configuration Using Custom Metadata
	4.1 Getting the Metadata of an Existing Collection
	4.2 Creating a Collection That Has Custom Metadata

	Index

