Oracle® Database
JDBC Developer's Guide

Release 18c
E83761-05
July 2021

ORACLE"

Oracle Database JDBC Developer's Guide, Release 18c
E83761-05

Copyright © 1999, 2021, Oracle and/or its affiliates.
Primary Author: Tulika Das

Contributing Authors: Brian Martin, Venkatasubramaniam lyer, Elizabeth Hanes Perry, Brian Wright,
Thomas Pfaeffle

Contributors: Kuassi Mensah, Douglas Surber, Paul Lo, Ed Shirk, Tong Zhou, Jean de Lavarene, Rajkumar
Irudayaraj, Ashok Shivarudraiah, Angela Barone, Rosie Chen, Sunil Kunisetty, Joyce Yang, Mehul Bastawala,
Luxi Chidambaran, Vidya Nayak, Srinath Krishnaswamy, Swati Rao, Pankaj Chand, Aman Manglik, Longxing
Deng, Magdi Morsi, Ron Peterson, Ekkehard Rohwedder, Catherine Wong, Scott Urman, Jerry Schwarz,
Steve Ding, Soulaiman Htite, Anthony Lai, Prabha Krishna, Ellen Siegal, Susan Kraft, Sheryl Maring

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software" or "commercial computer software documentation” pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs
embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle
computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the
license contained in the applicable contract. The terms governing the U.S. Government's use of Oracle cloud
services are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

Preface

Audience XXIV
Documentation Accessibility XXiv
Related Documents XXiV
Conventions XXV

Changes in This Release for Oracle Database JDBC Developer's Guide

Changes in Oracle Database 18c XXX
Part | Overview
1 Introducing JDBC
1.1 Overview of Oracle JDBC Drivers 1-1
1.2 Choosing the Appropriate Driver 1-3
1.3 Feature Differences Between JDBC OCI and Thin Drivers 1-4
1.4 Environments and Support 1-4
1.4.1 Supported JDK and JDBC Versions 1-5
1.4.2 JINI and Java Environments 1-5
1.4.3 JDBC and IDEs 1-5
1.5 Feature List 1-5
2 Getting Started
2.1 Version Compatibility for Oracle JDBC Drivers 2-1
2.2 Verifying a JDBC Client Installation 2-2
2.2.1 Checking the Installed Directories and Files 2-2
2.2.2 Checking the Environment Variables 2-3
2.2.3 Ensuring that the Java Code Can Be Compiled and Run 2-5
2.2.4 Determining the Version of the JDBC Driver 2-5
2.2.5 Testing the JDBC and Database Connection 2-5

ORACLE

2.3 Basic Steps in JDBC

2-7

2.3.1 Importing Packages 2-8
2.3.2 Opening a Connection to a Database 2-8
2.3.3 Creating a Statement Object 2-9
2.3.4 Running a Query and Retrieving a Result Set Object 2-10
2.3.5 Processing the Result Set Object 2-10
2.3.6 Closing the Result Set and Statement Objects 2-11
2.3.7 Making Changes to the Database 2-11
2.3.8 About Committing Changes 2-13
2.3.8.1 Changing Commit Behavior 2-14
2.3.9 Closing the Connection 2-15
2.4 Sample: Connecting, Querying, and Processing the Results 2-15
2.5 Support for Invisible Columns 2-16
2.6 Support for Verifying JSON Data 2-18
2.7 Support for Implicit Results 2-19
2.8 Support for Lightweight Connection Validation 2-21
2.9 Support for Deprioritization of Database Nodes 2-23
2.10 Support for Oracle Connection Manager in Traffic Director Mode 2-23
2.10.1 Modes of Running Oracle Connection Manager in Traffic Director Mode 2-24
2.10.2 Benefits of Oracle Connection Manager in Traffic Director Mode 2-25
2.10.3 Restrictions for Oracle Connection Manager in Traffic Director Mode 2-27
2.11 Stored Procedure Calls in JDBC Programs 2-27
2.11.1 PL/SQL Stored Procedures 2-28
2.11.2 Java Stored Procedures 2-28
2.12 About Processing SQL Exceptions 2-28
Part Il Oracle JDBC
3 JDBC Standards Support
3.1 Support for JIDBC 2.0 Standard 3-1
3.1.1 Data Type Support 3-2
3.1.2 Standard Feature Support 3-2
3.1.3 Extended Feature Support 3-2
3.1.4 Standard versus Oracle Performance Enhancement APIs 3-2
3.2 Support for JDBC 3.0 Standard 3-2
3.2.1 Overview of Transaction Savepoints 3-3
3.2.1.1 About Creating a Savepoint 3-3
3.2.1.2 About Rolling Back to a Savepoint 3-4
3.2.1.3 About Releasing a Savepoint 3-4
3.2.1.4 About Checking Savepoint Support 3-4
ORACLE v

3.2.1.5 Savepoint Notes 3-4
3.2.2 Retrieval of Auto-Generated Keys 3-4
3.2.2.1 java.sgl.Statement 3-5
3.2.2.2 Sample Code 3-5
3.2.2.3 Limitations of Auto-Generated Keys 3-6
3.2.3 JDBC 3.0 LOB Interface Methods 3-6
3.2.4 Result Set Holdability 3-6
3.3 Support for JIDBC 4.0 Standard 3-6
3.3.1 Wrapper Pattern Support 3-7
3.3.2 SQLXML Type 3-8
3.3.3 Enhanced Exception Hierarchy and SQLException 3-10
3.3.4 The Rowld Data Type 3-10
3.3.5 LOB Creation 3-10
3.3.6 National Language Character Set Support 3-11
3.4 Support for JIDBC 4.1 Standard 3-11
3.4.1 setClientinfo Method 3-11
3.4.2 getObject Method 3-13
3.5 Support for JIDBC 4.2 Standard 3-14
4 Oracle Extensions
4.1 Overview of Oracle Extensions 4-1
4.2 Features of the Oracle Extensions 4-1
4.2.1 Database Management Using JDBC 4-2
4.2.2 Support for Oracle Data Types 4-2
4.2.3 Support for Oracle Objects 4-3
4.2.4 Support for Schema Naming 4-4
4.2.5 DML Returning 4-4
4.2.6 PL/SQL Associative Arrays 4-5
4.3 Oracle JDBC Packages 4-5
4.3.1 Package oracle.sql 4-5
4.3.2 Package oracle.jdbc 4-9
4.4 Oracle Character Data Types Support 4-10
4.4.1 SQL CHAR Data Types 4-10
4.4.2 SQL NCHAR Data Types 4-10
443 Class oracle.sql.CHAR 4-11
4.5 Additional Oracle Type Extensions 4-13
45.1 Oracle ROWID Type 4-14
4.5.2 Oracle REF CURSOR Type Category 4-15
4.5.3 Oracle BINARY_FLOAT and BINARY_DOUBLE Types 4-17
4.5.4 Oracle SYS.ANYTYPE and SYS.ANYDATA Types 4-18
ORACLE v

4.5.5 The oracle.jdbc Package 4-20

455.1 Interface oracle.jdbc.OracleConnection 4-22

4.5.5.2 Interface oracle.jdbc.OracleStatement 4-23

4.5.5.3 Interface oracle.jdbc.OraclePreparedStatement 4-23

4.5.5.4 Interface oracle.jdbc.OracleCallableStatement 4-24

4555 Interface oracle.jdbc.OracleResultSet 4-24

4.5.5.6 Interface oracle.jdbc.OracleResultSetMetaData 4-24

45.5.7 Class oracle.jdbc.OracleTypes 4-24

4.6 DML Returning 4-27
4.6.1 Oracle-Specific APIs 4-27
4.6.2 About Running DML Returning Statements 4-28
4.6.3 Example of DML Returning 4-28
4.6.4 Limitations of DML Returning 4-29

4.7 Accessing PL/SQL Associative Arrays 4-30

5 Features Specific to JDBC Thin

5.1 Overview of IDBC Thin Client 5-1
5.2 Additional Features Supported 5-1
5.2.1 Default Support for Native XA 5-1
5.2.2 Support for Transaction Guard 5-2
5.2.3 Support for Application Continuity 5-2

6 Features Specific to JDBC OCI Driver

6.1 OCI Connection Pooling 6-1
6.2 Transparent Application Failover 6-1
6.3 OCI Native XA 6-1
6.4 OCI Instant Client 6-2
6.4.1 Overview of Instant Client 6-2
6.4.2 OCI Instant Client Shared Libraries 6-2
6.4.3 Benefits of Instant Client 6-3
6.4.4 JDBC OCI Instant Client Installation Process 6-3
6.4.5 Usage of Instant Client 6-5
6.4.6 About Patching Instant Client Shared Libraries 6-5
6.4.7 Regeneration of Data Shared Library and ZIP files 6-6
6.4.8 Database Connection Names for OCI Instant Client 6-6
6.4.9 Environment Variables for OCI Instant Client 6-9
6.5 About Instant Client Light (English) 6-9
6.5.1 Data Shared Library for Instant Client Light (English) 6-10
6.5.2 Globalization Settings 6-10

ORACLE vi

6.5.3 Operation 6-11
6.5.4 Installing Instant Client Light (English) 6-11
7 Server-Side Internal Driver
7.1 Overview of the Server-Side Internal Driver 7-1
7.2 Connecting to the Database 7-1
7.3 About Session and Transaction Context 7-3
7.4 Testing JDBC on the Server 7-4
7.5 Loading an Application into the Server 7-4
7.5.1 Using the Loadjava Utility 7-4
7.5.2 Using the JVM Command Line 7-6
Part [ll Connection and Security
8 Data Sources and URLs
8.1 About Data Sources 8-1
8.1.1 Overview of Oracle Data Source Support for INDI 8-1
8.1.2 Features and Properties of Data Sources 8-2
8.1.3 Creating a Data Source Instance and Connecting 8-5
8.1.4 Creating a Data Source Instance, Registering with INDI, and Connecting 8-5
8.1.5 Supported Connection Properties 8-7
8.1.6 About Using Roles for SYS Login 8-7
8.1.7 Configuring Database Remote Login 8-7
8.1.8 Using Bequeath Connection and SYS Logon 8-9
8.1.9 Setting Properties for Oracle Performance Extensions 8-9
8.1.10 Support for Network Data Compression 8-10
8.2 Database URLs and Database Specifiers 8-10
8.2.1 Support for Internet Protocol Version 6 8-11
8.2.2 Support for HTTPS Proxy Configuration 8-12
8.2.3 Database Specifiers 8-12
8.2.4 Thin-style Service Name Syntax 8-13
8.2.5 Support for Delay in Connection Retries 8-14
8.2.6 TNSNames Alias Syntax 8-14
8.2.7 LDAP Syntax 8-15
9 JDBC Client-Side Security Features
9.1 Support for Oracle Advanced Security 9-2
9.1.1 Overview of Oracle Advanced Security 9-2
ORACLE Vii

9.1.2 JDBC OCI Driver Support for Oracle Advanced Security 9-3

9.1.3 JDBC Thin Driver Support for Oracle Advanced Security 9-4

9.2 Support for Login Authentication 9-4
9.3 Support for Strong Authentication 9-5
9.4 Support for Network Encryption and Integrity 9-5
9.4.1 Overview of IDBC Support for Network Encryption and Integrity 9-6
9.4.2 JDBC OCI Driver Support for Encryption and Integrity 9-7
9.4.3 JDBC Thin Driver Support for Encryption and Integrity 9-7
9.4.4 Setting Encryption and Integrity Parameters in Java 9-8

9.5 Support for SSL 9-10
9.5.1 Overview of IDBC Support for SSL 9-10
9.5.2 About Managing Certificates and Wallets 9-12
9.5.3 About Keys and certificates containers 9-12
9.5.4 Database Connectivity Over TLS Version 1.2 Using JDBC Thin and JKS 9-13
9.5.5 Automatic SSL Connection Configuration 9-13
9.5.5.1 Provider Resolution 9-14

9.5.5.2 Automatic Key Store Type (KSS) Resolution 9-14

9.5.6 Support for Default SSL Context 9-15
9.5.7 Support for Key Store Service 9-16

9.6 Support for Kerberos 9-16
9.6.1 Overview of IDBC Support for Kerberos 9-16
9.6.2 Configuring Windows to Use Kerberos 9-17
9.6.3 Configuring Oracle Database to Use Kerberos 9-17
9.6.4 Code Example for Using Kerberos 9-18

9.7 Support for RADIUS 9-23
9.7.1 Overview of JIDBC Support for RADIUS 9-23
9.7.2 Configuring Oracle Database to Use RADIUS 9-23
9.7.3 Code Example for Using RADIUS 9-24

9.8 About Secure External Password Store 9-25

10 Proxy Authentication

10.1 About Proxy Authentication 10-1
10.2 Types of Proxy Connections 10-2
10.3 Creating Proxy Connections 10-3
10.4 Closing a Proxy Session 10-5
10.5 Caching Proxy Connections 10-5
10.6 Limitations of Proxy Connections 10-5

ORACLE viii

Part IV Data Access and Manipulation

11 Accessing and Manipulating Oracle Data

11.1 Data Type Mappings 11-1
11.1.1 Table of Mappings 11-1
11.1.2 Notes Regarding Mappings 11-3

11.2 Data Conversion Considerations 11-4
11.2.1 Standard Types Versus Oracle Types 11-4
11.2.2 About Converting SQL NULL Data 11-5
11.2.3 About Testing for NULLs 11-5

11.3 Result Set and Statement Extensions 11-6

11.4 Comparison of Oracle get and set Methods to Standard JDBC 11-6
11.4.1 Standard getObject Method 11-7
11.4.2 Oracle getOracleObject Method 11-7
11.4.3 Summary of getObject and getOracleObject Return Types 11-8
11.4.4 Other getXXX Methods 11-10

11.4.4.1 Return Types of getXXX Methods 11-11
11.4.4.2 Special Notes about getXXX Methods 11-11

11.4.5 Data Types For Returned Objects from getObject and getXXX 11-11
11.4.6 The setObject and setOracleObject Methods 11-12
11.4.7 Other setXXX Methods 11-12
11.4.7.1 Input Data Binding 11-13
11.4.7.2 Method setFixedCHAR for Binding CHAR Data into WHERE Clauses 11-15

11.5 Using Result Set Metadata Extensions 11-16
11.6 About Using SQL CALL and CALL INTO Statements 11-16

12 Java Streams in JDBC

12.1 Overview of Java Streams 12-1
12.2 About Streaming LONG or LONG RAW Columns 12-2
12.2.1 Overview of Streaming LONG or LONG RAW Columns 12-2
12.2.2 LONG RAW Data Conversions 12-3
12.2.3 LONG Data Conversions 12-3
12.2.4 Examples:Streaming LONG RAW Data 12-4
12.2.5 About Avoiding Streaming for LONG or LONG RAW 12-6
12.3 About Streaming CHAR, VARCHAR, or RAW Columns 12-7
12.4 About Streaming LOBs and External Files 12-7
12.5 Relation Between Data Streaming and Multiple Columns 12-8
12.6 Closing a Stream 12-10
12.7 Notes and Precautions on Streams 12-10

ORACLE iX

12.7.1 About Streaming Data Precautions 12-10
12.7.2 About Using Streams to Avoid Limits on setBytes and setString 12-11
12.7.3 Relation Between Streaming and Row Prefetching 12-11
13 Working with Oracle Object Types
13.1 About Mapping Oracle Objects 13-1
13.2 About Using the Default STRUCT Class for Oracle Objects 13-2
13.2.1 Overview of Using the Struct Class 13-3
13.2.2 Retrieving STRUCT Objects and Attributes 13-3
13.2.3 About Creating STRUCT Objects 13-4
13.2.4 Binding STRUCT Obijects into Statements 13-4
13.2.5 STRUCT Automatic Attribute Buffering 13-4
13.3 About Creating and Using Custom Object Classes for Oracle Objects 13-5
13.3.1 Overview of Creating and Using Custom Object Classes 13-6
13.3.2 Relative Advantages of OracleData versus SQLData 13-6
13.3.3 About Type Maps for SQLData Implementations 13-7
13.3.4 About Creating Type Map and Defining Mappings for a SQLData
Implementation 13-7
13.3.4.1 Overview of Creating a Type Map and Defining Mappings 13-8
13.3.4.2 Adding Entries to an Existing Type Map 13-8
13.3.4.3 Creating a New Type Map 13-9
13.3.4.4 About Materializing Object Types not Specified in the Type Map 13-9
13.3.5 About Reading and Writing Data with a SQLData Implementation 13-10
13.3.6 About the OracleData Interface 13-12
13.3.7 About Reading and Writing Data with an OracleData Implementation 13-14
13.3.8 Additional Uses of OracleData 13-16
13.4 Object-Type Inheritance 13-17
13.4.1 About Creating Subtypes 13-17
13.4.2 About Implementing Customized Classes for Subtypes 13-18
13.4.2.1 About Using OracleData for Type Inheritance Hierarchy 13-19
13.4.2.2 About UsingSQLData for Type Inheritance Hierarchy 13-21
13.4.3 About Retrieving Subtype Objects 13-23
13.4.4 Creating Subtype Objects 13-26
13.4.5 Sending Subtype Objects 13-26
13.4.6 Accessing Subtype Data Fields 13-26
13.4.7 Inheritance Metadata Methods 13-28
13.5 About Describing an Object Type 13-28
13.5.1 Functionality for Getting Object Metadata 13-28
13.5.2 Retrieving Object Metadata 13-29

ORACLE

14 Working with LOBs and BFILEs

14.1 The LOB Data Types 14-1
14.2 Oracle SecureFiles 14-2
14.3 Data Interface for LOBs 14-3
14.3.1 Streamlined Mechanism 14-3
14.3.2 Input 14-3
14.3.3 Output 14-6
14.3.4 CallableSatement and IN OUT Parameter 14-6
14.3.5 Size Limitations 14-7
14.4 LOB Locator Interface 14-7
14.5 About Working With Temporary LOBs 14-9
14.6 About Opening Persistent LOBs with the Open and Close Methods 14-10
14.7 About Working with BFILES 14-11

15 Using Oracle Object References

15.1 Oracle Extensions for Object References 15-1
15.2 Retrieving and Passing an Object Reference 15-2
15.2.1 Retrieving an Object Reference from a Result Set 15-2
15.2.2 Retrieving an Object Reference from a Callable Statement 15-3
15.2.3 Passing an Object Reference to a Prepared Statement 15-3
15.3 Accessing and Updating Object Values Through an Object Reference 15-4

16 Working with Oracle Collections

16.1 Oracle Extensions for Collections 16-1
16.1.1 Overview of Oracle Collections 16-1
16.1.2 Choices in Materializing Collections 16-2
16.1.3 Creating Collections 16-2
16.1.4 Creating Multilevel Collection Types 16-3

16.2 Overview of Collection Functionality 16-3

16.3 ARRAY Performance Extension Methods 16-4
16.3.1 About Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive

Types 16-4
16.3.2 ARRAY Automatic Element Buffering 16-5
16.3.3 ARRAY Automatic Indexing 16-5

16.4 Creating and Using Arrays 16-6
16.4.1 Creating ARRAY Objects 16-6
16.4.2 Retrieving an Array and Its Elements 16-7

16.4.2.1 About Retrieving the Array 16-8
16.4.2.2 Data Retrieval Methods 16-8

ORACLE Xi

16.4.2.3 Comparing the Data Retrieval Methods 16-9
16.4.2.4 Retrieving Elements of a Structured Object Array According to a Type
Map 16-10
16.4.2.5 Retrieving a Subset of Array Elements 16-10
16.4.2.6 Retrieving Array Elements into an oracle.sgl.Datum Array 16-11
16.4.2.7 About Accessing Multilevel Collection Elements 16-12
16.4.3 Passing Arrays to Statement Objects 16-13
16.5 Using a Type Map to Map Array Elements 16-14
17 Result Set
17.1 Oracle JDBC Implementation Overview for Result Set Support 17-1
17.2 Resultset Limitations and Downgrade Rules 17-2
17.3 About Avoiding Update Conflicts 17-4
17.4 Row Fetch Size 17-4
17.4.1 Setting the Fetch Size 17-5
17.4.2 Presetting the Fetch Direction 17-5
17.5 About Refetching Rows 17-5
17.6 About Viewing Database Changes Made Internally and Externally 17-6
17.6.1 Visibility versus Detection of External Changes 17-7
17.6.2 Summary of Visibility of Internal and External Changes 17-7
17.6.3 Oracle Implementation of Scroll-Sensitive Result Sets 17-8
18 JDBC RowSets
18.1 Overview of JDBC RowSets 18-1
18.1.1 RowSet Properties 18-2
18.1.2 Events and Event Listeners 18-3
18.1.3 Command Parameters and Command Execution 18-4
18.1.4 About Traversing RowSets 18-4
18.2 About CachedRowSet 18-6
18.3 About JdbcRowSet 18-9
18.4 About WebRowSet 18-10
18.5 About FilteredRowSet 18-12
18.6 About JoinRowSet 18-14
19 Globalization Support
19.1 About Providing Globalization Support 19-1
19.2 NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property 19-3
19.3 New Methods for National Character Set Type Data in JDK 6 19-4
ORACLE Xii

Part V Performance and Scalability

20 Statement and Result Set Caching
20.1 About Statement Caching 20-1
20.1.1 Basics of Statement Caching 20-2
20.1.2 Implicit Statement Caching 20-2
20.1.3 Explicit Statement Caching 20-3
20.2 About Using Statement Caching 20-4
20.2.1 About Enabling and Disabling Statement Caching 20-4
20.2.2 About Closing a Cached Statement 20-6
20.2.3 About Using Implicit Statement Caching 20-7
20.2.3.1 Methods Used in Statement Allocation and Implicit Statement Caching 20-8
20.2.4 About Using Explicit Statement Caching 20-10
20.2.4.1 Methods Used to Retrieve Explicitly Cached Statements 20-11
20.3 About Reusing Statements Objects 20-11
20.3.1 About Using a Pooled Statement 20-11
20.3.2 About Closing a Pooled Statement 20-12
20.4 About Result Set Caching 20-13
20.4.1 Server-Side Result Set Cache 20-13
20.4.2 Client-Side Result Set Cache 20-14
20.4.2.1 Enabling the Client-Side Result Set Cache 20-14
20.4.2.2 Benefits of Client-Side Result Set Cache 20-15
20.4.2.3 Usage Guidelines in JDBC 20-15
21 Performance Extensions
21.1 Update Batching 21-1
21.1.1 Overview of Update Batching 21-1
21.1.2 Standard Update Batching 21-2
21.1.2.1 Limitations in the Oracle Implementation of Standard Batching 21-2
21.1.2.2 About Adding Operations to the Batch 21-2
21.1.2.3 About Processing the Batch 21-3
21.1.2.4 Row Count per Iteration for Array DMLs 21-4
21.1.2.5 About Committing the Changes in the Oracle Implementation of
Standard Batching 21-4
21.1.2.6 About Clearing the Batch 21-5
21.1.2.7 Update Counts in the Oracle Implementation of Standard Batching 21-5
21.1.2.8 Error Handling in the Oracle Implementation of Standard Batching 21-6
21.1.2.9 About Intermixing Batched Statements and Nonbatched Statements 21-7
21.1.3 Premature Batch Flush 21-8
ORACLE Xiii

21.2 Additional Oracle Performance Extensions 21-9

21.2.1 About Prefetching LOB Data 21-9
21.2.2 Oracle Row-Prefetching Limitations 21-11
21.2.3 About Defining Column Types 21-12
21.2.4 About Reporting DatabaseMetaData TABLE_ REMARKS 21-15

272 OCI Connection Pooling

22.1 Background of OCI Driver Connection Pooling 22-1
22.2 Comparison Between OCI Driver Connection Pooling and Shared Servers 22-2
22.3 About Defining an OCI Connection Pool 22-2
22.3.1 Overview of Creating an OCI Connection Pool 22-2
22.3.2 Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages 22-3
22.3.3 Creating an OCI Connection Pool 22-3
22.3.4 Setting the OCI Connection Pool Parameters 22-4
22.3.5 Checking the OCI Connection Pool Status 22-5
22.4 About Connecting to an OCI Connection Pool 22-6
22.5 Sample Code for OCI Connection Pooling 22-7
22.6 Statement Handling and Caching 22-9
22.7 JNDI and the OCI Connection Pool 22-10

23 Database Resident Connection Pooling

23.1 Overview of Database Resident Connection Pooling 23-1
23.2 Enabling Database Resident Connection Pooling 23-2

23.2.1 Enabling DRCP on the Server Side 23-2

23.2.2 Enabling DRCP on the Client Side 23-3
23.3 About Sharing Pooled Servers Across Multiple Connection Pools 23-4
23.4 DRCP Tagging 23-4
23.5 PL/SQL Callback for Session State Fix Up 23-5
23.6 APIs for Using DRCP 23-7

24 JDBC Support for Database Sharding

24.1 Overview of Database Sharding for JDBC Users 24-1
24.2 About Building the Sharding Key 24-3
24.3 APIs for Database Sharding Support 24-5
24.3.1 The OracleShardingKey Interface 24-5
24.3.2 The OracleShardingKeyBuilder Interface 24-6
24.3.3 The OracleConnectionBuilder Interface 24-6
24.3.4 Other New Classes and Methods for Database Sharding Support 24-7

ORACLE Xiv

24.4 JDBC Sharding Example 24-7

25 Oracle Advanced Queuing

25.1 Functionality and Framework of Oracle Advanced Queuing 25-1
25.2 Making Changes to the Database 25-2
25.3 AQ Asynchronous Event Notification 25-3
25.4 About Creating Messages 25-5

25.4.1 Creating Messages 25-5

25.4.2 AQ Message Properties 25-6

25.4.3 AQ Message Payload 25-7
25.5 Example: Creating a Message and Setting a Payload 25-7
25.6 Enqueuing Messages 25-7
25.7 Dequeuing Messages 25-8
25.8 Examples: Enqueuing and Dequeuing 25-10

26 Continuous Query Notification

26.1 Overview of Continuous Query Notification 26-1
26.2 Creating a Registration 26-2

26.2.1 Continuous Query Notification Registration Options 26-3
26.3 Associating a Query with a Registration 26-3
26.4 Notifying Database Change Events 26-4
26.5 Deleting a Registration 26-5

Part VI High Availability

27 Transaction Guard for Java

27.1 Overview of Transaction Guard for Java 27-1
27.2 Transaction Guard Support for XA Transactions 27-2
27.3 How to Use Transaction Guard with XA 27-2
27.4 Transaction Guard for Java APIs 27-3
27.4.1 Retrieving the Logical Transaction Identifiers 27-3
27.4.2 Retrieving the Updated Logical Transaction ldentifiers 27-4
27.4.2.1 Registering Event Listeners 27-4
27.4.2.2 Unregistering Event Listeners 27-4

27.5 Complete Example:Using Transaction Guard APIs 27-4
27.6 About Using Server-Side Transaction Guard APIs 27-5

ORACLE XV

28 Application Continuity for Java

28.1 About Configuring Oracle JDBC for Application Continuity for Java 28-2
28.1.1 Support for Concrete Classes with Application Continuity 28-5
28.2 About Configuring Oracle Database for Application Continuity for Java 28-5
28.3 Application Continuity Support for XA Data Source 28-6
28.4 About Identifying Request Boundaries in Application Continuity for Java 28-8
28.5 Support for Transparent Application Continuity 28-8
28.6 Establishing the Initial State Before Application Continuity Replays 28-9
28.6.1 No Callback 28-9
28.6.2 Connection Labeling 28-9
28.6.3 Connection Initialization Callback 28-10
28.6.3.1 Creating an Initialization Callback 28-10
28.6.3.2 Registering an Initialization Callback 28-11
28.6.3.3 Removing or Unregistering an Initialization Callback 28-11
28.6.4 About Enabling FAILOVER_RESTORE 28-11
28.7 About Delaying the Reconnection in Application Continuity for Java 28-14
28.7.1 Configuration Examples Related to Application Continuity for Java 28-14
28.7.1.1 Creating Services on Oracle RAC 28-14
28.7.1.2 Modifying Services on Single-Instance Databases 28-15
28.8 About Retaining Mutable Values in Application Continuity for Java 28-16
28.8.1 Grant and Revoke Interface 28-16
28.8.1.1 Dates and SYS_GUID Syntax 28-16
28.8.1.2 Sequence Syntax 28-16
28.8.1.3 GRANT ALL Statement 28-17
28.8.1.4 Rules for Grants on Mutable Values 28-17
28.9 Application Continuity Statistics 28-17
28.10 About Disabling Replay in Application Continuity for Java 28-19
28.10.1 How to Disable Replay 28-19
28.10.2 When to Disable Replay 28-19

28.10.2.1 Application Calls External PL/SQL Actions that Should not Be
Repeated 28-19
28.10.2.2 Application Synchronizes Independent Sessions 28-20
28.10.2.3 Application Uses Time at the Middle-tier in the Execution Logic 28-20
28.10.2.4 Application assumes that ROWIds do not change 28-21
28.10.2.5 Application Assumes that Side Effects Execute Once 28-21
28.10.2.6 Application Assumes that Location Values Do not Change 28-21
28.10.3 Diagnostics and Tracing 28-22
28.10.3.1 Writing Replay Trace to Console 28-22
28.10.3.2 Writing Replay Trace to a File 28-22

ORACLE XVi

29 Oracle JDBC Support for FAN Events

29.1 Overview of Oracle JDBC Support for FAN events 29-1
29.2 Safe Draining APIs for Planned Maintenance 29-2
29.3 Installation and Configuration of Oracle JDBC Driver for FAN Events Support 29-3
29.4 Example of Oracle JDBC Driver FAN support for Planned Maintenance 29-4
30 Transparent Application Failover
30.1 Overview of Transparent Application Failover 30-1
30.2 Failover Type Events 30-1
30.3 TAF Callbacks 30-2
30.4 Java TAF Callback Interface 30-2
30.5 Comparison of TAF and Fast Connection Failover 30-3
31 Single Client Access Name
31.1 Overview of Single Client Access Name 31-1
31.2 About Configuring the Database Using the SCAN 31-1
31.3 How Connection Load Balancing Works Using the SCAN 31-2
31.4 Version and Backward Compatibility 31-3
31.5 Using the SCAN in a Maximum Availability Architecture Environment 31-5
31.6 Using the SCAN With Oracle Connection Manager 31-5
Part VIl Transaction Management
32 Distributed Transactions
32.1 About Distributed Transactions 32-1
32.1.1 Overview of Distributed Transaction 32-1
32.1.2 Distributed Transaction Components and Scenarios 32-2
32.1.3 Distributed Transaction Concepts 32-2
32.1.4 About Switching Between Global and Local Transactions 32-4
32.1.5 Oracle XA Packages 32-5
32.2 XA Components 32-6
32.2.1 XAbDatasource Interface and Oracle Implementation 32-6
32.2.2 XAConnection Interface and Oracle Implementation 32-7
32.2.3 XAResource Interface and Oracle Implementation 32-8
32.2.4 OracleXAResource Method Functionality and Input Parameters 32-8
32.2.5 Xid Interface and Oracle Implementation 32-13
32.3 Error Handling and Optimizations 32-14
ORACLE XVii

32.3.1 XAException Classes and Methods 32-14
32.3.2 Mapping Between Oracle Errors and XA Errors 32-15
32.3.3 XA Error Handling 32-15
32.3.4 Oracle XA Optimizations 32-16
32.4 About Implementing a Distributed Transaction 32-16
32.4.1 Summary of Imports for Oracle XA 32-16
32.4.2 Oracle XA Code Sample 32-17
32.5 Native-XA in Oracle JDBC Drivers 32-21
32.5.1 OCI Native XA 32-21
32.5.2 Thin Native XA 32-23
Part VIII Manageability
33 Database Administration
33.1 Using the Database Administration Methods 33-1
33.2 Using the startup Method 33-2
33.2.1 Database Startup Options 33-2
33.3 Using the shutdown Method 33-3
33.3.1 Database Shutdown Options 33-3
33.3.2 Standard Database Shutdown Process 33-4
33.4 A Complete Example 33-4
34 Diagnosability in JDBC
34.1 About Logging Feature of Oracle JDBC Drivers 34-1
34.1.1 Overview of Logging Feature of Oracle JDBC Drivers 34-1
34.1.2 Enabling and Using JDBC Logging 34-2
34.1.2.1 About Configuring the CLASSPATH 34-2
34.1.2.2 Enabling Logging 34-2
34.1.2.3 Configuring Logging 34-4
34.1.2.4 Redirecting the Log Output to a File 34-5
34.1.2.5 Using Loggers 34-6
34.1.2.6 Logging Example 34-7
34.1.3 Enabling or Disabling Feature-Specific Logging at Run Time 34-8
34.1.4 Using the Logging Configuration File for Feature-Specific Logging 34-9
34.1.5 Performance, Scalability, and Security Issues 34-10
34.2 Diagnosability Management 34-11

ORACLE

35 JDBC DMS Metrics

35.1 Overview of JIDBC DMS Metrics 35-2
35.2 About Determining the Type of Metric to Be Generated 35-2
35.3 About Generating the SQLText Metric 35-3
35.4 About Accessing DMS Metrics Using JMX 35-3
Part IX Appendixes
A JDBC Reference Information
A.1 Supported SQL-JDBC Data Type Mappings A-1
A.2 Supported SQL and PL/SQL Data Types A-3
A.3 About Using PL/SQL Types A-7
A.4 Using Embedded JDBC Escape Syntax A-9
A.4.1 Time and Date Literals A-10
A.4.1.1 Date Literals A-10
A.4.1.2 Time Literals A-11
A.4.1.3 Timestamp Literals A-11
A.4.2 Scalar Functions A-12
A.4.3 LIKE Escape Characters A-13
A.4.4 MATCH_RECOGNIZE Clause A-13
A.4.5 Outer Joins A-14
A.4.6 Function Call Syntax A-14
A.4.7 JDBC Escape Syntax to Oracle SQL Syntax Example A-14
A.5 Oracle JDBC Notes and Limitations A-15
A.5.1 CursorName A-15
A.5.2 JDBC Outer Join Escapes A-15
A.5.3 IEEE 754 Floating Point Compliance A-16
A.5.4 Catalog Arguments to DatabaseMetaData Calls A-16
A.5.5 SQLWarning Class A-16
A.5.6 Executing DDL Statements A-16
A.5.7 Binding Named Parameters A-16
B Oracle RAC Fast Application Notification
B.1 Overview of Oracle RAC Fast Application Notification B-1
B.2 Installing and Configuring Oracle RAC Fast Application Notification B-3
B.3 Using Oracle RAC Fast Application Notification B-3
B.4 Implementing a Connection Pool B-5
ORACLE XiX

C JDBC Coding Tips

C.1 JDBC and Multithreading C-1
C.2 Performance Optimization of JDBC Programs C-1
C.2.1 Disabling Auto-Commit Mode C-2
C.2.2 Standard Fetch Size and Oracle Row Prefetching C-3
C.2.3 About Setting the Session Data Unit Size C-3
C.2.3.1 About Setting the SDU Size for the Database Server C-3
C.2.3.2 About Setting the SDU Size for JDBC OCI Client C-4
C.2.3.3 About Setting the SDU Size for JDBC Thin Client C-4
C.2.4 JDBC Update Batching C-4
C.2.5 Statement Caching C-4
C.2.6 Mapping Between Built-in SQL and Java Types C-5
C.3 Transaction Isolation Levels and Access Modes in JDBC C-6
D JDBC Error Messages
D.1 General Structure of JDBC Error Messages D-1
D.2 General JDBC Messages D-1
D.2.1 JDBC Messages Sorted by ORA Number D-1
D.2.2 JDBC Messages Sorted in Alphabetic Order D-7
D.3 Native XA Messages D-12
D.3.1 Native XA Messages Sorted by ORA Number D-12
D.3.2 Native XA Messages Sorted in Alphabetic Order D-12
D.4 TTC Messages D-13
D.4.1 TTC Messages Sorted by ORA Number D-13
D.4.2 TTC Messages Sorted in Alphabetic Order D-14
E Troubleshooting

E.1 Common Problems E-1

E.1.1 Memory Consumption for CHAR Columns Defined as OUT or IN/OUT
Variables E-1
E.1.2 Memory Leaks and Running Out of Cursors E-1
E.1.3 Opening More than 16 OCI Connections for a Process E-2
E.1.4 Using statement.cancel E-2
E.1.5 Using JDBC with Firewalls E-4
E.1.6 Frequent Abrupt Disconnection from Server E-4
E.1.7 Network Adapter Cannot Establish Connection E-4
E.1.7.1 Oracle Instance Configured with MTS Server Uses Shared Server E-5
E.1.7.2 JDBC Thin Driver with NIC Card Supporting Both IPv4 and IPv6 E-6
E.1.7.3 Sample Application E-6

ORACLE

XX

E.2 Basic Debugging Procedures
E.2.1 Oracle Net Tracing to Trap Network Events
E.2.1.1 Client-Side Tracing
E.2.1.2 Server-Side Tracing
E.2.2 Third Party Debugging Tools

Index

E-7
E-8
E-8
E-10
E-11

ORACLE"

XXi

List of Tables

1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers

1-2 Feature List

2-1 Import Statements for JDBC Driver

2-2 Error Messages for Operations Performed When Auto-Commit Mode is ON
3-1 Key Areas of JDBC 3.0 Functionality

3-2 BLOB Method Equivalents

3-3 CLOB Method Equivalents

4-1 Key Interfaces and Classes of the oracle.jdbc Package

6-1 OCI Instant Client Shared Libraries

6-2 Data Shared Library for Instant Client and Instant Client Light (English)
8-1 Standard Data Source Properties

8-2 Oracle Extended Data Source Properties

8-3 Supported Database Specifiers

9-1 Client/Server Negotiations for Encryption or Integrity

9-2 OCI Driver Client Parameters for Encryption and Integrity

9-3 Thin Driver Client Parameters for Encryption and Integrity

11-1 Default Mappings Between SQL Types and Java Types

11-2 getObject and getOracleObject Return Types

12-1 LONG and LONG RAW Data Conversions

17-1 Visibility of Internal and External Changes for Oracle JDBC

18-1 The JDBC and Cached Row Sets Compared

20-1 Comparing Methods Used in Statement Caching

20-2 Methods Used in Statement Allocation and Implicit Statement Caching
20-3 Methods Used to Retrieve Explicitly Cached Statements

21-1 Valid Column Type Specifications

26-1 Continuous Query Notification Registration Options

31-1 Oracle Client and Oracle Database Version Compatibility for the SCAN
32-1 Connection Mode Transitions

32-2 Oracle-XA Error Mapping

33-1 Supported Database Startup Options

33-2 Supported Database Shutdown Options

A-1 Valid SQL Data Type-Java Class Mappings

A-2 Support for SQL Data Types

A-3 Support for ANSI-92 SQL Data Types

A-4 Support for SQL User-Defined Types

ORACLE

1-4
1-5
2-8

2-13

11-2
11-8
12-4
17-7
18-9
20-4
20-8
20-11
21-14
26-3
31-4
32-4
32-15
33-2
33-3
A-1
A-3
A-4
A-4

XXii

A-5 Support for PL/SQL Data Types

C-1 Mapping of SQL Data Types to Java Classes that Represent SQL Data Types
D-1 JDBC Messages Sorted by ORA Number

D-2 JDBC Messages Sorted in Alphabetic Order

D-3 Native XA Messages Sorted by ORA Number

D-4 Native XA Messages Sorted in Alphabetic Order

D-5 TTC Messages Sorted by ORA Number

D-6 TTC Messages Sorted in Alphabetic Order

ORACLE

A-5
C-5
D-2
D-7
D-12
D-12
D-13
D-14

XXiii

Preface

Preface

Audience

This preface introduces you to the Oracle Database JDBC Developer's Guide
discussing the intended audience, structure, and conventions of this document. A list
of related Oracle documents is also provided.

The Oracle Database JDBC Developer's Guide is intended for developers of Java
Database Connectivity (JDBC)-based applications. This book can be read by anyone
with an interest in JDBC programming, but assumes at least some prior knowledge of
the following:

e Java
e Oracle PL/SQL

* Oracle databases

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Related Documents

ORACLE

The following books are available from the Oracle Java Platform group:

* Oracle Database Java Developer's Guide

This book introduces the basic concepts of Java and provides general information
about server-side configuration and functionality. Information that pertains to the
Oracle Java platform as a whole, rather than to a particular product (such as
JDBC) is in this book. This book also discusses Java stored procedures, which
were formerly discussed in a standalone book.

* Oracle Database SQLJ Developer's Guide

This book covers the use of SQLJ to embed static SQL operations directly into
Java code, covering SQLJ language syntax and SQLJ translator options and

XXIV

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Preface

features. Both standard SQLJ features and Oracle-specific SQLJ features are described.
The following documents are from the Oracle Server Technologies group:
e Oracle Database Development Guide
e Oracle Database PL/SQL Packages and Types Reference
* Oracle Database PL/SQL Language Reference
* Oracle Database SQL Language Reference

To download free release notes, installation documentation, white papers, or other collateral,
visit the Oracle Technology Network (OTN).

If you already have a user name and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://ww. oracl e. com t echnet wor k/ docunent ati on/ i ndex. ht n
The following resources are available:

* Web site for JDBC, including the latest specifications:

http://ww. oracl e. com t echnet work/j ava/j avase/j dbc/i ndex. ht m

Conventions

This section describes the conventions used in the text and code examples of this
documentation set. It describes:

e Conventions in Text
» Conventions in Code Examples

* Conventions for Windows Operating Systems

Conventions in Text

We use various conventions in text to help you more quickly identify special terms. The
following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are When you specify this clause, you create an
defined in the text or terms that appear in a index-organized table.
glossary, or both.

Italics Italic typeface indicates book titles or Oracle Database Concepts
emphasis. Ensure that the recovery catalog and target
database do not reside on the same disk.
UPPERCASE Uppercase monospace typeface indicates You can specify this clause only for a NUVMBER
nonospace elements supplied by the system. Such column.
(fixed-width) elementsinclude parameters, privileges, You can back up the database by using the
f ont data types, RMAN keywords, SQL BACKUP command.

keywords, SQL*Plus or utility commands,)
packages and methods, as well as system- Query the TABLE_NAVE column in the

supplied column names, database objects USER_TABLES data dictionary view.
and structures, user names, and roles. Use the DBMS_STATS.CENERATE_STATS
procedure.

ORACLE v

http://www.oracle.com/technetwork/documentation/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.htm

Preface

Convention Meaning Example

| ower case Lowercase monospace typeface indicates Enter sql pl us to start SQL*Plus.

nonospace executables, filenames, directory names, g password is specified in the or apwd file.

(fixed-w dth) and sample user-supplied elements. Such i o

f ont elements include computer and database B_ack up the datafiles a_nd control files in the /
names, net service names, and connect di Sk1/oracl e/ dbs directory.
identifiers, as well as user-supplied The depart nment _i d, depart nent _name, and
database objects and structures, column | ocati on_i d columns are in the

names, packages and classes, user names hr, depart ment s table.

and roles, program units, and parameter ¢ vy QUERY REWRI TE_ ENABLED initialization

values.
) parameter to t r ue.
Note: Some programmatic elements use a

mixture of UPPERCASE and lowercase. Connect as (_)e user.

Enter these elements as shown. The JRepUti | class implements these methods.
| ower case Lowercase italic monospace font You can specify the par al | el _cl ause.
italic represents placeholders or variables. Run ol d_rel ease. SQL where ol d_r el ease
mnospace refers to the release you installed prior to
(f | Xed' W dt h) upgrading'
font

Conventions in Code Examples

Code examples illustrate Java, SQL, and command-line statements. Examples are
displayed in a monospace (fixed-width) font and separated from normal text as shown
in this example:

SELECT usernane FROM dba_users WHERE usernane = ' M GRATE' ;

The following table describes typographic conventions used in code examples and
provides examples of their use.

Convention Meaning Example

[] Brackets enclose one or more optional

items. Do not enter the brackets. DECIMAL (digits [, precision])

() Braces enclose two or more items, one of

O - ENABLE | DI SABLE]
which is required. Do not enter the braces. { | S }

| A vertical bar represents a choice of two or
more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DI SABLE}
[COVPRESS | NOCOMPRESS]

Horizontal ellipsis points indicate either:

¢ Thatwe have omitted parts of the code CREATE TABLE ... AS subquery;
that are not directly related to the

example SELECT col 1, col2, ... , coln FROM
* That you can repeat a portion of the enpl oyees;
code

ORACLE XXVi

Convention

Meaning

Example

Other notation

Vertical ellipsis points indicate that we have

omitted several lines of code not directly
related to the example.

You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

Italicized text indicates placeholders or

SQL> SELECT NAME FROM V$DATAFI LE;
NAVE

[fsl/dbs/tbs_01. dbf
[fs1/ dbs/tbs_02. dbf

Itsl/dbs/ tbs_09. dbf
9 rows selected.

acct bal NUMBER(11, 2);
acct CONSTANT NUMBER(4) : = 3;

Preface

Italics - ; CONNECT SYSTEM syst em passwor d
variables for which you must supply DB NAMVE = dat abase name
particular values. - -
UPPERCASE Uppercase typeface indicates elements - qg) eor | 55t _nane, enpl oyee_id FROM
supplied by the system. We show these enpl oyees; -
terms in uppercase in order to distinguish SELECT * FRGVI USER TABLES:
them from terms you define. Unless terms DROP TABLE hr . enpl EyeeS' '
appear in brackets, enter them in the order ' '
and with the spelling shown. However,
because these terms are not case
sensitive, you can enter them in lowercase.
| ower case Lowercase typeface indicates SELECT | ast _nane, enpl oyee_id FROM
programmatic elements that you supply. enpl oyees;
For example, lowercase indicates names of sql pl us Hi?/ hr
tables, columns, or files. CREATE USER nij ones | DENTI FI ED BY ty3MJ9;
Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.
Conventions for Windows Operating Systems
The following table describes conventions for Windows operating systems and provides
examples of their use.
Convention Meaning Example

Choose Start >

ORACLE

How to start a program.

To start the Database Configuration Assistant,

choose Start > Programs > Oracle -

HOME_NAME > Configuration and Migration

Tools > Database Configuration Assistant.

XXVii

Preface

Convention

Meaning

Example

File and directory
names

C\>

Special characters

HOMVE_NAME

ORACLE

File and directory names are not case
sensitive. The following special characters

are not allowed: left angle bracket (<), right

angle bracket (>), colon (:), double
quotation marks ("), slash (/), pipe (]), and
dash (-). The special character backslash

(\) is treated as an element separator, even

when it appears in quotes. If the file name
begins with \\, then Windows assumes it
uses the Universal Naming Convention.

Represents the Windows command prompt

of the current hard disk drive. The escape

character in a command prompt is the caret
("). Your prompt reflects the subdirectory in

which you are working. Referred to as the
command prompt in this manual.

The backslash (\) special character is
sometimes required as an escape
character for the double quotation mark (")
special character at the Windows
command prompt. Parentheses and the
single quotation mark (*) do not require an
escape character. Refer to your Windows
operating system documentation for more
information on escape and special
characters.

Represents the Oracle home name. The
home name can be up to 16 alphanumeric
characters. The only special character
allowed in the home name is the
underscore.

c:\winnt"\"systenB82 is the same as
C: \ W NNT\ SYSTEM32

C.\oracl e\ oradat a>

C:\>exp HR/ hr TABLES=enpl oyees
QUERY=\"WHERE j ob_i d=" SALESMAN and
sal ary<1600\ "

C:\>i mp SYSTEM password FROM USER=HR
TABLES=(enpl oyees, dept)

C.\> net start Oracl eHOVE_NAMETNSLI st ener

XXVIIi

Preface

Convention Meaning Example

ORACLE_HOME and In releases prior to Oracle8i release 8.1.3, Go to the

ORACLE_BASE when you installed Oracle components, all ORACLE_BASE\ ORACLE_HOVE\ r dbrrs\ adni n
subdirectories were located under a top directory.
level ORACLE_HOME directory that by default
used one of the following names:

« C\orant for Windows NT
« C\oraw n98 for Windows 98

This release complies with Optimal Flexible
Architecture (OFA) guidelines. All
subdirectories are not under a top level
ORACLE_HOVE directory. There is a top
level directory called ORACLE_BASE that by
default is C: \ or acl e. If you install the
latest Oracle release on a computer with no
other Oracle software installed, then the
default setting for the first Oracle home
directory is C. \ or acl €\ or ann, where nn
is the latest release number. The Oracle
home directory is located directly under
ORACLE_BASE.

All directory path examples in this guide
follow OFA conventions.

Refer to Oracle Database Platform Guide
for Microsoft Windows for additional
information about OFA compliances and for
information about installing Oracle products
in non-OFA compliant directories.

ORACLE XXIiX

Changes in This Release for Oracle Database JDBC Developer's Guide

Changes in This Release for Oracle
Database JDBC Developer's Guide

This preface contains:

Changes in Oracle Database 18c

Changes in Oracle Database 18c

New Features

ORACLE

The Oracle Database JDBC Developer's Guide has the following changes for Oracle
Database Release 18c.

The following features are new in this release:

Wallet Support in JDBC for Database Cloud Services

See Automatic SSL Connection Configuration

Support for Key Store Service

See Support for Key Store Service

Support for HTTP Proxy Configuration

See Support for HTTPS Proxy Configuration

Enhanced support for PL/SQL Associative Arrays

See Accessing PL/SQL Associative Arrays

Support for Oracle Connection Manager in Traffic Director Mode
See Support for Oracle Connection Manager in Traffic Director Mode
Support for REF CURSOR as | N bind variables

See Oracle REF CURSOR Type Category

Support for Lightweight Connection Validation

See Support for Lightweight Connection Validation

Support for Transparent Application Continuity

See Support for Transparent Application Continuity

Support for concrete classes with Application Continuity

See Support for Concrete Classes with Application Continuity
Support for Verifying JSON Data

XXX

Changes in This Release for Oracle Database JDBC Developer's Guide

See Support for Verifying JSON Data

Deprecated Features

ORACLE

The following features are deprecated in this release, and may be desupported in a future
release:

The following APIs from the Or acl ePr epar edSt at ement and Or acl eCal | abl eSt at enent
classes have been deprecated as part of enhanced support for Associative Arrays:

— setPlsqgllndexTabl e

— setPlsqgllndexTabl eAt Name

— registerlndexTabl eQut Par anet er

— getOracl ePl sgl I ndexTabl e

— getPlsqgllndexTabl e

Concrete classes in the oracl e. sql package

The concrete classes in the oracl e. sql package are deprecated. Use the new JDBC
interfaces instead of these classes.

See MoS Note 1364193.1 for more information about these interfaces.

In Oracle Database 12c release 2 (12.2), the oracl e. j dbc. rowset package was
deprecated. Oracle recommends that you use the Standard JDBC RowSet package to
replace this feature.

¢ See Also:

http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/package-
summary.html

def i neCol umType method

Most of the variants of the def i neCol umType method are deprecated. The supported
variants are for:

— LOB to LONG conversions

— Configure the LOB prefetch size

See the JDBC Javadoc for more information.
CONNECTI ON_PRCPERTY_STREAM CHUNK_SI ZE property
See the JDBC Javadoc for more information.

Oracle Update Batching

Oracle update batching was deprecated in Oracle Database 12¢ Release 1 (12.1). Since
Oracle Database 12c Release 2 (12.2), Oracle update batching is a no operation code
(no-op). This means that if you implement Oracle update batching in your application,
using the Oracle Database 18c JDBC driver, then the specified batch size is not set and
results in a batch size of 1. With this batch setting, your application processes one row at
a time. Oracle strongly recommends that you use the standard JDBC batching if you are
using the Oracle Database 18c JDBC driver.

XXXi

http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/package-summary.html
http://docs.oracle.com/javase/8/docs/api/javax/sql/rowset/package-summary.html

Changes in This Release for Oracle Database JDBC Developer's Guide

See Standard Update Batching section for more information.
EndToEndMet ri cs related APIs
EndToEndMet ri cs related APIs are deprecated in this release.

See JDBC DMS Metrics for more information.

Desupported Features

The following features are no longer supported by Oracle:

Desupport of JPublisher

All Oracle JPublisher features are desupported and unavailable in Oracle Database
18c. Oracle recommends that you use the alternatives listed here:

To continue to use Web service callouts, Oracle recommends that you use the
Oracle JVM Web Services Callout utility, which is a replacement for the Web
Services Callout utility.

To replace other JPublisher automation capabilities, including mapping user-
defined SQL types or SQL types, wrapping PL/SQL packages and similar
capabilities, Oracle recommends that developers use explicit steps, such as
precompiling code with SQLJ precompiler, building Java STRUCT classes, or
using other prestructured options.

¢ See Also:

My Oracle Support Note 1937939.1 for more information about JDeveloper
deprecation and desupport:

https://support.oracle.com/CSP/main/article?
cmd=show&type=NOT&id=1937939.1

¢ See Also:

Oracle Database Upgrade Guide to see a list of all desupported features in
this release of Oracle Database

Other Changes

ORACLE

Security Update for Native Encryption

Oracle provides a patch that you can download to address necessary security
enhancements that affect native network encryption environments in Oracle
Database release 11.2 and later. This patch is available in My Oracle Support note
2118136.2.

XXX

https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1937939.1
https://support.oracle.com/CSP/main/article?cmd=show&type=NOT&id=1937939.1

Changes in This Release for Oracle Database JDBC Developer's Guide

" See Also:

Oracle Database Security Guide for more information

e Starting from Oracle Database 18c, you cannot use the SET CONTAI NER statement in the
following way:

ALTER SESSI ON SET CONTAI NER=<cont ai ner name> SERVI CE=<servi ce name>;

Overview

The chapters in this part introduce the concept of Java Database Connectivity (JDBC) and
provide an overview of the Oracle implementation of JDBC. This part provides basic

information about installation and configuration of the Oracle client with reference to JDBC
drivers. This part also covers the basic steps in creating and running any JDBC application.

Part | contains the following chapters:

e Introducing JDBC
* Getting Started

ORACLE

Introducing JDBC

Java Database Connectivity (JDBC) is a Java standard that provides the interface for
connecting from Java to relational databases. The JDBC standard is defined and
implemented through the standard j ava. sql interfaces. This enables individual providers to
implement and extend the standard with their own JDBC drivers. JDBC is based on the X/
Open SQL Call Level Interface (CLI). JDBC 4.0 complies with the SQL 2003 standard.

This chapter provides an overview of the Oracle implementation of JDBC, covering the
following topics:

e Overview of Oracle JDBC Drivers

e Choosing the Appropriate Driver

* Feature Differences Between JDBC OCI and Thin Drivers
e Environments and Support

e Feature List

1.1 Overview of Oracle JDBC Drivers

ORACLE

In addition to supporting the standard JDBC application programming interfaces (APIs),
Oracle drivers have extensions to support Oracle-specific data types and to enhance
performance.

Oracle provides the following JDBC drivers:

e Thin driver

The JDBC Thin driver is a pure Java, Type IV driver that can be used in applications. It is
platform-independent and does not require any additional Oracle software on the client-
side. The JDBC Thin driver communicates with the server using Oracle Net Services to
access Oracle Database.

The JDBC Thin driver enables a direct connection to the database by providing an
implementation of Oracle Net Services on top of Java sockets. The driver supports the
TCP/IP protocol and requires a TNS listener on the TCP/IP sockets on the database
server.

Note:

Oracle recommends you to use the Thin driver unless you have a feature that is
supported only by a specific driver.

* Oracle Call Interface (OCI) driver

It is used on the client-side with an Oracle client installation. It can be used only with
applications.

1-1

Chapter 1
Overview of Oracle JDBC Drivers

The JDBC OCI driver is a Type Il driver used with Java applications. It requires
platform-specific OCI libraries. It supports all installed Oracle Net adapters,
including interprocess communication (IPC), named pipes, TCP/IP, and
Internetwork Packet Exchange/Sequenced Packet Exchange (IPX/SPX).

The JDBC OCI driver, written in a combination of Java and C, converts JDBC
invocations to calls to OCI, using native methods to call C-entry points. These calls
communicate with the database using Oracle Net Services.

The JDBC OCI driver uses the OCI libraries, C-entry points, Oracle Net, core
libraries, and other necessary files on the client computer where it is installed.

OCl is an API that enables you to create applications that use the native
procedures or function calls of a third-generation language to access Oracle
Database and control all phases of the SQL statement processing.

e Server-side Thin driver

It is functionally similar to the client-side Thin driver. However, it is used for code
that runs on the database server and needs to access another session either on
the same server or on a remote server on any tier.

The JDBC server-side Thin driver offers the same functionality as the JDBC Thin
driver that runs on the client-side. However, the JDBC server-side Thin driver runs
inside Oracle Database and accesses a remote database or a different session on
the same database for use with Java in the database.

This driver is useful in the following scenarios:

— Accessing a remote database server from an Oracle Database instance acting
as a middle tier

— Accessing an Oracle Database session from inside another, such as from a
Java stored procedure

The use of JDBC Thin driver from a client application or from inside a server does
not affect the code.

e Server-side internal driver

It is used for code that runs on the database server and accesses the same
session. That is, the code runs and accesses data from a single Oracle session.

The JDBC server-side internal driver supports any Java code that runs inside
Oracle Database, such as in a Java stored procedure, and accesses the same
database. It lets the Oracle Java Virtual Machine (Oracle JVM) to communicate
directly with the SQL engine for use with Java in the database.

The JDBC server-side internal driver, the Oracle JVM, the database, and the SQL
engine all run within the same address space, and therefore, the issue of network
round-trips is irrelevant. The programs access the SQL engine by using function
calls.

Note:

The server-side internal driver does not support the cancel and
set Quer yTi meout methods of the St at enent class.

ORACLE 1-2

Chapter 1
Choosing the Appropriate Driver

The JDBC server-side internal driver is fully consistent with the client-side drivers and
supports the same features and extensions.

The following figure illustrates the architecture of Oracle JDBC drivers and Oracle Database.

Figure 1-1 Architecture of Oracle JDBC Drivers and Oracle Database

Oracle Database

JDBC Thin Driver Java Engine

Java Sockets Server-Side Thin Driver

JDBC Server-Side
JDBC OCI Driver SOL Engine Internal Driver

OCI C Library PL/SQL Engine |
‘I—{ KPRBC Library |

~____

Oracle Database

Related Topics
* Features Specific to JDBC Thin
» Features Specific to JDBC OCI Driver

e Server-Side Internal Driver

1.2 Choosing the Appropriate Driver

Consider the following when choosing a JDBC driver for your application or applet:

* In general, unless you need OCI-specific features, such as support for non-TCP/IP
networks, use the JDBC Thin driver.

* If you want maximum portability and performance, then use the JDBC Thin driver. You
can connect to Oracle Database from an application using the JDBC Thin driver.

* If you want to use Lightweight Directory Access Protocol (LDAP) over Secure Sockets
Layer (SSL)/Transport Layer Security (TLS), then use the JDBC Thin driver.

* If you are writing a client application for an Oracle client environment and need OCI-
driver-specific features, such as support for non-TCP/IP networks, then use the JDBC
OCI driver.

ORACLE 1-3

Chapter 1
Feature Differences Between JDBC OCI and Thin Drivers

For code that runs in the database server and needs to access a remote database
or another session within the same database instance, use the JDBC server-side
Thin driver.

If your code runs inside the database server and needs to access data locally
within the session, then use the JDBC server-side internal driver to access that
server.

1.3 Feature Differences Between JDBC OCI and Thin

Drivers

Table 1-1 lists the features that are specific either to the JDBC OCI or JDBC Thin
driver in Oracle Database Release 18c.

Table 1-1 Feature Differences Between JDBC OCI and JDBC Thin Drivers

JDBC OCI Driver JDBC Thin Driver

OCI connection pooling NA

NA Default support for Native XA
Transparent Application Failover (TAF) NA

NA Application Continuity

NA Transaction Guard

NA Support for row count per iteration for array
DML

NA SHA-2 Support in Oracle Advanced Security

oraaccess. xm configuration file settings NA

NA Oracle Advanced Queuing

NA Continuous Query Notification

NA Support for the O7L_MR client ability

NA Support for promoting a local transaction to a
global transaction

¢ Note:

e The OCI optimized fetch feature is internal to the JDBC OCI driver and
not applicable to the JDBC Thin driver.

* Some JDBC OCI driver features, inherited from the OCI library, are not
available in the Thin JDBC driver.

1.4 Environments and Support

This section provides a brief discussion of the following topics:

ORACLE

Supported JDK and JDBC Versions

JNI and Java Environments

1-4

Chapter 1
Feature List

- JDBC and IDEs

1.4.1 Supported JDK and JDBC Versions

In Oracle Database 12c Release 2 (12.2.0.1), all the JDBC drivers are compatible with JDK
8. Support for JDK 8 is provided through the oj dbc8. j ar file.

Related Topics
* Version Compatibility for Oracle JDBC Drivers
* Version Compatibility for Oracle JDBC Drivers

1.4.2 JNI and Java Environments

The JDBC OCI driver uses the standard Java Native Interface (JNI) to call OCI C libraries.
You can use the JDBC OCI driver with Java Virtual Machines (JVMs), in particular, with
Microsoft and IBM JVMs.

1.4.3 JDBC and IDEs

The Oracle JDeveloper Suite provides developers with a single, integrated set of products to
build, debug, and deploy component-based database applications for the Internet. The
Oracle JDeveloper environment contains integrated support for JDBC, including the JDBC
Thin driver and the native OCI driver. The database component of Oracle JDeveloper uses
the JDBC drivers to manage the connection between the application running on the client and
the server.

1.5 Feature List

ORACLE

The following table lists the features and the versions in which they were first supported for
each of the three Oracle JDBC drivers: server-side internal driver, JDBC OCI driver, and
JDBC Thin driver.

Table 1-2 Feature List
|

Feature Server-Side JDBC OCI JDBC Thin
Internal
JDK 1.0 7.2.2 7.2.2
JDBC 1.0.2 7.2.2 7.2.2
JDK 1.1.1 8.0.6 8.0.6
JDBC 1.22 (No new features; just minor revisions) 8.0.6 8.0.6
defineColumnTypel 8.0.6 8.0.6
Row Prefetch 8.0.6 8.0.6
Java Native Interface 8.1.6
JDK 1.2 9.0.1 8.1.6 8.1.6
JDBC 2.0 SQL3 Types (BLOB, CLOB, Struct, Array, 8.1.5 8.1.5 8.1.5
REF)
Native LOB 8.1.6 9.2.0
Associative Arrays? 10.2.0 8.1.6 10.1.0

1-5

Chapter 1
Feature List

Table 1-2 (Cont.) Feature List

Feature Server-Side JDBC OCI JDBC Thin
Internal
JDBC 2.0 Scrollable Result Sets 8.1.6 8.1.6 8.1.6
JDBC 2.0 Updatable Result Sets 8.1.6 8.1.6 8.1.6
JDBC 2.0 Standard Batching 8.1.6 8.1.6 8.1.6
JDBC 2.0 Connection Pooling NA 8.1.6 8.1.6
JDBC 2.0 XA 8.1.6 8.1.6 8.1.6
Server-side Thin driver 8.1.6 NA NA
JDBC 2.0 RowSets 9.0.1 9.0.1
Implicit Statement Caching 8.1.7 8.1.7 8.1.7
Explicit Statement Caching 8.1.7 8.1.7 8.1.7
Temporary LOBs 9.0.1 9.0.1 9.0.1
Object Type Inheritance 9.0.1 9.0.1 9.0.1
Multilevel Collections 9.0.1 9.0.1 9.0.1
oracl e. j dbc Interfaces 9.0.1 9.0.1 9.0.1
Native XA 9.0.1 10.1.0
OCI Connection Pooling NA 9.0.1 NA
TAF NA 9.0.1 NA
NLS Support 9.0.1 9.0.1 9.0.1
JDK 1.3 9.2.0 9.2.0 9.2.0
JDK 1.4 10.1.0 9.2.0 9.2.0
JDBC 3.0 Savepoints 9.2.0 9.2.0 9.2.0
New Statement Caching API 9.2.0 9.2.0 9.2.0
ConnectionCachelmpl connection cache NA 8.1.7 8.1.7
Implicit Connection Cache NA 10.1.0 10.1.0
Fast Connection Failover 10.1.0.3 10.1.0.3
Connection Wrapping 9.2.0 9.2.0
DMS 9.2.0 9.2.0
Service Names in URLs 9.2.0 10.2.0
JDBC 3.0 Connection Pooling Properties NA 10.1.0 10.1.0
JDBC 3.0 Updatable BLOB, CLOB, REF 10.1.0 10.1.0 10.1.0
JDBC 3.0 Multiple Open Result Sets 10.1.0 10.1.0 10.1.0
JDBC 3.0 Parameter Metadata 10.1.0 10.1.0 10.1.0
JDBC 3.0 Set/Get Stored Procedures Parameters by 10.1.0 10.1.0 10.1.0
Name
JDBC 3.0 Statement Pooling 10.1.0 10.1.0 10.1.0
Set Statement Parameters by Name 10.1.0 10.1.0 10.1.0
End-to-End Tracing 10.1.0 10.1.0
Web RowSet 11.1 10.1.0 10.1.0

ORACLE 1-6

Chapter 1
Feature List

Table 1-2 (Cont.) Feature List

Feature Server-Side JDBC OCI JDBC Thin
Internal
Proxy Authentication 10.2.0 10.1.0
JDBC 3.0 Auto Generated Keys 10.2.0 10.2.0
JDBC 3.0 Holdable Cursors 10.2.0 10.2.0 10.2.0
JDBC 3.0 Local/Global Transaction Switching 9.2.0 9.2.0 9.2.0
Run-time Connection Load Balancing NA 10.2.0 10.2.0
Extended set XXX and get XXX for LOBs 10.2.0 10.2.0
XA Connection Cache NA 10.2.0 10.2.0
DML Returning 10.2.0 10.2.0
JSR 114 RowSets 10.2.0 10.2.0
SSL/TLS Encryption 9.2.0 10.2.0
SSL/TLS Authentication 9.2.0 11.1
JDK 5.0 11.1 11.1 111
JDK 6 11.1 111
JDBC 4.0 11.1 111
AES Encryption 11.1
SHA1 Hash 11.1
Radius Authentication 10.2.0 11.1
Kerberos Authentication 11.1
ANYDATA and ANYTYPE types 11.1 111
Native AQ 11.1
Query Change Notification 11.1
Database startup and shutdown NA 111 111
Factory methods for data types 111 111 11.1
Buffer Cache 11.1 11.1 11.1
Secure Files 111 11.1 11.1
Diagnosability 111 111 111
Client Result Cache 11.1.0 18.1
Server Result Cache 11.1 11.1.0 11.1.0
Universal Connection Pool 11.1.0.7.0 11.1.0.7.0
TimeZone Patching 11.2 11.2
Secure Lob Support 11.2 11.2
Lob prefetch Support 11.2 11.2
Network Connection Pool 11.2
Column Security Support 11.2
XMLType Queue Support (AQ) 11.2
Notification Grouping (AQ and DCN) 11.2
SimpleFAN 11.2 11.2

ORACLE e

Chapter 1
Feature List

Table 1-2 (Cont.) Feature List

Feature Server-Side JDBC OCI JDBC Thin
Internal
Application Continuity 12.1
Transaction Guard 12.1
SQL Statement Translation 12.1
Database Resident Connection Pooling 121 12.1
Latest JDBC Standard Support 121 12.1
SHA-2 Support in Oracle Advanced Security 121
Invisible Columns Support 12.1 12.1
Support for PL/SQL Package Types as Parameters 12.1 12.1
Support for Monitoring of Database Operations 12.1 12.1
Support for Increased Length Limit for Various Data 12.1 12.1
Types
Implicit Results Support 121 121
Support for row count per iteration for array DML 12.1
oraaccess. xm configuration file settings 121

1 Starting from Oracle Database 12c Release 1 (12.1), most of the variants of this method have been
deprecated. The current versions only enable to perform LOB to LONG conversions and configure the
LOB prefetch size.

2 Associative Arrays were previously known as index-by tables.

Note:
< Inthe table, NA means that the feature is not applicable for the
corresponding Oracle JDBC driver.

e The ConnectionCachel npl connection cache feature is deprecated since
Oracle Database 10g.

e The Implicit Connection Cache feature is desupported from this release.

ORACLE 1-8

Getting Started

This chapter discusses the compatibility of Oracle Java Database Connectivity (JDBC) driver
versions, database versions, and Java Development Kit (JDK) versions. It also describes the
basics of testing a client installation and configuration and running a simple application. This

chapter contains the following sections:

Version Compatibility for Oracle JDBC Drivers

Verifying a JDBC Client Installation

Basic Steps in JDBC

Sample: Connecting_ Querying_ and Processing the Results
Support for Invisible Columns

Support for Verifying JSON Data

Support for Implicit Results

Support for Lightweight Connection Validation

Support for Deprioritization of Database Nodes

Support for Oracle Connection Manager in Traffic Director Mode
Stored Procedure Calls in JDBC Programs

About Processing SQL Exceptions

2.1 Version Compatibility for Oracle JDBC Drivers

This section discusses the general JDBC version compatibility issues.

ORACLE

Backward Compatibility

Oracle Database 12c Release 2 (12.2.0.1) JDBC drivers are certified with supported Oracle
Database releases (11.x.0.x). However, they are not certified to work with older, unsupported
database releases, such as 10.2.x, 10.1.x, 9.2.x, and 9.0.1.x.

Note:

If you want to use Fast Connection Failover mechanism, then use the 10.2 JDBC
driver with Oracle database 10.2. If the database is 10.1, then use 10.1 JDBC
driver.

Forward Compatibility

Existing and supported JDBC drivers are certified to work with Oracle Database 12c Release
2 (12.2).

2-1

Chapter 2
Verifying a JDBC Client Installation

< Note:

In Oracle Database 12c¢ Release 2 (12.2.0.1), Oracle JDBC drivers no longer
support JDK 6 or earlier versions.

Related Topics
e Oracle Universal Connection Pool Developer’s Guide

e http://lwww.oracle.com/technetwork/database/enterprise-edition/jdbc-
fag-090281.html

2.2 Verifying a JDBC Client Installation

To verify a JDBC client installation, you must do all of the following:

* Checking the Installed Directories and Files

* Checking the Environment Variables

* Ensuring that the Java Code Can Be Compiled and Run
* Determining the Version of the JDBC Driver

» Testing the JDBC and Database Connection

This section describes the steps for verifying an Oracle client installation of the JDBC
drivers, assuming that you have already installed the driver of your choice. Installation
of an Oracle JDBC driver is platform-specific. You must follow the installation
instructions for the driver you want to install in your platform-specific documentation.

If you use the JDBC Thin driver, then there is no additional installation on the client
computer. If you use the JDBC Oracle Call Interface (OCI) driver, then you must also
install the Oracle client software. This includes Oracle Net and the OCI libraries.

" Note:

The JDBC Thin driver requires a TCP/IP listener to be running on the
computer where the database is installed.

2.2.1 Checking the Installed Directories and Files

ORACLE

Installing the Oracle Java products creates, among other things, the following
directories:

« ORACLE_HOVE/j dbc
« ORACLE HOVE/jlib

Check whether or not the following directories and files have been created and
populated in the ORACLE_HOVE/ j dbc directory:

e dem

2-2

http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-faq-090281.html

Chapter 2
Verifying a JDBC Client Installation

This directory contains a compressed file, demo. zi p or deno. t ar. When you uncompress
this compressed file, the sanpl es directory and the Sanpl es- Readne. t xt file are created.
The sanpl es directory contains sample programs, including examples of how to use
JDBC escape syntax and Oracle SQL syntax, PL/SQL blocks, streams, user-defined
types, additional Oracle type extensions, and Oracle performance extensions.

doc

This directory contains the j avadoc. zi p file, which is the Oracle JDBC application
programming interface (API) documentation.

lib
The | i b directory contains the following required Java classes:
— orail8n.jar and orai 18n-mappi ng.j ar
Contain classes for globalization and multibyte character sets support
— 0jdbc8.jar and ojdbc8 g.jar
Contain the JDBC driver classes for use with JDK 8
Readne. t xt

This file contains late-breaking and release-specific information about the drivers, which
may not have been included in other documentation on the product.

Check whether or not the following directories have been created and populated in the
ORACLE_HOME /| i b directory:

jta.jar andjndi.jar

These files contain classes for the Java Transaction API (JTA) and the Java Naming and
Directory Interface (JNDI). These are required only if you are using JTA features for
distributed transaction management or JNDI features for naming services.

ons. j ar

This JAR file contains classes for Oracle RAC Fast Application Notification. It is also
required for Universal Connection Pool (UCP) features like Fast Connection Failover,
Run-time Load Balancing, Web Session Affinity, and Transaction Affinity.

Related Topics

Oracle RAC Fast Application Notification
jta.jar
jndi.jar

Oracle Universal Connection Pool Developer’s Guide

2.2.2 Checking the Environment Variables

ORACLE

This section describes the environment variables that must be set for the JDBC OCI driver

and the JDBC Thin driver, focusing on Solaris, Linux, and Microsoft Windows platforms.

You must set the CLASSPATH environment variable for JDBC OCI or Thin driver. Include the
following in the CLASSPATH environment variable:

ORACLE_HOME/ j dbc/ 1'i b/ oj dbc8. j ar
ORACLE_HOWE/ j |'i b/ orai 18n. j ar

2-3

http://www.oracle.com/technetwork/java/javaee/jta/
http://www.oracle.com/technetwork/java/jndi/index.html

ORACLE

Chapter 2
Verifying a JDBC Client Installation

< Note:

If you use the JTA features and the JNDI features, then you must specify
jta.jar andjndi.jar in your CLASSPATH environment variable.

JDBC OCI Driver

To use the JDBC OCI driver, you must also set the following value for the library path
environment variable:

e On Solaris or Linux, set the LD _LI BRARY_PATH environment variable as follows:

ORACLE_HOME/ 1 i b

This directory contains the | i boci j dbc1l. so shared object library.
e On Microsoft Windows, set the PATH environment variable as follows:

ORACLE_HOME\ bi n

This directory contains the oci j dbc11. dI | dynamic link library.

All of the JDBC OCI demonstration programs can be run in the Instant Client mode by
including the JDBC OCI Instant Client data shared library on the library path
environment variable.

JDBC Thin Driver

To use the JDBC Thin driver, you do not have to set any other environment variables.
However, to use the JDBC server-side Thin driver, you need to set permission.

Setting Permission for the Server-Side Thin Driver

The JDBC server-side Thin driver opens a socket for its connection to the database.
Because Oracle Database enforces the Java security model, a check is performed for
a Socket Per ni ssi on object.

To use the JDBC server-side Thin driver, the connecting user must be granted the
appropriate permission. The following is an example of how the permission can be
granted for the user HR:

CREATE ROLE j dbct hin;

CALL dbns_j ava. grant _permission(' JDBCTH N, 'java.net.Socket Pernission', '*',
'connect');

GRANT jdbcthin TO HR,

Note that JDBCTHI Nin the grant _per ni ssi on call must be in uppercase. The asterisk
(*) is a pattern. You can restrict the user by granting permission to connect to only
specific computers or ports.

Related Topics
* Features Specific to JDBC OCI Driver

e Oracle Database Java Developer’s Guide

2-4

Chapter 2
Verifying a JDBC Client Installation

2.2.3 Ensuring that the Java Code Can Be Compiled and Run

To further ensure that Java is set up properly on your client system, go to the sanpl es
directory under the ORACLE_HOME/ j dbc/ dero directory. Now, type the following commands on
the command line, one after the other, to see if the Java compiler and the Java interpreter run
without error:

j avac
java

Each of the preceding commands should display a list of options and parameters and then
exit. Ideally, verify that you can compile and run a simple test program, such as j dbc/ deno/
sanpl es/ generi c/ Sel ect Exanpl e.

2.2.4 Determining the Version of the JDBC Driver

To determine the version of the JDBC driver, call the get Dri ver Ver si on method of the
O acl eDat abaseMet aDat a class as shown in the following sample code:

import java.sql.*;
i mport oracle.jdbc.*;
i mport oracle.jdbc. pool . O acl eDat aSour ce;

cl ass JDBCVersion

{
public static void main (String args[]) throws SQLException
{

Oracl ebDat aSour ce ods = new Oracl eDat aSource();
ods. set URL("j dbc: oracl e: t hi n: HR/ hr @host >: <port >: <servi ce>");
Connection conn = ods. get Connection();

Il Create Oracle DatabaseMetaData obj ect
Dat abaseMet aData neta = conn. get MetaData();

/'l gets driver info:
Systemout. printIn("JDBC driver version is " + neta.getDriverVersion());
}
}

You can also determine the version of the JDBC driver by executing the following commands:

e java -jar ojdbc8.jar

2.2.5 Testing the JDBC and Database Connection

ORACLE

The sanpl es directory contains sample programs for a particular Oracle JDBC driver. One of
the programs, JdbcCheckup. j ava, is designed to test JDBC and the database connection.
The program queries for the user name, password, and the name of the database to which
you want to connect. The program connects to the database, queries for the string "Hel | o
Wor | d", and prints it to the screen.

Go to the sanpl es directory, and compile and run the JdbcCheckup. j ava program. If the
results of the query print without error, then your Java and JDBC installations are correct.

2-5

ORACLE

Chapter 2
Verifying a JDBC Client Installation

Although JdbcCheckup. j ava is a simple program, it demonstrates several important
functions by performing the following:

* Imports the necessary Java classes, including JDBC classes

* Creates a Dat aSour ce instance

+ Connects to the database

* Runs a simple query

» Prints the query results to your screen

The JdbcCheckup. j ava program, which uses the JDBC OCI driver, is as follows:

/*

* This sanmple can be used to check the JDBC installation.

* Just run it and provide the connect information. It will select
* "Hello Wrld" fromthe database.

*/

/1 You need to inport the java.sql and JDBC packages to use JDBC
i mport java.sql.*;

i mport oracle.jdbc.*;

i mport oracle.jdbc. pool . O acl eDat aSour ce;

/1 W inport java.io to be able to read fromthe comuand |ine
inmport java.io.*;

cl ass JdbcCheckup

{
public static void main(String args[]) throws SQLException, |CException

{

[l Pronpt the user for connect information

Systemout. printin("Please enter information to test connection to
the database");

String user;

String password;

String database;

user = readEntry("user: ");
int slash_index = user.indexOr('/");
!

if (slash_index != -1)

{
password = user.substring(slash_index + 1);
user = user.substring(0, slash_index);

}

el se

password = readEntry("password: ");
dat abase = readEntry("database(a TNSNAME entry): ");

System out. print (" Connecting to the database...");
Systemout. flush();

Systemout. println("Connecting...");

/1 Open an Oracl eDat aSource and get a connection
Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
ods. set URL("j dbc: oracl e:oci: @ + database);

ods. set User (user);

ods. set Passwor d(passwor d) ;

Connection conn = ods. get Connection();

Systemout. println("connected.");

2-6

}

}

Chapter 2
Basic Steps in JDBC

Il Create a statenent
Statement stnt = conn.createStatenent();

[/ Do the SQ "Hello World" thing
Resul t Set rset = stnt.executeQuery("select 'Hello Wrld fromdual");

while (rset.next())
Systemout.printin(rset.getString(1));

Il close the result set, the statenent and the connection

rset.close();

stnt.close();

conn. cl ose();

Systemout. printin("Your JDBC installation is correct.");

/1l Uility function to read a line fromstandard input
static String readEntry(String pronpt)

{

}

try
{
StringBuffer buffer = new StringBuffer();
System out. print(pronpt);
System out . flush();
int ¢ = Systemin.read();
while (c !'="\n" & c = -1)

buf f er. append((char)c);
c = Systemin.read();

return buffer.toString().trinm);

cat ch(| OException e)
{

return ""

}

2.3 Basic Steps in JDBC

After verifying the JDBC client installation, you can start creating your JDBC applications.
When using Oracle JDBC drivers, you must include certain driver-specific information in your
programs. This section describes, in the form of a tutorial, where and how to add the
information. The tutorial guides you through the steps to create code that connects to and
gueries a database from the client.

ORACLE

You must write code to perform the following tasks:

N o g & w bdh PR

Importing Packages

Opening a Connection to a Database

Creating a Statement Object

Running a Query and Retrieving a Result Set Object
Processing the Result Set Object

Closing the Result Set and Statement Objects
Making Changes to the Database

2-7

Chapter 2
Basic Steps in JDBC

8. About Committing Changes

9. Closing the Connection

Note:

You must supply Oracle driver-specific information for the first three tasks
that enable your program to use the JDBC application programming interface
(API) to access a database. For the other tasks, you can use standard JDBC
Java code, as you would for any Java application.

2.3.1 Importing Packages

Regardless of which Oracle JDBC driver you use, include the i nport statements
shown in Table 2-1 at the beginning of your program using the following syntax:

i nport <package_nane>;

Table 2-1 Import Statements for JDBC Driver
|

Import statement Provides
inport java.sql.*; Standard JDBC packages.
i nport java.math. *; The Bi gDeci mal and Bi gl nt eger classes. You can

omit this package if you are not going to use these
classes in your application.

i mport oracle.jdbc.*; Oracle extensions to JDBC. This is optional.
i mport oracle.jdbc. pool . *; O acl eDat aSour ce.
inport oracle.sql.*; Oracle type extensions. This is optional.

The Oracle packages listed as optional provide access to the extended functionality
provided by Oracle JDBC drivers, but are not required for the example presented in
this section.

Note:

It is better to import only the classes your application needs, rather than
using the wildcard asterisk (*). This guide uses the asterisk (*) for simplicity,
but this is not the recommended way of importing classes and interfaces.

2.3.2 Opening a Connection to a Database

First, you must create an Or acl eDat aSour ce instance. Then, open a connection to the
database using the O acl eDat aSour ce. get Connect i on method. The properties of the
retrieved connection are derived from the Or acl eDat aSour ce instance. If you set the
URL connection property, then all other properties, including TNSEnt r yNane,

Dat abaseNane, Ser vi ceName, Ser ver Name, Por t Nunber , Net wor k Prot ocol , and driver
type are ignored.

ORACLE 2-8

Chapter 2
Basic Steps in JDBC

Specifying a Database URL, User Name, and Password
The following code sets the URL, user name, and password for a data source:

Oracl eDat aSour ce ods = new Oracl eDat aSource();
ods. set URL(url);

ods. set User (user);

ods. set Passwor d(passwor d) ;

The following example connects user HR with password hr to a database with service or cl
through port 5221 of the host nmyhost , using the JDBC Thin driver:

Oracl eDat aSour ce ods = new Oracl eDat aSource();
String url = "jdbc:oracle:thin: @/ nyhost:5221/orcl";
ods. set URL(url);

ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

¢ Note:

The user name and password specified in the arguments override any user name
and password specified in the URL.

Specifying a Database URL that Includes User Name and Password

The following example connects user HR with password hr to a database host whose
Transparent Network Substrate (TNS) entry is ny TNSEnt ry, using the JDBC Oracle Call
Interface (OCI) driver. In this case, the URL includes the user name and password and is the
only input parameter.

String url = "jdbc:oracl e:oci:HR hr @yTNSEntry");
ods. set URL(url);
Connection conn = ods. get Connection();

If you want to connect using the Thin driver, then you must specify the port number. For
example, if you want to connect to the database on the host nyhost that has a TCP/IP
listener on port 5221 and the service identifier is or ¢l , then provide the following code:

String URL = "jdbc: oracle:thin:HR hr @/ nyhost: 5221/ orcl");
ods. set URL(URL) ;
Connection conn = ods. get Connection();

Related Topics
e Data Sources and URLs

e Data Sources and URLs

2.3.3 Creating a Statement Object

Once you connect to the database and, in the process, create a Connect i on object, the next
step is to create a St at enent object. The creat eSt at enent method of the JIDBC Connect i on
object returns an object of the JDBC St at enent type. To continue the example from the

ORACLE 2-9

Chapter 2
Basic Steps in JDBC

previous section, where the Connect i on object conn was created, here is an example
of how to create the St at ement object:

Statement stmt = conn.createStatenent();

2.3.4 Running a Query and Retrieving a Result Set Object

To query the database, use the execut eQuery method of the St at ement object. This
method takes a SQL statement as input and returns a JDBC Resul t Set object.

< Note:

e The method used to execute a St at enent object depends on the type of
SQL statement being executed. If the St at ement object represents a
SQL query returning a Resul t Set object, the execut eQuery method
should be used. If the SQL is known to be a DDL statement or a DML
statement returning an update count, the execut eUpdat e method should
be used. If the type of the SQL statement is not known, the execut e
method should be used.

e In case of a standard JDBC driver, if the SQL string being executed does
not return a Resul t Set object, then the execut eQuery method throws a
SQLExcept i on exception. In case of an Oracle JDBC driver, the
execut eQuery method does not throw a SQLExcept i on exception even if
the SQL string being executed does not return a Resul t Set object.

To continue the example, once you create the St at enent object st nt, the next step is
to run a query that returns a Resul t Set object with the contents of the first _name
column of a table of employees named EMPLOYEES:

Resul t Set rset = stnt.executeQuery ("SELECT first_name FROM enpl oyees");

2.3.5 Processing the Result Set Object

ORACLE

Once you run your query, use the next () method of the Resul t Set object to iterate
through the results. This method steps through the result set row by row, detecting the
end of the result set when it is reached.

To pull data out of the result set as you iterate through it, use the appropriate get XXX
methods of the Resul t Set object, where XXX corresponds to a Java data type.

For example, the following code will iterate through the Resul t Set object, r set, from
the previous section and will retrieve and print each employee name:

while (rset.next())
Systemout.println (rset.getString(1));

The next () method returns f al se when it reaches the end of the result set. The
employee names are materialized as Java St ri ng values.

2-10

Chapter 2
Basic Steps in JDBC

2.3.6 Closing the Result Set and Statement Objects

You must explicitly close the Resul t Set and St at enent objects after you finish using them.
This applies to all Resul t Set and St at ement objects you create when using Oracle JDBC
drivers. The drivers do not have finalizer methods. The cleanup routines are performed by the
cl ose method of the Resul t Set and St at ement classes. If you do not explicitly close the

Resul t Set and St at enent objects, serious memory leaks could occur. You could also run out
of cursors in the database. Closing both the result set and the statement releases the
corresponding cursor in the database. If you close only the result set, then the cursor is not
released.

For example, if your Resul t Set object is rset and your St at ement object is st nt , then close
the result set and statement with the following lines of code:

rset.close();
stnt.close();

When you close a St at enent object that a given Connect i on object creates, the connection
itself remains open.

" Note:

Typically, you should put cl ose statements in a final |y clause.

2.3.7 Making Changes to the Database

ORACLE

DML Operations

To perform DML (Data Manipulation Language) operations, such as INSERT or UPDATE
operations, you can create either a St at enent object or a Prepar edSt at enent object.

Prepar edSt at enent objects enable you to run a statement with varying sets of input
parameters. The prepar eSt at ement method of the JDBC Connect i on object lets you define a
statement that takes variable bind parameters and returns a JDBC Pr epar edSt at enent object
with your statement definition.

Use the set XXX methods on the Pr epar edSt at ement object to bind data to the prepared
statement to be sent to the database.

The following example shows how to use a prepared statement to run | NSERT operations that
add two rows to the EMPLOYEES table.

/] Prepare to insert new names in the EMPLOYEES table
PreparedStatenent pstnmt = null;
tryf

pstmt = conn.prepareStatenent ("insert into EMPLOYEES (EMPLOYEE | D, Fl RST_NAME)
values (?, ?2)");

/1 Add LESLIE as enpl oyee nunber 1500

pstnt.setint (1, 1500); /I The first ? is for EMPLOYEE_ID
pstnt.setString (2, "LESLIE"); /'l The second ? is for FlIRST_NAME
/1 Do the insertion

pstnt.execute();

2-11

ORACLE

Chapter 2
Basic Steps in JDBC

/1 Add MARSHA as enpl oyee nunber 507

pstnt.setlint (1, 507); Il The first ? is for EMPLOYEE_ID
pstnt.setString (2, "MARSHA"); /'l The second ? is for FIRST_NAME
/1 Do the insertion

pstnt.execute();

}
finally{
i f(pstnt!=null)
/1 O ose the statenent
pstnt.close();
}

DDL Operations

To perform data definition language (DDL) operations, you must create a St at enent
object. The following example shows how to create a table in the database:

/lcreate table EMPLOYEES with col ums EMPLOYEE | D and FI RST_NAME
String query;
Statenment stnt=null;

try{
query="create table EMPLOYEES " +

"(EMPLOYEE_ID int, " +

"FI RST_NAME var char (50))";
stm = conn.createStatenent();
st nt. execut eUpdat e(query);

}

finally{
/lclose the Statement object
stnt.close();

}

< Note:

You can also use a Prepar edSt at ement object to perform DDL operations.
However, you should not use a Pr epar edSt at enent object because the
useful part of such an object is that it can have parameters and a DDL
operation does not have any parameters.

Also, due to a Database limitation, if you use a Pr epar edSt at ement object for
a DDL operation, then it only works for the first time it is executed. So, you
should use only St at enment objects for DDL operations.

The following example shows how to prepare your DDL statements before any
reexecution:

I
Statement stnt = null;
PreparedStatenent pstnmt = null;
tryf
pstnmt = conn.prepareStatenent ("insert into EMPLOYEES (EMPLOYEE | D,
FI RST_NAME) values (?, ?2)");
stm = conn.createStatenment("truncate table EMPLOYEES');

2-12

Chapter 2
Basic Steps in JDBC

/1 Add LESLIE as enpl oyee nunber 1500

pstnt.setint (1, 1500); Il The first ? is for EMPLOYEE ID
pstnt.setString (2, "LESLIE"); /1 The second ? is for FlIRST_NAME
pstnt.execute();

stnt. execut eUpdate();

/1 Add MARSHA as enpl oyee nunber 507

pstnt.setlnt (1, 507); Il The first ? is for EMPLOYEE_ID
pstnt.setString (2, "MARSHA"); /'l The second ? is for FIRST_NAME
pstnt.execute();

stnt. execut eUpdate();

}
finally{
if(pstnt!=null)

/1 Close the statenment
pstnt.close();
}

Related Topics
* The setObject and setOracleObject Methods
* Other setXXX Methods

2.3.8 About Committing Changes

ORACLE

By default, data manipulation language (DML) operations are committed automatically as
soon as they are run. This is known as the auto-commit mode. If auto-commit mode is on and
you perform a COW T or ROLLBACK operation using the conmi t or rol | back method on a
connection object, then you get the following error messages:

Table 2-2 Error Messages for Operations Performed When Auto-Commit Mode is ON

Operation Error Messages
COWM T Could not commt with auto-commit set on
RCOLLBACK Coul d not rollback with auto-conmit set on

If a SQLException is raised during a COM T or ROLLBACK operation with the error messages
as mentioned in the preceding table, then check the auto-commit status of the connection
because you get an exception when these operations are performed on a connection that has
auto-commit value setto tr ue.

This exception is raised for any one of the following cases:

* When auto-commit status is setto t rue and commi t or rol | back method is called

* When the default status of auto-commit is not changed and commi t or rol | back method
is called

* When the value of the COW T_ON_ACCEPT_CHANGES property istrue and commi t or
rol | back method is called after calling the accept Changes method on a rowset

However, you can disable auto-commit mode with the following method call on the
Connect i on object:

conn. set Aut oConmi t (f al se);

2-13

Chapter 2
Basic Steps in JDBC

If you disable the auto-commit mode, then you must manually commit or roll back
changes with the appropriate method call on the Connect i on object:

conn.comit();

or:

conn. rol | back();

A COW T or ROLLBACK operation affects all DML statements run since the last COWM T
or ROLLBACK.

" Note:

e If the auto-commit mode is disabled and you close the connection
without explicitly committing or rolling back your last changes, then an
implicit COW T operation is run.

e Any data definition language (DDL) operation always causes an implicit
COW T. If the auto-commit mode is disabled, then this implicit COWM T will
commit any pending DML operations that had not yet been explicitly
committed or rolled back.

Related Topics
* Disabling Auto-Commit Mode

2.3.8.1 Changing Commit Behavior

ORACLE

When a transaction updates the database, it generates a redo entry corresponding to
this update. Oracle Database buffers this redo in memory until the completion of the
transaction. When you commit the transaction, the Log Writer (LGWR) process writes
the redo entry for the commit to disk, along with the accumulated redo entries of all
changes in the transaction. By default, Oracle Database writes the redo to disk before
the call returns to the client. This behavior introduces latency in the commit because
the application must wait for the redo entry to be persisted on disk.

If your application requires very high transaction throughput and you are willing to
trade commit durability for lower commit latency, then you can change the behavior of
the default COMM T operation, depending on the needs of your application. You can
change the behavior of the COW T operation with the following options:

o VAT

* NOMAIT

* \\RI TEBATCH

* \\RI TEI MVED

These options let you control two different aspects of the commit phase:

e Whether the COWM T call should wait for the server to process it or not. This is
achieved by using the WAI T or NOWAI T option.

* Whether the Log Writer should batch the call or not. This is achieved by using the
VARl TEI MVED or W\RI TEBATCH option.

2-14

Chapter 2
Sample: Connecting, Querying, and Processing the Results

You can also combine different options together. For example, if you want the COW T call to
return without waiting for the server to process it and also the log writer to process the
commits in batch, then you can use the NOMI T and WRI TEBATCH options together. For
example:

((Oracl eConnection) conn). commit (
Enuntet . of (
Or acl eConnect i on. Conmi t Opt i on. WRI TEBATCH,
O acl eConnection. Conmi t Opti on. NOMAIT)) ;

Note:

you cannot use the WAI T and NOWAI T options together because they have opposite
meanings. If you do so, then the JDBC driver will throw an exception. The same
applies to the WRI TEI MVED and WRI TEBATCH options.

2.3.9 Closing the Connection

You must close the connection to the database after you have performed all the required
operations and no longer require the connection. You can close the connection by using the
cl ose method of the Connect i on object, as follows:

conn. cl ose();

¢ Note:

Typically, you should put cl ose statements in afinal | y clause.

2.4 Sample: Connecting, Querying, and Processing the Results

ORACLE

The steps in the preceding sections are illustrated in the following example, which uses the
Oracle JDBC Thin driver to create a data source, connects to the database, creates a
St at enent object, runs a query, and processes the result set.

Note that the code for creating the St at enent object, running the query, returning and
processing the Resul t Set object, and closing the statement and connection uses the
standard JDBC API.

i mport java.sql.Connection;

i mport java.sql.ResultSet;

i nport java.sql.Statenent;

i mport java.sql.SQLException;

i mport oracle.jdbc. pool . O acl eDat aSour ce;

cl ass JdbcTest

{
public static void main (String args []) throws SQLException

{

Oracl eDat aSource ods = nul | ;
Connection conn = null;

2-15

Chapter 2
Support for Invisible Columns

Statenent stnt
Resul t Set rset

nul I;
nul I;

/1 Create DataSource and connect to the local database
ods = new Oracl eDat aSource();

ods. set URL("j dbc: oracle:thin: @/ ocal host:5221/orcl");
ods. set User ("HR") ;

ods. set Password("hr");

conn = ods. get Connection();

try
{
/1 Query the enpl oyee nanes
stnmt = conn.createStatenment ();
rset = stnt.executeQuery ("SELECT first_name FROM enpl oyees");
/1 Print the nane out
while (rset.next ())
Systemout.println (rset.getString (1));
}
/I Cose the result set, statenment, and the connection
finally{
if(rset!=null) rset.close();
if(stm!=null) stnt.close();
i f(connl=null) conn.close();
}
1
}

If you want to adapt the code for the OCI driver, then replace the call to the
O acl eDat aSour ce. set URL method with the following:

ods. set URL("j dbc: oracl e: oci : @¥Host String");

where, MyHost St ri ng is an entry in the TNSNAMES. ORA file.

2.5 Support for Invisible Columns

ORACLE

Starting from this release, Oracle Database supports invisible columns. Using this
feature, you can add a column to the table in hidden mode and make it visible later.
JDBC provides APIs to retrieve information about invisible columns. To get information
about whether a column is invisible or not, you can use the i sCol uml nvi si bl e
method available in the or acl e. j dbc. Or acl eResul t Set Met aDat a interface in the
following way:

Example

Connection conn = DriverManager. get Connection(j dbcURL, user, password);
Statement stnt = conn.createStatenent ();

stnt.executeQuery ("create table hiddenCol sTable (a varchar(20), b int
invisible)");

stnt. execut eUpdate("insert into hiddenCol sTable (a,b) values('sonedata',1)");
stnt. execut eUpdate("insert into hiddenCol sTable (a,b) values('newdata',2)");

Systemout.println ("Invisible colums information");
try

2-16

Chapter 2
Support for Invisible Columns

{
Resul t Set rset = stnt.executeQuery("SELECT a, b FROM hi ddenCol sTabl e");
Oracl eResul t Set MetaData rsmd = (O acl eResul t Set Met aDat a) r set . get Met aDat a() ;
while (rset.next())
{
Systemout. println("columl value:" + rset.getString(1));
Systemout. printIn("Visibility:" + rsmd.isCol umlnvisible(1));
Systemout. println("colum2 value:" + rset.getlnt(2));
Systemout.printIn("Visibility:" + rsmd.isCol umlnvisible(2));
}
}
catch (Exception ex)
{
Systemout. println("Exception :" + ex);
ex. printStackTrace();
}

Alternatively, you can also use the get Col uims method available in the
oracl e. jdbc. O acl eDat abaseMet aDat a class to retrieve information about invisible columns.

Example

Connection conn = DriverManager. get Connecti on(j dbcURL, user, password);
Statement stnt = conn.createStatenent ();

stnt.executeQuery ("create table hiddenCol sTable (
stnt.executeUpdate("insert into hiddenCol sTable (a
stnt. executeUpdate("insert into hiddenCol sTable (a

a varchar(20), b int invisible)");
,b) values('sonedata',1)");
,b) values(' newdata',2)");

Systemout.printin ("getColums for table with invisible colums");

try
{
Dat abaseMet aDat a dbnd = conn. get Met aDat a() ;
Resul t Set rs = dbnd. get Col unms(null, "HR', "hi ddenCol sTable", null);
O acl eResul t Set MetaData rsmd = (Oracl eResul t Set Met aDat a) rs. get Met aDat a() ;
int col Count = rsnu. get Col umCount ();
Systemout. println("col Count: " + col Count);
String[] columNanmes = new String [col Count];
for (int i =0; i < colCount; ++)
{
col umNanes[i] = rsnd. get Col umNane (i + 1);
}
while (rs.next())
{
for (int i =0; i < colCount; ++i)
Systemout. println(col umNames[i] +":" +rs.getString (col umNames[i]));
}
}
catch (Exception ex)
{
Systemout. println("Exception: " + ex);
ex. printStackTrace();
}

ORACLE 2-17

Chapter 2
Support for Verifying JSON Data

< Note:

The server-side internal driver, kpr b does not support fetching information
about invisible columns.

2.6 Support for Verifying JSON Data

Starting from Oracle Database Release 18c, JDBC drivers can verify whether a
column returned in the Resul t Set is a JSON column or not. To get information about
whether a column is JSON or not, you can use the i sCol uimJSON method available in
the oracl e. j dbc. Oracl eResul t Set Met aDat a interface in the following way:

Example 2-1 Example

public void test(Connection conn)
t hrows Exception{

try {
show ("tkpjb26776242 - start");

creat eTabl e(conn);

String sql = "SELECT col 1, col2, col3, col4, col5, col6, col?7,
col 8 FROM t kpj b26776242_t ab";

Statenment stnmt = conn.createStatenent();

ResultSet rs = stnt.executeQuery(sql);

Resul t Set Met aData rsmd = rs. get MetaData();

Oracl eResul t Set et aData orsmd = (Oracl eResul t Set Met aDat a) r snd;

int colCnt = orsnd. get Col umCount ();

show("Table has " + colCnt + " colums.");

for (int i =1; i <=colCnt; i++) {
String col umNarme = orsnd. get Col umNane(i);
String typeName = orsnd. get Col umTypeName(i);
bool ean invisible = orsmd.isCol umlnvisible(i);
bool ean json = orsnd. i sCol uMmJSON(i);
show(col umNarme + " " + typeNanme + (invisible?"

INVISIBLE":"") + (json?" JSON':""));

}

rs.close();
stnt.close();

show ("tkpjb26776242 - end");

1
finally {
dropTabl e(conn);
1
1

ORACLE 2-18

Chapter 2
Support for Implicit Results

private void createTabl e(Connection conn) throws Exception{
String sql =" create table tkpjb26776242 tab ("
" coll clob,
col 2 clob ,
" col 3 clob INVISIBLE, "
" col 4 clob INVISIBLE, "
" col 5 varchar2(200), "
col 6 varchar2(200), "
col 7 varchar2(200) INvISIBLE, "
" col 8 varchar2(200) INvISIBLE, "
" check (col2 IS JSON), "
check (col4 1S JSQN), "
" check (col6 IS JSON), "
check (col8 IS JSON))";

+

+ + + + + + + + + 4+ +

Uil.doSQ(conn, sql);
1

private void dropTabl e(Connection conn) throws Exception{
String sql =" drop table tkpjb26776242_tab";

Uil.trySQ(conn, sql);
}

2.7 Support for Implicit Results

Starting from this release, Oracle Database supports results of SQL statements executed in a
stored procedure to be returned implicitly to the client applications without the need to
explicitly use a REF CURSOR. You can use the following methods to retrieve and process the
implicit results returned by PL/SQL procedures or blocks:

Method Description
get MoreResul ts Checks if there are more results available in the result set
get Mor eResul ts(int) Checks if there are more results available in the result set, like

the overloaded method. This method accepts an i nt parameter
that can have one of the following values:

- KEEP_CURRENT RESULT
- CLOSE_ALL_RESULTS
- CLOSE_CURRENT RESULT

get Resul t Set Iteratively retrieves each implicit result from an executed
PL/SQL statement

ORACLE 2-19

ORACLE

Chapter 2
Support for Implicit Results

< Note:

e The server-side internal driver, kpr b does not support fetching
information about implicit results.

e Only SELECT queries can be returned implicitly.

e Applications retrieve each result set sequentially, but can fetch rows from
any result set independent of the sequence.

Suppose you have a procedure called f oo as the following:

create procedure foo as
cl sys_refcursor;
c2 sys_refcursor;

begin
open cl for select * from hr.enpl oyees;
dbns_sql .return_result(cl); --return to client

-- open 1 nore cursor

open c2 for select * from hr.departnents;

dbns_sql .return_result (c2); --return to client
end;

The following code snippet demonstrates how to retrieve the implicit results returned
by PL/SQL procedures using the get Mor eResul t s methods:

Example 1

String sql = "begin foo; end;";

Connection conn = DriverManager. get Connection(j dbcURL, user, password);
try {

Statement stnmt = conn.createStatenment ();

stnt.executeQuery (sql);

while (stnt.getMreResults())

{
ResultSet rs = stnt.getResultSet();

Systemout. println("ResultSet");
while (rs.next())

{
}

/* get results */

}

Suppose you have another procedure called f 0o as the following:

create or replace procedure foo ascl sys_refcursor; c2 sys_refcursor; c3
sys_refcursor; begin open cl for 'select * from hr.enpl oyees';

dbns_sql .return_result (cl);-- cursor 2open c2 for 'select * from
hr.departnents';

dbns_sql .return_result (c2);-- cursor 3open c3 for 'select first_name from
hr. enpl oyees';

dbns_sql .return_result (c3); end;

2-20

Chapter 2
Support for Lightweight Connection Validation

The following code snippet demonstrates how to retrieve the implicit results returned by
PL/SQL procedures using the get Mor eResul t s(i nt) methods:

Example 2
String sql = "begin foo; end;";

Connection conn = DriverManager. get Connection(j dbcURL, user, password);

try {
Statement stnmt = conn.createStatement ();
stnt.executeQuery (sql);
ResultSet rs = null;
bool ean retval = stnt.get MoreResul ts(Statenment. KEEP_CURRENT _RESULT))
if (retval)
{
rs = stnt.getResultSet();
Systemout. println("ResultSet");
while (rs.next())
{
/* get results */
}
}
/* closes open results */
retval = stnt.get MoreResul ts(Statement. CLOSE_ALL_RESULTS);
if (retval)
{
Systemout. println("Mre ResultSet available");
rs = stnt.getResultSet();
Systemout. println("ResultSet");
while (rs.next())
{
/* get results */
}
}
/* close current result set */
retval = stnt.get MoreResul t s(Statement. CLOSE_CURRENT _RESULT) ;
if(retval)
{
Systemout. println("Mre ResultSet available");
rs = stnt.getResultSet();
while (rs.next())
{
/* get Results */
}
}
}

2.8 Support for Lightweight Connection Validation

Starting from Oracle Database Release 18c, JDBC Thin driver supports lightweight
connection validation. Lightweight connection validation enables JDBC applications to verify
connection validity by sending a zero length NS data packet that does not require a round-trip

ORACLE 2-21

ORACLE

Chapter 2
Support for Lightweight Connection Validation

to the database. For the earlier releases of Oracle Database, when you call the

i sValid(timeout) method to test the validity of a connection, Oracle JDBC driver
uses a ping-pong protocol, which is an expensive operation as it makes a full round-
trip to the database. In Oracle Database Release 18c, the i sVal i d(ti meout) method
instead sends an empty packet to the database and does not wait to receive it back.
So, connection validation is faster, which results in better application performance.

Lightweight connection validation is disabled by default. To enable this feature, you
must set the oracl e. j dbc. def aul t Connecti onVal i dati on connection property value
to SOCKET. If this property is set, then the JDBC driver performs lightweight connection
validation, when you call the i sVal i d(ti meout) method.

" Note:

e Lightweight connection validation checks only the underlying socket
health. When the i sVal i d(ti neout) method returns true, that is, if a
connection is termed as valid, this validation only guarantees that the
server is not unreachable (dead socket). It does not provide any status
about the server processes, like whether they are running or not.
However, by default, that is, when lightweight connection validation is not
enabled, the i sVal i d(ti meout) method does check whether the network
between the client and the server is intact or not.

e Only the JDBC Thin driver supports this feature.

New APIs for Lightweight Connection Validation

e oracle.jdbc. defaul t ConnectionVal i dation

This connection property specifies the level of connection validation. The possible
values for this property are: NONE, LOCAL, SOCKET, NETWORK, SERVER, and COVPLETE.
These values are case-sensitive, and setting any value other than these values
throws an exception. The default value is NETVWORK.

e public boolean isValid(ConnectionValidation validation_|evel, int
timeout) throws SQLException

The new variation of the existing i sVal i d(ti meout) method accepts two
parameters: level of validation (val i dati on_I evel) and ti meout . The first
parameter specifies the level of connection validation.

Example 2-2 Example of Lightweight Connection Validation

The following code snippet demonstrates how to implement lightweight connection
mechanism:

Oracl eDat aSour ce ods = new O acl eDat aSour ce();
ods. set URL(url);

ods. set User (user);

ods. set Passwor d(password) ;

Connection conn = ods. get Connection();

try{
bool ean isValid = ((Oracl eConnection)conn).

2-22

Chapter 2
Support for Deprioritization of Database Nodes

i sVal i d(Connecti onVal i dati on. SOCKET, ti neout) ;

System out. println("Connection isValid = "+isValid);
}
catch (Exception ex)
{
Systemout. println("Exception :" + ex);
ex.printStackTrace();

2.9 Support for Deprioritization of Database Nodes

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), JDBC drivers support
deprioritization of database nodes. When a node fails, JDBC deprioritizes it for the next 10
minutes, which is the default expiry time. For example, if there are three nodes A, B, C, and
node A is down, then connections are allocated first from nodes B and C, and then from node
A. After the default expiry time, node A is no longer deprioritized, that is, connections are
allocated from all the three nodes on availability basis. Also, during the default expiry time, if
a connection attempt to node A succeeds, then node A is no longer considered to be a
deprioritized node. You can specify the default expiry time for deprioritization using the

oracl e. net. DOAWN_HOSTS_TI MEQUT system property.

For example, in the following URL, scan_| i stener0 hasi pl,ip2, andi p3 IP addresses
configured, after retrieving its IP addresses. Now, if i p1 is deprioritized, then the order of
trying IP addresses will be i p2, i p3, and then i pl. If all IP addresses are unavailable, then
the whole host is tried last, after trying node_1 and node_2.

(DESCRI PTI ON_LI ST=
(DESCRI PTI ON=
(ADDRESS_LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=scan_I i st ener 0) (PORT=1521))
(ADDRESS=(PROTOCOL=t cp) (HOST=node_1) (PORT=1528))
(ADDRESS=(PROTOCOL=sdp) (HOST=node_2) (PORT=1527))
)
(ADDRESS LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=node_3) (PORT=1528))
)
(CONNECT_DATA=(SERVI CE_NAME=cdb3))
)
(DESCRI PTI ON=
(ADDRESS=(PROTOCOL=t cp) (HOST=node_0) (PORT=1528))
(CONNECT_DATA=(SERVI CE_NAME=cdb3))

2.10 Support for Oracle Connection Manager in Traffic Director
Mode

Oracle Database Release 18c JDBC Drivers support Oracle Connection Manager in Traffic
Director Mode, which is a proxy placed between the database clients and the database

ORACLE 2-23

Chapter 2
Support for Oracle Connection Manager in Traffic Director Mode

instances. A JDBC client can connect to the Oracle Connection Manager in Traffic
Director Mode, which in turn connects to the target Oracle Database. The Two-Task
Common (TTC) messages, which are sent from the clients, are intercepted by Oracle
Connection Manager in Traffic Director Mode. It parses the incoming TTC messages
and relays the request to the appropriate destination database. Once the responses
are received, Oracle Connection Manager in Traffic Director Mode transfers the results
back from the destination database to the clients through TTC responses.

The following image illustrates the architecture of Oracle Connection Manager in
Traffic Director Mode:

Figure 2-1 Architecture of Oracle Connection Manager in Traffic Director Mode

Applications and
Application Servers

5

Oracle Connection
Manager in Traffic
Director Mode

Oracle
Databases

" See Also:

e Oracle Database Net Services Administrator's Guide for more
information about configuring the cman. or a file to set up Oracle
Connection Manager in Traffic Director Mode

e QOracle Database Net Services Reference for more information about
Oracle Connection Manager in Traffic Director Mode parameters

2.10.1 Modes of Running Oracle Connection Manager in Traffic
Director Mode

ORACLE

You can run Oracle Connection Manager in Traffic Director Mode in the following
modes:

 Pooled connection mode

The pooled connection mode uses a new feature called Proxy Resident
Connection Pooling, which is a proxy-enabled mode of Database Resident

2-24

Chapter 2
Support for Oracle Connection Manager in Traffic Director Mode

Connection Pooling. The Proxy Resident Connection Pooling reduces the connection
load on the database as it multiplexes a large number of client connections over a fewer
number of database connections. Any application using Oracle Database 12c¢ Release 1
(12.1) JDBC drivers and later can use this connection mode.

Note:

This feature can best be used with clients using DRCP-aware connection pools.

* Nonpooled or dedicated connection mode

You can use the Nonpooled or dedicated connection mode with applications using Oracle
Database 11g Release 2 (11.2.0.4) JDBC drivers and later. However, some capabilities
such as connection multiplexing are not available in this mode.

Related Topics

* Overview of Database Resident Connection Pooling

" See Also:

* Database Admin Guide

e Universal Connection Pool Developer's Guide

2.10.2 Benefits of Oracle Connection Manager in Traffic Director Mode

Oracle Connection Manager in Traffic Director Mode provides the following benefits:

» Transparent performance enhancements and connection multiplexing, which includes:

— Statement caching, rows prefetching, and result set caching are auto-enabled for all
modes of operation.

— Database session multiplexing (pooled mode only) using the proxy resident
connection pool (PRCP), where PRCP is a proxy mode of Database Resident
Connection Pooling (DRCP). Applications get transparent connection-time load
balancing and run-time load balancing between Oracle Connection Manager in
Traffic Director Mode and the database.

— For multiple Oracle Connection Manager in Traffic Director Mode instances,
applications get increased scalability through client-side connection-time load
balancing or with a load balancer (BIG-IP, NGINX, and others)

e Zero application downtime
— Planned database maintenance or pluggable database (PDB) relocation
* Pooled mode

Oracle Connection Manager in Traffic Director Mode responds to Oracle
Notification Service (ONS) events for planned outages and redirects work.
Connections are drained from the pool on Oracle Connection Manager in Traffic

ORACLE 2-25

Chapter 2
Support for Oracle Connection Manager in Traffic Director Mode

Director Mode when the request completes. Service relocation is
supported for Oracle Database 11g release 2 (11.2.0.4) and later.

For PDB relocation, Oracle Connection Manager in Traffic Director Mode
responds to in-band notifications when a PDB is relocated, that is even
when ONS is not configured (for Oracle Database release 18c and later
server only)

* Non-pooled or dedicated mode

When there is no request boundary information from the client, Oracle
Connection Manager in Traffic Director Mode supports planned outage for
many applications (as long as only simple session state and cursor state
need to be preserved across the request or transaction boundaries). This
support includes:

* Stop service or PDB at the transaction boundary, or it leverages
Oracle Database release 18c continuous application availability to
stop the service at the request boundary

* Oracle Connection Manager in Traffic Director Mode leverages
Transparent Application Failover (TAF) failover restore to reconnect
and restore simple states.

Unplanned database outages for read-mostly workloads

* High Availability of Oracle Connection Manager in Traffic Director Mode to avoid a
single point of failure. This is supported by:

Multiple instances of Oracle Connection Manager in Traffic Director Mode
using a load balancer or client side load balancing/failover in the connection
string

Rolling upgrade of Oracle Connection Manager in Traffic Director Mode
instances

Graceful close of existing connections from client to Oracle Connection
Manager in Traffic Director Mode for planned outages

In-band notifications to Oracle Database release 18c and later clients

For older clients, notifications are sent with the response of the current request

» For security and isolation, Oracle Connection Manager in Traffic Director Mode
furnishes:

ORACLE

Database Proxy supporting transmission control protocol/transmission control
protocol secure (TCP/TCPS) and protocol conversion

Firewall based on the IP address, service name, and secure socket layer/
transport layer security (SSL/TLS) wallets

Tenant isolation in a multi-tenant environment
Protection against denial-of-service and fuzzing attacks

Secure tunneling of database traffic across Oracle Database on-premises and
Oracle Cloud

2-26

Chapter 2
Stored Procedure Calls in JDBC Programs

2.10.3 Restrictions for Oracle Connection Manager in Traffic Director Mode

The following functionalities are not supported with Oracle Connection Manager in Traffic
Director Mode:

Distributed Transactions

Advanced Queuing (AQ)

Database Startup or Database Shutdown calls
Sharding

XML

SQL Translation

Proxy Authentication and SSL External Authentication, such as Distinguished Names
(DNs) used in LDAP

Object REF

Session switching

Scrollable Cursor

Per Iteration DML Row Counts
Implicit Results

Continuous Query Notification (CQN)
Client Result Cache

PL/SQL Callback for Session State Fix Up in Database Resident Connection Pooling
(DRCP)

Multiple tagging in Database Resident Connection Pooling (DRCP)
Application Continuity

Authentication such as SYSDBA, SYSOPER and so on

Real Application Security

Data types such as PL/SQL Indexed Table Binds

Bulk Copy (ODP.Net only)

Self-Tuning (ODP.Net only)

ASO encryption and supported algorithms (ASO only)

2.11 Stored Procedure Calls in JDBC Programs

This section describes how Oracle JDBC drivers support the following kinds of stored
procedures:

ORACLE

PL/SQL Stored Procedures

Java Stored Procedures

2-27

Chapter 2
About Processing SQL Exceptions

2.11.1 PL/SQL Stored Procedures

JDBC supports the invocation of PL/SQL procedures/functions and anonymous
blocks, using either JDBC escape syntax or PL/SQL block syntax. The following
PL/SQL calls would work with any Oracle JDBC driver:

/1 JDBC escape syntax
Cal | abl eSt at enment csl1 = conn. prepareCal |
("{call proc (?,?)}") ; I/l stored proc
Cal | abl eSt at enment c¢s2 = conn. prepareCal |
("{? =call func (?,?)}") ; // stored func
/'l PL/ SQL bl ock syntax
Cal | abl eSt at enment ¢s3 = conn. prepareCal |
("begin proc (?,?); end;") ; // stored proc
Cal | abl eSt at enment cs4 = conn. prepareCal |
("begin ? :=func(?,?); end;") ; // stored func

As an example of using the Oracle syntax, here is a PL/SQL code snippet that creates
a stored function. The PL/SQL function gets a character sequence and concatenates a
suffix to it:

create or replace function foo (vall char)
return char as
begi n
return vall || 'suffix';
end;

The function invocation in your JDBC program should look like the following:

O acl eDat aSource ods = new Oracl eDat aSour ce();
ods. set URL("j dbc: oracl e: oci : @hoststring>");
ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

Cal | abl eSt atement cs = conn. prepareCall ("begin ? :=foo(?); end;");
cs.regi sterQut Paraneter (1, Types. CHAR);

cs.setString(2, "aa");

cs. execute();

String result = cs.getString(1);

2.11.2 Java Stored Procedures

You can use JDBC to call Java stored procedures through the SQL interface. The
syntax for calling Java stored procedures is the same as the syntax for calling PL/SQL
stored procedures, presuming they have been properly published. That is, you have
written call specifications to publish them to the Oracle data dictionary. Applications
can call Java stored procedures using the Native Java Interface for direct invocation of
stati c Java methods.

2.12 About Processing SQL Exceptions

To handle error conditions, Oracle JDBC drivers throw SQL exceptions, producing
instances of the j ava. sql . SQLExcept i on class or its subclass. Errors can originate
either in the JDBC driver or in the database itself. Resulting messages describe the

ORACLE 2-28

ORACLE

Chapter 2
About Processing SQL Exceptions

error and identify the method that threw the error. Additional run-time information can also be
appended.

JDBC 3.0 defines only a single exception, SQLExcept i on. However, there are large categories
of errors and it is useful to distinguish them. Therefore, in JDBC 4.0, a set of subclasses of
the SQLExcept i on exception is introduced to identify the different categories of errors.

Basic exception handling can include retrieving the error message, retrieving the error code,
retrieving the SQL state, and printing the stack trace. The SQLExcept i on class includes
functionality to retrieve all of this information, when available.

Retrieving Error Information

You can retrieve basic error information with the following methods of the SQLExcept i on
class:

» get Message class includes functionality to retrieve all of this information, when available.

e get Error Code class includes functionality to retrieve all of this information, when
available.

e get SQLSt at e class includes functionality to retrieve all of this information, when available.
The following example prints output from a get Message method call:

cat ch(SQLException e)
{

}

Systemout. println("exception: + e.get Message());

This would print the output, such as the following, for an error originating in the JDBC driver:

exception: Invalid colum type

" Note:

Error message text is available in alternative languages and character sets
supported by Oracle.

Printing the Stack Trace

The SQLExcepti on class provides the print St ackTrace() method for printing a stack trace.
This method prints the stack trace of the Thr owabl e object to the standard error stream. You
can also specify ajava.io. Print Streamobjectorjava.io.PrintWiter object for output.

The following code fragment illustrates how you can catch SQL exceptions and print the
stack trace.

try { <some code> }
catch(SQLException e) { e.printStackTrace (); }

To illustrate how the JDBC drivers handle errors, assume the following code uses an
incorrect column index:

/1 lterate through the result and print the enpl oyee names
/'l of the code

2-29

Chapter 2
About Processing SQL Exceptions

try {
while (rset.next ())

Systemout.println (rset.getString (5)); // incorrect colum index

catch(SQLException e) { e.printStackTrace (); }

Assuming the column index is incorrect, running the program would produce the
following error text:

java.sql . SQLException: Invalid col um index

2: acle.jdbc. Oracl eDriver. Oracl eResul t Set I npl . get Dat e(Or acl eResul t Set | npl . j ava: 155
22 Enpl oyee. mai n(Enpl oyee. j ava: 41)

Related Topics

 JDBC Error Messages

* Oracle Database Error Messages Reference

ORACLE 2-30

Oracle JDBC

This part includes chapters that discuss the different Java Database Connectivity (JDBC)
versions that Oracle Database 12c¢ supports. It also includes chapters that cover features
specific to JDBC Thin driver, JDBC Oracle Call Interface (OCI) driver, and the server-side
internal driver.

Part Il contains the following chapters:

« JDBC Standards Support

* Oracle Extensions

* Features Specific to JDBC Thin

* Features Specific to JDBC OCI Driver

e Server-Side Internal Driver

ORACLE

JDBC Standards Support

Oracle Java Database Connectivity (JDBC) drivers support different versions of the JDBC
standard features. In Oracle Database 12c¢ Release 2 (12.2.0.1), Oracle JDBC drivers have
been enhanced to provide support for the JDBC 4.1 standards. These features are provided
through the or acl e. j dbc and or acl e. sql packages. These packages support Java
Development Kit (JDK) release 8. This chapter discusses the JDBC standards support in
Oracle JDBC drivers. It contains the following sections:

Support for JDBC 2.0 Standard
Support for JDBC 3.0 Standard
Support for JDBC 4.0 Standard
Support for JDBC 4.1 Standard
Support for JDBC 4.2 Standard

3.1 Support for JDBC 2.0 Standard

This release of Oracle JDBC drivers provide support for JDBC 2.0 features through JDK 1.2
and later versions. There are three areas to consider:

Support for data types, such as objects, arrays, and large objects (LOBs), which is
handled through the j ava. sql package.

Support for standard features, such as result set enhancements and update batching,
which is handled through standard objects, such as Connecti on, Resul t Set , and
Pr epar edSt at enent , under JDK 1.2.x and later.

Support for extended features, such as features of the JDBC 2.0 optional package, also
known as the standard extension application programming interface (API), including data
sources, connection pooling, and distributed transactions.

This section covers the following topics:

ORACLE

Data Type Support
Standard Feature Support
Extended Feature Support

Standard versus Oracle Performance Enhancement APIs

Note:

Versions of JDK earlier than 5.0 are no longer supported. The package
oracl e.j dbc2 has been removed.

3-1

Chapter 3
Support for JDBC 3.0 Standard

3.1.1 Data Type Support

Oracle JDBC fully supports JDK 6 and JDK 7, which includes standard JDBC 2.0
functionality through implementation of interfaces in the standard j ava. sql package.
These interfaces are implemented as appropriate by classes in the or acl e. sql and
oracl e. j dbc packages.

3.1.2 Standard Feature Support

In a JDK 6.0 environment, using the JDBC classes in oj dbc6. j ar, JDBC 2.0 features,
such as scrollable result sets, updatable result sets, and update batching, are
supported through methods specified by standard JDBC 2.0 interfaces.

3.1.3 Extended Feature Support

Features of the JDBC 2.0 optional package, including data sources, connection
pooling, and distributed transactions, are supported in a JDK 1.2.x or later
environment.

The standard j avax. sql package and classes that implement its interfaces are
included in the Java Archive (JAR) files packaged with Oracle Database.

3.1.4 Standard versus Oracle Performance Enhancement APIs

Fetch size or row prefetching is available under JDBC 2.0, which had previously been
available only as an Oracle extension. You have the option of using the standard
model or the Oracle model. Oracle recommends that you use the JDBC standard
model whenever possible. Do not, however, try to mix usage of the standard model
and Oracle model within a single application for this feature.

Related Topics

e Row Fetch Size

3.2 Support for JDBC 3.0 Standard

Oracle Database 12c Release 1 JDBC drivers provide support for Standard JDBC 3.0
features through JDK 1.4 and later versions. The following table lists the JDBC 3.0
features supported by this release of Oracle JDBC drivers and gives references to a
detailed discussion of each feature.

Table 3-1 Key Areas of JDBC 3.0 Functionality

Feature Comments and References

Transaction savepoints See "Overview of Transaction Savepoints" for information.

Statement caching Reuse of prepared statements by connection pools. See Statement and Result Set
Caching .

Switching between local and See "About Switching Between Global and Local Transactions".
global transactions

LOB modification See "JDBC 3.0 LOB Interface Methods" JDBC 3.0 LOB Interface Methods.

ORACLE 3-2

Chapter 3
Support for JDBC 3.0 Standard

Table 3-1 (Cont.) Key Areas of JDBC 3.0 Functionality

|
Feature Comments and References

Named SQL parameters See "Interface oracle.jdbc.OracleCallableStatement" and "Interface
oracle.jdbc.OraclePreparedStatement" Interface
oracle.jdbc.OraclePreparedStatement.

RowSets See JDBC RowSets

Retrieving auto-generated See "Retrieval of Auto-Generated Keys" Retrieval of Auto-Generated Keys
keys

Result set holdability See "Result Set Holdability" Result Set Holdability

The following JDBC 3.0 features supported by Oracle JDBC drivers are covered in this
section:

e Overview of Transaction Savepoints
* Retrieval of Auto-Generated Keys

e JDBC 3.0 LOB Interface Methods

* Result Set Holdability

3.2.1 Overview of Transaction Savepoints

The JDBC 3.0 specification supports savepoints, which offer finer demarcation within
transactions. Applications can set a savepoint within a transaction and then roll back all work
done after the savepoint. Savepoints relax the atomicity property of transactions. A
transaction with a savepoint is atomic in the sense that it appears to be a single unit outside
the context of the transaction, but code operating within the transaction can preserve partial
states.

Note:

Savepoints are supported for local transactions only. Specifying a savepoint within a
global transaction causes a SQLExcept i on exception to be thrown.

3.2.1.1 About Creating a Savepoint

You create a savepoint using the Connecti on. set Savepoi nt method, which returns a
j ava. sqgl . Savepoi nt instance.

A savepoint is either named or unnamed. You specify the name of a savepoint by supplying a
string to the set Savepoi nt method. If you do not specify a name, then the savepoint is
assigned an integer ID. You retrieve a name using the get Savepoi nt Nane method. You
retrieve an ID using the get Savepoi nt I d method.

ORACLE 3-3

Chapter 3
Support for JDBC 3.0 Standard

< Note:

Attempting to retrieve a name from an unnamed savepoint or attempting to
retrieve an ID from a named savepoint throws a SQLExcept i on exception.

3.2.1.2 About Rolling Back to a Savepoint

You roll back to a savepoint using the Connecti on. rol | back(Savepoi nt svpt)
method. If you try to roll back to a savepoint that has been released, then a
SQLExcept i on exception is thrown.

3.2.1.3 About Releasing a Savepoint

You remove a savepoint using the Connecti on. rel easeSavepoi nt (Savepoi nt svpt)
method.

3.2.1.4 About Checking Savepoint Support

You query if savepoints are supported by your database by calling the
oracl e.jdbc. O acl eDat abaseMet aDat a. suppor t sSavepoi nt s method, which returns
true if savepoints are available, f al se otherwise.

3.2.1.5 Savepoint Notes

When using savepoints, you must consider the following:

* After a savepoint has been released, attempting to reference it in a rollback
operation will cause a SQLExcept i on exception to be thrown.

e When a transaction is committed or rolled back, all savepoints created in that
transaction are automatically released and become invalid.

e Rolling a transaction back to a savepoint automatically releases and makes invalid
any savepoints created after the savepoint in question.

3.2.2 Retrieval of Auto-Generated Keys

Many database systems automatically generate a unique key field when a row is
inserted. Oracle Database provides the same functionality with the help of sequences
and triggers. JDBC 3.0 introduces the retrieval of auto-generated keys feature that
enables you to retrieve such generated values. In JDBC 3.0, the following interfaces
are enhanced to support the retrieval of auto-generated keys feature:

* java.sql.DatabaseMet aDat a
e java.sql.Connection
* java.sql.Statement

These interfaces provide methods that support retrieval of auto-generated keys.
However, this feature is supported only when | NSERT statements are processed. Other
data manipulation language (DML) statements are processed, but without retrieving
auto-generated keys.

ORACLE 3-4

Chapter 3
Support for JDBC 3.0 Standard

< Note:

The Oracle server-side internal driver does not support the retrieval of auto-
generated keys feature.

3.2.2.1 java.sql.Statement

If key columns are not explicitly indicated, then Oracle JDBC drivers cannot identify which
columns need to be retrieved. When a column name or column index array is used, Oracle
JDBC drivers can identify which columns contain auto-generated keys that you want to
retrieve. However, when the St at ement . RETURN_GENERATED KEYS integer flag is used, Oracle
JDBC drivers cannot identify these columns. When the integer flag is used to indicate that
auto-generated keys are to be returned, the RON D pseudo column is returned as key. The
ROW D can be then fetched from the Resul t Set object and can be used to retrieve other
columns.

3.2.2.2 Sample Code

The following code illustrates retrieval of auto-generated keys:

/** SQL statenents for creating an ORDERS table and a sequence for generating the
ORDER | D.

CREATE TABLE ORDERS (ORDER | D NUVBER, CUSTOMVER |D NUMBER, | SBN NUMBER,
DESCRI PTI ON NCHAR(5))

CREATE SEQUENCE SEQO1 | NCREMENT BY 1 START WTH 1000

I e

String cols[] = {"ORDER_I D", "DESCRI PTI ON'};

/]l Create a PreparedStatement for inserting a rowinto the ORDERS table.

Oracl ePreparedStatement pstnt = (Oracl ePreparedSt at enent)

conn. prepareStatement ("I NSERT | NTO ORDERS (ORDER I D, CUSTOMER ID, |ISBN, DESCRI PTIQON)
VALUES (SEQ01. NEXTVAL, 101,

966431502, ?)", cols);

char c[] {*a", "\ub185', 'b'};

String s = new String(c);

pstnt.setNString(1, s);
pstnt . execut eUpdat e();
Resul t Set rset = pstnt.get Generat edKeys();

In the preceding example, a sequence, SEQD1, is created to generate values for the ORDER_| D
column starting from 1000 and incrementing by 1 each time the sequence is processed to
generate the next value. An O acl ePr epar edSt at enent object is created to insert a row in to
the ORDERS table.

ORACLE 3-5

Chapter 3
Support for JDBC 4.0 Standard

3.2.2.3 Limitations of Auto-Generated Keys

Auto-generated keys are implemented using the DML returning clause. So, you need
to access the Resul t Set object returned from get Gener at edKeys method by position
only and no bind variable names should be used as columns in the Resul t Set object.

3.2.3 JDBC 3.0 LOB Interface Methods

The following tables show the conversions between Oracle proprietary methods and
JDBC 3.0 standard methods.

Table 3-2 BLOB Method Equivalents
|

Oracle Proprietary Method JDBC 3.0 Standard Method

put Byt es(l ong pos, byte [] set Byt es(long pos, byte[] bytes)

byt es)

put Byt es(l ong pos, byte [] setBytes(long pos, byte[] bytes, int
bytes, int |ength) of fset, int len)

get Bi naryQut put Stream(| ong pos) setBinaryStrean(long pos)
trim(long |en) truncate(long |en)

Table 3-3 CLOB Method Equivalents

___|
Oracle Proprietary Method JDBC 3.0 Standard Method

put String(long pos, String str) setString(long pos, String str)

not applicable setString(long pos, String str, int
of fset, int len)

get Asci i Qut put Strean(! ong pos) set Asci i Strean(l ong pos)
get Char act er Qut put Strean(| ong pos) set Character Strean(long pos)
trim(long len) truncate(long |en)

3.2.4 Result Set Holdability

Result set holdability was introduced since JDBC 3.0. This feature enables
applications to decide whether the Resul t Set objects should be open or closed, when
a commit operation is performed. The commit operation could be either implicit or
explicit.

Oracle Database supports only HOLD CURSORS OVER COW T. Therefore, it is the default
value for Oracle JDBC drivers. Any attempt to change holdability will throw a
SQLFeat ur eNot Suppor t edExcept i on exception.

3.3 Support for IDBC 4.0 Standard

Oracle Database Release 18c JDBC drivers provide support for the JDBC 4.0
standard.

ORACLE 3-6

Chapter 3
Support for JDBC 4.0 Standard

< Note:

The JDBC 4.0 specification defines the j ava. sgl . Connecti on. cr eat eArrayf
factory method to create j ava. sql . Array objects. The creat eArrayXf method
accepts the name of the array element type as one of the arguments, where the
array type is anonymous. Oracle database supports only named array types, not
anonymous array types. So, the current release of Oracle JDBC drivers do not and
cannot support the creat eArrayOf method. You must use the Oracle specific

cr eat eARRAY method to create an array type.

¢ See Also:

e "Creating ARRAY Objects" for more information about the cr eat eAr r ayf
method.

e The following page for detailed information about these features as this
document provides only an overview of these new features

http://docs.oracle.com/javase/6/docs/

Some of the features available in Oracle Database Release 18c JDBC drivers are the
following:

* Wrapper Pattern Support

* SQLXML Type

» Enhanced Exception Hierarchy and SQLEXxception
* The Rowld Data Type

* LOB Creation

» National Language Character Set Support

3.3.1 Wrapper Pattern Support

ORACLE

Wrapper pattern is a common coding pattern used in Java applications to provide extensions
beyond the traditional JDBC API that are specific to a data source. You may need to use
these extensions to access the resources that are wrapped as proxy class instances
representing the actual resources. JDBC 4.0 introduces the W apper interface that describes
a standard mechanism to access these wrapped resources represented by their proxy, to
permit direct access to the resource delegates.

The W apper interface provides the following two methods:
e public boolean i sWapperFor(C ass<?> iface) throws SQ.Exception;
e public <T> T unwrap(C ass<T> iface) throws SQLException;

The other JDBC 4.0 interfaces, except those that represent SQL data, all implement this
interface. These include Connecti on, St at ement and its subtypes, Resul t Set, and the
metadata interfaces.

3-7

http://docs.oracle.com/javase/6/docs/

Chapter 3
Support for JDBC 4.0 Standard

¢ See Also:

http://docs. oracl e. con j avase/ 7/ docs/ api / j ava/ sql / W apper . ht m

3.3.2 SQLXML Type

ORACLE

One of the most important updates in JDBC 4.0 standard is the support for the XML
data type, defined by the SQL 2003 standard. Now JDBC offers a mapping interface to
support the SQL/XML database data type, that is, j ava. sql . SQLXM.. This new JDBC
interface defines Java native bindings for XML, thus making handling of any database
XML data easier and more efficient.

" Note:

e You also need to include the xdb6. j ar and xm parserv2. j ar files in the
cl asspat h environment variable to use SQLXM. type data, if they are not
already present in the cl asspat h.

e SQLXML is not supported in CachedRowset objects.

You can create an instance of XML by calling the cr eat eSQLXM. method in
j ava. sqgl . Connecti on interface. This method returns an empty XML object.

The PreparedSt at enent, Cal | abl eSt at enent , and Resul t Set interfaces have been
extended with the appropriate getter and setter methods in the following way:

e PreparedSt at enent : The method set SQLXM. have been added
e Call abl eSt at enent : The methods get SQLXM. and set SQLXM. have been added
* Resul t Set: The method get SQLXM. have been added

Note:

In Oracle Database 10g and earlier versions of Oracle Database 11g, Oracle
JDBC drivers supported the Oracle SQL XML type (XMLType) through an
Oracle proprietary extension, which did not conform to the JDBC standard.

The 11.2.0.2 Oracle JDBC drivers conformed to the JDBC standard with the
introduction of a new connection property,

oracl e.] dbc. get Cbj ect Ret ur nsXM_Type. If you set this property to f al se,
then the get Obj ect method returns an instance of j ava. sql . SQLXM. type
and if you depend on the existing Oracle proprietary support for SQL
XMLType using or acl e. xdb. XM_Type, then you can change the value of this
property back to t r ue.

However, setting of the get Obj ect Ret ur nsXM.Type property is not required
for the current version of Oracle JDBC drivers.

3-8

http://docs.oracle.com/javase/7/docs/api/java/sql/Wrapper.html

Chapter 3
Support for JDBC 4.0 Standard

Example
Example 3-1 Accessing SQLXML Data

The following example shows how to create an instance of XML from a St ri ng, write the XML
data into the Database, and then retrieve the XML data from the Database.

import java.sql.*;
inport java.util.Properties;
i mport oracle.jdbc. pool . O acl eDat aSour ce;

public class SQLXM.Test
{

public static void main(String[] args)

{

Connection conn = nul | ;
Statenent stnt = null;
ResultSet rs = null;
PreparedStatenent ps = nul | ;

String xml = "<?xm version=\"1.0\"?>\n" +
"<ol dj oke>\n" +
"<burns>Say <quot e>goodni ght </ quote>, Gracie.</burns>\n" +
"<al | en><quot e>Goodni ght, Gracie.</quote></allen>\n" +
"<appl ause/ >\ n" +

"</ ol dj oke>";
try
{
Oracl eDat aSource ods = new Oracl eDat aSour ce() ;
ods. set URL("j dbc: oracle:thin: @/ ocal host: 5221/ orcl");
ods. set User ("HR");
ods. set Password("hr");
conn = ods. get Connection();
ps = conn. prepareStatenent("insert into x values (?, ?)");
ps.setString(1l, "string to string");
SQLXML x = conn. creat eSQLXM.();
x.setString(xm);
ps. set SQLXM.(2, Xx);
ps. execute();
stmt = conn.createStatement();
rs = stnt.executeQuery("select * fromx");
while (rs.next())
{
X = rs.get SQLXM(2);
Systemout.printin(rs.getString(1l) + "\n" + rs.get SQLXM_(2).getString());
x.free();
}
rs.close();
ps.close();
}

catch (SQLException e){e.printStackTrace ();}

ORACLE 3-9

Chapter 3
Support for JDBC 4.0 Standard

Note:

Calling a setter method with an empty XML throws SQLExcept i on. The getter
methods never return an empty XML.

3.3.3 Enhanced Exception Hierarchy and SQLEXxception

JDBC 3.0 defines only a single exception, SQLExcept i on. However, there are large
categories of errors and it is useful to distinguish them. This feature provides
subclasses of the SQLExcept i on class to identify the different categories of errors. The
primary distinction is between permanent errors and transient errors. Permanent errors
are a result of the correct operation of the system and will always occur. Transient
errors are the result of failures, including timeouts, of some part of the system and may
not reoccur.

JDBC 4.0 adds additional exceptions to represent transient and permanent errors and
the different categories of these errors.

Also, the SQLExcept i on class and its subclasses are enhanced to provide support for
the J2SE chained exception functionality.

3.3.4 The Rowld Data Type

JDBC 4.0 provides the j ava. sgl . Rowl d data type to represent SQL ROW D values. You
can retrieve a Rowl d value using the getter methods defined in the Resul t Set and

Cal | abl eSt at enent interfaces. You can also use a Rowl d value in a parameterized
Prepar edSt at enent to set a parameter with a Rowl d object or in an updatable result
set to update a column with a specific Rowl d value.

A Rowl d object is valid until the identified row is not deleted. A Rowl d object may also
be valid for the following:

e The duration of the transaction in which it is created
e The duration of the session in which it is created
e Anundefined duration where by it is valid forever

The lifetime of the Rowld object can be determined by calling the
Dat abaseMet aDat a. get Rowl dLi f et i me method.

3.3.5 LOB Creation

ORACLE

In JDBC 4.0, the Connect i on interface has been enhanced to provide support for the
creation of BLOB, CLOB, and NCLOB objects. The interface provides the cr eat eBl ob,
creat ed ob, and cr eat eNCl ob methods that enable you to create Bl ob, Cl ob, and
NC ob objects.

The created large objects (LOBSs) do not contain any data. You can add or retrieve
data to or from these objects by calling the APIs available in the j ava. sql . Bl ob,
java.sqgl.d ob, and j ava. sgl . NC ob interfaces. You can either retrieve the entire

3-10

Chapter 3
Support for JDBC 4.1 Standard

content or a part of the content from these objects. The following code snippet illustrates how
to retrieve 100 bytes of data from a BLOB object starting at offset 200:

Connection con = DriverMnager. get Connection(url, props);
Bl ob aBl ob = con.createBl ob();

/1 Add data to the BLOB object.

aBl ob. setBytes(...);

/] Retrieve part of the data fromthe BLOB object.
I nput Streamis = aBl ob. get Bi narySt ream(200, 100);

You can also pass LOBs as input parameters to a Pr epar edSt at ement object by using the
set Bl ob, set d ob, and set NCl ob methods. You can use the updat eBl ob, updat eCl ob, and
updat eNCl ob methods to update a column value in an updatable result set.

These LOBs are temporary LOBs and can be used for any purpose for which temporary
LOBs should be used. To make the storage permanent in the database, these LOBs must be
written to a table.

See Also:

"About Working With Temporary LOBs"

Temporary LOBs remain valid for at least the duration of the transaction in which they are
created. This may result in unwarranted use of memory during a long running transaction.
You can release LOBs by calling their f r ee method, as follows:

Cob aC ob = con.created ob();
int numMNitten = aC ob.setString(1, val);
aCl ob.free();

3.3.6 National Language Character Set Support

JDBC 4.0 introduces the NCHAR, NVARCHAR, LONGNVARCHAR, and NCLOB JDBC types to access
the national character set types. These types are similar to the CHAR, VARCHAR, LONGVARCHAR,
and CLOB types, except that the values are encoded using the national character set.

3.4 Support for IDBC 4.1 Standard

Oracle Database 12c Release 1 JDBC drivers provide support for JDBC 4.1 standard through
JDK 7. This section describes the following important methods from JDBC 4.1 specification:

e setClientInfo Method
e getObject Method

3.4.1 setClientinfo Method

For monitoring the consumption of the Database resources, you can use the set C i ent I nfo
method to identify the various application tasks using the Database at a given point of time.

ORACLE 3-11

ORACLE

Chapter 3
Support for JDBC 4.1 Standard

The set d i ent | nf 0 method sets the value of the properties providing various
application information. This method accepts keys of the form

<nanespace>. <keyname>. For example, you can use the ACTI ON, MODULE, and CLI ENTI D
keys (that are found in the V$SESSI ON view and in many performance views and can be
reported in trace files) with the set i ent | nf 0 method, as shown in the following code
shippet:

/1 "conn" is an instance of java.sqgl.Connection:
conn.setClientlnfo("QOCSID. CLIENTID', "Alice HR Payroll");
conn. setCientlnfo("OCSI D. MODULE", "APP_HR PAYROLL");
conn.setClientlnfo("QOCSID. ACTI ON', "PAYROLL_ REPORT");

The set d i ent | nf o method checks the Java permission oracl e. jdbc. clientInfo
and if the security check fails, then it throws a Securit yExcepti on. It supports
permission name patterns of the form <nanespace>. *. The set C i ent | nf o method
either sets or clears all pairs, so it requires that the permission name must be set to an
asterisk (*).

The JDBC driver supports any <nanespace>. <keynanme> combination. The

set G i ent I nf o method supports the OCSI D namespace among other namespaces.
But, there are differences between using the OCSI D namespace and any other
namespace. With the OCSI D namespace, the set i ent | nf o method supports only the
following keys:

< ACTION

« CLIENTID

- ECD

« MODULE

- SEQUENCE_NUMBER
- DBOP

Also, the information associated with any other namespace is communicated through
the network using a single protocol, while information associated with the OCSID
namespace is communicated using a different protocol. The protocol used for the
OCSID namespace is also used by the OCI C Library and the 10g JDBC thin driver
and the later thin drivers to send end-to-end metrics values.

Note:

 The setdientlnfo method is backward compatible with the
set EndToEndMet ri cs and the set O i entldentifier methods, and can
use DMS to set client tags.

e The set EndToEndMet ri cs method was deprecated in Oracle Database
12c Release 1 (12.1).

About Monitoring Database Operations

Many Java applications do not have a database connection, but they need to track
database activities on behalf of their functionalities. For such applications, Oracle

3-12

Chapter 3
Support for JDBC 4.1 Standard

Database 12c¢ Release 1 (12.1) introduced the DBOP tag that can be associated with a thread
in the application when the application does not have explicit access to a database. The
DBOP tag is associated with a thread through the invocation of DMS APIs, without requiring
an active connection to the database. When the thread sends the next database call, then
DMS propagates these tags through the connection along with the database call, without
requiring an extra round trip. In this way, applications can associate their activity with
database operations while factorizing the code in the Application layer. The DBOP tag
composes of the following:

- Database operation name
e The execution ID
e Operation attributes

The set d i ent | nf 0 method supports the DBOP tag. The set O i ent | nf o method sets the
value of the tag to monitor the database operations. When the JDBC application connects to
the database and a database round-trip is made, the database activities can be tracked. For
example, you can set the value of the DBOP tag to f 0o in the following way:

Connection conn = DriverManager. get Connection(nyUrl, myUsernanme, nyPassword);
conn. setd i ent | nfo("E2E_CONTEXT. DBOP", "fo00");

Statement stnt = conn.createStatenent();

stnt.execute("select 1 fromdual"); // DBOP tag is set after this

3.4.2 getObject Method

ORACLE

The get Ooj ect method retrieves an object, based on the parameters passed. Oracle
Database 12c¢ Release 2 (12.2.0.1) supports the following two get Cbj ect methods:

Method 1

<T> T get Cbj ect (i nt parameterlndex,
java.lang. d ass<T> type)
throws SQLException

Method 2

<T> T get Obj ect (java.lang. String paranet er Nane,
java.lang. d ass<T> type)
throws SQLException

These methods support the conversions listed in the JDBC specification and also the
additional conversions listed in Table A-1. The Oracle Database 12c¢ Release 2 (12.2.0.1)
drivers also support conversions to some additional classes, which implement one or more
static val uef methods, if any of the following criteria is met:

* No other conversion is specified in JDBC specification or Table A-1

e The type argument defines one or more public static single argument methods named
val ueCf

* One or more of the val uedX methods take an argument that is a value of a type
supported because of JDBC specification or Table A-1

This release of JDBC drivers convert the value to a type specified in the JDBC specification,
or in Table A-1 and then call the corresponding val ueO method with the converted value as

3-13

Chapter 3
Support for JDBC 4.2 Standard

the argument. If there is more than one appropriate val uedf method, then the JDBC
driver chooses one val uef method in an unspecified way.
Example

ResultSet rs = . . . ;
Character ¢ = rs.getbject(1, java.lang.Character.class);

The Character class defines the following val ueOf method:

public static Character valueCf(char c);

Table A-1 specifies that NUMBER can be converted to char . So, if the first column of the
Resul t Set is a NUMBER, then the get Chj ect method converts that NUMBER value to a
char and passes the char value to the val ueCf (char) method and returns the
resulting Char act er object.

3.5 Support for JDBC 4.2 Standard

ORACLE

Oracle Database 12c Release 2 (12.2.0.1) JDBC drivers provide support for JDBC 4.2
standard through JDK 8. This section describes some of the important methods added
in this release.

The %Large% Methods

This release of Oracle JDBC drivers support the following methods introduced in
JDBC 4.2 standard, which deal with | ong values:

e executelargeBatch

(
e executelargeUpdate(String sql)

)
(
* executelargeUpdate(String sql, int autoGeneratedKeys)
° executelargeUpdate(String sql, int[] col umlndexes)

(

e executelargeUpdate(String sql, String[] col umNames)
e getLargeMaxRows()

» getLargeUpdat eCount ()

e setLargeMaxRows(| ong nmax)

These new methods are available as part of the j ava. sql . St at enent interface. The
%.ar ge%methods are identical to the corresponding non-large methods, except that
they work with | ong values instead of i nt values. For example, the execut eUpdat e
method returns the number of rows updated as an i nt value, whereas, the

execut eLar geUpdat e method returns the number of rows updated as a | ong value. If
the number of rows is greater than the value of | nt eger. MAX_VALUE, then your
application must use the execut eLar geUpdat e method.

The following code snippet shows how to use the execut eLar geUpdat e(String sql)
method:

Statement stnt = conn.createStatenent();

stnt.executeQuery("create table Bl oggersData (FI RST_NAME var char (100),
IDint)");

| ong updat eCount = stnt.executelLargeUpdate("insert into Bl oggersData

3-14

Chapter 3
Support for JDBC 4.2 Standard

(FI RST_NAME, I D) val ues('John',1)");

The SQLType Methods

This release of Oracle JDBC drivers support the following methods introduced in JDBC 4.2
standard, which take SQLType parameters:

* set(hject

The set Obj ect method sets the value of the designated parameter for the specified
object. This method is similar to the set Cbj ect (i nt paranet erl ndex, Object x,
SQLType target Sgl Type, int scal eOLength) method, except that it assumes a scale
of zero. The default implementation of this method throws

SQLFeat ur eNot Suppor t edExcept i on.

void setCbject(int parameterlndex, java.lang. Qbject x, SQType
target Sql Type) throws SQLException

Where,

par aret er | ndex is the index of the designated parameter, where the first parameter is 1,
the second is 2, and so on

X is the object containing the input parameter value
tar get Sql Type is the SQL type to be sent to the database
* updat ej ect

The updat eCbj ect method takes the column index as a parameter and updates the
designated column with an Object value.

* registerQutParaneter

The r egi st er Qut Par amet er method registers a specified parameter to be of JDBC type
SQ.Type.

The following code snippet shows how to use the set Obj ect method:

int enpld = 100;

connection. prepareSt at ement (" SELECT FI RST_NAME, LAST_NAME FROM EMPLOYEES
VWHERE EMPNO = ?");

prepar edSt at enent . set Obj ect (1, Integer.val ueO (enpld), O acleType. NUMBER);

Related Topics

* https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

ORACLE 3-15

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/jdbc_42.html

Oracle Extensions

Oracle provides Java classes and interfaces that extend the Java Database Connectivity
(JDBC) standard implementation, enabling you to access and manipulate Oracle data types
and use Oracle performance extensions. This chapter provides an overview of the classes
and interfaces provided by Oracle that extend the JDBC standard implementation. It also
describes some of the key support features of the extensions.

This chapter contains the following sections:
* Overview of Oracle Extensions

* Features of the Oracle Extensions

* Oracle JDBC Packages

* Oracle Character Data Types Support

* Additional Oracle Type Extensions
DML Returning

* Accessing PL/SQL Associative Arrays
Related Topics

 Performance Extensions

4.1 Overview of Oracle Extensions

Beyond standard features, Oracle JDBC drivers provide Oracle-specific type extensions and
performance extensions. These extensions are provided through the following Java
packages:

e oracle.sql
Provides classes that represent SQL data in Oracle format
e oracle.jdbc
Provides interfaces to support database access and updates in Oracle type formats
Related Topics
* Oracle JDBC Packages

4.2 Features of the Oracle Extensions

The Oracle extensions to JDBC include a number of features that enhance your ability to
work with Oracle Databases. These include the following:

» Database Management Using JDBC
e Support for Oracle Data Types
e Support for Oracle Objects

ORACLE 4-1

Chapter 4
Features of the Oracle Extensions

e Support for Schema Naming
e DML Returning
* About Accessing PL/SQL Associative Arrays

4.2.1 Database Management Using JDBC

Starting from Oracle Database 11g Release 1, the oracl e. j dbc. Oracl eConnecti on
interface has two JDBC methods, st art up and shut down, which enable you to start up
and shut down an Oracle Database instance.

" Note:

My Oracle Support Note 335754.1 announces the desupport of the
oracle.jdbc.driver.* package in Oracle Database 11g JDBC drivers. In
other words, Oracle Database 10g Release 2 was the last database to
support this package and any API depending on the oracl e. j dbc. dri ver.*
package will fail to compile in the current release of the Database. You must
remove such APIs and migrate to the standard APIs. For example, if your
code uses the or acl e. j dbc. Cust onDat umand

oracl e. j dbc. Cust onDat unfact or y interfaces, then you must replace them
with the j ava. sql . Struct orjava. sql . SQ.Dat a interfaces.

Related Topics

» Database Administration

4.2.2 Support for Oracle Data Types

ORACLE

One of the features of the Oracle JDBC extensions is the type support in the

oracl e. sql package. This package includes classes that are an exact representation
of the data in Oracle format. Keep the following important points in mind, when you
use oracl e. sgl types in your program:

e For numeric type of data, the conversion to standard Java types does not
guarantee to retain full precision due to limitations of the data conversion process.
Use the Bi gDeci mal type to minimize any data loss issues.

» For certain data types, the conversion to standard Java types can be dependent
on the system settings and your program may not run as expected. This is a
known limitation while converting data from or acl e. sql types to standard Java
types.

* If the functionalities of your program is limited to reading data from one table and
writing the same to another table, then for numeric and date data, or acl e. sql
types are slightly faster as compared to standard Java types. But, if your program
involves even a simple data manipulation operation like compare or print, then
standard Java types are faster.

e oracle.sqgl.CHARIis not an exact representation of the data in Oracle format.
oracl e. sqgl . CHARis constructed from j ava. | ang. Stri ng. There is no advantage
of using or acl e. sql . CHAR because j ava. | ang. Stri ng is always faster and

4-2

Chapter 4
Features of the Oracle Extensions

represents the same character sets, excluding a couple of desupported character sets.

Note:

Oracle strongly recommends you to use standard Java types and convert any
existing or acl e. sql type of data to standard Java types. Internally, the Oracle
JDBC drivers strive to maximize the performance of Java standard types.

oracl e. sqgl types are supported only for backward compatibility and their use is
discouraged.

Related Topics
* Package oracle.sql
* Oracle Character Data Types Support

» Additional Oracle Type Extensions

4.2.3 Support for Oracle Objects

ORACLE

Oracle JDBC supports the use of structured objects in the database, where an object data
type is a user-defined type with nested attributes. For example, a user application could
define an Enpl oyee object type, where each Enpl oyee object has a fi r st nane attribute
(character string), a | ast name attribute (character string), and an enpl oyeenunber attribute
(integer).

Oracle JDBC supports Oracle object data types. When you work with Oracle object data
types in a Java application, you must consider the following:

* How to map between Oracle object data types and Java classes

* How to store Oracle object attributes in corresponding Java objects
* How to convert attribute data between SQL and Java formats

* How to access data

Oracle objects can be mapped either to the weak j ava. sql . St ruct type or to strongly typed
customized classes. These strong types are referred to as custom Java classes, which must
implement either the standard j ava. sql . SQLDat a interface or the Oracle extension

oracl e.jdbc. Oracl eDat a interface. Each interface specifies methods to convert data
between SQL and Java.

< Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the O acl eDat a interface has
replaced the ORADat a interface.

Oracle recommends the use of the Oracle JVM Web Service Call-Out Utility to create custom
Java classes to correspond to your Oracle objects.

Related Topics
» Working with Oracle Object Types

4-3

Chapter 4
Features of the Oracle Extensions

* Oracle Database Java Developer’s Guide

4.2.4 Support for Schema Naming

Oracle object data type classes have the ability to accept and return fully qualified
schema names. A fully qualified schema name has this syntax:

{[schema_nane] . }[sql _type_nane]

Where, scherma_nane is the name of the schema and sql _type_nane is the SQL type
name of the object. schema_name and sql _t ype_name are separated by a period (.).

To specify an object type in JDBC, use its fully qualified name. It is not necessary to
enter a schema name if the type name is in the current naming space, that is, the
current schema. Schema naming follows these rules:

» Both the schema name and the type name may or may not be within quotation
marks. However, if the SQL type name has a period in it, such as
CORPORATE. EMPLOYEE, the type name must be quoted.

e The JDBC driver looks for the first period in the object name that is not within
guotation marks and uses the string before the period as the schema name and
the string following the period as the type name. If no period is found, then the
JDBC driver takes the current schema as default. That is, you can specify only the
type name, without indicating a schema, instead of specifying the fully qualified
name if the object type name belongs to the current schema. This also explains
why you must put the type name within quotation marks if the type name has a dot
init.

For example, assume that user HR creates a type called per son. addr ess and then
wants to use it in his session. HR may want to skip the schema name and pass in
per son. addr ess to the JDBC driver. In this case, if per son. addr ess is not within
guotation marks, then the period is detected and the JDBC driver mistakenly
interprets per son as the schema name and addr ess as the type name.

» JDBC passes the object type name string to the database unchanged. That is, the
JDBC driver does not change the character case even if the object type name is
within quotation marks.

For example, if HR. Per sonType is passed to the JDBC driver as an object type
name, then the JDBC driver passes the string to the database unchanged. As
another example, if there is white space between characters in the type name
string, then the JDBC driver will not remove the white space.

4.2.5 DML Returning

ORACLE

Oracle Database supports the use of the RETURNI NG clause with data manipulation
language (DML) statements. This enables you to combine two SQL statements into
one. Both the Oracle JDBC Oracle Call Interface (OCI) driver and the Oracle JDBC
Thin driver support DML returning.

¢ See Also:
"DML Returning"

4-4

Chapter 4
Oracle JDBC Packages

4.2.6 PL/SQL Associative Arrays

Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with Associative Array
parameters. Oracle JDBC drivers support PL/SQL Associative Arrays of scalar data types

¢ See Also:

"Accessing PL/SQL Associative Arrays"

4.3 Oracle JDBC Packages

This section describes the following Java packages, which support the Oracle JDBC
extensions:

e Package oracle.sql

e Package oracle.jdbc

4.3.1 Package oracle.sq|

ORACLE

The oracl e. sql package supports direct access to data in SQL format. This package
consists primarily of classes that provide Java mappings to SQL data types and their support
classes. Essentially, the classes act as Java containers for SQL data.

Each of the or acl e. sql . * data type classes extends or acl e. sql . Dat um a superclass that
encapsulates functionality common to all the data types. Some of the classes are for JIDBC
2.0-compliant data types. These classes, implement standard JDBC 2.0 interfaces in the

j ava. sql package, as well as extending the or acl e. sql . Dat umclass.

The LONG and LONG RAWSQL types and REF CURSCOR type category have no oracl e. sqgl . *
classes. Use standard JDBC functionality for these types. For example, retrieve LONG or LONG
RAWdata as input streams using the standard JDBC result set and callable statement
methods get Bi nar ySt r eamand get Char act er St r eam Use the get Cur sor method for REF
CURSCR types.

" Note:

Oracle recommends the use of standard JDBC types or Java types whenever
possible. The types in the package oracl e. sql . * are provided primarily for
backward compatibility or for support of a few Oracle specific features such as
OPAQUE, Or acl eDat a, TI MESTAMPTZ, and so on.

General oracle.sql.* Data Type Support
Each of the Oracle data type classes provides, among other things, the following:

» Data storage as Java byte arrays for SQL data

* AgetBytes() method, which returns the SQL data as a byte array

4-5

Chapter 4
Oracle JDBC Packages

 AtoJddbc() method that converts the data into an object of a corresponding Java
class as defined in the JDBC specification

The JDBC driver does not convert Oracle-specific data types that are not part of
the JDBC specification, such as BFI LE. The driver returns the object in the
corresponding or acl e. sql . * format.

* Appropriate xxxVal ue methods to convert SQL data to Java type. For example,
stringVal ue, i nt Val ue, bool eanVal ue, dat eVal ue, and bi gDeci mal Val ue

* Additional conversion methods, get XXX and set XXX, as appropriate, for the
functionality of the data type, such as methods in the large object (LOB) classes
that get the data as a stream and methods in the REF class that get and set object
data through the object reference.

Overview of Class oracle.sql.STRUCT

oracl e. sql . STRUCT class is the Oracle implementation of j ava. sql . Struct interface.
This class is a value class and you should not change the contents of the class after
construction. This class, as with all or acl e. sgl . * data type classes, is a subclass of
the oracl e. sql . Dat umclass.

¢ Note:

Starting from Oracle Database 12¢ Release 1 (12.1), the or acl e. sql . STRUCT
class is deprecated and replaced with the oracl e. j dbc. Or acl eSt ruct
interface, which is a part of the or acl e. j dbc package. Oracle strongly
recommends you to use the methods available in the j ava. sql package,
where possible, for standard compatibility and methods available in the

oracl e. j dbc package for Oracle specific extensions. Refer to MoS Note
1364193.1 for more information about the oracl e. j dbc. Oracl eSt r uct
interface.

Overview of Class oracle.sql.REF

The oracl e. sql . REF class is the generic class that supports Oracle object references.
This class, as with all or acl e. sql . * data type classes, is a subclass of the
oracl e. sql . Dat umclass.

Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the or acl e. sql . REF
class is deprecated and replaced with the or acl e. j dbc. O acl eRef interface,
which is a part of the or acl e. j dbc package. Oracle strongly recommends
you to use the methods available in the j ava. sql package, where possible,
for standard compatibility and methods available in the or acl e. j dbc package
for Oracle specific extensions. Refer to MoS Note 1364193.1 for more
information about the or acl e. j dbc. Or acl eRef interface.

The REF class has methods to retrieve and pass object references. However, selecting
an object reference retrieves only a pointer to an object. This does not materialize the

ORACLE 4-6

ORACLE

Chapter 4
Oracle JDBC Packages

object itself. But the REF class also includes methods to retrieve and pass the object data.
You cannot create REF objects in your JDBC application. You can only retrieve existing REF
objects from the database.

You should use the JDBC standard type, j ava. sql . Ref , and the JDBC standard methods in
preference to using or acl e. sql . REF. If you want your code to be more portable, then you
must use the standard type because only the Oracle JDBC drivers will use instances of
oracl e. sql . REF type.

Overview of Classes oracle.sql.BLOB, oracle.sql.CLOB, oracle.sql.BFILE

Binary large objects (BLOBSs), character large objects (CLOBs), and binary files (BFILES) are
for data items that are too large to store directly in a database table. Instead, the database
table stores a locator that points to the location of the actual data.

Note:

e Starting from Oracle Database 12c¢ Release 1 (12.1), the or acl e. sql . BLOB and
Oracl e. sqgl . CLOB classes are deprecated and replaced with the
oracle.jdbc. Oacl eBl ob and oracl e. j dbc. Oracl ed ob interfaces respectively,
which are a part of the or acl e. j dbc package. Oracle strongly recommends you
to use the methods available in the j ava. sql package, where possible, for
standard compatibility and methods available in the or acl e. j dbc package for
Oracle specific extensions. Refer to MoS Note 1364193.1 for more information
about the oracl e. j dbc. Oracl eBl ob and or acl e. j dbc. Oracl eC ob interfaces.

e oracle.sql.BFILEis an Oracle proprietary extension and there is no JDBC
standard equivalent.

The oracl e. sql package supports these data types in several ways:

e BLOBSs point to large unstructured binary data items and are supported by the
oracl e.sql . BLOB class.

» CLOBs point to large character data items and are supported by the oracl e. sql . CLOB
class.

* BFILEs point to the content of external files (operating system files) and are supported by
the or acl e. sql . BFI LE class. BFiles are read-only.

You can select a BLOB, CLOB, or BFILE locator from the database using a standard SELECT
statement. However, you receive only the locator, and not the data. Additional steps are
necessary to retrieve the data.

Overview of Classes oracle.sql.DATE, oracle.sql.NUMBER, and oracle.sql.RAW

These classes hold primitive SQL data types in Oracle native representation. In most cases,
these types are not used internally by the drivers and you should use the standard JDBC
types instead.

Java Doubl e and Fl oat NaN values do not have an equivalent Oracle NUMBER representation.
For example, for Oracle Bl NARY_FLOAT and Bl NARY_DOUBLE data types, negative zero is
coerced to positive zero and all NaNs are coerced to the canonical one. So, a

Nul | Poi nt er Except i on is thrown whenever a Doubl e. NaN value or a Fl oat . NaN value is

4-7

ORACLE

Chapter 4
Oracle JDBC Packages

converted into an Oracle NUMBER using the or acl e. sgl . NUMBER class. For instance, the
following code throws a Nul | Poi nt er Excepti on:

oracl e.sqgl. NUMBER n = new oracl e. sql . NUVBER(Doubl e. NaN) ;
System out. println(n.doubl evValue()); // throws NullPointerException

Overview of Classes oracle.sql.TIMESTAMP, oracle.sql.TIMESTAMPTZ, and
oracle.sql.TIMESTAMPLTZ

The JDBC drivers support the following date/time data types:

e TI MESTAWP (TI MESTAMP)
o TIMESTAMP W TH TI ME ZONE (Tl MESTAMPTZ)
e TIMESTAMP W TH LOCAL TI ME ZONE (TI MESTAMPLTZ)

The JDBC drivers allow conversions between DATE and date/time data types. For
example, you can access a TI MESTAMP W TH TI ME ZONE column as a DATE value.

The JDBC drivers support the most popular time zone names used in the industry as
well as most of the time zone names defined in the JDK. Time zones are specified by
using the java. util. Ti neZone class.

Note:

Do not use Ti meZone. get Ti neZone to create time zone objects. The
Oracle time zone data types support more time zone names than JDK.

e If a result set contains a TI MESTAMPLTZ column followed by a LONG
column, then reading the LONG column results in an error.

The following code shows how the Ti neZone and Cal endar objects are created for
US_PACI FI C, which is a time zone name not defined in JDK:

Ti meZone tz = TineZone. getDefaul t();
tz.setID("US_PACIFIC');
G egori anCal endar gcal = new G egorianCal endar (tz);

The following Java classes represent the SQL date/time types:

e oracle.sql. Tl MESTAWP
e oracle.sql. Tl MESTAMPTZ
e oracle.sql. Tl MESTAMPLTZ

Before accessing TI MESTAMP W TH LOCAL TI ME ZONE data, call the

O acl eConnecti on. set Sessi onTi neZone(String regi onName) method to set the
session time zone. When this method is called, the JDBC driver sets the session time
zone of the connection and saves the session time zone so that any TI MESTAMP W TH
LOCAL TI ME ZONE data accessed through JDBC can be adjusted using the session
time zone.

4-8

Chapter 4
Oracle JDBC Packages

< Note:

TI MESTAMP W TH TI ME ZONE and TI MESTAMP W TH LOCAL TI ME ZONE types can be
represented as standard j ava. sql . Ti mest anp type. The byte representation of

TI MESTAMP W TH TI ME ZONE and TI MESTAMP W TH LOCAL TI ME ZONE types to

j ava. sqgl . Ti mest anp is straight forward. This is because the internal format of

TI MESTAMP W TH TI ME ZONE and TI MESTAMP W TH LOCAL TI ME ZONE data types is
GMT, and j ava. sql . Ti nest anp type objects internally use a milliseconds time value
that is the number of milliseconds since EPOCH. However, the Stri ng
representation of these data types requires time zone information that is obtained
dynamically from the server and cached on the client side.

In earlier versions of JDBC drivers, the cache of time zone was shared across
different connections. This used to cause problems sometimes due to
incompatibility in various time zones. Starting from Oracle Database 11 Release 2
version of JDBC drivers, the time zone cache is based on the time zone version
supplied by the database. This newly designed cache avoids any issues related to
version incompatibility of time zones.

Overview of Class oracle.sql.OPAQUE

The oracl e. sql . OPAQUE class provides the name and characteristics of the OPAQUE type and
any attributes. The OPAQUE type provides access only to the uninterrupted bytes of the
instance.

Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the or acl e. sql . OPAQUE class
is deprecated and replaced with the or acl e. j dbc. Or acl eCpaque interface, which is
a part of the or acl e. j dbc package. Oracle recommends you to use the methods
available in the j ava. sql package, where possible, for standard compatibility and
methods available in the or acl e. j dbc package for Oracle specific extensions. Refer
to MoS Note 1364193.1 for more information about the or acl e. j dbc. O acl eQpaque
interface.

Related Topics

e Oracle Database SQL Language Reference
* JDBC Java API Reference

* Working with LOBs and BFILEs

4.3.2 Package oracle.jdbc

The interfaces of the or acl e. j dbc package define the Oracle extensions to the interfaces in
j ava. sgl . These extensions provide access to Oracle SQL-format data and other Oracle-
specific functionality, including Oracle performance enhancements.

ORACLE 4.9

http://docs.oracle.com/database/122/JAJDB/

Chapter 4
Oracle Character Data Types Support

¢ See Also:

"The oracle.jdbc Package"

4.4 Oracle Character Data Types Support

Oracle character data types include the SQL CHAR and NCHAR data types. The
following sections describe how these data types can be accessed using the
oracle.sqgl.* classes:

* SQL CHAR Data Types
* SQL NCHAR Data Types
* Class oracle.sgl.CHAR

4.4.1 SQL CHAR Data Types

The SQL CHAR data types include CHAR, VARCHAR2, and CLOB. These data types let
you store character data in the database character set encoding scheme. The
character set of the database is established when you create the database.

4.4.2 SQL NCHAR Data Types

ORACLE

The SQL NCHAR data types were created for Globalization Support. The SQL NCHAR
data types include NCHAR, NVARCHAR2, and NCLOB. These data types enable you to store
Unicode data in the database NCHAR character set encoding. The NCHAR character set,
which never changes, is established when you create the database.

" Note:

Because the Uni codeSt reamclass is deprecated in favor of the

Char act er St r eamclass, the set Uni codeSt reamand get Uni codeSt r eam
methods are not supported for NCHAR data type access. Use the

set Char act er St r eammethod and the get Char act er St r eammethod if you
want to use stream access.

The usage of SQL NCHAR data types is similar to that of the SQL CHAR data types.
JDBC uses the same classes and methods to access SQL NCHAR data types that are
used for the corresponding SQL CHAR data types. Therefore, there are no separate,
corresponding classes defined in the oracl e. sql package for SQL NCHAR data types.
Similarly, there is no separate, corresponding constant defined in the

oracle.jdbc. O acl eTypes class for SQL NCHAR data types.

¢ See Also:
"NCHAR_ NVARCHAR2_ NCLOB and the defaultNChar Property"

4-10

Chapter 4
Oracle Character Data Types Support

< Note:

The set For nOf Use method must be called before the r egi st er Qut Par anet er
method is called in order to avoid unpredictable results.

The following code shows how to access SQL NCHAR data:

Il
/1 Table TEST has the follow ng col ums:

/1 - NUMBER
Il - NVARCHAR2
/1 - NCHAR

Il
oracle.jdbc. Oracl ePreparedStatenment pstnt =
(oracl e.jdbc. Oracl ePrepar edSt at ement)
conn. prepareStatenment ("insert into TEST values(?, ?, ?)");

Il

/'l oracle.jdbc. Oracl ePreparedSt at enent . FORM NCHAR shoul d be used for all NCHAR,
/1 NVARCHAR2 and NCLOB data types.

Il

pstnt.setlnt(1, 1); /1 NUMBER col um
pstnt.setNString(2, myUnicodeStringl); // NVARCHAR2 col um
pstnt.setNString(3, myUnicodeString2); // NCHAR colum
pstnt.execute();

4.4.3 Class oracle.sql.CHAR

ORACLE

The oracl e. sqgl . CHAR class is used by Oracle JDBC in handling and converting character
data. This class provides the Globalization Support functionality to convert character data.
This class has two key attributes: Globalization Support character set and the character data.
The Globalization Support character set defines the encoding of the character data. It is a
parameter that is always passed when a CHAR object is constructed. Without the Globalization
Support character set information, the data bytes in the CHAR object are meaningless. The
oracl e. sqgl . CHAR class is used for both SQL CHAR and SQL NCHAR data types.

Note:

In versions of Oracle JDBC drivers prior to 10g Release 1, there were performance
advantages to using the or acl e. SQL. CHAR. Starting from Oracle Database 10g,
there are no longer any such advantages. In fact, optimum performance is achieved
using the j ava. | ang. String. All Oracle JDBC drivers handle all character data in
the Java UCS2 character set. Using the or acl e. sqgl . CHAR does not prevent
conversions between the database character set and UCS2 character set.

The only remaining use of the or acl e. sql . CHAR class is to handle character data in the form
of raw bytes encoded in an Oracle Globalization Support character set. All character data
retrieved from Oracle Database should be accessed using the j ava. | ang. Stri ng class.
When processing byte data from another source, you can use an or acl e. sql . CHAR to convert
the bytes toj ava.l ang. Stri ng.

4-11

Chapter 4
Oracle Character Data Types Support

To convert an or acl e. sqgl . CHAR, you must provide the data bytes and an
oracl e. sql . Charact er Set instance that represents the Globalization Support
character set used to encode the data bytes.

The CHAR objects that are Oracle object attributes are returned in the database
character set.

JDBC application code rarely needs to construct CHAR objects directly, because the
JDBC driver automatically creates CHAR objects, when it is needed to create them on
those rare occasions.

To construct a CHAR object, you must provide character set information to the CHAR
object by way of an instance of the Char act er Set class. Each instance of this class
represents one of the Globalization Support character sets that Oracle supports. A
Char act er Set instance encapsulates methods and attributes of the character set,
mainly involving functionality to convert to or from other character sets.

Constructing an oracle.sql.CHAR Object
Follow these general steps to construct a CHAR object:

1. Create a Charact er Set object by calling the st ati ¢ Char act er Set . make method.

This method is a factory for the character set instance. The make method takes an
integer as input, which corresponds to a character set ID that Oracle supports. For
example:

int oracleld = CharacterSet.JA16SJI S CHARSET; // this is character set ID,
/1 832

CharacterSet mycharset = CharacterSet. make(oracl el d);

Each character set that Oracle supports has a unique, predefined Oracle ID.
2. Construct a CHAR object.

Pass a string, or the bytes that represent the string, to the constructor along with
the Char act er Set object that indicates how to interpret the bytes based on the
character set. For example:

String mystring = "teststring”;
CHAR nychar = new CHAR(teststring, nycharset);

There are multiple constructors for CHAR, which can take a Stri ng, a byt e array, or
an object as input along with the Char act er Set object. In the case of a Stri ng, the
string is converted to the character set indicated by the Char act er Set object
before being placed into the CHAR object.

ORACLE 4-12

Chapter 4
Additional Oracle Type Extensions

< Note:

e The Charact er Set object cannot be a null value.

e The Charact er Set class is an abstract class, therefore it has no
constructor. The only way to create instances is to use the make method.

e The server recognizes the special value Char act er Set . DEFAULT_CHARSET
as the database character set. For the client, this value is not meaningful.

* Oracle does not intend or recommend that users extend the Char act er Set
class.

oracle.sql.CHAR Conversion Methods
The CHAR class provides the following methods for translating character data to strings:
e getString

This method converts the sequence of characters represented by the CHAR object to a
string, returning a Java St ri ng object. If you enter an invalid O acl el D, then the character
set will not be recognized and the get St ri ng method will throw a SQLExcept i on
exception.

e toString

This method is identical to the get St ri ng method. But if you enter an invalid O acl el D,
then the character set will not be recognized and the t oSt ri ng method will return a
hexadecimal representation of the CHAR data and will not throw a SQLExcept i on
exception.

e getStringWthRepl acement

This method is identical to the get St ri ng method, except a default replacement
character replaces characters that have no unicode representation in the CHAR object
character set. This default character varies from character set to character set, but is
often a question mark (?).

The database server and the client, or application running on the client, can use different
character sets. When you use the methods of the CHAR class to transfer data between the
server and the client, the JDBC drivers must convert the data from the server character set to
the client character set or vice versa. To convert the data, the drivers use Globalization
Support.

¢ See Also:

Globalization Support

4.5 Additional Oracle Type Extensions

Oracle JDBC drivers support the Oracle-specific BFI LE and RON D data types and REF CURSOR
types, which are not part of the standard JDBC specification. This section describes the

ORACLE 4-13

Chapter 4
Additional Oracle Type Extensions

RON D and REF CURSOR type extensions. The RON D is supported as a Java string, and
REF CURSCR types are supported as JDBC result sets.

This section covers the following topics:

e Oracle ROWID Type

e Oracle REF CURSOR Type Category

« Oracle BINARY_FLOAT and BINARY_DOUBLE Types
e Oracle SYS.ANYTYPE and SYS.ANYDATA Types

e The oracle.jdbc Package

4.5.1 Oracle ROWID Type

ORACLE

A ROWID is an identification tag unique for each row of an Oracle Database table. The
ROWID can be thought of as a virtual column, containing the ID for each row.

The oracl e. sql . RON D class is supplied as a container for RON D SQL data type.

ROWIDs provide functionality similar to the get Cur sor Nane method specified in the
j ava. sqgl . Resul t Set interface and the set Cur sor Nane method specified in the
java. sql . Statenment interface.

If you include the ROWID pseudo-column in a query, then you can retrieve the
ROWIDs with the result set get St ri ng method. You can also bind a ROWID to a
Prepar edSt at enent parameter with the set St ri ng method. This enables in-place
updating, as in the example that follows.

" Note:

Use the or acl e. sql . RON D class, only when you are using J2SE 5.0. For
JSE 6, you should use the standard j ava. sql . Row d interface instead.

Example

The following example shows how to access and manipulate ROWID data:

< Note:

The following example works only with JSE 6.

Statement stnt = conn.createStatenent();

/1l Query the enployee nanes with "FOR UPDATE" to |ock the rows.
/1 Select the ROND to identify the rows to be updated.

Resul t Set rset =
stnt. executeQuery ("SELECT first_name, row d FROM enpl oyees FOR UPDATE");

Il Prepare a statement to update the first_name colum at a given ROND

4-14

Chapter 4
Additional Oracle Type Extensions

PreparedSt at enent pstnt =
conn. prepareSt at ement (" UPDATE enpl oyees SET first_name = ? WHERE rowid = ?");

/1 Loop through the results of the query
while (rset.next ())

{
String enane = rset.getString (1);

Rowld rowid = rset.getROND(2); // Get the ROND as a String
pstnt.setString (1, enane.tolLowerCase ());
pstnt.setROND (2, rowid); // Pass ROND to the update statenent
pstnt . executeUpdate (); /1 Do the update

}

4.5.2 Oracle REF CURSOR Type Category

ORACLE

A cursor variable holds the memory location of a query work area, rather than the contents of
the area. Declaring a cursor variable creates a pointer. In SQL, a pointer has the data type
REF x, where REF is short for REFERENCE and x represents the entity being referenced. A REF
CURSCR, then, identifies a reference to a cursor variable. Because many cursor variables
might exist to point to many work areas, REF CURSOR can be thought of as a category or data
type specifier that identifies many different types of cursor variables. Starting from Oracle
Database Release 18 ¢, JDBC drivers support REF CURSCR as IN bind variables.

Note:

REF CURSCR instances are not scrollable.

Perform the following steps to create a cursor variable:

1. Identify a type that belongs to the REF CURSCR category. For example:

DECLARE TYPE Dept CursorTyp IS REF CURSOR

2. Then, create the cursor variable by declaring it to be of the type Dept Cur sor Typ:

dept _cv DeptCursorTyp - - declare cursor variable

REF CURSCR, then, is a category of data types, rather than a particular data type.

Stored procedures can accept or return cursor variables of the REF CURSOR category. This
output is equivalent to a database cursor or a JDBC result set. A REF CURSOR essentially
encapsulates the results of a query.

In JDBC, a REF CURSOR can be accessed as follows:
1. Use a JDBC callable statement or a prepared statement to call a stored procedure.
2. The stored procedure accepts or returns a REF CURSCR.

3. The Java application casts the callable statement or prepared statement to an Oracle
callable statement or Oracle prepared statement.

4-15

ORACLE

4.

5.

Chapter 4
Additional Oracle Type Extensions

The Java application uses the set Cur sor method of the

O acl ePrepar edSt at enent interface or the get Cur sor method of the

Oracl eCal | abl eSt at enent interface to materialize the REF CURSOR as a JDBC
Resul t Set object.

The result set is processed as requested.

" Note:

e The cursor associated with a REF CURSCR is closed whenever the
statement object that produced the REF CURSCR s closed.

e Unlike in past releases, the cursor associated with a REF CURSOR is
not closed when the result set object in which the REF CURSOR was
materialized is closed.

Example

This example shows how to access REF CURSCR data.

Il Prepare a PL/SQL call
Cal | abl eSt atement cstnt =
conn. prepareCal | ("DECLARE rc sys_refcursor; curid NUVBER BEG N

open rc FOR SELECT enpno FROM enp order by enpno; ? :=rc; END");

rc .

cstmt.regi sterQutParaneter (1, Oracl eTypes. CURSOR);
cstnt. execute ();
Result Set rset = (ResultSet)cstnt.getChject (1);

if (rset.next ()) {
show (rset.getString ("enpno"));
1

Cal | abl eSt atenent cstnt2 =
conn. prepareCal | ("DECLARE rc sys_refcursor; vl NUMBER, BEG N
= 7?; fetch rc INTOv1, ? :=vl, END;");
((Oracl eCal | abl eStatement) cal | 2) . set Cursor (1, rset);
cstnt 2. registerQut Paraneter (2, O acleTypes. | NTEGER);

cstmt 2. execute();
int enpno = cstnt2.getlnt(2);
show("Fetch in PL/SQL enmpno=" + enpno);
/1 Dunp the cursor
while (rset.next ())

show (rset.getString ("enpno"));
Il Close all the resources

rset.close();
cstnt.close();

4-16

Chapter 4
Additional Oracle Type Extensions

cstnt 2. cl ose();

In the preceding example:

 Two Cal | abl eSt at ement objects cstnt 1 and cst nt 2 are created using the pr epar eCal |
method of the Connect i on class.

e The cstnt 2 callable statement uses REF CURSOR as input parameter.
e The callable statements implement PL/SQL procedure that returns a REF CURSCR.

e As always, the output parameter of the callable statement must be registered to define its
type. Use the type code O acl eTypes. CURSOR for a REF CURSCR.

* The callable statements are run, returning the REF CURSOR or sending the REF CURSCR as
input bind.

4.5.3 Oracle BINARY_FLOAT and BINARY_DOUBLE Types

ORACLE

The Oracle Bl NARY_FLQOAT and Bl NARY_DOUBLE types are used to store IEEE 574 float and
double data. These correspond to the Java f | oat and doubl e scalar types with the exception
of negative zero and NaN.

¢ See Also:

Oracle Database SQL Language Reference

If you include a Bl NARY_DOUBLE column in a query, then the data is retrieved from the
database in the binary format. Also, the get Doubl e method will return the data in the binary
format. In contrast, for a NUMBER data type column, the number bits are returned and
converted to the Java doubl e data type.

" Note:

The Oracle representation for the SQL FLOAT, DOUBLE PRECI SI ON, and REAL data
types use the Oracle NUMBER representation. The Bl NARY_FLQOAT and Bl NARY_DOUBLE
data types can be regarded as proprietary types.

A call to the JDBC standard set Doubl e(i nt, doubl e) method of the Prepar edSt at enent
interface converts the Java doubl e argument to Oracle NUMBER style bits and send them to the
database. In contrast, the set Bi nar yDoubl e(i nt, doubl e) method of the

oracl e.jdbc. O acl ePreparedSt at enent interface converts the data to the internal binary bits
and sends them to the database.

You must ensure that the data format used matches the type of the target parameter of the
Prepar edSt at enent interface. This will result in correct data and least use of CPU. If you use
set Bi nar yDoubl e for a NUMBER parameter, then the binary bits are sent to the server and
converted to NUMBER format. The data will be correct, but server CPU load will be increased. If
you use set Doubl e for a B NARY_DOUBLE parameter, then the data will first be converted to
NUMBER bits on the client and sent to the server, where it will be converted back to binary

4-17

Chapter 4
Additional Oracle Type Extensions

format. This will increase the CPU load on both client and server and can result in data
corruption as well.

The Set Fl oat AndDoubl eUseBi nary connection property when set to t r ue causes the
JDBC standard APIs, set Fl oat (i nt, float), set Doubl e(int, doubl e), and all the
variations, to send internal binary bits instead of NUBVER bits.

Note:

Although this section largely discusses Bl NARY_DOUBLE, the same is true for
Bl NARY_FLQAT as well.

4.5.4 Oracle SYS.ANYTYPE and SYS.ANYDATA Types

ORACLE

Oracle Database 12c Release 1 (12.1) provides a Java interface to access the
SYS. ANYTYPE and SYS. ANYDATA Oracle types.

¢ See Also:

For information about these Oracle types, refer Oracle Database PL/SQL
Packages and Types Reference

An instance of the SYS. ANYTYPE type contains a type description of any SQL type,
persistent or transient, named or unnamed, including object types and collection types.
You can use the or acl e. sqgl . TypeDescri pt or class to access the SYS. ANYTYPE type.
An ANYTYPE instance can be retrieved from a PL/SQL procedure or a SQL SELECT
statement where SYS. ANYTYPE is used as a column type. To retrieve an ANYTYPE
instance from the database, use the get Obj ect method. This method returns an
instance of the TypeDescri ptor.

The retrieved ANYTYPE instance could be any of the following:

» Transient object type

* Transient predefined type

» Persistent object type

* Persistent predefined type

Example 4-1 Accessing SYS.ANYTYPE Type

The following code snippet illustrates how to retrieve an instance of ANYTYPE from the
database:

ResultSet rs = stnt.executeQuery("select anytype_colum fromny_table");
TypeDescriptor td = (TypeDescriptor)rs. getject(1);

short typeCode = td.getlnternal TypeCode();

i f(typeCode == TypeDescri ptor. TYPECODE_OBJECT)

Il check if it's a transient type
if(td.isTransientType())

4-18

ORACLE

Chapter 4
Additional Oracle Type Extensions

{
AttributeDescriptor[] attributes =

((StructDescriptor)td).getAttributesDescriptor();
for(int i=0; i<attributes.length; i++)
Systemout.printin(attributes[i].getAttributeNane());
}

el se
{ Systemout. println(td.get TypeName()); }}

Example 4-2 Creating a Transient Object Type Through PL/SQL and Retrieving
Through JDBC

This example provides a code snippet illustrating how to retrieve a transient object type
through JDBC.

Oracl eCal | abl eStatenent cstmt = (Oracl eCal | abl eSt at ement) conn. prepar eCal |
("BEGN ? := transient_obj type (); END;");

cstnt. registerQutParaneter (1, Oracl eTypes. OPAQUE, " SYS. ANYTYPE") ;

cstnt. execute();

TypeDescri ptor obj = (TypeDescriptor)cstnt.getQoject(1);

if(lobj.isTransient())
Systemout. println("This mst be a JDBC bug");

cstnt. close();

return obj;

Example 4-3 Calling a PL/ISQL Stored Procedure That Takes an ANYTPE as IN
Parameter

The following code snippet illustrates how to call a PL/SQL stored procedure that takes an
ANYTYPE as | N parameter:

Cal | abl eStatement cstnt = conn. prepareCal | ("BEG N ? : = dunpanytype(?); END;");
cstnt.registerCQutParameter (1, Oracl eTypes. VARCHAR) ;

/] obj is the instance of TypeDescriptor that you have retrieved

cstnt. set Object(2,0bj);

cstnt. execute();

String str = (String)cstnt.get Oject(1);

The or acl e. sql . ANYDATA class enables you to access SYS. ANYDATA instances from the
database. An instance of this class can be obtained from any valid instance of

oracl e. sqgl . Dat umclass. The convert Dat umfactory method takes an instance of Dat umand
returns an instance of ANYDATA. The syntax for this factory method is as follows:

public static ANYDATA convert Datun{Datum datunm) throws SQLException

The following is sample code for creating an instance of or acl e. sql . ANYDATA:

/1 struct is a valid instance of oracle.sqgl.STRUCT that either cones fromthe
/| database or has been constructed in Java.
ANYDATA nyAnyData = ANYDATA. convert Datunm(struct);

Example 4-4 Accessing an Instance of ANYDATA from the Database

/1 anydata_table has been created as:
/| CREATE TABLE anydata_tab (data SYS. ANYDATA)

4-19

Chapter 4
Additional Oracle Type Extensions

Statement stnt = conn.createStatenent();
ResultSet rs = stnt.executeQuery("select data fromnmy_anydata_tab");
whil e(rs. next())

ANYDATA anydata = (ANYDATA)rs. get Cbj ect(1);
i f(lanydata.isNull())
{
TypeDescriptor td = anydata. get TypeDescriptor();
i f(td.get TypeCode() == Oracl eType. TYPECODE_OBJECT)
STRUCT struct = (STRUCT) anydat a. accessDat un() ;

Example 4-5 Inserting an Object as ANYDATA in a Database Table
Consider the following table and object type definition:

CREATE TABLE anydata_tab (id NUVMBER data SYS. ANYDATA)

CREATE OR REPLACE TYPE enpl oyee AS OBJECT (enployee_id NUMBER, first_name
VARCHAR2(10))

You can create an instance of the EMPLOYEE SQL object type and to insert it into
anydat a_t able in the following way:

PreparedStatenent pstnt = conn.prepareStatement("insert into anydata_table
values (?2,?2)");

Struct nyEnpl oyeeStr = conn.createStruct ("EMPLOYEE", new Cbject[]{1120,
"Papageno"});

ANYDATA anyda = ANYDATA. convert Dat un(myEnpl oyeeStr);

pstnt.setlnt(1,123);

pstnt.set Chj ect (2, anyda);

pst nt . execut eUpdat e();

Example 4-6 Selecting an ANYDATA Column from a Database Table

Statement stnt = conn.createStatenent();
Resul tSet rs = stnt.executeQuery("select data from anydata_table");
while(rs.next())

ANYDATA obj = (ANYDATA)rs. get Obj ect(1);
TypeDescriptor td = obj.get TypeDescriptor();

rs.close();
stnt.close();

4.5.5 The oracle.jdbc Package

ORACLE

The interfaces of the or acl e. j dbc package define the Oracle extensions to the
interfaces in j ava. sgl . These extensions provide access to SQL-format data as
described in this chapter. They also provide access to other Oracle-specific
functionality, including Oracle performance enhancements.

For the or acl e. j dbc package, Table 4-1 lists key interfaces and classes used for
connections, statements, and result sets.

4-20

Chapter 4
Additional Oracle Type Extensions

Table 4-1 Key Interfaces and Classes of the oracle.jdbc Package

Name

Interface
or Class

Key Functionality

Oracl eDri ver
Oracl eConnection

Or acl eSt at ement

O acl ePrepar edSt at enent

Oracl eCal | abl eSt at enent

Or acl eResul t Set

Oracl eResul t Set Met aDat a

Oracl eDat abaseMet aDat a

Oracl eTypes

ORACLE

Class

Interface

Interface

Interface

Interface

Interface

Interface

Class

Class

Implements j ava. sql . Dri ver

Provides methods to start and stop an Oracle
Database instance and to return Oracle
statement objects and methods to set Oracle
performance extensions for any statement run
in the current connection.

Implements j ava. sgl . Connecti on.
Provides methods to set Oracle performance
extensions for individual statement.

Is a supertype of Or acl ePr epar edSt at enent
and Oracl eCal | abl eSt at ement .
Implements j ava. sql . St at ement .

Provides set XXX methods to bind

oracl e.sql . * types into a prepared
statement.

Provides get Met aDat a method to get the
metadata from the prepared statements
without executing the SELECT statements.
Implements j ava. sql . Prepar edSt at enent .
Extends Or acl eSt at enent .

Is a supertype of
Oracl eCal | abl eSt at enent .

Provides get XXX methods to retrieve data in
oracl e. sql format and set XXX methods to
bind or acl e. sql . * types into a callable
statement.

Implements j ava. sql . Cal | abl eSt at ement .
Extends Or acl ePr epar edSt at enent .
Provides get XXX methods to retrieve data in
oracl e. sqgl format.

Implements j ava. sql . Resul t Set .

Provides methods to get metadata information

about Oracle result sets, such as column
names and data types.

Implements j ava. sql . Resul t Set Met aDat a.

Provides methods to get metadata information
about the database, such as database product
name and version, table information, and
default transaction isolation level.

Implements j ava. sql . Dat abaseMet aDat a).
Defines integer constants used to identify SQL
types.

For standard types, it uses the same values as
the standard j ava. sql . Types class. In
addition, it adds constants for Oracle extended
types.

4-21

Chapter 4
Additional Oracle Type Extensions

Table 4-1 (Cont.) Key Interfaces and Classes of the oracle.jdbc Package

Name Interface Key Functionality
or Class
Oracl eArray Interface Includes functionality to retrieve the array as a

whole, retrieve a subset of the array elements,
and retrieve the SQL base type name of the
array elements.

Oracl eStruct Interface
Oracl ed ob Interface
Oracl eBl ob Interface
O acl eRef Interface
Oracl eQpaque Interface

This section covers the following topics:

* Interface oracle.jdbc.OracleConnection

» Interface oracle.jdbc.OracleStatement

» Interface oracle.jdbc.OraclePreparedStatement
* Interface oracle.jdbc.OracleCallableStatement
» Interface oracle.jdbc.OracleResultSet

* Interface oracle.jdbc.OracleResultSetMetaData

» Class oracle.jdbc.OracleTypes

4.5.5.1 Interface oracle.jdbc.OracleConnection

This interface extends standard JDBC connection functionality to create and return
Oracle statement objects, set flags and options for Oracle performance extensions,
support type maps for Oracle objects, and support client identifiers.

In Oracle Database 11g Release 1, new methods were added to this interface that
enable the starting up and shutting down of an Oracle Database instance. Also, for
better visibility and clarity, all connection properties are defined as constants in the
O acl eConnecti on interface.

This interface also defines factory methods for constructing or acl e. sql data values
like DATE and NUMBER. Remember the following points while using factory methods:

e All code that constructs instances of the or acl e. sql types should use the Oracle
extension factory methods. For example, ARRAY, BFI LE, DATE, | NTERVALDS, NUMBER,
STRUCT, Tl ME, TI MESTAMP, and so on.

« All code that constructs instances of the standard types should use the JDBC 4.0
standard factory methods. For example, CLOB, BLOB, NCLOB, and so on.

e There are no factory methods for CHAR, JAVA_STRUCT, ArrayDescri pt or, and
Struct Descri ptor. These types are for internal driver use only.

ORACLE 4-22

Chapter 4
Additional Oracle Type Extensions

< Note:

Prior to Oracle Database 11g Release 1, you had to construct
ArrayDescriptors and Struct Descri ptors for passing as arguments to the
ARRAY and STRUCT class constructors. The new ARRAY and St ruct factory
methods do not have any descriptor arguments. The driver still uses descriptors
internally, but you do not need to create them.

Client Identifiers

In a connection pooling environment, the client identifier can be used to identify the
lightweight user using the database session currently. A client identifier can also be used to
share the Globally Accessed Application Context between different database sessions. The
client identifier set in a database session is audited when database auditing is turned on.

¢ See Also:

Oracle Database JDBC Java API Reference for more information

4.5.5.2 Interface oracle.jdbc.OracleStatement

This interface extends standard JDBC statement functionality and is the superinterface of the
O acl ePrepar edSt at enent and Or acl eCal | abl eSt at enent classes. Extended functionality
includes support for setting flags and options for Oracle performance extensions on a
statement-by-statement basis, as opposed to the Or acl eConnecti on interface that sets these
on a connectionwide basis.

4.5.5.3 Interface oracle.jdbc.OraclePreparedStatement

ORACLE

This interface extends the Or acl eSt at enent interface and extends standard JDBC prepared
statement functionality. Also, the or acl e. j dbc. Oracl ePrepar edSt at enent interface is
extended by the Oracl eCal | abl eSt at enent interface. Extended functionality consists of the
following:

* set XXX methods for binding or acl e. sql . * types and objects to prepared statements

e get Met aDat a method to get the metadata from the prepared statements without executing
the SELECT statements

* Methods to support Oracle performance extensions on a statement-by-statement basis

" Note:

Do not use the Prepar edSt at enent interface to create a trigger that refers to a: NEW
or : OLD column. Use St at enent instead. Using Pr epar edSt at ement will cause
execution to fail with the message j ava. sql . SQLException: Mssing IN or QUT
paraneter at index:: 1.

4-23

Chapter 4
Additional Oracle Type Extensions

4.5.5.4 Interface oracle.jdbc.OracleCallableStatement

This interface extends the Or acl ePr epar edSt at enent interface, which extends the
O acl eSt at enent interface and incorporates standard JDBC callable statement
functionality.

" Note:

Do not use the Cal | abl eSt at enent interface to create a trigger that refers to
a: NEWor : QLD column. Use St at emrent instead; using Cal | abl eSt at ement will
cause execution to fail with the message j ava. sql . SQLExcepti on: M ssing
IN or QUT paraneter at index::1

" Note:

e ThesetXXX(String,...) andregisterQut Paraneter(String,...)
methods can be used only if all binds are procedure or function
parameters only. The statement can contain no other binds and the
parameter binds must be indicated with a question mark (?) and not : XX.

e Ifyou are using set XXX(int,...) or set XXXAt Name(String,...)
method, then any output parameter is bound with

regi sterQut Paraneter(int,...) and not
regi sterQut Paraneter(String,...), which is for named parameter
notation.

4.5.5.5 Interface oracle.jdbc.OracleResultSet

This interface extends standard JDBC result set functionality, implementing get XXX
methods for retrieving data into or acl e. sql . * objects.

4.5.5.6 Interface oracle.jdbc.OracleResultSetMetaData

This interface extends standard JDBC result set metadata functionality to retrieve
information about Oracle result set objects.

¢ See Also:

"Using Result Set Metadata Extensions"

4.5.5.7 Class oracle.jdbc.OracleTypes

The Oracl eTypes class defines constants that JDBC uses to identify SQL types. Each
variable in this class has a constant integer value. The or acl e. j dbc. O acl eTypes

ORACLE 4-24

ORACLE

Chapter 4
Additional Oracle Type Extensions

class duplicates the type code definitions of the standard Java j ava. sql . Types class and
contains these additional type codes for Oracle extensions:

* (Oacl eTypes. BFI LE
e (OacleTypes. ROND
* (Oacl eTypes. CURSOR (for REF CURSOR types)

e (Oacl eTypes. CHAR BYTES (for calling set Nul I and set CHAR methods on the same
column)

Asinjava. sql . Types, all the variable names are in uppercase text.

JDBC uses the SQL types identified by the elements of the Or acl eTypes class in two main
areas: registering output parameters and in the set Nul | method of the Pr epar edSt at emrent
class.

OracleTypes and Registering Output Parameters

The type codes in j ava. sql . Types or oracl e. j dbc. O acl eTypes identify the SQL types of
the output parameters in the r egi st er Qut Par amet er method of the
java.sql.Cal | abl eStat enment and oracl e. j dbc. Oracl eCal | abl eSt at enent interfaces.

These are the forms that the r egi st er Qut put Par amet er method can take for the
Cal | abl eSt at ement and Oracl eCal | abl eSt at enent interfaces

cs.regi sterQut Paraneter(int index, int sql Type);
cs.regi sterQut Paraneter(int index, int sql Type, String sql _nanme);
cs.regi sterQut Paraneter(int index, int sql Type, int scale);

In these signatures, i ndex represents the parameter index, sql Type is the type code for the
SQL data type, sql _narme is the name given to the data type, for user-defined types, when
sqgl Type is a STRUCT, REF, or ARRAY type code, and scal e represents the number of digits to
the right of the decimal point, when sql Type is a NUVERI C or DECI MAL type code.

The following example uses a Cal | abl eSt at ement interface to call a procedure named
charout , which returns a CHAR data type. Note the use of the Or acl eTypes. CHAR type code in
the regi st er Qut Par anet er method.

Cal | abl eSt atement cs = conn. prepareCall ("BEG N charout (?); END;");
cs.regi sterQut Paraneter (1, OracleTypes. CHAR);

cs. execute ();

Systemout.println ("Qut argument is: " + cs.getString (1));

The next example uses a Cal | abl eSt at enent interface to call st ruct out , which returns a
STRUCT data type. The form of r egi st er Qut Par anet er requires you to specify the type code,
Types. STRUCT or Or acl eTypes. STRUCT, as well as the SQL name, EMPLOYEE.

The example assumes that no type mapping has been declared for the EMPLOYEE type, so it is
retrieved into a STRUCT data type. To retrieve the value of EMPLOYEE as an or acl e. sql . STRUCT
object, the statement object cs is cast to O acl eCal | abl eSt at enent and the Oracle extension
get STRUCT method is invoked.

Cal | abl eStat ement cs = conn. prepareCall ("BEG N structout (?); END;");

cs.regi sterQut Parameter (1, Oracl eTypes. STRUCT, "EMPLOYEE");

cs. execute ();

/1 get the value into a STRUCT because it

4-25

ORACLE

Chapter 4
Additional Oracle Type Extensions

/'l is assumed that no type map has been defined
STRUCT enp = ((Oracl eCal | abl eSt at enent) cs). get STRUCT (1);

OracleTypes and the setNull Method

The type codes in Types and Or acl eTypes identify the SQL type of the data item,
which the set Nul | method sets to NULL. The set Nul | method can be found in the
java. sql . PreparedSt at ement and oracl e. j dbc. O acl ePrepar edSt at enent
interfaces.

These are the forms that the set Nul | method can take for the Pr epar edSt at enent and
O acl ePrepar edSt at enent objects:

ps.setNul | (int index, int sql Type);
ps.setNul | (int index, int sql Type, String sql_name);

In these signatures, i ndex represents the parameter index, sql Type is the type code
for the SQL data type, and sql _nane is the name given to the data type, for user-
defined types, when sql Type is a STRUCT, REF, or ARRAY type code. If you enter an
invalid sql Type, a Par anet er TypeConf | i ct exception is thrown.

The following example uses a prepared statement to insert a null value into the
database. Note the use of Or acl eTypes. NUMERI C to identify the numeric object set to
NULL. Alternatively, Types. NUMERI C can be used.

PreparedSt at enent pstnt =
conn. prepareStatenent ("1 NSERT | NTO num table VALUES (?)");

pstnt.setNull (1, OracleTypes. NUMER C);
pstnt.execute ();

In this example, the prepared statement inserts a NULL STRUCT object of type EMPLOYEE
into the database.

PreparedSt at enent pstnt = conn. prepar eSt at ement
("1 NSERT I NTO enpl oyees VALUES (?)");

pstnt.setNull (1, OracleTypes. STRUCT, "EMPLOYEE");
pstnt.execute ();

You can also use the Oracl eTypes. CHAR BYTES type with the set Nul | method, if you
also want to call the set CHAR method on the same column. For example:

ps. set CHAR(n, aCHAR);
ps. addBat ch();
ps.setNul | (n, Oracl eTypes. CHAR BYTES);
ps. addBat ch() ;

In this preceding example, any other type, apart from the Or acl eTypes. CHAR_BYTES
type, will cause extra round trips to the Database. Alternatively, you can also write your
code without using the set Nul | method. For example, you can also write your code as
shown in the following example:

ps. set CHAR(n, null);

4-26

Chapter 4
DML Returning

4.6 DML Returning

The DML returning feature provides more functionality compared to retrieval of auto-
generated keys. It can be used to retrieve not only auto-generated keys, but also other
columns or values that the application may use.

Note:
e The server-side internal driver does not support DML returning and retrieval of
auto-generated keys.

e You cannot use both DML returning and retrieval of auto-generated keys in the
same statement.

The following sections explain the support for DML returning:

e Oracle-Specific APIs
* About Running DML Returning Statements
* Example of DML Returning

e Limitations of DML Returning

¢ See Also:

"Retrieval of Auto-Generated Keys"

4.6.1 Oracle-Specific APIs

The Oracl ePrepar edSt at ement interface is enhanced with Oracle-specific application
programming interfaces (APIs) to support DML returning. The r egi st er Ret ur nPar anet er and
get Ret ur nResul t Set methods have been added to the

oracle.jdbc. O acl ePreparedSt at enent interface, to register parameters that are returned
and data retrieved by DML returning.

The regi st er Ret ur nPar amet er method is used to register the return parameter for DML
returning. The method throws a SQLExcept i on instance if an error occurs. You must pass a
positive integer specifying the index of the return parameter. You also must specify the type of
the return parameter. You can also specify the maximum bytes or characters of the return
parameter. This method can be used only with char or RAWtypes. You can also specify the
fully qualified name of a SQL structure type.

ORACLE 4-27

Chapter 4
DML Returning

< Note:

If you do not know the maximum size of the return parameters, then you
should use regi st er Ret ur nParanmet er (i nt parani ndex, int

ext ernal Type), which picks the default maximum size. If you know the
maximum size of return parameters, using r egi st er Ret ur nPar anet er (i nt
param ndex, int external Type, int maxSize) can reduce memory
consumption.

The get Ret ur nResul t Set method fetches the data returned from DML returning and
returns it as a Resul t Set object. The method throws a SQLExcept i on exception if an
error occurs.

" Note:

The Oracle-specific APIs for the DML returning feature are in oj dbcé. j ar for
Java Development Kit (JDK) 6.0 and in oj dbc7. j ar for JDK 7.

4.6.2 About Running DML Returning Statements

Before running a DML returning statement, the JDBC application must call one or
more of the r egi st er Ret ur nPar armet er methods. The method provides the JDBC
drivers with information, such as type and size, of the return parameters. The DML
returning statement is then processed using one of the standard JDBC APIs,
execut eUpdat e or execut e. You can then fetch the returned parameters as a

Resul t Set object using the get Ret ur nResul t Set method of the

oracle.jdbc. O acl ePreparedSt at enent interface.

In order to read the values in the Resul t Set object, the underlying St at enment object
must be open. When the underlying St at enent object is closed, the returned

Resul t Set object is also closed. This is consistent with Resul t Set objects that are
retrieved by processing SQL query statements.

When a DML returning statement is run, the concurrency of the Resul t Set object
returned by the get Ret ur nResul t Set method must be CONCUR_READ _ONLY and the type
of the Resul t Set object must be TYPE_FORWARD_ONLY or TYPE_SCROLL_| NSENSI TI VE.

4.6.3 Example of DML Returning

ORACLE

This section provides two code examples of DML returning.

The following code example illustrates the use of DML returning. In this example,
assume that the maximum size of the nane column is 100 characters. Because the
maximum size of the nane column is known, the r egi st er Ret ur nPar anet er (i nt
param ndex, int external Type, int maxSi ze) method is used.

Oracl ePreparedSt atenent pstnmt = (Oracl ePreparedSt at ement) conn. prepar eSt at ement (
"delete fromtabl where age < ? returning name into ?");
pstnt.setlnt(1,18);

4-28

Chapter 4
DML Returning

[** register returned paraneter
* in this case the maxi mum size of name is 100 chars
*/
pstnt.registerReturnParameter (2, OacleTypes. VARCHAR, 100);

/'l process the DM returning statenent

count = pstnt.executeUpdate();

i f (count>0)

{
Resul t Set rset = pstnt.getReturnResultSet(); //rest is not null and not enpty
whil e(rset.next())

{
String name = rset.getString(1);

The following code example also illustrates the use of DML returning. However, in this case,
the maximum size of the return parameters is not known. Therefore, the
regi sterReturnParaneter (int param ndex, int external Type) method is used.

O acl ePreparedStatenent pstnt = (Oracl ePreparedSt at ement) conn. prepar eSt at enent (
"insert into |obtab values (100, enpty clob()) returning coll, col2 into ?, ?");

/'l register return paraneters
pstnt.registerReturnParameter (1, OracleTypes.|NTECER);
pstnt.registerReturnParanmeter(2, O acleTypes.CLOB);

/I process the DML returning SQ statenent
pstnt . execut eUpdat e();
Resul t Set rset = pstnt.getReturnResultSet();
int r;
CLOB cl ob;
if (rset.next())
{
r = rset.getlnt(1);
Systemout. printin(r);
clob = (CLOB)rset.getC ob(2);

4.6.4 Limitations of DML Returning

ORACLE

When using DML returning, be aware of the following:

» Itis unspecified what the get Ret ur nResul t Set method returns when it is invoked more
than once. You should not rely on any specific action in this regard.

* The Resul t Set objects returned from the execution of DML returning statements do not
support the Resul t Set Met aDat a type. Therefore, the applications must know the
information of return parameters before running DML returning statements.

e Streams are not supported with DML returning.

* DML returning cannot be combined with batch update.

4-29

Chapter 4
Accessing PL/SQL Associative Arrays

* You cannot use both the auto-generated key feature and the DML returning
feature in a single SQL DML statement. For example, the following is not allowed:

PreparedStatenent pstnt = conn.prepareStatenment('insert into orders
(?, ?, ?) returning order_id into ?");

pstnt.setlnt(1, seqOl. NEXTVAL);

pstnt.setint(2, 100);

pstnt.setint(3, 966431502);

pstnt.registerReturnParan(4, O acleTypes.|NTEGER);

pst nt . execut eUpdat e;

Resul t Set rset = pstnt.get Generat edKeys;

4.7 Accessing PL/SQL Associative Arrays

ORACLE

Oracle JDBC drivers enable JDBC applications to make PL/SQL calls with Associative
Arrays parameters. In PL/SQL, an Associative Array is a set of key-value pairs, where
the keys may be PLS | NTEGERs or Strings. The keys may have any value and need not
be dense. From a client application, you can work only with PLS | NTEGER or

Bl NARY_| NTEGER keys.

" Note:
The PLS | NTEGER and Bl NARY_| NTEGER are identical data types.

The previous release of Oracle JDBC drivers provided support only for PL/SQL
Associative Arrays of Scalar data types. Also, the support was restricted only to the
values of the key-value pairs of the Arrays. Oracle Database Release 18c supports
accessing both the keys (indexes) and values of Associative Arrays, and also provides
support for Associative Arrays of object types. Use the following methods to achieve
the new functionalities:

e Array createOracl eArray(String arrayTypeName,
(bj ect el ement s)

throws SQLException

* ARRAY creat eARRAY(String typeNane,
(bj ect el enent s)

throws SQLException

In both the preceding methods, the second parameter can either be a
java.util.Mp<lnteger, ?>thatholds the key-value pairs of the Associative
Arrays, or it can only be an array of values. If it is an array of values, then the
JDBC driver defaults the indexes to 0,1,2 and so on. If it is

java. util. Map<Integer, ?>,thenthe JDBC driver does not default the keys.
They remain as specified in the Map, and can be sparse and negative.

4-30

ORACLE

Chapter 4
Accessing PL/SQL Associative Arrays

Map<?, ?> oracl e.j dbc. Oracl eArray. get JavaMap() ;

This method returns a Map<?, ?> for the data types in the Associative Array and nul | for
Nested Tables and VARRAYS.

Note:

e Associative Arrays were previously known as index-by tables.

e When you use String data types, the size is limited to the size in PL/SQL that is
32767 characters. For the server-side internal driver, the limits are lower.

" See Also:

e Oracle Database JDBC Java API Reference
e Oracle Database PL/SQL Language Reference

for more information about Associative Arrays

4-31

Features Specific to JDBC Thin

This chapter introduces the Java Database Connectivity (JDBC) Thin client and covers the
following features supported only by the JDBC Thin driver:

e Overview of JDBC Thin Client
e Additional Features Supported

5.1 Overview of JDBC Thin Client

The JDBC Thin client is a pure Java, Type IV driver. It is lightweight and easy to install. It
provides high performance, comparable to the performance provided by the JDBC Oracle
Call Interface (OCI) driver. The JDBC Thin driver is written entirely in Java, and therefore, it is
platform-independent. Also, this driver does not require any additional Oracle software on the
client-side.

The JDBC Thin driver communicates with the server using TTC, a protocol developed by
Oracle to access data from Oracle Database. It can be used for application servers. The
driver allows a direct connection to the database by providing an implementation of TCP/IP
that implements Oracle Net and TTC on top of Java sockets. Both of these protocols are
lightweight implementation versions of their counterparts on the server. The Oracle Net
protocol runs over TCP/IP only.

The JDBC Thin driver can be used on both the client-side and the server-side. On the client-
side, drivers can be used in Java applications that run either on the client or in the middle tier
of a three-tier configuration. On the server-side, this driver is used to access a remote Oracle
Database instance or another session on the same database.

5.2 Additional Features Supported

The JDBC Thin driver supports all standard JDBC features. The JDBC Thin driver also
provides support for the following additional features:

e Default Support for Native XA
e Support for Transaction Guard

e Support for Application Continuity

5.2.1 Default Support for Native XA

Similar to the JDBC OCI driver, the JDBC Thin driver also provides support for Native XA.
However, the JDBC Thin driver provides support for Native XA by default. This is unlike the
case of the JDBC OCI driver, in which the support for Native XA is not enabled by default.

ORACLE 5-1

Chapter 5
Additional Features Supported

¢ See Also:
"Native-XA in Oracle JDBC Drivers"

5.2.2 Support for Transaction Guard

Transaction Guard feature provides a generic infrastructure for at-most-once execution
during planned and unplanned outages and duplicate submissions. Transaction Guard
feature (along with Application Continuity feature) provides transparent session
recovery and replay of SQL statements (queries and DMLS) since the beginning of the
in-flight transaction.

See Also:

Transaction Guard for Java

5.2.3 Support for Application Continuity

ORACLE

Application Continuity provides a general purpose, application-independent
infrastructure that enables recovery of work from an application perspective, after the
occurrence of a planned or unplanned outage. It provides the following benefits:

e Masking of outages from the end user
e Recovery of user environments, in-flight transactions, and lost outcome
e Asingle, easy, and foolproof method for applications to recover

e A definite target response time for applications, regardless of outages

¢ See Also:

Application Continuity for Java

5-2

Features Specific to JDBC OCI Driver

This chapter introduces the features specific to the Java Database Connectivity (JDBC)
Oracle Call Interface (OCI) driver. It also describes the OCI Instant Client. This chapter
contains the following sections:

e OCI Connection Pooling

e Transparent Application Failover

* OCI Native XA

* OCI Instant Client

e About Instant Client Light (English)

6.1 OCI Connection Pooling

The OCI connection pooling feature is an Oracle-designed extension. The connection pooling
provided by the JDBC OCI driver enables applications to have multiple logical connections,
all of which are using a small set of physical connections. Each call on a logical connection is
routed on to the physical connection that is available at the given time.

¢ See Also:

OCI Connection Pooling

6.2 Transparent Application Failover

The Transparent Application Failover feature of JDBC OCI driver enables you to
automatically reconnect to a database if the database instance to which the connection is
made goes down. The new database connection, though created by a different node, is
identical to the original.

" See Also:

Transparent Application Failover

6.3 OCI Native XA

The JDBC OCI driver also provides a feature called Native XA. This feature enables to use
native APIs to send XA commands. The native APIs provide high performance gains as
compared to non-native APIs.

ORACLE 6-1

Chapter 6
OCl Instant Client

Related Topics
* OCI Native XA

6.4 OCI Instant Client

This section covers the following topics:

* Overview of Instant Client

* OCI Instant Client Shared Libraries

* Benefits of Instant Client

» JDBC OCI Instant Client Installation Process

» Usage of Instant Client

* About Patching Instant Client Shared Libraries

* Regeneration of Data Shared Library and ZIP files
o Database Connection Names for OCI Instant Client

* Environment Variables for OCI Instant Client

6.4.1 Overview of Instant Client

The Instant Client is packaged in a way that makes it extremely easy to deploy OCI,
Oracle C++ Call Interface (OCCI), Open Database Connectivity (ODBC), and JDBC-
OCI based customer applications, by eliminating the need for an Oracle home. The
storage space requirement of a JDBC OCI application using the Instant Client is
significantly reduced compared to the same application running on a full client-side
installation. The Instant Client shared libraries occupy only about one-fourth the disk
space used by a full client installation.

6.4.2 OCI Instant Client Shared Libraries

You must have the Oracle client-side files required to deploy a JDBC OCI application.
The library names mentioned in this table correspond to Oracle Database Release
18c. The number part of library names will change in future releases to agree with the
release.

Table 6-1 OCI Instant Client Shared Libraries

Linux and UNIX Description for Linux and Microsoft Description for Microsoft
Systems UNIX Systems Windows Windows
[ibclntsh.so.18. Client Code Library oci.dll Forwarding functions that
1 applications link with
I'i bcl ntshcore. so
.18.11
l'i boci ei.so2 OCl Instant Client Data Shared oraoci ei 18.dl| Data and code
Library
[ibnnz18. so Security Library orannzsbb18. dl | Security Library
libocijdbcl8.s0 OCI Instant Client JDBC Library ocij dbc18. dl | OCI Instant Client JDBC Library
ORACLE 6-2

Chapter 6
OClI Instant Client

Table 6-1 (Cont.) OCI Instant Client Shared Libraries
]

Linux and UNIX Description for Linux and Microsoft Description for Microsoft
Systems UNIX Systems Windows Windows

ALL JDBC Java See Also: "Checking the All JDBC JAR files See Also: "Checking the
Archive (JAR) files Environment Variables" Environment Variables"

1 Beginning with Oracle Database 12¢ Release 1, the | i bcl nt shcor e. so. <r el ease nunber > library is separated from the
l'i bcl ntsh. so. <rel ease numnber > library and the data shared library.

2 Thelibcl ntsh. so. 18. 1library, the | i bcl nt shcore. so. 18. 1 library, and the | i boci €i . SO library must reside in the same
directory in order to operate in instant client mode.

Note:

To provide Native XA functionality, you must copy the JDBC XA class library. On
UNIX systems, this library, | i bhet er oxal8. so, is located in the ORACLE_HOVE/

j dbc/1'i b directory. On Microsoft Windows, this library, het er oxal8. dl | , is located
in the ORACLE_HOME\ bi n directory.

6.4.3 Benefits of Instant Client

The benefits of Instant Client are the following:

Installation involves copying a smaller number of files.

The number of required files and the total disk storage on the Oracle client-side are
significantly reduced.

There is no loss of functionality or performance for applications deployed with the Instant
Client.

It is simple for independent software vendors to package applications.

6.4.4 JDBC OCI Instant Client Installation Process

The Instant Client libraries can be installed by choosing the Instant Client option from Oracle
Universal Installer. The Instant Client libraries can also be downloaded from the Oracle
Technology Network Web site. The installation process is as follows:

ORACLE

1.

Download and install the Instant Client shared libraries and Oracle JDBC class libraries
to a directory, such asinstantclient.

Set the library path environment variable to the directory from Step 1. For example, on
UNIX systems, set the LD LI BRARY_PATH environment variable to i nstant cl i ent. On
Microsoft Windows, set the PATH environment variable to locate the i nstant cl i ent
directory.

Add the full path names of the JDBC class libraries to the CLASSPATH environment
variable.

After completing these steps you are ready to run the JDBC OCI application.

When you use the Instant Client, the OCI and JDBC shared libraries are accessible through
the library path environment variable for the JDBC OCI applications. In this case, there is no

6-3

ORACLE

Chapter 6
OCl Instant Client

dependency on the ORACLE_HOME and none of the other code and data files provided in
ORACLE_HOME is needed by JDBC OCI, except for the t nsnames. or a file.

Instant Client can be also installed from Oracle Universal Installer by selecting the
Instant Client option. The Instant Client files should always be installed in an empty
directory. As with the OTN installation, you must set the LD_LI BRARY_PATH environment
variable to the Instant Client directory to use the Instant Client.

If you have done a complete client installation by choosing the Admi n option, then the
Instant Client shared libraries are also installed. The location of the Instant Client
shared libraries and JDBC class libraries in a full client installation is:

On Linux or UNIX systems:

* libociei.so library is in $ORACLE_HOWE/ i nst ant cl i ent

e libclnstsh.so.18.1,1ibocijdbcl8.so,andlibnnz18.so are
in $ORACLE_HOWE/ |'i b

e The JDBC class libraries are in $ORACLE HOVE/ j dbc/ i b

On Microsoft Windows:

e oraocieil8.dll libraryis in ORACLE_HOME\i nst ant cl i ent

e oci.dll,ocijdbc18.dll,and orannzsbbl18. dl| are in ORACLE_HOVE\ bi n
* The JDBC class libraries are in ORACLE_HOVE\ j dbc\li b

By copying these files to a different directory, setting the library path to locate this
directory, and adding the path names of the JDBC class libraries to the CLASSPATH
environment variable, you can enable running the JDBC OCI application to use the
Instant Client.

6-4

Chapter 6
OClI Instant Client

< Note:

* To provide Native XA functionality, you must copy the JDBC XA class library.
On UNIX, this library, | i bhet er oxal8. so, is located in ORACLE_HOME/ j dbc/ | i b.
On Windows, this library, het er oxal8. dl | , is located in ORACLE_HOME\ bi n.

e All the libraries must be copied from the same ORACLE_HOMVE and must be placed
in the same directory.

e On hybrid platforms, such as Sparc64, if the JDBC OCI driver needs to use the
Instant Client libraries, then you must copy the | i boci ei . so library from the
ORACLE_HOWE/ i nst ant cl i ent 32 directory. You must copy all other Sparc64
libraries needed for the JDBC OCI Instant Client from the ORACLE_HOVE/ | i b32
directory.

e Only one set of Oracle libraries should be specified in the library path
environment variable. That is, if you have multiple directories containing Instant
Client libraries, then only one such directory should be specified in the library
path environment variable.

e If you have an Oracle home on your computer, then you should not have the
ORACLE_HOWE/ | i b and Instant Client directories in the library path environment
variable simultaneously, regardless of the order in which they appear in the
variable. That is, only one of ORACLE_HOMVE/ | i b directory (for non-Instant Client
operation) or Instant Client directory (for Instant Client operation) should be
specified in the library path environment variable.

e Oracle recommends that you download Instant Client from Oracle Technology
Network (OTN)

https://ww. oracl e. con t echnet wor k/ dat abase/ dat abase-t echnol ogi es/
i nstant-client/overview index.htn

6.4.5 Usage of Instant Client

Instant Client is a deployment feature and should be used for running production applications.
For development, a full installation is necessary to access demonstration programs and so
on. In general, all JDBC OCI functionality is available to an application using the Instant
Client, except that the Instant Client is for client-side operation only. Therefore, server-side
external procedures cannot use the Instant Client.

6.4.6 About Patching Instant Client Shared Libraries

The Instant Client is a deployment feature, so the emphasis is on reducing the number and
size of files required to run a JDBC OCI application. Therefore, all files needed to patch
Instant Client shared libraries are not available in an Instant Client deployment. An
ORACLE_HOME based full client installation is needed to patch the Instant Client shared
libraries. The opat ch utility will take care of patching the Instant Client shared libraries.

ORACLE 6-5

https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

Chapter 6
OCl Instant Client

< Note:

On Microsoft Windows, you cannot patch the shared libraries.

After applying the patch in an ORACLE_HOME environment, copy the files listed in
Table 6-1 to the instant client directory.

Instead of copying individual files, you can generate Instant Client ZIP files for OCI,
OCCI, JDBC, and SQL*Plus. Then, you can copy the ZIP files to the target computer
and unzip them.

The opat ch utility stores the patching information of the ORACLE_HOME installation in
I'i bel nstsh. so. 18. 1. This information can be retrieved by the following command:

genezi -v

Note that if the computer from where Instant Client is deployed does not have the
genezi utility, then it must be copied from the ORACLE_HOME/ bi n directory on the
computer that has the ORACLE_HOME installation.

Related Topics
« JDBC OCI Instant Client Installation Process

6.4.7 Regeneration of Data Shared Library and ZIP files

The OCI Instant Client Data Shared Library, | i boci ei . so, can be regenerated by
performing the following steps in an Administrator Installation of ORACLE_HOVE:

mkdir -p $ORACLE_HOMWE rdbns/install/instantclient/light
cd $ORACLE_HOWE/ rdbrs/ i b
make -f ins_rdbns.nk ilibociei

A new version of the | i boci ei . so Data Shared Library based on the current files in
the ORACLE_HOME is then placed in the ORACLE_HOWE/ rdbns/instal | /instantclient
directory.

Note that the location of the regenerated Data Shared Library, | i boci ei . so, is
different from that of the original Data Shared Library, | i boci ei . so, which is located in
the ORACLE_HOMWE/ i nst ant cl i ent directory. The preceding steps also generate Instant
Client ZIP files for OCI, OCCI, JDBC, and SQL*Plus.

Regeneration of data shared library and ZIP files is not available on Microsoft
Windows platforms.

6.4.8 Database Connection Names for OCI Instant Client

ORACLE

All Oracle Net naming methods that do not require the ORACLE_HOVE or TNS_ADM N
environment variables to locate configuration files, such as t nsnanes. ora or

sqgl net. ora, use the Instant Client. In particular, the connection string can be specified
in the following formats:

* A Thin-style connection string of the form:

host : port:service_name

6-6

ORACLE

Chapter 6
OClI Instant Client

For example:
url ="j dbc: oracl e: oci : @xanpl e. com 5521: orcl "
* A SQL connection URL string of the form:

[I'host:[port][/service_nane]

For example:
url ="j dbc: oracl e: oci : @/ exanpl e. com 5521/ orcl "
* As an Oracle Net keyword-value pair. For example:

url ="j dbc: oracl e: oci : @ DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp)
(HOST=I ocal host) (PORT=5521))
(CONNECT_DATA=(SERVI CE_NANE=0rcl)))"

Naming methods that require TNS_ADM N to locate configuration files continue to work if the
TNS_ADM N environment variable is set.

¢ See Also:

Oracle Database Net Services Administrator's Guide for more information about
connection formats

If the TNS_ADM N environment variable is not set and TNSNAMES entries, such as i nst 1, are
used, then the ORACLE_HOME environment variable must be set and the configuration files are
expected to be in the $ORACLE_HOVE/ net wor k/ admi n directory.

Note:

In this case, the ORACLE_HOME environment variable is used only for locating Oracle
Net configuration files. No other component of Client Code Library uses the value of
the ORACLE_HOME environment variable.

The empty connection string is not supported. However, an alternate way to use the empty
connection string is to set the TWO TASK environment variable on UNIX systems, or the LOCAL
variable on Microsoft Windows, to either a t nsnanes. or a entry or an Oracle Net keyword-
value pair. If TWD_TASK or LOCAL is set to a t nsnanmes. or a entry, then the t nsnanes. or a file
must be loaded by the TNS_ADM N or ORACLE_HOME setting.

Example

Consider that the | i st ener. or a file on the database server contains the following
information:

LI STENER = (ADDRESS_LI| ST=(ADDRESS=(PROTOCOL=t cp) (HOST=ser ver 6) (PORT=5221)))
SID LI ST_LISTENER = (SID_LIST=

('SI'D_DESC=(Sl D_NAME=r dbrs3)

(GLOBAL_DBNAME=r dbns3. server 6. com

(ORACLE_HOME=/ hone/ dba/ rdbns3/ oracl e)))

You can connect to this server in one of the following ways:

6-7

ORACLE

Chapter 6
OCl Instant Client

url = "jdbc:oracl e: oci : @DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp)
(HOST=ser ver 6) (PORT=5221))
(CONNECT_DATA=(SERVI CE_NAME=r dbns3. server 6. com))"

or:

url = "jdbc:oracle:oci:@/server6:5221/rdbns3. server 6. conf

Alternatively, you can set the TWO_TASK environment variable to any of the connection
strings and connect to the database server without specifying the connection string
along with the sql pl us command. For example, set the TWD TASK environment in one
of the following ways:

setenv TWD TASK " (DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) (HOST=ser ver 6) (PORT=5221))
(CONNECT_DATA=(SERVI CE_NAME=r dbns3. server6.com))"

or:

setenv TWO TASK //server6: 5221/ rdbns3. server6. com

Now, you can connect to the database server using the following URL:

url = "jdbc:oracle:oci: @

The connection string can also be stored in the t nsnames. or a file. For example,
consider that the t nsnanes. or a file contains the following:

conn_str = (DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) (HOST=ser ver 6) (PORT=5221))
(CONNECT_DATA=(SERVI CE_NAME=r dbns3. server 6. com))

If this t nsnanes. or a file is located in the / home/ webuser /i nst ant cl i ent directory, then
you can set the TNS_ADM N environment variable (or LOCAL on Microsoft Windows) as
follows:

setenv TNS_ADM N / hone/ webuser /i nstantcli ent

Now, you can connect as follows:

url = "jdbc:oracl e:oci:@onn_str"

Note:

The TNS_ADM N environment variable specifies the directory where the
t nsnames. or a file is located. However, TNS_ADM N does not specify the full
path of the t nsnames. or a file, instead it specifies the directory.

If this t nsnanes. or a file is located in the / net wor k/ ser ver 6/ hone/ dba/ or acl e/
net wor k/ admi n directory in the Oracle home, then instead of using TNS_ADM N to locate
the t nsnanes. or a file, you can set the ORACLE_HOVE environment variable as follows:

set env ORACLE HOME / net wor k/ server 6/ hone/ dba/ oracl e

Now, you can connect with either of the conn_st r connection strings, as specified
previously.

If t nsnames. ora can be located by TNS ADM N or ORACLE_HOME, then TWD _TASK can be
set to:

6-8

Chapter 6
About Instant Client Light (English)

setenv TWO TASK conn_str

You can then connect with the following URL:

url = "jdbc:oracle:oci:@

6.4.9 Environment Variables for OCI Instant Client

The ORACLE_HOME environment variable no longer determines the location of the NLS, CORE,
and error message files. An OCl-only application does not require the ORACLE_HOVE
environment variable to be set. However, if the variable is set, then it does not have an
impact on the operation of the OCI driver. OCI driver always obtains its data from the Data
Shared Library. If the Data Shared Library is not available, only then the ORACLE_HOVE
environment variable is used and a full client installation is assumed. Even though the
ORACLE_HOME environment variable is not required to be set, if it is set, then it must be set to a
valid operating system path name that identifies a directory.

Environment variables ORA_NLS10 and ORA_NLSPROFI LES33 are ignored while using the Instant
Client.

If the ORA_TZFI LE variable is not set, then the Instant Client uses the larger ti nezl rg_n. dat
file from the Data Shared Library, which is the default setting. If the smaller ti mezone_n. dat
file is to be used from the Data Shared Library, then set the ORA_TZFI LE environment variable
to the name of the file without any absolute or relative path names. That is:

On UNIX systems:

setenv ORA TZFILE tinezone_n. dat

On Microsoft Windows:

set ORA TZFILE tinezone_n. dat

In the examples above, n is the time zone data file version number.

If the OCI driver is not using the Instant Client because of nonavailability of the Data Shared
Library, then the ORA_TZFI LE variable, if set, names a complete path name, as it does in
previous Oracle Database releases.

If TNSNAMES entries are used, then, as mentioned earlier, the TNS_ADM N directory must
contain the TNSNAMES configuration files, and if TNS_ADM Nis not set, then the ORACLE_HOVE/
net wor k/ admi n directory must contain Oracle Net Services configuration files.

6.5 About Instant Client Light (English)

ORACLE

The lightweight version of Instant Client is called Instant Client Light (English). Instant Client
Light is the short name. Instant Client Light is a significantly smaller version of Instant Client.
This reduces the disk space requirements of the client installation by about 63 MB. This is
achieved by the lightweight Data Shared Library, | i boci i cus. so on UNIX systems, which is 4
MB in size and a subset of the data shared library, | i boci ei . so, which is 67 MB in size.

The lightweight data shared library supports only a few character sets and error messages
that are only in English. Therefore, the name Instant Client Light (English). Instant Client Light
is designed for applications that require English-only error messages and use either
US7ASCIIl, WEBDEC, or one of the Unicode character sets.

This section covers the following topics:

6-9

Chapter 6
About Instant Client Light (English)

» Data Shared Library for Instant Client Light (English)
* Globalization Settings
e Operation

» Installing Instant Client Light (English)

6.5.1 Data Shared Library for Instant Client Light (English)

Table 6-2 lists the names of the data shared libraries for Instant Client and Instant
Client Light (English) on different platforms. The table also specifies the size of each
data shared library in parentheses following the library file name.

Table 6-2 Data Shared Library for Instant Client and Instant Client Light
(English)

Platform Instant Client Instant Client Light (English)
Solaris ['ibociei.so (67 MB) l'i bociicus.so (4 MB)

Linux I'i bociei.so (67 MB) l'i bociicus.so (4 MB)
Microsoft Windows oraoci ei 18.dl | (85 MB) oraociicusl8.dll (15 MB)

6.5.2 Globalization Settings

ORACLE

The NLS_LANG setting determines the language, territory, and character set as

| anguage_territory. characterset. InInstant Client Light, | anguage can only be
Armerican, territory can be any that is supported, and char act er set can be any one
of the following:

* Single-byte

— UST7ASCII

— WES8DEC

- WE8MSWIN1252

— WES8ISO8859P1
* Unicode

- UTF8

— AL16UTF16

— AL32UTFS8

Specifying character set or national character set other than those listed as the client
or server character set or setting the language in NLS_LANG on the client will throw one
of the following errors:

« ORA- 12734
« ORA- 12735
« ORA- 12736
* ORA- 12737

6-10

Chapter 6
About Instant Client Light (English)

With Instant Client Light, the error messages obtained are only in English. Therefore, the
valid values for the NLS_LANG setting are of the type:

American_territory. characterset

where, territory can be any valid and supported territory and char act er set can be any one
the previously listed character sets.

Instant Client Light can operate with the OCI environment handles created in the OCI_UTF16
mode.

See Also:

Oracle Database Globalization Support Guide for more information about NLS
settings

6.5.3 Operation

To use the Instant Client Light, an application must set the LD LI BARARY_PATH environment
variable in UNIX systems or the PATH environment variable in Microsoft Windows to a location
containing the client and data shared libraries. OCI applications by default look for the OCI
Data Shared Library, | i boci ei . so in the LD_LI BRARY_PATH environment variable in UNIX
systems or the or aoci ei 18. dl | Data Shared Library in the PATH environment variable in
Microsoft Windows, to determine if the application should use the Instant Client. In case this
library is not found, then OCI tries to load the Instant Client Light Data Shared Library,

I'i bociicus.soin UNIX systems or | i bociicus18. dl | in Microsoft Windows. If this library is
found, then the application uses the Instant Client Light. Otherwise, a non-Instant Client is
used.

6.5.4 Installing Instant Client Light (English)

ORACLE

Instant Client Light can be installed in one of the following ways:

* From OTN
You can download the required file from

https://ww. oracl e. coni t echnet wor k/ dat abase/ dat abase-t echnol ogi es/ i nst ant -
client/overview index. htm

For Instant Client Light, instead of downloading and expanding the Basic package,
download and unzip the Basic Light package. The directory in which the lightweight
libraries are unzipped should be empty before unzipping the files.

e From Client Admin Install

Instead of copying | i boci ei . so or oraoci ei 18. dl | from the ORACLE_HOVH

i nstantclient directory, copy | i bociicus.so ororaociicl8.dll from the ORACLE_HOVE/
instantclient/light directory. That is, the Instant Client directory on the

LD_LI BRARY_PATH environment variable, in UNIX systems, should contain the Instant
Client Light Data Shared Library, | i boci i cus. so, instead of the larger OCI Instant Client
Data Shared Library, | i boci ei . so. In Microsoft Windows, the PATH environment variable
should contain or aoci i cus18. dl | instead of or aoci ei 18.dl | .

* From Oracle Universal Installer

6-11

https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html
https://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

ORACLE

Chapter 6
About Instant Client Light (English)

If the Instant Client option is selected from Oracle Universal Installer, then

|'i boci ei. so (or oraociei 18. dl | on Microsoft Windows) is installed in the base
directory of the installation which is going to be placed on the LD LI BRARY_PATH
environment variable. This is so that Instant Client Light is not enabled by default.
The Instant Client Light Data Shared Library, | i boci i cus. so (or
oraociicusl8.dll on Microsoft Windows), is installed in the | i ght subdirectory of
the base directory. Therefore, to use in the Instant Client Light, the OCI Data
Shared Library, | i boci ei . so (or oraoci ei 18. dl | on Windows) must be deleted or
renamed and the Instant Client Light Data Shared Library must be copied from the
|'i ght subdirectory to the base directory of the installation.

For example, if Oracle Universal Installer has installed the Instant Client in
my_orai c_18 1 directory on the LD LI BRARY_PATH environment variable, then you
must perform the following to use the Instant Client Light:

cd ny_oraic_18 1
rmlibociei.so
mv light/libociicus.so .

" Note:

All the Instant Client files should always be copied or installed in an
empty directory. This is to ensure that no incompatible binaries exist in
the installation.

6-12

Server-Side Internal Driver

This chapter covers the following topics:

* Overview of the Server-Side Internal Driver
e Connecting to the Database

* About Session and Transaction Context

e Testing JDBC on the Server

e Loading an Application into the Server

7.1 Overview of the Server-Side Internal Driver

The server-side internal driver is intrinsically tied to Oracle Database and to the embedded
Java Virtual Machine, also known as Oracle Java Virtual Machine (Oracle JVM). The driver
runs as part of the same process as the Database. It also runs within the default session, the
same session in which the Oracle JVM was started. Each Oracle JVM session has a single
implicit native connection to the Database session in which it exists. This connection is
conceptual and is not a Java object. It is an inherent aspect of the session and cannot be
opened or closed from within the JVM.

The server-side internal driver is optimized to run within the database server and provide
direct access to SQL data and PL/SQL subprograms on the local database. The entire JVM
operates in the same address space as the database and the SQL engine. Access to the
SQL engine is a function call. This enhances the performance of your Java Database
Connectivity (JDBC) applications and is much faster than running a remote Oracle Net call to
access the SQL engine.

The server-side internal driver supports the same features, application programming
interfaces (APIs), and Oracle extensions as the client-side drivers. This makes application
partitioning very straightforward. For example, if you have a Java application that is data-
intensive, then you can easily move it into the database server for better performance,
without having to modify the application-specific calls.

7.2 Connecting to the Database

ORACLE

As described in the preceding section, the server-side internal driver runs within a default
session. Therefore, you are already connected. There are two methods to access the default
connection:

e Use the Oracl eDat aSour ce. get Connect i on method, with any of the following forms as
the URL string:

— jdbc:oracle:kprb
— jdbc:defaul t:connection
— jdbc:oracl e: kprb:

— jdbc:defaul t:connection:

7-1

ORACLE

Chapter 7
Connecting to the Database

* Use the Oracle-specific def aul t Connect i on method of the Oracl eDri ver class.

Using def aul t Connect i on is generally recommended.

" Note:

You are no longer required to register the Or acl eDri ver class for connecting
with the server-side internal driver.

Connecting with the OracleDriver Class defaultConnection Method

The def aul t Connect i on method of the oracl e. j dbc. Oracl eDri ver class is an Oracle
extension and always returns the same connection object. Even if you call this method
multiple times, assigning the resulting connection object to different variable names,
then only a single connection object is reused.

You need not include a connection string in the def aul t Connect i on call. For example:

import java.sql.*;
i mport oracle.jdbc.*;

cl ass JDBCConnection
{

public static Connection connect() throws SQLException

{

Connection conn = null;

try {
/] connect with the server-side internal driver

conn = ora. defaul t Connection();

}

} catch (SQLException e) {...}
return conn;

}
}

Note that there is no conn. cl ose call in the example. When JDBC code is running
inside the target server, the connection is an implicit data channel, not an explicit
connection instance as from a client. It should not be closed.

OracleDriver has a static variable to store a default connection instance. The method
Oracl eDriver. defaul t Connect i on returns this default connection instance if the
connection exists and is not closed. Otherwise, it creates a new, open instance and
stores it in the static variable and returns it to the caller.

Typically, you should use the Oracl eDri ver. def aul t Connect i on method. This method
is faster and uses less resources. Java stored procedures should be carefully written.
For example, to close statements before the end of each call.

Typically, you should not close the default connection instance because it is a single
instance that can be stored in multiple places, and if you close the instance, each
would become unusable. If it is closed, a later call to the

O acl eDri ver. def aul t Connect i on method gets a new, open instance.

7-2

Chapter 7
About Session and Transaction Context

Connecting with the OracleDataSource.getConnection Method

To connect to the internal server connection from code that is running within the target server,
you can use the Oracl eDat aSour ce. get Connect i on method with either of the following URLS:

O acl eDat aSource ods = new Oracl eDat aSour ce();
ods. set URL("j dbc: oracl e: kprb");
Connection conn = ods. get Connection();

or:

Oracl eDat aSour ce ods = new Oracl eDat aSource();
ods. set URL("j dbc: def aul t: connection");
Connection conn = ods. get Connection();

Any user name or password you include in the URL is ignored in connecting to the default
server connection.

The Oracl eDat aSour ce. get Connect i on method returns a new Java Connect i on object every
time you call it. The fact that Or acl eDat aSour ce. get Connect i on returns a new connection
object every time you call it is significant if you are working with object maps or type maps. A
type map is associated with a specific Connect i on object and with any state that is part of the
object. If you want to use multiple type maps as part of your program, then you can call

get Connect i on to create a new Connect i on object for each type map.

¢ Note:

Although the O acl eDat aSour ce. get Connect i on method returns a new object every
time you call it, it does not create a new database connection every time. They all
utilize the same implicit native connection and share the same session state, in
particular, the local transaction.

7.3 About Session and Transaction Context

The server-side driver operates within a default session and default transaction context. The
default session is the session in which the JVM was started. In effect, you are already
connected to the database on the server. This is different from the client-side where there is
no default session. You must explicitly connect to the database.

Auto-commit mode is disabled in the server. You must manage transaction COWM T and
ROLLBACK operations explicitly by using the appropriate methods on the connection object:

conn. comit();

or:

conn. rol | back();

ORACLE a

Chapter 7
Testing JDBC on the Server

< Note:

As a best practice, it is recommended not to commit or rollback a transaction
inside the server.

7.4 Testing JDBC on the Server

Almost any JDBC program that can run on a client can also run on the server. All the
programs in the sanpl es directory can be run on the server, with only minor
modifications. Usually, these modifications concern only the connection statement.

Consider the following code fragment which obtains a connection to a database:

ods. set Ur | (
"jdbc: oracl e: oci : @ DESCRI PTI ON=
(ADDRESS=(PROTOCOL=TCP) (HOST=cl ust er _al i as)
(PORT=5221))
(CONNECT_DATA=(SERVI CE_NAME=or cl)))");
ods. set User ("HR") ;
ods. set Password("hr");
Connection conn = ods. get Connection();

We can modify this code fragment for use in the server-side internal driver. In the
server-side internal driver, no user, password, or database information is necessary.
For the connection statement, you use:

ods. set Ur | (
"jdbc:oracle:kprb: @);
Connection conn = ods. get Connection();

However, the most convenient way to get a connection is to call the
O acl eDri ver. def aul t Connect i on method, as follows:

Connection conn = O acl eDriver. def aul t Connection();

7.5 Loading an Application into the Server

When loading an application into the server, you can load . ¢l ass files that you have
already compiled on the client or you can load . j ava source files and have them
automatically compiled on the server.

7.5.1 Using the Loadjava Utility

You can use the | oadj ava utility to load your files. You can either specify source file
names on the command line or put the files into a Java Archive (JAR) file and specify
the JAR file name on the command line.

The | oadj ava script, which runs the actual utility, is in the bi n directory in your Oracle
home. This directory should already be in your path once Oracle has been installed.

ORACLE 7-4

ORACLE

Chapter 7
Loading an Application into the Server

< Note:

The | oadj ava utility supports compressed files.

Loading Class Files into the Server

Consider a case where you have the following three class files in your application:
Fool. cl ass, Foo2. cl ass, and Foo3. cl ass. Each class is written into its own class schema
object in the server.

You can load the class files using the default JDBC Oracle Call Interface (OCI) driver in the
following ways:

* Specifying the individual class file names, as follows:

| oadj ava -user HR Fool.class Foo2.class Foo3.class
Password: password

» Specifying the class file names using a wildcard, as follows:

| oadj ava -user HR Foo*.cl ass
Password: password

* Specifying a JAR file that contains the class files, as follows:

| oadj ava -user HR Foo.jar
Password: password

You can load the files using the JDBC Thin driver, as follows:

| oadj ava -thin -user HR@ ocal host:5221: orcl Foo.jar
Password: password

Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), JDK 6, and JDK 7 are
supported. However, only one of the JVMs will be active at a given time.

Ensure that your classes are not compiled using a newer version of JDK than the
active runtime version on the server.

Loading Source Files into the Server

If you enable the | oadj ava -resol ve option when loading a . j ava source file, then the
server-side compiler will compile your application as it is loaded, resulting in both a source
schema object for the original source code and one or more class schema objects for the
compiled output.

If you do not specify - r esol ve, then the source is loaded into a source schema object without
any compilation. In this case, however, the source is implicitly compiled the first time an
attempt is made to use a class defined in the source.

For example, run | oadj ava as follows to load and compile Foo. j ava, using the default JDBC
OCI driver:

7-5

Chapter 7
Loading an Application into the Server

| oadj ava -user HR -resol ve Foo.java
Password: password

Or, use the following command to load using the JDBC Thin driver:

| oadj ava -thin -user HR@ocal host:5221:orcl -resolve Foo.java
Password: password

Either of these will result in appropriate class schema objects being created in addition
to the source schema object.

" Note:

Oracle generally recommends compiling source on the client, whenever
possible, and loading the . cl ass files instead of the source files into the
server.

¢ See Also:

Oracle Database Java Developer's Guide

7.5.2 Using the JVM Command Line

You can also use the JVM command-line option to load your files. The command-line
interface to Oracle JVM is analogous to using the JDK or JRE shell commands. You
can:

» Use the standard - cl asspat h syntax to indicate where to find the classes to load
* Set the system properties by using the standard - D syntax

The interface is a PL/SQL function that takes a string (VARCHAR2) argument, parses it
as a command-line input and if it is properly formed, runs the indicated Java method in
Oracle JVM. To do this, PL/SQL package DBM5_JAVA provides the following functions:

° runjava
You can use the runj ava function in the following way:
FUNCTI ON runj ava(cndl i ne VARCHAR2) RETURN VARCHARZ;
e runjava_in_current_session
You can use the runj ava_i n_current _sessi on function in the following way:

FUNCTI ON runj ava_i n_current_session(cndl i ne VARCHAR2) RETURN VARCHARZ;

ORACLE 7-6

ORACLE

Chapter 7
Loading an Application into the Server

¢ Note:

Starting with Oracle Database 11g Release 1, there is a just-in-time (JIT) compiler
for Oracle JVM environment. A JIT compiler for Oracle JVM enables much faster
execution because the JIT compiler uses advanced techniques as compared to the
old Native compiler and compiles dynamically generated code. Unlike the old Native
compiler, the JIT compiler does not require a C compiler. It is enabled without the
support of any plug-ins.

7-7

Connection and Security

This part consists of chapters that discuss the use of data sources and URLS to connect to
the database. It also includes chapters that discuss the security features supported by the
Oracle Java Database Connectivity (JDBC) Oracle Call Interface (OCI) and Thin drivers,
Secure Sockets Layer (SSL) support in JDBC Thin driver, and middle-tier authentication
through proxy connections.

Part Ill contains the following chapters:

e Data Sources and URLs
« JDBC Client-Side Security Features

* Proxy Authentication

ORACLE

Data Sources and URLS

This chapter discusses connecting applications to databases using Java Database
Connectivity (JDBC) data sources, as well as the URLs that describe databases. This chapter
contains the following sections:

e About Data Sources

e Database URLs and Database Specifiers

8.1 About Data Sources

Data sources are standard, general-use objects for specifying databases or other resources
to use. The JDBC 2.0 extension application programming interface (API) introduced the
concept of data sources. For convenience and portability, data sources can be bound to Java
Naming and Directory Interface (JNDI) entities, so that you can access databases by logical
names.

The data source facility provides a complete replacement for the previous JDBC
Dri ver Manager facility. You can use both facilities in the same application, but it is
recommended that you transition your application to data sources.

This section covers the following topics:

e Overview of Oracle Data Source Support for JINDI

* Features and Properties of Data Sources

» Creating a Data Source Instance and Connecting

» Creating a Data Source Instance_ Registering with JNDI_ and Connecting
* Supported Connection Properties

* About Using Roles for SYS Login

» Configuring Database Remote Login

* Using Bequeath Connection and SYS Logon

» Setting Properties for Oracle Performance Extensions

* Support for Network Data Compression

8.1.1 Overview of Oracle Data Source Support for JNDI

ORACLE

The JNDI standard provides a way for applications to find and access remote services and
resources. These services can be any enterprise services. However, for a JDBC application,
these services would include database connections and services.

JNDI enables an application to use logical names in accessing these services, removing
vendor-specific syntax from application code. JNDI has the functionality to associate a logical
name with a particular source for a desired service.

8-1

Chapter 8
About Data Sources

All Oracle JDBC data sources are JNDI-referenceable. The developer is not required
to use this functionality, but accessing databases through JNDI logical names makes
the code more portable.

Note:

Using JNDI functionality requires the j ndi . j ar file to be in the CLASSPATH
environment variable. This file is included with the Java products on the
installation CD. You must add it to the CLASSPATH environment variable
separately.

8.1.2 Features and Properties of Data Sources

ORACLE

By using the data source functionality with JNDI, you do not need to register the
vendor-specific JDBC driver class hame and you can use logical names for URLs and
other properties. This ensures that the code for opening database connections is
portable to other environments.

The DataSource Interface and Oracle Implementation

A JDBC data source is an instance of a class that implements the standard
j avax. sql . Dat aSour ce interface:

public interface DataSource

{
Connection get Connection() throws SQ.Exception;
Connection getConnection(String username, String password)
t hrows SQLExcepti on;
}

Oracle implements this interface with the Or acl eDat aSour ce class in the
oracl e.jdbc. pool package. The overloaded get Connect i on method returns a
connection to the database.

To use other values, you can set properties using appropriate setter methods. For
alternative user names and passwords, you can also use the get Connect i on method
that takes these parameters as input. This would take priority over the property
settings.

Note:

The Or acl eDat aSour ce class and all subclasses implement the
java.io. Serializabl e andjavax. nam ng. Ref er enceabl e interfaces.

Properties of DataSource

The Or acl eDat aSour ce class, as with any class that implements the Dat aSour ce
interface, provides a set of properties that can be used to specify a database to
connect to. These properties follow the JavaBeans design pattern.

8-2

ORACLE

Chapter 8
About Data Sources

The following tables list the Or acl eDat aSour ce standard properties and Oracle extensions
respectively.

Note:

Oracle does not implement the standard r ol eNane property.

Table 8-1 Standard Data Source Properties
]

Name Type Description
dat abaseNane String Name of the particular database on the server.
dat aSour ceNane String Name of the underlying data source class. For connection

pooling, this is an underlying pooled connection data source
class. For distributed transactions, this is an underlying XA
data source class.

description String Description of the data source.

net wor kPr ot ocol String Network protocol for communicating with the server. For
Oracle, this applies only to the JDBC Oracle Call Interface
(OCI) drivers and defaults to t cp.

password String Password for the connecting user.
por t Nurber i nt Number of the port where the server listens for requests
server Nane String Name of the database server
user String Name for the login
Note:

For security reasons, there is no get Passwor d() method.

Table 8-2 Oracle Extended Data Source Properties
]

Name Type Description
connect i onCacheName String Specifies the name of the cache. This cannot be
changed after the cache has been created.
connect i onCacheProperties java. util.P Specifies properties for implicit connection
roperties cache.
connect i onCachi ngEnabl ed Bool ean Specifies whether implicit connection cache is in
use.
connectionProperties java. util.P Specifies the connection properties.
roperties
driverType String Specifies Oracle JDBC driver type. It can be one
of oci, thin, orkprb.
fast Connecti onFai | over Enabl e Bool ean Specifies whether Fast Connection Failover is in
d use.

8-3

ORACLE

Chapter 8
About Data Sources

Table 8-2 (Cont.) Oracle Extended Data Source Properties

- ___|
Name Type Description

i nplicitCachi ngEnabl ed Bool ean Specifies whether the implicit statement
connection cache is enabled.

[ogi nTi neout i nt Specifies the maximum time in seconds that this
data source will wait while attempting to connect
to a database.

logWiter java.io.Pri Specifies the log writer for this data source.
ntWiter
maxSt at ement s i nt Specifies the maximum number of statements in

the application cache.

servi ceNane String Specifies the database service name for this
data source.

tnsEntry String Specifies the TNS entry name. The TNS entry
name corresponds to the TNS entry specified in
the t nsnanes. or a configuration file.

Enable this Or acl eXADat aSour ce property
when using the Native XA feature with the OCI
driver, to access Oracle pre-8.1.6 databases and
later. If the t nSEnt ry property is not set when
using the Native XA feature, then a

SQLExcept i on with error code ORA-17207 is
thrown

url String Specifies the URL of the database connection
string. Provided as a convenience, it can help
you migrate from an older Oracle Database. You
can use this property in place of the Oracle
tnsEntry and dri ver Type properties and the
standard por t Nunber , net wor kPr ot ocol ,
server Nane, and dat abaseNane properties.

nati vexA Bool ean Allows an Or acl eXADat aSour ce using the
Native XA feature with the OCI driver, to access
Oracle pre-8.1.6 databases and later. If the
nat i veXA property is enabled, be sure to set
the t nSEnt ry property as well. This property is
only for Or acl eXADat asour ce.

This Dat aSour ce property defaults to f al se.

ONSConfi guration String Specifies the ONS configuration string that is
used to remotely subscribe to FAN/ONS events.

Note:
e This table omits properties that supported the deprecated connection
cache based on Or acl eConnect i onCache.

e Because Native XA performs better than Java XA, use Native XA
whenever possible.

8-4

Chapter 8
About Data Sources

Use the set Connect i onProperti es method to set the properties of the connection and the
set Connect i onCachePr operti es method to set the properties of the connection cache.

If you are using the server-side internal driver, that is, the dri ver Type property is set to kpr b,
then any other property settings are ignored.

If you are using the JDBC Thin or OCI driver, then note the following:

e A URL setting can include settings for user and passwor d, as in the following example, in
which case this takes precedence over individual user and passwor d property settings:

j dbc: oracl e: t hin: HR hr @ ocal host : 5221: or cl

e Settings for user and passwor d are required, either directly through the URL setting or
through the get Connecti on call. The user and passwor d settings in a get Connecti on call
take precedence over any property settings.

e Ifthe url property is set, then any t nsEntry, dri ver Type, port Nunber, net wor kPr ot ocol ,
server Nane, and dat abaseNane property settings are ignored.

e Ifthe t nsEntry property is set, which presumes the ur| property is not set, then any
dat abaseNane, server Name, port Nunber, and net wor kPr ot ocol settings are ignored.

« If you are using an OCI driver, which presumes the dri ver Type property is set to oci ,
and the net wor kPr ot ocol is set toi pc, then any other property settings are ignored.

Also, note that get Connect i onCacheNang() will return the name of the cache only if the
Connect i onCacheNane property of the data source is set after caching is enabled on the data
source.

8.1.3 Creating a Data Source Instance and Connecting

This section shows an example of the most basic use of a data source to connect to a
database, without using JNDI functionality. Note that this requires vendor-specific, hard-
coded property settings.

Create an Or acl eDat aSour ce instance, initialize its connection properties as appropriate, and
get a connection instance, as in the following example:

O acl eDat aSource ods = new Oracl eDat aSour ce();
ods. setDriver Type("oci");

ods. set Server Name("| ocal host");

ods. set Net wor kProt ocol ("tcp");

ods. set Dat abaseName(<dat abase_nane>) ;

ods. set Port Nurmber (5221) ;

ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

Or, optionally, override the user name and password, as follows:

Connection conn = ods. get Connection("CE", "oe");

8.1.4 Creating a Data Source Instance, Registering with JNDI, and
Connecting

This section exhibits JNDI functionality in using data sources to connect to a database.
Vendor-specific, hard-coded property settings are required only in the portion of code that
binds a data source instance to a JNDI logical name. From that point onward, you can create

ORACLE 8-5

ORACLE

Chapter 8
About Data Sources

portable code by using the logical name in creating data sources from which you will
get your connection instances.

Note:

Creating and registering data sources is typically handled by a JNDI
administrator, not in a JDBC application.

Initialize Data Source Properties

Create an Or acl eDat aSour ce instance, and then initialize its properties as appropriate,
as in the following example:

O acl eDat aSource ods = new Oracl eDat aSour ce();
ods. setDriver Type("oci");

ods. set Server Name("| ocal host ") ;

ods. set Net wor kProt ocol ("tcp");

ods. set Dat abaseName("816") ;

ods. set Por t Nurber (5221) ;

ods. set User ("HR") ;

ods. set Password("hr");

Register the Data Source

Once you have initialized the connection properties of the Or acl eDat aSour ce instance
ods, as shown in the preceding example, you can register this data source instance
with JNDI, as in the following example:

Context ctx = new Initial Context();
ct x. bi nd("j dbc/ sanpl edb", ods);

Calling the JNDI I ni ti al Cont ext () constructor creates a Java object that references
the initial INDI naming context. System properties, which are not shown, instruct JNDI
which service provider to use.

The ct x. bi nd call binds the Oracl eDat aSour ce instance to a logical INDI name. This
means that anytime after the ct x. bi nd call, you can use the logical name j dbc/

sanpl edb in opening a connection to the database described by the properties of the
O acl eDat aSour ce instance ods. The logical name j dbc/ sanpl edb is logically bound to
this database.

The JNDI namespace has a hierarchy similar to that of a file system. In this example,
the JNDI name specifies the subcontext j dbc under the root naming context and
specifies the logical name sanpl edb within the j dbc subcontext.

The Cont ext interface and | ni ti al Cont ext class are in the standard j avax. nani ng
package.

" Note:

The JDBC 2.0 Specification requires that all JDBC data sources be
registered in the j dbc naming subcontext of a INDI namespace or in a child
subcontext of the j dbc subcontext.

8-6

Chapter 8
About Data Sources

Open a Connection

To perform a lookup and open a connection to the database logically bound to the JNDI
name, use the logical JNDI name. Doing this requires casting the lookup result, which is
otherwise a Java bj ect , to Or acl eDat aSour ce and then using its get Connect i on method to
open the connection.

Here is an example:

Oracl eDat aSour ce odsconn = (Oracl eDat aSour ce) ct x. | ookup("j dbc/ sanmpl edb");
Connection conn = odsconn. get Connection();

8.1.5 Supported Connection Properties

For a detailed list of connection properties that Oracle JDBC drivers support, see the Oracle
Database JDBC Java API Reference.

8.1.6 About Using Roles for SYS Login

To specify the role for the SYS login, use the i nt er nal _| ogon connection property. To log on
as SYS, set the i nt er nal _| ogon connection property to SYSDBA or SYSOPER.

Note:

The ability to specify a role is supported only for the sys user name.

For a bequeath connection, we can get a connection as SYS by setting the i nt er nal _I ogon
property. For a remote connection, we need additional password file setting procedures.

8.1.7 Configuring Database Remote Login

ORACLE

Before the JDBC Thin driver can connect to the database as SYSDBA, you must configure the
user, because Oracle Database security system requires a password file for remote
connections as an administrator. Perform the following:

1. Set a password file on the server-side or on the remote database, using the or apwd
password utility. You can add a password file for user SYS as follows:

* InUNIX

orapwd file=$ORACLE_HOVE/ dbs/ or apwORACLE_SI D ent ri es=200
Enter password: password

¢ In Microsoft Windows

orapwd file=%0RACLE_HOVE% dat abase\ PADORACLE_SI D. ora entri es=200
Enter password: password

In this case, fi | e is the name of the password file, passwor d is the password for user
SYS. It can be altered using the ALTER USER statement in SQL Plus. You should set
entries to a value higher than the number of entries you expect.

The syntax for the password file name is different on Microsoft Windows and UNIX.

8-7

Chapter 8
About Data Sources

¢ See Also:

Oracle Database Administrator’s Guide

2. Enable remote login as SYSDBA. This step grants SYSDBA and SYSOPER system
privileges to individual users and lets them connect as themselves.

Stop the database, and add the following line to i ni t servi ce_nane. or a, in UNIX,
orinit.ora, in Microsoft Windows:

renot e_| ogi n_passwor df i | e=excl usi ve

The initservice_nane. ora file is located at ORACLE_HOVE/ dbs/ and also at
ORACLE_HOWE/ admi n/ db_nane/ pfil e/ . Ensure that you keep the two files
synchronized.

Theinit.orafile is located at “ORACLE_BASE% ADM N\ db_name\ pfil e\.
3. Change the password for the SYS user. This is an optional step.

PASSWORD sys

Changi ng password for sys
New password: password
Retype new password: password

4. Verify whether SYS has the SYSDBA privilege.

SQL> select * fromv$pwlile_users;
USERNANME SYSDB SYSoP

5. Restart the remote database.
Example 8-1 Using SYS Login To Make a Remote Connection

/1 This exanpl e works regardl ess of |anguage settings of the database.
[** case of renpbte connection using sys **/

import java.sql.*;

i mport oracle.jdbc.*;

i mport oracle.jdbc. pool . *;

Il create an Oracl eDat aSource

O acl eDat aSource ods = new Oracl eDat aSour ce();

/1 set connection properties

java.util.Properties prop = new java.util.Properties();

prop. put ("user", "sys");

prop. put ("password", "sys");

prop. put ("internal _| ogon", "sysoper");

ods. set Connecti onProperties(prop);

Il set the url

[l the url can use oci driver as well as:

/1 url = "jdbc:oracle:oci 8 @enmntehost”; the remotehost is a renote database
String url = "jdbc:oracle:thin: @/ ocal host:5221/orcl";

ods. set URL(url);

/1 get the connection

Connection conn = ods. get Connection();

ORACLE 8-8

Chapter 8
About Data Sources

8.1.8 Using Bequeath Connection and SYS Logon

The following example illustrates how to use the i nt er nal _| ogon and SYSDBA arguments to
specify the SYS login. This example works regardless of the database's national-language
settings of the database.

/** Exanpl e of bequeath connection **/
i mport java.sql.*;

i mport oracle.jdbc.*;

i mport oracle.jdbc. pool . *;

/] create an Oracl eDat aSource instance
Oracl eDat aSource ods = new Oracl eDat aSour ce();

/] set neccessary properties

java.util.Properties prop = new java.util.Properties();
prop. put ("user", "sys");

prop. put ("password”, "sys");

prop. put ("internal _l ogon", "sysdba");

ods. set Connect i onProperties(prop);

/1 the url for bequeath connection
String url = "jdbc:oracle:oci8 @;
ods. set URL(url);

/'l retrieve the connection
Connection conn = ods. get Connection();

8.1.9 Setting Properties for Oracle Performance Extensions

ORACLE

Some of the connection properties are for use with Oracle performance extensions. Setting
these properties is equivalent to using corresponding methods on the Or acl eConnecti on
object, as follows:

e Setting the def aul t RowPr ef et ch property is equivalent to calling
set Def aul t RowPr ef et ch.

e Setting the r emar ksReporti ng property is equivalent to calling set Renar ksRepor ti ng.

¢ See Also:
"About Reporting DatabaseMetaData TABLE_ REMARKS"

Example

The following example shows how to use the put method of the j ava. util.Properties
class, in this case, to set Oracle performance extension parameters.

/linport packages and register the driver
i mport java.sql.*;

i nport java.math. *;

i mport oracle.jdbc.*;

i mport oracl e.jdbc. pool . O acl eDat aSour ce;

8-9

Chapter 8
Database URLs and Database Specifiers

/I'specify the properties object

java.util.Properties info = new java.util.Properties();
info.put ("user", "HR');

info.put ("password", "hr");

info.put ("defaultRowPrefetch","20");

info.put ("defaultBatchvalue", "5");

/Ispecify the datasource object

O acl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set URL("j dbc: oracle:thin: @/ ocal host:5221/orcl");
ods. set User ("HR") ;

ods. set Password("hr");

ods. set Connect i onProperties(info);

8.1.10 Support for Network Data Compression

Starting from Oracle Database 12¢ Release 2 (12.2.0.1), the JIDBC Thin driver
supports network data compression. Network data compression reduces the size of
the session data unit (SDU) transmitted over a data connection and reduces the time
required to transmit a SQL query and the result across the network. The benefits are
more significant in case of Wireless Area Network (WAN). For enabling network data
compression, you must set the connection properties in the following way:

" Note:

Network compression does not work for streamed data.

Oracl eDat aSource ds = new Oracl eDat aSource() ;
Properties prop = new Properties();

prop. set Property("user", "userl");

prop. set Property("password", <passwor d>);

/1 Enabling Network Conpression
prop. set Property("oracle. net. networkConpression","on");

/1 Optional configuration for setting the client conpression threshold.
prop. set Property("oracle. net.networkConpressi onThreshol d", "1024");

ds. set Connecti onProperties(prop);

ds.set URL(url);
Connection conn = ds. get Connection();

8.2 Database URLs and Database Specifiers

Database URLs are strings. The complete URL syntax is:

jdbc:oracl e:driver_type:[usernane/ passwor d] @at abase_speci fier

ORACLE 8-10

Chapter 8
Database URLs and Database Specifiers

< Note:

e The brackets indicate that the user name/ passwor d pair is optional.

e kprhb, the internal server-side driver, uses an implicit connection. Database
URLs for the server-side driver end after the dri ver _t ype.

The first part of the URL specifies which JDBC driver is to be used. The supported
driver_type values are thin, oci, and kprb.

The remainder of the URL contains an optional user name and password separated by a
slash, an @, and the database specifier, which uniquely identifies the database to which the
application is connected. Some database specifiers are valid only for the JDBC Thin driver,
some only for the JDBC OCI driver, and some for both.

8.2.1 Support for Internet Protocol Version 6

This release of Oracle JDBC drivers supports Internet Protocol Version 6 (IPv6) addresses in
the JDBC URL and machine names that resolve to IPv6 addresses. IPv6 is a new Network
layer protocol designed by the Internet Engineering Task Force (IETF) to replace the current
version of Internet Protocol, Internet Protocol Version 4 (IPv4). The primary benefit of IPv6 is
a large address space, derived from the use of 128-bit addresses. IPv6 also improves upon
IPv4 in areas such as routing, network auto configuration, security, quality of service, and so
on.

" Note:

e An IPv6 Client can support only IPv6 Servers or servers with dual protocol
support, that is, support for both IPv6 and IPv4 protocols. Conversely, an IPv6
Server can support only IPv6 clients or dual protocol clients.

e |Pv6 is supported only with single instance Database servers and not with
Oracle RAC.

If you want to use a literal IPv6 address in a URL, then you should enclose the literal address
enclosed in a left bracket ([) and a right bracket (]). For example:

[2001: 0db8: 7654: 3210: FEDC: BA98: 7654: 3210] . So, a JDBC URL, using an IPv6 address will
look like the following:

jdbc: oracl e: thin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp)
(HOST=[2001: 0db8: 7654: 3210: FEDC: BA98: 7654: 3210]) (PORT=5521))
(CONNECT_DATA=(SERVI CE_NAME=sal es. exanpl e. con))

ORACLE 8-11

Chapter 8
Database URLs and Database Specifiers

< Note:

All the new System classes that are required for IPv6 support are loaded
when Java is enabled during database initialization. So, if your application
does not have any IPv6 addressing, then you do not need to change your
code to use IPv6 functionality. However, if your application has either IPv6
only or both IPv6 and IPv4 addressing, then you should set the

j ava. net . preferl Pv6Addr esses system property in the command line. This
enables the Oracle JVM to load appropriate libraries. These libraries are
loaded once and cannot be reloaded without restarting the Java process.

8.2.2 Support for HTTPS Proxy Configuration

Oracle Database Release 18c JDBC drivers support HTTPS Proxy Configuration.
HTTPS Proxy enables tunnelling secure connections over forward HTTP proxy using
the HTTP CONNECT method. This helps in accessing the public cloud database service
as it eliminates the requirement to open an outbound port on a client side firewall. This
parameter is applicable only to the connect descriptors where PROTOCOL=TCPS. This is
similar to the web browser setting for intranet users who want to connect to internet
hosts.

For configuring HTTPS Proxy, add details to the ADDRESS part of the Connection String
as shown in the following code snippet:

(DESCR! PTI ON=

(ADDRESS=(HTTPS_PROXY=sal es- pr oxy) (HTTPS_PROXY_PORT=8080)
(PROTOCOL=TCPS) (HOST=sal es2- svr) (PORT=443))

(CONNECT_DATA=(SERVI CE_NAME=sal es. us. exanpl e. conj))

8.2.3 Database Specifiers

Table 8-3, shows the possible database specifiers, listing which JDBC drivers support
each specifier.

Note:

e Starting Oracle Database 10g, Oracle Service IDs are not supported.

e Starting Oracle Database 10g, Oracle no longer supports Oracle Names
as a naming method.

ORACLE 8-12

Chapter 8
Database URLs and Database Specifiers

Table 8-3 Supported Database Specifiers

Specifier Supported Example
Drivers
Oracle Net Thin, OCI Thin, using an address list:
connection))
descriptor url ="j dbc: oracl e: t hi n: @DESCRI PTI ON=
(LOAD_BALANCE=0n)
(ADDRESS_LI ST=
(ADDRESS=(PROTOCOL=TCP) (HOST=host 1) (PORT=5221))
(ADDRESS=(PROTOCOL=TCP) (HOST=host 2) (PORT=5221)))
(CONNECT_DATA=(SERVI CE_NAME=0rcl)))"
OCl, using a cluster:
"jdbc: oracl e: oci : @DESCRI PTI ON=
(ADDRESS=(PROTOCOL=TCP) (HOST=cl ust er _al i as)
(PORT=5221))
(CONNECT_DATA=(SERVI CE_NAME=0rcl)))"
Thin-style service Thin Refer to "Thin-style Service Name Syntax" for details.
name
"jdbc:oracle:thin: HR hr@/1 ocal host: 5221/ orcl "
LDAP syntax Thin Refer to LDAP Syntax for details.
"jdbc:oracle:thin: @dap://1dap. exanpl e. com 7777/
sal es, cn=0r acl eCont ext , dc=conf
Bequeath OcClI Empty. That is, nothing after @
connection))
"jdbc:oracle:oci:HR hr/ @
TNSNames alias Thin, OCI Refer to "TNSNames Alias Syntax" for details.

Oracl ebDat aSour ce ods = new Oracl eDat aSour ce() ;
ods. set TNSEnt r yName(" MyTNSAl i as") ;

8.2.4 Thin-style Service Name Syntax

Thin-style service names are supported only by the JDBC Thin driver. The syntax is:

ORACLE

@/ host _name: port _nunber/ servi ce_nane

For example:

jdbc:oracle:thin: HR hr@/1 ocal host: 5221/ or cl

Note:

The JDBC Thin driver supports only the TCP/IP protocol.

8-13

Chapter 8
Database URLs and Database Specifiers

8.2.5 Support for Delay in Connection Retries

Starting from Oracle Database 12¢ Release 1 (12.1.0.2), there is a new connection
attribute RETRY_DELAY, which specifies the delay between connection retries in
seconds. The following code snippet shows how to use this attribute:

(DESCRI PTI ON_LI ST=
(DESCRI PTI ON=
(CONNECT_TI MEQUT=10) (RETRY_COUNT=3) (RETRY_DELAY=3)
(ADDRESS_LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=nyhost 1) (PORT=1521))
(ADDRESS=(PROTOCOL=t cp) (HOST=nyhost 2) (PORT=1521)))
(CONNECT_DATA=(SERVI CE_NAME=exanpl el. com)))
(DESCRI PTI ON=
(CONNECT_TI MEOUT=60) (RETRY_COUNT=1) (RETRY_DELAY=5)
(ADDRESS LI ST=
(ADDRESS=(PROTOCOL=t cp) (HOST=nyhost 3) (PORT=1521))
(ADDRESS=(PROTOCOL=t cp) (HOST=nyhost 4) (PORT=1521)))
(CONNECT_DATA=(SERVI CE_NAME=exanpl e2. conm))))

8.2.6 TNSNames Alias Syntax

ORACLE

You can find the available TNSNAMES entries listed in the t nsnanes. or a file on the client
computer from which you are connecting. On Windows, this file is located in the
ORACLE_HOVE\ NETWORK\ ADM N directory. On UNIX systems, you can find it in the
ORACLE_HOME directory or the directory indicated in your TNS_ADM N environment
variable.

For example, if you want to connect to the database on host myhost as user HR with
password hr that has a TNSNAMES entry of MyHost St ri ng, then write the following:

Oracl eDat aSource ods = new Oracl eDat aSour ce();
ods. set TNSEnt r yName(" MyTNSAl i as") ;

ods. set User ("HR") ;

ods. set Password("hr");

ods. set Driver Type("oci");

Connection conn = ods. get Connection();

The oracl e. net.tns_adm n system property must be set to the location of the
t nsnames. or a file so that the JDBC Thin driver can locate the t nsnanes. or a file. For
example:

System set Property("oracle.net.tns_adnmin", "c:\\Temp");
String url = "jdbc:oracle:thin:@ns_entry";

Note:

When using TNSNanes with the JDBC Thin driver, you must set the
oracl e.net.tns_adm n property to the directory that contains your
t nsnanes. or a file.

java -Doracl e.net.tns_adm n=$ORACLE_HOVE/ net wor k/ admi n

8-14

Chapter 8
Database URLs and Database Specifiers

8.2.7 LDAP Syntax

ORACLE

An example of database specifier using the Lightweight Directory Access Protocol (LDAP)
syntax is as follows:

"jdbc:oracle:thin: @dap://| dap. exanpl e. com 7777/ sal es, cn=0r acl eCont ext , dc=conf

When using SSL, change this to:

"jdbc:oracle:thin: @daps://|dap. exanpl e. com 7777/ sal es, cn=0r acl eCont ext , dc=conf

Note:

The JDBC Thin driver can use LDAP over SSL to communicate with Oracle Internet
Directory if you substitute | daps: for | dap: in the database specifier. The LDAP
server must be configured to use SSL. If it is not, then the connection attempt will
hang.

The JDBC Thin driver supports failover of a list of LDAP servers during the service name
resolution process, without the need for a hardware load balancer. Also, client-side load
balancing is supported for connecting to LDAP servers. A list of space separated LDAP URLs
syntax is used to support failover and load balancing.

When a list of LDAP URLs is specified, both failover and load balancing are enabled by
default. The oracl e. net. | dap_I| oadbal ance connection property can be used to disable load
balancing, and the oracl e. net. | dap_f ai | over connection property can be used to disable
failover.

An example, which uses failover, but with client-side load balancing disabled, is as follows:

Properties prop = new Properties();

String url = "jdbc:oracle:thin: @dap://|dapl. exanpl e. com 3500/

cn=sal esdept, cn=Cr acl eCont ext , dc=com sal esdb " +

"I dap:/ /1 dap2. exanpl e. com 3500/ cn=sal esdept, cn=0r acl eCont ext , dc=coni sal esdb " +
"I dap: //1 dap3. exanpl e. com 3500/ cn=sal esdept, cn=0r acl eCont ext , dc=conl sal esdb";

prop. put ("oracl e. net. | dap_| oadbal ance", "OFF");
Oracl eDat aSource ods = new Oracl eDat aSour ce();
ods. set URL(url);

ods. set Connect i onProperties(prop);

The JDBC Thin driver supports LDAP nonanonymous bind. A set of INDI environment
properties, which contains authentication information, can be specified for a data source. If an
LDAP server is configured as not to allow anonymous bind, then authentication information
must be provided to connect to the LDAP server. The following example shows a simple
clear-text password authentication:

String url = "jdbc:oracle:thin: @dap://1dap. exanpl e.com 7777/
sal es, cn=sal esdept, cn=Cr acl eCont ext , dc=cont';

Properties prop = new Properties();

prop. put ("java. nam ng. security. authentication", "sinple");

prop. put ("java. nam ng. security. principal","cn=sal esdept, cn=Cr acl eCont ext, dc=cont') ;
prop. put ("java. nam ng. security. credential s", "mysecret");

8-15

Chapter 8
Database URLs and Database Specifiers

O acl eDat aSource ods = new Oracl eDat aSour ce();
ods. set URL(url);
ods. set Connect i onProperties(prop);

Since JDBC passes down the three properties to JNDI, the authentication mechanism
chosen by client is consistent with how these properties are interpreted by JNDI. For
example, if the client specifies authentication information without explicitly specifying
the j ava. nam ng. security. aut henti cati on property, then the default authentication
mechanism is "simple".

ORACLE 8-16

JDBC Client-Side Security Features

This chapter discusses support for login authentication, network encryption and integrity with
respect to features of the Oracle Advanced Security options in the JDBC OCI and the JDBC
Thin drivers.

" Note:

This discussion is not relevant to the server-side internal driver because all
communication through server-side internal driver is completely internal to the
server.

Oracle Advanced Security, previously known as the Advanced Networking Option (ANO) or
Advanced Security Option (ASO), provides industry standards-based network encryption,
network integrity, third-party authentication, single sign-on, and access authorization. Starting
from Oracle Database 11g Release 1, both the JDBC OCI and JDBC Thin drivers support all
the Oracle Advanced Security features.

¢ Note:

If you want to use the security policy file for JDBC oj dbc. pol i cy, then you can
download the file from the following link:

http://www.oracle.com/technetwork/index.html

The oj dbc. pol i cy file contains the granted permissions that you need to run your
application in control environment of the Java Security Manager. You can either use
this file itself as your Java policy file, or get contents from this file and add the
content in your Java policy file. This file contains permissions like:

- A few mandatory permissions that are always required, for example, permission
java.util.PropertyPerm ssion "user.name", "read";

e A few driver-specific permissions, for example, JDBC OCI driver needs
permission j ava. | ang. Runt i mePer nmi ssi on "l oadLi brary. oci j dbc12";

e A few feature-based permissions, for example, permissions related to XA, XDB,
FCF and so on

You can set the system properties mentioned in the file or direct values for
permissions as per your requirement.

This chapter contains the following sections:

e Support for Oracle Advanced Security
e Support for Login Authentication

e Support for Strong Authentication

ORACLE 9-1

http://www.oracle.com/technetwork/index.html

Chapter 9
Support for Oracle Advanced Security

Support for Network Encryption and Integrity
Support for SSL

Support for Kerberos

Support for RADIUS

About Secure External Password Store

9.1 Support for Oracle Advanced Security

This section describes the following concepts:

Overview of Oracle Advanced Security
JDBC OCI Driver Support for Oracle Advanced Security
JDBC Thin Driver Support for Oracle Advanced Security

9.1.1 Overview of Oracle Advanced Security

Oracle Advanced Security provides the following security features:

ORACLE

Network Encryption

Sensitive information communicated over enterprise networks and the Internet can
be protected by using encryption algorithms, which transform information into a
form that can be deciphered only with a decryption key. For example, AES.

To ensure network integrity during transmission, Oracle Advanced Security
generates a cryptographically secure message digest. Starting from Oracle
Database 12c¢ Release 1 (12.1), the SHA-2 list of hashing algorithms are also
supported and Oracle Advanced Security uses the following hashing algorithms to
generate the secure message digest and includes it with each message sent
across a network.

This protects the communicated data from attacks, such as data modification,
deleted packets, and replay attacks.

The following code snippet shows how to calculate the checksum using any of the
algorithms mentioned previously:

prop. set Property(Oracl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_CHECKSUM TYPES
L "(SHAL)")

prop. set Property(Oracl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_CHECKSUM LEVEL
, "REQUI RED");

Strong Authentication

To ensure network security in distributed environments, it is necessary to
authenticate the user and check his credentials. Password authentication is the
most common means of authentication. Oracle Database enables strong
authentication with Oracle authentication adapters, which support various third-
party authentication services, including SSL with digital certificates. Oracle
Database supports the following industry-standard authentication methods:

— Kerberos
— Remote Authentication Dial-In User Service (RADIUS)
— Secure Sockets Layer (SSL)

9-2

Chapter 9
Support for Oracle Advanced Security

¢ See Also:

Oracle Database Security Guide

9.1.2 JDBC OCI Driver Support for Oracle Advanced Security

If you are using the JDBC OCI driver, which presumes that you are running from a computer
with an Oracle client installation, then support for Oracle Advanced Security and incorporated
third-party features is fairly similar to the support provided by in any Oracle client situation.
Your use of Advanced Security features is determined by related settings in the sql net. ora
file on the client computer.

" Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), Oracle recommends you to
use the configuration parameters present in the new XML configuration file
oraaccess. xn instead of the OCI-specific configuration parameters present in the
sqgl net. or a file. However, the configuration parameters present in the sql net . ora
file are still supported.

The JDBC OCI driver attempts to use external authentication if you try connecting to a
database without providing a password. The following are some examples using the JDBC
OCI driver to connect to a database without providing a password:

SSL Authentication
The following code snippet shows how to use SSL authentication to connect to the database:
Example 9-1 Using SSL Authentication to Connect to the Database

import java.sql.*;
inport java.util.Properties;

public class test

{
public static void main(String [] args) throws Exception
{
String url = "jdbc:oracle:oci: @
+" (DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cps) (HOST=I ocal host) (PORT=5221))"
+" (CONNECT_DATA=(SERVI CE_NAVE=or ¢l)))";
Driver driver = new oracle.jdbc. OracleDriver();
Properties props = new Properties();
Connection conn = driver.connect(url, props);
conn. cl ose();
}
1

Using a Data Source

The following code snippet shows how to use a data source to connect to the database:

ORACLE 9-3

Chapter 9
Support for Login Authentication

Example 9-2 Using a Data Source to Connect to the Database

inport java.sql.*;

inport javax.sql.*;

inport java.util.Properties;
inport oracle.jdbc.pool.*;

public class testpool {
public static void main(String args) throws Exception
{ String url = "jdbc:oracle:oci:@ +"(DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cps)
(HOST=I ocal host) (PORT=5221))"
+" (CONNECT_DATA=(SERVI CE_NAME=or ¢l)))":
O acl eConnect i onPool Dat aSour ce ocpds = new O acl eConnect i onPool Dat aSour ce();
ocpds. set URL(url);
Pool edConnection pc = ocpds. get Pool edConnecti on();
Connection conn = pc. get Connection();
}
}

" Note:

The key exception to the preceding, with respect to Java, is that the Secure
Sockets Layer (SSL) protocol is supported by the Oracle JDBC OCI drivers
only if you use native threads in your application. This requires special
attention, because green threads are generally the default.

9.1.3 JDBC Thin Driver Support for Oracle Advanced Security

The JDBC Thin driver cannot assume the existence of an Oracle client installation or
the presence of the sql net. or a file. Therefore, it uses a Java approach to support
Oracle Advanced Security. Java classes that implement Oracle Advanced Security are
included in the oj dbc8. j ar file. Security parameters for encryption and integrity,
usually set in the sql net . or a file, are set using a Java Properti es object or through
system properties.

9.2 Support for Login Authentication

ORACLE

Basic login authentication through JDBC consists of user names and passwords, as
with any other means of logging in to an Oracle server. Specify the user name and
password through a Java properties object or directly through the get Connecti on
method call. This applies regardless of which client-side Oracle JDBC driver you are
using, but is irrelevant if you are using the server-side internal driver, which uses a
special direct connection and does not require a user name or password.

Starting with Oracle Database 12c Release 1 (12.1.0.2), the Oracle JDBC Thin driver
supports the O7L_MR client ability when you are running your application with a JDK
such as JDK 8, which supports the PBKDF2- SHA2 algorithm. If you are running an
application with JDK 7, then you must add a third-party security provider that supports
the PBKDF2- SHA2 algorithm, otherwise the driver will not support the new 12a password
verifier that requires the O7L_MR client ability.

9-4

Chapter 9
Support for Strong Authentication

If you are using Oracle Database 12c Release 1 (12.1.0.2) with the
SQLNET. ALLOAED L OGON_VERSI ON_SERVER parameter set to 12a, then keep the following points
in mind:

You must also use the 12.1.0.2 Oracle JDBC Thin driver and JDK 8 or JDK 7 with a third-
party security provider that supports the PBKDF2- SHA2 algorithm

If you use an earlier version of Oracle JDBC Thin driver, then you will get the following
error:

ORA- 28040: No matchi ng authentication protocol

If you use the 12.1.0.2 Oracle JDBC Thin driver with JDK 7, then also you will get the
same error, if you do not add a third-party security provider that supports the PBKDF2-
SHA2 algorithm.

9.3 Support for Strong Authentication

Oracle Advanced Security enables Oracle Database users to authenticate externally. External
authentication can be with RADIUS, Kerberos, Certificate-Based Authentication, Token
Cards, and Smart Cards. This is called strong authentication. Oracle JDBC drivers provide
support for the following strong authentication methods:

Kerberos
RADIUS

SSL (certificate-based authentication)

" See Also:

Oracle Database Net Services Reference

9.4 Support for Network Encryption and Integrity

" Note:

Oracle has deprecated the older encryptions and hashing algorithms. The
deprecated algorithms for DBMS_CRYPTO and native network encryption include MD4,
MD5, DES, 3DES, and RC4-related algorithms as well as 3DES for Transparent
Data Encryption (TDE). Removing older, less secure cryptography algorithms
prevents accidental use of these algorithms. To meet your security requirements,
Oracle recommends that you use more modern cryptography algorithms, such as
the Advanced Encryption Standard (AES).

¢ See Also:

Oracle Database Security Guide for more information

This section describes the following concepts:

ORACLE

9-5

Chapter 9
Support for Network Encryption and Integrity

* Overview of IDBC Support for Network Encryption and Integrity
» JDBC OCI Driver Support for Encryption and Integrity
e JDBC Thin Driver Support for Encryption and Integrity

e Setting Encryption and Integrity Parameters in Java

9.4.1 Overview of JDBC Support for Network Encryption and Integrity

ORACLE

You can use Oracle Database and Oracle Advanced Security network encryption and
integrity features in your Java database applications, depending on related settings in
the server. When using the JDBC OCI driver, set parameters as you would in any
Oracle client situation. When using the Thin driver, set parameters through a Java
properties object.

Encryption is enabled or disabled based on a combination of the client-side
encryption-level setting and the server-side encryption-level setting. Similarly, integrity
is enabled or disabled based on a combination of the client-side integrity-level setting
and the server-side integrity-level setting.

Encryption and integrity support the same setting levels, REJECTED, ACCEPTED,
REQUESTED, and REQUI RED. Table 9-1 shows how these possible settings on the client-
side and server-side combine to either enable or disable the feature. By default,
remote OS authentication (through TCP) is disabled in the database for security
reasons.

Table 9-1 Client/Server Negotiations for Encryption or Integrity
|

Client/Server Client Rejected Client Client Client

Settings Matrix Accepted Requested Required
(default)

Server Rejected OFF OFF OFF connection fails

Server Accepted OFF OFF ON ON

(default)

Server Requested OFF ON ON ON

Server Required connection fails ON ON ON

Table 9-1 shows, for example, that if encryption is requested by the client, but rejected
by the server, it is disabled. The same is true for integrity. As another example, if
encryption is accepted by the client and requested by the server, it is enabled. The
same is also true for integrity.

¢ See Also:

Oracle Database Security Guide for more information about network
encryption and integrity features

9-6

Chapter 9
Support for Network Encryption and Integrity

< Note:

The term checksum still appears in integrity parameter names, but is no longer
used otherwise. For all intents and purposes, checksum and integrity are
sSynonymous.

9.4.2 JDBC OCI Driver Support for Encryption and Integrity

If you are using the JDBC OCI driver, which presumes an Oracle-client setting with an Oracle
client installation, then you can enable or disable network encryption or integrity and set
related parameters as you would in any Oracle client situation, through settings in the

sqgl net. ora file on the client.

" Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), Oracle recommends you to
use the configuration parameters present in the new XML configuration file
oraaccess. xn instead of the OCI-specific configuration parameters present in the
sqgl net. or a file. However, the configuration parameters present in the sql net . ora
file are still supported.

To summarize, the client parameters are shown in Table 9-2:

Table 9-2 OCI Driver Client Parameters for Encryption and Integrity
]

Parameter Description Parameter Name Possible Settings

Client encryption level SQLNET. ENCRYPTI ON_CLI ENT REJECTED ACCEPTED
REQUESTED
REQUI RED

Client encryption selected list ~ SQLNET. ENCRYPTI ON_TYPES_CLI ENT AES128, AES192,
AES256

Client integrity level SQLNET. CRYPTO_CHECKSUM CLI ENT REJECTED ACCEPTED
REQUESTED
REQUI RED

Client integrity selected list SQLNET. CRYPTO_CHECKSUM TYPES CLI ENT SHA- 1

9.4.3 JDBC Thin Driver Support for Encryption and Integrity

ORACLE

The JDBC Thin driver support for network encryption and integrity parameter settings
parallels the JDBC OCI driver support discussed in the preceding section. You can set the
corresponding parameters through a Java properties object that you can use while opening a
database connection.

The default value for the encryption and integrity level is ACCEPTED for both the server side
and the client side. This enables you to achieve the desired security level for a connection
pair by configuring only one side of a connection, either the server side or the client side. This
increases the efficiency of your program because if there are multiple Oracle clients
connecting to an Oracle Server, then you need to change the encryption and integrity level to

9-7

Chapter 9
Support for Network Encryption and Integrity

REQUESTED in the sgl net . or a file only on the server side to turn on encryption or
integrity for all connections. This saves time and effort because you do not have to
change the settings for each client separately.

Table 9-3 lists the parameter information for the JDBC Thin driver. These parameters
are defined in the or acl e. j dbc. Or acl eConnecti on interface.

Table 9-3 Thin Driver Client Parameters for Encryption and Integrity
]

Parameter Name

Parameter Possible Settings

Type
CONNECTI ON_PROPERTY_THI N_NET_ENCRYPTI ON_ LEVEL String REJECTED ACCEPTED REQUESTED
REQUI RED
CONNECTI ON_PROPERTY_THI N_NET_ENCRYPTI ON_TYPES String AES256, AES192, AES128
CONNECTI ON_PROPERTY_THI N_NET_CHECKSUM LEVEL String REJECTED ACCEPTED REQUESTED
REQUI RED

CONNECTI ON_PROPERTY_THI N_NET_CHECKSUM TYPES String SHA1L

" Note:

e Oracle Advanced Security support for the Thin driver is incorporated
directly into the JDBC classes JAR file. So, there is no separate version
for domestic and export editions. Only parameter settings that are
suitable for an export edition are possible.

9.4.4 Setting Encryption and Integrity Parameters in Java

ORACLE

Use a Java properties object, that is, an instance of java. util. Properti es, to set the
network encryption and integrity parameters supported by the JDBC Thin driver.

The following example instantiates a Java properties object, uses it to set each of the
parameters in Table 9-3, and then uses the properties object in opening a connection
to the database:

Properties prop = new Properties();

prop. set Property(O acl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_ENCRYPTI ON_LEVEL,
"REQUI RED") ;

prop. set Property(O acl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_ENCRYPTI ON_TYPES,
"(AES256)");

prop. set Property(O acl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_CHECKSUM LEVEL,

" REQUESTED') ;

prop. set Property(O acl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_CHECKSUM TYPES,
"(SHAL)");

Or acl eDat aSource ods = new Oracl eDat aSour ce();

ods. set Connect i onProperties(prop);

ods. set URL("j dbc: oracl e: thi n: @ocal host: 5221: mai n");
Connection conn = ods. get Connection();

9-8

ORACLE

Chapter 9
Support for Network Encryption and Integrity

The parentheses around the values encryption type and checksum type allow for lists of
values. When multiple values are supplied, the server and the client negotiate to determine
which value is to be actually used.

Example

Example 9-3 is a complete class that sets network encryption and integrity parameters before
connecting to a database to perform a query.

" Note:

In the example, the string REQUI RED is retrieved dynamically through the
functionality of the AnoSer vi ces and Ser vi ce classes. You have the option of
retrieving the strings in this manner or including them in the software code as
shown in the previous examples.

Before running this example, you must turn on encryption in the sqgl net . or a file. For
example, the following lines will turn on AES256, AES192, and AES128 for the encryption
and SHAL for the checksum:

SQLNET. ENCRYPTI ON_SERVER = ACCEPTED

SQLNET. CRYPTO_CHECKSUM SERVER = ACCEPTED

SQLNET. CRYPTO_CHECKSUM TYPES_SERVER = (SHA1)

SQLNET. ENCRYPTI ON_TYPES_SERVER = (AES256, AES192, AES128)

Example 9-3 Setting Network Encryption and Integrity Parameters

import java.sql.*;

inport java.util.Properties;

i nport oracl e. net. ano. AnoServi ces;
i mport oracle.jdbc.*;

public class DenbAESAndSHAL
{

static final String USERNAME= "HR';

static final String PASSWORD= "hr";

static final String URL = "jdbc: oracl e:thin: @DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp)
(HOST=l ocal host) (PORT=5221))"

+" (CONNECT_DATA=(SERVI CE_NAME=or ¢l)))";

public static final void main(String[] argv)
{
DempAESANdSHAL denp = new DembAESAndSHAL() ;
try
{

deno. run();
}cat ch(SQLException ex)
{
ex. printStackTrace();
}
}

void run() throws SQ.Exception
{

Oracl eDriver dr
Properties prop

new Oracl eDriver();
new Properties();

9-9

Chapter 9
Support for SSL

/1 W require the connection to be encrypted with either AES256 or AES192.
/1 1f the database doesn't accept such a security level, then the connection
attenpt will fail.

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_THI N_NET_ENCRYPTI ON_LEVEL, A
noServi ces. ANO_REQUI RED) ;

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_THI N_NET_ENCRYPTI ON_TYPES, "
(" + AnoServices. ENCRYPTI ON_AES256
+"," + AnoServi ces. ENCRYPTI ON_AES192 + ")");

/1 W also require the use of the SHAL algorithmfor network integrity
checki ng.

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_THI N_NET_CHECKSUM LEVEL, Ano
Servi ces. ANO_REQUI RED) ;

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_THI N_NET_CHECKSUM TYPES,
"(" + AnoServices. CHECKSUM SHAL + ")");

prop. set Property("user", DenbAESAndSHAL. USERNAME) ;

prop. set Property("password", DembAESAndSHAL. PASSWORD) ;

Oracl eConnection oraConn =
(Oracl eConnecti on) dr. connect (DenbAESAndSHAL. URL, prop) ;

System out. println("Connection created! Encryption algorithmis: " +
oraConn. get Encrypti onAl gorithmName() + ", network

integrity algorithmis: " + oraConn.getDatalntegrityAl gorithmNanme());

oraConn. cl ose();

}
}

9.5 Support for SSL

This section describes the following topics:

e Overview of JDBC Support for SSL

e About Managing Certificates and Wallets

e About Keys and certificates containers

e Database Connectivity Over TLS Version 1.2 Using JDBC Thin and JKS
e Automatic SSL Connection Configuration

e Support for Key Store Service

9.5.1 Overview of JDBC Support for SSL

ORACLE

Oracle Database 18c provides support for the Secure Sockets Layer (SSL) protocol.
SSL is a widely used industry standard protocol that provides secure communication
over a network. SSL provides authentication, data encryption, and data integrity. It
provides a secure enhancement to the standard TCP/IP protocol, which is used for
Internet communication.

SSL uses digital certificates that comply with the X.509v3 standard for authentication
and a public and private key pair for encryption. SSL also uses secret key

9-10

ORACLE

Chapter 9
Support for SSL

cryptography and digital signatures to ensure privacy and integrity of data. When a network
connection over SSL is initiated, the client and server perform an SSL handshake that
includes the following steps:

Client and server negotiate about the cipher suites to use. This includes deciding on the
encryption algorithms to be used for data transfer.

Server sends its certificate to the client, and the client verifies that the certificate was
signed by a trusted certification authority (CA). This step verifies the identity of the server.

If client authentication is required, the client sends its own certificate to the server, and
the server verifies that the certificate was signed by a trusted CA.

Client and server exchange key information using public key cryptography. Based on this
information, each generates a session key. All subsequent communications between the

client and the server is encrypted and decrypted by using this set of session keys and the
negotiated cipher suite.

" Note:

In Oracle Database 11g Release 1 (11.1), SSL authentication is supported in the
thin driver. So, you do not need to provide a user name/password pair if you are
using SSL authentication.

SSL Terminology

The following terms are commonly used in the SSL context:

Certificate: A certificate is a digitally signed document that binds a public key with an
entity. The certificate can be used to verify that the public key belongs to that individual.

Certification authority: A certification authority (CA), also known as certificate authority,
is an entity which issues digitally signed certificates for use by other parties.

Cipher suite: A cipher suite is a set of cryptographic algorithms and key sizes used to
encrypt data sent over an SSL-enabled network.

Private key: A private key is a secret key, which is never transmitted over a network. The
private key is used to decrypt a message that has been encrypted using the
corresponding public key. It is also used to sign certificates. The certificate is verified
using the corresponding public key.

Public key: A public key is an encryption key that can be made public or sent by ordinary
means such as an e-mail message. The public key is used for encrypting the message
sent over SSL. It is also used to verify a certificate signed by the corresponding private
key.

Key Store or Wallet: A wallet is a password-protected container that is used to store
authentication and signing credentials, including private keys, certificates, and trusted
certificates required by SSL.

Security Provider: A Java implementation that provides some functionality related to
security. A provider is responsible for decoding a key store file.

Key Store Service (KSS): A component of Oracle Platform Security services. KSS
enables a key store to be referenced as a URI with kss: // scheme (rather than a file
name).

9-11

Chapter 9
Support for SSL

Java Version of SSL

The Java Secure Socket Extension (JSSE) provides a framework and an
implementation for a Java version of the SSL and TLS protocols. JSSE provides
support for data encryption, server and client authentication, and message integrity. It
abstracts the complex security algorithms and handshaking mechanisms and
simplifies application development by providing a building block for application
developers, which they can directly integrate into their applications. JSSE is integrated
into Java Development Kit (JDK) 1.4 and later, and supports SSL version 2.0 and 3.0.

Oracle strongly recommends that you have a clear understanding of the JavaTM
Secure Socket Extension (JSSE) framework before using SSL in the Oracle JDBC
drivers.

The JSSE standard application programming interface (API) is available in the

j avax. net, j avax. net.ssl, andjavax. security. cert packages. These packages
provide classes for creating and configuring sockets, server sockets, SSL sockets, and
SSL server sockets. The packages also provide a class for secure HTTP connections,
a public key certificate APl compatible with JDK1.1-based platforms, and interfaces for
key and trust managers.

SSL works the same way, as in any networking environment, in Oracle Database 18c.

Note:

In order to use JSSE in your program, you must have clear understanding of
JavaTM Secure Socket Extension (JSSE) framework.

9.5.2 About Managing Certificates and Wallets

To establish an SSL connection with a JDBC client, Thin or OCI, Oracle database
server sends its certificate, which is stored in its wallet. The client may or may not
need a certificate or wallet depending on the server configuration.

The Oracle JDBC Thin driver uses the JSSE framework to create an SSL connection.
It uses the default provider (SunJSSE) to create an SSL context. However you can
provide your own provider.

You do not need a certificate for the client, unless the SSL_CLI ENT_AUTHENTI CATI ON
parameter is set on the server.

9.5.3 About Keys and certificates containers

ORACLE

Java clients can use multiple types of containers such as Oracle wallets, JKS,
PKCS12, and so on, as long as a provider is available. For Oracle wallets, OraclePKI
provider must be used because the PKCS12 support provided by SunJSSE provider
does not support all the features of PKCS12. In order to use OraclePKI provider, the
following JARs are required:

e oraclepki.jar
e osdt_cert.jar

e osdt _core.jar

9-12

JKS

Chapter 9
Support for SSL

All these JAR files should be under $ORACLE_HOME/ j I i b directory.

9.5.4 Database Connectivity Over TLS Version 1.2 Using JDBC Thin and

Perform the following steps to configure the Oracle JDBC thin driver to connect to the
Database using TLS version 1.2:

Always use the latest update of the JDK

Use the latest update of either JDK 7 or JDK 8 because the updated versions include bug
fixes that are required for using SSL version 1.2.

Install the JCE files

Install the Java Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files
because irrespective of the JDK version that you use, the strong cipher suites (for
example TLS_RSA W TH_AES 256_CBC_SHA256) are not enabled without them. You can
download these files from the following page:

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

Also, if you are using JDK 7, then you must explicitly enable the strong cipher suites. For
example, if you are using a strong cipher suite such as

TLS_RSA W TH_AES 256 _CBC SHA256 with JDK 7, then you must enable it through the
oracl e. net. ssl _ci pher_sui t es connection property.

Use JKS files or wallets

¢ Note:

Starting from Oracle Database Release 18c, you can specify TLS configuration
properties in a new configuration file called oj dbc. properti es. The use of this
file eases the connectivity to Database services on Cloud.

" See Also:

Oracle Database JDBC Java API Reference

After performing all the preceding steps, if you run into more issues, then you can turn on
tracing to diagnose the problems using -Dj avax. net . debug=al | option.

9.5.5 Automatic SSL Connection Configuration

ORACLE

Starting from Oracle Database Release 18c, you can use default values or programmatic
logic for resolving the connection configuration values without manually adding or updating
the security provider. You can resolve the configuration values in the following two ways:

Provider Resolution

Automatic Key Store Type (KSS) Resolution

9-13

http://www.oracle.com/technetwork/java/javase/downloads/jce-7-download-432124.html

Chapter 9
Support for SSL

9.5.5.1 Provider Resolution

For certain key store types, the JDBC driver can resolve the provider implementation
that is used to load the key store. For these types, it is not necessary to register the
provider with Java security. As long as the provider implementation is on the
CLASSPATH, the driver can instantiate the security provider.

The following key store types map to a known provider:
e SSO:oracle.security.pki.Oacl ePKl Provider

» KSS:
oracle.security.jps.internal.keystore. provider. FarnKeySt or eProvi der

The driver attempts to resolve the provider only if there is no provider registered for the
specified type.

If the or acl epki . j ar file is on the CLASSPATH, then the driver can automatically load
the Oracle PKI Provider in the following way:

java —cp oracl epki.jar:ojdbc8.jar -D javax.net.ssl.keyStore=/path/tol
wal I et/cwal l et.sso MyApp

Similarly, for a specified value of the or acl e. net. wal | et _| ocati on connection
property, the driver can automatically load the Oracle PKI Provider in the following
way:

java —cp .:oraclepki.jar:ojdbc8.jar -D oracle.net.wallet_|location=file:/
path/to/wal |l et/cwal | et.sso M/App

< Note:

For PKCS12 types created by the orapki tool (The ewal | et . p12 file), you
may still need to register the Or acl ePKlI Provi der with Java security because
the PKCS12 file created by the orapki tool includes the ASN1 Key Bag
element (Type Code: 1.2.840.113549.1.12.10.1.1). The Sun PKCS12
implementation does not support the Key Bag type and throws an error when
attempting to read the ewal | et . p12 file. For HotSpot and Open JDK users,
the Sun Provider comes bundled as the PKCS12 provider. This means that
the PKCS12 provider will already have a registered provider, and the driver
will make no attempt to override this.

9.5.5.2 Automatic Key Store Type (KSS) Resolution

ORACLE

The JDBC driver can resolve common key store types based on the value of the
javax. net.ssl.keyStore andjavax. net.ssl.trust Store properties, eliminating the
need to specify the type using these properties.

Key Store or Trust Store with a Recognized File Extension

A key store or trust store with a recognized file extension maps to the following types:

9-14

Chapter 9
Support for SSL

» File extension . j ks resolves to j avax. net. ssl . keySt or eType as JKS:

java —cp ojdbc8.jar -D javax.net.ssl.keyStore=/path/tolkeystore/
keystore.jks M/App

» File extension . sso resolves to j avax. net . ssl . keySt or eType as SSO:

java —cp ojdbc8.jar -D
j avax. net.ssl . keySt ore=/ path/to/ keyst ore/ keystore.sso M/App

* File extension . p12 resolves to j avax. net . ssl . keySt or eType as PKCS12:

java —cp ojdbc8.jar -D
j avax. net.ssl . keyStore=/ pat h/ t o/ keyst or e/ keyst ore. p12 MyApp

* File extension . pf x resolves to j avax. net. ssl . keySt or eType as PKCS12:

java —cp ojdbc8.jar -D
j avax. net.ssl . keySt ore=/ pat h/ t o/ keyst or e/ keyst ore. pf x MyApp

Key Store or Trust Store with a URI

If the key store or the trust store is a URI with a kss: // scheme, this maps to type KSS:

java —cp ojdbc8.jar -D
javax. net.ssl.keyStore=kss://MStripel MyKeyStore MyApp

¢ Note:

You can set the j avax. net . ssl . trust St or eType and
j avax. net. ssl . keySt or eType properties for overriding the default type resolution.

9.5.6 Support for Default SSL Context

For applications that require finer control over the TLS configuration, you can configure the
JDBC driver to use the SSLCont ext returned by the SSLCont ext . get Def aul t method. Use
one of the following methods for the driver to use the default SSLCont ext :

e javax.net.ssl.keyStore=NONE
e javax.net.ssl.trustStore=NONE

You can use the default SSLCont ext to support key store types that are not file-based.
Common examples of such key store types include hardware-based smart cards. Key store
types that require programmatic call to the | oad(KeySt or e. LoadSt or ePar anet er) method
also belong to this category.

ORACLE 9-15

Chapter 9
Support for Kerberos

¢ See Also:
e https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/
SSLContext.html#getDefault--

e https://docs.oracle.com/javase/8/docs/api/java/security/
KeyStore.html#load-java.security.KeyStore.LoadStoreParameter-

9.5.7 Support for Key Store Service

This release of Oracle Database introduces support for Key Store Service (KSS) in the
JDBC driver. So, if you have configured a Key Store Service in a WebLogic server,
then JDBC applications can now integrate with the existing Key Store Service
configuration.

The driver can load the key stores that are managed by the Key Store Service. If the
value of the j avax. net . ssl . keySt or e property or the j avax. net.ssl.trustStore
property is a URI with kss: // scheme, then the driver loads the key store from Key
Store Service.

For permission-based protection, the following permission must be granted to the
ojdbc JAR file:

perm ssi on KeyStoreAccessPerni ssion
"stripeName=*, keyst oreNane=*, al i as=*", "read";

This permission grants access to every key store. For limiting the scope of access, you
can replace the asterisk wild cards (*) with a specific application stripe and a key store

name. The driver does not load the key store as a privileged action, which means that

the KeySt or eAccessPer nmi ssi on must also be granted to the application code base.

9.6 Support for Kerberos

This section discusses the following topics:

* Overview of JDBC Support for Kerberos
» Configuring Windows to Use Kerberos
» Configuring Oracle Database to Use Kerberos

* Code Example for Using Kerberos

9.6.1 Overview of JDBC Support for Kerberos

ORACLE

Kerberos is a network authentication protocol that provides the tools of authentication
and strong cryptography over the network. Kerberos helps you secure your information
systems across your entire enterprise by using secret-key cryptography. The Kerberos
protocol uses strong cryptography so that a client or a server can prove its identity to
its server or client across an insecure network connection. After a client and server
have used Kerberos to prove their identity, they can also encrypt all of their
communications to assure privacy and data integrity as they go about their business.

9-16

https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLContext.html#getDefault--
https://docs.oracle.com/javase/8/docs/api/javax/net/ssl/SSLContext.html#getDefault--
https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html#load-java.security.KeyStore.LoadStoreParameter-
https://docs.oracle.com/javase/8/docs/api/java/security/KeyStore.html#load-java.security.KeyStore.LoadStoreParameter-

Chapter 9
Support for Kerberos

The Kerberos architecture is centered around a trusted authentication service called the key
distribution center, or KDC. Users and services in a Kerberos environment are referred to as
principals; each principal shares a secret, such as a password, with the KDC. A principal can
be a user such as HR or a database server instance.

Starting from 12c Release 1, Oracle Database also supports cross-realm authentication for
Kerberos. If you add the referred realm appropriately in the domai n_r eal ms section of the
kerberos configuration file, then being in one particular realm, you can access the services of
another realm.

9.6.2 Configuring Windows to Use Kerberos

A good Kerberos client providing kl i st, kinit, and other tools, can be found at the
following link:

http://web. mt.edu/ kerberos/dist/index.htn

This client also provides a nice GUI.

You need to make the following changes to configure Kerberos on your Windows machine:
Right-click the My Computer icon on your desktop.

Select Properties. The System Properties dialog box is displayed.

Select the Advanced tab.

Click Environment Variables. The Environment Variables dialog box is displayed.
Click New to add a new user variable. The New User Variable dialog box is displayed.
Enter KRB5CCNAME in the Variable name field.

N o g p W NP

Enter FI LE: C:\ Docurment s and Settings\ <user_nane>\ krb5cc in the Variable value
field.

8. Click OK to close the New User Variable dialog box.
9. Click OK to close the Environment Variables dialog box.

10. Click OK to close the System Properties dialog box.

Note:

C.\ W NDOWB\ kr b5. i ni file has the same content as kr b5. conf file.

9.6.3 Configuring Oracle Database to Use Kerberos

ORACLE

Perform the following steps to configure Oracle Database to use Kerberos:

1. Use the following command to connect to the database:

SQ.> connect system
Enter password: password

2. Use the following commands to create a user CLI ENT@JS. ORACLE. COMthat is identified
externally:

9-17

http://web.mit.edu/kerberos/dist/index.html

Chapter 9
Support for Kerberos

SQ.> create user "CLIENT@JS. ORACLE. COM' identified externally;
SQ.> grant create session to "CLI ENT@S. ORACLE. COV';

3. Use the following commands to connect to the database as sysdba and dismount
it:

SQ.> connect / as sysdba
SQ.> shut down i medi ate

4. Add the following line to $T_WORK/ t _i ni t 1. or a file:
OS_AUTHENT_PREFI X=""

5. Use the following command to restart the database:
SQL> startup pfile=t_initl ora

6. Modify the sgl net . or a file to include the following lines:

nanes. directory_path = (tnsnanes)

#Ker ber os

sql net. aut hentication_services = (beq, kerbero0s5)

sqgl net. aut henti cati on_kerberos5_service = dbji

sqgl net . kerberos5_conf = /hone/ Jdbc/ Securi ty/ ker beros/ kr b5. conf
sqgl net . ker beros5_keytab = /home/ Jdbc/ Securi ty/ kerberos/ dbji. oracl eserver
sqgl net. kerberos5_conf_nit = true

sql net. kerberos_cc_name = /tnp/ krb5cc_5088

1 ogging (optional)

trace_| evel _server=16

trace_directory_server=/scratch/sql net/

7. Use the following commands to verify that you can connect through SQL*Plus:

> kinit client

> klist
Ti cket cache: FILE: /tnp/krb5cc_5088
Defaul t principal: client@S. ORACLE. COM

Valid starting Expi res Service principa
06/22/06 07:13:29 06/22/06 17:13:29 krbt gt/ US. ORACLE. COMQJS. ORACLE. COM

Kerberos 4 ticket cache: /tnp/tkt5088

klist: You have no tickets cached
> sqlplus "/@(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)
(HOST=oracleserver.mydomain.com) (PORT=5221))
(CONNECT_DATA=(SERVICE_NAME=orcl)))"

9.6.4 Code Example for Using Kerberos

This following example demonstrates the new Kerberos authentication feature that is
part of Oracle Database 12c Release 1 (12.1) JDBC thin driver. This demo covers two
scenarios:

* In the first scenario, the OS maintains the user name and credentials. The
credentials are stored in the cache and the driver retrieves the credentials before
trying to authenticate to the server. This scenario is in the module
connect Wt hDef aul t User () .

ORACLE 9-18

Chapter 9
Support for Kerberos

< Note:

Before you run this part of the demo, use the following command to verify
that you have valid credentials:

> [usr/kerberos/bin/kinit client
where, the password is wel cone.

Use the following command to list your tickets:

> [usr/kerberos/bin/klist

* The second scenario covers the case where the application wants to control the user
credentials. This is the case of the application server where multiple web users have their
own credentials. This scenario is in the module connect W t hSpeci fi cUser ().

< Note:

To run this demo, you need to have a working setup, that is, a Kerberos server
up and running, and an Oracle database server that is configured to use
Kerberos authentication. You then need to change the URLs used in the
example to compile and run it.

Example 9-4 Using Kerberos Authentication to Connect to the Database

i nport coms

i nport java.
i nport java.
i nport java.
i nport java.
i nport java.
i nport java.
i nport java.
i nport java.

i mport javax.
i nport javax.
i mport javax.
i mport javax.
i nport javax.

i nport oracl
i mport oracl
i mport oracl
public class
{
String url
" (HOST=0

un. security. aut h. modul e. Kr b5Logi nMbdul e;
i 0.1 CException;

security. PrivilegedExceptionActi on;
sql . Connecti on;

sql . Resul t Set;

sql . SQLExcept i on;

sql . Statement;

util. HashMap;

util.Properties;

security. auth. Subj ect;

security. auth. cal | back. Cal | back;

security. auth. cal | back. Cal | backHandl er;

security. auth. cal | back. Passwor dCal | back;

security. auth. cal | back. Unsupport edCal | backExcept i on;

e.j dbc. Oracl eConnecti on;

e.jdbc. Oracl eDriver;

e. net. ano. AnoServi ces;
Ker ber osJdbcDenp

="j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) " +
racl eserver. nydomai n. con) (PORT=5221)) (CONNECT_DATA=" +

" (SERVI CE_NAME=or cl)))";

public static void main(String[] arv)

[* 1f yo
* confi
* gpeci

ORACLE

u see the follow ng error message [Mechanismlevel: Could not |oad
guration file c:\winnt\krb5.ini (The systemcannot find the path
fied] it's because the JVM cannot |ocate your kerberos config file.

9-19

ORACLE

Chapter 9
Support for Kerberos

* You have to provide the location of the file. For exanple, on Wndows,
* the MT Kerberos client uses the config file: CWNDOAS\krb5.ini:
*/
Il System setProperty("java.security.krb5.conf","C \\WNDOM\\ krb5.ini");
System set Property("java. security.krb5.conf", "/ hone/ Jdbc/ Security/ kerberos/
krb5. conf");

Ker ber osJdbcDermo ker ber osDeno = new Ker ber osJdbcDeno() ;

try

{
Systemout.printIn("Attenpt to connect with the default user:");
ker ber osDenp. connect Wt hDef aul t User () ;

}
catch (Exception e)
{
e.printStackTrace();
}
try

Systemout.printIn("Attempt to connect with a specific user:");
ker ber osDenp. connect Wt hSpeci fi cUser ();

}
catch (Exception e)
{
e.printStackTrace();
}

}

voi d connect Wt hDefaul t User() throws SQLException
{
Oracl eDriver driver = new OracleDriver();
Properties prop = new Properties();

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_THI N_NET_AUTHENTI CATI ON_SER
VI CES,
"("+AnoSer vi ces. AUTHENTI CATI ON_KERBEROS5+") ") ;

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_THI N_NET_AUTHENTI CATI ON_KRB
5_MUTUAL,
"true");

[* 1f you get the following error [Unable to obtain Princpal Name for

* authentication] although you know that you have the right TGT in your
* credential cache, then it's probably because the JVMcan't |ocate your
* cache.

* Note that the default location on windows is "C:\Docurents and
Settings\krb5cc_username".
*/

iy
prop. set Property(Oracl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_AUTHENTI CATI ON_KRB
5_CC_NAME,

/*
On |inux:
> which Kkinit
[usr/ kerberos/bin/kinit

9-20

ORACLE

Chapter 9
Support for Kerberos

> 1|s -l [etc/krb5. conf
| WX WXT W 1 root root 47 Jun 22 06:56 /etc/krb5.conf -> /home/Jdbc/

Security/ kerberos/ krb5. conf

> kinit client

Password for client@S. ORACLE. COM

> klist

Ti cket cache: FILE: /tnp/krb5cc_5088
Default principal: client@S. ORACLE. COM

Valid starting Expi res Service princi pal
11/02/06 09:25:11 11/02/06 19:25:11 Kkrbtgt/US. ORACLE. COMAJSS. ORACLE. COM

Kerberos 4 ticket cache: /tnp/tkt5088
klist: You have no tickets cached
*|

prop. set Property(O acl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_AUTHENTI CATI ON_KRB5_CC N

AME,

"/t np/ krb5cc_5088");
Connection conn = driver.connect(url,prop);
String auth = ((Oracl eConnection)conn). get Aut henti cati onAdapt or Nane() ;
Systemout. println("Authentication adaptor="+auth);
print User Nane(conn);
conn. cl ose();

voi d connect Wt hSpecificUser() throws Exception

{

the

Subj ect speci ficSubject = new Subject();

[l This first part isn't really neaningful to the sake of this demn. In
/1 a real world scenario, you have a valid "specificSubject" Subject that
/'l represents a web user that has valid Kerberos credentials.

Kr b5Logi nModul e kr b5Modul e = new Kr b5Logi nMbdul e() ;

HashMap sharedState = new HashMap();

HashMap options = new HashMap();

options. put ("doNot Prompt", "fal se");

options. put ("useTi cket Cache", "fal se");

options. put ("principal","client@S. ORACLE. COM') ;

kr bSModul e.initialize(specificSubject, newKrbCal | backHandl er (), sharedSt at e, opti ons);
bool ean retLogin = krb5Mdul e. | ogin();
kr b5SModul e. commi t () ;
i f(!retLogin)

t hrow new Exception("Kerberos5 adaptor couldn't retrieve credentials (TGI) from
cache");

/1 to use the TGT fromthe cache:

/'l options.put("useTicket Cache", "true");

/1 options.put("doNotPronpt","true");

/'l options.put("ticketCache","C \\Docunents and Settings\\user\\krb5cc");
/'l krb5Modul e.initialize(specificSubject,null,sharedState, options);

/1 Now we have a valid Subject with Kerberos credentials. The second scenario
Il really starts here:

/'l execute driver.connect(...) on behalf of the Subject 'specificSubject':
Connection conn =

9-21

ORACLE

}

Chapter 9

Support for Kerberos

(Connecti on) Subj ect . doAs(speci fi cSubj ect, new Privil egedExceptionAction()

public Object run()
{
Connection con = nul|;
Properties prop = new Properties();
prop. set Property(AnoServi ces. AUTHENTI CATI ON_PROPERTY_SERVI CES,
"(" + AnoServices. AUTHENTI CATI ON_KERBERCS5 +
try
{

OracleDriver driver = new OracleDriver();
con = driver.connect(url, prop);

} catch (Exception except)
{

}
return con;
}
})

String auth = ((Oracl eConnection)conn). get Aut henti cati onAdapt or Nane() ;
Systemout. println("Authentication adaptor="+auth);

print User Nane(conn);

conn. cl ose();

except. printStackTrace();

voi d printUser Nane(Connection conn) throws SQLException

{

}
}

Statement stnt = null;
try
{
stnmt = conn.createStatement();
Resul tSet rs = stnt.executeQuery("select user fromdual");
whil e(rs. next())
Systemout. printIn("User is:"+rs.getString(1l));
rs.close();
}
finally
{
if(stmt !'=null)
stnt.close();

}

class KrbCal | backHandl er inpl enents Cal | backHandl er

public void handl e(Cal | back[] cal |l backs) throws |CException,
Unsupport edCal | backException

{
f

{

or (int i =0; i < callbacks.length; i++)

if (callbacks[i] instanceof PasswordCall back)
{
Passwor dCal | back pc = (PasswordCal | back) cal | backs[i];
Systemout. printin("set password to 'wel come'");
pc. set Passwor d((new String("wel come")).toCharArray());
} else

t hrow new Unsupport edCal | backException(cal | backs[i],

"))

9-22

}

}

Chapter 9
Support for RADIUS

"Unrecogni zed Cal | back");

}
}

9.7 Support for RADIUS

This section describes the following concepts:

Overview of JDBC Support for RADIUS
Configuring Oracle Database to Use RADIUS
Code Example for Using RADIUS

9.7.1 Overview of JDBC Support for RADIUS

Oracle Database 11g Release 1 introduced support for Remote Authentication Dial-In User
Service (RADIUS). RADIUS is a client/server security protocol that is most widely known for
enabling remote authentication and access. Oracle Advanced Security uses this standard in
a client/server network environment to enable use of any authentication method that supports
the RADIUS protocol. RADIUS can be used with a variety of authentication mechanisms,
including token cards and smart cards.

9.7.2 Configuring Oracle Database to Use RADIUS

Perform the following steps to configure Oracle Database to use RADIUS:

ORACLE

1.

Use the following command to connect to the database:

SQ.> connect system
Enter password: password

Use the following commands to create a new user aso from within a database:

SQL> create user aso identified externally;
SQ.> grant create session to aso;

Use the following commands to connect to the database as sysdba and dismount it:

SQ.> connect / as sysdba
SQ.> shut down i mredi at e;

Add the following lines to the t _i nit 1. ora file:

os_aut hent _prefix =""

Note:

Once the test is over, you need to revert the preceding changes made to the
t_initl.ora file.

Use the following command to restart the database:
SQL> startup pfile=?/work/t_initl.ora

Modify the sgl net . or a file so that it contains only these lines:

9-23

ORACLE

sql net. aut henti cation_services
sql net.radi us_aut hentication = <RADU US_SERVER HOST_NAME>

sqgl net.radi us_authentication_port = 1812

sql net.radius_authentication_timout = 120

sql net. radi us_secret =/ hone/ Jdbc/ Security/radi us/ radi us_key
logging (optional):
trace_| evel _server=16
trace_directory_server=/scratch/sql net/

Chapter 9
Support for RADIUS

= (beq, radius)

7. Use the following command to verify that you can connect through SQL*Plus:

>sql pl us ' aso/ 1234@ DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp)
(HOST=or acl eser ver. mydomai n. com (PORT=5221))
(CONNECT_DATA=(SERVI CE_NAME=orcl)))'

9.7.3 Code Example for Using RADIUS

This example demonstrates the new RADIUS authentication feature that is a part of
Oracle Database 12c Release 1 (12.1) JDBC thin driver. You need to have a working
setup, that is, a RADIUS server up and running, and an Oracle database server that is
configured to use RADIUS authentication. You then need to change the URLs given in
the example to compile and run it.

Example 9-5 Using RADIUS Authentication to Connect to the Database

i mport java.
i mport java.
i nport java.
i mport java.

i nport java.

sql . Connecti on;
sql . Resul t Set ;
sql . SQLExcepti on;
sql . Statement;
util.Properties;

i mport oracle.jdbc. Oracl eConnecti on;
i mport oracle.jdbc. OracleDriver;

i nport oracl e. net. ano. AnoSer vi ces;
public class Radi usJdbcDenp

{

String url ="jdbc:oracle:thin: @DESCR PTI ON=(ADDRESS=(PROTOCOL=t cp) " +
" (HOST=or acl eser ver. nydomai n. conm) (PORT=5221)) (CONNECT_DATA=" +
"(SERVI CE_NAME=orcl)))";

public static void main(String[] arv)

{

Radi usJdbcDeno radi usDeno = new Radi usJdbcDeno();

try
{

radi usDeno. connect ();

}

catch (Exception e)

{

e.printStackTrace();

}
}

R T R

This method attenpts to logon to the database using the RADI US
aut hentication protocol.

It should print the follow ng output to stdout:

Aut hent i cati on adapt or =RADI US
User is:ASO

9-24

Chapter 9
About Secure External Password Store

*

/

voi d connect() throws SQLException

{
OracleDriver driver = new OracleDriver();
Properties prop = new Properties();

prop. set Property(Oracl eConnecti on. CONNECTI ON_PROPERTY_THI N_NET_AUTHENTI CATI ON_SERVI CES,
"("+AnoServi ces. AUTHENTI CATI ON_RADI US+")");
/1 The user "aso" needs to be properly setup on the radius server with
/] password "1234".
prop. set Property("user", "aso");
prop. set Property("password", "1234");

Connection conn = driver.connect(url,prop);

String auth = ((Oracl eConnection)conn). get Aut henti cati onAdapt or Nane() ;
System out. println("Authentication adaptor="+auth);

print User Nane(conn);

conn. cl ose();

voi d printUser Nane(Connection conn) throws SQLException
{
Statement stnmt = null;
try
{
stnt = conn.createStatement();
Resul tSet rs = stnt.executeQuery("select user fromdual");
whil e(rs. next())
Systemout. printIn("User is:"+rs.getString(1l));
rs.close();
}
finally
{
if(stmt !'=null)
stnt.close();
}

}
}

9.8 About Secure External Password Store

ORACLE

As an alternative for large-scale deployments where applications use password credentials to
connect to databases, it is possible to store such credentials in a client-side Oracle wallet. An
Oracle wallet is a secure software container that is used to store authentication and signing
credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the need to
embed user names and passwords in application code, batch jobs, or scripts. This reduces
the risk of exposing passwords in the scripts and application code, and simplifies
maintenance because you do not need to change your code each time user names and
passwords change. In addition, if you do not have to change the application code, then it also
becomes easier to enforce password management policies for these user accounts.

You can set the oracl e. net. wal | et _| ocati on connection property to specify the wallet
location. The JDBC driver can then retrieve the user name and password pair from this
wallet.

9-25

Chapter 9
About Secure External Password Store

¢ See Also:

e Oracle Database Administrator's Guide for more information about
configuring your client to use secure external password store and for
information about managing credentials in it

e Oracle Database Security Guide for more information about managing
the secure external password store for password credentials

ORACLE 9-26

Proxy Authentication

Oracle Java Database Connectivity (JDBC) provides proxy authentication, also called N-tier
authentication. This feature is supported through both the JDBC Oracle Call Interface (OCI)
driver and the JDBC Thin driver. This chapter contains the following sections:

About Proxy Authentication
Types of Proxy Connections
Creating Proxy Connections
Closing a Proxy Session
Caching Proxy Connections

Limitations of Proxy Connections

Note:

Oracle Database supports proxy authentication functionality in three tiers only. It
does not support it across multiple middle tiers.

10.1 About Proxy Authentication

Proxy authentication is the process of using a middle tier for user authentication. You can
design a middle tier server to proxy clients in a secure fashion by using the following three
forms of proxy authentication:

The middle tier server authenticates itself with the database server and a client. In this
case, an application user or another application, authenticates itself with the middle tier
server. Client identities can be maintained all the way through to the database.

The client, that is, a database user, is not authenticated by the middle tier server. The
client's identity and database password are passed through the middle tier server to the
database server for authentication.

The client, that is, a global user, is authenticated by the middle tier server, and passes
either a Distinguished name (DN) or a Certificate through the middle tier for retrieving the
client's user name.

Note:

Operations done on behalf of a client by a middle tier server can be audited.

In all cases, an administrator must authorize the middle tier server to proxy a client, that is, to
act on behalf of the client. Suppose, the middle tier server initially connects to the database

ORACLE

10-1

Chapter 10
Types of Proxy Connections

as user HR and activates a proxy connection as user j ef f, and then issues the
following statement to authorize the middle tier server to proxy a client:

ALTER USER jeff GRANT CONNECT THROUGH HR;

You can also:

Specify roles that the middle tier is permitted to activate when connecting as the
client. For example,

CREATE ROLE rol el;
GRANT SELECT ON enpl oyees TO rol el;
ALTER USER jeff GRANT CONNECT THROUGH HR ROCLE rol el;

The role clause limits the access only to those database objects that are
mentioned in the list of the roles. The list of roles can be empty.

Find the users who are currently authorized to connect through a middle tier by
guerying the PROXY_USERS data dictionary view.

Disallow a proxy connection by using the REVOKE CONNECT THROUGH clause of
ALTER USER statement.

¢ Note:

In case of proxy authentication, a JDBC connection to the database creates
a database session during authentication, and then other sessions can be
created during the life time of the connection.

You need to use the different fields and methods present in the
oracl e.jdbc. O acl eConnecti on interface to set up the different types of proxy
connections.

10.2 Types of Proxy Connections

You can create proxy connections using any one of the following options:

ORACLE

USER NAME

This is done by supplying the user name or the password or both. The SQL
statement for specifying authentication using password is:

ALTER USER jef f GRANT CONNECT THROUGH HR AUTHENTI CATED USI NG passwor d;

In this case, j ef f is the user name and HRis the proxy for j ef f.

The password option exists for additional security. Having no aut hent i cat ed
clause implies default authentication, which is using only the user name without
the password. The SQL statement for specifying default authentication is:

ALTER USER jef f GRANT CONNECT THROUGH HR
DI STI NGUI SHED NAMVE

This is a global name in lieu of the password of the user being proxied for. An
example of the corresponding SQL statement using a distinguished name is:

10-2

Chapter 10
Creating Proxy Connections

CREATE USER jeff |DENTIFIED GLOBALLY AS
' CN=j ef f, QU=aneri cas, O=or acl e, L=r edwoodshor es, ST=ca, C=us';

The string that follows the i dentified gl obal | y as clause is the distinguished name. It
is then necessary to authenticate using this distinguished name. The corresponding SQL
statement to specify authentication using distinguished name is:

ALTER USER jef f GRANT CONNECT THROUGH HR AUTHENTI CATED USI NG DI STI NGUI SHED NAME;
CERTI FI CATE

This is a more encrypted way of passing the credentials of the user, who is to be proxied,
to the database. The certificate contains the distinguished name encoded in it. One way
of generating the certificate is by creating a wallet and then decoding the wallet to get the
certificate. The wallet can be created using runut| nkwal | et . It is then necessary to
authenticate using the generated certificate. The SQL statement for specifying
authentication using certificate is:

ALTER USER jeff GRANT CONNECT THROUGH HR AUTHENTI CATED USI NG CERTI FI CATE;

< Note:

The use of certificates for proxy authentication will be desupported in future
Oracle Database releases.

" Note:

e All the options can be associated with roles.

e When opening a new proxied connection, a new session is started on the
Database server. If you start a global transaction and then call the
openPr oxySessi on method, then, at this point, you are no longer a part of the
global transaction and instead it is like you are in a freshly created JDBC
connection. Typically, this never happens because the openPr oxySessi on
method is called prior to creating or resuming a global transaction. In such a
case, you are still a part of the global transaction.

10.3 Creating Proxy Connections

ORACLE

A user, say j ef f, has to connect to the database through another user, say HR. The proxy
user, HR, should have an active authenticated connection. A proxy session is then created on
this active connection, with the driver issuing a command to the server to create a session for
the user, j ef f. The server returns the new session ID, and the driver sends a session switch
command to switch to this new session.

The JDBC OCI and Thin driver switch sessions in the same manner. The drivers permanently
switch to the new session, j ef f . As a result, the proxy session, HR, is not available until the
new session, j ef f, is closed.

10-3

ORACLE

Chapter 10
Creating Proxy Connections

< Note:

You can use the i sProxySessi on method from the

oracl e.jdbc. Oracl eConnecti on interface to check if the current session
associated with your connection is a proxy session. This method returns

t r ue if the current session associated with the connection is a proxy session.

A new proxy session is opened by using the following method from the
oracle.jdbc. Oracl eConnecti on interface:

voi d openProxySession(int type, java.util.Properties prop) throws
SQLExcept i onOpens

Where,
t ype is the type of the proxy session and can have the following values:

e (Oacl eConnection. PROXYTYPE_USER NAME

This type is used for specifying the user name.
e O acl eConnection. PROXYTYPE_DI STI NGUI SHED NAME

This type is used for specifying the distinguished name of the user.
e (Oacl eConnecti on. PROXYTYPE_CERTI FI CATE

This type is used for specifying the proxy certificate.

prop is the property value of the proxy session and can have the following values:
e PROXY_USER NAME

This property value should be used with the type
Oracl eConnect i on. PROXYTYPE_USER_NAME. The value should be a
java.lang. String.

* PROXY_DI STI NGUI SHED_NAME

This property value should be used with the type
O acl eConnect i on. PROXYTYPE_DI STI NGUI SHED NAME. The value should be a
java.lang. String.

* PROXY_CERTI FI CATE

This property value should be used with the type
O acl eConnect i on. PROXYTYPE_CERTI FI CATE. The value is a byt ep[] array that
contains the certificate.

« PROXY_ROLES
This property value can be used with the following types:
— Oracl eConnecti on. PROXYTYPE_USER NAME
— Oracl eConnecti on. PROXYTYPE_DI STI NGUI SHED NAMVE
— Oracl eConnecti on. PROXYTYPE_CERTI FI CATE
The value should be aj ava. | ang. Stri ng.

° PROXY_SESSI ON

10-4

Chapter 10
Closing a Proxy Session

This property value is used with the cl ose method to close the proxy session.
* PROXY_USER_PASSWORD

This property value should be used with the type
O acl eConnect i on. PROXYTYPE_USER_NAME. The value should be a j ava. | ang. String.

The following code snippet shows the use of the openPr oxySessi on method:

java.util.Properties prop = new java.util.Properties();

prop. put (Oracl eConnect i on. PROXY_USER NAME, "jeff");

String[] roles = {"rolel", "role2"};

prop. put (Oracl eConnect i on. PROXY_ROLES, roles);

conn. openProxySessi on(Or acl eConnect i on. PROXYTYPE_USER_NAME, prop);

10.4 Closing a Proxy Session

You can close the proxy session opened with the Or acl eConnect i on. openPr oxySessi on
method by passing the Or acl eConnect i on. PROXY_SESSI ON parameter to the
O acl eConnecti on. cl ose method in the following way:

O acl eConnecti on. cl ose(Oracl eConnect i on. PROXY_SESSI ON) ;

This is similar to closing a proxy session on a non-cached connection. The standard cl ose
method must be called explicitly to close the connection itself. If the cl ose method is called
directly, without closing the proxy session, then both the proxy session and the connection
are closed. This can be achieved in the following way:

Oracl eConnecti on. cl ose(Oracl eConnecti on. | NVALI D_CONNECTI ON) ;

10.5 Caching Proxy Connections

Proxy connections, like standard connections, can be cached. Caching proxy connections
enhances the performance. To cache a proxy connection, you need to create a connection
using one of the get Connect i on methods on a cache enabled Or acl eDat aSour ce object.

A proxy connection may be cached in the connection cache using the connection attributes
feature of the connection cache. Connection attributes are name/value pairs that are user-
defined and help tag a connection before returning it to the connection cache for reuse. When
the tagged connection is retrieved, it can be directly used without having to do a round-trip to
create or close a proxy session. Universal Connection Pool supports caching of any user/
password authenticated connection. Therefore, any user authenticated proxy connection can
be cached and retrieved.

It is recommended that proxy connections should not be closed without applying the
connection attributes. If a proxy connection is closed without applying the connection
attributes, the connection is returned to the connection cache for reuse, but cannot be
retrieved. The connection caching mechanism does not remember or reset session state.

A proxy connection can be removed from the connection cache by closing the connection
directly.

10.6 Limitations of Proxy Connections

Closing a proxy connection automatically closes every SQL Statement created by the proxy
connection, during the proxy session or prior to the proxy session. This may cause

ORACLE 10-5

ORACLE

Chapter 10
Limitations of Proxy Connections

unexpected consequences on application pooling or statement caching. The following
code samples explain this limitation of proxy connections:

Example 1

public void displayName(String N) // Any function using the Proxy feature
{

Properties props = new Properties();

props. put (" PROXY_USER_NAME", proxyUser);

c. openProxySessi on(Oracl eConnect i on. PROXYTYPE_USER _NAME, props);

c.close(Oracl eConnecti on. PROXY_SESSI ON) ;
}

public static void main (String args[]) throws SQ.Exception

Prepar edSt at enent pst nt

EMPLOYEES WHERE enpl oyee_i d
pstnt.setlnt(1, 205);
Resul tSet rs = pstnt. execut eQuery();
while (rs.next())

{

conn. prepareSt at ement (" SELECT first_nane FROM
?");

di spl ayName(rs. getString(1));
if (rs.isCosed() // The ResultSet is already closed while closing the
connecti on!

{

throw new Exception("Your ResultSet has been prenaturely closed!
Your Statenent object is also dead now. ");

}
}
}
In the preceding example, when you close the proxy connection in the di spl ayName
method, then the Pr epar edSt at ement object and the Resul t Set object also get closed.

So, if you do not check the status of the Resul t Set object inside loop, then the loop
will fail when the next method is called for the second time.

Example 2

PreparedSt at ement pstnt = conn. prepar eSt at enent (" SELECT first_name FROM
EMPLOYEES WHERE enpl oyee_id = ?");

pstnt.setString(1, "205");

ResultSet rs = pstnt.executeQuery();

while (rs.next())

{
}

Properties props = new Properties();
props. put (" PROXY_USER_NAME", proxyUser);

conn. openProxySessi on(Or acl eConnect i on. PROXYTYPE_USER_NAME, props);

conn. cl ose(Oracl eConnect i on. PROXY_SESSI ON) ;

[l Try to use the PreparedStatenment again
pstnt.setString(1l, "28960");

10-6

ORACLE

Chapter 10
Limitations of Proxy Connections

[l This line of code will fail because the Statenent is already closed while closing
the connection!

rs = pstnt.executeQuery();

In the preceding example, the Pr epar edSt at ement object and the Resul t Set object work fine
before opening the proxy connection. But, if you try to execute the same Pr epar edSt at enent
object after closing the proxy connection, then the statement fails.

10-7

Data Access and Manipulation

ORACLE

This part provides a chapter that discusses about accessing and manipulating Oracle data. It
also includes chapters that provide information about Java Database Connectivity (JDBC)
support for user-defined object types, large object (LOB) and binary file (BFILE) locators and
data, object references, and Oracle collections, such as nested tables. This part also
provides chapters that discuss the result set functionality in JDBC, JDBC row sets, and
globalization support provided by Oracle JDBC drivers.

Part IV contains the following chapters:

e Accessing and Manipulating Oracle Data
e Java Streams in JDBC

* Working with Oracle Object Types

* Working with LOBs and BFILEs

* Using Oracle Object References

* Working with Oracle Collections

* Result Set

 JDBC RowSets

* Globalization Support

Accessing and Manipulating Oracle Data

This chapter describes Oracle extensions (or acl e. sgl . * formats) and compares them to
standard Java formats (j ava. sql . *). Using Oracle extensions involves casting your result
sets and statements to Oracl eResul t Set, Oracl eSt at ement , Or acl ePr epar edSt at enent , and
Oracl eCal | abl eSt at enent , as appropriate, and using the get Or acl e(bj ect,

set Oracl eQbj ect, get XXX, and set XXX methods of these classes, where XXX corresponds to
the types in the or acl e. sql package.

This chapter covers the following topics:

- Data Type Mappings

o Data Conversion Considerations

* Result Set and Statement Extensions

e Comparison of Oracle get and set Methods to Standard JDBC
» Using Result Set Metadata Extensions

e About Using SQL CALL and CALL INTO Statements

11.1 Data Type Mappings

The Oracle JDBC drivers support standard JDBC types as well as Oracle-specific data types.
This section documents standard and Oracle-specific SQL-Java default type mappings. This
section contains the following topics:

e Table of Mappings
* Notes Regarding Mappings

11.1.1 Table of Mappings

ORACLE

The following table shows the default mappings between SQL data types, JDBC type codes,
standard Java types, and Oracle extended types.

The SQL Data Types column lists the SQL types that exist in Oracle Database 12c Release 1
(12.1). The JDBC Type Codes column lists data type codes supported by the JDBC standard
and defined in the j ava. sql . Types class or by Oracle in the or acl e. j dbc. Or acl eTypes
class. For standard type codes, the codes are identical in these two classes.

The Standard Java Types column lists standard types defined in the Java language. The
Oracle Extension Java Types column lists the or acl e. sql . * Java types that correspond to
each SQL data type in the database. These are Oracle extensions that let you retrieve all
SQL data in the form of an or acl e. sgl . * Java type.

11-1

Chapter 11
Data Type Mappings

< Note:

In general, the Oracle JDBC drivers are optimized to manipulate SQL data
using the standard JDBC types. In a few specialized cases, it may be
advantageous to use the Oracle extension classes that are available in the
oracl e. sql package. But, Oracle strongly recommends to use the standard
JDBC types instead of Oracle extensions, whenever possible.

Table 11-1 Default Mappings Between SQL Types and Java Types

SQL Data Types JDBC Type Codes Standard Java Types Oracle Extension Java
Types

CHAR java. sql . Types. CHAR java.lang. String oracl e.sgl . CHAR

VARCHAR2 java. sql . Types. VARCHAR java.lang. String oracl e.sgl . CHAR

LONG j ava. sqgl . Types. LONGVARCHAR java.lang. String oracl e.sqgl . CHAR

NUMBER j ava. sqgl . Types. NUMERI C j ava. mat h. Bi gDeci mal oracl e. sql . NUMBER

NUMBER j ava. sql . Types. DECI MAL java. mat h. Bi gDeci mal oracl e. sql . NUMBER

NUMBER java.sql.Types.BI T bool ean oracl e. sql . NUMBER

NUMBER j ava. sql . Types. TI NYI NT byte oracl e. sqgl . NUMBER

NUMBER java. sql . Types. SMALLI NT short oracl e. sql . NUMBER

NUMBER java. sqgl . Types. | NTEGER i nt oracl e. sqgl . NUMBER

NUMBER java.sql . Types. BIG NT | ong oracl e. sqgl . NUMBER

NUMBER j ava. sql . Types. REAL fl oat oracl e. sql . NUMBER

NUMBER j ava. sql . Types. FLOAT doubl e oracl e. sql . NUMBER

NUMBER j ava. sql . Types. DOUBLE doubl e oracl e. sql . NUMBER

RAW j ava. sqgl . Types. Bl NARY byte[] oracle.sqgl . RAW

RAW java. sql . Types. VARBI NARY byte[] oracl e. sqgl . RAW

LONGRAW java. sql . Types. LONGVARBI NARY hyte[] oracl e. sqgl . RAW

DATE j ava. sql . Types. DATE java.sql.Date oracl e. sql . DATE

DATE java.sql . Types. TI ME java.sql.Tine oracl e.sql . DATE

TI MESTAMP java.sql . Types. TI MESTAMP javal.sql.Tinestanp oracle.sqgl.TlI MESTAMP

BLOB java.sql . Types. BLOB java.sql.Blob t(:gacl e.jdbc. OracleBlo

CLOB java. sqgl . Types. CLOB java.sql.Cob g;acl e.jdbc.OracleCo

user-defined j ava. sql . Types. STRUCT java. sql . Struct oracle.jdbc. OracleStr

object uct 3

user-defined java.sql . Types. REF java.sql . Ref oracle.jdbc. O acl eRef 4

reference

user-defined j ava. sql . Types. ARRAY java.sql.Array oracle.jdbc. Oracl eArr

collection ay®

ROW D java. sqgl . Types. RON D java. sql . Rowl d oracle.sqgl.ROND

NCLOB java. sqgl . Types. NCLOB java. sqgl . Nd ob oracl e. sql . NCLOB

ORACLE 11-2

Chapter 11
Data Type Mappings

Table 11-1 (Cont.) Default Mappings Between SQL Types and Java Types
]

SQL Data Types JDBC Type Codes Standard Java Types Oracle Extension Java
Types

NCHAR java. sql . Types. NCHAR java.lang. String oracl e.sgl . CHAR

BFI LE oracl e.jdbc. Oracl eTypes. BFILE NA oracl e.sql . BFILE

(ORACLE EXTENSION)
REF CURSOR oracle.jdbc. Oacl eTypes. CURSO j ava. sql . Resul t Set oracle.jdbc. Oracl eRes

R ul t Set
(ORACLE EXTENSION)

TI MESTAWP oracle.jdbc. Oracl eTypes. TIMES java.sql.Timestanp oracle.sql. Tl MESTAVP
TAWP

(ORACLE EXTENSION)

TI MESTAMP W TH oracl e.jdbc. Oracl eTypes. TIMES java.sql.Tinmestanp oracle.sql. TI MESTAMPT
TI ME ZONE TAWPTZ z

(ORACLE EXTENSION)

TI MESTAMP W TH oracl e. jdbc. Oracl eTypes. TIMES java.sql.Timestanp oracle.sql. TI MESTAVPL
LOCAL TIME TAVPLTZ TZ

ZONE (ORACLE EXTENSION)

1 starting from Oracle Database 12¢ Release 1 (12.1), the or acl e. sqI . BLOB class is deprecated and replaced with the

oracl e.jdbc. O acl eBl ob interface.

Starting from Oracle Database 12c Release 1, the Or acl e. sqI . CLOB class is deprecated and is replaced with the

oracl e.jdbc. O acl ed ob interface.

3 Starting from Oracle Database 12c¢ Release 1 (12.1), the or acl e. sql . STRUCT class is deprecated and replaced with the
oracle.jdbc. Oracl eStruct interface.

4 Starting from Oracle Database 12c¢ Release 1 (12.1), the or acl e. sqI . REF class is deprecated and replaced with the
oracl e.jdbc. O acl eRef interface.

5 Starting from Oracle Database 12¢ Release 1 (12.1), the or acl €. sql . ARRAY class is deprecated and replaced with the
oracl e.jdbc. Oracl eArray interface.

¢ Note:

For database versions, such as 8.1.7, which do not support the TI MESTAMP data
type, TI MESTAMP is mapped to DATE.

Related Topics
e Standard Types Versus Oracle Types
e Supported SQL-JDBC Data Type Mappings

11.1.2 Notes Regarding Mappings

This section provides further details regarding mappings for NUMBER and user-defined types.

ORACLE 11-3

Chapter 11
Data Conversion Considerations

NUMBER Types

For the different type codes that an Oracle NUMBER value can correspond to, call the
getter routine that is appropriate for the size of the data for mapping to work properly.
For example, call get Byt e to get a Java ti nyi nt value for an item x, where -128 < x <
128.

User-Defined Types

User-defined types, such as objects, object references, and collections, map by default
to weak Java types, such asj ava. sql . St ruct, but alternatively can map to strongly
typed custom Java classes. Custom Java classes can implement one of two
interfaces:

* The standard j ava. sql . SQLDat a

e The Oracle-specific or acl e. j dbc. Oracl eDat a
Related Topics

e About Mapping Oracle Objects

e About Creating and Using Custom Object Classes for Oracle Objects

11.2 Data Conversion Considerations

When JDBC programs retrieve SQL data into Java, you can use standard Java types,
or you can use types of the or acl e. sql package. This section covers the following
topics:

e Standard Types Versus Oracle Types
e About Converting SQL NULL Data
e About Testing for NULLs

11.2.1 Standard Types Versus Oracle Types

ORACLE

The Oracle data types in or acl e. sql store data in the same bit format as used by the
database. In versions of the Oracle JDBC drivers prior to Oracle Database 10g, the
Oracle data types were generally more efficient. Starting from Oracle Database 10g,
the JDBC drivers were substantially updated. As a result, in most cases the standard
Java types are preferred to the data types in or acl e. sql . *. In particular,

java.lang. String is much more efficient than or acl e. sql . CHAR.

In general, Oracle recommends that you use the Java standard types. The exceptions
to this are:

* Usetheoracle.jdbc. O acl eDat a rather than the j ava. sql . Sql Dat a if the
O acl eDat a functionality better suits your needs.

* Useoracle. sql . NUMBER rather than j ava. | ang. Doubl e if you need to retain the
exact values of floating point numbers. Oracle NUMBER is a decimal representation
and Java Doubl e and Fl oat are binary representations. Conversion from one
format to the other can result in slight variations in the actual value represented.
Additionally, the range of values that can be represented using the two formats is
different.

11-4

Chapter 11
Data Conversion Considerations

Use oracl e. sql . NUMBER rather than j ava. mat h. Bi gDeci mal when performance is critical
and you are not manipulating the values, just reading and writing them.

e« Useoracle.sql . DATE or oracl e. sgl . TI MESTAMP if you are using a JDK version earlier
than JDK 6. Use j ava. sql . Dat e or j ava. sql . Ti mest anp if you are using JDK 6 or a later
version.

¢ Note:

Due to a bug in all versions of Java prior to JDK 6, construction of
java.lang. Date and j ava. | ang. Ti mest anp objects is slow, especially in
multithreaded environments. This bug is fixed in JDK 6.

e Useoracle. sgl . CHAR only when you have data from some external source, which has
been represented in an Oracle character set encoding. In all other cases, you should use
java.lang. String.

e STRUCT, ARRAY, BLOB, CLOB, REF, and ROW D are all the implementation classes of the
corresponding JDBC standard interface types. So, there is no benefit of using the Oracle
extension types as they are identical to the JDBC standard types.

e BFILE, TI MESTAMPTZ, and TI MESTAMPLTZ have no representation in the JDBC standard.
You must use these Oracle extensions.

* In all other cases, you should use the standard JDBC type rather than the Oracle
extensions.

¢ Note:

If you convert an or acl e. sql data type to a Java standard data type, then the
benefits of using the or acl e. sql data type are lost.

11.2.2 About Converting SQL NULL Data

Java represents a SQL NULL datum by the Java value nul | . Java data types fall into two
categories: primitive types, such as byte, i nt, and fl oat, and object types, such as class
instances. The primitive types cannot represent nul | . Instead, they store nul | as the value
zero, as defined by the JDBC specification. This can lead to ambiguity when you try to
interpret your results.

In contrast, Java object types can represent nul | . The Java language defines an object
container type corresponding to every primitive type that can represent nul | . The object
container types must be used as the targets for SQL data to detect SQL NULL without
ambiguity.

11.2.3 About Testing for NULLS

You cannot use a relational operator to compare NULL values with each other or with other
values. For example, the following SELECT statement does not return any row even if the
COWMM SSI ON_PCT column contains one or more NULL values.

ORACLE 11-5

Chapter 11
Result Set and Statement Extensions

Prepar edSt at enent pstnt = conn. prepareSt at enent (
"SELECT * FROM EMPLOYEES WHERE COWM SSI ON_PCT = ?");
pstnt.setNull (1, java.sql.Types. VARCHAR);

The next example shows how to compare values for equality when some return values
might be NULL. The following code returns all the FI RST_NAME from the EMPLOYEES table
that are NULL, if there is no value of 205 for COW

Prepar edSt at ement pstnt = conn. prepar eSt at ement (" SELECT FI RST_NAME FROM
EMPLOYEES
WHERE COW SSI ON_PCT =? OR ((COW IS NULL) AND (? IS NULL))");
pstnt . set Bi gDeci mal (1, new Bi gDeci mal (205));
pstnt.setNull (2, java.sql.Types. VARCHAR);

11.3 Result Set and Statement Extensions

The St at enent object returns a j ava. sql . Resul t Set . If you want to apply only
standard JDBC methods to the object, then keep it as a Resul t Set type. However, if
you want to use the Oracle extensions on the object, then you must cast it to

O acl eResul t Set . All of the Oracle Result Set extensions are in the

oracle.jdbc. Oacl eResul t Set interface and all the St at ement extensions are in the
oracle.jdbc. Oracl eSt at enent interface.

For example, assuming you have a standard St at enent object st nt, do the following if
you want to use only standard JDBC Resul t Set methods:

ResultSet rs = stnt.executeQuery("SELECT * FROM enpl oyees");

If you need the extended functionality provided by the Oracle extensions to JDBC, you
can select the results into a standard Resul t Set variable and then cast that variable to
Oracl eResul t Set later.

Key extensions to the result set and statement classes include the get Or acl etbj ect
and set Or acl etbj ect methods, used to access and manipulate data in oracl e. sql . *
formats.

11.4 Comparison of Oracle get and set Methods to Standard

JDBC

ORACLE

This section describes get and set methods, particularly the JDBC standard

get Qbj ect and set Obj ect methods and the Oracle-specific get Or acl eQbj ect and

set Oracl eObj ect methods, and how to access data in or acl e. sql . * format compared
with Java format.

You can use the standard get XXX methods for all Oracle SQL types.
This section covers the following topics:

e Standard getObject Method

* Oracle getOracleObject Method

« Summary of getObject and getOracleObject Return Types

e Other getXXX Methods

» Data Types For Returned Objects from getObject and getXXX

11-6

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

* The setObject and setOracleObject Methods
* Other setXXX Methods

Note:

You cannot qualify a column name with a table name and pass it as a parameter to
the get XXX method. For example:

Resul t Set rset = stnt.executeQuery("SELECT enpl oyees. departnent _i d,
departnent. departnent _i d FROM enpl oyees, departnent");
rset.getlnt("enpl oyees. departnent_id");

The get | nt method in the preceding code will throw an exception. To uniquely
identify the columns in the get XXX method, you can either use column index or
specify column aliases in the query and use these aliases in the get XXX method.

11.4.1 Standard getObject Method

The standard get Obj ect method of a result set or callable statement has a return type of
j ava. | ang. Qbj ect . The class of the object returned is based on its SQL type, as follows:

* For SQL data types that are not Oracle-specific, the get Gbj ect method returns the
default Java type corresponding to the SQL type of the column, following the mapping in
the JDBC specification.

* For Oracle-specific data types, get Obj ect returns an object of the appropriate
oracle.sql.* class, such as oracl e. sql . RON D.

» For Oracle database objects, get Obj ect returns a Java object of the class specified in
your type map. Type maps specify a mapping from database named types to Java
classes. The get Obj ect (par anet er _i ndex) method uses the default type map of the
connection. The get Obj ect (par anet er _i ndex, map) enables you to pass in a type map.
If the type map does not provide a mapping for a particular Oracle object, then get Qbj ect
returns an or acl e. sgl . Oracl eStruct object.

11.4.2 Oracle getOracleObject Method

ORACLE

If you want to retrieve data from a result set or callable statement as an oracl e. sql . * object,
then you must follow a special process. For an O acl eResul t Set object, you must cast the
Result Set to oracl e. j dbc. Oracl eResul t Set and then call get Or acl eQbj ect instead of

get Obj ect . The same applies to Cal | abl eSt at ement and

oracle.jdbc. Oracl eCal | abl eSt at enent .

The return type of get Oracl eQbj ect is oracl e. sql . Dat um The actual returned object is an
instance of the appropriate or acl e. sql . * class. The method signature is:

public oracle.sql.Datum get Oracl eQhj ect (i nt paraneter_i ndex)

When you retrieve data into a Dat umvariable, you can use the standard Java i nst anceof
operator to determine which or acl e. sql . * type it really is.

11-7

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

Example: Using getOracleObject with a Result Set

The following example creates a table that contains a column of CHAR data and a
column containing a BFI LE locator. A SELECT statement retrieves the contents of the
table as a result set. The get O acl e(oj ect then retrieves the CHAR data into the
char _dat umvariable and the BFI LE locator into the bf i | e_dat umvariable. Note that
because get Oracl eCbj ect returns a Dat umobject, the return values must be cast to
CHAR and BFI LE, respectively.

stnt.execute ("CREATE TABLE bfile table (x VARCHAR? (30), b BFILE)");
stnt.execute
("I NSERT INTO bfile_ table VALUES (' one', BFILENAME (' TEST DIR, 'filel'))");

Resul t Set rset = stnt.executeQuery ("SELECT * FROM bfile_table");
while (rset.next ())

{
CHAR char _datum = (CHAR) ((Oracl eResultSet)rset).getOaclebbject (1);

BFI LE bfile_datum= (BFILE) ((OracleResultSet)rset).getOacleject (2);

}

Example: Using getOracleObject in a Callable Statement

The following example prepares a call to the procedure nyGet Dat e, which associates a
character string with a date. The program passes "HR' to the prepared call and
registers the DATE type as an output parameter. After the call is run, get O acl e(bj ect
retrieves the date associated with " HR'. Note that because get Or acl e(bj ect returns a
Dat umobiject, the results are cast to DATE.

Oracl eCal | abl eStatenment cstnt = (Oracl eCal | abl eSt at ement) conn. prepar eCal |
("begin nyGetDate (?, ?); end;");

cstmt.setString (1, "HR');
cstnt.registerCQutParameter (2, Types. DATE);
cstnt. execute ();

DATE date = (DATE) ((OracleCallableStatement)cstnt). getOacletoject (2);

11.4.3 Summary of getObject and getOracleObject Return Types

ORACLE

The following table lists the underlying return types for the get bj ect and
get Oracl eCbj ect methods for each Oracle SQL type.

Keep in mind the following when you use these methods:

» get Obj ect always returns data into a j ava. | ang. Gbj ect instance
e getOracl eChj ect always returns data into an or acl e. sql . Dat uminstance

You must cast the returned object to use any special functionality.

Table 11-2 getObject and getOracleObject Return Types

Oracle SQL Type getObject Underlying Return Type getOracleObject Underlying
Return Type

CHAR String oracl e.sgl . CHAR

11-8

ORACLE

Chapter 11

Comparison of Oracle get and set Methods to Standard JDBC

Table 11-2 (Cont.) getObject and getOracleObject Return Types
|

Oracle SQL Type getObject Underlying Return Type

getOracleObject Underlying
Return Type

VARCHAR2
NCHAR
LONG
NUMBER
RAW

L ONGRAW
DATE

TI MESTAMP

TI MESTAMP W TH
TIME ZONE

TI MESTAMP W TH
LOCAL TI ME
ZONE

Bl NARY_FLOAT
Bl NARY_DOUBLE

[NTERVAL DAY
TO SECOND

I NTERVAL YEAR
TO MONTH

RON D

REF CURSCR
BLOB

CLCB

NCLOB

BFI LE

Oracle object

Oracle object
reference

collection (varray
or nested table)

String

String

String

j ava. mat h. Bi gDeci mal
byte[]

byt e[]

java.sql.Date

java.sqgl . Ti nest anp?
oracle.sql . TI MESTAMPTZ

oracle.sql. TI MESTAMPLTZ

j ava. |l ang. Fl oat
j ava.l ang. Doubl e
oracl e.sql . | NTERVALDS

oracl e.sql . | NTERVALYM

oracl e.sqgl . ROND

java. sql . Resul t Set

oracl e.jdbc. Oracl eBl ob2
oracl e.jdbc. Oracl ed ob3
j ava. sql . Nd ob

oracl e.sql . BFILE

class specified in type map

ororacle.sgl.Oacl eStruct 4 (if
no type map entry)

oracl e.jdbc. Oracl eRef®

oracle.jdbc. Oracl eArray®

oracl e.sgl . CHAR

oracl e.sgl . CHAR

oracl e.sql . CHAR

oracl e. sql . NUMBER

oracl e.sgl . RAW

oracl e. sgl . RAW

oracl e. sql . DATE

oracl e.sql . TI MESTAMP
oracl e.sql. TI MESTAMPTZ
oracle.sql. TI MESTAMPLTZ
oracl e.sql. Bl NARY_FLOAT
oracl e. sql . B NARY_DOUBLE
oracl e.sql . | NTERVALDS

oracl e.sql . | NTERVALYM

oracle.sqgl . ROND

(not supported)
oracle.jdbc. Oracl eBl ob
oracl e.jdbc. Oracl ed ob
oracl e.sql.NCLOB

oracl e.sql . BFILE
oracle.jdbc. Oracl eStruct

oracl e.jdbc. O acl eRef

oracl e. sql . ARRAY

1 Resul t Set. get Obj ect returns j ava. sql . Ti mest anp only if the or acl e. j dbc. J2EE13Conpl i ant
connection property is set to TRUE, else the method returns or acl e. sql . TI MESTAMP.

2 Starting from Oracle Database 12¢ Release 1 (12.1), the or acl e. sql . BLOB class is deprecated and replaced
with the or acl e. j dbc. Or acl eBl ob interface.

3 Starting from Oracle Database 12¢ Release 1 (12.1), the or acl e. sql . CLOB class is deprecated and replaced
with the or acl e. j dbc. Or acl ed ob interface.

4 Starting from Oracle Database 12¢ Release 1 (12.1), the or acl e. sql . STRUCT class is deprecated and

replaced with the or acl e. j dbc. Oracl eSt r uct interface.

11-9

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

5 Starting from Oracle Database 12c¢ Release 1, the or acl e. sqI . REF class is deprecated and is
replaced with the or acl e. j dbc. Or acl eRef interface.

6 Starting from Oracle Database 12¢ Release 1, the or acl e. sql . ARRAY class is deprecated and
replaced with the or acl e. j dbc. Oracl eArr ay interface.

¢ Note:

The Resul t Set . get Obj ect method returns j ava. sql . Ti mest anp for the

TI MESTAMP SQL type, only when the connection property

oracl e.jdbc. J2EE13Conpl i ant is set to TRUE. This property has to be set
when the connection is obtained. If this connection property is not set or if it
is set after the connection is obtained, then the Resul t Set . get Obj ect
method returns or acl e. sql . TI MESTAMP for the TI MESTAVP SQL type.

The oracl e. j dbc. J2EE13Conpl i ant connection property can also be set
without changing the code in the following ways:

e Including the oj dbcédns. j ar or oj dbc7dns. j ar files in the CLASSPATH.
These files set or acl e. j dbc. J2EE13Conpl i ant to TRUE by default. These
are specific to the Oracle Application Server release and are not
available as part of the general JDBC release. They are located
in $ORACLE_HOWE/ j dbc/ |'i b.

e Setting the system property by calling the j ava command with the flag -
Dor acl e. j dbc. J2EE13Conpl i ant =t r ue. For example,

java -Doracle.jdbc. J2EE13Conpliant=true ...

When the J2EE13Conpl i ant is set to TRUE the action is as in Table B-3 of the
JDBC specification.

Related Topics
e Supported SQL-JDBC Data Type Mappings

11.4.4 Other getXXX Methods

ORACLE

Standard JDBC provides a get XXX for each standard Java type, such as get Byt e,
get I nt, get Fl oat, and so on. Each of these returns exactly what the method name
implies.

In addition, the Oracl eResul t Set and Oracl eCal | abl eSt at enent interfaces provide a
full complement of get XXX methods corresponding to all the or acl e. sqgl . * types. Each
get XXX method returns an or acl e. sql . XXX object. For example, get RON D returns an
oracl e. sql . RON D object.

There is no performance advantage in using the specific get XXX methods. However,
they do save you the trouble of casting, because the return type is specific to the
object being returned.

This section covers the following topics:

* Return Types of getXXX Methods
» Special Notes about getXXX Methods

11-10

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11.4.4.1 Return Types of getXXX Methods

Refer to the JDBC Javadoc to know the return types for each get XXX method and also which
are Oracle extensions under Java Development Kit (JDK) 6. You must cast the returned
object to Oracl eResul t Set or Oracl eCal | abl eSt at enent to use methods that are Oracle
extensions.

11.4.4.2 Special Notes about getXXX Methods

This section provides additional details about some get XXX methods.

getBigDecimal

JDBC 2.0 simplified method signatures for the get Bi gDeci mal method. The previous input
signatures were:

(int columlndex, int scale) or (String columName, int scale)

The simplified input signature is:

(int columlndex) or (String col umNane)

The scal e parameter, used to specify the number of digits to the right of the decimal, is no
longer necessary. The Oracle JDBC drivers retrieve numeric values with full precision.

getBoolean

Because there is no BOOLEAN database type, when you use get Bool ean a data type
conversion always occurs. The get Bool ean method is supported only for numeric columns.
When applied to these columns, get Bool ean interprets any zero value as f al se and any
other value as t rue. When applied to any other sort of column, get Bool ean raises the
exception j ava. | ang. Nunber For mat Except i on.

11.4.5 Data Types For Returned Objects from getObject and getXXX

ORACLE

The return type of get Qbj ect isj ava. | ang. Obj ect . The returned value is an instance of a
subclass of j ava. | ang. Qbj ect . Similarly, the return type of get Or acl eChj ect is

oracl e. sqgl . Dat um and the class of the returned value is a subclass of or acl e. sgl . Dat um
You typically cast the returned object to the appropriate class to use particular methods and
functionality of that class.

In addition, you have the option of using a specific get XXX method instead of the generic
get Qbj ect or get Oracl eChj ect methods. The get XXX methods enable you to avoid casting,
because the return type of get XXX corresponds to the type of object returned. For example,
the return type of get CLOB is or acl e. sgl . CLOB, as opposed to j ava. | ang. Qbj ect .

Example of Casting Return Values

This example assumes that you have fetched data of the NUMBER type as the first column of a
result set. Because you want to manipulate the NUMBER data without losing precision, cast
your result set to Oracl eResul t Set and use get Oracl eQbj ect to return the NUMBER data in
oracl e.sgl.* format. If you do not cast your result set, then you have to use get Ovj ect,
which returns your numeric data into a Java Fl oat and loses some of the precision of your
SQL data.

11-11

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

The get O acl ebj ect method returns an or acl e. sql . NUMBER object into an

oracl e. sql . Dat umreturn variable unless you cast the output. Cast the

get Oracl eQbj ect output to or acl e. sql . NUMBER if you want to use a NUMBER return
variable and any of the special functionality of that class.

NUMBER x = (NUMBER) ors. get Oracl eQbj ect(1);

11.4.6 The setObject and setOracleObject Methods

Just as there is a standard get Gbj ect and Oracle-specific get Or acl eQbj ect in result
sets and callable statements, there are also standard set Cbj ect and Oracle-specific
set Oracl eQbj ect methods in Oracl ePr epar edSt at ement and

Oracl eCal | abl eSt at enent . The set Oracl eObj ect methods take or acl e. sql . * input
parameters.

To bind standard Java types to a prepared statement or callable statement, use the
set Obj ect method, which takes a j ava. | ang. Obj ect as input. The set Obj ect method
does support a few of the oracl e. sql . * types. However, the method has been
implemented so that you can enter instances of the or acl e. sql . * classes that
correspond to the following JDBC standard types: Bl ob, C ob, Struct, Ref, and Array.

To bind or acl e. sql . * types to a prepared statement or callable statement, use the
set Oracl eObj ect method, which takes a subclass of or acl e. sql . Dat umas input. To
use set Oracl e(bj ect, you must cast your prepared statement or callable statement to
O acl ePrepar edSt at enent or Oracl eCal | abl eSt at errent .

Example of Using setObject and setOracleObject

For a prepared statement, the set Or acl eObj ect method binds the or acl e. sqgl . CHAR
data represented by the char Val variable to the prepared statement. To bind the
oracl e. sqgl.* data, the prepared statement must be cast to

O acl ePrepar edSt at enent . Similarly, the set Gbj ect method binds the Java Stri ng
data represented by the variable st rVal .

Prepar edSt at ement ps= conn. prepareStat ement ("t ext _of _prepared_statenment");
((Oracl ePrepar edSt at enent) ps) . set Oracl eQbj ect (1, charVal) ;
ps. set vj ect (2, strVal);

11.4.7 Other setXXX Methods

ORACLE

As with the get XXX methods, there are several specific set XXX methods. Standard
set XXX methods are provided for binding standard Java types, and Oracle-specific
set XXX methods are provided for binding Oracle-specific types.

Similarly, there are two forms of the set Nul | method:

e void setNull (int paraneterlndex, int sqgl Type)

This is specified in the standard j ava. sql . Prepar edSt at enent interface. This
signature takes a parameter index and a SQL type code defined by the

java. sqgl . Types or oracl e. j dbc. O acl eTypes class. Use this signature to set an
object other than a REF, ARRAY, or STRUCT to NULL.

e void setNull (int paraneterlndex, int sql Type, String sql _type_nane)

With JDBC 2.0, this signature is also specified in the standard
j ava. sql . PreparedSt at enent interface. This method takes a SQL type name in

11-12

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

addition to a parameter index and a SQL type code. Use this method when the SQL type
code is j ava. sql . Types. REF, ARRAY, or STRUCT. If the type code is other than REF, ARRAY,
or STRUCT, then the given SQL type name is ignored.

Similarly, the r egi st er Qut Par anet er method has a signature for use with REF, ARRAY, or
STRUCT data:

voi d regi sterQut Paranet er
(int parameterlndex, int sql Type, String sql _type_nane)

Binding Oracle-specific types using the appropriate set XXX methods, instead of the methods
used for binding standard Java types, may offer some performance advantage.

This section covers the following topics:

e Input Data Binding
* Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

11.4.7.1 Input Data Binding

ORACLE

There are three way to bind data for input:

» Direct binding where the data itself is placed in a bind buffer
» Stream binding where the data is streamed

» LOB binding where a temporary lob is created, the data placed in the LOB using the LOB
APIs, and the bytes of the LOB locator are placed in the bind buffer

The three kinds of binding have some differences in performance and have an impact on
batching. Direct binding is fast and batching is fine. Stream binding is slower, may require
multiple round trips, and turns batching off. LOB binding is very slow and requires many
round trips. Batching works, but might be a bad idea. They also have different size limits,
depending on the type of the SQL statement.

For SQL parameters, the length of standard parameter types, such as RAWand VARCHAR?, is
fixed by the size of the target column. For PL/SQL parameters, the size is limited to a fixed
number of bytes, which is 32766.

In Oracle Database 10g release 2, certain changes were made to the set Stri ng,
set Char act er Stream set Asci i Stream set Byt es, and set Bi nar ySt r eammethods of
Prepar edSt at enent . The original behavior of these APIs were:

e setString: Direct bind of characters

e setCharacter Stream Stream bind of characters
e setAscii Stream Stream bind of bytes

* setBytes: Direct bind of bytes

e setBinaryStream Stream bind of bytes

Starting from Oracle Database 10g Release 2, automatic switching between binding modes,
based on the data size and on the type of the SQL statement is provided.

setBytes and setBinaryStream
For SQL, direct bind is used for size up to 2000 and stream bind for larger.

For PL/SQL direct bind is used for size up to 32766 and LOB bind is used for larger.

11-13

ORACLE

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

setString, setCharacterStream, and setAsciiStream

For SQL, direct bind is used up to 32766 Java characters and stream bind is used for
larger. This is independent of character set.

For PL/SQL, you must be careful about the byte size of the character data in the
database character set or the national character set depending on the setting of the
form of use parameter. Direct bind is used for data where the byte length is less than
32766 and LOB bind is used for larger.

For fixed length character sets, multiply the length of the Java character data by the
fixed character size in bytes and compare that to the restrictive values. For variable
length character sets, there are three cases based on the Java character length, as
follows:

» If character length is less than 32766 divided by the maximum character size, then
direct bind is used.

» If character length is greater than 32766 divided by the minimum character size,
then LOB bind is used.

» If character length is in between and if the actual length of the converted bytes is
less than 32766, then direct bind is used, else LOB bind is used.

¢ Note:

When a PL/SQL procedure is embedded in a SQL statement, the binding
action is different.

The server-side internal driver has the following additional limitations:

* setString, setCharacterStream and set ASCl | St reamAPIs are not supported for
SQL CLOB columns when the data size in characters is over 32767 bytes

* setBytes and set Bi naryStreamAPIs are not supported for SQL BLOB columns
when the data size is over 32767 bytes

Note:

Do not use these APIs with the server-side internal driver, without careful
checking of the data size in client code.

Related Topics

e Data Interface for LOBs

See Also:

JDBC Release Notes for further discussion and possible workarounds

11-14

Chapter 11
Comparison of Oracle get and set Methods to Standard JDBC

11.4.7.2 Method setFixedCHAR for Binding CHAR Data into WHERE Clauses

ORACLE

CHAR data in the database is padded to the column width. This leads to a limitation in using
the set CHAR method to bind character data into the WHERE clause of a SELECT statement. The
character data in the WHERE clause must also be padded to the column width to produce a
match in the SELECT statement. This is especially troublesome if you do not know the column
width.

To remedy this, Oracle has added the set Fi xedCHAR method to the
O acl ePreparedSt at ement class. This method runs a non-padded comparison.

¢ Note:
« Remember to cast your prepared statement object to
O acl ePrepar edSt at enent to use the set Fi xedCHAR method.

e There is no need to use set Fi xedCHAR for an | NSERT statement. The database
always automatically pads the data to the column width as it inserts it.

Example

The following example demonstrates the difference between the set CHAR and set Fi xedCHAR
methods.

[* Schema is :
create table nmy_table (coll char(10));
insert into my_table values ('JDBC);
*|
PreparedSt at ement pstnt = conn. prepar eSt at enent
("select count(*) fromny_table where coll = ?");

pstnt.setString (1, "JDBC'); // Set the Bind Val ue

runQuery (pstnt); /1 This will print " No of rows are 0"
CHAR ch = new CHAR("JDBC ", null);

((Oracl ePreparedStatenent) pstnt). set CHAR(1, ch); // Pad it to 10 bytes
runQuery (pstnt); /1 This will print "No of rows are 1"

((Oracl ePreparedSt at enent) pstnt) . set Fi xedCHAR(1, "JDBC');
runQuery (pstnt); /1 This will print "No of rows are 1"

voi d runQuery (PreparedStatenent ps)

{
/1 Run the Query
ResultSet rs = pstnt.executeQuery ();

while (rs.next())
Systemout.printin("No of rows are " + rs.getint(1));

rs.close();
rs = null;

11-15

Chapter 11
Using Result Set Metadata Extensions

11.5 Using Result Set Metadata Extensions

The oracl e. j dbc. Oracl eResul t Set Met aDat a interface is JDBC 2.0-compliant but
does not implement the get SchemaName and get Tabl eNane methods because Oracle
Database does not make this feasible.

The following code snippet uses several of the methods in the
O acl eResul t Set Met adat a interface to retrieve the number of columns from the
EMPLOYEES table and the numerical type and SQL type name of each column:

Dat abaseMet aDat a dbnd = conn. get Met aDat a() ;
Resul t Set rset = dbnd. get Tables("", "HR', "EMPLOYEES', null);

while (rset.next())

{
O acl eResul t Set Met aData orsnd = ((Oracl eResul t Set)rset). get MetabData();
int nunCol ums = orsnd. get Col umCount () ;
Systemout. println("Numof colums =" + nunCol ums);

for (int i=0; i<numColums; i ++)
{
Systemout.print ("Colum Name=" + orsnd. get Col utmName (i +1));
Systemout.print (" Type=" + orsnd. get Col umType (i + 1));
Systemout.println (" Type Name=" + orsnd. get Col umTypeNane (i + 1));
}
}

The program returns the following output:

Num of colums = 5

Col um Nane=TABLE CAT Type=12 Type Nanme=VARCHAR2

Col um Nane=TABLE_SCHEM Type=12 Type Name=VARCHAR?
Col um Nane=TABLE_NAME Type=12 Type Name=VARCHAR2
Col um Nane=TABLE_TYPE Type=12 Type Name=VARCHAR2
Col um Nane=TABLE_REMARKS Type=12 Type Name=VARCHAR2

11.6 About Using SQL CALL and CALL INTO Statements

You can use the CALL statement to execute a routine from within SQL in the following
two ways:

" Note:

A routine is a procedure or a function that is standalone or is defined within a
type or package. You must have EXECUTE privilege on the standalone routine
or on the type or package in which the routine is defined.

» By issuing a call to the routine itself by name or by using the routi ne_cl ause
e By using an obj ect _access_expr essi on inside the type of an expression

You can specify one or more arguments to the routine, if the routine takes arguments.
You can use positional, named, or mixed notation for argument.

ORACLE 11-16

ORACLE

Chapter 11
About Using SQL CALL and CALL INTO Statements

CALL INTO Statement

The | NTO clause applies only to calls to functions. You can use the following types of
variables with this clause:

e Host variable

e Indicator variable

See Also:

Oracle Database SQL Language Reference for more information

PL/SQL Blocks

The basic unit in PL/SQL is a block. All PL/SQL programs are made up of blocks, which can
be nested within each other. A PL/SQL block has three parts: a declarative part, an
executable part, and an exception-handling part. You get the following advantages by using
PL/SQL blocks in your application:

¢ Better performance

e Higher productivity

e Full portability

e Tight integration with Oracle

e Tight security

11-17

Java Streams in JDBC

This chapter describes how the Oracle Java Database Connectivity (JDBC) drivers handle
Java streams for several data types. Data streams enable you to read LONG column data of
up to 2 gigabytes (GB).

This chapter covers the following topics:

Overview of Java Streams

About Streaming LONG or LONG RAW Columns

About Streaming CHAR_ VARCHAR_ or RAW Columns
About Streaming LOBs and External Files

Relation Between Data Streaming and Multiple Columns
Relation Between Streaming and Row Prefetching
Closing a Stream

Notes and Precautions on Streams

12.1 Overview of Java Streams

Oracle JDBC drivers support the manipulation of data streams in either direction between
server and client. The drivers support all stream conversions: binary, ASCII, and Unicode.
Following is a brief description of each type of stream:

ORACLE

Binary
Used for RAWbytes of data, and corresponds to the get Bi nar ySt r eammethod
ASCII

Used for ASCII bytes in ISO-Latin-1 encoding, and corresponds to the get Asci i Stream
method

Unicode

Used for Unicode bytes with the UTF- 16 encoding, and corresponds to the
get Uni codeSt r eammethod

The get Bi narySt ream get Asci i St ream and get Uni codeSt r eammethods return the bytes of
data in an | nput St r eamobject.

" Note:

Starting from Oracle Database 12c Release 1 (12.1), the
CONNECTI ON_PROPERTY_STREAM CHUNK_SI ZE is deprecated and the driver does not
use it internally for setting the stream chunk size.

12-1

Chapter 12
About Streaming LONG or LONG RAW Columns

¢ See Also:
Working with LOBs and BFILEs

12.2 About Streaming LONG or LONG RAW Columns

This section covers the following topics:

* Overview of Streaming LONG or LONG RAW Columns
* LONG RAW Data Conversions

* LONG Data Conversions

* Examples:Streaming LONG RAW Data

* About Avoiding Streaming for LONG or LONG RAW

12.2.1 Overview of Streaming LONG or LONG RAW Columns

When a query selects one or more LONG or LONG RAWcolumns, the JDBC driver
transfers these columns to the client in streaming mode. In streaming mode, the JDBC
driver does not read the column data from the network for LONG or LONG RAWcolumns,
until required. The column data remains in the network communications channel until
your code calls a get XXX method to read the column data. Even after the call, the
column data is read only as needed to populate return value from the getXXX call.
Because the column data remains in the communications channel, the streaming
mode interferes with all other use of the connection. Any use of the connection, other
than reading the column data, will discard the column data from the channel. While the
streaming mode makes efficient use of memory and minimizes network round trips, it
interferes with many other database operations.

" Note:

Oracle recommends avoiding LONG and LONG RAWcolumns. Use LOB instead.

To access the data in a LONG column, you can get the column as a Java | nput St ream
object and use the r ead method of the | nput St r eamobject. As an alternative, you can
get the data as a Stri ng or byt e array. In this case, the driver will do the streaming for
you.

You can get LONG and LONG RAWdata with any of the three stream types. The driver
performs conversions for you, depending on the character set of the database and the
driver.

ORACLE 12-2

Chapter 12
About Streaming LONG or LONG RAW Columns

< Note:

Do not create tables with LONG columns. Use large object (LOB) columns, CLOB,
NCLOB, and BLOB, instead. LONG columns are supported only for backward
compatibility. Oracle recommends that you convert existing LONG columns to LOB
columns. LOB columns are subject to far fewer restrictions than LONG columns.

12.2.2 LONG RAW Data Conversions

A call to get Bi narySt r eamreturns RAWdata. A call to get Asci i St r eamconverts the RAWdata
to hexadecimal and returns the ASCII representation. A call to get Uni codeSt r eamconverts
the RAWdata to hexadecimal and returns the Unicode characters.

12.2.3 LONG Data Conversions

When you get LONG data with get Asci i St r eam the drivers assume that the underlying data in
the database uses an US7ASCI | or WE8I SCB859P1 character set. If the assumption is true, then
the drivers return bytes corresponding to ASCII characters. If the database is not using an
US7ASCI | or WE8I SOB859P1 character set, a call to get Asci i St r eamreturns meaningless
information.

When you get LONG data with get Uni codeSt r eam you get a stream of Unicode characters in
the UTF- 16 encoding. This applies to all underlying database character sets that Oracle
supports.

When you get LONG data with get Bi nar ySt r eam there are two possible cases:

» If the driver is JDBC OCI and the client character set is not US7TASCI | or V\E8I SO8859P1,
then a call to get Bi nar ySt r eamreturns UTF- 8. If the client character set is US7TASCI | or
VE8I SOBB59P1, then the call returns a US7ASCI | stream of bytes.

» If the driver is JDBC Thin and the database character set is not USTASCI | or
VE8I SCBB59P1, then a call to get Bi narySt r eamreturns UTF- 8. If the server-side character
set is US7ASCI | or ViE8I S(B859P1, then the call returns a US7ASCI | stream of bytes.

" Note:

Receiving LONG or LONG RAWcolumns as a stream requires you to pay special
attention to the order in which you retrieve columns from the database.

The following table summarizes LONG and LONG RAWdata conversions for each stream type.

ORACLE 12-3

Chapter 12
About Streaming LONG or LONG RAW Columns

Table 12-1 LONG and LONG RAW Data Conversions
]

Data BinaryStream AsciiStream UnicodeStrea
type m
LONG Bytes representing characters in Bytes representing Bytes
Unicode UTF- 8. The bytes can characters in ISO-Latin-1 representing
represent characters in USTASCI | (WE8I SO8859P1) encoding characters in
or \E8| SCB859P1 if the database Unicode
character set is USTASCI | or UTF- 16
VESI SOB859P1. encoding
LONG unchanged data ASCII representation of Unicode
RAW hexadecimal bytes representation
of hexadecimal
bytes

Related Topics
e Globalization Support

* Relation Between Data Streaming and Multiple Columns

12.2.4 Examples:Streaming LONG RAW Data

ORACLE

One of the features of a get XXXSt r eammethod is that it enables you to fetch data
incrementally. In contrast, get Byt es fetches all the data in one call. This section
contains two examples of getting a stream of binary data. The first version uses the
get Bi nar ySt r eammethod to obtain LONG RAWdata, and the second version uses the
get Byt es method.

Getting a LONG RAW Data Column with getBinaryStream

This example writes the contents of a LONG RAWcolumn to a file on the local file system.
In this case, the driver fetches the data incrementally.

The following code creates the table that stores a column of LONG RAWdata associated
with the name LESLIE:

-- SQ code:
create table streanmexanpl e (NAME varchar2 (256), G FDATA long raw);
insert into streanmexanple values ('LESLIE, '00010203040506070809");

The following Java code snippet writes the data from the LONG RAWcolumn into a file
calledleslie.gif:

Resul t Set rset = stnt.executeQuery
("sel ect G FDATA from streamexanpl e where NAME=' LESLIE ");

/1 get first row
if (rset.next())
{
Il Get the GF data as a streamfromOacle to the client
Input Stream gi f _data = rset.getBinaryStream (1);
try
{
FileQutputStreamfile = null;
file = new FileQutputStream ("leslie.gif");
int chunk;

12-4

ORACLE

Chapter 12
About Streaming LONG or LONG RAW Columns

while ((chunk = gif_data.read()) !'=-1)
file wite(chunk);
}
catch (Exception e)
{

String err = e.toString();
Systemout.printlin(err);

}
finally
if file!=null()
file.close();
}

}

In this example, the | nput St r eamobject returned by the call to get Bi narySt r eamreads the
data directly from the database connection.

Getting a LONG RAW Data Column with getBytes

This example gets the content of the G FDATA column with get Byt es instead of
get Bi narySt ream In this case, the driver fetches all the data in one call and stores it in a byte
array. The code snippet is as follows:

Resul t Set rset2 = stnt.executeQuery
("sel ect G FDATA from streanexanpl e where NAME=' LESLIE ");

Il get first row
if (rset2.next())

{
/] Get the GF data as a streamfromOacle to the client
byte[] bytes = rset2. getBytes(1);
try
{
FileQutputStreamfile = null;
file = new FileQutputStream ("leslie2.gif");
file.wite(bytes);
}
catch (Exception e)
{
String err = e.toString();
Systemout.printin(err);
1
finally
if file !=null()
file.close();
}
}

Because a LONG RAWcolumn can contain up to 2 gigabytes of data, the get Byt es example
can use much more memory than the get Bi nar ySt r eamexample. Use streams if you do not
know the maximum size of the data in your LONG or LONG RAWcolumns.

12-5

Chapter 12
About Streaming LONG or LONG RAW Columns

12.2.5 About Avoiding Streaming for LONG or LONG RAW

< Note:

Starting from Oracle Database 12¢ Release 1 (12.1), this method is
deprecated.

The JDBC driver automatically streams any LONGand LONG RAWcolumns. However,
there may be situations where you want to avoid data streaming. For example, if you
have a very small LONG column, then you may want to avoid returning the data
incrementally and, instead, return the data in one call.

To avoid streaming, use the def i neCol umType method to redefine the type of the LONG
column. For example, if you redefine the LONG or LONG RAWcolumn as VARCHAR or
VARBI NARY type, then the driver will not automatically stream the data.

If you redefine column types with def i neCol umType, then you must declare the types
of the columns in the query. If you do not declare the types of the columns, then
execut eQuery will fail. In addition, you must cast the St at enent object to
oracle.jdbc. Oracl eStatenent.

As an added benefit, using def i neCol umType saves the OCI driver a database round-
trip when running the query. Without def i neCol umType, these JDBC drivers must
request the data types of the column types. The JDBC Thin driver derives no benefit
from def i neCol umType, because it always uses the minimum number of round-trips.

Using the example from the previous section, the St at ement object st nt is cast to
Oracl eSt at ement and the column containing LONG RAWdata is redefined to be of the
type VARBI NARAY. The data is not streamed. Instead, it is returned in a byte array. The
code snippet is as follows:

/lcast the statement stnt to an Oracl eStat ement
oracle.jdbc. Oracl eStatement ostnt =
(oracle.jdbc. Oracl eStatement)stnt;

/Iredefine the LONG colum at index position 1 to VARBI NARY
ostnt . defineCol umType(1, Types. VARBI NARY);

/1 Do a query to get the imges named 'LESLIE
Resul t Set rset = ostnt.executeQuery
("sel ect A FDATA from streanexanpl e where NAVE=' LESLIE ");

/1 The data is not streamed here
rset.next();
byte [] bytes = rset.getBytes(1);

Related Topics

* Deprecated Features

ORACLE 12-6

Chapter 12
About Streaming CHAR, VARCHAR, or RAW Columns

12.3 About Streaming CHAR, VARCHAR, or RAW Columns

¢ Note:

Starting from Oracle Database 12¢ Release 1 (12.1), this method is deprecated..

If you use the def i neCol umType Oracle extension to redefine a CHAR, VARCHAR, or RAW
column as a LONGVARCHAR or LONGVARBI NARY, then you can get the column as a stream. The
program will behave as if the column were actually of type LONG or LONG RAW Note that there
is not much point to this, because these columns are usually short.

If you try to get a CHAR, VARCHAR, or RAWcolumn as a data stream without redefining the
column type, then the JDBC driver will return a Java | nput St r eam but no real streaming
occurs. In the case of these data types, the JDBC driver fully fetches the data into an in-
memory buffer during a call to the execut eQuer y method or the next method. The

get XXXSt r eamentry points return a stream that reads data from this buffer.

Related Topics

e Deprecated Features

12.4 About Streaming LOBs and External Files

ORACLE

The term large object (LOB) refers to a data item that is too large to be stored directly in a
database table. Instead, a locator is stored in the database table, which points to the location
of the actual data. External files are managed similarly. The JDBC drivers can support the
following types through the use of streams:

* Binary large object (BLOB)
For unstructured binary data
e Character large object (CLOB)
For character data
* National Character large object (NCLOB)
For national character data
* Binary file (BFILE)
For external files

LOBs and BFILEs behave differently from the other types of streaming data described in this
chapter. Instead of storing the actual data in the table, a locator is stored. The actual data can
be manipulated using this locator, including reading and writing the data as a stream. Even
when streaming, only the chunk of data (defined by a size) is streamed across the network.
By contrast, when streaming a LONG or LONG RAW the entire data is streamed across the
network.

Streaming BLOBs, CLOBs, and NCLOBs

When a query fetches one or more BLOB, CLOB, or NCLOB columns, the JDBC driver transfers
the data to the client. This data can be accessed as a stream. To manipulate BLOB, CLCB, or

12-7

Chapter 12
Relation Between Data Streaming and Multiple Columns

NCLOB data from JDBC, use methods in the Oracle extension classes
oracle.sql.BLOB, oracl e.sql.CLOB and oracl e. sgl . NCLOB. These classes provide
specific functionality, such as reading from the BLOB, CLOB, or NCLOB into an input
stream, writing from an output stream into a BLOB, CLOB, or NCLOB, determining the
length of a BLOB, CLOB, or NCLOB, and closing a BLOB, CLOB, or NCLOB.

¢ Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the concrete classes in
the oracl e. sql package are deprecated and replaced with the interfaces in
the or acl e. j dbc package. Oracle recommends you to use the methods
available in the j ava. sql package, where possible, for standard compatibility
and methods available in the or acl e. j dbc package for Oracle specific
extensions. Refer to MoS Note 1364193.1 for more information about these
interfaces.

See Also:

"Data Interface for LOBs"

Streaming BFILEs

An external file, or BFILE, is used to store a locator to a file outside the database. The
file can be stored somewhere on the file system of the data server. The locator points
to the actual location of the file.

When a query fetches one or more BFI LE columns, the JDBC driver transfers the file to
the client as required. The data can be accessed as a stream To manipulate BFILE
data from JDBC, use methods in the Oracle extension class or acl e. sql . BFI LE. This
class provides specific functionality, such as reading from the BFILE into an input
stream, writing from an output stream into a BFILE, determining the length of a BFILE,
and closing a BFILE.

12.5 Relation Between Data Streaming and Multiple

Columns

ORACLE

If a query fetches multiple columns and one of the columns contains a data stream,
then the contents of the columns following the stream column are not available until
the stream has been read, and the stream column is no longer available once any
following column is read. Any attempt to read a column beyond a streaming column
closes the streaming column.

Streaming Example with Multiple Columns
Consider the following code:

Resul t Set rset = stnt.executeQuery
("sel ect DATECOL, LONGCOL, NUMBERCOL from TABLE");
whil e rset. next()

12-8

ORACLE

Chapter 12
Relation Between Data Streaming and Multiple Columns

/1get the date data
java.sql .Date date = rset.getDate(1);

/1 get the stream ng data
Input Streamis = rset.getAsciiStream 2);

Il Cpen a file to store the gif data
FileQutputStreamfile = new Fil eQutput Stream ("ascii.dat");

/1 Loop, reading fromthe ascii stream and
Il wite to the file
int chunk;
while ((chunk = is.read ()) !'=-1)
file wite(chunk);
/I Cose the file
file.close();

/1 get the nunmber colum data
int n=rset.getlnt(3);
}

The incoming data for each row has the following shape:

<a date><the characters of the long col utm><a nunber >

As you process each row of the result set, you must complete any processing of the stream
column before reading the number column.

Bypassing Streaming Data Columns

There may be situations where you want to avoid reading a column that contains streaming
data. If you do not want to read such data, then call the cl ose method of the stream object.
This method discards the stream data and enables the driver to continue reading data from
all the columns that contain non-streaming data and follow the column containing streaming
data. Even though you are intentionally discarding the stream, it is a good programming
practice to retrieve the columns in the same order as in the SELECT statement.

In the following example, the stream data in the LONG column is discarded and the data from
only the DATE and NUMBER column is recovered:

Resul t Set rset = stnt.executeQuery
("sel ect DATECOL, LONGCOL, NUMBERCOL from TABLE');

whil e rset. next()

{
/lget the date

java.sql .Date date = rset.getDate(1);

/] access the streamdata and discard it with close()
InputStreamis = rset.getAsciiStrean(2);
is.close();

/'l get the nunber colum data
int n=rset.getlnt(3);
}

Related Topics

e About Streaming Data Precautions

12-9

Chapter 12
Closing a Stream

e About Streaming LOBs and External Files

12.6 Closing a Stream

You can discard the data from a stream at any time by calling the cl ose method. It is a
good programming practice to close the stream when you no longer need it. For
example:

Input Streamis = rset.getAsciiStream 2);
is.close();

< Note:

Closing a stream has little performance effect on a LONG or LONG RAW
column. All of the data still move across the network and the driver must read
the bits from the network.

Related Topics
* Relation Between Data Streaming and Multiple Columns

* About Streaming Data Precautions

12.7 Notes and Precautions on Streams

This section discusses several cautionary issues regarding the use of streams:
e About Streaming Data Precautions
* About Using Streams to Avoid Limits on setBytes and setString

* Relation Between Streaming and Row Prefetching

12.7.1 About Streaming Data Precautions

ORACLE

This section describes some of the precautions you must take to ensure that you do
not accidentally discard or lose your stream data. The drivers automatically discard
stream data if you perform any JDBC operation that communicates with the database,
other than reading the current stream. Two common precautions are:

e Use the stream data after you access it.

To recover the data from a column containing a data stream, it is not enough to
fetch the column. You must immediately process the contents of the column.
Otherwise, the contents will be discarded when you fetch the next column.

e Call the stream column in the same order as in the SELECT statement.

If your query fetches multiple columns, the database sends each row as a set of
bytes representing the columns in the SELECT order. If one of the columns contains
stream data, then the database sends the entire data stream before proceeding to
the next column.

If you do not use the order as in the SELECT statement to access data, then you
can lose the stream data. That is, if you bypass the stream data column and

12-10

Chapter 12
Notes and Precautions on Streams

access data in a column that follows it, then the stream data will be lost. For example, if
you try to access the data for the NUMBER column before reading the data from the stream
data column, then the JDBC driver first reads then discards the streaming data
automatically. This can be very inefficient if the LONG column contains a large amount of
data.

If you try to access the LONG column later in the program, then the data will not be
available and the driver will return a "St ream C osed" error.

The later point is illustrated in the following example:

Resul t Set rset = stnt.executeQuery
("sel ect DATECOL, LONGCOL, NUMBERCOL from TABLE');
whil e rset.next()

{
int n=rset.getlnt(3); // This discards the streanming data
Input Streamis = rset.getAsciiStream 2);
/1 Raises an error: stream cl osed.
}

If you get the stream but do not use it before you get the NUMBER column, then the stream still
closes automatically:

Resul t Set rset = stnt.executeQuery
("sel ect DATECOL, LONGCOL, NUMBERCCL from TABLE");
whil e rset.next()

{
InputStreamis = rset.getAsciiStream2); // Get the stream

int n =rset.getlnt(3);
/] Discards streaning data and cl oses the stream

}

int ¢ =is.read(); // cis -1 no nore characters to read-stream closed

12.7.2 About Using Streams to Avoid Limits on setBytes and setString

Starting from Oracle Database 12c, the size limit of the data that is used with the set Byt es
and set St ri ng methods, have been increased significantly. Any Java byt e array can be
passed to set Byt es, and any Java St ri ng can be passed to set Stri ng. The JDBC driver
automatically switches to using set Bi nar ySt r eamor set Char act er St r eamor to using

set Byt esFor Bl ob or set St ri ngFor Cl ob, depending on the size of the data, whether the
statement is SQL or PL/SQL, and the driver used.

There are some limitation with earlier versions of Oracle Database and in the server-side
internal driver.

Related Topics

» Data Interface for LOBs

12.7.3 Relation Between Streaming and Row Prefetching

If the JDBC driver encounters a column containing a data stream, then row fetch size is set
back to one. Row fetch size is an Oracle performance enhancement that enables multiple
rows of data to be retrieved with each trip to the database.

ORACLE 12-11

Working with Oracle Object Types

This chapter describes the Java Database Connectivity (JDBC) support for user-defined
object types. It discusses functionality of the generic, weakly typed or acl e. sql . STRUCT class,
as well as how to map to custom Java classes that implement either the JDBC standard
SQLDat a interface or the Oracle-specific Or acl eDat a interface.

" Note:

Starting from Oracle Database 12c Release 1 (12.1), the or acl e. sgl . STRUCT class
is deprecated and replaced with the oracl e. j dbc. Oracl eSt ruct interface, which is
a part of the or acl e. j dbc package. Oracle strongly recommends you to use the
methods available in the j ava. sql package, where possible, for standard
compatibility and methods available in the or acl e. j dbc package for Oracle specific
extensions. Refer to MoS Note 1364193.1 for more information about the
oracle.jdbc. Oracl eStruct interface.

The following topics are covered:

» About Mapping Oracle Objects

* About Using the Default STRUCT Class for Oracle Objects

» About Creating and Using Custom Object Classes for Oracle Objects
* Object-Type Inheritance

» About Describing an Object Type

Related Topics
e About Using PL/SQL Types

13.1 About Mapping Oracle Objects

ORACLE

Oracle object types provide support for composite data structures in the database. For
example, you can define a Per son type that has the attributes nane of CHAR type, phoneNunber
of CHAR type, and enpl oyeeNunber of NUMBER type.

Oracle provides tight integration between its Oracle object features and its JDBC functionality.
You can use a standard, generic JDBC type to map to Oracle objects, or you can customize
the mapping by creating custom Java type definition classes.

13-1

Chapter 13
About Using the Default STRUCT Class for Oracle Objects

< Note:

In this book, Java classes that you create to map to Oracle objects will be
referred to as custom Java classes or, more specifically, custom object
classes. This is as opposed to custom references classes, which are Java
classes that map to object references, and custom collection classes,
which are Java classes that map to Oracle collections.

Custom object classes can implement either a standard JDBC interface or an Oracle
extension interface to read and write data. JDBC materializes Oracle objects as
instances of particular Java classes. Two main steps in using JDBC to access Oracle
objects are:

1. Creating the Java classes for the Oracle objects

2. Populating these classes. You have the following options:

Let JDBC materialize the object as a STRUCT object.
Explicitly specify the mappings between Oracle objects and Java classes.

This includes customizing your Java classes for object data. The driver then
must be able to populate instances of the custom object classes that you
specify. This imposes a set of constraints on the Java classes. To satisfy these
constraints, you can define your classes to implement either the JDBC
standard j ava. sql . SQLDat a interface or the Oracle extension

oracl e.jdbc. O acl eDat a interface.

< Note:

When you use the SQLDat a interface, you must use a Java type map to
specify your SQL-Java mapping, unless weakly typed j ava. sql . St ruct
objects will suffice.

13.2 About Using the Default STRUCT Class for Oracle

Objects

ORACLE

This section covers the following topics:

e Overview of Using the Struct Class

e Retrieving STRUCT Objects and Attributes
e About Creating STRUCT Objects

e Binding STRUCT Objects into Statements
e STRUCT Automatic Attribute Buffering

13-2

Chapter 13
About Using the Default STRUCT Class for Oracle Objects

13.2.1 Overview of Using the Struct Class

If you choose not to supply a custom Java class for your SQL-Java mapping for an Oracle
object, then Oracle JDBC materializes the object as an object that implements the
java.sql . Struct interface.

You would typically want to use STRUCT objects, instead of custom Java objects, in situations
where you do not know the actual SQL type. For example, your Java application might be a
tool to manipulate arbitrary object data within the database, as opposed to being an end-user
application. You can select data from the database into STRUCT objects and create STRUCT
objects for inserting data into the database. STRUCT objects completely preserve data,
because they maintain the data in SQL format. Using STRUCT objects is more efficient and
more precise in situations where you do not need the information in an application specific
form.

13.2.2 Retrieving STRUCT Obijects and Attributes

ORACLE

This section discusses how to retrieve and manipulate Oracle objects and their attributes,
using either Oracle-specific features or JDBC 2.0 standard features.

" Note:

The JDBC driver seamlessly handles embedded objects, that is, STRUCT objects that
are attributes of STRUCT objects, in the same way that it typically handles objects.
When the JDBC driver retrieves an attribute that is an object, it follows the same
rules of conversion by using the type map, if it is available, or by using default

mapping.

Retrieving an Oracle Object as a java.sql.Struct Object

Alternatively, in the preceding example, you can use standard JDBC functionality, such as

get Obj ect, to retrieve an Oracle object from the database as an instance of

java. sql . Struct. The get Qbj ect method returns a j ava. | ang. Obj ect, so, you must cast the
output of the method to St ruct . For example:

Resul t Set rs= stnt.executeQuery("SELECT * FROM struct _table");
java.sql.Struct jdbcStruct = (java.sql.Struct)rs.getChject(1);

Retrieving Attributes as oracle.sql Types

If you want to retrieve Oracle object attributes from a STRUCT or Struct instance as
oracl e. sql types, then use the get Oracl eAttri but es method of the oracl e. sql . STRUCT
class, as follows:

oracle.sql.Datuni] attrs = oracl eSTRUCT. get Oracl eAttributes();

or:

oracle.sql.Datun{] attrs = ((oracle.sqgl.STRUCT)jdbcStruct).getOacleAttributes();

13-3

Chapter 13
About Using the Default STRUCT Class for Oracle Objects

Retrieving Attributes as Standard Java Types

If you want to retrieve Oracle object attributes as standard Java types from a STRUCT or
Struct instance, use the standard get Attri but es method:

(oject[] attrs = jdbcStruct.getAttributes();

Note:

Oracle JDBC drivers cache array and structure descriptors. This provides
enormous performance benefits. However, it means that if you change the
underlying type definition of a structure type in the database, the cached
descriptor for that structure type will become stale and your application will
receive a SQLExcept i on exception.

13.2.3 About Creating STRUCT Objects

For information about creating STRUCT objects, refer to "Package oracle.sql".

Note:

If you have already fetched from the database a STRUCT of the appropriate
SQL object type, then the easiest way to get a STRUCT descriptor is to call
get Descri pt or on one of the fetched STRUCT objects. Only one STRUCT
descriptor is needed for any one SQL object type.

13.2.4 Binding STRUCT Obijects into Statements

To bind an or acl e. sql . STRUCT object to a prepared statement or callable statement,
you can either use the standard set Obj ect method (specifying the type code), or cast
the statement object to an Oracle statement type and use the Oracle extension

set Oracl eCbj ect method. For example:

Prepar edSt at enent ps= conn. prepareSt at ement ("t ext _of _prepared_statenent");
Struct mySTRUCT = conn.createStruct (...);
ps. set oj ect (1, mySTRUCT, Types. STRUCT);

or:

PreparedSt at enent ps= conn. prepareSt at ement ("t ext _of _prepared_statenent");
Struct mySTRUCT = conn.createStruct (...);
((Oracl ePreparedSt at enent) ps) . set Oracl eCbj ect (1, nySTRUCT);

13.2.5 STRUCT Automatic Attribute Buffering

Oracle JDBC driver furnishes public methods to enable and disable buffering of STRUCT
attributes.

ORACLE 13-4

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

< Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the or acl e. sql . STRUCT class
is deprecated and replaced with the oracl e. j dbc. Oracl eSt ruct interface, which is
a part of the or acl e. j dbc package. Oracle strongly recommends you to use the
methods available in the j ava. sql package, where possible, for standard
compatibility and methods available in the or acl e. j dbc package for Oracle specific
extensions. Refer to MoS Note 1364193.1 for more information about the
oracle.jdbc. Oracl eStruct interface.

The following methods are included with the or acl e. sgl . STRUCT class:

e public void setAutoBuffering(bool ean enabl e)
e public bool ean get Aut oBuffering()

The set Aut oBuf f eri ng(bool ean) method enables or disables auto-buffering. The
get Aut oBuf f eri ng method returns the current auto-buffering mode. By default, auto-buffering
is disabled.

It is advisable to enable auto-buffering in a JDBC application when the STRUCT attributes are
accessed more than once by the get At t ri but es and get Array methods, presuming the
ARRAY data is able to fit into the Java Virtual Machine (JVM) memory without overflow.

Note:

Buffering the converted attributes may cause the JDBC application to consume a
significant amount of memory.

When you enable auto-buffering, the oracl e. sql . STRUCT object keeps a local copy of all the
converted attributes. This data is retained so that subsequent access of this information does
not require going through the data format conversion process.

Related Topics
e ARRAY Automatic Element Buffering

13.3 About Creating and Using Custom Object Classes for
Oracle Objects

ORACLE

This section covers the following topics:

* Overview of Creating and Using Custom Object Classes

* Relative Advantages of OracleData versus SQLData

* About Type Maps for SQLData Implementations

* About Creating Type Map and Defining Mappings for a SQLData Implementation
* About Reading and Writing Data with a SQLData Implementation

e About the OracleData Interface

13-5

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

* About Reading and Writing Data with an OracleData Implementation

» Additional Uses of OracleData

13.3.1 Overview of Creating and Using Custom Object Classes

If you want to create custom object classes for your Oracle objects, then you must
define entries in the type map that specify the custom object classes that the drivers
instantiate for the corresponding Oracle objects.

You must also provide a way to create and populate instances of the custom object
class from the Oracle object and its attribute data. The driver must be able to read
from a custom object class and write to it. In addition, the custom object class can
provide get XXX and set XXX methods corresponding to the attributes of the Oracle
object, although this is not necessary. To create and populate the custom classes and
provide these read/write capabilities, you can choose between the following interfaces:

e The JDBC standard SQL.Dat a interface
* The Oracl eDat a and O acl eDat aFact ory interfaces provided by Oracle

The custom object class you create must implement one of these interfaces. The

O acl eDat a interface can also be used to implement the custom reference class
corresponding to the custom object class. However, if you are using the SQLDat a
interface, then you can use only weak reference types in Java, such as j ava. sql . Ref
or oracl e. sqgl . REF. The SQLDat a interface is for mapping SQL objects only.

As an example, assume you have an Oracle object type, EMPLOYEE, in the database
that consists of two attributes: Nane, which is of the CHAR type and EnpNum which is of
the NUMBER type. You use the type map to specify that the EMPLOYEE object should map
to a custom object class that you call JEnpl oyee. You can implement either the

SQLDat a or Or acl eDat a interface in the JEnpl oyee class.

Related Topics
* Object-Type Inheritance

13.3.2 Relative Advantages of OracleData versus SQLData

ORACLE

In deciding which of the two interface implementations to use, you need to consider
the advantages of Or acl eDat a and SQ.Dat a.

The SQLDat a interface is for mapping SQL objects only. The Or acl eDat a interface is
more flexible, enabling you to map SQL objects as well as any other SQL type for
which you want to customize processing. You can create an Or acl eDat a
implementation from any data type found in Oracle Database. This could be useful, for
example, for serializing RAWdata in Java.

Advantages of the OracleData Interface
The advantages of the Or acl eDat a interface are:

* It does not require an entry in the type map for the Oracle object.
* It has awareness of Oracle extensions.

* You can construct an O acl eDat a from an or acl e. sgql . STRUCT. This is more
efficient because it avoids unnecessary conversions to native Java types.

13-6

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

* You can obtain the corresponding JDBC object from Or acl eDat a, using the t 0JDBCObj ect
method.

Advantages of SQLData

SQLDat a is a JDBC standard that makes your code portable.

13.3.3 About Type Maps for SQLData Implementations

If you use the SQLDat a interface in a custom object class, then you must create type map
entries that specify the custom object class to use in mapping the Oracle object type to Java.
You can either use the default type map of the connection object or a type map that you
specify when you retrieve the data from the result set. The get Cbj ect method of the

Resul t Set interface has a signature that lets you specify a type map. You can use either of
the following:

rs.get j ect (i nt col uml ndex);
rs.get j ect (i nt col umlndex, Map map);

When using a SQLData implementation, if you do not include a type map entry, then the
object maps to the oracl e. j dbc. Oracl eStruct interface by default. Oracl eDat a
implementations, by contrast, have their own mapping functionality so that a type map entry
is not required. When using an O acl eDat a implementation, use the Oracle get Qbj ect (i nt
col umi ndex, Oracl eDataFactory factory) method.

The type map relates a Java class to the SQL type name of an Oracle object. This one-to-
one mapping is stored in a hash table as a keyword-value pair. When you read data from an
Oracle object, the JDBC driver considers the type map to determine which Java class to use
to materialize the data from the Oracle object type. When you write data to an Oracle object,
the JDBC driver gets the SQL type name from the Java class by calling the get SQLTypeNanme
method of the SQLDat a interface. The actual conversion between SQL and Java is performed
by the driver.

The attributes of the Java class that corresponds to an Oracle object can use either Java
native types or Oracle native types to store attributes.

Related Topics

» About Creating and Using Custom Object Classes for Oracle Objects

13.3.4 About Creating Type Map and Defining Mappings for a SQLData
Implementation

ORACLE

This section covers the following topics:

e Overview of Creating a Type Map and Defining Mappings

e Adding Entries to an Existing Type Map

e Creating a New Type Map

e About Materializing Object Types not Specified in the Type Map

13-7

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13.3.4.1 Overview of Creating a Type Map and Defining Mappings

When using a SQLDat a implementation, the JDBC applications programmer is
responsible for providing a type map, which must be an instance of a class that
implements the standard j ava. uti | . Map interface.

You have the option of creating your own class to accomplish this, but the standard
java. util. Hasht abl e class meets the requirement.

Hasht abl e and other classes used for type maps implement a put method that takes
keyword-value pairs as input, where each key is a fully qualified SQL type name and
the corresponding value is an instance of a specified Java class.

A type map is associated with a connection instance. The standard

j ava. sqgl . Connecti on interface and the Oracle-specific

oracl e.jdbc. O acl eConnecti on interface include a get TypeMap method. Both return a
Map object.

13.3.4.2 Adding Entries to an Existing Type Map

ORACLE

When a connection instance is first established, the default type map is empty. You
must populate it.

Perform the following general steps to add entries to an existing type map:

1. Use the get TypeMap method of your Or acl eConnect i on object to return the type
map object of the connection. The get TypeMap method returns aj ava. util . Map
object. For example, presuming an Or acl eConnect i on instance or aconn:

java.util.Map nmyMap = oraconn. get TypeMap();

Note:

If the type map in the O acl eConnect i on instance has not been
initialized, then the first call to get TypeMap returns an empty map.

2. Use the put method of the type map to add map entries. The put method takes
two arguments: a SQL type name string and an instance of a specified Java class
that you want to map to.

myMap. put (sql TypeNane, classbject);
The sql TypeNane is a string that represents the fully qualified name of the SQL
type in the database. The cl assQbj ect is the Java class object to which you want

to map the SQL type. Get the class object with the Cl ass. f or Nane method, as
follows:

nyMap. put (sql TypeNane, C ass. for Name(cl assName)) ;

For example, if you have a PERSON SQL data type defined in the CORPORATE
database schema, then map it to a Per son Java class defined as Per son with this
statement:

13-8

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

myMap. put (" CORPORATE. PERSON', Cl ass. f or Nane(" Person"));
oraconn. set TypeMap(newvap) ;

The map has an entry that maps the PERSON SQL data type in the CORPORATE database to
the Per son Java class.

Note:

SQL type names in the type map must be all uppercase, because that is how
Oracle Database stores SQL names.

13.3.4.3 Creating a New Type Map

Perform the following general steps to create a new type map. This example uses an
instance of j ava. uti| . Hasht abl e, which extends j ava. util.Di cti onary and implements
java.util. Mp.

1.

Create a new type map object.
Hasht abl e newMap = new Hasht abl e();

Use the put method of the type map object to add entries to the map. For example, if you
have an EMPLOYEE SQL type defined in the CORPORATE database, then you can map it to
an Enpl oyee class object defined by Enpl oyee. j ava, as follows:

newMap. put (" CORPORATE. EMPLOYEE", cl ass. f or Name(" Enpl oyee"));

When you finish adding entries to the map, you must use the set TypeMap method of the
O acl eConnect i on object to overwrite the existing type map of the connection. For
example:

oraconn. set TypeMap(newvap) ;

In this example, the set TypeMap method overwrites the original map of the or aconn
connection object with newvap.

" Note:

The default type map of a connection instance is used when mapping is
required but no map name is specified, such as for a result set get Chj ect call
that does not specify the map as input.

13.3.4.4 About Materializing Object Types not Specified in the Type Map

If you do not provide a type map with an appropriate entry when using a get Gbj ect call, then
the JDBC driver will materialize an Oracle object as an instance of the

oracle.jdbc. Oracl eStruct interface. If the Oracle object type contains embedded objects
and they are not present in the type map, then the driver will materialize the embedded
objects as instances of oracl e. j dbc. Oracl eStruct as well. If the embedded objects are
present in the type map, then a call to the get At t ri but es method will return embedded
objects as instances of the specified Java classes from the type map.

ORACLE

13-9

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

13.3.5 About Reading and Writing Data with a SQLData
Implementation

ORACLE

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements SQLDat a.

Reading SQLData Objects from a Result Set

The following text summarizes the steps to read data from an Oracle object into your
Java application when you choose the SQLDat a implementation for your custom object
class.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class, updated the type map to define the mapping
between the Oracle object and the Java class, and defined a statement object st nt .

1. Query the database to read the Oracle object into a JDBC result set.

Resul tSet rs = stnt.executeQuery("SELECT enp_col FROM personnel");

The PERSONNEL table contains one column, EMP_COL, of SQL type EMP_OBJECT. This
SQL type is defined in the type map to map to the Java class Enpl oyee.

2. Use the get Ohj ect method of Oracle result set to populate an instance of your
custom object class with data from one row of the result set. The get Qbj ect
method returns the user-defined SQLDat a object because the type map contains an
entry for Enpl oyee.

if (rs.next())
Enpl oyee enp = (Enpl oyee)rs. get Ovj ect (1);

Note that if the type map did not have an entry for the object, then the get Obj ect
method will return an or acl e. j dbc. Oracl eStruct object. Cast the output to type
O acl eStruct because the get Obj ect method signature returns the generic

j ava. l ang. Qbj ect type.

if (rs.next())
Oracl eStruct enpstruct = (OracleStruct)rs. get Object(1);

The get bj ect method calls r eadSQ., which, in turn, calls r eadXXX from the
SQLDat a interface.

Note:

If you want to avoid using the defined type map, then use the get STRUCT
method. This method always returns a STRUCT object, even if there is a
mapping entry in the type map.

3. If you have get methods in your custom object class, then use them to read data
from your object attributes. For example, if EMPLOYEE has the attributes EnpNane of
type CHAR and EnpNumof type NUMBER, then provide a get EnpName method that
returns a Java String and a get EnpNummethod that returns an i nt value. Then
call them in your Java application, as follows:

13-10

ORACLE

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

String enpname = enp. get EnpNange();
int enpnunber = enp. get EnpNun();

Retrieving SQLData Objects from a Callable Statement OUT Parameter

Consider you have a Cal | abl eSt at ement instance, cs, that calls a PL/SQL function
CGETEMPLOYEE. The program passes an employee number to the function. The function returns
the corresponding Enpl oyee object. To retrieve this object you do the following:

1. Prepare a Cal | abl eSt at enent to call the GETEMPLOYEE function, as follows:
Cal | abl eStat ement ocs = conn.prepareCall("{ ? = call GETEMPLOYEE(?) }");

2. Declare the enpnunber as the input parameter to GETEMPLOYEE. Register the SQLDat a
object as the QUT parameter, with the type code Or acl eTypes. STRUCT. Then, run the
statement. This can be done as follows:

cs.setlnt(2, enpnunber);
cs.regi sterQut Paraneter(1, OracleTypes. STRUCT, "EMP_OBJECT");
cs. execute();

3. Use the get Obj ect method to retrieve the employee object.
Enpl oyee enp = (Enpl oyee)cs. get Ooj ect (1) ;
If there is no type map entry, then the get Cbj ect method will return a j ava. sql . Struct
object.

Struct enp = cs.get vj ect (1);

Passing SQLData Objects to a Callable Statement as an IN Parameter

Suppose you have a PL/SQL function addEnpl oyee(?) that takes an Enpl oyee object as an
I N parameter and adds it to the PERSONNEL table. In this example, enp is a valid Enpl oyee
object.

1. Prepare an Cal | abl eSt at enent to call the addEnpl oyee(?) function.

Cal | abl eStatement cs =
conn. prepareCal | ("{ call addEnpl oyee(?) }");

2. Use set Obj ect to pass the enp object as an | N parameter to the callable statement.
Then, call the statement.

cs.setCbject (1, enp);
cs. execute();

Writing Data to an Oracle Object Using a SQLData Implementation

The following text describes the steps in writing data to an Oracle object from your Java
application when you choose the SQLDat a implementation for your custom object class.

This description assumes you have already defined the Oracle object type, created the
corresponding Java class, and updated the type map to define the mapping between the
Oracle object and the Java class.

1. If you have set methods in your custom object class, then use them to write data from
Java variables in your application to attributes of your Java data type object.

enp. set EnpNane(enpnane) ;
enp. set EnpNunt(empnurber) ;

13-11

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

2. Prepare a statement that updates an Oracle object in a row of a database table, as
appropriate, using the data provided in your Java data type object.

Prepar edSt at ement pstnt = conn. prepar eSt at enent
("I NSERT | NTO PERSONNEL VALUES (?)");

3. Use the set Obj ect method of the prepared statement to bind your Java data type
object to the prepared statement.

pstnt.set Chject(1, enp);
4. Run the statement, which updates the database.

pstnt . execut eUpdat e();

13.3.6 About the OracleData Interface

ORACLE

You can create a custom object class that implements the oracl e. j dbc. Oracl eDat a
and the oracl e. j dbc. Oracl eDat aFact ory interfaces to make an Oracle object and its
attribute data available to Java applications. The Or acl eDat a and O acl eDat aFact ory
interfaces are Oracle-specific and are not a part of the JDBC standard.

Note:

Starting from Oracle Database 12c Release 1 (12.1), the Or acl eDat a and the
O acl eDat aFact ory interfaces replace the ORADat a and the ORADat aFact ory
interfaces.

Understanding the OracleData Interface Features
The Or acl eDat a interface has the following advantages:

* It supports Oracle extensions to the standard JDBC types.

* It does not require a type map to specify the names of the Java custom classes
you want to create.

* It provides better performance. O acl eDat a works directly with Dat umtypes, the
internal format the driver uses to hold Oracle objects.

The O acl eDat a and the O acl eDat aFact ory interfaces perform the following:

* The t 0JDBCObj ect method of the Or acl eDat a class transforms the data into an
oracl e.jdbc. * representation.

e (Oacl ebat aFact ory specifies a cr eat e method equivalent to a constructor for the
custom object class. It creates and returns an Or acl eDat a instance. The JDBC
driver uses the cr eat e method to return an instance of the custom object class to
your Java application. It takes as input a j ava. | ang. Qbj ect object and an integer
indicating the corresponding SQL type code as specified in the Or acl eTypes class.

O acl eDat a and Or acl eDat aFact ory have the following definitions:

package oracl e.j dbc;

inport java.sql.Connection;
inport java.sql.SQLException;
public interface Oracl eData

{

13-12

ORACLE

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

public Chject toJDBCOhj ect(Connection conn) throws SQException;
}

package oracl e. | dbc;
i mport java.sql.SQ.Exception;
public interface Oracl eDataFactory

{
public OracleData create(Chject jdbcValue, int sql Type) throws SQException;

}

Where conn represents the Connection object, j dbcVal ue represents an object of type
j ava. | ang. obj ect that is to be used to initialize the Object being created, and sql Type
represents the SQL type of the specified Dat umobject.

Retrieving and Inserting Object Data

The JDBC drivers provide the following methods to retrieve and insert object data as
instances of Or acl eDat a.

You can retrieve the object data in one of the following ways:

* Use the following get Cbj ect method of the Oracle-specific Or acl eResul t Set interface:

ors. get Object(int col _index, OracleDataFactory factory

)

This method takes as input the column index of the data in your result set and an

O acl eDat aFact ory instance. For example, you can implement a get Or acl eDat aFact ory
method in your custom object class to produce the Or acl eDat aFact ory instance to input
to the get Cbj ect method. The type map is not required when using Java classes that
implement Or acl eDat a.

* Use the standard get Obj ect (i ndex, map) method specified by the Resul t Set interface
to retrieve data as instances of Or acl eDat a. In this case, you must have an entry in the
type map that identifies the factory class to be used for the given object type and its
corresponding SQL type name.

You can insert object data in one of the following ways:

» Use the following set Gbj ect method of the Oracle-specific Or acl ePr epar edSt at enent
class:

set Obj ect (i nt bind_index, bject customobject);

This method takes as input the parameter index of the bind variable and an instance of
O acl eDat a as the name of the object containing the variable.

e Use the standard set Qbj ect method specified by the Prepar edSt at enent interface. You
can also use this method, in its different forms, to insert Or acl eDat a instances without
requiring a type map.

The following sections describe the get Cbj ect and set Chj ect methods.

To continue the example of an Oracle object EMPLOYEE, you might have something like the
following in your Java application:

Oracl eData obj = ors.getbject(1l, Enployee.getOacl eDataFactory());

In this example, or s is an instance of the Oracl eResul t Set interface, get Cbj ect is a method
in the Oracl eResul t Set interface used to retrieve an O acl eDat a object, and the EMPLOYEE is

13-13

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

in column 1 of the result set. The st ati ¢ Enpl oyee. get Or acl eDat aFact ory method
will return an Or acl eDat aFact ory to the JDBC driver. The JDBC driver will call
creat e() from this object, returning to your Java application an instance of the

Enpl oyee class populated with data from the result set.

" Note:

e Oracl ebata and O acl eDat aFact ory are defined as separate interfaces
so that different Java classes can implement them if you wish.

e To use the Oracl eDat a interface, your custom object classes must import
oracle.jdbc.*.

13.3.7 About Reading and Writing Data with an OracleData
Implementation

ORACLE

This section describes how to read data from an Oracle object or write data to an
Oracle object if your corresponding Java class implements O acl eDat a.

Reading Data from an Oracle Object Using an OracleData Implementation

The following text summarizes the steps in reading data from an Oracle object into
your Java application. These steps apply whether you implement Or acl eDat a manually
or use Oracle JVM Web Service Call-Out utility to produce your custom object classes.

These steps assume you have already defined the Oracle object type, created the
corresponding custom object class or had Oracle JVM Web Service Call-Out utility
create it for you, and defined a statement object st nt .

1. Query the database to read the Oracle object into a result set, casting it to an
Oracle result set.

Oracl eResul t Set ors = (Oracl eResul t Set) st nt. execut eQuery
(" SELECT Enp_col FROM PERSONNEL");

Where PERSONNEL is a one-column table. The column name is Enp_col of type
Enpl oyee_obj ect .

2. Use the get Ohj ect method of Oracle result set to populate an instance of your
custom object class with data from one row of the result set. The get Qbj ect
method returns a j ava. | ang. Obj ect object, which you can cast to your specific
custom object class.

if (ors.next())

Enpl oyee enp = (Enpl oyee)ors. get Obj ect (1,
Enpl oyee. get Or acl eDat aFactory());

or:

if (ors.next())
(bj ect obj = ors.getoject(1l, Enployee.getOacl eDataFactory());

This example assumes that Enpl oyee is the name of your custom object class and
or s is the name of your Or acl eResul t Set instance.

13-14

ORACLE

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

For example, if the SQL type name for your object is EMPLOYEE, then the corresponding
Java class is Enpl oyee, which will implement Or acl eDat a. The corresponding Factory
class is Enpl oyeeFact ory, which will implement O acl eDat aFact ory.

Use this statement to declare the Enpl oyeeFact ory entry for your type map:

map. put ("EMPLOYEE"', O ass.forName ("Enpl oyeeFactory"));

Then use the form of get Obj ect where you specify the map object:

Enpl oyee enp = (Enpl oyee) rs.getChject (1, map);

If the default type map of the connection already has an entry that identifies the factory
class to be used for the given object type and its corresponding SQL type name, then you
can use this form of get Cbj ect :

Enpl oyee enp = (Enpl oyee) rs.getObject (1);

3. If you have get methods in your custom object class, then use them to read data from
your object attributes into Java variables in your application. For example, if EMPLOYEE
has EnpNane of type CHAR and EnpNumof type NUMBER, provide a get EnpNane method that
returns a Java St ring and a get EnpNummethod that returns an integer. Then call them in
your Java application as follows:

String enpname = enp. get EnpNange();
int enpnunber = enp. get EnpNum();

Writing Data to an Oracle Object Using an OracleData Implementation

The following text summarizes the steps in writing data to an Oracle object from your Java
application. These steps apply whether you implement O acl eDat a manually or use Oracle
JVM Web Service Call-Out utility to produce your custom object classes.

These steps assume you have already defined the Oracle object type and created the
corresponding custom object class.

< Note:

The type map is not used when you are performing database | NSERT and UPDATE
operations.

1. If you have set methods in your custom object class, then use them to write data from
Java variables in your application to attributes of your Java data type object.

enp. set EnpNane(enpnane) ;
emp. set EnpNum(enpnunber) ;

2. Write an Oracle prepared statement that updates an Oracle object in a row of a database
table, as appropriate, using the data provided in your Java data type object.

O acl ePreparedSt at enent opstnt = conn. prepar eSt at ement
("UPDATE PERSONNEL SET Enpl oyee = ? WHERE Enpl oyee. EnpNum = 28959) ;

This assumes conn is your Connect i on object.

3. Use the set Ohj ect method of the Oracl ePr epar edSt at enent interface to bind your Java
data type object to the prepared statement.

opstnt. set Ohj ect (1, enp);

13-15

Chapter 13
About Creating and Using Custom Object Classes for Oracle Objects

The set oj ect method calls the t 0JDBCObj ect method of the custom object class
instance to retrieve an oracl e. j dbc. Oracl eStruct object that can be written to
the database.

" Note:

You can use your Java data type objects as either | N or QUT bind
variables.

13.3.8 Additional Uses of OracleData

ORACLE

The O acl eDat a interface offers far more flexibility than the SQLDat a interface. The
SQLDat a interface is designed to let you customize the mapping of only Oracle object
types to Java types of your choice. Implementing the SQLDat a interface lets the JDBC
driver populate fields of a custom Java class instance from the original SQL object
data, and the reverse, after performing the appropriate conversions between Java and
SQL types.

The Oracl eDat a interface goes beyond supporting the customization of Oracle object
types to Java types. It lets you provide a mapping between Java object types and any
SQL type supported by the or acl e. sql package.

You may find it useful to provide custom Java classes to wrap or acl e. sgl . * types and
then implement customized conversions or functionality as well. The following are
some possible scenarios:

e Performing encryption and decryption or validation of data
e Performing logging of values that have been read or are being written

e Parsing character columns, such as character fields containing URL information,
into smaller components

e Mapping character strings into numeric constants

e Making data into more desirable Java formats, such as mapping a DATE field to
java. util. Date format

* Customizing data representation, for example, data in a table column is in feet but
you want it represented in meters after it is selected

» Serializing and deserializing Java objects

For example, use O acl eDat a to store instances of Java objects that do not
correspond to a particular SQL object type in the database in columns of SQL type
RAW The cr eat e method in Or acl eDat aFact ory would have to implement a conversion
from an object of type or acl e. sql . RAWto the desired Java object. The t 0JDBCObj ect
method in Or acl eDat a would have to implement a conversion from the Java object to
an or acl e. sgl . RAWobject. You can also achieve this using Java serialization.

Upon retrieval, the JDBC driver transparently retrieves the raw bytes of data in the
form of an or acl e. sql . RAWand calls the cr eat e method of Or acl eDat aFact ory to
convert the oracl e. sql . RAWobject to the desired Java class.

When you insert the Java object into the database, you can simply bind it to a column
of type RAWto store it. The driver transparently calls the Or acl eDat a.t 0JDBCObj ect

13-16

Chapter 13
Object-Type Inheritance

method to convert the Java object to an or acl e. sql . RAWobject. This object is then stored in
a column of type RAWIn the database.

Support for the Or acl eDat a interfaces is also highly efficient because the conversions are
designed to work using or acl e. sqgl . * formats, which happen to be the internal formats used
by the JDBC drivers. Moreover, the type map, which is necessary for the SQ.Dat a interface, is
not required when using Java classes that implement O acl eDat a.

Related Topics

e About the OracleData Interface

13.4 Object-Type Inheritance

Object-type inheritance allows a new object type to be created by extending another object
type. The new object type is then a subtype of the object type from which it extends. The
subtype automatically inherits all the attributes and methods defined in the supertype. The
subtype can add attributes and methods and overload or override methods inherited from the
supertype.

Object-type inheritance introduces substitutability. Substitutability is the ability of a slot
declared to hold a value of type T in addition to any subtype of type T. Oracle JDBC drivers
handle substitutability transparently.

A database object is returned with its most specific type without losing information. For
example, if the STUDENT_T object is stored in a PERSON_T slot, Oracle JDBC driver returns a
Java object that represents the STUDENT T object.

This section covers the following topics:

* About Creating Subtypes

e About Implementing Customized Classes for Subtypes
* About Retrieving Subtype Objects

» Creating Subtype Objects

* Sending Subtype Objects

» Accessing Subtype Data Fields

e Inheritance Metadata Methods

13.4.1 About Creating Subtypes

Create custom object classes if you want to have Java classes that explicitly correspond to
the Oracle object types. If you have a hierarchy of object types, you may want a
corresponding hierarchy of Java classes.

The most common way to create a database subtype in JDBC is to run a SQL CREATE TYPE
command using the execut e method of the j ava. sql . St at enent interface. For example, you
want to create a type inheritance hierarchy as depicted in the following figure:

ORACLE 13-17

Chapter 13
Object-Type Inheritance

Figure 13-1 Type Inheritance Hierarchy

PERSON_T

STUDENT_T

PARTTIMESTUDENT_T

The JDBC code for this can be as follows:

Statement s = conn.createStatenment();
s. execute ("CREATE TYPE Person_T (SSN NUMBER, nanme VARCHAR2(30),
address VARCHAR2(255))");
s. execute ("CREATE TYPE Student T UNDER Person_t (deptid NUMBER,
maj or VARCHAR2(100))");
s. execute ("CREATE TYPE Part Ti neStudent _t UNDER Student _t (numHours NUMBER)");

In the following code, the f o0 member procedure in type ST is overloaded and the
member procedure print overwrites the copy it inherits from type T.

CREATE TYPE T AS OBJECT (...,
MEMBER PROCEDURE foo(x NUMBER),
MEMBER PROCEDURE Print (),
NOT FI NAL;
CREATE TYPE ST UNDER T (...,
MEMBER PROCEDURE foo(x DATE), <-- overload "foo"

OVERRI DI NG MEMBER PROCEDURE Print(), <-- override "print"
STATI C FUNCTION bar(...) ...

)i

Once the subtypes have been created, they can be used as both columns of a base
table as well as attributes of an object type.

¢ See Also:

Oracle Database Object-Relational Developer's Guide

13.4.2 About Implementing Customized Classes for Subtypes

In most cases, a customized Java class represents a database object type. When you
create a customized Java class for a subtype, the Java class can either mirror the
database object type hierarchy or not.

ORACLE 13-18

Chapter 13
Object-Type Inheritance

You can use either the Or acl eDat a or SQLDat a solution in creating classes to map to the
hierarchy of object types.

This section covers the following topics:

* About Using OracleData for Type Inheritance Hierarchy

* About UsingSQLData for Type Inheritance Hierarchy

13.4.2.1 About Using OracleData for Type Inheritance Hierarchy

Oracle recommends customized mappings, where Java classes implement the

oracl e. sqgl. Oracl eDat a interface. Or acl eDat a mapping requires the JDBC application to
implement the Or acl eDat a and O acl eDat aFact ory interfaces. The class implementing the
O acl eDat aFact ory interface contains a factory method that produces objects. Each object
represents a database object.

The hierarchy of the class implementing the Or acl eDat a interface can mirror the database
object type hierarchy. For example, the Java classes mapping to PERSON T and STUDENT_T
are as follows:

Person.java using OracleData

Code for the Per son. j ava class which implements the Or acl eDat a and O acl eDat aFact ory
interfaces:

public static Oracl eDataFactory get Oracl eDat aFact ory()
{

return _personFactory;

}

public Person () {}

publi ¢ Person(NUMBER ssn, CHAR nane, CHAR address)
{

this.ssn = ssn;

this.nane = nane;

this.address = address;

}

public Object toJDBCOhj ect (Oracl eConnection c) throws SQLException
{

Qbject [] attributes = { ssn, nane, address };
Struct struct = c.createStruct("HR PERSON_T", attributes);

return struct;

}

public OracleData create(Cbject jdbcValue, int sgl Type) throws SQLException
{
if (d==null) return null;
(bject [] attributes = ((STRUCT) d).getOracleAttributes();
return new Person((NUMBER) attributes[0],
(CHAR) attributes[1],
(CHAR) attributes[2]);
}
}

Student.java extending Person.java

Code for the St udent . j ava class, which extends the Per son. j ava class:

ORACLE 13-19

ORACLE

Chapter 13
Object-Type Inheritance

cl ass Student extends Person

{

static final Student _studentFactory = new Student ();

publ i ¢ NUMBER depti d;
public CHAR ngj or;

public static O acleDataFactory get Oracl eDataFactory()
{

return _studentFactory;

}
public Student () {}

public Student (NUMBER ssn, CHAR nane, CHAR address,
NUMBER deptid, CHAR nmjor)
{

super (ssn, nane, address);
this.deptid = deptid;
this.mjor = major;

}

public Object toJDBChj ect (Oracl eConnection c) throws SQLException
{
bject [] attributes = { ssn, nane, address, deptid, mgjor };
Struct struct = c.createStruct("HR STUDENT_T", attributes);
return struct;

}

public Oracl eData create(Chject jdbcValue, int sql Type) throws SQLException
{

if (d==null) return null;
bject [] attributes = ((STRUCT) d).getOracleAttributes();
return new Student ((NUMBER) attributes[0],
(CHAR) attributes[1],
(CHAR) attributes[2],
(NUMBER) attributes[3],
(CHAR) attributes[4]);
}
}

Customized classes that implement the O acl eDat a interface do not have to mirror the
database object type hierarchy. For example, you could have declared the St udent
class without a superclass. In this case, St udent would contain fields to hold the
inherited attributes from PERSON_T as well as the attributes declared by STUDENT T.

OracleDataFactory Implementation

The JDBC application uses the factory class in querying the database to return
instances of Per son or its subclasses, as in the following example:

Resul t Set rset = stnt.executeQuery ("select person fromtabl");

while (rset.next())
{

rset. get Oracl eDat a(1, Person. get Or acl eDat aFactory());

13-20

Chapter 13
Object-Type Inheritance

A class implementing the Or acl eDat aFact ory interface should be able to produce instances
of the associated custom object type, as well as instances of any subtype, or at least all the
types you expect to support.

In the following example, the Per sonFact ory. get Or acl eDat aFact or y method returns a
factory that can handle PERSON_T, STUDENT T, and PARTTI MESTUDENT T objects, by returning
person, student, or partti mestudent Java instances.

class PersonFactory inplements O acl eDataFactory

{

static final PersonFactory _factory = new PersonFactory ();

public static OracleDataFactory get Oracl eDataFact ory()
{
return _factory;

}

public Oracl eData create(Chject jdbcValue, int sql Type) throws SQLException
{
STRUCT s = (STRUCT) j dbcVal ue;
if (s.getSQTypeNarme ().equals ("HR PERSON.T"))
return Person. get Oracl eDataFactory ().create (jdbcValue, sql Type);
else if (s.getSQTypeName ().equals ("HR STUDENT_T"))
return Student.getOracl eDataFactory ().create(jdbcValue, sql Type);
else if (s.getSQTypeName ().equals ("HR PARTTI MESTUDENT_T"))
return ParttimeStudent. get Oracl eDataFactory (). create(jdbcVal ue, sqgl Type);
el se
return null;
}
}

The following example assumes a table t abl 1, such as the following:

CREATE TABLE tabl1 (i dx NUVBER person PERSON T);

I NSERT | NTO tabl 1 VALUES (1, PERSON.T (1000, 'HR, '100 Oracle Parkway'));

I NSERT | NTO tabl 1 VALUES (2, STUDENT T (1001, 'Peter', '200 Oracle Parkway', 101,
cS));

I NSERT | NTO tabl 1 VALUES (3, PARTTIMESTUDENT T (1002, 'David', '300 Oracle Parkway',
102, 'EE));

13.4.2.2 About UsingSQLData for Type Inheritance Hierarchy

ORACLE

The customized classes that implement the j ava. sql . SQLDat a interface can mirror the
database object type hierarchy. The readSQ. and wri t eSQL methods of a subclass typically
call the corresponding superclass methods to read or write the superclass attributes before
reading or writing the subclass attributes. For example, the Java classes mapping to
PERSON_T and STUDENT _T are as follows:

Person.java using SQLData
Code for the Per son. j ava class, which implements the SQLDat a interface:
i mport java.sql.*;

public class Person inplenents SQ.Data
{

private String sql _type;

public int ssn;

public String nane;

public String address;

13-21

ORACLE

}

Chapter 13
Object-Type Inheritance

public Person () {}
public String get SQLTypeNanme() throws SQLException { return sql _type; }

public void readSQ.(SQLInput stream String typeName) throws SQ.Exception
{

sql _type = typeNane;

ssn = streamreadlint();

name = streamreadString();

address = streamreadString();

}

public void witeSQ(SQCQutput stream) throws SQLException
{

streamwitelnt (ssn);

streamwiteString (nane);

streamwiteString (address);

}

Student.java extending Student.java

Code for the St udent . j ava class, which extends the Per son. j ava class:

i mport java.sql.*;

public class Student extends Person

{

}

private String sql _type;
public int deptid;
public String ngjor;

public Student () { super(); }
public String get SQLTypeNanme() throws SQLException { return sql _type; }

public void readSQ.(SQInput stream String typeName) throws SQ.Exception
{

super.readSQ (stream typeNane); /'l read supertype attributes

sql _type = typeNane;

deptid = streamreadlnt();

maj or = streamreadString();

}
public void witeSQ(SQCQutput stream) throws SQLException
{

super.witeSQ (stream; Il wite supertype

Il attributes
streamwitelnt (deptid);
streamwiteString (mjor);

}

Although not required, it is recommended that the customized classes, which

implement the SQLDat a interface, mirror the database object type hierarchy. For
example, you could have declared the St udent class without a superclass. In this
case, St udent would contain fields to hold the inherited attributes from PERSON T as

well as the attributes declared by STUDENT T.

13-22

Chapter 13
Object-Type Inheritance

Student.java using SQLData

Code for the St udent . j ava class, which does not extend the Per son. j ava class, but
implements the SQLData interface directly:

i mport java.sql.*;

public class Student inplenments SQLData

{
private String sql _type;

public int ssn;

public String nane;
public String address;
public int deptid;
public String ngjor;

public Student () {}
public String get SQLTypeName() throws SQLException { return sql _type; }

public void readSQ.(SQLI nput stream String typeName) throws SQ.Exception
{

sql _type = typeNane;

ssn = streamreadlint();

name = streamreadString();

address = streamreadString();

deptid = streamreadlnt();

maj or = streamreadString();

}

public void witeSQ(SQCQutput stream) throws SQLException
{
streamwitelnt (ssn);
streamwiteString (nane);
streamwiteString (address);
streamwitelnt (deptid);
streamwiteString (mjor);
}
}

13.4.3 About Retrieving Subtype Objects

ORACLE

In a typical JDBC application, a subtype object is returned as one of the following:

A query result

A PL/SQL QUT parameter

* Atype attribute

You can use either the default mapping or the SQLDat a mapping or the Or acl eDat a mapping

to retrieve a subtype.

Using Default Mapping

By default, a database object is returned as an instance of the oracl e. j dbc. Oracl eSt ruct
interface. This instance may represent an object of either the declared type or subtype of the
declared type. If the Oracl eStruct interface represents a subtype object in the database,
then it contains the attributes of its supertype as well as those defined in the subtype.

13-23

ORACLE

Chapter 13
Object-Type Inheritance

Oracle JDBC driver returns database objects in their most specific type. The JDBC
application can use the get SQLTypeName method of the Oracl eSt ruct interface to
determine the SQL type of the STRUCT object. The following code shows this:

/] tabl.person colum can store PERSON T, STUDENT_T and PARTI MESTUDENT T objects
Resul t Set rset = stnt.executeQuery ("select person fromtabl");
while (rset.next())

{
oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getject(1);
if (s!=null)
Systemout. printin (s.getSQTypeName()); [l print out the type nanme which
/'l may be HR PERSON T, HR. STUDENT_T or HR. PARTTI MESTUDENT_T
}

Using SQLData Mapping

With SQLDat a mapping, the JDBC driver returns the database object as an instance of
the class implementing the SQLDat a interface.

To use SQLDat a mapping in retrieving database objects, do the following:

1. Implement the container classes that implement the SQLDat a interface for the
desired object types.

2. Populate the connection type map with entries that specify what custom Java type
corresponds to each Oracle object type.

3. Use the get Obj ect method to access the SQL object values.

The JDBC driver checks the type map for an entry match. If one exists, then the
driver returns the database object as an instance of the class implementing the
SQLDat a interface.

The following code shows the whole SQLData customized mapping process:

/1 The JDBC application devel oper inplenments Person.java for PERSON T,
/1 Student.java for STUDENT_T
/1 and ParttineStudent.java for PARTTI MESTUDEN T.

Connection conn = ...; [/ make a JDBC connection

/1 obtains the connection typenap
java.util.Map map = conn. get TypeMap ();

/'l popul ate the type map

map. put ("HR PERSON_T", C ass.forName ("Person"));

map. put ("HR STUDENT_T", O ass.forName ("Student"));

map. put ("HR PARTTI MESTUDENT_T", O ass.forName ("ParttinmeStudent"));

/1 tabl.person colum can store PERSON T, STUDENT_T and PARTTI MESTUDENT_T
obj ects
Resul t Set rset = stnt.executeQuery ("select person fromtabl");
while (rset.next())
{
Il "s" is instance of Person, Student or ParttimeStudent
bject s = rset.getChject(1);

if (s!=null)
{
if (s instanceof Person)
Systemout.println ("This is a Person");
else if (s instanceof Student)

13-24

Chapter 13
Object-Type Inheritance

Systemout.println ("This is a Student");
else if (s instanceof ParttimeStudent)
Systemout.pritnln ("This is a PartinmeStudent");
el se
Systemout.println ("Unknown type");

}
}

The JDBC drivers check the connection type map for each call to the following:

e get Obj ect method of the j ava. sql . Resul t Set and j ava. sql . Cal | abl eSt at ement
interfaces

e getAttribute method of the j ava. sql . Struct interface
e get Array method of the j ava. sql . Array interface

* get Val ue method of the or acl e. sql . REF interface

Using OracleData Mapping

With O acl eDat a mapping, the JDBC driver returns the database object as an instance of the
class implementing the O acl eDat a interface.

Oracle JDBC driver needs to be informed of what Java class is mapped to the Oracle object
type. The following are the two ways to inform Oracle JDBC drivers:

e The JDBC application uses the get Qbj ect (i nt i dx, OracleDataFactory f) method to
access database objects. The second parameter of the get Cbj ect method specifies an
instance of the factory class that produces the customized class. The get Obj ect method
is available in the Oracl eResul t Set and Oracl eCal | abl eSt at enent interfaces.

* The JDBC application populates the connection type map with entries that specify what
custom Java type corresponds to each Oracle object type. The get Cbj ect method is
used to access the Oracle object values.

The second approach involves the use of the standard get Gbj ect method. The following
code example demonstrates the first approach:

/1 tabl.person colum can store both PERSON T and STUDENT_T objects
Resul t Set rset = stnt.executeQuery ("select person fromtabl");
while (rset.next())
{
oject s = rset.getoject(1, PersonFactory.getO acl eDataFactory());
if (s!=null)
{
if (s instanceof Person)
Systemout.println ("This is a Person");
else if (s instanceof Student)
Systemout.println ("This is a Student");
else if (s instanceof ParttimeStudent)
Systemout.pritnin ("This is a PartineStudent");
el se
Systemout. println ("Unknown type");

ORACLE 13-25

Chapter 13
Object-Type Inheritance

13.4.4 Creating Subtype Objects

There are cases where JDBC applications create database subtype objects with JDBC
drivers. These objects are sent either to the database as bind variables or are used to
exchange information within the JDBC application.

With customized mapping, the JDBC application creates either SQLDat a-based or

O acl eDat a-based objects, depending on the approach you choose, to represent
database subtype objects. With default mapping, the JDBC application creates STRUCT
objects to represent database subtype objects. All the data fields inherited from the
supertype as well as all the fields defined in the subtype must have values. The
following code demonstrates this:

Connection conn = ... /1 make a JDBC connection

Qoject[] attrs = {
new | nteger(1234), "HR', "500 Oracle Parkway", // data fields defined in

Il PERSON_T

new | nteger(102), "CS', /] data fields defined in
I/ STUDENT_T

new | nt eger (4) /] data fields defined in

/1 PARTTI MESTUDENT T
b
Struct s = conn.createStruct("HR PARTTI MESTUDENT", attrs);

s is initialized with data fields inherited from PERSON_T and STUDENT T, and data fields
defined in PARTTI MESTUDENT _T.

13.4.5 Sending Subtype Objects

In a typical JDBC application, a Java object that represents a database object is sent
to the databases as one of the following:

* A data manipulation language (DML) bind variable
* APL/SQL I N parameter
e An object type attribute value

The Java object can be an instance of the STRUCT class or an instance of the class
implementing either the SQLDat a or Or acl eDat a interface. Oracle JDBC driver will
convert the Java object into the linearized format acceptable to the database SQL
engine. Binding a subtype object is the same as binding a standard object.

13.4.6 Accessing Subtype Data Fields

ORACLE

While the logic to access subtype data fields is part of the customized class, this logic
for default mapping is defined in the JDBC application itself. The database objects are
returned as instances of the oracl e. j dbc. Oracl eStruct class. The JDBC application
needs to call one of the following access methods in the STRUCT class to access the
data fields:

e bject[] getAttribute()
e oracle.sql.Datunf] getOacleAttribute()

13-26

ORACLE

Chapter 13
Object-Type Inheritance

Subtype Data Fields from the getAttribute Method

The get Attri but e method of the j ava. sql . Struct interface is used in JDBC 2.0 to access
object data fields. This method returns a j ava. | ang. Obj ect array, where each array element
represents an object attribute. You can determine the individual element type by referencing
the corresponding attribute type in the JDBC conversion matrix. For example, a SQL NUMBER
attribute is converted to a j ava. mat h. Bi gDeci mal object. The get Attri but e method returns
all the data fields defined in the supertype of the object type as well as data fields defined in
the subtype. The supertype data fields are listed first followed by the subtype data fields.

Subtype Data Fields from the getOracleAttribute Method

The get Oracl eAttri but e method is an Oracle extension method and is more efficient than
the get Att ri but e method. The get Oracl eAttri but e method returns an or acl e. sql . Dat um
array to hold the data fields. Each element in the or acl e. sql . Dat umarray represents an
attribute. You can determine the individual element type by referencing the corresponding
attribute type in the Oracle conversion matrix. For example, a SQL NUMBER attribute is
converted to an or acl e. sql . NUMBER object. The get Or acl eAt t ri but e method returns all the
attributes defined in the supertype of the object type, as well as attributes defined in the
subtype. The supertype data fields are listed first followed by the subtype data fields.

The following code shows the use of the get At t ri but e method:

/] tabl.person colum can store PERSON T, STUDENT_T and PARTI MESTUDENT T objects
Resul t Set rset = stnt.executeQuery ("select person fromtabl");
while (rset.next())
{

oracle.sql.STRUCT s = (oracle.sql.STRUCT) rset.getject(1);

if (s!=null)

{

String sql nane = s. get SQLTypeNane();

Object[] attrs = s._getAttribute();

if (sqglnane.equals ("HR PERSON')

{
Systemout.println ("ssn="+((Bi gDecimal)attrs[0]).intValue());
Systemout.println ("name="+((String)attrs[1]));
Systemout.println ("address="+((String)attrs[2]));

el se if (sqglnane.equals ("HR STUDENT"))

{
Systemout.println ("ssn="+((Bi gDecimal)attrs[0]).intValue());
Systemout.println ("name="+((String)attrs[1]));
Systemout.println ("address="+((String)attrs[2]));
Systemout.println ("deptid="+((BigDecinal)attrs[3]).intValue());
Systemout.println ("mjor="+((String)attrs[4]));

else if (sqglnane.equals ("HR PARTTI MESTUDENT"))

{
Systemout.println ("ssn="+((Bi gDecimal)attrs[0]).intValue());
Systemout.println ("name="+((String)attrs[1]));
Systemout.println ("address="+((String)attrs[2]));
Systemout.println ("deptid="+((BigDecinal)attrs[3]).intValue());
Systemout.println ("mjor="+((String)attrs[4]));
Systemout. println ("numHours="+((Bi gDecinmal)attrs[5]).intValue());

}

el se
t hrow new Exception ("lnvalid type name: "+sqgl name);

13-27

Chapter 13
About Describing an Object Type

}
}
rset.close ();
stnt.close ();
conn.close ();

13.4.7 Inheritance Metadata Methods

Oracle JDBC drivers provide a set of metadata methods to access inheritance
properties. The inheritance metadata methods are defined in the
oracle.sql.StructDescriptor and oracl e. jdbc. Struct Met aDat a classes.

The St ruct Met aDat a class provides inheritance metadata methods for subtype
attributes. The get Met aDat a method of the St ruct Descri pt or class returns an
instance of St ruct Met aDat a of the type. The St ruct Met aDat a class contains the
following inheritance metadata methods:

13.5 About Describing an Object Type

Oracle JDBC includes functionality to retrieve information about a structured object
type regarding its attribute names and types. This is similar conceptually to retrieving
information from a result set about its column names and types, and in fact uses an
almost identical method.

This section covers the following topics:

* Functionality for Getting Object Metadata
* Retrieving Object Metadata

13.5.1 Functionality for Getting Object Metadata

ORACLE

The oracl e. sql . Struct Descri ptor class includes functionality to retrieve metadata
about a structured object type. The Struct Descri pt or class has a get Met aDat a
method with the same functionality as the standard get Met aDat a method available in
result set objects. It returns a set of attribute information, such as attribute names and
types. Call this method on a St ruct Descri pt or object to get metadata about the
Oracle object type that the Struct Descri pt or object describes.

The signature of the Struct Descri pt or class get Met aDat a method is the same as the
signature specified for get Met aDat a in the standard Resul t Set interface. The signature
is as follows:

Resul t Set Met aDat a get Met aData() throws SQLException

However, this method actually returns an instance of or acl e. j dbc. St ruct Met aDat a, a
class that supports structured object metadata in the same way that the standard
j ava. sqgl . Resul t Set Met aDat a interface specifies support for result set metadata.

The following method is also supported by St ruct Met aDat a:

String get Oracl eCol umd assNane(int colum) throws SQLException

This method returns the fully qualified name of the or acl e. sql . Dat umsubclass whose
instances are manufactured if the Or acl eResul t Set interface get Or acl eQbj ect
method is called to retrieve the value of the specified attribute. For example,

oracl e. sql . NUMBER.

13-28

Chapter 13
About Describing an Object Type

To use the get Or acl eCol umd assNanme method, you must cast the Resul t Set Met aDat a
object, which that was returned by the get Met aDat a method, to St ruct Met aDat a.

. " Note:

In all the preceding method signatures, col urm is something of a misnomer.
Where you specify a value of 4 for col um, you really refer to the fourth attribute
of the object.

13.5.2 Retrieving Object Metadata

Use the following steps to obtain metadata about a structured object type:

1. Create or acquire a Struct Descri pt or instance that describes the relevant structured
object type.

2. Call the get Met aDat a method on the St ruct Descri pt or instance.

3. Call the metadata getter methods, get Col unmNane, get Col umType, and
get Col uimTypeName, as desired.

Note:

If one of the structured object attributes is itself a structured object, repeat steps
1 through 3.

Example 13-1 Example

The following method shows how to retrieve information about the attributes of a structured
object type. This includes the initial step of creating a St ruct Descri pt or instance.

1

/1 Print out the ADT's attribute names and types

I

void getAttributelnfo (Connection conn, String type_nane) throws SQLException
{

/'l get the type descriptor
Struct Descriptor desc = StructDescriptor.createDescriptor (type_nane, conn);

/] get type netadata
Resul t Set Met aData nd = desc. get MetabData ();

Il get # of attrs of this type
int numdttrs = desc.length ();

Il tenporary buffers
String attr_naneg;

int attr_type;
String attr_typeNane;

Systemout.printin ("Attributes of "+type_name+" :");
for (int i=0; i<numAttrs; i++)

{
attr_name = nd. get Col umNane (i +1);

ORACLE 13-29

ORACLE

}

}

Chapter 13
About Describing an Object Type

attr_type = nd. get Col umType (i+1);
Systemout.printin (" index"+(i+1)+" name="+attr_name+" type="+attr_type);

[l drill down nested object
if (attrType == Oracl eTypes. STRUCT)

attr_typeName = nd. get Col umTypeNane (i+1);

/] recursive calls to print out nested object netadata
getAttributelnfo (conn, attr_typeName);

}

13-30

Working with LOBs and BFILEsS

This chapter describes how to use Java Database Connectivity (JDBC) to access and
manipulate large objects (LOB) using either the data interface or the locator interface.

In previous releases, Oracle JDBC drivers required Oracle extensions to standard JDBC
types to perform many operations in the Oracle Database. JDBC 3.0 reduced the
requirement of using Oracle extensions and JDBC 4.0 nearly eliminated this limitation. Refer
to the Javasoft Javadoc for the j ava. sql and j avax. sql packages, and to the Oracle JDBC
Javadoc for details on Oracle extensions.

This chapter contains the following sections:

e The LOB Data Types

* Oracle SecureFiles

* Data Interface for LOBs

* LOB Locator Interface

e About Working With Temporary LOBs

* About Opening Persistent LOBs with the Open and Close Methods
e About Working with BFILES

< Note:

e In Oracle Database 12c Release 1 (12.1), the Oracle JDBC drivers support the
JDBC 4.0 j ava. sql . NC ob interface.

e In Oracle Database 10g, the Oracle JDBC drivers support the JDBC 3.0
java.sqgl.d ob and j ava. sql . Bl ob interfaces. Certain Oracle extensions made
inoracl e.sql . CLOB and oracl e. sgl . BLOB in earlier Oracle Database releases
are no longer necessary and are deprecated. You should port your application
to the standard JDBC 3.0 interface.

+ Prior to Oracle Database 10g, the maximum size of a LOB was 232 bytes. This
restriction has been removed since Oracle Database 10g, and the maximum
size is limited to the size of available physical storage. The Java LOB
application programming interface (API) has not changed.

14.1 The LOB Data Types

ORACLE

Prior to Oracle Database 10g, the maximum size of a LOB was 232 bytes. This restriction
has been removed since Oracle Database 10g, and the maximum size is limited to the size of
available physical storage.

The Oracle database supports the following four LOB data types:

14-1

Chapter 14
Oracle SecureFiles

* Binary large object (BLOB)

This data type is used for unstructured binary data.
e Character large object (CLOB)

This data type is used for character data.
* National character large object (NCLOB)

This data type is used for national character data.
e BFILE

This data type is used for large binary data objects stored in operating system
files, outside of database tablespaces.

BLOBs, CLOBs, and NCLOBs are stored persistently in a database tablespace and all
operations performed on these data types are under transaction control.

BFILE is an Oracle proprietary data type that provides read-only access to data
located outside the database tablespaces on tertiary storage devices, such as hard
disks, network mounted files systems, CD-ROMs, PhotoCDs, and DVDs. BFILE data
is not under transaction control and is not stored by database backups.

The PL/SQL language supports the LOB data types and the JDBC interface allows
passing IN parameters to PL/SQL procedures or functions, and retrieval of OUT
parameters or returns. PL/SQL uses value semantics for all data types including
LOBs, but reference semantics only for BFILE.

14.2 Oracle SecureFiles

ORACLE

Oracle Database 11g Release 1 (11.1) introduced Oracle SecureFiles, a completely
new storage for LOBs.

Following Features of Oracle SecureFiles are transparently available to JDBC
programs through the existing APIs:

e SecureFile compression enables users to compress data to save disk space.

e SecureFile encryption introduces a new encryption facility that allows for random
reads and writes of the encrypted data.

» Deduplication enables Oracle database to automatically detect duplicate LOB data
and conserve space by storing only one copy of data.

- LOB data path optimization includes logical cache above storage layer and new
caching modes.

» High performance space management.

The set LobOpti ons and get LobOpti ons APIs are described in the PL/SQL Packages
and Types Reference, and may be accessed from JDBC through callable statements.

Following Oracle SecureFiles features are implemented in the database through
updates to the existing APIs:

* isSecureFile Method

e Zero-Copy /O for Oracle SecureFiles

14-2

Chapter 14
Data Interface for LOBs

isSecureFile Method

You can check whether or not your BLOB or CLOB data uses Oracle SecureFile storage. To
achieve this, use the following method from or acl e. j dbc. Or acl eBl ob or
oracle.jdbc. Oracl ed ob class:

public bool ean isSecureFile() throws SQ.Exception

If this method returns t r ue, then your data uses SecureFile storage.

Zero-Copy /O for Oracle SecureFiles

With the release of Oracle Database 12¢ Release 2 (12.2) JDBC Drivers, the performance of
Oracle SecureFiles operations is greatly improved because Oracle Net Services now uses
zero-copy /O framework for better buffer management.

Oracle Database 11g Release 2 introduced a new connection property

oracl e. net. useZer oCopyl O. This property can be used to enable or disable the zero-copy
I/O protocol. This connection property is defined as the following constant:

O acl eConnect i on. CONNECTI ON_PROPERTY_THI N_NET_USE ZERO CCOPY_I O. If you want to
disable the zero-copy I/0O framework, then set the value of this connection property to f al se.
By default, the value of this connection property is t r ue.

14.3 Data Interface for LOBsS

This section describes the following topics:

+ Streamlined Mechanism

* Input

e Output

* CallableSatement and IN OUT Parameter

* Size Limitations

14.3.1 Streamlined Mechanism

The Oracle Database 12¢ Release 1 (12.1) JDBC drivers provide a streamlined mechanism
for writing and reading the entire LOB contents. This is referred to as the data interface. The
data interface uses standard JDBC methods such as get St ri ng and set Byt es to read and
write LOB data. It is simpler to code and faster in many cases. Unlike the standard
java.sql.Blob,java.sql . ob andjava. sql . NCl ob interfaces, it does not provide random
access capability, that is, it does not use LOB locator and cannot access data beyond
2147483648 elements.

14.3.2 Input

In Oracle Database 12c Release 1 (12.2), the set Byt es, set Bi narySt ream set Stri ng,

set Char act er Stream and set Asci i St reammethods of Pr epar edSt at enent are extended to
enhance the ability to work with BLOB, CLOB, and NCLOB target columns. If the length of the
data is known, then for better performance, use the versions of setBinaryStream or
setCharacterStream methods that accept the data length as a parameter.

ORACLE 14-3

ORACLE

Chapter 14
Data Interface for LOBs

< Note:

This enhancement does not affect the BFI LE data because it is read-only.

For the JDBC Oracle Call Interface (OCI) and Thin drivers, there is no limitation on the
size of the byt e array or St ri ng, and no limitation on the length specified for the
stream functions, except the limits imposed by the Java language.

¢ Note:

In Java, the array size is limited to positive Java i nt or 2147483648
elements.

For the server-side internal driver, currently there is a limitation of 32767 bytes for
operations on SQL statements, such as an | NSERT statement. This limitation does not
apply for PL/SQL statements. There is a simple workaround for an | NSERT statement,
where it is wrapped in a PL/SQL block in the following way:

BEG N
INSERT id, ¢ INTO clob_tab VALUES(?, ?);
END;

You must bear in mind the following automatic switching of the input mode for large
data:

* There are three input modes as follows:
— Direct binding

This binding is limited in size but most efficient. It places the data for all input
columns inline in the block of data sent to the server. All data, including
multiple executions of a batch, is sent in a single network operation.

— Stream binding

This binding places data at the end. It limits batch size to one and may require
multiple round trips to complete.

— LOB binding

This binding creates a temporary LOB, copies data to the LOB, and binds the
LOB locator. The temporary LOB is automatically freed after execution. The
operation to create the temporary LOB and then to writing to the LOB requires
multiple round trips. The input of the locators may be batched.

e For SQL statements:

— The set Byt es and set Bi nar ySt r eammethods use direct binding for data less
than 32767 bytes.

— The set Byt es and set Bi nar ySt r eammethods use stream binding for data
larger than 32767 bytes.

— InJDBC 4.0 has introduced new forms of the set Asci i Stream
set Bi narySt ream and set Char act er St r eammethods. The form, where the
methods take a long argument as length, uses LOB binding for length larger

14-4

ORACLE

Chapter 14
Data Interface for LOBs

than 2147483648. The form, where the length is not specified, always uses LOB
binding.

— ThesetString, set Character Stream and set Asci i St r eammethods use direct
binding for data smaller than 32767 characters.

— ThesetString, set Charact er Stream and set Asci i St r eammethods use stream
binding for data larger than 32766 characters.

— The new form of set Char act er St r eammethod, which takes a | ong argument for
length, uses LOB binding for length larger than 2147483647, in JDBC 4.0. The form,
where the length is not specified, always uses LOB binding.

* PL/SQL statements

— The set Byt es and set Bi nary stream methods use direct binding for data less than
32767 bytes.

" Note:

If the underlying Database is Oracle Database release 10.x, then this data
size limit is 32512 hytes, though you are working with Oracle Database 12¢
Release 1 (12.1) JDBC drivers.

— The set Byt es and set Bi nar ySt r eammethods use LOB binding for data larger than
32766 bytes.

— ThesetString, set Character Stream and set Asci i St reammethods use direct
binding for data smaller than 32767 bytes in the database character set.

Note:

If the underlying Database is Oracle Database release 10.x, then this data
size limit is 32512 bytes, though you are working with Oracle Database 12c¢
Release 1 (12.1) JDBC drivers.

— Theset String, set Charact er Stream and set Asci i Streammethods use LOB
binding for data larger than 32766 bytes in the database character set.

The automatic switching of the input mode for large data has impact on certain programs.
Previously, you used to get ORA- 17157 errors for attempts to use set St ri ng method for
String values larger than 32766 characters. Now, depending on the type of the target
parameter, an error may occur while the statement is executed or the operation may
succeed.

Another impact is that the automatic switching may result in additional server-side parsing to
adapt to the change in the parameter type. This would result in a performance effect, if the
data sizes vary above and below the limit for repeated executions of the statement. Switching
to the stream modes will effect batching as well.

Forcing conversion to LOB

The set Byt esFor Bl ob and set Stri ngFor G ob methods, present in the
oracle.jdbc. Oracl ePreparedSt at ement interface, use LOB binding for any data size.

14-5

Chapter 14
Data Interface for LOBs

The Set Bi gSt ri ngTryCl ob connection property of Oracle Database 10g Release 1 is
no longer used or needed.

14.3.3 Output

The get Byt es, get Bi naryStream get Stri ng, get Char act er Stream and

get Asci i Streammethods of Resul t Set and Cal | abl eSt at enent are extended to work
with BLOB, CLOB, and BFI LE columns or QUT parameters. These methods work for any
LOB of length less than 2147483648.

Note:

The get String and get NSt ri ng methods cannot be used for retrieving BLOB
column values.

The data interface operates by accessing the LOB locators within the driver and is
transparent to application programming. It works with any supported version of the
database, that is, Oracle Database 10.1.x and later. For Oracle Database 11g Release
1 or later versions, LOB prefetching may be used to reduce or eliminate any additional
database round trips required.

You can read BFI LE data and read and write BLOB or CLOB data using the

def i neCol umType method. To read, use def i neCol umType(nn,

Types. LONGVARBI NARY) or def i neCol umType(nn, Types. LONGVARCHAR) method on the
column. This produces a direct stream on the data as if it were a LONG RAWor LONG
column. This technique is limited to Oracle Database 10g release 1 (10.1) and later.

Related Topics
* New Methods for National Character Set Type Data in JDK 6

 LOB Locator Interface

14.3.4 CallableSatement and IN OUT Parameter

ORACLE

Itis a PL/SQL requirement that the Java types used as input and output for an IN OUT
parameter must be the same. The automatic switching of types done by the
extensions described in this chapter may cause problems with this.

Consider that you have an | N OUT CLOB parameter of a stored procedure and you wish
to use set St ri ng method for setting the value for this parameter. For any | Nand OUT
parameter, the binds must be of the same type. The automatic switching of the input
mode will cause problems unless you are sure of the data sizes. For example, if it is
known that neither the input nor output data will ever be larger than 32766 bytes, then
you could use set St ri ng method for the input parameter and register the QUT
parameter as Types. VARCHAR and use get St ri ng method for the output parameter.

A better solution is to change the stored procedure to have separate | Nand OUT
parameters. That is, if you have:

CREATE PROCEDURE cl ob_proc(¢ IN QUT CLOB);

then, change it to:

14-6

Chapter 14
LOB Locator Interface

CREATE PROCEDURE cl ob_proc(c_in IN CLOB, c_out QUT CLOB);

Another workaround is to use a container block to make the call. The cl ob_pr oc procedure
can be wrapped with a Java String to use for the prepareCal | statement, as follows:

"DECLARE c_tenp; BEGN c_temp := ?; clob_proc(c_tenp); ? := c_tenp; END;"

In either case, you may use the set St ri ng method on the first parameter and the
regi st er Qut Par anet er method with Types. CLOB on the second.

14.3.5 Size Limitations

14.410B

ORACLE

Be aware of the effect on the performance of the Java memory management system due to
creation of very large byt e array or Stri ng. Read the information provided by your Java
virtual machine (JVM) vendor about the impact of very large data elements on memory
management, and consider using the stream interfaces instead.

Locator Interface

Locators are small data structures, which contain information that may be used to access the
actual data of the LOB. In a database table, the locator is stored directly in the table, while
the data may be in the table or in separate storage. It is common to use separate tablespaces
for large LOBs.

In JDBC 4.0, LOBs should be read or written using the interfaces j ava. sql . Bl ob,
java.sqgl.d ob, and j ava. sgl . NC ob. These provide random access to the data in the LOB.

The Oracle implementation classes or acl e. sql . BLOB, oracl e. sql . CLOB, and

oracl e. sql . NCLOB store the locator and access the data with it. The oracl e. sql . BLOB and
oracl e. sql . CLOB classes implement the j ava. sql . Bl ob and j ava. sgl . O ob interfaces
respectively. In oj dbc6. j ar, oracl e. sgl . NCLOB implements j ava. sgl . NCl ob, but in

oj dbcb. j ar, it implements the j ava. sql . C ob interface.

" Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the oracl e. sql . BLOB and
oracl e. sql . CLOB classes are deprecated and replaced with the

oracl e.jdbc. Oracl eBl ob and oracl e. j dbc. Oracl ed ob interfaces. Oracle
recommends you to use the methods available in the j ava. sql package, where
possible, for standard compatibility and methods available in the or acl e. j dbc
package for Oracle specific extensions. Refer to MoS Note 1364193.1 for more
information about these interface.

In Oracle Database 12c¢ Release 1 (12.1), the Oracle JDBC drivers support the JDBC 4.0
j ava. sgl . NCl ob interface in oj dbc6. j ar and oj dbc7. j ar, which are compiled with JDK 6
(must be used with JRE 6) and JDK 7 (must be used with JRE 7) respectively.

In contrast, or acl e. sql . BFI LE is an Oracle extension, without a corresponding j ava. sql
interface.

14-7

ORACLE

Chapter 14
LOB Locator Interface

¢ See Also:

The JDBC Javadoc for more details.

LOB prefetching

For Oracle Database 12c¢ Release 1 (12.1) JDBC drivers, the number of round trips is
reduced by prefetching the metadata such as the LOB length and the chunk size as
well as the beginning of the LOB data along with the locator during regular fetch
operations. If you select LOB columns into a result set, some or all of the data is
prefetched to the client, when the locator is fetched. It saves the first roundtrip to
retrieve data by deferring all preceding operations until fetching from the locator.

Note:

LOB Prefetching is inversely proportional to the size of the LOB data, that is,
the benefits of prefetching are more for small LOBs and less for larger LOBs.

The prefetch size is specified in bytes for BLOBs and in characters for CLOBs. It can
be specified by setting the connection property

oracl e.jdbc. def aul t LobPref et chSi ze. The value of this property can be overridden
in the following two ways:

* Atthe statement level: By using the
oracle.jdbc. Oracl eStatenent. set LobPref et chSi ze(i nt) method

e Atthe column level: By using the form of def i neCol umType method that takes
length as argument

The default prefetch size is 4000.

" Note:

Be aware of the possible memory consumption while setting large LOB
prefetch sizes in combination with a large row prefetch size and a large
number of LOB columns.

See Also:

The JDBC Javadoc for more details

New LOB APIs in JDBC 4.0

Oracle Database 11g Release 1 introduced the j ava. sql . NCl ob interface. The Oracle
drivers implement the or acl e. sql . NCLOB and j ava. sgl . NCLOB interface in both
oj dbc6. jar and oj dbc7. jar.

14-8

Chapter 14
About Working With Temporary LOBs

The Oracle drivers implement the new factory methods, cr eat eBl ob, creat ed ob, and
creat eNC ob in the j ava. sql . Connecti on interface to create temporary LOBs.

Starting from JDK 6, the j ava. sql . Bl ob, j ava. sgl . 0 ob, and j ava. sgl . NC ob interfaces
have a new method f r ee to free an LOB and release the associated resources. The Oracle
drivers use this method to free an LOB, if it is a temporary LOB.

14.5 About Working With Temporary LOBS

ORACLE

You can use temporary LOBSs to store transient data. The data is stored in temporary table
space rather than regular table space. You should free temporary LOBs after you no longer
need them. If you do not, then the space the LOB consumes in temporary table space will not
be reclaimed.

You can insert temporary LOBs into a table. When you do this, a permanent copy of the LOB
is created and stored.

Note:

Inserting a temporary LOB may be preferable in some situations. For example,
when the LOB data is relatively small and the overhead of copying the data is less
than the cost of a database round trip to retrieve the empty locator. Remember that
the data is initially stored in the temporary table space on the server and then
moved into permanent storage.

You create a temporary LOB with the st ati ¢ method cr eat eTenpor ary, defined in both the
oracle.sql.BLOBand oracl e. sql . CLOB classes. You free a temporary LOB with the
freeTenpor ary method.

You can also create a temporary LOB/CLOB or NCLOB by using the connection factory
methods available in JDBC 4.0.

You can test whether a LOB is temporary or not by calling the i sTenpor ary method. If the
LOB was created by calling the cr eat eTenpor ary method, then the i sTenpor ary method
returns true, else it returns f al se.

You can free a temporary LOB by calling the f r eeTenpor ary method. Free any temporary
LOBs before ending the session or call.

" Note:

e If you do not free a temporary LOB, then it will make the storage used by that
LOB in the database unavailable. Frequent failure to free temporary LOBs will
result in filling up temporary table space with unavailable LOB storage.

e When fetching data from a Reul t Set with columns that are temporary LOBS,
use get Cl ob or get Bl ob methods instead of get St ri ng or get Byt es.

e« The JDBC 4.0 method free, presentin j ava. sql . Bl ob, j ava. sql . C ob, and
j ava. sgl . NC ob interfaces, supercedes the f reeTenpor ary method.

14-9

Chapter 14
About Opening Persistent LOBs with the Open and Close Methods

Related Topics
* LOB Creation

14.6 About Opening Persistent LOBs with the Open and
Close Methods

ORACLE

This section discusses how to open and close your LOBs. The JDBC implementation
of this functionality is provided using the following methods of or acl e. sql . BLOB and
oracl e. sql . CLOB interfaces:

e void open (int node)
* void close()

e bool ean i sQpen()

" Note:

e Starting from Oracle Database 12c¢ Release 1 (12.1), the
oracl e.sql . BLOB and or acl e. sql . CLOB classes are deprecated and
replaced with the or acl e. j dbc. O acl eBl ob and
oracl e.jdbc. O acl ed ob interfaces. Oracle recommends you to use the
methods available in the j ava. sql package, where possible, for
standard compatibility and methods available in the or acl e. j dbc
package for Oracle specific extensions. Refer to MoS Note 1364193.1
for more information about these interface.

e You do not have to necessarily open and close your LOBs. You may
choose to open and close them for performance reasons.

If you do not wrap LOB operations inside an Open/ Cl ose call operation, then each
modification to the LOB will implicitly open and close the LOB, thereby firing any
triggers on a domain index. Note that in this case, any domain indexes on the LOB will
become updated as soon as LOB modifications are made. Therefore, domain LOB
indexes are always valid and may be used at any time within the same transaction.

If you wrap your LOB operations inside the Open/ O ose call operation, then triggers will
not be fired for each LOB modification. Instead, the trigger on domain indexes will be
fired at the O ose call. For example, you might design your application so that domain
indexes are not be updated until you call the cl ose method. However, this means that
any domain indexes on the LOB will not be valid in-between the Open/ C ose calls.

You open a LOB by calling the open or open(i nt) method. You may then read and
write the LOB without any triggers associated with that LOB firing. When you finish
accessing the LOB, close the LOB by calling the cl ose method. When you close the
LOB, any triggers associated with the LOB will fire.

You can check if a LOB is open or closed by calling the i sOpen method. If you open
the LOB by calling the open(i nt) method, then the value of the argument must be
either MODE_READONLY or MODE_READWRI TE, as defined in the or acl e. sql . BLOB and
oracl e. sqgl . CLOB classes. If you open the LOB with MODE_READONLY, then any attempt
to write to the LOB will result in a SQL exception.

14-10

Chapter 14
About Working with BFILES

< Note:

* An error occurs if you commit the transaction before closing all LOBs that were
opened by the transaction. The openness of the open LOBs is discarded, but
the transaction is successfully committed. Hence, all the changes made to the
LOB and non-LOB data in the transaction are committed, but the triggers for
domain indexing are not fixed.

e The open and cl ose methods apply only to persistent LOBs. The cl ose method
is not similar to the free or freeTenpor ary methods used for temporary LOBSs.
The free and freeTenpor ary methods release storage and make a LOB
unusable. On the other hand, the cl ose method indicates to the database that a
modification on a LOB is complete, and triggers should be fired and indexes
should be updated. A LOB is still usable after a call to the cl ose method.

14.7 About Working with BFILES

ORACLE

This section describes how to read data from BFILES, using file locators. This section covers
the following topics:

* Retrieving BFILE Locators
e Writing to BFILES

Retrieving BFILE Locators

The BFILE data type and or acl e. sql . BFI LE classes are Oracle proprietary. So, there is no
standard interface for them. You must use Oracle extensions for this type of data.

If you have a standard JDBC result set or callable statement object that includes BFILE
locators, then you can access the locators by using the standard result set get Obj ect
method. This method returns an or acl e. sql . BFI LE object.

You can also access the locators by casting your result set to Or acl eResul t Set or your
callable statement to Or acl eCal | abl eSt at ement and using the get Or acl eChj ect or get BFI LE
method.

Note:

If you are using get Obj ect or get Or acl eChj ect methods, then remember to cast
the output, as necessary.

Once you have a locator, you can access the BFILE data via the APl in oracl e. sql . BFI LE.
These APIs are similar to the read methods of the | ava. sql . BLOB interface.

Writing to BFILES

You cannot write data to the contents of the BFILE, but you can use an instance of
oracl e. sqgl . BFI LE as input to a SQL statement or to a PL/SQL procedure. You can achieve
this by performing one of the following:

14-11

Chapter 14
About Working with BFILES

» Use the standard set Obj ect method.

e Cast the statement to Or acl ePrepar edSt at enment or Or acl eCal | abl eSt at enent
and use the set O acl evj ect or set BFI LE method. These methods take the
parameter index and an or acl e. sql . BFI LE object as input.

" Note:

— There is no standard | ava. sqgl interface for BFILES.

— Use the get BFI LE methods in the Or acl eResul t Set and
Oracl eCal | abl eSt at enent interfaces to retrieve an
oracl e. sql . BFI LE object. The set BFI LE methods in
Oracl ePreparedSt at enent and O acl eCal | abl eSt at enent
interfaces accept or acl e. sql . BFI LE object as an argument. Use
these methods to write to a BFILE.

— Oracle recommends that you use the get BFI LE, set BFI LE, and
updat eBFI LE methods instead of the get Bf i | e, set Bf i | e, and
updat eBf i | e methods. For example, use the set BFI LE method
instead of the set Bf i | e method.

BFILEs are read-only. The body of the data resides in the operating system (OS) file
system and can be written to using only OS tools and commands. You can create a
BFILE for an existing external file by executing the appropriate SQL statement either
from JDBC or by using any other way to execute SQL. However, you cannot create an
OS file that a BFILE would refer to by SQL or JDBC. Those are created only externally
by a process that has access to server file systems.

Note:

The code examples present in this chapter, in the earlier versions of this
guide, have been removed in favor of references to the sample code
available for download on OTN.

ORACLE 14-12

Using Oracle Object References

This chapter describes the standard Java Database Connectivity (JDBC) that let you access
and manipulate object references.

This section discusses the following topics:

* Oracle Extensions for Object References
* Retrieving and Passing an Object Reference

* Accessing and Updating Object Values Through an Object Reference

15.1 Oracle Extensions for Object References

Oracle supports the use of references to database objects. Oracle JDBC provides support for
object references as:

e Columns in a SELECT clause

e IN or OUT bind variables

e Attributes in an Oracle object

e Elements in a collection type object

In SQL, an object reference (REF) is strongly typed. For example, a reference to an EMPLOYEE
object would be defined as an EMPLOYEE REF, not just a REF.

When you select an object reference, be aware that you are retrieving only a pointer to an
object, not the object itself. You have the choice of materializing the reference as a

j ava. sqgl . Ref instance for portability, or materializing it as an instance of a custom Java class
that you have created in advance, which is strongly typed. Custom Java classes used for
object references are referred to as custom reference classes and must implement the
oracl e. jdbc. O acl eDat a interface.

You can retrieve a REF instance through a result set or callable statement object, and pass an
updated REF instance back to the database through a prepared statement or callable
statement object. The REF class includes functionality to get and set underlying object
attribute values, and get the SQL base type name of the underlying object.

Custom reference classes include this same functionality, as well as having the advantage of
being strongly typed. This can help you find coding errors during compilation that might not
otherwise be discovered until run time.

ORACLE 15-1

Chapter 15
Retrieving and Passing an Object Reference

< Note:

e If you are using the or acl e. j dbc. Or acl eDat a interface for custom object
classes, then you will presumably use O acl eDat a for corresponding
custom reference classes as well. However, if you are using the standard
j ava. sql . SQLDat a interface for custom object classes, then you can only
use weak Java types for references. The SQ.Dat a interface is for
mapping SQL object types only.

* You can create and retrieve REF objects in your JDBC application only by
running SQL statements. There is no JDBC-specific functionality for
creating and retrieving REF objects.

e You cannot have a reference to an array, even though arrays, like
objects, are structured types.

15.2 Retrieving and Passing an Object Reference

This section discusses JDBC functionality for retrieving and passing object references.
It covers the following topics:

e Retrieving an Object Reference from a Result Set
e Retrieving an Object Reference from a Callable Statement

e Passing an Object Reference to a Prepared Statement

15.2.1 Retrieving an Object Reference from a Result Set

ORACLE

To demonstrate how to retrieve object references, the following example first defines
an Oracle object type ADDRESS, which is then referenced in the PEOPLE table:

create type ADDRESS as obj ect
(street_name VARCHAR2(30),
house_no NUMBER) ;

create table PECPLE
(col 1 VARCHAR2(30),
col 2 NUMBER,
col 3 REF ADDRESS);

The ADDRESS object type has two attributes: a street name and a house number. The
PEOPLE table has three columns: a column for character data, a column for numeric
data, and a column containing a reference to an ADDRESS object.

To retrieve an object reference, follow these general steps:

1. Use a standard SQL SELECT statement to retrieve the reference from a database
table REF column.

2. Use get Ref to get the address reference from the result set into an O acl eRef
instance.

3. Let Address be the Java custom class corresponding to the SQL object type
ADDRESS.

15-2

Chapter 15
Retrieving and Passing an Object Reference

4. Add the correspondence between the Java class Addr ess and the SQL type ADDRESS to
your type map.

5. Use the get Ghj ect method to retrieve the contents of the Addr ess reference. Cast the
output to Addr ess.

The PEOPLE database table is defined earlier in this section. The code for the preceding steps,
except the step of adding Addr ess to the type map, is as follows:

ResultSet rs = stnt.executeQuery("SELECT col 3 FROM PECPLE");
while (rs.next())

{
Oracl eRef ref = rs.getRef(1);
Address a = (Address)ref.get Chject();

}

" Note:

In the preceding code, st nt is a previously defined statement object.

15.2.2 Retrieving an Object Reference from a Callable Statement

To retrieve an object reference as an OUT parameter in PL/SQL blocks, you must register the
bind type for your QUT parameter.

1. Cast your callable statement to O acl eCal | abl eSt at enent , as follows:

O acl eCal | abl eSt at ement ocs =
(Oracl eCal | abl eSt at ement) conn. prepareCal | ("{? = call func()}");

2. Register the OUT parameter with the following form of the r egi st er Qut Par amet er method:
ocs. registerQutParameter (int param.index, int sql_type, String sql_type_nane);
par am i ndex is the parameter index and sqgl _t ype is the SQL type code. The
sgl _type_nane is the name of the structured object type that this reference is used for.

For example, if the OUT parameter is a reference to an ADDRESS object, then ADDRESS is
the sqgl _t ype_nane that should be passed in.

3. Run the call, as follows:

ocs. execute();

15.2.3 Passing an Object Reference to a Prepared Statement

ORACLE

Pass an object reference to a prepared statement in the same way as you would pass any
other SQL type. Use either the set Obj ect method or the set REF method of a prepared
statement object.

Use a prepared statement to update an address reference based on RON D, as follows:

PreparedSt at enent pstnt =

conn. prepareStatement ("update PEOPLE set ADDR REF = ? where ROND = ?");
pstnt.setRef (1, addr_ref);

pstnt.setRowid (2, rowid);

15-3

Chapter 15
Accessing and Updating Object Values Through an Object Reference

15.3 Accessing and Updating Object Values Through an
Object Reference

ORACLE

You can use the Ref object set Obj ect method to update the value of an object in the
database through an object reference. To do this, you must first retrieve the reference
to the database object and create a Java object that corresponds to the database
object.

For example, you can use the code in the "Retrieving and Passing an Object
Reference" section to retrieve the reference to a database ADDRESS object, as shown in
the following code snippet:

ResultSet rs = stnt.executeQuery("SELECT col 3 FROM PECPLE");
if (rs.next())

Ref ref = rs.getRef(1);
Address a = (Address)ref.get Cbject();
}

Then, you can create a Java Addr ess object that corresponds to the database ADDRESS
object. Use the set Chj ect method of the Ref interface to set the value of the database
object, as follows:

Address addr = new Address(...);
ref. set Cbj ect (addr);

Here, the set Val ue method updates the database ADDRESS object immediately.

Related Topics

* Retrieving and Passing an Object Reference

15-4

Working with Oracle Collections

This chapter describes Oracle extensions to standard Java Database Connectivity (JDBC)
that let you access and manipulate Oracle collections, which map to Java arrays, and their
data. The following topics are discussed:

" Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the or acl e. sql . ARRAY class is
deprecated and replaced with the or acl e. j dbc. Oracl eArray interface, which is a
part of the or acl e. j dbc package. Oracle recommends you to use the methods
available in the j ava. sql package, where possible, for standard compatibility and
methods available in the or acl e. j dbc package for Oracle specific extensions. Refer
to MoS Note 1364193.1 for more information about the or acl e. j dbc. O acl eArray
interface.

» Oracle Extensions for Collections

e Overview of Collection Functionality

* ARRAY Performance Extension Methods
e Creating and Using Arrays

e Using a Type Map to Map Array Elements

16.1 Oracle Extensions for Collections

This section covers the following topics:

e Overview of Oracle Collections
* Choices in Materializing Collections
» Creating Collections

» Creating Multilevel Collection Types

16.1.1 Overview of Oracle Collections

ORACLE

An Oracle collection, either a variable array (VARRAY) or a nested table in the database,
maps to an array in Java. JDBC 2.0 arrays are used to materialize Oracle collections in Java.
The terms collection and array are sometimes used interchangeably. However, collection is
more appropriate on the database side and array is more appropriate on the JDBC
application side.

Oracle supports only hamed collections, where you specify a SQL type name to describe a
type of collection. JDBC enables you to use arrays as any of the following:

e Columns in a SELECT clause

16-1

Chapter 16
Oracle Extensions for Collections

e | Nor QUT bind variables
e Attributes in an Oracle object

e Elements of other arrays

16.1.2 Choices in Materializing Collections

In your application, you have the choice of materializing a collection as an instance of
the oracl e. sgl . ARRAY class, which is weakly typed, or materializing it as an instance
of a custom Java class that you have created in advance, which is strongly typed.
Custom Java classes used for collections are referred to as custom collection classes.
A custom collection class must implement the Oracle oracl e. j dbc. Oracl eDat a
interface. In addition, the custom class or a companion class must implement

oracl e.jdbc. O acl eDat aFact ory. The standard j ava. sql . SQLDat a interface is for
mapping SQL object types only.

The oracl e. sgl . ARRAY class implements the standard j ava. sql . Array interface.

The ARRAY class includes functionality to retrieve the array as a whole, retrieve a
subset of the array elements, and retrieve the SQL base type name of the array
elements. However, you cannot write to the array, because there are no setter
methods.

Custom collection classes, as with the ARRAY class, enable you to retrieve all or part of
the array and get the SQL base type name. They also have the advantage of being
strongly typed, which can help you find coding errors during compilation that might not
otherwise be discovered until run time.

Note:

There is no difference in the code between accessing VARRAYs and
accessing nested tables. ARRAY class methods can determine if they are
being applied to a VARRAY or nested table, and respond by taking the
appropriate actions.

16.1.3 Creating Collections

ORACLE

Because Oracle supports only named collections, you must declare a particular VARRAY
type name or nested table type name. VARRAY and nested table are not types
themselves, but categories of types.

A SQL type name is assigned to a collection when you create it using the SQL CREATE
TYPE statement:

CREATE TYPE <sqgl _type_name> AS <dat at ype>;

A VARRAY is an array of varying size. It has an ordered set of data elements, and all
the elements are of the same data type. Each element has an index, which is a
number corresponding to the position of the element in the VARRAY. The number of
elements in a VARRAY is the size of the VARRAY. You must specify a maximum size
when you declare the VARRAY type. For example:

CREATE TYPE nyNuniype AS VARRAY(10) OF NUMBER

16-2

Chapter 16
Overview of Collection Functionality

This statement defines nyNuniType as a SQL type name that describes a VARRAY of NUMBER
values that can contain no more than 10 elements.

A nested table is an unordered set of data elements, all of the same data type. The database
stores a nested table in a separate table which has a single column, and the type of that
column is a built-in type or an object type. If the table is an object type, then it can also be
viewed as a multi-column table, with a column for each attribute of the object type. You can
create a nested table as follows:

CREATE TYPE nyNunli st AS TABLE OF integer;

This statement identifies myNunLi st as a SQL type name that defines the table type used for
the nested tables of the type | NTEGER.

16.1.4 Creating Multilevel Collection Types

The most common way to create a new multilevel collection type in JDBC is to pass the SQL
CREATE TYPE statement to the execut e method of the j ava. sql . St at ement class. The
following code creates a one-level nested table, first _| evel , and a two- levels nested table,
second_| evel :

Connection conn = /] make a dat abase
/] connection

Statement stmt = conn.createStatenent(); /| open a database
/1 cursor

stnt. execute(" CREATE TYPE first_| evel AS TABLE OF NUMBER'); // create a nested
/'l table of number
stnt. execut e(" CREATE TYPE second_| evel AS TABLE OF first_level"); // create a
Il two-levels nested table
/'l other operations here

stnt.close(); /'l release the
/'l resource
conn. cl ose(); /'l close the

/| database connection

Once the multilevel collection types have been created, they can be used as both columns of
a base table as well as attributes of a object type.

Note:

Multilevel collection types are available only for Oracle9i and later.

16.2 Overview of Collection Functionality

ORACLE

You can obtain collection data in an array instance through a result set or callable statement
and pass it back as a bind variable in a prepared statement or callable statement.

The oracl e. sql . ARRAY class, which implements the standard j ava. sql . Array interface,
provides the necessary functionality to access and update the data of an Oracle collection.

This section covers Array Getter and Setter Methods. Use the following result set, callable
statement, and prepared statement methods to retrieve and pass collections as Java arrays.

16-3

Chapter 16
ARRAY Performance Extension Methods

< Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the or acl e. sgl . ARRAY
class is deprecated and replaced with the or acl e. j dbc. Or acl eArray
interface, which is a part of the or acl e. j dbc package. Oracle recommends
you to use the methods available in the j ava. sql package, where possible,
for standard compatibility and methods available in the or acl e. j dbc package
for Oracle specific extensions. Refer to MoS Note 1364193.1 for more
information about the or acl e. j dbc. Oracl eArr ay interface.

Result Set and Callable Statement Getter Methods

The Oracl eResul t Set and Oracl eCal | abl eSt at enent interfaces support get ARRAY
and get Array methods to retrieve ARRAY objects as output parameters, either as
oracl e. sqgl . ARRAY instances or j ava. sql . Array instances. You can also use the
get Qbj ect method. These methods take as input a St ri ng column name or i nt
column index.

Note:

The Oracle JDBC drivers cache array and structure descriptors. This
provides enormous performance benefits; however, it means that if you
change the underlying type definition of an array type in the database, the
cached descriptor for that array type will become stale and your application
will receive a SQLExcept i on.

Prepared and Callable Statement Setter Methods

The Oracl ePrepar edSt at ement and Oracl eCal | abl eSt at ement classes support

set ARRAY and set Array methods to take updated ARRAY objects as bind variables and
pass them to the database. You can also use the set Obj ect method. These methods
take as input a St ri ng parameter name or i nt parameter index as well as an

oracl e. sqgl . ARRAY instance or a j ava. sgl . Array instance.

16.3 ARRAY Performance Extension Methods

This section discusses the following topics:

» About Accessing oracle.sql.ARRAY Elements as Arrays of Java Primitive Types
* ARRAY Automatic Element Buffering

* ARRAY Automatic Indexing

16.3.1 About Accessing oracle.sgl.ARRAY Elements as Arrays of Java
Primitive Types

The oracl e. sgl . ARRAY class contains methods that return array elements as Java
primitive types. These methods enable you to access collection elements more

ORACLE 16-4

Chapter 16
ARRAY Performance Extension Methods

efficiently than accessing them as Dat uminstances and then converting each Dat uminstance
to its Java primitive value.

Note:

These specialized methods of the or acl e. sgl . ARRAY class are restricted to numeric
collections.

Each method using the first signature returns collection elements as an XXX[], where XXX is a
Java primitive type. Each method using the second signature returns a slice of the collection
containing the number of elements specified by count , starting at the i ndex location.

16.3.2 ARRAY Automatic Element Buffering

Oracle JDBC driver provides public methods to enable and disable buffering of ARRAY
contents.

The following methods are included with the or acl e. sgl . ARRAY class:
° setAutoBuffering

e getAutoBuffering

It is advisable to enable auto-buffering in a JDBC application when the ARRAY elements will be
accessed more than once by the get Attri but es and get Array methods, presuming the
ARRAY data is able to fit into the Java Virtual Machine (JVM) memory without overflow.

Note:

Buffering the converted elements may cause the JDBC application to consume a
significant amount of memory.

When you enable auto-buffering, the or acl e. sql . ARRAY object keeps a local copy of all the
converted elements. This data is retained so that a second access of this information does
not require going through the data format conversion process.

16.3.3 ARRAY Automatic Indexing

ORACLE

If an array is in auto-indexing mode, then the array object maintains an index table to hasten
array element access.

The oracl e. sql . ARRAY class contains the following methods to support automatic array-
indexing:

* set Aut ol ndexi ng(bool ean)
e set Aut ol ndexi ng(bool ean, int)

By default, auto-indexing is not enabled. For a JDBC application, enable auto-indexing for
ARRAY objects if random access of array elements may occur through the get Array and
get Resul t Set methods.

16-5

Chapter 16
Creating and Using Arrays

16.4 Creating and Using Arrays

This section discusses how to create array objects and how to retrieve and pass
collections as array objects, including the following topics.

* Creating ARRAY Objects

* Retrieving an Array and Its Elements

» Passing Arrays to Statement Objects

16.4.1 Creating ARRAY Objects

" Note:

Oracle JDBC does not support the JDBC 4.0 method cr eat eArrayOf method
of j ava. sql . Connect i on interface. This method only allows anonymous
array types, while all Oracle array types are named. Use the Oracle specific
method or acl e. j dbc. Oracl eConnecti on. cr eat eARRAY instead.

This section describes how to create ARRAY objects. This section covers the following
topics:

» Steps in Creating ARRAY Objects
 Example 16-1

Steps in Creating ARRAY Objects

Starting from Oracle Database 11g Release 1, you can use the cr eat eARRAY factory
method of or acl e. j dbc. Or acl eConnect i on interface to create an array object. The
factory method for creating arrays has been defined as follows:

public ARRAY creat eARRAY(j ava. | ang. String typeNane, java. | ang. Obj ect
el enents)throws SQLException

where, t ypeNane is the name of the SQL type of the created object and el enent s is
the elements of the created object.

Perform the following to create an array:

1. Create a collection with the CREATE TYPE statement as follows:
CREATE TYPE el enents AS varray(22) OF NUMBER(5, 2);
The two possibilities for the contents of el enent s are:

e An array of Java primitives. For example, int[].

* An array of Java objects, such as xxx[], where xxx is the name of a Java
class. For example, I nteger[].

ORACLE 16-6

Chapter 16
Creating and Using Arrays

< Note:

The set ARRAY, set Array, and set Obj ect methods of the
Oracl ePrepar edSt at enent class take an object of the type
oracl e. sql . ARRAY as an argument, not an array of objects.

2. Construct the ARRAY object by passing the Java string specifying the user-defined SQL

type name of the array and a Java object containing the individual elements you want the
array to contain.

ARRAY array = oracle.jdbc. Oracl eConnecti on. creat eARRAY(sql _type_nane, el enents);

Note:

The name of the collection type is not the same as the type name of the elements.
For example:

CREATE TYPE person AS obj ect
(c1 NUMBER(5), c2 VARCHAR2(30));
CREATE TYPE array_of _persons AS varray(10)
OF person;

In the preceding statements, the name of the collection type is ARRAY_OF PERSON.
The SQL type name of the collection elements is PERSON.

Example 16-1 Creating Multilevel Collections

As with single-level collections, the JDBC application can create an or acl e. sgl . ARRAY
instance to represent a multilevel collection, and then send the instance to the database. The
same cr eat eARRAY factory method you use to create single-level collections, can be used to
create multilevel collections as well. To create a single-level collection, the elements are a
one dimensional Java array, while to create a multilevel collection, the elements can be either
an array of oracl e. sgl . ARRAY[] elements or a nested Java array or the combinations.

The following code shows how to create collection types with a nested Java array:

/] prepare the multilevel collection elenents as a nested Java array

int[J[][] elements = { {{1}, {1, 2}}, {{2}, {2, 3}}, {{38}, {3, 4} };

/] create the ARRAY using the factory nethod
ARRAY array = oracle.jdbc. Oracl eConnecti on. creat eARRAY(sql _type_nane, el enents);

16.4.2 Retrieving an Array and Its Elements

ORACLE

This section first discusses how to retrieve an ARRAY instance as a whole from a result set,
and then how to retrieve the elements from the ARRAY instance. This section covers the
following topics:

* About Retrieving the Array
» Data Retrieval Methods

* Comparing the Data Retrieval Methods

16-7

Chapter 16
Creating and Using Arrays

* Retrieving Elements of a Structured Object Array According to a Type Map
* Retrieving a Subset of Array Elements
* Retrieving Array Elements into an oracle.sqgl.Datum Array

» About Accessing Multilevel Collection Elements

16.4.2.1 About Retrieving the Array

You can retrieve a SQL array from a result set by casting the result set to

Oracl eResul t Set and using the get ARRAY method, which returns an

oracl e. sql . ARRAY object. If you want to avoid casting the result set, then you can get
the data with the standard get Obj ect method specified by the j ava. sql . Resul t Set
interface and cast the output to or acl e. sgl . ARRAY.

16.4.2.2 Data Retrieval Methods

ORACLE

Once you have an ARRAY object, you can retrieve the data using one of these three
overloaded methods of the or acl e. sgl . ARRAY class:

e getArray
e getOracl eArray
* getResult Set

Oracle also provides methods that enable you to retrieve all the elements of an array,
or a subset.

¢ Note:

In case you are working with an array of structured objects, Oracle provides
versions of these three methods that enable you to specify a type map so
that you can choose how to map the objects to Java.

getOracleArray

The get O acl eArray method is an Oracle-specific extension that is not specified in the
standard Arr ay interface. The get Oracl eArray method retrieves the element values of
the array into a Dat un|] array. The elements are of the or acl e. sql . * data type
corresponding to the SQL type of the data in the original array.

For an array of structured objects, this method will use oracl e. j dbc. Oracl eSt ruct
instances for the elements.

Oracle also provides a get Oracl eArray(i ndex, count) net hod to get a subset of the
array elements.

getResultSet

The get Resul t Set method returns a result set that contains elements of the array
designated by the ARRAY object. The result set contains one row for each array
element, with two columns in each row. The first column stores the index into the array
for that element, and the second column stores the element value. In the case of
VARRAYS, the index represents the position of the element in the array. In the case of

16-8

Chapter 16
Creating and Using Arrays

nested tables, which are by definition unordered, the index reflects only the return order of
the elements in the particular query.

Oracle recommends using get Resul t Set when getting data from nested tables. Nested
tables can have an unlimited number of elements. The Resul t Set object returned by the
method initially points at the first row of data. You get the contents of the nested table by
using the next method and the appropriate get XXX method. In contrast, get Arr ay returns the
entire contents of the nested table at one time.

The get Resul t Set method uses the default type map of the connection to determine the
mapping between the SQL type of the Oracle object and its corresponding Java data type. If
you do not want to use the default type map of the connection, another version of the
method, get Resul t Set (map) , enables you to specify an alternate type map.

Oracle also provides the get Resul t Set (i ndex, count) and get Resul t Set (i ndex, count, map)
methods to retrieve a subset of the array elements.

getArray

The get Array method is a standard JDBC method that returns the array elements as a
j ava. | ang. Qbj ect , which you can cast as appropriate. The elements are converted to the
Java types corresponding to the SQL type of the data in the original array.

Oracle also provides a get Array(i ndex, count) method to retrieve a subset of the array
elements.

16.4.2.3 Comparing the Data Retrieval Methods

If you use get Or acl eArray to return the array elements, then the use by that method of
oracl e. sqgl . Dat uminstances avoids the expense of data conversion from SQL to Java. The
non-character data inside the instance of a Dat umclass or any of its subclass remains in raw
SQL format.

If you use get Resul t Set to return an array of primitive data types, then the JDBC driver
returns a Resul t Set object that contains, for each element, the index into the array for the
element and the element value. For example:

Resul tSet rset = intArray.getResultSet();

In this case, the result set contains one row for each array element, with two columns in each
row. The first column stores the index into the array and the second column stores the
element value.

If the elements of an array are of a SQL type that maps to a Java type, then get Array returns
an array of elements of this Java type. The return type of the get Array method is
j ava. | ang. Qbj ect . Therefore, the result must be cast before it can be used.

Bi gDeci mal [] values = (BigDecimal[]) intArray.getArray();

Here i nt Array is an or acl e. sql . ARRAY, corresponding to a VARRAY of type NUMBER. The
val ues array contains an array of elements of type j ava. mat h. Bi gDeci mal , because the SQL
NUMBER data type maps to Java Bi gDeci mal , by default, according to Oracle JDBC drivers.

ORACLE 16-9

Chapter 16
Creating and Using Arrays

< Note:

Using Bi gDeci mal is a resource-intensive operation in Java. Because Oracle
JDBC maps numeric SQL data to Bi gDeci mal by default, using get Ar r ay
may impact performance, and is not recommended for numeric collections.

16.4.2.4 Retrieving Elements of a Structured Object Array According to a Type

Map

By default, if you are working with an array whose elements are structured objects,
and you use get Array or get Resul t Set, then the Oracle objects in the array will be
mapped to their corresponding Java data types according to the default mapping. This
is because these methods use the default type map of the connection to determine the

mapping.

However, if you do not want default behavior, then you can use the get Array(map) or
get Resul t Set (map) method to specify a type map that contains alternate mappings. If
there are entries in the type map corresponding to the Oracle objects in the array, then
each object in the array is mapped to the corresponding Java type specified in the type
map. For example:

(oj ect[] object = (Cbject[])objArray. getArray(mp);
Where obj Array is an or acl e. sql . ARRAY object and map is a j ava. uti|. Map object.

If the type map does not contain an entry for a particular Oracle object, then the
element is returned as an or acl e. j dbc. Oracl eStruct object.

The get Resul t Set (map) method behaves similarly to the get Array(map) method.

Related Topics
* Using a Type Map to Map Array Elements

16.4.2.5 Retrieving a Subset of Array Elements

ORACLE

If you do not want to retrieve the entire contents of an array, then you can use
signatures of get Arr ay, get Resul t Set, and get Or acl eArray that let you retrieve a
subset. To retrieve a subset of the array, pass in an index and a count to indicate
where in the array you want to start and how many elements you want to retrieve. As
previously described, you can specify a type map or use the default type map for your
connection to convert to Java types. For example:

bj ect obj ect
bj ect obj ect

arr.getArray(index, count, map);
arr.getArray(index, count);

Similar examples using get Resul t Set are:

Resul t Set rset
Resul t Set rset

arr. get Resul t Set (i ndex, count, map);
arr. get Resul t Set (i ndex, count);

A similar example using get Or acl eArray is:

Datuni{] arr = arr.getOracl eArray(index, count);

16-10

Chapter 16
Creating and Using Arrays

Where arr is an oracl e. sgl . ARRAY object, i ndex is type | ong, count is typeint, and map is a
java. util . Map object.

" Note:

There is no performance advantage in retrieving a subset of an array, as opposed
to the entire array.

16.4.2.6 Retrieving Array Elements into an oracle.sql.Datum Array

ORACLE

Use get Oracl eArray to return an oracl e. sql . Dat un{] array. The elements of the returned
array is of oracl e. sqgl . * type that correspond to the SQL data type of the elements of the
original array. For example:

Datum arraydata[] = arr.getOracl eArray();

arr is anoracl e. sgl . ARRAY object.

The following example assumes that a connection object conn and a statement object st nt
have already been created. In the example, an array with the SQL type name NUM ARRAY is
created to store a VARRAY of NUMBER data. The NUM ARRAY is in turn stored in a table
VARRAY_TABLE.

A query selects the contents of the VARRAY _TABLE. The result set is cast to Or acl eResul t Set .
The get ARRAY method is applied to it to retrieve the array data into my_ar r ay, which is an
oracl e. sql . ARRAY object.

Because ny_array is of type oracl e. sql . ARRAY, you can apply the methods get SQLTypeNane
and get BaseType to it to return the name of the SQL type of each element in the array and its
integer code.

The program then prints the contents of the array. Because the contents of NUM _ARRAY are of
the SQL data type NUMBER, the elements of ny_array are of the type, Bi gDeci nal . Before you
can use the elements, they must first be cast to Bi gDeci nal . In the f or loop, the individual
values of the array are cast to Bi gDeci mal and printed to standard output.

stnt.execute ("CREATE TYPE numvarray AS VARRAY(10) OF NUMBER(12, 2)");
stnt.execute ("CREATE TABLE varray_table (coll numvarray)");
stnt.execute ("INSERT INTO varray_table VALUES (numvarray(100, 200))");

Resul tSet rs = stnt.executeQuery("SELECT * FROM varray_table");
ARRAY ny_array = ((Oracl eResul t Set)rs). get ARRAY(1);

/] return the SQL type names, integer codes,

/1 and |l engths of the colums

Systemout.println ("Array is of type " + array.get SQLTypeNane());
Systemout.println ("Array elenment is of type code " + array.getBaseType());
Systemout.println ("Array is of length " + array.length());

Il get Array elenents
Bi gDeci mal [] values = (BigDecimal[]) ny_array.getArray();

for (int i=0; i<values.length; i++)

{

Bi gDeci mal out _val ue = (BigDecimal) val ues[i];

16-11

Chapter 16
Creating and Using Arrays

Systemout.printIn(">> index " +i + " =" + out_value.intValue());

}

Note that if you use get Resul t Set to obtain the array, then you must would first get the
result set object, and then use the next method to iterate through it. Notice the use of
the parameter indexes in the get | nt method to retrieve the element index and the
element value.

Resul tSet rset = ny_array.getResultSet();
while (rset.next())

/1 The first colum contains the elenent index and the
/1 second col um contains the el enent val ue
Systemout.printin(">> index " + rset.getlnt(1)+" =" + rset.getInt(2));

}

16.4.2.7 About Accessing Multilevel Collection Elements

The oracl e. sgl . ARRAY class provides three methods, which are overloaded, to access
collection elements. The JDBC drivers extend these methods to support multilevel
collections. These methods are:

e get Array method
e get Oracl eArray method
* getResul t Set method

The get Array method returns a Java array that holds the collection elements. The
array element type is determined by the collection element type and the JDBC default
conversion matrix.

For example, the get Array method returns a j ava. mat h. Bi gDeci mal array for
collection of SQL NUMBER. The get Or acl eArray method returns a Dat umarray that
holds the collection elements in Dat umformat. For multilevel collections, the get Arr ay
and get Or acl eArray methods both return a Java array of or acl e. sql . ARRAY
elements.

The get Resul t Set method returns a Resul t Set object that wraps the multilevel
collection elements. For multilevel collections, the JDBC applications use the
get Obj ect , get ARRAY, or get Array method of the Resul t Set class to access the
collection elements as instances of or acl e. sql . ARRAY.

The following code shows how to use the get Oracl eArray, get Array, and
get Resul t Set methods:

Connection conn = ...; /1 make a JDBC connection
Statement stnt = conn.createStatenent ();
Resul t Set rset = stnt.executeQuery ("select col2 fromtab2 where idx=1");

while (rset.next())

{
ARRAY varray3 = (ARRAY) rset.getbject (1);
oj ect varrayEl ems = varray3.getArray (1);

/'l access array elenents of "varray3"
Datuni] varray3El ens = (Datuni]) varrayEl ens;

for (int i=0; i<varray3El ems.length; i++)

{
ARRAY varray2 = (ARRAY) varray3El enms[i];

ORACLE 16-12

Chapter 16
Creating and Using Arrays

Datunif] varray2El enms = varray2. get Oracl eArray();
/'l access array elenents of "varray2"

for (int j=0; j<varray2El ens.length; j++)

{
ARRAY varrayl = (ARRAY) varray2El ens[j];
Resul t Set varraylEl ens = varrayl. get Result Set();
/'l access array elements of "varrayl"

whil e (varraylEl ens. next())
Systemout. println ("idx="+varraylEl ems. getlnt(1)+"
val ue="+varraylEl ens.getInt(2));
}
}
}

rset.close ();
stnt.close ();
conn.close ();

16.4.3 Passing Arrays to Statement Objects

ORACLE

This section discusses how to pass arrays to prepared statement objects or callable
statement objects.

Passing an Array to a Prepared Statement

Pass an array to a prepared statement as follows.

" Note:

you can use arrays as either | Nor QUT bind variables.

1. Define the array that you want to pass to the prepared statement as an
oracl e. sql . ARRAY object.

ARRAY array = oracle.jdbc. O acl eConnecti on. creat eARRAY(sql _type_nane, el enents);

sgl _type_nane is a Java string specifying the user-defined SQL type name of the array
and el enents is aj ava. | ang. Obj ect containing a Java array of the elements.

2. Create ajava. sql . PreparedSt at ement object containing the SQL statement to be run.

3. Castyour prepared statement to Or acl ePr epar edSt at enent , and use set ARRAY to pass
the array to the prepared statement.

(Oracl ePreparedSt at ement) st nt . set ARRAY(par anet er | ndex, array);

par aret er | ndex is the parameter index and arr ay is the oracl e. sql . ARRAY object you
constructed previously.

4. Run the prepared statement.

Passing an Array to a Callable Statement

To retrieve a collection as an QUT parameter in PL/SQL blocks, perform the following to
register the bind type for your QUT parameter.

16-13

Chapter 16
Using a Type Map to Map Array Elements

1. Cast your callable statement to Or acl eCal | abl eSt at enent , as follows:

Oracl eCal | abl eSt at ement ocs = (Oracl eCal | abl eSt at ement) conn. prepareCal | ("{?
= call func()}");

2. Register the QUT parameter with the following form of the r egi st er Qut Par anet er
method:

0cs. regi st er Qut Par anet er
(int param.index, int sqgl _type, string sql _type_nanme);

param i ndex is the parameter index, sql _t ype is the SQL type code, and
sql _type_nane is the name of the array type. In this case, the sql _type is
O acl eTypes. ARRAY.

3. Run the call, as follows:
ocs. execute();
4. Get the value, as follows:

oracle.sql.ARRAY array = ocs. get ARRAY(1);

16.5 Using a Type Map to Map Array Elements

ORACLE

If your array contains Oracle objects, then you can use a type map to associate the
objects in the array with the corresponding Java class. If you do not specify a type
map, or if the type map does not contain an entry for a particular Oracle object, then
each element is returned as an or acl e. j dbc. Oracl eStruct object.

If you want the type map to determine the mapping between the Oracle objects in the
array and their associated Java classes, then you must add an appropriate entry to the
map.

The following example illustrates how you can use a type map to map the elements of
an array to a custom Java object class. In this case, the array is a nested table. The
example begins by defining an EMPLOYEE object that has a name attribute and
employee number attribute. EMPLOYEE LI ST is a nested table type of EMPLOYEE objects.
Then an EMPLOYEE_TABLE is created to store the names of departments within a
corporation and the employees associated with each department. In the
EMPLOYEE_TABLE, the employees are stored in the form of EMPLOYEE_LI ST tables.

stnt. execut e(" CREATE TYPE EMPLOYEE AS OBJECT
(EnpNanme VARCHAR2(50), EnpNo | NTEGER))");

stnt. execut e(" CREATE TYPE EMPLOYEE_LI ST AS TABLE OF EMPLOYEE");

stnt. execut e(" CREATE TABLE EMPLOYEE_TABLE (Dept Name VARCHAR2(20),
Enpl oyees EMPLOYEE_LI ST) NESTED TABLE Enpl oyees STORE AS ntabl el");

stnt. execut e(" | NSERT | NTO EMPLOYEE_TABLE VALUES ("SALES', EMPLOYEE LIST
(EMPLOYEE(' Susan Smith', 123), EMPLOYEE('Lee Brown', 124)))");

If you want to retrieve all the employees belonging to the SALES department into an
array of instances of the custom object class Enpl oyeebj , then you must add an entry
to the type map to specify mapping between the EMPLOYEE SQL type and the

Enpl oyeeChj custom object class.

To do this, first create your statement and result set objects, then select the
EMPLOYEE_LI ST associated with the SALES department into the result set. Cast the

16-14

ORACLE

Chapter 16
Using a Type Map to Map Array Elements

result set to Or acl eResul t Set so you can use the get ARRAY method to retrieve the
EMPLOYEE_LI ST into an ARRAY object (enpl oyeeAr ray in the following example).

The Enpl oyeeChj custom object class in this example implements the SQLDat a interface.

Statement s = conn.createStatenment();
OacleResultSet rs = (O acl eResul t Set) s. execut eQuery
(" SELECT Enpl oyees FROM enpl oyee_t abl e WHERE Dept Nane = ' SALES' ");

/1 get the array object
ARRAY enpl oyeeArray = ((Oracl eResul t Set)rs). get ARRAY(1);

Now that you have the EMPLOYEE LI ST object, get the existing type map and add an entry that
maps the EMPLOYEE SQL type to the Enpl oyeehj Java type.

/] add type map entry to map SQ type

/1 "EMPLOYEE" to Java type "Enmpl oyeeChj"

Map map = conn. get TypeMap();

map. put ("EMPLOYEE", C ass. f or Nane(" Enpl oyeeChj"));

Next, retrieve the SQL EMPLOYEE objects from the EMPLOYEE LI ST. To do this, call the
get Array method of the enpl oyeeArray array object. This method returns an array of objects.
The get Array method returns the EMPLOYEE objects into the enpl oyees object array.

/] Retrieve array elenents
oj ect[] enpl oyees = (hject[]) enployeeArray.getArray();

Finally, create a loop to assign each of the EMPLOYEE SQL objects to the Enpl oyeeCbj Java
object enp.

/1 Each array elenment is mapped to Enpl oyeeOhj object.
for (int i=0; i<enployees.length; i++)

{
Enpl oyeeObj enp = (Enpl oyeeQhj) enpl oyees[i];

16-15

Result Set

Standard Java Database Connectivity (JDBC) features in Java Development Kit (JDK)
include enhancements to result set functionality, such as processing forward or backward,
positioning relatively or absolutely, seeing changes to the database made internally or
externally, and updating result set data and then copying the changes to the database.

This chapter discusses the following topics:

* Oracle JDBC Implementation Overview for Result Set Support
* Resultset Limitations and Downgrade Rules

* About Avoiding Update Conflicts

* Row Fetch Size

* About Refetching Rows

* About Viewing Database Changes Made Internally and Externally

17.1 Oracle JDBC Implementation Overview for Result Set

Support

ORACLE

This section discusses key aspects of the Oracle JDBC implementation of result set support
for scrollability, through use of a client-side cache, and for updatability, through use of RON Ds.

It is permissible for customers to implement their own client-side caching mechanism, and
Oracle provides an interface to use in doing so.

Oracle JDBC Implementation for Result Set Scrollability

Because the underlying server does not support scrollable cursors, Oracle JDBC must
implement scrollability in a separate layer.

It is important to be aware that this is accomplished by using a client-side memory cache to
store rows of a scrollable result set.

" Note:

Because all rows of any scrollable result set are stored in the client-side cache, a
situation, where the result set contains many rows, many columns, or very large
columns, might cause the client-side Java Virtual Machine (JVM) to fail. Do not
specify scrollability for a large result set.

17-1

Chapter 17
Resultset Limitations and Downgrade Rules

Oracle JDBC Implementation for Result Set Updatability

To support updatability, Oracle JDBC uses RON D to uniquely identify database rows
that appear in a result set. For every query into an updatable result set, Oracle JDBC
driver automatically retrieves the RON D along with the columns you select.

" Note:

Client-side caching is not required by updatability in and of itself. In
particular, a forward-only updatable result set will not require a client-side
cache.

17.2 Resultset Limitations and Downgrade Rules

ORACLE

Some types of result sets are not feasible for certain kinds of queries. If you specify an
unfeasible result set type or concurrency type for the query you run, then the JDBC
driver follows a set of rules to determine the best feasible types to use instead.

The actual result set type and concurrency type are determined when the statement is
run, with the driver issuing a SQLWr ni ng on the statement object if the desired result
set type or concurrency type is not feasible. The SQL\Wr ni ng object will contain the
reason why the requested type was not feasible. Check for warnings to verify whether
you received the type of result set that you requested.

Result Set Limitations

The following limitations are placed on queries for enhanced result sets. Failure to
follow these guidelines results in the JDBC driver choosing an alternative result set
type or concurrency type.

To produce an updatable result set:

e A query can select from only a single table and cannot contain any join operations.

In addition, for inserts to be feasible, the query must select all non-nullable
columns and all columns that do not have a default value.

A query cannot use SELECT * .
However, there is a workaround for this.
e A query must select table columns only.

It cannot select derived columns or aggregates, such as the SUMor MAX of a set of
columns.

To produce a scroll-sensitive result set:
* A query cannot use SELECT * .
However, there is a workaround for this.
e A query can select from only a single table.

Scrollable and updatable result sets cannot have any column as St r eam When the
server has to fetch a St r eamcolumn, it reduces the fetch size to one and blocks all

17-2

ORACLE

Chapter 17
Resultset Limitations and Downgrade Rules

columns following the St r eamcolumn until the St reamcolumn is read. As a result, columns
cannot be fetched in bulk and scrolled through.
Workaround

As a workaround for the SELECT * limitation, you can use table aliases, as shown in the
following example:

SELECT t.* FROMTABLE t ...

Note:

There is a simple way to determine if your query will probably produce a scroll-
sensitive or updatable result set: If you can legally add a RON D column to the query
list, then the query is probably suitable for either a scroll-sensitive or an updatable
result set.

Result Set Downgrade Rules

If the specified result set type or concurrency type is not feasible, then Oracle JDBC driver
uses the following rules in choosing alternate types:

* If the specified result set type is TYPE_SCROLL_SENSI Tl VE, but the JDBC driver cannot
fulfill that request, then the driver attempts a downgrade to TYPE_SCROLL_| NSENSI Tl VE.

» If the specified or downgraded result set type is TYPE_SCROLL_| NSENSI Tl VE, but the JDBC
driver cannot fulfill that request, then the driver attempts a downgrade to
TYPE_FORWARD_ONLY.

* If the specified concurrency type is CONCUR_UPDATABLE, but the JDBC driver cannot fulfill
that request, then the JDBC driver attempts a downgrade to CONCUR_READ ONLY.

" Note:

Any manipulations of the result set type and concurrency type by the JDBC driver
are independent of each other.

Verifying Result Set Type and Concurrency Type

After a query has been run, you can verify the result set type and concurrency type that the
JDBC driver actually used, by calling methods on the result set object.

* int getType() throws SQLException

This method returns an i nt value for the result set type used for the query.
Resul t Set. TYPE_FORWARD _ONLY, Resul t Set. TYPE_SCROLL_SENSI TI VE, or
Resul t Set. TYPE_SCROLL_I NSENSI Tl VE are the possible values.

e int getConcurrency() throws SQLException

This method returns an i nt value for the concurrency type used for the query.
Resul t Set . CONCUR_READ ONLY or Resul t Set . CONCUR_UPDATABLE are the possible values.

17-3

Chapter 17
About Avoiding Update Conflicts

17.3 About Avoiding Update Conflicts

It is important to be aware of the following facts regarding updatable result sets with
the JDBC drivers:

* The drivers do not enforce write locks for an updatable result set.
e The drivers do not check for conflicts with a result set DELETE or UPDATE operation.

A conflict will occur if you try to perform a DELETE or UPDATE operation on a row
updated by another committed transaction.

Oracle JDBC drivers use the RON D to uniquely identify a row in a database table. As
long as the RON Dis valid when a driver tries to send an UPDATE or DELETE operation to
the database, the operation will be run.

The driver will not report any changes made by another committed transaction. Any
conflicts are silently ignored and your changes will overwrite the previous changes.

To avoid such conflicts, use the Oracle FOR UPDATE feature when running the query
that produces the result set. This will avoid conflicts, but will also prevent simultaneous
access to the data. Only a single write lock can be held concurrently on a data item.

17.4 Row Fetch Size

ORACLE

By default, when Oracle JDBC runs a query, it retrieves a result set of 10 rows at a
time from the database cursor. This is the default Oracle row fetch size value. You can
change the number of rows retrieved with each trip to the database cursor by changing
the row fetch size value.

Standard JDBC also enables you to specify the number of rows fetched with each
database round-trip for a query, and this number is referred to as the fetch size. In
Oracle JDBC, the row-prefetch value is used as the default fetch size in a statement
object. Setting the fetch size overrides the row-prefetch setting and affects subsequent
gueries run through that statement object.

Fetch size is also used in a result set. When the statement object run a query, the
fetch size of the statement object is passed to the result set object produced by the
guery. However, you can also set the fetch size in the result set object to override the
statement fetch size that was passed to it.

¢ Note:

Changes made to the fetch size of a statement object after a result set is
produced will have no affect on that result set.

The result set fetch size, either set explicitly, or by default equal to the statement fetch
size that was passed to it, determines the number of rows that are retrieved in any
subsequent trips to the database for that result set. This includes any trips that are still
required to complete the original query, as well as any refetching of data into the result
set. Data can be refetched, either explicitly or implicitly, to update a scroll-sensitive or
scroll-insensitive/updatable result set.

17-4

Chapter 17
About Refetching Rows

17.4.1 Setting the Fetch Size

The following methods are available in all St at enent, Prepar edSt at enent
Cal | abl eSt at enent , and Resul t Set objects for setting and getting the fetch size:

e void setFetchSize(int rows) throws SQLException
e int getFetchSize() throws SQ.Exception

To set the fetch size for a query, call set Fet chSi ze on the statement object prior to running
the query. If you set the fetch size to N, then N rows are fetched with each trip to the
database.

After you have run the query, you can call set Fet chSi ze on the result set object to override
the statement object fetch size that was passed to it. This will affect any subsequent trips to
the database to get more rows for the original query, as well as affecting any later refetching
of rows.

17.4.2 Presetting the Fetch Direction

The standard JDBC enables to pre-specify the direction, known as the fetch direction, for use
in processing a result set. This allows the JDBC driver to optimize its processing. The
following result set methods are specified:

e void setFetchDirection(int direction) throws SQLException
e int getFetchDirection() throws SQLException

Oracle JDBC drivers support only the forward preset value, which you can specify by entering
the Resul t Set . FETCH_FORWARD static constant value.

The values Resul t Set . FETCH_REVERSE and Resul t Set . FETCH_UNKNO/MN are not supported.
Attempting to specify them causes a SQL warning, and the settings are ignored.

17.5 About Refetching Rows

The result set r ef r eshRow method is supported for some types of result sets for refetching
data. This consists of going back to the database to re-obtain the database rows that
correspond to n rows in the result set, starting with the current row, where n is the fetch size.
This lets you see the latest updates to the database that were made outside of your result
set, subject to the isolation level of the enclosing transaction.

Because refetching re-obtains only rows that correspond to rows already in your result set, it
does nothing about rows that have been inserted or deleted in the database since the original
query. It ignores rows that have been inserted, and rows will remain in your result set even
after the corresponding rows have been deleted from the database. When there is an attempt
to refetch a row that has been deleted in the database, the corresponding row in the result
set will maintain its original values.

ORACLE 17-5

Chapter 17
About Viewing Database Changes Made Internally and Externally

< Note:

If you declare a TYPE_SCROLL_SENSI Tl VE Result Set based on a query with
certain criteria and then externally update the row so that the column values
no longer match the query criteria, the driver behaves as if the row has been
deleted from the database and the row is not retrieved by the query issued.
So, you do not see the updates to the particular row when you call the

r ef r eshRow method.

Following is the signature of the r ef r eshRow method:

void refreshRow() throws SQLException

You must be at a valid current row when you call this method, not outside the row
bounds and not at the insert-row.

The r ef r eshRow method is supported for the following result set categories:
» scroll-sensitive/read-only

» scroll-sensitive/updatable

» scroll-insensitive/updatable

Note:

Scroll-sensitive result set functionality is implemented through implicit calls to
ref reshRow.

17.6 About Viewing Database Changes Made Internally and
Externally

This section discusses the ability of a result set to view the following:

* Own changes of the result set, referred to as internal changes

* Changes made from elsewhere, either from your own transaction outside the
result set, or from other committed transactions, referred to as external changes

" Note:

External changes are referred to as other's changes in the standard JDBC
specification.

This section covers the following topics:

e Visibility versus Detection of External Changes

e Summary of Visibility of Internal and External Changes

ORACLE 17-6

Chapter 17
About Viewing Database Changes Made Internally and Externally

* Oracle Implementation of Scroll-Sensitive Result Sets

17.6.1 Visibility versus Detection of External Changes

Regarding the changes made to an underlying database by external sources, there are two
similar but distinct concepts with respect to visibility of the changes from your local result set:

* Visibility of changes
» Detection of changes

A "visible" change means that when you look at a row in the result set, you can see new data
values from changes made by external sources, to the corresponding row in the database.

A "detected" change, however, means that the result set is aware that this is a new value
since the result set was first populated.

Even when an Oracle result set sees new data, as with an external UPDATE in a scroll-
sensitive result set, it has no awareness that this data has changed since the result set was
populated. Such changes are not detected.

17.6.2 Summary of Visibility of Internal and External Changes

ORACLE

Table 17-1 summarizes how a result set object in the Oracle JDBC implementation can see
changes made internally through the result set itself, and changes made externally to the
underlying database from elsewhere in your transaction or from other committed
transactions.

Table 17-1 Visibility of Internal and External Changes for Oracle JDBC

__|
Result Set Type Can See Can See Can See Can See Can See Can See
Internal Internal Internal External External External
DELETE? UPDATE? INSERT? DELETE? UPDATE? INSERT?

forward-only no yes no no no no
scroll-sensitive yes yes no no yes no
scroll-insensitive yes yes no no no no
\J
Note:

« Remember that explicit use of the r ef r eshRow method, is distinct from the
concept of visibility of external changes.

* Remember that even when external changes are visible, as with UPDATE
operations underlying a scroll-sensitive result set, they are not detected. The
result set r owDel et ed, r owpdat ed, and r ow nsert ed methods always return
fal se.

17-7

Chapter 17
About Viewing Database Changes Made Internally and Externally

17.6.3 Oracle Implementation of Scroll-Sensitive Result Sets

ORACLE

The Oracle implementation of scroll-sensitive result sets involves the concept of a
window, with a window size that is based on the fetch size. The window size affects
how often rows are updated in the result set.

Once you establish a current row by moving to a specified row, the window consists of
the n rows in the result set starting with that row, where n is the fetch size being used
by the result set. Note that there is no current row, and therefore no window, when a
result set is first created. The default position is before the first row, which is not a valid
current row.

As you move from row to row, the window remains unchanged as long as the current
row stays within that window. However, once you move to a new current row outside
the window, you redefine the window to be the N rows starting with the new current
row.

Whenever the window is redefined, the N rows in the database corresponding to the
rows in the new window are automatically refetched through an implicit call to the
r ef r eshRow method, thereby updating the data throughout the new window.

So external updates are not instantaneously visible in a scroll-sensitive result set.
They are only visible after the automatic refetches just described.

< Note:

This kind of refetching is not a highly efficient or optimized methodology and
it has significant performance concerns. Consider carefully before using
scroll-sensitive result sets as currently implemented. There is also a
significant trade-off between sensitivity and performance. The most sensitive
result set is one with a fetch size of 1, which would result in the new current
row being refetched every time you move between rows. However, this
would have a significant impact on the performance of your application.

17-8

JDBC RowSets

This chapter contains the following sections:

e Overview of JDBC RowSets
* About CachedRowSet

* About JdbcRowSet

* About WebRowSet

* About FilteredRowSet

* About JoinRowSet

18.1 Overview of JDBC RowSets

A RowsSet is an object that encapsulates a set of rows from either java Database Connectivity
(JDBC) result sets or tabular data sources. RowSets support component-based development
models like JavaBeans, with a standard set of properties and an event notification
mechanism.

RowSets were introduced in JDBC 2.0 through the optional packages. However, the
implementation of RowSets was standardized in the JDBC RowSet Implementations
Specification (JSR-114), which is available as non-optional package since Java Platform,
Standard Edition (Java SE) 5.0. Java SE 6.0 RowSets contain more APIs supporting features
like Rowld, National Language Charactersets, and so on. The Java SE Javadocs provide
information about the standard interfaces and base classes for JDBC RowSet
implementations.

The JSR-114 specification includes implementation details for five types of RowSet:

e CachedRowSet

e JdbcRowSet

* \W\ébRowSet

* FilteredRowSet
e Joi nRowSet

Oracle JDBC supports all five types of RowSets through the interfaces and classes present in
the oracl e. j dbc. rowset package. Since Oracle Database 11g Release 1, RowSets support
has been added in the server-side drivers. Therefore, starting from Oracle Database 11g
Release 1, RowSets support is uniform across all Oracle JDBC driver types. The standard
Oracle JDBC Java Archive (JAR) files, for example, oj dbc6. j ar and oj dbc7. j ar contain the
oracl e. jdbc. rowset package.

ORACLE 18-1

Chapter 18
Overview of JDBC RowSets

< Note:

e The other JAR files with different file suffix names, for example,
oj dbc6_g.j ar, oj dbc6dns. j ar, and so on also contain the
oracl e.jdbc. rowset package.

* In Oracle Database 10g release 2, the implementation classes were
packaged in the oj dbc14. j ar file.

* Prior to Oracle Database 10g release 2, the implementation classes
were packaged in the ocrs12. | ar file.

e Prior to Oracle Database 11g Release 1, RowSets support was not
available in the server-side drivers.

Note:

In Oracle Database 10g release 2 (10.2), this package is included in the
standard Oracle JDBC JAR files: cl asses12. j ar, oj dbc5. j ar, and

0j dbc6. j ar . Prior to Oracle Database 10g release 2 (10.2), the row set
implementation classes were packaged in the ocrs12. j ar file.

To use the Oracle RowSet implementations, you need to import either the entire

oracl e.jdbc. rowset package or specific classes and interfaces from the package for
the required RowSet type. For client-side usage, you also need to include the standard
Oracle JAR files like oj dbc6. j ar or oj dbc7. j ar in the CLASSPATH environment
variable.

This section covers the following topics:

* RowSet Properties

» Events and Event Listeners

e Command Parameters and Command Execution

e About Traversing RowSets

18.1.1 RowSet Properties

ORACLE

The j avax. sgl . RowSet interface provides a set of JavaBeans properties that can be
altered to access the data in the data source through a single interface. Example of

properties are connection string, user name, password, type of connection, and the

query string.

¢ See Also:

The Java 2 Platform, Standard Edition (J2SE) Javadoc for a complete list of
properties and property descriptions at htt p: // docs. or acl e. cont j avase/
1. 5.0/ docs/ api /j avax/ sql / RowSet . ht m

18-2

http://docs.oracle.com/javase/1.5.0/docs/api/javax/sql/RowSet.html
http://docs.oracle.com/javase/1.5.0/docs/api/javax/sql/RowSet.html

Chapter 18
Overview of JDBC RowSets

The interface provides standard accessor methods for setting and retrieving the property
values. The following code illustrates setting some of the RowSet properties:

rowset.setUrl ("jdbc:oracle:oci:@);

rowset . set User name("HR") ;

rowset . set Password("hr");

rowset . set Command(" SELECT enpl oyee_id, first_nane, |ast_name, salary FROM enpl oyees");

In this example, the URL, user name, password, and SQL query are set as the RowSet
properties to retrieve the employee number, employee name, and salary of all the employees
into the RowSet object.

18.1.2 Events and Event Listeners

RowSets support JavaBeans events. The following types of events are supported by the
RowSet interface:

e cursorMved

This event is generated whenever there is a cursor movement. For example, when the
next or previ ous method is called.

e rowChanged
This event is generated when a row is inserted, updated, or deleted from the RowSet.
e rowSet Changed

This event is generated when the whole RowSet is created or changed. For example,
when the execut e method is called.

An application component can implement a RowSet listener to listen to these RowSet events
and perform desired operations when the event occurs. Application components, which are
interested in these events, must implement the standard j avax. sql . RowSet Li st ener
interface and register such listener objects with a RowSet object. A listener can be registered
using the RowSet . addRowSet Li st ener method and unregistered using the

RowSet . r enbveRowSet Li st ener method. Multiple listeners can be registered with the same
RowSet object.

The following code illustrates the registration of a RowSet listener:

M/RowSet Li st ener rowset Li stener = new MyRowSet Li stener ();
/1 adding a rowset |istener
rowset . addRowSet Li st ener (rowsetListener);

The following code illustrates a listener implementation:

public class MyRowSet Li stener inplenents RowSetListener

{
public void cursorMved(RowSet Event event)
{
/1 action on cursor movenent
}
public void rowChanged(RowSet Event event)
{

/'l action on change of row

ORACLE 18-3

Chapter 18
Overview of JDBC RowSets

}

public voi d rowSet Changed(RowSet Event event)
{

/1 action on changi ng of rowset
1 end of class MyRowSetLi stener

Applications that need to handle only selected events can implement only the required
event handling methods by using the

oracle.jdbc. rowset. Oracl eRowSet Li st ener Adapt er class, which is an abstract class
with empty implementation for all the event handling methods. In the following code,
only the r owSet Changed event is handled, while the remaining events are not handled
by the application:

rowset . addRowSet Li st ener (new oracl e. j dbc. rowset . Oracl eRowSet Li st ener Adapter ()
{
public void rowSet Changed(RowSet Event event)
{
/'l your action for rowSetChanged
}
}
)

18.1.3 Command Parameters and Command Execution

The command property of a RowSet object typically represents a SQL query string, which
when processed would populate the RowSet object with actual data. Like in regular
JDBC processing, this query string can take input or bind parameters. The

j avax. sql . RowSet interface also provides methods for setting input parameters to this
SQL query. After the required input parameters are set, the SQL query can be
processed to populate the RowSet object with data from the underlying data source.
The following code illustrates this simple sequence:

rowset . set Cormand(" SELECT first_name, |ast_nane, salary FROM enpl oyees WHERE
enmpl oyee_id = ?");

Il setting the enployee nunber input paraneter for enployee naned "Dougl as"

rowset.setlnt(1, 199);

rowset . execute();

In the preceding example, the employee number 199 is set as the input or bind
parameter for the SQL query specified in the command property of the RowSet object.
When the SQL query is processed, the RowSet object is filled with the employee name
and salary information of the employee whose employee number is 199.

18.1.4 About Traversing RowSets

ORACLE

The j avax. sgl . RowSet interface extends the j ava. sql . Resul t Set interface. The
RowSet interface, therefore, provides cursor movement and positioning methods, which
are inherited from the Resul t Set interface, for traversing through data in a RowSet
object. Some of the inherited methods are absol ut e, bef oreFi rst, af t er Last, next,
and previ ous.

18-4

ORACLE

Chapter 18
Overview of JDBC RowSets

The RowSet interface can be used just like a Resul t Set interface for retrieving and updating
data. The RowSet interface provides an optional way to implement a scrollable and updatable
result set. All the fields and methods provided by the Resul t Set interface are implemented in
RowSet .

" Note:

The Oracle implementation of Resul t Set provides the scrollable and updatable
properties of the j ava. sql . Resul t Set interface.

The following code illustrates how to scroll through a RowSet:
/ * %

* Scrolling forward, and printing the enpno in
* the order in which it was fetched.
*/

rowset . set Command(" SELECT enpno, enare, sal FROM enmp");
rowset . execute();

/1 going to the first row of the rowset
rowset . beforeFirst ();
while (rowset.next ())

Systemout.println ("enpno: " +rowset.getlnt (1));

In the preceding code, the cursor position is initialized to the position before the first row of
the RowSet by the bef or eFi r st method. The rows are retrieved in forward direction using the
next method.

The following code illustrates how to scroll through a RowSet in the reverse direction:
/ * %

* Scrolling backward, and printing the empno in
* the reverse order as it was fetched.
*/
/1going to the last row of the rowset
rowset . afterlLast ();
while (rowset.previous ())
Systemout.println ("enpno: " +rowset.getint (1));

In the preceding code, the cursor position is initialized to the position after the last row of the
RowSet . The rows are retrieved in reverse direction using the pr evi ous method of RowSet .

Inserting, updating, and deleting rows are supported by the Row Set feature as they are in
the Result Set feature. In order to make the Row Set updatable, you must call the
set ReadOnl y(fal se) and accept Changes methods.

The following code illustrates the insertion of a row at the fifth position of a Row Set:

P
* Make rowset updatable
*
/

rowset . set ReadOnly (fal se);

/**

* |Inserting a rowin the 5th position of the rowset.
*/

18-5

Chapter 18
About CachedRowSet

/1l moving the cursor to the 5th position in the rowset
if (rowset.absolute(5))

{

rowset . noveTol nsert Row ();
rowset.updatelnt (1, 193);
rowset.updateString (2, "Snmith");
rowset.updatelnt (3, 7200);

Il inserting a rowin the rowset
rowset.insertRow ();

/'l Synchronizing the data in RowSet with that in the database.
rowset . accept Changes ();

In the preceding code, a call to the absol ut e method with a parameter 5 takes the
cursor to the fifth position of the RowSet and a call to the moveTol nser t Row method
creates a place for the insertion of a new row into the RowSet. The updat eXXX
methods are used to update the newly created row. When all the columns of the row
are updated, the i nsert Rowis called to update the RowSet. The changes are
committed through accept Changes method.

18.2 About CachedRowSet

ORACLE

A CachedRowSet is a RowSet in which the rows are cached and the RowSet is
disconnected, that is, it does not maintain an active connection to the database. The
oracle.jdbc. rowset. Oracl eCachedRowSet class is the Oracle implementation of
CachedRowsSet. It can interoperate with the standard reference implementation. The
O acl eCachedRowSet class in the oj dbc6. j ar and oj dbc7. j ar files implements the
standard JSR-114 interface j avax. sql . r owset . CachedRowSet .

In the following code, an Or acl eCachedRowSet object is created and the connection
URL, user name, password, and the SQL query for the RowSet object is set as
properties. The RowSet object is populated using the execut e method. After the
execut e method has been processed, the RowSet object can be used as a

java. sqgl . Resul t Set object to retrieve, scroll, insert, delete, or update data.

RowSet rowset = new Oracl eCachedRowSet () ;

rowset.setUl ("jdbc:oracle:oci:@);

rowset . set User name("HR");

rowset . set Password("hr");

rowset . set Command(" SELECT enpl oyee_id, first_nane, |ast_nane, salary FROM

enpl oyees");

rowset . execute();

while (rowset.next ())

{
Systemout. println("enployee_id: " +rowset.getlnt (1)
Systemout.printIn("first_name: " +rowset.getString (
Systemout. println("last_nanme: " +rowset.getString (3
Systemout.printIn("sal: " +rowset.getint (4));

(');
(' 2));
('),
¢

To populate a CachedRowSet object with a query, complete the following steps:
1. Instantiate Or acl eCachedRowSet .

18-6

Chapter 18
About CachedRowSet

2. Setthe Url, which is the connection URL, User nane, Passwor d, and Cormand, which is the
query string, properties for the RowSet object. You can also set the connection type, but it
is optional.

3. Call the execut e method to populate the CachedRowSet object. Calling execut e runs the
guery set as a property on this RowSet.

O acl eCachedRowSet rowset = new Oracl eCachedRowSet ();

rowset.setUrl ("jdbc:oracle:oci:@);

rowset . set Username ("HR');

rowset . set Password ("hr");

rowset . set Command (" SELECT enpl oyee_id, first_name, |ast_nane, salary FROM
enpl oyees");

rowset . execute ();

A CachedRowSet object can be populated with an existing Resul t Set object, using the
popul at e method. To do so, complete the following steps:

1. Instantiate Oracl eCachedRowSet .

2. Pass the already available Resul t Set object to the popul at e method to populate the
RowSet object.

/] Executing a query to get the ResultSet object.
Resul t Set rset = pstnt.executeQuery ();

Oracl eCachedRowSet rowset = new O acl eCachedRowSet ();

/1 the obtained ResultSet object is passed to the popul ate nethod
/] to populate the data in the rowset object.

rowset . popul ate (rset);

In the preceding example, a Resul t Set object is obtained by running a query and the
retrieved Resul t Set object is passed to the popul at e method of the CachedRowSet object to
populate the contents of the result set into the CachedRowSet.

" Note:

Connection properties, like transaction isolation or the concurrency mode of the
result set, and the bind properties cannot be set in the case where a pre-existent
Resul t Set object is used to populate the CachedRowSet object, because the
connection or result set on which the property applies would have already been
created.

The following code illustrates how an O acl eCachedRowSet object is serialized to a file and
then retrieved:

Il witing the serialized O acl eCachedRowSet object

{
Fil eQut put Stream fil eQut put Stream = new Fi | eQut put Strean("enp_t ab. dnp");
bj ect Qut put Stream ostream = new Cbj ect Qut put St rean(fil eQut put Strean;
ostream writeChj ect (rowset);
ostream cl ose();
fileCQutputStream close();

ORACLE 18-7

Chapter 18
About CachedRowSet

/'l reading the serialized O acl eCachedRowSet object

{
FilelnputStreamfilel nput Stream = new Fil el nput Strean("enp_tab. dnp");
oj ect | nput Stream i stream = new Obj ect | nput Strean(fil el nputStream;
RowSet rowsetl = (RowSet) istreamreadObject();
i stream cl ose();
filelnputStreamclose();

}

In the preceding code, a Fi | eQut put St r eamobject is opened for an enp_t ab. dnp file,
and the populated Or acl eCachedRowSet object is written to the file using

(bj ect Qut put St ream The serialized O acl eCachedRowSet object is retrieved using the
Fi | el nput St reamand bj ect | nput St r eamobjects.

O acl eCachedRowSet takes care of the serialization of non-serializable form of data like
I nput St ream Qut put St ream binary large objects (BLOBs), and character large objects
(CLOBS). O acl eCachedRowSet s also implements metadata of its own, which could be
obtained without any extra server round-trip. The following code illustrates how you
can obtain metadata for the RowSet:

Resul t Set Met aDat a netaData = rowset. get MetaData();
int maxCol = metabDat a. get Col utmCount ();
for (int i =1; i <= maxCol; ++i)
Systemout. printIn("Colum (" + i +") " + netaData.getCol umName(i));

Because the Or acl eCachedRowSet class is serializable, it can be passed across a
network or between Java Virtual Machines (JVMs), as done in Remote Method
Invocation (RMI). Once the O acl eCachedRowSet class is populated, it can move
around any JVM, or any environment that does not have JDBC drivers. Committing the
data in the RowSet requires the presence of JDBC drivers.

The complete process of retrieving the data and populating it in the

O acl eCachedRowSet class is performed on the server and the populated RowSet is
passed on to the client using suitable architectures like RMI or Enterprise Java Beans
(EJB). The client would be able to perform all the operations like retrieving, scrolling,
inserting, updating, and deleting on the RowSet without any connection to the
database. Whenever data is committed to the database, the accept Changes method is
called, which synchronizes the data in the RowSet to that in the database. This
method makes use of JDBC drivers, which require the JVM environment to contain
JDBC implementation. This architecture would be suitable for systems involving a Thin
client like a Personal Digital Assistant (PDA).

After populating the CachedRowSet object, it can be used as a Resul t Set object or any
other object, which can be passed over the network using RMI or any other suitable
architecture.

Some of the other key-features of CachedRowSet are the following:

* Cloning a RowSet
» Creating a copy of a RowSet

» Creating a shared copy of a RowSet

ORACLE 18-8

Chapter 18
About JdbcRowSet

CachedRowSet Constraints

All the constraints that apply to an updatable result set are applicable here, except
serialization, because O acl eCachedRowSet is serializable. The SQL query has the following
constraints:

» References only a single table in the database
» Contains no join operations
* Selects the primary key of the table it references

In addition, a SQL query should also satisfy the following conditions, if new rows are to be
inserted:

* Selects all non-nullable columns in the underlying table

* Selects all columns that do not have a default value

" Note:

The CachedRowSet cannot hold a large quantity of data, because all the data is
cached in memory. Oracle, therefore, recommends against using

O acl eCachedRowSet with queries that could potentially return a large volume of
data.

Connection properties like, transaction isolation and concurrency mode of the result set,
cannot be set after populating the RowSet, because the properties cannot be applied to the
connection after retrieving the data from the same.

18.3 About JdbcRowSet

ORACLE

A JdbcRowSet is a RowSet that wraps around a Resul t Set object. It is a connected RowSet
that provides JDBC interfaces in the form of a JavaBean interface. The Oracle
implementation of JdbcRowSet is or acl e. j dbc. rowset . Or acl eJDBCRowSet . The

O acl eJDBCRowSet class in oj dbc6. j ar and oj dbc7. j ar implements the standard JSR-114
interface j avax. sql . rowset . JdbcRowSet .

Table 18-1 shows how the JdbcRowSet interface differs from CachedRowSet interface.

Table 18-1 The JDBC and Cached Row Sets Compared
]

RowSet Type Serializable Connected Movable Synchronization of Presence
to Database Across data to database of JDBC
JVMs Drivers
JDBC Yes Yes No No Yes
Cached Yes No Yes Yes No

JdbcRowsSet is a connected RowSet, which has a live connection to the database and all the
calls on the JdbcRowSet are percolated to the mapping call in the JDBC connection,
statement, or result set. A CachedRowSet does not have any connection to the database
open.

18-9

Chapter 18
About WebRowSet

JdbcRowSet requires the presence of JDBC drivers unlike a CachedRowSet, which
does not require JDBC drivers during manipulation. However, both JdbcRowSet and
CachedRowSet require JDBC drivers during population of the RowSet and while
committing the changes of the RowSet.

The following code illustrates how a JdbcRowSet is used:

RowSet rowset = new Oracl eJDBCRowSet () ;

rowset.setUrl ("java:oracle:oci: @);

rowset . set User name("HR");

rowset . set Password("hr");

rowset . set Command(" SELECT enpno, ename, sal FROM enmp");
rowset . execute();

while (rowset.next())

{

Systemout. println("enpno: " + rowset.getlnt(1));
Systemout. println("ename: " + rowset.getString(2));
Systemout.printin("sal: " + rowset.getint(3));

}

In the preceding example, the connection URL, user name, password, and SQL query
are set as properties of the RowSet object, the SQL query is processed using the
execut e method, and the rows are retrieved and printed by traversing through the data
populated in the RowSet object.

18.4 About WebRowSet

A WebRowSet is an extension to CachedRowSet. It represents a set of fetched rows
or tabular data that can be passed between tiers and components in a way such that
no active connections with the data source need to be maintained. The WebRowSet
interface provides support for the production and consumption of result sets and their
synchronization with the data source, both in Extensible Markup Language (XML)
format and in disconnected fashion. This allows result sets to be shipped across tiers
and over Internet protocols.

The Oracle implementation of WebRowSet is or acl e. j dbc. rowset . Or acl eVebRowSet .
This class, which is in the oj dbc6. j ar and oj dbc7. j ar files, implements the standard
JSR-114 interface j avax. sql . rowset . WebRowSet . This class also extends the
oracle.jdbc. rowset. Oracl eCachedRowSet class. Besides the methods available in
O acl eCachedRowSet , the Or acl eWebRowSet class provides the following methods:

* public Oracl eWebRowSet () throws SQLException

This is the constructor for creating an Or acl eVebRowSet object, which is initialized
with the default values for an Or acl eCachedRowSet object, a default
O acl eVebRowSet Xm Reader , and a default Or acl eWebRowSet Xml Wit er.

* public void witeXm (java.io.Witer witer) throws SQ.Exception
public void witeXm (java.io.QutputStreamostrean) throws SQLException

These methods write the Or acl eWebRowSet object to the supplied Witer or
Qut put St r eamobject in the XML format that conforms to the JSR-114 XML
schema. In addition to the RowSet data, the properties and metadata of the
RowSet are written.

ORACLE 18-10

ORACLE

Chapter 18
About WebRowSet

e public void witeXm (ResultSet rset, java.io.Witer witer) throws SQ.Exception
public void witeXm (ResultSet rset, java.io.CQutputStream ostrean throws
SQLException

These methods create an Or acl e\WebRowSet object, populate it with the data in the given
Resul t Set object, and write it to the supplied Wit er or Qut put St reamobject in the XML
format that conforms to the JSR-114 XML schema.

e public void readXm (java.io. Reader reader) throws SQLException
public void readXm (java.io.lnputStreamistream throws SQLException

These methods read the Or acl eWebRowSet object in the XML format according to its
JSR-114 XML schema, using the supplied Reader or | nsput St r eamobject.

The Oracle WebRowSet implementation supports Java API for XML Processing (JAXP) 1.2.
Both Simple API for XML (SAX) 2.0 and Document Object Model (DOM) JAXP-conforming
XML parsers are supported. It follows the current JSR-114 W3C XML schema for
WebRowSet.

Applications that use the readXm (. ..) methods should set one of the following two standard
JAXP system properties before calling the methods:

e javax.xm . parsers. SAXPar ser Fact ory
This property is for a SAX parser.

e javax.xnl.parsers. Document Bui | der Fact ory
This property is for a DOM parser.

The following code illustrates the use of Or acl eWebRowSet for both writing and reading in XML
format:

i mport java.sql.*;
i mport java.io.*;
i nport oracle.jdbc. rowset. *;

String url = "jdbc:oracle:oci8: @;

Connection conn = DriverManager. get Connection(url,"HR","hr");
Statement stnt = conn.createStatenent();

Resul t Set rset = stnt.executeQuery("select * from enpl oyees");

/I Create an O acl eVebRowSet object and populate it with the ResultSet object
O acl eVebRowSet wset = new Oracl eWebRowSet () ;

wset . popul ate(rset);

try
{

/] Create a java.io.Witer object
FileWiter out = new FileWiter("xm.out");

/1 Now generate the XML and write it out
wset. writeXm (out);

catch (1 OException exc)
{

Systemout. println("Couldn't construct a FileWiter");

}
Systemout. printIn("XM output file generated.");

18-11

Chapter 18
About FilteredRowSet

/1 Create a new Oracl eebRowSet for reading from XM input
O acl eVebRowSet wset2 = new O acl eWebRowSet () ;

Il Use Oracle JAXP SAX parser
System set Property("javax. xm . parsers. SAXPar ser Fact ory", "oracl e. xnl . j axp. JXSAXPar
serFactory");

try

{
Il Use the preceding output file as input
Fil eReader fr = new Fil eReader("xnl.out");

/1 Now read XML streamfromthe Fil eReader
wset 2. readXm (fr);

}
catch (1 OException exc)

{

Systemout. println("Couldn't construct a FileReader");

}

Note:

The preceding code uses the Oracle SAX XML parser, which supports
schema validation.

18.5 About FilteredRowSet

A FilteredRowSet is an extension to WebRowSet that provides programmatic support
for filtering its content. This enables you to avoid the overhead of supplying a query
and the processing involved. The Oracle implementation of FilteredRowSet is
oracle.jdbc. rowset. Oracl eFilteredRowSet . The Oracl eFi | t eredRowSet class in the
oj dbc7. j ar files implements the standard JSR-114 interface

javax.sql.rowset. FilteredRowSet .

The Oracl eFi | t eredRowSet class defines the following new methods:

e public Predicate getFilter();

This method returns a Pr edi cat e object that defines the filtering criteria active on
the Oracl eFi | t er edRowSet object.

* public void setFilter(Predicate p) throws SQLExcepti on;

This method takes a Pr edi cat e object as a parameter. The Pr edi cat e object
defines the filtering criteria to be applied on the Oracl eFi | t er edRowSet object. The
methods throws a SQLExcept i on exception.

ORACLE 18-12

ORACLE

Chapter 18
About FilteredRowSet

< Note:

If you are using cl asses12. j ar instead of oj dbc5. j ar and oj dbc6. j ar for
FilteredRowSet features, then use O acl ePr edi cat e instead of Predi cat e. The
oracl e.jdbc. rowset. Oracl ePredi cat e interface is Oracle specific and is
equivalent to Pr edi cat e. This interface is used when the JSR-114 packages are not
available.

The predicate set on an Oracl eFi | t er edRowSet object defines a filtering criteria that is
applied to all the rows in the object to obtain the set of visible rows. The predicate also
defines the criteria for inserting, deleting, and modifying rows. The set filtering criteria acts as
a gating mechanism for all views and updates to the Or acl eFi | t er edRowSet object. Any
attempt to update the Oracl eFi | t er edRowSet object, which violates the filtering criteria,
throws a SQLExcept i on exception.

The filtering criteria set on an Or acl eFi | t er edRowSet object can be modified by applying a
new Predi cat e object. The new criteria is immediately applied on the object, and all further
views and updates must adhere to this new criteria. A new filtering criteria can be applied
only if there are no reference to the Oracl eFi | t er edRowSet object.

Rows that fall outside of the filtering criteria set on the object cannot be modified until the
filtering criteria is removed or a new filtering criteria is applied. Also, only the rows that fall
within the bounds of the filtering criteria will be synchronized with the data source, if an
attempt is made to persist the object.

The following code example illustrates the use of OracleFilteredRowSet. Assume a table,
t est _tabl e, with two NUVBER columns, col 1 and col 2. The code retrieves those rows from
the table that have value of col 1 between 50 and 100 and value of col 2 between 100 and
200.

The predicate defining the filtering criteria is as follows:

public class Predicatelnpl inplements Predicate

{
private int low];

private int high[];
private int columlndexes[];

public Predicatelnpl (int[] lo, int[] hi, int[] indexes)

{
low = 1o0;
high = hi;
col unml ndexes = i ndexes;
}
publ i ¢ bool ean eval uat e(RowSet rs)
{
bool ean result = true;
for (int i =0; i < columlndexes.length; i++)
{
int columVal ue = rs.getlnt(columlndexes[i]);
if (columValue < lowi] || columValue > high[i])
result = false;
}
return result;
}

18-13

Chapter 18
About JoinRowSet

/1 the other two evaluate(...) methods sinply return true

}

The predicate defined in the preceding code is used for filtering content in an
Oracl eFi | t eredRowSet object, as follows:

Oracl eFil teredRowSet ofrs = new Oracl eFil teredRowSet ();
int low] = {50, 100};

int high[] = {100, 200};

int indexes[] = {1, 2};

of rs. set Command("sel ect coll, col2 fromtest_table");

/] set other properties on ofrs like usr/pwd ...

of rs. execute();
of rs. set Predi cat e(new Predi catel npl (1 ow, high, indexes));

/1 this will only get rows with coll in (50,100) and col 2 in (100, 200)
while (ofrs.next()) {...}

18.6 About JoinRowSet

ORACLE

A JoinRowSet is an extension to WebRowSet that consists of related data from
different RowSets. There is no standard way to establish a SQL JO N between
disconnected RowSets without connecting to the data source. A JoinRowSet
addresses this issue. The Oracle implementation of JoinRowSet is the

oracle.jdbc. rowset. Oracl eJoi nRowSet class. This class, which is in the oj dbc7. j ar
files, implements the standard JSR-114 interface j avax. sql . rowset . Joi nRowSet .

Any number of RowSet objects, which implement the Joi nabl e interface, can be added
to a Joi nRowSet object, provided they can be related in a SQL JO N. All five types of
RowSet support the Joi nabl e interface. The Joi nabl e interface provides methods for
specifying the columns based on which the JO Nwill be performed, that is, the match
columns.

" Note:

If you are using cl asses12. j ar instead of oj dbc5. j ar and oj dbc6. j ar for
JoinRowSet features, then use Or acl eJoi nabl e instead of Joi nabl e. The
oracl e.jdbc.rowset. Oracl eJoi nabl e interface is Oracle-specific and is
equivalent to Joi nabl e. This interface is used when the JSR-114 packages
are not available.

A match column can be specified in the following ways:

e Using the set Mat chCol unn method

This method is defined in the Joi nabl e interface. It is the only method that can be
used to set the match column before a RowSet object is added to a Joi nRowSet
object. This method can also be used to reset the match column at any time.

18-14

ORACLE

Chapter 18
About JoinRowSet

Using the addRowSet method

This is an overloaded method in Joi nRowSet . Four of the five implementations of this
method take a match column as a parameter. These four methods can be used to set or
reset a match column at the time a RowSet object is being added to a Joi nRowSet object.

In addition to the inherited methods, Or acl eJoi nRowSet provides the following methods:

public void addRowSet (Joi nabl e joinable) throws SQLException;

public void addRowSet (RowSet rowSet, int i) throws SQ.Exception;

public void addRowSet (RowSet rowSet, String s) throws SQLException;
public void addRowSet (RowSet arowSet[], int an[]) throws SQ.Excepti on;
public void addRowSet (RowSet arowSet[], String as[]) throws SQLException;

These methods are used to add a RowSet object to the Or acl eJoi nRowSet object. You
can pass one or more RowSet objects to be added to the O acl eJoi nRowSet object. You
can also pass names or indexes of one or more columns, which need to be set as match
column.

public Collection get RowSets() throws SQLException;

This method retrieves the RowSet objects added to the Or acl eJoi nRowSet object. The
method returns aj ava. util. Col | ecti on object that contains the RowSet objects.
public String[] get RowSet Nanes() throws SQLException;

This method returns a String array containing the names of the RowSet objects that are
added to the Or acl eJoi nRowSet object.

publi ¢ bool ean supportsCrossJoin();
publi ¢ bool ean supportsFul | Join();

publi ¢ bool ean supportslnnerJoin();
publi ¢ bool ean supportsLeftQuterJoin();
publi ¢ bool ean supportsRi ght QuterJoin();

These methods return a boolean value indicating whether the Or acl eJoi nRowSet object
supports the corresponding JO Ntype.

public void setJoinType(int i) throws SQLException;

This method is used to set the JO Ntype on the Oracl eJoi nRowSet object. It takes an

integer constant as defined in the j avax. sql . rowset . Joi nRowSet interface that specifies
the JA Ntype.

public int getJoinType() throws SQLException;

This method returns an integer value that indicates the JO Ntype set on the

O acl eJoi nRowSet object. This method throws a SQLExcept i on exception.

publ i ¢ CachedRowSet toCachedRowSet () throws SQLException;

This method creates a CachedRowSet object containing the data in the Or acl eJoi nRowSet
object.

public String get\WereCd ause() throws SQLException;

This method returns a String containing the SQL-like description of the WHERE clause used
in the Oracl eJoi nRowSet object. This methods throws a SQLExcept i on exception.

The following code illustrates how Or acl eJoi nRowSet is used to perform an inner join on two
RowSets, whose data come from two different tables. The resulting RowSet contains data as

18-15

Chapter 18
About JoinRowSet

if they were the result of an inner join on these two tables. Assume that there are two
tables, an Or der table with two NUMBER columns Order i d and Person_i d, and a
Per son table with a NUMBER column Per son_i d and a VARCHAR2 column Nane.

/1 RowSet hol ding data fromtable Order
O acl eCachedRowSet ocrsOrder = new Oracl eCachedRowSet () ;

ocrsOrder. set Command("sel ect order_id, person_id fromorder");

/1 Join on person_id colum
ocrsOrder. set Mat chCol um(2) ;
ocrsOrder. execute();

/1 Creating the Joi nRowSet
Oracl eJoi nRowSet ojrs = new O acl eJoi nRowSet () ;
oj rs. addRowSet (ocrsOrder);

/1 RowSet hol ding data fromtable Person
Or acl eCachedRowSet ocrsPerson = new Oracl eCachedRowSet () ;

ocr sPerson. set Command("sel ect person_id, name from person");

/1 do not set match colum on this RowSet using setMatchCol um().
/luse addRowSet () to set match col um
ocrsPerson. execute();

/1 Join on person_id colum, in another way
oj rs. addRowSet (ocrsPerson, 1);

/1 now we can go the Joi nRowSet as usual

ojrs.beforeFirst();

while (ojrs.next())

Systemout.printin("order id =" + ojrs.getlnt(1) +", " + "personid =" +
ojrs.getlnt(2) +", " +" "+ ojrs.getString(3));

+ "person's name =

ORACLE 18-16

Globalization Support

The Oracle Java Database Connectivity (JDBC) drivers provide globalization support,
formerly known as National Language Support (NLS). Globalization support enables you to
retrieve data or insert data into a database in any character set that Oracle supports. If the
clients and the server use different character sets, then the driver provides the support to
perform the conversions between the database character set and the client character set.

This chapter contains the following sections:

e About Providing Globalization Support
* NCHAR_ NVARCHARZ2_ NCLOB and the defaultNChar Property
* New Methods for National Character Set Type Data in JDK 6

¢ Note:

» Starting from Oracle Database 10g, the NLS_LANG variable is no longer part of
the JDBC globalization mechanism. The JDBC driver does not check NLS
environment. So, setting it has no effect.

e The JDBC server-side internal driver provides complete globalization support
and does not require any globalization extension files.

e JDBC 4.0 includes methods for reading and writing national character set
values. You should use these methods when using JSE 6 or later.

Related Topics
e Oracle Character Data Types Support

* Oracle Database Globalization Support Guide

19.1 About Providing Globalization Support

The basic Java Archive (JAR) file oj dbc7. j ar, contains all the necessary classes to provide
complete globalization support for:

e Oracle character sets for CHAR, VARCHAR, LONGVARCHAR, or CLOB data that is not being
retrieved or inserted as a data member of an Oracle object or collection type.

e CHAR or VARCHAR data members of object and collection for the character sets US7ASCI |,
WESDEC, V\E8I S0B8859P1, VEBMBW N1252, and UTFS8.

To use any other character sets in CHAR or VARCHAR data members of objects or collections,
you must include or ai 18n. j ar in the CLASSPATH environment variable:

ORACLE_HOWE/ j li b/ orai 18n.j ar

ORACLE 19-1

Chapter 19
About Providing Globalization Support

< Note:

Previous releases depended on the nl s_char set 12. zi p file. This file is now
obsolete.

Compressing orail8n.jar

The orai 18n. j ar file contains many important character set and globalization support
files. You can reduce the size of or ai 18n. j ar using the built-in customization tool, as
follows:

java -jar orail8n.jar -customcharsets-jar [jar/zip_filename] -charset
characterset _name [characterset_nane ...]

For example, if you want to create a custom character set file,
custom orai 18n_j a. j ar, that includes the JA16SJIS and JA16EUC character sets,
then issue the following command:

$ java -jar orail8n.jar -customcharsets-jar customorai 18n_ja.jar -charset
JA16SJI S JAL6EUC

The output of the command is as follows:

Added Character set : JA16SJIS
Added Character set : JA16EUC

If you do not specify a file name for your custom JAR/ZIP file, then a file with the name
j dbc_orai 18n_cs. | ar is created in the current working directory. Also, for your custom
JAR/ZIP file, you cannot specify a name that starts with or ai 18n.

If any invalid or unsupported character set name is specified in the command, then no
output JAR/ZIP file will be created. If the custom JAR/ZIP file exists, then the file will
not be updated or removed.

The custom character set JAR/ZIP does not accept any command. However, it prints
the version information and the command that was used to generate the JAR/ZIP file.
For example, you have j dbc_or ai 18n_cs. zi p, the command that displays the
information and the displayed information is as follows:

$ java -jar jdbc_orai18n_cs.jar

Oacle G obalization Devel opnent Kit - 12.1. X X X Rel ease

This custom character set jar/zip file was created with the follow ng comand:
java -jar orail8n.jar -customcharsets-jar jdbc_orai 18n_cs.jar -charset

V\E8| SOB859P15

The limitation to the number of character sets that can be specified depends on that of

the shell or command prompt of the operating system. It is certified that all supported
character sets can be specified with the command.

ORACLE 19-2

Chapter 19
NCHAR, NVARCHAR2, NCLOB and the defaultNChar Property

< Note:

If you are using a custom character set, then you need to perform the following so
that JDBC supports the custom character set:

1. After creating the . nl't and . nl b files as part of the process of creating a
custom character set, create . gl b files for the newly created character set and
also for the | xOboot . nl t file using the following command:

java -classpath $ORACLE HOVE/j | i b/ orai 18n.j ar: $ORACLE HOW/ | i b/
xm parserv2.jar Gnstall -[add | a] <NLT_file_name>

2. Add the generated files and $ORACLE_HOVE/ j | i b/ or ai 18n- mappi ngs. j ar into
the cl asspat h environment variable while executing the JDBC code that
connects to the database with the custom character set.

19.2 NCHAR, NVARCHARZ2, NCLOB and the defaultNChar

Property

ORACLE

By default, the oracl e. j dbc. Oracl ePr epar edSt at ement interface treats the data type of all
the columns in the same way as they are encoded in the database character set. However,
since Oracle Database 10g, if you set the value of or acl e. j dbc. def aul t NChar system
property to t r ue, then JDBC treats all character columns as being national-language.

The default value of def aul t NChar is false. If the value of def aul t NChar is false, then you
must call the set For X Use(<col um_I ndex>, Oracl ePrepar edSt at ement . FORM NCHAR)
method for those columns that specifically need national-language characters. For example:

PreparedSt at enent pstnt =

conn. prepareStatenment ("insert into TEST values(?,?2,?)");
pstnt . set For mOf Use(1, Oracl ePreparedSt at enent. FORM_NCHAR) ;
pstnt.setString(l, myUnicodeStringl); // NCHAR col um

pstnt . set For mOf Use(2, O acl ePreparedeSt at ement . FORM_NCHAR) ;
pstnt.setString(2, nmyUnicodeString2); // NVARCHAR2 col um

If you want to set the value of def aul t NChar to t r ue, then specify the following at the
command-line:

java -Doracle.jdbc. defaul t NChar =t rue nyApplication

If you prefer, then you can also specify def aul t NChar as a connection property and access
NCHAR, NVARCHAR2, or NCLCB data.

Properties props = new Properties();
props. put (O acl eConnect i on. CONNECTI ON_PROPERTY_DEFAULTNCHAR, "true");
/1 set URL, usernane, password, and so on.

Connection conn = DriverManager. get Connecti on(props);

If the value of def aul t NChar is t r ue, then you should call the
set For nf Use(<col um_I ndex>, FORM CHAR) for columns that do not need national-language
characters. For example:

Prepar edSt at ement pstnt =
conn. prepareSt atenent ("insert into TEST values(?,?,?)");

19-3

ORACLE

Chapter 19
New Methods for National Character Set Type Data in JDK 6

pstnt . set For mOf Use(3, Oracl ePreparedSt at enent. FORM CHAR) ;
pstnt.setString(3, nyString); // CHAR colum

Note:

If you set the value of def aul t NChar to true and then access CHAR columns,
then the database will implicitly convert all CHAR data into NCHAR. This
conversion has a substantial performance impact.

¢ Note:

Always use j ava. | ang. Stri ng for character data instead of
oracl e. sgl . CHAR. CHAR is provided only for backward compatibility.

You can also use the set Obj ect method to access national character set
types, but if the set Obj ect method is used, then the target data type
must be specified as Types. NCHAR, Types. NCLOB, Types. NVARCHAR, or
Types. LONG\WARCHAR.

< Note:

In Oracle Database, SQL strings are converted to the database character
set. Therefore you need to keep in mind the following:

In Oracle Database 10g release 1 (10.1) and earlier releases, JDBC
drivers do not support any NCHAR literal (n'...") containing Unicode
characters that are not representable in the database character set. All
Unicode characters that are not representable in the database character
set get corrupted.

If an Oracle Database 10g release 2 (10.2) JDBC driver is connected to
an Oracle Database 10g release 2 (10.2) database server, then all NCHAR
literals (n'...") are converted to Unicode literals (u'...") and all non-ASCII
characters are converted to their corresponding Unicode escape
sequence. This is done automatically to prevent data corruption.

If an Oracle Database 10g release 2 (10.2) JDBC driver is connected to
an Oracle Database 10g release 1 (10.1) or earlier database server, then
NCHAR literals (n'...") are not converted and any character that is not
representable in the database character set gets corrupted.

19.3 New Methods for National Character Set Type Data in

JDBC 4.0 introduces support for the following four additional SQL types to access the
national character set types:

19-4

Chapter 19
New Methods for National Character Set Type Data in JDK 6

* NCHAR

* NVARCHAR

* LONG\WVARCHAR
« NCLOB

These types are similar to the CHAR, VARCHAR, LONGVARCHAR, and CLOB types, except that the
values are encoded using the national character set. The JDBC specification uses the String
class to represent NCHAR, NVARCHAR, and LONGNVARCHAR data, and the NO ob class to represent
NCLOB values.

To retrieve a national character value, an application calls one of the following methods:

° getNString
e getNdob
e getNCharacterStream
e get (bj ect
¢ Note:

The get d ob method may be used to return an NC ob object since NCl ob
implements d ob.

To specify a value for a parameter marker of national character type, an application calls one
of the following methods:

° setNString
e set NCharacterStream
e setNd ob
* set(bject
Note:

You can use the set For m Use method to specify a national character value in JDK
6. But this practice is discouraged because this method will be deprecated in future
release. So, Oracle recommends you to use the methods discussed in this section.

" See Also:

If the set Qbj ect method is used, then the target data type must be specified as
Types. NCHAR, Types. NCLOB, Types. NVARCHAR, or Types. LONG\VARCHAR.

ORACLE 19-5

Performance and Scalability

ORACLE

This part consists of chapters that discuss the Oracle Java Database Connectivity (JDBC)
features that enhance performance, such as Statement caching and Oracle Call Interface

(OCI) connection pooling. It also includes a chapter that provides information about Oracle
performance extensions, such as update batching and row prefetching.

Part V contains the following chapters:

e Statement and Result Set Caching

* Performance Extensions

e OCI Connection Pooling

» Database Resident Connection Pooling
e Oracle Advanced Queuing

e Continuous Query Notification

Statement and Result Set Caching

This chapter describes the benefits and use of Statement caching, an Oracle Java Database
Connectivity (JDBC) extension.

Note:

Use statement caching only when you are sure that the table structure remains the
same in the database. If you alter the table structure and then reuse a statement
that was created and executed before changing the table structure, then you may
get an error.

This chapter contains the following sections:

e About Statement Caching
e About Using Statement Caching
e About Reusing Statements Objects

e About Result Set Caching

20.1 About Statement Caching

Statement caching improves performance by caching executable statements that are used
repeatedly, such as in a loop or in a method that is called repeatedly. Starting from JDBC 3.0,
JDBC standards define a statement-caching interface.

Statement caching can do the following:

» Prevent the overhead of repeated cursor creation
* Prevent repeated statement parsing and creation
* Reuse data structures in the client

This section covers the following topics:

e Basics of Statement Caching

e Implicit Statement Caching

» Explicit Statement Caching

ORACLE 20-1

Chapter 20
About Statement Caching

< Note:

Oracle strongly recommends you use the implicit Statement cache. Oracle
JDBC drivers are designed on the assumption that the implicit Statement
cache is enabled. So, not using the Statement cache will have a negative
impact on performance.

20.1.1 Basics of Statement Caching

Applications use the Statement cache to cache statements associated with a particular
physical connection. The cache is associated with an Or acl eConnect i on object.

O acl eConnecti on includes methods to enable Statement caching. When you enable
Statement caching, a statement object is cached when you call the cl ose method.

Because each physical connection has its own cache, multiple caches can exist if you
enable Statement caching for multiple physical connections. When you enable
Statement caching on a connection cache, the logical connections benefit from the
Statement caching that is enabled on the underlying physical connection. If you try to
enable Statement caching on a logical connection held by a connection cache, then
this will throw an exception.

There are two types of Statement caching: implicit and explicit. Each type of Statement
cache can be enabled or disabled independent of the other. You can have either,
neither, or both in effect. Both types of Statement caching share a single cache per
connection.

20.1.2 Implicit Statement Caching

ORACLE

When you enable implicit Statement caching, JDBC automatically caches the prepared
or callable statement when you call the cl ose method of this statement object. The
prepared and callable statements are cached and retrieved using standard connection
object and statement object methods.

Plain statements are not implicitly cached, because implicit Statement caching uses a
SQL string as a key and plain statements are created without a SQL string. Therefore,
implicit Statement caching applies only to the Or acl ePr epar edSt at enent and

Oracl eCal | abl eSt at enent objects, which are created with a SQL string. You cannot
use implicit Statement caching with Or acl eSt at ement . When you create an

O acl ePreparedSt at enent or Oracl eCal | abl eSt at ement , the JDBC driver
automatically searches the cache for a matching statement. The match criteria are the
following:

* The SQL string in the statement must be identical to one in the cache.
* The statement type must be the same, that is, prepared or callable.

* The scrollable type of result sets produced by the statement must be the same,
that is, forward-only or scrollable.

If a match is found during the cache search, then the cached statement is returned. If
a match is not found, then a new statement is created and returned. In either case, the
statement, along with its cursor and state are cached when you call the cl ose method
of the statement object.

20-2

Chapter 20
About Statement Caching

When a cached Or acl ePrepar edSt at ement or Or acl eCal | abl eSt at enent object is retrieved,

the state and data information are automatically reinitialized and reset to default values, while
metadata is saved. Statements are removed from the cache to conform to the maximum size
using a Least Recently Used (LRU) algorithm.

Note:

The JDBC driver does not clear metadata. However, although metadata is saved for
performance reasons, it has no semantic impact. A statement that comes from the
implicit cache appears as if it were newly created.

You can prevent a particular statement from being implicitly cached.

Related Topics
e About Using Implicit Statement Caching

20.1.3 Explicit Statement Caching

ORACLE

Explicit Statement caching enables you to cache and retrieve selected prepared and callable
statements. Explicit Statement caching relies on a key, an arbitrary Java Stri ng that you
provide.

Note:

Plain statements cannot be cached.

Because explicit Statement caching retains statement data and state as well as metadata, it
has a performance edge over implicit Statement caching, which retains only metadata.
However, you must be cautious when using this type of caching, because explicit Statement
caching saves all three types of information for reuse and you may not be aware of what data
and state are retained from prior use of the statements.

Implicit and explicit Statement caching can be differentiated on the following points:

* Retrieving statements

In the case of implicit Statement caching, you take no special action to retrieve
statements from a cache. Instead, whenever you call pr epar eSt at ement or prepareCal |,
JDBC automatically checks the cache for a matching statement and returns it if found.
However, in the case of explicit Statement caching, you use specialized Oracle W t hKey
methods to cache and retrieve statement objects.

* Providing key

Implicit Statement caching uses the SQL string of a prepared or callable statement as the
key, requiring no action on your part. In contrast, explicit Statement caching requires you
to provide a Java St ri ng, which it uses as the key.

e Returning statements

20-3

Chapter 20
About Using Statement Caching

During implicit Statement caching, if the JDBC driver cannot find a statement in
cache, then it will automatically create one. However, during explicit Statement
caching, if the JDBC driver cannot find a matching statement in cache, then it will
return a nul | value.

Table 20-1 compares the different methods employed in implicit and explicit Statement
caching.

Table 20-1 Comparing Methods Used in Statement Caching

Type of Allocate Insert Into Cache Retrieve From Cache

Caching

Implicit prepar eSt at ement cl ose prepar eSt at enent prepareCal |
prepar eCal |

Explicit creat eSt at ement cl oseW t hKey get St at ement Wt hKey
prepar eSt at ement get Cal | Wt hKey
prepar eCal |

20.2 About Using Statement Caching

This section discusses the following topics:

e About Enabling and Disabling Statement Caching
e About Closing a Cached Statement

e About Using Implicit Statement Caching

e About Using Explicit Statement Caching

20.2.1 About Enabling and Disabling Statement Caching

When using the Oracl eConnect i on API, implicit and explicit Statement caching can be
enabled or disabled independent of one other. You can have either, neither, or both of
them in effect.

Enabling Implicit Statement Caching

There are two ways to enable implicit Statement caching. The first method enables
Statement caching on a nonpooled physical connection, where you need to explicitly
specify the Statement size for every connection, using the set St at enent CacheSi ze
method. The second method enables Statement caching on a pooled logical
connection. Each connection in the pool has its own Statement cache with the same
maximum size that can be specified by setting the MaxSt at enent sLi mi t property.

Method 1
Perform the following steps:

e Callthe Oracl eDat aSour ce. set I npl i ci t Cachi ngEnabl ed(true) method on the
connection to set the Or acl eDat aSour ce property i npli ci t Cachi ngEnabl ed to
true. For example:

Oracl eDat aSource ods = new Oracl eDat aSource();

ORACLE 20-4

ORACLE

Chapter 20
About Using Statement Caching

ods. set | npl i cit Cachi ngEnabl ed(true);

* Callthe Oracl eConnecti on. set St at enent CacheSi ze method on the physical connection.
The argument you supply is the maximum number of statements in the cache. For
example, the following code specifies a cache size of ten statements:

((Oracl eConnection) conn). set St at ement CacheSi ze(10) ;

Method 2
Perform the following steps:

» Setthe O acl eDat aSour ce properties i npl i ci t Cachi ngEnabl ed and
connecti onCachi ngEnabl ed to t r ue. For example:

Oracl eDat aSource ods = new O acl eDat aSource();

ods. set Connect i onCachi ngEnabl ed(true);
ods. set I nplicitCachingEnabl ed(true);

* Setthe MaxSt at ement sLi ni t property to a positive integer on the connection cache,
when using the connection cache. For example:

Properties cacheProps = new Properties();
cacheProps. put ("MaxStatenentsLinit", "50");

To determine whether implicit caching is enabled, call get | npl i ci t Cachi ngEnabl ed, which
returns t r ue if implicit caching is enabled, f al se otherwise.

¢ Note:

Enabling Statement caching enables both implicit and explicit Statement caching.

Disabling Implicit Statement Caching

Disable implicit Statement caching by calling set | npl i ci t Cachi ngEnabl ed(f al se) on the
connection or by setting the | npl i ci t Cachi ngEnabl ed property to f al se.

Enabling Explicit Statement Caching

To enable explicit Statement caching you must first set the Statement cache size. For setting
the cache size, call Oracl eConnecti on. set St at enent CacheSi ze method on the physical
connection. The argument you supply is the maximum number of statements in the cache. An
argument of 0 specifies no caching. To check the cache size, use the

get St at enent CacheSi ze method in the following way:

Systemout.println("Stnm Cache sizeis " +
((Oracl eConnection) conn). get St at enent CacheSi ze());

The following code specifies a cache size of ten statements:

((Oracl eConnection)conn). set St at enment CacheSi ze(10) ;

Enable explicit Statement caching by calling set Expl i ci t Cachi ngEnabl ed(true) on the
connection.

20-5

Chapter 20
About Using Statement Caching

To determine whether explicit caching is enabled, call get Expl i ci t Cachi ngEnabl ed,
which returns t r ue if explicit caching is enabled, f al se otherwise.

" Note:

e You enable implicit and explicit caching for a particular physical
connection independently. Therefore, it is possible to do Statement
caching both implicitly and explicitly during the same session.

e Implicit and explicit Statement caching share the same cache.
Remember this when you set the statement cache size.

Disabling Explicit Statement Caching

Disable explicit Statement caching by calling set Expl i ci t Cachi ngEnabl ed(f al se) .
Disabling caching or closing the cache purges the cache. The following example
disables explicit Statement caching:

((Oracl eConnection) conn). set Expli cit Cachi ngEnabl ed(fal se);

20.2.2 About Closing a Cached Statement

ORACLE

Perform the following to close a Statement and assure that it is not returned to the
cache:

In J2SE 5.0

» Disable caching for that statement
st nt. set Di sabl eSt nt Cachi ng(true);
» Call the cl ose method of the statement object

stnt.close();

In JSE 6.0

stnt. set Pool abl e(fal se);
stnt.close();

Physically Closing a Cached Statement

With implicit Statement caching enabled, you cannot physically close statements
manually. The cl ose method of a statement object caches the statement instead of
closing it. The statement is physically closed automatically under one of following three
conditions:

When the associated connection is closed

* When the cache reaches its size limit and the least recently used statement object
is preempted from cache by the LRU algorithm

» If you call the cl ose method on a statement for which Statement caching is
disabled

20-6

Chapter 20
About Using Statement Caching

20.2.3 About Using Implicit Statement Caching

Once you enable implicit Statement caching, by default, all prepared and callable statements
are automatically cached. Implicit Statement caching includes the following steps:

1. Enable implicit Statement caching.
2. Allocate a statement using one of the standard methods.

3. Disable implicit Statement caching for any particular statement you do not want to cache.
This is an optional step.

4. Cache the statement using the cl ose method.

5. Retrieve the implicitly cached statement by calling the appropriate standard prepare
method.

Allocating a Statement for Implicit Caching

To allocate a statement for implicit Statement caching, use either the pr epar eSt at ement or
prepar eCal I method as you would typically.

The following code allocates a new statement object called pst nt :

PreparedSt at enent pstnt = conn. prepar eSt at ement
(" UPDATE enp SET ename = ? WHERE rowid = ?");

Disabling Implicit Statement Caching for a Particular Statement

With implicit Statement caching enabled for a connection, by default, all callable and
prepared statements of that connection are automatically cached. To prevent a particular
callable or prepared statement from being implicitly cached, use the set Di sabl eSt nt Cachi ng
method of the statement object. You can manage cache space by calling the

set Di sabl eSt nt Cachi ng method on any infrequently used statement.

The following code disables implicit Statement caching for pst nt :

PreparedSt at ement pstnt = conn. prepareSt at ement (" SELECT 1 from DUAL");
((Oracl ePreparedSt at enent) pstnt) . set Di sabl eSt nt Cachi ng(true);
pstnt.close ();

< Note:

If you are using JSE 6, then you can disable Statement caching by using the
standard JDBC 4.0 method set Pool abl e:

Prepar edSt at enent . set Pool abl e(fal se);

Use the following to check whether the St at enent object is poolable:

St at ement . i sPool abl e();

Implicitly Caching a Statement

To cache an allocated statement, call the cl ose method of the statement object. When you
call the cl ose method on an O acl ePrepar edSt at ement or Oracl eCal | abl eSt at enent object,

ORACLE 20-7

Chapter 20
About Using Statement Caching

the JDBC driver automatically puts this statement in cache, unless you have disabled
caching for this statement.

The following code caches the pst nt statement:

pstnt.close ();

Retrieving an Implicitly Cached Statement

To retrieve an implicitly cached statement, call either the pr epar eSt at ement or
prepar eCal I method, depending on the statement type.

The following code retrieves pst nt from cache using the pr epar eSt at ement method:

pstnt = conn. prepareStatenent ("UPDATE enp SET ename = ? WHERE rowid = ?");

20.2.3.1 Methods Used in Statement Allocation and Implicit Statement Caching

Table 20-2 describes the methods used to allocate statements and retrieve implicitly
cached statements.

Table 20-2 Methods Used in Statement Allocation and Implicit Statement

Caching
__|
Method Functionality for Implicit Statement Caching
prepar eSt at ement Performs a cache search that either finds and returns the

desired cached Or acl ePr epar edSt at ement object or
allocates a new Or acl ePr epar edSt at ement object if a match
is not found

pr epar eCal | Performs a cache search that either finds and returns the
desired cached Or acl eCal | abl eSt at ement object or
allocates a new Or acl eCal | abl eSt at ement object if a match
is not found

Example 20-1 provides a sample code that shows how to enable implicit statement
caching.

Example 20-1 Using Implicit Statement Cache

i mport java.sql.PreparedStatenent;
i mport java.sql.ResultSet;
i nport java.sql.SQLException;
inport java.util.Properties;
i nport javax.sql . DataSource;
i mport oracle.jdbc. Oracl eConnecti on;
i mport oracle.jdbc. pool . Oracl eDat aSour ce;
public class TestJdbc
{
/**
* CGet a Connection, prepare a statenent, execute a query, fetch the results,
close the connection.
* @aram ods the DataSource used to get the connection.
*/
private static void doSQ.(DataSource ods) throws SQ.Exception
{
final String SQL = "select username fromall _users";
Oracl eConnection conn = null;
PreparedStatenent ps = null;

ORACLE 20-8

ResultSet rs = null;

try
{

conn

= (Oracl eConnection) ods. get Connection();

Systemout.println("Connection:" + conn);

Systemout. println("Connection getlnplicitCachi ngEnabl ed:"

conn. get I mpl i ci t Cachi ngEnabl ed());

Systemout. println("Connection getStatementCacheSize:" +
conn. get St at ement CacheSi ze());

ps = conn. prepareStatenent(SQ);

Systemout.println("PreparedStatement:" + ps);

rs =

ps. execut eQuery();

while (rs.next())

{

String owner = rs.getString(1);
Systemout. println(owner);

}
}
finally
{
if (rs!=null)
{
rs.close();
}
if (ps!=null)
{
ps. cl ose();
conn. cl ose();
}
}
}
public static void main(String[] args)
{
try
{

Oracl eDat aSource ods = new Oracl eDat aSource();

ods.
ods.
ods.
ods.
ods.
ods.
ods.
ods.

setDriverType("thin");

set Server Nane("l ocal host");

set Port Nunber (5221);

set Servi ceName("orcl");

setUser("HR');

set Password("hr");

set Connect i onCachi ngEnabl ed(true);
set | nplicitCachi ngEnabl ed(true);

Properties cacheProps = new Properties();
cacheProps.put("InitialLinit", "1");
cacheProps.put("MnLinit", "1");
cacheProps. put ("MaxLinmit", "5");
cacheProps. put ("MaxStatementsLinit", "50");

ods.
Systemout. println("DataSource getlnplicitCachi ngEnabl ed:

set Connecti onCacheProperties(cacheProps);

ods. get I nplicit Cachi ngEnabl ed());

for (int i =0; i <5; i++)
doSQ.(ods);
}
}
catch (Exception ex)
{

ex.printStackTrace();

}

ORACLE

Chapter 20
About Using Statement Caching

20-9

Chapter 20
About Using Statement Caching

}
}

20.2.4 About Using Explicit Statement Caching

ORACLE

A prepared or callable statement can be explicitly cached when you enable explicit
Statement caching. Explicit Statement caching includes the following steps:

1. Enable explicit Statement caching.
2. Allocate a statement using one of the standard methods.

3. Explicitly cache the statement by closing it with a key, using the cl oseW t hKey
method.

4. Retrieve the explicitly cached statement by calling the appropriate Oracle WithKey
method, specifying the appropriate key.

5. Re-cache an open, explicitly cached statement by closing it again with the
cl oseW t hKey method. Each time a cached statement is closed, it is re-cached
with its key.

Allocating a Statement for Explicit Caching

To allocate a statement for explicit Statement caching, use either the
creat eStatement, prepareSt at enent, or prepar eCal | method as you would typically.

The following code allocates a new statement object called pst nt :

PreparedSt at enent pstnt =
conn. prepareStatement (" UPDATE enp SET ename = ? WHERE rowid = ?");

Explicitly Caching a Statement

To explicitly cache an allocated statement, call the cl oseW t hKey method of the
statement object, specifying a key. The key is an arbitrary Java St ri ng that you
provide. The cl oseW t hKey method caches a statement as is. This means the data,
state, and metadata are retained and not cleared.

The following code caches the pst nt statement with the key " nykey" :

((Oracl ePreparedStatenent) pstnt). cl oseWthKey ("nmykey");

Retrieving an Explicitly Cached Statement

To recall an explicitly cached statement, call either the get St at ement Wt hKey or
get Cal | Wt hKey methods depending on the statement type.

If you retrieve a statement with a specified key, then the JDBC driver searches the
cache for the statement, based on the specified key. If a match is found, then the
matching statement is returned along with its state, data, and metadata. This
information is as it was when the statement was last closed. If a match is not found,
then the JDBC driver returns nul | .

The following code recalls pst nt from cache using the "nykey" key with the
get St at enent Wt hKey method. Recall that the pst nt statement object was cached
with the "nmykey" key.

pstnmt = ((Oracl eConnection)conn). get Statenent Wt hKey ("nykey");

20-10

Chapter 20
About Reusing Statements Objects

If you call the creati onSt at e method on the pst nt statement object, then the method returns
EXPLICIT.

" Note:

When you retrieve an explicitly cached statement, ensure that you use the method
that is appropriate for your statement type when specifying the key. For example, if
you used the prepar eSt at enent method to allocate a statement, then use the

get St at ement Wt hKey method to retrieve that statement from cache. The JDBC
driver does not verify the type of statement it is returning.

20.2.4.1 Methods Used to Retrieve Explicitly Cached Statements

Table 20-3 describes the methods used to retrieve explicitly cached statements.

Table 20-3 Methods Used to Retrieve Explicitly Cached Statements

Method Functionality for Explicit Statement Caching

get St at enent W t hKey Specifies the key needed to retrieve a prepared
statement from cache

get Cal | Wt hKey Specifies the key needed to retrieve a callable statement
from cache

20.3 About Reusing Statements Objects

The JDBC 3.0 specification introduces the feature of statement pooling that enables an
application to reuse a Pr epar edSt at enent object in the same way as it uses a Connecti on
object. The Prepar edSt at ement objects can be reused by multiple logical connections in a
transparent manner.

This section covers the following topics:

e About Using a Pooled Statement

» About Closing a Pooled Statement

" Note:

The Oracle JDBC Drivers use implicit statement caching to support statement
pooling.

20.3.1 About Using a Pooled Statement

ORACLE

An application can find out whether a data source supports statement pooling by calling the
i sPool abl e method from the St at enent interface. If the return value is t r ue, then the
application knows that the Pr epar edSt at enent object is being pooled. The application can
also request a statement to be pooled or not pooled by using the set Pool abl e method from
the St at enent interface.

20-11

Chapter 20
About Reusing Statements Objects

Reusing of pooled statement should be completely transparent to the application, that
is, the application code should remain the same whether a Pr epar edSt at enent object
participates in statement pooling or not. If an application closes a Pr epar edSt at enent
object, it must still call Connect i on. prepar eSt at enent method in order to reuse it.

¢ Note:

An application has no direct control over how statements are pooled. A pool
of statements is associated with a Pool edConnect i on object, whose behavior
is determined by the properties of the Connect i onPool Dat aSour ce object that
produced it.

20.3.2 About Closing a Pooled Statement

An application closes a pooled statement exactly the same way it closes a nhonpooled
statement. Once a statement is closed, whether is it pooled or nonpooled, it is no
longer available for use by the application and an attempt to reuse it causes an
exception to be thrown. The only difference visible is that an application cannot directly
close a physical statement that is being pooled. This is done by the pool manager. The
method Pool edConnect i on. cl oseAl | closes all of the statements open on a given
physical connection, which releases the resources associated with those statements.

The following methods can close a pooled statement:

e close

This j ava. sql . St at enent interface method is called by an application. If the
statement is being pooled, then it closes the logical statement used by the
application but does not close the physical statement being pooled.

e close

This j ava. sql . Connect i on interface method is called by an application. This
method acts differently depending upon whether the connection using the
statement is being pooled or not:

— Nonpooled connection

This method closes the physical connection and all statements created by that
connection. This is necessary because the garbage collection mechanism is
unable to detect when externally managed resources can be released.

— Pooled connection

This method closes the logical connection and the logical statements it
returned, but leaves open the underlying Pool edConnect i on object and any
associated pooled statements

e Pool edConnecti on. cl oseAl |

This method is called by the connection pool manager to close all of the physical
statements being pooled by the Pool edConnect i on object

ORACLE 20-12

Chapter 20
About Result Set Caching

20.4 About Result Set Caching

Your applications sometime send repetitive queries to the database. To improve the response
time of repetitive queries, results of queries, query fragments, and PL/SQL functions can be
cached in memory. A result cache stores the results of queries shared across all sessions.
When these queries are executed repeatedly, the results are retrieved directly from the cache
memory.

" Note:

If a result set is very large, then it may not be cached due to size restrictions.

You must annotate a query or query fragment with a result cache hint to indicate that results
are to be stored in the query result cache.

The query result set can be cached in the following ways:

» Server-Side Result Set Cache
* Client-Side Result Set Cache

< Note:

e The server-side and client result set caches are most useful for read-only or
read-mostly data. They may reduce performance for queries with highly
dynamic results.

e Both server-side and client result set caches use memory. So, caching very
large result sets can cause performance problems.

20.4.1 Server-Side Result Set Cache

ORACLE

Support for server-side Result Set caching has been introduced for both JDBC Thin and
JDBC Oracle Call Interface (OCI) drivers since Oracle Database 11g Release 1. The server-
side result cache is used to cache the results of the current queries, query fragments, and
PL/SQL functions in memory and then to use the cached results in future executions of the
query, query fragment, or PL/SQL function. The cached results reside in the result cache
memory portion of the SGA. A cached result is automatically invalidated whenever a
database object used in its creation is successfully modified. The server-side caching can be
of the following two types:

* SQL Query Result Cache
e PL/SQL Function Result Cache

20-13

Chapter 20
About Result Set Caching

¢ See Also:
e Oracle Database Performance Tuning Guide for more information about
SQL Query Result Cache

e Oracle Database PL/SQL Language Reference for more information
about PL/SQL Function Result Cache

20.4.2 Client-Side Result Set Cache

Client-side result set cache feature enables client-side caching of SQL query result
sets in client memory. In this way, the applications can use client memory to take
advantage of the client-side result set cache to improve response times of repetitive
queries.

This section covers the following topics:

* Enabling the Client-Side Result Set Cache
* Benefits of Client-Side Result Set Cache

» Usage Guidelines in JDBC

20.4.2.1 Enabling the Client-Side Result Set Cache

Oracle Database Release 18c supports client-side result set cache in the JDBC thin
driver. You can use the new or acl e. j dbc. enabl eQuer yResul t Cache connection
property for enabling this feature. The default value of this property is t r ue, which
means that this feature is enabled by default. You can disable this feature by setting
the property to f al se.

Note:

e In Oracle Database 12c Release 2 (12.2), the enabl eQuer yResul t Cache
property is available as enabl eResul t Set Cache, and the default value is
fal se. You can enable this feature by setting the enabl eResul t Set Cache
property to t r ue.

« The JDBC OCI driver supports client-side result set cache already.

¢ See Also:

Oracle Call Interface Programmer's Guide

ORACLE 20-14

Chapter 20
About Result Set Caching

For using this feature, you must set the following database initialization parameters in the
following way:

CLI ENT_RESULT_CACHE_S| ZE=100M
CLI ENT_RESULT_CACHE_LAG=1000

This value of the CLI ENT_RESULT_CACHE_SI ZE parameter controls how much memory the thin
driver can use for its cache.

A read-only or read-mostly table can then be annoted and its data can be cached on the
driver. For example, RESULT_CACHE(MODE FORCE).

You can also use a SQL hint /*+RESULT_CACHE */ for identifying queries that are eligible for
caching.

¢ See Also:
Oracle Database JDBC Java API Reference

20.4.2.2 Benefits of Client-Side Result Set Cache

The benefits of the client-side result set cache are the following:

* The client-side result set cache is completely transparent to the applications and its
cache of result set data is kept consistent with any session or database changes that
affect its result set.

* Table annotation makes client-side result set work transparently to the JDBC
applications. Otherwise, you must use a hint to enable it. The cache hit avoids the
execution of the query and roundtrip to the server to get the result sets. This can result in
huge performance savings for server resources, for example, server CPU and server 1/O.

See Also:

Table Annotations and SQL Hints

e The result cache on the client is per-process, so multiple client sessions can
simultaneously use matching cached result sets.

e The result cache on the client minimizes the need for each application to have its own
custom result set cache.

e The result cache on the client uses the client memory that is cheaper than server
memory.

20.4.2.3 Usage Guidelines in JDBC

You can enable result set caching in the following three ways:

e RESULT_CACHE_MODE Parameter
e Table Annotations
e SQL Hints

ORACLE 20-15

Chapter 20
About Result Set Caching

< Note:

* You must use JDBC statement caching or cache statements at the
application level when using the client-side result set cache.

e The SQL hints take precedence over the session parameter
RESULT _CACHE_MODE and table annotations. The table annotation FORCE
takes precedence over session parameter.

Related Topics

e Statement and Result Set Caching

20.4.2.3.1 RESULT _CACHE_MODE Parameter

You can use the RESULT _CACHE_MODE parameter to decide the result cache mode
across tables in your queries. Use this clause with the ALTER SESSI ON and ALTER
SYSTEMstatements, or inside the server parameter file (i ni t . or a) to determine result
caching. You can set the RESULT_CACHE_MODE parameter to control whether the SQL
guery result cache is used for all queries, or only for the queries that are annotated
with the result cache hint using SQL hints or table annotations.

20.4.2.3.2 Table Annotations

You can use table annotations to enable result caching without making changes to the
code. The ALTER TABLE and CREATE TABLE statements enable you to annotate tables
with result cache mode. The syntax is:

CREATE| ALTER TABLE [<schema>.]<tabl e> ... [RESULT CACHE (MODE {FORCE| DEFAULT})]

Following example shows how to use table annotations with CREATE TABLE statements:

CREATE TABLE foo (a NUMBER, b VARCHAR2(20)) RESULT CACHE (MODE FORCE);

Following example shows how to use table annotations with ALTER TABLE statements:

ALTER TABLE foo RESULT_CACHE (MODE DEFAULT);

20.4.2.3.3 SQL Hints

You can use SQL hints to specify the queries to be cached by annotating the queries
with a/*+ result_cache */ or /*+ no_result_cache */ hint. For example, look at the
following code snippet:

String query = "select /*+ result_cache */ * from enpl oyees where enpl oyee_id
<1
((oracle.jdbc. Oracl eConnection)conn). setlnplicitCachingEnabl ed(true);
((oracl e.jdbc. Oracl eConnection)conn). set St at enent CacheSi ze(10) ;
PreparedStatenent pstnt;

Resul t Set rs;
for (int j =0; j <10 ; j++)
{
pstnt = conn. prepareStatenment (query);

pstnt.setlnt(1,7500);
rs = pstnt.executeQuery();

ORACLE 20-16

Chapter 20
About Result Set Caching

while (rs.next())
{ /] see the values }
rs.close;
pstnt.close() ;
}
}

In the preceding example, the client result cache hint/*+ result _cache */ is annotated to
the actual query, that is, sel ect * from enpl oyees where enployee id < : 1. So, the first
execution of the query goes to the database and the result set is cached for the remaining
nine executions of the query. This improves the performance of your application significantly.
This is primarily useful for read-only data.

Following are some more examples of SQL hints. All the following examples assume that the
dept table is annotated for result caching by using the following command:

ALTER TABLE dept result_cache (MODE FORCE);

Examples

e SELECT * FROM employees
The result set will not be cached.
e SELECT * FROM departments
The result set will be cached.
e SELECT /*+ result_cache */ employee_id FROM employees
The result set will be cached.
e SELECT /*+ no_result_cache */ department_id FROM departments
The result set will not be cached.
e SELECT /*+ result_cache */ * FROM departments
The result set will be cached though query hint is not necessary.

e SELECT e.first_ name FROM employees e, departments d WHERE e.department_id =
d.department_id

The result set will not be cached because neither is a query hint available nor are all the
tables annotated as FORCE.

Note:

For information about usage guidelines, Client cache consistency, Deployment Time
settings, Client cache Statistics, Validation of client result cache, and OCI Client
Result Cache and Server Result Cache, refer to the Oracle Call Interface
Programmer's Guide.

ORACLE 20-17

Performance Extensions

This chapter describes the Oracle performance extensions to the Java Database Connectivity
(JDBC) standard.

This chapter covers the following topics:

e Update Batching

e Additional Oracle Performance Extensions

< Note:

Oracle update batching was deprecated in Oracle Database 12¢ Release 1 (12.1).
Starting in Oracle Database 12¢ Release 2 (12.2), Oracle update batching is a no
operation code (no-op). This means that if you implement Oracle update batching in
your application, using the Oracle Database 12c¢ Release 2 (12.2) JDBC driver, then
the specified batch size is not set and results in a batch size of 1. With this batch
setting, your application processes one row at a time. Oracle strongly recommends
that you use the standard JDBC batching if you are using the Oracle Database 12¢
Release 2 (12.2) JDBC driver.

21.1 Update Batching

This section covers the following topics:
* Overview of Update Batching
* Standard Update Batching

* Premature Batch Flush

21.1.1 Overview of Update Batching

You can reduce the number of round-trips to the database, thereby improving application
performance, by grouping multiple UPDATE, DELETE, or | NSERT statements into a single batch
and having the whole batch sent to the database and processed in one trip. This is referred to
as 'update batching'. This is especially useful with prepared statements, when you are
repeating the same statement with different bind variables.

ORACLE 21-1

Chapter 21
Update Batching

< Note:

e The JDBC 2.0 specification refers to 'update batching' as 'batch updates'.

e To adhere to the JDBC 2.0 standard, Oracle implementation of standard
update batching supports callable statements without QUT parameters,
generic statements, and prepared statements. You can migrate standard
update batching into an Oracle JDBC application without difficulty.
However, the Oracle implementation of standard update batching does
not implement true batching for generic statements and callable
statements and you will see performance improvement for only
Prepar edSt at enent objects.

21.1.2 Standard Update Batching

JDBC standard update batching depends on explicitly adding statements to the batch
using an addBat ch method and explicitly processing the batch using an execut eBat ch
method.

Note:

Disable auto-commit mode when you use update batching. In case an error
occurs while you are processing a batch, this provides you the option of
committing or rolling back the operations that ran successfully prior to the
error.

21.1.2.1 Limitations in the Oracle Implementation of Standard Batching

This section discusses the limitations and implementation details regarding the Oracle
implementation of standard update batching.

In Oracle JDBC applications, update batching is intended for use with prepared
statements that are being processed repeatedly with different sets of bind values.

The Oracle implementation of standard update batching does not implement true
batching for generic statements and callable statements. Even though Oracle JDBC
supports the use of standard batching for St at ement and Cal | abl eSt at ement objects,
you are unlikely to see performance improvement.

21.1.2.2 About Adding Operations to the Batch

ORACLE

When any statement object is first created, its statement batch is empty. Use the
standard addBat ch method to add an operation to the statement batch. This method is
specified in the standard j ava. sql . St at enent, Prepar edSt at enent , and

Cal | abl eSt at enent interfaces, which are implemented by the

oracle.jdbc. Oracl eStatenent, Oracl ePrepar edSt at ement , and

Oracl eCal | abl eSt at enent interfaces, respectively.

For a St at ement object, the addBat ch method takes a Java St ri ng with a SQL
operation as input. For example:

21-2

Chapter 21
Update Batching

Statement stnt = conn.createStatenent();

stnt. addBat ch(" I NSERT | NTO enp VALUES(1000, 'Joe Jones')");
stnt. addBat ch(" I NSERT | NTO dept VALUES(260, 'Sales')");
stnt. addBat ch("| NSERT | NTO enp_dept VALUES(1000, 260)");

At this point, three operations are in the batch.

For prepared statements, update batching is used to batch multiple runs of the same
statement with different sets of bind parameters. For a Pr epar edSt at enent or

Or acl ePrepar edSt at enent object, the addBat ch method takes no input. It simply adds the
operation to the batch using the bind parameters last set by the appropriate set XXX methods.
This is also true for Cal | abl eSt at enent or Oracl eCal | abl eSt at ement objects, but remember
that in the Oracle implementation of standard update batching, you will probably see no
performance improvement in batching callable statements.

For example:

PreparedSt at enent pstnt =
conn. prepareStatenent ("I NSERT | NTO enpl oyees VALUES(?, ?2)");

pstnt.setint(1, 2000);
pstnt.setString(2, "MIlo Minford");
pstnt. addBat ch();

pstnt.setint(1, 3000);

pstnt.setString(2, "Sulu Sinpson");
pstnt . addBat ch();

At this point, two operations are in the batch.

Because a batch is associated with a single prepared statement object, you can batch only
repeated runs of a single prepared statement, as in this example.

21.1.2.3 About Processing the Batch

ORACLE

To process the current batch of operations, use the execut eBat ch method of the statement
object. This method is specified in the standard St at enent interface, which is extended by the
standard Pr epar edSt at ement and Cal | abl eSt at enent interfaces.

21-3

Chapter 21
Update Batching

< Note:

If you add too many operations to a batch by calling the addBat ch method
several times and create a very large batch (for example, with more than or
equal to 100,000 rows), then while calling the execut eBat ch method on the
whole batch, you may face severe performance problems in terms of
memory. To avoid this issue, the JDBC driver transparently breaks up the
large batches into smaller internal batches and makes a roundtrip to the
server for each internal batch. This makes your application slightly slower
because of each round-trip overhead, but optimizes memory significantly.
However, if each bound row is very large in size (for example, more than
about 1MB each or s0), then this process can impact the overall performance
negatively because in such a case, the performance gained in terms of
memory will be less than the performance lost in terms of time.

Following is an example that repeats the prepared statement addBat ch calls shown
previously and then processes the batch:

PreparedSt at enent pstnt =
conn. prepar eSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setint(1, 2000);
pstnt.setString(2, "MIlo Minford");
pstnt . addBat ch();

pstnt.setint(1, 3000);
pstnt.setString(2, "Sulu Sinpson");
pstnt . addBat ch();

int[] updateCounts = pstnt.executeBatch();

21.1.2.4 Row Count per Iteration for Array DMLS

Starting from Oracle Database 12c Release 1 (12.1), the execut eBat ch method has
been improved so that it returns an int array of size that is the same as the number of
records in the batch and each item in the return array is the number of database table
rows affected by the corresponding record of the batch. For example, if the batch size
is 5, then the execut eBat ch method returns an array of size 5. In case of an error in
between execution of the batch, the execut eBat ch method cannot return a value,
instead it throws a Bat chUpdat eExcept i on. In this case, the exception itself carries an
int array of size n as its data, where n is the number of successful record executions.
For example, if the batch is of size 5 and the error occurs at the 4th record, then the
Bat chUpdat eExcept i on has an array of size 3 (3 records executed successfully) and
each item in the array represents how many rows were affected by each of them.

21.1.2.5 About Committing the Changes in the Oracle Implementation of
Standard Batching

After you process the batch, you must still commit the changes, presuming auto-
commit is disabled as recommended.

ORACLE 21-4

Chapter 21
Update Batching

Calling conmi t , commits nonbatched operations and batched operations for statement
batches that have been processed, but for the Oracle implementation of standard batching,
has no effect on pending statement batches that have not been processed.

21.1.2.6 About Clearing the Batch

To clear the current batch of operations instead of processing it, use the cl ear Bat ch method
of the statement object. This method is specified in the standard St at enent interface, which
is extended by the standard Pr epar edSt at ement and Cal | abl eSt at ement interfaces.

Keep the following things in mind:

* When a batch is processed, operations are performed in the order in which they were
batched.

» After calling addBat ch, you must call either execut eBat ch or cl ear Bat ch before a call to
execut eUpdat e, otherwise there will be a SQL exception.

e AclearBatch or execut eBat ch call resets the statement batch to empty.

* The statement batch is not reset to empty if the connection receives a ROLLBACK request.
You must explicitly call cl ear Bat ch to reset it.

* Invoking cl ear Bat ch method after a rollback works for all releases.
e Anexecut eBat ch call closes the current result set of the statement object, if one exists.
* Nothing is returned by the cl ear Bat ch method.

Following is an example that repeats the prepared statement addBat ch calls shown
previously but then clears the batch under certain circumstances:

PreparedSt at enent pstnt =
conn. prepareStatenment ("I NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setint(1, 2000);
pstnt.setString(2, "MIlo Munford");
pstnt . addBat ch();

pstnt.setint(1, 3000);
pstnt.setString(2, "Sulu Sinpson");
pst nt . addBat ch();

if (...condition...)

{
int[] updateCounts = pstnt.executeBatch();

}

el se

{
pstnt.clearBatch();

}

21.1.2.7 Update Counts in the Oracle Implementation of Standard Batching

If a statement batch is processed successfully, then the integer array, or update counts array,
returned by the statement execut eBat ch call will always have one element for each operation
in the batch. In the Oracle implementation of standard update batching, the values of the
array elements are as follows:

ORACLE 21-5

Chapter 21
Update Batching

» For a prepared statement batch, the array contains the actual update counts
indicating the number of rows affected by each operation.

» For a generic statement batch, the array contains the actual update counts
indicating the number of rows affected by each operation. The actual update
counts can be provided only in the case of generic statements in the Oracle
implementation of standard batching.

* For a callable statement batch, the array contains the actual update counts
indicating the number of rows affected by each operation.

In your code, upon successful processing of a batch, you should be prepared to
handle either - 2, 1, or true update counts in the array elements. For a successful batch
processing, the array contains either all - 2, 1, or all positive integers.

Example 21-1 illustrates the use of standard update batching.
Example 21-1 Standard Update Batching

This example combines the sample fragments in the previous sections, accomplishing
the following steps:

1. Disabling auto-commit mode, which you should always perform when using
update batching

2. Creating a prepared statement object

3. Adding operations to the batch associated with the prepared statement object
4. Processing the batch

5. Committing the operations from the batch

conn. set Aut oConmi t (f al se);

PreparedSt at enent pstnt =
conn. prepareStatement ("I NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setint(1, 2000);

pstnt.setString(2, "MIlo Mnford");

pst nt . addBat ch();

pstnt.setint(1, 3000);

pstnt.setString(2, "Sulu Sinpson");

pst nt . addBat ch();

int[] updateCounts = pstnt.executeBatch();
conn. comit();

pstnt.close();

You can process the update counts array to determine if the batch processed
successfully.

21.1.2.8 Error Handling in the Oracle Implementation of Standard Batching

If any one of the batched operations fails to complete successfully or attempts to
return a result set during an execut eBat ch call, then the processing stops and a
j ava. sqgl . Bat chUpdat eExcept i on is generated.

ORACLE 21-6

Chapter 21
Update Batching

After a batch exception, the update counts array can be retrieved using the get Updat eCount s
method of the Bat chUpdat eExcept i on object. This returns an i nt array of update counts, just
as the execut eBat ch method does. In the Oracle implementation of standard update
batching, contents of the update counts array are as follows, after a batch is processed:

» For a prepared statement batch, in case of an error in between execution of the batch,
the execut eBat ch method cannot return a value, instead it throws a
Bat chUpdat eExcept i on. In this case, the exception itself carries an int array of size n as
its data, where n is the number of successful record executions. For example, if the batch
is of size 5 and the error occurs at the 4th record, then the Bat chUpdat eExcepti on has an
array of size 3 (3 records executed successfully) and each item in the array represents
how many rows were affected by each of them.

» For a generic statement batch or callable statement batch, the update counts array is
only a partial array containing the actual update counts up to the point of the error. The
actual update counts can be provided because Oracle JDBC cannot use true batching for
generic and callable statements in the Oracle implementation of standard update
batching.

For example, if there were 20 operations in the batch, the first 13 succeeded, and the
14th generated an exception, then the update counts array will have 13 elements,
containing actual update counts of the successful operations.

You can either commit or roll back the successful operations in this situation, as you
prefer.

In your code, upon failed processing of a batch, you should be prepared to handle either - 3
or true update counts in the array elements when an exception occurs. For a failed batch
processing, you will have either a full array of - 3 or a partial array of positive integers.

21.1.2.9 About Intermixing Batched Statements and Nonbatched Statements

ORACLE

You cannot call execut eUpdat e for regular, nonbatched processing of an operation if the
statement object has a pending batch of operations.

However, you can intermix batched operations and nonbatched operations in a single
statement object if you process nonbatched operations either prior to adding any operations
to the statement batch or after processing the batch. Essentially, you can call execut eUpdat e
for a statement object only when its update batch is empty. If the batch is non-empty, then an
exception will be generated.

For example, it is valid to have a sequence, such as the following:
PreparedSt at enent pstnt =
conn. prepar eSt at enent ("1 NSERT | NTO enpl oyees VALUES(?, ?)");

pstnt.setlnt(1, 2000);
pstnt.setString(2, "MIlo Minford");

int scount = pstnt.executeUpdate(); /1 OK; no operations in pstnt batch
pstnt.setlnt(1, 3000);

pstnt.setString(2, "Sulu Sinpson");

pstnt. addBat ch(); Il Now start a batch

pstnt.setlnt(1, 4000);

pstnt.setString(2, "Stan Leland");
pstnt. addBat ch();

21-7

Chapter 21
Update Batching

int[] bcounts = pstnt.executeBatch();

pstnt.setint(1, 5000);
pstnt.setString(2, "Any Feiner");

int scount = pstnt.executeUpdate(); // OK pstnt batch was executed

Intermixing nonbatched operations on one statement object and batched operations
on another statement object within your code is permissible. Different statement
objects are independent of each other with regard to update batching operations. A
COW T request will affect all nonbatched operations and all successful operations in
processed batches, but will not affect any pending batches.

21.1.3 Premature Batch Flush

ORACLE

Premature batch flush happens due to a change in cached metadata. Cached
metadata can be changed due to various reasons, such as the following:

* The initial bind was null and the following bind is not null.

* A scalar type is initially bound as string and then bound as scalar type or the
reverse.

The premature batch flush count is summed to the return value of the next
execut eUpdat e or sendBat ch method.

The old functionality lost all these batch flush values which can be obtained now. To
switch back to the old functionality, you can set the Accunul at eBat chResul t property
to f al se, as follows:

java.util.Properties info = new java.util.Properties();
info.setProperty("user", "HR');

i nfo.setProperty("passwd", "hr");

/'l other properties

/'l property: batch flush type

i nfo.setProperty("Accunul ateBat chResult", "false");
O acl eDat aSour ce ods = new Oracl eDat aSour ce();

ods. set Connect i onProperties(info);

ods. set URL("jdbc: oracle:oci:@");
Connection conn = ods. get Connection();

" Note:

The Accunul at eBat chResul t property is set to t r ue by default.

Example 21-2 illustrates premature batch flushing.

Example 21-2 Premature Batch Flushing

((Oracl ePreparedSt at enent) pstnt) . set Execut eBatch (2);

pstnt.setNull (1, O acleTypes. NUMBER);

21-8

Chapter 21
Additional Oracle Performance Extensions

pstnt.setString(2, "testll");
int count = pstnt.executeUpdate(); // returns O

/*

* Premature batch flush happens here.

*/

pstnt.setlnt(1, 22);

pstnt.setString(2, "test22");

int count = pstnt.executeUpdate(); // returns O

pstnt.setlnt(1, 33);

pstnt.setString(2, "test33");

/*

* returns 3 with the new batching scheme where as,
* returns 2 with the old batching schene.

*/

int count = pstnt.executeUpdate();

21.2 Additional Oracle Performance Extensions

In addition to update batching, Oracle JDBC drivers support the following extensions that
improve performance by reducing round-trips to the database:

* Prefetching rows

This reduces round-trips to the database by fetching multiple rows of data each time data
is fetched. The extra data is stored in client-side buffers for later access by the client. The
number of rows to prefetch can be set as desired.

» Specifying column types

This avoids an inefficiency in the standard JDBC protocol for performing and returning
the results of queries.

* Suppressing database metadata TABLE _REMARKS columns
This avoids an expensive outer join operation.

Oracle provides several extensions to connection properties objects to support these
performance extensions. These extensions enable you to set the r enar ksRepor ti ng flag and
default values for row prefetching and update batching.

This section covers the following topics:

* About Prefetching LOB Data

e Oracle Row-Prefetching Limitations

e About Defining Column Types

* About Reporting DatabaseMetaData TABLE_ REMARKS

21.2.1 About Prefetching LOB Data

ORACLE

For the JDBC drivers prior to Oracle Database 11g Release 2 JDBC drivers, if you want to
retrieve LOB data in one round trip, then you have to fetch the data as VARCHAR? type, that is,
you have to use Oracl eTypes. VARCHAR or Or acl eTypes. LONGVARCHAR with the JDBC

def i neCol umType method. The limitation of this approach is that when LOB data is fetched as
CHAR type, the locator cannot be fetched along with the data. So, if the application wants to
get the LOB data at a later point of time, or if the application wants to perform other LOB

21-9

ORACLE

Chapter 21
Additional Oracle Performance Extensions

operations, then one more round trip is required to get the LOB locator, as LOB locator is
not available to the application.

Note:

Array operations on LOB locators are not supported in the JDBC APIs.

Starting from Oracle Database 11g Release 2 JDBC drivers, the number of round trips
is reduced by prefetching frequently used metadata, such as the LOB length and the
chunk size as well as the beginning of the LOB data along with the locator during
regular fetch operations. For small LOBs, the data may be totally prefetched in one
single round trip, that is, the sel ect parse, execution, and fetch occurs in one round
trip, and performance is improved greatly. For large LOBs that are larger than 5 times
the prefetch size, the performance improvement is not very significant as only the
round trip for retrieving the chunk size is not needed.

defaultLobPrefetchSize Connection Property

Starting from Oracle Database 11g Release 2, there is a new connection property
oracl e.jdbc. def aul t LobPref et chSi ze that can be used to set the default LOB
prefetch size for the connection. This connection property is defined as the following
constant: Oracl eConnect i on. CONNECTI ON_PROPERTY_DEFAULT LOB_PREFETCH SI ZE.
The value of this property is used as the default LOB prefetch size for the current
connection. The default value of this connection property is 4000. If you want to
change the default value at the statement level, then use the set LobPr ef et chSi ze
method defined in or acl e. j dbc. Oracl eSt at enent interface. You can change the
default value to:

e -1to disable LOB prefetch for the current connection
* 0to enable LOB prefetch for metadata only

e Any value greater than 0 to specify the number of bytes for BLOBs and the number
of characters for CLOBs to be prefetched along with the locator during fetch
operations

Use get LobPr ef et chSi ze method defined in oracl e. j dbc. Oracl eSt at enent interface
to retrieve the LOB prefetch size.

You can also set the value of LOB prefetch size at the column level by using the
def i neCol umType method. The column-level value overrides any value that is set at
the connection or statement level.

Note:

If LOB prefetch is not disabled at the connection level or statement level, it
cannot be disabled at the column level.

21-10

Chapter 21
Additional Oracle Performance Extensions

21.2.2 Oracle Row-Prefetching Limitations

There is no maximum prefetch setting. The default value is 10. Larger or smaller values may
be appropriate depending on the number of rows and columns expected from the query. You
can set the default connection row-prefetch value using a Properti es object.

When a statement object is created, it receives the default row-prefetch setting from the
associated connection. Subsequent changes to the default connection row-prefetch setting
will have no effect on the statement row-prefetch setting.

If a column of a result set is of data type LONG, LONG RAWor LOBs returned through the data
interface, that is, the streaming types, then JDBC changes the statement row-prefetch setting
to 1, even if you never actually read a value of either of these types.

Setting the prefetch size can affect the performance of an application. Increasing the prefetch
size will reduce the number of round-trips required to get all the data, but will increase
memory usage. This will depend on the number and size of the columns in the query and the
number of rows expected to be returned. It will also depend on the memory and CPU loading
of the JDBC client machine. The optimum for a standalone client application will be different
from a heavily loaded application server. The speed and latency of the network connection
should also be considered.

" Note:

Starting from Oracle Database 11g Release 1, the Thin driver can fetch the first
pr ef et ch_si ze number of rows from the server in the very first round-trip. This
saves one round-trip in SELECT statements.

If you are migrating an application from earlier releases of Oracle JDBC drivers to 10g
Release 1 (10.1) or later releases of Oracle JDBC drivers, then you should revisit the
optimizations that you had done earlier, because the memory usage and performance
characteristics may have changed substantially.

A common situation that you may encounter is, say, you have a query that selects a unique
key. The query will return only zero or one row. Setting the prefetch size to 1 will decrease
memory and CPU usage and cannot increase round-trips. However, you must be careful to
avoid the error of requesting an extra fetch by writing whi | e(rs. next()) instead of
if(rs.next()).

If you are using the JDBC Thin driver, then use the useFet chSi zeW t hLongCol uim connection
property, because it will perform PARSE, EXECUTE, and FETCH in a single round-trip.

Tuning of the prefetch size should be done along with tuning of memory management in your
JVM under realistic loads of the actual application.

ORACLE 21-11

Chapter 21
Additional Oracle Performance Extensions

< Note:

* Do not mix the JDBC 2.0 fetch size application programming interface
(API) and the Oracle row-prefetching API in your application. You can
use one or the other, but not both.

* Be aware that setting the Oracle fetch size value can affect not only
queries, but also explicitly refetching rows in a result set through the
result set r ef r eshRow method, which is relevant for scroll-sensitive/read-
only, scroll-sensitive/updatable, and scroll-insensitive/updatable result
sets, and the window size of a scroll-sensitive result set, affecting how
often automatic refetches are performed. However, the Oracle fetch size
value will be overridden by any setting of the fetch size.

21.2.3 About Defining Column Types

ORACLE

Note:

Starting from Oracle Database 12c¢ Release 1 (12.1), the def i neCol uimType
method is deprecated.

The implementation of def i neCol umType changed significantly since Oracle Database
10g. Previously, def i neCol uimType was used both as a performance optimization and
to force data type conversion. In previous releases, all of the drivers benefited from
calls to def i neCol umType. Starting from Oracle Database 10g, the JDBC Thin driver
no longer needs the information provided. The JDBC Thin driver achieves maximum
performance without calls to def i neCol umType. The JDBC Oracle Call Interface (OCI)
and server-side internal drivers still get better performance when the application uses
def i neCol umType.

If your code is used with both the JDBC Thin and OCI drivers, you can disable the
def i neCol umType method when using the Thin driver by setting the connection
property di sabl eDef i neCol umType to t r ue. Doing this makes def i neCol umType
have no effect. Do not set this connection property to t r ue when using the JDBC OCI
or server-side internal drivers.

You can also use def i neCol uimType to control how much memory the client-side
allocates or to limit the size of variable-length data.

Follow these general steps to define column types for a query:

1. If necessary, cast your statement object to Or acl eSt at enent ,
O acl ePrepar edSt at enent, or Oracl eCal | abl eSt at enent , as applicable.

2. If necessary, use the cl ear Def i nes method of your St at ement object to clear any
previous column definitions for this St at enent object.

3. On each column, call the def i neCol umType method of your St at enment object,
passing it these parameters:

e Column index (integer)

21-12

Chapter 21
Additional Oracle Performance Extensions

* Type code (integer)

Use the st at i ¢ constants of the j ava. sql . Types class or oracl e. j dbc. Oracl eTypes
class, such as Types. | NTEGER, Types. FLOAT, Types. VARCHAR, Or acl eTypes. VARCHAR,
and Or acl eTypes. ROA D. Type codes for standard types are identical in these two
classes.

e Type name (string)

For structured objects, object references, and arrays, you must also specify the type
name. For example, Enpl oyee, Enpl oyeeRef, or Enpl oyeeArray.

* Maximum field size (integer)
Optionally specify a maximum data length for this column.

You cannot specify a maximum field size parameter if you are defining the column
type for a structured object, object reference, or array. If you try to include this
parameter, it will be ignored.

e Form of use (short)

Optionally specify a form of use for the column. This can be

O acl ePrepar edSt at enent . FORM CHAR to use the database character set or

O acl ePrepar edSt at enent . FORM_NCHAR to use the national character set. If this
parameter is omitted, the default is FORM CHAR.

For example, assuming st nt is an Oracle statement, use:

stnt. defi neCol utmType(col um_i ndex, typeCode);

If the column is VARCHAR or equivalent and you know the length limit;

stnt. defi neCol utmType(col utm_i ndex, typeCode, nax_size);

For an NVARCHAR column where the original maximum length is desired and conversion to
the database character set is requested:

st nt. defi neCol umType(col um_i ndex, typeCode, O,
O acl ePrepar edSt at enent . FORM_CHAR) ;

For structured object, object reference, and array columns:

st nt. defi neCol utmType(col um_i ndex, typeCode, typeNane);

Set a maximum field size if you do not want to receive the full default length of the data.
Calling the set MaxFi el dSi ze method of the standard JDBC St at ement class sets a
restriction on the amount of data returned. Specifically, the size of the data returned will
be the minimum of the following:

e The maximum field size set in def i neCol umType
e The maximum field size set in set MaxFi el dSi ze
e The natural maximum size of the data type

After you complete these steps, use the execut eQuery method of the statement to perform
the query.

ORACLE 21-13

ORACLE

Chapter 21
Additional Oracle Performance Extensions

< Note:

It is no longer necessary to specify a data type for each column of the
expected result set.

The following example illustrates the use of this feature. It assumes you have imported
the oracl e. j dbc. * interfaces.

Example 21-3 Defining Column Types

O acl eDat aSour ce ods = new O acl eDat aSour ce();

ods. set URL("j dbc: oracl e: thi n: @ocal host: 5221: orcl");
ods. set User ("HR") ;

ods. set Password("hr");

Connection conn = ods. get Connection();

Statement stnmt = conn.createStatenent();
/1 Allocate only 2 chars for this colum (truncation will happen)
((Oracl eStatenment)stnt). defineCol umType(1l, Types.VARCHAR 2);
Resul t Set rset = stnt.executeQuery("select ename fromenp");
whil e(rset.next())

Systemout. printIn(rset.getString(1));
stnt.close();

As this example shows, you must cast the St at enent object, stnt, to

O acl eSt at enent in the invocation of the def i neCol utmType method. The

creat eSt at ement method of the connection returns an object of type

j ava. sqgl . St at enent , which does not have the def i neCol umType and cl ear Def i nes
methods. These methods are provided only in the Oracl eSt at enent implementation.

The define-extensions use JDBC types to specify the desired types. The allowed
define types for columns depend on the internal Oracle type of the column.

All columns can be defined to their natural JDBC types. In most cases, they can be
defined to the Types. CHAR or Types. VARCHAR type code.

The following table lists the valid column definition arguments that you can use in the
def i neCol umType method.

Table 21-1 Valid Column Type Specifications

If the column has Oracle You can use defineColumnType to define it as:

SQL type:

NUMBER, VARNUM Bl G NT, TI NYI NT, SMALLI NT, | NTEGER, FLOAT, REAL,
DOUBLE, NUMERI C, DECI MAL, CHAR, VARCHAR

CHAR, VARCHAR2 CHAR, VARCHAR

LONG CHAR, VARCHAR, LONGVARCHAR

LONGRAW LONGVARBI NARY, VARBI NARY, Bl NARY

RAW VARBI NARY, Bl NARY

DATE DATE, TI ME, TI MESTAMP, CHAR, VARCHAR

ROW D ROW D

BLOB VARBI NARY, Bl NARY

21-14

Chapter 21
Additional Oracle Performance Extensions

Table 21-1 (Cont.) Valid Column Type Specifications
|

If the column has Oracle You can use defineColumnType to define it as:
SQL type:
CLCB LONG, CHAR, VARCHAR

It is always valid to use def i neCol umType with the original data type of the column.

21.2.4 About Reporting DatabaseMetaData TABLE_ REMARKS

ORACLE

The get Col utms, get Pr ocedur eCol umms, get Procedur es, and get Tabl es methods of the
database metadata classes are slow if they must report TABLE_REMARKS columns, because
this necessitates an expensive outer join. For this reason, the JDBC driver does not report
TABLE _REMARKS columns by default.

You can enable TABLE_REMARKS reporting by passing a t r ue argument to the
set Remar ksRepor ti ng method of an Or acl eConnect i on object.

Equivalently, instead of calling set Remar ksReporti ng, you can set the r emar ksReporting
Java property if you use a Java Properti es object in establishing the connection.

If you are using a standard j ava. sql . Connect i on object, you must cast it to
Oracl eConnect i on to use set Remar ksReporti ng.

The following code snippet illustrates how to enable TABLE_REMARKS reporting:

((oracle.jdbc. Oracl eConnection)conn). set RenarksReporting(true);

Here, conn is the name of your standard Connect i on object, the following statement enables
TABLE_REMARKS reporting:

Considerations for getColumns

By default, the get Col utms method does not retrieve information about the columns if a
synonym is specified. To enable the retrieval of information if a synonym is specified, you
must call the set | ncl udeSynonyns method on the connection as follows:

((oracle.jdbc. Oracl eConnection)conn). setlncludeSynonyns(true)

This will cause all subsequent get Col umms method calls on the connection to include
synonyms. This is similar to set Remar ksRepor ti ng. Alternatively, you can set the
i ncl udeSynonyns connection property. This is similar to the r emar ksRepor t i ng connection

property.

However, bear in mind that if i ncl udeSynonyns is t r ue, then the name of the object returned
in the t abl e_name column will be the synonym name, if a synonym exists. This is true even if
you pass the table name to get Col umms.

Considerations for getProcedures and getProcedureColumns Methods

According to JDBC versions 1.1 and 1.2, the methods get Procedur es and

get Procedur eCol ums treat the cat al og, schemaPat t er n, col umNanePat t er n, and
procedur eNanePat t er n parameters in the same way. In the Oracle definition of these
methods, the parameters are treated differently:

21-15

ORACLE

Chapter 21
Additional Oracle Performance Extensions

catal og

Oracle does not have multiple catalogs, but it does have packages. Consequently,
the cat al og parameter is treated as the package name. This applies both on input,
which is the cat al og parameter, and the output, which is the cat al og column in
the returned Resul t Set . On input, the construct” ", which is an empty string,
retrieves procedures and arguments without a package, that is, standalone
objects. A nul | value means to drop from the selection criteria, that is, return
information about both standalone and packaged objects. That is, it has the same
effect as passing in the percent sign (%. Otherwise, the cat al og parameter should
be a package name pattern, with SQL wild cards, if desired.

schemaPattern

All objects within Oracle database must have a schema, so it does not make
sense to return information for those objects without one. Thus, the construct " ",
which is an empty string, is interpreted on input to mean the objects in the current
schema, that is, the one to which you are currently connected. To be consistent
with the behavior of the cat al og parameter, nul | is interpreted to drop the schema
from the selection criteria. That is, it has the same effect as passing in % It can

also be used as a pattern with SQL wild cards.

procedur eNanePat t ern and col uimNanePatt ern

The empty string (" ") does not make sense for either parameter, because all
procedures and arguments must have names. Thus, the construct" " will raise an
exception. To be consistent with the behavior of other parameters, nul | has the
same effect as passing in percent sign (%.

21-16

OCI Connection Pooling

The Java Database Connectivity (JDBC) Oracle Call Interface (OCI) driver connection
pooling functionality is part of the JDBC client. This functionality is provided by the
O acl eOCl Connect i onPool class.

A JDBC application can have multiple pools at the same time. Multiple pools can correspond
to multiple application servers or pools to different data sources. The connection pooling
provided by the JDBC OCI driver enables applications to have multiple logical connections,
all using a small set of physical connections. Each call on a logical connection gets routed on
to the physical connection that is available at the time of call.

This chapter contains the following sections:

e Background of OCI Driver Connection Pooling

e Comparison Between OCI Driver Connection Pooling and Shared Servers
e About Defining an OCI Connection Pool

e About Connecting to an OCI Connection Pool

e Sample Code for OCI Connection Pooling

e Statement Handling and Caching

* JNDI and the OCI Connection Pool

< Note:

Use OCI connection pooling if you need session multiplexing. Otherwise, Oracle
recommends using Universal Connection Pool.

22.1 Background of OCI Driver Connection Pooling

ORACLE

The Oracle JDBC OCI driver provides several transaction monitor capabilities, such as the
fine-grained management of Oracle sessions and connections. It is possible for a high-end
application server or transaction monitor to multiplex several sessions over fewer physical
connections on a call-level basis, thereby achieving a high degree of scalability by pooling of
connections and back-end Oracle server processes.

The connection pooling provided by the Oracl eOCl Connect i onPool interface simplifies the
session/connection separation interface hiding the management of the physical connection
pool. The Oracle sessions are the Oracl eOCl Connect i on objects obtained from

O acl eOCl Connect i onPool . The connection pool itself is usually configured with a much
smaller shared pool of physical connections, translating to a back-end server pool containing
an identical number of dedicated server processes. Note that many more Oracle sessions
can be multiplexed over this pool of fewer shared connections and back-end Oracle
processes.

22-1

Chapter 22
Comparison Between OCI Driver Connection Pooling and Shared Servers

22.2 Comparison Between OCI Driver Connection Pooling
and Shared Servers

In some ways, what OCI driver connection pooling offers on the middle tier is similar to
what shared server processes offer on the back end. OCI driver connection pooling
makes a dedicated server instance behaves as a shared instance by managing the
session multiplexing logic on the middle tier. Therefore, the pooling of dedicated server
processes and incoming connections into the dedicated server processes is controlled
by the OCI connection pool on the middle tier.

The main difference between OCI connection pooling and shared servers is that in the
case of shared servers, the connection from the client is typically to a dispatcher in the
database instance. The dispatcher is responsible for directing the client request to an
appropriate shared server. On the other hand, the physical connection from the OCI
connection pool is established directly from the middle tier to the Oracle dedicated
server process in the back-end server pool.

Note that OCI connection pool is mainly beneficial only if the middle tier is
multithreaded. Each thread could maintain a session to the database. The actual
connections to the database are maintained by Or acl eOCl Connect i onPool , and these
connections, including the pool of dedicated database server processes, are shared
among all the threads in the middle tier.

22.3 About Defining an OCI Connection Pool

This section describes the following concepts:

e Overview of Creating an OCI Connection Pool

e Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages
e Creating an OCI Connection Pool

e Setting the OCI Connection Pool Parameters

e Checking the OCI Connection Pool Status

22.3.1 Overview of Creating an OCI Connection Pool

ORACLE

An OCI connection pool is created at the beginning of the application. Creating
connections from a pool is quite similar to creating connections using the
O acl eDat aSour ce class.

The oracl e. j dbc. pool . Oracl eOCl Connect i onPool class, which extends the

O acl eDat aSour ce class, is used to create OCI connection pools. From an

O acl eOCl Connect i onPool instance, you can obtain logical connection objects. These
connection objects are of the Oracl eCCl Connect i on class type. This class implements
the Oracl eConnect i on interface. The St at enent objects you create from the

Oracl eCCl Connect i on instance have the same fields and methods as

Oracl eSt at enment objects you create from Or acl eConnecti on instances.

The following code shows header information for the Or acl eOCl Connect i onPool class:

/*
* @aramus ConnectionPool user-id.

22-2

Chapter 22
About Defining an OCI Connection Pool

* @aramp ConnectionPool password
* @aramnanme |ogical name of the pool. This needs to be one in the
* tnsnanes. ora configuration file.

@aram config (optional) Properties of the pool, if the default does not
suffice. Default connection configuration is mn =1, max=1,
incr=0

Pl ease refer setPool Config for property nanes.

Since this is optional, pass null if the default configuration
suffices.

@eturn

Not es: Choose a userid and password that can act as proxy for the users
in the getProxyConnection() nethod.

* ok kX

If config is null, then the followi ng default values will take
ef fect

CONNPOOL_ MN LIMT = 1
CONNPOOL_MAX_LIMT = 1
CONNPOOL_| NCREMENT = 0

x|

public synchroni zed O acl eOCl Connect i onPool
(String user, String password, String name, Properties config)
throws SQLException

* This will use the user-id, password and connection pool nane val ues set
LATER using the nmethods setUser, setPassword, setConnectionPool Nane.

* @eturn
* Not es:

No Oracl eQCl Connection objects can be created on
this class unless the nethods setUser, setPassword, setPool Config
are invoked.
Wien invoking the setUser, setPassword |ater, choose a userid and
password that can act as proxy for the users

* in the getProxyConnection() nethod.

*/

public synchronized Oracl eOCl ConnectionPool ()
throws SQLException

22.3.2 Importing the oracle.jdbc.pool and oracle.jdbc.oci Packages

Before you create an OCI connection pool, import the following to have Oracle OCI
connection pooling functionality:

i nport oracle.jdbc. pool . *;
i nport oracle.jdbc.oci.*;

22.3.3 Creating an OCI Connection Pool

The following code show how you create an instance of the Oracl eCCl Connect i onPool class
called cpool :

ORACLE 22-3

Chapter 22
About Defining an OCI Connection Pool

O acl eOCl Connect i onPool cpool = new O acl eOCl Connect i onPool
("HR", "hr", "jdbc:oracle:oci:@description=(address=(host=
| ocal host) (protocol =t cp) (port=5221)) (connect _dat a=(| NSTANCE_NAME=orcl)))",
pool Config);

pool Confi g is a set of properties that specify the connection pool. If pool Confi g is null,
then the default values are used. For example, consider the following:

e pool Config.put (O acleOCl ConnectionPool.CONNPOOL_ M N LIMT, "4");
e pool Config.put (O acleQCl ConnectionPool . CONNPOOL_MAX LIMT, "10");
e pool Config.put (O acleOC ConnectionPool . CONNPOOL_| NCREMENT, "2");

As an alternative to the constructor call, you can create an instance of the
O acl eOCl Connect i onPool class using individual methods to specify the user,
password, and connection string.

Or acl eCCl Connect i onPool cpool = new Oracl eOCl Connecti onPool ();
cpool . set User ("HR");
cpool . set Password("hr");
cpool . set URL("j dbc: oracl e: oci : @description=(address=(host =
| ocal host) (protocol =t cp) (port=5221)) (connect _dat a=(1 NSTANCE_NAME=orcl)))");
cpool . set Pool Confi g(pool Config); // In case you want to specify a different
/'l configuration other than the default
Il val ues.

22.3.4 Setting the OCI Connection Pool Parameters

ORACLE

The connection pool configuration is determined by the following
Oracl eQCl Connect i onPool class attributes:

< CONNPOOLMN LIMT

Specifies the minimum number of physical connections that can be maintained by
the pool.

« CONNPOOL_MAX_LIM T

Specifies the maximum number of physical connections that can be maintained by
the pool.

e CONNPOOL_I NCREMENT

Specifies the incremental number of physical connections to be opened when all
the existing ones are busy and a call needs one more connection; the increment is
done only when the total number of open physical connections is less than the
maximum number that can be opened in that pool.

e CONNPOOL_TI MEQUT

Specifies how much time must pass before an idle physical connection is
disconnected; this does not affect a logical connection.

e CONNPOCL_NOMI T

Specifies, if enabled, that an error is returned if a call needs a physical connection
while the maximum number of connections in the pool are busy. If disabled, a call
waits until a connection is available. Once this attribute is set to t r ue, it cannot be
reset to f al se.

You can configure all of these attributes dynamically. Therefore, an application has the
flexibility of reading the current load, that is number of open connections and number

22-4

Chapter 22
About Defining an OCI Connection Pool

of busy connections, and adjusting these attributes appropriately, using the set Pool Confi g
method.

Note:

The default values for the CONNPOOL_M N _LIM T, CONNPOOL_MAX LIM T, and
CONNPQOOL_| NCREMENT parameters are 1, 1, and 0, respectively.

The set Pool Confi g method is used to configure OCI connection pool properties. The
following is a typical example of how the Or acl eOCl Connect i onPool class attributes can be
set:

java.util.Properties p = new java.util.Properties();
p. put (Oracl eOCl ConnectionPool . CONNPOOL_ MN_LIMT, "1'
p. put (Oracl eOCl Connecti onPool . CONNPOOL_MAX_LIM T, "5'
p. put (Oracl eOCl Connecti onPool . CONNPOOL_| NCREMENT, "2
(
(

p. put (Oracl eOCl Connecti onPool . CONNPOOL_TI MEQUT, "10")
p. put (Oracl eOCl Connecti onPool . CONNPOOL_NOMAI T, "true"

cpool . set Pool Confi g(p);

)
)
)
g

Observe the following rules when setting these attributes:
e CONNPOOL_M N LIM T, CONNPOOL_MAX LI'M T, and CONNPQCOL_| NCREMENT are mandatory.
e CONNPOOL_M N_LI M T must be a value greater than zero.

e CONNPOOL_MAX LI M T must be a value greater than or equal to CONNPOOL_M N_LIM T plus
CONNPOOL_| NCREMENT.

* CONNPOCL_I NCREMENT must be a value greater than or equal to zero.
e CONNPOOL_TI MEQUT must be a value greater than zero.
e CONNPOOL_NOWAI T must be true or f al se.

¢ See Also:

Oracle Call Interface Programmer's Guide

22.3.5 Checking the OCI Connection Pool Status

ORACLE

To check the status of the connection pool, use the following methods from the
Oracl eCCl Connect i onPool class:

e int getMnLimt()

Retrieves the minimum number of physical connections that can be maintained by the
pool.

e int getMaxLinit()

22-5

Chapter 22
About Connecting to an OCI Connection Pool

Retrieves the maximum number of physical connections that can be maintained by
the pool.

i nt get Connecti onl ncrement ()

Retrieves the incremental number of physical connections to be opened when all
the existing ones are busy and a call needs a connection.

int getTineout ()

Retrieves the specified time (in seconds) that a physical connection in a pool can
remain idle before it is disconnected; the age of a connection is based on the
Least Recently Used (LRU) algorithm.

String get NoVit ()
Retrieves if the NOMI T property is enabled. It returns a string of "t rue” or "f al se".
int getPool Si ze()

Retrieves the number of physical connections that are open. This should be used
only as an estimate and for statistical analysis.

int getActiveSize()

Retrieves the number of physical connections that are open and busy. This should
be used only as an estimate and for statistical analysis.

bool ean i sPool Creat ed()

Retrieves if the pool has been created. The pool is actually created when
Oracl eCCl Connection(user, password, url, pool Config) is called or when
set User, set Passwor d, and set URL has been done after calling

Oracl eCCl Connection() .

22.4 About Connecting to an OCI Connection Pool

The Oracl eOCl Connect i onPool class, through a get Connect i on method call, creates
an instance of the Oracl eOCl Connect i on class. This instance represents a connection.

ORACLE

Because the Oracl eOCl Connecti on class extends Oracl eConnecti on class, it has the
functionality of this class too. Close the Oracl eOCl Connect i on objects once the user
session is over, otherwise, they are closed when the pool instance is closed.

There are two ways of calling get Connect i on:

Oracl eConnecti on get Connection()

If you do not supply the user name and password, then the default user name and
password used for the creation of the connection pool are used while creating the
connection objects.

Oracl eConnection get Connection(String user, String password)

If you this method, you will get a logical connection identified with the specified
user name and password, which can be different from that used for pool creation.

The following code shows the signatures of the overloaded get Connect i on method:

public synchronized Oracl eConnection getConnection()

/*
* For getting a connection to the database.

throws SQLException

22-6

Chapter 22
Sample Code for OCI Connection Pooling

*

* @aramus Connection user-id
* @aramp Connection password
* @eturn connection object
*

/
publi ¢ synchroni zed O acl eConnection getConnection(String us, String p)
throws SQLException

As an enhancement to Or acl eConnect i on, the following new method is added into
O acl eOCl Connect i on as a way to change the password for the user:

voi d passwordChange (String user, String ol dPassword, String newPasswor d)

22.5 Sample Code for OCI Connection Pooling

ORACLE

The following code illustrates the use of OCI connection pooling in a sample application:

inport java.sql.DriverMnager;

i mport java.sql.Connection;

inport java.sql.PreparedStatenent;

i nport java.sql.ResultSet;

i nport java.sql.SQLException;

inport java.util.Properties;

i mport oracle.jdbc. OacleDriver;

i mport oracl e.jdbc. pool . Oracl e0Cl Connect i onPool ;

public class conPool Appl extends Thread

{
public static final String query = "SELECT object_name FROM al | _obj ects WHERE r ownum
< 300";
static public void main(String args[]) throws SQ.Exception
{
int _maxCount = 10;
Connection []conn = new Connection[_maxCount];

try

{
String s = null; /1 System get Property ("JDBC_URL");
String url = "jdbc:oracle:oci 8: @ocal host";

O acl eQCl Connect i onPool cpool = new Oracl eOCl Connecti onPool ("HR', "hr", url,
null);

/1 Print out the default configuration for the O acleOCl Connecti onPool
Systemout.println ("-- The default configuration for the

Oracl eQCl Connecti onPool --");
di spl ayPool Confi g(cpool);

/1Set up the initial pool configuration

Properties pl = new Properties();

pl. put (Oracl eCCl ConnectionPool . CONNPOOL_M N LIMT, Integer.toString(1));

pl. put (Oracl eCCl Connecti onPool . CONNPOOL_MAX_LIM T, Integer.toString(_nmxCount));
pl. put (Oracl eCCl Connecti onPool . CONNPOOL_| NCREMENT, Integer.toString(1));

/] Enable the initial configuration
cpool . set Pool Confi g(pl);

Thread []Jt = new Thread[_maxCount];

for (int i =0; i < _maxCount; ++i)

{
conn[i] = cpool.getConnection("HR", "hr");
if (conn[i] == null)

22-7

Chapter 22
Sample Code for OCI Connection Pooling

{

Systemout. printin("Unable to create connection.");
return;

}
t[i] = new conPool Appl (i, conn[i]);
t[i].start ();
/I di spl ayPool Confi g(cpool);
}

((conPool Appl)t[0]).startAll Threads ();
try

Thread. sl eep (200);

}
catch (Exception ea) {}

di spl ayPool Confi g(cpool);

for (int i =0; i < _maxCount; ++i)
tfi].join ();
cat ch(Exception ex)
{
Systemout.printin("Error: " + ex);
ex. printStackTrace ();
return;
}
finally
{
for (int i =0; i < _maxCount; ++)

if (conn[i] !'= null)
conn[i].close ();

} /1end of main

private Connection mconn;
private static boolean mstartThread = fal se;
private int mthreadld;

publi ¢ conPool Appl (int i, Connection conn)

{
mthreadld = i;
m conn = conn;

}

public void startAll Threads ()
{

m start Thread = true;

}

public void run ()

{
while (!mstartThread) Thread.yield ();

try
{

doQuery (m.conn);

catch (SQLException ea)

{
Systemout.println ("*** Thread id: " + mthreadld);

ea.printStackTrace ();

}

ORACLE 22-8

Chapter 22
Statement Handling and Caching

} Il end of run

private static void doQuery (Connection conn) throws SQ.Exception
{
PreparedStatenent pstnt = null;
ResultSet rs = null;
try
{
pstnt = conn. prepareStatenent (query);
rs = pstnt.executeQery ();
while (rs.next ())

I/ Systemout.println ("Object name: " +rs.getString (1));

}
}
catch (Exception ea)
{
Systemout.println ("Error during execution: " +ea);
ea.printStackTrace ();
}
finally
{
if (rs !=null)
rs.close ();
if (pstmt !'= null)
pstnt.close ();
if (conn !'= null)
conn.close ();

}
} I/ end of doQuery (Connection)

/1 Display the current status of the Oracl eQCl Connecti onPool
private static void displayPool Config (Oracl eOCl ConnectionPool cpool) throws

SQLException

{
Systemout.printin (" Mn poolsize Limt: " + cpool.getMnLinmit());
Systemout.printin (" Max poolsize Limt: " + cpool.getMaxLimt());

/*
Systemout.println (" Connection Increnent: " + cpool.getConnectionlncrement());
Systemout.printin (" NoWait: " + cpool.getNoWait());
Systemout.printin (" Tineout: " + cpool.getTineout());

*/

Systemout.printin (" Pool Size: " + cpool.getPool Size());
Systemout.println (" ActiveSize: " + cpool.getActiveSize());

}

} /1 end of class conPool Appl

22.6 Statement Handling and Caching

Statement caching is supported with Oracl eOCl Connect i onPool . The caching improves
performance by not having to open, parse, and close cursors. When

O acl eOCl Connecti on. prepar eSt at enent ("a_SQL_query") is processed, the statement cache
is searched for a statement that matches the SQL query. If a match is found, then you can
reuse the St at ement object instead of incurring the cost of creating another St at ement object.
The cache size can be dynamically increased or decreased. The default cache size is zero.

ORACLE 22-9

Chapter 22
JNDI and the OCI Connection Pool

< Note:

The Oracl eSt at enent object created from O acl eOCl Connect i on has the
same behavior as one that is created from O acl eConnect i on.

22.7 JNDI and the OCI Connection Pool

ORACLE

The Java Naming and Directory Interface (JNDI) feature makes the properties of a
Java object persist, therefore these properties can be used to construct a new
instance of the object, such as cloning the object. The benefit is that the old object can
be freed, and at a later time a new object with exactly the same properties can be
created. The | ni ti al Cont ext . bi nd method makes the properties persist, either on file
or in a database, while the I ni ti al Cont ext. | ookup method retrieves the properties
from the persistent store and creates a new object with these properties.

O acl eOCl Connect i onPool objects can be bound and looked up using the JNDI
feature. No new interface calls in Oracl eOCl Connect i onPool are necessary.

22-10

Database Resident Connection Pooling

Database Resident Connection Pool (DRCP) is a connection pool in the server that is shared
across many clients. You should use DRCP in connection pools where the number of active
connections is fairly less than the number of open connections. As the number of instances of
connection pools that can share the connections from DRCP pool increases, the benefits
derived from using DRCP increases. DRCP increases Database server scalability and
resolves the resource wastage issue that is associated with middle-tier connection pooling.

This chapter contains the following sections:

* Overview of Database Resident Connection Pooling

* Enabling Database Resident Connection Pooling

* About Sharing Pooled Servers Across Multiple Connection Pools
 DRCP Tagging

* PL/SQL Callback for Session State Fix Up

e APIs for Using DRCP

23.1 Overview of Database Resident Connection Pooling

In middle-tier connection pools, every connection cache maintains a minimum number of
connections to the server. Each connection represents used up resources at the server. All
these open connections are not utilized at any given time, which means that there are unused
resources that unnecessarily take up server resources. In a multiple middle-tier scenario,
these connections are not shared with any other middle tier and are retained in the cache
even if some of these are idle. However, a large number of such middle-tier connection pools
increase the number of inactive connections to the Database server significantly and waste a
lot of Database resources because all the connections do not remain active simultaneously.

For example, in a middle-tier connection pool, if the minimum pool size is 200, then the
connection pool has 200 connections to the server, and the Database server has 200 server
processes associated with these connections. If there are 30 middle tiers with a connection
pool of minimum size 200, then the server has 6000 (200 * 30) corresponding server
processes running. Typically, on an average only 5% of the connections, and in turn, server
processes are in use at any given time. So, out of the 6,000 server processes, only 300
server processes are active at any given time. This leads to over 5,700 unused server
processes on the server. These unused processes are the wasted resources on the server.

The Database Resident Connection Pool implementation creates a pool on the server side,
which is shared across multiple client pools. This significantly lowers memory consumption
on the server because of reduced number of server processes on the server and increases
the scalability of the Database server.

ORACLE 23-1

Chapter 23
Enabling Database Resident Connection Pooling

¢ See Also:

e Oracle Database Concepts

e Oracle Database Administrator’s Guide

23.2 Enabling Database Resident Connection Pooling

This section describes how to enable DRCP in the server side and the client side:

» Enabling DRCP on the Server Side
* Enabling DRCP on the Client Side

23.2.1 Enabling DRCP on the Server Side

ORACLE

You must be a database administrator (DBA) and must log on as SYSDBA to start and
end a pool. This section discusses the following concepts:

e Starting the Default Connection Pool
* Configuring the Default Connection Pool
* Ending a Pool

* Setting the Statement Cache Size

¢ Note:

The features of DRCP can be leveraged only with a connection pool on the
client because JDBC does not have a default pool on its own. If you do not
have a client connection pool and make any change to the Database with
auto commit set to f al se, then the changes are not committed to the
Database while closing the connection.

Starting the Default Connection Pool

Run the dbrs_connect i on_pool . start _pool method with the default settings to start
the Oracle Database default connection pool, SYS DEFAULT_CONNECTI ON_POQOL. For
example:

sql pl us /nol og
connect / as sysdba
execut e dbns_connection_pool . start_pool ();

Configuring the Default Connection Pool

The default connection pool is configured using default parameter values. You can use
the procedures in the DBMS_CONNECTI ON_PQOOL package to configure the connection
pool for Database Resident Connection Pooling.

Oracle Database 12c Release 2 (12.2.0.1) introduced the MAX_TXN_THI NK_TI ME
parameter, which is a new parameter for specifying the think timeout for pooled

23-2

Chapter 23
Enabling Database Resident Connection Pooling

servers with transactions in progress. The think timeout is the maximum time of inactivity, in
seconds, for a client after it obtains a pooled server from the pool.

¢ See Also:

Oracle Database Administrator’s Guide for more information about configuration
parameters

Ending a Pool

Run the dbrs_connect i on_pool . st op_pool method with the default settings to end the pool.
For example:

sql pl us /nol og
connect / as sysdba
execut e dbns_connection_pool . stop_pool ();

Setting the Statement Cache Size

If you use DRCP, caching is also done at the server side. So, you must specify the statement
cache size on the server side in the following way, where 50 is the preferred size:

execut e DBMS_CONNECTI ON_POCL. CONFI GURE_PQOOL (sessi on_cached_cur sor s=>50);

Related Topics
e About Statement Caching

23.2.2 Enabling DRCP on the Client Side

ORACLE

Perform the following steps to enable DRCP on the client side:

< Note:

The example in this section uses Universal Connection Pool as the client-side
connection pool. For any other connection pools, you can enable DRCP by
performing the following two steps and using

oracl e.jdbc. pool . Oracl eConnect i onPool Dat aSour ce as the connection factory.

* Pass a non-null and non-empty String value to the connection property
oracl e. j dbc. DRCPConnect i onC ass

* Append (SERVER=POOLED) to the CONNECT _DATA in the long connection string
You can also specify (SERVER=POOLED) in short URL from as follows:

jdbc: oracl e:thin: @/ <host >: <port >/ <servi ce_nane>[: POOLED]

For example:

jdbc:oracle:thin: @/ ocal host: 5221/ orcl : POOLED

The following example shows how to enable DRCP on client side:

23-3

Chapter 23
About Sharing Pooled Servers Across Multiple Connection Pools

< Note:

In UCP, if you do not provide a connection class, then the connection pool
name is used as the connection class name by default.

Example 23-1 Enabling DRCP on Client Side Using Universal Connection Pool

String url = "jdbc:oracle:thin:@/Iocal host: 5521/ orcl: POOLED";
Pool Dat aSour ce pds = Pool Dat aSour ceFact ory. get Pool Dat aSour ce() ;
pds. set Connect i onFact oryCl assNane(" oracl e. j dbc. pool . O acl eDat aSour ce");
/1 Set DataSource Property

pds. set User ("HR") ;

pds. set Password("hr");

Systemout.println ("Connecting to " + url);

pds. set URL(url);

pds. set Connect i onPool Nane(" HR- Pool 1");

pds. set M nPool Si ze(2);

pds. set MaxPool Si ze(3);

pds. setInitial Pool Si ze(2);

Properties prop = new Properties();

prop. put ("oracl e. j dbc. DRCPConnecti onCl ass", "HR-Pool 1");

pds. set Connect i onProperties(prop);

23.3 About Sharing Pooled Servers Across Multiple
Connection Pools

To share pooled server processes on the server across multiple Connection pools, set
the same DRCP Connection class name for all the pooled server processes on the
server. You can set the DRCP Connection class nhame using the connection property
oracl e. j dbc. DRCPConnect i ond ass.

23.4 DRCP Tagging

ORACLE

DRCP enables you to request the server connection pool to associate a server
process with a particular tag name. You can apply a tag to a given connection and
retrieve that tagged connection later. Connection tagging enhances session pooling
because you can retrieve specific sessions easily.

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), DRCP provides support for
multiple tagging. By default, this feature is disabled because of compatibility factor with
existing DRCP applications. Set the or acl e. j dbc. UseDRCPMul ti pl et ag connection
property to TRUE for enabling this feature in your DRCP application.

Once you enable the multiple tagging feature, then the same APIs that you used for
setting DRCP tags, can be used for setting multiple DRCP tags, only difference being
the separator. Key and value of a DRCP tag are separated by an equal (=) character
and multiple tags are separated by a semi-colon (;) character.

Remember the following points while working with DRCP tags:

* Key and value of a tag cannot be NULL or Empty.

23-4

Chapter 23
PL/SQL Callback for Session State Fix Up

* When you specify multiple tags, then the leftmost tag has the highest priority and the
rightmost tag has the lowest priority.

* While retrieving a tagged connection, if a complete match is not found (all tags are not
matched), then it searches for a partial match.

Note:

Starting from Oracle Database 12¢ Release 2 (12.2.0.1), DRCP sessions belonging
to the same database user, but different proxy users, can be shared among the
proxy users.

" See Also:

Oracle Call Interface Programmer's Guide for more information about session
pooling and connection tagging

23.5 PL/SQL Callback for Session State Fix Up

ORACLE

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), a PL/SQL based fix-up callback for
the session state can be provided on the server. This application-provided callback
transforms a session checked out from the pool to the desired state requested by the
application. This callback works with or without Database Resident Connection Pooling
(DRCP).

" Note:
The PL/SQL based fix-up callback is only applicable for multiple tagging.

Using this callback can improve the performance of your application because the fix-up logic
is run for the session state on the server. So, this feature eliminates application round-trips to
the database for the fix-up logic. An appropriate installation user, who must be granted
execute permissions on the related package, should register the fix-up callback during
application installation.

Example 23-2 Example of PL/SQL Fix-Up Callback

Following is an example implementation of the PL/SQL fix up callback to fix up the session
properties SCHEMA and CURRENCY:

CREATE OR REPLACE PACKACGE nych_pack AS
PROCEDURE mnycal | back (

desired_props | N VARCHAR?,

actual _props I'N VARCHAR?

)

END;

/

23-5

Chapter 23
PL/SQL Callback for Session State Fix Up

CREATE OR REPLACE PACKAGE BODY nych_pack AS
PROCEDURE mnycal | back (
desired_props | N VARCHAR?,
actual _props I'N VARCHAR?

) IS

property VARCHAR2(64);

key VARCHAR2(64);

val ue VARCHAR2(64);

pos numnber;

pos2 nunber;

pos3 nunber;

i dx1 nunber;

BEGA N
idx1:=1;

pos: =1;

pos2: =1;

pos3: =1;

property :="'tnp';

-- To check if desired properties are part of actual properties
while (pos > 0 and | engt h(desired_props)>pos)

| oop

pos :=instr (desired_props, ';', 1, idxl);

if (pos=0)

then

property := substr (desired_props, pos2);

el se

property := substr (desired_props, pos2, pos-pos2);

end if ;

pos2 : = pos+l,

pos3 :=instr (property, '=", 1, 1);

key := substr (property, 1, pos3-1);

val ue := substr (property, pos3+l);

if (key = 'CURRENCY') then

EXECUTE | MVEDI ATE ' ALTER SESSI ON SET NLS_CURRENCY=""'" || value || '"'";
el sif (key = 'SCHEMA') then

EXECUTE | MVEDI ATE ' ALTER SESSI ON SET CURRENT_SCHEMA=" || val ue;
end if;

idx1l :=idx1+1;

end | oop;

END; -- mycall back
END nycb_pack;
/

" See Also:

Oracle Database JDBC Java API Reference

ORACLE 23-6

23.6 APIs for Using DRCP

If you want to take advantage of DRCP with higher granular control for your custom
connection pool implementations, then you must use the following APIs declared in the
oracl e.jdbc. O acl eConnecti on interfaces:

ORACLE

attachServer Connecti on
det achSer ver Connecti on

i SDRCPEnabl ed

i sSDRCPMul ti t agEnabl ed

get DRCPRet ur nTag
needToPur geSt at ement Cache
get DRCPSt at e

¢ See Also:

Oracle Database JDBC Java API Reference

Chapter 23
APIs for Using DRCP

23-7

JDBC Support for Database Sharding

This chapter describes JDBC support for Database Sharding in the following sections:
* Overview of Database Sharding for JDBC Users

* About Building the Sharding Key

* APIs for Database Sharding Support

* JDBC Sharding Example

24.1 Overview of Database Sharding for JDBC Users

ORACLE

Modern web applications face new scalability challenges with huge volumes of data. A
commonly accepted solution to this problem is sharding. Sharding is a data tier architecture,
where data is horizontally partitioned across independent databases. Each database in such
a configuration is called a shard. All shards together make up a single logical database,
which is referred to as a sharded database (SDB). Sharding is a shared-nothing database
architecture because shards do not share physical resources such as CPU, memory, or
storage devices.

Sharding uses Global Data Services (GDS), where GDS routes a client request to an
appropriate database based on parameters such as availability, load, network latency, and
replication lag. A GDS pool is a set of replicated databases that offer the same global service.
The databases in a GDS pool can be located in multiple data centers across different regions.
A sharded GDS pool contains all shards of a sharded database and their replicas, and
appears as a single sharded database to database clients.

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), Oracle JDBC supports database
sharding. The JDBC driver recognizes the specified sharding key and super sharding key and
connects to the relevant shard that contains the data. Once the connection is established to a
shard, then any database operations, such as DMLs, SQL queries and so on, are supported
and executed in the usual way. The following section describes the sharding terminologies
used in this guide:

" See Also:

Oracle Database Administrator’s Guide

Sharding, Shard, and Sharded Database

Sharding is a data tier architecture where data is horizontally partitioned across independent
databases. Each database in such configuration is called a shard. All shards together make
up a single logical database which is referred to as a sharded database (SDB).

24-1

ORACLE

Chapter 24
Overview of Database Sharding for JDBC Users

Sharding Key, Composite Sharding Key, and Super Sharding Key

A sharding key is a partitioning key used in single-level sharding by range, list, or
consistent hash. All sharding keys together are referred to as the composite sharding
keys. A super-sharding key is the partitioning key used in composite sharding for the
top-level sharding by range or list. Both the sharding key and the super sharding key
can contain one or more columns that determine the shard where each row is stored.
A sharding key can be of type VARCHAR2, CHAR, DATE, NUMBER, TIMESTAMP
and so on.

For JDBC users, it is recommended that sharding keys and super sharding keys must
be passed while obtaining connections from the database. However, Sharding Keys
can be provided in the connection string as a separate attribute under CONNECT _DATA.
Passing sharding key in the connection string restricts the connections only to one
shard. So, it is not recommended to use this approach. Following code snippet shows
how you can provide Sharding Keys as a separate attribute under CONNECT_DATA in the
connection string:

(DESCRI PTI ON(..) (CONNECT_DATA=(SERVI CE_NAME=ORCL (SHARDI NG_KEY=..)
(SUPER SHARDI NG KEY=. ..)))

¢ Note:

You must provide the sharding key compliant to the NLS formatting that is
specified in the database.

Multi Shard Queries

Multi Shard Queries enable routing and processing of queries and transactions that
access data stored on multiple shards. Multi Shard Queries are executed without a
sharding key. Multi Shard Operations are used for simple aggregation of data and
reporting across shards.

Shard Catalog

Shard Catalog is a special database that is used for storing sharded database and
supporting multi shard queries. It also helps in centralized management of a sharded
database.

Shard Director

A shard director is a specific implementation of a global service manager (GSM) that
acts as a regional listener for clients that connect to an SDB and maintains a current
topology map of the SDB. Based on the sharding key passed during a connection
request, it routes the connections to the appropriate shard.

Shard Topology

Shard Topology is the sharding key range mappings stored in a particular shard.
Universal Connection Pool (UCP) can cache shard topology, which enables it to
bypass shard director while establishing connections to shards. So, applications that
you built using UCP get fast path for shards.

24-2

Chapter 24
About Building the Sharding Key

¢ See Also:

Oracle Universal Connection Pool Developer’s Guide

Chunk

A chunk is a single partition from each table of a table family. It is a unit of data migration
between shards.

Chunk Split

Chunk Split is a process that is required when chunks become too big or only part of a chunk
needs to be migrated to another shard.

Chunk Migration

Chunk migration is the process of moving a chunk from one shard to another, when data or
workload skew occurs without any change in the number of shards. It is initiated by DBA to
eliminate hot spots.

Resharding

Resharding is the process of redistributing data between shards triggered by a change in the
number of shards. Chunks are moved between shards for even distribution of chunks across
shards. However, content of chunks does not change, that is, no rehashing takes place
during Resharding.

24.2 About Building the Sharding Key

ORACLE

The shard aware applications must identify and build the sharding key and the super
sharding key, which are required to establish a connection to the sharded database. For
achieving this, the shard aware applications must use the Or acl eShar di ngkey and the
O acl eShar di ngKeyBui | der interfaces.

The O acl eShar di ngKeyBui | der uses the following builder method for supporting compound
keys with different data types:

subkey(Qbj ect subkey, java.sql.SQTYPE subkeyDat aType)

There are multiple invocations of the subkey method on the builder for building a compound
sharding key, where each subkey can be of different data types. The data type can be
defined using the or acl e. j dbc. Oracl eType enum or j ava. sql . JDBCType.

Example 24-1 Building a Sharding Key

The following example shows how to build a sharding key:

i mport java.sql. Connection;

i mport java.sql.Date;

i mport java.sql.SQLException;
inport java.sqgl.Statement;

i nport oracle.jdbc. O acl eShardi ngKey;

24-3

Chapter 24
About Building the Sharding Key

i mport oracle.jdbc. Oracl eType;
i mport oracle.jdbc. pool . Oracl eDat aSour ce;

public class ShardExanpl e

{
public static void main(String[] args) throws SQ.Exception

{
String url = "jdbc:oracl e:thin: @DESCR PTI ON=(ADDRESS=(HOST=nyhost)
(PORT=3216) (PROTOCOL=t cp)) (CONNECT_DATA=(SERVI CE_NAME=nyser vi ce)
(REG ON=east)))";
String user="testuserl", pwd = password;

Oracl eDat aSour ce ods = new Oracl eDat aSour ce();
ods. set URL(url);

ods. set User (user);

ods. set Passwor d(pwd) ;

[l build the sharding key object
Dat e shardi ngkeyVal = new java.sql.Date(0L);
O acl eShar di ngkey sdkey = ods. creat eShar di ngKeyBui | der ()
. subkey(shar di ngkeyVal ,
Oracl eType. DATE)
Cbuild();

Connection conn = ods. creat eConnecti onBui |l der ()
. shar di ngKey(sdkey)

Cbuild();
Statenment stmt = conn.createStatenment();
stnt.execute("... SQ statenment here ...");
stnt.close();
conn. cl ose();
}

The following code snippet shows how to build a compound sharding key that consists
of String and Date data types:

Dat e shardi ngkeyVal = new java.sql.Date(0L);
O acl eShar di ngKey shar di ngkey = dat asour ce. cr eat eShar di ngKeyBui | der ()
. subkey("abc@yz. com', JDBCType. VARCHAR)

. subkey(shardi ngkeyVal , O acl eType. DATE)
Cbuild();

ORACLE 24-4

< Note:

Oracl eType.
Oracl eType.
Oracl eType.
Oracl eType.
Oracl eType.
Oracl eType.
Oracl eType.
Oracl eType.
Oracl eType.
Oracl eType.

Chapter 24
APIs for Database Sharding Support

e There is a fixed set of data types that are valid and supported. If any
unsupported data types are used as keys, then exceptions are thrown. The
following list specifies the supported data types:

VARCHAR2/ JDBCType. VARCHAR
CHAR/ JDBCType. CHAR

NVARCHAR/ JDBCType. NVARCHAR
NCHAR/ JDBCType. NCHAR

NUVBER/ JDBCType. NUVERI C

FLOAT/ JDBCType. FLOAT

DATE/ JDBCType. DATE

TI MESTAMP/ JDBCType. TI MESTAMP

TI MESTAMP_W TH_LOCAL_TI ME_ZONE
RAW

e You must provide a sharding key that is compliant to the NLS formatting
specified in the database.

24.3 APlIs for Database Sharding Support

Oracle Database 12c Release 2 (12.2.0.1) introduced a set of APIs for implementing
database sharding. The following sections discuss these APIs in details:

* The OracleShardingKey Interface

e The OracleShardingKeyBuilder Interface

» The OracleConnectionBuilder Interface

» Other New Classes and Methods for Database Sharding Support

24.3.1 The OracleShardingKey Interface

This interface indicates that the current object represents an Oracle sharding key that is to be
used with Oracle sharded database.

Syntax

public interface O acl eShardi ngkey extends Conparabl e <O acl eShar di ngkey>

ORACLE

24-5

Chapter 24
APIs for Database Sharding Support

24.3.2 The OracleShardingKeyBuilder Interface

O acl eShar di ngKeyBui | der provides the interface to build the compound sharding key
with subkeys of various supported data types. This interface uses the new JDK 8
builder pattern for building a sharding key.

Syntax

public interface O acleShardi ngKeyBui | der

Example 24-2 Creating the Sharding Key

Oracl eDat aSource ods = new O acl eDat aSour ce();
/lset datasource properties..

O acl eShar di ngKey shar di ngkey = ods. cr eat eShar di ngKeyBui | der ()
. subkey(" Cust oner _Nane_XYZ",
JDBCType. VARCHAR)
. subkey(94002, JDBCType. NUMERI C)
Cbuild();

24.3.3 The OracleConnectionBuilder Interface

ORACLE

The Oracl eConnect i onBui | der is used for building connection objects with additional
parameters, other than user name and password. For creating a connection, the
builder methods need to be called for each parameter that needs to be part of the
connection request, followed by a bui | d() method. The order in which the builder
methods are called is not important. However, if the same builder attribute is applied
more than once, then only the most recent value is considered while building the
connection. The bui | d() method of the builder can be called only once on a builder
object.

Syntax

public interface Oracl eConnectionBuil der

Example 24-3 Creating the Connection Builder

Oracl eDat aSour ce ods=new Or acl eDat aSour ce();

O acl eConnection conn = ods. creat eConnecti onBui | der ()
. shar di ngKey(shar di ngKey)
. super Shar di ngKey(super Shar di ngKey)
Cbuild();

24-6

Chapter 24
JDBC Sharding Example

24.3.4 Other New Classes and Methods for Database Sharding Support

This section describes the rest of the new classes and methods introduced for implementing
database sharding support.

New Methods in OracleDataSource Class

The creat eConnect i onBui | der and cr eat eShar di ngkeyBul i der methods have been
introduced in Or acl eDat aSour ce class for database sharding support.

Oracl eConnect i onBui | der creat eConnectionBuil der() throws SQLExcepti on;
O acl eShar di ngKeyBui | der creat eShar di ngKeyBui | der ()

New Methods in OracleXADataSource Class

The cr eat eConnecti onBui | der method has been introduced in O acl eXADat aSour ce class
for database sharding support.

Oracl eConnect i onBui | der creat eConnectionBuil der() throws SQLExcepti on;

New Methods in OracleConnection Class

The set Shar di ngKeyl f Val i d and set Shar di ngkey methods have been introduced in
Oracl eConnect i on class for database sharding support.

bool ean set Shar di ngKeyl f Val i d(Or acl eShar di ngKey shar di ngKey,
O acl eShar di ngKey super Shar di ngKey, int timeout) throws SQLException;

voi d set Shar di ngKey(Or acl eShar di ngKey shar di ngkey, Oracl eShardi ngKey
super Shar di ngKey) throws SQLExcepti on;

New Methods in OracleXAConnection Class

The set Shar di ngKeyl f Val i d and set Shar di ngKey methods have been introduced in
O acl eConnecti on class for database sharding support.

bool ean set Shar di ngKeyl f Val i d(Or acl eShar di ngKey shar di ngKey,
O acl eShar di ngKey super Shar di ngkey, int timeout) throws SQLException;

voi d set Shar di ngKey(Oracl eShar di ngKey shar di ngkey, Oracl eShar di ngKey
super Shar di ngKey) throws SQLExcepti on;

24.4 JDBC Sharding Example

The following code snippet shows how to use JDBC sharding APlIs:

ORACLE 24-7

ORACLE

Chapter 24
JDBC Sharding Example

Example 24-4 JDBC Sharding Example

Oracl eDat aSour ce ods = new O acl eDat aSour ce();

ods. set URL("j dbc: oracl e: t hi n: @ DESCRI PTI ON=(ADDRESS=(HOST=nyhost)
(PORT=1521) (PROTOCOL=t cp))
(CONNECT_DATA=(SERVI CE_NAME=nyor cl dbservi cenane)))");

ods. set User ("hr");

ods. set Password("hr");

Il Enployee name is the sharding Key in this exanple.
/1 Build the Sharding Key using enpl oyee name as shown bel ow.

Or acl eShar di ngKey enpl oyeeNaneShar dKey =
ods. cr eat eShar di ngKeyBui | der ()
. subkey(" Mary",
JDBCType. VARCHAR) // First Nane
. subkey("d aire",
JDBCType. VARCHAR) // Last Nane
Cbuild();

Oracl eShar di ngKey | ocat i onSuper Shar dKey =
ods. creat eShar di ngKeyBui | der () // Building a super sharding key using
| ocation as the key
. subkey("US",
JDBCType. VARCHAR)
Cbuild();

Oracl eConnection connection = ods. creat eConnecti onBuil der ()
. shar di ngKey(enpl oyeeNaneShar dKey

. super Shar di ngKey(| ocat i onSuper Sh

ar dKey)
Cbui 1 d();

24-8

Oracle Advanced Queuing

Oracle Advanced Queuing (AQ) provides database-integrated message queuing functionality.
It is built on top of Oracle Streams and optimizes the functions of Oracle Database so that
messages can be stored persistently, propagated between queues on different computers
and databases, and transmitted using Oracle Net Services, HTTP, and HTTPS. Because
Oracle AQ is implemented in database tables, all operational benefits of high availability,
scalability, and reliability are also applicable to queue data. This chapter provides information
about the Java interface to Oracle AQ.

" Note:

e Oracle Advanced Queuing (AQ) is a feature of the Oracle JDBC Thin driver and
is not supported by JDBC OCI driver.

e In Oracle Database 12c Release 1 (12.1), support for XM.Type queues has
been added. Till Oracle Database 11g Release 1, supported queue types were
RAW ADT, and ANYDATA queue types.

" See Also:

Oracle Database Advanced Queuing User's Guide

This chapters covers the following topics:

* Functionality and Framework of Oracle Advanced Queuing
* Making Changes to the Database

* AQ Asynchronous Event Notification

* About Creating Messages

* Enqueuing Messages

» Dequeuing Messages

» Examples: Enqueuing and Dequeuing

25.1 Functionality and Framework of Oracle Advanced Queuing

ORACLE

The Oracle JDBC package or acl e. j dbc. aq provides a fast Java interface to AQ. This
package contains the following:

* Classes
— AQDequeueQpti ons

25-1

Chapter 25
Making Changes to the Database

Specifies the options available for the dequeue operation
— AQEnqueueOpti ons

Specifies the options available for the enqueue operation
— AQFactory

Is a factory class for AQ
— AQ\otificationEvent

Is created whenever a new message is enqueued in a queue for which you
have registered your interest

e Interfaces

— AQAgent

Used to represent and identify a user of the queue or a producer or consumer
of the message

— AQwessage
Represents a message that is enqueued or dequeued
— AQ\essageProperties

Contains message properties such as Correlation, Sender, Delay and
Expiration, Recipients, and Priority and Ordering

— AQ\otificationListener
Is a listener interface for receiving AQ notification events
— AQNotificationRegistration

Represents your interest in being notified when a new message is enqueued
in a particular queue

These classes and interfaces enable you to access an existing queue, create
messages, and enqueue and dequeue messages.

< Note:

Oracle JDBC drivers do not provide any API to create a queue. Queues must
be created through the DBVM5_AQADMPL/SQL package.

See Also:

For more information about the APIs, refer to Oracle Database JDBC Java
API Reference.

25.2 Making Changes to the Database

The code snippets used in this chapter assume that user HR is connecting to the
database. Therefore, in the database, you must grant the following privileges to HR:

ORACLE 25-2

Chapter 25
AQ Asynchronous Event Notification

GRANT EXECUTE ON DBMS_AQ to HR

GRANT EXECUTE ON DBMS_AQADM to HR
GRANT AQ ADM NI STRATOR ROLE TO HR

GRANT ADM NI STER DATABASE TRI GGER TO HR

Before you start enqueuing and dequeuing messages, you must have queues in the
Database. For this, you must perform the following:

1. Create a queue table in the following way:

BEG N
DBVS_AQADM CREATE_QUEUE_TABLE(
QUEUE_TABLE =>' HR RAW SI NGLE_QUEUE_TABLE',
QUEUE_PAYLOAD TYPE =>' RAW,
COMVPATI BLE => ' 10.0');
END;

2. Create a queue in the following way:

BEG N
DBMVS_AQADM CREATE_QUEUE(
QUEUE_NAME =>' HR. RAW SI NGLE_QUEUE'
QUEUE_TABLE =>' HR RAW SI NGLE_QUEUE_TABLE',
END;

3. Start the queue in the following way:

BEG N
DBVS_AQADM START QUEUE(
"HR RAW SI NGLE_QUEUE',
END;

It is a good practice to stop the queue and remove the queue tables from the database. You
can perform this in the following way:

1. Stop the queue in the following way:

BEG N
DBVS_AQADM STOP_QUEUE(
HR RAW S| NGLE_QUEUE',
END;

2. Remove the queue tables from the database in the following way:

BEG N
DBVS_AQADM DROP_QUEUE_TABLE(
QUEUE_TABLE =>' HR. RAW S| NGLE_QUEUE_TABLE
FORCE => TRUE
END;

25.3 AQ Asynchronous Event Notification

ORACLE

A JDBC application can do the following:

* Register to the AQ namespace and receive notification when an enqueue occurs. This
can be performed in the following way:

public AQNotificationRegistration registerFor AQEvent s(
Oracl eConnection conn,
String queueNane) throws SQLException
{
Properties gl obal Options = new Properties();
String[] queueNaneArr = new String[1];

25-3

ORACLE

Chapter 25
AQ Asynchronous Event Notification

queueNameArr[0] = queueNane;
Properties[] opt = new Properties[1];
opt[0] = new Properties();
opt[0].set Property(Oracl eConnecti on. NTF_AQ PAYLOAD, "true");
AQNot i ficationRegistration[] regArr =
conn. regi ster AQNoti fi cati on(queueNameArr, opt, gl obal Options);
AQ\ot i ficationRegistration reg = regArr[0];
return reg;

}

Register subscriptions to database events and receive notifications when the
events are triggered

Registered clients are notified asynchronously when events are triggered or on an
explicit AQ enqueue (or a new message is enqueued in a queue for which you
have registered your interest). Clients do not need to be connected to a database.

The following code snippet shows how to subscribe to database events and
receive notifications when the events are triggered:

cl ass DenpAQRawQueueli st ener inplenents AQNotificationListener
{

Oracl eConnection conn;

String queueNane;

String typeNane;

int eventsCount = 0;

publ i ¢ DembAQRawQueueli stener (String _queueNane, String _typeNane)

t hrows SQLException
{

queueName = _queueNane,

typeNanme = _typeNane;

conn = (Oracl eConnection)Dri ver Manager . get Connecti on

(DemoAQRawQueue. URL, DempAQRawQueue. USERNAME, DenmpAQRawQueue. PASSWORD) ;

}

public void onAQNotification(AQNotificationEvent e)
{
try
{
AQPequeueOptions deqopt = new AQDequeueOptions();
deqopt . set Retri eveMessagel d(true);
i f(e.getConsunmerNane() != null)
deqopt . set Consuner Nane(e. get Consumer Nane()) ;
i f((e.get MessageProperties()).getDeliveryhde()
== AQ\essageProperti es. Del i ver yMode. BUFFERED)
{
deqopt . set Del i ver yMode(AQDequeueOpt i ons. DEQUEUE_BUFFERED) ;
deqopt . set Vi si bi lity(AQDequeueOpti ons. DEQUEUE_| MVEDI ATE) ;
}
AQvessage nsg = conn. dequeue(queueNang, deqopt , t ypeNane) ;
byte[] nsgld = nsg. get Messagel d();
if(msgld !'= null)
{
String nmesgldStr = DempAQRawQueue. byt eBuf f er ToHexSt ri ng(nsgl d, 20) ;
Systemout.printin("ID of nessage dequeued = "+nesgl dStr);
}
System out. println(nsg. get MessageProperties().toString());
byte[] payload = nsg. get Payl oad();
i f(typeNane. equal s("RAW))
{
String payloadStr = new String(payl oad, 0, 10);

25-4

Chapter 25
About Creating Messages

System out. println("payl oad. | engt h="+payl oad. | engt h+", val ue="+payl oadStr);
}

cat ch(SQLException sql ex)

{
Systemout. println(sql ex. get Message());

}

event sCount ++;

}
public int getEventsCount()

{

return event sCount;

public void closeConnection() throws SQ.Exception

{

conn. cl ose();

}
}

Register to the listener in the following way:

AQNot i ficationRegistration reg
DemAQRawQueuelLi st ener denmo_l i
reg. addLi stener (demo_li);

regi st er For AQEvent s(conn, queueName+": BLUE") ;
new DempAQRawQueuelLi st ener (queueNane, queueType);

25.4 About Creating Messages

This section describes the following concepts:

Creating Messages
AQ Message Properties
AQ Message Payload

25.4.1 Creating Messages

Before you enqueue a message, you must create the message. An instance of a class
implementing the AQVessage interface represents an AQ message. An AQ message contains
properties (metadata) and a payload (data). Perform the following to create an AQ message:

ORACLE

1.

Create an instance of AQvessagePr operti es in the following way:
AQVessageProperties nsgprop = AQFactory. creat eAQvessageProperties();
Set the property attributes in the following way:

megpr op. set Correl ati on("mycorrel ation");

megpr op. set Except i onQueue(" MY_EXCEPTI ON_QUEUE") ;
msgpr op. set Expi ration(0);

msgprop. setPriority(1);

Create the AQ message using the AQvessagePr operti es object in the following way:
AQ\vessage nmesg = AQFactory. creat eAQvessage(msgprop);
Set the payload in the following way:

byte[] rawPayl oad = "Exanpl e_Payl oad". get Bytes();
mesg. set Payl oad(new oracl e. sql . RAW r awPay! oad)) ;

25-5

Chapter 25
About Creating Messages

25.4.2 AQ Message Properties

The properties of the AQ message are represented by an instance of the
AQvessagePr operti es interface. You can set or get the following message properties:

ORACLE

Dequeue Attempts Count: Specifies the number of attempts that have been made
to dequeue the message. This property cannot be set.

Correlation: Is an identifier supplied by the producer of the message at the time of
enqueuing the message.

Delay: Is the number of seconds for which the message is in the WAl Tl NG state.
After the specified delay, the message is in the READY state and available for
dequeuing. Dequeuing a message by using the message ID (msgid) overrides the
delay specification.

" Note:

Delay is not supported with buffered messaging.

Delivery Mode: Specifies whether the message is a buffered message or a
persistent message. This property cannot be set.

Enqueue Time: Specifies the time at which the message was enqueued. This
value is determined by the system and cannot be set by the user.

Exception Queue: Specifies the name of the queue into which the message is
moved if it cannot be processed successfully. Messages are moved in two cases:

— The number of unsuccessful dequeue attempts has exceeded max_retries.
— The message has expired.

Expiration: Is the number of seconds during which the message is available for
dequeuing, starting from when the message reaches the READY state. If the
message is not dequeued before it expires, then it is moved to the exception
gueue in the EXPI RED state.

Message State: Specifies the state of the message at the time of dequeuing the
message. This property cannot be set.

Previous Queue Message ID: Is the ID of the message in the last queue that
generated the current message. When a message is propagated from one queue
to another, this attribute identifies the ID of the queue from which it was last
propagated. This property cannot be set.

Priority: Specifies the priority of the message. It can be any integer including
negative integers; the smaller the value, the higher the priority.

Recipient list: Is a list of AQAgent objects that represent the recipients. The default
recipients are the queue subscribers. This parameter is valid only for multiple-
consumer queues.

Sender: Is an identifier specified by the producer at the time of enqueuing the
message. It is an instance of AQAgent .

Transaction group: Specifies the transaction group of the message for transaction-
grouped queues. It is set after a successful call to the dequeueAr ray method.

25-6

Chapter 25
Example: Creating a Message and Setting a Payload

25.4.3 AQ Message Payload

Depending on the type of the queue, the payload of the AQ message can be specified using
the set Payl oad method of the AQvessage interface. The following code snippet illustrates how
to set the payload:

byte[] rawPayl oad = "Exanpl e_Payl oad". get Bytes();
nmesg. set Payl oad(new oracl e. sql . RAW r awPay! oad)) ;

You can retrieve the payload of an AQ message using the get Payl oad method or the
appropriate get XXXPay! oad method in the following way:

byte[] payload = nesg. get Payl oad();

These methods are defined in the AQVvessage interface.

25.5 Example: Creating a Message and Setting a Payload

This section provides an example that illustrates how to create a message and set a payload.
Example 25-1 Creating a Message and Setting a Payload

This example shows how to Create an instance of AQvessagePr operti es, set the property
attributes, create the AQ message, and set the payload.

AQVessageProperties nsgprop = AQrFactory. creat eAQvessageProperties();
megpr op. set Correl ati on("mycorrelation");
msgpr op. set Except i onQueue(" MY_EXCEPTI ON_QUEUE") ;
AQAgent ag = AQFactory. creat eAQAgent ();
ag. set Name(" My_SENDER_AGENT_NAME") ;
ag. set Addr ess(" MY_SENDER_AGENT_ADDRESS") ;
megpr op. set Sender (ag) ;
// handle multi consumer case:
if(recipients !'= null)
megpr op. set Reci pi ent Li st (reci pients);
System out. println(msgprop.toString());
AQvessage nmesg = AQFactory. creat eAQVessage(nsgprop);
byte[] rawPayl oad = "Exanpl e_Payl oad". get Bytes();
mesg. set Payl oad(new oracl e. sql . RAW r awPay! oad)) ;

25.6 Enqueuing Messages

ORACLE

After you create a message and set the message properties and payload, you can enqueue
the message using the enqueue method of the Or acl eConnect i on interface. Before you
enqueue the message, you can specify some enqueue options. The AQEnqueueQpt i ons class
enables you to specify the following enqueue options:

» Delivery mode: Specifies the delivery mode. Delivery mode can be set to either persistent
(ENQUEUE_PERSI STENT) or buffered (ENQUEUE_BUFFERED).

* Retrieve Message ID: Specifies whether or not the message ID has to be retrieved from
the server when the message has been enqueued. By default, the message ID is not
retrieved.

25-7

Chapter 25
Dequeuing Messages

Transformation: Specifies a transformation that will be applied before enqueuing
the message. The return type of the transformation function must match the type
of the queue.

Note:

Transformations must be created in PL/SQL using
DBVS_TRANSFORM CREATE_TRANSFORMATI ON(. . .) .

Visibility: Specifies the transactional behavior of the enqueue request. The default
value for this option is ENQUEUE_ON_COW T. It indicates that the enqueue operation
is part of the current transaction. ENQUEUE_| MVEDI ATE indicates that the enqueue
operation is an autonomous transaction, which commits at the end of the
operation. For buffered messaging, you must use ENQUEUE | MVEDI ATE.

The following code snippet illustrates how to set the enqueue options and enqueue the
message:

AQEnqueueOptions opt = new AQEnqueueQptions();opt.setRetrieveMessagel d(true);
conn. enqueue(queueNane, opt, mesg);

25.7 Dequeuing Messages

Enqueued messages can be dequeued using the dequeue method of the

O acl eConnecti on interface. Before you dequeue a message you must set the
dequeue options. The AQDequeuept i ons class enables you to specify the following
dequeue options:

ORACLE

Condition: Specifies a conditional expression based on the message properties,
the message data properties, and PL/SQL functions. A dequeue condition is
specified as a Bool ean expression using syntax similar to the WHERE clause of a
SQL query.

Consumer name: If specified, only the messages matching the consumer name
are accessed.

< Note:

If the queue is a single-consumer queue, do not set this option.

Correlation: Specifies a correlation criterion (or search criterion) for the dequeue
operation.

Delivery Filter: Specifies the type of message to be dequeued. You dequeue
buffered messages only (DEQUEUE_BUFFERED) or persistent messages only
(DEQUEUE_PERSI STENT), which is the default, or both

(DEQUEUE_PERSI STENT _CR BUFFERED).

Dequeue Message ID: Specifies the message identifier of the message to be
dequeued. This can be used to dequeue a unique message whose ID is known.

25-8

Chapter 25
Dequeuing Messages

* Dequeue mode: Specifies the locking behavior associated with the dequeue operation. It
can take one of the following values:

— DequeueMbde. BROASE: Message is dequeued without acquiring any lock.

— DequeueMode. LOCKED: Message is dequeued with a write lock that lasts for the
duration of the transaction.

— DequeueMbde. REMOVE: (default) Message is dequeued and deleted. The message can
be retained in the queue based on the retention properties.

— DequeueMvde. REMOVE_NO DATA: Message is marked as updated or deleted.

* Maximum Buffer Length: Specifies the maximum number of bytes that will be allocated
when dequeuing a message from a RAWqueue. The default maximum is
DEFAULT_MAX_PAYLOAD LENGTH but it can be changed to any other nonzero value. If the
buffer is not large enough to contain the entire message, then the exceeding bytes will be
silently ignored.

* Navigation: Specifies the position of the message that will be retrieved. It can take one of
the following values:

— Navi gationOption. FI RST_MESSAGE: The first available message matching the search
criteria is dequeued.

— Navi gationOpti on. NEXT_MESSACE: (default) The next available message matching
the search criteria is dequeued. If the previous message belongs to a message
group, then the next available message matching the search criteria in the message
group is dequeued.

— Navi gationOption. NEXT_TRANSACTI ON: Messages in the current transaction group
are skipped, and the first message of the next transaction group is dequeued. This
setting can be used only if message grouping is enabled for the queue.

* Retrieve Message ID: Specifies whether or not the message identifier of the dequeued
message needs to be retrieved. By default, it is not retrieved.

* Transformation: Specifies a transformation that will be applied after dequeuing the
message. The source type of the transformation must match the type of the queue.

" Note:

Transformations must be created in PL/SQL using
DBVS_TRANSFORM CREATE_TRANSFORMATI ON(. . .) .

* Visibility: Specifies whether or not the message is dequeued as part of the current
transaction. It can take one of the following values:

— VisibilityOption. ON COW T: (default) The dequeue operation is part of the current
transaction.

— VisibilityOption.|MVED ATE: The dequeue operation is an autonomous transaction
that commits at the end of the operation.

ORACLE 25-9

Chapter 25
Examples: Enqueuing and Dequeuing

< Note:

The Visibility option is ignored in the DequeueMde. BROASE dequeue
mode. If the delivery filter is DEQUEUE_BUFFERED or

DEQUEUE_PERSI STENT_OR_BUFFERED, then this option must be set to
VisibilityOption.|MVEDI ATE.

* Wait: Specifies the wait time for the dequeue operation, if none of the messages
matches the search criteria. The default value is DEQUEUE_WAI T_FOREVER indicating
that the operation waits forever. If set to DEQUEUE_NO WAI T, then the operation does
not wait. If a number is specified, then the dequeue operation waits for the
specified number of seconds.

< Note:

If you use DEQUEUE_WAI T_FOREVER, then the dequeue operation will not
return until a message that matches the search criterion is available in
the queue. However, you can interrupt the dequeue operation by calling
the cancel method on the O acl eConnecti on object.

The following code snippet illustrates how to set the dequeue options and dequeue the
message:

AQPequeueOptions deqopt = new AQDequeueOptions();

deqopt . set Retri eveMessagel d(true);

deqopt . set Consuner Nane(consuner Nane) ;

AQ\Vessage nmsg = conn. dequeue(queueNane, deqopt , queueType);

25.8 Examples: Enqueuing and Dequeuing

ORACLE

This section provides a few examples that illustrate how to enqueue and dequeue
messages.

Example 25-2 illustrates how to enqueue a message, and Example 25-3 illustrates
how to dequeue a message.

Example 25-2 Enqueuing a Single Message

This example illustrates how to obtain access to a queue, create a message, and
enqueue it.

AQ\VessageProperties nmsgprop = AQrFactory. creat eAQvessageProperties();
msgprop. setPriority(1);

megpr op. set Except i onQueue(" EXCEPTI ON_QUEUE") ;

msgpr op. set Expi ration(0);

AQAgent agent = AQFactory.creat eAQAgent ();

agent . set Nanme(" AGENTNAME") ;

agent . set Addr ess(" AGENTADDRESS") ;

megpr op. set Sender (agent) ;

AQvkessage nmesg = AQFactory. creat eAQvessage(nmsgprop);

mesg. set Payl oad(buffer); // where buffer is a byte array (for a RAW queue)
AQEnqueueOptions options = new AQEnqueueQptions();

conn. enqueue("HR MY_QUEUE", options, mesg);

25-10

Chapter 25
Examples: Enqueuing and Dequeuing

Example 25-3 Dequeuing a Single Message

This example illustrates how to obtain access to a queue, set the dequeue options, and
dequeue the message.

AQPequeueOptions options = new AQDequeueOptions();
options. setDeliveryFilter(AQDequeueOptions. Del i veryFilter.BUFFERED);
AQ\vessage nmesg = conn. dequeue("HR MY_QUEUE", options, "RAW);

ORACLE 25-11

Continuous Query Notification

This section describes the following topics:

e Overview of Continuos Query Notification
e Creating a Registration

e Associating a Query with a Registration

* Notifying Database Change Events

e Deleting a Registration

26.1 Overview of Continuous Query Notification

ORACLE

Generally, a middle-tier data cache duplicates some data from the back-end database server.
Its goal is to avoid redundant queries to the database. However, this is efficient only when the
data rarely changes in the database. The data cache has to be updated or invalidated when
the data changes in the database. Starting from 11g Release 1, Oracle JDBC drivers provide
support for the Continuous Query Notification feature of Oracle Database. Using this
functionality, multitier systems can take advantage of the Continuous Query Notification
feature to maintain a data cache as up-to-date as possible, by receiving invalidation events
from the JDBC drivers.

The JDBC drivers can register SQL queries with the database and receive notifications in
response to the following:

DML or DDL changes on the objects associated with the queries
DML or DDL changes that affect the result set

The notifications are published when the DML or DDL transaction commits (changes made in
a local transaction do not generate any event until they are committed).

To use Oracle JDBC driver support for Continuous Query Notification, perform the following:

1. Registration: You first need to create a registration.

2. Query association:; After you have created a registration, you can associate SQL queries
with it. These queries are part of the registration.

3. Notification: Notifications are created in response to changes in tables or result set.
Oracle database communicates these notifications to the JDBC drivers through a
dedicated network connection and JDBC drivers convert these natifications to Java
events.

Also, you need to grant the CHANGE NOTI FI CATI ON privilege to the user. For example, if you
connect to the database using the HR user name, then you need to run the following
command in the database:

grant change notification to HR;

26-1

Chapter 26
Creating a Registration

26.2 Creating a Registration

Creating a registration is a one-time process and is done outside the currently used
transaction. The API for creating a registration in the server is executed in its own
transaction and is committed immediately. You need a JDBC connection to create a
registration, however, the registration is not attached to the connection. You can close
the connection after creating a registration, and the registration survives. In an Oracle
RAC environment, a registration is a persistent entity that exists on all nodes. The
registration exists in the Database. So, even if a node goes down, the registration
continues to exist and is notified when the tables change.

There are two ways to create a registration:

e The JDBC-style of registration: Use the JDBC driver to create a registration on the
server. The JDBC driver launches a new thread that listens to notifications from
the server (through a dedicated channel) and converts these notification
messages into Java events. The driver then natifies all the listeners registered with
this registration.

e The PL/SQL-style of registration: If you want a PL/SQL stored procedure to handle
the notifications, then create a PL/SQL-style registration. As in the JDBC-style of
registration, the JDBC drivers enable you to attach statements (queries) to this
registration. However the JDBC drivers do not get notifications from the server
because the notifications are handled by the PL/SQL stored procedure.

Note:

This approach is useful only for nonmultithreaded languages, such as PHP.

There is no way to remove one particular object (table) from an existing registration. A
workaround would be to either create a new registration without this object or ignore
the events that are related to this object.

You can use the regi st er Dat abaseChangeNot i fi cat i on method of the

oracl e.jdbc. O acl eConnecti on interface to create a JDBC-style of registration. You
can set certain registration options through the opt i ons parameter of this method. The
"Continuous Query Notification Registration Options™ table in the following section lists
some of the registration options that can be set. To set these options, use the
java.util.Properties object. These options are defined in the

oracl e.jdbc. Oracl eConnecti on interface. The registration options have a direct
impact on the notification events that the JDBC drivers will create. The example (at the
end of this chapter) illustrates how to use the Continuous Query Notification feature.

The r egi st er Dat abaseChangeNot i fi cati on method creates a new database change
registration in the database server with the given options. It returns a

Dat abaseChangeRegi st rat i on object, which can then be used to associate a
statement with this registration. It also opens a listener socket that will be used by the
database to send notifications.

ORACLE 26-2

< Note:

Chapter 26
Associating a Query with a Registration

If a listener socket (created by a different registration) exists, then this socket will be
used by the new database change registration as well.

26.2.1 Continuous Query Notification Registration Options

The following table lists the Continuous Query Notification Registration Options:

Table 26-1 Continuous Query Notification Registration Options

Option

Description

DCN_| GNORE_DELETECP
DCN_| GNORE_| NSERTOP
DCN_| GNORE_UPDATECP

DCN_NOTI FY_CHANCGELAG

DCN_NOTI FY_ROW DS

DCN_QUERY_CHANGE_NOTI FI CATI ON

NTF_LOCAL_HCST

NTF_LOCAL_TCP_PORT
NTF_QOS_PURGE_ON_NTFN

NTF_QOS_RELI ABLE

NTF_TI MEQUT

If set to t r ue, DELETE operations will not generate any database change
event.

If setto t rue, | NSERT operations will not generate any database change
event.

If set to t r ue, UPDATE operations will not generate any database change
event.

Specifies the number of transactions by which the client is willing to lag
behind.

Note: If this option is set to any value other than 0, then RON D level
granularity of information will not be available in the events, even if the
DCN_NOTI FY_ROW DS option is set to t r ue.

Database change events will include row-level details, such as operation
type and ROW D.

Activates query change notification instead of object change noatification.

Note: This option is available only when running against an 11.0
database.

Specifies the IP address of the computer that will receive the notifications
from the server.

Specifies the TCP port that the driver should use for the listener socket.

Specifies if the registration should be expunged on the first notification
event.

Specifies whether or not to make the natifications persistent, which
comes at a performance cost.

Specifies the time in seconds after which the registration will be
automatically expunged by the database.

If there exists a registration, then you can also use the get Dat abaseChangeRegi strati on
method to map the existing registration with a new Dat abaseChangeRegi st rat i on object. This
method is particularly useful if you have created a registration using PL/SQL and want to
associate a statement with it.

26.3 Associating a Query with a Registration

After you have created a registration or mapped to an existing registration, you can associate
a query with it. Like creating a registration, associating a query with a registration is a one-

ORACLE

26-3

Chapter 26
Notifying Database Change Events

time process and is done outside of the currently used registration. The query will be
associated even if the local transaction is rolled back.

You can associate a query with registration using the

set Dat abaseChangeRegi st rat i on method defined in the Or acl eSt at enent class. This
method takes a Dat abaseChangeRegi st rat i on object as parameter. The following
code snippet illustrates how to associate a query with a registration:

/1 conn is an Oracl eConnection object.
/] prop is a Properties object containing the registration options.
Dat abaseChangeRegi stration dcr = conn.regi sterDat abaseChangeNot i fi ctai on(prop);

Statement stnt = conn.createStatenent();

/'l associating the query with the registration

((Oracl eStatenment)stnt). set Dat abaseChangeRegi stration(dcr);

/1 any query that will be executed with the 'stnt' object will be associated with
Il the registration "dcr' until 'stmt' is closed or

Il " ((Oracl eStat ement)stnt). set Dat abaseChangeRegi stration(null);"' is executed.

26.4 Notifying Database Change Events

ORACLE

To receive Continuous Query Notifications, attach a listener to the registration. When a
database change event occurs, the database server notifies the JDBC driver. The
driver then constructs a new Java event, identifies the registration to be notified, and
notifies the listeners attached to the registration. The event contains the object ID of
the database object that has changed and the type of operation that caused the
change. Depending on the registration options, the event may also contain row-level
detail information. The listener code can then use the event to make decisions about
the data cache.

< Note:

The listener code must not slow down the JDBC notification mechanism. If
the code is time-consuming, for example, if it refreshes the data cache by
querying the database, then it needs to be executed within its own thread.

You can attach a listener to a registration using the addLi st ener method. The
following code snippet illustrates how to attach a listener to a registration:

/1 conn is an Oracl eConnection object.
/] prop is a Properties object containing the registration options.
Dat abaseChangeRegi stration dcr = conn.regi sterDat abaseChangeNot i fi ctai on(prop);

/1 Attach the listener to the registration.

/1 Note: DCNListener is a customlistener and not a predefined or standard
Il |siener

DCNLi st ener |ist = new DCNLi stener();

der. addLi stener(list);

26-4

Chapter 26
Deleting a Registration

26.5 Deleting a Registration

ORACLE

You need to explicitly unregister a registration to delete it from the server and release the
resources in the driver. You can unregister a registration using a connection different from
one that was used for creating it. To unregister a registration, you can use the

unr egi st er Dat abaseChangeNot i fi cat i on method defined in

oracl e.jdbc. Oracl eConnecti on.

You must pass the Dat abaseChangeRegi st rati on object as a parameter to this method. This
method deletes the registration from the server and the driver and closes the listener socket.

If the registration was created outside of JDBC, say using PL/SQL, then you must pass the
registration ID instead of the Dat abaseChangeRegi strati on object. The method will delete the
registration from the server, however, it does not free any resources in the driver.

Example 26-1 illustrates how to use the Continuous Query Notification feature. In this
example, the HR user is connecting to the database. Therefore in the database you need to
grant the following privilege to the user:

grant change notification to HR;

This code will also work with Oracle Database 10g Release 2 (10.2). This code uses table
registration. That is, when you register a SELECT query, what you register is the name of the
tables involved and not the query itself. In other words, you might select one single row of a
table and if another row is updated, you will be notified although the result of your query has
not changed.

In this example, if you leave the registration open instead of closing it, then the Continuous
Query Notification thread continues to run. Now if you run a DML query that changes the
HR. DEPARTMENTS table and commit it, say from SQL*Plus, then the Java program prints the
notification.

Example 26-1 Continuous Query Notification

i mport java.sql.ResultSet;

i nport java.sql.SQLException;

i nport java.sql.Statenent;

inport java.util.Properties;

i mport oracle.jdbc. Oracl eConnecti on;

import oracle.jdbc. OracleDriver;

i mport oracle.jdbc. Oracl eStatenent;

i nport oracle.jdbc. dcn. Dat abaseChangeEvent ;

i mport oracl e.jdbc. dcn. Dat abaseChangeli st ener;;

i mport oracle.jdbc. dcn. Dat abaseChangeRegi strati on;

public class DBChangeNotification

{
static final String USERNAME= "HR';
static final String PASSWORD= "hr";
static String URL;

public static void main(String[] argv)
{
if(argv.length < 1)
{
Systemout.printIn("Error: You need to provide the URL in the first argunment.");
Systemout.println(" For exanple: > java -classpath .:ojdbcé.jar
DBChangeNoti fication \"jdbc:oracle:thin:

26-5

ORACLE

Chapter 26
Deleting a Registration

@ DESCRI PTI ON=(ADDRESS=(PROTOCOL=t cp) (HOST=your host . your domai n. com) (PORT=5221))
(CONNECT_DATA=
(SERVI CE_NAME=orcl)))\"");

Systemexit(1);
}
URL = argv[0];
DBChangeNot i fication deno = new DBChangeNotification();
try
{

deno. run();

cat ch(SQLExcepti on mai nSQLException)

{
mai nSQLException. print StackTrace();
}
}
void run() throws SQLException
{

Oracl eConnection conn = connect();

[l first step: create a registration on the server:
Properties prop = new Properties();

/1 if connected through the VPN, you need to provide the TCP address of the
client.

/'l For exanple:

/'l prop.setProperty(Oracl eConnection. NTF_LOCAL_HOST, " 14. 14. 13. 12");

Il Ask the server to send the RONDs as part of the DCN events (snall
per f or mance

/'l cost):

prop. set Property(Oracl eConnecti on. DCN_NOTI FY_ROW DS, "true");

Il
/1 Set the DCN_QUERY_CHANGE_NOTI FI CATI ON option for query registration with finer
granul arity.

prop. set Property(Oracl eConnecti on. DCN_QUERY_CHANGE_NOTI FI CATI ON, "t rue");

/1 The follow ng operation does a roundtrip to the database to create a new

/'l registration for DCN. It sends the client address (ip address and port)
t hat

/1 the server will use to connect to the client and send the notification

/1 when necessary. Note that for now the registration is enpty (we haven't
registered

/1 any table). This also opens a new thread in the drivers. This thread will
be

/] dedicated to DCN (accept connection to the server and dispatch the events
to

Il the listeners).

Dat abaseChangeRegi stration dcr =
conn. regi st er Dat abaseChangeNoti fi cati on(prop);

try

{
/1 add the listenerr:
DCNDenoLi st ener |ist = new DCNDenoLi st ener(this);
dcr. addLi stener(list);

/1 second step: add objects in the registration:
Statement stnt = conn.createStatenent();

26-6

ORACLE

Chapter 26

Deleting a Registration

/] associate the statement with the registration:
((Oracl eStatenent)stnt). set Dat abaseChangeRegi stration(dcr);

ResultSet rs = stnt.executeQuery("select * fromdept where deptno='45"");

while (rs.next())
{}
String[] tableNames = dcr. get Tabl es();
for(int i=0;i<tabl eNames. |ength;i++)
Systemout. println(tabl eNanes[i]+" is part of the registration.");
rs.close();
stnt.close();

cat ch(SQLException ex)

/1 if an exception occurs, we need to close the registration in order
[l to interrupt the thread otherwise it will be hanging around.

if(conn !'=null)
conn. unr egi st er Dat abaseChangeNot i fi cati on(dcr);
throw ex;
}
finally
{
try
{
Il Note that we close the connection!
conn. cl ose();
}
catch(Exception innerex){ innerex.printStackTrace(); }
}

synchroni zed(this)

/1 The following code nodifies the dept table and commits:
try
{
Oracl eConnection conn2 = connect ();
conn2. set Aut oCommi t (f al se);
Statement stnt2 = conn2.createStatement();
stnt 2. execut eUpdate("insert into dept (deptno,dnane) values ('45','cool
dept')",
St at ement . RETURN_GENERATED KEYS) ;
Resul t Set aut oGener at edKey = stnt 2. get Gener at edKeys();
i f (aut oGener at edKey. next())
Systemout.printin("inserted one row with
ROW D=" +aut oGener at edKey. get String(1));

stnt 2. execut eUpdate("insert into dept (deptno,dnane) values ('50','fun dept')",

St at ement . RETURN_GENERATED KEYS) ;
aut oGener at edKey = stnt 2. get Gener at edKeys();
i f (aut oGener at edKey. next())
Systemout.printin("inserted one row with
ROW D=" +aut oGener at edKey. get String(1));
stnt 2.close();
conn2.conmit();
conn2. cl ose();

catch(SQLException ex) { ex.printStackTrace(); }

/1 wait until we get the event
try{ this.wait();} catch(InterruptedExceptionie) {}
}

/1 At the end: close the registration (comment out these 3 lines in order

26-7

Chapter 26
Deleting a Registration

Il to leave the registration open).

Oracl eConnection conn3 = connect ();

conn3. unr egi st er Dat abaseChangeNot i fi cati on(dcr);
conn3. cl ose();

}

/**
* Creates a connection the database.
*/
O acl eConnection connect () throws SQLException
{
OracleDriver dr = new OracleDriver();
Properties prop = new Properties();
prop. set Property("user", DBChangeNoti fi cati on. USERNAME) ;
prop. set Property("password", DBChangeNoti fi cati on. PASSWORD) ;
return (Oracl eConnection)dr. connect (DBChangeNoti fication. URL, prop);
}
}
/**
* DCN listener: it prints out the event details in stdout.
*/
cl ass DCNDenolLi st ener inplenents Dat abaseChangeli st ener
{
DBChangeNot i fi cati on deno;
DCNDenoLi st ener (DBChangeNot i fi cati on dem
{

demob = dem

publi ¢ void onDat abaseChangeNoti fi cati on(Dat abaseChangeEvent e)
{
Thread t = Thread. current Thread();
System out. printl n("DCNDenoLi stener: got an event ("+this+" running on
thread "+t +")");
Systemout.printin(e.toString());
synchroni zed(deno){ deno.notify();}
}
}

ORACLE 26-8

High Availability

This section provides information about the high availability features of Oracle Database 12c
Release 2 (12.2.0.1).

Part VI contains the following chapters:

* Transaction Guard for Java

* Application Continuity for Java

e Oracle JDBC Support for FAN Events
* Transparent Application Failover

e Single Client Access Name

ORACLE

Transaction Guard for Java

Oracle Database 12c¢ Release 1 (12.1) introduced Transaction Guard feature that provides a
generic infrastructure for at-most-once execution during planned and unplanned outages and
duplicate submissions. This chapter discusses Transaction Guard for Java in the following
sections:

e Overview of Transaction Guard for Java

e Transaction Guard Support for XA Transactions

e Transaction Guard for Java APIs

e Complete Example:Using Transaction Guard APls

e About Using Server-Side Transaction Guard APls

27.1 Overview of Transaction Guard for Java

For the current applications, determining the outcome of the last commit operation in a
guaranteed and scalable manner, following a communication failure to the server, is an
unsolved problem. In many cases, the end users are asked to follow certain steps to avoid
resubmitting duplicate request. For example, some applications warn users not to click the
Submit button twice because if it is not followed, then users may unintentionally purchase the
same items twice and submit multiple payments for the same invoice.

To solve this problem, Transaction Guard for Java provides transaction idempotence, that is,
every transaction has at-most-once execution that prevents applications from submitting
duplicate transactions. Every transaction is tagged with a Logical Transaction Identifier

(LTXI D), which can be used by the application after the occurrence of a failure to verify
whether the transaction had committed before the failure or not. For example, if the commit
calls do not return, then, using the LTXI D, the application can find out whether it succeeded or
not.

See Also:

Oracle Database Development Guide

The Application Continuity for Java feature uses Transaction Guard for Java internally, which
enables transparent session recovery and replay of SQL statements (queries and DMLS)
since the beginning of the in-flight transaction. Application Continuity enables recovery of
work after the occurrence of a planned or unplanned outage and Transaction Guard for Java
ensures transaction idempotence. When an outage occurs, the recovery restores the state
exactly as it was before the failure occurred.

ORACLE 27-1

Chapter 27
Transaction Guard Support for XA Transactions

Related Topics

* Application Continuity for Java
Application Continuity provides a general purpose, application-independent
solution that enables recovery of work from an application perspective, after the
occurrence of a planned or unplanned outage. The outage can be related to
system, communication, or hardware following a repair, a configuration change, or
a patch application.

27.2 Transaction Guard Support for XA Transactions

Starting from Oracle Database 12¢ Release 2 (12.2.0.1), Transaction Guard provides
support for XA transactions for one-phase commit optimization, read-only optimization,
and promotable XA. Transaction Guard with XA provides safe replay following
recoverable outages for XA transactions. With the addition of XA support, Transaction
Managers can now provide replay with idempotence enforced more easily using
Transaction Guard.

" Note:

For using Transaction Guard with XA, during session check-out from the
connection pool, you must verify that the database version is Oracle 12c
Release 2 (12.2.0.1) and Transaction Guard is enabled.

A new server protocol provides a guaranteed commit outcome when the commit is
one-phase managed by the database, and switches to a disabled mode while the
Transaction Manager coordinates a transaction for that session. The new protocol sets
a status flag in the LTXID that validates and invalidates access to the LTXID, based on
the current transaction owner.

The protocol is intelligent in its handling that XA can encompass many sessions and
many branches for the one XA transaction. As a further challenge, once a branch is
suspended, a session is available for different transactions, while the original
transaction remains active. There is no requirement to prepare or commit XA
transactions on the same session or RAC instance that created the original branches.
Transaction Guard for XA uses the following two new methods for handling commit
outcome at the database for one-phase XA transactions, while the Transaction
Manager continues to handle commit-outcome for two-phase transactions:

* Using the first method, the driver marks the LTXID provisional until a recoverable
error, or any other named condition, occurs on that session. When a recoverable
error (or any other condition) occurs, the LTXID at the client is marked final. The
guaranteed commit outcome is provided only when the LTXID is final at the client,
and at the server that LTXID has a VALID status, indicating that the database
owns that transaction. Any other access attempt returns an error.

* Using the second method, the client driver does not provide the LTXID to the
application until a recoverable error, or other named condition, occurs on that
session.

27.3 How to Use Transaction Guard with XA

ORACLE 27-2

Chapter 27
Transaction Guard for Java APIs

This section contains the following sections:

Obtaining the Commit Outcome with Promotable XA

For local transactions, the request obtains an LTXID as the transaction key, when there is a
recoverable exception. When a second branch starts, then the request is promoted to XA, or
converted to XA, and a Global Transaction ID (GTRID) is allocated to it. If a recoverable
outage occurs during commit processing, where the application does not receive a reply from
the Transaction Manager, then the application can ask a Transaction Manager for the
outcome. Most requests to the database use either local transactions or single branch
optimization. When you use either local transactions or promotable XA, then there is no
overhead in round trips and management for XA, because the majority of the transactions are
local. The workflow of these transactions follows:

1. Prior to converting to XA, transaction processing is local. Authentication, SELECT
statements, and local transactions carry and use the LTXID of the local transaction.

2. The Transaction Manager allocates a GTRID to the transaction only when it starts to use
XA due to opening a second branch of the transaction.

3. Following a recoverable error, when the application does not receive a commit outcome,
if the transaction is local, then the Transaction Manager can use the LTXID with the
GET_LTXI D_OUTCOME procedure to retrieve the commit outcome and return COVM TTED or
UNCOW TTED outcome to the application.

Replaying if Promotable XA Is Added

Before being promoted, promotable XA supports RDBMS commits through calls and settings
that are not supported by static XA. These calls include auto-commit mode, DDL, DCL,
COMMIT embedded in PL/SQL, and COMMIT through remote procedure calls. The COMMIT
outcome for these user calls and modes is controlled by the RDBMS, and following an error,
the commit outcome can be found using Transaction Guard.

Until promoted, the Transaction Manager is unaware whether the request has issued any
COMMIT or not. If the Transaction Manager wishes to replay a request following a
recoverable error, then the Transaction Manager must determine if any RDBMS COMMIT has
occurred. If any RDBMS COMMIT occurs, or can occur, then replay does not happen. The
CGET_LTXI D_OUTCOME procedure is insufficient in determining this because the procedure only
reports the current transaction outcome. If the LTXID is changed, then the transaction is
committed. So, the invocation of the LTXID callback indicates that the transaction is
committed.

27.4 Transaction Guard for Java APIs

This section discusses the APIs associated with Transaction Guard for Java for the following
activities:

* Retrieving the Logical Transaction Identifiers

* Retrieving the Updated Logical Transaction Identifiers

27.4.1 Retrieving the Logical Transaction Identifiers

Use the get Logi cal Transacti onl d method of the oracl e. j dbc. Oracl eConnect i on interface
to retrieve the current Logical Transaction Identifiers that are sent by the server. This method
call does not make a database round-trip.

ORACLE 27-3

Chapter 27
Complete Example:Using Transaction Guard APIs

Example

O acl eConnection oconn = (O acl eConnection) ods. get Connection();

|l Getting the 1st LTXID after connecting
Logi cal Transactionld firstLtxi d = oconn. get Logi cal Transactionld();

27.4.2 Retrieving the Updated Logical Transaction Identifiers

Use the oracl e. j dbc. Logi cal Transacti onl dEvent Li st ener interface for receiving
updates to Logical Transaction Identifiers. You must implement this interface in your
application to process the Logical Transaction Identifier events.

27.4.2.1 Registering Event Listeners

Use the addLogi cal Transacti onl dEvent Li st ener method to register a listener to the
Logical Transaction Identifier events.

Example

O acl eConnection oconn = (O acl eConnection) ods. get Connection();

/1 The subsequent LTXI D updates can be obtained through the |istener
oconn. addLogi cal Transacti onl dEvent Li st ener (thi s);

You can also use the

addLogi cal Transacti onl dEvent Li st ener (Logi cal Transact i onl dEvent Li st ener
listener, java.util.concurrent.Executor executor) method to register a listener
with an executor.

27.4.2.2 Unregistering Event Listeners

Use the renovelogi cal Transacti onl dEvent Li st ener method to unregister a listener
from the Logical Transaction Identifier events.

Example

O acl eConnection oconn = (O acl eConnection) ods. get Connection();

/1 The subsequent LTXI D updates can be obtained through the |istener
oconn. renovelogi cal Transacti onl dEvent Li st ener (this);

27.5 Complete Example:Using Transaction Guard APIs

The following is a complete example using the Transaction Guard APIs.

i mport oracl e.jdbc. pool . O acl eDat aSour ce;

i mport oracle.jdbc. Oracl eConnecti on;

i mport oracl e.jdbc. Logi cal Transacti onl d;

i mport oracle.jdbc. Logi cal Transacti onl dEvent ;

i mport oracl e.jdbc. Logi cal Transacti onl dEvent Li st ener;

public class transactionGuardExanpl e

{

ORACLE 27-4

Chapter 27
About Using Server-Side Transaction Guard APIs

Oracl ebDat aSource ods = new Oracl eDat aSour ce() ;
ods. set URL(url);

ods. set User ("user");

ods. set Passwor d(" password");

O acl eConnection oconn = (Oracl eConnection) ods. get Connection();

/1 Getting the 1st LTXID after connecting
Logi cal Transactionld firstLtxi d = oconn. get Logi cal Transactionld();

/1 The subsequent LTXI D updates can be obtained via the |istener
oconn. addLogi cal Transacti onl dEvent Li st ener (thi s);

}

public class LtxidListenerlnpl
i npl enents Logi cal Transacti onl dEvent Li st ener

{
public void onLogi cal Transacti onl dEvent (Logi cal Transacti onl dEvent |txi dEvent)
{
Logi cal Transactionld newLtxid = |txidEvent. getLogi cal Transactionld();
[l process newLtxid
}
}

27.6 About Using Server-Side Transaction Guard APIs

ORACLE

The DBM5_APP_CONT package contains the GET_LTXI D_OUTCOVE procedure that contains the
server-side Transaction Guard APIs. This procedure forces the outcome of a transaction. If
the transaction is not committed, then a fake transaction is committed. Otherwise, the state of
the transaction is returned. By default, the EXECUTE privilege for this package is granted to
Database Administrators.

Syntax

PROCEDURE GET_LTXI D_OUTCOVE(CLI ENT_LTXI D IN RAW
comtted OUT BOOLEAN,
USER_CALL_COVPLETED OUT BOOLEAN);

Input Parameter

CLI ENT_LTXI D specifies the LTXI D from the client driver.

Output Parameter
COW TTED specifies that the transaction is committed.

USER_CALL_COVPLETED specifies that the user call, which committed the transaction, is
complete.

Exceptions

SERVER AHEAD is thrown when the server is ahead of the client. So, the transaction is an old
transaction and must have already been committed.

27-5

ORACLE

Chapter 27
About Using Server-Side Transaction Guard APIs

CLI ENT_AHEAD is thrown when the client is ahead of the server. This can only happen if
the server is flashed back or the LTXI Dis corrupted. In either of these situations, the
outcome cannot be determined.

ERRCOR is thrown when an error occurs during processing and the outcome cannot be
determined. It specifies the error code raised during the execution of the current
procedure.

Example

Example 27-1 shows how you can call the GET_LTXI D_OUTCOME procedure and find out
the outcome of an LTXI D

Example 27-1 Finding Out the Outcome of an LTXID

O acl eConnection oconn = (Oracl eConnection) ods. get Connection();
Logi cal Transactionld Itxid = oconn. getLogi cal Transactionld();
bool ean committed = fal se;

bool ean call _conpleted = fal se;

try

{
Cal | abl eStat ement cstnt = oconn. prepareCal | (GET_LTXI D_OUTCOME) ;
cstmt.setoject(l, Itxid);
cstnt.registerCQutParanmeter(2, OracleTypes.BIT);
cstnt.registerCQutParaneter (3, OracleTypes.BIT);

cstnt. execute();

committed = cstnt.getBool ean(2);
cal | _conpl eted = cstnt. getBool ean(3);

Systemout.printIn("LTXID cormitted ? " + committed);
Systemout.println("User call completed ? " + call_conpleted);

catch (SQLException sql exc)

{
Systemout. printIn("Calling GET_LTXI D OUTCOME failed");
sql exc. print StackTrace();

}

27-6

Application Continuity for Java

Application Continuity provides a general purpose, application-independent solution that
enables recovery of work from an application perspective, after the occurrence of a planned
or unplanned outage. The outage can be related to system, communication, or hardware
following a repair, a configuration change, or a patch application.

The outages of the underlying software, hardware, communications, and storage layers can
cause application execution to fail. In the worst cases, the middle-tier servers may need to be
restarted to deal with the logon storms?. The Application Continuity feature helps to overcome
such problems because it masks database outages to the application and end users are not
exposed to such outages.

Note:

* You must use Transaction Guard for using this feature.

e Application Continuity is a feature of the Oracle JDBC Thin driver and is not
supported by JDBC OCI driver.

This chapter discusses the JDBC aspect of Application Continuity in the following sections:

e About Configuring Oracle JDBC for Application Continuity for Java

» About Configuring Oracle Database for Application Continuity for Java
e Application Continuity Support for XA Data Source

e About Identifying Request Boundaries in Application Continuity for Java
e Support for Transparent Application Continuity

« Establishing the Initial State Before Application Continuity Replays

e About Delaying the Reconnection in Application Continuity for Java

e About Retaining Mutable Values in Application Continuity for Java

e Application Continuity Statistics

e About Disabling Replay in Application Continuity for Java

Related Topics

e Transaction Guard for Java

1 "A Logon storm is a sudden increase in the number of client connection requests."

ORACLE 28-1

Chapter 28
About Configuring Oracle JDBC for Application Continuity for Java

28.1 About Configuring Oracle JDBC for Application
Continuity for Java

You must use the

oracle.jdbc.replay. O acl eDat aSour cel npl ,oracl e. j dbc. repl ay. Oracl eConnecti o
nPool Dat aSour cel npl , or oracl e. j dbc. repl ay. driver. Oracl eXADat aSour cel npl
data source to obtain JDBC connections. You can use both

oracle.jdbc. repl ay. Oracl eDat aSour cel npl and

oracle.jdbc.repl ay. Oracl eConnect i onPool Dat aSour cel npl in a standalone manner,
or configure them as connection factories for a connection pool, such as Universal
Connection Pool (UCP), or Oracle WebLogic Server connection pool.

Starting from Oracle Database 12c¢ Release 2 (12.2.0.1), the JDBC Replay Driver
provides a new data source, the XA Replay Data Source, which supports JDBC
operations replay, and also works with both UCP data source and WebLogic Active
GridLink single-pool data source for all the Oracle RAC features, including Fast
Connection Failover, Runtime Connection Load-Balancing, and all types of RAC-
instance affinities. For using this data source, your application must implement the
oracle.jdbc.repl ay. Oracl eXADat aSour ce interface. The actual data source
implementation class is oracl e. j dbc. repl ay. dri ver. Oracl eXADat aSour cel npl . You
can specify the implementation class to UCP data sources and Oracle WebLogic
Server GridLink data source as a connection factory. The factory class for JNDI is
oracle.jdbc.repl ay. Oracl eXADat aSour ceFact ory.

Note:

e The XA replay data source does not provide a configurable replay mode.
For enabling replay, you must use the replay data source and set
FAI LOVER_TYPE to TRANSACTI ON on the database service at the server
side, if not set already.

e Starting from Oracle Database Release 18c, you can also set
FAI LOVER _TYPE to AUTOfor using Transparent Application Continuity.

¢ See Also:

Oracle Real Application Clusters Administration and
Deployment Guide

e For enabling and disabling replay dynamically, you must use a separate
API available on the replay connection proxy. The XA replay data source
does not provide connection pooling. Any get XAConnect i on method call
produces a new JDBC XAConnect i on proxy dynamically, which holds a
new JDBC physical connection as the delegate. The delegate is an
Oracle JDBC driver object.

The following code snippet illustrates the usage of
oracle.jdbc. repl ay. Oracl eDat aSour cel npl and

ORACLE 28-2

Chapter 28
About Configuring Oracle JDBC for Application Continuity for Java

oracle.jdbc.repl ay. Oracl eConnect i onPool Dat aSour cel npl in a standalone JDBC
application:

i nport java.sql.Connection;

i nport javax. sql . Pool edConnecti on;

i mport oracle.jdbc. Oracl eConnecti on;

i mport oracle.jdbc.replay. O acl eDat aSour ceFact ory;

i mport oracle.jdbc. replay. O acl eDat aSour ce;

inport oracle.jdbc.replay.Oracl eConnectionPool Dat aSour ce;

Oracl eDat aSource rds = Oracl eDat aSour ceFact ory. get Or acl eDat aSour ce() ;
rds. set User (user);

rds. set Passwor d(passwd) ;

rds.set URL(url);

...... /1l Other data source configuration |ike callback, tineouts, etc.

Connection conn = rds. get Connection();

((Oracl eConnection) conn).begi nRequest(); // Explicit request begin
...... /1 JDBC calls protected by Application Continuity

((Oracl eConnection) conn).endRequest(); // Explicit request end
conn. cl ose();

O acl eConnect i onPool Dat aSource rcpds =

Or acl eDat aSour ceFact ory. get Oracl eConnect i onPool Dat aSour ce() ;

rcpds. set User (user);

rcpds. set Passwor d(passwd) ;

rcpds. set URL(url);

...... /'l other data source configuration |ike callback, tinmeouts, and so on

Pool edConnection pc = rcpds. get Pool edConnection();

Connection conn2 = pc. get Connection(); // Inplicit request begin
...... /1 JDBC calls protected by Application Continuity
conn2.close(); // Inplicit request end

You must remember the following points while using the connection URL:

* Always use the thin driver in the connection URL.

* Always connect to a service. Never use i nst ance_nane or SID because these do not
direct to known good instances and SID is deprecated.

* If the addresses in the ADDRESS LI ST at the client does not match the REMOTE_LI STENER
setting for the database, then it does not connect showing servi ces cannot be found.
So, the addresses in the ADDRESS LI ST at the client must match the REMOTE LI STENER
setting for the database:

— If REMOTE_LI STENER is set to the SCAN VI P, then the ADDRESS LI ST uses SCAN VI P

— If REMOTE_LI STENER s set to the host VIPs, then the ADDRESS LI ST uses the same
host VIPs

— If REMOTE_LI STENER is set to both SCAN VI P and host VIPs, then the ADDRESS LI ST
uses SCAN VI P and the same host VIPs

ORACLE 28-3

Chapter 28
About Configuring Oracle JDBC for Application Continuity for Java

< Note:

For Oracle clients prior to release 11.2, the ADDRESS LI ST must be
upgraded to use SCAN, which means expanding the ADDRESS LI ST
to three ADDRESS entries corresponding to the three SCAN IP
addresses.

If such clients connect to a database that is upgraded from an earlier
release through Database Upgrade Assistant, then you must retain
the ADDRESS LI ST of these clients set to the HOST VIPs. However, if
REMOTE_LI STENER is changed to ONLY SCAN, or the clients are moved
to a newly installed Oracle Database 12c Release 1, where
REMOTE_LI STENER is ONLY SCAN, then they do not get a complete
service map, and may not always be able to connect.

e Set RETRY_COUNT, RETRY_DELAY, CONNECT_TI MEQUT, and
TRANSPORT_CONNECT_TI MEQUT parameters in the connection string. This is a
general recommendation for configuring the JDBC thin driver connections, starting
from Oracle Database Release 12.1.0.2. These settings improve acquiring new
connections at runtime, at replay, and during work drains for planned outages.

The CONNECT_TI MEQUT parameter is equivalent to the

SQLNET. QUTBOUND_CONNECT _TI MEQUT parameter in the sqgl net . or a file and applies
to the full connection. The TRANSPORT_CONNECT_TI MEQUT parameter applies as per
the ADDRESS parameter. If the service is not registered for a failover or restart, then
retrying is important when you use SCAN. For example, for using remote listeners
pointing to SCAN addresses, you should use the following settings:

j dbc: oracl e: t hin: @DESCRI PTION =
(TRANSPORT_CONNECT_TI MEQUT=3000)
(RETRY_COUNT=20) (RETRY_DELAY=3) (FAl LOVER=ON)
(ADDRESS LI ST =(ADDRESS=(PROTOCOL=t cp)
(HOST=CLOUD- SCANVI P. exanpl e. com) (PORT=5221))
(CONNECT_DATA=(SERVI CE_NAME=or ¢l)