
Oracle® Database
Developers Guide

Release 22.3
F57948-06
February 2023

Oracle Database Developers Guide, Release 22.3

F57948-06

Copyright © 2022, 2022, Oracle and/or its affiliates.

Primary Author: Vandana Rajamani

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Get Started

Getting started with SQL for Oracle NoSQL Database 1-1

Schemas used in the examples 1-1

Starting the SQL shell 1-2

Tables used in the examples 1-2

Describe tables 1-3

Sample data to run queries 1-5

Table Hierarchies 1-8

2 Create

Create Database objects 2-1

Creating a namespace 2-1

Creating a table 2-2

Creating a region 2-3

Create and Manage Indexes 2-3

Classification of Indexes 2-4

Creating Indexes 2-6

View Index 2-11

Drop Index 2-13

3 Manage

Namespace Management 3-1

Namespace Resolution 3-1

Manage Namespaces 3-1

Namespace scoped privileges 3-2

Granting Authorization Access to Namespaces 3-2

Inserting, Modifying, and Deleting Data 3-6

Insert data 3-6

Upsert Data 3-10

Update Data 3-15

Modify JSON data 3-17

iii

Delete Data 3-18

Managing Tables & Regions 3-18

Alter Table 3-19

Drop Table 3-21

Manage regions 3-21

4 Develop

Simple SELECT queries 4-1

Fetch column data 4-1

Substituting column names in a query 4-3

Filtering results in a query 4-6

Using Path expressions 4-8

Using Internal variables and aliases 4-9

Working with Arrays 4-10

Working with nested data type 4-12

Finding the size of a complex data type 4-13

Using Left Outer joins with parent-child tables 4-14

Overview of Left Outer Joins 4-15

Examples using Left Outer Joins 4-15

Using NESTED TABLES to join parent-child tables 4-23

Overview of NESTED TABLES 4-24

Examples using NESTED TABLES 4-24

Tuning and Optimizing SQL queries 4-33

Using Indexes for query optimization 4-33

Examples of queries using index 4-33

Managing GeoJSON data 4-40

geo_inside 4-41

geo_intersect 4-43

geo_distance 4-44

geo_within_distance 4-45

geo_near 4-47

geo_is_geometry 4-49

5 Reference

Operators in SQL 5-1

Sequence Comparison Operators 5-1

Logical operators 5-3

NULL operators 5-5

Value Comparison Operators 5-6

iv

IN Operator 5-9

Regular Expression Conditions 5-9

EXISTS Operator 5-11

Is-Of-Type Operator 5-12

Sorting, Grouping & Limiting results 5-13

Ordering results 5-13

Limit and offset results 5-15

Grouping results 5-16

Primary Expressions in SQL 5-17

Parenthesized Expressions 5-18

Case Expressions 5-18

Cast Expression 5-20

Sequence Transform Expressions 5-23

Timestamp functions 5-24

Extract Expressions 5-24

timestamp_add() function 5-26

timestamp_diff() and get_duration() functions 5-29

Functions on Strings 5-32

substring function 5-32

concat function 5-33

upper and lower functions 5-33

trim function 5-34

length function 5-35

contains function 5-36

starts_with and ends_with functions 5-36

index_of function 5-37

replace function 5-38

reverse function 5-39

Query execution plan 5-39

Overview of query plan 5-40

Query 1: Using primary key index with an index range scan 5-42

Query 2: Using primary key index with an index predicate 5-45

Query 3: Using a secondary index with an index range scan 5-48

Query 4: Using the primary index 5-51

Query 5: Sort the data using a Covering index 5-53

Query 6: Using a secondary index with an index predicate 5-55

Query 7: Group data with fields as part of the index 5-58

Query 8: Using the secondary index with multiple index scans 5-60

Query 9: A SINGLE PARTITION query using a primary index 5-63

Query 10: Group data with fields not part of any index 5-66

Table Modelling and Design 5-69

v

Schema Flexibility in Oracle NoSQL Database 5-70

Choice of Keys in NoSQL Database 5-72

Using Indexes in NoSQL Database 5-74

Transactions in NoSQL database 5-76

Index

vi

List of Tables

3-1 Namespace Privileges and Permissions 3-3

4-1 Nested Tables Vs LOJ 4-24

vii

1
Get Started

The articles in this section focus on providing the quickest path to using SQL for Oracle
NoSQL Database . It contains the schema used in the examples and sample data to run
queries.

Getting started with SQL for Oracle NoSQL Database
Welcome to SQL for Oracle NoSQL Database. This language provides a SQL-like interface to
Oracle NoSQL Database. The SQL for Oracle NoSQL Database data model supports flat
relational data, hierarchical typed (schema-full) data, and schema-less JSON data. SQL for
Oracle NoSQL Database is designed to handle all such data seamlessly without any
impedance mismatch among the different sub-models. Impedance mismatch is the problem
that occurs due to differences between the database model and the programming language
model.

Pre-requisites: You already have an installation of the Oracle NoSQL Database. You could
also use KVLite which is a simplified version of the Oracle NoSQL Database.

• Schemas used in the examples

• Starting the SQL shell

• Tables used in the examples

• Describe tables

• Sample data to run queries

• Table Hierarchies

Schemas used in the examples
You have two different schemas (with real-time scenarios) for learning various SQL
concepts. These two schemas will include various data types that can be used in the Oracle
NoSQL database.

Schema 1: BaggageInfo schema

Using this schema you can handle a use case wherein passengers traveling on a flight can
track the progress of their checked-in bags or luggage along the route to the final destination.
This functionality can be made available as part of the airline's mobile application. Once the
passenger logs into the mobile application, the ticket number or reservation code of the
current flight is displayed on the screen. Passengers can use this information to search for
their baggage information. The mobile application is using NoSQL Database to store all the
data related to the baggage. In the backend, the mobile application logic performs SQL
queries to retrieve the required data.

Schema 2: Streaming Media Service - Persistent User Profile Store

Consider a TV streaming application. It streams various shows that are watched by
customers across the globe. Every show has a number of seasons and every season has

1-1

multiple episodes. You need a persistent meta-data store that keeps track of the
current activity of the customers using the TV streaming application. Using this
schema you can provide useful information to the customer such as episodes they
watched, the watch time per episode, the total number of seasons of the show they
watched, etc. The data is stored in the NoSQL Database and the application performs
SQL queries to retrieve the required data and make it available to the user.

Starting the SQL shell
You can run SQL queries and run DDL statements directly from the SQL shell. Here is
the general usage to start the shell:

java -jar KVHOME/lib/sql.jar
 -helper-hosts <host:port[,host:port]*>
 -store <storeName>
 [-username <user>]
 [-security <security-file-path>]
 [-timeout <timeout ms>]
 [-consistency <NONE_REQUIRED(default) | ABSOLUTE |
NONE_REQUIRED_NO_MASTER>]
 [-durability <COMMIT_SYNC(default) | COMMIT_NO_SYNC |
COMMIT_WRITE_NO_SYNC>]
 [single command and arguments]

where:

-consistency Configures the read consistency used for this session.

-durability Configures the write durability used for this session.

-helper-hosts Specifies a comma-separated list of hosts and ports.

-store Specifies the name of the store.

-timeout Configures the request timeout used for this session.

-username Specifies the username to login as.

For example, you can start the shell like this:

java -jar KVHOME/lib/sql.jar -helper-hosts node01:5000 -store kvstore
sql->

This command assumes that a store kvstore is running at port 5000. After the SQL
starts successfully, you run queries.

Tables used in the examples
The table is the basic structure to hold user data.

Schema 1: BaggageInfo schema

The table used in this schema is BaggageInfo. This schema has a combination of fixed
data types like LONG, STRING. It also has a schema-less JSON (bagInfo) as one of
its columns. The schema-less JSON does not have a fixed data type. The bag

Chapter 1
Getting started with SQL for Oracle NoSQL Database

1-2

information of the passengers is a schema-less JSON. In contrast, the passenger's
information like ticket number, full name, gender, contact details is all part of a fixed schema.
You can add any number of fields to this non-fixed schemaless JSON field. .

The following code creates the table.

CREATE TABLE BaggageInfo (
ticketNo LONG,
fullName STRING,
gender STRING,
contactPhone STRING,
confNo STRING,
bagInfo JSON,
PRIMARY KEY (ticketNo)
)

Schema 2: Streaming Media Service - Persistent User Profile Store

The table used in this schema is stream_acct. This schema has a composite primary key
column comprised of acct_id and user_id.The schema also includes a JSON column
(acct_data), which is schema-less. The schema-less JSON does not have a fixed data type.
You can add any number of fields to this non-fixed schemaless JSON field.

The following code creates the table.

CREATE TABLE stream_acct(
acct_id INTEGER,
acct_data JSON,
PRIMARY KEY(acct_id)
)

Describe tables
You use DESCRIBE or DESC command to view the description of a table.

(DESCRIBE | DESC) [AS JSON] TABLE table_name ["(" field_name")"]

AS JSON can be specified if you want the output to be in JSON format. You could get
information about a specific field in any table by providing the field name.

Example 1: Describe a table

DESCRIBE TABLE stream_acct

Output:

=== Information ===
 +-------------+-----+-------+----------+--------+----------+---------
+---------+-------------+
 | name | ttl | owner | sysTable | parent | children | regions |
indexes | description |
 +-------------+-----+-------+----------+--------+----------+---------
+---------+-------------+

Chapter 1
Getting started with SQL for Oracle NoSQL Database

1-3

 | stream_acct | | | N | | |
| | |
 +-------------+-----+-------+----------+--------+----------+---------
+---------+-------------+
 === Fields ===
 +----+-----------+---------+----------+---------+----------
+------------+----------+
 | id | name | type | nullable | default | shardKey |
primaryKey | identity |
 +----+-----------+---------+----------+---------+----------
+------------+----------+
 | 1 | acct_id | Integer | N | NULL | Y |
Y | |
 +----+-----------+---------+----------+---------+----------
+------------+----------+
 | 2 | acct_data | Json | Y | NULL |
| | |
 +----+-----------+---------+----------+---------+----------
+------------+----------+

Example 2: Describe a table and display the output as JSON

DESC AS JSON TABLE BaggageInfo

Output:

{
 "json_version" : 1,
 "type" : "table",
 "name" : "BaggageInfo",
 "fields" : [{
 "name" : "ticketNo",
 "type" : "LONG",
 "nullable" : false
 }, {
 "name" : "fullName",
 "type" : "STRING",
 "nullable" : true
 }, {
 "name" : "gender",
 "type" : "STRING",
 "nullable" : true
 }, {
 "name" : "contactPhone",
 "type" : "STRING",
 "nullable" : true
 }, {
 "name" : "confNo",
 "type" : "STRING",
 "nullable" : true
 }, {
 "name" : "bagInfo",
 "type" : "JSON",
 "nullable" : true

Chapter 1
Getting started with SQL for Oracle NoSQL Database

1-4

 }],
 "primaryKey" : ["ticketNo"],
 "shardKey" : ["ticketNo"]
}

Example 3: Describe one particular field of a table

DESCRIBE TABLE BaggageInfo (ticketNo)

Output:

 +----+----------+------+----------+---------+----------+------------
+----------+
 | id | name | type | nullable | default | shardKey | primaryKey |
identity |
 +----+----------+------+----------+---------+----------+------------
+----------+
 | 1 | ticketNo | Long | N | NULL | Y | Y
| |
 +----+----------+------+----------+---------+----------+------------
+----------+

Sample data to run queries
Schema 1: BaggageInfo schema

If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and run it as shown below. This script creates the table used
in the example and loads data into the table. One sample row is shown below.

"ticketNo" : 1762344493810,
"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1064",
"confNo" : "LE6J4Z",
 [{
 "id" : "79039899165297",
 "tagNum" : "17657806255240",
 "routing" : "MIA/LAX/MEL",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MEL",
 "flightLegs" : [{
 "flightNo" : "BM604",
 "flightDate" : "2019-02-01T01:00:00",
 "fltRouteSrc" : "MIA",
 "fltRouteDest" : "LAX",
 "estimatedArrival" : "2019-02-01T03:00:00",
 "actions" : [{
 "actionAt" : "MIA",
 "actionCode" : "ONLOAD to LAX",
 "actionTime" : "2019-02-01T01:13:00"
 }, {

Chapter 1
Getting started with SQL for Oracle NoSQL Database

1-5

 "actionAt" : "MIA",
 "actionCode" : "BagTag Scan at MIA",
 "actionTime" : "2019-02-01T00:47:00"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "Checkin at MIA",
 "actionTime" : "2019-02-01T23:38:00"
 }]
 }, {
 "flightNo" : "BM667",
 "flightDate" : "2019-01-31T22:13:00",
 "fltRouteSrc" : "LAX",
 "fltRouteDest" : "MEL",
 "estimatedArrival" : "2019-02-02T03:15:00",
 "actions" : [{
 "actionAt" : "MEL",
 "actionCode" : "Offload to Carousel at MEL",
 "actionTime" : "2019-02-02T03:15:00"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "ONLOAD to MEL",
 "actionTime" : "2019-02-01T07:35:00"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "OFFLOAD from LAX",
 "actionTime" : "2019-02-01T07:18:00"
 }]
 }],
 "lastSeenTimeGmt" : "2019-02-02T03:13:00",
 "bagArrivalDate" : "2019.02.02T03:13:00"
 }]

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file baggageschema_loaddata.sql

Schema 2: Streaming Media Service - Persistent User Profile Store

Download the script acctstream_loaddata.sql and run it as shown below. This script
creates the table used in the example and loads data into the table. One sample row is
shown below.

1,
{
 "firstName" : "John",
 "lastName" : "Sanders",
 "country" : "USA",
 "contentStreamed": [

Chapter 1
Getting started with SQL for Oracle NoSQL Database

1-6

 {
 "showName" : "Casa de papel",
 "showId" : 26,
 "showtype" : "tvseries",
 "genres" : ["action", "crime", "spanish"],
 "numSeasons" : 4,
 "seriesInfo": [
 {
 "seasonNum" : 1,
 "numEpisodes" : 2,
 "episodes": [
 {
 "episodeID": 20,
 "lengthMin": 85,
 "minWatched": 85,
 "date" : "2022-04-18"
 },
 {
 "episodeID": 30,
 "lengthMin": 60,
 "minWatched": 60,
 "date" : "2022-04-18"
 }
]
 },
 {
 "seasonNum": 2,
 "numEpisodes" : 4,
 "episodes": [
 {
 "episodeID": 40,
 "lengthMin": 50,
 "minWatched": 50,
 "date" : "2022-04-25"
 },
 {
 "episodeID": 50,
 "lengthMin": 45,
 "minWatched": 30,
 "date" : "2022-04-27"
 }
]
 }
]
 },
 {
 "showName": "Call My Agent",
 "showId": 15,
 "showtype": "tvseries",
 "genres" : ["comedy", "french"],
 "numSeasons" : 2,
 "seriesInfo": [
 {
 "seasonNum" : 1,
 "numEpisodes" : 2,

Chapter 1
Getting started with SQL for Oracle NoSQL Database

1-7

 "episodes": [
 {
 "episodeID": 20,
 "lengthMin": 45,
 "minWatched": 45,
 "date" : "2022-03-07"
 },
 {
 "episodeID": 30,
 "lengthMin": 42,
 "minWatched": 42,
 "date" : "2022-03-08"
 }
]
 }
]
 }
]
 }

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file acctstream_loaddata.sql

Table Hierarchies
The Oracle NoSQL Database enables tables to exist in a parent-child relationship.
This is known as table hierarchies.

The create table statement allows for a table to be created as a child of another table,
which then becomes the parent of the new table. This is done by using a composite
name (name_path) for the child table. A composite name consists of a number N (N >
1) of identifiers separated by dots. The last identifier is the local name of the child table
and the first N-1 identifiers point to the name of the parent.

Characteristics of parent-child tables:

• A child table inherits the primary key columns of its parent table.

• All tables in the hierarchy have the same shard key columns, which are specified
in the create table statement of the root table.

• A parent table cannot be dropped before its children are dropped.

• A referential integrity constraint is not enforced in a parent-child table.

You should consider using child tables when some form of data normalization is
required. Child tables can also be a good choice when modeling 1 to N relationships
and also provide ACID transaction semantics when writing multiple records in a
parent-child hierarchy.

Chapter 1
Getting started with SQL for Oracle NoSQL Database

1-8

2
Create

The articles in this section include examples to create various database objects.

Create Database objects
A database object is any defined object in a database that is used to store or reference data.
You use a CREATE command to create a Database object. You can use a database object to
hold and manipulate the data.

• Creating a namespace

• Creating a table

• Creating a region

Creating a namespace
A namespace defines a group of tables, within which all of the table names must be uniquely
identified. Namespaces permit you to do table privilege management as a group operation.
You can grant authorization permissions to a namespace to determine who can access both
the namespace and the tables within it. Namespaces permit tables with the same name to
exist in your database store. To access such tables, you can use a fully qualified table name.
A fully qualified table name is a table name preceded by its namespaces, followed with a
colon (:), such as ns1:table1.

All tables are part of some namespace. There is a default Oracle NoSQL Database
namespace, called sysdefault. All tables are assigned to the default sysdefault
namespace, until or unless you create other namespaces, and create new tables within them.
You can't change an existing table's namespace. Tables in sysdefault namespace do not
require a fully qualified name and can work with just the table name.

You can add a new namespace by using the CREATE NAMESPACE statement.

CREATE NAMESPACE [IF NOT EXISTS] namespace_name

Note:

Namespace names starting with sys are reserved. You cannot use the prefix sys for
any namespaces.

The following statement defines a namespace named ns1.

CREATE NAMESPACE IF NOT EXISTS ns1

2-1

Creating a table
The table is the basic structure to hold user data. You use the CREATE TABLE
statement to create a new table in the Oracle NoSQL Database.

Guidelines for creating a table:

• The table definition must include at least one field definition, and exactly one
primary key definition.

• The field definition specifies the name of the column, its data type, whether the
column is nullable or not, an optional default value, whether or not the column is
an IDENTITY column , and an optional comment. All fields (other than the
PRIMARY KEY) are nullable by default.

• The syntax for the primary key specification (key_definition) specifies the primary
key columns of the table as an ordered list of field names.

• The Time-To-Live (TTL) value is used in computing the expiration time of a row.
Expired rows are not included in query results and are eventually removed from
the table automatically by Oracle NoSQL Database. If you specify a TTL value
while creating the table, it applies as the default TTL for every row inserted into
this table.

• You specify the REGIONS clause if the table being created is a Multi-Region table.
The REGIONS clause lists all the regions that the table should span.

Example 1: The following CREATE TABLE statement defines a BaggageInfo table
that holds baggage information of passengers in an airline system.

CREATE TABLE BaggageInfo (
ticketNo LONG,
fullName STRING,
gender STRING,
contactPhone STRING,
confNo STRING,
bagInfo JSON,
PRIMARY KEY (ticketNo)
)

Example 2: The following CREATE TABLE statement defines a stream_acct table
that holds data from a TV streaming application.

CREATE TABLE stream_acct(
acct_id INTEGER,
acct_data JSON,
PRIMARY KEY(acct_id)
)

Example 3: The following CREATE TABLE statement defines a stream_acct_new
table that holds data from a TV streaming application. The rows of the table expire in 2
days.

CREATE TABLE stream_acct_new(
acct_id INTEGER,

Chapter 2
Create Database objects

2-2

acct_data JSON,
PRIMARY KEY(acct_id)) USING TTL 2 days

Creating a region
Oracle NoSQL Database supports Multi-Region Architecture in which you can create tables
in multiple KVStores and Oracle NoSQL Database will automatically replicate inserts,
updates, and deletes in a multi-directional fashion across all regions for which the table
spans. Each KVStore cluster in a Multi-Region NoSQL Database setup is called a Region.

Example 1: The following CREATE REGION statement creates a remote region named
my_region1.

CREATE REGION my_region1

In a Multi-Region Oracle NoSQL Database setup, you must define all the remote regions for
each local region. For example, if there are three regions in a Multi-Region setup, you must
define the other two regions from each participating region. You use the CREATE REGION
statement to define remote regions in the Multi-Region Oracle NoSQL Database.

Example 2: Create a table in a region.

CREATE TABLE stream_acct_region(acct_id INTEGER,
acct_data JSON,
PRIMARY KEY(acct_id)) IN REGIONS my_region1

Note:

The region my_region1 should be set as the local region before creating the table.

Create and Manage Indexes
An index is a database structure that enables you to retrieve data from database tables
efficiently. Indexes provide fast access to the rows of a table when the key(s) you are
searching for is contained in the index.

An index is an ordered map in which each row of the data is called an entry. An index can be
created on atomic data types, arrays, maps, JSON, and GeoJSON data.. An index can store
the following special values:

• NULL

• EMPTY

• json null (It is applicable only for JSON indexes)

If you want to follow along with the examples, download the scripts
baggageschema_loaddata.sql and acctstream_loaddata.sql and run it as shown below. This
script creates the table used in the example and loads data into the table.

Chapter 2
Create and Manage Indexes

2-3

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the scripts.

load -file baggageschema_loaddata.sql
load -file acctstream_loaddata.sql

• Classification of Indexes

• Creating Indexes

• View Index

• Drop Index

Classification of Indexes
Indexes can be classified based on fields, schema, entries, or a combination of them.

Single Field Index: An index is called a single field index if it is created on only one
field of a table.

Composite Index: An index is called a composite index if it is created on more than
one field of a table

Fixed Schema Index: An index is called a fixed schema index if all the fields that are
indexed are strongly typed data.

Note:

A data type is called precise if it is not one of the wild card types. Items that
have precise types are said to be strongly typed.

Schema-less Index (JSON Index): An index is called a JSON index if at least one of
the fields is JSON data or fields inside JSON data.

Chapter 2
Create and Manage Indexes

2-4

Simple Index: An index is called a simple index if for each row of data in the table, there is
one entry created in the index.

Multikey Index: An index is called a multikey index if for each row of data in the table, there
are multiple entries created in the index.

You can create indexes on the values of one or more SQL built-in functions.

List of functions that can be indexed:

The following subset of the Built-in functions can be indexed.

Functions on Timestamps:

• year

• month

• day

• hour

• minute

• second

• millisecond

• microsecond

• nanosecond

• week

Functions on Strings:

• length

• replace

• reverse

• substring

• trim

• ltrim

• rtrim

• lower

• upper

Functions on Rows:

• modification_time

• expiration_time

• expiration_time_millis

• row_storage_size

See Built-in functions for more details on what a built-in function is and how to use these
functions.

Chapter 2
Create and Manage Indexes

2-5

Creating Indexes
An index can be created using the CREATE INDEX command.

Create a single field index:

Example: Create an index on passengers reservation code.

CREATE INDEX fixedschema_conf ON baggageInfo(confNo)

The above is an example of a single-column fixed schema index. The index is created
on the confNo field having string data type in the baggageInfo table.

Create a composite index:

Example : Create an index on the full name and phone number of passengers.

CREATE INDEX compindex_namephone ON baggageInfo(fullName,contactPhone)

The above is an example of a composite index. The index is created on two fields in
the baggageInfo schema, on full name and the contact phone number.

Note:

You can have one or more fields of this index as fixed schema columns.

Create a JSON index:

An index is called a JSON index if at least one of the fields is inside JSON data. As
JSON is schema-less, the data type of an indexed JSON field may be different across
rows. When creating an index on JSON fields, if you are unsure what data type to
expect for the JSON field, you may use the anyAtomic data type. Alternatively, you can
specify one of the Oracle NoSQL Database atomic data types. You do that by
declaring a data type using the AS keyword next to every index path into the JSON
field.

Example 1: Create an index on the tag number of passengers bags.

CREATE INDEX jsonindex_tagnum ON baggageInfo(bagInfo[].tagnum as
INTEGER)

The above is an example of a JSON index. The index is created on the tagnum field
present in the baginfo JSON field in the baggageInfo table. Notice that you provide a
data type for the tagnum field while creating the index.

The creation of a JSON index will fail if the associated table contains any rows with
data that violate the declared data type. Similarly, after creating a JSON index, an
insert/update operation will fail if the new row does not conform to the declared data
type in the JSON index.

Chapter 2
Create and Manage Indexes

2-6

Example 2: Create an index on the route of passengers.

CREATE INDEX jsonindex_routing ON baggageInfo(bagInfo[].routing as ANYATOMIC)

Declaring a JSON index path as anyAtomic has the advantage of allowing the indexed JSON
field to have values of various data types. The index entries are sorted in ascending order.
When these values are stored in the index, they are sorted as follows:

• Numbers

• String

• boolean

However, this advantage is offset by space and CPU costs. It is because numeric values of
any kind in the indexed field will be cast to Number before being stored in the index. This cast
takes CPU time, and the resulting storage for the number will be larger than the original
storage for the number.

Create a simple index:

An index is called a simple index if, for each row of data in the table, there is one entry
created in the index. The index will return a single value that is of atomic data type or any
special value (SQL NULL, JSON NULL, EMPTY). Essentially, the index paths of a simple
index must not return an array or map or a nested data type.

Example: Create an index on three fields, when the bag was last seen, the last seen station
and the arrival date and time.

CREATE INDEX simpleindex_arrival ON baggageInfo(bagInfo[].lastSeenTimeGmt as
ANYATOMIC,
bagInfo[].bagArrivalDate as ANYATOMIC, bagInfo[].lastSeenTimeStation as
ANYATOMIC)

The above is an example of a simple index created on a JSON document in a JSON field.
The index is created on the lastSeenTimeGmt and bagArrivalDate and
lastSeenTimeStation, all from the bagInfo JSON document in the info JSON field in the
baggageInfo table. If the evaluation of a simple index path returns an empty result, the
special value EMPTY is used as an index entry. In the above example, If there is no
lastSeenTimeGmt or bagArrivalDate or lastSeenTimeStation entry in the bagInfo JSON
document, or if there is no bagInfo JSON array, then the special value EMPTY is indexed.

Create a multikey index:

An index is called a multikey index if, for each row of data in the table, there are multiple
entries created in the index. In a multikey index, there is at least one index path that uses an
array or a nested data type. In a multikey index, for each table row, index entries are created
on all the elements in arrays that are being indexed.

Example 1: Multikey index: Create an index on the series info array of the streaming account
application.

CREATE INDEX multikeyindex1 ON stream_acct
(acct_data.contentStreamed[].seriesInfo[] AS ANYATOMIC)

Chapter 2
Create and Manage Indexes

2-7

The index is created on the seriesInfo[] array in the stream_acct table. Here, all the
elements in the seriesInfo[] array in each row of the stream_acct table will be
indexed.

Example 2: Nested multikey index: Create an index on the episode details array of the
streaming account application.

An index is a nested multikey index if it is created on a field that is present inside an
array which in turn is present inside another array.

CREATE INDEX multikeyindex2 ON stream_acct (
 acct_data.contentStreamed[].seriesInfo[].episodes[] AS ANYATOMIC)

The above is an example of a nested multikey index where the field is present in an
array that is present inside another array. The index is created on the episodes[]
array in the seriesInfo[] array in the acct_data JSON of the stream_acct table.

Example 3: Composite multikey index:

An index is called a composite multikey index if it is created on more than one field,
and at least one of those fields is multikey. A composite multikey index may have a
combination of multikey index paths and simple index paths.

CREATE INDEX multikeyindex3 ON stream_acct (acct_data.country AS
ANYATOMIC,
acct_data.contentStreamed[].seriesInfo[].episodes[] AS ANYATOMIC)

The above is an example of a composite multikey index having one multikey index
path and one simple index path. The index is created on the country field and
episodes[]array in the acct_data JSON column of the stream_acct table.

See Specifications & Restrictions on Multikey index to learn about restrictions on
multikey index.

Create an index with NO NULLS clause

You can create an index with the optional WITH NO NULLS clause. In that case, the
rows with NULL and/or EMPTY values on the indexed fields will not be indexed.

CREATE INDEX nonull_phone ON baggageInfo (contactPhone) WITH NO NULLS

• The above query creates an index on the phone number of the passengers. If
some passengers do not have a phone number then those fields will not be part of
the index.

• The indexes that are created with the WITH NO NULLS clause may be useful
when the data contain a lot of NULL and/or EMPTY values on the indexed fields. It
will reduce the time and space overhead during indexing.

• However, the use of such indexes by queries is restricted. If an index is created
with the WITH NO NULLS clause, IS NULL, and NOT EXISTS predicates cannot
be used as index predicates for that index.

• In fact, such an index can be used by a query only if the query has an index
predicate for each of the indexed fields.

Chapter 2
Create and Manage Indexes

2-8

Create an index with unique keys per row

You can create an index with unique keys per row property.

CREATE INDEX idx_showid ON
stream_acct(acct_data.contentStreamed[].showId AS INTEGER)
WITH UNIQUE KEYS PER ROW

In the above query, an index is created on showId and there cannot be duplicate showId for a
single contentStreamed array. This informs the query processor that for any streaming user,
the contentStreamed array cannot contain two or more shows with the same show id. The
restriction is necessary because if duplicate show ids existed, they wouldn’t be included in
the index. If you insert a row with the same showId two or more items in a single
contentStreamed array, an error is thrown and the insert operation is not successful.

Optimization in the query run time :

When you create an index with unique keys per row, the index would contain fewer entries
than the number of elements in the contentStreamed array. You could write an efficient query
to use this index. The use of such an index by the query would yield fewer results from the
FROM clause than if the index was not used.

Examples of creating indexes on functions:

Example 1: Create an index which indexes the rows of the BaggageInfo table by their latest
modification time:

CREATE INDEX idx_modtime ON BaggageInfo(modification_time())

This index will be used in a query which has modification_time as the filter condition.

SELECT * FROM BaggageInfo $u WHERE
modification_time($u) > "2019-08-01T10:45:00"

This query returns all the rows whose most recent modification time is after
2019-08-01T10:45:00. It uses the idx_modtime index defined above. You can verify this by
viewing the query plan using the show query command.

Example 2: Create an index which indexes the rows of the BaggageInfo table on the length
of the routing field.

CREATE INDEX idx_routlen ON BaggageInfo (length(bagInfo[].routing as string))

This index will be used in a query which has length as the filter condition.

SELECT * from BaggageInfo $bag where length($bag.bagInfo[].routing) > 10

This query returns all the rows whose length of the routing field is greater than 10. It uses the
idx_routlen index defined above. You can verify this by viewing the query plan using the
show query command.

Example 3: Using a multi-key index path

Chapter 2
Create and Manage Indexes

2-9

In the following example, you index the users in the stream_acct table by the id of the
shows they watch and the year and month of the dates when the show was watched.

CREATE INDEX idx_showid_year_month ON
stream_acct(acct_data.contentStreamed[].showId AS INTEGER,
substring(acct_data.contentStreamed[].seriesInfo[].episodes[].date AS
STRING,0, 4),
substring(acct_data.contentStreamed[].seriesInfo[].episodes[].date AS
STRING,5, 2))

An example of a query using this index is shown below. The query counts the number
of users who watched any episode of show 16 in the year 2022.

SELECT count(*) FROM stream_acct s1 WHERE EXISTS
s1.acct_data.contentStreamed[$element.showId = 16].seriesInfo.
episodes[substring($element.date, 0, 4) = "2022"]

This query will use the index idx_showid_year_month. You can verify this by viewing
the query plan using the show query command.

show query SELECT count(*) FROM stream_acct s1 WHERE EXISTS
> s1.acct_data.contentStreamed[$element.showId =
16].seriesInfo.episodes[substring($element.date, 0, 4) = "2022"]

{
 "iterator kind" : "GROUP",
 "input variable" : "$gb-1",
 "input iterator" :
 {
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "distinct by fields at positions" : [1],
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "stream_acct",
 "row variable" : "$$s1",
 "index used" : "idx_showid_year_month",
 "covering index" : true,
 "index row variable" : "$$s1_idx",
 "index scans" : [
 {
 "equality conditions" :
{"acct_data.contentStreamed[].showId":16,"substring#acct_data.contentSt
reamed[].seriesInfo[].episodes[].date@,0,4":"2022"},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$s1_idx",

Chapter 2
Create and Manage Indexes

2-10

 "SELECT expressions" : [
 {
 "field name" : "Column_1",
 "field expression" :
 {
 "iterator kind" : "CONST",
 "value" : 1
 }
 },
 {
 "field name" : "acct_id_gen",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#acct_id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$s1_idx"
 }
 }
 }
]
 }
 },
 "grouping expressions" : [

],
 "aggregate functions" : [
 {
 "iterator kind" : "FUNC_COUNT_STAR"
 }
]
}

View Index
You can view the indexes in your database.

SHOW INDEXES

The SHOW INDEXES statement provides the list of indexes present in the specified table. If
you want the output to be in JSON format, you can specify the optional AS JSON.

Example 1: List indexes on the BaggageInfo table.

SHOW INDEXES ON baggageInfo

indexes
 jsonindex_routing
 jsonindex_tagnum
 simpleindex_arrival
 nonull_phone

Chapter 2
Create and Manage Indexes

2-11

Example 2: List indexes on the BaggageInfo table in JSON format.

SHOW AS JSON INDEXES ON baggageInfo
{"indexes" :
["jsonindex_routing","jsonindex_tagnum","simpleindex_arrival"]}

DESCRIBE INDEX

The DESCRIBE INDEX statement defines the specified index on a table. If you want
the output to be in JSON format, you can specify the optional AS JSON.

The description for the index contains the following information:

• Name of the table on which the index is defined.

• Name of the index.

• Type of index. Whether the index is primary index or secondary index.

• Whether the index is multikey? If the index is multikey then 'Y' is displayed.
Otherwise, 'N' is displayed.

• List of fields on which the index is defined.

• The declared type of the index.

• Description of the index.

Example 1: Describe the index multikeyindex3.

DESCRIBE INDEX multikeyindex3 ON stream_acct
+-------------+----------------+-----------+----------
+-----------------------------------+--------------+-------------+
table | name | type | multiKey |
fields | declaredType |
description
+-------------+----------------+-----------+----------
+-----------------------------------+--------------+-------------+
stream_acct | multikeyindex3 | SECONDARY | Y |
acct_data.country | ANY_ATOMIC
| | | |
 | | | |
acct_data.contentStreamed[].seriesInfo[].episodes[]| ANY_ATOMIC
|
+-------------+----------------+-----------+----------
+-----------------------------------+--------------+-------------+

Example 2: Describe the index idx_showid_year_month in JSON format.

DESCRIBE AS JSON INDEX idx_showid_year_month ON stream_acct
{
 "name" : "idx_showid_year_month",
 "type" : "secondary",
 "fields" : ["acct_data.contentStreamed[].showId",
"substring#acct_data.contentStreamed[].seriesInfo[].episodes[].date@,0,
4",
"substring#acct_data.contentStreamed[].seriesInfo[].episodes[].date@,5,
2"],

Chapter 2
Create and Manage Indexes

2-12

 "types" : ["INTEGER", "STRING", "STRING"],
 "withNoNulls" : false,
 "withUniqueKeysPerRow" : false
}

Drop Index
You can drop an index from your database when you no longer need it.

The DROP INDEX removes the specified index from the database. If an index with the given
name does not exist, then the statement fails, and an error is reported. If the optional IF
EXISTS clause is used in the DROP INDEX statement, and if an index with the same name
does not exist, then the statement will not execute, and no error is reported.

Example: Drop the index multikeyindex1.

DROP INDEX multikeyindex1 ON stream_acct

Chapter 2
Create and Manage Indexes

2-13

3
Manage

The articles in this section provide steps on how to manage various database objects.

Namespace Management
A namespace defines a group of tables, within which all of the table names must be uniquely
identified. Namespaces permit you to do table privilege management as a group operation.

• Namespace Resolution

• Manage Namespaces

• Namespace scoped privileges

• Granting Authorization Access to Namespaces

Namespace Resolution
You can grant authorization permissions to a namespace to determine who can access both
the namespace and the tables within it.

To resolve a table from a table_name that appears in an SQL statement, the following rules
apply:

• – If the table_name contains a namespace name, no resolution is needed, because a
qualified table name uniquely identifies a table.

– If you don't specify a namespace name explicitly, the namespace used is the one
contained in the ExecuteOptions instance that is given as input to the
executeSync(), execute(), or prepare() methods of TableAPI.

– If ExecuteOptions doesn't specify a namespace, the default sysdefault namespace is
used.

Using different namespaces in ExecuteOptions allows executing the same queries on
separate but similar tables.

Manage Namespaces
SHOW NAMESPACES

The SHOW NAMESPACES statement provides the list of namespaces in the system. You
can specify AS JSON if you want the output to be in JSON format.

Example 1: The following statement lists the namespaces present in the system.

SHOW NAMESPACES

3-1

Output:

namespaces
 sysdefault

Example 2: The following statement lists the namespaces present in the system in
JSON format.

SHOW AS JSON NAMESPACES

Output:

{"namespaces" : ["sysdefault"]}

DROP NAMESPACE

You can remove a namespace by using the DROP NAMESPACE statement.

IF EXISTS is an optional clause. If you specify this clause, and if a namespace with
the same name does not exist, no error is generated. If you don't specify this clause,
and if a namespace with the same name does not exist, an error is generated
indicating that the namespace does not exist.

CASCADE is an optional clause that enables you to specify whether to drop the tables
and their indexes in this namespace. If you specify this clause, and if the namespace
contains any tables, then the namespace together with all the tables in this
namespace will be deleted. If you don't specify this clause, and if the namespace
contains any tables, then an error is generated indicating that the namespace is not
empty.

The following statement removes the namespace named ns1.

DROP NAMESPACE IF EXISTS ns1 CASCADE

Namespace scoped privileges
You can add one or more namespaces to your store, create tables within them, and
grant permission for users to access namespaces and tables. For general information
on managing Roles and Users, see Grant Roles or Privileges in the Security Guide.

For information on implication relationship among Oracle NoSQL Database privileges,
see Privilege Hierarchy in the Security Guide.

Granting Authorization Access to Namespaces
You can manage permission for users or roles to access namespaces and tables.
These are the applicable permissions given to the developers and other users:

Chapter 3
Namespace Management

3-2

Table 3-1 Namespace Privileges and Permissions

Privilege Description

CREATE_ANY_NAMESPACE
DROP_ANY_NAMESPACE

Grant permission to a user or to a role to create or drop any
namespace.

GRANT CREATE_ANY_NAMESPACE TO <User|Role>;
GRANT DROP_ANY_NAMESPACE TO <User|Role>;

CREATE_TABLE_IN_NAMESPACE
DROP_TABLE_IN_NAMESPACE
EVOLVE_TABLE_IN_NAMESPACE

Grant permission to a user or to a role to create, drop or evolve
tables in a specific namespace. You can evolve tables to update
table definitions, add or remove fields, or change field properties,
such as a default value. You may even add a particular kind of
column, like an IDENTITY column, to increment some value
automatically. Only tables that already exist in the store are
candidates for table evolution. For more details, see Alter Table.

GRANT CREATE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DROP_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT EVOLVE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>user_role;

CREATE_INDEX_IN_NAMESPACE
DROP_INDEX_IN_NAMESPACE

Grant permission to a user or to a role to create or drop an index in a
specific namespace.

GRANT CREATE_INDEX_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DROP_INDEX_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;

READ_IN_NAMESPACE
INSERT_IN_NAMESPACE
DELETE_IN_NAMESPACE

Grant permission to a role to read, insert, or delete items in a
specific namespace.

GRANT READ_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT INSERT_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DELETE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;

MODIFY_IN_NAMESPACE Helper label for granting or revoking permissions to all DDL
privileges for a specific namespace to a user or role.

GRANT MODIFY_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
REVOKE MODIFY_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;

Chapter 3
Namespace Management

3-3

Grant privileges on a namespace

You can grant permissions to a role or a user on a namespace. Following is the syntax
for granting permissions on a namespace:

GRANT {Namespace-scoped privileges} ON NAMESPACE namespace_name TO
<User|Role>
Namespace-scoped privileges ::= namespace_privilege [,
namespace_privilege]

where,

• namespace_privilege

The namespace privilege that can be granted to a user or a role. For more
information on the applicable privileges, see the Privilege column in the
Namespace Privileges and Permissions table.

• namespace_name

The namespace that the user wishes to access.

• <User|Role>

The name of the KVStore user or the role of a user.

For example, you can grant read access to a user for all the tables in the namespace.

Example:

GRANT READ_IN_NAMESPACE ON NAMESPACE ns1 TO Kate;

Here, ns1 is the namespace and Kate is the user.

Note:

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or
revoking permissions to all DDL privileges for a specific namespace to a user
or role.

Revoke privileges on a namespace

You can revoke the permissions from a role or a user on a namespace. Following is
the syntax for revoking the permissions on a namespace.

REVOKE {Namespace-scoped privileges} ON NAMESPACE namespace_name FROM
<User|Role>
Namespace-scoped privileges ::= namespace_privilege [,
namespace_privilege]

where,

• namespace_privilege

Chapter 3
Namespace Management

3-4

The namespace privilege that can be revoked from a user or a role. For more information
on the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

• namespace_name

The namespace that the user wishes to access.

• <User|Role>

The name of the KVStore user or the role of a user.

For example, you can revoke the read access from a user for all the tables in the namespace.

Example:

REVOKE READ_IN_NAMESPACE ON NAMESPACE ns1 FROM Kate;

Here, ns1 is the namespace and Kate is the user.

Note:

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or
revoking permissions to all DDL privileges for a specific namespace to a user or
role.

The following example shows:

1. Creation of a namespace and a table.

2. Revocation of the privilege to create any other new tables in the namespace, but allow
the table to be dropped.

Example: Namespace Scoped Privileges

CREATE NAMESPACE IF NOT EXISTS ns1;
GRANT MODIFY_IN_NAMESPACE ON NAMESPACE ns1 TO usersRole;
CREATE TABLE ns1:t (id INTEGER, name STRING, primary key (id));
INSERT INTO ns1:t VALUES (1, 'Smith');
SELECT * FROM ns1:t;
REVOKE CREATE_TABLE_IN_NAMESPACE ON NAMESPACE ns1 FROM usersRole;
DROP NAMESPACE ns1 CASCADE;

Note:

You can save all of the above commands as a sql script and execute it in a single
command. If you want to execute any of the above commands outside of a SQL
prompt, remove the semi colon at the end.

Chapter 3
Namespace Management

3-5

Inserting, Modifying, and Deleting Data
You can perform various data manipulation operations in your table. You can add data,
modify an existing data and remove data.

If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and execute it as shown below. This script creates the
table used in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, execute the script.

load -file baggageschema_loaddata.sql

• Insert data

• Upsert Data

• Update Data

• Modify JSON data

• Delete Data

Insert data
The INSERT statement is used to construct a new row and add it to a specified table.
Optional column(s) may be specified after the table name. This list contains the
column names for a subset of the table’s columns. The subset must include all the
primary key columns. If no columns list is present, the default columns list is the one
containing all the columns of the table, in the order, they are specified in the CREATE
TABLE statement.

The columns in the columns list correspond one-to-one to the expressions (or
DEFAULT keywords) listed after the VALUES clause (an error is raised if the number
of expressions/DEFAULTs is not the same as the number of columns). These
expressions/DEFAULTs compute the value for their associated column in the new row.
An error is raised if an expression returns more than one item. If an expression returns
no result, NULL is used as the result of that expression. If instead of an expression,
the DEFAULT keyword appears in the VALUES list, the default value of the associated
column is used as the value of that column in the new row. The default value is also
used for any missing columns when the number of columns in the columns list is less
than the total number of columns in the table.

Example 1: Inserting a row into BaggageInfo table providing all column values:

INSERT INTO BaggageInfo VALUES(
1762392196147,
"Birgit Naquin",
"M",
"165-742-5715",

Chapter 3
Inserting, Modifying, and Deleting Data

3-6

"QD1L0T",
[{
 "id" : "7903989918469",
 "tagNum" : "17657806240229",
 "routing" : "JFK/MAD",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MAD",
 "flightLegs" : [{
 "flightNo" : "BM495",
 "flightDate" : "2019-03-07T07:00:00Z",
 "fltRouteSrc" : "JFK",
 "fltRouteDest" : "MAD",
 "estimatedArrival" : "2019-03-07T14:00:00Z",
 "actions" : [{
 "actionAt" : "MAD",
 "actionCode" : "Offload to Carousel at MAD",
 "actionTime" : "2019-03-07T13:54:00Z"
 }, {
 "actionAt" : "JFK",
 "actionCode" : "ONLOAD to MAD",
 "actionTime" : "2019-03-07T07:00:00Z"
 }, {
 "actionAt" : "JFK",
 "actionCode" : "BagTag Scan at JFK",
 "actionTime" : "2019-03-07T06:53:00Z"
 }, {
 "actionAt" : "JFK",
 "actionCode" : "Checkin at JFK",
 "actionTime" : "2019-03-07T05:03:00Z"
 }]
 }],
 "lastSeenTimeGmt" : "2019-03-07T13:51:00Z",
 "bagArrivalDate" : "2019-03-07T13:51:00Z"
 }]
)

Example 2: Skipping some data while doing an INSERT statement by specifying the
DEFAULT clause.

You can skip the data of some columns by specifying "DEFAULT".

INSERT INTO BaggageInfo VALUES(
1762397286805,
"Bonnie Williams",
DEFAULT,
DEFAULT,
"CZ1O5I",
[{
 "id" : "79039899129693",
 "tagNum" : "17657806216554",
 "routing" : "SFO/ORD/FRA",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "FRA",

Chapter 3
Inserting, Modifying, and Deleting Data

3-7

 "flightLegs" : [{
 "flightNo" : "BM572",
 "flightDate" : "2019-03-02T05:00:00Z",
 "fltRouteSrc" : "SFO",
 "fltRouteDest" : "ORD",
 "estimatedArrival" : "2019-03-02T09:00:00Z",
 "actions" : [{
 "actionAt" : "SFO",
 "actionCode" : "ONLOAD to ORD",
 "actionTime" : "2019-03-02T05:24:00Z"
 }, {
 "actionAt" : "SFO",
 "actionCode" : "BagTag Scan at SFO",
 "actionTime" : "2019-03-02T04:52:00Z"
 }, {
 "actionAt" : "SFO",
 "actionCode" : "Checkin at SFO",
 "actionTime" : "2019-03-02T03:28:00Z"
 }]
 }, {
 "flightNo" : "BM582",
 "flightDate" : "2019-03-02T05:24:00Z",
 "fltRouteSrc" : "ORD",
 "fltRouteDest" : "FRA",
 "estimatedArrival" : "2019-03-02T13:24:00Z",
 "actions" : [{
 "actionAt" : "FRA",
 "actionCode" : "Offload to Carousel at FRA",
 "actionTime" : "2019-03-02T13:20:00Z"
 }, {
 "actionAt" : "ORD",
 "actionCode" : "ONLOAD to FRA",
 "actionTime" : "2019-03-02T12:54:00Z"
 }, {
 "actionAt" : "ORD",
 "actionCode" : "OFFLOAD from ORD",
 "actionTime" : "2019-03-02T12:30:00Z"
 }]
 }],
 "lastSeenTimeGmt" : "2019-03-02T13:18:00Z",
 "bagArrivalDate" : "2019-03-02T13:18:00Z"
 }]
)

Example 3: Specifying column names and skipping columns in the insert statement.

If you have data only for some columns of a table, you can specify the name of the
columns in the INSERT clause and then specify the corresponding values in the
"VALUES" clause.

INSERT INTO BaggageInfo(ticketNo, fullName,confNo,bagInfo) VALUES(
1762355349471,
"Bryant Weber",
"LI7N1W",
[{

Chapter 3
Inserting, Modifying, and Deleting Data

3-8

 "id" : "79039899149056",
 "tagNum" : "17657806234185",
 "routing" : "MEL/LAX/MIA",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MIA",
 "flightLegs" : [{
 "flightNo" : "BM114",
 "flightDate" : "2019-03-01T12:00:00Z",
 "fltRouteSrc" : "MEL",
 "fltRouteDest" : "LAX",
 "estimatedArrival" : "2019-03-02T02:00:00Z",
 "actions" : [{
 "actionAt" : "MEL",
 "actionCode" : "ONLOAD to LAX",
 "actionTime" : "2019-03-01T12:20:00Z"
 }, {
 "actionAt" : "MEL",
 "actionCode" : "BagTag Scan at MEL",
 "actionTime" : "2019-03-01T11:52:00Z"
 }, {
 "actionAt" : "MEL",
 "actionCode" : "Checkin at MEL",
 "actionTime" : "2019-03-01T11:43:00Z"
 }]
 }, {
 "flightNo" : "BM866",
 "flightDate" : "2019-03-01T12:20:00Z",
 "fltRouteSrc" : "LAX",
 "fltRouteDest" : "MIA",
 "estimatedArrival" : "2019-03-02T16:21:00Z",
 "actions" : [{
 "actionAt" : "MIA",
 "actionCode" : "Offload to Carousel at MIA",
 "actionTime" : "2019-03-02T16:18:00Z"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "ONLOAD to MIA",
 "actionTime" : "2019-03-02T16:12:00Z"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "OFFLOAD from LAX",
 "actionTime" : "2019-03-02T16:02:00Z"
 }]
 }],
 "lastSeenTimeGmt" : "2019-03-02T16:09:00Z",
 "bagArrivalDate" : "2019-03-02T16:09:00Z"
 }]
)

Chapter 3
Inserting, Modifying, and Deleting Data

3-9

Upsert Data
The word UPSERT combines UPDATE and INSERT, describing the statement's function.
Use an UPSERT statement to insert a row where it does not exist, or to update the row
with new values when it does.

Example 1: Updating data in the BaggageInfo table using UPSERT command.

The existing details for the customer with full name Adam Phillips is shown below.

SELECT * FROM BaggageInfo WHERE fullname="Adam Phillips"

{
 "ticketNo" : 1762344493810,
 "fullName" : "Adam Phillips",
 "gender" : "M",
 "contactPhone" : "893-324-1064",
 "confNo" : "LE6J4Z",
 "bagInfo" : [{
 "bagArrivalDate" : "2019-02-01T16:13:00Z",
 "flightLegs" : [{
 "actions" : [{
 "actionAt" : "MIA",
 "actionCode" : "ONLOAD to LAX",
 "actionTime" : "2019-02-01T06:13:00Z"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "BagTag Scan at MIA",
 "actionTime" : "2019-02-01T05:47:00Z"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "Checkin at MIA",
 "actionTime" : "2019-02-01T04:38:00Z"
 }],
 "estimatedArrival" : "2019-02-01T11:00:00Z",
 "flightDate" : "2019-02-01T06:00:00Z",
 "flightNo" : "BM604",
 "fltRouteDest" : "LAX",
 "fltRouteSrc" : "MIA"
 }, {
 "actions" : [{
 "actionAt" : "MEL",
 "actionCode" : "Offload to Carousel at MEL",
 "actionTime" : "2019-02-01T16:15:00Z"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "ONLOAD to MEL",
 "actionTime" : "2019-02-01T15:35:00Z"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "OFFLOAD from LAX",
 "actionTime" : "2019-02-01T15:18:00Z"
 }],
 "estimatedArrival" : "2019-02-01T16:15:00Z",

Chapter 3
Inserting, Modifying, and Deleting Data

3-10

 "flightDate" : "2019-02-01T06:13:00Z",
 "flightNo" : "BM667",
 "fltRouteDest" : "MEL",
 "fltRouteSrc" : "LAX"
 }],
 "id" : "79039899165297",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MEL",
 "lastSeenTimeGmt" : "2019-02-01T16:13:00Z",
 "routing" : "MIA/LAX/MEL",
 "tagNum" : "17657806255240"
 }]
}
1 row returned

You modify the existing row using the UPSERT command. You can use an optional
RETURNING clause to fetch the values after UPSERT is performed. The updated value for
the customer with full name Adam Phillips is fetched as shown below.

UPSERT INTO BaggageInfo VALUES(
1762344493810,
"Adam Phillips",
"M",
"893-324-1864",
"LE6J4Y",
[{
 "id" : "79039899165297",
 "tagNum" : "17657806255240",
 "routing" : "MIA/LAX/MEL",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MEL",
 "flightLegs" : [{
 "flightNo" : "BM604",
 "flightDate" : "2019-02-01T06:00:00Z",
 "fltRouteSrc" : "MIA",
 "fltRouteDest" : "LAX",
 "estimatedArrival" : "2019-02-01T11:00:00Z",
 "actions" : [{
 "actionAt" : "MIA",
 "actionCode" : "ONLOAD to LAX",
 "actionTime" : "2019-02-01T06:13:00Z"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "BagTag Scan at MIA",
 "actionTime" : "2019-02-01T05:47:00Z"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "Checkin at MIA",
 "actionTime" : "2019-02-01T04:38:00Z"
 }]
 }, {
 "flightNo" : "BM667",

Chapter 3
Inserting, Modifying, and Deleting Data

3-11

 "flightDate" : "2019-02-01T06:13:00Z",
 "fltRouteSrc" : "LAX",
 "fltRouteDest" : "MEL",
 "estimatedArrival" : "2019-02-01T16:15:00Z",
 "actions" : [{
 "actionAt" : "MEL",
 "actionCode" : "Offload to Carousel at MEL",
 "actionTime" : "2019-02-01T16:15:00Z"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "ONLOAD to MEL",
 "actionTime" : "2019-02-01T15:35:00Z"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "OFFLOAD from LAX",
 "actionTime" : "2019-02-01T15:18:00Z"
 }]
 }],
 "lastSeenTimeGmt" : "2019-02-01T16:18:00Z",
 "bagArrivalDate" : "2019-02-01T16:18:00Z"
 }]
) RETURNING *

{
 "ticketNo" : 1762344493810,
 "fullName" : "Adam Phillips",
 "gender" : "M",
 "contactPhone" : "893-324-1864",
 "confNo" : "LE6J4Y",
 "bagInfo" : [{
 "bagArrivalDate" : "2019-02-01T16:18:00Z",
 "flightLegs" : [{
 "actions" : [{
 "actionAt" : "MIA",
 "actionCode" : "ONLOAD to LAX",
 "actionTime" : "2019-02-01T06:13:00Z"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "BagTag Scan at MIA",
 "actionTime" : "2019-02-01T05:47:00Z"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "Checkin at MIA",
 "actionTime" : "2019-02-01T04:38:00Z"
 }],
 "estimatedArrival" : "2019-02-01T11:00:00Z",
 "flightDate" : "2019-02-01T06:00:00Z",
 "flightNo" : "BM604",
 "fltRouteDest" : "LAX",
 "fltRouteSrc" : "MIA"
 }, {
 "actions" : [{
 "actionAt" : "MEL",
 "actionCode" : "Offload to Carousel at MEL",

Chapter 3
Inserting, Modifying, and Deleting Data

3-12

 "actionTime" : "2019-02-01T16:15:00Z"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "ONLOAD to MEL",
 "actionTime" : "2019-02-01T15:35:00Z"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "OFFLOAD from LAX",
 "actionTime" : "2019-02-01T15:18:00Z"
 }],
 "estimatedArrival" : "2019-02-01T16:15:00Z",
 "flightDate" : "2019-02-01T06:13:00Z",
 "flightNo" : "BM667",
 "fltRouteDest" : "MEL",
 "fltRouteSrc" : "LAX"
 }],
 "id" : "79039899165297",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MEL",
 "lastSeenTimeGmt" : "2019-02-01T16:18:00Z",
 "routing" : "MIA/LAX/MEL",
 "tagNum" : "17657806255240"
 }]
}

Note:

If you do not supply values for all the columns in a UPSERT statement, then those
columns get a DEFAULT value if such an option is specified in the corresponding
CREATE TABLE statement or those columns are assigned NULL values.

Example 2: Inserting data in the BaggageInfo table using UPSERT command.

A new entry value for a customer with full name Birgit Naquin is added using the UPSERT
command.

SELECT * FROM BaggageInfo WHERE fullname="Birgit Naquin";

0 row returned

UPSERT INTO BaggageInfo VALUES(
1762392196147,
"Birgit Naquin",
"M",
"165-742-5715",
"QD1L0T",
[{
 "id" : "7903989918469",
 "tagNum" : "17657806240229",
 "routing" : "JFK/MAD",
 "lastActionCode" : "OFFLOAD",

Chapter 3
Inserting, Modifying, and Deleting Data

3-13

 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MAD",
 "flightLegs" : [{
 "flightNo" : "BM495",
 "flightDate" : "2019-03-07T07:00:00Z",
 "fltRouteSrc" : "JFK",
 "fltRouteDest" : "MAD",
 "estimatedArrival" : "2019-03-07T14:00:00Z",
 "actions" : [{
 "actionAt" : "MAD",
 "actionCode" : "Offload to Carousel at MAD",
 "actionTime" : "2019-03-07T13:54:00Z"
 }, {
 "actionAt" : "JFK",
 "actionCode" : "ONLOAD to MAD",
 "actionTime" : "2019-03-07T07:00:00Z"
 }, {
 "actionAt" : "JFK",
 "actionCode" : "BagTag Scan at JFK",
 "actionTime" : "2019-03-07T06:53:00Z"
 }, {
 "actionAt" : "JFK",
 "actionCode" : "Checkin at JFK",
 "actionTime" : "2019-03-07T05:03:00Z"
 }]
 }],
 "lastSeenTimeGmt" : "2019-03-07T13:51:00Z",
 "bagArrivalDate" : "2019-03-07T13:51:00Z"
 }]
)

{"NumRowsInserted":1}

1 row returned

The result shows {"NumRowsInserted":1} which implies a new row has been inserted.
The value inserted using the UPSERT command can be viewed as shown below:

SELECT * FROM BaggageInfo where fullname="Birgit Naquin"
{
 "ticketNo" : 1762392196147,
 "fullName" : "Birgit Naquin",
 "gender" : "M",
 "contactPhone" : "165-742-5715",
 "confNo" : "QD1L0T",
 "bagInfo" : [{
 "bagArrivalDate" : "2019-03-07T13:51:00Z",
 "flightLegs" : [{
 "actions" : [{
 "actionAt" : "MAD",
 "actionCode" : "Offload to Carousel at MAD",
 "actionTime" : "2019-03-07T13:54:00Z"
 }, {
 "actionAt" : "JFK",

Chapter 3
Inserting, Modifying, and Deleting Data

3-14

 "actionCode" : "ONLOAD to MAD",
 "actionTime" : "2019-03-07T07:00:00Z"
 }, {
 "actionAt" : "JFK",
 "actionCode" : "BagTag Scan at JFK",
 "actionTime" : "2019-03-07T06:53:00Z"
 }, {
 "actionAt" : "JFK",
 "actionCode" : "Checkin at JFK",
 "actionTime" : "2019-03-07T05:03:00Z"
 }],
 "estimatedArrival" : "2019-03-07T14:00:00Z",
 "flightDate" : "2019-03-07T07:00:00Z",
 "flightNo" : "BM495",
 "fltRouteDest" : "MAD",
 "fltRouteSrc" : "JFK"
 }],
 "id" : "7903989918469",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MAD",
 "lastSeenTimeGmt" : "2019-03-07T13:51:00Z",
 "routing" : "JFK/MAD",
 "tagNum" : "17657806240229"
 }]
}
1 row returned

Note:

If you do not supply values for all the columns in a UPSERT statement, then those
columns get a DEFAULT value if such an option is specified in the corresponding
CREATE TABLE statement or those columns are assigned NULL values. You can
also use an optional RETURNING clause as part of the UPSERT command.

Update Data
An update statement can be used to update a row in a table.

• The SET clause consists of two expressions: the target expression and the new-value
expression. The target expression returns the items to be updated. The new-value
expression may return zero or more items. If it returns an empty result, the SET is a no-
op. If it returns more than one item, the items are enclosed inside a newly constructed
array (this is the same as the way the SELECT clause treats multi-valued expressions in
the select list)) So, effectively, the result of the new-value expression contains at most
one item.

• The WHERE clause specifies what row to update. In the current implementation, only
single-row updates are allowed, so the WHERE clause must specify a complete primary
key.

Chapter 3
Inserting, Modifying, and Deleting Data

3-15

• There is an optional RETURNING clause which acts the same way as the SELECT
clause: it can be a "*", in which case, the full updated row will be returned, or it can
have a list of expressions specifying what needs to be returned.

• Furthermore, if no row satisfies the WHERE conditions, the update statement returns
an empty result.

Example 1: Simple example to change the column values.

You are updating some column values for a given ticket number.

UPDATE BaggageInfo
SET contactPhone = "823-384-1964",
confNo = "LE6J4Y"
WHERE ticketNo = 1762344493810

Example 2: Update row data and fetch the values with a RETURNING clause.

You could use the RETURNING clause to fetch back the data after the UPDATE
clause is executed.

UPDATE BaggageInfo
SET contactPhone = "823-384-1964",
confNo = "LE6J4Y"
WHERE ticketNo = 1762344493810 RETURNING *

Output:

{"ticketNo":1762344493810,"fullName":"Adam
Phillips","gender":"M","contactPhone":"823-384-1964",
"confNo":"LE6J4Y",
"bagInfo":{"bagInfo":[{"bagArrivalDate":"2019.02.02 at 03:13:00
AEDT","flightLegs":
[{"actions":[{"actionAt":"MIA","actionCode":"ONLOAD to
LAX","actionTime":"2019.02.01 at 01:13:00 EST"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019.02.01 at 00:47:00 EST"},
{"actionAt":"MIA","actionCode":"Checkin at
MIA","actionTime":"2019.01.31 at 23:38:00 EST"}],
"estimatedArrival":"2019.02.01 at 03:00:00
PST","flightDate":"2019.02.01 at 01:00:00 EST",
"flightNo":"BM604","fltRouteDest":"LAX","fltRouteSrc":"MIA"},
{"actions":
[{"actionAt":"MEL","actionCode":"Offload to Carousel at
MEL","actionTime":"2019.02.02 at 03:15:00 AEDT"},
{"actionAt":"LAX","actionCode":"ONLOAD to
MEL","actionTime":"2019.02.01 at 07:35:00 PST"},
{"actionAt":"LAX","actionCode":"OFFLOAD from
LAX","actionTime":"2019.02.01 at 07:18:00 PST"}],
"estimatedArrival":"2019.02.02 at 03:15:00
AEDT","flightDate":"2019.01.31 at 22:13:00 PST",
"flightNo":"BM667","fltRouteDest":"MEL","fltRouteSrc":"LAX"}],"id":"790
39899165297",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation"
:"MEL",

Chapter 3
Inserting, Modifying, and Deleting Data

3-16

"lastSeenTimeGmt":"2019.02.02 at 03:13:00 AEDT","routing":"MIA/LAX/
MEL","tagNum":"17657806255240"}]}}

Modify JSON data
While updating JSON data, in addition to WHERE, SET and RETURNING clause, the following
clauses can be used..

• The ADDclause is used to add new elements into one or more arrays. It consists of a
target expression, which should normally return one or more array items, an optional
position expression, which specifies the position within each array where the new
elements should be placed, and a new-elements expression that returns the new
elements to insert.

• The PUT clause is used primarily to add new fields to a JSON document. It consists of a
target expression, which should normally return one or more fields to be inserted into the
target JSON document.

• The REMOVE clause consists of a single target expression, which computes the items to be
removed.

Example 1: Update table and add data in a JSON object

Add elements to the action array (at a given array element) for a particular flight Leg of a
passenger. By default, the element is added at the end. If a number is specified, it is inserted
in that position. In the example below, you want the new element to be added in the 2nd
position.

UPDATE BaggageInfo bag
ADD bag.bagInfo[0].flightLegs[0].actions 2 {"actionAt" : "LAX",
 "actionCode" : "WAITING at LAX",
 "actionTime" : "2019-02-01T06:13:00Z"}
WHERE ticketNo=1762344493810
RETURNING *

Example 2: Update table and update data from a JSON object.

You could update the data from a JSON object using the SET clause. Here the second
element of the actions array is updated with new values for a given ticket number.

UPDATE BaggageInfo bag
SET bag.bagInfo[0].flightLegs[0].actions[2]=
{"actionAt" : "LAX",
"actionCode" : "STILL WAITING at LAX",
"actionTime" : "2019-02-01T06:15:00Z"}
WHERE ticketNo=1762344493810 RETURNING *

Example 3: Update table and remove data in a JSON object.

You can use the REMOVE clause to remove a given element from an array. You need to specify
which element of the array needs to be removed using the index of the array.

UPDATE BaggageInfo bag
REMOVE bag.bagInfo[0].flightLegs[0].actions[1]

Chapter 3
Inserting, Modifying, and Deleting Data

3-17

WHERE ticketNo=1762344493810
RETURNING *

Delete Data
The DELETE statement is used to remove from a table a set of rows satisfying a
condition. The condition is specified in a WHERE clause that behaves the same way
as in the SELECT expression. The result of the DELETE statement depends on
whether a RETURNING clause is present or not. Without a RETURNING clause the
DELETE returns the number of rows deleted. Otherwise, for each deleted row the
expressions following the RETURNING clause are computed the same way as in the
SELECT clause and the result is returned to the application.

Example 1: Delete data from a table with a simple WHERE clause.

You delete the data corresponding to a user with a given fullname.

DELETE FROM BaggageInfo
WHERE fullName = "Bonnie Williams"

Example 2: Delete data from a table with a RETURNING clause.

The RETURNING clause fetches the details of the row to be deleted. In the example
below, you are fetching the full name and conf number corresponding to a ticket
number which will be deleted.

DELETE FROM BaggageInfo
WHERE ticketNo = 1762392196147
RETURNING fullName,confNo

Output:

{"fullName":"Birgit Naquin","confNo":"QD1L0T"}

Note:

If any error occurs during the execution of a DELETE statement, there is a
possibility that some rows will be deleted and some not. The system does
not keep track of what rows got deleted and what rows are not yet deleted.
This is because Oracle NoSQL Database focuses on low latency operations.
Long-running operations across shards are not coordinated using a two-
phase commit and lock mechanism. In such cases, it is recommended that
the application re-run the DELETE statement.

Managing Tables & Regions
You will first create a sample table. Then you will learn different ways to alter the table.
At the end of the section, you will drop the table. You will also learn to view the existing
regions and drop a particular region.

Chapter 3
Managing Tables & Regions

3-18

Start your KVSTORE or KVLite and open the SQL shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

• Alter Table

• Drop Table

• Manage regions

Alter Table
You can use the alter table command to perform the following operations.

• Add schema fields to the table schema

• Remove schema fields from the table schema

• Add a region

• Remove a region

• Modify the Time-To-Live value of the table

Note:

You can specify only one type of operation in a single command. For example, you
cannot remove a schema field and set the TTL value together.

Create a sample table :

CREATE TABLE demo_acct(
acct_id INTEGER,
acct_data JSON,
PRIMARY KEY(acct_id)
)

Example 1: Add schema field to the table schema.

ALTER TABLE demo_acct(ADD acct_balance INTEGER)

Explanation: Adding a field does not affect the existing rows in the table. If a field is added,
its default value or NULL will be used as the value of this field in existing rows that do not
contain it. The field to add maybe a top-level field (i.e. A table column) or it may be deeply
nested inside a hierarchical table schema. As a result, the field is specified via a path.

Example 2: Remove schema fields in the table schema.

ALTER TABLE demo_acct(DROP acct_balance)

Chapter 3
Managing Tables & Regions

3-19

Explanation: You can drop any field in the schema other than the primary key. If you
try removing the primary key field, you get an error as shown below.

ALTER TABLE demo_acct(DROP acct_id)

Output(showing error):

Error handling command ALTER TABLE demo_acct(DROP acct_id):
Error: at (1, 27) Cannot remove a primary key field: acct_id

Example 3: Add a region

The add regions clause lets you link an existing Multi-Region Table (MR Table) with
new regions in a multi-region Oracle NoSQL Database environment. You use this
clause to expand MR Tables to new regions.

Associate a new region with an existing MR Table using the DDL command shown
below.

ALTER TABLE <table_name> ADD REGIONS <region_name>

Explanation: Here, table_name is an MR table and region_name is an existing region.

Example 4: Remove a region

The drop regions clause lets you disconnect an existing MR Table from a participating
region in a multi-region Oracle NoSQL Database environment. You use this clause to
contract MR Tables to fewer regions.

To remove an MR Table from a specific region in a Multi-Region NoSQL Database
setup, you must run the following steps from all the other participating regions.

ALTER TABLE <table_name> DROP REGIONS <comma_separated_list_of_regions>

Here, table_name is a MR Table and comma_separated_list_of_regions is a list of
regions to be dropped.

Example 5: Modify the Time-To-Live value of the table

Time-to-Live (TTL) is a mechanism that allows you to set a time frame on table rows,
after which the rows expire automatically, and are no longer available. By default,
every table that you create has a TTL value of zero, indicating that it has no expiration
time.

You can use ALTER TABLE command to change this value for any table. You can
specify the TTL with a number, followed by either HOURS or DAYS.

ALTER TABLE demo_acct USING TTL 5 days

Chapter 3
Managing Tables & Regions

3-20

Note:

Altering the TTL value for a table does not change the TTL value for existing rows in
the table. Rather, it will only change the default TTL value placed in rows created
subsequent to the alter table. To modify the TTL of every record in a table, you must
iterate through each record of the table and update its TTL value.

Drop Table
The drop table statement removes the specified table and all its associated indexes from the
database. By default, if the named table does not exist then this statement fails. You don't get
an error if the optional IF EXISTS clause is specified and the table does not exist.

DROP TABLE demo_acct

Note:

To drop a MR Table, first drop all of its child tables. Otherwise, the DROP statement
results in an error.

Manage regions
The show regions statement provides the list of regions present in the Multi-Region Oracle
NoSQL Database. You need to specify "AS JSON" if you want the output to be in JSON
format.

Example 1: The following statement lists all the existing regions.

SHOW REGIONS

The following statement lists all the existing regions in JSON format.

SHOW AS JSON REGIONS

In a Multi-Region Oracle NoSQL Database environment, the drop region statement removes
the specified remote region from the local region. See Set up Multi-Region Environment for
more details on the local regions and remote regions in a Multi-Region setup.

Note:

This region must be different from the local region where the command is executed.

The following drop region statement removes a remote region named my_region1.

DROP REGION my_region1

Chapter 3
Managing Tables & Regions

3-21

4
Develop

The articles in this section provide steps on how to use SQL and write queries. It covers
information about different complex data types. It also covers how to use indexes for query
optimization.

Simple SELECT queries
If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and run it as shown below. This script creates the table used
in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file baggageschema_loaddata.sql

• Fetch column data

• Substituting column names in a query

• Filtering results in a query

Fetch column data
You can choose columns from a table. To do so, list the names of the desired table columns
after SELECT in the statement. You give the name of the table after the FROM clause. To
retrieve data from a child table, use dot notation, such as parent.child. To choose all table
columns, use the asterisk (*) wildcard character. The SELECT statement can also contain
computational expressions based on the values of existing columns.

Example 1: Choose all data from the table BaggageInfo.

SELECT * FROM BaggageInfo

Explanation: The BaggageInfo schema has some fixed static fields and a JSON column.
The static fields are ticket number, full name, gender, contact phone, and confirmation
number. The bag information is stored as JSON and is populated with an array of documents.

Output (displaying only a row of the result for brevity):

{"ticketNo":1762330498104,"fullName":"Michelle
Payne","gender":"F","contactPhone":"575-781-6240","confNo":"RL3J4Q",
"bagInfo":[{

4-1

 "bagArrivalDate":"2019-02-02T23:59:00Z",
 "flightLegs":[
 {"actions":[
 {"actionAt":"SFO","actionCode":"ONLOAD to
IST","actionTime":"2019-02-02T12:10:00Z"},
 {"actionAt":"SFO","actionCode":"BagTag Scan at
SFO","actionTime":"2019-02-02T11:47:00Z"},
 {"actionAt":"SFO","actionCode":"Checkin at
SFO","actionTime":"2019-02-02T10:01:00Z"}],
 "estimatedArrival":"2019-02-03T01:00:00Z",
 "flightDate":"2019-02-02T12:00:00Z",
 "flightNo":"BM318",
 "fltRouteDest":"IST",
 "fltRouteSrc":"SFO"},
 {"actions":[
 {"actionAt":"IST","actionCode":"ONLOAD to
ATH","actionTime":"2019-02-03T13:06:00Z"},
 {"actionAt":"IST","actionCode":"BagTag Scan at
IST","actionTime":"2019-02-03T12:48:00Z"},
 {"actionAt":"IST","actionCode":"OFFLOAD from
IST","actionTime":"2019-02-03T13:00:00Z"}],
 "estimatedArrival":"2019-02-03T12:12:00Z",
 "flightDate":"2019-02-02T13:10:00Z",
 "flightNo":"BM696",
 "fltRouteDest":"ATH",
 "fltRouteSrc":"IST"},
 {"actions":[
 {"actionAt":"JTR","actionCode":"Offload to Carousel at
JTR","actionTime":"2019-02-03T00:06:00Z"},
 {"actionAt":"ATH","actionCode":"ONLOAD to
JTR","actionTime":"2019-02-03T00:13:00Z"},
 {"actionAt":"ATH","actionCode":"OFFLOAD from
ATH","actionTime":"2019-02-03T00:10:00Z"}],
 "estimatedArrival":"2019-02-03T00:12:00Z",
 "flightDate":"2019-2-2T12:10:00Z",
 "flightNo":"BM665",
 "fltRouteDest":"JTR",
 "fltRouteSrc":"ATH"}],
 "id":"79039899186259",
 "lastActionCode":"OFFLOAD",
 "lastActionDesc":"OFFLOAD",
 "lastSeenStation":"JTR",
 "lastSeenTimeGmt":"2019-02-02T23:59:00Z",
 "routing":"SFO/IST/ATH/JTR",
 "tagNum":"17657806247861"}
]}

Example 2: To choose specific column(s) from the table BaggageInfo, include the
column names as a comma-separated list in the SELECT statement.

SELECT fullName, contactPhone, gender FROM BaggageInfo

Explanation: You want to display the values of three static fields - full name, phone
number, and gender.

Chapter 4
Simple SELECT queries

4-2

Output:

{"fullName":"Lucinda Beckman","contactPhone":"364-610-4444","gender":"M"}
{"fullName":"Adelaide Willard","contactPhone":"421-272-8082","gender":"M"}
{"fullName":"Raymond Griffin","contactPhone":"567-710-9972","gender":"F"}
{"fullName":"Elane Lemons","contactPhone":"600-918-8404","gender":"F"}
{"fullName":"Zina Christenson","contactPhone":"987-210-3029","gender":"M"}
{"fullName":"Zulema Martindale","contactPhone":"666-302-0028","gender":"F"}
{"fullName":"Dierdre Amador","contactPhone":"165-742-5715","gender":"M"}
{"fullName":"Henry Jenkins","contactPhone":"960-428-3843","gender":"F"}
{"fullName":"Rosalia Triplett","contactPhone":"368-769-5636","gender":"F"}
{"fullName":"Lorenzo Phil","contactPhone":"364-610-4444","gender":"M"}
{"fullName":"Gerard Greene","contactPhone":"395-837-3772","gender":"M"}
{"fullName":"Adam Phillips","contactPhone":"893-324-1064","gender":"M"}
{"fullName":"Doris Martin","contactPhone":"289-564-3497","gender":"F"}
{"fullName":"Joanne Diaz","contactPhone":"334-679-5105","gender":"F"}
{"fullName":"Omar Harvey","contactPhone":"978-191-8550","gender":"F"}
{"fullName":"Fallon Clements","contactPhone":"849-731-1334","gender":"M"}
{"fullName":"Lisbeth Wampler","contactPhone":"796-709-9501","gender":"M"}
{"fullName":"Teena Colley","contactPhone":"539-097-5220","gender":"M"}
{"fullName":"Michelle Payne","contactPhone":"575-781-6240","gender":"F"}
{"fullName":"Mary Watson","contactPhone":"131-183-0560","gender":"F"}
{"fullName":"Kendal Biddle","contactPhone":"619-956-8760","gender":"F"}

Substituting column names in a query
You can use a different name for a column during a SELECT statement. Substituting a name
in a query does not change the column name, but uses the substitute in the data returned.

Example: The following query returns the phone number as CONTACTAT in the result.

SELECT contactPhone AS CONTACTAT FROM BaggageInfo

Explanation: Here you want to fetch the contact phone of the passengers and display it as
CONTACTAT.

Output:

{"CONTACTAT":"960-428-3843"}
{"CONTACTAT":"368-769-5636"}
{"CONTACTAT":"364-610-4444"}
{"CONTACTAT":"395-837-3772"}
{"CONTACTAT":"893-324-1064"}
{"CONTACTAT":"289-564-3497"}
{"CONTACTAT":"334-679-5105"}
{"CONTACTAT":"978-191-8550"}
{"CONTACTAT":"849-731-1334"}
{"CONTACTAT":"796-709-9501"}
{"CONTACTAT":"539-097-5220"}
{"CONTACTAT":"575-781-6240"}
{"CONTACTAT":"131-183-0560"}
{"CONTACTAT":"619-956-8760"}
{"CONTACTAT":"364-610-4444"}
{"CONTACTAT":"421-272-8082"}

Chapter 4
Simple SELECT queries

4-3

{"CONTACTAT":"567-710-9972"}
{"CONTACTAT":"600-918-8404"}
{"CONTACTAT":"987-210-3029"}
{"CONTACTAT":"666-302-0028"}
{"CONTACTAT":"165-742-5715"}

You can combine columns using the concatenation operator "||" as shown below.

Example: For all customers, fetch the last place where the bag was seen and the time
when it was seen.

Approach 1: Use the concatenation operator and fetch column names and static text
as output of the SELECT command.

SELECT "The bag was last seen at " ||
bag.bagInfo[].lastSeenStation || " on " ||
bag.bagInfo[].bagArrivalDate AS Bag_Details FROM BaggageInfo bag

Output:

{"Bag_Details":"The bag was last seen at BZN on 2019-03-15T10:13:00Z"}
{"Bag_Details":"The bag was last seen at MEL on 2019-02-04T10:08:00Z"}
{"Bag_Details":"The bag was last seen at MEL on 2019-02-25T20:15:00Z"}
{"Bag_Details":"The bag was last seen at MAD on 2019-03-07T13:51:00Z"}
{"Bag_Details":"The bag was last seen at FRA on 2019-03-02T13:18:00Z"}
{"Bag_Details":"The bag was last seen at VIE on 2019-02-12T07:04:00Z"}
{"Bag_Details":"The bag was last seen at JTRJTR on
2019-03-12T15:05:00Z2019-03-12T16:25:00Z"}
{"Bag_Details":"The bag was last seen at JTR on 2019-03-07T16:01:00Z"}
{"Bag_Details":"The bag was last seen at MEL on 2019-02-01T16:13:00Z"}
{"Bag_Details":"The bag was last seen at MXP on 2019-03-22T10:17:00Z"}
{"Bag_Details":"The bag was last seen at MEL on 2019-02-16T16:13:00Z"}
{"Bag_Details":"The bag was last seen at MIA on 2019-03-02T16:09:00Z"}
{"Bag_Details":"The bag was last seen at BZN on 2019-02-21T14:08:00Z"}
{"Bag_Details":"The bag was last seen at SGN on 2019-02-10T10:01:00Z"}
{"Bag_Details":"The bag was last seen at JTR on 2019-02-02T23:59:00Z"}
{"Bag_Details":"The bag was last seen at BLR on 2019-03-14T06:22:00Z"}
{"Bag_Details":"The bag was last seen at VIE on 2019-03-05T12:00:00Z"}
{"Bag_Details":"The bag was last seen at JTR on 2019-03-12T15:05:00Z"}
{"Bag_Details":"The bag was last seen at SEA on 2019-02-15T21:21:00Z"}
{"Bag_Details":"The bag was last seen at HKG on 2019-02-03T08:09:00Z"}
{"Bag_Details":"The bag was last seen at HKG on 2019-02-13T11:15:00Z"}

The result is cluttered if there is more than one bag per customer/reservation number
as shown above.

Approach 2: You can overcome this issue by printing as the value of elements of the
bagInfo array as shown below.

SELECT "The bag was last seen at " || [bag.bagInfo[].lastSeenStation]
|| " on " ||
[bag.bagInfo[].bagArrivalDate] AS Bag_Details FROM BaggageInfo bag

Chapter 4
Simple SELECT queries

4-4

Note:

Column names and static text can also be concatenated using the "||" operator.

Explanation: You are concatenating a part of the document in the bagInfo JSON with
various static text and displaying it as elements of an array.

Output:

{"Bag_Details":"The bag was last seen at [\"MIA\"] on
[\"2019-03-02T16:09:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"BZN\"] on
[\"2019-02-21T14:08:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"SGN\"] on
[\"2019-02-10T10:01:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"HKG\"] on
[\"2019-02-13T11:15:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"JTR\"] on
[\"2019-02-02T23:59:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"BLR\"] on
[\"2019-03-14T06:22:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"VIE\"] on
[\"2019-03-05T12:00:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"JTR\"] on
[\"2019-03-12T15:05:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"SEA\"] on
[\"2019-02-15T21:21:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"HKG\"] on
[\"2019-02-03T08:09:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"BZN\"] on
[\"2019-03-15T10:13:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"MEL\"] on
[\"2019-02-04T10:08:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"MEL\"] on
[\"2019-02-25T20:15:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"MAD\"] on
[\"2019-03-07T13:51:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"FRA\"] on
[\"2019-03-02T13:18:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"VIE\"] on
[\"2019-02-12T07:04:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"JTR\",\"JTR\"] on
[\"2019-03-12T15:05:00Z\",
\"2019-03-12T16:25:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"JTR\"] on
[\"2019-03-07T16:01:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"MEL\"] on
[\"2019-02-01T16:13:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"MXP\"] on
[\"2019-03-22T10:17:00Z\"]"}
{"Bag_Details":"The bag was last seen at [\"MEL\"] on
[\"2019-02-16T16:13:00Z\"]"}

Chapter 4
Simple SELECT queries

4-5

Filtering results in a query
You can filter query results by specifying a filter condition in the WHERE clause.
Typically, a filter condition consists of one or more comparison expressions connected
through logical operators AND or OR. The following comparison operators are also
supported: =, !=, >, >=, <, and <= .

Example 1: Find the tag number of a passenger's baggage along with the passenger's
full name for a given reservation number FH7G1W.

SELECT bag.fullName, bag.bagInfo[].tagNum FROM BaggageInfo bag
WHERE bag.confNo="FH7G1W"

Explanation: You fetch the tag number corresponding to a given reservation number.

Output:

{"fullName":"Rosalia Triplett","tagNum":"17657806215913"}

Chapter 4
Simple SELECT queries

4-6

Note:

For better understanding, the row of data with all the static fields and the bagInfo
JSON is shown below.

"ticketNo" : 1762344493810,
"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1064",
"confNo" : "LE6J4Z",
 [{
 "id" : "79039899165297",
 "tagNum" : "17657806255240",
 "routing" : "MIA/LAX/MEL",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MEL",
 "flightLegs" : [{
 "flightNo" : "BM604",
 "flightDate" : "2019-02-01T01:00:00",
 "fltRouteSrc" : "MIA",
 "fltRouteDest" : "LAX",
 "estimatedArrival" : "2019-02-01T03:00:00",
 "actions" : [{
 "actionAt" : "MIA",
 "actionCode" : "ONLOAD to LAX",
 "actionTime" : "2019-02-01T01:13:00"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "BagTag Scan at MIA",
 "actionTime" : "2019-02-01T00:47:00"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "Checkin at MIA",
 "actionTime" : "2019-02-01T23:38:00"
 }]
 }, {
 "flightNo" : "BM667",
 "flightDate" : "2019-01-31T22:13:00",
 "fltRouteSrc" : "LAX",
 "fltRouteDest" : "MEL",
 "estimatedArrival" : "2019-02-02T03:15:00",
 "actions" : [{
 "actionAt" : "MEL",
 "actionCode" : "Offload to Carousel at MEL",
 "actionTime" : "2019-02-02T03:15:00"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "ONLOAD to MEL",
 "actionTime" : "2019-02-01T07:35:00"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "OFFLOAD from LAX",
 "actionTime" : "2019-02-01T07:18:00"

Chapter 4
Simple SELECT queries

4-7

 }]
 }],
 "lastSeenTimeGmt" : "2019-02-02T03:13:00",
 "bagArrivalDate" : "2019.02.02T03:13:00"
 }]

Example 2: Where was the baggage with a given reservation number FH7G1W last
seen? Also, fetch the tag number of the baggage.

SELECT bag.fullName, bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenStation
FROM BaggageInfo bag WHERE bag.confNo="FH7G1W"

Explanation: The bagInfo is JSON and is populated with an array of documents. The
full name and the last seen station can be fetched for a particular reservation number.

Output:

{"fullName":"Rosalia Triplett","tagNum":"17657806215913",
"lastSeenStation":"VIE"}

Example 3: Select details of the bags(tag and last seen time) for a passenger with
ticket number 1762340579411.

SELECT bag.ticketNo, bag.fullName,
bag.bagInfo[].tagNum,bag.bagInfo[].lastSeenStation
FROM BaggageInfo bag where bag.ticketNo=1762320369957

Explanation: The bagInfo is JSON and is populated with an array of documents. The
full name, tag number, and last seen station can be fetched for a particular ticket
number.

Output:

{"fullName":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"],
"lastSeenStation":["JTR","JTR"]}

Using Path expressions
Path expressions are used to navigate inside hierarchically structured data. Oracle
NoSQL Database supports different complex data types like arrays and records. You
will learn how to work with different complex data types using path expressions.

If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and execute it as shown below. This script creates the
table used in the example and loads data into the table.

Chapter 4
Using Path expressions

4-8

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file baggageschema_loaddata.sql

• Using Internal variables and aliases

• Working with Arrays

• Working with nested data type

• Finding the size of a complex data type

Using Internal variables and aliases
Oracle NoSQL Database allows implicit declaration of internal variables. Internal variables
are bound to their values during the execution of the expressions that declare them.

The table name in a query may be followed by a table alias. Table aliases are essentially
variables ranging over the rows of the specified table. If no alias is specified, one is created
internally, using the name of the table as it is spelled in the query.

Example 1: Find the ticket number and passenger details for a given reservation code:

SELECT bagDet.ticketNo, bagDet.fullName, bagDet.contactPhone FROM
BaggageInfo bagDet
WHERE confNo="QB1O0J"

Explanation: In this query, you fetch the values of static fields like fullname, ticket number,
and contact phone for a particular reservation code. You use a table alias for the BaggageInfo
table.

Output:

{"ticketNo":1762390789239,"fullName":"Zina
 Christenson","contactPhone":"987-210-3029"}

If the table alias starts with a dollar sign ($), then it actually serves as a variable declaration
for a variable whose name is the alias. This variable is bound to the context row.

Example 2: Fetch the full name and tag number for all customer baggage shipped after
2019.

SELECT fullName, bag.ticketNo FROM BaggageInfo bag WHERE
exists bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Explanation: The bag arrival date value for every bag should be greater than the year 2019.
Here the "$element" is bound to the context row (every baggage of the customer). The
EXISTS operator checks whether the sequence returned by its input expression is empty or

Chapter 4
Using Path expressions

4-9

not. The sequence returned by the comparison operator ">=" is non-empty for all bags
which arrived after 2019.

Output:

{"fullName":"Lucinda Beckman","ticketNo":1762320569757}
{"fullName":"Adelaide Willard","ticketNo":1762392135540}
{"fullName":"Raymond Griffin","ticketNo":1762399766476}
{"fullName":"Elane Lemons","ticketNo":1762324912391}
{"fullName":"Zina Christenson","ticketNo":1762390789239}
{"fullName":"Zulema Martindale","ticketNo":1762340579411}
{"fullName":"Dierdre Amador","ticketNo":1762376407826}
{"fullName":"Henry Jenkins","ticketNo":176234463813}
{"fullName":"Rosalia Triplett","ticketNo":1762311547917}
{"fullName":"Lorenzo Phil","ticketNo":1762320369957}
{"fullName":"Gerard Greene","ticketNo":1762341772625}
{"fullName":"Adam Phillips","ticketNo":1762344493810}
{"fullName":"Doris Martin","ticketNo":1762355527825}
{"fullName":"Joanne Diaz","ticketNo":1762383911861}
{"fullName":"Omar Harvey","ticketNo":1762348904343}
{"fullName":"Fallon Clements","ticketNo":1762350390409}
{"fullName":"Lisbeth Wampler","ticketNo":1762355854464}
{"fullName":"Teena Colley","ticketNo":1762357254392}
{"fullName":"Michelle Payne","ticketNo":1762330498104}
{"fullName":"Mary Watson","ticketNo":1762340683564}
{"fullName":"Kendal Biddle","ticketNo":1762377974281}

Working with Arrays
An array is an ordered collection of zero or more items. The items of an array are
called elements. Arrays cannot contain any NULL values.

The BaggageInfo schema has many arrays. A simple array from the schema is the
actions array in every flightLeg. You can use path expressions to navigate a simple
array or a nested array.

"actions" : [{
"actionAt" : "SYD",
"actionCode" : "ONLOAD to SIN",
"actionTime" : "2019.02.28 at 22:09:00 AEDT"
}, {
"actionAt" : "SYD",
"actionCode" : "BagTag Scan at SYD",
"actionTime" : "2019.02.28 at 21:51:00 AEDT"
}, {
"actionAt" : "SYD",
"actionCode" : "Checkin at SYD",
"actionTime" : "2019.02.28 at 20:06:00 AEDT"
}]

Chapter 4
Using Path expressions

4-10

Example 1: Fetch the details of the first leg of every bag (including all the actions taken at
the leg) for the passenger with ticket number 1762357254392.

SELECT bagDet.fullName, bagDet.bagInfo[].flightLegs[0]
AS Details FROM BaggageInfo bagDet WHERE ticketNo=1762357254392

In the above query, flightLegs is an array. The slice step [0] is applied to the flightLegs
array. Since array elements start with 0, this gives you the first record in the array. You get the
first leg information of every bag for each passenger. You apply an additional filter with the
ticketNo and so only one passenger information is fetched.

Output:

{"fullName":"Teena Colley",
"Details":[[
{"actionAt":"MSQ","actionCode":"ONLOAD to
FRA","actionTime":"2019-02-13T07:17:00Z"},
{"actionAt":"MSQ","actionCode":"BagTag Scan at
MSQ","actionTime":"2019-02-13T06:52:00Z"},
{"actionAt":"MSQ","actionCode":"Checkin at
MSQ","actionTime":"2019-02-13T06:11:00Z"}],
"2019-02-13T09:00:00Z","2019-02-13T07:00:00Z","BM365","FRA","MSQ"]}

Note:

You can also use a slice step to select all array elements whose positions are within
a range: [low: high], where low and high are expressions to specify the range
boundaries. You can omit low and high expressions if you do not require a low or
high boundary.

Example: Fetch the details of all the legs (including all the actions taken at all the legs) for
the passenger with ticket number 1762357254392.

You'll be using the slice step to fetch the first 3 records of the flightLegs array.

SELECT bagDet.fullName, bagDet.bagInfo[].flightLegs[0:2] AS Details
FROM BaggageInfo bagDet WHERE ticketNo=1762357254392

Output:

{"fullName":"Teena Colley",
"Details":[
 [
 {"actionAt":"MSQ","actionCode":"ONLOAD to
FRA","actionTime":"2019-02-13T07:17:00Z"},
 {"actionAt":"MSQ","actionCode":"BagTag Scan at
MSQ","actionTime":"2019-02-13T06:52:00Z"},
 {"actionAt":"MSQ","actionCode":"Checkin at
MSQ","actionTime":"2019-02-13T06:11:00Z"}
],
 "2019-02-13T09:00:00Z","2019-02-13T07:00:00Z","BM365","FRA","MSQ",

Chapter 4
Using Path expressions

4-11

 [
 {"actionAt":"HKG","actionCode":"Offload to Carousel at
HKG","actionTime":"2019-02-13T11:15:00Z"},
 {"actionAt":"FRA","actionCode":"ONLOAD to
HKG","actionTime":"2019-02-13T10:39:00Z"},
 {"actionAt":"FRA","actionCode":"OFFLOAD from
FRA","actionTime":"2019-02-13T10:37:00Z"}
],
 "2019-02-13T11:18:00Z","2019-02-13T07:17:00Z","BM313","HKG","FRA"
]}

Working with nested data type
Oracle NoSQL database supports nested data type. That means you can have one
data type inside another data type. For example, records inside an array, an array
inside an array, and so on. The sample Baggageinfo schema uses nested data type of
an array of arrays.

Example 1: Fetch the various actions taken on the first leg for the passenger with the
ticket number 1762330498104.

SELECT bagDet.fullName,
bagDet.bagInfo[].flightLegs[0].values().values() AS Action
FROM BaggageInfo bagDet WHERE ticketNo=1762330498104

Explanation: In the above query, flightLegs is a nested data type. This in turn has
an actions array, which is an array of records. The above query is executed in two
steps.

1. $bag.bagInfo[].flightLegs[0].values() gives all the entries in the first record
of theflightLegs array. This includes an actions array. You can iterate this
(using values()) to get all the records of the actions array as shown below.

2. $bag.bagInfo[].flightLegs[0].values().values() gives all the records of the
actions array.

Output:

{"fullName":"Michelle Payne",
"Action":["SFO","ONLOAD to IST","2019-02-02T12:10:00Z","SFO",
"BagTag Scan at SFO","2019-02-02T11:47:00Z","SFO",
"Checkin at SFO","2019-02-02T10:01:00Z"]}

Example 2: Display details of the last transit action update done on the first leg for the
passenger with the ticket number 1762340683564.

SELECT bagDet.fullName, (bagDet.bagInfo[].flightLegs[0].values())
[2].actionCode
AS lastTransit_Update FROM BaggageInfo bagDet WHERE
ticketNo=1762340683564

Explanation: The above query is processed using the following steps:

Chapter 4
Using Path expressions

4-12

1. $bagDet.bagInfo[].flightLegs[0].values() gives all the entries in the first record of
the flightLegs array.

2. bagInfo[].flightLegs[0].values())[2] points to the third (which is the last) record of
the actions array inside the first element of the flightLegs array.

3. There are multiple records in the actions array. bagInfo[].flightLegs[0].values())
[2].actionCode fetches the value corresponding to the actionCode element.

Output:

{"fullName":"Mary Watson","lastTransit_Update":"Checkin at YYZ"}

Note:

In a later section you will learn to write the same query in a generic way without
hardcoding the array index by using the size function. See Finding the size of a
complex data type.

Finding the size of a complex data type
The size function can be used to return the size (number of fields/entries) of a complex data
type.

Example 1: Find out how many flight legs/hops are there for a passenger with ticket number
1762320569757.

SELECT bagDet.fullName, size(bagDet.bagInfo.flightLegs) as Noof_Legs
FROM BaggageInfo bagDet WHERE ticketNo=1762320569757

Explanation: In the above query, you get the size of the flightLegs array using the size
function.

Output:

{"fullName":"Lucinda Beckman","Noof_Legs":3}

Example 2: Find the number of action entries (for the bags) in the first leg for the passenger
with ticket number 1762357254392.

SELECT bagDet.fullName, size(bagDet.bagInfo[].flightLegs[0].actions) AS
FirstLeg_NoofActions
FROM BaggageInfo bagDet WHERE ticketNo=1762357254392

Output:

{"fullName":"Teena Colley","FirstLeg_NoofActions":3}

Chapter 4
Using Path expressions

4-13

Example 3: Display details of the last transit action update done on the first leg for the
passenger with the ticket number 1762340683564.

SELECT bagDet.fullName,
(bagDet.bagInfo[].flightLegs[0].values())
[size(bagDet.bagInfo.flightLegs[0].actions)-1].actionCode
AS lastTransit_Update FROM BaggageInfo bagDet WHERE
ticketNo=1762340683564

Output:

{"fullName":"Mary Watson","lastTransit_Update":"Checkin at YYZ"}

Explanation:

The above query is processed using the following steps:

• 1. $bagDet.bagInfo[].flightLegs[0].values() gives all the entries in the first
record of the flightLegs array.

2. size(bagDet.bagInfo.flightLegs[0].actions)gives the size of the actions
array in the first leg.

3. There are multiple records in the actions array. You can use the result of the
size function to get the last record in the action array and the corresponding
actionCode can be fetched. You subtract the size by 1 as the index of an array
starts with 0.

Note:

The same query has been written in the topic Working with nested data type
by hard coding the index of the actions array. Using the size function, you
have rewritten the same query in a generic way without hard coding the
index.

Using Left Outer joins with parent-child tables
A JOIN is used to combine rows from two or more tables, based on a related column
between them. In a hierarchical table, the child table inherits the primary key columns
of its parent table. This is done implicitly, without including the parent columns in the
CREATE TABLE statement of the child. All tables in the hierarchy have the same shard
key columns.

A Left Outer Join (LOJ) is one of the join operations that allows you to specify a join
clause.

• Overview of Left Outer Joins

• Examples using Left Outer Joins

Chapter 4
Using Left Outer joins with parent-child tables

4-14

Overview of Left Outer Joins
A Left Outer Join (LOJ) is one of the join operations that allows you to specify a join clause. It
preserves the unmatched rows from the first (left) table, joining them with a NULL row in the
second (right) table. This means all left rows that do not have a matching row in the right
table will appear in the result, paired with a NULL value in place of a right row.

In an LOJ, the order of fields in the result-set is always in top-down order. That means the
order of output in the result set is always from the ancestor table first and then the
descendant table. This is true irrespective of the order of the joins.

Characteristics of LEFT OUTER JOIN:

• Queries multiple tables in the same hierarchy

• It is an ANSI-SQL Standard

• It does not support sibling table joins

If you want to follow along with the examples, download the script
parentchildtbls_loaddata.sql and run it as shown below. This script creates the table used in
the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

 java -jar lib/kvstore.jar kvlite -secure-config disable
 java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, execute the script.

load -file parentchildtbls_loaddata.sql

Examples using Left Outer Joins
Various tables used in the examples :

• ticket

ticketNo LONG
confNo STRING
PRIMARY KEY(ticketNo)

• ticket.bagInfo

id LONG
tagNum LONG
routing STRING
lastActionCode STRING
lastActionDesc STRING
lastSeenStation STRING,
lastSeenTimeGmt TIMESTAMP(4)
bagArrivalDate TIMESTAMP(4)
PRIMARY KEY(id)

Chapter 4
Using Left Outer joins with parent-child tables

4-15

• ticket.bagInfo.flightLegs

flightNo STRING
flightDate TIMESTAMP(4)
fltRouteSrc STRING
fltRouteDest STRING
estimatedArrival TIMESTAMP(4),
actions JSON
PRIMARY KEY(flightNo)

• ticket.passengerInfo

contactPhone STRING
fullName STRING
gender STRING
PRIMARY KEY(contactPhone)

Example 1: Fetch the details of all passengers who have been issued a ticket.

SELECT fullname, contactPhone,gender
FROM ticket a
LEFT OUTER JOIN ticket.passengerInfo b
ON a.ticketNo=b.ticketNo

Explanation: This is an example of a join where the target table ticket is joined with
its child table passengerInfo.

Output:

{"fullname":"Elane Lemons","contactPhone":"600-918-8404","gender":"F"}
{"fullname":"Adelaide
Willard","contactPhone":"421-272-8082","gender":"M"}
{"fullname":"Dierdre
Amador","contactPhone":"165-742-5715","gender":"M"}
{"fullname":"Doris Martin","contactPhone":"289-564-3497","gender":"F"}
{"fullname":"Adam Phillips","contactPhone":"893-324-1064","gender":"M"}

Example 1a: Fetch the details of the passenger with ticket number 1762324912391 .

SELECT fullname, contactPhone, gender
FROM ticket a
LEFT OUTER JOIN ticket.passengerInfo b
ON a.ticketNo=b.ticketNo
WHERE a.ticketNo=1762324912391

Explanation: This is an example of a join where the target table ticket is joined with
its child table passengerInfo and a filter is applied to restrict the result. In this
example, the result set is limited by applying a filter condition to the result of the join.
You are limiting the result to a particular ticket number.

Chapter 4
Using Left Outer joins with parent-child tables

4-16

Output:

{"fullname":"Elane Lemons","contactPhone":"600-918-8404","gender":"F"}

Example 2: Fetch all the bag details for all passengers who have been issued a ticket.

SELECT * FROM ticket a
LEFT OUTER JOIN ticket.bagInfo b
ON a.ticketNo=b.ticketNo

Explanation: This is an example of a join where the target tableticket is joined with its child
table bagInfo.

Output:

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":
{"ticketNo":1762344493810,"id":79039899165297,"tagNum":17657806255240,"routin
g":"MIA/LAX/MEL",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation":"MEL"
,
"lastSeenTimeGmt":"2019-02-01T16:13:00.0000Z","bagArrivalDate":"2019-02-01T16
:13:00.0000Z"}}

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"tagNum":1765780623244,"routing
":"MXP/CDG/SLC/BZN",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation":"BZN"
,
"lastSeenTimeGmt":"2019-03-15T10:13:00.0000Z","bagArrivalDate":"2019-03-15T10
:13:00.0000Z"}}

{"a":{"ticketNo":1762392135540,"confNo":"DN3I4Q"},
"b":
{"ticketNo":1762392135540,"id":79039899156435,"tagNum":17657806224224,"routin
g":"GRU/ORD/SEA",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation":"SEA"
,
"lastSeenTimeGmt":"2019-02-15T21:21:00.0000Z","bagArrivalDate":"2019-02-15T21
:21:00.0000Z"}}

{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},
"b":
{"ticketNo":1762376407826,"id":7903989918469,"tagNum":17657806240229,"routing
":"JFK/MAD",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation":"MAD"
,
"lastSeenTimeGmt":"2019-03-07T13:51:00.0000Z","bagArrivalDate":"2019-03-07T13
:51:00.0000Z"}}

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},
"b":
{"ticketNo":1762355527825,"id":79039899197492,"tagNum":17657806232501,"routin

Chapter 4
Using Left Outer joins with parent-child tables

4-17

g":"BZN/SEA/CDG/MXP",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation"
:"MXP",
"lastSeenTimeGmt":"2019-03-22T10:17:00.0000Z","bagArrivalDate":"2019-03
-22T10:17:00.0000Z"}}

Example 2a: Fetch all the bag details for a particular ticket number.

SELECT * FROM ticket a
LEFT OUTER JOIN ticket.bagInfo b
ON a.ticketNo=b.ticketNo
WHERE a.ticketNo=1762324912391

This is an example of a join where the target table ticket is joined with its child table
bagInfo and a filter is applied to restrict the result. In this example, the result set is
limited by applying a filter condition to the result of the join. You are limiting the result
to a particular ticket number.

Output:

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"tagNum":1765780623244,"r
outing":"MXP/CDG/SLC/BZN",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation"
:"BZN",
"lastSeenTimeGmt":"2019-03-15T10:13:00.0000Z","bagArrivalDate":"2019-03
-15T10:13:00.0000Z"}}

Note:

If you move the non-join predicate restriction to the ON clause, the result set
includes all the rows that meet the ON clause condition. Rows from the right
outer table that do not meet the ON condition are populated with NULL
values as shown below.

SELECT * FROM ticket a
LEFT OUTER JOIN ticket.bagInfo b
ON a.ticketNo=b.ticketNo AND
a.ticketNo=1762324912391

Output:

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},"b":null}
{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},"b":null}
{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"}, "b":
{"ticketNo":1762324912391,"id":79039899168383,"tagNum":1765780623244,"r
outing":"MXP/CDG/SLC/BZN",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation"
:"BZN",

Chapter 4
Using Left Outer joins with parent-child tables

4-18

"lastSeenTimeGmt":"2019-03-15T10:13:00.0000Z","bagArrivalDate":"2019-03-15T10
:13:00.0000Z"}}
{"a":{"ticketNo":1762392135540,"confNo":"DN3I4Q"},"b":null}
{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},"b":null}

Example 3: Fetch all flight legs details for all passengers.

SELECT *FROM ticket a
LEFT OUTER JOIN ticket.bagInfo.flightLegs b
ON a.ticketNo=b.ticketNo;

Explanation: This is an example of a join where the target table ticket is joined with its
descendant ticketInfo. A descendant table can be any level hierarchically below a table
(For example fightLegs is the child of bagInfo which is the child of ticket, so fightLegs is
a descendant of ticket).

Output:

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":
{"ticketNo":1762344493810,"id":79039899165297,"flightNo":"BM604","flightDate"
:"2019-02-01T06:00:00.0000Z",
"fltRouteSrc":"MIA","fltRouteDest":"LAX","estimatedArrival":"2019-02-01T11:00
:00.0000Z",
"actions":[{"actionAt":"MIA","actionCode":"ONLOAD to
LAX","actionTime":"2019-02-01T06:13:00Z"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019-02-01T05:47:00Z"},
{"actionAt":"MIA","actionCode":"Checkin at
MIA","actionTime":"2019-02-01T04:38:00Z"}]}}

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":
{"ticketNo":1762344493810,"id":79039899165297,"flightNo":"BM667","flightDate"
:"2019-02-01T06:13:00.0000Z",
"fltRouteSrc":"LAX","fltRouteDest":"MEL","estimatedArrival":"2019-02-01T16:15
:00.0000Z",
"actions":[{"actionAt":"MEL","actionCode":"Offload to Carousel at
MEL","actionTime":"2019-02-01T16:15:00Z"},
{"actionAt":"LAX","actionCode":"ONLOAD to
MEL","actionTime":"2019-02-01T15:35:00Z"},
{"actionAt":"LAX","actionCode":"OFFLOAD from
LAX","actionTime":"2019-02-01T15:18:00Z"}]}}

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"flightNo":"BM170","flightDate"
:"2019-03-15T08:13:00.0000Z",
"fltRouteSrc":"SLC","fltRouteDest":"BZN","estimatedArrival":"2019-03-15T10:14
:00.0000Z",
"actions":[{"actionAt":"BZN","actionCode":"Offload to Carousel at
BZN","actionTime":"2019-03-15T10:13:00Z"},
{"actionAt":"SLC","actionCode":"ONLOAD to
BZN","actionTime":"2019-03-15T10:06:00Z"},

Chapter 4
Using Left Outer joins with parent-child tables

4-19

{"actionAt":"SLC","actionCode":"OFFLOAD from
SLC","actionTime":"2019-03-15T09:59:00Z"}]}}

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"flightNo":"BM490","fligh
tDate":"2019-03-15T08:13:00.0000Z",
"fltRouteSrc":"CDG","fltRouteDest":"SLC","estimatedArrival":"2019-03-15
T10:14:00.0000Z",
"actions":[{"actionAt":"CDG","actionCode":"ONLOAD to
SLC","actionTime":"2019-03-15T09:42:00Z"},
{"actionAt":"CDG","actionCode":"BagTag Scan at
CDG","actionTime":"2019-03-15T09:17:00Z"},
{"actionAt":"CDG","actionCode":"OFFLOAD from
CDG","actionTime":"2019-03-15T09:19:00Z"}]}}

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"flightNo":"BM936","fligh
tDate":"2019-03-15T08:00:00.0000Z",
"fltRouteSrc":"MXP","fltRouteDest":"CDG","estimatedArrival":"2019-03-15
T09:00:00.0000Z",
"actions":[{"actionAt":"MXP","actionCode":"ONLOAD to
CDG","actionTime":"2019-03-15T08:13:00Z"},
{"actionAt":"MXP","actionCode":"BagTag Scan at
MXP","actionTime":"2019-03-15T07:48:00Z"},
{"actionAt":"MXP","actionCode":"Checkin at
MXP","actionTime":"2019-03-15T07:38:00Z"}]}}

{"a":{"ticketNo":1762392135540,"confNo":"DN3I4Q"},
"b":
{"ticketNo":1762392135540,"id":79039899156435,"flightNo":"BM79","flight
Date":"2019-02-15T01:00:00.0000Z",
"fltRouteSrc":"GRU","fltRouteDest":"ORD","estimatedArrival":"2019-02-15
T11:00:00.0000Z",
"actions":[{"actionAt":"GRU","actionCode":"ONLOAD to
ORD","actionTime":"2019-02-15T01:21:00Z"},
{"actionAt":"GRU","actionCode":"BagTag Scan at
GRU","actionTime":"2019-02-15T00:55:00Z"},
{"actionAt":"GRU","actionCode":"Checkin at
GRU","actionTime":"2019-02-14T23:49:00Z"}]}}

{"a":{"ticketNo":1762392135540,"confNo":"DN3I4Q"}
,"b":
{"ticketNo":1762392135540,"id":79039899156435,"flightNo":"BM907","fligh
tDate":"2019-02-15T01:21:00.0000Z",
"fltRouteSrc":"ORD","fltRouteDest":"SEA","estimatedArrival":"2019-02-15
T21:22:00.0000Z",
"actions":[{"actionAt":"SEA","actionCode":"Offload to Carousel at
SEA","actionTime":"2019-02-15T21:16:00Z"},
{"actionAt":"ORD","actionCode":"ONLOAD to
SEA","actionTime":"2019-02-15T20:52:00Z"},
{"actionAt":"ORD","actionCode":"OFFLOAD from
ORD","actionTime":"2019-02-15T20:44:00Z"}]}}

Chapter 4
Using Left Outer joins with parent-child tables

4-20

{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},
"b":
{"ticketNo":1762376407826,"id":7903989918469,"flightNo":"BM495","flightDate":
"2019-03-07T07:00:00.0000Z",
"fltRouteSrc":"JFK","fltRouteDest":"MAD","estimatedArrival":"2019-03-07T14:00
:00.0000Z",
"actions":[{"actionAt":"MAD","actionCode":"Offload to Carousel at
MAD","actionTime":"2019-03-07T13:54:00Z"},
{"actionAt":"JFK","actionCode":"ONLOAD to
MAD","actionTime":"2019-03-07T07:00:00Z"},
{"actionAt":"JFK","actionCode":"BagTag Scan at
JFK","actionTime":"2019-03-07T06:53:00Z"},
{"actionAt":"JFK","actionCode":"Checkin at
JFK","actionTime":"2019-03-07T05:03:00Z"}]}}

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},
"b":
{"ticketNo":1762355527825,"id":79039899197492,"flightNo":"BM386","flightDate"
:"2019-03-22T07:23:00.0000Z",
"fltRouteSrc":"CDG","fltRouteDest":"MXP","estimatedArrival":"2019-03-22T10:24
:00.0000Z",
"actions":[{"actionAt":"MXP","actionCode":"Offload to Carousel at
MXP","actionTime":"2019-03-22T10:15:00Z"},
{"actionAt":"CDG","actionCode":"ONLOAD to
MXP","actionTime":"2019-03-22T10:09:00Z"},
{"actionAt":"CDG","actionCode":"OFFLOAD from
CDG","actionTime":"2019-03-22T10:01:00Z"}]}}

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},
"b":
{"ticketNo":1762355527825,"id":79039899197492,"flightNo":"BM578","flightDate"
:"2019-03-22T07:23:00.0000Z",
"fltRouteSrc":"SEA","fltRouteDest":"CDG","estimatedArrival":"2019-03-21T23:24
:00.0000Z",
"actions":[{"actionAt":"SEA","actionCode":"ONLOAD to
CDG","actionTime":"2019-03-22T11:26:00Z"},
{"actionAt":"SEA","actionCode":"BagTag Scan at
SEA","actionTime":"2019-03-22T10:57:00Z"},
{"actionAt":"SEA","actionCode":"OFFLOAD from
SEA","actionTime":"2019-03-22T11:07:00Z"}]}}

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},
"b":
{"ticketNo":1762355527825,"id":79039899197492,"flightNo":"BM704","flightDate"
:"2019-03-22T07:00:00.0000Z",
"fltRouteSrc":"BZN","fltRouteDest":"SEA","estimatedArrival":"2019-03-22T09:00
:00.0000Z",
"actions":[{"actionAt":"BZN","actionCode":"ONLOAD to
SEA","actionTime":"2019-03-22T07:23:00Z"},
{"actionAt":"BZN","actionCode":"BagTag Scan at
BZN","actionTime":"2019-03-22T06:58:00Z"},
{"actionAt":"BZN","actionCode":"Checkin at
BZN","actionTime":"2019-03-22T05:20:00Z"}]}}

Chapter 4
Using Left Outer joins with parent-child tables

4-21

Example 3a: Fetch all the flight leg details for a particular ticket number.

SELECT * FROM ticket a
LEFT OUTER JOIN ticket.bagInfo.flightLegs b
ON a.ticketNo=b.ticketNo
WHERE a.ticketNo=1762344493810

This is an example of a join where the target table ticket is joined with its descendant
bagInfo and a filter is applied to restrict the result. In this example, the result set is
limited by applying a filter condition to the result of the join. You are limiting the result
to a particular ticket number.

The result has two rows, implying there are two flight legs for this ticket number.

Output:

"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":{"ticketNo":1762344493810,"id":79039899165297,"flightNo":"BM604",
"flightDate":"2019-02-01T06:00:00.0000Z","fltRouteSrc":"MIA","fltRouteD
est":"LAX",
"estimatedArrival":"2019-02-01T11:00:00.0000Z",
"actions":[{"actionAt":"MIA","actionCode":"ONLOAD to
LAX","actionTime":"2019-02-01T06:13:00Z"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019-02-01T05:47:00Z"},
{"actionAt":"MIA","actionCode":"Checkin at
MIA","actionTime":"2019-02-01T04:38:00Z"}]}}

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":{"ticketNo":1762344493810,"id":79039899165297,"flightNo":"BM667",
"flightDate":"2019-02-01T06:13:00.0000Z","fltRouteSrc":"LAX","fltRouteD
est":"MEL",
"estimatedArrival":"2019-02-01T16:15:00.0000Z",
"actions":[{"actionAt":"MEL","actionCode":"Offload to Carousel at
MEL","actionTime":"2019-02-01T16:15:00Z"},
{"actionAt":"LAX","actionCode":"ONLOAD to
MEL","actionTime":"2019-02-01T15:35:00Z"},
{"actionAt":"LAX","actionCode":"OFFLOAD from
LAX","actionTime":"2019-02-01T15:18:00Z"}]}}

Example 4: Fetch the bag id and number of hops for all bags of all passengers.

SELECT b.id,count(*) AS NUMBER_HOPS
FROM ticket a LEFT OUTER JOIN ticket.bagInfo.flightLegs b
ON a.ticketNo=b.ticketNo GROUP BY b.id

Explanation: You group the data based on the bag id (using GROUP BY) and get the
count of flight legs (using count()) for every bag.

Output:

{"id":79039899168383,"NUMBER_HOPS":3}
{"id":79039899156435,"NUMBER_HOPS":2}
{"id":7903989918469,"NUMBER_HOPS":1}

Chapter 4
Using Left Outer joins with parent-child tables

4-22

{"id":79039899165297,"NUMBER_HOPS":2}
{"id":79039899197492,"NUMBER_HOPS":3}

Example 4a: Find the number of hops for all the bags of a given passenger.

SELECT b.id,count(*) AS NUMBER_HOPS
FROM ticket a LEFT OUTER JOIN ticket.bagInfo.flightLegs b
ON a.ticketNo=b.ticketNo
WHERE a.ticketNo=1762355527825 GROUP BY b.id

Explanation: You group the data based on the bag id (using GROUP BY) and get the count
of flight legs (Using count())for every bag. Additionally, you filter the results for a particular
ticket number.

Output:

{"id":79039899197492,"NUMBER_HOPS":3}

Example 5: Fetch bag id and routing details of all bags that arrived after 2019.

SELECT b.id, routing
FROM ticket a LEFT OUTER JOIN ticket.bagInfo b
ON a.ticketNo=b.ticketNo
WHERE CAST (b.bagArrivalDate AS Timestamp(0))
>= CAST ("2019-01-01T00:00:00" AS Timestamp(0))

Explanation: This is an example of a join where the target tableticket is joined with its child
table bagInfo. The filter condition is applied on the bagArrivalDate. The CAST function is
used to convert the string into Timestamp and then the values are compared.

Output:

{"id":79039899197492,"routing":"BZN/SEA/CDG/MXP"}
{"id":79039899165297,"routing":"MIA/LAX/MEL"}
{"id":79039899168383,"routing":"MXP/CDG/SLC/BZN"}
{"id":79039899156435,"routing":"GRU/ORD/SEA"}
{"id":7903989918469,"routing":"JFK/MAD"}

Using NESTED TABLES to join parent-child tables
A JOIN is used to combine rows from two or more tables, based on a related column
between them. In a hierarchical table, the child table inherits the primary key columns of its
parent table. This is done implicitly, without including the parent columns in the CREATE TABLE
statement of the child. All tables in the hierarchy have the same shard key columns.

You can use NESTED TABLES clause to join tables in Oracle NoSQL Database.

• Overview of NESTED TABLES

• Examples using NESTED TABLES

Chapter 4
Using NESTED TABLES to join parent-child tables

4-23

Overview of NESTED TABLES
The NESTED TABLES clause specifies the participating tables and separates them
into 3 groups. First, the target table from where the data is fetched is specified. Then
the ANCESTORS clause, if present, specifies the number of tables that must be
ancestors of the target table in the table hierarchy. Finally, the DESCENDANTS
clause, if present, specifies the number of tables that must be descendants of the
target table in the table hierarchy.

Note:

Semantically, a NESTED TABLES clause is equivalent to a number of left-
outer-join operations "centered" around the target table.

Characteristics of NESTED tables:

• Queries multiple tables in the same hierarchy

• It is not an ANSI-SQL Standard

• It supports sibling tables join

Table 4-1 Nested Tables Vs LOJ

Nested Tables LOJ

Queries multiple tables in the same hierarchy Queries multiple tables in the same hierarchy

Not an ANSI-SQL Standard ANSI-SQL Standard

Supports sibling tables join Does not support sibling table joins

If you want to follow along with the examples, download the script
parentchildtbls_loaddata.sql and run it as shown below. This script creates the table
used in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

 java -jar lib/kvstore.jar kvlite -secure-config disable
 java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, execute the script.

load -file parentchildtbls_loaddata.sql

Examples using NESTED TABLES
Various tables used in the examples :

Chapter 4
Using NESTED TABLES to join parent-child tables

4-24

• ticket

ticketNo LONG
confNo STRING
PRIMARY KEY(ticketNo)

• ticket.bagInfo

id LONG
tagNum LONG
routing STRING
lastActionCode STRING
lastActionDesc STRING
lastSeenStation STRING,
lastSeenTimeGmt TIMESTAMP(4)
bagArrivalDate TIMESTAMP(4)
PRIMARY KEY(id)

• ticket.bagInfo.flightLegs

flightNo STRING
flightDate TIMESTAMP(4)
fltRouteSrc STRING
fltRouteDest STRING
estimatedArrival TIMESTAMP(4),
actions JSON
PRIMARY KEY(flightNo)

• ticket.passengerInfo

contactPhone STRING
fullName STRING
gender STRING
PRIMARY KEY(contactPhone)

Example 1: Fetch the details of all passengers who have been issued a ticket.

SELECT fullname, contactPhone, gender
FROM NESTED TABLES
(ticket a descendants(ticket.passengerInfo b))

Explanation: This is an example of a join where the target table ticket is joined with its child
table passengerInfo.

Output:

{"fullname":"Elane Lemons","contactPhone":"600-918-8404","gender":"F"}
{"fullname":"Adelaide Willard","contactPhone":"421-272-8082","gender":"M"}
{"fullname":"Dierdre Amador","contactPhone":"165-742-5715","gender":"M"}
{"fullname":"Doris Martin","contactPhone":"289-564-3497","gender":"F"}
{"fullname":"Adam Phillips","contactPhone":"893-324-1064","gender":"M"}

Chapter 4
Using NESTED TABLES to join parent-child tables

4-25

Example 1a: Fetch the details of the passenger with ticket number 1762324912391 .

SELECT fullname, contactPhone, gender
FROM NESTED TABLES
(ticket a descendants(ticket.passengerInfo b))
WHERE a.ticketNo=1762324912391

Explanation: This is an example of a join where the target tableticket is joined with
its child table passengerInfo. Additionally, you can limit the result set by applying a
filter condition to the result of the join. You are limiting the result to a particular ticket
number.

Output:

{"fullname":"Elane Lemons","contactPhone":"600-918-8404","gender":"F"}

Example 2: Fetch all the bag details for all passengers who have been issued a ticket.

SELECT * FROM NESTED TABLES
(ticket a descendants(ticket.bagInfo b))

Explanation: This is an example of a join where the target table ticket is joined with
its child table bagInfo.

Output:

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":
{"ticketNo":1762344493810,"id":79039899165297,"tagNum":17657806255240,"
routing":"MIA/LAX/MEL",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation"
:"MEL",
"lastSeenTimeGmt":"2019-02-01T16:13:00.0000Z","bagArrivalDate":"2019-02
-01T16:13:00.0000Z"}}

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"tagNum":1765780623244,"r
outing":"MXP/CDG/SLC/BZN",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation"
:"BZN",
"lastSeenTimeGmt":"2019-03-15T10:13:00.0000Z","bagArrivalDate":"2019-03
-15T10:13:00.0000Z"}}

{"a":{"ticketNo":1762392135540,"confNo":"DN3I4Q"},
"b":
{"ticketNo":1762392135540,"id":79039899156435,"tagNum":17657806224224,"
routing":"GRU/ORD/SEA",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation"
:"SEA",
"lastSeenTimeGmt":"2019-02-15T21:21:00.0000Z","bagArrivalDate":"2019-02
-15T21:21:00.0000Z"}}

Chapter 4
Using NESTED TABLES to join parent-child tables

4-26

{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},
"b":
{"ticketNo":1762376407826,"id":7903989918469,"tagNum":17657806240229,"routing
":"JFK/MAD",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation":"MAD"
,
"lastSeenTimeGmt":"2019-03-07T13:51:00.0000Z","bagArrivalDate":"2019-03-07T13
:51:00.0000Z"}}

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},
"b":
{"ticketNo":1762355527825,"id":79039899197492,"tagNum":17657806232501,"routin
g":"BZN/SEA/CDG/MXP",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation":"MXP"
,
"lastSeenTimeGmt":"2019-03-22T10:17:00.0000Z","bagArrivalDate":"2019-03-22T10
:17:00.0000Z"}}

Example 2a: Fetch all the bag details for a particular ticket number.

SELECT * FROM
NESTED TABLES (ticket a descendants(ticket.bagInfo b))
WHERE a.ticketNo=1762324912391

Explanation: This is an example of a join where the target tableticket is joined with its child
table bagInfo. Additionally, you can limit the result set by applying a filter condition to the
result of the join. You are limiting the result to a particular ticket number.

Output:

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"tagNum":1765780623244,"routing
":"MXP/CDG/SLC/BZN",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation":"BZN"
,
"lastSeenTimeGmt":"2019-03-15T10:13:00.0000Z","bagArrivalDate":"2019-03-15T10
:13:00.0000Z"}}

Note:

If you move the non-join predicate restriction to the ON clause, the result set
includes all the rows that meet the ON clause condition. Rows from the right outer
table that do not meet the ON condition are populated with NULL values as shown
below.

SELECT * FROM
NESTED TABLES(ticket a descendants(ticket.bagInfo b
ON a.ticketNo=b.ticketNo
AND a.ticketNo=1762324912391))

Chapter 4
Using NESTED TABLES to join parent-child tables

4-27

Output:

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},"b":null}
{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},"b":null}
{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"}, "b":
{"ticketNo":1762324912391,"id":79039899168383,"tagNum":1765780623244,"r
outing":"MXP/CDG/SLC/BZN",
"lastActionCode":"OFFLOAD","lastActionDesc":"OFFLOAD","lastSeenStation"
:"BZN",
"lastSeenTimeGmt":"2019-03-15T10:13:00.0000Z","bagArrivalDate":"2019-03
-15T10:13:00.0000Z"}}
{"a":{"ticketNo":1762392135540,"confNo":"DN3I4Q"},"b":null}
{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},"b":null}

Example 3: Fetch all flight leg details for all passengers.

SELECT * FROM
NESTED TABLES (ticket a descendants(ticket.bagInfo.flightLegs b))

Explanation: This is an example of a join where the target table ticket is joined with
its descendant bagInfo. A descendant table can be any level hierarchically below a
table (For example fightLegs is the child of bagInfo which is the child of ticket, so
flightLegs is a descendant of ticket). All the rows from the ticket table will be
fetched. If any row from the ticket table does not have a matching row in the
flightLegs table, then NULL values will be displayed for those rows of the
flightLegs table.

Output:

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":
{"ticketNo":1762344493810,"id":79039899165297,"flightNo":"BM604","fligh
tDate":"2019-02-01T06:00:00.0000Z",
"fltRouteSrc":"MIA","fltRouteDest":"LAX","estimatedArrival":"2019-02-01
T11:00:00.0000Z",
"actions":[{"actionAt":"MIA","actionCode":"ONLOAD to
LAX","actionTime":"2019-02-01T06:13:00Z"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019-02-01T05:47:00Z"},
{"actionAt":"MIA","actionCode":"Checkin at
MIA","actionTime":"2019-02-01T04:38:00Z"}]}}

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":
{"ticketNo":1762344493810,"id":79039899165297,"flightNo":"BM667","fligh
tDate":"2019-02-01T06:13:00.0000Z",
"fltRouteSrc":"LAX","fltRouteDest":"MEL","estimatedArrival":"2019-02-01
T16:15:00.0000Z",
"actions":[{"actionAt":"MEL","actionCode":"Offload to Carousel at
MEL","actionTime":"2019-02-01T16:15:00Z"},
{"actionAt":"LAX","actionCode":"ONLOAD to
MEL","actionTime":"2019-02-01T15:35:00Z"},
{"actionAt":"LAX","actionCode":"OFFLOAD from

Chapter 4
Using NESTED TABLES to join parent-child tables

4-28

LAX","actionTime":"2019-02-01T15:18:00Z"}]}}

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"flightNo":"BM170","flightDate"
:"2019-03-15T08:13:00.0000Z",
"fltRouteSrc":"SLC","fltRouteDest":"BZN","estimatedArrival":"2019-03-15T10:14
:00.0000Z",
"actions":[{"actionAt":"BZN","actionCode":"Offload to Carousel at
BZN","actionTime":"2019-03-15T10:13:00Z"},
{"actionAt":"SLC","actionCode":"ONLOAD to
BZN","actionTime":"2019-03-15T10:06:00Z"},
{"actionAt":"SLC","actionCode":"OFFLOAD from
SLC","actionTime":"2019-03-15T09:59:00Z"}]}}

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"flightNo":"BM490","flightDate"
:"2019-03-15T08:13:00.0000Z",
"fltRouteSrc":"CDG","fltRouteDest":"SLC","estimatedArrival":"2019-03-15T10:14
:00.0000Z",
"actions":[{"actionAt":"CDG","actionCode":"ONLOAD to
SLC","actionTime":"2019-03-15T09:42:00Z"},
{"actionAt":"CDG","actionCode":"BagTag Scan at
CDG","actionTime":"2019-03-15T09:17:00Z"},
{"actionAt":"CDG","actionCode":"OFFLOAD from
CDG","actionTime":"2019-03-15T09:19:00Z"}]}}

{"a":{"ticketNo":1762324912391,"confNo":"LN0C8R"},
"b":
{"ticketNo":1762324912391,"id":79039899168383,"flightNo":"BM936","flightDate"
:"2019-03-15T08:00:00.0000Z",
"fltRouteSrc":"MXP","fltRouteDest":"CDG","estimatedArrival":"2019-03-15T09:00
:00.0000Z",
"actions":[{"actionAt":"MXP","actionCode":"ONLOAD to
CDG","actionTime":"2019-03-15T08:13:00Z"},
{"actionAt":"MXP","actionCode":"BagTag Scan at
MXP","actionTime":"2019-03-15T07:48:00Z"},
{"actionAt":"MXP","actionCode":"Checkin at
MXP","actionTime":"2019-03-15T07:38:00Z"}]}}

{"a":{"ticketNo":1762392135540,"confNo":"DN3I4Q"},
"b":
{"ticketNo":1762392135540,"id":79039899156435,"flightNo":"BM79","flightDate":
"2019-02-15T01:00:00.0000Z",
"fltRouteSrc":"GRU","fltRouteDest":"ORD","estimatedArrival":"2019-02-15T11:00
:00.0000Z",
"actions":[{"actionAt":"GRU","actionCode":"ONLOAD to
ORD","actionTime":"2019-02-15T01:21:00Z"},
{"actionAt":"GRU","actionCode":"BagTag Scan at
GRU","actionTime":"2019-02-15T00:55:00Z"},
{"actionAt":"GRU","actionCode":"Checkin at
GRU","actionTime":"2019-02-14T23:49:00Z"}]}}

{"a":{"ticketNo":1762392135540,"confNo":"DN3I4Q"}

Chapter 4
Using NESTED TABLES to join parent-child tables

4-29

,"b":
{"ticketNo":1762392135540,"id":79039899156435,"flightNo":"BM907","fligh
tDate":"2019-02-15T01:21:00.0000Z",
"fltRouteSrc":"ORD","fltRouteDest":"SEA","estimatedArrival":"2019-02-15
T21:22:00.0000Z",
"actions":[{"actionAt":"SEA","actionCode":"Offload to Carousel at
SEA","actionTime":"2019-02-15T21:16:00Z"},
{"actionAt":"ORD","actionCode":"ONLOAD to
SEA","actionTime":"2019-02-15T20:52:00Z"},
{"actionAt":"ORD","actionCode":"OFFLOAD from
ORD","actionTime":"2019-02-15T20:44:00Z"}]}}

{"a":{"ticketNo":1762376407826,"confNo":"ZG8Z5N"},
"b":
{"ticketNo":1762376407826,"id":7903989918469,"flightNo":"BM495","flight
Date":"2019-03-07T07:00:00.0000Z",
"fltRouteSrc":"JFK","fltRouteDest":"MAD","estimatedArrival":"2019-03-07
T14:00:00.0000Z",
"actions":[{"actionAt":"MAD","actionCode":"Offload to Carousel at
MAD","actionTime":"2019-03-07T13:54:00Z"},
{"actionAt":"JFK","actionCode":"ONLOAD to
MAD","actionTime":"2019-03-07T07:00:00Z"},
{"actionAt":"JFK","actionCode":"BagTag Scan at
JFK","actionTime":"2019-03-07T06:53:00Z"},
{"actionAt":"JFK","actionCode":"Checkin at
JFK","actionTime":"2019-03-07T05:03:00Z"}]}}

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},
"b":
{"ticketNo":1762355527825,"id":79039899197492,"flightNo":"BM386","fligh
tDate":"2019-03-22T07:23:00.0000Z",
"fltRouteSrc":"CDG","fltRouteDest":"MXP","estimatedArrival":"2019-03-22
T10:24:00.0000Z",
"actions":[{"actionAt":"MXP","actionCode":"Offload to Carousel at
MXP","actionTime":"2019-03-22T10:15:00Z"},
{"actionAt":"CDG","actionCode":"ONLOAD to
MXP","actionTime":"2019-03-22T10:09:00Z"},
{"actionAt":"CDG","actionCode":"OFFLOAD from
CDG","actionTime":"2019-03-22T10:01:00Z"}]}}

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},
"b":
{"ticketNo":1762355527825,"id":79039899197492,"flightNo":"BM578","fligh
tDate":"2019-03-22T07:23:00.0000Z",
"fltRouteSrc":"SEA","fltRouteDest":"CDG","estimatedArrival":"2019-03-21
T23:24:00.0000Z",
"actions":[{"actionAt":"SEA","actionCode":"ONLOAD to
CDG","actionTime":"2019-03-22T11:26:00Z"},
{"actionAt":"SEA","actionCode":"BagTag Scan at
SEA","actionTime":"2019-03-22T10:57:00Z"},
{"actionAt":"SEA","actionCode":"OFFLOAD from
SEA","actionTime":"2019-03-22T11:07:00Z"}]}}

{"a":{"ticketNo":1762355527825,"confNo":"HJ4J4P"},
"b":

Chapter 4
Using NESTED TABLES to join parent-child tables

4-30

{"ticketNo":1762355527825,"id":79039899197492,"flightNo":"BM704","flightDate"
:"2019-03-22T07:00:00.0000Z",
"fltRouteSrc":"BZN","fltRouteDest":"SEA","estimatedArrival":"2019-03-22T09:00
:00.0000Z",
"actions":[{"actionAt":"BZN","actionCode":"ONLOAD to
SEA","actionTime":"2019-03-22T07:23:00Z"},
{"actionAt":"BZN","actionCode":"BagTag Scan at
BZN","actionTime":"2019-03-22T06:58:00Z"},
{"actionAt":"BZN","actionCode":"Checkin at
BZN","actionTime":"2019-03-22T05:20:00Z"}]}}

Example 3a: Fetch all the flight leg details for a particular ticket number.

SELECT * FROM
NESTED TABLES (ticket.bagInfo.flightLegs b ancestors(ticket a))
WHERE a.ticketNo=1762344493810

Explanation: This is an example of a join where the target tableticket is joined with its
descendant bagInfo. Additionally, you can limit the result set by applying a filter condition to
the result of the join. You are limiting the result to a particular ticket number.

The result has two rows, implying there are two flight legs for this ticket number.

Output:

"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":{"ticketNo":1762344493810,"id":79039899165297,"flightNo":"BM604",
"flightDate":"2019-02-01T06:00:00.0000Z","fltRouteSrc":"MIA","fltRouteDest":"
LAX",
"estimatedArrival":"2019-02-01T11:00:00.0000Z",
"actions":[{"actionAt":"MIA","actionCode":"ONLOAD to
LAX","actionTime":"2019-02-01T06:13:00Z"},
{"actionAt":"MIA","actionCode":"BagTag Scan at
MIA","actionTime":"2019-02-01T05:47:00Z"},
{"actionAt":"MIA","actionCode":"Checkin at
MIA","actionTime":"2019-02-01T04:38:00Z"}]}}

{"a":{"ticketNo":1762344493810,"confNo":"LE6J4Z"},
"b":{"ticketNo":1762344493810,"id":79039899165297,"flightNo":"BM667",
"flightDate":"2019-02-01T06:13:00.0000Z","fltRouteSrc":"LAX","fltRouteDest":"
MEL",
"estimatedArrival":"2019-02-01T16:15:00.0000Z",
"actions":[{"actionAt":"MEL","actionCode":"Offload to Carousel at
MEL","actionTime":"2019-02-01T16:15:00Z"},
{"actionAt":"LAX","actionCode":"ONLOAD to
MEL","actionTime":"2019-02-01T15:35:00Z"},
{"actionAt":"LAX","actionCode":"OFFLOAD from
LAX","actionTime":"2019-02-01T15:18:00Z"}]}}

Chapter 4
Using NESTED TABLES to join parent-child tables

4-31

Example 4: Fetch the bag id and number of hops for all bags of all passengers.

SELECT b.id,count(*) AS NUMBER_HOPS
FROM NESTED TABLES (ticket a descendants(ticket.bagInfo.flightLegs b))
GROUP BY b.id

Explanation: You group the data based on the bag id (using GROUP BY) and get the
count of flight legs (using count()) for every bag.

Output:

{"id":79039899168383,"NUMBER_HOPS":3}
{"id":79039899156435,"NUMBER_HOPS":2}
{"id":7903989918469,"NUMBER_HOPS":1}
{"id":79039899165297,"NUMBER_HOPS":2}
{"id":79039899197492,"NUMBER_HOPS":3}

Example 4a: Find the number of hops for all bags of a particular passenger.

SELECT b.id,count(*) AS NUMBER_HOPS FROM
NESTED TABLES (ticket a descendants(ticket.bagInfo.flightLegs b))
WHERE a.ticketNo=1762355527825
GROUP BY b.id

Explanation: You group the data based on the bag id (using GROUP BY) and get the
count of flight legs (Using count()) for every bag. Additionally, you filter the results for
a particular ticket number.

Output:

{"id":79039899197492,"NUMBER_HOPS":3}

Example 5: Fetch bag id and routing details of all bags that arrived after 2019.

SELECT b.id, routing FROM
NESTED TABLES(ticket a descendants(ticket.bagInfo b))
WHERE CAST (b.bagArrivalDate AS Timestamp(0))>=
CAST ("2019-01-01T00:00:00" AS Timestamp(0))

Explanation: This is an example of a join where the target tableticket is joined with
its child table bagInfo. The filter condition is applied on the bagArrivalDate. The CAST
function is used to convert the string into Timestamp and then the values are
compared.

Output:

{"id":79039899197492,"routing":"BZN/SEA/CDG/MXP"}
{"id":79039899165297,"routing":"MIA/LAX/MEL"}
{"id":79039899168383,"routing":"MXP/CDG/SLC/BZN"}
{"id":79039899156435,"routing":"GRU/ORD/SEA"}
{"id":7903989918469,"routing":"JFK/MAD"}

Chapter 4
Using NESTED TABLES to join parent-child tables

4-32

Tuning and Optimizing SQL queries
Query optimization is the overall process of choosing the most efficient means of executing a
SQL statement.

You optimize a SQL query to get accurate and fast database results.

• Using Indexes for query optimization

• Examples of queries using index

Using Indexes for query optimization
Indexing is a way to optimize the performance of a database by minimizing the number of
disk accesses required when a query is processed.

In Oracle NoSQL Database, the query processor can identify which of the available indexes
are beneficial for a query and rewrite the query to make use of such an index. "Using" an
index means scanning a contiguous subrange of its entries, potentially applying further
filtering conditions on the entries within this subrange, and using the primary keys stored in
the surviving index entries to extract and return the associated table rows. The subrange of
the index entries to scan is determined by the conditions appearing in the WHERE clause,
some of which may be converted to search conditions for the index. Given that only a
(hopefully small) subset of the index entries will satisfy the search conditions, the query can
be evaluated without accessing each individual table row, thus saving a potentially large
number of disk accesses.

Notice that in Oracle NoSQL Database, a primary-key index is always created by default.
This index maps the primary key columns of a table to the physical location of the table rows.
Furthermore, if no other index is available, the primary index will be used. In other words,
there is no pure "table scan" mechanism; a table scan is equivalent to a scan via the primary-
key index. When it comes to indexes and queries, the query processor must answer two
questions:

1. Is an index applicable to a query? That is, will accessing the table via this index be more
efficient than doing a full table scan (via the primary index).

2. Among the applicable indexes, which index or combination of indexes is the best to use?

There are no statistics on the number and distribution of values in a table column. As a result,
the query processor has to rely on some simple heuristics in choosing among the applicable
indexes. In addition, SQL for Oracle NoSQL Database allows for the inclusion of index hints
in the queries. You can use index hints to force the use of a particular index in queries.

Examples of queries using index
You can write simple queries to understand how an index is used.

Query 1:

Fetch the bag details of passengers for ticket numbers satisfying 2 range of values.

SELECT fullname, ticketNo,bag.bagInfo[].tagNum,
bag.bagInfo[].routing

Chapter 4
Tuning and Optimizing SQL queries

4-33

FROM BaggageInfo bag WHERE 1762340000000 < ticketNo
AND ticketNo < 1762352000000

In the above example, the query contains 2 index predicates. The primary key index is
used as ticketNo is the primary key here. For the primary key index, 1762340000000
< ticketNo is a start predicate and ticketNo < 1762352000000 is a stop predicate.

A portion of the query plan is shown below. You can see the primary index being used.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bag",
"index used" : "primary index",
"covering index" : false,
"index scans" :
[
 {
 "equality conditions" : {},
 "range conditions" : { "ticketNo" : { "start value" :
1762340000000,
 "start inclusive" : false,
 "end value" : 1762352000000,
 "end inclusive" : false } }
 }
]

For more information on how a query is executed, see Query execution plan.

Query 2:

Fetch the bag details of passengers for ticket numbers satisfying one of the two
ranges of values.

SELECT fullname, ticketNo,bag.bagInfo[].tagNum,
bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE ticketNo > 1762340000000 OR
ticketNo < 1762352000000

In the above example, the query contains 1 index predicate, which is the whole
WHERE expression. The primary key index is used as ticketNo is the primary key
here. The predicate is a filtering predicate.

A portion of the query plan is shown below. You can see the primary index and the
index filtering predicates being used.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bag",
"index used" : "primary index",
"covering index" : false,
"index scans" :
[
 {

Chapter 4
Tuning and Optimizing SQL queries

4-34

 "equality conditions" : {},
 "range conditions" : {}
 }
],
"index filtering predicate" :
{
 "iterator kind" : "OR",
 "input iterators" :
 [
 {
 "iterator kind" : "GREATER_THAN",
 "left operand" :
 {

 },
 "right operand" :
 {

 }
 },
 {
 "iterator kind" : "LESS_THAN",
 "left operand" :
 {

 },
 "right operand" :
 {

 }
 }
]
}

For more information on how a query is executed, see Query execution plan.

Query 3:

Fetch the bag details for a particular reservation code.

SELECT fullName,bag.ticketNo, bag.confNo,
bag.bagInfo[].tagNum,bag.bagInfo[].routing
FROM BaggageInfo bag WHERE bag.confNo="FH7G1W"

In the above example, two indexes are applicable compindex_tckNoconfNo and
fixedschema_conf .

A portion of the query plan is shown below. The fixedschema_conf is used as that is a single
index on ticketNo. An index scan is performed with the equality condition.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bag",
"index used" : "fixedschema_conf",

Chapter 4
Tuning and Optimizing SQL queries

4-35

"covering index" : false,
"index scans" :
[
 {
 "equality conditions" : {"confNo":"FH7G1W"},
 "range conditions" : {}
 }
]

For more information on how a query is executed, see Query execution plan.

Query 4:

Fetch the name and routing details of all male passengers.

SELECT fullname,bag.bagInfo[].routing FROM BaggageInfo bag
WHERE gender!="F"

In the above example, there is no index predicate, because no index has information
about gender.

A portion of the query plan is shown below. As there are no available indexes to be
used, only the primary key index is used.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bag",
"index used" : "primary index",
"covering index" : false,
"index scans" :
[
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]

For more information on how a query is executed, see Query execution plan.

Query 5:

Fetch the name and phone number for all passengers.

SELECT bag.contactPhone, bag.fullName FROM BaggageInfo bag
ORDER BY bag.fullName

In the above example, only the index compindex_namephone is applicable. The sort (for
the order by clause) will be index-based because the order-by expression matches the
1st field of the index used by the query. In this case, the full name and contact phone
information needed in the SELECT clause is available in the index. As a result, the
whole query can be answered from the index only, with no access to the table. So the
index compindex_namephone is a covering index in this example. The query processor
will apply this optimization.

Chapter 4
Tuning and Optimizing SQL queries

4-36

A portion of the query plan is shown below. You can see the index compindex_namephone is
used and it is a covering index.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bag",
"index used" : "compindex_namephone",
"covering index" : true,
"index row variable" : "$$bag_idx",
"index scans" :
[
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]

For more information on how a query is executed, see Query execution plan.

Query 6:

Fetch the name, ticket number, and arrival date of passengers whose arrival date is greater
than a given value.

SELECT fullName, bag.ticketNo, bag.bagInfo[].bagArrivalDate
FROM BaggageInfo bag WHERE EXISTS
bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

In the above example, the EXISTS condition is actually converted to a filtering predicate.
There is one filtering predicate which is the whole WHERE expression.

A portion of the query plan is shown below. The index simpleindex_arrival is used in this
example.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bag",
"index used" : "simpleindex_arrival",
"covering index" : false,
"index row variable" : "$$bag_idx",
"index scans" :
[
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
],
"index filtering predicate" :
{
 "iterator kind" : "GREATER_OR_EQUAL",
 "left operand" :
 {

 },

Chapter 4
Tuning and Optimizing SQL queries

4-37

 "right operand" :
 {

 }
}

For more information on how a query is executed, see Query execution plan.

Query 7:

Fetch the reservation code and count of bags for all passengers.

SELECT bag.confNo, count(bag.bagInfo) AS TOTAL_BAGS
FROM BaggageInfo bag GROUP BY bag.confNo

In the above example, two indexes fixedschema_conf and compindex_tckNoconfNo
are applicable.

A portion of the query plan is shown below. The index fixedschema_conf is used as
that is a single index with only one column confNo. For this query, the group-by is
index-based. As you need the entire bagInfo details to determine the number of bags
using the aggregate count function, the index here is not covering.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bag",
"index used" : "fixedschema_conf",
"covering index" : false,
"index scans" :
[
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]

For more information on how a query is executed, see Query execution plan.

Query 8:

Fetch the full name and tag number of passengers who are in the given list of names.

SELECT bagdet.fullName, bagdet.bagInfo[].tagNum
FROM BaggageInfo bagdet
WHERE bagdet.fullName IN
("Lucinda Beckman", "Adam Phillips",
"Zina Christenson","Fallon Clements")

In the above example, only the index compindex_namephone is applicable.

Chapter 4
Tuning and Optimizing SQL queries

4-38

A portion of the query plan is shown below. The index compindex_namephone is used. An
index scan is performed on compindex_namephone evaluating four equality predicates.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bagdet",
"index used" : "compindex_namephone",
"covering index" : false,
"index scans" :
[
 {
 "equality conditions" : {"fullName":"Lucinda Beckman"},
 "range conditions" : {}
 },
 {
 "equality conditions" : {"fullName":"Adam Phillips"},
 "range conditions" : {}
 },
 {
 "equality conditions" : {"fullName":"Zina Christenson"},
 "range conditions" : {}
 },
 {
 "equality conditions" : {"fullName":"Fallon Clements"},
 "range conditions" : {}
 }
]

For more information on how a query is executed, see Query execution plan.

Query 9:

Select the ticket details(ticket number, reservation code, tag number, and routing) for a
passenger with a specific ticket number and reservation code.

SELECT fullName,bag.ticketNo, bag.confNo,
bag.bagInfo[].tagNum,bag.bagInfo[].routing
FROM BaggageInfo bag WHERE
bag.ticketNo=1762311547917
AND bag.confNo="FH7G1W"

In the above example, though the index compindex_tckNoconfNo is available, only the
primary index (for ticketNo) gets used. An index scan is performed on the primary index and
the WHERE expression is evaluated.

A portion of the query plan is shown below.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$$bag",
"index used" : "primary index",
"covering index" : false,
"index scans" :
[

Chapter 4
Tuning and Optimizing SQL queries

4-39

 {
 "equality conditions" : {"ticketNo":1762311547917},
 "range conditions" : {}
 }
]

For more information on how a query is executed, see Query execution plan.

Query 10:

Fetch the source of passenger bags and the count of bags for all passengers and
group the data by the source.

SELECT $flt_src as SOURCE, count(*) as COUNT
FROM BaggageInfo $bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt_src
GROUP BY $flt_src

In the above example, there is no index on the fltRouteSrc field. So the grouping is
done in a generic way. An internal variable is created that iterates over the records
produced by the SELECT statement.

A portion of the query plan is shown below. The primary index is being used.

"iterator kind" : "TABLE",
"target table" : "BaggageInfo",
"row variable" : "$bag",
"index used" : "primary index",
"covering index" : false,
"index scans" :
[
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]

For more information on how a query is executed, see Query execution plan.

Managing GeoJSON data
The GeoJson specification defines the structure and content of json objects that are
supposed to represent geographical shapes on earth (called geometries).

According to the GeoJson specification, for a JSON object to be a geometry object it
must have two fields called type and coordinates, where the value of the type field
specifies the kind of geometry and the value of coordinates must be an array whose
elements define the geometrical shape. See About GeoJSON Data for more details on
the various types of geometry objects. All kinds of geometries are specified in terms of
a set of positions. However, for line strings and polygons, the actual geometrical shape
is formed by the lines connecting their positions. The GeoJson specification defines a
line between two points as the straight line that connects the points in the (flat)

Chapter 4
Managing GeoJSON data

4-40

cartesian coordinate system whose horizontal and vertical axes are the longitude and
latitude, respectively. See Lines and Coordinate System for more details.

If you want to follow along with the examples, download the script
geojsonschema_loaddata.sql and run it as shown below. This script creates the table used in
the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file geojsonschema_loaddata.sql

Oracle NoSQL Database implements a number of functions that interpret JSON objects as
geometries and allow for the search for rows containing geometries that satisfy certain
conditions.

• geo_inside

• geo_intersect

• geo_distance

• geo_within_distance

• geo_near

• geo_is_geometry

geo_inside
Determines geometries within a bounding GeoJSON geometry.

boolean geo_inside(any*, any*)

• The first parameter any* can be any geometric object.

• The second parameter any* needs to be a polygon.

The function determines if the geometry pointed by the first parameter is completely
contained inside the polygon pointed by the second parameter.

If any of the two parameters does not return a single valid geometry object, and if it can be
detected at compile time then the function raises an error.

The runtime behavior is as follows:

• Returns false if any parameter returns 0 or more than 1 item.

• Returns NULL if any parameter returns NULL.

• Returns false if any parameter (at runtime) returns an item that is not a valid geometry
object.

• Returns false if the second parameter returns a geometry object that is not a polygon.

Chapter 4
Managing GeoJSON data

4-41

• If both parameters return a single geometry object each and the second geometry
is a polygon.

– It returns true if the first geometry is completely contained inside the second
polygon, i.e., all its points belong to the interior of the polygon.

– Else it returns false.

Note:

The interior of a polygon is all the points in the polygon area except the
points on the linear ring that define the polygon’s boundary.

Example: Look for nature parks in Northern California.

SELECT t.poi.name AS park_name,
t.poi.address.street AS park_location
FROM PointsOfInterest t
WHERE t.poi.kind = "nature park"
AND geo_inside(t.poi.location,
 { "type" : "polygon",
 "coordinates": [[
 [-120.1135253906249, 36.99816565700228],
 [-119.0972900390625, 37.391981943533544],
 [-119.2840576171875, 37.97451499202459],
 [-120.2069091796874, 38.035112420612975],
 [-122.3822021484375, 37.74031329210266],
 [-122.2283935546875, 37.15156050223665],
 [-121.5362548828124, 36.85325222344018],
 [-120.1135253906249, 36.99816565700228]
]]
 });

Explanation:

• You query the PointsOfInterest table to filter the rows for nature park.

• You specify a polygon as the second parameter to the geo_inside function.

• The coordinates of the polygon you specify correspond to the coordinates of the
northern portion of the state of California in the U.S.

• The geo_inside function only returns rows when the location of the nature park is
completely contained inside the location points specified.

Result:

{"park_name":"portola redwoods state park",
"park_location":"15000 Skyline Blvd"}

Chapter 4
Managing GeoJSON data

4-42

geo_intersect
Determines geometries that intersect with a GeoJSON geometry.

boolean geo_intersect(any*, any*)

The first and the second parameters any* can be any geometric object.

The function determines if two geometries that are specified as parameters have any points
in common. If any of the two parameters does not return a single valid geometry object, and if
it can be detected at compile time then the function raises an error.

The runtime behavior is as follows:

• Returns false if any parameter returns 0 or more than 1 item.

• Returns NULL if any parameter returns NULL.

• Returns false if any parameter (at runtime) returns an item that is not a valid geometry
object.

If both parameters return a single geometry object each, the function returns true if the 2
geometries have any points in common; otherwise false.

Example: Texas is considering regulating access to the underground water supply. An
aquifer is an underground layer of water-bearing permeable rock, rock fractures, or
unconsolidated materials. The government wants to impose new regulations for locations that
are very close to an aquifer.

The coordinates of the aquifer have already been mapped. You want to know all counties in
the Texas state that intersect with that aquifer so that you can notify the county government
for each affected county to participate in talks for the new regulations.

SELECT t.poi.county AS County_needs_regulation,
t.poi.contact AS Contact_phone
FROM PointsOfInterest t WHERE
geo_intersect(
 t.poi.location,
 {

 "type" : "polygon",
 "coordinates": [
 [
 [-97.668457031249, 29.34387539941801],
 [-95.207519531258, 29.19053283229458],
 [-92.900390625653, 30.37287518811801],
 [-94.636230468752, 32.21280106801518],
 [-97.778320312522, 32.45415593941475],
 [-99.799804687541, 31.18460913574325],
 [-97.668457031249, 29.34387539941801]
]
]
 }
);

Chapter 4
Managing GeoJSON data

4-43

Explanation:

• The above query fetches the locations which intersect with the location of the
aquifer. That is if the location coordinates have any points in common with the
location of the aquifer.

• You use geo_intersect to see if the coordinates of the location have any points
common with the coordinates of the aquifer that are specified.

Result:

{"County_needs_regulation":"Tarrant","Contact_phone":"469 745 5687"}
{"County_needs_regulation":"Kinga","Contact_phone":"469 384 7612"}

geo_distance
Determines distance between two geospatial objects.

double geo_distance(any*, any*)

The first and the second parameters any* can be any geometric object.

The function returns the geodetic distance between the two input geometries. The
returned distance is the minimum among the distances of any pair of points where the
first point belongs to the first geometry and the second point to the second geometry.
Between two such points, their distance is the length of the geodetic line that connects
the points.

Overview of Geodetic Line

A geodetic line between 2 points is the shortest line that can be drawn between the 2
points on the ellipsoidal surface of the earth. For a simplified, but more illustrative
definition, assume for a moment that the earth's surface is a sphere. Then, the
geodetic line between two points on the earth is the minor arc between the two points
on the great circle corresponding to the points, i.e., the circle that is formed by the
intersection of the sphere and the plane defined by the center of the earth and the two
points.

The following figure shows the difference between the geodetic and straight lines
between Los Angeles and London.

If any of the two parameters does not return a single valid geometry object, and if it
can be detected at compile time then the function raises an error.

Chapter 4
Managing GeoJSON data

4-44

The runtime behavior is as follows:

• Returns -1 if any parameter returns zero or more than 1 item.

• Returns NULL if any parameter returns NULL.

• Returns -1 if any of the parameters is not a geometry object.

Otherwise, the function returns the geodetic distance in meters between the 2 input
geometries.

Note:

The results are sorted ascending by distance(displaying the shortest distance first).

Example: How far is the nearest restaurant from the given location?

SELECT
t.poi.name AS restaurant_name,
t.poi.address.street AS street_name,
geo_distance(
 t.poi.location,
 {
 "type" : "point",
 "coordinates": [-121.94034576416016,37.2812239247177]
 }
) AS distance_in_meters
FROM PointsOfInterest t
WHERE t.poi.kind = "restaurant" ;

Explanation:

• You query the PointsOfInterest table to filter the rows for restaurant.

• You provide the correct location point and determine the distance using the geo_distance
function.

Result:

{"restaurant_name":"Coach Sports Bar & Grill","street_name":"80 Edward
St","distance_in_meters":799.2645323337218}
{"restaurant_name":"Ricos Taco","street_name":"80 East Boulevard
St","distance_in_meters":976.5361117138553}
{"restaurant_name":"Effie's Restaurant and Bar","street_name":"80 Woodeard
St","distance_in_meters":2891.0508307646282}

The distance between the current location and the nearest restaurant is 799 meters.

geo_within_distance
Determines geospatial objects in proximity to a point.

boolean geo_within_distance(any*, any*,double)

Chapter 4
Managing GeoJSON data

4-45

The first and the second parameters any* can be any geometric object.

The function determines if the first geometry is within a distance of N meters from the
second geometry.

If any of the two parameters does not return a single valid geometry object, and if it
can be detected at compile time then the function raises an error.

The runtime behavior is as follows:

• Returns false if any parameter returns 0 or more than 1 item.

• Returns NULL if any of the first two parameters returns NULL.

• Returns false if any of the first two parameters returns an item that is not a valid
geometry object.

Finally, if both the parameters return a single geometry object each, it returns true if
the first geometry is within a distance of N meters from the second geometry, where N
is the number returned by the third parameter; otherwise false. The distance between
2 geometries is defined as the minimum among the distances of any pair of points
where the first point belongs to the first geometry and the second point to the second
geometry. If N is a negative number, it is set to 0.

Example: Is a city hall there in the next 5 km? How far is it?

SELECT t.poi.address.street AS city_hall_address,
geo_distance(
 t.poi.location,
 {
 "type" : "point",
 "coordinates" : [-120.653828125,38.85682013474361]
 }

) AS distance_in_meters
FROM PointsOfInterest t
WHERE t.poi.kind = "city hall" AND
geo_within_distance(
 t.poi.location,
 {
 "type" : "point",
 "coordinates" : [-120.653828125,38.85682013474361]
 },
 5000
);

Explanation:

• You query the PointsOfInterest table to filter the rows for city hall.

• You use the geo_within_distance function to filter city hall within 5 km (5000m) of
the given location.

• You also fetch the actual distance between your location and the city hall using the
geo_distance function.

Chapter 4
Managing GeoJSON data

4-46

Result:

{"city_hall_address":"70 North 1st
street","distance_in_meters":1736.0144040331768}

The city hall is 1736 m(1.73 km) from the current location.

geo_near
Determines geospatial objects in proximity to a point.

boolean geo_near(any*, any*, double)

The first and the second parameters any* can be any geometric object.

The function determines if the first geometry is within a distance of N meters from the second
geometry.

If any of the two parameters does not return a single valid geometry object, and if it can be
detected at compile time then the function raises an error.

The runtime behavior is as follows:

• Returns false if any parameter returns 0 or more than 1 item.

• Returns NULL if any of the first two parameters returns NULL.

• Returns false if any of the first two parameters returns an item that is not a valid geometry
object.

Finally, if both of the first two parameters return a single geometry object each, it returns true
if the first geometry is within a distance of N meters from the second geometry, where N is the
number returned by the third parameter; otherwise false.

Note:

geo_near is converted internally to geo_within_distance plus an (implicit) order by
the distance between the two geometries. However, if the query has an (explicit)
order-by already, no ordering by distance is performed. The geo_near function can
appear in the WHERE clause only, where it must be a top-level predicate, i.e, not
nested under an OR or NOT operator.

Example 1: Is there a hospital within 3km of the given location?

SELECT
t.poi.name AS hospital_name,
t.poi.address.street AS hospital_address
FROM PointsOfInterest t
WHERE t.poi.kind = "hospital"
AND
geo_near(
 t.poi.location,
 {"type" : "point",
 "coordinates" : [-122.03493933105469,37.32949164059004]

Chapter 4
Managing GeoJSON data

4-47

 },
 3000
);

Explanation:

• You query the PointsOfInterest table to filter the rows for hospital.

• You use the geo_near function to filter hospitals within 3000m of the given location.

Result:

{"hospital_name":"St. Marthas hospital","hospital_address":"18000 West
Blvd"}
{"hospital_name":"Memorial hospital","hospital_address":"10500 South
St"}

Example 2: How far is a gas station within the next one mile from the given location?

SELECT
t.poi.address.street AS gas_station_address,
geo_distance(
 t.poi.location,
 {
 "type" : "point",
 "coordinates" : [-121.90768646240233,37.292081740702365]
 }
) AS distance_in_meters
FROM PointsOfInterest t
WHERE t.poi.kind = "gas station" AND
geo_near(
 t.poi.location,
 {
 "type" : "point",
 "coordinates" : [-121.90768646240233,37.292081740702365]
 },
 1600
);

Explanation:

• You query the PointsOfInterest table to filter the rows for gas station.

• You use the geo_near function to filter gas stations within one mile(1600m) of the
given location.

• You also fetch the actual distance between your location and the gas station using
the geo_distance function.

Result:

{"gas_station_address":"33 North
Avenue","distance_in_meters":886.7004173859665}

The actual distance to the nearest gas station within the next mile is 886m.

Chapter 4
Managing GeoJSON data

4-48

geo_is_geometry
Validates a geospatial object.

boolean geo_is_geometry(any*)

The parameter any* can be any geometric object.

The function determines if the given input is a valid geometry object.

• Returns false if the parameter returns zero or more than 1 item.

• Returns NULL if the parameter returns NULL.

• Returns true if the input is a single valid geometry object. Otherwise, false.

Example: Determine if the location pointing to the city hall is a valid geometric object.

SELECT geo_is_geometry(t.poi.location) AS city_hall
FROM PointsOfInterest t
WHERE t.poi.kind = "city hall"

Explanation: You use the function geo_is_geometry to determine if a given location is a valid
geometric object or not.

Result:

{ "city_hall" : true}

Chapter 4
Managing GeoJSON data

4-49

5
Reference

The articles in this section contain reference information related to various operators,
constructs and expressions used in SQL.

Operators in SQL
If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and run it as shown below. This script creates the table used
in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file baggageschema_loaddata.sql

• Sequence Comparison Operators

• Logical operators

• NULL operators

• Value Comparison Operators

• IN Operator

• Regular Expression Conditions

• EXISTS Operator

• Is-Of-Type Operator

Sequence Comparison Operators
Comparisons between two sequences are done via a set of operators: =any, !=any, >any,
>=any, <any, <=any. The result of any operator on two input sequences S1 and S2 is true if
and only if there is a pair of items i1 and i2, where i1 belongs to S1, i2 belongs to S2, and i1
and i2 compare true via the corresponding value comparison operator. Otherwise, if any of
the input sequences contains NULL, the result is NULL. Otherwise, the result is false.

Example 1: Find passenger name and tag number for all bags where the estimated arrival
time is greater than 2019-03-01T13:00:00Z.

SELECT fullname, bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[].estimatedArrival

5-1

FROM BaggageInfo bag
WHERE bag.bagInfo[].flightLegs[].estimatedArrival >any
"2019-03-01T13:00:00Z"

Explanation: You fetch the full name, and tag number of all passenger bags whose
estimated arrival time is greater than the given value. Here the operand on the left
hand of the ">" operator (bag.bagInfo[].flightLegs[].estimatedArrival) is a
sequence of values. If you try using the regular comparison operator instead of the
sequence operator, you get an error as shown below. That is the reason you need a
sequence operator here.

SELECT fullname, bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[].estimatedArrival
FROM BaggageInfo bag
WHERE bag.bagInfo[].flightLegs[].estimatedArrival >
"2019-03-01T13:00:00Z"

Output showing error:

Error handling command SELECT fullname,
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].estimatedArrival
FROM BaggageInfo bag WHERE bag.bagInfo[].flightLegs[].estimatedArrival
> "2019-03-01T13:00:00Z":
Error: at (1, 107) The left operand of comparison operator > is a
sequence with more than one items.
Comparison operators cannot operate on sequences of more than one
items.

Output (after using sequence operator):

{"fullname":"Lucinda
Beckman","tagNum":"17657806240001","estimatedArrival":
["2019-03-12T16:00:00Z","2019-03-13T03:14:00Z","2019-03-12T15:12:00Z"]}
{"fullname":"Elane Lemons","tagNum":"1765780623244","estimatedArrival":
["2019-03-15T09:00:00Z","2019-03-15T10:14:00Z","2019-03-15T10:14:00Z"]}
{"fullname":"Dierdre
Amador","tagNum":"17657806240229","estimatedArrival":"2019-03-07T14:00:
00Z"}
{"fullname":"Henry
Jenkins","tagNum":"17657806216554","estimatedArrival":
["2019-03-02T09:00:00Z","2019-03-02T13:24:00Z"]}
{"fullname":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"],"estimatedArrival":
["2019-03-12T16:00:00Z","2019-03-13T03:14:00Z",
"2019-03-12T15:12:00Z","2019-03-12T16:40:00Z","2019-03-13T03:18:00Z","2
019-03-12T15:12:00Z"]}
{"fullname":"Gerard
Greene","tagNum":"1765780626568","estimatedArrival":
["2019-03-07T17:00:00Z","2019-03-08T04:10:00Z","2019-03-07T16:10:00Z"]}
{"fullname":"Doris
Martin","tagNum":"17657806232501","estimatedArrival":
["2019-03-22T09:00:00Z","2019-03-21T23:24:00Z","2019-03-22T10:24:00Z"]}
{"fullname":"Omar Harvey","tagNum":"17657806234185","estimatedArrival":

Chapter 5
Operators in SQL

5-2

["2019-03-02T02:00:00Z","2019-03-02T16:21:00Z"]}
{"fullname":"Mary Watson","tagNum":"17657806299833","estimatedArrival":
["2019-03-13T15:00:00Z","2019-03-14T06:22:00Z"]}
{"fullname":"Kendal Biddle","tagNum":"17657806296887","estimatedArrival":
["2019-03-04T22:00:00Z","2019-03-05T12:02:00Z"]}

Example 2: Find the tag number of passengers who fly from JFK/through JFK to any other
location.

SELECT bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag
WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any "JFK"

Explanation: You fetch the tag number of passengers whose flight source is JFK or the
passengers who travel through JFK. The destination can be anything.

Output:

{"tagNum":"17657806240229","fltRouteSrc":"JFK"}
{"tagNum":"17657806215913","fltRouteSrc":["JFK","IST"]}
{"tagNum":"17657806296887","fltRouteSrc":["JFK","IST"]}

Logical operators
The operators AND and OR are binary and the NOT operator is unary. The operands of the
logical operators are conditional expressions, which must have a type BOOLEAN. An empty
result from an operand is treated as a false value. If an operand returns NULL(either SQL
NULL or JSON NULL), then:

• The AND operator returns false if the other operand returns false; otherwise, it returns
NULL.

• The OR operator returns true if the other operand returns true; otherwise, it returns
NULL.

• The NOT operator returns NULL.

Example 1: Select the details of the passenger and their bags for a trip with ticket number
1762311547917 or confirmation number KN4D1L.

SELECT fullName,bag.ticketNo, bag.confNo,
bag.bagInfo[].tagNum, bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE bag.ticketNo=1762311547917 OR bag.confNo="KN4D1L"

Explanation: You fetch the details of passengers satisfying one of the two filter criteria. You
do this with the OR clause. You fetch the full name, tag number, ticket number, reservation
code, and routing details of passengers satisfying a particular ticket number or a particular
reservation code (confNo).

Output:

{"fullName":"Rosalia
Triplett","ticketNo":1762311547917,"confNo":"FH7G1W","tagNum":"17657806215913

Chapter 5
Operators in SQL

5-3

","routing":"JFK/IST/VIE"}
{"fullName":"Mary
Watson","ticketNo":1762340683564,"confNo":"KN4D1L","tagNum":"1765780629
9833","routing":"YYZ/HKG/BLR"}

Example 2: Select baggage details of passengers traveling between MIA and MEL.

SELECT fullName, bag.bagInfo[].tagNum, bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE bag.bagInfo[].flightLegs[].fltRouteSrc =any "MIA" AND
bag.bagInfo[].flightLegs[].fltRouteDest=any "MEL"

Explanation: You fetch the details of the passengers traveling between MIA and MEL.
Since you need to match 2 conditions here, the flight source and the flight destination,
you are using an AND operator. Here the flight source could be the starting point of the
flight or any transit airport. Similarly, the flight destination could be a transit airport or a
final destination.

Output:

{"fullName":"Zulema
Martindale","tagNum":"17657806288937","routing":"MIA/LAX/MEL"}
{"fullName":"Adam
Phillips","tagNum":"17657806255240","routing":"MIA/LAX/MEL"}
{"fullName":"Joanne Diaz","tagNum":"17657806292518","routing":"MIA/LAX/
MEL"}
{"fullName":"Zina
Christenson","tagNum":"17657806228676","routing":"MIA/LAX/MEL"}

Example 3: Select details of those bags which does not originate from MIA/pass
through MIA.

SELECT fullName, bag.bagInfo[].tagNum, bag.bagInfo[].routing,
bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag
WHERE NOT bag.bagInfo[].flightLegs[].fltRouteSrc=any "MIA"

Explanation: You fetch the details of passengers not originating from a particular
source. To fetch these details, you are using the NOT operator here. You want to fetch
details of bags which did not start/go through MIA.

Output:

{"fullName":"Kendal
Biddle","tagNum":"17657806296887","routing":"JFK/IST/
VIE","fltRouteSrc":"JFK"}
{"fullName":"Lucinda
Beckman","tagNum":"17657806240001","routing":"SFO/IST/ATH/
JTR","fltRouteSrc":"SFO"}
{"fullName":"Adelaide
Willard","tagNum":"17657806224224","routing":"GRU/ORD/
SEA","fltRouteSrc":"GRU"}
{"fullName":"Raymond

Chapter 5
Operators in SQL

5-4

Griffin","tagNum":"17657806243578","routing":"MSQ/FRA/
HKG","fltRouteSrc":"MSQ"}
{"fullName":"Elane Lemons","tagNum":"1765780623244","routing":"MXP/CDG/SLC/
BZN","fltRouteSrc":"MXP"}
{"fullName":"Dierdre Amador","tagNum":"17657806240229","routing":"JFK/
MAD","fltRouteSrc":"JFK"}
{"fullName":"Henry Jenkins","tagNum":"17657806216554","routing":"SFO/ORD/
FRA","fltRouteSrc":"SFO"}
{"fullName":"Rosalia Triplett","tagNum":"17657806215913","routing":"JFK/IST/
VIE","fltRouteSrc":"JFK"}
{"fullName":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"],"routing":["SFO/IST/ATH/
JTR","SFO/IST/ATH/JTR"],"fltRouteSrc":["SFO","SFO"]}
{"fullName":"Gerard Greene","tagNum":"1765780626568","routing":"SFO/IST/ATH/
JTR","fltRouteSrc":"SFO"}
{"fullName":"Doris Martin","tagNum":"17657806232501","routing":"BZN/SEA/CDG/
MXP","fltRouteSrc":"BZN"}
{"fullName":"Omar Harvey","tagNum":"17657806234185","routing":"MEL/LAX/
MIA","fltRouteSrc":"MEL"}
{"fullName":"Fallon
Clements","tagNum":"17657806255507","routing":"MXP/CDG/SLC/
BZN","fltRouteSrc":"MXP"}
{"fullName":"Lisbeth Wampler","tagNum":"17657806292229","routing":"LAX/TPE/
SGN","fltRouteSrc":"LAX"}
{"fullName":"Teena Colley","tagNum":"17657806255823","routing":"MSQ/FRA/
HKG","fltRouteSrc":"MSQ"}
{"fullName":"Michelle
Payne","tagNum":"17657806247861","routing":"SFO/IST/ATH/
JTR","fltRouteSrc":"SFO"}
{"fullName":"Mary Watson","tagNum":"17657806299833","routing":"YYZ/HKG/
BLR","fltRouteSrc":"YYZ"}

NULL operators
The IS NULL operator tests whether the result of its input expression(either SQL expression
or JSON object) is NULL. If the input expression returns more than one item, an error is
raised. If the result of the input expression is empty, IS NULL returns false. Otherwise, IS
NULL returns true if and only if the single item computed by the input expression is NULL.
The IS NOT NULL operator is equivalent to NOT (IS NULL cond_expr).

Example 1: Fetch ticket number of passengers whose baggage details are available and is
NOT NULL.

SELECT ticketNo,fullname FROM BaggageInfo bagdet
WHERE bagdet.bagInfo is NOT NULL

Explanation: You fetch the details of passengers who have baggage, which means bagInfo
JSON is not null.

Output:

{"ticketNo":1762357254392,"fullname":"Teena Colley"}
{"ticketNo":1762330498104,"fullname":"Michelle Payne"}
{"ticketNo":1762340683564,"fullname":"Mary Watson"}

Chapter 5
Operators in SQL

5-5

{"ticketNo":1762377974281,"fullname":"Kendal Biddle"}
{"ticketNo":1762320569757,"fullname":"Lucinda Beckman"}
{"ticketNo":1762392135540,"fullname":"Adelaide Willard"}
{"ticketNo":1762399766476,"fullname":"Raymond Griffin"}
{"ticketNo":1762324912391,"fullname":"Elane Lemons"}
{"ticketNo":1762390789239,"fullname":"Zina Christenson"}
{"ticketNo":1762340579411,"fullname":"Zulema Martindale"}
{"ticketNo":1762376407826,"fullname":"Dierdre Amador"}
{"ticketNo":176234463813,"fullname":"Henry Jenkins"}
{"ticketNo":1762311547917,"fullname":"Rosalia Triplett"}
{"ticketNo":1762320369957,"fullname":"Lorenzo Phil"}
{"ticketNo":1762341772625,"fullname":"Gerard Greene"}
{"ticketNo":1762344493810,"fullname":"Adam Phillips"}
{"ticketNo":1762355527825,"fullname":"Doris Martin"}
{"ticketNo":1762383911861,"fullname":"Joanne Diaz"}
{"ticketNo":1762348904343,"fullname":"Omar Harvey"}
{"ticketNo":1762350390409,"fullname":"Fallon Clements"}
{"ticketNo":1762355854464,"fullname":"Lisbeth Wampler"}

Example 2: Fetch ticket number of passengers whose baggage details are not
available or IS NULL

SELECT ticketNo, fullname FROM BaggageInfo bagdet
WHERE bagdet.bagInfo is NULL
0 row returned

Value Comparison Operators
Value comparison operators are primarily used to compare 2 values, one produced by
the left operand and another from the right operand. If any operand returns more than
one item, an error is raised. If both operands return the empty sequence, the operands
are considered equal (true will be returned if the operator is =, <=, or >=). If only one of
the operands returns empty, the result of the comparison is false unless the operator
is !=. If an operand returns NULL, the result of the comparison expression is also
NULL. Otherwise, the result is a boolean value.

Example 1: Select the full name and routing of all male passengers.

SELECT fullname, bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE gender="M"

Explanation: Here the data is filtered based on gender. The value comparison
operator "=" is used to filter the data.

Output:

{"fullname":"Lucinda Beckman","routing":"SFO/IST/ATH/JTR"}
{"fullname":"Adelaide Willard","routing":"GRU/ORD/SEA"}
{"fullname":"Raymond Griffin","routing":"MSQ/FRA/HKG"}
{"fullname":"Zina Christenson","routing":"MIA/LAX/MEL"}
{"fullname":"Dierdre Amador","routing":"JFK/MAD"}
{"fullname":"Birgit Naquin","routing":"JFK/MAD"}

Chapter 5
Operators in SQL

5-6

{"fullname":"Lorenzo Phil","routing":["SFO/IST/ATH/JTR","SFO/IST/ATH/JTR"]}
{"fullname":"Gerard Greene","routing":"SFO/IST/ATH/JTR"}
{"fullname":"Adam Phillips","routing":"MIA/LAX/MEL"}
{"fullname":"Fallon Clements","routing":"MXP/CDG/SLC/BZN"}
{"fullname":"Lisbeth Wampler","routing":"LAX/TPE/SGN"}
{"fullname":"Teena Colley","routing":"MSQ/FRA/HKG"}

You can rewrite this query with a "!=" comparison operator. To get the details of all male
passengers, your query can filter data where gender is not "F". This is valid only with the
assumption that there can only be two values in the column gender which is "F" and "M".

SELECT fullname,bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE gender!="F";

Example 2: Fetch the passenger name and routing details of passengers with ticket numbers
greater than 1762360000000.

SELECT fullname, ticketNo,
bag.bagInfo[].tagNum,bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE ticketNo > 1762360000000

Explanation: You need the details of passengers whose ticket number is greater than the
given value. You use the ">" operator to filter the data.

Output:

{"fullname":"Adelaide
Willard","ticketNo":1762392135540,"tagNum":"17657806224224","routing":"GRU/OR
D/SEA"}
{"fullname":"Raymond
Griffin","ticketNo":1762399766476,"tagNum":17657806243578,"routing":"MSQ/FRA/
HKG"}
{"fullname":"Zina
Christenson","ticketNo":1762390789239,"tagNum":"17657806228676","routing":"MI
A/LAX/MEL"}
{"fullname":"Bonnie
Williams","ticketNo":1762397286805,"tagNum":"17657806216554","routing":"SFO/O
RD/FRA"}
{"fullname":"Joanne
Diaz","ticketNo":1762383911861,"tagNum":"17657806292518","routing":"MIA/LAX/
MEL"}
{"fullname":"Kendal
Biddle","ticketNo":1762377974281,"tagNum":"17657806296887","routing":"JFK/IST
/VIE"}
{"fullname":"Dierdre
Amador","ticketNo":1762376407826,"tagNum":"17657806240229","routing":"JFK/
MAD"}
{"fullname":"Birgit
Naquin","ticketNo":1762392196147,"tagNum":"17657806240229","routing":"JFK/
MAD"}

Chapter 5
Operators in SQL

5-7

Example 3: Select all bag tag numbers originating from SFO/transit through SFO.

SELECT bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag
WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"

Explanation: You fetch the tag number of bags that either originate from SFO or pass
through SFO. Though you are using the value comparison operator =, since the
flightLegs is an array, the left operand of comparison operator = is a sequence with
more than one item. That is the reason to use the sequence operator any in addition
to the value comparison operator =. Else you get the following error.

Error handling command SELECT
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=
"SFO":
Error: at (3, 6) The left operand of comparison operator = is a
sequence with more than one items.
Comparison operators cannot operate on sequences of more than one
items.

Output:

{"tagNum":"17657806240001","fltRouteSrc":"SFO"}
{"tagNum":"17657806216554","fltRouteSrc":"SFO"}
{"tagNum":["17657806240001","17657806340001"],"fltRouteSrc":
["SFO","SFO"]}
{"tagNum":"1765780626568","fltRouteSrc":"SFO"}
{"tagNum":"17657806247861","fltRouteSrc":"SFO"}

Example 4: Select all bag tag numbers which did not originate from JFK.

SELECT bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[0].fltRouteSrc
FROM BaggageInfo bag
WHERE bag.bagInfo.flightLegs[0].fltRouteSrc!=ANY "JFK"

Explanation: The assumption here is that the first record of the flightLegs array has
the details of the source location. You fetch the tag number of bags that did not
originate from JFK and so using a != operator here. Though you are using the value
comparison operator !=, since the flightLegs is an array, the left operand of the
comparison operator != is a sequence with more than one item. That is the reason to
use the sequence operator any in addition to the value comparison operator !=. Else
you get the following error.

Error handling command SELECT
bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[0].fltRouteSrc
FROM BaggageInfo bag WHERE bag.bagInfo.flightLegs[0].fltRouteSrc!
="JFK":
Failed to display result set: Error: at (2, 0) The left operand of
comparison operator != is a sequence with

Chapter 5
Operators in SQL

5-8

more than one items. Comparison operators cannot operate on sequences of
more than one items.

Output:

{"tagNum":"17657806240001","fltRouteSrc":["SFO","IST","ATH"]}
{"tagNum":"17657806224224","fltRouteSrc":["GRU","ORD"]}
{"tagNum":"17657806243578","fltRouteSrc":["MSQ","FRA"]}
{"tagNum":"1765780623244","fltRouteSrc":["MXP","CDG","SLC"]}
{"tagNum":"17657806228676","fltRouteSrc":["MIA","LAX"]}
{"tagNum":"17657806234185","fltRouteSrc":["MEL","LAX"]}
{"tagNum":"17657806255507","fltRouteSrc":["MXP","CDG","SLC"]}
{"tagNum":"17657806292229","fltRouteSrc":["LAX","TPE"]}
{"tagNum":"17657806255823","fltRouteSrc":["MSQ","FRA"]}
{"tagNum":"17657806247861","fltRouteSrc":["SFO","IST","ATH"]}
{"tagNum":"17657806299833","fltRouteSrc":["YYZ","HKG"]}
{"tagNum":"17657806288937","fltRouteSrc":["MIA","LAX"]}
{"tagNum":"17657806216554","fltRouteSrc":["SFO","ORD"]}
{"tagNum":["17657806240001","17657806340001"],"fltRouteSrc":
["SFO","IST","ATH","SFO","IST","ATH"]}
{"tagNum":"1765780626568","fltRouteSrc":["SFO","IST","ATH"]}
{"tagNum":"17657806255240","fltRouteSrc":["MIA","LAX"]}
{"tagNum":"17657806232501","fltRouteSrc":["BZN","SEA","CDG"]}
{"tagNum":"17657806292518","fltRouteSrc":["MIA","LAX"]}

IN Operator
The IN operator is essentially a compact alternative to a number of OR-ed equality
conditions. This operator allows you to specify multiple values in a WHERE clause.

Example: Fetch tag number for the customers "Lucinda Beckman", "Adam
Phillips","Zina Christenson","Fallon Clements".

SELECT bagdet.fullName, bagdet.bagInfo[].tagNum
FROM BaggageInfo bagdet
WHERE bagdet.fullName IN
("Lucinda Beckman", "Adam Phillips","Zina Christenson","Fallon Clements")

Explanation: You fetch the tag numbers of a list of passengers. The list of passengers to be
fetched can be given inside an IN clause.

Output:

{"fullName":"Lucinda Beckman","tagNum":"17657806240001"}
{"fullName":"Zina Christenson","tagNum":"17657806228676"}
{"fullName":"Adam Phillips","tagNum":"17657806255240"}
{"fullName":"Fallon Clements","tagNum":"17657806255507"}

Regular Expression Conditions
A regular expression is a pattern that the regular expression engine attempts to match with
an input string. The regex_like function performs regular expression matching. The

Chapter 5
Operators in SQL

5-9

regex_like function provides functionality similar to the LIKE operator in standard
SQL, that is, it can be used to check if an input string matches a given pattern. The
input string and the pattern are computed by the first and second arguments,
respectively. A third, optional, argument specifies a set of flags that affect how the
matching is done.

The pattern string is the regular expression against which the input text is matched.
The period (.) is a meta-character that matches every character except a new line. The
greedy quantifier (*) is a meta-character that indicates zero or more occurrences of the
preceding element. For example, the regex "D.*" matches any string that starts with
the character 'D' and is followed by zero or more characters.

Example 1: Fetch baggage information of passengers whose names start with 'Z'.

SELECT bag.fullname,bag.bagInfo[].tagNum
FROM BaggageInfo bag
WHERE regex_like(fullName, "Z.*")

Explanation: You fetch the full name and tag numbers of passengers whose full name
starts with Z. You use a regular expression and specify that the first character in the
full name should be "Z" and the rest can be anything else.

Output:

{"fullname":"Zina Christenson","tagNum":"17657806228676"}
{"fullname":"Zulema Martindale","tagNum":"17657806288937"}

Example 2: Fetch baggage information of passengers whose flight source location
has an "M" in it.

Option 1:

SELECT bag.fullname,bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[0].fltRouteSrc
FROM BaggageInfo bag
WHERE regex_like(bag.bagInfo.flightLegs[0].fltRouteSrc, ".*M.*")

Explanation: The assumption here is that the first record of the flightLegs array has
the details of the source location. You fetch the full name and tag numbers of
passengers whose flight source has an "M" in it. You use a regular expression and
specify that one of the characters in the source field should be "M" and the rest can be
anything else.

You can also use different approaches to write queries to solve the above problem.

Option 2: Instead of hard coding the index of the flightLegs array, you use the
regex_like function to determine the correct index.

SELECT bag.fullname,bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag
WHERE EXISTS (bag.bagInfo.flightLegs[regex_like($element.fltRouteSrc,
".*M.*")])

Chapter 5
Operators in SQL

5-10

Option 3: You use the substring of the "routing" field to extract the source and then use
regex_like function to search the letter M in the source.

SELECT bag.fullname,bag.bagInfo[].tagNum,
substring(bag.bagInfo[].routing,0,3)
FROM BaggageInfo bag WHERE
regex_like(substring(bag.bagInfo[].routing,0,3), ".*M.*")

Output:

{"fullname":"Raymond Griffin","tagNum":"17657806243578","fltRouteSrc":"MSQ"}
{"fullname":"Elane Lemons","tagNum":"1765780623244","fltRouteSrc":"MXP"}
{"fullname":"Zina Christenson","tagNum":"17657806228676","fltRouteSrc":"MIA"}
{"fullname":"Zulema
Martindale","tagNum":"17657806288937","fltRouteSrc":"MIA"}
{"fullname":"Adam Phillips","tagNum":"17657806255240","fltRouteSrc":"MIA"}
{"fullname":"Joanne Diaz","tagNum":"17657806292518","fltRouteSrc":"MIA"}
{"fullname":"Teena Colley","tagNum":"17657806255823","fltRouteSrc":"MSQ"}
{"fullname":"Omar Harvey","tagNum":"17657806234185","fltRouteSrc":"MEL"}
{"fullname":"Fallon Clements","tagNum":"17657806255507","fltRouteSrc":"MXP"}

EXISTS Operator
The EXISTS operator checks whether the sequence returned by its input expression is empty
or not, and returns false or true, respectively. A special case is when the input expression
returns NULL. In this case, EXISTS will also return NULL.

Example 1: Select passenger details and baggage information for those passengers who
have three flight segments.

SELECT fullName, bag.bagInfo[].tagNum,
bag.bagInfo[].routing
FROM BaggageInfo bag
WHERE EXISTS bag.bagInfo[].flightLegs[2]

Explanation: You fetch the details of the passengers who have three flight segments. You
determine this by evaluating if the third element of the flight legs array is present using the
EXISTS operator.

Output:

{"fullName":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"],"routing":["SFO/IST/ATH/
JTR","SFO/IST/ATH/JTR"]}
{"fullName":"Gerard Greene","tagNum":"1765780626568","routing":"SFO/IST/ATH/
JTR"}
{"fullName":"Doris Martin","tagNum":"17657806232501","routing":"BZN/SEA/CDG/
MXP"}
{"fullName":"Fallon
Clements","tagNum":"17657806255507","routing":"MXP/CDG/SLC/BZN"}
{"fullName":"Michelle
Payne","tagNum":"17657806247861","routing":"SFO/IST/ATH/JTR"}
{"fullName":"Lucinda

Chapter 5
Operators in SQL

5-11

Beckman","tagNum":"17657806240001","routing":"SFO/IST/ATH/JTR"}
{"fullName":"Elane
Lemons","tagNum":"1765780623244","routing":"MXP/CDG/SLC/BZN"}

Example 2: Fetch the full name and tag number for all customer baggage shipped
after 2019.

SELECT fullName, bag.ticketNo
FROM BaggageInfo bag WHERE
EXISTS bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Explanation: The bag arrival date value for every bag should be greater than the year
2019. Here the "$element" is bound to the context row (every bag of the customer).
The EXISTS operator checks whether the sequence returned by its input expression is
empty or not. The sequence returned by the comparison operator ">=" is non-empty
for all bags which arrived after 2019.

Output:

{"fullName":"Lucinda Beckman","ticketNo":1762320569757}
{"fullName":"Adelaide Willard","ticketNo":1762392135540}
{"fullName":"Raymond Griffin","ticketNo":1762399766476}
{"fullName":"Elane Lemons","ticketNo":1762324912391}
{"fullName":"Zina Christenson","ticketNo":1762390789239}
{"fullName":"Zulema Martindale","ticketNo":1762340579411}
{"fullName":"Dierdre Amador","ticketNo":1762376407826}
{"fullName":"Henry Jenkins","ticketNo":176234463813}
{"fullName":"Rosalia Triplett","ticketNo":1762311547917}
{"fullName":"Lorenzo Phil","ticketNo":1762320369957}
{"fullName":"Gerard Greene","ticketNo":1762341772625}
{"fullName":"Adam Phillips","ticketNo":1762344493810}
{"fullName":"Doris Martin","ticketNo":1762355527825}
{"fullName":"Joanne Diaz","ticketNo":1762383911861}
{"fullName":"Omar Harvey","ticketNo":1762348904343}
{"fullName":"Fallon Clements","ticketNo":1762350390409}
{"fullName":"Lisbeth Wampler","ticketNo":1762355854464}
{"fullName":"Teena Colley","ticketNo":1762357254392}
{"fullName":"Michelle Payne","ticketNo":1762330498104}
{"fullName":"Mary Watson","ticketNo":1762340683564}
{"fullName":"Kendal Biddle","ticketNo":1762377974281}

Is-Of-Type Operator
The is-of-type operator checks the sequence type of its input sequence against one or
more target sequence types. If the number N of the target types is greater than one,
the expression is equivalent to OR-ing N is-of-type expressions, each having one
target type.

Chapter 5
Operators in SQL

5-12

Example: Fetch the names of the passengers whose baggage tags contain only numbers
and not a STRING.

SELECT fullname,bag.bagInfo.tagNum
FROM BaggageInfo bag
WHERE bag.bagInfo.tagNum is of type (NUMBER)

Explanation: The tagNum in the bagInfo schema is a STRING data type. But the application
could take in a NUMBER value as tagNum by mistake. The query captures the passengers for
whom the tagNum column has only numbers.

Output:

{"fullname":"Raymond Griffin","tagNum":17657806243578}

If you query the bagInfo schema for the above tagNum as STRING, no rows are displayed.

SELECT * FROM BaggageInfo bag WHERE tagnum = "17657806232501"
0 row returned

You can also fetch the names of the passengers whose baggage tags contain only STRING.

SELECT fullname,bag.bagInfo.tagNum
FROM BaggageInfo bag
WHERE bag.bagInfo.tagNum is of type (STRING)

Sorting, Grouping & Limiting results
If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and execute it as shown below. This script creates the table
used in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, execute the script.

load -file baggageschema_loaddata.sql

• Ordering results

• Limit and offset results

• Grouping results

Ordering results
Use the ORDER BY clause to order the results by any column, primary key or non-primary
key.

Chapter 5
Sorting, Grouping & Limiting results

5-13

Example 1: Sort the ticket number of all passengers by their full name.

SELECT bag.ticketNo, bag.fullName
FROM BaggageInfo bag
ORDER BY bag.fullName

Explanation: You are sorting the ticket number of passengers in the BaggageInfo
schema based on the full name of the passengers in ascending order.

Output:

{"ticketNo":1762344493810,"fullName":"Adam Phillips"}
{"ticketNo":1762392135540,"fullName":"Adelaide Willard"}
{"ticketNo":1762376407826,"fullName":"Dierdre Amador"}
{"ticketNo":1762355527825,"fullName":"Doris Martin"}
{"ticketNo":1762324912391,"fullName":"Elane Lemons"}
{"ticketNo":1762350390409,"fullName":"Fallon Clements"}
{"ticketNo":1762341772625,"fullName":"Gerard Greene"}
{"ticketNo":176234463813,"fullName":"Henry Jenkins"}
{"ticketNo":1762383911861,"fullName":"Joanne Diaz"}
{"ticketNo":1762377974281,"fullName":"Kendal Biddle"}
{"ticketNo":1762355854464,"fullName":"Lisbeth Wampler"}
{"ticketNo":1762320369957,"fullName":"Lorenzo Phil"}
{"ticketNo":1762320569757,"fullName":"Lucinda Beckman"}
{"ticketNo":1762340683564,"fullName":"Mary Watson"}
{"ticketNo":1762330498104,"fullName":"Michelle Payne"}
{"ticketNo":1762348904343,"fullName":"Omar Harvey"}
{"ticketNo":1762399766476,"fullName":"Raymond Griffin"}
{"ticketNo":1762311547917,"fullName":"Rosalia Triplett"}
{"ticketNo":1762357254392,"fullName":"Teena Colley"}
{"ticketNo":1762390789239,"fullName":"Zina Christenson"}
{"ticketNo":1762340579411,"fullName":"Zulema Martindale"}

Example 2: Fetch the passenger details(full name, tag number) by the last seen time
(latest first) for passengers (sorted by their name) whose last seen station is MEL.

SELECT bag.fullName, bag.bagInfo[].tagNum,
bag.bagInfo[].lastSeenTimeGmt
FROM BaggageInfo bag
WHERE bag.bagInfo[].lastSeenStation=any "MEL"
ORDER BY bag.bagInfo[].lastSeenTimeGmt DESC

Explanation: You first filter the data in the BaggageInfo table based on the last seen
station and you sort the filtered results based on the last seen time and the full name
of the passengers in descending order. You do this using the ORDER BY clause.

Note:

You can use more than one column to sort the output of the query.

Chapter 5
Sorting, Grouping & Limiting results

5-14

Output:

{"fullName":"Adam
Phillips","tagNum":"17657806255240","lastSeenTimeGmt":"2019-02-01T16:13:00Z"}
{"fullName":"Zina
Christenson","tagNum":"17657806228676","lastSeenTimeGmt":"2019-02-04T10:08:00
Z"}
{"fullName":"Joanne
Diaz","tagNum":"17657806292518","lastSeenTimeGmt":"2019-02-16T16:13:00Z"}
{"fullName":"Zulema
Martindale","tagNum":"17657806288937","lastSeenTimeGmt":"2019-02-25T20:15:00Z
"}

Limit and offset results
Use the LIMIT clause to limit the number of results returned from a SELECT statement. For
example, if there are 1000 rows in a table, limit the number of rows to return by specifying a
LIMIT value. It is recommended to use LIMIT and OFFSET with an ORDER BY clause.
Otherwise, the results are returned in a random order, producing unpredictable results.

A good use-case/example of using LIMIT and OFFSET is the application paging of results.
Say for example your application wants to show 4 results per page. You can use limit and
offset to implement stateless paging in the application. If you are showing n (say 4) results
per page, then the results for page m (say 2) are being displayed, then offset would be
(n*m-1) which is 4 in this example and the limit would be n(which is 4 here).

Example 1: Your application can show 4 results on a page. Fetch the details fetched by your
application in the first page for passengers whose last seen station is JTR.

SELECT $bag.fullName, $bag.bagInfo.tagNum, $flt_time
FROM BaggageInfo $bag,
$bag.bagInfo[].lastSeenTimeGmt $flt_time
WHERE $bag.bagInfo[].lastSeenStation=any "JTR"
ORDER BY $flt_time LIMIT 4

Explanation: You filter the data in the BaggageInfo table based on the last seen station and
you sort the result based on the last seen time. You use an unnest array to flatten your data.
That is the bagInfo array is flattened and the last seen time is fetched. You need to just
display the first 4 rows from the result set.

Output:

{"fullName":"Michelle
Payne","tagNum":"17657806247861","flt_time":"2019-02-02T23:59:00Z"}
{"fullName":"Gerard
Greene","tagNum":"1765780626568","flt_time":"2019-03-07T16:01:00Z"}
{"fullName":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"],"flt_time":"2019-03-12T15:05:00Z"}
{"fullName":"Lucinda
Beckman","tagNum":"17657806240001","flt_time":"2019-03-12T15:05:00Z"}

Chapter 5
Sorting, Grouping & Limiting results

5-15

Example 2: Your application can show 4 results on a page. Fetch the details fetched
by your application in the second page for passengers whose last seen station is JTR.

SELECT $bag.fullName, $bag.bagInfo.tagNum, $flt_time
FROM BaggageInfo $bag,
$bag.bagInfo[].lastSeenTimeGmt $flt_time
WHERE $bag.bagInfo[].lastSeenStation=any "JTR"
ORDER BY $flt_time LIMIT 4 OFFSET 4

Explanation: You filter the data in the BaggageInfo table based on the last seen
station and you sort the result based on the last seen time. You use an unnest array to
flatten your data. You need to display the contents of the second page, so you set an
OFFSET 4. Though you LIMIT to 4 rows, only one row is displayed as the total result
set is only 5. The first few are skipped and the fifth one is displayed.

Output:

{"fullName":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"],
"flt_time":"2019-03-12T16:05:00Z"}

Grouping results
Use the GROUP BY clause to group the results by one or more table columns.
Typically, a GROUP BY clause is used in conjunction with an aggregate expression
such as COUNT, SUM, and AVG.

Example 1: Display the number of bags for each reservation made.

SELECT bag.confNo,
count(bag.bagInfo) AS TOTAL_BAGS
FROM BaggageInfo bag
GROUP BY bag.confNo

Explanation: Every passenger has one reservation code (confNo). A passenger can
have more than one baggage. Here you group the data based on the reservation code
and you get the count of the bagInfo array which gives the number of bags per
reservation.

Output:

{"confNo":"FH7G1W","TOTAL_BAGS":1}
{"confNo":"PQ1M8N","TOTAL_BAGS":1}
{"confNo":"XT6K7M","TOTAL_BAGS":1}
{"confNo":"DN3I4Q","TOTAL_BAGS":1}
{"confNo":"QB1O0J","TOTAL_BAGS":1}
{"confNo":"TX1P7E","TOTAL_BAGS":1}
{"confNo":"CG6O1M","TOTAL_BAGS":1}
{"confNo":"OH2F8U","TOTAL_BAGS":1}
{"confNo":"BO5G3H","TOTAL_BAGS":1}
{"confNo":"ZG8Z5N","TOTAL_BAGS":1}
{"confNo":"LE6J4Z","TOTAL_BAGS":1}
{"confNo":"XT1O7T","TOTAL_BAGS":1}

Chapter 5
Sorting, Grouping & Limiting results

5-16

{"confNo":"QI3V6Q","TOTAL_BAGS":2}
{"confNo":"RL3J4Q","TOTAL_BAGS":1}
{"confNo":"HJ4J4P","TOTAL_BAGS":1}
{"confNo":"CR2C8MY","TOTAL_BAGS":1}
{"confNo":"LN0C8R","TOTAL_BAGS":1}
{"confNo":"MZ2S5R","TOTAL_BAGS":1}
{"confNo":"KN4D1L","TOTAL_BAGS":1}
{"confNo":"MC0E7R","TOTAL_BAGS":1}

Example 2: Select the total baggage originating from each airport (excluding the transit
baggage).

SELECT $flt_src as SOURCE,
count(*) as COUNT
FROM BaggageInfo $bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt_src
GROUP BY $flt_src

Explanation: You want to get the total count of baggage originating from each airport.
However, you don't want to consider the airports that are part of the transit. So you group the
data with the flight source values of the first record of the flightLegs array(as the first record
is the source). You then determine the count of baggage.

Output:

{"SOURCE":"SFO","COUNT":6}
{"SOURCE":"BZN","COUNT":1}
{"SOURCE":"GRU","COUNT":1}
{"SOURCE":"LAX","COUNT":1}
{"SOURCE":"YYZ","COUNT":1}
{"SOURCE":"MEL","COUNT":1}
{"SOURCE":"MIA","COUNT":4}
{"SOURCE":"MSQ","COUNT":2}
{"SOURCE":"MXP","COUNT":2}
{"SOURCE":"JFK","COUNT":3}

Primary Expressions in SQL
If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and execute it as shown below. This script creates the table
used in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, execute the script.

load -file baggageschema_loaddata.sql

• Parenthesized Expressions

Chapter 5
Primary Expressions in SQL

5-17

• Case Expressions

• Cast Expression

• Sequence Transform Expressions

Parenthesized Expressions
Parenthesized expressions are used primarily to alter the default precedence among
operators. They are also used as a syntactic aid to mix expressions in ways that would
otherwise cause syntactic ambiguities.

Example: Fetch the full name, tag number, and routing details of passengers either
boarding at JFK /traversing through JFK and their destination is either MAD or VIE.

SELECT fullName, bag.bagInfo.tagNum,
bag.bagInfo.routing,
bag.bagInfo[].flightLegs[].fltRouteDest
FROM BaggageInfo bag
WHERE bag.bagInfo.flightLegs[].fltRouteSrc=any "JFK" AND
(bag.bagInfo[].flightLegs[].fltRouteDest=any "MAD" OR
bag.bagInfo[].flightLegs[].fltRouteDest=any "VIE")

Explanation: You want to fetch the full name, tag number, and routing details of
passengers. The first filter condition is that the boarding point/transit is JFK. Once this
is satisfied the second filter condition is that destination is either MAD or VIE. You use
an OR condition to filter the destination value.

Output:

{"fullName":"Dierdre Amador","tagNum":"17657806240229","routing":"JFK/
MAD","fltRouteDest":"MAD"}
{"fullName":"Rosalia
Triplett","tagNum":"17657806215913","routing":"JFK/IST/
VIE","fltRouteDest":["IST","VIE"]}
{"fullName":"Kendal
Biddle","tagNum":"17657806296887","routing":"JFK/IST/
VIE","fltRouteDest":["IST","VIE"]}

Case Expressions
The searched CASE expression is similar to the if-then-else statements of traditional
programming languages. It consists of a number of WHEN-THEN pairs, followed by an
optional ELSE clause at the end. Each WHEN expression is a condition, i.e., it must
return BOOLEAN. The THEN expressions as well as the ELSE expression may return
any sequence of items. The CASE expression is evaluated by first evaluating the
WHEN expressions from top to bottom until the first one that returns true. If it is the i-th
WHEN expression that returns true, then the i-th THEN expression is evaluated and its
result is the result of the whole CASE expression. If no WHEN expression returns true,
then if there is an ELSE, its expression is evaluated and its result is the result of the
whole CASE expression; Otherwise, the result of the CASE expression is the empty
sequence.

Chapter 5
Primary Expressions in SQL

5-18

Example:

SELECT
 fullName,
 CASE
 WHEN NOT exists bag.bagInfo.flightLegs[0]
 THEN "you have no bag info"
 WHEN NOT exists bag.bagInfo.flightLegs[1]
 THEN "you have one hop"
 WHEN NOT exists bag.bagInfo.flightLegs[2]
 THEN "you have two hops."
 ELSE "you have three hops."
 END AS NUMBER_HOPS
FROM BaggageInfo bag WHERE ticketNo=1762340683564

Explanation: You want to determine how many transits are there for the passenger bagInfo
using a CASE statement. If the flightLegs array has no elements, then the passenger has
no bag data. When the flightLegs array has only one element, then there is only one transit
point. Similarly, if the flightLegs array has two elements, then there is two hops. Else there
is three transit points. Here you assume that a bag can have at the most three transit points/
hops.

Output:

{"fullName":"Mary Watson","NUMBER_HOPS":"you have two hops."}

Example 2: Write a query to alert the system to update the tagNum of passengers if the
existing value is not a string.

SELECT bag.bagInfo[].tagNum,
CASE
 WHEN bag.bagInfo[0].tagNum is of type (NUMBER)
 THEN "Tagnumber is not a STRING. Update the data"
 ELSE "Tagnumber has correct datatype"
 END AS tag_NUM_TYPE
FROM BaggageInfo bag

Explanation: The tagNum of passengers in the bagInfo schema is a STRING data type. But
the application could take in a NUMBER value as the value of tagNum by mistake. The query
uses "is of type" operator to capture this and prompts the system to update the tagNum if the
existing value is not a string.

Output (only few rows are shown for brevity).

{"tagNum":"17657806240001","tag_NUM_TYPE":"Tagnumber has correct datatype"}
{"tagNum":"17657806224224","tag_NUM_TYPE":"Tagnumber has correct datatype"}
{"tagNum":17657806243578,"tag_NUM_TYPE":"Tagnumber is not a STRING. Update
the data"}
{"tagNum":"1765780623244","tag_NUM_TYPE":"Tagnumber has correct datatype"}

Chapter 5
Primary Expressions in SQL

5-19

Cast Expression
The cast expression creates, if possible, new items of a given target type from the
items of its input sequence. For example, a STRING can be converted to
TIMESTAMP(0) using CAST expression.

Rules followed in a CAST expression:

• If the type of the input item is equal to the target item type, the cast is a no-op: the
input item itself is returned.

• If the target type is a wildcard type other than JSON and the type of the input item
is a subtype of the wild card type, the cast is a no-op.

• If the target type is JSON, then an error is raised if the input item is a non-json
atomic type.

• If the target type is an array type, an error is raised if the input item is not an array.

• If the target type is string, the input item may be of any type. That means every
item can be cast to a string. For timestamps, their string value is in UTC and has
the format uuuu-MM-dd['T'HH:mm:ss].

• If the target type is an atomic type other than string, the input item must also be
atomic.

– * Integers and longs can be cast to timestamps. The input value is
interpreted as the number of milliseconds since January 1, 1970, 00:00:00
GMT.

* String items may be castable to all other atomic types. Whether the cast
succeeds or not depends on whether the actual string value can be
parsed into a value that belongs to the domain of the target type.

* Timestamp items are castable to all the timestamp types. If the target type
has a smaller precision that the input item, the resulting timestamp is the
one closest to the input timestamp in the target precision.

• To cast a STRING to TIMESTAMP, if the input has STRING values in ISO-8601
format, then it will be automatically converted by the SQL runtime into
TIMESTAMP data type.

Chapter 5
Primary Expressions in SQL

5-20

Note:

ISO8601 describes an internationally accepted way to represent dates, times,
and durations.
Syntax: Date with time: YYYY-MM-DDThh:mm:ss[.s[s[s[s[s[s]]]]][Z|(+|-)hh:mm]

where

– YYYY specifies the year, as four decimal digits

– MM specifies the month, as two decimal digits, 00 to 12

– DD specifies the day, as two decimal digits, 00 to 31

– hh specifies the hour, as two decimal digits, 00 to 23

– mm specifies the minutes, as two decimal digits, 00 to 59

– ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59,
optionally followed by a decimal point and 1 to 6 decimal digits
(representing the fractional part of a second).

– Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but
not by –00:00.)

– (+|-)hh:mm specifies the time-zone as difference from UTC. (One of + or –
is required.)

Example 1: Fetch the bag arrival date for the passenger with a reservation code DN3I4Q in
TIMESTAMP(3) format.

SELECT CAST (bag.bagInfo.bagArrivalDate AS Timestamp(3))
AS BAG_ARRIVING_DATE
FROM BaggageInfo bag WHERE bag.confNo=DN3I4Q

Explanation: The bagArrivalDate is a STRING. Using CAST you are converting this field
into a TIMESTAMP format.

Output:

{"BAG_ARRIVING_DATE":"2019-02-15T21:21:00.000Z"}

Example 2: Fetch the full name and tag number for all customer baggage shipped after
2019.

SELECT fullName, bag.ticketNo,
bag.bagInfo[].bagArrivalDate
FROM BaggageInfo bag WHERE
exists bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Explanation: You want to filter and display details of the baggage that are shipped after
2019. The bag arrival date for every element in the flightLegs array is compared with the
given timestamp (2019-01-01T00:00:00). Here the casting is implicit as bagArrivalDate is a
STRING and is directly compared with a static Timestamp value. An explicit CAST function is
not needed when an implicit casting can be done. However, your data should be in the format

Chapter 5
Primary Expressions in SQL

5-21

YYYY-MM-DDTHH:MI:SS . You then use the EXISTS condition to check if the bagInfo is
present for this timestamp condition.

Output:

{"fullName":"Kendal
Biddle","ticketNo":1762377974281,"bagArrivalDate":"2019-03-05T12:00:00Z
"}
{"fullName":"Lucinda
Beckman","ticketNo":1762320569757,"bagArrivalDate":"2019-03-12T15:05:00
Z"}
{"fullName":"Adelaide
Willard","ticketNo":1762392135540,"bagArrivalDate":"2019-02-15T21:21:00
Z"}
{"fullName":"Raymond
Griffin","ticketNo":1762399766476,"bagArrivalDate":"2019-02-03T08:09:00
Z"}
{"fullName":"Elane
Lemons","ticketNo":1762324912391,"bagArrivalDate":"2019-03-15T10:13:00Z
"}
{"fullName":"Zina
Christenson","ticketNo":1762390789239,"bagArrivalDate":"2019-02-04T10:0
8:00Z"}
{"fullName":"Zulema
Martindale","ticketNo":1762340579411,"bagArrivalDate":"2019-02-25T20:15
:00Z"}
{"fullName":"Dierdre
Amador","ticketNo":1762376407826,"bagArrivalDate":"2019-03-07T13:51:00Z
"}
{"fullName":"Henry
Jenkins","ticketNo":176234463813,"bagArrivalDate":"2019-03-02T13:18:00Z
"}
{"fullName":"Rosalia
Triplett","ticketNo":1762311547917,"bagArrivalDate":"2019-02-12T07:04:0
0Z"}
{"fullName":"Lorenzo Phil","ticketNo":1762320369957,"bagArrivalDate":
["2019-03-12T15:05:00Z","2019-03-12T16:25:00Z"]}
{"fullName":"Gerard
Greene","ticketNo":1762341772625,"bagArrivalDate":"2019-03-07T16:01:00Z
"}
{"fullName":"Adam
Phillips","ticketNo":1762344493810,"bagArrivalDate":"2019-02-01T16:13:0
0Z"}
{"fullName":"Doris
Martin","ticketNo":1762355527825,"bagArrivalDate":"2019-03-22T10:17:00Z
"}
{"fullName":"Joanne
Diaz","ticketNo":1762383911861,"bagArrivalDate":"2019-02-16T16:13:00Z"}
{"fullName":"Teena
Colley","ticketNo":1762357254392,"bagArrivalDate":"2019-02-13T11:15:00Z
"}
{"fullName":"Michelle
Payne","ticketNo":1762330498104,"bagArrivalDate":"2019-02-02T23:59:00Z"
}
{"fullName":"Mary

Chapter 5
Primary Expressions in SQL

5-22

Watson","ticketNo":1762340683564,"bagArrivalDate":"2019-03-14T06:22:00Z"}
{"fullName":"Omar
Harvey","ticketNo":1762348904343,"bagArrivalDate":"2019-03-02T16:09:00Z"}
{"fullName":"Fallon
Clements","ticketNo":1762350390409,"bagArrivalDate":"2019-02-21T14:08:00Z"}
{"fullName":"Lisbeth
Wampler","ticketNo":1762355854464,"bagArrivalDate":"2019-02-10T10:01:00Z"}

Sequence Transform Expressions
A sequence transform expression transforms a sequence into another sequence.
Syntactically it looks like a function whose name is seq_transform. The first argument is an
expression that generates the sequence to be transformed (the input sequence) and the
second argument is a "mapper" expression that is computed for each item of the input
sequence. The result of the seq_transform expression is the concatenation of sequences
produced by each evaluation of the mapper expression. The mapper expression can access
the current input item via the $ variable.

Example: For each ticketNo, fetch a flat array containing all the actions performed on the
luggage of that ticketNo.

SELECT seq_transform(l.bagInfo[],
 seq_transform(
 $sq1.flightLegs[],
 seq_transform(
 $sq2.actions[],
 {
 "at" : $sq3.actionAt,
 "action" : $sq3.actionCode,
 "flightNo" : $sq2.flightNo,
 "tagNum" : $sq1.tagNum
 }
)
)
) AS actions
FROM baggageInfo l WHERE ticketNo=1762340683564

Explanation: You can use the sequence transform expression for transforming JSON
documents stored in table rows. In such cases, you often use multiple sequence transform
expressions nested inside each other. Here the mapper expression of an inner sequence
transform may need to access the current item of an outer sequence transform. To allow this,
each sequence transform expression 'S' declares a variable with name $sqN, where N is the
level of nesting of the expression S within the outer sequence transform expressions. $sqN is
basically a synonym for $, that is, it is bound to the items returned by the input expression S.
However, $sqN can be accessed by other sequence transform expressions that may be
nested inside the expression S.

Output:

{
 "actions":[
 {"action":"ONLOAD to
HKG","at":"YYZ","flightNo":"BM267","tagNum":"17657806299833"},

Chapter 5
Primary Expressions in SQL

5-23

 {"action":"BagTag Scan at
YYZ","at":"YYZ","flightNo":"BM267","tagNum":"17657806299833"},
 {"action":"Checkin at
YYZ","at":"YYZ","flightNo":"BM267","tagNum":"17657806299833"},
 {"action":"Offload to Carousel at
BLR","at":"BLR","flightNo":"BM115","tagNum":"17657806299833"},
 {"action":"ONLOAD to
BLR","at":"HKG","flightNo":"BM115","tagNum":"17657806299833"},
 {"action":"OFFLOAD from
HKG","at":"HKG","flightNo":"BM115","tagNum":"17657806299833"}
]
}

Timestamp functions
You can perform various arithmetic operations on Timestamp and Duration values.

If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and run it as shown below. This script creates the table
used in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file baggageschema_loaddata.sql

• Extract Expressions

• timestamp_add() function

• timestamp_diff() and get_duration() functions

Extract Expressions
The EXTRACT expression extracts a component from a timestamp.

extract_expression ::= EXTRACT "(" id FROM expression ")"

The expression after the FROM keyword must return at most one timestamp or NULL.
If the result of this expression is NULL or empty, the result of EXTRACT is also NULL
or empty, respectively. Otherwise, the component specified by the id is returned. This
id must be one of the following keywords: YEAR, MONTH, DAY, HOUR, MINUTE,
SECOND, MILLISECOND, MICROSECOND, NANOSECOND, WEEK, ISOWEEK.

Example 1: What is the full name and baggage arrival year for the customer with
ticket number 1762383911861.

SELECT fullName,
EXTRACT (YEAR FROM CAST (bag.bagInfo.bagArrivalDate AS Timestamp(0)))

Chapter 5
Timestamp functions

5-24

AS YEAR FROM BaggageInfo bag
WHERE ticketNo=1762383911861

Explanation: You first use CAST to convert the bagArrivalDate to a TIMESTAMP and then
fetch the YEAR component from the Timestamp.

Output:

{"fullName":"Joanne Diaz","YEAR":2019}

Example 2: Retrieve all bags that travelled through MIA between 10:00 am and 10:00 pm in
February 2019.

SELECT bag.bagInfo[].tagNum,bag.bagInfo[].flightLegs[].fltRouteSrc,
$t1 AS HOUR FROM BaggageInfo bag,
EXTRACT(HOUR FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) $t1,
EXTRACT(YEAR FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) $t2,
EXTRACT(MONTH FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) $t3
WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any "MIA" AND
$t2=2019 AND $t3=02 AND ($t1>10 AND $t1<20)

Explanation: You want to know the details of flights that traveled through MIA between 10:00
am and 10:00 pm in February 2019. You use a number of filter conditions here. First, the
flight should have originated or traversed through MIA. The year of arrival should be 2019
and the month of arrival should be 2 (February). Then you filter if the hour of arrival is
between 10:00 am and 10:00 pm (20 hours).

Output:

{"tagNum":"17657806255240","fltRouteSrc":["MIA","LAX"],"HOUR":16}
{"tagNum":"17657806292518","fltRouteSrc":["MIA","LAX"],"HOUR":16}

Example 3: Which year and month did the passenger with the reservation code PQ1M8N
receive the baggage?

SELECT fullName,
EXTRACT(YEAR FROM CAST (bag.bagInfo.bagArrivalDate AS Timestamp(0))) AS
YEAR,
EXTRACT(MONTH FROM CAST (bag.bagInfo.bagArrivalDate AS Timestamp(0))) AS
MONTH
FROM BaggageInfo bag WHERE bag.confNo="PQ1M8N"

Explanation: You first use CAST to convert the bagArrivalDate to a TIMESTAMP and then
fetch the YEAR component and MONTH component from the Timestamp.

Output:

{"fullName":"Kendal Biddle","YEAR":2019,"MONTH":3}

Chapter 5
Timestamp functions

5-25

Example 4: Group the baggage data based on the month of arrival and display the
month and the number of baggage that arrived that month.

SELECT EXTRACT(MONTH FROM CAST ($bag_arr_date AS Timestamp(0))) AS
MONTH,
count(EXTRACT(MONTH FROM CAST ($bag_arr_date AS Timestamp(0)))) AS
COUNT
FROM BaggageInfo $bag, $bag.bagInfo[].bagArrivalDate $bag_arr_date
GROUP BY EXTRACT(MONTH FROM CAST ($bag_arr_date AS Timestamp(0)))

Explanation: You want to group the data based on the month of the arrival of
baggage. You use an unnest array to flatten the data. The bagInfo array is flattened
and the value of bag arrival date is fetched from the array. You then use CAST to
convert the bagArrivalDate to a TIMESTAMP and then fetch the YEAR component
and MONTH component from the Timestamp. You then use the count function to get
the total baggage corresponding to every month.

Note:

One assumption in the data is that all the baggage has arrived in the same
year. So you group the data only based on the month.

Output:

{"MONTH":2,"COUNT":11}
{"MONTH":3,"COUNT":10}

timestamp_add() function
Adds a duration to a timestamp value and returns the new timestamp. The duration
can be positive or negative. The result type is TIMESTAMP(9).

Syntax:

TIMESTAMP(9) timestamp_add(TIMESTAMP timestamp, STRING duration)

Semantics:

• timestamp: A TIMESTAMP value or a value that can be cast to TIMESTAMP.

• duration: A string with format [-](<n> <UNIT>)+, where 'n' is a number and the
<UNIT> can be YEAR, MONTH, DAY, HOUR, MINUTE, SECOND,
MILLISECOND, NANOSECOND or the plural form of these keywords (e.g.
YEARS).

Note:

The UNIT keyword is case-insensitive.

• returnvalue: TIMESTAMP(9)

Chapter 5
Timestamp functions

5-26

Example 1: In the airline application, a buffer of five minutes delay is considered "on time" .
Print the estimated arrival time on the first leg with a buffer of five minutes for the passenger
with ticket number 1762399766476.

SELECT timestamp_add(bag.bagInfo.flightLegs[0].estimatedArrival, "5 minutes")
AS ARRIVAL_TIME FROM BaggageInfo bag
WHERE ticketNo=1762399766476

Explanation : In the airline application, a customer can have any number of flight legs
depending on the source and destination. In the query above, you are fetching the estimated
arrival in the "first leg" of the travel. So the first record of the flightsLeg array is fetched and
the estimatedArrival time is fetched from the array and a buffer of "5 minutes" is added to
that and displayed.

Output:

{"ARRIVAL_TIME":"2019-02-03T06:05:00.000000000Z"}

Note:

The column estimatedArrival is a STRING. If the column has STRING values in
ISO-8601 format, then it will be automatically converted by the SQL runtime into
TIMESTAMP data type.

ISO8601 describes an internationally accepted way to represent dates, times, and
durations.

Syntax: Date with time: YYYY-MM-DDThh:mm:ss[.s[s[s[s[s[s]]]]][Z|(+|-)hh:mm]

where

• YYYY specifies the year, as four decimal digits

• MM specifies the month, as two decimal digits, 00 to 12

• DD specifies the day, as two decimal digits, 00 to 31

• hh specifies the hour, as two decimal digits, 00 to 23

• mm specifies the minutes, as two decimal digits, 00 to 59

• ss[.s[s[s[s[s]]]]] specifies the seconds, as two decimal digits, 00 to 59, optionally
followed by a decimal point and 1 to 6 decimal digits (representing the fractional
part of a second).

• Z specifies UTC time (time zone 0). (It can also be specified by +00:00, but not
by –00:00.)

• (+|-)hh:mm specifies the time-zone as difference from UTC. (One of + or – is
required.)

Example 1a: Print the estimated arrival time in every leg with a buffer of five minutes for the
passenger with ticket number 1762399766476.

SELECT $s.ticketno, $value as estimate,
timestamp_add($value, '5 minute') AS add5min

Chapter 5
Timestamp functions

5-27

FROM baggageinfo $s,
$s.bagInfo.flightLegs.estimatedArrival as $value
WHERE ticketNo=1762399766476

Explanation: You want to display the estimatedArrival time on every leg. The
number of legs can be different for every customer. So variable reference is used in
the query above and the baggageInfo array and the flightLegs array are unnested to
execute the query.

Output:

{"ticketno":1762399766476,"estimate":"2019-02-03T06:00:00Z",
"add5min":"2019-02-03T06:05:00.000000000Z"}
{"ticketno":1762399766476,"estimate":"2019-02-03T08:22:00Z",
"add5min":"2019-02-03T08:27:00.000000000Z"}

Example 2 : How many bags arrived in the last week?

SELECT count(*) AS COUNT_LASTWEEK FROM baggageInfo bag
WHERE EXISTS bag.bagInfo[$element.bagArrivalDate < current_time()
AND $element.bagArrivalDate > timestamp_add(current_time(), "-7 days")]

Explanation: You get a count of the number of bags processed by the airline
application in the last week. A customer can have more than one bag(that is bagInfo
array can have more than one record). ThebagArrivalDate should have a value
between today and the last 7 days. For every record in the bagInfo array, you
determine if the bag arrival time is between the time now and one week ago. The
function current_time gives you the time now. An EXISTS condition is used as a filter
for determining if the bag has an arrival date in the last week. The count function
determines the total number of bags in this time period.

Output:

{"COUNT_LASTWEEK":0}

Example 3: Find the number of bags arriving in the next 6 hours.

SELECT count(*) AS COUNT_NEXT6HOURS FROM baggageInfo bag
WHERE EXISTS bag.bagInfo[$element.bagArrivalDate > current_time()
AND $element.bagArrivalDate < timestamp_add(current_time(), "6 hours")]

Explanation: You get a count of the number of bags that will be processed by the
airline application in the next 6 hours. A customer can have more than one bag(that
isbagInfo array can have more than one record). The bagArrivalDate should be
between the time now and the next 6 hours. For every record in the bagInfo array, you
determine if the bag arrival time is between the time now and six hours later. The
function current_time gives you the time now. An EXISTS condition is used as a filter
for determining if the bag has an arrival date in the next six hours. The count function
determines the total number of bags in this time period.

Chapter 5
Timestamp functions

5-28

Output:

{"COUNT_NEXT6HOURS":0}

timestamp_diff() and get_duration() functions
timestamp_diff()

Returns the number of milliseconds between two timestamp values. The result type is LONG.

Syntax:

LONG timestamp_diff(TIMESTAMP timestamp1, TIMESTAMP
 timestamp2)

Semantics:

• timestamp1: A TIMESTAMP value or a value that can be cast to TIMESTAMP

• timestamp2: A TIMESTAMP value or a value that can be cast to TIMESTAMP

• returnvalue: LONG

get_duration()

Converts the given number of milliseconds to a duration string. The result type is STRING.

Syntax:

STRING get_duration(LONG duration_millis)

Semantics:

• duration_millis: the duration in milliseconds

• returnvalue: STRING. The returned duration string format is [-](<n> <UNIT>)+, where
the <UNIT> can be DAY, HOUR, MINUTE, SECOND and MILLISECOND, e.g. "1 day 2
hours" or "-10 minutes 0 second 500 milliseconds".

Examples:

Example 1: What is the duration between the time the baggage was boarded at one leg and
reached the next leg for the passenger with ticket number 1762355527825?

SELECT $s.ticketno, $bagInfo.bagArrivalDate, $flightLeg.flightDate,
get_duration(timestamp_diff($bagInfo.bagArrivalDate, $flightLeg.flightDate))
AS diff
FROM baggageinfo $s,
$s.bagInfo[] AS $bagInfo, $bagInfo.flightLegs[] AS $flightLeg
WHERE ticketNo=1762355527825

Explanation: In an airline application every customer can have a different number of hops/
legs between their source and destination. In this query, you determine the time taken
between every flight leg. This is determined by the difference between bagArrivalDate and

Chapter 5
Timestamp functions

5-29

flightDate for every flight leg. To determine the duration in days or hours or minutes,
pass the result of the timestamp_diff function to the get_duration function.

Output:

{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:00
:00Z",
"diff":"3 hours 17 minutes"}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:23
:00Z",
"diff":"2 hours 54 minutes"}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T08:23
:00Z",
"diff":"1 hour 54 minutes"}

To determine the duration in milliseconds, use only the timestamp_diff function.

SELECT $s.ticketno, $bagInfo.bagArrivalDate, $flightLeg.flightDate,
timestamp_diff($bagInfo.bagArrivalDate, $flightLeg.flightDate) AS diff
FROM baggageinfo $s,
$s.bagInfo[] AS $bagInfo,
$bagInfo.flightLegs[] AS $flightLeg
WHERE ticketNo=1762355527825

Example 2: How long does it take from the time of check-in to the time the bag is
scanned at the point of boarding for the passenger with ticket number 176234463813?

SELECT $flightLeg.flightNo,
$flightLeg.actions[contains($element.actionCode,
"Checkin")].actionTime AS checkinTime,
$flightLeg.actions[contains($element.actionCode, "BagTag
Scan")].actionTime AS bagScanTime,
get_duration(timestamp_diff(
 $flightLeg.actions[contains($element.actionCode,
"Checkin")].actionTime,
 $flightLeg.actions[contains($element.actionCode, "BagTag
Scan")].actionTime
)) AS diff
FROM baggageinfo $s,
$s.bagInfo[].flightLegs[] AS $flightLeg
WHERE ticketNo=176234463813 AND
starts_with($s.bagInfo[].routing, $flightLeg.fltRouteSrc)

Explanation: In the baggage data, every flightLeg has an actions array. There are
three different actions in the action array. The action code for the first element in the
array is Checkin/Offload. For the first leg, the action code is Checkin and for the other
legs, the action code is Offload at the hop. The action code for the second element of
the array is BagTag Scan. In the query above, you determine the difference in action
time between the bag tag scan and check-in time. You use the contains function to
filter the action time only if the action code is Checkin or BagScan. Since only the first
flight leg has details of check-in and bag scan, you additionally filter the data using
starts_with function to fetch only the source code fltRouteSrc. To determine the

Chapter 5
Timestamp functions

5-30

duration in days or hours or minutes, pass the result of the timestamp_diff function to the
get_duration function.

To determine the duration in milliseconds, only use the timestamp_diff function.

SELECT $flightLeg.flightNo,
$flightLeg.actions[contains($element.actionCode, "Checkin")].actionTime AS
checkinTime,
$flightLeg.actions[contains($element.actionCode, "BagTag Scan")].actionTime
AS bagScanTime,
timestamp_diff(
 $flightLeg.actions[contains($element.actionCode, "Checkin")].actionTime,
 $flightLeg.actions[contains($element.actionCode, "BagTag
Scan")].actionTime
) AS diff
FROM baggageinfo $s,
$s.bagInfo[].flightLegs[] AS $flightLeg
WHERE ticketNo=176234463813 AND
starts_with($s.bagInfo[].routing, $flightLeg.fltRouteSrc)

Output:

{"flightNo":"BM572","checkinTime":"2019-03-02T03:28:00Z",
"bagScanTime":"2019-03-02T04:52:00Z","diff":"- 1 hour 24 minutes"}

Example 3: How long does it take for the bags of a customer with ticket no 1762320369957
to reach the first transit point?

SELECT $bagInfo.flightLegs[1].actions[2].actionTime,
$bagInfo.flightLegs[0].actions[0].actionTime,
get_duration(timestamp_diff($bagInfo.flightLegs[1].actions[2].actionTime,
 $bagInfo.flightLegs[0].actions[0].actionTime))
AS diff
FROM baggageinfo $s, $s.bagInfo[] AS $bagInfo
WHERE ticketNo=1762320369957

Explanation: In an airline application every customer can have a different number of hops/
legs between their source and destination. In the example above, you determine the time
taken for the bag to reach the first transit point. In the baggage data, the flightLeg is an
array. The first record in the array refers to the first transit point details. The flightDate in the
first record is the time when the bag leaves the source and the estimatedArrival in the first
flight leg record indicates the time it reaches the first transit point. The difference between the
two gives the time taken for the bag to reach the first transit point. To determine the duration
in days or hours or minutes, pass the result of the timestamp_diff function to the
get_duration function.

To determine the duration in milliseconds, use the timestamp_diff function.

SELECT $bagInfo.flightLegs[0].flightDate,
$bagInfo.flightLegs[0].estimatedArrival,
timestamp_diff($bagInfo.flightLegs[0].estimatedArrival,
 $bagInfo.flightLegs[0].flightDate) AS diff

Chapter 5
Timestamp functions

5-31

FROM baggageinfo $s, $s.bagInfo[] AS $bagInfo
WHERE ticketNo=1762320369957

Output:

{"flightDate":"2019-03-12T03:00:00Z","estimatedArrival":"2019-03-12T16:
00:00Z","diff":"13 hours"}
{"flightDate":"2019-03-12T03:00:00Z","estimatedArrival":"2019-03-12T16:
40:00Z","diff":"13 hours 40 minutes"}

Functions on Strings
There are various built-in functions on strings. In any string, position starts at 0 and
ends at length - 1.

If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and execute it as shown below. This script creates the
table used in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, execute the script.

load -file baggageschema_loaddata.sql

• substring function

• concat function

• upper and lower functions

• trim function

• length function

• contains function

• starts_with and ends_with functions

• index_of function

• replace function

• reverse function

substring function
The substring function extracts a string from a given string according to a given
numeric starting position and a given numeric substring length.

returnvalue substring (source, position [, substring_length])

source ::= any*

Chapter 5
Functions on Strings

5-32

position ::= integer*
substring_length ::= integer*
returnvalue ::= string

Example: Fetch the first three characters from the routing details of a passenger with ticket
number 1762376407826.

SELECT substring(bag.baginfo.routing,0,3) AS Source
FROM baggageInfo bag
WHERE ticketNo=1762376407826

Output:

{"Source":"JFK"}

concat function
The concat function concatenates all its arguments and displays the concatenated string as
output.

returnvalue concat (source,[source*])
source ::= any*
returnvalue ::= string

Example: Display the routing of a customer with a particular ticket number as "The route for
passenger_name is ...".

SELECT concat("The route for passenger ",fullName , " is ",
bag.baginfo[0].routing)
FROM baggageInfo bag
WHERE ticketNo=1762376407826

Output:

{"Column_1":"The route for passenger Dierdre Amador is JFK/MAD"}

upper and lower functions
The upper and lower are simple functions to convert to fully upper case or lower case
respectively. The upper function converts all the characters in a string to uppercase.
Thelower function converts all the characters in a string to lowercase.

returnvalue upper (source)
returnvalue lower (source)

source ::= any*
returnvalue ::= string

Chapter 5
Functions on Strings

5-33

Example 1: Fetch the full name of the passenger in uppercase whose ticket number is
1762376407826.

SELECT upper(fullname) AS FULLNAME_CAPITALS
FROM BaggageInfo
WHERE ticketNo=1762376407826

Output:

{"FULLNAME_CAPITALS":"DIERDRE AMADOR"}

Example 2: Fetch the full name of the passenger in lowercase whose ticket number is
1762376407826.

SELECT lower(fullname) AS fullname_lowercase
FROM BaggageInfo WHERE ticketNo=1762376407826

Output:

{"fullname_lowercase":"dierdre amador"}

trim function
The trim function enables you to trim leading or trailing characters (or both) from a
string. The ltrim function enables you to trim leading characters from a string. The
rtrim function enables you to trim trailing characters from a string.

returnvalue trim(source [, position [, trim_character]])

source ::= any*
position ::= "leading"|"trailing"|"both"
trim_character ::= string*
returnvalue ::= string

returnvalue ltrim(source)

returnvalue rtrim(source)
source ::= any*
returnvalue ::= string

Example: Remove leading and trailing blank spaces from the route details of the
passenger whose ticket number is 1762350390409.

SELECT trim(bag.baginfo[0].routing,"trailing"," ")
FROM BaggageInfo bag
WHERE ticketNo=1762376407826

Chapter 5
Functions on Strings

5-34

Output:

{"Column_1":"JFK/MAD"}

Using ltrim function to remove leading spaces:

SELECT ltrim(bag.baginfo[0].routing)
FROM BaggageInfo bag
WHERE ticketNo=1762376407826

Output:

{"Column_1":"JFK/MAD"}

Using rtrim function to remove trailing spaces:

SELECT rtrim(bag.baginfo[0].routing)
FROM BaggageInfo bag
WHERE ticketNo=1762376407826

Output:

{"Column_1":"JFK/MAD"}

length function
The length function returns the length of a character string. The length function calculates
the length using the UTF character set.

returnvalue length(source)

source ::= any*
returnvalue ::= integer

Example: Find the length of the full name of the passenger whose ticket number is
1762350390409.

SELECT fullname, length(fullname) AS fullname_length
FROM BaggageInfo
WHERE ticketNo=1762350390409

Output:

{"fullname":"Fallon Clements","fullname_length":15}

Chapter 5
Functions on Strings

5-35

contains function
The contains function indicates whether or not a search string is present inside the
source string.

returnvalue contains(source, search_string)

source ::= any*
search_string ::= any*
returnvalue ::= boolean

Example: Fetch the full names of passengers who have "SFO" in their route.

SELECT fullname FROM baggageInfo bag
WHERE EXISTS bag.bagInfo[contains($element.routing,"SFO")]

Output:

{"fullname":"Michelle Payne"}
{"fullname":"Lucinda Beckman"}
{"fullname":"Henry Jenkins"}
{"fullname":"Lorenzo Phil"}
{"fullname":"Gerard Greene"}

starts_with and ends_with functions
The starts_with function indicates whether or not the source string begins with the
search string.

returnvalue starts_with(source, search_string)

source ::= any*
search_string ::= any*
returnvalue ::= boolean

The ends_withfunction indicates whether or not the source string ends with the search
string.

returnvalue ends_with(source, search_string)

source ::= any*
search_string ::= any*
returnvalue ::= boolean

Example: How long does it take from the time of check-in to the time the bag is
scanned at the point of boarding for the passenger with ticket number 176234463813?

SELECT $flightLeg.flightNo,
$flightLeg.actions[contains($element.actionCode,

Chapter 5
Functions on Strings

5-36

"Checkin")].actionTime AS checkinTime,
$flightLeg.actions[contains($element.actionCode, "BagTag Scan")].actionTime
AS bagScanTime,
timestamp_diff(
 $flightLeg.actions[contains($element.actionCode, "Checkin")].actionTime,
 $flightLeg.actions[contains($element.actionCode, "BagTag
Scan")].actionTime
) AS diff
FROM baggageinfo $s, $s.bagInfo[].flightLegs[] AS $flightLeg
WHERE ticketNo=176234463813
AND starts_with($s.bagInfo[].routing, $flightLeg.fltRouteSrc)

Explanation: In the baggage data, every flightLeg has an actions array. There are three
different actions in the actions array. The action code for the first element in the array is
Checkin/Offload. For the first leg, the action code is Checkin and for the other legs, the action
code is Offload at the hop. The action code for the second element of the array is BagTag
Scan. In the query above, you determine the difference in action time between the bag tag
scan and check-in time. You use the contains function to filter the action time only if the
action code is Checkin or BagScan. Since only the first flight leg has details of check-in and
bag scan, you additionally filter the data using starts_with function to fetch only the source
code fltRouteSrc.

Output:

{"flightNo":"BM572","checkinTime":"2019-03-02T03:28:00Z",
"bagScanTime":"2019-03-02T04:52:00Z","diff":-5040000}

Example 2 : Find list of passengers whose destination is JTR.

SELECT fullname FROM baggageInfo $bagInfo
WHERE ends_with($bagInfo.bagInfo[].routing, "JTR")

Output:

{"fullname":"Lucinda Beckman"}
{"fullname":"Gerard Greene"}
{"fullname":"Michelle Payne"}

index_of function
The index_of function determines the position of the first character of the search string at its
first occurrence if any.

returnvalue index_of(source, search_string [, start_position])

source ::= any*
search_string ::= any*
start_position ::= integer*
returnvalue ::= integer

Various return values:

Chapter 5
Functions on Strings

5-37

• Returns the position of the first character of the search string at its first occurrence.
The position is relative to the start position of the string (which is zero).

• Returns -1 if search_string is not present in the source.

• Returns 0 for any value of source if the search_string is of length 0.

• Returns NULL if any argument is NULL.

• Returns NULL if any argument is an empty sequence or a sequence with more
than one item.

• Returns error if start_position argument is not an integer.

Example 1: Determine at which position "-" is found in the estimated arrival time of the
first leg for the passenger with ticket number 1762320569757.

SELECT index_of(bag.baginfo.flightLegs[0].estimatedArrival,"-")
FROM BaggageInfo bag
WHERE ticketNo=1762320569757

Output:

{"Column_1":4}

Example 2: Determine at which position "/" is found in the routing of the first leg for
passenger with ticket number 1762320569757. This will help you determine how many
characters are there for the source point for the passenger with ticket number
1762320569757.

SELECT index_of(bag.baginfo.routing,"/")
FROM BaggageInfo bag
WHERE ticketNo=1762320569757

Output:

"Column_1":3}

replace function
The replace function returns the source with every occurrence of the search string
replaced with the replacement string.

returnvalue replace(source, search_string [, replacement_string])

source ::= any*
search_string ::= any*
replacement_string ::= any*
returnvalue ::= string

Chapter 5
Functions on Strings

5-38

Example: Replace the source location of the passenger with ticket number 1762320569757
from SFO to SOF.

SELECT replace(bag.bagInfo[0].routing,"SFO","SOF")
FROM baggageInfo bag
WHERE ticketNo=1762320569757

Output:

{"Column_1":"SOF/IST/ATH/JTR"}

Example 2: Replace the double quote in the passenger name with a single quote.

If your data might contain a double quote in the passenger's name, you can use replace
function to change the double quote to a single quote.

SELECT fullname,
replace(fullname, "\"", "'") as new_fullname
FROM BaggageInfo bag

reverse function
The reverse function returns the characters of the source string in reverse order, where the
string is written beginning with the last character first.

returnvalue reverse(source)

source ::= any*
returnvalue ::= string

Example: Display the full name and reverse the full name of the passenger with ticket
number 1762330498104.

SELECT fullname, reverse(fullname)
FROM baggageInfo
WHERE ticketNo=1762330498104

Output:

{"fullname":"Michelle Payne","Column_2":"enyaP ellehciM"}

Query execution plan
A query execution plan is the sequence of operations Oracle NoSQL Database performs to
run a query.

• Overview of query plan

• Query 1: Using primary key index with an index range scan

• Query 2: Using primary key index with an index predicate

Chapter 5
Query execution plan

5-39

• Query 3: Using a secondary index with an index range scan

• Query 4: Using the primary index

• Query 5: Sort the data using a Covering index

• Query 6: Using a secondary index with an index predicate

• Query 7: Group data with fields as part of the index

• Query 8: Using the secondary index with multiple index scans

• Query 9: A SINGLE PARTITION query using a primary index

• Query 10: Group data with fields not part of any index

Overview of query plan
A query execution plan is internally structured as a tree of plan iterators.

Each kind of iterator evaluates a different kind of expression that may appear in a
query. In general, the choice of index and the kind of associated index predicates can
have a drastic effect on query performance. As a result, you as a developer often want
to see what index is used by a query and what predicates have been pushed down to
it. Based on this information, you may want to force the use of a different index via
index hints. This information is contained in the query execution plan. All Oracle
NoSQL drivers provide APIs to display the execution plan of a query. All Oracle
NoSQL graphical UIs including the IntelliJ, VSCode, and Eclipse plugins along with the
Oracle Cloud Infrastructure Console include controls for displaying the query execution
plan.

Some of the most common and important iterators used in queries are :

TABLE iterator

A table iterator is responsible for

• Scanning the index used by the query (which may be the primary index).

• Applying any filtering predicates pushed to the index

• Retrieve the rows pointed to by the qualifying index entries if necessary. If the
index is covering, the result set of the TABLE iterator is a set of index entries,
otherwise, it is a set of table rows.

Note:

An index is called a covering index with respect to a query if the query can
be evaluated using only the entries of that index, that is, without the need to
retrieve the associated rows.

A TABLE iterator will always have the following properties:

• target table: The name of the target table in the query.

• index used: The name of the index used by the query. If the primary index were
used, “primary index” would appear as the value of this property.

• covering index: Whether the index is covering or not.

Chapter 5
Query execution plan

5-40

• row variable: The name of a variable ranging over the table rows produced by the
TABLE iterator. If the index is covering, no table rows are produced and this variable is
not used.

• index scans: Contains the start and stop conditions that define the index scans to be
performed.

A TABLE iterator has 2 more optional properties:

• index row variable: The name of a variable ranging over the index entries produced by
the TABLE iterator. Every time a new index entry is produced by the index scan, the
index variable will be bound to that entry.

• index filtering predicate: A predicate evaluated on every index entry produced by the
index scan. If the result of this evaluation is true, the index variable is bound to this entry
and the entry or its associated table row is returned as the result of the next() call on the
TABLE iterator. Otherwise, the entry is skipped, the next entry from the index scan is
produced, the predicate is evaluated again on this entry and it continues until a qualifying
entry is found.

SELECT iterator

It is responsible for executing the SELECT expression.

RECEIVE iterator

It is a special internal iterator that separates the query plan into 2 parts:

1. The RECEIVE iterator itself and all iterators that are above it in the iterator tree are
executed at the driver.

2. All iterators below the RECEIVE iterator are executed at the replication nodes (RNs);
these iterators form a subtree rooted at the unique child of the RECEIVE iterator.

In general, the RECEIVE iterator acts as a query coordinator. It sends its subplan to
appropriate RNs for execution and collects the results. It may perform additional operations
such as sorting and duplicate elimination and propagates the results to its ancestor iterators
(if any) for further processing.

Distribution kinds

A distribution kind specifies how the query will be distributed for execution across the RNs
participating in an Oracle NoSQL database (a store). The distribution kind is a property of the
RECEIVE iterator.

Different choices of Distribution kinds are:

• SINGLE_PARTITION: A SINGLE_PARTITION query specifies a complete shard key in
its WHERE clause. As a result, its full result set is contained in a single partition, and the
RECEIVE iterator will send its subplan to a single RN that stores that partition. A
SINGLE_PARTITION query may use either the primary-key index or a secondary index.

• ALL_PARTITIONS: Queries use the primary-key index here and they don’t specify a
complete shard key. As a result, if the store has M partitions, the RECEIVE iterator will
send M copies of its subplan to be executed over one of the M partitions each.

• ALL_SHARDS: Queries use a secondary index here and they don’t specify a complete
shard key. As a result, if the store has N shards, the RECEIVE iterator will send N copies
of its subplan to be executed over one of the N shards each.

Chapter 5
Query execution plan

5-41

Populating the tables to view the query execution plan :

If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and run it as shown below. This script creates the table
used in the example and loads data into the table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file baggageschema_loaddata.sql

Creating indexes:

Create the following indexes in the baggageInfo table as shown below.

1. Create an index on passengers reservation code.

CREATE INDEX fixedschema_conf ON baggageInfo confNo)

2. Create an index on the full name and phone number of passengers

CREATE INDEX compindex_namephone ON baggageInfo
(fullName,contactPhone)

3. Create an index on three fields, when the bag was last seen, the last seen station,
and the arrival date and time.

CREATE INDEX simpleindex_arrival ON
baggageInfo(bagInfo[].lastSeenTimeGmt as ANYATOMIC,
bagInfo[].bagArrivalDate as ANYATOMIC,
bagInfo[].lastSeenTimeStation as ANYATOMIC)

Query 1: Using primary key index with an index range scan
Fetch the bag details of passengers for ticket numbers in a range.

SELECT fullname, ticketNo,
bag.bagInfo[].tagNum,bag.bagInfo[].routing
FROM BaggageInfo bag WHERE
1762340000000 < ticketNo AND ticketNo < 1762352000000

Plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_PARTITIONS",
 "input iterator" :
 {

Chapter 5
Query execution plan

5-42

 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "primary index",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {},
 "range conditions" : { "ticketNo" : { "start value" :
1762340000000, "start inclusive" : false, "end value" : 1762352000000, "end
inclusive" : false } }
 }
]
 },
 "FROM variable" : "$$bag",
 "SELECT expressions" : [
 {
 "field name" : "fullname",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "fullname",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "ticketNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "ticketNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "tagNum",
 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "tagNum",

Chapter 5
Query execution plan

5-43

 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 },
 {
 "field name" : "routing",
 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "routing",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 }
]
 }
}

Explanation:

• The root iterator of this query plan is a RECEIVE iterator with a single child (input
iterator) that is a SELECT iterator.

Chapter 5
Query execution plan

5-44

• The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

• The primary key index is used and the index is not covering (as you need to scan the
table to fetch columns other than the index entries).

• The index scan property contains the start and stop conditions that define the index
scans to be performed.

• The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable
($$bag)is the same as the row variable of the TABLE iterator, as the index used is not
covering.

• In the SELECT expression four fields
(fullname,ticketNo,bag.bagInfo[].tagNum,bag.bagInfo[].routing) are fetched.
These correspond to four field names and field expressions in the SELECT expression
clause. For the first two fields, the field expression is computed using FIELD_STEP iterator.
For the last 2 fields, an ARRAY_CONSTRUCTOR iterator is used which iterates over the
corresponding arrays to fetch the field value.

Query 2: Using primary key index with an index predicate
Fetch the bag details of passengers for ticket numbers satisfying one of the two ranges of
values.

SELECT fullname, ticketNo, bag.bagInfo[].tagNum,bag.bagInfo[].routing
FROM BaggageInfo bag WHERE ticketNo > 1762340000000 OR ticketNo <
1762352000000;

Plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_PARTITIONS",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "primary index",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
],
 "index filtering predicate" :
 {
 "iterator kind" : "OR",
 "input iterators" : [
 {

Chapter 5
Query execution plan

5-45

 "iterator kind" : "GREATER_THAN",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "ticketNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : 1762340000000
 }
 },
 {
 "iterator kind" : "LESS_THAN",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "ticketNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : 1762352000000
 }
 }
]
 }
 },
 "FROM variable" : "$$bag",
 "SELECT expressions" : [
 {
 "field name" : "fullname",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "fullname",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "ticketNo",

Chapter 5
Query execution plan

5-46

 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "ticketNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "tagNum",
 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "tagNum",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 },
 {
 "field name" : "routing",
 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "routing",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",

Chapter 5
Query execution plan

5-47

 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 }
]
 }
}

Explanation:

• The root iterator of this query plan is a RECEIVE iterator with a single child (input
iterator) that is a SELECT iterator.

• The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

• The primary key index is used and the index is not covering (as you need to scan
the table to fetch columns other than the index entries).

• The index filtering predicate evaluates the filter criteria on the ticketNo field.
Using the greater than and less than operators the filter condition is evaluated.

• The FROM variable is the name of a variable ranging over the records produced
by the FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM
variable ($$bag) is the same as the row variable of the TABLE iterator, as the
index used is not covering.

• In the SELECT expression four fields
(fullname,ticketNo,bag.bagInfo[].tagNum, bag.bagInfo[].routing) are
fetched. These correspond to four field names and field expressions in the
SELECT expression clause. For the first two fields, the field expression is
computed using FIELD_STEP iterator. For the last 2 fields, an ARRAY_CONSTRUCTOR
iterator is used which iterates over the corresponding arrays to fetch the field
value.

Query 3: Using a secondary index with an index range scan
Fetch the bag details for a particular reservation code.

SELECT fullName,bag.ticketNo, bag.confNo, bag.bagInfo[].tagNum,
bag.bagInfo[].routing FROM BaggageInfo bag WHERE bag.confNo="FH7G1W"

Plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "input iterator" :
 {

Chapter 5
Query execution plan

5-48

 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "fixedschema_conf",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {"confNo":"FH7G1W"},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$bag",
 "SELECT expressions" : [
 {
 "field name" : "fullName",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "fullName",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "ticketNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "ticketNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "confNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "confNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }

Chapter 5
Query execution plan

5-49

 },
 {
 "field name" : "tagNum",
 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "tagNum",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 },
 {
 "field name" : "routing",
 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "routing",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]

Chapter 5
Query execution plan

5-50

 }
 }
]
 }
}

Explanation:

• The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

• The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

• The index fixedschema_conf is used and the index is not covering (as you need to scan
the table to fetch columns other than the index entries).

• The index scan property contains the start and stop conditions that define the index
scans to be performed.

• The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable
($$bag) is the same as the row variable of the TABLE iterator, as the index used is not
covering.

• In the SELECT expression four fields
(fullname,ticketNo,confNo,bag.bagInfo[].tagNum,bag.bagInfo[].routing) are
fetched. These correspond to five field names and field expressions in the SELECT
expression clause. For the first three fields, the field expression is computed using
FIELD_STEP iterator. For the last two fields, an ARRAY_CONSTRUCTOR iterator is used which
iterates over the corresponding arrays to fetch the field value.

Query 4: Using the primary index
Fetch the name and routing details of all male passengers.

SELECT fullname,bag.bagInfo[].routing FROM BaggageInfo bag
WHERE gender!="F"

Plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_PARTITIONS",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "primary index",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {},

Chapter 5
Query execution plan

5-51

 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$bag",
 "WHERE" :
 {
 "iterator kind" : "NOT_EQUAL",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "gender",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : "F"
 }
 },
 "SELECT expressions" : [
 {
 "field name" : "fullname",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "fullname",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "routing",
 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "routing",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",

Chapter 5
Query execution plan

5-52

 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 }
]
 }
}

Explanation:

• The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

• The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

• The primary key index is used and the index is not covering (as you need to scan the
table to fetch columns other than the index entries).

• The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable
($$bag) is the same as the row variable of the TABLE iterator, as the index used is not
covering.

• In the SELECT expression two fields (fullname,bag.bagInfo[].routing) are fetched.
These correspond to two field names and field expressions in the SELECT expression
clause. For the first field, the field expression is computed using FIELD_STEP iterator. For
the second field, an ARRAY_CONSTRUCTOR iterator is used which iterates over the
corresponding array to fetch the field value.

Query 5: Sort the data using a Covering index
Fetch the name and phone number of all passengers.

SELECT bag.contactPhone, bag.fullName FROM BaggageInfo bag
ORDER BY bag.fullName

Plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "order by fields at positions" : [1],
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",

Chapter 5
Query execution plan

5-53

 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "compindex_namephone",
 "covering index" : true,
 "index row variable" : "$$bag_idx",
 "index scans" : [
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$bag_idx",
 "SELECT expressions" : [
 {
 "field name" : "contactPhone",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "contactPhone",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag_idx"
 }
 }
 },
 {
 "field name" : "fullName",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "fullName",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag_idx"
 }
 }
 }
]
 }
}

Explanation:

• The root iterator of this query plan is a RECEIVE iterator with a single child (input
iterator) that is a SELECT iterator. The only property of the RECEIVE iterator in
this example is the distribution kind whose value is ALL_SHARDS.

• The results need to be sorted by fullName. The fullName is part of the
compindex_namephone index. So in this example, you don't need a separate SORT
operator. The sorting is done by the RECEIVE operator using its property order

Chapter 5
Query execution plan

5-54

by fields at positions, which is an array. The value of this array depends on the
position of the field which is sorted in the SELECT expression.

"order by fields at positions" : [1]

• In this example, the order by is done using the fullName which is the second field in the
SELECT expression. That is why you see 1 in the order by fields at position
property of the iterator.

• The index compindex_namephone is used here and in this example, it is a covering index
as the query can be evaluated using only the entries of the index.

• The index row variable is $$bag_idx which is the name of a variable ranging over the
index entries produced by the TABLE iterator. Every time a new index entry is produced
by the index scan, the $$bag_idx variable will be bound to that entry.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is the same as the
index row variable ($$bag_idx) as the index is covering.

• This index row variable ($$bag_idx) will be referenced by iterators implementing the
other clauses of the SELECT expression.

• In the SELECT expression two fields (contactPhone,fullName) are fetched. These
correspond to two field names and field expressions in the SELECT expression clause.
For both fields, the field expression is computed using FIELD_STEP iterator.

Query 6: Using a secondary index with an index predicate
Fetch the name, ticket number, and arrival date of passengers whose arrival date is greater
than a given value.

SELECT fullName, bag.ticketNo, bag.bagInfo[].bagArrivalDate
FROM BaggageInfo bag WHERE EXISTS
bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "distinct by fields at positions" : [1],
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "simpleindex_arrival",
 "covering index" : false,
 "index row variable" : "$$bag_idx",
 "index scans" : [

Chapter 5
Query execution plan

5-55

 {
 "equality conditions" : {},
 "range conditions" : {}
 }
],
 "index filtering predicate" :
 {
 "iterator kind" : "GREATER_OR_EQUAL",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo[].bagArrivalDate",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag_idx"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : "2019-01-01T00:00:00"
 }
 }
 },
 "FROM variable" : "$$bag",
 "SELECT expressions" : [
 {
 "field name" : "fullName",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "fullName",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "ticketNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "ticketNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "bagArrivalDate",

Chapter 5
Query execution plan

5-56

 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagArrivalDate",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 }
]
 }
}

Explanation:

• The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator.

• The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

• The EXISTS condition is actually converted to a filtering predicate. There is one filtering
predicate which is the whole WHERE expression. The index simpleindex_arrival is the
only one applicable here and is used.

• The index filtering predicate evaluates the filter criteria on the bagArrivalDate field.
Using the greater than and less than operators the filter condition is evaluated.

• The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable
($$bag)is the same as the row variable of the TABLE iterator, as the index used is not
covering.

• In the SELECT expression three fields (fullname,
ticketNo,bag.bagInfo[].bagArrivalDat) are fetched. These correspond to three field
names and field expressions in the SELECT expression clause. For the first two fields,
the field expression is computed using FIELD_STEP iterator. For the last field, an
ARRAY_CONSTRUCTOR iterator is used which iterates over the corresponding arrays to fetch
the field value.

Chapter 5
Query execution plan

5-57

Query 7: Group data with fields as part of the index
Fetch the reservation code and count of bags for all passengers.

SELECT bag.confNo, count(bag.bagInfo) AS TOTAL_BAGS
FROM BaggageInfo bag GROUP BY bag.confNo;

Plan:

{
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "order by fields at positions" : [0],
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "fixedschema_conf",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$bag",
 "GROUP BY" : "Grouping by the first expression in the SELECT
list",
 "SELECT expressions" : [
 {
 "field name" : "confNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "confNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "TOTAL_BAGS",
 "field expression" :

Chapter 5
Query execution plan

5-58

 {
 "iterator kind" : "FN_COUNT",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 },
 "FROM variable" : "$from-1",
 "GROUP BY" : "Grouping by the first expression in the SELECT list",
 "SELECT expressions" : [
 {
 "field name" : "confNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "confNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }
 }
 },
 {
 "field name" : "TOTAL_BAGS",
 "field expression" :
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "TOTAL_BAGS",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }
 }
 }
 }
]
}

Explanation:

Chapter 5
Query execution plan

5-59

• In this query, you group all bags based on the confNo of the users and determine
the total count of bags belonging to each confNo.

• The group-by is index-based, that is the group-by field (confNo) is also part of the
index used. This is indicated by the lack of any GROUP iterators. Instead, the
grouping is done by the SELECT iterators.

• There are two SELECT iterators, the inner one has a GROUP BY property that
specifies which of the SELECT-clause expressions are also grouping expressions.
Here the group by fields is the first expression in the SELECT list (bag.confNo).

"GROUP BY" : "Grouping by the first expression in the SELECT list"

• The index fixedschema_conf is used here and in this example, it is a non-covering
index as the query also needs to fetch count(bag.bagInfo)which is outside of the
entries of the index.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as
either the index row variable or the row variable of the TABLE iterator,
depending on whether the used index is covering or not. In this example, the inner
FROM variable is the same as the row variable ($$bag) as the index is not
covering.

• In the SELECT expression two fields are fetched:
bag.confNo,count(bag.bagInfo). These correspond to two field names and field
expressions in the SELECT expression clause.

• The results returned by the inner SELECT iterators from the various RNs are
partial groups, because rows with the same bag.confNo may exist at multiple RNs.
So, regrouping and re-aggregation have to be performed by the driver. This is
done by the outer SELECT iterator (above the RECEIVE iterator).

• The result is also sorted by confNo. The order by fields at positions property
specifies the field used for sorting. The value of this array depends on the position
of the field which is sorted in the SELECT expression. In this example bag.confNo
is the first field in the SELECT expression. So order by fields at positions
takes an array index of 0.

"order by fields at positions" : [0]

• In the outer SELECT expression, two fields are fetched:
bag.confNo,count(bag.bagInfo). The $from-1 FROM variable will be referenced
by iterators implementing the other clauses of the outer SELECT expression.
These correspond to two field names and field expressions in the outer SELECT
expression clause. For the first field, the field expression uses FIELD_STEP iterator.
The second field is the aggregate function count. The iterator FUNC_SUMis used to
iterate the result produced by its parent iterator and determine the total number of
bags.

Query 8: Using the secondary index with multiple index scans
Fetch the full name and tag number of passengers who are in the given list of names.

SELECT bagdet.fullName, bagdet.bagInfo[].tagNum
FROM BaggageInfo bagdet WHERE bagdet.fullName IN

Chapter 5
Query execution plan

5-60

("Lucinda Beckman", "Adam Phillips",
"Zina Christenson","Fallon Clements");

Plan:

{
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "order by fields at positions" : [0],
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "fixedschema_conf",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$bag",
 "GROUP BY" : "Grouping by the first expression in the SELECT list",
 "SELECT expressions" : [
 {
 "field name" : "confNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "confNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "TOTAL_BAGS",
 "field expression" :
 {
 "iterator kind" : "FN_COUNT",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",

Chapter 5
Query execution plan

5-61

 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 },
 "FROM variable" : "$from-1",
 "GROUP BY" : "Grouping by the first expression in the SELECT list",
 "SELECT expressions" : [
 {
 "field name" : "confNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "confNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }
 }
 },
 {
 "field name" : "TOTAL_BAGS",
 "field expression" :
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "TOTAL_BAGS",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }
 }
 }
 }
]
}

Explanation:

• The root iterator of this query plan is a RECEIVE iterator with a single child (input
iterator) that is a SELECT iterator.

• The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

• The index compindex_namephone is used and the index is not covering (as you
need to scan the table to fetch columns other than the index entries).

Chapter 5
Query execution plan

5-62

• Every value in the IN clause is evaluated using an index scan with an equality condition.
There are four index scans that are performed each evaluating one equality condition.

• The FROM variable is the name of a variable ranging over the records produced by the
FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM variable
($$bagdet) is the same as the row variable of the TABLE iterator, as the index used is
not covering.

• In the SELECT expression two fields (fullname, bag.bagInfo[].tagNum) are fetched.
These correspond to two field names and field expressions in the SELECT expression
clause. For the first field, the field expression is computed using FIELD_STEP iterator. For
the second field, an ARRAY_CONSTRUCTOR iterator is used which iterates over the
corresponding arrays to fetch the field value.

Query 9: A SINGLE PARTITION query using a primary index
Select the ticket details (ticket number, reservation code, tag number, and routing) for a
passenger with a specific ticket number and reservation code.

SELECT fullName,bag.ticketNo, bag.confNo, bag.bagInfo[].tagNum,
bag.bagInfo[].routing FROM BaggageInfo bag WHERE
bag.ticketNo=1762311547917 AND bag.confNo="FH7G1W"

Plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "SINGLE_PARTITION",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "BaggageInfo",
 "row variable" : "$$bag",
 "index used" : "primary index",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {"ticketNo":1762311547917},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$bag",
 "WHERE" :
 {
 "iterator kind" : "EQUAL",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "confNo",
 "input iterator" :

Chapter 5
Query execution plan

5-63

 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : "FH7G1W"
 }
 },
 "SELECT expressions" : [
 {
 "field name" : "fullName",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "fullName",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "ticketNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "ticketNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "confNo",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "confNo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 },
 {
 "field name" : "tagNum",
 "field expression" :
 {

Chapter 5
Query execution plan

5-64

 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "tagNum",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 },
 {
 "field name" : "routing",
 "field expression" :
 {
 "iterator kind" : "ARRAY_CONSTRUCTOR",
 "conditional" : true,
 "input iterators" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "routing",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_FILTER",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$bag"
 }
 }
 }
 }
]
 }
 }
]
 }
}

Chapter 5
Query execution plan

5-65

Explanation:

• The root iterator of this query plan is a RECEIVE iterator with a single child (input
iterator) that is a SELECT iterator.

• This query specifies a complete shard key in its WHERE clause. As a result, its full
result set is contained in a single partition, and the RECEIVE iterator will send its
subplan to a single RN that stores that partition.

• The value of the FROM field is an iterator; in this case, it is a TABLE iterator.

• A SINGLE_PARTITION query can reference a primary index or a secondary
index. The primary key index is used in this example. The index is not covering
(as you need to scan the table to fetch columns other than the index entries).

• The index scan property contains the start and stop conditions that define the
index scans to be performed.

• The FROM variable is the name of a variable ranging over the records produced
by the FROM iterator. Here the FROM iterator is a TABLE iterator, and the FROM
variable ($$bag) is the same as the row variable of the TABLE iterator, as the
index used is not covering.

• In the SELECT expression five fields (fullname, ticketNo,confNo,
bag.bagInfo[].tagNum,bag.bagInfo[].routing) are fetched. These correspond
to five field names and field expressions in the SELECT expression clause. For
the first three fields, the field expression is computed using FIELD_STEP iterator.
For the last 2 fields, an ARRAY_CONSTRUCTOR iterator is used which iterates over the
corresponding arrays to fetch the field value.

Query 10: Group data with fields not part of any index
Fetch the source of passenger bags and the count of bags for all passengers and
group the data by the source.

SELECT $flt_src as SOURCE, count(*) as COUNT FROM BaggageInfo $bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt_src GROUP BY $flt_src

Plan:

{
 "iterator kind" : "GROUP",
 "input variable" : "$gb-2",
 "input iterator" :
 {
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_PARTITIONS",
 "input iterator" :
 {
 "iterator kind" : "GROUP",
 "input variable" : "$gb-1",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",

Chapter 5
Query execution plan

5-66

 "target table" : "BaggageInfo",
 "row variable" : "$bag",
 "index used" : "primary index",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$bag",
 "FROM" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "fltRouteSrc",
 "input iterator" :
 {
 "iterator kind" : "ARRAY_SLICE",
 "low bound" : 0,
 "high bound" : 0,
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "flightLegs",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "bagInfo",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$bag"
 }
 }
 }
 }
 },
 "FROM variable" : "$flt_src",
 "SELECT expressions" : [
 {
 "field name" : "SOURCE",
 "field expression" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$flt_src"
 }
 },
 {
 "field name" : "COUNT",
 "field expression" :
 {
 "iterator kind" : "CONST",
 "value" : 1
 }

Chapter 5
Query execution plan

5-67

 }
]
 },
 "grouping expressions" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "SOURCE",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$gb-1"
 }
 }
],
 "aggregate functions" : [
 {
 "iterator kind" : "FUNC_COUNT_STAR"
 }
]
 }
 },
 "grouping expressions" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "SOURCE",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$gb-2"
 }
 }
],
 "aggregate functions" : [
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "COUNT",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$gb-2"
 }
 }
 }
]
}

Explanation:

• In this query, you group passenger bags based on the flight source and determine
the total number of bags belonging to one flight source.

Chapter 5
Query execution plan

5-68

• As the GROUP BY field (bagInfo.flightLegs[0].fltRouteSrc in this example) is not
part of any index, you need a separate GROUP operator to do the grouping. This is
indicated by the existence of the GROUP iterators in the execution plan. There are two
GROUP iterators: one that operates at the driver (above the RECEIVE iterator) and
another that operates at the RNs (below the RECEIVE iterator).

• The lower GROUP iterator has a SELECT iterator as input. The SELECT returns the
fltRouteSrc and count of bags. The GROUP iterator will operate until the batch limit is
reached. If the batch limit is defined as the max number N of results produced, the
GROUP iterator will stop when up to N flight source groups have been created. If the
batch limit is defined as the max number of bytes read, it will stop when this max is
reached. The GROUP operator has an input variable. For the inner GROUP operator, the
input variable is $gb-1 and for the outer GROUP operator it is $gb-2.

"iterator kind" : "GROUP","input variable" : "$gb-1",

• The primary key index is used here and in this example, it is not a covering index as the
query has fields that are not part of the entries of the primary index.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. Every time a next() call on the FROM iterator returns true,
the variable will be bound to the result produced by that iterator. In this example, the
FROM variable is the row variable as the index is not covering.

• This row variable ($bag) will be referenced by iterators implementing the other clauses of
the inner SELECT expression.

• The GROUP iterator creates an internal variable ($gb-1) that iterates over the records
produced by the SELECT expression.

• The result set produced by the lower GROUP iterator is partial: it may not contain all the
fltRouteSrc groups and for the fltRouteSrc groups that it does contain, the count may
be a partial sum (because all rows for a given fltRouteSrc may not have been retrieved
when query execution stops). The upper GROUP iterator receives the partial results from
each RN and performs the final grouping and aggregation. It operates the same way as
the lower GROUP iterators and will keep operating until the are no more partial results
from the RNs. At that point, the full and final result set is cached at the upper GROUP
iterator and is returned to the application.

• The upper GROUP iterator creates an internal variable ($gb-2) that iterates over the
records produced by the outer SELECT. The $gb-2 variable has the fltRouteSrc and
count of all bags grouped by fltRouteSrc.

• In the SELECT expression, two fields are fetched: fltRouteSrc,count(*). These
correspond to two field names and field expressions in the SELECT expression clause.
For the first field, the field expression uses FIELD_STEP iterator. The second field is the
aggregate function count. The iterator FUNC_SUM is used to iterate the result produced by
its parent iterator and determine the total number of bags.

Table Modelling and Design
A critical part of the application development process is the task of modeling your data.

Proper modeling of your data is crucial to application performance, extensibility, application
correctness, and finally, the ability for your application to support rich user experiences. In this

Chapter 5
Table Modelling and Design

5-69

article, you will learn some crucial aspects of data modeling and understand guidelines
on how to model your persistent data for an Oracle NoSQL Database application.

The Oracle NoSQL Database gives the data modeler a large range of flexibility with
respect to modeling application data. Understanding the tradeoffs associated with
each level of flexibility is extremely useful in making wise data modeling decisions.

• Schema Flexibility in Oracle NoSQL Database

• Choice of Keys in NoSQL Database

• Using Indexes in NoSQL Database

• Transactions in NoSQL database

Schema Flexibility in Oracle NoSQL Database
Unlike the relational database world with purely fixed schemas, NoSQL Database is
largely about schema flexibility – that is the ability to easily change how data is
organized and stored.

Schema flexibility in Oracle NoSQL Database mostly takes the form of non-scalar data
types. These non-scalar data types can be used to embed flexible structures inside
your tables.

Non-scalar data types:

Oracle NoSQL database supports the following non-scalar data types:

• JSON – JSON is a map of key/value pairs that can be used as a datatype of a
column in the Oracle NoSQL Database. The JSON datatype gives you the ability
to dynamically read and write attributes having no prior knowledge of what is and
what is not stored in the JSON document. You can introspect into the document by
reading from Oracle NoSQL Database as a JSON string, or you can specify path
expressions as deep as you like into a hierarchy of JSON. As an example, you can
create a JSON document that represents the variable terms and conditions of a
contract. The document attribute names (or keys) can represent the tag or name
of the contractual term or condition and the value of the attribute can represent the
text of that term. Using a JSON brings you ultimate flexibility in your data model.

• Records – Records containing scalar or non-scalar values can be used as a
datatype for a column in an Oracle NoSQL Database table. You can think of a
record as a document with a fixed set of attributes, however noting that one or
more attributes of the record can be a non-fixed array or JSON document, giving
you the flexibility to extend a fixed document without modifying the schema.
Records present an interesting intermediate step between the benefits of the fixed
schema world (single copy of a schema) and the ultimate flexibility of the JSON
world.

• Arrays – Arrays of scalar or non-scalar values can be used as a datatype for a
column in an Oracle NoSQL Database table. Arrays can be convenient for storing
a collection of event values. For example, you may wish to collect a list of
behavioral segments for users as they browse web pages.

Trade-offs while using Flexible Schema:

Some guidelines that you can follow while considering flexible schema are listed
below.

The Flexibility/Cost of scale Tradeoff :

Chapter 5
Table Modelling and Design

5-70

When thinking about how flexible you want your schema to be, it’s important to understand
that the more flexible you make your schema, the bigger the challenge is for scaling your
solution. For example, let’s say that you are storing information on user behavior. And you
want to store this information as the users access your website. You can implement one of
the two options here. You can choose to model the solution using fixed columns for the
required user attributes that you will need to track. Alternatively, you can choose to model this
using a JSON document, giving you the flexibility to add and remove attributes for users
without having to evolve your schema.

The second option may work quite well for small numbers of users; however, if you will need
to scale this solution to large numbers of users, then you need extra storage. You also need
additional compute overhead for processing the key/value pairs (attribute names and their
values) in the JSON document. This could make the cost of scaling your solution prohibitive.
Extra storage is needed to store the metadata along with the data (e.g. the attribute names)
and extra compute is needed to serialize and de-serialize these documents. If you are using
a replication factor of more than one, then that adds additional overhead for each tracked
user. If a large scale is a major requirement for you then you’ll most likely want to trade off
flexibility for storage efficiency and consider using a more fixed schema.

The Flexibility/Latency Tradeoff :

In many NoSQL applications, low latency data access is a key requirement. In these
situations, it’s important to understand the potential tradeoff with respect to the I/O latency of
using one data modeling method over another. In this respect, using a non-scalar data type
such as a record, array, or JSON document will entail a read followed by an update.

For example, when you add a new value to an array your application must read the record
from NoSQL Database first, add the value to the array, and then write it back to NoSQL
Database. Even if performing this operation using the SQL UPDATE operator of Oracle
NoSQL Database (which executes in the replication node), the record must still be read from
persistent storage, de-serialized, modified, serialized, and written back. On a system with a
spinning disk, this could cost anywhere from fifteen to thirty milliseconds (or more). For
certain applications like online advertising, this may be beyond the latency SLA that can be
tolerated. If you are faced with similar stringent latency SLAs then you should consider
favoring a child table approach which eliminates the read and will allow you to simply perform
a write of the new value. Of course, the tradeoff here is one of flexibility for low latency.

For more information on when to use parent-child tables, see Using Parent-Child tables in
Oracle NoSQL Database.

Updates to Non-Scalars versus Inserts :

The Oracle NoSQL Database storage engine is based on an append-only architecture, also
known as log-structured storage. Log structured storage systems perform extremely well for
insert operations where the new records to be inserted are simply appended to the end of the
log. Update operations involve appending the updated record to the log and then marking the
old record for deletion. Records marked for deletion are regularly cleaned from NoSQL
Database’s logs to free up disk space by a background process called the cleaner. Although
the cleaner is highly optimized, it will add some CPU and I/O overhead to the replication
node. The more updates performed by your application, the more log cleaning activity there
will be.

As a guideline, if you have extreme performance goals for your application (or for a specific
table), you should strongly consider trying to craft your data model by using parent/child
tables versus non-scalar columns, giving you the potential for replacing updates with inserts.
For more information on when to use parent-child tables, see Using Parent-Child tables in
Oracle NoSQL Database.

Chapter 5
Table Modelling and Design

5-71

Static Vs Dynamic Data :

In many applications, it’s possible to identify portions of the data that are somewhat
static and change relatively slowly, and other portions of the data which are highly
dynamic and change frequently, even at millisecond granularity. For example, in online
advertising, campaigns are a relatively slow-moving piece of data while the budget
spent (impressions or clicks delivered) can change every few milliseconds as millions
of users load web pages that have ads associated with the campaign. The data
pertaining to budgets is a case of highly dynamic data. This is an example of a
scenario that has a high velocity of write operations. Oracle NoSQL database is a log-
structured, append-only storage architecture, where inserts are more optimal than an
update operation.

For the more static portions of your data, the flexibility of the non-scalar datatypes may
be an attractive option for your application. Using a JSON document could provide an
extensible way for your application to interact with this data without undue sacrifice to
performance. On the flip side, for data that is changing rapidly or being inserted
rapidly, you’ll want to consider trading off flexibility for this data and use a parent table
with a fixed schema and a child table with a fixed schema. Whether or not you choose
to model the rapidly changing data as a parent or child table will depend largely on
how you wish to access it. For more information on when to use parent-child tables,
see Using Parent-Child tables in Oracle NoSQL Database.

Choice of Keys in NoSQL Database
Primary keys and shard keys are important elements in your schema and help you
access and distribute data efficiently.

Primary keys and shard keys are indispensable for data distribution and easy
accessibility. You specify primary keys and shard keys only when you create a table.
They remain in place for the life of the table, and cannot be changed or dropped.

Using Primary Keys and Shard Keys in Oracle NoSQL tables

Primary Keys

You must designate one or more primary key columns when you create your table.
The primary key cannot be changed and exists for the life of the table. A primary key
uniquely identifies every row in the table. For simple CRUD operations, Oracle NoSQL
Database uses the primary key to retrieve a specific row to read or modify. Since the
underlying storage in NoSQL Database is based on a key/value model, the choice of
the primary key can greatly enhance the performance of certain lookup operations.

Shard Keys

The main purpose of shard keys is to distribute data across the Oracle NoSQL
Database cluster for scalability and to co-locate the records that share the same shard
key on the same physical node for easy reference. These records can be accessed
atomically and efficiently.

Impact of keys while developing an application:

In an Oracle NoSQL Database, replication nodes are grouped together to form the
shards of the NoSQL Database cluster. When an application asks to retrieve the
record for a given key, the NoSQL Database driver will hash a portion of the key
(denoted as the shard key) to identify the shard that houses the data. Once the shard
is identified, the NoSQL Database driver can choose to read the data from the most
optimal replica in the shard, depending on the requested consistency level. With

Chapter 5
Table Modelling and Design

5-72

respect to the write operations, the NoSQL Database driver will always route the write
requests to the dynamically elected leader node of the shard. Hence, from the perspective of
workload scaling, you can generally think of this architecture as being scaled by adding
shards. Oracle NoSQL Database supports the online elastic expansion of the cluster by
adding shards, however, without the proper selection of a shard key, expanding the cluster
will be useless in scaling your solution.

How you design primary keys and shard keys has huge implications on scaling and realizing
the system throughput. For instance, when records share shard keys, you can delete multiple
table rows in an atomic operation, or retrieve a subset of rows in your table in a single atomic
operation. In addition to enabling scalability, well-designed shard keys can improve
performance by requiring fewer cycles to put data on, or get data from, a single shard. Shard
keys designate storage on the same shard to facilitate efficient queries for key values.
However, because you want your data to be distributed across the shards for best
performance and scalability, you will want to avoid shard keys that have a small number of
unique values.

Important factors to consider when choosing a shard key:

• Cardinality: Low cardinality field groups are stored together on a small number of
shards. In turn, those shards require frequent data rebalancing, increasing the likelihood
of hot shard issues. Instead, each shard key should have high cardinality, where it can
express several million values. For best performance and value, choose fields with high
cardinalities, such as identity numbers, where millions of records are possible.

• Atomicity:Only objects that share the same shard key can participate in a transaction. If
you have a requirement for ACID transactions that span multiple records, choose only a
shard key that lets you meet that requirement.

Best practices to follow:

• Uniform distribution of shard keys:Operations may be limited by the capacity of a
single shard. When shard keys are uniformly distributed, no single shard limits the
capacity of the system. Choosing one or more columns whose values are known to be
uniformly distributed is ideal.

• Query Isolation: Queries should be targeted to a specific shard to maximize scalability. If
queries are not isolated to a single shard, the query will be applied to all shards. This is
less efficient and increases query latency. Make sure your queries fetch data stored in a
single shard. Well-designed shard keys can improve performance by getting data from a
single shard. Shard keys designate storage on the same shard to facilitate efficient
queries for key values. Specify the fields (which are frequently used in your application
queries) as shard keys.

Key Sizes and Key Only Modeling Methods

Oracle NoSQL Database caches the keys for each table. So the key size is a critical
component to the effective use of memory and ultimately may be a determining factor in the
ability of Oracle NoSQL Database to service your performance SLAs. Hence, it is important
for you to create primary keys that are as efficient as possible with respect to size. For
workloads that require very low latencies for the read and writes (single to low double-digit
milliseconds) across millions of operations per second, exploiting cached keys in NoSQL’s B-
trees can be the make or break of building an application capable of achieving these stringent
requirements. Furthermore, if you can encode what would otherwise be non-key values as
part of the primary key and also size your keys and the NoSQL Database cluster carefully,
then you can realize the enormous benefits of memory cached B-tree access methods that
are maintained with ACID semantics. For highly optimal, ultra-low latency applications,
Oracle NoSQL provides key-only accessors for those workloads that can model everything as

Chapter 5
Table Modelling and Design

5-73

key-only data. Oracle NoSQL Database offers convenient key-only access APIs such
as multiKetGeys and tableKeysIterator for doing key-only scans.

When considering whether or not key-only modeling of your data is right for your
application, you should consider the following:

• Latency and throughput SLAs – Do you have very stringent latency and
throughput SLAs that would require a key-only model? Can you afford to perform
an I/O when retrieving a value, noting that for spinning disks, the average latency
of retrieving your value could be anywhere from fifteen to thirty milliseconds and
for Single Shared Disk (SSD) this could be anywhere from one to 5 milliseconds.

• Spinning disk versus SSDs – If you are considering using SSDs and your
latency SLAs are for reads that can comfortably fit within the 5-millisecond range
then it’s probably not worth the effort to try and craft a key-only model for your
application.

• Code maintainability and extensibility – Key-only modeling brings large
performance benefits to your application at the potential cost of code
maintainability and extensibility. You may find that encoding your value into the key
can ultimately be a complex and esoteric strategy. Ultimately, you will have to
make a judgment call on whether or not the code you develop and maintain is too
complex and esoteric to be worth the benefit of the key-only solution.

• Accurate sizing data – Is it possible for you to derive a somewhat accurate sizing
of your keys such that you can adequately size the Oracle NoSQL Database
cluster? Sizing the cluster and the cache of each replication node will be crucial to
exploiting the benefits of a key-only data model.

Key Column Ordering and Query-ability

In Oracle NoSQL Database, the order of declaration for key columns is crucial to
satisfying partial key lookup queries. This is because of the way that the storage
engine manages the underlying B-trees. You can think of composite keys as an
ordered concatenation of the columns specified in the DDL for the key declaration
(primary key or index key). You should think of the order from the most significant
column to the least significant column based on the appearance of the columns in the
DDL for the key. If your table has a composite primary key (a primary key with more
than one column), then the primary key becomes a concatenation of the string
representation of each column. Here for better performance of queries, it is important
to specify the most commonly used query column as the most significant column in the
primary key.

As you start to think about how you will size your cluster and your Oracle NoSQL
Database caches, a critical consideration is to get an estimate of your key sizes.
Sizing your caches so that Oracle NoSQL can keep most or all of the index nodes in
memory can help your application realize enormous performance benefits.
Understanding how keys are serialized and stored persistently can help you in getting
a more accurate sizing estimate. In Oracle NoSQL Database, numeric keys are stored
as compressed String values but must remain sortable when in string format. This
means that a numeric key must be a fixed size when represented as a key string. See
Initial Capacity Planning for more details on shard capacity, shard storage, and
throughput capacities and how to estimate total shards and machines.

Using Indexes in NoSQL Database
n Oracle NoSQL Database, the query processor can identify which of the available
indexes are beneficial for a query and rewrite the query to make use of such an index.

Chapter 5
Table Modelling and Design

5-74

Using an index means scanning a contiguous subrange of its entries, potentially applying
further filtering conditions on the entries within this subrange, and using the primary keys
stored in the index entries to extract and return the associated table rows. The subrange of
the index entries to scan is determined by the conditions appearing in the WHERE clause,
some of which may be converted to search conditions for the index. Given that only a
(hopefully small) subset of the index entries will satisfy the search conditions, the query can
be evaluated without accessing each individual table row, thus saving a potentially large
number of disk accesses.

In an Oracle NoSQL Database, a primary-key index is always created by default. This index
maps the primary key columns of a table to the physical location of the table rows.
Furthermore, if no other index is available, the primary index will be used. In other words,
there is no pure table scan mechanism; a table scan is equivalent to a scan via the primary-
key index. When it comes to indexes and queries, the query processor must answer two
questions:

1. Is an index applicable to a query? That is, will accessing the table via this index be more
efficient than doing a full table scan (via the primary index)?

2. Among the applicable indexes, which index or combination of indexes is the best to use?

There are no statistics on the number and distribution of values in a table column. As a result,
the query processor has to rely on some simple heuristics in choosing among the applicable
indexes. In addition, SQL for Oracle NoSQL Database allows for the inclusion of index hints
in the queries. You can use index hints to force the use of a particular index in queries. You
can use a query execution plan to understand what indexes are being used in the query. For
more information on how a query is executed, see Query execution plan.

Secondary Index

There will be cases where you will want to use a secondary index to support some of your
read requirements. Each secondary index that you add to a table will incur some overhead
for writes as each index will need to be maintained. The good news with Oracle NoSQL is
that secondary index partitions live on the same shard as the primary data, so the updates to
the secondary index are limited on a per-shard basis. Index updates in Oracle NoSQL are
also atomic, so your application can be guaranteed that updates to records in the shard are
consistent with updates to the secondary index and these structures will never be out of sync.
Another factor for consideration is that Oracle NoSQL Database nodes will keep the non-leaf
index nodes in the cache, and will never cache the leaf portion (i.e. the data record). This
gives the indexed scan an enormous performance benefit (for systems using spinning disk)
over the non-indexed scan.

There are several things that you should think about when deciding on using a secondary
index in Oracle NoSQL Database:

• Filtering data close to the source – In Oracle NoSQL Database, secondary indexes are
the primary mechanism for you to utilize when your query needs a filter and that filter
needs to be executed as close as possible to the data. To fully understand why you may
need a secondary index to filter your data for querying, let’s consider your options for
scanning the data in a table:

– Unordered parallel table scan with no full shard key – The shard key is a table
column or multiple columns used to control how the rows of that table are distributed.
The main purpose of shard keys is to distribute data across the Oracle NoSQL
Database Cloud cluster for scalability, and to position records that share the same
shard key locally for easy reference and access. When you write a query using filters
as columns that are part of the shard key but also include other columns, then you
end up doing a parallel table scan. Each shard is scanned in parallel and the data is

Chapter 5
Table Modelling and Design

5-75

returned to your application. This will return every record in the table across all
shards in the NoSQL Database.

– Ordered or unordered parallel index scan – The B-tree index at each shard is
scanned in parallel. If an ordered scan is requested, the results are merged
and presented.

• Each option for scanning a table has its own costs and benefits and you should
carefully weigh these tradeoffs and use what you know about the application
requirements and expected workload to help guide your modeling decision.

– Efficient range scans – Will it be common for your queries to restrict the value
ranges? For example, if your application needs to answer queries like “find all
records between a range of dates” then using secondary indexes in Oracle
NoSQL Database will be the easiest and most efficient way for your
application to answer these types of queries.

– Workload and index maintenance update – Is it acceptable for writes to incur
some extra overhead for index maintenance? Does your workload exhibit
heavy read activity where latency for reads is more important than incurring
extra write overhead?

See Tuning and Optimizing SQL queries for more guidelines on using indexes in
queries.

Transactions in NoSQL database
In Oracle NoSQL Database, a transaction is treated as a logical, atomic unit of work
that entails a single database operation.

Every data modification in the database takes place in a single transaction, managed
by the system. Database developers do not have the ability to group multiple
operations into a single transaction because there isn't the notion of begin/end
transactions. In a database, transactional semantics are often described in terms of
ACID properties.

ACID properties

In Oracle NoSQL Database, transactions maintain all the following properties and
developers can control some of them.

• Atomicity: Transaction either completes or fails in its entirety. There is no in-
between state or no partial transactions.

• Consistency: Transaction leaves the database in a valid state.

• Isolation: No two transactions mingle or interfere with each other. Developers get
the same result when the two transactions are executed in sequence or executed
in parallel.

• Durability: Changes in a transaction are saved and the changes survive any type
of failure (network, disk, CPU, or a power failure).

Developers can define a wide range of consistency levels depending on the
application's needs with the Oracle NoSQL Database Direct Driver. In addition, the
Oracle NoSQL Database Drivers (commonly called the SDKs) support eventual and
absolute consistency.

Chapter 5
Table Modelling and Design

5-76

Developers can also configure durability such that updated rows in the database survive any
failure with the Oracle NoSQL Database Direct Driver. Durability is not configurable in the
SDKs.

Atomicity and Isolation are not configurable but Oracle NoSQL Database allows you to
control consistency and durability policies in order to trade-off the performance for application
needs. Some NoSQL databases only support eventual consistency but have no mechanism
for absolute consistency.

Shard keys play an important role in achieving the ACID properties in the Oracle NoSQL
database. For instance, when records share shard keys, you can delete multiple table rows in
an atomic operation, or retrieve a subset of rows in your table in a single atomic operation. In
addition to enabling scalability, well-designed shard keys can improve performance by
requiring fewer cycles to put data on, or get data from, a single shard.

The NoSQL table hierarchy is an ideal data model for applications that need some data
normalization, but also require predictable, low latency at scale. The hierarchy links different
tables to enable left outer joins, combining rows from two or more tables based on related
columns between them. Such joins execute efficiently since rows from the parent-child tables
are co-located in the same shards. Also, writes to multiple tables in a table hierarchy obey
transactional ACID properties since the records residing in each table of the hierarchy share
the same shard key. All write operations perform as a single atomic unit. So all of the write
operations will execute successfully, or none of them will.

Using Parent-Child tables in the Oracle NoSQL database

The Oracle NoSQL Database enables tables to exist in a parent-child relationship. This is
known as table hierarchies.

Many NoSQL databases support data types like arrays and maps. When modeling a data
relationship, application developers may find it easier to have each parent row store its child
rows inside an array or a map in a nested structure. By doing so, not only is the data
relationship denormalized but it has the potential for creating large parent rows, especially
when the hierarchy is heavily nested, resulting in inefficient storage and poor performance.
Oracle NoSQL Database’s table hierarchy is the ideal data model to avoid issues associated
with arrays and maps. One of the biggest benefits of using child tables over embedded arrays
is for those workloads that have a high velocity of write operations. When using embedded
arrays, the write operations become updates, but when they are modeled as child tables,
those operations become inserts. Inserts in a log-structured, append-only storage
architecture are much more optimal than updates. Utilizing a table hierarchy should be
considered when building data relationships in Oracle NoSQL Database.

The NoSQL table hierarchy is an ideal data model for applications that need some data
normalization, but also require predictable, low latency at scale. The hierarchy links different
tables to enable left outer joins, combining rows from two or more tables based on related
columns between them. Such joins execute efficiently since rows from the parent-child tables
are co-located in the same shards. Also, writes to multiple tables in a table hierarchy obey
transactional ACID properties since the records residing in each table of the hierarchy share
the same shard key. All write operations perform as a single atomic unit. So all of the write
operations will execute successfully, or none of them will.

The Benefits of a Table Hierarchy

Oracle NoSQL Database table hierarchy comes with the following benefits:

• Highly efficient for storing data in a parent-child hierarchy - Parent and child rows
are stored in separate NoSQL tables, reducing the size of parent rows compared with the
single parent with child rows in nested arrays or maps. Write operations on parent or

Chapter 5
Table Modelling and Design

5-77

child tables create new versions of smaller rows and store these changes
efficiently, given the append-only architecture of Oracle NoSQL Database.

• Highly performant for read and write workloads - Parent and child rows reside
in the same local shard, enabling write and read operations to achieve high
performance since all records in the hierarchy can be read or written in a single
network call.

• Highly flexible for fine-grained authorization - Access rights to a parent or child
table can be configured individually based on conditions at run-time, offering
granular and flexible authorization.

• Scalable ACID transactions - Uniquely balance the goals of scalability, low
latency, and ACID by co-locating parent and child data on the same shard.

• Table joins - Data can be queried using the nested table clause or left outer joins.

Characteristics of parent-child tables:

• A child table inherits the primary key columns of its parent table.

• All tables in the hierarchy have the same shard key columns, which are specified
in the create table statement of the root table.

• A parent table cannot be dropped before its children are dropped.

• A referential integrity constraint is not enforced in a parent-child table.

A NoSQL table hierarchy not only captures the relationship between data entities but
also takes advantage of the co-location of the parent-child rows to offer highly
performant retrievals and superior scalability. The table hierarchy enables applications
to implement ACID transactions. All data in the same parent-child rows are stored in
the same shard and can be committed as a single database operation to ensure
atomicity, consistency, isolation, durability.

Chapter 5
Table Modelling and Design

5-78

Glossary

Glossary-1

Index

Index-1

	Contents
	List of Tables
	1 Get Started
	Getting started with SQL for Oracle NoSQL Database
	Schemas used in the examples
	Starting the SQL shell
	Tables used in the examples
	Describe tables
	Sample data to run queries
	Table Hierarchies

	2 Create
	Create Database objects
	Creating a namespace
	Creating a table
	Creating a region

	Create and Manage Indexes
	Classification of Indexes
	Creating Indexes
	View Index
	Drop Index

	3 Manage
	Namespace Management
	Namespace Resolution
	Manage Namespaces
	Namespace scoped privileges
	Granting Authorization Access to Namespaces

	Inserting, Modifying, and Deleting Data
	Insert data
	Upsert Data
	Update Data
	Modify JSON data
	Delete Data

	Managing Tables & Regions
	Alter Table
	Drop Table
	Manage regions

	4 Develop
	Simple SELECT queries
	Fetch column data
	Substituting column names in a query
	Filtering results in a query

	Using Path expressions
	Using Internal variables and aliases
	Working with Arrays
	Working with nested data type
	Finding the size of a complex data type

	Using Left Outer joins with parent-child tables
	Overview of Left Outer Joins
	Examples using Left Outer Joins

	Using NESTED TABLES to join parent-child tables
	Overview of NESTED TABLES
	Examples using NESTED TABLES

	Tuning and Optimizing SQL queries
	Using Indexes for query optimization
	Examples of queries using index

	Managing GeoJSON data
	geo_inside
	geo_intersect
	geo_distance
	geo_within_distance
	geo_near
	geo_is_geometry

	5 Reference
	Operators in SQL
	Sequence Comparison Operators
	Logical operators
	NULL operators
	Value Comparison Operators
	IN Operator
	Regular Expression Conditions
	EXISTS Operator
	Is-Of-Type Operator

	Sorting, Grouping & Limiting results
	Ordering results
	Limit and offset results
	Grouping results

	Primary Expressions in SQL
	Parenthesized Expressions
	Case Expressions
	Cast Expression
	Sequence Transform Expressions

	Timestamp functions
	Extract Expressions
	timestamp_add() function
	timestamp_diff() and get_duration() functions

	Functions on Strings
	substring function
	concat function
	upper and lower functions
	trim function
	length function
	contains function
	starts_with and ends_with functions
	index_of function
	replace function
	reverse function

	Query execution plan
	Overview of query plan
	Query 1: Using primary key index with an index range scan
	Query 2: Using primary key index with an index predicate
	Query 3: Using a secondary index with an index range scan
	Query 4: Using the primary index
	Query 5: Sort the data using a Covering index
	Query 6: Using a secondary index with an index predicate
	Query 7: Group data with fields as part of the index
	Query 8: Using the secondary index with multiple index scans
	Query 9: A SINGLE PARTITION query using a primary index
	Query 10: Group data with fields not part of any index

	Table Modelling and Design
	Schema Flexibility in Oracle NoSQL Database
	Choice of Keys in NoSQL Database
	Using Indexes in NoSQL Database
	Transactions in NoSQL database

	Glossary
	Index

