
Oracle® NoSQL Database
SQL Reference Guide

Release 23.3
F14605-24
February 2024

Oracle NoSQL Database SQL Reference Guide, Release 23.3

F14605-24

Copyright © 2011, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

1 Introduction to SQL for Oracle NoSQL Database

SQL Program 1-1

EBNF Syntax 1-2

Comments 1-3

Identifiers 1-3

Literals 1-4

Operator Precedence 1-5

Reserved Words 1-5

Case Sensitivity 1-5

Constraints 1-5

2 Oracle NoSQL Database Data Model

Atomic Data Types 2-1

Complex Data Types 2-3

JSON Data Type 2-5

Wildcard Data Types 2-7

Data Type Hierarchy 2-8

Data Type Definitions 2-10

3 Namespace Management

CREATE NAMESPACE Statement 3-1

SHOW NAMESPACES Statement 3-2

DROP NAMESPACE Statement 3-3

Namespace Resolution 3-3

Namespace Scoped Privileges 3-4

Granting Authorization Access to Namespaces 3-4

4 Region Management

CREATE REGION Statement 4-1

SHOW REGIONS Statement 4-1

iii

DROP REGION Statement 4-2

5 Table Management

CREATE TABLE Statement 5-1

SHOW TABLES Statement 5-11

DESCRIBE TABLE Statement 5-12

Table Hierarchies 5-16

Using JSON Collection Tables 5-19

Using the IDENTITY Column 5-23

Creating Tables With an IDENTITY Column 5-25

Using the UUID data type 5-28

Using the MR_COUNTER datatype 5-30

Using CRDT datatype in a multi-region table 5-30

Create table using MR_COUNTER datatype 5-32

Sequence Generator 5-34

DROP TABLE Statement 5-41

ALTER TABLE Statement 5-41

Altering an IDENTITY Column 5-45

Add or Remove a UUID column 5-47

Add or Remove an IDENTITY column 5-48

Add or Remove an MR_COUNTER column 5-49

6 SQL Query Management

Expressions 6-1

Sequences 6-3

Sequence Types 6-5

Variable Declaration 6-7

SELECT Expression 6-8

FROM Clause 6-9

WHERE Clause 6-12

GROUP BY Clause 6-14

Using Aggregate Functions 6-18

Sequence Aggregate Functions 6-28

ORDER BY Clause 6-32

SELECT Clause 6-37

LIMIT Clause 6-40

OFFSET Clause 6-40

Path Expressions 6-41

Field Step Expressions 6-41

iv

Map-Filter Step Expressions 6-43

Array-Filter Step Expressions 6-45

Array-Slice Step Expressions 6-46

Comparison Expressions 6-48

Logical Operators: AND, OR, and NOT 6-48

IS NULL and IS NOT NULL Operators 6-49

Value Comparison Operators 6-51

Sequence Comparison Operators 6-54

BETWEEN Operator 6-56

IN Operator 6-59

Regular Expression Conditions 6-60

Exists Operator 6-72

Is-Of-Type Operator 6-73

Concatenation Operator 6-73

Arithmetic Expressions 6-74

Primary Expressions 6-75

Parenthesized Expressions 6-76

Constant Expressions 6-76

Column References 6-77

Variable References 6-77

Array and Map Constructors 6-77

Case Expressions 6-78

Cast Expression 6-80

Extract Expressions 6-82

Function Calls 6-83

Sequence Transform Expressions 6-83

Unnest Arrays & Maps 6-87

Example: Using unnesting with a GROUP BY clause 6-96

Joins 6-98

Using NESTED TABLES clause to query multiple tables in the same hierarchy 6-99

Example: Using NESTED TABLES clause to query multiple tables in the same
hierarchy 6-102

Left Outer Join (LOJ) 6-104

Different scenarios of using an LOJ 6-104

Limitations of LOJ 6-107

Nested tables Vs LOJ 6-109

Example: Using Left Outer Joins 6-109

7 Data Row Management

INSERT Statement 7-1

Inserting Rows into JSON Collection Tables 7-5

v

Inserting Rows with an IDENTITY Column 7-8

Inserting rows into a table with a UUID column 7-10

Inserting rows with an MR_COUNTER column 7-12

Upsert statement 7-14

Updating rows of a table with a UUID column 7-18

DELETE Statement 7-19

UPDATE Statement 7-20

Update Clauses 7-21

SET Clause 7-21

ADD Clause 7-22

PUT Clause 7-23

REMOVE Clause 7-23

SET TTL Clause 7-24

Updating rows with an IDENTITY Column 7-24

Updating rows with an MR_COUNTER column 7-24

Example: Updating Rows 7-27

Example: Updating JSON Data 7-30

Example: Updating JSON collection tables 7-34

Example: Updating TTL 7-35

Example: Updating IDENTITY defined as GENERATED ALWAYS 7-35

Example: Updating IDENTITY defined as GENERATED BY DEFAULT 7-36

JSON Collection Table Example 7-37

8 Indexes

About Indexes 8-1

CREATE INDEX Statement 8-1

Classification of Indexes 8-3

Single Field Index 8-4

Composite Index 8-4

Fixed Schema Index 8-5

JSON Index 8-5

Simple Index 8-6

Multikey Index 8-7

Nested Multikey Index 8-7

Composite Multikey Index 8-8

Specifications & Restrictions on Multikey Indexes 8-10

Index on JSON Collection Tables 8-11

Indexes on Functions 8-12

Examples of creating indexes on functions 8-13

SHOW INDEXES Statement 8-16

vi

DESCRIBE INDEX Statement 8-17

DROP INDEX Statement 8-19

Appendix 8-19

9 Query Optimization

Using Indexes for Query Optimization 9-1

Finding Applicable Indexes 9-2

Examples: Using Indexes for Query Optimization 9-3

Optimizing unnesting queries with the UNNEST clause 9-8

Choosing the Best Applicable Index 9-11

Appendix 9-12

10

Query Plan

Overview of a query plan 10-1

Examples of query execution plan 10-3

Example 1 : Using a covering index in a query plan with only index scans 10-4

Example 2 : Using a covering index in a query plan with index scans and index
predicates 10-6

Example 3: Using a non-covering index in a query plan with index scans 10-9

Example 4: Sort the data using a Covering index 10-13

Example 5: Sort the data using a field not part of the index 10-16

Example 6: Group the data using a Covering index 10-19

Example 7: Group data with fields not part of the index 10-23

11

GeoJson Data Management

About GeoJson Data 11-1

Lines and Coordinate System 11-4

Restrictions on GeoJson Data 11-6

Searching for GeoJson Data 11-6

Indexing GeoJson Data 11-12

12

Built-in Functions

Functions on Complex Values 12-2

Functions on Sequences 12-3

Functions on Timestamps 12-6

Create and populate Baggage schema 12-6

timestamp_add function 12-7

timestamp_diff and get_duration functions 12-9

vii

Miscellaneous Timestamp functions 12-12

Function to generate a UUID string 12-17

Functions on Rows 12-19

Functions on GeoJson Data 12-26

Functions on Strings 12-27

substring Function 12-27

concat Function 12-30

upper Function 12-31

lower Function 12-31

trim Function 12-32

ltrim Function 12-34

rtrim Function 12-35

length Function 12-36

contains Function 12-37

starts_with Function 12-38

ends_with Function 12-39

index_of Function 12-40

replace Function 12-41

reverse Function 12-43

Function to Convert String to JSON 12-44

viii

1
Introduction to SQL for Oracle NoSQL
Database

Structured Query Language (SQL) is the set of statements with which all programs and users
access data in the Oracle NoSQL Database. This book provides information on SQL as used
by Oracle NoSQL Database. Application programs and Oracle tools often allow users access
to the Oracle NoSQL Database without using SQL directly.

This chapter contains the following topics:

• SQL Program

• EBNF Syntax

• Comments

• Identifiers

• Literals

• Operator Precedence

• Reserved Words

• Case Sensitivity

• Constraints

Note:

No prior knowledge of SQL is required for reading this document.

SQL Program
The data model of Oracle NoSQL Database supports (a) flat relational data, (b) hierarchical
typed (schema-full) data, and (c) schema-less JSON data. SQL for Oracle NoSQL Database
is designed to handle all such data in a seamless fashion, without any impedance mismatch
among the different sub models.

In the current version, an SQL program consists of a single statement, which can be a non-
updating query (read-only DML statement), an updating query (updating DML statement), a
data definition command (DDL statement), a user management and security statement, or an
informational statement. This is illustrated in the following syntax, which lists all the
statements supported by the current SQL version.

program::=
(
 query |
 insert_statement |
 Upsert statement |

1-1

 delete_statement |
 update_statement |
 create_namespace_statement |
 show_namespaces_statement |
 drop_namespace_statement |
 create_region_statement |
 show_regions_statement |
 drop_region_statement |
 create_table_statement |
 show_tables_statement |
 describe_table_statement |
 alter_table_statement |
 drop_table_statement |
 create_index_statement |
 show_indexes_statement |
 describe_index_statement |
 drop_index_statement |
 create_text_index_statement |
 create_user_statement |
 create_role_statement |
 drop_role_statement |
 drop_user_statement |
 alter_user_statement |
 grant_statement |
 revoke_statement |
) EOF

This document is concerned with the first 19 statements in the above list, that is, with
read-only queries, insert/delete/update statements, namespace statements, and DDL
statements, excluding text indexes. The document describes the syntax and semantics
for each statement, and supplies examples. The programmatic APIs available to
compile and execute SQL statements and process their results are described in the
Java Direct Driver Developer's Guide.

EBNF Syntax
This specification uses EBNF meta-syntax to specify the grammar of SQL for Oracle
NoSQL Database. The following EBNF notations apply:

• Upper-case words are used to represent keywords, punctuation characters,
operator symbols, and other syntactical entities that are recognized by EBNF as
terminals (aka tokens) in the query text. For example, SELECT stands for the
"select" keyword in the query text. Notice that keywords are case-insensitive;
"select" and "sELEct" are both the same keyword, represented by the SELECT
terminal.

• Lower-case words are used for non-terminals. For example, array_step :
[expression] means that array_step is an expression enclosed in square
brackets.

• " " Anything enclosed in quotes is also considered a terminal. For example, the
following production rule defines the value-comparison operators as one of the =,
>= symbols: For example, val_comp : "=" | ">=" .

Chapter 1
EBNF Syntax

1-2

• * means 0 or more of whatever precedes it. For example, field_name* means 0 or more
field names.

• + means 1 or more of whatever precedes it. For example, field_name+ means 1 or more
field names.

• [] means optional, i.e., zero or 1 of whatever contained in it. For example, [field_name]
means zero or one field names.

• | means this or that. For example, INT | STRING means an integer, or a string.

• () Parentheses are used to group EBNF sub-expressions together. For example, (INT |
STRING) [comment] means an integer, or a string, followed by a comment, or just an
integer, or a string, followed by nothing.

Comments
The language supports comments in both DML and DDL statements. Such comments have
the same semantics as comments in a regular programming language, that is, they are not
stored anywhere, and have no effect to the execution of the statements. The following
comment constructs are recognized:

/* comment */
Potentially multi line comment.

Note:

However, if a '+' character appears immediately after the opening "/*", and the
comment is next to a SELECT keyword, the comment is actually not a comment
but a hint for the query processor. See Choosing the Best Applicable Index.

// comment
Single line comment.

comment
Single line comment.

As we will see, DDL statements may also contain comment clauses, which are stored
persistently as properties of the created data entities. Comment clauses start with the
COMMENT keyword, followed by a string literal, which is the content of the comment.

Syntax

comment ::= COMMENT string

Identifiers
An identifier is a sequence of characters conforming to the following rules:

• It starts with a latin alphabet character (characters 'a' to 'z' and 'A' to 'Z').

• The characters after the first one may be any combination of latin alphabet characters,
decimal digits ('0' to '9'), or the underscore character ('_').

Chapter 1
Comments

1-3

• It is not one of the reserved words. The only reserved words are the literals TRUE,
FALSE, and NULL.

ID is the terminal that represents the identifiers. However, in the grammar rules
presented in this document we will use the non-terminal symbol id to denote
identifiers.

Syntax

ID ::= ALPHABET (ALPHABET | DIGIT | '_')*
ALPHABET ::= 'a'..'z'|'A'..'Z'
DIGIT ::= '0'..'9'

id ::=
ID |
ADD | ALTER | ANCESTORS | AND |
ANY | ANYATOMIC | ANYJSONATOMIC | ANYRECORD |
ARRAY | AS | ASC |
BINARY | BOOLEAN | BY |
CASCADE | CASE | CAST | COMMENT | COUNT | CREATE |
DAYS | DECLARE | DEFAULT | DESC | DESCENDANTS | DISTINCT | DOUBLE | DROP
|
ELSE | END | ENUM | EXISTS | EXTRACT | FIRST | FLOAT | FROM |
GEOMETRY | GROUP | HOURS | IF | IN | INDEX | INTEGER | IS |
JSON | KEY | KEYS |
LAST | LIMIT | LONG | MAP |
NAMESPACE | NESTED | NO | NOT | NULLS |
OF | OFFSET | ON | OR | ORDER |
POINT | PRIMARY | RECORD |
SELECT | SHARD | STRING |
TABLE | TABLES | THEN | TTL | TYPE |
USING | VALUES |
WHEN | WHERE | WITH

Literals
A literal (a.k.a constant value) is a fixed value appearing in the query text. There are
four kinds of literals: numbers, strings, boolean values, and the JSON NULL value.
The following production rules are used to recognize literals in the query text. The
Constant Expressions section describes how the tokens listed below are translated
into instances of the data model.

Syntax

INT_CONSTANT ::= DIGIT+
FLOAT_CONSTANT ::=
 (DIGIT* '.' DIGIT+ [(E|e) [+|-] DIGIT+]) |
 (DIGIT+ (E|e) [+|-] DIGIT+)
NUMBER_CONSTANT ::= (FLOAT_CONSTANT | INT_CONSTANT) (N|n)
STRING_CONSTANT ::= '\'' [(ESC|.)*] '\''
DSTRING_CONSTANT ::= '"' [(ESC|.)*] '"'
ESC ::= '\\' ([\'\\/bfnrt]|UNICODE)
DSTR_ESC ::= '\\' ([\"\\/bfnrt]|UNICODE)
UNICODE ::= 'u'HEX HEX HEX HEX

Chapter 1
Literals

1-4

TRUE ::= (T|t)(R|r)(U|u)(E|e)
FALSE ::= (F|f)(A|a)(L|l)(S|s)(E|e)
NULL ::= (N|n)(U|u)(L|l)(L|l)

Note:

The literals TRUE, FALSE, and NULL are reserved words.

Operator Precedence
The relative precedence among the various operators and expressions in SQL for Oracle
NoSQL Database is defined implicitly by the order in which the grammar rules for these
operators and expressions are listed in the grammar specification. Specifically, the earlier a
grammar rule appears, the lower its precedence. For example, consider the following 3 rules
that define the syntax for the OR, AND, and NOT operators. Because or_expr appears before
and_expr and not expr, OR has lower precedence than AND and NOT. And AND has lower
precedence than NOT, because and_expr appears before not_expr. As a result, an
expression like a = 10 and not b > 5 or c < 20 and c > 1 is equivalent to (a = 10 and (not b >
5)) or (c < 20 and c > 1). See Logical Operators: AND, OR, and NOT for more details.

or_expression ::= and_expression | (or_expression OR and_expression)
and_expression ::= not_expression | (and_expression AND not_expression)
not_expression ::= [NOT] is_null_expression

Reserved Words
Reserved words are words that look like identifiers, but cannot be used as identifiers (i.e., in
places where identifiers are expected). SQL for Oracle NoSQL Database has a short list of
reserved words. Currently, this list consists of the following (case-insensitive) words: TRUE,
FALSE, and NULL.

Case Sensitivity
In Oracle NoSQL Database, the following fields are not case-sensitive while using in SQL
commands.

• table name

• namespace name

• field name

• secondary-index name

• text-index name

• region-name

Constraints
There is a limitation on the length of the name of the table or index that you want to create.

Chapter 1
Operator Precedence

1-5

Table 1-1 Constraints on the length and content

Description Constraints on the length Constraints on the content

table name 256 Must contain only
alphanumeric characters or "_"
and must start with an
alphabetic character

namespace name 128 Must contain only
alphanumeric characters or "_"
and must start with an
alphabetic character

field name 64 No constraints

secondary-index name 64 Must contain only
alphanumeric characters or "_"
and must start with an
alphabetic character

text-index name 64 Must contain only
alphanumeric characters or "_"
and must start with an
alphabetic character

region-name 128 Must contain only
alphanumeric characters or "_"
and must start with an
alphabetic character

Chapter 1
Constraints

1-6

2
Oracle NoSQL Database Data Model

In Oracle NoSQL Database, data is modeled as typed items. A typed item (or simply item) is
a pair consisting of a data type and a value. A type is a set of possible values that may be
stored in a database field (e.g. a table column) or be returned by some computation (e.g.
during the evaluation of a query). In any item, the item value must be an instance of the item
type. The values in this set are called the instances of the type. An item is said to be an
instance of a type T if its value is an instance of T.

The Oracle NoSQL Database data model consists of various data types that allow for the
storage and manipulation of hierarchical data. The Oracle NoSQL Database data types can
be broadly classified into atomic types, complex types, JSON types, and wildcard types.
Instances of atomic data types are single, indivisible units of data. Instances of complex data
types contain multiple items and provide access to their nested items. JSON types contain
the JSON objects in the name/value format. Wildcard types are similar to abstract supertypes
in object-oriented programming languages. They combine instances of other data types and
they are used to support data that do not have a fixed structure. This chapter describes each
of these data types in detail.

Note:

Data types describe the kind of data that can be stored in an Oracle NoSQL
Database, as well as the kind of data generated during the evaluation of a query.

This chapter contains the following topics:

• Atomic Data Types

• Complex Data Types

• JSON Data Type

• Wildcard Data Types

• Data Type Hierarchy

• Data Type Definitions

Atomic Data Types
An instance of an atomic data type is a single, indivisible unit of data. The following table lists
the atomic types currently available. For each type, a description of its instances is given.

Table 2-1 Atomic Data Types

Data Type Description Example

INTEGER An integer between -2^31 to 2^31-1. 2147483647

LONG An integer between -2^63 to 2^63-1. 9223372036854775807

2-1

Table 2-1 (Cont.) Atomic Data Types

Data Type Description Example

FLOAT A single precision IEEE 754 floating point number. 100.12345

DOUBLE A double precision IEEE 754 floating point
number.

100.12345678901234

NUMBER An arbitrary-precision signed decimal number
(equivalent to the Java BigDecimal type).

100.123456789

STRING A sequence of zero or more unicode characters. "Oracle"

BOOLEAN Has only two possible values. TRUE and FALSE. TRUE

BINARY An uninterpreted sequence of zero or more bytes. Type: BINARY

Type Instance: "0x34
0xF5"

FIXED BINARY (S) An uninterpreted sequence of S bytes. Type: BINARY(3)

Type Instance: "0x34
0xF5 0xAB"

ENUM (T1, T2, …, Tn) One of the symbolic tokens (T1, T2, …, Tn)
explicitly listed in the ENUM type. The order in
which the tokens are listed is important. For
example, ENUM(a, b) and ENUM(b, a) are two
distinct types.

Type: ENUM(Chennai,
Bangalore, Boston)

Type Instance: Boston

TIMESTAMP (P) A value representing a point in time as a date
(year, month, day), time (hour, minute, second),
and number of fractions of a second.

The scale at which fractional seconds are counted
is called precision P of a timestamp. The minimum
precision is 0 and maximum is 9. For example, a
precision of 0 means that no fractional seconds
are stored, 3 means that the timestamp stores
milliseconds, and 9 means a precision of
nanoseconds.

There is no timezone information stored in
timestamp; they are all assumed to be in the UTC
timezone.

Type: timestamp(3)

Type Instance :
'2020-01-20T12:15:054'

In addition to the kind of atomic values described above, the Oracle NoSQL Database
data model includes the following 2 atomic values:

Table 2-2 Atomic Values

Data Type Description

JSON NULL This is considered to be an instance of the JSON data type. For more
information about JSON, see Wildcard Data Types.

SQL NULL This is a special value that is used to indicate the fact that a value is
unknown or inapplicable. NULL is assumed to be an instance of every
data type.

Chapter 2
Atomic Data Types

2-2

Note:

Although an instance of a numeric type may be semantically equivalent to an
instance of another numeric type, the 2 instances are distinct. For example, there is
a single number 3 in the universe, but there are 5 different instances of 3 in the data
model, one for each of the numeric types.

Complex Data Types
An instance of a complex data type contains multiple values and provides access to its
nested values. Currently, Oracle NoSQL Database supports the following kinds of complex
values:

Table 2-3 Complex Data Types

Data Type Description Example

ARRAY (T) In general, an array is an ordered collection of
zero or more items. The items of an array are
called elements. Arrays cannot contain any NULL
values.
An instance of ARRAY (T) is an array whose
elements are all instances of type T. T is called
element type of the array.

Type: ARRAY
(INTEGER)

Type Instance:
[600004,560076,01803]

MAP (T) In general, a map is an unordered collection of
zero or more key-item pairs, where all keys are
strings. The keys in a map must be unique. The
key-item pairs are called fields. The keys are
called fields names, and the associated items are
called field values. Maps cannot contain any NULL
field value.
An instance of MAP (T) is a map whose field
values are all instance of type T. T is called the
value type of the map.

Type: MAP(INTEGER)

Type Instance:
{ "Chennai":600004,
"Bangalore":560076,
"Boston":01803 }

RECORD (k1 T1 n1, k2
T2 n2, ….…, kn Tn nn)

In general, a record is an ordered collection of one
or more key-item pairs, where all keys are strings.
The keys in a record must be unique. The key-item
pairs are called fields. The keys are called fields
names, and the associated items are called field
values. Records may contain NULL as field value.
An instance of RECORD (k1 T1 n1, k2 T2 n2, ….
…, kn Tn nn) is a record of exactly n fields, where
for each field i (a) the field name is ki, (b) the field
value is an instance of type Ti, and (c) the field
conforms to the nullability property ni, which
specifies whether the field value may be NULL or
not.

Contrary to maps and arrays, it is not possible to
add or remove fields from a record. This is
because the number of fields and their field names
are part of the record type definition associated
with a record value.

Type: RECORD(country
STRING, zipcode
INTEGER, state
STRING, street
STRING)

Type Instance:
{ "country":"US",
"zipcode":600004,
"state":"Arizona",
"street":"4th Block" }

Chapter 2
Complex Data Types

2-3

Example 2-1 Complex Data Type

The following examples illustrate the difference between the way data get stored in
various complex data types.

To store the zip codes of multiple cities when the number of zip codes is not known in
advance, you can use arrays.

Declaration:
ARRAY(INTEGER)

Example:
[600004,560076,01803]

To store the names of multiple cities along with their zip codes and the number of zip
codes are not known, you can use maps.

Declaration:
MAP(INTEGER)

Example:
{
"Chennai":600004,
"Bangalore":560076,
"Boston":01803
}

Records are used for an ordered collection. If you want to store a zip code as part of a
bigger data set, you can use records. In this example, only a zip code is stored in a
record.

Declaration:
RECORD(zipcode INTEGER)

Example:
{
"zipcode":600004
}

You can combine multiple complex data types so that more complex data can be
stored. For the same zipcode data, the following example combines two complex data
types and stores the information.

Declaration:
ARRAY(RECORD(area STRING, zipcode INTEGER))

Example:
[
 {"area":"Chennai","zipcode":600004},
 {"area":"Bangalore","zipcode":560076},

Chapter 2
Complex Data Types

2-4

 {"area":"Boston","zipcode":01803}
]

Example 2-2 Complex Data Type

This example illustrate the differences in the way a map and a record should be declared for
storing complex data.

Let us consider the following data.

{
"name":"oracle",
"city":"Redwood City",
"zipcode":94065,
"offices":["Chennai","Bangalore","Boston"]
}

For the above data, you declare a map and a record as shown below.

Record
(
name STRING,
city STRING,
zipcode INTEGER,
offices Array(STRING)
)

Map(ANY)

JSON Data Type
JSON is a lightweight text-based open standard designed for human-readable data
interchange. It is easy to read and write, and language independent. A JSON text is data
represented in name/value format. A valid JSON text contains an object surrounded by curly
brackets and includes a comma-separated list of name/value pairs. Each name is followed by
a ':'(colon) character. JSON data is written to JSON data columns by providing a JSON
object.

Chapter 2
JSON Data Type

2-5

Table 2-4 JSON Data Type

Data Type Description Examples

JSON The JSON type represents all
valid JSON values (numbers,
strings, array(JSON),
map(JSON), and JSON null).
Specifically, an instance of
JSON can be

1. an instance of
ANYJSONATOMIC,

2. or an array whose
elements are all instances
of JSON,

3. or a map whose field
values are all instances of
JSON.

{ "city" : "Santa Cruz", "zip" :
95008, "phones" : [{ "area" :
408, "number" : 4538955,
"kind" : "work" }, { "area" : 831,
"number" : 7533341, "kind" :
"home" }] }

"Santa Cruz"

95008

true

[12, "foo", { "city":"Santa
Cruz"}, [2, 3]]

To load JSON data into a table, Oracle NoSQL Database offers programmatic APIs to
ingest JSON text. The supported NoSQL SDKs handle this differently. Oracle NoSQL
Database will parse the input JSON text internally and map its constituent pieces to
the types described as follows:

• Numbers are converted to integer, long, or double items, depending on the actual
value of the number (float items are not used for JSON).

• Strings in the input text are mapped to string items.

• Boolean values are mapped to boolean items.

• The null values are mapped to JSON nulls depending on the way the input is
supplied. For example, If you supply input text as "myvalue" : null, this is
mapped as a JSON null. Whereas, supplying "myvalue" : "null" sets the string
value to the text "null".

• When an array is encountered in the input text, an array item is created whose
type is Array(JSON). This is done unconditionally, no matter what the actual
contents of the array might be.

• When a JSON object is encountered in the input text, a map item is created whose
type is Map(JSON), unconditionally.

In general, the result of this parsing is a tree of maps, arrays, and atomic values. For
persistent storage, the tree is serialized into a binary format.

Note:

There is no JSON equivalent to the TIMESTAMP data type, so if input text
contains a string in the TIMESTAMP format, it is stored as a string item in the
JSON column.

JSON data is schema-less, in the sense that a field of type JSON can have very
different kinds of values in different table rows. For example, if info is a top-level table
column of type JSON, in one row the value of info may be an integer, in another row

Chapter 2
JSON Data Type

2-6

an array containing a mix of doubles and strings, and in a third row a map containing a mix of
other maps, arrays, and atomic values. Furthermore, the data stored in a JSON column or
field can be updated in any way that still produces a valid JSON instance. As a result, each
JSON tree (either in main memory or as a serialized byte array on disk) is self-describing
about its contents.

Wildcard Data Types
The Oracle NoSQL Database data model includes the following wildcard data types:

Table 2-5 Wildcard Data Types

Data Type Description Examples

ANY Any instance of any NoSQL type is an instance of
the ANY type as well.

{ "city" : "Santa Cruz",
"zip" : 95008, "phones" :
[{ "area" : 408,
"number" : 4538955,
"kind" : "work" },
{ "area" : 831,
"number" : 7533341,
"kind" : "home" }] }

"Santa Cruz"

95008

TRUE

'0x34 0xF5'

'2020-01-20T12:15:054'

[12, "foo", { "city":"Santa
Cruz"}, [2, 3]]

ANYATOMIC Any instance of any other atomic type is an
instance of the ANYATOMIC type as well. The json
null value is also an instance of ANYATOMIC.

"Santa Cruz"

95008

TRUE

'0x34 0xF5'

'2020-01-20T12:15:054'

ANYJSONATOMIC Any instance of a numeric type, the string type,
and the boolean type is an instance of the
ANYJSONATOMIC type as well. The json null
value is also an instance of ANYJSONATOMIC.

"Santa Cruz"

95008

true

JSON See the Description column in the Table 2-4. See the Examples
column in the Table 2-4.

ANYRECORD Any instance of any other RECORD type is an
instance of the ANYRECORD type as well.

{ "city" : "Santa Cruz",
"zip" : 95008 }

A data type is called precise if it is not one of the wildcard types and, in the case of complex
types, all of its constituent types are also precise. Items that have precise types are said to be
strongly typed.

Wildcard types are abstract, which means that no item can have a wildcard type as its type.
However, items may have an imprecise type. For example, an item may have MAP(JSON) as
its type, indicating that its value is a map that can store field values of different types, as long
as all of these values belong to the JSON type. In fact, MAP(JSON) is the type that
represents all JSON objects (JSON documents), and ARRAY(JSON) is the type that
represents all JSON arrays.

Chapter 2
Wildcard Data Types

2-7

Data Type Hierarchy
The Oracle NoSQL Database data model also defines a subtype-supertype
relationship among the types presented above. The relationship can be expressed as
an is_subtype(T, S) function that returns true if type T is a subtype of type S and false
otherwise. is_subtype(T, S) returns true in the following cases:

• T and S are the same type. So, every type is a subtype of itself. We say that a
type T is a proper subtype of another type S if T is a subtype of S and T is not
equal to S.

• S is the ANY type. So, every type is a subtype of ANY.

• S is the ANYATOMIC type and T is an atomic type.

• S is ANYJSONATOMIC and T is one of the numeric types or the STRING type, or
the BOOLEAN type.

• S is NUMBER and T is one of the other numeric types.

• S is LONG and T is INTEGER.

• S is DOUBLE and T is FLOAT.

• S IS STRING and T is UUID.

• S is TIMESTAMP(p2), T is TIMESTAMP(p1) and p1 <= p2.

• S is BINARY and T is FIXED_BINARY.

• S is ARRAY(T2), T is ARRAY(T1) and T1 is a subtype of T2.

• S is MAP(T2), T is MAP(T1) and T1 is a subtype of T2.

• S and T are both record types and (a) both types contain the same field names
and in the same order, (b) for each field, its type in T is a subtype of its type in S,
and (c) if the field is nullable in T, it is also nullable in S.

• S is JSON and T is (a) an array whose element type is a subtype of JSON, or (b) a
map whose value type is a subtype of JSON, or (c) ANYJSONATOMIC or any of
its subtypes.

Note:

The is_subtype relationship is transitive, that is, if type A is a subtype of type
B and B is a subtype of C, then A is a subtype of C.

The is_subtype relationship is important because the usual subtype-substitution rule is
supported by SQL for Oracle NoSQL Database: if an operation expects input items of
type T then it can also operate on items of type S, where S is a subtype of T. However,
there are two exceptions to this rule:

1. DOUBLE and FLOAT are subtypes of NUMBER. However, DOUBLE and FLOAT
include three special values in their domain:

a. NaN (not a number)

b. Positive infinity

c. Negative infinity

Chapter 2
Data Type Hierarchy

2-8

These three values are not in the domain of NUMBER. You can provide DOUBLE/FLOAT
types to NUMBER type as long as these are not one of the three special values;
otherwise, an error will be raised.

2. Items whose type is a proper subtype of ARRAY (JSON) or MAP (JSON) cannot be used
as:

a. RECORD/MAP field values if the field type is JSON, ARRAY (JSON) or MAP (JSON)

b. Elements of ARRAY whose element type is JSON, ARRAY (JSON) or MAP (JSON)

This is in order to disallow strongly typed data to be inserted into JSON data.

For example, consider a JSON document M, i.e., a MAP value whose associated type is
a MAP (JSON). M may contain an ARRAY value A that contains only INTEGERs.
However, the type associated with A cannot be ARRAY (INTEGER), it must be ARRAY
(JSON). If A had type ARRAY (INTEGER), the user would not be able to add any non-
INTEGER values to A, i.e., the user would not be able to update the JSON document in a
way that would still keep it a JSON document.

Figure 2-1 SQL Type Hierarchy

Chapter 2
Data Type Hierarchy

2-9

Data Type Definitions
The Oracle NoSQL Database data model types inside SQL statements are referred to
using type_definition syntax. This syntax is used both in data definition language
(DDL) statements and data manipulation language (DML) statements.

Syntax

type_definition ::=
 INTEGER |
 LONG |
 FLOAT |
 DOUBLE |
 NUMBER |
 STRING |
 BOOLEAN |
 ANY |
 JSON |
 ANYRECORD |
 ANYATOMIC |
 ANYJSONATOMIC |
 array_definition |
 map_definition |
 binary_definition |
 timestamp_definition |
 enum_definition |
 record_definition

array_definition ::= ARRAY "(" type_definition ")"
map_definition ::= MAP "(" type_definition ")"
binary_definition ::= BINARY ["(" INT_CONSTANT ")"]
timestamp_definition ::= TIMESTAMP ["(" INT_CONSTANT ")"]

enum_definition ::= ENUM "(" id_list ")"
id_list ::= id ["," id]

record_definition ::= RECORD "(" field_definition (","
field_definition)* ")"
field_definition ::= id type_definition [default_definition] [comment]
default_definition ::=
 (default_value [NOT NULL]) | (NOT NULL default_value)
default_value ::= DEFAULT (number | string | TRUE | FALSE | id)

Semantics

type_definition
When the type_def grammar rule is used in any DDL statement, the only wildcard
type that is allowed is the JSON type. So, for example, it is possible to create a table
with a column whose type is JSON, but not a column whose type is ANY.

Chapter 2
Data Type Definitions

2-10

timestamp_definition
The precision is optional while specifying a TIMESTAMP type. If omitted, the default
precision is 9 (nanoseconds). This implies that the type TIMESTAMP (with no precision
specified) is a supertype of all other TIMESTAMP types (with a specified precision).
However, in the context of a CREATE TABLE statement, a precision must be explicitly
specified. This restriction is to prevent users from inadvertently creating TIMESTAMP values
with precision 9 (which takes more space) when in reality they don't need that high precision.

record_definition
Field default values and descriptions do not affect the value of a RECORD type, i.e., two
RECORD types created according to the above syntax and differing only in their default
values and/or field descriptions have the same value (they are essentially the same type).

field_definition
The field_definition rule defines a field of a RECORD type. It specifies the field name, its
type, and optionally, a default value and a comment. The comment, if present, is stored
persistently as the field's description.

default_definition
By default, all RECORD fields are nullable. The default_definition rule can be used to
declare a field not-nullable or to specify a default value for the field. When a record is
created, if no value is assigned to a field, the default value is assigned by Oracle NoSQL
Database, if a default value has been declared for that field. If not, the field must be nullable,
in which case the null value is assigned. Currently, default values are supported only for
numeric types, STRING, BOOLEAN, and ENUM.

Chapter 2
Data Type Definitions

2-11

3
Namespace Management

A namespace defines a group of tables, within which all of the table names must be uniquely
identified. This chapter describes namespaces and how to create and manage the
namespaces in Oracle NoSQL Database.

Namespaces permit you to do table privilege management as a group operation. You can
grant authorization permissions to a namespace to determine who can access both the
namespace and the tables within it.

Namespaces permit tables with the same name to exist in your database store. To access
such tables, you can use a fully qualified table name. A fully qualified table name is a table
name preceded by its namespaces, followed with a colon (:), such as ns1:table1.

All tables are part of some namespace. There is a default Oracle NoSQL Database
namespace, called sysdefault. All tables are assigned to the default sysdefault
namespace, until or unless you create other namespaces, and create new tables within them.
You cannot change an existing table's namespace. Tables in sysdefault namespace do not
require a fully qualified name and can work with just the table name. For example, to access
a table in sysdefault namespace, you can just specify table1 instead of
sysdefault:table1.

Note:

In a store that was created new or was upgraded from a version prior to 18.3, all the
tables will be part of sysdefault namespace.

This chapter contains the following topics:

• CREATE NAMESPACE Statement

• SHOW NAMESPACES Statement

• DROP NAMESPACE Statement

• Namespace Resolution

• Namespace Scoped Privileges

• Granting Authorization Access to Namespaces

CREATE NAMESPACE Statement
You can add a new namespace by using the CREATE NAMESPACE statement.

Syntax

create_namespace_statement ::=
 CREATE NAMESPACE [IF NOT EXISTS] namespace_name

3-1

namespace_name ::= name_path
name_path ::= field_name ("." field_name)*
field_name ::= id | DSTRING

Semantics

IF NOT EXISTS: This is an optional clause. If you specify this clause, and if a
namespace with the same name exists, then this is a noop and no error is generated.
If you don't specify this clause, and if a namespace with the same name exists, an
error is generated indicating that the namespace already exists.

Note:

Namespace names starting with sys are reserved. You cannot use the prefix
sys for any namespaces.

Example 3-1 Create Namespace Statement

The following statement defines a namespace named ns1.

CREATE NAMESPACE IF NOT EXISTS ns1;

Create Table in the namespace ns1 as follows:

CREATE TABLE ns1:t (id INTEGER, name STRING, primary key (id));
INSERT INTO ns1:t VALUES (1, 'Smith');
SELECT * FROM ns1:t;

Output:

{"id":1,"name":"Smith"}

SHOW NAMESPACES Statement
Syntax

show_namespaces_statement ::= SHOW [AS JSON] NAMESPACES

Semantics

The show namespaces statement provides the list of namespaces in the system.

AS JSON can be specified if you want the output to be in JSON format.

Example 3-2 Show Namespaces

The following statement lists the namespaces present in the system.

SHOW NAMESPACES;

Chapter 3
SHOW NAMESPACES Statement

3-2

namespaces
 ns1
 sysdefault

Example 3-3 Show Namespaces

The following statement lists the namespaces present in the system in JSON format.

SHOW AS JSON NAMESPACES;

{"namespaces" : ["ns1","sysdefault"]}

DROP NAMESPACE Statement
You can remove a namespace by using the DROP NAMESPACE statement.

Syntax

drop_namespace_statement ::=
 DROP NAMESPACE [IF EXISTS] namespace_name [CASCADE]

Semantics

IF EXISTS: This is an optional clause. If you specify this clause, and if a namespace with the
same name does not exist, no error is generated. If you don't specify this clause, and if a
namespace with the same name does not exist, an error is generated indicating that the
namespace does not exist.

CASCADE: This is an optional clause that enables you to specify whether to drop the tables
and their indexes in this namespace. If you specify this clause, and if the namespace
contains any tables, then the namespace together with all the tables in this namespace will
be deleted. If you don't specify this clause, and if the namespace contains any tables, then an
error is generated indicating that the namespace is not empty.

Note:

You cannot drop the default namespace, sysdefault.

Example 3-4 Drop Namespace Statement

The following statement removes the namespace named ns1.

DROP NAMESPACE IF EXISTS ns1 CASCADE;

Namespace Resolution
To resolve a table from a table_name that appears in an SQL statement, the following rules
apply:

• if the table_name contains a namespace name, no resolution is needed, because a
qualified table name uniquely identifies a table.

Chapter 3
DROP NAMESPACE Statement

3-3

• if you don't specify a namespace name explicitly, the namespace used is the one
contained in the ExecuteOptions instance that is given as input to the
executeSync(), execute(), or prepare() methods of TableAPI. See Java Direct
Driver Developer's Guide.

• if ExecuteOptions doesn't specify a namespace, the default sysdefault namespace
is used.

Using different namespaces in ExecuteOptions allows executing the same queries on
separate but similar tables.

Namespace Scoped Privileges
You can add one or more namespaces to your store, create tables within them, and
grant permission for users to access namespaces and tables. For general information
on managing Roles and Users, see Grant Roles or Privileges in the Security Guide.

For information on implication relationship among Oracle NoSQL Database privileges,
see Privilege Hierarchy in the Security Guide.

Granting Authorization Access to Namespaces
You can manage permission for users or roles to access namespaces and tables.
These are the applicable permissions given to the developers and other users:

Table 3-1 Namespace Privileges and Permissions

Privilege Description

CREATE_ANY_NAMESPACE
DROP_ANY_NAMESPACE

Grant permission to a user or to a role to create or drop any
namespace.

GRANT CREATE_ANY_NAMESPACE TO <User|Role>;
GRANT DROP_ANY_NAMESPACE TO <User|Role>;

CREATE_TABLE_IN_NAMESPACE
DROP_TABLE_IN_NAMESPACE
EVOLVE_TABLE_IN_NAMESPACE

Grant permission to a user or to a role to create, drop or evolve
tables in a specific namespace. You can evolve tables to update
table definitions, add or remove fields, or change field properties,
such as a default value. You may even add a particular kind of
column, like an IDENTITY column, to increment some value
automatically. Only tables that already exist in the store are
candidates for table evolution. For more details, see Alter Table.

GRANT CREATE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DROP_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT EVOLVE_TABLE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>user_role;

Chapter 3
Namespace Scoped Privileges

3-4

Table 3-1 (Cont.) Namespace Privileges and Permissions

Privilege Description

CREATE_INDEX_IN_NAMESPACE
DROP_INDEX_IN_NAMESPACE

Grant permission to a user or to a role to create or drop an index in a
specific namespace.

GRANT CREATE_INDEX_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DROP_INDEX_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;

READ_IN_NAMESPACE
INSERT_IN_NAMESPACE
DELETE_IN_NAMESPACE

Grant permission to a role to read, insert, or delete items in a
specific namespace.

GRANT READ_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT INSERT_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
GRANT DELETE_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;

MODIFY_IN_NAMESPACE Helper label for granting or revoking permissions to all DDL
privileges for a specific namespace to a user or role.

GRANT MODIFY_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;
REVOKE MODIFY_IN_NAMESPACE ON NAMESPACE
namespace_name TO <User|Role>;

Grant privileges on a namespace

You can grant permissions to a role or a user on a namespace. Following is the syntax for
granting permissions on a namespace:

GRANT {Namespace-scoped privileges} ON NAMESPACE namespace_name TO <User|
Role>
Namespace-scoped privileges ::= namespace_privilege [, namespace_privilege]

where,

• namespace_privilege

The namespace privilege that can be granted to a user or a role. For more information on
the applicable privileges, see the Privilege column in the Namespace Privileges and
Permissions table.

• namespace_name

The namespace that the user wishes to access.

• <User|Role>

The name of the KVStore user or the role of a user.

Chapter 3
Granting Authorization Access to Namespaces

3-5

For example, you can grant read access to a user for all the tables in the namespace.

Example:

GRANT READ_IN_NAMESPACE ON NAMESPACE ns1 TO Kate;

Here, ns1 is the namespace and Kate is the user.

Note:

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or
revoking permissions to all DDL privileges for a specific namespace to a user
or role.

Revoke privileges on a namespace

You can revoke the permissions from a role or a user on a namespace. Following is
the syntax for revoking the permissions on a namespace.

REVOKE {Namespace-scoped privileges} ON NAMESPACE namespace_name FROM
<User|Role>
Namespace-scoped privileges ::= namespace_privilege [,
namespace_privilege]

where,

• namespace_privilege

The namespace privilege that can be revoked from a user or a role. For more
information on the applicable privileges, see the Privilege column in the
Namespace Privileges and Permissions table.

• namespace_name

The namespace that the user wishes to access.

• <User|Role>

The name of the KVStore user or the role of a user.

For example, you can revoke the read access from a user for all the tables in the
namespace.

Example:

REVOKE READ_IN_NAMESPACE ON NAMESPACE ns1 FROM Kate;

Here, ns1 is the namespace and Kate is the user.

Chapter 3
Granting Authorization Access to Namespaces

3-6

Note:

The label MODIFY_IN_NAMESPACE can be used as a helper for granting or
revoking permissions to all DDL privileges for a specific namespace to a user or
role.

The following example shows:

1. Creation of a namespace and a table.

2. Revocation of the privilege to create any other new tables in the namespace, but allow
the table to be dropped.

Example: Namespace Scoped Privileges

CREATE NAMESPACE IF NOT EXISTS ns1;
GRANT MODIFY_IN_NAMESPACE ON NAMESPACE ns1 TO usersRole;
CREATE TABLE ns1:t (id INTEGER, name STRING, primary key (id));
INSERT INTO ns1:t VALUES (1, 'Smith');
SELECT * FROM ns1:t;
REVOKE CREATE_TABLE_IN_NAMESPACE ON NAMESPACE ns1 FROM usersRole;
DROP NAMESPACE ns1 CASCADE;

Note:

You can save all of the above commands as a sql script and execute it in a single
command. If you want to execute any of the above commands outside of a SQL
prompt, remove the semi colon at the end.

Chapter 3
Granting Authorization Access to Namespaces

3-7

4
Region Management

Oracle NoSQL Database supports Multi-Region Architecture in which you can create tables
in multiple KVStores, and still maintain consistent data across these clusters. Each KVStore
cluster in a Multi-Region NoSQL Database setup is called a Region.This chapter describes
creating and managing regions in Oracle NoSQL Database.

This chapter contains the following topics:

• CREATE REGION Statement

• SHOW REGIONS Statement

• DROP REGION Statement

CREATE REGION Statement
In a Multi-Region Oracle NoSQL Database setup, you must define all the remote regions for
each local region. For example, if there are three regions in a Multi-Region setup, you must
define the other two regions from each participating region. You use the create region
statement to define remote regions in the Multi-Region Oracle NoSQL Database.

Syntax

create_region_statement ::= CREATE REGION region_name

region_name ::= id | DSTRING

Semantics

region_name
The name of the region that is different from the local region where the command is
executed.

Example 4-1 Create Region

The following create region statement creates a remote region named my_region1.

CREATE REGION my_region1;

SHOW REGIONS Statement
Syntax

show_regions_statement ::= SHOW [AS JSON] REGIONS

4-1

Semantics

The show regions statement provides the list of regions present in the Multi-Region
Oracle NoSQL Database.

AS JSON can be specified if you want the output to be in JSON format.

Example 4-2 Show Regions

The following statement lists all the existing regions.

SHOW REGIONS;

regions
 my_region1 (remote, active)
 my_region2 (remote, active)

Example 4-3 Show Regions

The following statement lists all the existing regions in JSON format.

SHOW AS JSON REGIONS;

{"regions" : [
 {"name" : "my_region1", "type" : "remote", "state" : "active"},
 {"name" : "my_region2", "type" : "remote", "state" : "active"}
]}

DROP REGION Statement
In a Multi-Region Oracle NoSQL Database environment, the drop region statement
removes the specified remote region from the local region.

Syntax

drop_region_statement :: DROP REGION region_name

Semantics

region_name
The name of the region that you want to drop. This region must be different from the
local region where the command is executed.

Example 4-4 Drop Region

The following drop region statement removes a remote region named my_region1.

DROP REGION my_region1;

Chapter 4
DROP REGION Statement

4-2

5
Table Management

In Oracle NoSQL Database, data is stored and organized in tables. This chapter describes
tables and creating and managing tables in Oracle NoSQL Database.

A table is an unordered collection of record items, all of which have the same record type. We
call this record type the table schema. The table schema is defined by the CREATE TABLE
statement. The records of a table are called rows and the record fields are called columns.
Therefore, an Oracle NoSQL Database table is a generalization of the (normalized) relational
tables found in more traditional RDBMSs.

Although table rows are records, records are not rows. This is because, rows have some
additional properties that are not part of the table schema (i.e., they are not stored as top-
level columns or nested fields). To extract the values of such properties, the functions listed in
the Functions on Rows section must be used.

This chapter contains the following topics:

• CREATE TABLE Statement

• SHOW TABLES Statement

• DESCRIBE TABLE Statement

• Table Hierarchies

• Using the IDENTITY Column

• Sequence Generator

• DROP TABLE Statement

• ALTER TABLE Statement

• Altering an IDENTITY Column

CREATE TABLE Statement
The table is the basic structure to hold user data. You use the create table statement to
create a new table in the Oracle NoSQL Database.

Syntax

create_table_statement ::=
 CREATE TABLE [IF NOT EXISTS] table_name [comment]
 "(" table_definition ")" [ttl_definition] [json_collection_definition]

table_name ::= [namespace_name ":"] name_path
name_path ::= field_name ("." field_name)*
field_name ::= id | DSTRING

table_definition ::=
 (column_definition | key_definition)
 ("," (column_definition | key_definition))*

5-1

column_definition ::=
 id type_definition
 [default_definition | identity_definition |
uuid_definition | mr_counter_definition]
 [comment]
key_definition ::=
 PRIMARY KEY
 "(" [shard_key_definition [","]] [id_list_with_size] ")"
 [ttl_definition]
id_list_with_size ::= id_with_size ("," id_with_size)*
id_with_size ::= id [storage_size]
storage_size ::= "(" INT_CONSTANT ")"
shard_key_definition ::= SHARD "(" id_list_with_size ")"
ttl_definition ::= USING TTL INT_CONSTANT (HOURS | DAYS)
region_definition ::= IN REGIONS region-name-1,region-name-2 [,...]
json_collection_definition ::= AS JSON COLLECTION

Semantics

table_name
The table name is specified as an optional namespace_name and a local_name. The
local name is a name_path because, in the case of child tables, it will consist of a list
of dot-separated ids. Child tables are described in the Table Hierarchies section. A
table_name that includes a namespace_name is called a qualified table name.
When an SQL statement (DDL or DML) references a table by its local name only, the
local name is resolved internally to a qualified name with a specific namespace name.
See the Namespace Management chapter.

IF NOT EXISTS
This is an optional clause. If this clause is specified and if a table with the same
qualified name exists (or is being created) and if that existing table has the same
structure as in the statement, no error is generated. In all other cases and if a table
with the same qualified name exists, the create table statement generates an error
indicating that the table exists.

ttl_definition
The Time-To-Live (TTL) value is used in computing the expiration time of a row.
Expired rows are not included in query results and are eventually removed from the
table automatically by Oracle NoSQL Database. If you specify a TTL value while
creating the table, it applies as the default TTL for every row inserted into this table.
However, you can override the table level TTL by specifying a TTL value via the table
insertion API.
The expiration time of a row is computed by adding the TTL value to the current
timestamp. To be more specific, for a TTL value of N hours/days, the expiration time is
the current time (in UTC) plus N hours/days, rounded up to the next full hour/day. For
example, if the current timestamp is 2020-06-23T10:01:36.096 and the TTL is 4 days,
the expiration time will be 2020-06-28T00:00:00.000. You can use zero as a special
value to indicate that a rows should never expire. If the CREATE TABLE statement
has no TTL specification, the default table TTL is zero.
In case of MR Tables with TTL value defined, the rows replicated to other regions
carry the expiration time when the row was written. This can be either the default table
level TTL value or a row level override that is set by your application. Therefore, this
row will expire in all the regions at the same time, irrespective of when they were
replicated. However, if a row is updated in one of the regions and it expires in the local

Chapter 5
CREATE TABLE Statement

5-2

region even before it is replicated to one of the remote region(s), then this row will expire as
soon as it is replicated and committed in that remote region.

json_collection_definition
The json_collection_definition declares the table as a collection of documents. A JSON
collection table is a convenient way to store, update, and query your documents. A JSON
collection table must include a primary key while creating the table. You can create a JSON
collection table with MR_COUNTERS if the table is intended to be a multi-region table. For
more details on JSON collection table, see Using JSON Collection Tables.

region_definition
This is an optional clause. In case, the table being created is an MR Table, this parameter
lists all the regions that the table should span. You must mention at least one remote region
in this clause to create the table as an MR Table. For information on MR Tables, see Life
Cycle of MR Tables.

Note:

Specifying this clause while creating a child table of a MR Table will result in an
error.

table_definition
The table_definition part of the statement must include at least one field definition, and
exactly one primary key definition (Although the syntax allows for multiple key_definitions,
the query processor enforces the one key_definition rule. The syntax is this way to allow for
the key definition to appear anywhere among the field definitions).

column_definition
The syntax for a column definition is similar to the field_definition grammar rule that defines
the fields of a record type. See Data Type Definitions section. It specifies the name of the
column, its data type, whether the column is nullable or not, an optional default value or
whether the column is an IDENTITY column or not, and an optional comment. As mentioned
in Table Management section, tables are containers of records, and the table_definitions acts
as an implicit definition of a record type (the table schema), whose fields are defined by the
listed column_definitions. However, when the type_definition grammar rule is used in any
DDL statement, the only wildcard type that is allowed is the JSON type. So, for example, it is
possible to create a table with a column whose type is JSON, but not a column whose type is
ANY.

identity_definition
The identity_definition specifies the name of the identity column. There can only be one
identity column per table. See Using the IDENTITY Column section.

uuid_definition
The uuid_definition declares the type of a column to be the UUID type. See Using the UUID
data type section.

mr_counter_definition
The mr_counter_definition parameter declares the type of a column to be the
MR_COUNTER datatype. This data type can be used only in a multi-region table. See Using
CRDT datatype in a multi-region table.

Chapter 5
CREATE TABLE Statement

5-3

key_definition
The syntax for the primary key specification (key_definition) specifies the primary key
columns of the table as an ordered list of field names. The column names must be
among the ones appearing in the field_definitions, and their associated type must be
one of the following: a numeric type, string, enum, or timestamp. The usual definition
of a primary key applies: two rows of the same table cannot have the same values on
all of their primary key columns.

shard_key_definition
A key_definition specifies the table’s shard key columns as well, as the first N
primary-key columns, where 0 < N <= M and M is the number of primary-key columns.
Specification of a shard key is optional. By default, for a root table (a table without a
parent) the shard key is the whole primary key. Semantically, the shard key is used to
distribute table rows across the multiple servers and processes that comprise an
Oracle NoSQL Database store. Briefly, two rows having the same shard key, i.e., the
same values on their shardkey columns, will always be located in the same server
and managed by the same process. Further details about the distribution of data in
Oracle NoSQL Database can be found in the Primary and Shard Key Design section.

storage_size
An additional property of INTEGER-typed primary-key fields is their storage size. This
is specified as an integer number between 1 and 5 (the syntax allows any integer, but
the query processor enforces the restriction). The storage size specifies the maximum
number of bytes that may be used to store in serialized form a value of the associated
primary key column. If a value cannot be serialized into the specified number of bytes
(or less), an error will be thrown. An internal encoding is used to store INTEGER (and
LONG) primary-key values, so that such values are sortable as strings (this is
because primary key values are always stored as keys of the "primary" Btree index).
The following table shows the range of positive values that can be stored for each
byte-size (the ranges are the same for negative values). Users can save storage
space by specifying a storage size less than 5, if they know that the key values will be
less or equal to the upper bound of the range associated with the chosen storage
size.

comment
Comments are included at table-level and they become part of the table's metadata
as uninterpreted text. Comments are displayed in the output of the describe
statement.

Tables Used in the Examples

Example 5-1 User data application table

The following create table statement defines a users table that holds information about
the users.

CREATE TABLE users(id INTEGER,
 firstName STRING,
 lastName STRING,
 otherNames ARRAY(RECORD(first STRING, last
STRING)),
 age INTEGER,
 income INTEGER,
 address JSON,
 connections ARRAY(INTEGER),

Chapter 5
CREATE TABLE Statement

5-4

 hobbies ARRAY(STRING),
PRIMARY KEY (id))

The rows of the users table defined above represent information about users. For each such
user, the otherNames field is an array of records, where each record in the array includes the
first and last name fields. The connections field is an array of integers containing the ids of
other users that this user is connected with. You can assume that the ids in the array are
sorted by some measure of the strength of the connection. The hobbies field is an array of
string containing the user's interests in various activities. The address column is a schema-
less JSON field.

For example, a typical value for the address field can include the following attributes:

{
 "street" : "Pacific Ave",
 "number" : 101,
 "city" : "Santa Cruz",
 "state" : "CA",
 "zip" : 95008,
 "phones" : [
 { "area" : 408, "number" : 4538955, "kind" : "work" },
 { "area" : 831, "number" : 7533341, "kind" : "home" }
]
}

You can add any number of attributes to the JSON field. The JSON field does not have a
fixed data type.

Some addresses may have additional fields, or missing fields, or fields spelled differently. The
phones field may not be an array of JSON objects but a single such object. The whole
address may be just one string, number, or JNULL.

For more details on the supported data types, see Oracle NoSQL Database Data Model.

Example 5-2 Airline baggage tracking application

The following CREATE TABLE statement defines a BaggageInfo table that holds the checked
baggage information of passengers in an airline system.

CREATE TABLE BaggageInfo (ticketNo LONG,
fullName STRING,
gender STRING,
contactPhone STRING,
confNo STRING,
bagInfo JSON,
PRIMARY KEY (ticketNo)
)USING TTL 5 DAYS

Using this schema you can handle a use case wherein passengers traveling on a flight can
track where their checked-in bags or luggage are along the route to the final destination. This
functionality can be offered as a part of the airline's mobile application. Once the passenger
logs into the mobile application, the ticket number or reservation code of the current flight is
displayed on the screen. Passengers can use this information to track their checked
baggage. The mobile application uses Oracle NoSQL Database to store all the data related

Chapter 5
CREATE TABLE Statement

5-5

to the baggage. In the backend, the mobile application logic uses SQL queries to
retrieve the required data.

This schema creates the BaggageInfo table with columns that include atomic data
types like long and string to hold passenger information. The checked baggage
information of the passengers is stored as a schema-less JSON. You can add any
number of attributes to this schema-less JSON field. In contrast, the passenger's
information like ticket number, full name, gender, and contact details are all part of a
fixed schema.

You can create the table by specifying a TTL value, after which the rows expire
automatically and are not available anymore. The TTL value is followed by either
HOURS or DAYS. In this schema, the rows of the table expire after 5 days. You can check
the hours remaining until a row expires using the remaining_days Built-in Functions.

Specifying the TTL value while creating a table is optional. If you don’t provide a TTL
value, the rows of a table will have an infinite expiration time.

Example 5-3 Streaming media service

The following CREATE TABLE statement defines a stream_acct table that creates a
TV streaming application.

CREATE TABLE stream_acct(
acct_id INTEGER,
profile_id INTEGER,
profile_name STRING,
acct_data JSON,
PRIMARY KEY(acct_id)
)

The Streaming Media Service streams various shows that are watched by customers
across the globe. Every show has several seasons and every season has multiple
episodes. You need a persistent meta-data store that keeps track of the current activity
of the customers using the TV streaming application. Using this schema you can
provide useful information to the customer such as episodes they watched, the watch
time per episode, the total number of seasons of the show they watched, and so on.
The data is stored in the Oracle NoSQL Database and the application performs SQL
queries to retrieve the required data and offer it to the user.

This schema has acct_id as the primary key column, which contains the user's
account ID. The schema also includes other fields such as profile_id, profile_name,
and a schema-less JSON column (acct_data). The schema-less JSON does not have
a fixed data type. You can add any number of attributes to this JSON field.

Load Data to the Tables

Use the following statements to insert the data into the User data - users table.

INSERT INTO users VALUES (

 10,
 "John",
 "Smith",
 [{"first" : "Johny", "last" : "Good"}, {"first" : "Johny2",
"last" : "Brave"},{"first" : "Johny3", "last" : "Kind"},{"first" :

Chapter 5
CREATE TABLE Statement

5-6

"Johny4", "last" : "Humble"}],
 22,
 45000,
 {
 "street" : "Pacific Ave",
 "number" : 101,
 "city" : "Santa Cruz",
 "state" : "CA",
 "zip" : 95008,
 "phones" : [
 { "area" : 408, "number" : 4538955, "kind" : "work" },
 { "area" : 831, "number" : 7533341, "kind" : "home" },
 { "area" : 831, "number" : 7533382, "kind" : "mobile" }
]
 },
 [30, 55, 43],
 ["Reading", "Soccer", "Hiking", "Gardening"]
)

INSERT INTO users VALUES (

 20,
 "Jane",
 "Smith",
 [{"first" : "Jane", "last" : "Charming"}],
 22,
 55000,
 {
 "street" : "Atlantic Ave",
 "number" : 201,
 "city" : "San Jose",
 "state" : "CA",
 "zip" : 95005,
 "phones" : [
 { "area" : 608, "number" : 6538955, "kind" : "work" },
 { "area" : 931, "number" : 9533341, "kind" : "home" },
 { "area" : 931, "number" : 9533382, "kind" : "mobile" }
]
 },
 [40, 75, 63],
 ["Knitting", "Hiking", "Baking", "BingeWatching"]
)

INSERT INTO users VALUES (

 30,
 "Adam",
 "Smith",
 [{"first" : "Adam", "last" : "BeGood"}],
 45,
 75000,
 {
 "street" : "Indian Ave",
 "number" : 301,
 "city" : "Houston",

Chapter 5
CREATE TABLE Statement

5-7

 "state" : "TX",
 "zip" : 95075,
 "phones" : [
 { "area" : 618, "number" : 6618955, "kind" : "work" },
 { "area" : 951, "number" : 9613341, "kind" : "home" },
 { "area" : 981, "number" : 9613382, "kind" : "mobile" }
]
 },
 [60, 45, 73],
 ["Soccer", "Riding", "PianoForte", "RockClimbing", "Sketching"]
)

INSERT INTO users VALUES (

 40,
 "Joanna",
 "Smith",
 [{"first" : "Joanna", "last" : "Smart"}],
 NULL,
 75000,
 {
 "street" : "Tex Ave",
 "number" : 401,
 "city" : "Houston",
 "state" : "TX",
 "zip" : 95085,
 "phones" : [
 { "area" : NULL, "number" : 1618955, "kind" : "work" },
 { "area" : 451, "number" : 4613341, "kind" : "home" },
 { "area" : 481, "number" : 4613382, "kind" : "mobile" }
]
 },
 [70, 30, 40],
 ["Soccer", "Riding", "PianoForte", "RockClimbing", "Sketching"]
)

To create sample tables for the airline baggage tracking application and TV streaming
application, download the scripts baggageschema_loaddata.sql and
acctstream_loaddata.sql.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the required scripts.

load -file baggageschema_loaddata.sql
load -file acctstream_loaddata.sql

This creates the tables used in the examples and loads the data into the tables.

Chapter 5
CREATE TABLE Statement

5-8

One sample row from the airline baggage tracking application - BaggageInfo table is shown
below.

"ticketNo" : 1762344493810,
"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1064",
"confNo" : "LE6J4Z",
 [{
 "id" : "79039899165297",
 "tagNum" : "17657806255240",
 "routing" : "MIA/LAX/MEL",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MEL",
 "flightLegs" : [{
 "flightNo" : "BM604",
 "flightDate" : "2019-02-01T01:00:00",
 "fltRouteSrc" : "MIA",
 "fltRouteDest" : "LAX",
 "estimatedArrival" : "2019-02-01T03:00:00",
 "actions" : [{
 "actionAt" : "MIA",
 "actionCode" : "ONLOAD to LAX",
 "actionTime" : "2019-02-01T01:13:00"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "BagTag Scan at MIA",
 "actionTime" : "2019-02-01T00:47:00"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "Checkin at MIA",
 "actionTime" : "2019-02-01T23:38:00"
 }]
 }, {
 "flightNo" : "BM667",
 "flightDate" : "2019-01-31T22:13:00",
 "fltRouteSrc" : "LAX",
 "fltRouteDest" : "MEL",
 "estimatedArrival" : "2019-02-02T03:15:00",
 "actions" : [{
 "actionAt" : "MEL",
 "actionCode" : "Offload to Carousel at MEL",
 "actionTime" : "2019-02-02T03:15:00"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "ONLOAD to MEL",
 "actionTime" : "2019-02-01T07:35:00"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "OFFLOAD from LAX",
 "actionTime" : "2019-02-01T07:18:00"
 }]
 }],
 "lastSeenTimeGmt" : "2019-02-02T03:13:00",

Chapter 5
CREATE TABLE Statement

5-9

 "bagArrivalDate" : "2019.02.02T03:13:00"
 }]

One sample row from the Streaming Media Service - stream_acct table is shown
below.

"acct_id" : 1,
"profile_id" : 101,
"profile_name" : "Adams",
[{
 "firstName" : "Adam",
 "lastName" : "Phillips",
 "country" : "USA",
 "contentStreamed": [
 {
 "showName" : "At the Ranch",
 "showId" : 26,
 "showtype" : "tvseries",
 "genres" : ["action", "crime", "spanish"],
 "numSeasons" : 4,
 "seriesInfo": [
 {
 "seasonNum" : 1,
 "numEpisodes" : 2,
 "episodes": [
 {
 "episodeID": 20,
 "lengthMin": 85,
 "minWatched": 85,
 "date" : "2022-04-18"
 },
 {
 "episodeID": 30,
 "lengthMin": 60,
 "minWatched": 60,
 "date" : "2022-04-18"
 }
]
 },
 {
 "seasonNum": 2,
 "numEpisodes" : 4,
 "episodes": [
 {
 "episodeID": 40,
 "lengthMin": 50,
 "minWatched": 50,
 "date" : "2022-04-25"
 },
 {
 "episodeID": 50,
 "lengthMin": 45,
 "minWatched": 30,
 "date" : "2022-04-27"

Chapter 5
CREATE TABLE Statement

5-10

 }
]
 }
]
 },
 {
 "showName": "Bienvenu",
 "showId": 15,
 "showtype": "tvseries",
 "genres" : ["comedy", "french"],
 "numSeasons" : 2,
 "seriesInfo": [
 {
 "seasonNum" : 1,
 "numEpisodes" : 2,
 "episodes": [
 {
 "episodeID": 20,
 "lengthMin": 45,
 "minWatched": 45,
 "date" : "2022-03-07"
 },
 {
 "episodeID": 30,
 "lengthMin": 42,
 "minWatched": 42,
 "date" : "2022-03-08"
 }
]
 }
]
 }
]
 }]

SHOW TABLES Statement
Syntax

show_tables_statement ::=
 SHOW [AS JSON] (TABLES | TABLE table_name)

Semantics

The show tables statement provides the list of tables present in the system. If you want to
know the details of a specific table, then you can use show table statement. If the named
table does not exist then this statement fails.

Example 5-4 Show Tables

The following statement lists all the tables in the system.

SHOW TABLES;

Chapter 5
SHOW TABLES Statement

5-11

tables
 SYS$IndexStatsLease
 SYS$PartitionStatsLease
 SYS$SGAttributesTable
 SYS$StreamRequest
 SYS$StreamResponse
 SYS$TableStatsIndex
 SYS$TableStatsPartition
 Users2
 users

Example 5-5 Show Tables

The following statement lists all the tables in the system in JSON format.

SHOW AS JSON TABLES;

{"tables" : [
 "SYS$IndexStatsLease",
 "SYS$PartitionStatsLease",
 "SYS$SGAttributesTable",
 "SYS$StreamRequest",
 "SYS$StreamResponse",
 "SYS$TableStatsIndex",
 "SYS$TableStatsPartition",
 "Users2",
 "users"
]}

Example 5-6 Show Tables

The following statement lists a specific table in the system.

SHOW TABLE users;

tableHierarchy
 users

DESCRIBE TABLE Statement
Syntax

describe_table_statement ::=
 (DESCRIBE | DESC) [AS JSON] TABLE table_name
 ["(" field_name ["," field_name] ")"]

Semantics

The description for tables contains the following information:

• Name of the table.

• Time-To-Live value of the table.

Chapter 5
DESCRIBE TABLE Statement

5-12

• Owner of the table.

• Whether the table is a system table.

• Name of parent tables.

• Name of children tables.

• List of indexes present on the table.

• Desciption of the table.

The description for fields contains the following information:

• Id of the field.

• Name of the field.

• Datatype of fields, for example, INTEGER, STRING, Map(INTEGER), etc.

• Whether the field is nullable. If the field is nullable then 'Y' is displayed, otherwise 'N' is
displayed.

• Default value of the field.

• Whether the field is a shard key. If the field is a shard key then 'Y' is displayed, otherwise
'N' is displayed.

• Whether the field is a primary key. If the field is a primary key then 'Y' is displayed,
otherwise 'N' is displayed.

• Whether the field is an identity field. If the field is an identity field then 'Y' is displayed,
otherwise 'N' is displayed.

AS JSON can be specified if you want the output to be in JSON format.

Example 5-7 Describe Table

AS JSON can be specified if you want the output to be in JSON format.

DESCRIBE TABLE users;

 === Information ===
 +-------+-----+-------+----------+----------+--------+----------+---------
+-------------+
 | name | ttl | owner | sysTable | r2compat | parent | children | indexes |
description |
 +-------+-----+-------+----------+----------+--------+----------+---------
+-------------+
 | users | | | N | N | | |
| |
 +-------+-----+-------+----------+----------+--------+----------+---------
+-------------+

 === Fields ===
 +----+-------------+---------------------+----------+-----------+----------
+------------+----------+
 | id | name | type | nullable | default | shardKey
| primaryKey | identity |
 +----+-------------+---------------------+----------+-----------+----------
+------------+----------+
 | 1 | id | Integer | N | NullValue | Y
| Y | |

Chapter 5
DESCRIBE TABLE Statement

5-13

 +----+-------------+---------------------+----------+-----------
+----------+------------+----------+
 | 2 | firstName | String | Y | NullValue
| | | |
 +----+-------------+---------------------+----------+-----------
+----------+------------+----------+
 | 3 | lastName | String | Y | NullValue
| | | |
 +----+-------------+---------------------+----------+-----------
+----------+------------+----------+
 | 4 | otherNames | Array(| Y | NullValue
		RECORD(
		first : String,	
		last : String	
))	
+----+-------------+---------------------+----------+-----------			
+----------+------------+----------+			
5	age	Integer	Y
+----+-------------+---------------------+----------+-----------			
+----------+------------+----------+			
6	income	Integer	Y
+----+-------------+---------------------+----------+-----------			
+----------+------------+----------+			
7	address	Json	Y
+----+-------------+---------------------+----------+-----------			
+----------+------------+----------+			
8	connections	Array(Integer)	Y
+----+-------------+---------------------+----------+-----------			
+----------+------------+----------+			
9	expenses	Map(Integer)	Y
 +----+-------------+---------------------+----------+-----------
+----------+------------+----------+

Example 5-8 Describe Table

The following statement provides information about the users table and its fields in
JSON format.

DESC AS JSON TABLE users;

{
 "json_version" : 1,
 "type" : "table",
 "name" : "users",
 "shardKey" : ["id"],

Chapter 5
DESCRIBE TABLE Statement

5-14

 "primaryKey" : ["id"],
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER",
 "nullable" : false,
 "default" : null
 }, {
 "name" : "firstName",
 "type" : "STRING",
 "nullable" : true,
 "default" : null
 }, {
 "name" : "lastName",
 "type" : "STRING",
 "nullable" : true,
 "default" : null
 }, {
 "name" : "otherNames",
 "type" : "ARRAY",
 "collection" : {
 "name" : "RECORD_gen",
 "type" : "RECORD",
 "fields" : [{
 "name" : "first",
 "type" : "STRING",
 "nullable" : true,
 "default" : null
 }, {
 "name" : "last",
 "type" : "STRING",
 "nullable" : true,
 "default" : null
 }]
 },
 "nullable" : true,
 "default" : null
 }, {
 "name" : "age",
 "type" : "INTEGER",
 "nullable" : true,
 "default" : null
 }, {
 "name" : "income",
 "type" : "INTEGER",
 "nullable" : true,
 "default" : null
 }, {
 "name" : "address",
 "type" : "JSON",
 "nullable" : true,
 "default" : null
 }, {
 "name" : "connections",
 "type" : "ARRAY",
 "collection" : {

Chapter 5
DESCRIBE TABLE Statement

5-15

 "type" : "INTEGER"
 },
 "nullable" : true,
 "default" : null
 }, {
 "name" : "expenses",
 "type" : "MAP",
 "collection" : {
 "type" : "INTEGER"
 },
 "nullable" : true,
 "default" : null
 }]
}

Example 5-9 Describe Table

The following statement provides information about a specific field in the users table.

DESCRIBE TABLE users (income);

 +----+--------+---------+----------+-----------+----------
+------------+----------+
 | id | name | type | nullable | default | shardKey |
primaryKey | identity |
 +----+--------+---------+----------+-----------+----------
+------------+----------+
 | 1 | income | Integer | Y | NullValue |
| | |
 +----+--------+---------+----------+-----------+----------
+------------+----------+

Table Hierarchies
The Oracle NoSQL Database enables tables to exist in a parent-child relationship.
This is known as table hierarchies.

The create table statement allows for a table to be created as a child of another table,
which then becomes the parent of the new table. This is done by using a composite
name (a name_path) for the child table. A composite name consists of a number N (N
> 1) of identifiers separated by dots. The last identifier is the local name of the child
table and the first N-1 identifiers are the name of the parent.

Semantics

The semantic implications of a parent-child relationship are the following:

• A child table inherits the primary key columns of its parent table. This is done
implicitly, without including the parent columns in the create table statement of the
child. For example, in the following Example 5-10 example, table A.B has an extra
column, called ida, and its primary key columns are ida and idb. Similarly, table
A.B.C has 2 extra columns, ida and idb, and its primary key columns are ida, idb,
and idc. The inherited columns are placed first in the schema of a child table.

Chapter 5
Table Hierarchies

5-16

• All tables in the hierarchy have the same shard key columns, which are specified in the
create table statement of the root table. So, in our example, the common shard key is
column ida. Trying to include a shard key clause in the create table statement of a non-
root table will raise an error.

• A parent table cannot be dropped before its children are dropped.

• When two rows RC and RP from a child table C and its parent table P, respectively, have
the same values on their common primary key columns, we say that RP and RC match,
or that RP contains RC. In this case, RP and RC will also be co-located physically,
because they have the same shard key. Given that a child table always has more primary
key columns than its parent, a parent row may contain multiple child rows, but a child row
will match with at most one parent row.

Note:

Oracle NoSQL Database does not require that all the rows in a child table have a
matching row in the parent table. In other words, a referential integrity constraint is
not enforced.

Given that the Oracle NoSQL Database model includes arrays and maps, one may wonder
why are child tables needed? After all, for each parent row, its matching child rows could be
stored in the parent row itself inside an array or map. However, doing so could lead to very
large parent rows, resulting in bad performance. This is especially true given the append-only
architecture of the Oracle NoSQL Database store, which implies that a new version of the
whole row is created every time the row is updated. So, child tables should be considered
when each parent row contains a lot of child rows and/or the child rows are large. If, in
addition, the child rows are not accessed very often or if they are updated very frequently,
using child tables becomes even more appealing.

Example 5-10 Table Hierarchy

The following statements create a table hierarchy, that is a tree of tables connected by
parent-child relationships. A is the root table, A.B and A.G are children of A, and A.B.C is a
child of A.B (and a grandchild of A).

CREATE TABLE A (
 ida INTEGER, a1 STRING, a2 INTEGER, PRIMARY KEY(ida));
CREATE TABLE A.B (
 idb INTEGER, b1 STRING, a2 STRING, PRIMARY KEY(idb));
CREATE TABLE A.B.C (
 idc INTEGER, b1 STRING, c2 STRING, PRIMARY KEY(idc));
CREATE TABLE A.G (
 idg INTEGER, g1 STRING, g2 DOUBLE, PRIMARY KEY(idg));

Table Hierarchy in a Multi-Region table:

You can create child tables in an existing Multi-Region architecture. For example, create the
table users in two regions, FRA and LON.

CREATE TABLE users (
 id INTEGER,
 name STRING,
 team STRING,

Chapter 5
Table Hierarchies

5-17

 PRIMARY KEY (id))
 IN REGIONS FRA,LON;

Under the users table, you can create a child table using this statement.

CREATE TABLE users.userdet (
 pan INTEGER,
 address STRING,
 email STRING,
 PRIMARY KEY(pan));

Specifying the REGIONS clause while creating a Multi-Region child table will result in
an error as illustrated below.

REATE TABLE users.userinfo (pan INTEGER, address STRING, email
STRING, PRIMARY KEY(pan)
 IN REGIONS FRA,LON) ;

Error handling command CREATE TABLE users.userinfo (
 pan INTEGER,
 address STRING,
 email STRING,
 PRIMARY KEY(pan) IN REGIONS FRA,LON): Error: at (5, 24) missing
')' at 'IN', at line 5:24
 rule stack: [parse, statement, create_table_statement]

You can view the description of the Multi-Region child table as shown below. Note that
the child table automatically inherits the primary key columns of its parent table.

sql-> desc as json table users.userdet;
{
 "json_version" : 1,
 "type" : "table",
 "name" : "userdet",
 "parent" : "users",
 "regions" : {
 "2" : "FRA",
 "1" : "LON"
 },
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER",
 "nullable" : false
 }, {
 "name" : "pan",
 "type" : "INTEGER",
 "nullable" : false
 }, {
 "name" : "address",
 "type" : "STRING",
 "nullable" : true
 }, {
 "name" : "email",

Chapter 5
Table Hierarchies

5-18

 "type" : "STRING",
 "nullable" : true
 }],
 "primaryKey" : ["id", "pan"],
 "shardKey" : ["id"]
}

Using JSON Collection Tables
A JSON collection table facilitates the creation of a schema-less table. You can define the
primary key fields using several NoSQL data types (See Creating JSON collection table). You
can add data into the table using an INSERT or UPSERT statement. Each row is a single
document, which can contain any number of JSON fields.

You can create the JSON collection tables with optional TTL values or add the TTL values
later by modifying the table. No other alteration is allowed on JSON collection tables.

Significance of JSON Collection Tables

JSON collection tables are useful for applications that store and retrieve data purely as
documents. It is a convenient development paradigm for those applications where using a
fixed schema is not optimal. Tables with a fixed schema require the specification of column
names during creation and DML operations. The addition or removal of fields from fixed
schema tables requires schema evolution, which is a costly operation.

As the JSON collection tables are schema-less, you do not have to modify the schema to add
or remove documents from the table. The rows in the JSON collection tables can differ from
one another in terms of the number of JSON fields that can be stored without predeclaring
the JSON column names.

Creating JSON collection table

You can use the following syntax to create the JSON collection table.

Syntax

json_collection_definition ::= AS JSON COLLECTION

Semantics

You create a JSON collection table with one or more primary key fields. When you insert data
into the table, a single document is created without an explicit declaration of a column of type
JSON. The document can contain any number of JSON fields. The JSON fields must be valid
JSON data types. Using non-JSON data types while inserting data will cause an exception.
The primary key fields can include IDENTITY columns and UUIDs. The JSON collection
tables can't be changed into fixed-schema tables.

You can create a JSON collection table with MR_COUNTERS if the table is intended to be a
multi-region table. The MR_COUNTERS must be declared at the time of table creation and
must be only top-level fields in the document. You can't include MR_COUNTERS elsewhere
in the document.

You can supply an optional TTL value during the table creation. You can use the ALTER
TABLE statement to only modify the TTL values.

The JSON collection tables support the following data types for the primary key fields:

Chapter 5
Using JSON Collection Tables

5-19

Table 5-1 Data types for primary key fields in JSON collection tables

Field type Supported data type

Primary key fields • integer
• long
• double
• float
• number
• string

The following examples demonstrate the creation of JSON collection tables. For
inserting data into the tables, see Inserting Rows into JSON Collection Tables.

JSON collection table for a sample application

Example 5-11 Create a JSON collection table for a shopping application

CREATE TABLE storeAcct(contactPhone string, primary key(contactPhone))
AS JSON COLLECTION

Explanation: In the above DDL statement, you create a JSON collection table for a
shopping application. This table includes the contactPhone as the primary key field.
There is no need to supply any other field except the primary key field in the DDL
command.

When you insert data into the table, the JSON collection table automatically considers
the inserted fields other than the primary key fields to be JSON fields.

JSON collection table with more than one primary key fields

Example 5-12 Create a JSON collection table with an IDENTITY column as one
of the primary key fields and a TTL value of 90 days

CREATE TABLE storeAcctComposite(contactPhone string, id integer
generated by default as
 identity, primary key(contactPhone, id)) AS JSON COLLECTION
USING TTL 90 DAYS

Explanation: The table includes two primary key fields, one of them is a
contactPhone field and the other is id, which is declared as an IDENTITY column to
autogenerate the order IDs. In this example, you create the table with a TTL value of
90 days. In the JSON collection DDL, you supply the USING TTL clause followed by
the number of hours/days to create with TTL.

JSON collection table with MR_COUNTERS

Example 5-13 Create a JSON collection table for a shopping application with
MR_COUNTERS in two regions

CREATE TABLE storeAcctMR(contactPhone string, primary
key(contactPhone), mycounter as integer mr_counter) in regions FRA,
LON AS JSON COLLECTION

Chapter 5
Using JSON Collection Tables

5-20

Explanation: In the above DDL statement, you create a JSON collection table with an
MR_COUNTER data type in two regions FRA and LON. To create regions, see CREATE
REGION Statement.

You must define a table column as an MR_COUNTER along with its subtype during the table
creation. When you insert data into this table, excluding primary key fields and
MR_COUNTERS, all other supplied fields are implicitly added as JSON fields.

Chapter 5
Using JSON Collection Tables

5-21

Note:

• Declaring MR_COUNTERS in nested JSON fields in the document is not
supported and will return an error if tried. The MR_COUNTERS must be
top-level fields in the document.

Example 1: MR_COUNTER as a top-level field in the document after
inserting data into the storeAcctMR table above.

{
 "contactPhone" : "1817113382",
 "address" : {
 "city" : "Houston",
 "number" : 401,
 "state" : "TX",
 "street" : "Tex Ave",
 "zip" : 95085
 },
 "firstName" : "Adam",
 "lastName" : "Smith",
 "mycounter" : 0
}

Example 2: In this example, you are trying to declare an MR_COUNTER
(counter) in the address field of the document, which is not supported
and returns the following error:

create table storeAcctMR(contactPhone string, primary
key(contactPhone), mycounter as integer mr_counter,
address.counter as integer mr_counter) in regions FRA, LON
as json collection

Error handling command create table
storeAcctMR(contactPhone string, primary key(contactPhone),
mycounter as integer mr_counter, address.counter as integer
mr_counter) in regions FRA, LON as json collection: Error:
Error found when creating the table: MR Counter in JSON
Collection may contain only alphanumeric values plus the
character "_": address.counter

• Ensure that all the regions mentioned in the create table statement are
predefined. Declaring regions that are not available during the table
creation will result in an error.

• Adding or removing the MR_COUNTERS from the JSON collection table
through schema evolution is not supported.

Chapter 5
Using JSON Collection Tables

5-22

Using the IDENTITY Column
Declare a column as IDENTITY to have Oracle NoSQL Database automatically assign values
to it, where the values are generated from an associated sequence generator. The SG is the
table’s manager for tracking the IDENTITY column’s current, next, and total number of
values.

You create an IDENTITY column as part of a CREATE TABLE name DDL statement, or add an
IDENTITY column to an existing table with an ALTER TABLE name DDL statement.

Syntax

identity_definition ::=
GENERATED (ALWAYS | (BY DEFAULT [ON NULL])) AS IDENTITY
["(" sequence_generator_attributes+ ")"]

Semantics

An INTEGER, LONG, or NUMBER column in a table can be defined as an identity column.
The system can automatically generate values for the identity column using a sequence
generator. See Sequence Generator section. A value for an identity column is generated
during an INSERT, UPSERT, or UPDATE statement.

An identity column can be defined either as GENERATED ALWAYS or GENERATED BY
DEFAULT.

GENERATED ALWAYS
The system always generates a value for the identity column. An exception is raised if the
user supplies a value for the identity column.

GENERATED BY DEFAULT
The system generates a value for the identity column only if the user does not supply a value
for it. If ON NULL is specified for GENERATED BY DEFAULT, the system will generate a
value when the user supplies a NULL value or the value evaluates to a NULL.

Sequence Generator Attributes

An SG has several attributes that define its behavior, such as the starting value for its
IDENTITY column, or the number of values stored in cache. You can optionally define some
SG attributes when you create an IDENTITY column, or use all default values. For more
information about the Sequence Generator attributes, see Sequence Generator.

Note:

Using an IDENTITY column in any table does not force uniqueness. If your
application requires unique values for every row of an IDENTITY column, you must
create the column as GENERATED ALWAYS AS IDENTITY, and never permit any
use of the CYCLE SG attribute.

Identity Column Characteristics

• There can be only one IDENTITY column per table.

Chapter 5
Using the IDENTITY Column

5-23

• The IDENTITY column of a table can be part of the primary key or the shard key.

• You can add, remove, or change rows of an IDENTITY column, though certain
limitations exist on such updates, depending on how you create the IDENTITY
column, and whether it is a Primary Key.

• Secondary indexes can be created on an identity column.

• Dropping a table that was created with an IDENTITY column also removes the
Sequence Generator.

• The set of values that may be assigned to an IDENTITY column is defined by its
data type and the attributes of the sequence generator attached to it. The values
are always integer numbers. Both negative and positive INTEGER are possible. If
you want only positive values, then set the START WITH attribute to 1 and specify
a positive INCREMENT BY attribute. When you specify CYCLE, numbers will be
regenerated from the MINVALUE. In this case, if you want positive values you
must also set MINVALUE to be a positive number.

• The system generates unique values for an IDENTITY column that is defined as
GENERATED ALWAYS and has the sequence generator attribute NO CYCLE set.
Otherwise, duplicate identity values can occur in the following scenarios:

– The identity column is defined as GENERATED BY DEFAULT and the user
supplies a value during an insert or update statement that already exists in the
table for the IDENTITY column.

– The CYCLE option is set for an IDENTITY column that is defined as
GENERATED BY DEFAULT or GENERATED ALWAYS and the sequence
generator reaches the end of the cycle and then recycles through the
sequence generator to generate values that were generated in the previous
cycle.

– If the IDENTITY column properties are altered using the alter table statement
so that during an insert or update operation the user can supply a value that
already exists.

• If more than one client accesses a table with an IDENTITY column defined for
unique values this way, each client is assigned contiguous value sets to its SG
cache. These sets do not overlap with other client sets. For example, Client1 is
assigned values 0001 – 1000, while Client2 has 1001 – 2000, and so on. Thus, as
each client adds rows to the table, the IDENTITY values can run as 0001, 1001,
0002, 1002, 1003, and so on, as both clients use their own cache when adding
rows. The IDENTITY column values are guaranteed to be unique, but not
necessarily contiguous, because each client has its own set of cache values, and
adds rows at different speeds and times.

• Sequence generator attributes can be altered using the alter table statement.

• Users require table privileges to create tables with an IDENTITY column. For a
description of user privileges, see KVStore Required Privileges in the Security
Guide.

• Holes in the sequence can occur when:

– The application caches identity values and shuts down or crashes before
using all of the cached values for inserting rows.

– Identity values are assigned during a transaction that is rolled back.

Chapter 5
Using the IDENTITY Column

5-24

https://docs.oracle.com/pls/topic/lookup?ctx=en/database/other-databases/nosql-database/21.1/java-driver-table&id=NSSEC-GUID-9406CF62-35A2-4FC8-AAD9-087150699B69

• Creating MR tables with an IDENTITY column is not supported and the system returns an
error message. For more information on MR table creation, see Create MR Tables.

• For example on inserting rows with an identity column see, Inserting Rows with an
IDENTITY Column section.

Example 5-14 Identity Column using GENERATED ALWAYS

CREATE TABLE T1 (
 id INTEGER GENERATED ALWAYS AS IDENTITY
 (START WITH 2 INCREMENT BY 2 MAXVALUE 200 NO CYCLE),
 name STRING,
 PRIMARY KEY (id)
);

In the above example, the INTEGER column id is defined as a GENERATED ALWAYS AS
IDENTITY column and is the primary key for table T. The system will start to generate values
2 through 200 incrementing by 2. So values for the id column will be 2,4,6,8,…200. Since the
NO CYCLE option is defined, the system will raise an exception after the number 200 is
generated saying it has reached the end of the sequence generator.

Example 5-15 Identity Column using GENERATED BY DEFAULT

CREATE TABLE T2 (
 id LONG GENERATED BY DEFAULT AS IDENTITY
 (START WITH 1 INCREMENT BY 1 CYCLE CACHE 200),
 account_id INTEGER,
 name STRING,
 PRIMARY KEY (account_id)
);

In the above example, the creation of a table with an identity column on id column is shown.
The id column is of type LONG, is defined as GENERATED BY DEFAULT, and it is not a
primary key column. This example also demonstrates how to specify a CYCLE and CACHE
sequence generator attributes. The system will only generate a value during INSERT/
UPSERT/UPDATE if the user did not supply a value. It starts off generating values 1, 2, 3,...
up to the maximum value of the LONG datatype, and once it exhausts all the sequence
generator values, it will cycle through and re-start from the MINVALUE value of the sequence
generator, which in this case, is the minimum value of the LONG datatype. The CACHE value
of 200 means that every time a client uses up the values in the cache and asks for the next
value, the system will give it 200 values to fill up the cache. In this example, the system will
give values 1 through 200 when a client asks for a value for the first time. Another client
operating on the same table may get values 201-300, so on and so forth.

Creating Tables With an IDENTITY Column
You can create an IDENTITY column when you create a table, or change an existing table to
add an IDENTITY column using ALTER TABLE...ADD. In either case, choose one of the

Chapter 5
Using the IDENTITY Column

5-25

IDENTITY statements described below. This section describes creating a table with an
IDENTITY column.

Here is the formal syntax for creating a table with an IDENTITY column:

GENERATED (ALWAYS | (BY DEFAULT [ON NULL])) AS IDENTITY
 [sequence_options,...]

The optional sequence_options refer to all of the Sequence Generator attributes you
can supply.

IDENTITY Column Statement Description

GENERATED ALWAYS AS IDENTITY The sequence generator always supplies an
IDENTITY value. You cannot specify a value
for the column.

GENERATED BY DEFAULT AS IDENTITY The sequence generator supplies an
IDENTITY value any time you do not supply a
column value.

GENERATED BY DEFAULT ON NULL AS
IDENTITY

The sequence generator supplies the next
IDENTITY value if you specify a NULL
columnn value.

To create a table with a column GENERATED ALWAYS AS IDENTITY from the SQL CLI:

sql-> CREATE TABLE IF NOT EXISTS tname1 (
idValue INTEGER GENERATED ALWAYS AS IDENTITY,
acctNumber INTEGER,
name STRING,
PRIMARY KEY (acctNumber));
Statement completed successfully
sql->

For this table, tname1, each time you add a row to the table, the Sequence Generator
(SG) updates the idvalue from its cache. You cannot specify a value for idValue. If
you do not specify any sequence generator attributes, the SG uses its default values.

To create a table with a column GENERATED BY DEFAULT ON NULL AS IDENTITY:

sql-> CREATE TABLE IF NOT EXISTS tname2 (
idvalue INTEGER GENERATED BY DEFAULT ON NULL AS IDENTITY,
acctNumber INTEGER,
name STRING,
PRIMARY KEY (acctNumber));
Statement completed successfully
sql->

For this table, tname2, each time you add a row, the SG inserts the next available
value from its cache if no value is supplied for the idvalue column, the supplied value
for the idvalue column is NULL.

Chapter 5
Using the IDENTITY Column

5-26

To create a table with a column GENERATED BY DEFAULT AS IDENTITY:

sql-> CREATE TABLE IF NOT EXISTS tname3 (
idvalue INTEGER GENERATED BY DEFAULT AS IDENTITY,
acctNumber INTEGER,
name STRING,
PRIMARY KEY (acctNumber));
Statement completed successfully
sql->

For this table, tname3, each time you add a row, the SG inserts the next available value from
its cache if no value is supplied for the idvalue column.

To create a new table, sg_atts, with several SG attributes:

sql-> CREATE Table sg_atts (
id INTEGER GENERATED ALWAYS AS IDENTITY
(START WITH 2
INCREMENT BY 2
MAXVALUE 200
NO CYCLE),
name STRING,
PRIMARY KEY (id));
Statement completed successfully
sql->

The table sg_atts specifies that the integer IDENTITY field (id) is generated always.

SG Attribute Description

start with 2 Start the sequence value at 2.

increment by 2 Increment the sequence value by 2 for each row.

maxvalue 200 Specifies the maximum IDENTITY value. What you specify overrides
the default value maxvalue, which is the upper bound of the IDENTITY
datatype in use. Once the IDENTITY column reaches this value, 200,
the SG will not generate any more IDENTITY values. The maximum
value has been reached and the no cycle attribute is in use.

no cycle Do not restart from 2 or with any value at all, once the column reaches
the maxvalue.

To create another table, sg_some_atts, with some SG attributes:

sql-> CREATE Table sg_some_atts (
id LONG GENERATED BY DEFAULT AS IDENTITY
(START WITH 1
INCREMENT BY 1
CYCLE
CACHE 200),
account_id INTEGER,
name STRING,
PRIMARY KEY (account_id));

Chapter 5
Using the IDENTITY Column

5-27

For the sg_some_atts table, specify an id column GENERATED BY DEFAULT AS
IDENTITY, but which is not the primary key.

SG Attribute or Other
Detail

Description

CYCLE Specifying CYCLE indicates that the SG should supply IDENTITY
values up to either the MAXVALUE attribute you specify, or the
default MAXVALUE. When the IDENTITY reaches the MAXVALUE
value, the SG restarts the values over, beginning with MINVALUE,
if it is specified, or with the default MINVALUE for the data type.
CYCLE is orthogonal to the CACHE attribute, which indicates only
how many values to store in local cache for swift access. You can
set CACHE value to closely reflect the maximum value of the
datatype, but we do not recommend this, due to the client cache
size.

CACHE 200 The number of values that each client stores in its cache for fast
retrieval. When the IDENTITY reaches the last number in the
cache, the SG gets another set of values from the server
automatically.

START WITH 1 The SG generates values 1, 2, 3 and so on, until it reaches the
maximum value for a LONG data type.

INCREMENT BY 1 The SG increments each new IDENTITY value for every new row.

For a full list of all sequence generator attributes, see Sequence Generator.

Using the UUID data type
Overview of the UUID data type

A universally unique identifier (UUID) is a 128-bit number used to identify information
in computer systems. You can create a UUID and use it to uniquely identify something.
In its canonical textual representation, the 16 octets of a UUID are represented as 32
hexadecimal (base-16) digits, displayed in five groups separated by hyphens, in the
form 8-4-4-4-12 for a total of 36 characters (32 hexadecimal characters and 4
hyphens). For example, a81bc81b-dead-4e5d-abff-90865d1e13b1.

In Oracle NoSQL, UUID values are represented by the UUID data type. The UUID
data type is considered a subtype of the STRING data type, because UUID values are
displayed in their canonical textual format and, in general, behave the same as string
values in the various SQL operators and expressions. However, in order to save disk
space, the UUID value is saved in a compact format on disk. If the UUID value is the
primary key, the canonical 36-byte string is converted to a 19-byte string, then is saved
on disk. If the UUID value is a non-primary key, the canonical 36-byte string is
converted to a 16-byte array, then is saved on disk.

A table column can be declared as having UUID type in a CREATE TABLE statement.
The UUID data type is best-suited in situations where you need a globally unique
identifier for the records in a table that span multiple regions since identity columns are
only guaranteed to be unique within a NoSQL cluster in a region.

Using the UUID data type:

Declare a column with UUID data type. UUID is a subtype of the STRING data type.
This UUID column can be defined as GENERATED BY DEFAULT. The system then
automatically generates a value for the UUID column if you do not supply a value for it.

Chapter 5
Using the UUID data type

5-28

Syntax:

uuid_definition := AS UUID [GENERATED BY DEFAULT]

Semantics

Declares the type of a column to be the UUID type. If the GENERATED BY DEFAULT
keywords are used, the system generates a value for the UUID column automatically, if the
user does not supply one.

UUID Column Characteristics :

• One table can have multiple columns defined as "STRING AS UUID". However, one table
can have only one column defined as "STRING AS UUID GENERATED BY DEFAULT".

• Since the Identity column is also generated by the system, the Identity column and the
UUID GENERATED BY DEFAULT columns are mutually exclusive. That means only one
IDENTITY column or one "UUID GENERATED BY DEFAULT" can exist per table.

• You create a UUID column as part of a CREATE TABLE DDL statement or add a UUID
column to an existing table with an ALTER TABLE DDL statement.

• You can also index UUID columns via secondary indexes.

Example 1: UUID Column without GENERATED BY DEFAULT

CREATE TABLE myTable (id STRING AS UUID,name STRING, PRIMARY KEY (id))
Statement completed successfully

In the above example, the id column has no "GENERATED BY DEFAULT" defined, therefore,
whenever you insert a new row, you need to explicitly specify a value for the id column.

INSERT INTO myTable
 values("a81bc81b-dead-4e5d-abff-90865d1e13b1", "test1")
Statement completed successfully

Input format: The input string must conform to the format specified by RFC 4122. An
IllegalArgumentException is thrown if the input string does not conform to the string
representation as described at Class UUID.

Output format: The output is a UUID canonical format. This is 32 hexadecimal(base-16)
digits, displayed in five groups separated by hyphens, in the form 8-4-4-4-12 for a total of 36
characters (32 hexadecimal characters and 4 hyphens).

The value for a UUID column can also be generated using the random_uuid function, which
returns a randomly generated UUID, as a string of 36 characters. See Function to generate a
UUID string.

Example 2: UUID Column using GENERATED BY DEFAULT

CREATE TABLE myTable (id STRING AS UUID GENERATED BY DEFAULT, name STRING,
PRIMARY KEY (id))
Statement completed successfully

Chapter 5
Using the UUID data type

5-29

In the above example, the id column has "GENERATED BY DEFAULT" defined,
therefore, whenever you insert a new row without specifying the value for the id
column, Oracle NoSQL Database automatically generates a value for it.

INSERT INTO myTable VALUES(default,"test1")
Statement completed successfully

Table 5-2 Comparison between Identity Column and UUID column

Identity Column UUID column

Declare a column as Identity to have Oracle
NoSQL Cluster automatically assign values to
it

Declare a column as UUID if you need unique
values to be assigned to a NoSQL Cluster
column in a multi-region system

An INTEGER, LONG, or NUMBER column in
a table can be defined as an Identity column

A UUID is a subtype of the STRING data type

An Identity column can be defined either as
GENERATED ALWAYS or GENERATED BY
DEFAULT

A UUID column can be defined as
GENERATED BY DEFAULT or you can supply
the value of the string while inserting or
updating data

Ideal in a single cluster architecture The UUID data type is best suited In situations
where you need a globally unique identifier for
the records in a table that span multiple
regions since identity columns are only
guaranteed to be unique within a NoSQL
cluster in a region.

Costs less storage space than a
corresponding UUID column.

If LONG is the primary key, it costs a
maximum of 10 bytes. If LONG is a non-
primary key, it costs a maximum of 8 bytes.

Costs more storage space than a
corresponding Identity column.

If the UUID value is the primary key, it costs
19-bytes. If the UUID value is a non-primary
key, it costs 16-bytes.

Using the MR_COUNTER datatype
• Using CRDT datatype in a multi-region table

• Create table using MR_COUNTER datatype

Using CRDT datatype in a multi-region table
Overview of the MR_COUNTER data type

MR_Counter data type is a counter CRDT. CRDT stands for Conflict-free Replicated
Data Type. In a multi-region setup of an Oracle NoSQL Database, a CRDT is a data
type that can be replicated across servers where regions can be updated
independently and it converges on a correct common state. Changes in the regions
are concurrent and not synchronized with one another. In short, CRDTs provide a way
for concurrent modifications to be merged across regions without user intervention.
Oracle NoSQL Database currently supports the counter CRDT which is called
MR_Counter. The MR_COUNTER datatype is a subtype of the INTEGER or LONG or
NUMBER data type. You can also use the MR_COUNTER data type in a schema-less
JSON field, which means one or more fields in a JSON document can be of
MR_COUNTER data type.

Why do you need MR_Counter in a multi-region table?

Chapter 5
Using the MR_COUNTER datatype

5-30

In a multi-region database configuration, copies of the same data need to be stored in
multiple regions. This configuration needs to deal with the fact that the data may be
concurrently modified in different regions.

Take an example of a multi-region table in three different regions (where data is stored in
three different Oracle NoSQL Database stores). Concurrent updates of the same data in
multiple regions, without coordination between the machines hosting the regions, can result
in inconsistencies between the regions, which in the general case may not be resolvable.
Restoring consistency and data integrity when there are conflicts between updates may
require some or all of the updates to be entirely or partially dropped. For example, in the
current configuration of a multi-region table in the Oracle NoSQL Database, if the same
column (a counter) of a multi-region table is updated across two regions at the same time
with different values, a conflict arises.

Currently, the conflict resolution is that the latest write overwrites the value across regions.
For example, Region 1 updates column1 with a value R1, and region2 updates column1 with
a value R2, and if the region2 update happens after region1, the value of the column
(counter) in both the regions becomes R2. This is not what is actually desired. Rather every
region should update the column (a counter) at their end and also the system internally needs
to determine the sum of the column across regions.

One way to handle this conflict is making serializable/linearizable transactions (one
transaction is completed and changes are synchronized in all regions and only then the next
transaction happens). A significant problem of having serializable transactions is
performance. This is where MR_COUNTER datatype comes in handy. With MR_COUNTER
datatype, we don't need serializable transactions and the conflict resolution is taken care of.
That is, MR_COUNTER datatype ensures that though data modifications can happen
simultaneously on different regions, the data can always be merged into a consistent state.
This merge is performed automatically by MR_COUNTER datatype, without requiring any
special conflict resolution code or user intervention.

Use-case for MR_COUNTER datatype

Consider a Telecom provider providing different services and packages to its customers. One
such service is a "Family Plan" option where a customer and their family share the Data
Usage plan. The customer is allocated a free data usage limit for a month which your the
customer's entire family collectively uses. When the total usage of customer's family reaches
90 percent of the data limit, the telecom provider sends the customer an alert. Say there are
four members in customer's family plan who are spread across different physical regions. The
customer needs to get an alert from the telecom provider once the total consumption of their
family reaches 90 percent of the free usage. The data is replicated in different regions to
cater to latency, throughput, and better performance. That means there are four regions and
each has a kvstore containing the details of the customer's data usage. The usage of their
family members needs to be updated in different regions and at any point in time, the total
usage should be monitored and an alert should be sent if the data usage reaches the limit.

An MR_COUNTER data type is ideal in such a situation to do conflict-free tracking of the data
usage across different regions. In the above example, an increment counter in every data
region's data store will track the data usage in that region. The consolidated data usage for all
regions can be determined by the system at any point without any user intervention. That is
the total data usage at any point in time can be easily determined by the system using an
MR_COUNTER datatype.

Types of MR_COUNTER Datatype

Currently, Oracle NoSQL Database supports only one type of MR_COUNTER data type.
which is Positive-Negative (PN) counter.

Chapter 5
Using the MR_COUNTER datatype

5-31

Positive-Negative (PN) Counter

A PN counter can be incremented or decremented. Therefore, these can serve as a
general-purpose counter. For example, you can use these counters to count the
number of users active on a social media website at any point. When the users go
offline you need to decrement the counter.

To create a multi-region table with an MR_COUNTER column, See Create multi-region
table with an MR_COUNTER column section in the Administrator's Guide.

A MR_COUNTER (JSON and a non-JSON) can only be defined when the field in a
schema is defined. You can do this in the following places:

• During schema definition in table creation.

• During schema definition when adding a field to the schema.

Create table using MR_COUNTER datatype
You can declare a table column of MR_Counter data type in a CREATE TABLE
statement. You can do this only in a multi-region table.

Declare a column with MR_COUNTER data type. MR_COUNTER is a subtype of the
INTEGER or LONG or NUMBER data type. You can also declare a field in a JSON
column as MR_COUNTER data type.

Syntax:

mr_counter_defintion := AS MR_COUNTER

Semantics:

Declares the type of a column to be the MR_COUNTER type.

MR_COUNTER column Characteristics:

• MR_COUNTER data type can be used for a multi-region table only. It cannot be
used in regular tables.

• One table can have multiple columns defined as "MR_COUNTER".

• You create an MR_COUNTER column as part of a CREATE TABLE DDL
statement or add an MR_COUNTER column to an existing table with an ALTER
TABLE DDL statement.

• You can define any field in a JSON column as an MR_COUNTER.

• The default value of an MR_COUNTER data type is always 0.

• MR_COUNTER cannot be the element of an ARRAY.

Note:

MR_COUNTER cannot be a primary key or be part of a secondary index.

Chapter 5
Using the MR_COUNTER datatype

5-32

Example using MR_COUNTER data type - Create a PN counter data type in a multi-
region table

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;

In the above example, you create a PN counter data type in two regions DEN and LON.

While inserting data into the table, the system inserts the default value of 0 in the following
two cases.

• If you specify the "DEFAULT" keyword in the INSERT clause:
INSERT INTO myTable VALUES ("Bob", DEFAULT);

• If you skip the column in the INSERT clause:
INSERT INTO myTable(name) VALUES ("Bob");

Note:

For MR_COUNTER, the count contributed by a single region cannot overflow but the
MR_COUNTER value, which is the sum of counts for all regions can overflow.

For example, the above table myTable has an integer MR_COUNTER and there are two
regions DEN and LON. The region DEN cannot increment the count by a total
value greater than INTEGER.MAX. This is also applicable for the region LON.

However, if the region DEN increments the count by INTEGER.MAX and the region
LON increments it by 2, the value of count becomes (INTEGER.MAX.+2) which has
overflowed, but this is allowed.

Example: Create a multi-region table and declare fields in a JSON column as
MR_COUNTER data type

CREATE TABLE demoJSONMR(name STRING,
 jsonWithCounter JSON(counter as INTEGER MR_COUNTER,
 person.count as LONG MR_COUNTER),
 PRIMARY KEY(name)) IN REGIONS FRA,LON;

In the statement above, you create a multi-region table with a STRING column and a
column(JSON documents). You are identifying two of the fields in the JSON document as
MR_COUNTER data type. The first field is counter, which is an INTEGER MR_COUNTER
data type. The second field is count within an embedded JSON document (person). The
count field is of LONG MR_COUNTER data type.

Note:

There is no limit on the number of MR_COUNTER data types created inside a
JSON document.

Chapter 5
Using the MR_COUNTER datatype

5-33

Example: Insert data into multi-region table with a JSON MR_COUNTER

When inserting a row into the multi-region table with a JSON MR_COUNTER, you
must supply a value 0 to the MR_COUNTER.

Note:

• The system initially assigns a value of 0 to all MR_COUNTER data types
even if you explicitly supply a non-zero value. This also holds good when
you try to provide a value that is not an INTEGER or LONG or NUMBER.

• You can't supply the keyword DEFAULT while inserting a JSON
MR_COUNTER.

• The system will return an error if you try to insert data into an MR table
without supplying a value to the declared JSON MR_COUNTER field or
using the keyword DEFAULT.

INSERT INTO demoJSONMR VALUES ("Anna",
 {
 "id" : 1,
 "counter" : 0,
 "person" : {
 "age" : 10,
 "count" : 0,
 "number" : 100
 }
 }
);

SELECT * FROM demoJSONMR;
{"name":"Anna",
 "jsonWithCounter":{"id" : 1,"counter":0,
 "person":{"age":10,"count":0,"number":100}
 }
}

Sequence Generator
The sequence generator is a service that generates a sequence of integer numbers.
Every IDENTITY column you add to a table requires its own Sequence Generator
(SG). The SG is responsible for several tasks, including obtaining and supplying
values to the IDENTITY column as necessary.

Each IDENTITY column requires an associated, dedicated Sequence Generator (SG).
When you add an IDENTITY column, the system creates an SG that's runs on the
client with the application. Information about all attributes for every SG is added to a
system table, SYS$SGAttributesTable. You can see the contents of this system table
using a simple query such as this:

SELECT * FROM SYS$SGAttributesTable

Chapter 5
Sequence Generator

5-34

For other commands:

Differences in Commands Description

SHOW TABLES Returns a list of tables

DESCRIBE TABLE name1 Shows the schema of table name1

SELECT * FROM table_name Shows the data rows of table_name

Syntax

sequence_generator_attributes ::=
 (START WITH signed_int) |
 (INCREMENT BY signed_int) |
 (MAXVALUE signed_int) | (NO MAXVALUE) |
 (MINVALUE signed_int) | (NO MINVALUE) |
 (CACHE INT) | (NO CACHE) |
 CYCLE | (NO CYCLE)

Semantics

Oracle NoSQL Database only supports sequence generators that are attached to identity
columns. See Using the IDENTITY Column.The numbers in the generated sequence depend
on the attributes of the sequence generator attributes.

Following are the SG attributes that you can optionally specify when you create an IDENTITY
column, or change later using the ALTER TABLE statement.

Attribute Type Description

START WITH Integer The first value in the sequence.
Zero (0) is permitted as a Start
With value.
Default value: 1

INCREMENT BY Integer The next value in the sequence
is generated by adding
INCREMENT BY value to the
current value of the sequence.
The increment value can be a
positive number or a negative
number. Zero (0) is not permitted
as an Increment By value.
Specifying a negative number for
Increment By decrements
value from the current value of
the sequence.
Default value: 1

MINVALUE Integer The lower bound of the
IDENTITY values that the SG
supplies. You can either specify
MINVALUE or NO MINVALUE, but
not both.
Default value: -2^31, which is
the minimum value of the
INTEGER datatype.

Chapter 5
Sequence Generator

5-35

Attribute Type Description

NO MINVALUE Integer Specifies that there is no lower
bound of the IDENTITY values
that the SG supplies. SG uses
the minimum value of the
INTEGER datatype, which is
-2^31, as the lower bound of the
IDENTITY values. You can either
specify MINVALUE or NO
MINVALUE, but not both.

MAXVALUE Integer The upper bound of the
IDENTITY values that the SG
supplies. You can either specify
MAXVALUE or NO MAXVALUE, but
not both.
Default value: 2^31-1, which is
the maximum value of the
INTEGER datatype.

NO MAXVALUE Integer Specifies that there is no upper
bound of the IDENTITY values
that the SG supplies. SG uses
the maximum value of the
INTEGER data type, which is
2^31-1, as the upper bound of
the IDENTITY values. You can
either specify MAXVALUE or NO
MAXVALUE, but not both.

Chapter 5
Sequence Generator

5-36

Attribute Type Description

CACHE Integer The value of this attribute
specifies the count of sequence
numbers that will be generated
every time a request is made to
the sequence generator. These
requests originate at the Oracle
NoSQL Database clients and are
serviced by the sequence
generator, which "lives" at the
server. Specifically, the numbers
generated in each request are
sent back to the client and are
cached there. Whenever a client
needs to assign a value to an
IDENTITY column, the next
sequence number from the
cache is consumed. When cache
empties, a request for another
batch of CACHE sequence
numbers is sent to the sequence
generator.
If more than one client accesses
a table with an IDENTITY column
defined for unique values this
way, each client is assigned
contiguous value sets to its SG
cache. These sets do not overlap
with other client sets. For
example, Client1 is assigned
values 0001 – 1000, while
Client2 has 1001 – 2000, and
so on. Thus, as each client adds
rows to the table, the IDENTITY
values can run as 0001, 1001,
0002, 1002, 1003, and so on, as
both clients use their own cache
when adding rows. The
IDENTITY column values are
guaranteed to be unique, but not
necessarily contiguous, because
each client has its own set of
cache values, and adds rows at
different speeds and times.

You can either specify CACHE or
NO CACHE, but not both.

Default value: 1000
NO CACHE Integer Specifies that local cache is not

being used by the SG. You can
either specify CACHE or NO
CACHE, but not both.

Chapter 5
Sequence Generator

5-37

Attribute Type Description

CYCLE or NO CYCLE Boolean Determines whether or not SG
continues to generate values
after reaching either the
maximum or minimum value for
the datatype of the IDENTITY
column. After an ascending
sequence reaches its maximum
value, it generates its minimum
value. After a descending
sequence reaches its minimum,
it generates its maximum value.

If you specify CYCLE attribute,the
SG uses the total number of
values that can be generated for
an IDENTITY column of a
specific datatype (INTEGER,
LONG, or NUMBER), unless you
specify MAXVALUE to set a
different limit. Once the
sequence generator reaches the
end of the cycle and then
recycles through the sequence
generator to generate values that
were generated in the previous
cycle.

If you specify NO CYCLE
attribute, Oracle NoSQL
Database guarantees that each
IDENTITY column value is
unique, but not necessarily
sequential. For example, if you
set MaxValue as 10000, and
multiple clients add rows to the
table, each client is assigned a
certain amount of values to use.

Default Value: NO CYCLE

No

te:

If
you
spe
cify
the
CY
CL
E
attri
but
e,
all
of

Chapter 5
Sequence Generator

5-38

Attribute Type Description

the
exi
stin
g
val
ues
for
the
IDE
NTI
TY
col
um
n
are
use
d
aga
in,
pot
enti
ally
ove
rwri
ting
cur
ren
t
val
ues
in
pla
ce.
Cre
atin
g a
col
um
n
as
GE
NE
RA
TE
D
AL
WA
YS
AS
IDE
NTI
TY,
and
usi
ng

Chapter 5
Sequence Generator

5-39

Attribute Type Description

the
SG
NO
CY
CL
E
attri
but
e is
the
ON
LY
wa
y to
mai
ntai
n
uni
que
IDE
NTI
TY
col
um
n
val
ues
.

Following are internal SG attributes. You cannot specify any of these when you create
or add an IDENTITY column. Each is derived from how you create the IDENTITY field.
For example, one internal attribute is SGName, which is the column name you give the
IDENTITY field.

Attribute Type Description

SGType String [INTERNAL | EXTERNAL]. The
IDENTITY column you create,
or add to a table with a DDL
statement. The default is
INTERNAL.

SGName String Name of the IDENTITY field
you create and with which the
SG is associated.

Datatype String Sequence Generator datatype
that you specified as part of
the CREATE TABLE statement
for the IDENTITY column.
Each IDENTITY column can
be any numeric type:
INTEGER, LONG, or
NUMBER.

Chapter 5
Sequence Generator

5-40

Attribute Type Description

SGAttrVersion Long This is an internal attribute
that you cannot set. It is here
for future usage.

DROP TABLE Statement
The drop table statement removes the specified table and all its associated indexes from the
database.

Syntax

drop_table_statement ::= DROP TABLE [IF EXISTS] name_path

Semantics

IF EXISTS
By default, if the named table does not exist then this statement fails. If the optional IF
EXISTS is specified and the table does not exist then no error is reported.

IDENTITY
When a table with an identity column is dropped, the associated sequence generator is also
removed.

Example 5-16 Drop Table

CREATE TABLE DROPTEST (id INTEGER, name STRING, PRIMARY KEY(id));

DROP TABLE DROPTEST;

You cannot drop a parent table if there are child tables to it. To drop a parent table, first drop
all of its child tables. Otherwise, the DROP statement results in an error as shown below.

sql-> drop table users;
Error handling command drop table users: Error: User error in query:
DROP TABLE failed for table users:
Cannot remove table users, it is still referenced by child table

ALTER TABLE Statement
The behavior of NoSQL Database, when a schema evolves using ALTER TABLE statement,
is designed primarily for large data sets (tens to hundreds of billions of records). Simply put,
big data is larger and more complex data sets, especially from new data sources. These data
sets are so voluminous that traditional data processing software can’t manage them. But
these massive volumes of data are used to address business problems you wouldn’t have
been able to tackle before. Therefore, when you modify the table schema with ALTER TABLE
statement, NoSQL Database does not modify every record in the table and re-write them
back to disk. Instead, it uses the notion of a default value, and that value gets inserted when
a reader reads data that was written with a previous version of the schema.

Chapter 5
DROP TABLE Statement

5-41

However, in the case of identity columns, there is no way to generate a value other
than by writing a record, hence when a user alters a table and adds an identity
column, any reads of that column for records that were written prior to the later table
yields a null value for the identity column.

You can use the alter table command to perform the following operations.

• Add schema fields to the table schema

• Remove schema fields from the table schema

• Modify schema fields in the table schema

• Add region

• Remove region

• Modify identity definition

• Remove identity

• Modify the Time-To-Live value of the table

You can specify only one type of operation in a single command. For example, you
cannot remove a schema field and set the TTL value together.

Note:

In JSON collection tables, you can use the ALTER TABLE statement to only
modify the default TTL values of a table. Any other schema alteration is not
supported and an error message is returned.

Syntax

alter_table_statement ::=
 ALTER TABLE name_path (alter_field_statements | ttl_definition)

alter_field_statements ::=
 "(" alter_field_statement ("," alter_field_statement)* ")"

alter_field_statement ::=
 add_field_statement | drop_field_statement | modify_field_statement |
alter_regions_statement

add_field_statement ::=
 ADD schema_path type_definition
 [default_definition | identity_definition | uuid_definition | mr_counter_definition]
 [comment]

drop_field_statement ::= DROP schema_path

modify_field_statement ::=
 (MODIFY schema_path identity_definition) |
 (DROP IDENTITY)

alter_regions_statement ::= add_regions_statement |
drop_regions_statement

Chapter 5
ALTER TABLE Statement

5-42

add_regions_statement ::= ADD REGIONS region_names

drop_regions_statement ::= DROP REGIONS region_names

region_names ::= region_name ["," region_name]*

schema_path ::= init_schema_path_step ("." schema_path_step)*
init_schema_path_step ::= id ("[" "]")*
 schema_path_step ::= id ("[" "]")* | VALUES "(" ")"

Semantics

modify_field_statement
You can use the MODIFY keyword to modify only an identity column.

add_field_statement
Adding a field does not affect the existing rows in the table. If a field is added, its default
value or NULL will be used as the value of this field in existing rows that do not contain it.
The field to add may be a top-level field (i.e. A table column) or it may be deeply nested
inside a hierarchical table schema. As a result, the field is specified via a path. The path
syntax is a subset of the one used in queries and is described in the Path Expressions
section.

Note:

The mr_counter_definition parameter declares the type of a column to be the
MR_COUNTER datatype. This data type can be used only in a multi-region table.

drop_field_statement
Dropping a field does not affect the existing rows in the table. If a field is dropped, it will
become invisible inside existing rows that do contain the field. The field to drop may be a
top-level field (i.e. A table column) or it may be deeply nested inside a hierarchical table
schema. As a result, the field is specified via a path. The path syntax is a subset of the one
used in queries and is described in the Path Expressions section.

add_regions_statement
The add regions clause lets you link an existing MR Table with new regions in a multi-region
Oracle NoSQL Database environment. This clause is used in expanding MR Tables to new
regions. See Use Case 2: Expand a Multi-Region Table in the Administrator's Guide.

Note:

This clause will not work with MR child tables. Instead, alter the parent table to add
a new region. This will automatically add the region to all the child tables in the
hierarchy.

drop_regions_statement
The drop regions clause lets you disconnect an existing MR Table from a participating region
in a multi-region Oracle NoSQL Database environment. This clause is used in contracting

Chapter 5
ALTER TABLE Statement

5-43

MR Tables to fewer regions. See Use Case 3: Contract a Multi-Region Table
Administrator's Guide.

If you want to follow along with the examples, create tables and insert the data as
described in Tables used in the Examples.

Example 5-17 Add a field to the table schema

ALTER TABLE stream_acct(ADD acct_balance INTEGER DEFAULT 0)

Explanation: In this example, you add a new field acct_balance with a default value
of 0 to the TV streaming application. The new field is added to rows when the rows are
retrieved at any time from the table. The on-disk format is updated to include the new
field when a row is written back to the table. If you supply a default value in the ALTER
TABLE statement, the value is populated into the new field as rows are retrieved, or
when rows are written and your application has not supplied a value for the new field.
If a default value is not supplied, a NULL value is populated instead. The field can be
added as a top-level field (a table column) or it may be deeply nested inside a
hierarchical record, in which case the field is specified through a path.

Example 5-18 Add a middle name to the otherNames field in the users table.

ALTER TABLE users (ADD otherNames[].middle STRING)

Explanation: The otherNames field is an array of records, where each record in the
array includes the first and last name fields. In this example, you use the ALTER
statement to add the middle name field to the record that is nested within the
otherNames array. You are adding the middle name field to a fixed schema record data
type that exists within an array. Hence, you must specify the path to the field in the
ALTER TABLE statement.

Example 5-19 Remove schema fields in the table schema

ALTER TABLE stream_acct(DROP acct_balance)

Explanation: In this example, you delete the acct_balance field from the TV
streaming application schema. You can drop any field in the schema other than the
primary key.

If you try removing the primary key field, you get an error as shown below.

ALTER TABLE stream_acct(DROP acct_id)

Output (showing error):

Error handling command ALTER TABLE stream_acct(DROP acct_id): Error:
at (1, 27) Cannot remove a primary key field: acct_id

Example 5-20 Add a region

The add regions clause lets you link an existing Multi-Region Table (MR Table) with
new regions in a multi-region Oracle NoSQL Database environment. You use this

Chapter 5
ALTER TABLE Statement

5-44

clause to expand MR Tables to new regions. For more information on creating new regions,
see Create Remote Regions.

Associate a new region with an existing MR Table using the DDL command shown below.

ALTER TABLE <table_name> ADD REGIONS <region_name>

Explanation: Here, table_name is an MR table and region_name is an existing region. For
more information, see CREATE REGION Statement.

Example 5-21 Remove a region

The drop regions clause lets you disconnect an existing MR Table from a participating region
in a multi-region Oracle NoSQL Database environment. You use this clause to contract MR
Tables to fewer regions.

To remove an MR Table from a specific region in a multi-region Oracle NoSQL Database
setup, you must run the following steps from all the other participating regions.

ALTER TABLE <table_name> DROP REGIONS <comma_separated_list_of_regions>

Explanation: Here, table_name is an MR Table and comma_separated_list_of_regions is
the list of regions to be dropped.

Example 5-22 Modify the Time-To-Live value of the table

Time-to-Live (TTL) is a mechanism that allows you to set a time frame on table rows, after
which the rows expire automatically and are not available anymore. By default, every table
that you create has a TTL value of zero, indicating that it has no expiration time.

You can use ALTER TABLE statement to change the TTL value for any table. You can specify
the TTL with a number, followed by either HOURS or DAYS.

ALTER TABLE stream_acct USING TTL 15 DAYS

Explanation: In the above statement, you add an expiry of 15 days to the new rows that get
added to the TV streaming application table.

Note:

Altering the TTL value for a table does not change the TTL value for existing rows in
the table. Rather, it will only change the default TTL value of the rows created after
altering the table. To modify the TTL of every record in a table, you must iterate
through each record of the table and update its TTL value.

Altering an IDENTITY Column
Use the ALTER TABLE...MODIFY clause to change one or more attributes of a table's
IDENTITY column and its Sequence Generator (SG) options.

Chapter 5
Altering an IDENTITY Column

5-45

Note:

The MODIFY clause in an ALTER TABLE... statement is supported only on
IDENTITY columns.

There are two ways to alter an IDENTITY column:

• The property of the IDENTITY column can be altered. Additionally, the sequence
generator attributes associated with an IDENTITY column can be altered. The
sequence generator is modified immediately with the new attributes, however, a
client will see the effects of the new attributes on the sequence numbers
generated on subsequent requests by the client to the sequence generator, which
will happen when the cache is used up or the attributes stored at the client time
out.

Note:

Each client has a time-based cache to store the sequence generator
attributes. The client connects to the server to refresh this cache after it
expires. The default timeout is 5 mins and it can be changed by setting
sgAttrsCacheTimeout in KVStoreConfig.

• The IDENTITY property of an existing IDENTITY column can be dropped. The
sequence generator attached to that IDENTITY column is also removed. The
system will no longer generate a value for that column.

The Following example shows how to alter the property of the identity column id from
GENERATED ALWAYS to GENERATED BY DEFAULT and altering sequence
generator attributes START WITH, INCREMENT BY, MAXVALUE and CACHE.

Example 5-23 To Alter the Property and Sequence Generator Attributes of an
IDENTITY Column

CREATE Table Test_alter (
id INTEGER GENERATED ALWAYS AS IDENTITY
 (START WITH 1
 INCREMENT BY 2
 MAXVALUE 100
 CACHE 10
 CYCLE),
 name STRING, PRIMARY KEY (id)
);

ALTER TABLE Test_alter (MODIFY id GENERATED BY DEFAULT AS IDENTITY
(START WITH 1000
 INCREMENT BY 3
 MAXVALUE 5000
 CACHE 1
 CYCLE)
);

Chapter 5
Altering an IDENTITY Column

5-46

Example 5-24 To Drop the IDENTITY Property of an Existing IDENTITY column

CREATE Table Test_alter (
id INTEGER GENERATED ALWAYS AS IDENTITY(
START WITH 1
INCREMENT BY 2
MAXVALUE 100
CACHE 10
CYCLE),
name STRING,
PRIMARY KEY (id));

ALTER TABLE Test_alter (MODIFY id DROP IDENTITY);

Add or Remove a UUID column
An existing table can be altered and a new UUID column can be added. The existing records
in the table will have a NULL value for the newly added UUID column. An existing UUID
column can also be removed from a table.

Adding a UUID Column to an Existing Table

Use ALTER TABLE to add a UUID column to an existing table.

Create a table test_alter without a UUID column.

sql-> CREATE TABLE test_alter(id INTEGER,
 name STRING, PRIMARY KEY(id));
Statement completed successfully

Use ALTER TABLE to add a UUID column to test_alter. You can specify the default clause,
GENERATED BY DEFAULT.

sql-> ALTER TABLE test_alter
 (ADD new_id STRING AS UUID GENERATED BY DEFAULT);
Statement completed successfully

Dropping a UUID Column

To remove a UUID column from a table, use ALTER TABLE with a DROP id clause.

Note:

You cannot drop a UUID column if it is the primary key, or if it participates in an
index.

sql-> CREATE Table Test_alter (name STRING ,
 id STRING AS UUID GENERATED BY DEFAULT,
 PRIMARY KEY (name));
Statement completed successfully

Chapter 5
Add or Remove a UUID column

5-47

sql-> ALTER TABLE Test_alter (DROP id);
Statement completed successfully

Add or Remove an IDENTITY column
An existing table can be altered and an IDENTITY column can be added. An existing
IDENTITY column can also be removed from a table.

Adding an IDENTITY Column to an Existing Table

Use ALTER TABLE to add an IDENTITY column to an existing table.

Create a table, test_alter, without an IDENTITY column:

sql-> CREATE Table test_alter
 (id INTEGER,
 name STRING,
 PRIMARY KEY (id));
Statement completed successfully
sql->

Use ALTER TABLE to add an IDENTITY column to test_alter. Also specify several
Sequence Generator (SG) attributes for the associated new_id IDENTITY column, but
do not use the IDENTITY column as a PRIMARY KEY:

sql-> ALTER Table Test_alter
(ADD new_id INTEGER GENERATED ALWAYS AS IDENTITY
 (START WITH 1
 INCREMENT BY 2
 MAXVALUE 100
 CACHE 10
 CYCLE));
Statement completed successfully
sql->

Note:

To add an IDENTITY column to a table, the table must be at a top level. You
cannot add an IDENTITY column as the column of a deeply embedded
structured datatype. Adding a column does not affect the existing rows in the
table, which get populated with the new column’s default value (or NULL).

Dropping an IDENTITY Column

To remove the IDENTITY column, so no such field remains, use ALTER TABLE with a
DROP id clause:

CREATE Table Test_alter (
id INTEGER GENERATED ALWAYS AS IDENTITY(

Chapter 5
Add or Remove an IDENTITY column

5-48

START WITH 1
INCREMENT BY 2
MAXVALUE 100
CACHE 10
CYCLE),
name STRING,
PRIMARY KEY (name));

ALTER TABLE Test_alter (DROP id);

Add or Remove an MR_COUNTER column
You can alter an existing multi-region table to add an MR_COUNTER column. The existing
records in the table will have a value of zero for the newly added MR_COUNTER column.
You can also remove an existing MR_COUNTER column from a multi-region table.

Adding an MR_COUNTER column to an existing multi-region table

Use ALTER TABLE to add an MR_COUNTER column to an existing multi-region table.

Create a multi-region table myTable without an MR_COUNTER column.

CREATE TABLE myTable (id INTEGER,
 name STRING,
 team STRING,
 PRIMARY KEY (id)) IN REGIONS DEN,LON;

Use ALTER TABLE to add an MR_COUNTER column to the table myTable. This is a PN
counter.

ALTER TABLE myTable (ADD count INTEGER AS MR_COUNTER);
You can use ALTER TABLE to add a JSON MR_COUNTER field to a multi-region table.

ALTER TABLE demoJSONMR ADD (secondJSON
 JSON(new_counter AS NUMBER MR_COUNTER));

Dropping an MR_COUNTER Column

To remove an MR_COUNTER column from a multi-region table, use ALTER TABLE with a
DROP id clause.

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;

ALTER TABLE myTable (DROP count);

You can also drop a JSON column containing MR_COUNTERS from a table using ALTER
TABLE syntax.

ALTER TABLE demoJSONMR(DROP secondJSON);

Chapter 5
Add or Remove an MR_COUNTER column

5-49

6
SQL Query Management

You can use a query to retrieve data from one or more tables. A query is a statement that
consists of zero or more variable declarations followed by single SELECT expression. The
result of a query is always a sequence of records having the same record type.

Note:

Subqueries are not supported in Oracle NoSQL Database.

Syntax

query ::= [variable_declaration] select_expression

Variable declarations and expressions will be defined later in this chapter. Before doing so, a
few general concepts and related terminology must be established first.

Expressions
An expression represents a set of operations to be performed in order to produce a result.
The various kinds of expressions supported by Oracle NoSQL Database are described later
in this chapter.

Expressions are built by combining other expressions and sub-expressions through
operators, function calls, or other grammatical constructs. The simplest kind of expressions
are constants and references to variables or identifiers.

If you want to follow along with the examples, create the airline application table and insert
data as described in Tables used in the Examples.

Example 6-1 Retrieve the full name, ticket number, and bag tag number for all
customer baggage shipped after the 1st of Jan 2019 in an airline application

SELECT fullName,
ticketNo,
bag.bagInfo.tagNum
FROM BaggageInfo bag
WHERE EXISTS bag.bagInfo[$element.bagArrivalDate >="2019-01-01T00:00:00"]

Explanation: This query demonstrates the usage of several expressions. In the BaggageInfo
table, you store the baggage arrival date for every passenger in the bagArrivalDate field of
the bagInfo array. Since the bagInfo is a JSON field, the bagArrivalDate attribute contains
the date in ISO-8601 format as a string value. You use the SELECT, FROM, and WHERE
clauses of the SELECT Expression to choose columns from the table.

6-1

To fetch the list of the customer baggage that was shipped after a specified date, you
use the value comparison operator ">=" to check if the bagArrivalDate for each bag is
greater than or equal to the given date, that is, the 1st of Jan 2019. Here, the input
date is also a string in ISO-8601 format. Using string-formatted dates in ISO-8601
format works with logical comparison operators due to the natural sort order of strings.
The chronological ordering of dates happens to follow the natural sort order of strings,
so in this specific case, you get the desired behavior. For more complex date
operations such as date arithmetic, you must cast the ISO-8601 date string into a
Timestamp data type. For more information on using the CAST operator, see Cast
Expression.

The EXISTS operator, which is a comparison expression returns either a true or false
value based on the result of the value comparison operation. In the above query, if the
bag arrival date is greater than or equal to the given date, the EXISTS operator returns
a true value and the corresponding row is fetched. Else, the row is filtered out.

In this example, the bag is a table alias for the BaggageInfo table. The $element is an
implicitly-declared variable and is bound to the context row (every baggage of the
customer). The variable references are a part of primary expressions.

Output:

{"fullName":"Fallon
Clements","ticketNo":1762350390409,"tagNum":"17657806255507"}
{"fullName":"Lucinda
Beckman","ticketNo":1762320569757,"tagNum":"17657806240001"}
{"fullName":"Elane
Lemons","ticketNo":1762324912391,"tagNum":"1765780623244"}
{"fullName":"Gerard
Greene","ticketNo":1762341772625,"tagNum":"1765780626568"}
{"fullName":"Kendal
Biddle","ticketNo":1762377974281,"tagNum":"17657806296887"}
{"fullName":"Zulema
Martindale","ticketNo":1762340579411,"tagNum":"17657806288937"}
{"fullName":"Mary
Watson","ticketNo":1762340683564,"tagNum":"17657806299833"}
{"fullName":"Teena
Colley","ticketNo":1762357254392,"tagNum":"17657806255823"}
{"fullName":"Lorenzo Phil","ticketNo":1762320369957,"tagNum":
["17657806240001","17657806340001"]}
{"fullName":"Adam
Phillips","ticketNo":1762344493810,"tagNum":"17657806255240"}
{"fullName":"Adelaide
Willard","ticketNo":1762392135540,"tagNum":"17657806224224"}
{"fullName":"Rosalia
Triplett","ticketNo":1762311547917,"tagNum":"17657806215913"}
{"fullName":"Michelle
Payne","ticketNo":1762330498104,"tagNum":"17657806247861"}
{"fullName":"Zina
Christenson","ticketNo":1762390789239,"tagNum":"17657806228676"}
{"fullName":"Raymond
Griffin","ticketNo":1762399766476,"tagNum":"17657806243578"}
{"fullName":"Henry
Jenkins","ticketNo":176234463813,"tagNum":"17657806216554"}
{"fullName":"Lisbeth
Wampler","ticketNo":1762355854464,"tagNum":"17657806292229"}

Chapter 6
Expressions

6-2

{"fullName":"Dierdre
Amador","ticketNo":1762376407826,"tagNum":"17657806240229"}
{"fullName":"Joanne Diaz","ticketNo":1762383911861,"tagNum":"17657806292518"}
{"fullName":"Omar Harvey","ticketNo":1762348904343,"tagNum":"17657806234185"}
{"fullName":"Doris
Martin","ticketNo":1762355527825,"tagNum":"17657806232501"}

JSON collection tables:

You can use SQL expressions to query data from JSON collection tables. The queries work in
the same way as fixed schema tables. You can access the document name/value pairs in a
JSON collection table by specifying JSON path expressions. A top-level attribute in the
document can be accessed using its field name as the path expression, while a nested
attribute must be accessed using a path expression to the attribute. A few examples are
added in the following sections to demonstrate the queries in JSON collection tables.

To follow along with the examples, create a JSON collection table for the shopping
application and insert the sample data records as described in the JSON Collection Table
Example section.

Sequences
A sequence is a set of zero or more items. All expressions operate on zero or more input
sequences and produce an output sequence as their result.

A sequence is just a collection set of zero or more items (including NULLs). A sequence is
not an item itself (so no nested sequences) nor is it a container: there is neither a persistent
data structure nor a java class at the public API level (or internally) that represents a
sequence. Expressions usually operate on sequences by iterating over their items.

Note:

An array is not a sequence of items. Instead, it is a single item, albeit one that
contains other items in it. So, arrays are containers of items.

Although, in general, Oracle NoSQL Database expressions work on sequences and produce
sequences, many of them place restrictions on the cardinality of the sequences they accept
and/or produce. For example, several expressions are scalar: they require that their input
sequence(s) contain no more than one item and they never produce a sequence of more
than one item. Notice that a single item is considered equivalent to a sequence containing
only that single item.

Boxing and Unboxing Sequence

A sequence produced by an expression E can be converted to an array by wrapping E with
an array constructor : [E]. See Array and Map Constructors section. This is called boxing
the sequence. Conversely, there are expressions that unbox an array: they select all or a
subset of the items contained in the array and return these items as a sequence. There is no
implicit unboxing of arrays; an expression must always be applied to do the unboxing. In most
cases, sequence boxing must also be done explicitly, that is, the query writer must use an
array constructor. There are, however, a couple of cases where boxing is done implicitly, that
is, an expression (which is not an array constructor) will convert an input sequence to an
array.

Chapter 6
Sequences

6-3

Note:

In standard SQL the term "expression" means "scalar expression", i.e., an
expression that returns exactly one (atomic) item. The only operations that
can produce more than one items (or zero items) are query blocks (either as
top-level queries or subqueries) and the set operators like union,
intersection, etc (in these cases, the items are tuples). In Oracle NoSQL
Database too, most expressions are scalar. Like the query blocks of standard
SQL, the select-form-where expression of Oracle NoSQL Database returns a
sequence of items. However, to navigate and extract information from
complex, hierarchical data, Oracle NoSQL Database includes path
expressions as well. See Path Expressions section. Path expressions are the
other main source of multi-item sequences in Oracle NoSQL Database.
However, if path expressions are viewed as subqueries, the Oracle NoSQL
Database model is not that different from standard SQL.

If you want to follow along with the examples, create the airline application table and
insert data as described in Tables used in the Examples.

Example 6-2 Fetch the passenger name and tag number for all bags whose bag
arrival date is greater than 2019-03-01T13:00:00Z

SELECT fullname,
bag.bagInfo[].tagNum
FROM BaggageInfo bag
WHERE bag.bagInfo[].bagArrivalDate >any "2019-03-01T13:00:00Z"

Explanation: In an airline application, each piece of baggage that is checked in by the
passenger is associated with a unique tag number. In the BaggageInfo table, the tag
numbers are stored in the tagnum field of the bagInfo array. If the passenger has more
than one piece of luggage, the baginfo array has more than one element, and each
baggage has a unique tag number.

In this query, you fetch the full name and tag numbers of all such luggage whose bag
arrival date is greater than the specified value. The bagArrivalDate field is a string
that holds the arrival date for each baggage in ISO-8601 format. You compare the bag
arrival date of each baggage with the input date value, which is also a string in the
ISO-8601 format. For passengers with additional luggage, all the associated tag
numbers are listed. You use the SELECT, FROM, and WHERE clauses of the select
expression to choose columns from a table.

Here, the bag is a table alias for the BaggageInfo table and can be used anywhere in
the SELECT statement. The bag.bagInfo[].bagArrivalDate is a sequence of more
than one item. An error is returned if you use comparison operators to compare a
sequence with more than one item. Hence, you use the sequence comparison
operator >any to compare the sequence with the required arrival date. For more details
on sequence comparison, see Sequence Comparison Operators. In this example, you
can compare the string-formatted dates in ISO-8601 format due to the natural sorting
order of strings without having to cast into Timestamp data types.

Chapter 6
Sequences

6-4

Output:

{"fullname":"Elane Lemons","tagNum":"1765780623244"}
{"fullname":"Omar Harvey","tagNum":"17657806234185"}
{"fullname":"Henry Jenkins","tagNum":"17657806216554"}
{"fullname":"Kendal Biddle","tagNum":"17657806296887"}
{"fullname":"Mary Watson","tagNum":"17657806299833"}
{"fullname":"Gerard Greene","tagNum":"1765780626568"}
{"fullname":"Dierdre Amador","tagNum":"17657806240229"}
{"fullname":"Lorenzo Phil","tagNum":["17657806240001","17657806340001"]}
{"fullname":"Lucinda Beckman","tagNum":"17657806240001"}
{"fullname":"Doris Martin","tagNum":"17657806232501"}

Sequence Types
A sequence type specifies the type of items that may appear in a sequence, as well as an
indication of the cardinality of the sequence.

Syntax

sequence_type ::= type_definition [quantifier]

quantifier := "*" | "+" | "?"

Semantics

quantifier
The quantifier is one of the following:

• * indicates a sequence of zero or more items.

• + indicates a sequence of one or more items.

• ? indicates a sequence of zero or one items.

• The absence of a quantifier indicates a sequence of exactly one item.

subtype relationship

A subtype relationship exists among sequence types as well. It is defined as follows:

• The empty sequence is a subtype of all sequence types whose quantifier is * or ?

• A sequence type SUB is a subtype of another sequence type SUP (supertype) if SUB's
item type is a subtype of SUP's item type, and SUB's quantifier is a subquantifier of
SUP's quantifier, where the subquantifier relationship is defined by the following matrix.

The following matrix illustrates the subquantifier relationship between the quantifiers. The
column heading indicate the supertype(SUP) of the quantifier. The row heading indicate the
subtype (SUB) of the quantifier.

Sup Q1 | Sub Q2 one ? + *

one true false false false

? true true false false

+ true false true false

* true true true true

Chapter 6
Sequence Types

6-5

For example, as per the above table, ? is a superquantifier of one and ?, but is not a
superquantifier of + and *. Similarly, * is a superquantifier of all other quantifiers.

Note:

In the following sections, when we say that an expression must have
(sequence) type T, what we mean is that when the expression is evaluated,
the result sequence must have type T or any subtype of T. Similarly, the
usual subtype-substitution rules apply to input sequences: if an expression
expects as input a sequence of type T, any subtype of T may actually be
used as input.

If you want to follow along with the examples, create the airline application table and
insert data as described in Tables used in the Examples.

Example 6-3 Fetch the details of passengers who fly from SFO/through SFO to
any other location in an airline application

SELECT bag.fullname,
bag.bagInfo[].tagNum,
bag.bagInfo[].flightLegs[].fltRouteSrc
FROM BaggageInfo bag
WHERE bag.bagInfo[].flightLegs[].fltRouteSrc=any "SFO"

Explanation: In an airline application, you can get the details of all the passengers
who have traveled from a specific station. The flightLegs array in the bagInfo field
contains the source and destination stations for each travel leg. The
bagInfo.flightLegs[].fltRouteSrc is a string sequence that holds the source
stations from where the passengers board the flight.

In this query, you compare the source stations with the input string, SFO, to fetch the
list of passengers traveling from the SFO station. Since the comparison operators
cannot operate on sequences of more than one item, you use the sequence
comparison operator =any to compare the bagInfo.flightLegs[].fltRouteSrc
sequence with the required station. For more details on sequence comparison, see
Sequence Comparison Operators.

Here, the source station can either be the flights originating from SFO, or transiting
through SFO station to any other destination. The bag is a table alias for the
Baggageinfo table and essentially functions as a variable. The variables are bound to
the context row as a whole and can be referenced inside the hierarchically structured
data.

Output:

{"fullname":"Henry Jenkins","tagNum":"17657806216554","fltRouteSrc":
["SFO","ORD"]}
{"fullname":"Michelle Payne","tagNum":"17657806247861","fltRouteSrc":
["SFO","IST","ATH"]}
{"fullname":"Gerard Greene","tagNum":"1765780626568","fltRouteSrc":
["SFO","IST","ATH"]}
{"fullname":"Lorenzo Phil","tagNum":
["17657806240001","17657806340001"],"fltRouteSrc":

Chapter 6
Sequence Types

6-6

["SFO","IST","ATH","SFO","IST","ATH"]}
{"fullname":"Lucinda Beckman","tagNum":"17657806240001","fltRouteSrc":
["SFO","IST","ATH"]}

Variable Declaration
Syntax

variable_declaration ::= DECLARE (variable_name type_definition ";")+

 variable_name ::= "$" id

External Variables

A query may start with a variable declaration section. The variables declared here are called
external variables. The value of an external variable is global and constant. The values of
external variables are not known in advance when the query is formulated or compiled.
Instead, the external variables must be bound to their actual values before the query is
executed. This is done via programmatic APIs. See Java Direct Driver Developer's Guide.

The type of the item bound to an external variable must be equal to or a subtype of the
variable's declared type. The use of external variables allows the same query to be compiled
once and then executed multiple times, with different values for the external variables each
time. All the external variables that appear in a query must be declared in the declaration
section. This is because knowing the type of each external variable in advance is important
for query optimization.

Note:

External variables play the role of the global constant variables found in traditional
programming languages (e.g. final static variables in java, or const static variables
in c++).

Internal Variables

Oracle NoSQL Database allows implicit declaration of internal variables as well. Internal
variables are bound to their values during the execution of the expressions that declare them.

Variables (internal and external) can be referenced in other expressions by their name. In
fact, variable references themselves are expressions, and together with literals, are the
starting building blocks for forming more complex expressions.

Scope

Each variable is visible (i.e., can be referenced) within a scope. The query as a whole defines
the global scope, and external variables exist within this global scope. Certain expressions
create sub-scopes. As a result, scopes may be nested. A variable declared in an inner scope
hides another variable with the same name that is declared in an outer scope. Otherwise,
within any given scope, all variable names must be unique.

Chapter 6
Variable Declaration

6-7

Note:

The names of variables are case-sensitive.

Note:

The following variable names cannot be used as names for external
variables: $key, $value, $element, and $pos.

Example 6-4 Variable Declaration

The following query selects the first and last names of all users whose age is greater
than the value assigned to the $age variable when the query is actually executed.

DECLARE $age INTEGER;

SELECT firstName, lastName
FROM Users
WHERE age > $age

SELECT Expression
You can query data from the tables using the SELECT expression. Multiple clauses
can be used with the SELECT expression. The clauses that can be used in the
SELECT expression are given in the syntax below.

Syntax

select_expression ::=
 SELECT Clause
 from_clause
 [where_clause]
 [groupby_clause]
 [orderby_clause]
 [limit_clause]
 [offset_clause]

Semantics

The SELECT clause and the FROM clause are mandatory.

The processing of the query starts with the FROM clause, followed by the WHERE
clause (if any), followed by the GROUP BY clause (if any), followed by the ORDER BY
clause (if any), followed by the SELECT clause and finishing with the OFFSET and
LIMIT clauses (if any). Each clause produces a set of records, which is processed by
the next clause. Each clause is described in the following sections.

If you want to follow along with the examples, create tables and insert data as
described in Tables used in the Examples.

Chapter 6
SELECT Expression

6-8

FROM Clause
The FROM clause is used to retrieve rows from the referenced table(s).

Syntax

from_clause ::= FROM (single_from_table | nested_tables | left_outer_join_tables |
unnest_syntax)

single_from_table ::= aliased_table_name

aliased_table_name ::=
 (table_name | SYSTEM_TABLE_NAME) [[AS] table_alias]

table_alias ::= [$] id

Semantics

As shown in the syntax, the FROM clause can either reference a single table, or include a
nested table clause or a left outer join clause. It can also include an unnest syntax. For
nested tables, see the Using NESTED TABLES clause to query multiple tables in the same
hierarchy section. To learn more about left outer joins, see Left Outer Join (LOJ).

unnest_syntax
You can use unnest_syntax to unnest one or more arrays or maps, that is to convert the
arrays or maps into a set of rows. To understand how unnest_syntax is used in queries, see
Unnest Arrays & Maps.

single_from_table
In a simple FROM clause, the table is specified by its name, which may be a composite (dot-
separated) name in the case of child tables. The result of the simple FROM clause is a
sequence containing the rows of the referenced table.

aliased_table_name
The table name may be followed by a table alias. Table aliases are essentially variables
ranging over the rows of the specified table. If no alias is specified, one is created internally,
using the name of the table as it is spelled in the query, but with dot chars replaced with '_' in
the case of child tables. See Table Hierarchies.

Note:

Table aliases are case-sensitive, like variable names.

The other clauses of the SELECT expression operate on the rows produced by the FROM
clause, processing one row at a time. The row currently being processed is called the context
row. The columns of the context row can be referenced in expressions either directly by their
names or by the table alias followed by a dot char and the column name. See the Column
References section. If the table alias starts with a dollar sign ($), then it actually serves as a
variable declaration for a variable whose name is the alias. This variable is bound to the
context row as a whole and can be referenced within sub expressions of the SELECT
expression. For example, it can be passed as an argument to the expiration_time function to
get the expiration time of the context row. See the expiration_time function function. In other

Chapter 6
SELECT Expression

6-9

words, a table alias like $foo is an expression by itself, whereas foo is not. Notice that
if this variable has the same name as an external variable, it hides the external
variable. This is because the FROM clause creates a nested scope, which exists for
the rest of the SELECT expression.

Example 6-5 Select all information for all the passenger records in the airline
application

SELECT * FROM BaggageInfo

Explanation: In the above query, you use the FROM clause to retrieve all the
passenger data from the BaggageInfo table.

Output: One sample row:

"ticketNo" : 1762344493810,
"fullName" : "Adam Phillips",
"gender" : "M",
"contactPhone" : "893-324-1064",
"confNo" : "LE6J4Z",
 [{
 "id" : "79039899165297",
 "tagNum" : "17657806255240",
 "routing" : "MIA/LAX/MEL",
 "lastActionCode" : "OFFLOAD",
 "lastActionDesc" : "OFFLOAD",
 "lastSeenStation" : "MEL",
 "flightLegs" : [{
 "flightNo" : "BM604",
 "flightDate" : "2019-02-01T01:00:00",
 "fltRouteSrc" : "MIA",
 "fltRouteDest" : "LAX",
 "estimatedArrival" : "2019-02-01T03:00:00",
 "actions" : [{
 "actionAt" : "MIA",
 "actionCode" : "ONLOAD to LAX",
 "actionTime" : "2019-02-01T01:13:00"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "BagTag Scan at MIA",
 "actionTime" : "2019-02-01T00:47:00"
 }, {
 "actionAt" : "MIA",
 "actionCode" : "Checkin at MIA",
 "actionTime" : "2019-02-01T23:38:00"
 }]
 }, {
 "flightNo" : "BM667",
 "flightDate" : "2019-01-31T22:13:00",
 "fltRouteSrc" : "LAX",
 "fltRouteDest" : "MEL",
 "estimatedArrival" : "2019-02-02T03:15:00",
 "actions" : [{
 "actionAt" : "MEL",
 "actionCode" : "Offload to Carousel at MEL",

Chapter 6
SELECT Expression

6-10

 "actionTime" : "2019-02-02T03:15:00"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "ONLOAD to MEL",
 "actionTime" : "2019-02-01T07:35:00"
 }, {
 "actionAt" : "LAX",
 "actionCode" : "OFFLOAD from LAX",
 "actionTime" : "2019-02-01T07:18:00"
 }]
 }],
 "lastSeenTimeGmt" : "2019-02-02T03:13:00",
 "bagArrivalDate" : "2019.02.02T03:13:00"
 }]

Example 6-6 Fetch the initial boarding station for all passengers from the airline
application

SELECT DISTINCT
$bag.fullname,
$bag.contactPhone,
$flt_src as SOURCE
FROM BaggageInfo $bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt_src
ORDER BY $bag.fullName

Explanation: The fltRouteSrc field in the bagInfo array of the BaggageInfo table includes
the details of the source stations from where the passenger boards the flight. The first
element in the flightLegs array holds the details of the initial travel leg.

In this query, you retrieve the first element from the flightLegs array, that
is, $bag.bagInfo[].flightLegs[0].fltRouteSrc values to fetch the details of the initial
stations. Notice that $bag is the alias for the BaggageInfo table and $flt_src is the alias
for $bag.bagInfo.flightLegs[0].fltRouteSrc field. You can alias the field names in the
FROM clause and use them for the rest of the SELECT expression.

You use the ORDER BY clause to reorder the sequence of rows in the ascending order of
passenger names.

Note:

In this query, you get as many entries as the total number of bags. If a passenger
travels with two bags, the output displays two entries. To avoid this, you can use the
DISTINCT keyword in the SELECT statement. The query then returns only one
copy of each set of duplicate rows selected.

Output:

{"fullname":"Adam Phillips","contactPhone":"893-324-1064","SOURCE":"MIA"}
{"fullname":"Adelaide Willard","contactPhone":"421-272-8082","SOURCE":"GRU"}
{"fullname":"Dierdre Amador","contactPhone":"165-742-5715","SOURCE":"JFK"}
{"fullname":"Doris Martin","contactPhone":"289-564-3497","SOURCE":"BZN"}

Chapter 6
SELECT Expression

6-11

{"fullname":"Elane
Lemons","contactPhone":"600-918-8404","SOURCE":"MXP"}
{"fullname":"Fallon
Clements","contactPhone":"849-731-1334","SOURCE":"MXP"}
{"fullname":"Gerard
Greene","contactPhone":"395-837-3772","SOURCE":"SFO"}
{"fullname":"Henry
Jenkins","contactPhone":"960-428-3843","SOURCE":"SFO"}
{"fullname":"Joanne Diaz","contactPhone":"334-679-5105","SOURCE":"MIA"}
{"fullname":"Kendal
Biddle","contactPhone":"619-956-8760","SOURCE":"JFK"}
{"fullname":"Lisbeth
Wampler","contactPhone":"796-709-9501","SOURCE":"LAX"}
{"fullname":"Lorenzo
Phil","contactPhone":"364-610-4444","SOURCE":"SFO"}
{"fullname":"Lucinda
Beckman","contactPhone":"364-610-4444","SOURCE":"SFO"}
{"fullname":"Mary Watson","contactPhone":"131-183-0560","SOURCE":"YYZ"}
{"fullname":"Michelle
Payne","contactPhone":"575-781-6240","SOURCE":"SFO"}
{"fullname":"Omar Harvey","contactPhone":"978-191-8550","SOURCE":"MEL"}
{"fullname":"Raymond
Griffin","contactPhone":"567-710-9972","SOURCE":"MSQ"}
{"fullname":"Rosalia
Triplett","contactPhone":"368-769-5636","SOURCE":"JFK"}
{"fullname":"Teena
Colley","contactPhone":"539-097-5220","SOURCE":"MSQ"}
{"fullname":"Zina
Christenson","contactPhone":"987-210-3029","SOURCE":"MIA"}
{"fullname":"Zulema
Martindale","contactPhone":"666-302-0028","SOURCE":"MIA"}

WHERE Clause
The WHERE clause filters the rows coming from the FROM clause, returning the rows
satisfying a given condition.

Syntax

where_clause ::= WHERE expression

Semantics

For each context row, the expression in the WHERE clause is evaluated. The result of
this expression must have type BOOLEAN ?. If the result is false, or empty, or NULL,
the row is skipped; otherwise the row is passed on to the next clause.

Example 6-7 Fetch the list of Female passengers from the airline application

SELECT
fullname,
ticketNo

Chapter 6
SELECT Expression

6-12

FROM Baggageinfo
WHERE gender="F"

Explanation: In the above query, you list the name and ticket details of the female
passengers from the Baggageinfo table. The WHERE clause filters the rows based on the
gender field of each record. You fetch all the records that hold the entry 'F' in the gender
field.

Output:

{"fullname":"Adelaide Willard","ticketNo":1762392135540}
{"fullname":"Elane Lemons","ticketNo":1762324912391}
{"fullname":"Michelle Payne","ticketNo":1762330498104}
{"fullname":"Doris Martin","ticketNo":1762355527825}
{"fullname":"Rosalia Triplett","ticketNo":1762311547917}
{"fullname":"Zulema Martindale","ticketNo":1762340579411}
{"fullname":"Joanne Diaz","ticketNo":1762383911861}
{"fullname":"Kendal Biddle","ticketNo":1762377974281}
{"fullname":"Mary Watson","ticketNo":1762340683564}

Example 6-8 Fetch the list of passengers from the airline application whose
destination station is MEL

SELECT
fullname,
ticketNo,
s.bagInfo.routing[] AS ROUTING
FROM Baggageinfo s
WHERE regex_like(s.bagInfo.routing[], ".*/MEL")

Explanation: In an airline application, you can fetch the list of passengers bound toward
specific destination stations. The routing field in the bagInfo array holds the routing details of
the passengers in the Baggageinfo table. The routing information is stored in the format
Source/Transit/Destination airport codes.

In this query, you fetch the details of the passengers whose destination station is MEL. You
use the regex_like function to achieve a pattern match to the destination airport code, MEL.
Since you are only looking for a specific destination station, use the combination of the period
(.) metacharacter and greedy quantifier (*) to allow zero or more occurrences of any source
and transit airport code. For more details on the regex_like function, see Regular
Expression Conditions.

Output:

{"fullname":"Zulema Martindale","ticketNo":1762340579411,"ROUTING":"MIA/LAX/
MEL"}
{"fullname":"Adam Phillips","ticketNo":1762344493810,"ROUTING":"MIA/LAX/MEL"}
{"fullname":"Zina Christenson","ticketNo":1762390789239,"ROUTING":"MIA/LAX/
MEL"}
{"fullname":"Joanne Diaz","ticketNo":1762383911861,"ROUTING":"MIA/LAX/MEL"}

Chapter 6
SELECT Expression

6-13

Example 6-9 Fetch the list of passengers carrying more than one piece of
luggage in the airline application

SELECT
fullname,
ticketNo
FROM Baggageinfo s
WHERE EXISTS s.baginfo[1]

Explanation: In this query, you list the name and ticket details of the passengers
traveling with more than one piece of luggage. The bagInfo array holds the
information on all the luggage owned by a passenger. If a passenger owns more than
one piece of luggage, there will be more than one element in the bagInfo array. You
use the EXISTS operator in the WHERE clause to determine whether or not a second
element exists in the baginfo array.

Output:

{"fullname":"Lorenzo Phil","ticketNo":1762320369957}

Alternatively, you can use the size() built-in function to determine the size of the
baginfo array, which is the number of bags owned by a passenger. You then use the
value comparison operator '>' to check if the return value exceeds 1. You will get the
same output as above. For more details on the size() function, see Functions on
Complex Values.

SELECT
fullname,
ticketNo
FROM Baggageinfo s
WHERE size(s.baginfo) > 1

GROUP BY Clause
The GROUP BY clause is used in a SELECT statement to collect data across multiple
rows and group the result by one or more columns or expressions. The GROUP BY
clause is often used with aggregate functions. Oracle NoSQL Database applies the
aggregate functions to each group of rows and returns a single row for each group.

Syntax

groupby_clause ::= GROUP BY expression ("," expression)*

Semantics

Each (grouping) expression must return at most one atomic value. If a grouping
expression returns an empty result on an input row, that row is skipped. Equality
among grouping values is defined according to the semantics of the "=" operator, with
the exception that two NULL values are considered equal. See Value Comparison
Operators section. Then, for each group, a single record is constructed and returned
by the GROUP BY clause. If the clause has N grouping expressions, the first N fields
of the returned record store the values of the grouping expressions. The remaining M

Chapter 6
SELECT Expression

6-14

fields (M >= 0) store the result of zero or more aggregate functions. In general, aggregate
functions iterate over the rows of a group, evaluate an expression for each such row, and
aggregate the returned values into a single value per group. Oracle NoSQL Database
supports many aggregate functions as described in the Using Aggregate Functions section.

Syntactically, aggregate functions are not actually listed in the GROUP BY clause, but appear
in the SELECT clause instead. In fact, aggregate functions can appear only in the SELECT or
ORDER BY clauses, and they cannot be nested. Semantically, however, every aggregate
function that appears in the SELECT or ORDER BY list is actually evaluated by the GROUP
BY clause. If the SELECT clause contains any aggregate functions, but the SELECT
expression does not contain a GROUP BY clause, the whole set of rows produced by the
FROM or the WHERE clauses is considered as one group and the aggregate functions are
evaluated over this single group.

The implementation of the GROUP BY clause may be index-based or generic. Index-based
grouping is possible only if an index exists that sorts the rows by the values of the grouping
expressions. More precisely, let e1, e2, …, eN where ei is the ith expression (i is a number in
the range 1,2,3, ...N) be the grouping expressions as they appear in the GROUP BY clause
(from left to right). Then, for index-based grouping, there must exist an index (which may be
the primary-key index or one of the existing secondary indexes) such that for each i in
1,2,...,N, ei matches the definition of the i-th index field. If such an index does not exist or is
not selected by the query optimizer, the GROUP BY will be generic. A generic GROUP BY
uses a hash table to find rows belonging to the same group and stores all groups before
returning any results to the application. The hash table is stored in the client driver memory
(local hash tables, of limited size, may be used at the servers as well). As a result, a generic
GROUP BY may consume a large amount of driver memory. In contrast, index-based
grouping exploits the row sorting provided by the index to avoid the materialization and
caching of any intermediate results. It is therefore recommended to create appropriate
indexes for use in GROUP BY queries. See Using Indexes for Query Optimization. Finally,
notice that when you use index-based grouping, the results of a grouping SELECT
expression are ordered by the grouping expressions.

Example 6-10 Group by age in the application that maintains the user data

SELECT
age,
count(*) AS count,
avg(income) AS income
FROM users
GROUP BY age

Explanation: In this query, you group users by their age using the GROUP BY clause. For
each group, the query returns the associated age and the average income of the users in the
group. You use the aggregate functions count to count the users in each age group and avg
to calculate the average income.

Output:

{"age":null,"count":1,"income":75000.0}
{"age":22,"count":2,"income":50000.0}
{"age":45,"count":1,"income":75000.0}

Chapter 6
SELECT Expression

6-15

Example 6-11 Display the number of bags for each passenger in the airline
application

SELECT
bag.confNo,
count(bag.bagInfo.id) AS TOTAL_BAGS
FROM Baggageinfo bag
GROUP BY bag.confNo

In this query, you group the data based on the confNo using the GROUP BY clause. To
fetch the number of bags per passenger, you get the count of the bagInfo.id field
associated with each confNo using the count aggregate function.

Output:

{"confNo":"FH7G1W","TOTAL_BAGS":1}
{"confNo":"PQ1M8N","TOTAL_BAGS":1}
{"confNo":"XT6K7M","TOTAL_BAGS":1}
{"confNo":"DN3I4Q","TOTAL_BAGS":1}
{"confNo":"QB1O0J","TOTAL_BAGS":1}
{"confNo":"TX1P7E","TOTAL_BAGS":1}
{"confNo":"CG6O1M","TOTAL_BAGS":1}
{"confNo":"OH2F8U","TOTAL_BAGS":1}
{"confNo":"BO5G3H","TOTAL_BAGS":1}
{"confNo":"ZG8Z5N","TOTAL_BAGS":1}
{"confNo":"LE6J4Z","TOTAL_BAGS":1}
{"confNo":"XT1O7T","TOTAL_BAGS":1}
{"confNo":"QI3V6Q","TOTAL_BAGS":2}
{"confNo":"RL3J4Q","TOTAL_BAGS":1}
{"confNo":"HJ4J4P","TOTAL_BAGS":1}
{"confNo":"CR2C8MY","TOTAL_BAGS":1}
{"confNo":"LN0C8R","TOTAL_BAGS":1}
{"confNo":"MZ2S5R","TOTAL_BAGS":1}
{"confNo":"KN4D1L","TOTAL_BAGS":1}
{"confNo":"MC0E7R","TOTAL_BAGS":1}

Example 6-12 Select the total baggage originating from each airport (excluding
the transit baggage) in the airline application

SELECT $flt_src as SOURCE,
count(*) as COUNT
FROM BaggageInfo $bag,
$bag.bagInfo.flightLegs[0].fltRouteSrc $flt_src
GROUP BY $flt_src

Explanation: The fltRouteSrc field in the flightLegs array of the BaggageInfo table
includes the details of the originating station in a passenger record.

In the above query, you get the total count of baggage originating from each airport.
However, you don't want to consider the airports that are part of the transit. You group
the data with the flight source values of the first element of the flightLegs array (as
the first element is the source station). You then determine the count of baggage using
the count function.

Chapter 6
SELECT Expression

6-16

Output:

{"SOURCE":"SFO","COUNT":6}
{"SOURCE":"BZN","COUNT":1}
{"SOURCE":"GRU","COUNT":1}
{"SOURCE":"LAX","COUNT":1}
{"SOURCE":"YYZ","COUNT":1}
{"SOURCE":"MEL","COUNT":1}
{"SOURCE":"MIA","COUNT":4}
{"SOURCE":"MSQ","COUNT":2}
{"SOURCE":"MXP","COUNT":2}
{"SOURCE":"JFK","COUNT":3}

JSON collection table:

The following example applies the GROUP BY expression on a JSON collection table.
Consider a sample row from the JSON collection table created for a shopping application:

{"contactPhone":"1617114988","address":{"Dropbox":"Presidency
College","city":"Kansas City","state":"Alabama","zip":95065},"cart":
[{"item":"A4 sheets","priceperunit":500,"quantity":2},{"item":"Mobile
Holder","priceperunit":700,"quantity":1}],"firstName":"Lorenzo","lastName":"P
hil","notify":"yes","orders":[{"EstDelivery":"2023-11-15","item":"AG Novels
1","orderID":"101200","priceperunit":950,"status":"Preparing to dispatch"},
{"EstDelivery":"2023-11-01","item":"Wallpaper","orderID":"101200","priceperun
it":950,"status":"Transit"}]}

Example 6-13 Fetch the statistics of the number of orders serviced per state from the
storeAcct table.

SELECT s.address.state, count(s.orders[]) AS TOTAL_ORDERS
FROM storeAcct s
WHERE size(s.orders) >= 1
GROUP BY s.address.state

Explanation: In the storeAcct table, the shopper's address is stored in the address field and
the purchased items are stored in the orders array. To fetch the number of order requests per
state, you group the shopper's data by state field using the GROUP BY expression. Count
the orders that have values in them by selecting only the orders that have one or more items
in the orders array.

Note:

To aggregate the elements of an array, you must use the array constructor [] to
indicate that the orders field is an array.

Output:

{
 "state" : "Alabama",
 "TOTAL_ORDERS" : 4

Chapter 6
SELECT Expression

6-17

}
{
 "state" : "TX",
 "TOTAL_ORDERS" : 2
}

Using Aggregate Functions
You can use built in aggregate functions to find information such as a count, a sum, an
average, a minimum, or a maximum.

The following functions are called SQL aggregate functions, because their semantics
are similar to those in standard SQL: they work in conjunction with grouping and they
aggregate values across the rows of a group. The aggregate functions can be used
only in the SELECT or ORDER BY clauses, and they cannot be nested.

If you want to follow along with the examples, create tables and insert the data as
described in the Tables used in the Examples topic.

The following aggregate functions are supported:

• long count(*)

• long count(any*)

• number sum(any*)

• number avg(any*)

• any_atomic min(any*)

• any_atomic max(any*)

• ARRAY(any) array_collect(DISTINCT any*)

• ARRAY(any) array_collect(any*)

• long count(DISTINCT any*)

Note:

All SQL aggregate function names are case sensitive.

count(*) function

The count star function returns the number of rows in a group.

Syntax:

long count(*)

Semantics:
The count star function calculates the number of records fetched by the query.

return type: long

Chapter 6
SELECT Expression

6-18

Example 6-14 Find the total number of passengers who have contact details in their
records

SELECT count(*) AS COUNT_PASSENGER
FROM BaggageInfo bag
WHERE length(contactPhone) > 0

Explanation: In an airline baggage tracking application, you can calculate the total count of
passengers who have furnished their contact details. The contactPhone field in the
BaggageInfo table includes the contact details of the passengers. You use the count star
function to find the number of passenger records with the contactPhone entry. There is a
possibility that the contact details include NULL values and empty strings. You can use the
length function in the WHERE clause to exclude such rows from being counted. If a
contactPhone has an empty or a NULL value, the length function returns a NULL value. You
apply a value comparison to select only the rows that yield a value greater than 0, and then
determine the total count of the resultant rows using the count star function.

Output:

{"COUNT_PASSENGER":21}

Example 6-15 Find the number of checked bags that arrived on the 1st of Feb 2019

SELECT count(*) AS COUNT_BAGS
FROM BaggageInfo bag,
EXTRACT(DAY FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) $t1,
EXTRACT(MONTH FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) $t2,
EXTRACT(YEAR FROM CAST (bag.bagInfo[0].bagArrivalDate AS Timestamp(0))) $t3
WHERE $t3=2019 AND $t2=02 AND $t1=01

Explanation: In the airline baggage tracking application, you can get the total count of
checked bags on a particular date. The bagArrivalDate field in the BaggageInfo table
contains the arrival date of the passenger's checked bags. In the above query, you count the
number of rows that have the bagArrivalDate as 1st of Feb 2019 to fetch the number of
checked bags on the given date. You use several filter conditions here to extract only the date
part of the timestamp. You first use the CAST operator to convert the bagArrivalDate to a
timestamp and then extract the date, month, and year details from the timestamp using the
EXTRACT expression. You use the value comparison to determine if the day, month, and
year correspond to the required date value, that is, 01,02, and 2019 respectively. You then
use the logical operator AND to select only the rows that match all three conditions and count
the resultant rows using the count function.

Output:

{"COUNT_BAGS":1}

count function

The count function computes its input expression on each row in a group and counts all the
non-NULL values returned by these evaluations of the input expression.

Chapter 6
SELECT Expression

6-19

Syntax:

long count(any*)

Semantics:
any: The count function accepts any parameter type as the input argument.

return type: long

The count star function can be used when you want to count the rows of a resultant
query. It does not accept any other input argument. Whereas, the count function can
be used when you want to enumerate the outcome of an input expression.

Example 6-16 Find the total number of checked bags that are estimated to
arrive at the LAX airport at a particular time

SELECT $estdate as ARRIVALDATE,
count($flight) AS COUNT
FROM BaggageInfo $bag,
$bag.bagInfo.flightLegs.estimatedArrival $estdate,
$bag.bagInfo.flightLegs.flightNo $flight,
$bag.bagInfo.flightLegs.fltRouteDest $flt_dest
WHERE $estdate =any "2019-02-01T11:00:00Z" AND $flt_dest =any "LAX"
GROUP BY $estdate

Explanation: In an airline baggage tracking application, you can get the total count of
checked bags that are estimated to arrive at a particular airport and time. For each
flight leg, the estimatedArrival field in the flightLegs array of the BaggageInfo table
contains the arrival time of the checked bags and the fltRouteDest field contains the
destination airport code. In the above query, to determine the total number of checked
bags arriving at the LAX airport at a given time, you first group the data with the
estimated arrival time value using the GROUP BY clause. From the group, you select
only the rows that have the destination airport as LAX. You then determine the bag
count for the resultant rows using the count function.

Here, you can compare the string-formatted dates in ISO-8601 format due to the
natural sorting order of strings without having to cast them into timestamp data types.
The $bag.bagInfo.flightLegs.estimatedArrival
and $bag.bagInfo.flightLegs.fltRouteDest are sequences. Since the comparison
operator '=' cannot operate on sequences of more than one item, the sequence
comparison operator '=any' is used instead to compare the estimatedArrival and
fltRouteDest fields.

Output:

{"ARRIVALDATE":"2019-02-01T11:00:00Z","COUNT":2}

Example 6-17 Find the number of watchers for a particular show in a TV
streaming application

SELECT count($a.contentStreamed[$element.showName = "Bienvenu"]) AS
WATCHERS
FROM stream_acct $s, $s.acct_data $a

Chapter 6
SELECT Expression

6-20

Explanation: In a TV streaming application, the list of shows watched by a subscriber is
stored in the contentStreamed array. Each element of the array corresponds to a single
show. The showName field includes the name of each show. To fetch the number of watchers
for a particular show, you use the array-filter step expression in the count function. You check
whether or not the showName field matches the given show (in this example, Bienvenu) for
each subscriber and count the total number of such subscribers using the count function.

Output:

{"WATCHERS":4}

sum function

The sum function computes its input expression on each row in a group and sums up all the
numeric values returned by these evaluations of the input expression. In fixed schema, the
sum function returns an error if you try to sum any non-numeric field. In schema-less JSON,
the sum function skips any non-numeric value. If all the values of the input expression are
non-numeric, a NULL value is returned. The resulting value of the sum function has type long,
double, or number, depending on the type of the input items:

• If there is at least one input item of type number, the result will be a number.

• If there is at least one item of type double or float, the result will be double, else the result
will be of type long.

• If the input items are a mix of long, doubles, and numbers, the result will be of type
double.

• If numeric values are not returned by the sum function’s input, the result is NULL.

Syntax:

long sum(any*)

Semantics:
any: The sum function accepts any parameter type as the input argument.

return type: long

Example 6-18 Find the total screen time spent on a show by a subscriber in the TV
streaming application

SELECT sum($content.seriesInfo[].episodes[].minWatched) AS MINSWATCHED
FROM stream_acct $s, $s.acct_data.contentStreamed[] $content
WHERE acct_id = 1 AND $content.showName = "At the Ranch"

Explanation: In the TV streaming application, you can calculate the total screen time spent
on a show by each subscriber. Each subscriber is associated with a unique account ID,
stored in the acct_id field of the stream_acct table. The information of the shows is stored in
the contentStreamed array. The showName field holds the name of the show and the
minWatched field stores the time lapsed for each episode in each season of the show. In this
query, you use the sum function to add the values of the minWatched fields of all the episodes
in all the seasons to calculate the total screen time for the subscriber with account ID 1 and
show named At the Ranch.

Chapter 6
SELECT Expression

6-21

Output:

{"MINSWATCHED":225}

avg function

The avg (average) function computes its input expression on each row in a group and
sums up as well as counts all the numeric values returned by these evaluations of the
input expression. Any non-numeric values are skipped. An error message is returned if
the input expression does not return any numeric values. The resulting value is the
division of the sum by the count. This value has type double, or number, depending on
the type of the input items.

• If there is at least one input item of type number, the result will be a number, else
the result will be double.

• If numeric values are not returned by avg function's input, the result is NULL.

Syntax:

number avg(any*)

Semantics:
any: The avg function accepts any parameter type as the input argument.

return type: number

Example 6-19 Find the average screen time spent on a show by a subscriber

SELECT avg($content.seriesInfo[].episodes[].minWatched) AS AVERAGETIME
FROM stream_acct $s, $s.acct_data.contentStreamed[] $content
WHERE acct_id = 1 AND $content.showName = "At the Ranch"

Explanation: In the TV streaming application, you can calculate the average screen
time spent on a show by each subscriber. Each subscriber is associated with a unique
account ID, stored in the acct_id field of the stream_acct table. The information of the
shows is stored in the contentStreamed array. The showName field holds the name of
the series and the minWatched field stores the time lapsed for each episode in each
season of the show. In this query, you use the avg function on the minWatched field to
calculate the average screen time spent on the show named At the Ranch by a
subscriber with account id 1. The avg function first calculates the total screen time by
adding the values in the minWatched fields for the given show. It then divides the sum
by the number of minWatched fields to calculate the average value.

Output:

{"AVERAGETIME":56.25}

min function

The min function returns the minimum value among all the values returned by the
evaluations of the input expression on each row in a group. The input expression is
evaluated as follows:

Chapter 6
SELECT Expression

6-22

1. An error is displayed if it can be determined during the compile time that the values
returned by the input expression belong to a type for which an order comparison is not
defined (for example, RECORD, MAP, BINARY, or FIXED_BINARY). Otherwise, the min
value for each group is initialized to NULL.

2. Let M be the current minimum value and N be the next input value. The M and N are
compared using Value Comparison Operators. If M is NULL, M is set to N. Else, if N is
less than M, that means N can be the minimum value and hence M is set to N, and N is
set to the next input value. This is continued until all the values in the input expression
are compared and a minimum value is ascertained. When the values are not comparable,
the following order is used:

numeric values < timestamps < strings and enums < booleans

3. If N is a record, map, array, binary, or fixed binary value, NULL, or JSON null, it is skipped
and the next input value is considered.

Syntax:

any_atomic min(any*)

Semantics:
any: The min function accepts any parameter type as the input argument.

return type: atomic data type

max function

The max function returns the maximum value in all the sequences returned by the evaluations
of the input expression on each row in a group. The specific rules are the same as for the max
function, except that the current max value M will be replaced by the next input value N if N is
not skipped and is greater than M.

Syntax:

any_atomic max(any*)

Semantics:
any: The max function accepts any parameter type as the input argument.

return type: atomic data type

Example 6-20 For a given show, find the minimum and maximum screen time

SELECT min($content.seriesInfo[].episodes[].lengthMin) AS MINTIME
max($content.seriesInfo[].episodes[].lengthMin) AS MAXTIME
FROM stream_acct $s, $s.acct_data.contentStreamed[] $content
WHERE $content.showName = "At the Ranch"

Explanation: In the TV streaming application, you can find the minimum and maximum
duration of a show. The lengthMin field in the stream_acct table stores the length of each
episode for a show. In this query, you use:

• The min function on the lengthMin field to fetch the duration of the episode from the
show At the Ranch that has the least screen time.

Chapter 6
SELECT Expression

6-23

• The max function on the lengthMin field to fetch the duration of the episode from
the show At the Ranch that has the most screen time.

Output:

{"MINTIME":45,"MAXTIME":85}

Example 6-21 Aggregate Function - Fetch the age and average income of users
from the User data table

CREATE INDEX idx11 ON users (age);

SELECT
age, count(*) AS count, avg(income) AS income
FROM users
GROUP BY age;

Explanation: Consider an application that maintains the user data. See User data
application table in the Tables used in the Examples section. The users table includes
multiple records of users with the same age group. You use the aggregate functions to
retrieve the count of such subscribers and their average income. The above query
groups users by their age, and for each age, returns the number of users with the
same age group and their average income.

Output:

{"age":22,"count":2,"income":50000.0}
{"age":45,"count":1,"income":75000.0}

array_collect(DISTINCT any*) function

The array_collect(DISTINCT any*) function computes the input expression on each
row of a group and collects all the resulting distinct non NULL values into an array.

Syntax:

ARRAY(any) array_collect(DISTINCT any*)

Semantics:
The array_collect function computes the input expression on each row of a group.
The input expression may be any kind of expression, except a SELECT expression. It
collects all the resulting distinct values (except NULL values) into an array. The
function returns the constructed array.

Note:

DISTINCT causes values to be compared for equality using the semantics of
the value comparison operator, with the following exceptions: strings are
comparable with strings only (not enums and timestamps), enums are
comparable with enums only (not strings), and timestamps are comparable
with timestamps only (not strings).

Chapter 6
SELECT Expression

6-24

Example 6-22 In the TV streaming application, return the set of distinct show ids (as
an array) that have been viewed in every country.

SELECT acct.acct_data.country,
array_collect(distinct acct.acct_data.contentStreamed.showId) AS shows
FROM stream_acct acct group by acct.acct_data.country;

Explanation: The TV streaming application streams various shows that are watched by
customers across the globe. Here you want a list of distinct show ids for every country. You
group the data based on the country and list the show ids for every country as an array. You
eliminate duplicate show ids with the distinct operator.

Output:

{"country":"USA","shows":[16,15]}
{"country":"France","shows":[15]}
{"country":"Germany","shows":[26,15]}

Example 6-23 In the TV streaming application, return the set of distinct genres (as an
array) that have been viewed by customers in every country.

SELECT acct.acct_data.country,
array_collect(distinct acct.acct_data.contentStreamed.genres[]) AS genres
FROM stream_acct acct group by acct.acct_data.country;

Explanation: The TV streaming application streams various shows that are watched by
customers across the globe. Here you want a list of distinct genres of shows watched by
customers in every country. You group the data based on the country and for each country,
you fetch the genres of all shows into a single array using
acct.acct_data.contentStreamed.genres[].You eliminate duplicate genres with the distinct
operator.

Chapter 6
SELECT Expression

6-25

Note:

In the above query, you use acct.acct_data.contentStreamed.genres[] as
you want the details of all the genres to be fetched in a single array. If you
omit [] in acct.acct_data.contentStreamed.genres, details of the genres
will be fetched as independent arrays for each row and distinct will be
applied only on independent arrays and not in the entire set as shown below.

SELECT acct.acct_data.country,
array_collect(distinct acct.acct_data.contentStreamed.genres)
AS genres
FROM stream_acct acct group by acct.acct_data.country

{"country":"USA","genres":[["comedy","drama","danish"],
["comedy","french"]]}
{"country":"France","genres":[["comedy","french"]]}
{"country":"Germany","genres":[["action","crime","spanish"],
["comedy","french"]]}

In the above example, you can see that the data is grouped based on the
country and for each country, the genres watched by customers are fetched
as a row-level array. For example, for the country USA, you see 2 arrays of
genres. The DISTINCT is applied at the array level. Only if the arrays are
identical, then DISTINCT fetches only one array. Else all the arrays are
fetched back as shown in the result above.

Output:

{"country":"USA","genres":["drama","danish","comedy","french"]}
{"country":"France","genres":["comedy","french"]}
{"country":"Germany","genres":
["spanish","comedy","action","crime","french"]}

array_collect(any*) function

The array_collect(any*) function computes the input expression on each row of a
group and collects all the resulting non NULL values into an array.

Syntax:

ARRAY(any) array_collect(any*)

Semantics:
The array_collect function computes the input expression on each row of a group.
The input expression may be any kind of expression, except a SELECT expression.
The function collects all the resulting values (except NULL values) into an array and
returns the populated array. The array_collect function permits duplicate values to
be inserted into the array.

Chapter 6
SELECT Expression

6-26

Example 6-24 In the TV streaming application, return the first name and last name of
customers (as an array) in USA and Germany.

SELECT acct.acct_data.country,
array_collect(
{"firstName":acct.acct_data.firstName,
"lastName":acct.acct_data.lastName}) as user_info
FROM stream_acct acct WHERE
acct.acct_data.country IN ('USA','Germany')
group by acct.acct_data.country;

Explanation: The TV streaming application streams various shows that are watched by
customers across the globe. Here you want to fetch the user information (first name and last
name) of customers in USA and Germany. You group the data based on the country and filter
the data only for two countries USA and Germany. For each of these two countries , you fetch
the first name and last name of all the customers and populate that in a single array.

Output:

{"country":"USA","user_info":[{"firstName":"John","lastName":"Lewis"}]}
{"country":"Germany","user_info":
[{"firstName":"Angela","lastName":"Mercel"}]}

long count(DISTINCT any*) function

The count function computes the input expression on each row of a group and counts all the
distinct non-NULL values returned by the input expression.

Syntax:

long count(DISTINCT any*)

Semantics:
The count function computes the input expression on each row of a group. The input
expression may be any kind of expression other than a subquery. The function counts all the
distinct non-NULL values returned by the input expression. The return type for the count
function is long.

Note:

DISTINCT causes values to be compared for equality using the semantics of the
value comparison operator with the following exceptions: strings are comparable
with strings only (not enums and timestamps), enums are comparable with enums
only (not strings), and timestamps are comparable with timestamps only (not
strings).

Chapter 6
SELECT Expression

6-27

Example 6-25 In the TV streaming application, return the count of distinct
show ids for every genre viewed by customers.

SELECT $genre, count(distinct $content.showId) AS show_count
FROM stream_acct acct, acct.acct_data.contentStreamed[] as $content,
$content.genres[] as $genre, $content.showId as $showid group
by $genre;

Explanation: The TV streaming application streams various shows that are watched
by customers across the globe. Here you want a count of distinct shows in every genre
viewed by customers. The details of content streamed is fetched into a single array
using acct.acct_data.contentStreamed[]. You group the data based on the genres
and for every genre , you fetch the list of showid as an array. You eliminate duplicate
show ids with the distinct operator. Then the count of distinct show ids for every genre
is returned.

Note:

In the above query, if you omit [] in acct.acct_data.contentStreamed,
details of the content streamed will be fetched as independent arrays for
each row and count(distinct)will be applied only on independent arrays and
not in the entire set.

Output:

{"genres":"crime","show_count":1}
{"genres":"action","show_count":1}
{"genres":"comedy","show_count":2}
{"genres":"spanish","show_count":1}
{"genres":"french","show_count":1}
{"genres":"drama","show_count":1}
{"genres":"danish","show_count":1}

Sequence Aggregate Functions
Sequence aggregate functions simply aggregate the items in their input sequence,
using the same rules as their corresponding SQL aggregate function.

For example, seq_sum() will skip any non-numeric items in the input sequence and it
will determine the actual type of the return value (long, double, or number) the same
way as the SQL sum(). The only exception is seq_count(), which contrary to the SQL
count(), will return NULL if any of its input items is NULL. Furthermore, there are no
restrictions on where sequence aggregate functions can appear (for example, they can
be used in the WHERE and/or the SELECT clause).

Note:

Note: An array is a sequence of one item. To aggregate the elements of an
array, you must unbox the array using [].

Chapter 6
SELECT Expression

6-28

The following sequence aggregate functions are supported.

• long seq_count(any*)

• number seq_sum(any*)

• number seq_avg(any*)

• any_atomic seq_min(any*)

• any_atomic seq_max(any*)

Note:

All sequence aggregate function names are case sensitive.

seq_count function

Returns the number of items in the input sequence. The evaluation of the input expression is
similar to the count function.

Syntax:

long seq_count(any*)

Semantics:
any: The seq_count function accepts any parameter type as the input argument.

return type: long

seq_sum function

Returns the sum of the numeric items in the input sequence. The evaluation of the input
expression is similar to the sum function.

Syntax:

number seq_sum(any*)

Semantics:
any: The seq_sum function accepts any parameter type as the input argument.

return type: number

seq_avg function

Returns the average of the numeric items in the input sequence. The evaluation of the input
expression is similar to the avg function.

Syntax:

number seq_avg(any*)

Semantics:
any: The seq_avg function accepts any parameter type as the input argument.

Chapter 6
SELECT Expression

6-29

return type: number

seq_min function

Returns the minimum of the items in the input sequence. The evaluation of the input
expression is similar to the min function.

Syntax:

any_atomic seq_min(any*)

Semantics:
any: The seq_min function accepts any parameter type as the input argument.

return type: atomic data type

seq_max function

Returns the maximum of the items in the input sequence. The evaluation of the input
expression is similar to the max function.

Syntax:

any_atomic seq_max(any*)

Semantics:
any: The seq_max function accepts any parameter type as the input argument.

return type: atomic data type

Example 6-26 Display an automated message regarding the number of
checked bags, travel route, and flight count to a passenger in the airline
baggage tracking application

SELECT fullName,
b.baginfo[0].routing,
size(baginfo) AS BAGS,
 CASE
 WHEN seq_count(b.bagInfo[0].flightLegs.flightNo) = 1
 THEN "You have one flight to catch"
 WHEN seq_count(b.bagInfo[0].flightLegs.flightNo) = 2
 THEN "You have two flights to catch"
 WHEN seq_count(b.bagInfo[0].flightLegs.flightNo) = 3
 THEN "You have three flights to catch"
 ELSE "You do not have any travel listed today"
 END AS FlightInfo
FROM BaggageInfo b
WHERE ticketNo = 1762320369957

Explanation: In the airline baggage tracking application, it is helpful to display a quick
look-up message regarding the flight count, number of checked bags, and routing
details of an upcoming travel for a passenger. The bagInfo array holds the checked
bag details of the passenger. The size of the bagInfo array determines the number of
checked bags per passenger. The flightLegs array in the bagInfo includes the flight
details corresponding to each travel leg. The routing field includes the airport codes of

Chapter 6
SELECT Expression

6-30

all the travel fragments. You can determine the number of flights by counting the flightNo
fields in the flightLegs array. If a passenger has more than one checked bag, there will be
more than one element in the bagInfo array, one for each bag. In such cases, the
flightLegs array in all the elements of the bagInfo field of a passenger data will contain the
same values. This is because the destination of all the checked bags for a passenger will be
the same. While counting the flightNo fields, you must consider only one element of the
bagInfo array to avoid duplication of results. In this query, you consider only the first element,
that is, bagInfo[0]. As the flightLegs array has a flightNo field for each travel fragment, it
is a sequence and you determine the count of the flightNo fields per passenger using the
seq_count function.

You use the CASE statement to introduce different messages based on the flight count. For
ease of use, only three transits are considered in the query.

Output:

{"fullName":"Lorenzo Phil","routing":"SFO/IST/ATH/
JTR","BAGS":2,"FlightInfo":"You have three flights to catch"}

Example 6-27 Retrieve the step tracker details for a user from the User data
application

Consider the users table with an additional field stepCount to track the steps covered by each
user over a duration. The table schema is as follows:

CREATE TABLE users (id INTEGER,
 firstName STRING,
 lastName STRING,
 otherNames ARRAY(RECORD(first STRING, last STRING)),
 age INTEGER,
 income INTEGER,
 address JSON,
 connections ARRAY(INTEGER),
 stepCount ARRAY(LONG),
PRIMARY KEY (id))

Insert the following sample data:

INSERT INTO users VALUES (

 10,
 "John",
 "Smith",
 [{"first" : "Johny", "last" : "Good"}, {"first" : "Johny2", "last" :
"Brave"},{"first" : "Johny3", "last" : "Kind"},{"first" : "Johny4", "last" :
"Humble"}],
 22,
 45000,
 {
 "street" : "Pacific Ave",
 "number" : 101,
 "city" : "Santa Cruz",
 "state" : "CA",
 "zip" : 95008,

Chapter 6
SELECT Expression

6-31

 "phones" : [
 { "area" : 408, "number" : 4538955, "kind" : "work" },
 { "area" : 831, "number" : 7533341, "kind" : "home" },
 { "area" : 831, "number" : 7533382, "kind" : "mobile" }
]
 },
 [30, 55, 43],
 [2000, 1500, 2700, 3000, 1000, 4000, 6000]
)

Based on the aggregation of this data for a given duration, a user can chart out a
fitness regime.

SELECT id,
firstName,
seq_count(u.stepCount[]) AS DAYS,
seq_sum(u.stepCount[]) AS TOTAL_STEPS,
seq_avg(u.stepCount[]) AS AVERAGE_STEPS,
seq_min(u.stepCount[]) AS LOWEST,
seq_max(u.stepCount[]) AS HIGHEST
FROM users u
WHERE id=10

Explanation: The stepCount field in the users table is an array of type long. Each
element in the array represents the number of steps covered by a user per day. You
can use the sequence aggregate functions to fetch the details of total steps, average
steps, lowest, and highest counts of steps covered by the user over a period.

Output:

{"id":10,"firstName":"John","DAYS":7,"TOTAL_STEPS":20200,"AVERAGE_STEPS
":2885.714285714286,"LOWEST":1000,"HIGHEST":6000}

ORDER BY Clause
The ORDER BY clause reorders the sequence of rows it receives as input. The
relative order between any two input rows is determined by evaluating, for each row,
the expressions listed in the ORDER BY clause and comparing the resulting values,
taking into account the sort_spec associated with each ORDER BY expression.

Syntax

orderby_clause ::= ORDER BY
 expression sort_spec
 ("," expression sort_spec)*

sort_spec ::= [ASC|DESC] [NULLS (FIRST|LAST)]

Semantics

Each ordering expression must return at most one atomic value. If an ordering
expression returns an empty sequence, the special value EMPTY is used as the
returned value. If the SELECT expression includes GROUP BY as well, then the

Chapter 6
SELECT Expression

6-32

expressions in the ORDER BY must be the grouping expressions (in the GROUP BY clause,
if any), or aggregate functions, or expressions that are built on top of grouping expression
and/or aggregate functions.

sort_spec : A sort_spec specifies the "direction" of the sort (ascending or descending) and
how to compare the special values NULL, JNULL, and EMPTY with the non-special values.

• If NULLS LAST is specified, the special values will appear after all the non-special
values.

• If NULLS FIRST is specified, the special values will appear before all the non-special
values.

The relative ordering among the 3 special values themselves is fixed:

• if the direction is ASC, the ordering is EMPTY < JNULL < NULL;

• otherwise the ordering is reversed.

Notice that in the grammar, sort_specs are optional.

• If no sort_spec is given, the default is ASC order and NULLS LAST.

• If only the sort order is specified, then NULLS LAST is used if the order is ASC, otherwise
NULLS FIRST.

• If the sort order is not specified, ASC is used.

Taking into account the above rules, the relative order between any two input rows is
determined as follows. Let N be the number of order-by expressions and let Vi1, Vi2, … ViN
be the atomic values (including EMPTY) returned by evaluating these expressions, from left
to right, on a row Ri. Two rows Ri, Rj are considered equal if Vik is equal to Vjk for each k in
1, 2, …, N. In this context, NULLs are considered to be equal only to themselves. Otherwise,
Ri is considered less than Rj if there is a pair Vim, Vjm such that:

• m is 1, or Vik is equal to Vjk for each k in 1, 2, …, (m-1), and

• Vim is not equal to Vjm, and

• the m-th sort_spec specifies ascending order and Vim is less than Vjm, or

• the m-th sort_spec specifies descending order and Vim is greater than Vjm

In the above rules, comparison of any two values Vik and Vjk, when neither of them is special
and they are comparable to each other, is done according to the rules of the value-
comparison operators defined in the Value Comparison Operators section.

If Vik and Vjk do not have comparable types (which, for example, - can arise when sorting by
json fields), the following rule applies:

• If the direction is ASC, the ordering is numeric items < timestamps < strings and enums <
booleans.

• Otherwise the ordering is reversed.

As with grouping, sorting can be index-based or generic. Index-based sorting is possible only
if there is an index that sorts the rows in the desired order. More precisely, let e1, e2, …, eN
by the ORDER BY expressions as they appear in the ORDER BY clause (from left to right).
Then, there must exist an index (which may be the primary-key index or one of the existing
secondary indexes) such that for each i in 1,2,...,N, ei matches the definition of the i-th index
field. Furthermore, all the sort_specs must specify the same ordering direction and for each
sort_spec, the desired ordering with respect to the special values must match the way these
values are sorted by the index. In the current implementation, the special values are always

Chapter 6
SELECT Expression

6-33

sorted last in an index. So, if the sort order is ASC, all sort_specs must specify NULL
LAST, and if the sort order is DESC, all sort_specs must specify NULLS FIRST.

Note:

If no appropriate index exists or is not selected by the query optimizer, the
sorting will be generic. This implies that all query results must be fetched into
the driver memory and cached there before they can be sorted. So, as with
grouping, generic sorting can consume a lot of driver memory, and is
therefore best avoided.

For both generic ORDER BY and GROUP BY, applications can programmatically
specify how much memory such operations are allowed to consume at the client
driver. We have specific methods for this functionality in each of the available language
drivers as given below.

Table 6-1 APIS for Memory Consumption

Langua
ge
Driver

Get maximum memory consumption Set maximum memory consumption

Java getMaxMemoryConsumption() setMaxMemoryConsumption(long v)

Python get_max_memory_consumption() set_max_memory_consumption
(memory_consumption)

Node.js maxMemoryMB maxMemoryMB

Go GetMaxMemoryConsumption() MaxMemoryConsumption

Example 6-28 ORDER BY Clause

This example selects the id and the last name for users whose age is greater than 30,
returning the results sorted by id. Sorting is possible in this case because id is the
primary key of the users table.

SELECT id, lastName
FROM users
WHERE age > 30
ORDER BY id;

Example 6-29 ORDER BY Clause

This example selects the id and the last name for users whose age is greater than 30,
returning the results sorted by age. Sorting is possible only if there is a secondary
index on the age column (or more generally, a multi-column index whose first column
is the age column).

SELECT id, lastName
FROM users
WHERE age > 30
ORDER BY age;

Chapter 6
SELECT Expression

6-34

Example 6-30 ORDER BY Clause

The following example returns all the rows sorted by the first name.

SELECT id, firstName, lastName
 FROM users
 ORDER BY firstName;
 +----+-----------+----------+
 | id | firstName | lastName |
 +----+-----------+----------+
10	John	Smith
20	Mary	Ann
30	Peter	Paul
 +----+-----------+----------+
3 rows returned

Example 6-31 ORDER BY Clause

The following example returns the firstName, lastName and income sorted by the income
from highest to lowest.

SELECT firstName, lastName, income
 from users
 ORDER BY income DESC;
 +-----------+----------+--------+
 | firstName | lastName | income |
 +-----------+----------+--------+
Mary	Ann	90000
Peter	Paul	53000
John	Smith	45000
 +-----------+----------+--------+
3 rows returned

Example 6-32 ORDER BY Clause

The following example groups the data by age and returns the number of users having that
age and their average income ordered by their average income.

SELECT
 age, count(*), avg(income)
 FROM users
 GROUP BY age
 ORDER BY avg(income);
 +-----+----------+----------+
 | age | Column_2 | Column_3 |
 +-----+----------+----------+
22	1	45000.0
25	1	53000.0
43	1	90000.0
 +-----+----------+----------+
3 rows returned

Chapter 6
SELECT Expression

6-35

Example 6-33 ORDER BY Clause

In the following example, Query 1 returns the state and income sorted by income.
However, if we want to group Query 1 by state, then we can use the GROUP BY
clause. However, when a SELECT expression includes grouping, expressions in the
SELECT and ORDER BY clauses must reference grouping expressions, aggregate
functions or external variable only. So, to get the desired result, we need to rewrite
Query 1 as given in Query 2.

Query 1:

SELECT
 u.address.state, u.income
 FROM users u
 ORDER BY u.income;
 +---------------+--------+
 | state | income |
 +---------------+--------+
 | NV | 45000 |
 +---------------+--------+
 | CA | 53000 |
 +---------------+--------+
 | CA | 90000 |
 +---------------+--------+
3 rows returned

Query 2:

SELECT
 u.address.state, max(u.income)
 FROM users u
 GROUP BY u.address.state
 ORDER BY max(u.income);
 +---------------+----------+
 | state | Column_2 |
 +---------------+----------+
 | NV | 45000 |
 +---------------+----------+
 | CA | 90000 |
 +---------------+----------+
2 rows returned

Example 6-34 ORDER BY Clause

In the following example, the Query 1 returns the income and state of all the rows in
the users table. The Query 2 gets the average income for each state.

Query 1:

SELECT
 u.address.state, u.income
 FROM users u;
 +---------------+--------+
 | state | income |
 +---------------+--------+

Chapter 6
SELECT Expression

6-36

 | CA | 53000 |
 +---------------+--------+
 | NV | 45000 |
 +---------------+--------+
 | CA | 90000 |
 +---------------+--------+
3 rows returned

Query 2:

SELECT
 u.address.state, avg(u.income)
 FROM users u
 GROUP BY u.address.state
 ORDER BY avg(u.income);
 +---------------+----------+
 | state | Column_2 |
 +---------------+----------+
 | NV | 45000.0 |
 +---------------+----------+
 | CA | 71500.0 |
 +---------------+----------+
2 rows returned

SELECT Clause
The SELECT clause transforms each input row to a new record that will appear in the query
result. The SELECT clause comes in two forms: "select star" form and "projection" form.

select star form
In select star form the SELECT clause contains a single star symbol (*). In this the SELECT
clause is a no-op; it simply returns its input sequence of rows.

projection form
In the projection form the SELECT clause contains a list of expressions, where each
expression is optionally associated with a name. In this the listed expressions and their
associated names are refered as field expressions and field names respectively.

Syntax

select_clause ::= SELECT [DISTINCT] select_list

select_list ::= [hints]
 (STAR | (expression AS id ("," expression AS id)*))

Semantics

In projection form, the SELECT clause creates a new record for each input row. In this the
record constructed by the SELECT clause has one field for each field expression and the
fields are arranged in the same order as the field expressions. For each field, its value is the
value computed by the corresponding field expression and its name is the name specified by
the AS keyword, or if no field name is provided explicitly (via the AS keyword), one is
generated internally during query compilation. To create valid records, the field names must

Chapter 6
SELECT Expression

6-37

be unique. Furthermore, each field value must be exactly one item. To achieve this,
the following two implicit conversions are employed:

1. If the result of a field expression is empty, NULL is used as the value of the
corresponding field in the created record.

2. If the compiler determines that a field expression may return more than one item, it
wraps the field expression with a conditional array constructor. See the Array and
Map Constructors section. During runtime, an array will be constructed only if the
field expression does actually return more than one item; if so, the returned items
will be inserted into the constructed array, which will then be used as the value of
the corresponding field in the created record.

The above semantics imply that all records generated by a SELECT clause have the
same number of fields and the same field names. As a result, a record type can be
created during compilation time that includes all the records in the result set of a query.
This record type is the type associated with each created record, and is available
programmatically to the application.

The SELECT clause can contain an optional DISTINCT keyword. If the SELECT
clause contains the DISTINCT keyword, then the database will return only one copy of
each set of duplicate rows selected. Duplicate rows are those with matching values in
the SELECT list. The query uses the combination of values in all specified columns in
the SELECT list to evaluate the uniqueness. See the Example 6-40 example. Equality
between values is checked using the semantics of the "=" operator. See the Value
Comparison Operators section.

If the SELECT expression is a grouping one, then the expressions in the SELECT list
must be the grouping expressions (in the GROUP BY clause, if any), or aggregate
functions, or expressions that are built on top of grouping expression and/or aggregate
functions.

Note:

The SELECT clause may also contain one or more hints, that help the query
processor choose an index to use for the query. See the Choosing the Best
Applicable Index section.

Example 6-35 SELECT Clause

SELECT * FROM users;

Example 6-36 SELECT Clause

Select the id and the last name for users whose age is greater than 30. We show 4
different ways of writing this query, illustrating the different ways that the top-level
columns of a table may be accessed.

SELECT id, lastName FROM users WHERE age > 30;

SELECT users.id, lastName FROM users WHERE users.age > 30;

SELECT $u.id, lastName FROM users $u WHERE $u.age > 30;

Chapter 6
SELECT Expression

6-38

SELECT u.id, lastName FROM users u WHERE users.age > 30;

Example 6-37 SELECT Clause

Select the id and the last name for users whose age is greater than 30, returning the results
sorted by id. Sorting is possible in this case because id is the primary key of the users table.

SELECT id, lastName FROM users WHERE age > 30 ORDER BY id;

Example 6-38 SELECT Clause

Select the list of distinct age of the users.

SELECT DISTINCT age FROM users;

{"age":25}
{"age":43}
{"age":22}

Example 6-39 SELECT Clause

Select the list of othernames of the users. Notice that the output of the SELECT command is
compared and any duplicates are removed from the final output.

SELECT otherNames FROM Users;

{"otherNames":null}
{"otherNames":null}
{"otherNames":[{"first":"Johny","last":"BeGood"}]}

SELECT DISTINCT otherNames FROM Users;

{"otherNames":null}
{"otherNames":[{"first":"Johny","last":"BeGood"}]}

Example 6-40 SELECT Clause

Select the list of firstname and othernames of the users. Notice that the query uses the
combination of values in all specified columns in the SELECT list to evaluate the uniqueness.

SELECT firstName, otherNames FROM Users;

{"firstName":"Peter","otherNames":null}
{"firstName":"Mary","otherNames":null}
{"firstName":"John","otherNames":[{"first":"Johny","last":"BeGood"}]}

SELECT DISTINCT firstName, otherNames FROM Users;

{"firstName":"Peter","otherNames":null}
{"firstName":"Mary","otherNames":null}
{"firstName":"John","otherNames":[{"first":"Johny","last":"BeGood"}]}

Chapter 6
SELECT Expression

6-39

LIMIT Clause
The LIMIT clause is used to specify the maximum number M of results to return to the
application. M is computed by an expression that may be a single integer literal, or a
single external variable, or any expression which is built from literals and external
variables and returns a single non-negative integer.

Syntax

limit_clause ::= LIMIT add_expression

Semantics

Although it's possible to use limit without an order-by clause, it does not make much
sense to do so. This is because without an order-by, results are returned in a random
order, so the subset of results returned will be different each time the query is run.

Example 6-41 LIMIT Clause

SELECT * FROM users
WHERE age > 30
ORDER BY age
LIMIT 5;

OFFSET Clause
The OFFSET clause is used to specify a number N of initial query results that should
be skipped (not returned to the application). N is computed by an expression that may
be a single integer literal, or a single external variable, or any expression which is built
from literals and external variables and returns a single non-negative integer.

Syntax

offset_clause ::= OFFSET add_expression

Semantics

Although it's possible to use offset without an order-by clause, it does not make much
sense to do so. This is because without an order-by, results are returned in a random
order, so the subset of results skipped will be different each time the query is run.

Example 6-42 OFFSET Clause

SELECT * FROM users
WHERE age > 30
ORDER BY age
OFFSET 10;

Chapter 6
SELECT Expression

6-40

Path Expressions
Syntax

path_expression ::= primary_expression (map_step | array_step)*

map_step ::= "." (map_filter_step | map_field_step)

array_step ::= array_filter_step | array_slice_step

Semantics

Path expressions are used to navigate inside hierarchically structured data. As shown in the
syntax, a path expression has an input expression (which is one of the primary expressions
described in the Primary Expressions section, followed by one or more steps. The input
expression may return any sequence of items. Each step is actually an expression by itself; It
takes as input a sequence of items and produces zero or more items, which serve as the
input to the next step, if any. Each step creates a nested scope, which covers just the step
itself.

All steps iterate over their input sequence, producing zero or more items for each input item.
If the input sequence is empty, the result of the step is also empty. Otherwise, the overall
result of the step is the concatenation of the results produced for each input item. The input
item that a step is currently operating on is called the context item, and it is available within
the step expression via an implicitly-declared variable, whose name is a single dollar sign ($).
This context-item variable exists in the scope created by the step expression.

There are several kinds of steps. For all of them, if the context item is NULL, it is just added
into the output sequence with no further processing. Otherwise, the following subsections
describe the operation performed by each kind of step on each non-NULL context item.

Field Step Expressions
Syntax

map_field_step ::=
 id | string | variable_reference |
 parenthesized_expression | function_call

Semantics

The main use of a field step is to select the value of a field from a record or map. The field to
select is specified by its field name, which is either given explicitly as an identifier, or is
computed by a name expression. The name expression, must have type STRING?.

A field step processes each context item as follows:

• If the context item is an atomic item, it is skipped (the result is empty).

• The name expression is computed. The name expression may reference the context item
via the $ variable. If the name expression returns the empty sequence or NULL, the
context item is skipped. Otherwise, let K be the result of of the name expression (if an

Chapter 6
Path Expressions

6-41

identifier is used instead of a name expression, K is the string with the same
characters as the identifier).

• If the context item is a record, then if that record contains a field whose name is
equal to K, the value of that field is returned, otherwise, an error is raised.

• If the context item is a map, then if that map contains a field whose name is equal
to K, the value of that field is returned, otherwise, an empty result is returned.

• If the content item is an array, the field step is applied recursively to each element
of the array (with the context item being set to the current array element).

Example 6-43 Field Step Expression

Select the id and the city of all users.

SELECT id, u.address.city
FROM users u;

Notice that if the input to a path expressions is a table column, a table alias must be
used together with the column name. Otherwise, as explained in the Variable
References section, an expression like address.city would be interpreted as a
reference to the city column of a table called address, which is of course not correct.

Recall that address is a column of type JSON. For most (if not all) users, its value will
be a json document, i.e.. a map containing other json values. If it is a document and it
has a field called city, its value will be returned. For address documents with no city
field, the path expression u.address.city returns the empty sequence, which gets
converted to NULL by the SELECT clause. The same is true for addresses that are
atomic values (e.g. flat strings). Finally, a user may have many addresses stored as an
array in the address column. For such a user, all of his/her cities will be returned inside
an array.

The record items constructed and returned by the above query will all have type
RECORD(id INTEGER, city JSON). The city field of this record type has type JSON,
because the address column has type JSON and as a result, any nested field in an
address can have any valid JSON value. However, each actual record value in the
result will have a city field whose field value has a more specific type (most likely
STRING).

Note:

The query processor could be constructing on-the-fly a precise RECORD
type for each individual record constructed by the query, but it does not do so
for performance reasons. Instead it constructs a common type for all
returned record items.

Example 6-44 Field Step Expression

Select the id and amount spent on books for all users who live in California.

SELECT id, u.expenses.books
FROM users u
WHERE u.address.state = "CA";

Chapter 6
Path Expressions

6-42

In this case, "expenses" is a "typed" map: all of its values have INTEGER as their type. As a
result, the record items constructed and returned by the above query will all have type
RECORD(id INTEGER, books INTEGER).

Example 6-45 Field Step Expression

For each user, select their id and a field from his/her address. The field to select is specified
via an external variable.

DECLARE $fieldName STRING;

SELECT u.id, u.address.$fieldName
FROM users u;

Example 6-46 Field Step Expression

For each user select all their last names. In this query the otherName column is an array, and
the .last step is applied to each element of the array.

SELECT lastName, u.otherNames.last
FROM users u;

Example 6-47 Field Step Expression

For each user select their id and all of their phone numbers (without the area code). This
query will work as expected independently of whether phones is an array of phone objects or
a single such phone object. However, if phones is, for example, a single integer or a json
object without a number field, the path expression will return the empty sequence, which will
be converted to NULL by the SELECT clause.

SELECT id, u.address.phones.number
FROM users u;

Example 6-48 Field Step Expression

For each state, find how much people in that state spent on books.

SELECT u.address.state, sum(u.expenses.books)
FROM users u
GROUP BY u.address.state;

For the above query to work, an index must exist whose first field is u.address.state.

Map-Filter Step Expressions
Syntax

map_filter_step ::= (KEYS | VALUES) "(" [expression] ")"

Semantics

Like field steps, map-filter steps are meant to be used primarily with records and maps. Map-
filter steps select either the field names (keys) or the field values of the map/record fields that

Chapter 6
Path Expressions

6-43

satisfy a given condition (specified as a predicate expression inside parentheses). If
the predicate expression is missing, it is assumed to be the constant true (in which
case all the field names or all of the field values will be returned).

A map filter step processes each context item as follows:

• If the context item is an atomic item, it is skipped (the result is empty).

• If the context item is a record or map, the step iterates over its fields. For each
field, the predicate expression is computed. In addition to the context-item variable
($), the predicate expression may reference the following two implicitly-declared
variables: $key is bound to the name of the context field, i.e., the current field in $,
and $value is bound to the value of the context field. The predicate expression
must be BOOLEAN?. A NULL or an empty result from the predicate expression is
treated as a false value. If the predicate result is true, the context field is selected
and either its name or its value is returned; otherwise the context field is skipped.

• If the context item is an array, the map-filter step is applied recursively to each
element of the array (with the context item being set to the current array element).

Example 6-49 Map-Filter Step Expressions

For each user select their id and the expense categories in which the user spent more
than $1000.

SELECT id, u.expenses.keys($value > 1000)
FROM users u;

Example 6-50 Map-Filter Step Expressions

For each user select their id and the expense categories in which they spent more
than they spent on clothes. In this query, the context-item variable ($) appearing in the
filter step expression [$value > $.clothes] refers to the context item of that filter step,
i.e., to an expenses map as a whole.

SELECT id, u.expenses.keys($value > $.clothes)
FROM users u;

Example 6-51 Map-Filter Step Expressions

For each user select their id, the sum of their expenses in all categories except
housing, and the maximum of these expenses.

SELECT id,
seq_sum(u.expenses.values($key != housing)) AS sum,
seq_max(u.expenses.values($key != housing)) AS max
FROM users u;

Example 6-52 Map-Filter Step Expressions

Notice that field steps are actually a special case of map-filter steps. For example the
query

SELECT id, u.address.city
FROM users u;

Chapter 6
Path Expressions

6-44

is equivalent to

SELECT id, u.address.values($key = "city")
FROM users u;

However, the field step version is the preferred one, for performance reasons.

Array-Filter Step Expressions
Syntax

array_filter_step ::= "[" [expression] "]"

Semantics

An array filter is similar to a map filter, but it is meant to be used primarily for arrays. An array
filter step selects elements of arrays by computing a predicate expression for each element
and selecting or rejecting the element depending on the predicate result. The result of the
filter step is a sequence containing all selected items. If the predicate expression is missing, it
is assumed to be the constant true (in which case all the array elements will be returned).

An array filter step processes each context item as follows:

• If the context item is not an array, an array is created and the context item is added to
that array. Then the array filter is applied to this single-item array as described below.

• If the context item is an array, the step iterates over the array elements and computes the
predicate expression on each element. In addition to the context-item variable ($), the
predicate expression may reference the following two implicitly-declared
variables: $element is bound to the context element, i.e., the current element in $,
and $pos is bound to the position of the context element within the array (positions are
counted starting with 0). The predicate expression must return a boolean item, or a
numeric item, or the empty sequence, or NULL. A NULL or an empty result from the
predicate expression is treated as a false value. If the predicate result is true/false, the
context element is selected/skipped, respectively. If the predicate result is a number P,
the context element is selected only if the condition $pos = P is true. Notice that this
implies that if P is negative or greater or equal to the array size, the context element is
skipped.

Example 6-53 Array-Filter Step Expression

For each user, select their last name and his/her phone numbers with area code 650.

SELECT lastName,
[u.address.phones[$element.area = 650].number]
AS phoneNumbers
FROM users u;

Notice the the path expression in the select clause is enclosed in square brackets, which is
the syntax used for arrayconstructor expressions as described in the Array and Map
Constructors section. The use of the explicit array constructor guarantees that the records in
the result set will always have an array as their second field. Otherwise, the result records
would contain an array for users with more than one phones, but a single integer for users
with just one phone. Notice also that for users with just one phone, the phones field in
address may not be an array (containing a single phone object), but just a single phone

Chapter 6
Path Expressions

6-45

object. If such a single phone object has area code 650, its number will be selected, as
expected.

Example 6-54 Array-Filter Step Expression

For each user, select their last name and phone numbers having the same area code
as the first phone number of that user.

SELECT lastName,
[u.address.phones[$element.area = $[0].area].number]
FROM users u;

Example 6-55 Array-Filter Step Expression

Among the 10 strongest connections of each user, select the ones with id > 100.
(Recall that the connections array is assumed to be sorted by the strength of the
connections, with the stronger connections appearing first).

SELECT [connections[$element > 100 AND $pos < 10]]
AS interestingConnections
FROM users;

Example 6-56 Array-Filter Step Expression

Count the total number of phones numbers with areacode 650.

SELECT count(u.address.phones[$element.area = 650])
FROM users u;

Example 6-57 Array-Filter Step Expression

To count the total number of people with at least one phone in the 650 areacode, a
case expression (see Case Expressions) and the exists operator (see Exists Operator)
must be used.

SELECT count(CASE
WHEN EXISTS u.address.phones[$element.area = 650] THEN 1
ELSE 0
END)
FROM users u;

Array-Slice Step Expressions
Syntax

array_slice_step ::= "[" [expression] ":" [expression] "]"

Semantics

Array slice steps are meant to be used primarily with arrays. In general, an array slice
step selects elements of arrays based only on the element positions. The elements to
select are the ones whose positions are within a range between a "low" position and a
"high" position. The low and high positions are computed by two boundary

Chapter 6
Path Expressions

6-46

expressions: a "low" expression for the low position and a "high" expression for the high
position. Each boundary expression must return at most one item of type LONG or
INTEGER, or NULL. The low and/or the high expression may be missing. The context-item
variable ($) is available during the computation of the boundary expressions.

An array filter step processes each context item as follows:

• If the context item is not an array, an array is created and the context item is added to
that array. Then the array filter is applied to this single-item array as described below.

• If the context item is an array, the boundary expressions are computed, if present. If any
boundary expression returns NULL or an empty result, the context item is skipped.
Otherwise, let L and H be the values returned by the low and high expressions,
respectively. If the low expression is absent, L is set to 0. If the high expression is absent,
H is set to the size of the array - 1. If L is < 0, L is set to 0. If H > array_size - 1, H is set to
array_size - 1. After L and H are computed, the step selects all the elements between
positions L and H (L and H included). If L > H no elements are selected.

Notice that based on the above rules, slice steps are actually a special case of filter steps.
For example, a slice step with both boundary expressions present, is equivalent to <input
expr>[<low expr> <= $pos and $pos <= <high expr>]. Slice steps are provided for
convenience (and better performance).

Example 6-58 Array-Slice Step Expression

Select the strongest connection of the user with id 10.

SELECT connections[0] AS strongestConnection
FROM users
WHERE id = 10;

Example 6-59 Array-Slice Step Expression

For user 10, select his/her 5 strongest connections (i.e. the first 5 ids in the "connections"
array).

SELECT [connections[0:4]] AS strongConnections
FROM users
WHERE id = 10;

Notice that the slice expression will return at most 5 ids; if user 10 has fewer that 5
connections, all of his/her connections will be returned.

Example 6-60 Array-Slice Step Expression

For user 10, select his/her 5 weakest connections (i.e. the last 5 ids in the "connections"
array).

SELECT [connections[size($) - 5 :]] AS weakConnections
FROM users
WHERE id = 10;

In this example, size() is a function that returns the size of a given array, and $ is the context
array, i.e., the array from which the 5 weakest connections are to be selected.

Chapter 6
Path Expressions

6-47

Comparison Expressions
This section describes various comparison expressions in Oracle NoSQL Database.

If you want to follow along with the examples, create the tables as described in the
Tables used in the Examples section.

Logical Operators: AND, OR, and NOT
Syntax

expression ::= or_expression

or_expression ::= and_expression | (or_expression OR and_expression)

and_expression ::= not_expression | (and_expression AND not_expression)

not_expression ::= [NOT] is_null_expression

Semantics

The binary AND and OR operators and the unary NOT operator have the usual
semantics. Their operands are conditional expressions, which must have type
BOOLEAN. An empty result from an operand is treated as the false value. If an
operand returns NULL, then:

• The AND operator returns false if the other operand returns false; otherwise, it
returns NULL.

• The OR operator returns true if the other operand returns true; otherwise it returns
NULL.

• The NOT operator returns NULL.

Example 6-61 Fetch the id, first name, last name, and age for users who are not
in the age group of 20 to 40 or whose income is greater than 90K

SELECT id, firstName, lastName FROM users WHERE NOT age BETWEEN 20 AND
40 OR income > 90000

Consider an application that maintains the user data. The age field holds the age of
the user and the income field includes the income of the user. In the above query, you
use a combination of operators to get the list of users who are not in the age group of
20 to 40 years or have an income greater than 90K. A BETWEEN operator verifies if
the input expression is within the range of the boundary values. Since you want users
who are either less than 20 years or more than 40 years of age, use the BETWEEN
operator on the age field with the logical operator NOT to fetch the users outside the
given range. To fetch the list of users with income greater than 90K, use the value
comparison operator '>' to compare the income field of the users. You use the OR
operator to fetch the list of users who satisfy either of the conditions.

Chapter 6
Comparison Expressions

6-48

Output:

{"id":30,"firstName":"Adam","lastName":"Smith","age":45}

Example 6-62 Fetch the list of male passengers from the airline baggage tracking
application who are bound toward FRA station and carrying only one checked bag

SELECT
fullname,
s.bagInfo[].flightLegs[].fltRouteDest,
ticketNo
FROM BaggageInfo s
WHERE gender = 'M'
AND s.bagInfo[].flightLegs[].fltRouteDest=any "FRA"
AND (size(s.bagInfo) = 1)

In the airline baggage tracking application, you can fetch the details of the male passengers
who are bound toward a specific destination. The fltRouteDest field in the BaggageInfo
table includes the destination airport code for each travel leg. The fltRouteDest field can
hold the final station or a transit station. To retrieve a list of male passengers who are bound
towards FRA and carrying only one checked bag, you perform value comparison operations
and use the AND operator to narrow down the results to successfully match all the criteria.
You fetch the list of all the male passengers by comparing the gender field. You retrieve the
list of passengers bound towards the FRA station by performing a string comparison
operation on the fltRouteDest field with the given airport code 'FRA'. You compare the size
of the bagInfo array to select the passengers having only one checked bag. You use the
AND operator to fetch the list of passengers that satisfy all the conditions mentioned above.

Here, the s.bagInfo.fltRouteDest is a sequence. The value comparison operators cannot
operate on sequences of more than one item. A sequence comparison operator any is used
in addition to the value comparison operator '=' to compare the fltRouteDest fields.

Note:

If there is more than one logical operator in the query, ensure the proper usage of
parenthesis. The parenthesis is assessed first in the order of evaluation.

Output:

{"fullname":"Henry Jenkins","fltRouteDest":
["ORD","FRA"],"ticketNo":176234463813}
{"fullname":"Raymond Griffin","fltRouteDest":
["FRA","HKG"],"ticketNo":1762399766476}

IS NULL and IS NOT NULL Operators
Syntax

is_null_expression ::= condition_expression [IS [NOT] NULL]

Chapter 6
Comparison Expressions

6-49

condition_expression ::=
 comparison_expression | exists_expression
 | is_of_type_expression | in_expression

Semantics

The IS NULL operator tests whether the result of its input expression is NULL. If the
input expression returns more than one item, an error is raised. If the result of the input
expression is empty, IS NULL returns false. Otherwise, IS NULL returns true if and
only if the single item computed by the input expression is NULL. The IS NOT NULL
operator is equivalent to NOT (IS NULL cond_expr). NULL is explained in Table 2-2.

Example 6-63 Select the id, first name, and last name of all users who do not
have a known income

Consider an application that maintains the user data. See users table in the Tables
used in the Examples topic.

SELECT id, firstName, lastName FROM users u
WHERE u.income IS NULL

Explanation: Assuming that a NULL value is populated in the user table if a user does
not have any known income, in the above query, you fetch the details of users whose
income field has a NULL value.

Output:

{"id":40,"firstName":"Joanna","lastName":"Smith"}

Example 6-64 Fetch the ticket number, the full name of passengers from the
airline baggage tracking application whose checked bag has a tag associated
with it

Consider the airline baggage tracking application. See BaggageInfo table in the Tables
used in the Examples topic.

SELECT ticketNo,fullname
FROM BaggageInfo bag
WHERE EXISTS bag.bagInfo.tagNum [$element IS NOT NULL]

Explanation: In the airline baggage tracking application, there is a unique tag number
associated with every checked bag carried by the passenger. In this query, you fetch
the details of passengers who have a tag number, which means the tagNum field in the
bagInfo table is not null. You use the EXISTS operator to verify whether or not the
tagNum field includes a NULL value.

Output:

{"ticketNo":1762330498104,"fullname":"Michelle Payne"}
{"ticketNo":1762340683564,"fullname":"Mary Watson"}
{"ticketNo":1762377974281,"fullname":"Kendal Biddle"}
{"ticketNo":1762320569757,"fullname":"Lucinda Beckman"}
{"ticketNo":1762392135540,"fullname":"Adelaide Willard"}
{"ticketNo":1762399766476,"fullname":"Raymond Griffin"}

Chapter 6
Comparison Expressions

6-50

{"ticketNo":1762324912391,"fullname":"Elane Lemons"}
{"ticketNo":1762390789239,"fullname":"Zina Christenson"}
{"ticketNo":1762340579411,"fullname":"Zulema Martindale"}
{"ticketNo":1762376407826,"fullname":"Dierdre Amador"}
{"ticketNo":176234463813,"fullname":"Henry Jenkins"}
{"ticketNo":1762311547917,"fullname":"Rosalia Triplett"}
{"ticketNo":1762320369957,"fullname":"Lorenzo Phil"}
{"ticketNo":1762341772625,"fullname":"Gerard Greene"}
{"ticketNo":1762344493810,"fullname":"Adam Phillips"}
{"ticketNo":1762355527825,"fullname":"Doris Martin"}
{"ticketNo":1762383911861,"fullname":"Joanne Diaz"}
{"ticketNo":1762348904343,"fullname":"Omar Harvey"}
{"ticketNo":1762350390409,"fullname":"Fallon Clements"}
{"ticketNo":1762355854464,"fullname":"Lisbeth Wampler"}
{"ticketNo":1762357254392,"fullname":"Teena Colley"}

21 rows returned

Value Comparison Operators
Syntax

comparison_expression ::= concatenate_expression
 [(value_comparison_operator | any_comparison_operator) add_expression]

value_comparison_operator ::= "=" | "!=" | ">" | ">=" | "<" | "<="

Semantics

Value comparison operators are primarily used to compare 2 values, one produced by the left
operand and another from the right operand (this is in contrast to the sequence comparisons,
defined in the following section which compare two sequences of values). If any operand
returns more than one item, an error is raised. If both operands return the empty sequence,
the operands are considered equal (so true will be returned if the operator is =, <=, or >=). If
only one of the operands returns empty, the result of the comparison is false unless the
operator is !=.

For the remainder of this section, we assume that each operand returns exactly one item. If
an operand returns NULL, the result of the comparison expression is also NULL. Otherwise,
the result is a boolean value that is computed as follows.

Among atomic items, if the types of the items are not comparable, false is returned. The
following rules defined what atomic types are comparable and how the comparison is done in
each case.

• A numeric item is comparable with any other numeric item. If an integer or long value is
compared to a float or double value, the integer/long will first be cast to float/double. If
one of the operands is a number value, the other operand will first be cast to number (if
not a number already).

• A string item is comparable to another string item (using the java String.compareTo()
method). A string item is also comparable to an enum item. In this case, before the
comparison, the string is cast to an enum item in the type of the other enum item. Such a
cast is possible only if the enum type contains a token whose string value is equal to the

Chapter 6
Comparison Expressions

6-51

source string. If the cast is successful, the two enum items are then compared as
explained below; otherwise, the two items are incomparable and false is returned.

• Two enum items are comparable only if they belong to the same type. If so, the
comparison is done on the ordinal numbers of the two enums (not their string
values). As mentioned above, an enum item is also comparable to a string item, by
casting the string to an enum item.

• Binary and fixed binary items are comparable with each other for equality only.
The 2 values are equal if their byte sequences have the same length and are
equal byte-per-byte.

• A boolean item is comparable with another boolean item, using the java
Boolean.compareTo() method.

• A timestamp item is comparable to another timestamp item, even if their precisions
are different.

• JNULL (json null) is comparable with JNULL. If the comparison operator is !=,
JNULL is also comparable with every other kind of item, and the result of such a
comparison is always true, except when the other item is also JNULL.

The semantics of comparisons among complex items are defined in a recursive
fashion. Specifically:

• A record is comparable with another record for equality only and only if they
contain comparable values. More specifically, to be equal, the 2 records must have
equal sizes (number of fields) and for each field in the first record, there must exist
a field in the other record such that the two fields are at the same position within
their containing records, have equal field names, and equal values.

• A map is comparable with another map for equality only and only if they contain
comparable values. Remember that json documents are modelled as maps, so 2
json documents can be compared for equality. More specifically, to be equal, the 2
maps must have equal sizes (number of fields) and for each field in the first map,
there must exist a field in the other map such that the two fields have equal names
and equal values.

• An array is comparable to another array if the elements of the 2 arrays are
comparable pair-wise. Comparison between 2 arrays is done lexicographically,
that is, the arrays are compared like strings, with the array elements playing the
role of the "characters" to compare.

As with atomic items, if two complex items are not comparable according to the above
rules, false is returned. Furthermore, comparisons between atomic and complex items
return false always.

The reason for returning false for incomparable items, instead of raising an error, is to
handle truly schemaless applications, where different table rows may contain very
different data or differently shaped data. As a result, even the writer of the query may
not know what kind of items an operand may return and an operand may indeed return
different kinds of items from different rows. Nevertheless, when the query writer
compares "something" with, say, an integer, they expect that the "something" will be an
integer and they would like to see results from the table rows that fulfill that
expectation, instead of the whole query being rejected because some rows do not
fulfill the expectation.

Chapter 6
Comparison Expressions

6-52

Example 6-65 Fetch the passenger details from the airline baggage tracking
application who have more than two transits and did not board from the SFO station

SELECT
fullname,
s.bagInfo.routing
FROM BaggageInfo s
WHERE (size(s.bagInfo[0].flightLegs) >= 3)
AND s.bagInfo[0].flightLegs[0].fltRouteSrc !=any "SFO"

Explanation: In the airline baggage tracking application, you can fetch the list of passengers
who have more than two transits in their journey. The bagInfo array in the BaggageInfo table
contains the information on the checked bags for passengers. The flightLegs array in the
bagInfo JSON includes the source and transit details with each record corresponding to a
travel leg. The first record of the flightLegs array, that is, flightLegs[0] has the details of
the source location. In the above query, you fetch the details of the passengers who have
more than two transits, which means there must be at least three records in the flightLegs
array including the source location. You compare the size of the flightLegs array using the
'>=' operator. You also want to filter out the passengers who did not originate from SFO
airport, so you use a != operator here. It is possible that the passengers have more than one
checked bags, in which case there will be more than one element in the bagInfo array. You
must consider only the first element of the bagInfo array, that is, bagInfo[0] during value
comparison to avoid duplication of results.

Since the flightLegs is an array, the left operand of the comparison operator != is a
sequence with more than one item. Hence, use the sequence comparison operator any in
addition to the value comparison operator.

Output:

{"fullname":"Fallon Clements","routing":"MXP/CDG/SLC/BZN"}
{"fullname":"Elane Lemons","routing":"MXP/CDG/SLC/BZN"}
{"fullname":"Doris Martin","routing":"BZN/SEA/CDG/MXP"}

JSON collection table:

The following example applies a value comparison operator on a JSON collection table.
Consider a sample row from the JSON collection table created for a shopping application:

{"contactPhone":"1917113999","address":{"city":"San
Jose","number":501,"state":"San
Francisco","street":"Maine","zip":95095},"cart":
[{"item":"wallet","priceperunit":950,"quantity":2},{"item":"wall
art","priceperunit":9500,"quantity":1}],"firstName":"Sharon","gender":"F","la
stName":"Willard","notify":"yes","wishlist":
[{"item":"Tshirt","priceperunit":500},{"item":"Jenga","priceperunit":850}]}

Example 6-66 Fetch from the storeAcct table the details of shoppers who have
wishlisted the item Jenga.

SELECT contactPhone, firstName
FROM storeAcct s
WHERE EXISTS s.wishlist[$element.item ="Jenga"];

Chapter 6
Comparison Expressions

6-53

Explanation: In the storeAcct table, the items wishlisted by the shoppers are stored
in the JSON array wishlist. To fetch the details of the shoppers with Jenga as a
wishlisted item, you verify whether or not an item by the specified name exists in the
wishlist field. Use the operator '=' to match the item.

Output:

{
 "contactPhone" : "1917113999",
 "firstName" : "Sharon"
}

Sequence Comparison Operators
Syntax

any_comparison_operator ::= "=any" | "!=any" | ">any" | ">=any" | "<any"
| "<=any"

Semantics

Comparisons between two sequences is done via another set of operators: =any, !
=any, >any, >=any, <any, <=any. These any operators have existential semantics: the
result of an any operator on two input sequences S1 and S2 is true if and only if there
is a pair of items i1 and i2, where i1 belongs to S1, i2 belongs to S2, and i1 and i2
compare true via the corresponding value comparison operator. Otherwise, if any of
the input sequences contains NULL, the result is NULL. Otherwise, the result is false.

Example 6-67 Select the id, lastName and address for users who are
connected with the user with id 3.

SELECT id, lastName, address FROM users
WHERE connections[] =any 3

Notice the use of [] after connections: it is an array filter step (see Array-Filter Step
Expressions), which returns all the elements of the connections array as a sequence
(it is unnesting the array).

Example 6-68 Select the id and lastName for users who are connected with any
users having id greater than 100

SELECT id, lastName FROM users
WHERE connections[] >any 100

Example 6-69 Select the id of each user who is connected with a user having id
greater than 10 and is also connected with a user having id less than 100

SELECT id FROM users u
WHERE 10 <any u.connections[]
 AND u.connections[] <any 100

Chapter 6
Comparison Expressions

6-54

Notice that the above query is not the same as the query: select the id of each user who is
connected with a user having an id in the range between 10 and 100. In the first query, you
are looking for some connection with id greater than 10 and another connection (which may
or may not be the same as the 1st one) with id less than 100. In the second query you are
looking for some connection whose id is between 10 and 100. To make the difference clear,
consider a Users table with only 2 users (say with ids 200 and 500) having the following
connections arrays respectively: [1, 3, 110, 120] and [1, 50, 130]. Both of these arrays
satisfy the predicates in the first query, and as a result, both users will be selected. On the
other hand, the second query will not select user 200, because the array [1, 3, 110, 120]
does not contain any element in the range 10 to 100.

The second query can be written by a combination of an EXISTS operator and an array
filtering step:

SELECT id FROM users u
WHERE EXISTS u.connections
 [10 < $element AND $element < 100]

and the first query, with the 2 <any operators, is equivalent to the following one:

SELECT id FROM users u
WHERE EXISTS u.connections[10 < $element]
 AND EXISTS u.connections[$element < 100]

Example 6-70 Select the first and last name of all users who have a phone number
with area code 650

Notice that although we could have used [] after phones in this query, it is not necessary to do
so, because the phones array (if it is indeed an array) is unnested implicitly by the .area step
that follows.

SELECT firstName, lastName FROM users u
WHERE u.address.phones.area =any 650

JSON collection table:

The following example applies the sequence comparison operator on a JSON collection
table. Consider a sample row from the JSON collection table created for a shopping
application:

{"contactPhone":"1517113582","address":
{"city":"Houston","number":651,"state":"TX","street":"Tex
Ave","zip":95085},"cart":null,"firstName":"Dierdre","lastName":"Amador","orde
rs":
[{"EstDelivery":"2023-11-01","item":"handbag","orderID":"201200","priceperuni
t":350},
{"EstDelivery":"2023-11-01","item":"Lego","orderID":"201201","priceperunit":5
500}]}

Chapter 6
Comparison Expressions

6-55

Example 6-71 Fetch the details from shoppers who have purchased a handbag
and the stipulated delivery is after October 31st, 2023

SELECT contactPhone, firstName
FROM storeAcct s
WHERE s.orders[].item =any "handbag" AND s.orders[].EstDelivery>=any
"2023-10-31"

Explanation: To fetch the details from shoppers who have purchased a handbag that
is expected to be delivered after October 31st, you compare the item and
EstDelivery fields with the required values using the sequence comparison operator
any. You use the AND operator to fetch the rows that match both conditions.

Here, you can compare the EstDelivery without casting into a timestamp data type as
it is a string-formatted date in ISO-8601 format and the natural sorting order of strings
applies.

Output:

{
 "contactPhone" : "1517113582",
 "firstName" : "Dierdre"
}

BETWEEN Operator
Syntax

between_expression ::= input_expression BETWEEN low_bound_expression AND
 high_bound_expression
input_expression := concatenate_expression
low_bound_expression := concatenate_expression
high_bound_expression := concatenate_expression

Semantics

The BETWEEN operator checks if the input expression value is in between the lower
and the higher expressions (including the boundary values). This is equivalent to:

low_bound_expression <= input_expression AND input_expression <=
 high_bound_expression

The BETWEEN operator internally performs the following:

1. Two value comparison operations: It checks the following conditions,

a. If the low bound expression is <= the input expression.

b. If the input expression is <= the high bound expression.

2. Logical operation - the logical operator AND is applied to the results.

This essentially verifies if the input expression is within the range of the boundary
values. The operation returns a TRUE value if both the expressions return TRUE. The

Chapter 6
Comparison Expressions

6-56

operation returns a FALSE value if any one of the expressions returns FALSE. If either of the
expressions is NULL or leads to a NULL value, the result of the operation is also NULL. If any
expression returns more than one item, an error is raised as the comparison operators do not
operate on sequences of more than one item. For more details on the value comparison
operators and logical operators, see Comparison Expressions.

See the semantics in the Value Comparison Operators topic to understand the comparison of
the input expressions for different data types.

Example 6-72 Fetch the passenger details whose ticket numbers are in a certain
range.

SELECT
fullname,
ticketNo
FROM baggageinfo s
WHERE ticketNo BETWEEN 1762300000000 and 1762350000000;

Explanation: In this query, you fetch the details of passengers whose ticket numbers are
between 1762300000000 and 1762350000000 from the baggageInfo table. You use the
BETWEEN operator in the WHERE clause to select and display the rows that fall within the
required range.

Output:

{"fullname":"Lorenzo Phil","ticketNo":1762320369957}
{"fullname":"Elane Lemons","ticketNo":1762324912391}
{"fullname":"Michelle Payne","ticketNo":1762330498104}
{"fullname":"Lucinda Beckman","ticketNo":1762320569757}
{"fullname":"Rosalia Triplett","ticketNo":1762311547917}
{"fullname":"Zulema Martindale","ticketNo":1762340579411}
{"fullname":"Omar Harvey","ticketNo":1762348904343}
{"fullname":"Adam Phillips","ticketNo":1762344493810}
{"fullname":"Mary Watson","ticketNo":1762340683564}
{"fullname":"Gerard Greene","ticketNo":1762341772625}

Example 6-73 Fetch the passenger details and routing information of the baggage
that falls within a range of reservation codes.

SELECT fullname AS FULLNAME,
confNo AS RESERVATION,
s.bagInfo.routing AS ROUTINGINFO
FROM BaggageInfo s
WHERE confNo BETWEEN 'LE6J4Z' and 'ZG8Z5N'
ORDER BY confNo;

Explanation: Every passenger has a reservation code (confNo). In this query, you fetch the
passenger details, reservation code, and routing details for the baggage whose reservation
codes are within the range of LE6J4Z and ZG8Z5N. You use the BETWEEN operator in the
WHERE clause to perform a string comparison of the confNo value with the lower and the
upper boundary values in the input strings. Only the rows that are within the range are
selected and displayed in the output.

Chapter 6
Comparison Expressions

6-57

Output:

{"FULLNAME":"Adam
Phillips","RESERVATION":"LE6J4Z","ROUTINGINFO":"MIA/LAX/MEL"}
{"FULLNAME":"Elane
Lemons","RESERVATION":"LN0C8R","ROUTINGINFO":"MXP/CDG/SLC/BZN"}
{"FULLNAME":"Gerard
Greene","RESERVATION":"MC0E7R","ROUTINGINFO":"SFO/IST/ATH/JTR"}
{"FULLNAME":"Henry
Jenkins","RESERVATION":"MZ2S5R","ROUTINGINFO":"SFO/ORD/FRA"}
{"FULLNAME":"Omar
Harvey","RESERVATION":"OH2F8U","ROUTINGINFO":"MEL/LAX/MIA"}
{"FULLNAME":"Kendal
Biddle","RESERVATION":"PQ1M8N","ROUTINGINFO":"JFK/IST/VIE"}
{"FULLNAME":"Zina
Christenson","RESERVATION":"QB1O0J","ROUTINGINFO":"MIA/LAX/MEL"}
{"FULLNAME":"Lorenzo Phil","RESERVATION":"QI3V6Q","ROUTINGINFO":
["SFO/IST/ATH/JTR","SFO/IST/ATH/JTR"]}
{"FULLNAME":"Lucinda
Beckman","RESERVATION":"QI3V6Q","ROUTINGINFO":"SFO/IST/ATH/JTR"}
{"FULLNAME":"Michelle
Payne","RESERVATION":"RL3J4Q","ROUTINGINFO":"SFO/IST/ATH/JTR"}
{"FULLNAME":"Teena
Colley","RESERVATION":"TX1P7E","ROUTINGINFO":"MSQ/FRA/HKG"}
{"FULLNAME":"Fallon
Clements","RESERVATION":"XT1O7T","ROUTINGINFO":"MXP/CDG/SLC/BZN"}
{"FULLNAME":"Raymond
Griffin","RESERVATION":"XT6K7M","ROUTINGINFO":"MSQ/FRA/HKG"}
{"FULLNAME":"Dierdre Amador","RESERVATION":"ZG8Z5N","ROUTINGINFO":"JFK/
MAD"}

Example 6-74 Find the passengers who traveled from MIA within a fortnight
from 15th Feb 2019.

SELECT fullname,
FROM BaggageInfo bag
WHERE exists bag.bagInfo.flightLegs[$element.fltRouteSrc = "MIA"
AND
$element.flightDate BETWEEN "2019-02-15T00:00:00Z" and
"2019-03-02T00:00:00Z"]

Explanation: In this query, you fetch the details of the passengers who traveled from
MIA between the 15th of Feb 2019 and the 2nd of March 2019. The flightDate field
within the bagInfo JSON field contains the travel dates to the destination points. You
use the BETWEEN operator to compare the flightDate in the passenger data with
the upper and the lower range of the specified dates. The flightDate is a string and is
directly compared with the supplied dates, which are also string values. You narrow
down the passenger records listed within this range further to include only MIA as the
source station using the AND operator. Here the flight source could be the starting
point of the flight or any transit airport.

Chapter 6
Comparison Expressions

6-58

Output:

{"fullname":"Zulema Martindale"}
{"fullname":"Joanne Diaz"}

IN Operator
Syntax

in_expression ::= in1_expression | in2_expression |
 in3_expression | in4_expression

in1_expression ::= "(" concatenate_expression
 ("," concatenate_expression)* ")"
 IN "(" expression ("," expression)* ")"
in2_expression ::= concatenate_expression
 IN "(" expression ("," expression)* ")"
in3_expression ::= concatenate_expression IN path_expression
in4_expression ::= "(" concatenate_expression
 ("," concatenate_expression)* ")" IN path_expression

Semantics

The IN operator is essentially a compact alternative to a number of OR-ed equality
conditions. For example, the query

SELECT * FROM users WHERE age IN (22, 25, 43)

is equivalent to

SELECT * FROM users WHERE age = 22 OR age = 25 OR age = 43

and the query,

SELECT * FROM users
 WHERE (firstName, lastName) IN
 (("John","Smith"),("Peter","Paul"),("Mary","Ann"))

is equivalent to

SELECT * FROM users
 WHERE (firstName = "John" AND lastName = "Smith") OR
 (firstName = "Peter" AND lastName = "Paul") OR
 (firstName = "Mary" AND lastName = "Ann")

As shown in the grammar, there are 4 syntactic variants of the IN operator. The
in1_expression and in2_expression follow the standard SQL syntax. The in2_expression one
is actually a special case of the in1_expression, for the case when there is only one
expression in the left-hand-side of the operator. For the in1_expression, if K is the number of
expressions in the left-hand-side, then each expression list in the right-hand-side must

Chapter 6
Comparison Expressions

6-59

consist of K expressions. If N is the number of expression lists in the right-hand-side,
then the whole IN condition is equivalent to:

(expr1 = expr11 and expr2 = expr12 and exprK = expr1K) or
(expr1 = expr21 and expr2 = expr22 and exprK = expr2K) or
.... or
(expr1 = exprN1 and expr2 = exprN2 and exprK = exprNK)

However, in addition to being more compact, queries using IN operators will be
executed more efficiently if appropriate indexes exist. For example, if table users has
an index on columns age, firstName and lastName, then both of the above IN queries
will use that index to find the qualifying rows, whereas the equivalent OR queries will
be executed via full table scans. See also examples in Finding Applicable Indexes.

The in3_expression and in4_expression variants allow a relative large number of
search keys to be provided via a single bind variable. For example, if the $keys
variable in bound to the array ["John", "Smith", "Peter", "Paul", "Mary", "Ann"], then the
following query is equivalent to the second IN query above.

DECLARE $keys ARRAY(json);
SELECT * FROM users
 WHERE (firstName, lastName) IN $keys[]

In general, with the in3_expression and in4_expression variants, the expression in the
right-hand-side is evaluated first. If the number M of items in the resulting sequence is
less than the number K of expressions in the left-hand-side, the result of the IN
operator is false. If M is not a multiple of K, the last (M mod K) items in the sequence
are discarded and M is set to the number of remaining items. Then, the IN expression
is equivalent to:

(expr1 = k1 and expr2 = k2 and exprK = kK) or
(expr1 = kK+1 and expr2 = kK+2 and exprK = k2*K) or
 or
(expr1 = kM-K and expr2 = kM-K+1 and exprK = kM)

However, an additional type-checking restriction applies in this case: in each of the
above equality conditions, the type of the right-hand-side item must be a subtype of
the left-hand-side type.

Regular Expression Conditions
The regex_like function performs regular expression matching. A regular expression
is a pattern that the regular expression engine attempts to match with an input string.
The syntax for invoking the regex_like function in a query is the same as all other
functions, described in the Function Calls section. The regex_like function has two
signatures with two and three parameters, respectively.

Syntax

boolean regex_like(any*, string)

boolean regex_like(any*, string, string)

Chapter 6
Comparison Expressions

6-60

Semantics

The regex_like function provides functionality similar to the LIKE operator in standard SQL,
that is, it can be used to check if an input string matches a given pattern. The input string and
the pattern are computed by the first and second arguments, respectively. A third, optional,
argument specifies a set of flags that affect how the matching is done.

Normally, the regex_like function expects each of its arguments to return a single string. If
that is not the case, it behaves as follows:

• If it can be detected at compile time that the first argument will never return a string, it
raises a compile-time error. Otherwise, it returns false if the first argument returns
nothing, more than one item, or a single item that is neither a string nor NULL.

• It raises an error if the pattern or flags do not return a single string or NULL.

• It returns NULL if any of the arguments returns a single NULL.

Otherwise, the regex_like function behaves as follows:

• Raises an error if the pattern string is not valid or its length is greater than 512
characters.

• Returns false if the pattern does not match the input string.

• Returns true if the pattern matches the input string.

The pattern string is the regular expression against which the input text is matched. The
syntax of the pattern string is a subset of the one supported by the Java Pattern class.
Specifically, each character in a regular expression is either a literal character that matches
itself (for example, the pattern string x matches the character 'x'), or a meta character, that
specifies a construct having a special meaning. Only the following metacharacters are
supported:

• Period (.)
You use period metacharacter to match every character except a new line

• Greedy quantifier (*)
You use the greedy quantifier (*) to indicate zero or more occurrences of the preceding
element.

For example, the character D with a combination of period (.) and (*) "D.*", matches any
string that starts with the character 'D' and is followed by zero or more characters.

• Quotation constructs (\, \Q, \E)
You use the backslash '\' character as a quotation construct with other metacharacters to
instruct the regular expression engine to interpret the following metacharacter as a literal
character.

For example, you use the '*' pattern to match the literal asterisk '*' character and not
interpret it as the greedy quantifier (*).

You use '\Q' and '\E' quotation constructs in the query to match the exact string pattern
that starts after the '\Q' character and ends at the '\E' character.

For example, you use "\\Q**Houston**\\E" to match any string that has a value
'**Houston**'.

Chapter 6
Comparison Expressions

6-61

Note:

In the SQL shell or other equivalent tools,you must use a double
backslash '\\' in place of a single backslash '\' quotation construct.

• Escape sequences
You use the escape sequences to match certain predefined characters. The
following escape sequences are supported:

The flags string contains one or more characters, where each character is a flag
specifying some particular behavior. The full list of acceptable characters and their
semantics is listed in the following table:

Table 6-2 Escape sequences

Character Description

\x{h...h} Matches the character with hexadecimal value 0xh...h
(Character.MIN_CODE_POINT <= 0xh...h <=
Character.MAX_CODE_POINT)

\xhh Matches the character with hexadecimal value 0xhh

\uhhhh Matches the Unicode character specified by the hexadecimal number
0xhhhh.

Example: 'u000A' matches the newline character

\t Matches the tab character ('\u0009')

\r Matches the carriage-return character ('\u000D')

\n Matches the newline (line feed) character ('\u000A')

\f Matches the form-feed character ('\u000C')

\e Matches the escape character ('\u001B')

\cx Matches the control character corresponding to x

\a Matches the alert (bell) character ('\u0007')

\\ Matches the backslash '\' character ('\u005C')

\0nn Matches the character with octal value 0nn(0 <= n<= 7)

\0n Matches the character with octal value 0n (0 <= n <= 7)

\0mnn Matches the character with octal value 0mnn(0 <= m<= 3, 0 <= n<= 7)

The flag contains one or more characters, where each character flag specifies some
particular behavior. The full list of flag characters and their semantics are listed in the
following table:

Table 6-3 Predefined Quoted Characters

Flag Full Name Description

"d" UNIX_LINES Enables Unix lines mode.

The new line character ('\n') is the only line termination
method recognized in this mode.

Chapter 6
Comparison Expressions

6-62

Table 6-3 (Cont.) Predefined Quoted Characters

Flag Full Name Description

"i" CASE_INSENSITIVE Enables case-insensitive matching.

By default, CASE_INSENSITIVE matching assumes that only
characters in the US-ASCII character set are being matched.
You can enable Unicode-aware CASE_INSENSITIVE by
specifying the UNICODE_CASE flag in conjunction with this
flag.

Specifying this flag may impose a slight performance penalty.

"x" COMMENTS Permits white space and comments in pattern.

In this mode, white space is ignored, and embedded
comments starting with # are ignored until the end of a line.

"l" LITERAL When LITERAL is specified then the input string that
specifies the pattern is treated as a sequence of literal
characters. There is no special meaning for Metacharacters
or escape sequences. The flags CASE_INSENSITIVE and
UNICODE_CASE retain their impact on matching when used
in conjunction with this flag. The other flags become
superfluous.

"s" DOTALL Enables DOTALL mode. In DOTALL mode, the expression
dot (.) matches any character, including a line terminator.
However, by default, the expression dot (.) does not match
line terminators.

"u" UNICODE_CASE When you enable the CASE_INSENSITIVE flag, by default, it
matches using only the characters in the US-ASCII character
set. When you specify UNICODE_CASE then it performs
CASE_INSENSITIVE matching using the Unicode standard.

Specifying this flag may impose a performance penalty.

"c" CANON_EQ When this flag is specified then two characters will be
considered to match if, and only if, their full canonical
decompositions match. When you specify this flag, the
expression "a\u030A", for example, will match the string
"\u00E5. By default, matching does not take canonical
equivalence into account.

Specifying this flag may impose a performance penalty.

"U" UNICODE_CHARACT
ER_CLASS

Enables the Unicode version of Predefined character classes
and POSIX character classes. When you specify this flag,
then the (US-ASCII only) Predefined character classes and
POSIX character classes are in conformance with Unicode
Technical Standards. See http://unicode.org/reports/tr18/
#Compatibility_Properties.

The flag implies UNICODE_CASE; it enables Unicode-aware
case folding.Specifying this flag may impose a performance
penalty.

Note:

The regex_like function will not be used for index scan optimization.

Chapter 6
Comparison Expressions

6-63

http://unicode.org/reports/tr18/#Compatibility_Properties
http://unicode.org/reports/tr18/#Compatibility_Properties

If you want to follow along with the examples, create and load data into user data
application table illustrated in this section and airline baggage tracking application
table illustrated in the Tables used in the Examples topic.

Note:

Run the queries provided in the below examples from the SQL shell. Make
sure that you use a double backslash '\\' in place of a single backslash '\' for
quotation constructs as shown in the queries.

Example 6-75 Fetch from the user data application table the list of users whose
last name starts with 'S'

SELECT id, firstName, lastName FROM users WHERE regex_like(lastName,
"S.*")

Explanation: In the above query, you use the regex_like function to match the
lastName field beginning with an 'S' character. You create a pattern with the first
character as 'S' followed by the period metacharacter (.) and the greedy quantifier (*)
to match zero or more occurrences of any other character.

Output:

{"id":10,"firstName":"John","lastName":"Smith"}
{"id":20,"firstName":"Jane","lastName":"Smith"}
{"id":30,"firstName":"Adam","lastName":"Smith"}
{"id":40,"firstName":"Joanna","lastName":"Smith"}

Example 6-76 Fetch from the user data application table the list of users whose
last name has at least one 'w' or 'W'

SELECT id, lastName FROM users WHERE regex_like(lastname,".*w.*","i")

Explanation: In the above query, use the regex_like function with the required
pattern and the 'i' flag to enable matching that is not case-sensitive.

Output:

{"id":60,"lastName":"Law"}
{"id":50,"lastName":"Winslet"}

Example 6-77 Validate the format of an e-mail address in the user data
application table

SELECT id, firstName, lastName, email FROM users WHERE
 regex_like(email,".*@.*\\..*")

Explanation: In the above query, you fetch the list of users with a valid email format.
In the user data application table, the email field contains the e-mail address of the

Chapter 6
Comparison Expressions

6-64

user. Assuming the email field has an '@' character and ends with a '.string' pattern such as
'.com', '.us', '.in', and so forth, you can validate the e-mail address using the regex_like
function as follows:

• Use the '@' character preceded and followed by a combination of period metacharacter
(.) and the greedy quantifier (*). This combination creates a pattern to match zero or
more occurrences of other characters before and after the '@' character in the email
field.

• To achieve a domain name pattern such as '.com', you use the quotation construct
backslash '\' character to match the period as a literal '.' character and not a period (.)
metacharacter. Further, use the combination of period metacharacter (.) and the greedy
quantifier (*) to allow any domain name.

Note:

This example only validates the e-mail address format by checking the pattern
availability of '@' and '.' characters in the specified order. It does not assure the
validity of the e-mail address itself. All the rows that include the mentioned
character pattern are fetched.

Output:

{"id":50,"firstName":"Aubrey","lastName":"Winslet","email":"reachaubrey@somem
ail.co.us"}
{"id":60,"firstName":"Jimmy","lastName":"Law","email":"reachjimlaw@gotmail.co
.us"}
{"id":20,"firstName":"Jane","lastName":"Smith","email":"jane.smith201@reachma
il.com"}
{"id":10,"firstName":"John","lastName":"Smith","email":"john.smith@reachmail.
com"}

Example 6-78 Fetch from the user data application table the list of users with a five-
star rating for community service

SELECT id, firstName, lastName FROM users WHERE
 regex_like(communityService,"\\Q*****\\E")

Explanation: In the above query, you fetch the list of users actively involved in community
service. Assuming each user is rated for their involvement in community service with a
certain '*' rating, you retrieve the list of users from the user data application table who have
five stars, that is, "*****" in the communityService field. You use the regex_like function with
the quotation constructs '\Q' and '\E' to match the pattern of five asterisk '*' characters. In this
query, the asterisk (*) character is used as a literal '*' character and not as a greedy
quantifier (*).

Note:

If you create the pattern without quotation constructs, an error is generated
indicating that the specified pattern for the regex_like function is invalid.

Chapter 6
Comparison Expressions

6-65

Output:

{"id":20,"firstName":"Jane","lastName":"Smith"}

Example 6-79 Fetch from the user data application table the list of users whose
street attribute of the address field has a suspected data entry error due to the
presence of a tab character

SELECT id, firstName, users.address.street FROM users WHERE
regex_like(users.address.street, ".*\t.*")

Explanation: You can use the regex_like function to identify the rows that include
escape sequences. For a detailed list of supported predefined characters, see
Table 6-2. In this query, you fetch the list of users from the user data application table
whose street attribute of the address field erroneously includes a tab character. You
use the regex_like function with the following pattern:

• Use escape sequence '\t' to identify the tab character.

• Use the combination of period metacharacter (.) and the greedy quantifier (*)
before and after the escape sequence to allow zero or more occurrences of any
other character in the street attribute.

Output:

{"id":70,"firstName":"Dierdre","street":"Maine\t(Suburb)"}

Alternatively, you can match the escape sequences using the corresponding Unicode
hexadecimal character as shown in the query below. The Unicode value 0x0009
corresponds to a horizontal tab or a tab character. You get the same output as above.

SELECT id, firstName, users.address.street FROM users WHERE
regex_like(users.address.street,
 ".*\u0009.*")

Chapter 6
Comparison Expressions

6-66

Note:

Oracle NoSQL Database supports insertion of control characters (ASCII code 0~31)
and characters with ASCII code > 128 using their Unicode hexadecimal values in
the SQL shell or equivalent tools.

For example, you can insert the Escape (ESC) character using its Unicode
hexadecimal value 0x001B as given in the user data application table (see the state
field in the row with id = 70).

If you want to fetch the corresponding row, match the pattern through regular
expression using '\e' as provided in the query below:

SELECT id, firstName, users.address[].state FROM users WHERE
 EXISTS(users.address[regex_like($element.state, ".*\\e")])

Explanation: In this query, you check whether or not the state attribute of the
address field includes a string that ends with an escape character. You use the
quotation construct '\' to match the escape character preceded by the combination
of period metacharacter (.) and greedy quantifier (*) to allow zero or more
occurrences of other characters before the escape character.

Output:

{"id":70,"firstName":"Dierdre","state":"TX\u001B"}

Example 6-80 Find all the bags that traveled through ORD airport as an intermediate
hop between the source of a trip and the final destination

SELECT
ticketNo AS TICKETNUM,
fullName AS NAME,
BaggageInfo.bagInfo.routing[] AS ROUTING
FROM BaggageInfo WHERE regex_like(BaggageInfo.bagInfo.routing[],".*/ORD/.*")

Explanation: In an airline baggage tracking application, you can fetch the list of passengers
who had to transit at certain airports. For each passenger, the routing field in the BaggageInfo
table contains the airport codes in the format source/transit/destination. In this query,
you use the regex_like function to match the airport code of the transit airport as follows:

• Use the combination of the period (.) metacharacter and greedy quantifier (*) to allow
any source airport code characters.

• Include the airport code of the transit airport ORD between the two forward slash '/'
characters.

• Use the combination of the period (.) metacharacter and greedy quantifier (*) to allow
any destination airport code characters.

Chapter 6
Comparison Expressions

6-67

Output:

{"TICKETNUM":176234463813,"NAME":"Henry Jenkins","ROUTING":"SFO/ORD/
FRA"}
{"TICKETNUM":1762392135540,"NAME":"Adelaide
Willard","ROUTING":"GRU/ORD/SEA"}

Example 6-81 Find all the passengers with area code 364 in their contact
phone.

SELECT ticketNo, contactPhone, fullName FROM BaggageInfo WHERE
regex_like(contactPhone,"364-.*")

Explanation: In an airline baggage tracking application, you can fetch the list of
passengers having the same area code in their contact phones. The contactPhone
field contains the US-based contact number in a three-digit area code followed by a
seven-digit local number format. Assuming the contact phone pattern in the
contactPhone field is XXX-YYY-ZZZZ where X, Y, and Z are digits between 0-9, you
use the regex_like function as follows:

• Use the area code 364 followed by a hyphen '-' character.

• Use the combination of the period (.) metacharacter and greedy quantifier (*) to
allow the pattern matching of any three-digit number followed by a hyphen '-'
character and a four-digit number.

Output:

{"ticketNo":1762320369957,"contactPhone":"364-610-4444","fullName":"Lor
enzo Phil"}
{"ticketNo":1762320569757,"contactPhone":"364-610-4455","fullName":"Luc
inda Beckman"}

User data application table

The following code creates the user data application table - users table.

CREATE TABLE users (id INTEGER,
 firstName STRING,
 lastName STRING,
 otherNames ARRAY(RECORD(first STRING, last
STRING)),
 age INTEGER,
 income INTEGER,
 address JSON,
 connections ARRAY(INTEGER),
 email STRING,
 communityService STRING,
PRIMARY KEY (id));

The following code populates users tables with sample rows.

INSERT INTO users VALUES (

Chapter 6
Comparison Expressions

6-68

 10,
 "John",
 "Smith",
 [{"first" : "Johny", "last" : "Good"}, {"first" : "Johny2", "last" :
"Brave"},{"first" : "Johny3", "last" : "Kind"},{"first" : "Johny4", "last" :
"Humble"}],
 22,
 45000,
 {
 "street" : "Pacific Ave",
 "number" : 101,
 "city" : "Santa Cruz",
 "state" : "CA",
 "zip" : 95008,
 "phones" : [
 { "area" : 408, "number" : 4538955, "kind" : "work" },
 { "area" : 831, "number" : 7533341, "kind" : "home" },
 { "area" : 831, "number" : 7533382, "kind" : "mobile" }
]
 },
 [30, 55, 43],
 "john.smith@reachmail.com",
 "****"
);

INSERT INTO users VALUES (

 20,
 "Jane",
 "Smith",
 [{"first" : "Jane", "last" : "BeGood"}],
 22,
 55000,
 {
 "street" : "Atlantic Ave",
 "number" : 201,
 "city" : "San Jose",
 "state" : "CA",
 "zip" : 95005,
 "phones" : [
 { "area" : 608, "number" : 6538955, "kind" : "work" },
 { "area" : 931, "number" : 9533341, "kind" : "home" },
 { "area" : 931, "number" : 9533382, "kind" : "mobile" }
]
 },
 [40, 75, 63],
 "jane.smith201@reachmail.com",
 "*****"
);

INSERT INTO users VALUES (

 30,
 "Adam",
 "Smith",

Chapter 6
Comparison Expressions

6-69

 [{"first" : "Adam", "last" : "BeGood"}],
 45,
 75000,
 {
 "street" : "Indian Ave",
 "number" : 301,
 "city" : "Houston",
 "state" : "TX",
 "zip" : 95075,
 "phones" : [
 { "area" : 618, "number" : 6618955, "kind" : "work" },
 { "area" : 951, "number" : 9613341, "kind" : "home" },
 { "area" : 981, "number" : 9613382, "kind" : "mobile" }
]
 },
 [60, 45, 73],
 "adam.smith201reachmail.com",
 "***"
);

INSERT INTO users VALUES (

 40,
 "Joanna",
 "Smith",
 [{"first" : "Joanna", "last" : "Smart"}],
 NULL,
 75000,
 {
 "street" : "Tex Ave",
 "number" : 401,
 "city" : "Houston",
 "state" : "TX",
 "zip" : 95085,
 "phones" : [
 { "area" : NULL, "number" : 1618955, "kind" : "work" },
 { "area" : 451, "number" : 4613341, "kind" : "home" },
 { "area" : 481, "number" : 4613382, "kind" : "mobile" }
]
 },
 [70, 30, 40],
 NULL,
 "**"
);

INSERT INTO users VALUES (

 50,
 "Aubrey",
 "Winslet",
 [{"first" : "Aubrey", "last" : "Regal"}],
 NULL,
 15000,
 {
 "street" : "Tex Ave",

Chapter 6
Comparison Expressions

6-70

 "number" :501,
 "city" : "Houston",
 "state" : "TX",
 "zip" : 95085,
 "phones" : [
 { "area" : 723, "number" : 7618955, "kind" : "work" },
 { "area" : 751, "number" : 7613341, "kind" : "home" },
 { "area" : 781, "number" : 7613382, "kind" : "mobile" }
]
 },
 [50, 20, 40],
 "reachaubrey@somemail.co.us",
 "****"
);

INSERT INTO users VALUES (

 60,
 "Jimmy",
 "Law",
 [{"first" : "Jimmy", "last" : "Smart"}],
 NULL,
 25000,
 {
 "street" : "Maine",
 "number" :501,
 "city" : "San Jose",
 "state" : "TX",
 "zip" : 95085,
 "phones" : [
 { "area" : 223, "number" : 2618955, "kind" : "work" },
 { "area" : 251, "number" : 2613341, "kind" : "home" },
 { "area" : 281, "number" : 2613382, "kind" : "mobile" }
]
 },
 [50, 20, 40],
 "reachjimlaw@gotmail.co.us",
 "***"
);

INSERT INTO users VALUES (

 70,
 "Dierdre",
 "Amador",
 [{"first" : "Dierdre", "last" : "Kind"}],
 NULL,
 25000,
 {
 "street" : "Maine\t(Suburb)",
 "number" :701,
 "city" : "San Jose",
 "state" : "TX\u001B",
 "zip" : 95085,
 "phones" : [

Chapter 6
Comparison Expressions

6-71

 { "area" : 223, "number" : 6718955, "kind" : "work" },
 { "area" : 251, "number" : 6213341, "kind" : "home" },
 { "area" : 281, "number" : 6213382, "kind" : "mobile" }
]
 },
 [10, 60, 40],
 NULL,
 "***"
);

Exists Operator
Syntax

exists_expression ::= EXISTS concatenate_expression

Semantics

The exists operator checks whether the sequence returned by its input expression is
empty or not, and returns false or true, respectively. A special case is when the input
expression returns NULL. In this case, EXISTS will also return NULL, unless it is
known that the input expression will always return at least one item, in which case
EXISTS returns true.

Example 6-82 Exists Operator

Find all the users who do not have a zip code in their addresses.

SELECT id FROM users u
WHERE NOT EXISTS u.address.zip;

Notice that the above query does not select users whose zip code has the json null
value. The following query includes those users as well.

SELECT id FROM users u
WHERE NOT EXISTS u.address.zip OR u.address.zip = null;

What if the Users table contains a row R whose address column is NULL? In general,
SQL for Oracle NoSQL Database interprets NULL as an unknown value, rather than
an absent value. So, in row R, the address is unknown, and as a result, we don’t know
what its zip code is or if it even has a zip code. In this case, the expression
u.address.zip will return NULL on R and exists u.address.zip will also return NULL,
which implies that row R will not be selected by the above queries. On the other hand,
row R will be selected by the following query. In this case, we know that every row
does have an address, even though the address may be unknown (i.e., NULL) in
some rows. So, even though the expression u.address returns NULL, exists u.address
return true.

SELECT id FROM users u
WHERE EXISTS u.address;

Chapter 6
Comparison Expressions

6-72

Is-Of-Type Operator
Syntax

is_of_type_expression ::=
 add_expression IS [NOT] OF [TYPE]
 "(" [ONLY] sequence_type ([ONLY] sequence_type)* ")"

Semantics

The is-of-type operator checks the sequence type of its input sequence against one or more
target sequence types. If the number N of the target types is greater than one, the expression
is equivalent to OR-ing N is-of-type expressions, each having one target type. So, for the
remainder of this section, we will assume that only one target type is specified.

The is-type-of operator will return true if both of the following conditions are true:

1. the cardinality of the input sequence matches the quantifier of the target type.
Specifically,

a. if the quantifier is * the sequence may have any number of items,

b. if the quantifier is + the input sequence must have at least one item,

c. if the quantifier is ? The input sequence must have at most one item, and

d. if there is no quantifier, the input sequence must have exactly one item.

2. all the items in the input sequence are instances of the target item-type (type_def), i.e.
the type of each input item must be a subtype of the target item-type. For the purposes of
this check, a NULL is not considered to be an instance of any type.

If condition (1) is satisfied and the input sequence contains a NULL, the result of the is-type-
of operator will be NULL. In all other cases, the result is false.

Example 6-83 Is-Of-Type Operator

Find all the users whose address information has been stored as a single, flat string.

SELECT id
FROM users u
WHERE u.address IS OF TYPE (STRING);

Concatenation Operator
Syntax

concatenation_operator ::= "||"

concatenate_expression ::= add_expression ("||" add_expression)*

Chapter 6
Concatenation Operator

6-73

Semantics

The concatenation operator returns the character string made by joining the operands
in the given order. The operands can be of any* type. For more details, see the concat
Function section.

Note:

According to the operator precedence, the || operator is immediately after +, -
(as binary operators).

Example 6-84 Concatenation Operator

This example joins id, firstname, and lastname into a single string and provides the
output. Notice that id, which is an integer type, also gets concatenated with the string
values.

SELECT id || firstname || lastname AS name FROM users;

 +-------------+
 | name |
 +-------------+
 | 10JohnSmith |
 | 30PeterPaul |
 | 20MaryAnn |
 +-------------+

Arithmetic Expressions
Syntax

add_expression ::= multiply_expression (("+"|"-") multiply_expression)*

multiply_expression ::= unary_expression (("*"|"/"|"div")
unary_expression)*

unary_expression ::= path_expression | (("+"|"-") unary_expression)

Semantics

Oracle NoSQL Database supports the following arithmetic operations: +, -, *, / and div.
Each operand to these operators must produce at most one numeric item. If any
operand returns the empty sequence or NULL, the result of the arithmetic operation is
also empty or NULL, respectively. Otherwise, the operator returns a single numeric
item, which is computed as follows:

• If any operand returns a Number item, the item returned by the other operand is
cast to a Number value (if not a Number already) and the result is a Number item
that is computed using java's arithmetic on BigDecimal, otherwise,

Chapter 6
Arithmetic Expressions

6-74

• If any operand returns a double item, the item returned by the other operand is cast to a
double value (if not a double already) and the result is a double item that is computed
using java's arithmetic on doubles, otherwise,

• If any operand returns a float item, the item returned by the other operand is cast to a
float value If not a float already) and the result is a float item that is computed using java's
arithmetic on floats, otherwise,

• Except for the div operator, if any operand returns a long item, the item returned by the
other operand is cast to a long value (if not a long already) and the result is a long item
that is computed using java's arithmetic on longs.

• Except for the div operator, if all operands return integer items, the result is an integer
item that is computed using java's arithmetic on ints.

• The div operator performs floating-point division, even if both its operands are longs
and/or integers. In this case, div returns a double.

Oracle NoSQL Database supports the unary + and – operators as well. The unary + is a no-
op, and the unary – changes the sign of its numeric argument.

Example 6-85 Arithmetic Expression

For each user show their id and the difference between their actual income and an income
that is computed as a base income plus an age-proportional amount.

DECLARE
$baseIncome INTEGER;
$ageMultiplier DOUBLE;
SELECT id,
income - ($baseIncome + age * $ageMultiplier) AS adjustment
FROM Users;

Primary Expressions
Syntax

primary_expression ::=
 parenthesized_expression |
 constant_expression |
 column_reference |
 variable_reference |
 array_constructor |
 map_constructor |
 case_expression |
 cast_expression |
 extract_expression |
 function_call |
 count_star |
 transform_expression

The following subsections describe each of the primary expressions listed in the above
grammar rule, except from count_star, which is the count(*) aggregate function defined in the
Using Aggregate Functions section.

Chapter 6
Primary Expressions

6-75

Parenthesized Expressions
Syntax

parenthesized_expression ::= "(" expression ")"

Semantics

Parenthesized expressions are used primarily to alter the default precedence among
operators. They are also used as a syntactic aid to mix expressions in ways that would
otherwise cause syntactic ambiguities. An example of the later usage is in the
definition of the field_step parse rule in the Field Step Expressions section.

Example 6-86 Parenthesized Expression

Select the id and the last name for users whose age is less or equal to 30 and either
their age is greater than 20 or their income is greater than 100K.

SELECT id, lastName
FROM users
WHERE (income > 100000 OR 20 < age) AND age <= 30;

Constant Expressions
Syntax

constant_expression ::= number | string | TRUE | FALSE | NULL

number ::= [MINUS] (FLOAT_CONSTANT | INT_CONSTANT | NUMBER_CONSTANT)
string ::= STRING_CONSTANT | DSTRING_CONSTANT

Semantics

The syntax for INT_CONSTANT, FLOAT_CONSTANT, NUMBER_CONSTANT,
STRING_CONSTANT, and DSTRING_CONSTANT was given in the Identifiers
section.

In the current version, a query can contain the following constants (a.k.a. literals):

String
String literals are sequences of unicode characters enclosed in double or single
quotes. String literals are translated into String items. Notice that any escape
sequences appearing in a string literal will be converted to their corresponding
character inside the corresponding String item.

Integer
Integer literals are sequences of one or more digits. Integer literals are translated into
Integer items, if their value fits in 4 bytes, into Long items, if they fit in 8 bytes,
otherwise to Number items.

Chapter 6
Primary Expressions

6-76

Floating point
Floating point literals represent real numbers using decimal notation and/or exponent.
Floating-point literals are translated into Double items, if possible, otherwise to Number
items.

Number
Number literals are integer or floating-point literals followed by the 'n' or 'N' character.
Number literals are always translated into Number items.

TRUE / FALSE
The TRUE and FALSE literals are translated to the boolean true and false items,
respectively.

NULL
The NULL literal is translated to the json null item.

Column References
Syntax

column_reference ::= id ["." id]

Semantics

A column-reference expression returns the item stored in the specified column within the
context row (the row that an SELECT expression is currently working on). Syntactically, a
column-reference expression consists of one identifier, or 2 identifiers separated by a dot. If
there are 2 ids, the first is considered to be a table alias and the second the name of a
column in that table. We call this form a qualified column name. A single id is resolved to the
name of a column in some of the tables referenced inside the FROM clause. However, in this
case there must not be more than one tables that participate in the query and have a column
with this name. We call this form an unqualified column name.

Variable References
Syntax

variable_reference ::= "$" [id]

Semantics

A variable-reference expression returns the item that the specified variable is currently bound
to. Syntactically, a variable-reference expression is just the name of the variable.

Array and Map Constructors
Syntax

array_constructor ::=
 "[" expression ("," expression)* "]"

map_constructor ::=

Chapter 6
Primary Expressions

6-77

 ("{" expression ":" expression
 ("," expression ":" expression)* "}") |
 ("{" "}")

Semantics

An array constructor constructs a new array out of the items returned by the
expressions inside the square brackets. These expressions are computed left to right,
and the produced items are appended to the array. Any NULLs produced by the input
expressions are skipped (arrays cannot contain NULLs).

Similarly, a map constructor constructs a new map out of the items returned by the
expressions inside the curly brackets. These expressions come in pairs: each pair
computes one field. The first expression in a pair must return at most one string, which
serves as the field's name and the second returns the associated field value. If a value
expression returns more than one items, an array is implicitly constructed to store the
items, and that array becomes the field value. If either a field name or a field value
expression returns the empty sequence, no field is constructed. If the computed name
or value for a field is NULL the field is skipped (maps cannot contain NULLs).

The type of the constructed arrays or maps is determined during query compilation,
based on the types of the input expressions and the usage of the constructor
expression. Specifically, if a constructed array or map may be inserted in another
constructed array or map and this "parent" array/map has type ARRAY(JSON) or
MAP(JSON), then the "child" array/map will also have type ARRAY(JSON) or
MAP(JSON). This is to enforce the restriction that "typed" data are not allowed inside
JSON data (see Data Type Hierarchy).

Example 6-87 Array and Map Constructor

For each user create a map with 3 fields recording the user's last name, their phone
information, and the expense categories in which more than $5000 was spent.

SELECT
{
 "last_name" : u.lastName,
 "phones" : u.address.phones,
 "high_expenses" : [u.expenses.keys($value > 5000)]
}
FROM users u;

Notice that the use of an explicit array for the "high_expenses" field guarantees that
the field will exist in all the constructed maps, even if the path inside the array
constructor returns empty. Notice also that although it is known at compile time that all
elements of the constructed arrays will be strings, the arrays are constructed with type
ARRAY(JSON) (instead of ARRAY(STRING)), because they are inserted into a JSON
map.

Case Expressions
Syntax

case_expression ::= CASE
 WHEN expression THEN expression
 (WHEN expression THEN expression)*

Chapter 6
Primary Expressions

6-78

 [ELSE expression]
 END

Semantics

The searched CASE expression is similar to the if-then-else statements of traditional
programming languages. It consists of a number of WHEN-THEN pairs, followed by an
optional ELSE clause at the end. Each WHEN expression is a condition, i.e., it must return
BOOLEAN?. The THEN expressions as well as the ELSE expression may return any
sequence of items. The CASE expression is evaluated by first evaluating the WHEN
expressions from top to bottom until the first one that returns true. If it is the i-th WHEN
expression that returns true, then the i-th THEN expression is evaluated and its result is the
result of the whole CASE expression. If no WHEN expression returns true, then if there is an
ELSE, its expression is evaluated and its result is the result of the whole CASE expression;
Otherwise, the result of the CASE expression is the empty sequence.

Example 6-88 For each user create a map with 3 fields recording the user's last
name, their phone information, and the expense categories in which more than $5000
was spent

SELECT
{
 "last_name" : u.lastName,
 "phones" : CASE
 WHEN exists u.address.phones
 THEN u.address.phones
 ELSE "Phone info absent or not at the expected place"
 END,
 "high_expenses" : [u.expenses.keys($value > 5000)]
}
FROM users u

The query is very similar to the one from array and map constructor. The only difference is in
the use of a case expression to compute the value of the phones field. This guarantees that
the phones field will always be present, even if the path expression u.address.phones return
empty or NULL. Notice that wrapping the path expression with an explicit array constructor
(as we did for the high_expenses field) would not be a good solution here, because in most
cases u.address.phones will return an array, and we don't want to have construct an extra
array containing just another array.

JSON collection table:

The following example applies CASE expression on a JSON collection table. Consider a
sample row from the JSON collection table created for a shopping application:

{"contactPhone":"1917113999","address":{"city":"San
Jose","number":501,"state":"San
Francisco","street":"Maine","zip":95095},"cart":
[{"item":"wallet","priceperunit":950,"quantity":2},{"item":"wall
art","priceperunit":9500,"quantity":1}],"firstName":"Sharon","gender":"F","la
stName":"Willard","notify":"yes","wishlist":
[{"item":"Tshirt","priceperunit":500},{"item":"Jenga","priceperunit":850}]}

Chapter 6
Primary Expressions

6-79

Example 6-89 Display promotional messages to shoppers from San Jose who
have wallet or handbag items in their carts

SELECT concat("Hi ",s.firstName) AS Message,
 CASE
 WHEN s.cart.item =any "wallet"
 THEN "The prices on Wallets have dropped"
 WHEN s.cart.item =any "handbag"
 THEN "The prices on handbags have dropped"
 ELSE "Exciting offers on wallets and handbags"
 END AS Offer
FROM storeAcct s

WHERE s.address.city =any "San Jose";

Explanation: You can use CASE statement to display a promotional message to the
shoppers regarding the reduction in the prices if the shoppers have the items wallet
or handbag in their cart. As the offers are only for shoppers from San Jose, you specify
the city in the WHERE clause.

Output:

{"Message":"Hi Sharon","Offer":"The prices on Wallets have
 dropped"}

Cast Expression
Syntax

cast_expression ::= CAST "(" expression AS sequence_type ")"

Semantics

The cast expression creates, if possible, new items of a given target type from the
items of its input sequence. Specifically, a cast expression is evaluated as follows:

A cardinality check is performed first:

1. if the quantifier of the target type is * the sequence may have any number of items,

2. if the quantifier is + the input sequence must have at least one item,

3. if the quantifier is ? the input sequence must have at most one item, and

4. if there is no quantifier, the input sequence must have exactly one item.

If the cardinality of the input sequence does not match the quantifier of the target type,
an error is raised. Then, each input item is cast to the target item type according to the
following (recursive) rules.

• If the type of the input item is equal to the target item type, the cast is a no-op: the
input item itself is returned.

• If the target type is a wildcard type other than JSON and the type of the input item
is a subtype of the wildcard type, the cast is a no-op; Otherwise an error is raised.

Chapter 6
Primary Expressions

6-80

• If the target type is JSON, then (a) an error is raised if the input item is has a non-json
atomic type, else (b) if the input item has a type that is a json atomic type or
ARRAY(JSON) or MAP(JSON), the cast is a no-op , else (c) if the input item is a non-json
array, a new array of type ARRAY(JSON) is constructed, each element of the input array
is cast to JSON, and the resulting item is appended into the new json array, else (d) if the
input item is a non-json map, a new map of type MAP(JSON) is constructed, each field
value of the input map is cast to JSON, and resulting item together with the associated
field name are inserted into the new json map, else (e) if the input item is a record, it is
cast to a map of type MAP(JSON) as described below.

• If the target type is an array type, an error is raised if the input item is not an array.
Otherwise, a new array is created, whose type is the target type, each element in the
input array is cast to the element type of the target array, and the resulting item is
appended into the new array.

• If the target type is a map type, an error is raised if the input item is not a map or a
record. Otherwise, a new map is created, whose type is the target type, each field value
in the input map/record is cast to the value type of the target map, and the resulting field
value together with the associated field name are inserted to the new map.

• If the target type is a record type, an error is raised if the input item is not a record or a
map. Otherwise, a new record is created, whose type is the target type. If the input item
is a record, its type must have the same fields and in the same order as the target type.
In this case, each field value in the input record is cast to the value type of the
corresponding field in the target type and the resulting field value together with the
associated field name are added to the new record. If the input item is a map, then for
each map field, if the field name exists in the target type, the associated field value is cast
to the value type of the corresponding field in the target type and the resulting field value
together with the associated field name are added to the new record. Any fields in the
new record whose names do not appear in the input map have their associated field
values set to their default values.

• If the target type is string, the input item may be of any type. In other words, every item
can be cast to a string. For complex items their “string value” is a json-text representation
of their value. For timestamps, their string value is in UTC and has the format "YYYY-
MM-dd['T'HH:mm:ss]". For binary items, their string value is a base64 encoding of their
bytes.

• If the target type is an atomic type other than string, the input item must also be atomic.
Among atomic items and types the following casts are allowed:

– Every numeric item can be cast to every other numeric type. The cast is done as in
Java.

– Integers and longs can be cast to timestamps. The input value is interpreted as the
number of milliseconds since January 1, 1970, 00:00:00 GMT.

– String items may be castable to all other atomic types. Whether the cast succeeds or
not depends on whether the actual string value can be parsed into a value that
belongs to the domain of the target type.

– Timestamp items are castable to all the timestamp types. If the target type has a
smaller precision that the input item, the resulting timestamp is the one closest to the
input timestamp in the target precision. For example, consider the following 2
timestamps with precision 3: 2016-11-01T10:00:00.236 and
2016-11-01T10:00:00.267. The result of casting these timestamps to precision 1 is:
2016-11-01T10:00:00.2 and 2016-11-01T10:00:00.3, respectively.

Chapter 6
Primary Expressions

6-81

Example 6-90 Cast Expression

Select the last name of users who moved to their current address in 2015 or later.

SELECT u.lastName FROM Users u
WHERE
CAST (u.address.startDate AS Timestamp(0)) >=
CAST ("2015-01-01T00:00:00" AS Timestamp(0));

Since there is no literal for Timestamp values, to create such a value a string has to
cast to a Timestamp type.

Extract Expressions
Syntax

extract_expression ::= EXTRACT "(" id FROM expression ")"

Semantics

The extract expression extract a component from a timestamp. Specifically, the
expression after the FROM keyword must return at most one timestamp or NULL. If
the result of this expression is NULL or empty, the results of EXTRACT is also NULL
or empty, respectively. Otherwise, the component specified by the id is returned. This
id must be one of the following keywords:

YEAR
Returns the year for the timestamp, in the range -6383 ~ 9999.

MONTH
Returns the month for the timestamp, in the range 1 ~ 12.

DAY
Returns the day of month for the timestamp, in the range 1 ~ 31.

HOUR
Returns the hour of day for the timestamp, in the range 0 ~ 23.

MINUTE
Returns the minute for the timestamp, in the range 0 ~ 59.

SECOND
Returns the second for the timestamp, in the range 0 ~ 59.

MILLISECOND
Returns the fractional second in millisecond for the timestamp, in the range 0 ~ 999.

MICROSECOND
Returns the fractional second in microsecond for the timestamp, in the range 0 ~
999999.

NANOSECOND
Returns the fractional second in nanosecond for the timestamp, in the range 0 ~
999999999.

Chapter 6
Primary Expressions

6-82

WEEK
Returns the week number within the year where a week starts on Sunday and the first week
has a minimum of 1 day in this year, in the range 1 ~ 54.

ISOWEEK
Returns the week number within the year based on IS0-8601, where a week starts on
Monday and the first week has a minimum of 4 days in this year, in range 0 ~ 53.

There are specific built-in functions to extract each of the above components from a time
stamp. For example, EXTRACT(YEAR from expr) is equivalent to year(expr). These and
other built-in functions are described in Built-in Functions.

Function Calls
Syntax

function_call ::= id "(" [expression ("," expression)*] ")"

Semantics

Function-call expressions are used to invoke functions, which in the current version can be
built-in (system) functions only. Syntactically, a function call starts with an id which identifies
the function to call by name, followed by a parenthesized list of zero or more argument
expressions separated by a comma.

Each function has a signature, which specifies the sequence type of its result and a
sequence type for each of its parameters. Evaluation of a function-call expression starts with
the evaluation of each of its arguments. The result of each argument expression must be a
subtype of the corresponding parameter type, or otherwise, it must be promotable to the
parameter type. In the latter case, the argument value will actually be cast to the expected
type. Finally, after type checking and any necessary promotions are done, the function's
implementation is invoked with the possibly promoted argument values.

The following type promotions are currently supported:

• INTEGER is promotable to FLOAT or DOUBLE.

• LONG is promotable to FLOAT or DOUBLE.

• STRING is promotable to ENUM, but the cast will succeed only if the ENUM type
contains a token whose string value is the same as the input string.

The list of currently available functions is given in the Built-in Functions chapter.

Sequence Transform Expressions
Syntax

transform_expression ::= SEQ_TRANSFORM "(" expression "," expression ")"

Semantics

A sequence transform expression transforms a sequence to another sequence. Syntactically
it looks like a function whose name is seq_transform. The first argument is an expression that
generates the sequence to be transformed (the input sequence) and the second argument is

Chapter 6
Primary Expressions

6-83

a "mapper" expression that is computed for each item of the input sequence. The
result of the seq_transform expression is the concatenation of sequences produced by
each evaluation of the mapper expression. The mapper expression can access the
current input item via the $ variable.

Example 6-91 Sequence Transform Expression

As an example, assume a "sales" table with the following data.

CREATE TABLE sales (
 id INTEGER,
 sale RECORD (
 acctno INTEGER,
 year INTEGER,
 month INTEGER,
 day INTEGER,
 state STRING,
 city STRING,
 storeid INTEGER,
 prodcat STRING,
 items ARRAY(
 RECORD (
 prod STRING,
 qty INTEGER,
 price INTEGER
)
)
),
 PRIMARY KEY (id)
);

INSERT INTO sales VALUES (
 1,
 {
 "acctno" : 349,
 "year" : 2000,
 "month" : 10,
 "day" : 23,
 "state" : "CA",
 "city" : "San Jose",
 "storeid" : 76,
 "prodcat" : "vegies",
 "items" :[
 { "prod" : "tomatoes", "qty" : 3, "price" : 10.0 },
 { "prod" : "carrots", "qty" : 1, "price" : 5.0 },
 { "prod" : "pepers", "qty" : 1, "price" : 15.0 }
]
 }
);

Chapter 6
Primary Expressions

6-84

Assume there is the following index on sales:

CREATE INDEX idv1 ON sales (
 sale.acctno, sale.year, sale.prodcat);

Then we can write the following query, which returns the total sales per account number and
year:

SELECT t.sale.acctno,
t.sale.year,
sum(seq_transform(t.sale.items[], $.price * $.qty)) AS sales
FROM sales t
GROUP BY t.sale.acctno, t.sale.year;

Using sequence transform expression for JSON documents :

You can use the sequence transform expression for transforming JSON documents stored in
table rows. In such cases you often use multiple sequence transform expressions nested
inside each other. Here the mapper expression of an inner sequence transform may need to
access the current item of an outer sequence transform. To allow this, each sequence
transform expression 'S' declares a variable with name $sqN, where N is the level of nesting of
the expression 'S' within the outer sequence transform expressions. $sqN is basically a
synonym for $, that is, it is bound to the items returned by the input expression 'S'.
However, $sqN can be accessed by other sequence transform expressions that may be
nested inside the expression 'S'. Let’s illustrate with an example.

The baggageInfo table stores information about handling the luggage of passengers in an
airline.

CREATE TABLE baggageInfo (
 ticketNo string,
 passengerName string,
 bagInfo json,
 primary key(ticketNo)
)

A sample row for this table is shown below.

{
 "ticketNo" : "1762352483606",
 "passengerName" : "Willie Hernandez",
 "bagInfo" : [
 {
 "tagNum" : "17657806243915",
 "routing" : "SFO/AMS/HER",
 "lastActionCode" : "offload",
 "lastSeenStation" : "HER",
 "lastSeenTimeGmt" : "2019-03-13T15:19:00",
 "flightLegs" : [
 {
 "flightNo" : "BM604",
 "flightDate" : "2019-03-12T20:00:00",
 "fltRouteSrc" : "SFO",

Chapter 6
Primary Expressions

6-85

 "fltRouteDest" : "AMS",
 "estimatedArrival" : "2019-03-13T08:00:00",
 "actions" : [
 { “at”:”SFO”, "action":"TagScan",
"time":"2019-03-12T18:14:00" },
 { “at”:”SFO”, "action":"onload",
"time":"2019-03-12T19:20:00" },
 { “at”:"AMS", “action”:"offload",
"time":"2019-03-13T08:30:00" }
]
 },
 {
 "flightNo" : "BM667",
 "flightDate" : "2019-03-13T11:14:00",
 "fltRouteSrc" : "AMS",
 "fltRouteDest" : "HER",
 "estimatedArrival" : "2019-03-13T15:00:00",
 "actions" : [
 { “at”:”AMS”, "action":"TagScan",
"time":"2019-03-13T10:45:00" },
 { “at”:”AMS”, "action":"onload",
"time":"2019-03-13T10:50:00" },
 { “at”:”HER”, "action":"offload",
"time":"2019-03-13T15:19:00" }
]
 }
]
 },
 {
 "tagNum" : "17657806244523",
 "routing" : "SFO/AMS/HER",
 "lastActionCode" : "offload",
 "lastSeenStation" : "AMS",
 "lastSeenTimeGmt" : "2019-03-13T08:35:00",
 "flightLegs" : [
 {
 "flightNo" : "BM604",
 "flightDate" : "2019-03-12T20:00:00",
 "fltRouteSrc" : "SFO",
 "fltRouteDest" : "AMS",
 "estimatedArrival" : "2019-03-13T08:00:00",
 "actions" : [
 { “at”:”SFO”, "action":"TagScan",
"time":"2019-03-12T18:14:00" },
 { “at”:”SFO”, "action":"onload",
"time":"2019-03-12T19:22:00" },
 { “at”:”AMS”, "action":"offload",
"time":"2019-03-13T08:32:00" }
]
 }
]
 }
]
}

Chapter 6
Primary Expressions

6-86

Query: For each ticketNo, fetch a flat array containing all the actions performed on the
luggage of that ticketNo. That means fetch the “at” and “action” fields of each action. Also
display the flightNo and the tagNum with each action. The result of the query is the following:

{
 “actions” : [
 {“at”:”SFO”, “action”:”TagScan”, “flightNo”:”BM604”,
“tagNum”:17657806243915},
 {“at”:”SFO”, “action”:”onload”, “flightNo”:”BM604”,
“tagNum”:17657806243915},
 {“at”:”AMS”, “action”:”offload”, “flightNo”:”BM604”,
“tagNum”:17657806243915},
 {“at”:”AMS”, “action”:”TagScan”, “flightNo”:”BM667”,
“tagNum”:17657806243915},
 {“at”:”AMS”, “action”:”onload”, “flightNo”:”BM667”,
“tagNum”:17657806243915},
 {“at”:”HER”, “action”:”offload”, “flightNo”:”BM667”,
“tagNum”:17657806243915},
 {“at”:”SFO”, “action”:”TagScan”, “flightNo”:”BM604”,
“tagNum”:17657806244523},
 {“at”:”SFO”, “action”:”onload”, “flightNo”:”BM604”,
“tagNum”:17657806244523},
 {“at”:”AMS”, “action”:”offload”, “flightNo”:”BM604”,
“tagNum”:17657806244523},
]
}

You could use sequence transform expression to get the above output.

SELECT
 seq_transform(
 l.bagInfo[],
 seq_transform(
 $sq1.flightLegs[],
 seq_transform(
 $sq2.actions[],
 {
 "at" : $sq3.at,
 “action” : $sq3.action,
 "flightNo" : $sq2.flightNo,
 "tagNum" : $sq1.tagNum
 }
)
)
) AS actions
FROM baggageInfo l

Unnest Arrays & Maps
Use unnest_syntax to flatten rows that include arrays or maps.

Chapter 6
Unnest Arrays & Maps

6-87

Syntax of unnest

Syntactically, unnesting is specified as a list of expressions (with associated variables)
in the FROM clause of a SELECT statement. Some or all of these expressions may be
enclosed in an UNNEST clause.

unnest_expression::=expression AS VARNAME
unnest_clause ::= UNNEST((unnest_expression)*)
unnest_syntax ::=(unnest_expression | unnest_clause)*

Semantics

The FROM clause of a SELECT statement may contain a list of expressions (with
associated variables). Normally, you will use expressions that unnest arrays or maps
and the FROM clause will create a new set of rows out of the values of the unnested
arrays/maps. Some or all of these expressions may be enclosed in an UNNEST
clause. Semantically, the unnest operator is a no-op, that is, whether an UNNEST
clause is used or not does not change the result of the FROM clause, that is
unnest(expr) is the same as expr. The purpose of the UNNEST clause is to act as an
optimization hint. Specifically, when there is an index on the arrays/maps that are
being unnested, the index may be used by the query only if the query uses the
UNNEST clause. Furthermore, to help the query processor in using such an index, the
UNNEST clause places some restrictions on the expressions that can appear inside it.

You normally use unnesting when you want to group by a field that is inside an array/
map. However the two examples below illustrate the semantics of unnesting
expressions. So no GROUP BY clause is used in the queries below.

Using a single unnest expression in the FROM clause (to unnest a single map):

Create a table with two columns , one of data type INTEGER, which is the primary key
column and second of JSON data type.

Note:

The JSON column used in the example is a map.

create table sample_unnest (samp_id INTEGER, samp_data JSON, PRIMARY
KEY(samp_id));
INSERT INTO sample_unnest VALUES(1,
{ "episodeID" : 20, "lengthMin" : 40, "minWatched" : 40 });
INSERT INTO sample_unnest VALUES(2,
{ "episodeID" : 25, "lengthMin" : 20, "minWatched" : 18 });

select * from sample_unnest
 $s1,unnest($s1.samp_data.values() as $s2) where $s1.samp_id=1;

The above FROM clause references the table sample_unnest by the variable $s1 and
the values of the map samp_data by the variable $s2 . Conceptually, the result of the

Chapter 6
Unnest Arrays & Maps

6-88

FROM clause is a table temp_tbl with two columns. Column 1 stores all rows of table
sample_unnest and Column 2 stores all values of the elements of the samp_data map.

Table 6-4 Records in the temp_tbl table

$s1 $s2

"samp_id":1,"samp_data":
{"episodeID":20,"lengthMin":40,"minWatc
hed":40}

20

"samp_id":1,"samp_data":
{"episodeID":20,"lengthMin":40,"minWatc
hed":40}

40

"samp_id":1,"samp_data":
{"episodeID":20,"lengthMin":40,"minWatc
hed":40}

40

"samp_id":2,"samp_data":
{"episodeID":25,"lengthMin":20,"minWatc
hed":18}

25

"samp_id":2,"samp_data":
{"episodeID":25,"lengthMin":20,"minWatc
hed":18}

20

"samp_id":2,"samp_data":
{"episodeID":25,"lengthMin":20,"minWatc
hed":18}

18

To see how the rest of the query is executed, take every row from the above table and apply
the WHERE condition. For those rows where the condition evaluates to TRUE
($s1.samp_id=1), the corresponding row is included in the query result. The condition
evaluates to TRUE for the first three rows and to FALSE for the last three rows.

Table 6-5 Query output

$s1 $s2

{"samp_id":1, "samp_data":
{"episodeID":20,"lengthMin":40,"minWatc
hed":40}}

20

{"samp_id":1, "samp_data":
{"episodeID":20,"lengthMin":40,"minWatc
hed":40}}

40

{"samp_id":1, "samp_data":
{"episodeID":20,"lengthMin":40,"minWatc
hed":40}}

40

Using two unnest expressions in the FROM clause (to unnest an array and the maps
nested under the array)

You can use more than one path expression in an UNNEST clause. Let "M" be the number of
from-expressions, then the result table of the FROM clause is computed in M steps, each
producing an intermediate table.

Chapter 6
Unnest Arrays & Maps

6-89

Note:

The JSON column used in the example is a array of maps.

create table sample_unnest (
 samp_id INTEGER, samp_data JSON, PRIMARY KEY(samp_id));
INSERT INTO sample_unnest VALUES(1,
{
 "episodes":[
 {
 "episodeID" : 10,
 "lengthMin" : 40,
 "minWatched" : 25
 },
 {
 "episodeID" : 20,
 "lengthMin" : 35,
 "minWatched" : 30
 }
]
 }
);
INSERT INTO sample_unnest VALUES(2,
{
 "episodes":[
 {
 "episodeID" : 30,
 "lengthMin" : 40,
 "minWatched" : 25
 },
 {
 "episodeID" : 40,
 "lengthMin" : 35,
 "minWatched" : 30
 }
]
 }
);
INSERT INTO sample_unnest VALUES(3,
{
 "episodes":[
 {
 "episodeID" : 10,
 "lengthMin" : 40,
 "minWatched" : 25
 },
 {
 "episodeID" : 20,
 "lengthMin" : 35,
 "minWatched" : 30
 }
]

Chapter 6
Unnest Arrays & Maps

6-90

 }
);

Query using two path expressions in the UNNEST clause:

SELECT n.samp_id as customer,
 $epi.episodeID,$epi.minWatched AS length,$epiVal AS episode_details
FROM sample_unnest n,
 unnest(n.samp_data.episodes[] AS $epi, $epi.values() AS $epiVal);

Step 1 : Records in the first table temp_tbl1 which is the result of first two expressions in the
FROM clause (sample_unnest n, unnest(n.samp_data.episodes[] AS $epi)

Table 6-6 Records in temp_tbl1

n $epi

"s1":{"samp_id":1,"samp_data":
{"episodes":
[{"episodeID":10,"lengthMin":40,"minWat
ched":25},
{"episodeID":20,"lengthMin":35,"minWatc
hed":30}]}

{"episodeID":10,"lengthMin":40,"minWatc
hed":25},

"s1":{"samp_id":1,"samp_data":
{"episodes":
[{"episodeID":10,"lengthMin":40,"minWat
ched":25},
{"episodeID":20,"lengthMin":35,"minWatc
hed":30}]}

{"episodeID":20,"lengthMin":35,"minWatc
hed":30}

"s1":{"samp_id":2,"samp_data":
{"episodes":
[{"episodeID":30,"lengthMin":40,"minWat
ched":25},
{"episodeID":40,"lengthMin":35,"minWatc
hed":30}]}

{"episodeID":30,"lengthMin":40,"minWatc
hed":25},

"s1":{"samp_id":2,"samp_data":
{"episodes":
[{"episodeID":30,"lengthMin":40,"minWat
ched":25},
{"episodeID":40,"lengthMin":35,"minWatc
hed":30}]}

{"episodeID":40,"lengthMin":35,"minWatc
hed":30}

"s1":{"samp_id":3,"samp_data":
{"episodes":
[{"episodeID":10,"lengthMin":40,"minWat
ched":25},
{"episodeID":20,"lengthMin":35,"minWatc
hed":30}]}

{"episodeID":10,"lengthMin":40,"minWatc
hed":25},

"s1":{"samp_id":3,"samp_data":
{"episodes":
[{"episodeID":10,"lengthMin":40,"minWat
ched":25},
{"episodeID":20,"lengthMin":35,"minWatc
hed":30}]}

{"episodeID":20,"lengthMin":35,"minWatc
hed":30}

Chapter 6
Unnest Arrays & Maps

6-91

Step 2 : Records in the second table temp_tbl2 - result of the full FROM clause
(Above table joined with the result of the second path expression in the UNNEST
clause ($epi.values()as $epiVal)

Table 6-7 Records in temp_tbl2

n $epi $epival

{"s1":
{"samp_id":1,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":10,"length
Min":40,"minWatched":25
},

10

{"s1":
{"samp_id":1,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":10,"length
Min":40,"minWatched":25
}

40

{"s1":
{"samp_id":1,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":10,"length
Min":40,"minWatched":25
}

25

{"s1":
{"samp_id":1,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}}

{"episodeID":20,"length
Min":35,"minWatched":30
}

20

{"s1":
{"samp_id":1,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}}

{"episodeID":20,"length
Min":35,"minWatched":30
}

35

Chapter 6
Unnest Arrays & Maps

6-92

Table 6-7 (Cont.) Records in temp_tbl2

n $epi $epival

{"s1":
{"samp_id":1,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}}

{"episodeID":20,"length
Min":35,"minWatched":30
}

30

{"s1":
{"samp_id":2,"samp_data
":{"episodes":
[{"episodeID":30,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":40,"length
Min":35,"minWatched":30
}]}}

{"episodeID":30,"length
Min":40,"minWatched":25
}

30

{"s1":
{"samp_id":2,"samp_data
":{"episodes":
[{"episodeID":30,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":40,"length
Min":35,"minWatched":30
}]}}

{"episodeID":30,"length
Min":40,"minWatched":25
}

40

{"s1":
{"samp_id":2,"samp_data
":{"episodes":
[{"episodeID":30,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":40,"length
Min":35,"minWatched":30
}]}}

{"episodeID":30,"length
Min":40,"minWatched":25
}

25

{"s1":
{"samp_id":2,"samp_data
":{"episodes":
[{"episodeID":30,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":40,"length
Min":35,"minWatched":30
}]}}

{"episodeID":40,"length
Min":35,"minWatched":30
}

40

Chapter 6
Unnest Arrays & Maps

6-93

Table 6-7 (Cont.) Records in temp_tbl2

n $epi $epival

{"s1":
{"samp_id":2,"samp_data
":{"episodes":
[{"episodeID":30,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":40,"length
Min":35,"minWatched":30
}]}}

{"episodeID":40,"length
Min":35,"minWatched":30
}

35

{"s1":
{"samp_id":2,"samp_data
":{"episodes":
[{"episodeID":30,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":40,"length
Min":35,"minWatched":30
}]}}

{"episodeID":40,"length
Min":35,"minWatched":30
}

30

{"s1":
{"samp_id":3,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":10,"length
Min":40,"minWatched":25
}

10

{"s1":
{"samp_id":3,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":10,"length
Min":40,"minWatched":25
}

40

{"s1":
{"samp_id":3,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":10,"length
Min":40,"minWatched":25
}

25

Chapter 6
Unnest Arrays & Maps

6-94

Table 6-7 (Cont.) Records in temp_tbl2

n $epi $epival

{"s1":
{"samp_id":3,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":20,"length
Min":35,"minWatched":30
}

20

{"s1":
{"samp_id":3,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":20,"length
Min":35,"minWatched":30
}

35

{"s1":
{"samp_id":3,"samp_data
":{"episodes":
[{"episodeID":10,"lengt
hMin":40,"minWatched":2
5},
{"episodeID":20,"length
Min":35,"minWatched":30
}]}

{"episodeID":20,"length
Min":35,"minWatched":30
}

30

Step 3 : There is no filter in the query and the fields in the SELECT clause are fetched. The
final result of the query is :

Table 6-8 Query result

customer episode_id length episode_details

2 30 25 30

2 30 25 40

2 30 25 25

2 40 30 40

2 40 30 35

2 40 30 30

1 10 25 10

1 10 25 40

1 10 25 25

1 20 30 20

1 20 30 35

1 20 30 30

3 10 25 10

Chapter 6
Unnest Arrays & Maps

6-95

Table 6-8 (Cont.) Query result

customer episode_id length episode_details

3 10 25 40

3 10 25 25

3 20 30 20

3 20 30 35

3 20 30 30

Limitation for expression usage in the UNNEST clause

There are some restrictions on the expressions used in the UNNEST clause.

• All expressions used in the UNNEST clause must be path expressions.

• No predicates are allowed in any array-filter or map-filter steps within the path
expressions.

• The expression must start with a variable. If the expression is a first expression in
a list of expressions , then it should be a table alias associated with the target
table.

• When you unnest nested arrays, each path expression unnests one level deeper,
and it operates on the values produced by the previous level of unnesting. These
values are represented by the variable associated with the previous path
expression. So the starting variable of each expression must be the variable
associated with the previous expression. This is not applicable if this is a first
expression in a list of expressions in the UNNEST clause.

• The expression must finish with a [] or .values() step.

• The variables defined inside the UNNEST clause cannot be referenced in the rest
of the FROM clause. They can be referenced within the UNNEST clause and
outside the FROM clause.

For more details on path expression and to understand how these expressions are
evaluated for an array or a map, see Path Expressions.

Example: Using unnesting with a GROUP BY clause
Consider a TV streaming application. It streams various shows that are watched by
customers across the globe. Every show has number of seasons and every season
has multiple episodes. You need a persistent meta-data store which keeps track of the
current activity of the customers using the TV streaming application. A customer is
interested to know about the episodes they watched, the watch time per episode, the
total number of seasons of the show they watched etc. The customer also wants the
streaming application to start streaming from where they left off watching. The
streaming application needs reports on which show is most popular among customers,
how many minutes a show is being watched etc. These reports can be generated
using UNNEST clause in queries.

Create table and Load data for the TV streaming application

Download the script acctstream_loaddata.sql and run it as shown below. This script
creates the table used in the example and loads data into the table.

Chapter 6
Unnest Arrays & Maps

6-96

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file acctstream_loaddata.sql

Example 1: Fetch the different shows watched by people in the US alone and the
number of people watching them

SELECT $show.showId, count(*) as cnt FROM stream_acct $s,
unnest($s.acct_data.contentStreamed[] as $show)
WHERE $s.acct_data.country = "USA" GROUP BY $show.showId
ORDER BY count(*) DESC ;

{"showId":15,"cnt":2}
{"showId":16,"cnt":2}

Example 2: For every show aired by the application, fetch the total watch time by all
users:

SELECT $show.showId, sum($show.seriesInfo.episodes.minWatched) AS total_time
FROM stream_acct $s, unnest($s.acct_data.contentStreamed[] AS $show)
GROUP BY $show.showId ORDER BY sum($show.seriesInfo.episodes.minWatched);

{"showId":26,"total_time":225}
{"showId":16,"total_time":440}
{"showId":15,"total_time":642}

Note:

The unnest operator (that is the keyword unnest) can be omitted as it is a no-op
operator. The use of the UNNEST clause is recommended when there is an index
on the array(s) or map(s) that are being unnested. See Examples: Using Indexes
for Query Optimization for more information.

The below query without the UNNEST clause is equivalent to the above query (with the
UNNEST clause) and gives the same result.

SELECT $show.showId, sum($show.seriesInfo.episodes.minWatched) AS total_time
FROM stream_acct $s, $s.acct_data.contentStreamed[] AS $show
GROUP BY $show.showId ORDER BY sum($show.seriesInfo.episodes.minWatched);

{"showId":26,"total_time":225}
{"showId":16,"total_time":440}
{"showId":15,"total_time":642}

Chapter 6
Unnest Arrays & Maps

6-97

Example 3: Fetch the total watch time of users per show and season

SELECT $show.showId, $seriesInfo.seasonNum,
sum($seriesInfo.episodes.minWatched) AS length
FROM stream_acct n,
unnest(n.acct_data.contentStreamed[] AS $show,
$show.seriesInfo[] as $seriesInfo)
GROUP BY $show.showId, $seriesInfo.seasonNum
ORDER BY sum($seriesInfo.episodes.minWatched);

{"showId":26,"seasonNum":2,"length":80}
{"showId":26,"seasonNum":1,"length":145}
{"showId":16,"seasonNum":2,"length":190}
{"showId":16,"seasonNum":1,"length":250}
{"showId":15,"seasonNum":2,"length":295}
{"showId":15,"seasonNum":1,"length":347}

Example 4: Using unnest with a non-path expression

This is an example where the unnesting expression is not a path expression, and as a
result, the UNNEST clause cannot be used. For example, a user may have multiple
phone numbers in the same area code. To determine the number of users having
phone numbers in different area codes, a particular user should be counted only once
(even if the user has more than one phone number with the same area code). The
below query returns, for each area code, the number of users having phone numbers
in that area code. The query uses the seq_distinct() function, which eliminates
duplicate values.

SELECT $area, count(*) AS cnt
FROM Users u, seq_distinct(u.address.phones.area) AS $area
GROUP BY $area;

{"area":408,"cnt":1}
{"area":831,"cnt":1}

To know more about seq_disctinct function, see Functions on Sequences.

Joins
Oracle NoSQL Database does not currently support the general join operators found in
more traditional relational database systems. However, it does support a special kind
of join among tables that belong to the same table hierarchy. These joins can be
executed efficiently, because only co-located rows may match with each other. As a
result, transferring very large amounts of data among servers is avoided.

A JOIN clause is used to combine rows from two or more tables, based on a related
column between them. Joins are predominantly used in an Oracle NoSQL Database
when a user is trying to extract data from tables that have a hierarchical relationship
between them.

Why do you need hierarchical tables in anOracle NoSQL Database?

As the Oracle NoSQL Database supports datatypes like an array, maps, etc, you may
think that for each parent row, its matching child rows could be stored in the parent row

Chapter 6
Joins

6-98

itself inside an array or a map. However, doing so could lead to very large parent rows,
resulting in bad performance. This is especially true given the append-only architecture of the
Oracle NoSQL Database store, which implies that a new version of the whole row is created
every time the row is updated. So, child tables should be considered when each parent row
contains a lot of child rows and/or the child rows are large. If, in addition, the child rows are
not accessed very often or if they are updated very frequently, using child tables becomes
even more appealing.

Hierarchical tables in an Oracle NoSQL Database are :

• Very efficient for write-heavy workloads.

• More flexible for fine-grained authorization. Authorization is permission given to a user to
access a resource. In a fine-grained authorization, the access rights given to a user for a
resource may vary by conditions at run-time. In a hierarchical setup, access rights given
to the parent table might be different from the access rights given to the child table, and
so it is more flexible.

How do hierarchical tables work in an Oracle NoSQL Database?

The KVStore’s replication nodes are organized into shards. A single shard contains multiple
replication nodes and a master node. A shard key is created to distribute data across the
Oracle NoSQL Database cluster for scalability. Records with the same shard key are co-
located for easy reference and access. In a hierarchical table, the child table inherits the
primary key columns of its parent table. This is done implicitly, without including the parent
columns in the CREATE TABLE statement of the child. All tables in the hierarchy have the same
shard key columns.

Joining tables in an Oracle NoSQL Database

There are two ways by which you can join tables in the same hierarchy in an Oracle NoSQL
Database.

• NESTED TABLES clause

• LEFT OUTER JOIN

Using NESTED TABLES clause to query multiple tables in the same
hierarchy

To query multiple tables in the same hierarchy, the NESTED TABLES clause must be used
inside the FROM clause.

Syntax

nested_tables ::=
 NESTED TABLES "(" single_from_table
 [ANCESTORS "(" ancestor_tables ")"]
 [DESCENDANTS "(" descendant_tables ")"]
")"

ancestor_tables ::= nested_from_table ("," nested_from_table)*

descendant_tables ::= nested_from_table ("," nested_from_table)*

nested_from_table ::= aliased_table_name [ON or_expression]

Chapter 6
Joins

6-99

The NESTED TABLES clause specifies the participating tables and separates them in
3 groups. First the target table is specified. Then the ANCESTORS clause, if present,
specifies a number of tables that must be ancestors of the target table in the table
hierarchy. Finally, the DESCENDANTS clause, if present, specifies a number of tables
that must be descendants of the target table in the table hierarchy. For each table an
alias may be specified (and if not, one is created internally as described in the
CREATE TABLE Statement section). The aliases must be unique.

Semantically, a NESTED TABLES clause is equivalent to a number of left-outer-join
operations "centered" around the target table. The left-outer-join is an operation
defined by standard SQL and supported by all major RDBMSs. For those not familiar
with it already, we give a brief description in the last section of this chapter.

Our implementation of left outer join diverges slightly from the standard definition. The
difference is in the "shape" of the results. Specifically, the result of a NESTED TABLES
clause is a set of records, all having the same type, where (a) the number of fields is
equal to the number of participating tables, (b) each field corresponds to one of the
tables and stores either a row from that table or NULL, (c) the name of each field is the
alias used by the associated table, and (d) the fields are ordered in the order that the
participating tables would be encountered in a depth-first traversal of the table
hierarchy.

So, in a NESTED TABLES result the columns of each table are grouped inside a
subrecord. In contrast, the standard left-outer-join produces a "flat" result, where each
result is a record/tuple whose number of fields is the sum of all the columns in the
participating tables.

The mapping of a NESTED TABLES to a number of left-outer-joins is best explained
with a few examples. For brevity, we will use the keyword LOJ in place of LEFT
OUTER JOIN. Let’s start with the following create table statements:

create table A (ida integer, a1 string, primary key(ida));
create table A.B (idb integer, b1 string, primary key(idb));
create table A.B.C (idc integer, c1 integer, primary key(idc));
create table A.B.C.D (idd integer, d1 double, primary key(idd));
create table A.B.E (ide integer, e1 integer, primary key(ide));
create table A.G (idg integer, g1 string, primary key(idg));
create table A.G.J (idj integer, j1 integer, primary key(idj));
create table A.G.H (idh integer, h1 integer, primary key(idh));
create table A.G.J.K (idk integer, k1 integer, primary key(idk));

The above statements create the following table hierarchy:

The NESTED TABLES clause specifies the join tree as a "projection" of the table
hierarchy that includes the tables in the NESTED TABLES. For example, the join tree
for NESTED TABLES(A.B) ancestors(A) descendants (A.B.C.D, A.B.E) is shown
below. The arrows indicate the direction of the LOJs (from the left table to the right
table).

Now, let’s look at the following NESTED TABLES cases and their equivalent LOJ
operations

1. NESTED TABLES (A.B.C c ancestors(A a, A.B b));

Chapter 6
Joins

6-100

is equivalent to

A.B.C c LOJ A a ON c.ida = a.ida LOJ A.B b ON c.ida = b.ida AND
 c.idb = b.idb

We can see that the join predicates are implicit in the NESTED TABLES clause, and they
are always on the primary key columns of the participating tables.

Because for each A.B.C row there is at most one matching A and A.B row, the number of
records in the result is the same as the number of A.B.C rows. This is always true when
the NESTED TABLES clause includes ancestors only. In this case, the effect of the
operation is to decorate the target table rows with the columns from the matching
ancestor rows (if any), without eliminating or adding any other rows.

2. NESTED TABLES (A a descendants(A.B b, A.B.C c))

is equivalent to

A a LOJ A.B b ON a.ida = b.ida
 LOJ A.B.C c ON b.ida = c.ida AND b.idb = c.idb

Another way to explain the semantics of the DESCENDANTS clause is to use the
contains relationship defined in Table Hierarchies section, but restricted to the
descendant tables in the join tree only. Let R be a target table row, and S(R) be the set
containing all the descendant rows that are reachable from R via the contains relationship
(i.e., S(R) is the transitive closure of contains applied on R). If S(R) is empty, a single
record is returned for R, that contains R and a NULL value for each of the descendant
tables in the join tree. Otherwise, let B(R) be the boundary subset of S(R), i.e., all rows in
S(R) that do not have any descendant rows in the join tree. Then, a result is generated
for each row in B(R) as follows: Let RR be a row in B(R) and T be its containing table.
The result associated with RR is a record containing all the rows in the path from R to RR
and a NULL value for every table that is not in the path from the target table to T.

3. NESTED TABLES (A a descendants(A.B b, A.G g))

is equivalent to

A a LOJ
(A.B b UNION A.G g)
ON (a.ida = b.ida or b.ida IS NULL) and (a.ida = g.ida or g.ida IS NULL)

As in case 2, target table A is joined with 2 descendant tables. However, because the
descendant tables come from 2 different branches of the join tree, we have to use a
UNION operation in the SQL expression above. This UNION unions both the rows and
the columns of tables A.B and A.G. So, if table A.B has N rows with n columns each and
table A.G has M rows with m columns, the result of the UNION has N + M rows, with n +
m columns each. The first N rows contain the rows of A.B with NULL values for the m
columns, and the following M rows contain the rows of A.G with NULL values for the n
columns. When matching A rows with the UNION rows, we distinguish whether a UNION
row comes from table A.B or A.g by checking whether g.ida is NULL or b.ida is NULL,
respectively.

Notice that the contains-base definition given in case 2 applies here as well.

Chapter 6
Joins

6-101

4. NESTED TABLES (A a descendants(A.B b, A.B.C c, A.B.E e, A.G.J.K k))

is equivalent to

A a LOJ
(
A.B b LOJ
(A.B.C c UNION A.B.E e)
ON (b.ida = c.ida and b.idb = c.idb or c.ida IS NULL) and
(b.ida = e.ida and b.idb = e.idb or e.ida IS NULL)
UNION
A.G.J.K k
)
ON (a.ida = b.ida or b.ida IS NULL) and (a.ida = k.ida or k.ida IS
NULL)

This example is just a more complex version of case 3.

5. NESTED TABLES (A.B b ancestors(A a ON a.a1 = “abc”)
descendants(A.B.C c ON c.c1 > 10,
A.B.C.D d,
A.B.E e))

is equivalent to

(A.B b LOJ A a ON b.ida = a.ida and a.a1 = “abc”) LOJ
(
A.B.C c LOJ A.B.C.D
ON c.ida = d.ida and c.idb = d.idb and c.idc = d.idc
UNION
E
)
ON (b.ida = c.ida and b.idb = c.idb or c.ida IS NULL) and
(b.ida = e.ida and b.idb = e.idb or e.ida IS NULL)

This is an example that just puts everything together. It contains both ANCESTOR
and DESCENDANT clauses, as well as ON predicates. The mapping from
NESTED TABLES to LOJs uses the same patterns as in the previous cases. The
ON predicates are just and-ed with the join predicates. In most cases, the ON
predicates inside a NESTED TABLES will be local predicates on the right table of
an LOJ, but more generally, they can also reference any columns from any table
that is an ancestor of the table the ON appears next to.

Example: Using NESTED TABLES clause to query multiple tables in
the same hierarchy

Let’s consider an application that tracks a population of users and the emails sent or
received by these users. Given that SQL for Oracle NoSQL Database does not
currently support general purpose joins, the emails are stored in a table that is created
as a child of users, so that queries can be written that combine information from both
tables using the NESTED TABLES clause. The create table statements for the two

Chapter 6
Joins

6-102

tables are shown below. Notice that it is possible for the application to receive emails that are
not associated with any user in the users table; such emails will be assigned a uid value that
does not exist in the users table.

CREATE TABLE users(
uid INTEGER,
name string,
email_address string,
salary INTEGER,
address json,
PRIMARY KEY(uid));

CREATE TABLE users.emails(
eid INTEGER,
sender_address string, // sender email address
receiver_address string, // receiver email address
time timestamp(3),
size INTEGER,
content string,
PRIMARY KEY(eid));

Here are two queries that can be written over the users and emails tables.

Example 6-92 Joining Tables

Count the number of emails sent in 2017 by all users whose salary is greater than 200K

SELECT count(eid)
FROM NESTED TABLES(
users
descendants(users.emails ON email_address = sender_address and
year(time) = 2017)
)
WHERE salary > 200;

In the above query, we are using count(eid) rather than count(*) because there may exist
users with no emails or no sent emails. For such a user, the FROM clause will return a record
where the eid field will be NULL, and count(eid) will not count such a record.

Example 6-93 Joining Tables

For each email whose size is greater than 100KB and was sent by a user in the the users
table, return the name and address of that user.

SELECT name, address
FROM NESTED TABLES(users.emails ancestors(users))
WHERE size > 100 AND sender_address = email_address;

In the above query will return duplicate results for any user who has sent more than one
"large" email. Currently, SQL for Oracle NoSQL Database does not support SELECT
DINSTINCT, so the duplicate elimination has to be performed by the application.

Chapter 6
Joins

6-103

Left Outer Join (LOJ)
A Left Outer Join (LOJ) is one of the join operations that allows you to specify a join
clause. It preserves the unmatched rows from the first (left) table, joining them with a
NULL row in the second (right) table. This means all left rows that do not have a
matching row in the right table will appear in the result, paired with a NULL value in
place of a right row.

Syntax of LOJ

loj_from_clause ::= FROM (aliased_table_name | left_outer_join_tables
left_outer_join_table ::= LEFT OUTER JOIN single_from_table ON expression
left_outer_join_tables ::= single_from_table left_outer_join_table
(left_outer_join_table)*

Semantics

The FROM clause specifies the participating tables and separates them into two
groups. First, the target table (the table which is on the left side of the LEFT OUTER
JOIN clause) is specified. Then a LEFT OUTER JOIN clause can be specified. The
table to the left of the LEFT OUTER JOIN keywords is called the left table, and the one
to the right of LEFT OUTER JOIN is the right table. The name of any participating
table in the join may be followed by a table alias. A table alias is a temporary name
given to a table. Aliases are often used to make column names more readable. If no
alias is specified, one is created internally, using the name of the table as it is spelled
in the query, but with the dot(".") character replaced with '_' in the case of child tables.
A join predicate specifies the columns on which records from two or more tables are
joined. The expression after the ON clause lists all the join predicates between the two
tables. The left_outer_join_tables clause specifies that the result of one LOJ can
be the target table for another LOJ.

Like other kinds of joins, the LOJ creates a result set containing pairs of matching rows
from the left and right tables. However, an LOJ will also preserve all rows of the left
table, that is, a left row that does not have a matching row will appear in the result,
paired with a NULL value in place of a right row.

Result set ordering in an LOJ:

In an LOJ, the order of fields in the result-set is always in top-down order. That means
the order of output in the result set is always from the ancestor table first and then the
descendant table. This is true irrespective of the order of the joins.

Different scenarios of using an LOJ
To understand different scenarios of using an LOJ, let us create a few hierarchical
tables and populate them with some data.

CREATE TABLE IF NOT EXISTS A (
 ida INTEGER,
 a1 string,
 PRIMARY KEY(ida));
CREATE TABLE IF NOT EXISTS A.B (
 idb INTEGER,
 b1 string,

Chapter 6
Joins

6-104

 PRIMARY KEY(idb));
CREATE TABLE IF NOT EXISTS A.B.C (
 idc INTEGER,
 c1 string,
 PRIMARY KEY(idc));
CREATE TABLE IF NOT EXISTS A.G (
 idg INTEGER,
 g1 string,
 PRIMARY KEY(idg));
INSERT INTO A VALUES(1, 'a1');
INSERT INTO A VALUES(2, 'a2');
INSERT INTO A VALUES(3, 'a3');
INSERT INTO A.B VALUES(1, 1, 'b1');
INSERT INTO A.B VALUES(2, 2, 'b2');
INSERT INTO A.B.C VALUES(1, 1, 1, 'c1');
INSERT INTO A.B.C VALUES(2, 2, 1, 'c2');
INSERT INTO A.B.C VALUES(3, 3, 1, 'c3');
INSERT INTO A.G VALUES(1, 1, 'g1');
INSERT INTO A.G VALUES(2, 2, 'g2');

Join with Descendants

You can join a target table with its descendant. All rows of the target table(left table) will be
returned and for those rows where there is no match in the descendant's table(right table),
NULL values are populated as shown in the examples below.

Example 1: A target table A is joined with its child table A.B

SELECT * FROM A a LEFT OUTER JOIN A.B b
ON a.ida = b.ida ORDER BY a.ida;

{"a":{"ida":1,"a1":"a1"},"b":{"ida":1,"idb":1,"b1":"b1"}}
{"a":{"ida":2,"a1":"a2"},"b":{"ida":2,"idb":2,"b1":"b2"}}
{"a":{"ida":3,"a1":"a3"},"b":null}

Example 2: A target table A is joined with its descendant A.B.C

SELECT * FROM A a LEFT OUTER JOIN A.B.C c
ON a.ida = c.ida ORDER BY a.ida;

{"a":{"ida":1,"a1":"a1"},"c":{"ida":1,"idb":1,"idc":1,"c1":"c1"}}
{"a":{"ida":2,"a1":"a2"},"c":{"ida":2,"idb":2,"idc":1,"c1":"c2"}}
{"a":{"ida":3,"a1":"a3"},"c":{"ida":3,"idb":3,"idc":1,"c1":"c3"}}

Join with Ancestors

You can join a target table with its ancestor. All rows of the target table(left table) will be
returned and for those rows where there is no match in the ancestor table(right table), NULL
values are populated as shown in the examples below.

Example 1: A target table A.B is joined with its parent table A

SELECT * FROM A.B b LEFT OUTER JOIN A a
ON a.ida = b.ida ORDER BY a.ida;

Chapter 6
Joins

6-105

{"a":{"ida":1,"a1":"a1"},"b":{"ida":1,"idb":1,"b1":"b1"}}
{"a":{"ida":2,"a1":"a2"},"b":{"ida":2,"idb":2,"b1":"b2"}}

Example 2: A target table A.B.C is joined with its ancestor A.B

SELECT * FROM A.B.C c LEFT OUTER JOIN A.B b
ON c.ida = b.ida and c.idb = b.idb;

{"b":null,"c":{"ida":3,"idb":3,"idc":1,"c1":"c3"}}
{"b":{"ida":2,"idb":2,"b1":"b2"},"c":
{"ida":2,"idb":2,"idc":1,"c1":"c2"}}
{"b":{"ida":1,"idb":1,"b1":"b1"},"c":
{"ida":1,"idb":1,"idc":1,"c1":"c1"}}

Multiple LOJs in one SELECT statement

A target table(A) can be joined to its child(A.B) and the result of the join can be joined
to the descendant (A.B.C)of the target table. If the right table is a descendant table,
the ON expression should contain join predicates on all the primary key columns of the
left table using an "AND" clause. In the example given below, the left table has two
primary key columns (ida and idb). An AND clause is used with these two join
predicates (b.ida = c.ida AND b.idb = c.idb).

Example 1: Multiple LOJs of the parent table with its descendants

SELECT * FROM A a LEFT OUTER JOIN A.B b ON a.ida = b.ida
LEFT OUTER JOIN A.B.C c ON b.ida = c.ida AND b.idb = c.idb ORDER BY
a.ida;

{"a":{"ida":1,"a1":"a1"},"b":{"ida":1,"idb":1,"b1":"b1"},"c":
{"ida":1,"idb":1,"idc":1,"c1":"c1"}}
{"a":{"ida":2,"a1":"a2"},"b":{"ida":2,"idb":2,"b1":"b2"},"c":
{"ida":2,"idb":2,"idc":1,"c1":"c2"}}
{"a":{"ida":3,"a1":"a3"},"b":null,"c":null}

Example 2: Multiple LOJs of the parent table with its ancestors

SELECT * FROM A.B.C c LEFT OUTER JOIN A a ON c.ida = a.ida
LEFT OUTER JOIN A.B b ON c.ida = b.ida AND c.idb = b.idb ORDER BY
c.ida, c.idb;

{"a":{"ida":1,"a1":"a1"},"b":{"ida":1,"idb":1,"b1":"b1"},"c":
{"ida":1,"idb":1,"idc":1,"c1":"c1"}}
{"a":{"ida":2,"a1":"a2"},"b":{"ida":2,"idb":2,"b1":"b2"},"c":
{"ida":2,"idb":2,"idc":1,"c1":"c2"}}
{"a":{"ida":3,"a1":"a3"},"b":null,"c":
{"ida":3,"idb":3,"idc":1,"c1":"c3"}}

Join with an ancestor and a descendant

You can also join a target table to an ancestor and a descendant. First, join the target
table to its ancestor and then join the result of this query with the descendant of the

Chapter 6
Joins

6-106

target table. Any number of such joins is possible in a single SQL statement. In all the joins,
all rows of the left table will be returned and for those rows where there is no match in the
right table, NULL values are populated. If the right table is a descendant table, the ON
expression should contain join predicates on all the primary key columns of the left table
using an "AND" clause.

Example: A target table A.B is joined with its ancestor A, the result of which is joined
with its descendant A.B.C

SELECT * FROM A.B b LEFT OUTER JOIN A a ON b.ida = a.ida AND a.a1 = "abc"
LEFT OUTER JOIN A.B.C c ON b.ida = c.ida AND b.idb = c.idb ;

{"a":null,"b":{"ida":1,"idb":1,"b1":"b1"},"c":
{"ida":1,"idb":1,"idc":1,"c1":"c1"}}
{"a":null,"b":{"ida":2,"idb":2,"b1":"b2"},"c":
{"ida":2,"idb":2,"idc":1,"c1":"c2"}}

Non-join predicate restrictions in an LOJ

An LOJ can additionally have non-join predicates (that is the columns that are not part of the
join) as a restriction to filter data. The result set of an LOJ depends on whether you place the
non-join predicate restriction in the ON clause or in the WHERE clause. The non-join
predicate in an ON clause is just applied to the join operation, whereas the non-join predicate
in the WHERE clause will apply to the entire results-set.

Example: Non-join predicate in the WHERE clause

If a non-join predicate is placed in the WHERE clause, the restriction is applied to the result
of the outer join. That is, it removes all the rows for which the WHERE condition is not TRUE.
In the example below, you get only one row that matches the WHERE condition as the result
set.

SELECT * FROM A a LEFT OUTER JOIN A.B b ON a.ida = b.ida
WHERE b.ida > 1 ORDER BY a.ida;

{"a":{"ida":2,"a1":"a2"},"b":{"ida":2,"idb":2,"b1":"b2"}}

Example: Non-join predicate in the ON clause

If you move the non-join predicate restriction to the ON clause, the result set includes all the
rows that meet the ON clause condition. Rows from the right outer table that do not meet the
ON condition are populated with NULL values as shown below.

SELECT * FROM A a LEFT OUTER JOIN A.B b ON a.ida = b.ida
AND b.ida > 1 ORDER BY a.ida;

{"a":{"ida":1,"a1":"a1"},"b":null}
{"a":{"ida":2,"a1":"a2"},"b":{"ida":2,"idb":2,"b1":"b2"}}
{"a":{"ida":3,"a1":"a3"},"b":null}

Limitations of LOJ
There are some limitations while using an LOJ in an Oracle NoSQL Database.

Chapter 6
Joins

6-107

Joins with Siblings

LOJs in an Oracle NoSQL Database cannot be applied to siblings. LOJ can be used in
tables that only have a direct hierarchical relationship. When you try to join siblings,
you get an error as shown below.

SELECT * FROM A.B b LEFT OUTER JOIN A.G g ON b.ida=g.ida ;

Error handling command select * from A.B b LEFT OUTER JOIN A.G g on
b.ida=g.ida:
Error: at (1, 40) Table A.G is neither ancestor nor descendant of the
target table A.B

Order of tables in an LOJ

While using multiple joins in a single statement, the tables in an LOJ must appear in
top-down order after the target table. A child table cannot be to the left of its parent in
a multiple join operation.

Example: Multiple LOJ of the parent table with its ancestors in the wrong order

In the example below, an error is thrown as the parent table A cannot be at the right of
its descendant A.B.

SELECT * FROM A.B.C c LEFT OUTER JOIN A.B b ON c.ida = b.ida and c.idb
= b.idb
LEFT OUTER JOIN A a on c.ida = a.ida;

Error handling command SELECT * FROM A.B.C c LEFT OUTER JOIN A.B b ON
c.ida = b.ida
and c.idb = b.idb LEFT OUTER JOIN A a ON c.ida = a.ida:
Error: at (3, 22) Table A is not descendant of table A.B.
Tables in left-outer-joins must appear in top-down order after the
target table

Join predicates

In an LOJ, the ON expression of the right table should contain all the required join
predicates that link the parent and child tables. Missing any join predicate results in an
exception.

Example 1: If the right table is an ancestor of the target table, the ON expression
should contain join-predicates on all the primary key columns of the right table.

In the example below, one of the join predicates on the primary key column "idb" of the
right table is missing which throws an error.

SELECT * FROM A.B.C c LEFT OUTER JOIN A a ON c.ida = a.ida
LEFT OUTER JOIN A.B b ON c.ida = b.ida ;

Error handling command SELECT * FROM A.B.C c LEFT OUTER JOIN A a ON
c.ida = a.ida
LEFT OUTER JOIN A.B b ON c.ida = b.ida:

Chapter 6
Joins

6-108

Error: A join predicate is missing from ON clause of table A.B : c.idb =
b.idb

Example 2: If the right table is a descendant of the target table, the ON expression
should contain join-predicates on all the primary key columns of the left table.

In the example below, one of the join predicates on the primary key column "idb" of the left
table is missing which throws an error.

SELECT * FROM A.B b LEFT OUTER JOIN A.B.C c ON b.ida = c.ida;

Error handling command SELECT * FROM A.B b LEFT OUTER JOIN A.B.C c ON b.ida
= c.ida:
Error: A join predicate is missing from ON clause of table A.B.C : b.idb =
c.idb

Nested tables Vs LOJ
To query multiple tables in the same hierarchy, you can also use the NESTED TABLES
clause. To get more details about Nested tables and using it to join a parent table with its
child table, see Using NESTED TABLES clause to query multiple tables in the same
hierarchy

Table 6-9 Nested Tables Vs LOJ

Nested Tables LOJ

Queries multiple tables in the same hierarchy Queries multiple tables in the same hierarchy

Not an ANSI-SQL Standard ANSI-SQL Standard

Supports sibling tables join Does not support sibling table joins

Example: Using Left Outer Joins
Let us take an example of an online shopping portal that uses the Oracle NoSQL Database.
This application has millions of customers who do online shopping and add things they want
to buy in a shopping cart. Finally, the order is processed and billed. The shopping pattern of
customers can be analyzed using this application.

Here there are three tables in a parent-child relationship. The customerprofile table with all
the personal information of customers is the top-level table. Shoppingcart which lists the
items picked by the customer, their quantity, and the individual price of each item is the
descendant table of customerprofile . Order which has the total order quantity and the total
order value. is the descendant table of shoppingcart.

Let us create these tables and populate some data into them.

CREATE TABLE customerprofile (
 customer_id INTEGER,
 customer_name STRING,
 customer_address STRING,
 customer_phone INTEGER,
 PRIMARY KEY(customer_id));
CREATE TABLE customerprofile.shoppingcart (

Chapter 6
Joins

6-109

 cart_id STRING,
 product_name STRING,
 product_quantity INTEGER,
 product_price INTEGER,
 PRIMARY KEY(cart_id));
CREATE TABLE customerprofile.shoppingcart.order (
 order_id INTEGER,
 order_quantity INTEGER,
 order_total INTEGER,
 PRIMARY KEY(order_id));

INSERT INTO customerprofile VALUES (1,"Aana","Blr",111111111);
INSERT INTO customerprofile VALUES (2,"Bobby","Chn",22222222);
INSERT INTO customerprofile VALUES (3,"Celin","Del",33333333);
INSERT INTO customerprofile VALUES (4,"Diana","Blr",44444444);
INSERT INTO customerprofile VALUES (5,"Elizabeth","Mum",55555555);

INSERT INTO customerprofile.shoppingcart
VALUES(1,'c1',"Shampoo",2,300);
INSERT INTO customerprofile.shoppingcart VALUES(1,'c2',"Soap",3,80);
INSERT INTO customerprofile.shoppingcart VALUES(2,'c3',"Milk",5,100);
INSERT INTO customerprofile.shoppingcart VALUES(3,'c4',"Chips",2,50);
INSERT INTO customerprofile.shoppingcart VALUES(4,'c5',"Bread",1,40);

INSERT INTO customerprofile.shoppingcart.order
VALUES(1,'c1',100,2,600);
INSERT INTO customerprofile.shoppingcart.order
VALUES(1,'c2',101,3,240);
INSERT INTO customerprofile.shoppingcart.order
VALUES(2,'c3',102,5,500);
INSERT INTO customerprofile.shoppingcart.order
VALUES(3,'c4',103,2,100);

Examples using LOJ

Use case 1: Fetch all customer details and their order history

SELECT * FROM customerprofile a LEFT OUTER JOIN
customerprofile.shoppingcart.order c
ON a.customer_id = c.customer_id ORDER BY a.customer_id;

{"a":
{"customer_id":1,"customer_name":"Aana","customer_address":"Blr","custo
mer_phone":111111111},"c":
{"customer_id":1,"cart_id":"c1","order_id":100,"order_quantity":2,"orde
r_total":600}}
{"a":
{"customer_id":1,"customer_name":"Aana","customer_address":"Blr","custo
mer_phone":111111111},"c":
{"customer_id":1,"cart_id":"c2","order_id":101,"order_quantity":3,"orde
r_total":240}}
{"a":

Chapter 6
Joins

6-110

{"customer_id":2,"customer_name":"Bobby","customer_address":"Chn","customer_p
hone":22222222},"c":
{"customer_id":2,"cart_id":"c3","order_id":102,"order_quantity":5,"order_tota
l":500}}
{"a":
{"customer_id":3,"customer_name":"Celin","customer_address":"Del","customer_p
hone":33333333},"c":
{"customer_id":3,"cart_id":"c4","order_id":103,"order_quantity":2,"order_tota
l":100}}
{"a":
{"customer_id":4,"customer_name":"Diana","customer_address":"Blr","customer_p
hone":44444444},"c":null}
{"a":
{"customer_id":5,"customer_name":"Elizabeth","customer_address":"Mum","custom
er_phone":55555555},"c":null}

Use case 2: Fetch all customers who have shopped for at least 3 pieces of the same item

SELECT * FROM customerprofile a LEFT OUTER JOIN customerprofile.shoppingcart
b
 ON a.customer_id = b.customer_id WHERE product_quantity >2;

{"a":
{"customer_id":1,"customer_name":"Aana","customer_address":"Blr","customer_ph
one":111111111},"b":
{"customer_id":1,"cart_id":"c2","product_name":"Soap","product_quantity":3,"p
roduct_price":80}}
{"a":
{"customer_id":2,"customer_name":"Bobby","customer_address":"Chn","customer_p
hone":22222222},"b":
{"customer_id":2,"cart_id":"c3","product_name":"Milk","product_quantity":5,"p
roduct_price":100}}

Use case 3: Fetch the details of only those customers who have at least shopped for a value
of 500

SELECT * FROM customerprofile a LEFT OUTER JOIN
customerprofile.shoppingcart.order b
ON a.customer_id = b.customer_id WHERE order_total >=500 ;

{"a":
{"customer_id":1,"customer_name":"Aana","customer_address":"Blr","customer_ph
one":111111111},
 "b":
{"customer_id":1,"cart_id":"c1","order_id":100,"order_quantity":2,"order_tota
l":600}}
{"a":
{"customer_id":2,"customer_name":"Bobby","customer_address":"Chn","customer_p
hone":22222222},
 "b":
{"customer_id":2,"cart_id":"c3","order_id":102,"order_quantity":5,"order_tota
l":500}}

Chapter 6
Joins

6-111

7
Data Row Management

This chapter describes data rows and inserting and managing data rows in Oracle NoSQL
Database.

This chapter contains the following topics:

• INSERT Statement

• Inserting Rows into JSON Collection Tables

• Inserting Rows with an IDENTITY Column

• Inserting rows into a table with a UUID column

• Inserting rows with an MR_COUNTER column

• Upsert statement

• Updating rows of a table with a UUID column

• DELETE Statement

• UPDATE Statement

– Update Clauses

* SET Clause

* ADD Clause

* PUT Clause

* REMOVE Clause

* SET TTL Clause

– Updating rows with an IDENTITY Column

– Updating rows with an MR_COUNTER column

– Example: Updating Rows

– Example: Updating JSON Data

– Example: Updating JSON collection tables

– Example: Updating TTL

– Example: Updating IDENTITY defined as GENERATED ALWAYS

– Example: Updating IDENTITY defined as GENERATED BY DEFAULT

• JSON Collection Table Example

INSERT Statement
The INSERT statement is used to construct a new row and add it in a specified table.

7-1

Syntax

insert_statement ::=
 [variable_declaration]
 INSERT INTO table_name
 [[AS] table_alias]
 ["(" id ("," id)* ")"]
 VALUES "(" insert_clause ("," insert_clause)* ")"
 [SET TTL ttl_clause]
 [returning_clause]

insert_clause ::= DEFAULT | expression

returning_clause ::= RETURNING select_list

Semantics

The row will be inserted only if it does not exist already.

Insert statements may start with declarations of external variables that are used in the
rest of the statement. See Variable Declaration. However, contrary to queries, external
variables can be used in inserts without being declared. This is because inserts do not
query any data, and as result, knowing the type of external variables in advance is not
important as there isn’t any query optimization to be done.

Optional column(s) may be specified after the table name. This list contains the
column names for a subset of the table’s columns. The subset must include all the
primary key columns. If no columns list is present, the default columns list is the one
containing all the columns of the table, in the order they are specified in the CREATE
TABLE Statement section.

The columns in the columns list correspond one-to-one to the expressions (or
DEFAULT keywords) listed after the VALUES clause (an error is raised if the number
of expressions/DEFAULTs is not the same as the number of columns). These
expressions/DEFAULTs compute the value for their associated column in the new row.
Specifically, each expression is evaluated and its returned value is cast to the type of
its associated column. The cast behaves like the cast expression as described in the
Cast Expression section. An error is raised if an expression returns more than one
item. If an expression returns no result, NULL is used as the result of that expression.
If instead of an expression, the DEFAULT keyword appears in the VALUES list, the
default value of the associated column is used as the value of that column in the new
row. The default value is also used for any missing columns, when the number of
columns in the columns list is less than the total number of columns in the table.

The expressions in the VALUES list may reference external variables, which unlike
query statements, do not need to be declared in a declarations section.

Following the VALUES list a SET TTL clause may be used to set the expiration time of
the new row. As described in the CREATE TABLE Statement section, every row has
an expiration time, which may be infinite, and which is computed in terms of a Time-
To-Live (TTL) value that is specified as a number of days or hours. Specifically, for a
TTL value of N hours/days, where N is greater than zero, the expiration time is
computed as the current time (in UTC) plus N hours/days, rounded up to the next full
hour/day. For example, if the current time is 2017-06-01T10:05:30.0 and N is 3 hours,

Chapter 7
INSERT Statement

7-2

the expiration time will be 2017-06-01T14:00:00.0. If N is 0, the expiration time is infinite.

As shown in the syntax, the SET TTL clause comes in two flavors. When the USING TABLE
DEFAULT syntax is used, the TTL value is set to the table default TTL that was specified in
the CREATE TABLE statement. Otherwise, the SET TTL contains an expression, which
computes a new TTL value. If the result of this expression is empty, the default TTL of the
table is used. Otherwise, the expression must return a single numeric item, which is cast to
an integer N. If N is negative, it is set to 0. To the right of the TTL expression, the keyword
HOURS or DAYS must be used to specify whether N is a number of hours or days,
respectively.

If the insert statement contains a SET TTL clause, an expiration time is computed as
described above and applied to the row being inserted. If no SET TTL clause is used, the
default table TTL is used to compute the expiration time of the inserted row. In case of MR
Tables, when this row is replicated to other regions, its expiration time is also replicated as an
absolute timestamp value. Therefore, the replicated rows will expire along with the original
row, irrespective of when they were replicated. If the same row is inserted with a TTL value in
multiple regions, then the TTL value will be set in all regions to the value held in the row with
the greatest write timestamp.

The last part of the insert statement is the RETURNING clause. If not present, the result of
the update statement is a record with a single field whose name is "NumRowsInserted" and
whose value is the number of rows inserted: 0 if the row existed already, or 1 otherwise.
Otherwise, if there is a RETURNING clause, it acts the same way as the SELECT clause: it
can be a "*", in which case, a full row will be returned, or it can have a list of expressions
specifying what needs to be returned. In the case of an INSERT where no insertion is actually
done (because the row exists already), the RETURNING clause acts on the existing row.
Otherwise, the RETURNING clause acts on the new row.

Example 1: Using DEFAULT values while inserting data

The following statement inserts a row to the users table from CREATE TABLE Statement.
Notice that the value for the expenses column will be set to NULL, because the DEFAULT
clause is used for that column.

INSERT INTO users VALUES (
 10,
 "John",
 "Smith",
 [{"first" : "Johny", "last" : "BeGood"}],
 22,
 45000,
 { "street" : "Main", "number" : 10, "city" : "Reno", "state" : "NV"},
 [30, 55, 43],
 DEFAULT
);

Example 2: Using a RETURNING clause in an INSERT statement.

A RETURNING clause acts the same way as the SELECT clause. A "*", in the example
below returns the full row that got inserted.

INSERT INTO users VALUES (
 20,
 "Mary",

Chapter 7
INSERT Statement

7-3

 "Ann",
 null,
 43,
 90000,
 { "street" : "Main", "number" : 89, "city" : "San Jose", "state" :
"CA"},
 null,
 DEFAULT
) RETURNING *;

Result:

{"id":20,"firstName":"Mary","lastName":"Ann","otherNames":null,
"age":43,"income":90000,"address":{"city":"San Jose","number":89,
"state":"CA","street":"Main"},"connections":null,"expenses":null}

Example 3: Set a TTL for a row while inserting a row

In the example below, the expiration of the row that is inserted is set to 2 days.

INSERT INTO users VALUES (
 30,
 "Peter",
 "Paul",
 null,
 25,
 53000,
 { "street" : "Main", "number" : 3, "city" : "Fresno", "state" :
"CA"},
 null,
 DEFAULT
)SET TTL 2 days;
{"NumRowsInserted":1}

Insert data into a child table:

A child table inherits the primary key columns of its parent table. This is done implicitly,
without including the parent columns in the CREATE TABLE statement of the child. So
the child table has additional columns pertaining to the primary key of the parent table.
While inserting data into a child table, the value for the primary key of the parent table
should also be inserted.

Example: The description of the child table userdet is shown below.

sql-> desc as json table users.userdet;
{
 "json_version" : 1,
 "type" : "table",
 "name" : "userdet",
 "parent" : "users",
 "regions" : {
 "2" : "FRA",
 "1" : "LON"

Chapter 7
INSERT Statement

7-4

 },
 "fields" : [{
 "name" : "id",
 "type" : "INTEGER",
 "nullable" : false
 }, {
 "name" : "pan",
 "type" : "INTEGER",
 "nullable" : false
 }, {
 "name" : "address",
 "type" : "STRING",
 "nullable" : true
 }, {
 "name" : "email",
 "type" : "STRING",
 "nullable" : true
 }],
 "primaryKey" : ["id", "pan"],
 "shardKey" : ["id"]
}

Here "id" is the primary key of the parent table. While inserting data, provide the value for the
"id" column. Else an error is thrown.

insert into users.userdet values(1,100,"bangalore","test@one.com");
{"NumRowsInserted":1}

When you retrieve the data from the child table, the primary key of the parent table is also
retrieved.

SELECT * FROM users.userdet;
{"id":1,"pan":100,"address":"bangalore","email":"test@one.com"}

Inserting Rows into JSON Collection Tables
JSON collection tables provide the flexibility to declare primary key fields during the table
creation. The value of primary key fields along with the other fields in the document must be
supplied during the insertion of data.

When you insert data, each row is inserted as a single document containing any number of
JSON fields. To insert data, you must either supply the values for the fields inside a JSON
object ({}) or state them explicitly.

Use one of the following methods to insert the data into a JSON collection table:

• Using explicitly declared field names: You must explicitly supply the primary key field
followed by the top-level JSON field names in the INSERT statement. You include the
corresponding values using the values clause. The first value must be the value
associated with the primary key field. This must be followed by the values associated with
the corresponding field names supplied for the JSON document.

Chapter 7
Inserting Rows into JSON Collection Tables

7-5

Example 7-1 Insert data into the JSON collection table created for a shopping
application through explicit declaration of field names

INSERT into storeAcct(contactPhone, firstName, lastName, address,
cart) values("1817113382", "Adam", "Smith", {"street" : "Tex Ave",
"number" : 401, "city" : "Houston", "state" : "TX", "zip" : 95085},
[{"item" : "handbag", "quantity" : 1, "priceperunit" : 350},{"item" :
"Lego", "quantity" : 1, "priceperunit" : 5500}])

Explanation: In the above example, you insert the shopper's data into the shopping
application table by supplying the contactPhone as the primary key followed by other
details of the shopper as JSON fields. The shopper's details are stored internally as
JSON data. Notice that in JSON collection tables, you do not supply a column name
for the document itself, only provide the JSON fields in the document.

You can add another row to the same table with additional fields.

INSERT into storeAcct(contactPhone, firstName, lastName, gender,
address, notify, cart, wishlist) values("1917113999", "Sharon",
"Willard", "F", {"street" : "Maine", "number" : 501, "city" : "San
Jose", "state" : "San Francisco", "zip" : 95095},"yes", [{"item" :
"wallet", "quantity" : 2, "priceperunit" : 950},{"item" : "wall art",
"quantity" : 1, "priceperunit" : 9500}], [{"item" : "Tshirt",
"priceperunit" : 500},{"item" : "Jenga", "priceperunit" : 850}])

In the above statement, you insert the shopper's data with additional fields such as
gender, notify, and wishlist as compared with the first inserted row. The wishlist
field is a JSON array that includes the details of items wishlisted by the shopper.

• Using positional values: You must supply the primary key field values followed
by document fields as name/value pairs encapsulated in a single JSON object.
The fields in the document must adhere to JSON data type format. Any non-
conformance will lead to exceptions and display error messages.

Example 7-2 Insert data into the JSON collection table created for a shopping
application by supplying positional values

INSERT into storeAcct values("1817113382", {"firstName" : "Adam",
"lastName" : "Smith", "address" : {"street" : "Tex Ave", "number" :
401, "city" : "Houston", "state" : "TX", "zip" : 95085}, "cart" :
[{"item" : "handbag", "quantity" : 1, "priceperunit" : 350},{"item" :
"Lego", "quantity" : 1, "priceperunit" : 5500}]})

Explanation: In this insert statement, you insert the same data from example 1 above
using the positional value of the elements. You use the values clause followed by the
value for the primary key field and then a JSON object {} containing the rest of the
name/value pairs for the document.

Additional examples:

Example 7-3 Insert data into the JSON collection table for a shopping
application with an MR_COUNTER

INSERT into storeAcctMR(contactPhone, firstName, lastName, address,
cart, mycounter) values("1817113382", "Adam", "Smith", {"street" :

Chapter 7
Inserting Rows into JSON Collection Tables

7-6

"Tex Ave", "number" : 401, "city" : "Houston", "state" : "TX", "zip" :
95085}, [{"item" : "handbag", "quantity" : 1, "priceperunit" : 350},
{"item" : "Lego", "quantity" : 1, "priceperunit" : 5500}], 0)

Explanation: While inserting data into the JSON collection table with an MR_COUNTER,
you must supply a value of 0 for the MR_COUNTER.

Note:

• If you supply a non-zero value, the system will ignore the supplied value and
insert the value 0.

• You can't supply the keyword DEFAULT in the INSERT clause for
MR_COUNTER value.

• The system returns an error if the MR_COUNTER value is skipped or
DEFAULT is supplied in the INSERT statement. For more details, see Inserting
rows into a JSON column having MR_COUNTER data type.

SELECT contactPhone, firstName, mycounter FROM storeAcctMR where
contactPhone = "1817113382"

Output:

{
 "contactPhone" : "1817113382",
 "firstName" : "Adam",
 "mycounter" : 0
}

Example 7-4 Insert shopper's data with more than one primary key field in the JSON
collection table

INSERT into storeAcctComposite(contactPhone, firstName, lastName, address,
orders) values("1417114488", "Doris", "Martin", {"Dropbox" : "Presidency
College", "city" : "Kansas City", "state" : "Alabama", "zip" : 95065})
RETURNING *

Explanation: The storeAcctComposite table includes two primary key fields, the
contactPhone field and the id field. For table creation, see JSON collection composite keys.
As the order IDs for the purchased items are autogenerated in the shopping application, the
id field is declared as an IDENTITY column while creating the table. While inserting data, you
must supply the contactPhone primary key value along with document fields. If you do not
supply the id field value, the system autogenerates the IDENTITY field value. For more
details on the IDENTITY column, see Inserting Rows with an IDENTITY Column.

Output:

{
 "contactPhone" : "1417114488",

Chapter 7
Inserting Rows into JSON Collection Tables

7-7

 "id" : 1,
 "address" : {
 "Dropbox" : "Presidency College",
 "city" : "Kansas City",
 "state" : "Alabama",
 "zip" : 95065
 },
 "firstName" : "Doris",
 "lastName" : "Martin"
}

Using APIs to Insert Data into JSON Collection Tables

You can create a JSON collection table and insert data into it using supported
language drivers (SDKs). You can define the primary key fields using an allowed
subset of NoSQL data types. For more information, see Supported data type.

The language SDKs handle the creation of JSON collection tables or the insertion of
data in the same way as fixed schema tables. For examples on the creation of JSON
collection tables using APIs and inserting data into the tables, see Using APIs to
create tables in Creating a table section of the Developer's Guide.

Inserting Rows with an IDENTITY Column
The system generates an IDENTITY column value when the keyword DEFAULT is
used as the insert_clause for the IDENTITY column. Here are a few examples that
show INSERT statements for both flavors of the IDENTITY column – GENERATED BY
DEFAULT and GENERATED ALWAYS.
How you create an IDENTITY field affects what happens when you INSERT values.
You cannot change the IDENTITY value of a column that is a primary key.

Example 7-5 Create a table with an IDENTITY field as GENERATED ALWAYS
Where the IDENTITY field is not a primary key

CREATE Table Test_SGSqlInsert2(
 id INTEGER,
 name STRING,
 deptId INTEGER GENERATED ALWAYS AS IDENTITY (CACHE 1),
PRIMARY KEY(id))

INSERT INTO Test_SGSqlInsert2 VALUES (148, 'sally', DEFAULT)
INSERT INTO Test_SGSqlInsert2 VALUES (250, 'joe', DEFAULT)
INSERT INTO Test_SGSqlInsert2 VALUES (346, 'dave', DEFAULT)

The above INSERT statement will insert the following rows. The system generates
values 1, 2, and 3 for IDENTITY column deptId.

148, 'sally', 1
250, 'joe', 2
346, 'dave', 3

Chapter 7
Inserting Rows with an IDENTITY Column

7-8

To get the value of the generated deptId for future reference in one statement, use the
returning deptId clause as follows:

INSERT INTO Test_SGSqlInsert2 VALUES (600, 'jabba', DEFAULT) returning
deptId;
6
INSERT INTO Test_SGSqlInsert2 VALUES (700, 'bubba', DEFAULT) returning
deptId;
7

Using the following INSERT statement causes an exception since the user supplied a value of
200 for an IDENTITY GENERATED ALWAYS column. You cannot specify any value for any
IDENTITY field you define as GENERATED BY DEFAULT AS IDENTITY.

INSERT INTO Test_SGSqlInsert2 VALUES (1, 'joe',
 200);

Error handling command INSERT INTO Test_SGSqlInsert2 VALUES (1, 'joe', 200):
Error: at (1, 48) Generated always identity column must use DEFAULT
construct.

Example 7-6 Create a table with a DeptID integer field, GENERATED BY DEFAULT AS
IDENTITY, and make it the primary and shard key

CREATE TABLE Test_SGSqlInsert_Default (
 ID INTEGER,
 NAME STRING,
 DeptID INTEGER GENERATED BY DEFAULT AS IDENTITY (
 START WITH 1
 INCREMENT BY 1
 MAXVALUE 100),
 PRIMARY KEY (SHARD(DeptID), ID))

The following statements show how to insert values into table Test_SGSqlInsert_Default. In
this case, since the column ID is not an IDENTITY, you can assign integer values to the field:

INSERT INTO Test_SGSqlInsert_Default VALUES (100, 'tim', DEFAULT)
INSERT INTO Test_SGSqlInsert_Default VALUES (200, 'dave', 210)
INSERT INTO Test_SGSqlInsert_Default VALUES (300, 'sam', 310)
INSERT INTO Test_SGSqlInsert_Default VALUES (400, 'Jennifer', DEFAULT)
INSERT INTO Test_SGSqlInsert_Default VALUES (500, 'Barbara', 2)

These sample statements insert the following rows into the database.

300, 'sam', 310
100, 'tim', 1
400, 'Jennifer', 2
500, 'Barbara', 2
200, 'dave', 210

Chapter 7
Inserting Rows with an IDENTITY Column

7-9

Since you specified two values as DEFAULT in your INSERT statements, the SG supplies
them, as 1 and 2. The other values are inserted as you specify (210, 310, and 2). Each
value is acceptable, even though one results in two DeptID values the same (2
supplied from a DEFAULT, and 2 as a value you supply).

Because you defined the IDENTITY column as GENERATED BY DEFAULT AS IDENTITY,
the SG supplies a value only when you do not specify a value. Specifying values 210,
310, or 2 is correct. The system neither checks for duplicates, nor enforces uniqueness
for GENERATED BY DEFAULT AS IDENTITY column values. It is the application’s
responsibility to ensure that there are no duplicate values if that is a requirement.

Example 7-7 Inserting rows into a table with primary key as IDENTITY Column
GENERATED BY DEFAULT

CREATE TABLE Test_SGSqlInsert_Default_id (
 id INTEGER GENERATED BY DEFAULT AS IDENTITY,
 name STRING,
 deptId INTEGER,
PRIMARY KEY (id))

INSERT INTO Test_SGSqlInsert_Default_id VALUES (100, 'tim', 3)
INSERT INTO Test_SGSqlInsert_Default_id VALUES (DEFAULT, 'dave', 210)
INSERT INTO Test_SGSqlInsert_Default_id VALUES (300, 'sam', 310)
INSERT INTO Test_SGSqlInsert_Default_id VALUES (500, 'Jennifer', 410)
INSERT INTO Test_SGSqlInsert_Default_id (name,deptId) VALUES ("Abby",
510)

The above statements will insert the following rows into the database. Notice that
when you supply DEFAULT for the id field, the SG auto-generates an id value
because the primary key field (id) is defined as the IDENTITY column. Similarly, in the
last insert statement where you supply only the name and deptID field values, the SG
auto-generates the id value.

{"id":2,"name":"Abby","deptId":4}
{"id":300,"name":"sam","deptId":310}
{"id":100,"name":"tim","deptId":3}
{"id":1,"name":"dave","deptId":210}
{"id":500,"name":"Jennifer","deptId":410}

Inserting rows into a table with a UUID column
The system generates a UUID column value when the keyword DEFAULT is used as the
insert_clause for the UUID column.

Here are a few examples that show INSERT statements for both flavors of the UUID
column – GENERATED BY DEFAULT and when no DEFAULT CLAUSE is specified in
a CREATE TABLE statement. The keyword DEFAULT in the INSERT statement applies
only when the UUID column is declared as GENERATED BY DEFAULT.

Chapter 7
Inserting rows into a table with a UUID column

7-10

Example 7-8 Inserting rows into a table with a UUID column without GENERATED BY
DEFAULT clause

CREATE TABLE myTable (id STRING AS UUID, name STRING, PRIMARY KEY (id));
Statement completed successfully

INSERT INTO myTable values("a81bc81b-dead-4e5d-abff-90865d1e13b1","test1");
Statement completed successfully

In the above example, the id column in the table myTable has no "GENERATED BY
DEFAULT" defined. Therefore, whenever you insert a new row, you need to explicitly specify
the value for the id column.

Example 7-9 Inserting rows into a table with a UUID column using the random_uuid
function

The value for a UUID column can also be generated using the random_uuid function. See
Function to generate a UUID string.

sql-> INSERT INTO myTable values(random_uuid(),"test2");
{"NumRowsInserted":1}
1 row returned
Statement completed successfully

sql-> select * from myTable;
{"id":"d576ab3b-8a36-4dff-b50c-9d9d4ca6072c","name":"test2"}
{"id":"a81bc81b-dead-4e5d-abff-90865d1e13b1","name":"test1"}
2 rows returned
Statement completed successfully

In this example, a randomly generated UUID is fetched using the random_uuid() function.
This value is used in the INSERT statement.

Example 7-10 Inserting rows into a table with a UUID column with GENERATED BY
DEFAULT clause

CREATE TABLE myTable (id STRING AS UUID GENERATED BY DEFAULT,name STRING,
PRIMARY KEY (id));
Statement completed successfully

INSERT INTO myTable VALUES(default,"test1") returning id;
{"id":"e7fbab63-7730-4ec9-be73-a62e33ea73c3"}
Statement completed successfully

In the above example, the id column in myTable has "GENERATED BY DEFAULT" defined.
The system generates a UUID column value when the keyword DEFAULT is used in the
insert_clause for the UUID column. The system generated UUID value is fetched using the
returning clause.

Chapter 7
Inserting rows into a table with a UUID column

7-11

Inserting rows with an MR_COUNTER column
While data is inserted in a multi-region table with an MR_COUNTER column, the
system generates a default value of 0 for the MR_COUNTER column value in the
following two cases.

• When the keyword DEFAUL is used in the insert_clause for the MR_COUNTER
column.

• When the MR_COUNTER column is skipped in the INSERT clause.

Example 1: Specifying DEFAULT clause while inserting data into an
MR_COUNTER column

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;
INSERT INTO myTable VALUES ("Bob", DEFAULT);

SELECT * FROM myTable;
 {"name":"Bob","count":0}

Example 2: Skip the MR_COUNTER column while inserting data into a multi-
region table

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;
INSERT INTO myTable(name) VALUES ("Chris');

SELECT * FROM myTable;
 {"name":"Chris","count":0}

Example 3: Error when MR_COUNTER column is skipped and no DEFAULT
clause is given

If no DEFAULT clause is specified for the MR_COUNTER column and if the column is
not skipped from the INSERT clause, an error is thrown as shown below.

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;
INSERT INTO myTable VALUES ("Chris")

Error handling command execute 'INSERT INTO myTable VALUES ("Chris")':
Error: at (1, 0) The number of VALUES expressions is not equal to the
number of table columns

You cannot insert values into an MR_COUNTER column explicitly. A DEFAULT
construct must always be used or the MR_COUNTER column should be skipped in

Chapter 7
Inserting rows with an MR_COUNTER column

7-12

the INSERT clause. If you try to insert values into the MR_COUNTER column using the
INSERT clause or using API, an error is thrown as shown below.

CREATE Table myTable (name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN;
INSERT INTO myTable VALUES("Tom",0)';

Error handling command execute 'INSERT INTO myTable VALUES("Tom",0)': Error:
at (1, 38) MRCounter column must use DEFAULT construct.

Inserting rows into a JSON column having MR_COUNTER data type:

Example: Insert data into multi-region table with a JSON MR_COUNTER

When inserting a row into the multi-region table with a JSON MR_COUNTER, you must
supply a value 0 to the MR_COUNTER.

Note:

• The system initially assigns a value of 0 to all MR_COUNTER data types even
if you explicitly supply a non-zero value. This also holds good when you try to
provide a value that is not an INTEGER or LONG or NUMBER.

• You can't supply the keyword DEFAULT while inserting a JSON
MR_COUNTER.

• The system will return an error if you try to insert data into an MR table without
supplying a value to the declared JSON MR_COUNTER field or using the
keyword DEFAULT.

INSERT INTO demoJSONMR VALUES ("Anna",
 {
 "id" : 1,
 "counter" : 0,
 "person" : {
 "age" : 10,
 "count" : 0,
 "number" : 100
 }
 }
);

SELECT * FROM demoJSONMR;
{"name":"Anna","jsonWithCounter":{"id" : 1,"counter":0,
 "person":{"age":10,"count":0,"number":100}
 }
}

Chapter 7
Inserting rows with an MR_COUNTER column

7-13

Upsert statement
The word UPSERT combines UPDATE and INSERT, describing the statement's
function.

Syntax:

upsert_statement ::=
 [variable_declaration]
 UPSERT INTO table_name
 [[AS] table_alias]
 ["(" id ("," id)* ")"]
 VALUES "(" insert_clause ("," insert_clause)* ")"
 [SET TTL ttl_clause]
 [returning_clause]

insert_clause ::= DEFAULT | expression

returning_clause ::= RETURNING select_list

Use an UPSERT statement to insert a row where it does not exist, or to update the row
with new values when it does.

• Optional column(s) may be specified after the table name. This list contains the
column names for a subset of the table’s columns. The subset must include all the
primary key columns. If no columns list is present, the default columns list is the
one containing all the columns of the table, in the order they are specified in the
CREATE TABLE Statement.

• The columns in the columns list correspond one-to-one to the expressions (or
DEFAULT keywords) listed after the VALUES clause (an error is raised if the
number of expressions/DEFAULTs is not the same as the number of columns).

• Following the VALUES list a SET TTL clause may be used to set the expiration
time of an upserted(inserted/updated) row.

• If there is no RETURNING clause, the result of the UPSERT statement is a record
with a single field whose name is NumRowsInserted and whose value is the
number of rows inserted: 0 if the row existed already and an update happened, or
1 otherwise. If there is a RETURNING clause, it acts the same way as the
SELECT clause: it can be a *, in which case, a full row will be returned, or it can
have a list of expressions specifying what needs to be returned.

The users table has three rows as shown below:

SELECT count(*) FROM users
{"Column_1":3}

Chapter 7
Upsert statement

7-14

Example 7-11 Update data in the users table using UPSERT command

The existing value for an user with id 10 is shown below.

SELECT * FROM users WHERE id=10

{
 "id" : 10,
 "firstName" : "John",
 "lastName" : "Smith",
 "otherNames" : [{
 "first" : "Johny",
 "last" : "BeGood"
 }],
 "age" : 22,
 "income" : 45000,
 "address" : {
 "city" : "Reno",
 "number" : 10,
 "state" : "NV",
 "street" : "Main"
 },
 "connections" : [30, 55, 43],
 "expenses" : null
}

You modify the existing row using the UPSERT command. The otherNames array and income
field is modified.

 UPSERT INTO users VALUES (
 10,
 "John",
 "Smith",
 [{"first" : "Johny", "last" : "AlwaysGood"}],
 22,
 80000,
 { "street" : "Main", "number" : 10, "city" : "Reno", "state" : "NV"},
 [30, 55, 43],
 DEFAULT
)

{"NumRowsInserted":0}

1 row returned

Chapter 7
Upsert statement

7-15

You get the result as {"NumRowsInserted":0} which implies that the row has been
updated. The updated value for an user with id 10 can be verified with a SELECT
statement as shown below.

SELECT * FROM users WHERE id=10

{
 "id" : 10,
 "firstName" : "John",
 "lastName" : "Smith",
 "otherNames" : [{
 "first" : "Johny",
 "last" : "AlwaysGood"
 }],
 "age" : 22,
 "income" : 80000,
 "address" : {
 "city" : "Reno",
 "number" : 10,
 "state" : "NV",
 "street" : "Main"
 },
 "connections" : [30, 55, 43],
 "expenses" : null
}

Example 7-12 Update only some columns using UPSERT statement

If you use the UPSERT statement and specify the values of only few columns in the
VALUES clause but do not specify the corresponding column names in the INTO
clause, you get an error stating the number of columns in the table do not match with
the number of values in the VALUES clause as shown below.

UPSERT INTO users VALUES (11, "John", "Smith")

Error handling command UPSERT INTO users VALUES (11, "John",
"Smith"):
Error: at (1, 0) The number of VALUES expressions is not equal to the
number of table columns

You can avoid this error by specifying the column list after the table name. Here if you
do not supply values for all the columns in a UPSERT statement, then those columns
get a DEFAULT value if such an option is specified in the corresponding CREATE
TABLE statement or those columns are assigned NULL values as shown below.

UPSERT INTO users(id,firstName,lastName) VALUES (11,"John","Smith")

Chapter 7
Upsert statement

7-16

{"NumRowsInserted":1}
1 row returned

You get the result as {"NumRowsInserted":1} which implies that one new row has been
inserted. The updated value for an user with id 11 can be verified with a SELECT statement
as shown below.

SELECT * FROM users WHERE id=11

{
 "id" : 11,
 "firstName" : "John",
 "lastName" : "Smith",
 "otherNames" : null,
 "age" : null,
 "income" : null,
 "address" : null,
 "connections" : null,
 "expenses" : null
}

All the fields which were not part of the UPSERT statement has a NULL value.

Note:

Even if a column has a non NULL value (for example lastNames in the query
above), it can becomes NULL if it is omitted in a subsequent UPSERT statement as
shown below. Here you are using an optional RETURNING statement to fetch the
data after the UPSERT is performed.

UPSERT INTO users(id,firstName) VALUES (11,"Joseph") returning *

{
 "id" : 11,
 "firstName" : "Joseph",
 "lastName" : null,
 "otherNames" : null,
 "age" : null,
 "income" : null,
 "address" : null,
 "connections" : null,
 "expenses" : null
}

The column lastNames has become NULL because of the UPSERT statement.

Chapter 7
Upsert statement

7-17

Example 7-13 Add a new shopper's record to the storeAcct table.

You can use the UPSERT statement to add a new document or update fields in an
existing document in a JSON collection table. Consider the JSON collection table
created for a shopping application.

UPSERT into storeAcct values ("1417114588", {"firstName" : "Dori",
"lastName" : "Martin", "email" : "dormartin@usmail.com", "address" :
{"Dropbox" : "Presidency College"}}) RETURNING *;

Explanation: In the above example, you use the UPSERT statement to add a new
row to the storeAcct table.

You can use the UPSERT statement to update a shopper's information. Only the fields
supplied in the UPSERT statement are updated in the document. The omitted fields
are removed from the document.

Output:

{"contactPhone":"1417114588","address":{"Dropbox":"Presidency
College"},"email":"lorphil@usmail.com","firstName":"Dori","lastName":"M
artin"}

Updating rows of a table with a UUID column
You can update a UUID column whether or not it is GENERATED BY DEFAULT. You
can use the function random_uuid to generate a random UUID value to update the
column. The function random_uuid returns a randomly generated UUID, as a string of
36 characters.

Example : Updating a UUID Column defined without GENERATED BY DEFAULT
clause

CREATE TABLE myTable (tabId INTEGER, id STRING AS UUID, PRIMARY KEY
(tabId));
Statement completed successfully

INSERT INTO myTable values(1,"a81bc81b-dead-4e5d-abff-90865d1e13b1");
Statement completed successfully

UPDATE myTable set id=random_uuid() where tabId=1;
Statement completed successfully

The above example shows how you can update a UUID column which is NOT
GENERATED BY DEFAULT. To do so, the UUID column should not be part of the
primary key, as NoSQL Primary key values are immutable. In the above example,
tabId is the Primary key. So you can update the UUID column using the random_uuid
function.

Chapter 7
Updating rows of a table with a UUID column

7-18

DELETE Statement
The DELETE statement is used to remove from a table a set of rows satisfying a condition.

Syntax

delete_statement ::=
 [variable_declaration]
 DELETE FROM table_name [[AS] table_alias]
 WHERE expression
 [returning_clause]

returning_clause ::= RETURNING select_list

Semantics

The delete statement is used to delete from a table a set of rows satisfying a condition. The
condition is specified in a WHERE clause that behaves the same way as in the SELECT
expression. The result of the DELETE statement depends on whether a RETURNING clause
is present or not. Without a RETURNING clause the DELETE returns the number of rows
deleted. Otherwise, for each deleted row the expressions following the RETURNING clause
are computed the same way as in the SELECT clause and the result is returned to the
application. Finally, the DELETE statement may start with declarations of external variables
used in the rest of the statement. As in queries, such declarations are mandatory.

If any error occurs during the execution of a DELETE statement, there is a possibility that
some rows will be deleted and some not. The system does not keep track of what rows got
deleted and what rows are not yet deleted. This is because Oracle NoSQL Database focuses
on low latency operations. Long running operations across shards are not coordinating using
two-phase commit and lock mechanism. In such cases, it is recommended that the
application re-run the DELETE statement.

Example 7-14 Deleting Rows with SQL

The following statement deletes all users whose age is less than 16, returning the first and
last name of each deleted user.

DELETE FROM users
WHERE age < 16
RETURNING firstName, lastName;

Example 7-15 Delete from the storeAcctComposite table the shopper's data related to
fulfilled orders in the past year

You can use the DELETE statement to remove data from a JSON collection table. The
DELETE operation works similarly on fixed schema tables. Consider the JSON collection
table created for a shopping application.

DELETE FROM storeAcctComposite s where s.orders.EstDelivery <any
"2023-01-01" AND s.orders.status =any "Delivered" RETURNING contactPhone,
id, firstName;

Chapter 7
DELETE Statement

7-19

Explanation: In the storeAcctComposite table, the shoppers don't have a permanent
account. The contactPhone and id are used to track the orders. As a maintenance
activity, the DELETE statement above deletes the shoppers' data for which all the
orders are already delivered and the delivery dates are before the year 2023.

Output:

{
 "contactPhone" : "1517113582",
 "id" : 10,
 "firstName" : "Dierdre"
}

UPDATE Statement
An update statement can be used to update a row in a table.

Syntax

update_statement ::=
 UPDATE table_name [[AS] table_alias]
 update_clause ("," update_clause)*
 WHERE expression
 [returning_clause]

returning_clause ::= RETURNING select_list

Semantics

The update takes place at the server, eliminating the read-modify-write cycle, that is,
the need to fetch the whole row at the client, compute new values for the targeted
fields (potentially based on their current values) and then send the whole row back to
the server.

Both syntactically and semantically, the update statement of the Oracle NoSQL
Database is similar to the update statement of standard SQL, but with extensions to
handle the richer data model of the Oracle NoSQL Database. So, as shown by the
syntax above:

• First, the table to be updated is specified by its name and an optional table alias
(the alias may be omitted only if top-level columns only are to be accessed;
otherwise, as in read-only queries, the alias is required as the first step of path
expressions that access nested fields).

• Then come one or more update clauses.

• The WHERE clause specifies what rows to update. In the current implementation,
only single-row updates are allowed, so the WHERE clause must specify a complete
primary key.

• Finally, there is an optional RETURNING clause. If not present, the result of the
update statement is the number of rows updated. In the current implementation,
this number will be 1 or 0. Zero will be returned if there was no row satisfying the
conditions in WHERE clause, or if the updates specified by the update clauses
turned out to be no-ops for the single row selected by the WHERE clause. Otherwise,

Chapter 7
UPDATE Statement

7-20

if there is a RETURNING clause, it acts the same way as the SELECT clause: it can be a "*",
in which case, the full updated row will be returned, or it can have a list of expressions
specifying what needs to be returned. Furthermore, if no row satisfies the WHERE
conditions, the update statement returns an empty result.

Update Clauses
Syntax

update_clause ::=
 (SET set_clause ("," (update_clause | set_clause))*) |
 (ADD add_clause ("," (update_clause | add_clause))*) |
 (PUT put_clause ("," (update_clause | put_clause))*) |
 (REMOVE remove_clause ("," remove_clause)*) |
 (SET TTL ttl_clause ("," update_clause)*)

Semantics

There are 5 kinds of update clauses:

SET
Updates the value of one or more existing fields. See SET Clause.

ADD
Adds new elements in one or more arrays. See ADD Clause.

PUT
Adds new fields in one or more maps. It may also update the values of existing map fields.
See PUT Clause.

REMOVE
Removes elements/fields from one or more arrays/maps. See REMOVE Clause.

SET TTL
Updates the expiration time of the row. See SET TTL Clause.

The update clauses are applied immediately, in the order they appear in the update
statement, so the effects of each clause are visible to subsequent clauses. Although the
syntax allows for multiple SET TTL clauses, only the last one will be effective; the earlier ones,
if any, are ignored.

The SET, ADD, PUT, and REMOVE clauses start with a target expression, which computes the
items to be updated or removed. In all cases, the target expression must be either a top-level
column reference of a path expression starting with the table alias. If the target expression
returns nothing, the update clause is a no-op.

SET Clause

Syntax

set_clause ::= path_expression "=" expression

Chapter 7
UPDATE Statement

7-21

Semantics

The SET clause consists of two expressions: the target expression and the new-value
expression. The target expression returns the items to be updated. Notice that a target
item may be atomic or complex, and it will always be nested inside a complex item (its
parent item). For each such target item, the new-value expression is evaluated, and its
result replaces the target item within the parent item.

If the target expression returns a NULL item, then either the target item itself is the
NULL item, or one of its ancestors is NULL. In the former case, the target item will be
replaced by the new item. In the latter case the SET is a no-op.

The new-value expression may return zero or more items. If it returns an empty result,
the SET is a no-op. If it returns more than one item, the items are enclosed inside a
newly constructed array (this is the same as the way the SELECT clause treats multi-
valued expressions in the select list). So, effectively, the result of the new-value
expression contains at most one item. This new item is then cast to the type expected
by the parent item for the target field. This cast behaves like the cast expression as
described in the Cast Expression section. If the cast fails, an error is raised; otherwise,
the new item replaces the target item within the parent item.

The new-value expression may reference the implicitly declared variable $, which is
bound to the current target item. Use of the $ variable makes it possible to have target
expressions that return more than one item. As mentioned already, in this case, the
SET clause will iterate over the target items, and for each target item T, bind the $
variable to T, compute the new-value expression, and replace T with the result of the
new-value expression.

What if the new-value expression is the (reserved) keyword null? Normally, null is
interpreted as the json null value. However, if the parent of the target item is a record,
then null will be interpreted as the SQL NULL, and the targeted record field will be set
to the SQL NULL.

See Example: Updating Rows.

ADD Clause

Syntax

add_clause ::=
 path_expression [add_expression] expression

Semantics

The ADD clause is used to add new elements into one or more arrays. It consists of a
target expression, which should normally return one or more array items, an optional
position expression, which specifies the position within each array where the new
elements should be placed, and a new-elements expression that returns the new
elements to insert.

The ADD clause iterates over the sequence returned by the target expression. For
each target item, if the item is not an array it is skipped. Otherwise, the position
expression (if present) and the new-elements expression are computed for the current
target array. These two expressions may reference the $ variable, which is bound to
the current target array.

Chapter 7
UPDATE Statement

7-22

If the new-values expression returns nothing, the ADD is a no-op. Otherwise, each item
returned by this expression is cast to the element type of the array. An error is raised if any of
these casts fail. Otherwise, the new elements are inserted into the target array, as described
below.

If the position expression is missing, or if it returns an empty result, the new elements are
appended at the end of the target array. An error is raised if the position expression returns
more than one item or a non-numeric item. Otherwise, the returned item is cast to an integer.
If this integer is less than 0, it is set to 0. If it is greater or equal to the array size, the new
elements are appended. Otherwise, if the integer position is P and the new-elements
expression returns N items, the 1st item is inserted at position P, the 2nd at position P+1, and
so on. The existing array elements at position P and afterwards are shifted N positions to the
right.

See Example: Updating Rows.

PUT Clause

Syntax

put_clause ::= path_expression expression

Semantics

The PUT clause is used primarily to add new fields into one or more maps. It consists of a
target expression, which should normally return one or more map item and a new-fields
expression that returns one or more maps or records, whose fields are inserted in the target
maps.

The PUT clause iterates over the sequence returned by the target expression. For each
target item, if the item is not a map it is skipped. Otherwise, the new-fields expression is
computed for the current target map. The new-maps expression may reference the $
variable, which is bound to the current target map.

If the new-fields expression returns nothing, the PUT is a no-op. Otherwise, for each item
returned by the new-fields expression, if the item is not a map or a record, it is skipped, else,
the fields of the map/record are "merged" into the current target map. This merge operation
will insert a new field into the target map if the target map does not already have a field with
the same key; Otherwise, it will set the value of the target field to the value of the new field.

See Example: Updating Rows.

REMOVE Clause

Syntax

remove_clause ::= path_expression

Semantics

The remove clause consists of a single target expression, which computes the items to be
removed. The REMOVE clause iterates over the target items. For each such item, if its
parent is a record, an error is raised. Otherwise, if the target item is not NULL, it is removed
from its parent. If the target item is NULL, then since arrays and map cannot contain NULLs,
one of its ancestors must be NULL. In this case, the NULL is skipped.

Chapter 7
UPDATE Statement

7-23

See Example: Updating Rows.

SET TTL Clause

Syntax

ttl_clause ::=
 (add_expression (HOURS | DAYS)) |
 (USING TABLE DEFAULT)

Semantics

If a SET TTL clause is used with an UPDATE statement, a new expiration time is
computed and applied to the row being updated. In case of MR Tables, the rows
replicated to other regions carry the recalculated expiration time of the row being
updated. Therefore, this row will have the same expiration time in all the regions after
successful replication. If a TTL value is updated to the same row in multiple regions,
then the TTL value will be set in all regions to the value held in the row with the
greatest write timestamp.

See Example: Updating TTL.

Updating rows with an IDENTITY Column
An IDENTITY column that is defined as GENERATED ALWAYS cannot be updated.
Only IDENTITY column that is defined as GENERATED BY DEFAULT can be
updated.

Updating rows with an MR_COUNTER column
You can update an MR_COUNTER column in a multi-region table by incrementing or
decrementing the values using standard arithmetic computations. For creating a table
with MR_COUNTER column, see Create table using MR_COUNTER datatype

Example 1: Incrementing the value of an MR_COUNTER column.

A simple example would be incrementing the likes a user gets on a social media
website.

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;
INSERT INTO myTable(name) VALUES ("Chris');
UPDATE myTable SET count = count + 10 WHERE name = "Chris";

Example 2: Decrementing the value of an MR_COUNTER column.

The following example decrements the value of an MR_COUNTER.

CREATE Table myTable(name STRING,
 count INTEGER AS MR_COUNTER,
 PRIMARY KEY(name)) IN REGIONS DEN,LON;

Chapter 7
UPDATE Statement

7-24

INSERT INTO myTable VALUES ("Chris',10);
UPDATE myTable SET count = count - 4 WHERE name = "Chris";

Note:

The system will return an error if you use the UPDATE clauses on MR_COUNTERS
in the following scenarios:

• SET or PUT clauses to explicitly supply a value to an MR_COUNTER in the
table.

• REMOVE clause to remove an MR_COUNTER column from the table.

You can use an ALTER statement to drop an MR_COUNTER column from the
table. For more details, see Add or Remove an MR_COUNTER column.

Update JSON MR_COUNTER values:

You can update a JSON MR_COUNTER column (the same way as an MR_Counter column)
in a multi-region table.

Example: Incrementing the value of a JSON MR_COUNTER column: You can update a
JSON MR_COUNTER column by incrementing the value.

UPDATE demoJSONMR a SET a.jsonWithCounter.counter =
a.jsonWithCounter.counter + 1
WHERE name = "Anna";

You can also update a JSON MR_COUNTER column by decrementing the value.

UPDATE demoJSONMR a SET a.jsonWithCounter.counter =
a.jsonWithCounter.counter - 1
WHERE name = "Anna";

Update counter values in both regions and perform a merge:

When MR_COUNTER fields exist in both the remote JSON field and local JSON field, the
system merges them as MR_COUNTER data types. You can update the MR_COUNTER
fields in the remote and local region independently. The system automatically peforms a
merge on these concurrent modifications without user intervention.

For example, consider the table demoJSONMR has been created in regions FRA and LON with the
same definition as shown below.

CREATE TABLE demoJSONMR(name STRING,
 jsonWithCounter JSON(counter as INTEGER MR_COUNTER,
 person.count as LONG MR_COUNTER),
 PRIMARY KEY(name)) IN REGIONS FRA,LON;

Chapter 7
UPDATE Statement

7-25

Step 1 : Insert one row into the demoJSONMR table in the region FRA.

INSERT INTO demoJSONMR VALUES (
 Anna,
 {
 "id" : 1,
 "counter" : NULL,
 "person" : {
 "age" : 10,
 "number" : 100
 }
 }
 }

Step 2: Update the row inserted above and increment JSON MR_COUNTER field
"counter".

UPDATE demoJSONMR a SET a.jsonWithCounter.counter =
a.jsonWithCounter.counter + 1
WHERE name = "Anna"

Step 3 : In the Remote region LON, insert a row into the table with the same primary
key "Anna", but different values for other fields.

INSERT INTO exampleTable VALUES (
 Anna,
 {
 "id" : 2,
 "counter" : NULL,
 "person" : {
 "age" : 10,
 "number" : 101
 }
 }
 }

Step 4: In the Remote region LON, update the record and increment the JSON
MR_COUNTER field "counter".

UPDATE demoJSONMR a SET a.jsonWithCounter.counter =
a.jsonWithCounter.counter + 1
WHERE name = "Anna";

Step 5: In the statement above, the remote row gets updated. This update gets
merged with the local row and the field "counter", as shown below.

SELECT * FROM demoJSONMR WHERE name = "Anna";
{"name":"Anna",
"jsonWithCounter":{"counter":2,"id":2,"person":
 {"age":10,"count":0,"number":101}}
}

Chapter 7
UPDATE Statement

7-26

If the remote JSON and local JSON for MR_COUNTER have mismatched definitions, the
INSERT or UPDATE operation is not performed on the mismatched schema. These rows are
logged as incompatible rows.

Update MR_COUNTER values in JSON collection table:

Consider a JSON collection table created for a shopping application with MR_COUNTER.
The mycounter field in the table is an MR_COUNTER with its value set to 0 upon inserting
data into the table. The following is a sample row from the shopping application table:

{"contactPhone":"1817113382","address":
{"city":"Houston","number":401,"state":"TX","street":"Tex
Ave","zip":95085},"cart":[{"item":"handbag","priceperunit":350,"quantity":1},
{"item":"Lego","priceperunit":5500,"quantity":1}],"firstName":"Adam","lastNam
e":"Smith","mycounter":0}

To update an MR_COUNTER value, you must supply the MR_COUNTER's name in the SET
clause as illustrated in the query below:

UPDATE storeAcctMR s SET s.mycounter = s.mycounter + 5 WHERE
s.contactPhone="1817113382"

In this example, you increment the value of the MR_COUNTER by 5 for the shopper with the
contact number "1817113382". You get the following output when you fetch the shopper's
record:

{"contactPhone":"1817113382","address":
{"city":"Houston","number":401,"state":"TX","street":"Tex
Ave","zip":95085},"cart":[{"item":"handbag","priceperunit":350,"quantity":1},
{"item":"Lego","priceperunit":5500,"quantity":1}],"firstName":"Adam","lastNam
e":"Smith","mycounter":5}

Example: Updating Rows
Let’s assume a table, called "People", with only two columns: an integer "id" column and an
"info" column of type JSON. Furthermore, let’s assume the following row to be updated:

CREATE TABLE People (
 id INTEGER,
 info JSON,
PRIMARY KEY(id));

INSERT INTO People VALUES (
 0,
 {
 "firstName":"John",
 "lastName":"Doe",
 "profession":"software engineer",
 "income":200000,
 "address": {
 "city" : "San Fransisco",
 "state" : "CA",

Chapter 7
UPDATE Statement

7-27

 "phones" : [
 { "areacode":415, "number":2840060, "kind":"office" },
 { "areacode":650, "number":3789021, "kind":"mobile" },
 { "areacode":415, "number":6096010, "kind":"home" }
]
 },
 "children": {
 "Anna" : {
 "age" : 10,
 "school" : "school_1",
 "friends" : ["Anna", "John", "Maria"]
 },
 "Ron" : { "age" : 2 },
 "Mary" : {
 "age" : 7,
 "school" : "school_3",
 "friends" : ["Anna", "Mark"]
 }
 }
 }
);

The following update statement updates various fields in the above row:

UPDATE People p
 SET p.info.profession = "surfing instructor",
 SET p.info.address.city = "Santa Cruz",
 SET p.info.income = p.info.income / 10,
 SET p.info.children.values().age = $ + 1,
 ADD p.info.address.phones
 0 { "areacode":831, "number":5294368, "kind":"mobile" },
 REMOVE p.info.address.phones [$element.kind = "office"],
 PUT p.info.children.Ron { "friends" : ["Julie"] },
 ADD p.info.children.values().friends seq_concat("Ada", "Aris")
WHERE id = 0
RETURNING *;

After the update, the row looks like this:

{
 "id":0,
 "info":{
 "firstName":"John",
 "lastName":"Doe",
 "profession":"surfing instructor",
 "income":20000,
 "address":{
 "city":"Santa Cruz",
 "phones":[
 {"areacode":831,"kind":"mobile","number":5294368},
 {"areacode":650,"kind":"mobile","number":3789021},
 {"areacode":415,"kind":"home","number":6096010}
],
 "state":"CA"

Chapter 7
UPDATE Statement

7-28

 },
 "children":{
 "Anna":{
 "age":11,
 "friends":["Anna","John","Maria","Ada","Aris"],
 "school":"school_1"
 },
 "Ron":{
 "age":3,
 "friends":["Julie","Ada","Aris"]
 },
 "Mary":{
 "age":8,
 "friends":["Anna","Mark","Ada","Aris"],
 "school":"school_3"
 }
 }
 }
}

The first two SET clauses change the profession and city of John Doe. The third SET
reduces his income to one-tenth. The fourth SET increases the age of his children by 1.
Notice the use of the $ variable here: the expression p.info.children.values().age returns 3
ages; The SET will iterate over these ages, bind the $ variable to each age in turn, compute
the expression $ + 1 for each age, and update the age with the new value. Notice that the
income update could (and can) also have used a $ variable: set p.info.income = $ / 10. This
would have saved the re-evaluation of the p.info.income path on the right-hand side or the
"=".

The ADD clause adds a new phone at position 0 inside the phones array. The REMOVE
removes all the office phones (only one in this example). The PUT clause adds a friend for
Ron. In this clause, the expression p.info.children.Ron returns the value associated with the
Ron child. This value is a map (the json object { "age" : 3 }) and becomes the target of the
update. The 2nd expression in the PUT ({ "friends" : ["Julie"] }) constructs and returns a new
map. The fields of this map are added to the target map. Finally, the last ADD clause adds
the same two new friends to each child. See seq_concat function function.

Notice that the update query in this example would have been exactly the same if instead of
type JSON, the info column had the following RECORD type:

RECORD(
 firstName STRING,
 lastName STRING,
 profession STRING,
 income INTEGER,
 address RECORD(
 city STRING,
 state STRING,
 phones ARRAY(
 RECORD(
 areacode INTEGER,
 number INTEGER,
 kind STRING
)
)

Chapter 7
UPDATE Statement

7-29

),
 children MAP(
 RECORD(
 age INTEGER,
 school STRING,
 friends ARRAY(STRING)
)
)
)

Example: Updating JSON Data
You can use ADD clause to update JSON data in a NoSQL table. You can add one or
more array elements to an existing array using the ADD clause. You can also
optionally indicate the position of the new elements to be added in the array.

Example 1: Adding a single element to an existing array in JSON data:

The People table has one row currently as shown below:

SELECT * FROM People

{
 "id" : 0,
 "info" : {
 "address" : {
 "city" : "Santa Cruz",
 "phones" : [{
 "areacode" : 831,
 "kind" : "mobile",
 "number" : 5294368
 }, {
 "areacode" : 650,
 "kind" : "mobile",
 "number" : 3789021
 }, {
 "areacode" : 415,
 "kind" : "home",
 "number" : 6096010
 }],
 "state" : "CA"
 },
 "children" : {
 "Anna" : {
 "age" : 11,
 "friends" : ["Anna", "John", "Maria", "Ada", "Aris"],
 "school" : "school_1"
 },
 "Mary" : {
 "age" : 8,
 "friends" : ["Anna", "Mark", "Ada", "Aris"],
 "school" : "school_3"
 },
 "Ron" : {
 "age" : 3,

Chapter 7
UPDATE Statement

7-30

 "friends" : ["Julie", "Ada", "Aris"]
 }
 },
 "firstName" : "John",
 "income" : 20000,
 "lastName" : "Doe",
 "profession" : "surfing instructor"
 }
}

Add a new element to the phones array at the beginning of the array.

UPDATE People p ADD p.info.address.phones 0
{"areacode":499, "number":33864368, "kind":"mobile" }
WHERE id = 0

SELECT * FROM People
{

 "id" : 0,
 "info" : {
 "address" : {
 "city" : "Santa Cruz",
 "phones" : [{
 "areacode" : 499,
 "kind" : "mobile",
 "number" : 33864368
 }, {
 "areacode" : 831,
 "kind" : "mobile",
 "number" : 5294368
 }, {
 "areacode" : 650,
 "kind" : "mobile",
 "number" : 3789021
 }, {
 "areacode" : 415,
 "kind" : "home",
 "number" : 6096010
 }],
 "state" : "CA"
 },
 "children" : {
 "Anna" : {
 "age" : 11,
 "friends" : ["Anna", "John", "Maria", "Ada", "Aris"],
 "school" : "school_1"
 },
 "Mary" : {
 "age" : 8,
 "friends" : ["Anna", "Mark", "Ada", "Aris"],
 "school" : "school_3"
 },

Chapter 7
UPDATE Statement

7-31

 "Ron" : {
 "age" : 3,
 "friends" : ["Julie", "Ada", "Aris"]
 }
 },
 "firstName" : "John",
 "income" : 20000,
 "lastName" : "Doe",
 "profession" : "surfing instructor"
 }
}

Example 2: Adding an array of elements to an existing array in JSON data

When you need to add more than one element of an array to an existing array in
JSON data, you need to add the new-elements expressions inside parentheses and
optionally add the position expression (if any).

The following query throws an error as shown below:

UPDATE People p
ADD p.info.address.phones
0 { "areacode":5, "number":1, "kind":"mobile" },
 { "areacode":6, "number":2, "kind":"mobile" }
WHERE id = 0;

Error handling command UPDATE People p
ADD p.info.address.phones
0 { "areacode":5, "number":1, "kind":"mobile" },
 { "areacode":6, "number":2, "kind":"mobile" }
WHERE id = 0:
Error: at (5, 12) mismatched input '<EOF>' expecting {WHERE, ','}, at
line 5:12
rule stack: [parse, statement, update_statement]

This can be corrected using the one of the two different options as shown below:

Option 1:

UPDATE People p
ADD p.info.address.phones
([{ "areacode":1, "number":1, "kind":"mobile" },
 { "areacode":2, "number":2, "kind":"mobile" }
][])
WHERE id = 0

{
 "NumRowsUpdated" : 1
}
1 row returned

Chapter 7
UPDATE Statement

7-32

Option 2:

UPDATE People p
ADD p.info.address.phones
0 [{ "areacode":3, "number":1, "kind":"mobile" },
 {"areacode":4, "number":2, "kind":"mobile" }
]
WHERE id = 0

{
 "NumRowsUpdated" : 1
}
1 row returned

The result of the UPDATE statement can be verified as shown below.

select * from People;

{
 "id" : 0,
 "info" : {
 "address" : {
 "city" : "Santa Cruz",
 "phones" : [[{
 "areacode" : 3,
 "kind" : "mobile",
 "number" : 1
 }, {
 "areacode" : 4,
 "kind" : "mobile",
 "number" : 2
 }], {
 "areacode" : 499,
 "kind" : "mobile",
 "number" : 33864368
 }, {
 "areacode" : 831,
 "kind" : "mobile",
 "number" : 5294368
 }, {
 "areacode" : 650,
 "kind" : "mobile",
 "number" : 3789021
 }, {
 "areacode" : 415,
 "kind" : "home",
 "number" : 6096010
 }, {
 "areacode" : 1,
 "kind" : "mobile",
 "number" : 1
 }, {
 "areacode" : 2,
 "kind" : "mobile",

Chapter 7
UPDATE Statement

7-33

 "number" : 2
 }],
 "state" : "CA"
 },
 "children" : {
 "Anna" : {
 "age" : 11,
 "friends" : ["Anna", "John", "Maria", "Ada", "Aris"],
 "school" : "school_1"
 },
 "Mary" : {
 "age" : 8,
 "friends" : ["Anna", "Mark", "Ada", "Aris"],
 "school" : "school_3"
 },
 "Ron" : {
 "age" : 3,
 "friends" : ["Julie", "Ada", "Aris"]
 }
 },
 "firstName" : "John",
 "income" : 20000,
 "lastName" : "Doe",
 "profession" : "surfing instructor"
 }
}

Example: Updating JSON collection tables
You can update data in the JSON collection tables using the UPDATE statement. The
UPDATE operation works in the same way as fixed schema tables.

Consider a row from a JSON collection table created for a shopping application.

{"contactPhone":"1617114988","address":{"Dropbox":"Presidency
College","city":"Kansas City","state":"Alabama","zip":95065},"cart":
[{"item":"A4 sheets","priceperunit":500,"quantity":2},{"item":"Mobile
Holder","priceperunit":700,"quantity":1}],"email":"lorphil@usmail.com",
"firstName":"Lorenzo","lastName":"Phil","notify":"yes","orders":
[{"EstDelivery":"2023-11-15","item":"AG Novels
1","orderID":"101200,"priceperunit":950,"status":"Preparing to
dispatch"},{"EstDelivery":"2023-11-01","item":"Wall
paper","orderID":"101200,"priceperunit":950,"status":"Transit"}]}

Example 7-16 Correct a few inadvertent errors in the shopper's data

Use Update clauses to correct a shopper's data as follows:

UPDATE storeAcct s
SET s.notify = "no",
REMOVE s.cart [$element.item = "A4 sheets"],
PUT s.address {"Block" : "C"},
SET s.orders[0].EstDelivery = "2023-11-17",

Chapter 7
UPDATE Statement

7-34

ADD s.cart 1 {"item":"A3 sheets", "priceperunit":600, "quantity":2}
WHERE s.contactPhone = "1617114988"

Explanation: In the above example, you update the shopper's record in the storeAcct table
to correct a few inadvertent errors. This correction requires updates to various fields of the
storeAcct table. The SET clause deactivates the notification setting in the shopper's data
record. The REMOVE clause checks if any item field in the cart matches A4 sheets and
deletes the corresponding element from the orders array. The PUT clause adds a new JSON
field to indicate the landmark for delivery. The second SET clause accesses the deeply
nested EstDelivery field and updates the estimated delivery date for the first item in the
orders array. The ADD clause inserts a new element into the cart field to shortlist an
additional item.

When you fetch the updated shopper's data, you get the following output:

{"contactPhone":"1617114988","address":{"Block":"C","Dropbox":"Presidency
College","city":"Kansas City","state":"Alabama","zip":95065},"cart":
[{"item":"Mobile Holder","priceperunit":700,"quantity":1},{"item":"A3
sheets","priceperunit":600,"quantity":2}],"email":"lorphil@usmail.com","first
Name":"Lorenzo","lastName":"Phil","notify":"no","orders":
[{"EstDelivery":"2023-11-17","item":"AG Novels
1","priceperunit":950,"status":"Preparing to dispatch"},
{"EstDelivery":"2023-11-01","item":"Wall
paper","priceperunit":950,"status":"Transit"}]}

Example: Updating TTL
This example demonstrates an update of the expiration time of a row. Let’s assume that the
People table was created with a TTL value of 10 hours and a row with id 5 was inserted at
time 2017-06-01T10:05:30.0. No explicit TTL was given at insertion time, so the expiration
time computed at that time is 2017-06-01T21:00:00.0. Finally, let’s assume that the following
update statement is executed at time 2017-06-01T12:35:30.0 (2.5 hours after insertion)

UPDATE People $p
SET TTL remaining_hours($p) + 3 hours
WHERE id = 5;

The above statement extends the life of a row by 3 hours. Specifically, the remaining_hours
function returns the number of full hours remaining until the expiration time of the row. See
remaining_hours function function. In this example, this number is 8. So, the new TTL value
is 8+3 = 11, and the expiration time of the row will be set to 2017-06-02:T08:00:00.0.

Notice the use of the '$' character in naming the table alias for People. This is required so
that the table alias acts as a row variable (a variable ranging over the rows of the table) and
as a result it can be passed as the argument to the remaining_hours function (if the $ were
not used, then calling remaining_hours(p) would return an error, because p is interpreted as a
reference to a top-level table column with name "p").

Example: Updating IDENTITY defined as GENERATED ALWAYS

CREATE TABLE Test_sqlUpdateAlways (
 idValue INTEGER GENERATED ALWAYS AS IDENTITY,

Chapter 7
UPDATE Statement

7-35

 name STRING,
PRIMARY KEY(idValue));

INSERT INTO Test_sqlUpdateAlways VALUES (DEFAULT, 'joe');
INSERT INTO Test_sqlUpdateAlways VALUES (DEFAULT, 'jasmine');

The Test-sqlUpdateAlways table will have the following rows:

1, 'joe'
2, 'jasmine'

UPDATE Test_sqlUpdateAlways SET idValue = 10 WHERE name=joe;

The above UPDATE statement will raise an exception saying that a user cannot set a
value for an IDENTITY column that is defined as GENERATED ALWAYS. An
IDENTITY column that is defined as GENERATED ALWAYS cannot be updated. Only
the IDENTITY column that is defined as GENERATED BY DEFAULT can be updated.

To resolve this exception and be able to update the IDENTITY column value, you need
to alter the IDENTITY column and change the property of the IDENTITY column to
GENERATED BY DEFAULT. But there may be implications to the existing data. For
more information on how to alter an IDENTITY column see, Altering an IDENTITY
Column.

Example: Updating IDENTITY defined as GENERATED BY DEFAULT

CREATE TABLE Test_sqlUpdateByDefault (
 idValue INTEGER GENERATED BY DEFAULT AS IDENTITY,
 acctNum LONG,
 name STRING,
primary key(acctNum));

INSERT INTO Test_sqlUpdateByDefault VALUES (DEFAULT, 123456, 'joe');
INSERT INTO Test_sqlUpdateByDefault VALUES (400, 23456,'sam');
INSERT INTO Test_sqlUpdateByDefault VALUES (500, 34567,'carl');

Table Test-sqlUpdateByDefault will have the following rows:

1, 123456, 'joe'
400, 23456, 'jasmine'
500, 34567, 'carl'

UPDATE Test_sqlUpdateByDefault
SET idValue = 100
WHERE acctNum = 123456;

The above UPDATE statement will replace row (1, 123456, 'joe') with (100, 123456,
'joe') in the database.

Chapter 7
UPDATE Statement

7-36

JSON Collection Table Example
This section describes a sample JSON collection table created for a shopping application.

Table DDL:

CREATE TABLE IF NOT EXISTS storeAcct (contactPhone STRING, PRIMARY
KEY(SHARD(contactPhone)))
 AS JSON COLLECTION

This table is a collection of documents with the shopper's contactPhone as the primary key.
The rows represent individual shopper's records. The individual rows need not include the
same fields in the document. The shopper's preferences such as name, address, email,
notify, and so forth are stored as top-level fields in the document. The documents can
include any number of JSON fields such as wishlist, cart, and orders that contain
shopping-related information.

The JSON array wishlist contains the items wishlisted by the shoppers. Each element of
this array includes nested JSON fields such as the item and priceperunit to store the
product name and price details of the wishlisted item.

The JSON array cart contains the products that the shopper intends to purchase. Each
element of this array includes nested JSON fields such as item, quantity, and priceperunit
to store the product name, number of units, and price of each unit.

The JSON array orders contains the products that the shopper has purchased. Each element
of this array includes nested JSON fields such as the orderID,
item, priceperunit, EstDelivery, and status to store the order number, product name,
price of each unit, estimated date of delivery for the product, and status of the order.

The following code inserts data into the shopping application table. You can use this data to
follow along with the examples explained in the topics.

insert into storeAcct(contactPhone, firstName, lastName, address, cart)
values("1817113382", "Adam", "Smith", {"street" : "Tex Ave", "number" : 401,
"city" : "Houston", "state" : "TX", "zip" : 95085}, [{"item" : "handbag",
"quantity" : 1, "priceperunit" : 350},{"item" : "Lego", "quantity" : 1,
"priceperunit" : 5500}]) RETURNING *;

insert into storeAcct(contactPhone, firstName, lastName, gender, address,
notify, cart, wishlist) values("1917113999", "Sharon", "Willard", "F",
{"street" : "Maine", "number" : 501, "city" : "San Jose", "state" : "San
Francisco", "zip" : 95095},"yes", [{"item" : "wallet", "quantity" : 2,
"priceperunit" : 950},{"item" : "wall art", "quantity" : 1, "priceperunit" :
9500}], [{"item" : "Tshirt", "priceperunit" : 500},{"item" : "Jenga",
"priceperunit" : 850}]) RETURNING *;

insert into storeAcct(contactPhone, firstName, lastName, address, notify,
cart, orders) values("1617114988", "Lorenzo", "Phil", {"Dropbox" :
"Presidency College", "city" : "Kansas City", "state" : "Alabama", "zip" :
95065},"yes", [{"item" : "A4 sheets", "quantity" : 2, "priceperunit" : 500},
{"item" : "Mobile Holder", "quantity" : 1, "priceperunit" : 700}],
[{"orderID" : "101200", "item" : "AG Novels 1", "EstDelivery" :

Chapter 7
JSON Collection Table Example

7-37

"2023-11-15", "priceperunit" : 950, "status" : "Preparing to
dispatch"},{"orderID" : "101200", "item" : "Wallpaper",
"EstDelivery" : "2023-11-01", "priceperunit" : 950, "status" :
"Transit"}]) RETURNING *;

insert into storeAcct(contactPhone, firstName, lastName, address,
cart, orders) values("1517113582", "Dierdre", "Amador", {"street" :
"Tex Ave", "number" : 651, "city" : "Houston", "state" : "TX",
"zip" : 95085}, NULL, [{"orderID" : "201200", "item" : "handbag",
"EstDelivery" : "2023-11-01", "priceperunit" : 350},{"orderID" :
"201201", "item" : "Lego", "EstDelivery" : "2023-11-01",
"priceperunit" : 5500}]) RETURNING *;

insert into storeAcct(contactPhone, firstName, lastName, address,
notify, cart, orders) values("1417114488", "Doris", "Martin",
{"Dropbox" : "Presidency College", "city" : "Kansas City", "state" :
"Alabama", "zip" : 95065},"yes", [{"item" : "Notebooks",
"quantity" : 2, "priceperunit" : 50},{"item" : "Pens", "quantity" : 2,
"priceperunit" : 50}], [{"orderID" : "301200", "item" : "Laptop Bag",
"EstDelivery" : "2023-11-15", "priceperunit" : 1950, "status" :
"Preparing to dispatch"},{"orderID" : "301200", "item" : "Mouse",
"EstDelivery" : "2023-11-02", "priceperunit" : 950, "status" :
"Transit"}]) RETURNING *;

Chapter 7
JSON Collection Table Example

7-38

8
Indexes

This chapter describes indexes and how to create and manage indexes in Oracle NoSQL
Database.

This chapter contains the following topics:

• About Indexes

• Classification of Indexes

• CREATE INDEX Statement

• SHOW INDEXES Statement

• DESCRIBE INDEX Statement

• DROP INDEX Statement

• Appendix

About Indexes
An index is a database structure that enables you to retrieve data from database tables
efficiently.

Indexes provide fast access to the rows of a table when the key(s) you are searching on is
contained in the index.

An index is defined by its name, the name of the table that it indexes, and a list of one or
more index paths that specify which table columns or nested fields are indexed.

An index is an ordered map in which each row of the data is called an entry.

An index can be created on atomic data types, arrays, maps, JSON, and GeoJSON data.

An index can store the following special values:

• NULL

• EMPTY

• json null (It is applicable only for JSON indexes)

Example 8-1 Indexes Example

The following is an example of creating an index. The index is created on the age field
present in the info JSON field in the UserInfo table.

CREATE INDEX indexdemo1 ON UserInfo(info.age AS ANYATOMIC)

CREATE INDEX Statement
The create index statement generates a new index on the specified columns in the given
table.

8-1

Syntax

create_index_statement ::=
 CREATE INDEX [IF NOT EXISTS] index_name
 ON table_name "(" path_list ")" [WITH NO NULLS][WITH UNIQUE KEYS PER
ROW][comment]

index_name ::= id
path_list ::= index_path ("," index_path)*
index_path ::=
 name_path [path_type] |
 multikey_path_prefix [.name_path] [path_type]
name_path ::= field_name ("." field_name)*
field_name ::= id | DSTRING
multikey_path_prefix ::=
 field_name (("." field_name) | ("[" "]") | ("." VALUES"("")"))*
 (("[" "]") | ("." VALUES"(""")") | ("." KEYS"(""")"))
path_type ::= AS
 (INTEGER | LONG | DOUBLE | STRING |
 BOOLEAN | NUMBER | ANYATOMIC |POINT | GEOMETRY)

Semantics

The index name is unique to a table. If an index with the same name already exists in
a table, then the statement will fail and report an error. For example, you can have only
one index named idx_income1 in the UserInfo table.

The index name is specific to a table. You can use the same index name in multiple
tables. For example, you can use the same index name idx_income1 in the UserInfo
and Users3 tables.

The index specification is unique to a table. If an index with the same specification
already exists in a table, then the statement will fail and report an error.

For example, if you have the following idx_income1 index on UserInfo table,

CREATE INDEX idx_income1 ON UserInfo (info.income AS ANYATOMIC)

then the following statement will throw an error that the idx_income2 index is a
duplicate of an existing index with another name. In this case, even though the index
names are different, the index specifications are the same.

CREATE INDEX idx_income2 ON UserInfo(info.income AS ANYATOMIC)

If the optional IF NOT EXISTS clause is specified in the CREATE INDEX statement,
and if an index with the same name exists, then the statement will not execute and will
not report an error.

If the optional WITH NO NULLS clause is specified in the CREATE INDEX statement,
then the rows with NULL and/or EMPTY values on the indexed fields will not be
indexed.

The indexes that are created with the WITH NO NULLS clause may be useful when
the data contain a lot of NULL and/or EMPTY values on the indexed fields. It will

Chapter 8
CREATE INDEX Statement

8-2

reduce the time and space overhead during indexing. However, the use of such indexes by
queries is restricted. For more information, see Using Indexes for Query Optimization section.

If the optional WITH UNIQUE KEYS PER ROW clause is used, then there will not be any
duplicates among the index keys generated from a row. This property applies to multikey
indexes only and is used in optimizing queries that perform unnesting. You could write an
efficient query to use this index. The use of such an index by any query would yield fewer
results from the FROM clause than if the index was not used.

CREATE INDEX idx_phones ON UserInfo(info.phones[].number AS INTEGER)
WITH UNIQUE KEYS PER ROW

If the optional COMMENT is specified, then this becomes part of the index metadata and is
not interpreted. The "comment" will be displayed in the output of the DESCRIBE statement.

If JSON data is indexed, you must specify a data type using the AS keyword next to every
index path into the JSON data. For all other typed data, you should not specify the data type,
as the data type will be inferred from the table schema.

The index entries are automatically updated when rows are inserted, deleted, or updated in
the specified table.

Note: The maximum number of index keys generated per row is 10000. An
IllegalArgumentException will be raised during indexing if the number of index keys
generated per is row exceeds 10000.

Classification of Indexes
Indexes can be classified based on fields, schema, entries, or a combination of them. Each
one of these is described below.

• Fields

– Single Field Index

– Composite Index

• Schema

– Fixed Schema Index

– Schema-less Index (JSON Index)

• Entries

– Simple Index

– Multikey Index

The following classification is made based on the number of fields that are provided while
creating an index.

Single Field Index
An index is called a single field index if it is created on only one field of a table.

Composite Index
An index is called a composite index if it is created on more than one field of a table.

The following classification is made based on the schema type of the fields that are indexed.

Chapter 8
Classification of Indexes

8-3

Fixed Schema Index
An index is called a fixed schema index if all the fields that are indexed are strongly
typed data. For more information on strongly typed data, see Wildcard Data Types
section.

Schema-less Index (JSON Index)
An index is called a JSON index if at least one of the fields is JSON data or fields
inside JSON data.

The following classification is made based on the number of index entries created for
each row of data in the table when evaluating an index.

Simple Index
An index is called a simple index if for each row of data in the table, there is one entry
created in the index.

Multikey Index
An index is called a multikey index if for each row of data in the table, there are
multiple entries created in the index.

Figure 8-1 Index Classification

Single Field Index
An index is called a single field index if it is created on only one field of a table.

Example 8-2 Single Field Index

The following is an example of a single field index. The index is created on the city
field present in the address record in the info JSON field in the UserInfo table.

CREATE INDEX singlefieldindex1 ON UserInfo (
 info.address.city AS ANYATOMIC
);

Composite Index
An index is called a composite index if it is created on more than one field of a table.

Chapter 8
Classification of Indexes

8-4

Example 8-3 Composite Index

The following is an example of a composite index. The index is created on the state and
city fields present in the address record in the info JSON field in the UserInfo table.

CREATE INDEX compositeindex1 ON UserInfo (
 info.address.state AS ANYATOMIC,
 info.address.city AS ANYATOMIC
);

Fixed Schema Index
An index can be created on a field with fixed schema data.

Example 8-4 Fixed Schema Index

The following is an example of a fixed schema index. The index is created on the uname field
having integer data type in the UsersInfo table.

CREATE INDEX fixedschemaindex1 ON UserInfo (uname);

JSON Index
An index is called a JSON index if at least one of the fields is inside JSON data.

As JSON is schema-less, the data type of an indexed JSON field may be different across
rows. When creating an index on JSON fields, if you are unsure what data type to expect for
the JSON field, you may use the anyAtomic data type. Alternatively, you can specify one of
the Oracle NoSQL Database atomic data types. You do that by declaring a data type using
the AS keyword next to every index path into the JSON field.

Example 8-5 JSON Index

The following is an example of a JSON index. The index is created on the income field
present in the info JSON field in the UserInfo table. Notice that you provide a data type for
the income field while creating the index.

CREATE INDEX jsonindex1 ON UserInfo (
 info.income AS INTEGER
);

The creation of a JSON index will fail if the associated table contains any rows with data that
violate the declared data type. Similarly, after creating a JSON index, an insert/update
operation will fail if the new row does not conform to the declared data type in the JSON
index.

For example, the jsonindex1 index will be created only if the income field in all the rows of
the UserInfo table is of integer data type, if not the jsonindex1 index creation will fail.
Similarly, after creating the jsonindex1 index on the UserInfo table, you can insert only rows
in which the income field is of integer data type. For example, If you try inserting a row in
which the income field is of string data type, the insert statement will fail.

Chapter 8
Classification of Indexes

8-5

Declaring a JSON index path as anyAtomic has the advantage of allowing the indexed
JSON field to have values of various data types. The index entries are sorted in
ascending order. When these values are stored in the index, they are sorted as
follows:

• Numbers

• String

• boolean

However, this advantage is offset by space and CPU costs. It is because numeric
values of any kind in the indexed field will be cast to Number before being stored in the
index. This cast takes CPU time, and the resulting storage for the number will be
larger than the original storage for the number.

Example 8-6 JSON Index Example

The following is an example of a JSON index. The index is created on the street field
present in the address field in the info JSON document in the UserInfo table. Notice
that you provide anyAtomic data type for the street field while creating the index.

CREATE INDEX jsonindex2 ON UserInfo (
 info.address.street AS ANYATOMIC
);

Simple Index
An index is called a simple index if, for each row of data in the table, there is one entry
created in the index. The index will return a single value that is of atomic data type or
any special value (SQL NULL, JSON NULL, EMPTY). Essentially, the index paths of a
simple index must not have .keys(), or .values(), or [] steps.

Example 8-7 Simple Index

The following is an example of a simple index. The index is created on the income and
age fields present in the info JSON field in the UserInfo table.

CREATE INDEX simpleindex1 ON UserInfo (
 info.income AS ANYATOMIC,
 info.age AS ANYATOMIC
);

A simple index path must not include an array since arrays will render multiple index
values. For example, info.connections[] returns the complete set of elements in the
info.connections array. It is not a simple index.

Similarly, a simple index path must not have a map with .keys() or .values(). For
example, info.expenses.keys() returns the complete set of keys in the expenses
map. It is not a simple index path. However, info.expenses.books is a simple index
path. Because even though info.expenses is a map, info.expenses.books return an
atomic value.

Chapter 8
Classification of Indexes

8-6

Example 8-8 Simple Index Example

The following is an example of a simple index created on a JSON document in a JSON field.
The index is created on the books item of the expenses JSON document in the info JSON
field in the UserInfo table.

CREATE INDEX simpleindex2 ON UserInfo (
 info.expenses.books AS ANYATOMIC
);

If the evaluation of a simple index path returns an empty result, the special value EMPTY is
used as an index entry. In the above example, If there is no books entry in the expenses
JSON document, or if there is no expenses JSON document, then the special value EMPTY
is indexed.

Multikey Index
An index is called a multikey index if for each row of data in the table, there are multiple
entries created in the index. In a multikey index there is at least one index path that
uses .keys(), .values(), or [] steps. Any such index path will be called a multikey index
path.

In a multikey index, for each table row, index entries are created on all the elements in arrays
or entries in maps that are being indexed. If the evaluation returns an empty result, the
special value EMPTY is used as the index entry. Any duplicate index entries are then
eliminated.

Example 8-9 Multikey Index

The following is an example of a multikey index. The index is created on the connections[]
array in the UserInfo table. Here, all the elements in the connections[] array in each row of
the UserInfo table will be indexed.

CREATE INDEX multikeyindex1 ON UserInfo (
 info.connections[] AS ANYATOMIC
);

Nested Multikey Index
An index is a nested multikey index if it is created on a field that is present inside an array
which in turn is present inside another array.

Example 8-10 Nested Multikey Index

The following is an example of a nested multikey index where the field is present in an array
that is present inside another array. The index is created on the issuedby field in the vpass
array in the vehicles array in the info JSON of the UserInfo table.

CREATE INDEX multikeyindex2 ON UserInfo (
 info.vehicles[].vpass[].issuedby AS ANYATOMIC
);

Chapter 8
Classification of Indexes

8-7

Composite Multikey Index
An index is called a composite multikey index if it is created on more than one field,
and at least one of those fields is multikey.

A composite multikey index may have a combination of multikey index paths and
simple index paths.

Example 8-11 Composite Multikey Index

The following is an example of a composite multikey index having one multikey index
path and one simple index path. The index is created on the income field and area
field in the info JSON column of the UserInfo table.

CREATE INDEX multikeyindex3 ON UserInfo (
 info.income AS ANYATOMIC,
 info.address.phones[].area AS ANYATOMIC
);

A composite multikey index may have more than one multikey index path. Some of the
possibilities of composite multikey indexes are given below.

1. You can use both the .keys() and .values() steps of a map or JSON together.

The following is an example of a composite multikey index in which both
the .keys() and .values() steps of a JSON document are used together. The
index is created on the keys and values of the expenses JSON document in the
UserInfo table.

CREATE INDEX multikeyindex4 ON UserInfo (
 info.expenses.keys(),
 info.expenses.values() as ANYATOMIC
);

2. You can use multiple fields of an array/record/maps-viewed-as-records together.
However, the restriction here is that a field cannot be treated as both array and
map within a single CREATE INDEX statement.

The following is an example of a composite multikey index in which multiple fields
of an array are used together. The index is created on the passid and issuedby
fields in the vpass array in the UserInfo table.

CREATE INDEX nestedindex1 ON UserInfo (
 info.vehicles[].vpass[].passid AS ANYATOMIC,
 info.vehicles[].vpass[].issuedby AS ANYATOMIC
);

Chapter 8
Classification of Indexes

8-8

Figure 8-2 Composite Multikey Index

3. You can use fields of an array/record/maps-viewed-as-records, as well as the fields
present inside the inner arrays of those array/record/maps-viewed-as-records together.
However, the restriction here is that the immediate parent array of all such fields should
be the same.

The following is an example of a composite multikey index in which fields of an array and
fields of an inner array are used together. The index is created on the vid field in the
vehicles array and the passid field in the vpass array which is in the vehicles array in
the UserInfo table.

CREATE INDEX nestedindex2 ON UserInfo (
 info.vehicles[].vid AS ANYATOMIC,
 info.vehicles[].vpass[].passid AS ANYATOMIC
);

Figure 8-3 Composite Multikey Index

The following is an example of a composite multikey index in which fields of an array and
fields of an inner array are used together, however, notice that the immediate parent array of
the two fields are not the same. The following is an invalid index creation statement. The
index is being created on the passid and serviceid fields in the vehicles array in the
UserInfo table. Note that within the vehicles array, passid is inside the vpass array, and
serviceid is inside the vservice array.

CREATE INDEX invalidindex1 ON UserInfo (
 info.vehicles[].vpass[].passid AS ANYATOMIC,
 info.vehicles[].vservice[].serviceid AS ANYATOMIC
);

Chapter 8
Classification of Indexes

8-9

Figure 8-4 Composite Multikey Index (invalid)

Specifications & Restrictions on Multikey Indexes
The following specifications & restrictions apply to multikey index paths:

• You cannot provide predicate or boundary expressions for .keys(), .values(),
and [] steps. For more information on predicate and boundary expressions, see
the Map-Filter Step Expressions and Array-Slice Step Expressions sections
respectively.

• When a multikey index path is evaluated on a table row, it must return zero or
more atomic values. If no value is returned, then the special value EMPTY is used.

• No data type declaration is allowed for .keys() step, as the keys() are by default
string data type.

• You can provide .keys() steps only as the last step in an index path.

• For Example, info.expenses.keys() is a valid index path whereas
info.expenses.keys().books is an invalid index path.

• You can provide .keys() and .values() only after the fields that are maps in
strongly typed data.

• You can provide .keys() and .values() steps after a field that you expect to be
atomic values or JSON documents inside JSON data.

– If the fields are atomic values, then the special value EMPTY will be returned.

– If the fields are json documents, then the corresponding keys or values will be
returned.

• You should provide [] steps after those fields that are arrays in strongly typed
data.

• You should provide [] steps after those fields that you expect to be arrays inside
JSON data.

• If you do not provide [] steps after those fields that you expect to be arrays inside
JSON data, then those fields cannot be an array.

– If the rows in the existing table contain any array inside the JSON data, then
the index creation will fail.

– However, if there are no rows in the existing table that contain an array inside
the JSON data, then the index creation will be successful. However, you will
not be able to insert a new row with an array in that JSON data in the existing
table.

Chapter 8
Classification of Indexes

8-10

– For example, in the following badindex1, the [] step is not used with the vehicles
array. There can be two scenarios here:

CREATE INDEX badindex1 ON UserInfo(info.vehicles.vid AS ANYATOMIC);

* If there are existing rows of data in the UserInfo table where the vehicles field
happens to be an array, the index creation will fail.

* If there are no existing rows of data with the vehicles array in the UserInfo
table, the index will be created successfully. However, if you attempt to insert a
new row of data where the vehicles attribute is an array, the row insertion will
fail.

• You cannot provide [] steps after the non-array fields in strongly typed data.

• You can provide [] steps after the atomic values and JSON documents in JSON data. If
you do so, then that atomic value or JSON document will be used.

• If an array contains another array directly, then the corresponding number of []steps are
required to index the elements of the inner arrays. For example, if there are two inner
arrays inside vehicles, then info.vehicles[][].vid should be used.

Index on JSON Collection Tables
You can index the fields in a JSON collection table. You must specify the name of the indexed
element and ANYATOMIC for the type definition, or, for strongly typed indexes, you can
specify the JSON type of the fields being indexed.

Indexing the fields in the JSON collection table is similar to creating JSON indexes. You must
specify the path expression to the field. If you are indexing a top-level JSON field in the
document, the field name is its path expression. If the element is deeply nested in a JSON
object, you specify the complete path name. In either case, the data type for every index
must be specified and it is recommended to use ANYATOMIC in the JSON collection tables.

Consider the JSON collection table created for a shopping application.

Example 8-12 Create an index on the JSON collection table

create index myindex on usersJSON(notify as ANYATOMIC)

In the statement above, you create an untyped index on the notify field of the shopper's
data.

Example 8-13 Create a composite index on the JSON collection table

create index idx_ntfy_cty on storeAcct (address.city as ANYATOMIC, notify as
ANYATOMIC)

The notify field is a top-level field and the city field is nested in the address field of the
storeAcct table. In this statement, you create a composite index using these two fields.

Chapter 8
Classification of Indexes

8-11

Note:

If you are creating an index on a nested JSON field, the field must be present
in all the rows of the table. Otherwise, an error is displayed.

Example 8-14 Create a strongly typed index on the JSON collection table

create index myindex2 on usersJSON(notify as string)

In the statement above, you create a string index on the top-level notify field of the
shopper's data.

Note that the creation of a strongly typed index will fail if the table includes any rows
with data that violate the declared data type. Also, after successfully creating this
index, you can only insert string data into the notify field. You can use a strongly
typed index to act as both an index and a type constraint on a JSON field.

You can drop the indexes on the JSON collection table using the DROP INDEX
Statement. For details, see DROP INDEX Statement.

Indexes on Functions
You can create indexes on the values of one or more SQL built-in functions.

List of functions that can be indexed:

The following subset of the Built-in Functions can be indexed.

Functions on Timestamps:

• year

• month

• day

• hour

• minute

• second

• millisecond

• microsecond

• nanosecond

• week

Functions on Strings:

• length

• replace

• reverse

• substring

• trim

Chapter 8
Classification of Indexes

8-12

• ltrim

• rtrim

• lower

• upper

Functions on Rows:

• modification_time

• expiration_time

• expiration_time_millis

• row_storage_size

See Built-in Functions for more details on what a built-in function is and how to use these
functions.

Examples of creating indexes on functions
You can create indexes on the values of one or more SQL built-in functions.

Create Index on row-property functions

A row-property function expects a row variable as its sole argument in a DML statement. You
can create an index on these row property functions.

• modification_time

• expiration_time

• expiration_time_millis

• row_storage_size

In a CREATE INDEX statement, you must provide these functions without any argument. The
row you are indexing is implicitly considered as the input to the function.

Example:

Create an index which indexes the rows of the Users table by its latest modification time:

CREATE INDEX idx_modtime ON users(modification_time())

This index will be used in a query, which has modification_time as the filter condition.

SELECT * FROM Users $u WHERE
modification_time($u) > "2022-08-01T10:45:00"

This query returns all the rows whose most recent modification time is after
2022-08-01T10:45:00. It uses the idx_modtime index defined above. You can verify this by
viewing the query plan using the show query command.

More examples of creating indexes on functions

If you are creating an index on a built-in function that is not a row property function, then the
first argument of the function must be an index path. This is followed by a path type if the
path points to JSON data as shown in the example below. Some string functions need more

Chapter 8
Classification of Indexes

8-13

than one argument and in that case, all the arguments other than index path and path
type should be constant literal only.

Note:

The path type is not needed if it is a non-JSON as the datatype is the same
as the definition in the table. For JSON data, the type ANYATOMIC can be
used to cover all valid types in JSON.

Characteristics of the built-in functions that can be indexed:

• All of the built-in functions that can be indexed expect at most one item as their
first argument.

• The time-related functions such as YEAR, MONTH etc will throw an exception if
their input is a sequence with more than 1 item, and the string related functions
such as length, reverse and so on will return NULL in this case.

• If the input index path has a multi-key, then the function will be evaluated
separately for each value returned by the multi-key path. The resulting sequence
of items will be combined with the values of the other index paths (if any) in the
index definition and index entries will be created.

Download the script acctstream_loaddata.sql and run it as shown below. This script
creates the stream_acct table used in the example below and loads data into the
table.

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
 java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file acctstream_loaddata.sql

Example 1: Create an index in the stream_acct table to index users by the first three
letters of their country of residence.

CREATE INDEX idx_country ON stream_acct(substring(acct_data.country as
string, 0,3))

• In the example above,you declare thecountry field of the acct_data JSON as a
string.

• The substring function is used to extract the first three letters of the country and
use it as the index key.

Example 2: Using a multi-key index path

Chapter 8
Classification of Indexes

8-14

In the following example, you index the users in the stream_acct table by the id of the shows
they watch and the year and month of the dates when the show was watched.

CREATE INDEX idx_showid_year_month ON
stream_acct(acct_data.contentStreamed[].showId AS INTEGER,
substring(acct_data.contentStreamed[].seriesInfo[].episodes[].date AS
STRING,0, 4),
substring(acct_data.contentStreamed[].seriesInfo[].episodes[].date AS
STRING,5, 2))

An example of a query using this index is shown below. The query counts the number of
users who watched any episode of show 16 in the year 2022.

SELECT count(*) FROM stream_acct s1 WHERE EXISTS
s1.acct_data.contentStreamed[$element.showId = 16].seriesInfo.
episodes[substring($element.date, 0, 4) = "2022"]

This query will use the index idx_showid_year_month. You can verify this by viewing the
query plan using the show query command.

show query SELECT count(*) FROM stream_acct s1 WHERE EXISTS
> s1.acct_data.contentStreamed[$element.showId =
16].seriesInfo.episodes[substring($element.date, 0, 4) = "2022"]

{
 "iterator kind" : "GROUP",
 "input variable" : "$gb-1",
 "input iterator" :
 {
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "distinct by fields at positions" : [1],
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "stream_acct",
 "row variable" : "$$s1",
 "index used" : "idx_showid_year_month",
 "covering index" : true,
 "index row variable" : "$$s1_idx",
 "index scans" : [
 {
 "equality conditions" :
{"acct_data.contentStreamed[].showId":16,"substring#acct_data.contentStreame
d[].seriesInfo[].episodes[].date@,0,4":"2022"},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$s1_idx",

Chapter 8
Classification of Indexes

8-15

 "SELECT expressions" : [
 {
 "field name" : "Column_1",
 "field expression" :
 {
 "iterator kind" : "CONST",
 "value" : 1
 }
 },
 {
 "field name" : "acct_id_gen",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#acct_id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$s1_idx"
 }
 }
 }
]
 }
 },
 "grouping expressions" : [

],
 "aggregate functions" : [
 {
 "iterator kind" : "FUNC_COUNT_STAR"
 }
]
}

SHOW INDEXES Statement
The SHOW INDEXES statement provides the list of indexes present on the specified
table.

Syntax

show_indexes_statement ::=
 SHOW [AS JSON] INDEXES ON table_name

Semantics

If you want the output to be in JSON format, you can specify the optional AS JSON.

Chapter 8
SHOW INDEXES Statement

8-16

Example 8-15 Show Indexes

The following statement lists the indexes present on the UserInfo table.

SHOW INDEXES ON UserInfo

indexes
 idx_phones
 idx_income1

Example 8-16 Show Indexes

The following statement lists the indexes present on the UserInfo table in JSON format.

SHOW AS JSON INDEXES ON UserInfo
 {"indexes"
 : ["idx_phones","idx_income1"]}

DESCRIBE INDEX Statement
The DESCRIBE INDEX statement defines the specified index on a table.

Syntax

describe_index_statement ::=
 (DESCRIBE | DESC) [AS JSON] INDEX index_name ON table_name

Semantics

If you want the output to be in JSON format, you can specify the optional AS JSON.

The description for the index contains the following information:

• Name of the table on which the index is defined.

• Name of the index.

• Type of index. Whether the index is primary index or secondary index.

• Whether the index is multikey? If the index is multikey then 'Y' is displayed. Otherwise, 'N'
is displayed.

• List of fields on which the index is defined.

• The declared type of the index.

• Description of the index.

Example 8-17

The following statement provides information about the index idx_income1 on the UserInfo
table.

DESCRIBE AS JSON INDEX idx_income1 ON UserInfo
{
 "name" : "idx_income1",
 "type" : "secondary",

Chapter 8
DESCRIBE INDEX Statement

8-17

 "fields" : ["info.income"],
 "types" : ["ANY_ATOMIC"],
 "withNoNulls" : false,
 "withUniqueKeysPerRow" : false
}

Example 8-18

The following statement provides information about the index idx_phones on the
UserInfo table.

DESCRIBE AS JSON INDEX idx_phones ON UserInfo
{
 "name" : "idx_phones",
 "type" : "secondary",
 "fields" : ["info.phones[].number"],
 "types" : ["INTEGER"],
 "withNoNulls" : false,
 "withUniqueKeysPerRow" : true
}

Example 8-19

The following statement provides information about the index idx_modtime on the
users table.

 DESCRIBE AS JSON INDEX idx_modtime ON users;
{
 "name" : "idx_modtime",
 "type" : "secondary",
 "fields" : ["modification_time#"],
 "withNoNulls" : false,
 "withUniqueKeysPerRow" : false
}

Example 8-20

The following statement provides information about the index idx_showid_year_month
on the stream_acct table.

 DESCRIBE AS JSON INDEX idx_showid_year_month ON stream_acct;
{
 "name" : "idx_showid_year_month",
 "type" : "secondary",
 "fields" : ["acct_data.contentStreamed[].showId",
"substring#acct_data.contentStreamed[].seriesInfo[].episodes[].date@,0,
4",
"substring#acct_data.contentStreamed[].seriesInfo[].episodes[].date@,5,
2"],
 "types" : ["INTEGER", "STRING", "STRING"],
 "withNoNulls" : false,
 "withUniqueKeysPerRow" : false
}

Chapter 8
DESCRIBE INDEX Statement

8-18

DROP INDEX Statement
The DROP INDEX removes the specified index from the database.

Syntax

drop_index_statement ::=
 DROP INDEX [IF EXISTS] index_name ON table_name

Semantics

If an index with the given name does not exist, then the statement fails, and an error is
reported.

If the optional IF EXISTS clause is used in the DROP INDEX statement, and if an index with
the same name does not exist, then the statement will not execute, and no error is reported.

Appendix
The following code creates the UserInfo table.

CREATE TABLE UserInfo (id INTEGER, uname STRING, info JSON, PRIMARY KEY(id));

The following code populates the UsersInfo table with sample rows.

INSERT INTO UserInfo VALUES (
 1001,
 "Peter",
 {
 "age":42,
 "income":65000,
 "address": {
 "street":"Lane-8",
 "city":"Boston",
 "state":"MA",
 "phones":[
 {"area":415,"number":91237468,"kind":"work"},
 {"area":null,"number":95213607,"kind":"home"}
]
 },
 "vehicles" : [
 {
 "vid":72132,
 "vtype":"car",
 "vpass":[
 {"passid":396457,"issuedby":"BPD"},
 {"passid":312358,"issuedby":"NYPD"}
],
 "vservice":[
 {"serviceid":20001,"servicedate":null}
]
 },

Chapter 8
DROP INDEX Statement

8-19

 {
 "vid":78344,
 "vtype":"bike",
 "vpass":[
 {"passid":396241,"issuedby":"BPD"}
]
 }
],
 "expenses":{"housing":1000,"clothes":230,"books":20},
 "connections":[100,20,20,10,20]
 }
);

INSERT INTO UserInfo VALUES (
 1002,
 "Ram",
 {
 "age":35,
 "income":null,
 "address":{
 "street":"Hosur Road",
 "city":"Bengaluru",
 "state":"KA",
 "phones":[
 {"area":080,"number":2653457,"kind":"work"},
 {"area":080,"number":2659753,"kind":"home"}
]
 },
 "vehicles":null,
 "expenses":{"housing":1000,"travel":300},
 "connections":[]
 }
);

INSERT INTO UserInfo VALUES (
 1003,
 "Alice",
 {
 "income":20000,
 "address":{
 "street":"Fremont Rd",
 "city":"San Jose",
 "state":"CA",
 "phones":[]
 },
 "expenses":null,
 "connections":null
 }
);

INSERT INTO UserInfo VALUES (1004,"Chan",{});

INSERT INTO UserInfo VALUES (
 1005,
 "John",

Chapter 8
Appendix

8-20

 {
 "age":60,
 "address":{
 "street":"Taylor Blvd",
 "city":"San Fransisco",
 "state":"CA",
 "phones":{"area":408,"number":50,"kind":"work"}
 },
 "expenses":{"housing":1000,"travel":300},
 "connections":[30,5,null]
 }
);

INSERT INTO UserInfo VALUES (
 1006,
 "Cathy",
 {
 "address":{
 "street":"26th Avenue",
 "city":"Chennai",
 "state":"TN"
 },
 "vehicles":[
 {
 "vid":98642,
 "vtype":"bike"
 }
]
 }
);

Chapter 8
Appendix

8-21

9
Query Optimization

This chapter discusses about query optimization in Oracle NoSQL Database.

This chapter contains the following topics:

• Using Indexes for Query Optimization

• Finding Applicable Indexes

• Examples: Using Indexes for Query Optimization

• Choosing the Best Applicable Index

Using Indexes for Query Optimization
In Oracle NoSQL Database, the query processor can identify which of the available indexes
are beneficial for a query and rewrite the query to make use of such an index. "Using" an
index means scanning a contiguous subrange of its entries, potentially applying further
filtering conditions on the entries within this subrange, and using the primary keys stored in
the surviving index entries to extract and return the associated table rows. The subrange of
the index entries to scan is determined by the conditions appearing in the WHERE clause,
some of which may be converted to search conditions for the index. Given that only a
(hopefully small) subset of the index entries will satisfy the search conditions, the query can
be evaluated without accessing each individual table row, thus saving a potentially large
number of disk accesses.

Notice that in Oracle NoSQL Database, a primary-key index is always created by default.
This index maps the primary key columns of a table to the physical location of the table rows.
Furthermore, if no other index is available, the primary index will be used. In other words,
there is no pure "table scan" mechanism; a table scan is equivalent to a scan via the primary-
key index.

When it comes to indexes and queries, the query processor must answer two questions:

1. Is an index applicable to a query? That is, will accessing the table via this index be more
efficient than doing a full table scan (via the primary index).

2. Among the applicable indexes, which index or combination of indexes is the best to use?

Regarding question (1), for queries with NESTED TABLES, secondary indexes will be
considered for the target table only; in the current implementation, ancestor and/or
descendant tables will always be accessed via their primary index.

Regarding question (2), the current implementation does not support index anding or index
oring. As a result, the query processor will always use exactly one index (which may be the
primary-key index). Furthermore, there are no statistics on the number and distribution of
values in a table column or nested fields. As a result, the query processor has to rely on
some simple heuristics in choosing among the applicable indexes. In addition, SQL for Oracle
NoSQL Database allows for the inclusion of index hints in the queries, which are used as
user instructions to the query processor about which index to use.

9-1

Finding Applicable Indexes
To find applicable indexes, the query processor looks at the conditions in the WHERE
clause, trying to "match" such predicates with the index paths that define each index
and convert the matched predicates to index search conditions. In general the
WHERE clause consists of one or more conditions connected with AND or OR
operators, forming a tree whose leaves are the conditions and whose internal nodes
are the AND/OR operators. Let a predicate be any subtree of this WHERE-clause tree.
The query processor will consider only top-level AND predicates, i.e., predicates that
appear as the operands of a root AND node. If the WHERE clause does not have an
AND root, the whole WHERE expression is considered a single top-level AND
predicate. Notice that the query processor does not currently attempt to reorder the
AND/OR tree in order to put it in conjunctive normal form. On the other hand, it does
flatten the AND/OR tree so that an AND node will not have another AND node as a
child, and an OR node will not have another OR node as a child. For example, the
expression a = 10 and b < 5 and (c > 10 or c < 0) has 3 top-level AND predicates: a =
10, b < 5, and (c > 10 or c < 0), whereas the expression a = 10 and b < 5 and c > 10 or
c < 0 has an OR as its root and the whole of it is considered as a single top-level AND
predicate. For brevity, in the rest of this section we will use the term "predicate" to
mean top-level AND predicate.

The query processor will also look at the expressions in the ORDER BY and GROUP
BY clauses in order to find sorting indexes, that is, indexes that sort the table rows
according to the expressions appearing in these clauses. As explained in sections
GROUP BY Clause and ORDER BY Clause,, use of a sorting index will result in more
efficient and memory-sparing sorting and grouping.

The query processor will consider an index applicable to a query if the index is a
sorting one or if the query contains at least one index predicate: a predicate that can
be evaluated during an index scan, using the content of the current index entry only,
without the need to access the associated table row. Index predicates are further
categorized as start/stop predicates or filtering predicates. A start/stop predicate
participates in the establishment of the first/last index entry to be scanned during an
index scan. A filtering predicate is applied during the index scan on the entries being
scanned. In the current implementation, the following kinds of predicates are
considered as candidate start/stop predicates:

• comparisons, using either the value or sequence (any) comparison operators, but
not != or !=any,

• IS NULL and IS NOT NULL operators,

• EXISTS and NOT EXISTS predicates, and

• IN predicates

However, if an index is created with the WITH NO NULLS clause, IS NULL and NOT
EXISTS predicates cannot be used as index predicates for that index. In fact, such an
index can be used by a query only if the query has an index predicate for each of the
indexed fields.

An index is called a covering index with respect to a query if the query can be
evaluated using only the entries of that index, that is, without the need to retrieve the
associated rows.

If an index is used in a query, its index predicates are removed from the query
because they are evaluated by the index scan. We say that index predicates are

Chapter 9
Finding Applicable Indexes

9-2

"pushed to the index". In the rest of this section we explain applicable indexes further via a
number of example queries, and using the non-json indexes from the Appendix. The
algorithm for finding applicable json indexes is essentially the same as for non-json indexes.
The same is true for geometry indexes, with the exception that geosearch predicates that are
pushed to the index are not removed from the query, because they need to stay there to
eliminate false positive results from the index scans.

Examples: Using Indexes for Query Optimization
Example 9-1 Using Indexes for Query Optimization

SELECT * FROM Users2
WHERE 10 < income AND income < 20;

The query contains 2 index predicates. Indexes idx1, idx2, midx2, and midx3 are all
applicable. For index idx1, 10 < income is a start predicate and income < 20 is a stop
predicate. For the other indexes, both predicates are filtering predicates. If, say, idx2 were to
be used, the subrange to scan is the whole index. Obviously, idx1 is better than the other
indexes in this case. Notice however, that the number of table rows retrieved would be the
same whether idx1 or idx2 were used. If midx2 or midx3 were used, the number of distinct
rows retrieved would be the same as for idx1 and idx2, but a row would be retrieved as many
times as the number of elements in the phones array of that row. Such duplicates are
eliminated from the final query result set.

Notice that if index idx2 was created WITH NO NULLS, it would not be applicable to this
query, because it does not have index predicates for fields address.state and address.city.
For example, if Users2 contains a row where address.city is NULL and income is 15, the
index would not contain any entry for this row, and as a result, if the index was used, the row
would not appear in the result, even though it does qualify. The same is true for indexes
midx2 and midx3. On the other hand, even if idx1 was created WITH NO NULLS, it would still
be applicable, because it indexes a single field (income) and the query contains 2 start/stop
predicates on that field.

Example 9-2 Using Indexes for Query Optimization

SELECT * FROM Users2
WHERE 20 < income OR income < 10;

The query contains 1 index predicate, which is the whole WHERE expression. Indexes idx1,
idx2, midx2, midx3 are all applicable. For all of them, the predicate is a filtering predicate.

Example 9-3 Using Indexes for Query Optimization

SELECT * FROM Users2
WHERE 20 < income OR age > 70;

There is no index predicate in this case, because no index has information about user ages.

Example 9-4 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.address.state = "CA"
 AND u.address.city = "San Jose";

Chapter 9
Examples: Using Indexes for Query Optimization

9-3

Only idx2 is applicable. There are 2 index predicates, both of which serve as both start
and stop predicates.

Example 9-5 Using Indexes for Query Optimization

SELECT id, 2*income FROM Users2 u
WHERE u.address.state = "CA"
 AND u.address.city = "San Jose";

Only idx2 is applicable. There are 2 index predicates, both of which serve as both start
and stop predicates. In this case, the id and income information needed in the
SELECT clause is available in the index. As a result, the whole query can be
answered from the index only, with no access to the table. We say that index idx2 is a
covering index for the query in Example 5. The query processor will apply this
optimization.

Example 9-6 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.address.state = "CA"
 AND u.address.city = "San Jose"
 AND u.income > 10;

idx1, idx2, midx2, and midx3 are applicable. For idx2, there are 3 index predicates: the
state and city predicates serve as both start and stop predicates; the income predicate
is a start predicate. For idx1 only the income predicate is applicable, as a start
predicate. For midx2 and midx3, the income predicate is a filtering one.

Example 9-7 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.address.state = "CA"
 AND u.income > 10;

idx1, idx2, midx2, and midx3 are applicable. For idx2, there are 2 index predicates: the
state predicate serves as both start and stop predicate; the income predicate is a
filtering predicate. The income predicate is a start predicate for idx1 and a filtering
predicate for midx2 and midx3.

Example 9-8 Using Indexes for Query Optimization

DELCARE $city STRING;

SELECT * FROM Users2 u
WHERE u.address.state = "CA"
 AND u.address.city = $city
 AND (u.income > 50
 OR (10 < u.income
 AND u.income < 20));

idx1, idx2, midx2, and midx3 are applicable. For idx2, there are 3 index predicates.
The state and city predicates serve as both start and stop predicates. The composite
income predicate is a filtering predicate for all the applicable indexes (it's rooted at an
OR node).

Chapter 9
Examples: Using Indexes for Query Optimization

9-4

Example 9-9 Using Indexes for Query Optimization

SELECT u.address.city, SUM(u.expenses.values())
 FROM Users2 u
 WHERE u.address.state = "CA"
 GROUP BY u.address.city
 ORDER BY SUM(u.expenses.values());

In this example, for each city in California, the total amount of user expenditures in that city is
returned. The query orders the results by the total amount. Only idx2 is applicable. The state
predicate is both a stop and a start predicate. Furthermore, the index is a sorting index,
because for any given state it sorts the table rows by the names of the cities in that state and
the GROUP BY groups by the cities in CA. As a result, the grouping in this query will be
index-based and the ORDER BY will be generic. Notice that if instead of idx2 there were 2
separate indexes, one on states and another on cities, both would be applicable: the first
because of the state predicate, and the second because of the grouping. In this case, the
query processor would choose the state index in order to reduce the number of rows
accessed, at the expense of doing a generic GROUP BY.

Example 9-10 Using Indexes for Query Optimization

SELECT id FROM Users3 u
WHERE EXISTS u.info.income;

In this example we use table Users3, which stores all information about users as json data.
The query looks for users who record their income. Index jidx1 is applicable. The EXISTS
condition is actually converted to 2 index start/stop conditions: u.info.income < EMPTY and
u.info.income > EMPTY. As a result, two range scans are performed on the index.

Example 9-11 Using Indexes for Query Optimization

SELECT * FROM users2 u
 WHERE (u.address.state, u.address.city) IN
 (("CA","San Jose"), ("MA","Boston"))

In this example, the idx2 index will be used. Two scans will be performed on the index: one
for entries whose state and city fields are "CA" and "San Jose", respectively, and another for
entries whose state and city fields are "MA" and "Boston", respectively.

Example 9-12 Using Indexes for Query Optimization

SELECT * FROM users2 u
 WHERE u.address.state in ("CA", "MA") AND
 u.address.city in ("San Jose","Boston")

In this example, the idx2 index will be used. Four scans will be performed on the index. The
search keys for these scans are determined by the cartesian product of the keys in the right-
hand-side of the two IN operators: ("CA", "San Jose"), ("CA", "Boston"), ("MA, "San Jose"),
and ("MA", "Boston").

Chapter 9
Examples: Using Indexes for Query Optimization

9-5

Example 9-13 Using Indexes for Query Optimization

SELECT * FROM users2 u
 WHERE (u.address.state, u.income) IN
 (("CA", 10000), ("MA", 20000))

In this example, the idx2 index will be used. Two scans will be performed on the index:
one for entries whose state field is "CA", and another for entries whose state field is
"MA". Furthermore, the whole IN condition will be used as a filtering predicate on the
entries returned by the two scans.

As the above examples indicate, a predicate will be used as a start/stop predicate for
an index IDX only if:

• It is of the form <path expr> op <const expr>, or <const expr> op <path expr>, or
(<path expr1>, … <path exprN>) IN (<const exprs>)

• op is a comparison operator (EXISTS, NOT EXISTS, IS NULL and IS NOT NULL
are converted to predicates of this form, as shown in Q9).

• <const expr> is an expression built from literals and external variables only (does
not reference any tables or internal variables)

• <path expr> is a path expression that is "matches" an index path P appearing in
the CREATE INDEX statement for IDX. So far we have seen examples of exact
matches only. In the examples below we will see some non-exact matches as well.

• If P is not IDX's 1st index path, there are equality start/stop predicates for each
index path appearing before P in IDX's definition.

• The comparison operator may be one of the "any" operators. Such operators are
matched against the multi-key index paths of multi-key indexes. As shown in the
examples below, additional restrictions apply for such predicates.

Example 9-14 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE u.connections[] = any 10;

midx1 is applicable and the predicate is both a start and a stop predicate.

Example 9-15 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE u.connections[0:4] = any 10;

midx1 is applicable. The predicate to push down to mdx1 is u.connections[] =any 10, in
order to eliminate users who are not connected at all with user 10. However, the
original predicate (u.connections[0:4] =any 10) must be retained in the query to
eliminate users who do have a connection with user 10, but not among their 5
strongest connections. This is an example where the query path expression does not
match exactly the corresponding index path.

Example 9-16 Using Indexes for Query Optimization

SELECT * FROM users2 u
WHERE u.connections[] > any 10;

Chapter 9
Examples: Using Indexes for Query Optimization

9-6

midx1 is applicable and the predicate is a start predicate.

Example 9-17 Using Indexes for Query Optimization

SELECT id FROM users2 u
WHERE 10 < any u.connections[]
 AND u.connections[] < any 100 ;

midx1 is applicable, but although each predicate by itself is an index predicate, only one of
them can actually be used as such. To see why, first notice that the query asks for users that
have a connection with id greater than 10 and another connection (which may or may not be
the same as the 1st one) with id less than 100. Next, consider a Users2 table with only 2
users (say with ids 200 and 500) having the following connections arrays respectively: [1, 3,
110, 120] and [1, 50, 130]. Both of these arrays satisfy the predicates in the query, and both
users should be returned as a result. Now, consider midx1; it contains the following 7 entries:

[1, 200], [1, 500], [3, 200], [50, 500], [110, 200], [120, 200], [130, 500]

By using only the 1st predicate as a start predicate to scan the index, and applying the 2nd
predicate on the rows returned by the index scan, the result of the query is 500, 200, which is
correct. If on the other hand both predicates were used for the index scan, only entry [50,
500] would qualify, and the query would return only user 500.

Example 9-18 Using Indexes for Query Optimization

To search for users who have a connection in the range between 10 and 100, the following
query can be used:

SELECT id FROM users2 u
WHERE exist u.connections
 [10 < $element AND $element < 100];

Assuming the same 2 users as in Example 13, the result of this query is user 500 only and
both predicates can be used as index predicates (start and stop), because both predicates
apply to the same array element. The query processor will indeed push both predicates to
mdx1.

Example 9-19 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.address.phones.area = any 650
 AND u.address.phones.kind = any "work"
 AND u.income > 10;

This query looks for users whose income is greater than 10, and have a phone number with
area code 650, and also have a work phone number (whose area code may not be 650).
Index midx3 is applicable, but the address.phones.kind predicate cannot be used as an index
predicate (for the same reason as in Example 13). Only the area code predicate can be used
as a start/stop predicate and the income predicate as a filtering one. Indexes idx1, idx2, and
midx2 are also applicable in Example 15.

Example 9-20 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.expenses.housing = 10000;

Chapter 9
Examples: Using Indexes for Query Optimization

9-7

idx4 is applicable and the predicate is both a start and a stop predicate. midx4 is also
applicable. To use midx4, two predicates must be pushed to it, even though only one
appears in the query. The 1st predicate is on the "keys" index field and the second on
the "values" field. Specifically, the predicates key = "price" and value = 10000 are
pushed as start/stop predicates. This is another example where the match between
the query path expression and an index path is not exact: we match expenses.housing
with the expenses.values() index path, and additionally, generate an index predicate
for the properties.keys() index path.

Example 9-21 Using Indexes for Query Optimization

SELECT * FROM Users2 u
WHERE u.expenses.travel = 1000
 AND u.expenses.clothes > 500;

midx4 is applicable. Each of the query predicates is by itself an index predicate and
can be pushed to midx4 the same way as the expenses.housing predicate in the
previous example. However, the query predicates cannot be both pushed (at least not
in the current implementation). The query processor has to choose one of them to
push and the other will remain in the query. Because the expenses.travel predicate is
an equality one, it's more selective than the greater-than predicate and the query
processor will use that.

Optimizing unnesting queries with the UNNEST clause
An UNNEST clause is recommended when there is an index on the array(s) or map(s)
that are being unnested. The UNNEST clause places some restrictions on the kinds of
expressions that it contains. These restrictions can help the query processor in
choosing the appropriate index on the unnested arrays/maps, resulting in much better
performance.

Note:

See Limitation for expression usage in the UNNEST clause for more details
on the restrictions placed by the UNNEST clause. The SQL statements to
create tables and load data for using unnest queries is available here.

Example 1: Fetch different shows aired in the US and the number of people
watching them

1. The query is specific to a country (US) and a specific show. So create an index on
the country and showid fields of the stream_acct table.

CREATE INDEX idx_country_showid ON stream_acct(acct_data.country
AS string,

acct_data.contentStreamed[].showId AS integer)
WITH UNIQUE KEYS PER ROW

Chapter 9
Examples: Using Indexes for Query Optimization

9-8

Note:

The index must be created with the “unique keys per row property” in order for
such indexes to be usable by queries that unnest the same array(s)/map(s) as
the index.

2. The query to fetch different shows aired in the US and number of people watching it with
the UNNEST clause.

SELECT $show.showId, count(*) as cnt
FROM stream_acct $s, unnest($s.acct_data.contentStreamed[] as $show)
WHERE $s.acct_data.country = "USA"
GROUP BY $show.showId ORDER BY count(*) desc

{"showId":15,"cnt":2}
{"showId":16,"cnt":2}

The above query will use the idx_country_showid index. The country condition will be
pushed to the index, the group-by will be index-based, and the index is a covering one for
this query. An index that contains all required information to resolve the query is known
as a Covering Index – it completely covers the query. Covering Index includes all the
columns, the query refers to in the SELECT, JOIN, and WHERE clauses. If the UNNEST
clause is not used, the index will not be considered.

Example 2: For every show aired by the application, the total watch time for all users:

The following query returns, for each show, the total time users have spent watching the
show.

SELECT $show.showId, sum($show.seriesInfo.episodes.minWatched)
AS total_time FROM stream_acct $s,
unnest($s.acct_data.contentStreamed[] AS $show)
GROUP BY $show.showId
ORDER BY sum($show.seriesInfo.episodes.minWatched)

Let us examine the effect of creating an index on acct_data.contentStreamed[].showId as
the data is been grouped based on showId.

Despite the use of the UNNEST clause, this query cannot use the idx_showid index. This is
because of the argument to the sum() function. The idx_showid index contains just the
showId (and the primary key). So, the expression $show.seriesInfo.episodes.minWatched
cannot be evaluated from the index. There are two ways to optimize this query.

Option 1: Create an additional index:

Create an additional composite index on the showId and minWatched fields as both are used
in the query.

CREATE INDEX idx_showid_minWatched ON
 stream_acct(acct_data.contentStreamed[].showId AS integer,
 acct_data.contentStreamed[].seriesInfo[].episodes[].minWatched AS
integer,
 acct_data.contentStreamed[].seriesInfo[].episodes[].episodeID as

Chapter 9
Examples: Using Indexes for Query Optimization

9-9

integer)
WITH UNIQUE KEYS PER ROW

Note:

The episodeID must be added in this index, as the last index path, in order
for the "unique keys per row" constraint to be satisfied. This index will be
used by the query, as a covering index.

Option 2: Avoid the cost of an additional index:

You can rewrite the query to use the idx_showid index.The rewritten query below uses
the idx_showid index, but the index is not covering.

SELECT $show.showId, sum($s.acct_data.contentStreamed[$element.showId
= $show.showId].
 seriesInfo.episodes.minWatched) AS total_time
FROM stream_acct $s, unnest($s.acct_data.contentStreamed[] AS $show)
GROUP BY $show.showId
ORDER BY sum($s.acct_data.contentStreamed[$element.showId
= $show.showId].seriesInfo.episodes.minWatched)

{"showId":26,"total_time":225}
{"showId":16,"total_time":440}
{"showId":15,"total_time":642}

Example 3: The total watch time of users per show and season

SELECT $show.showId, $seriesInfo.seasonNum,
sum($seriesInfo.episodes.minWatched) AS length
FROM stream_acct n,
unnest(n.acct_data.contentStreamed[] AS $show, $show.seriesInfo[]
as $seriesInfo)
GROUP BY $show.showId, $seriesInfo.seasonNum
ORDER BY sum($seriesInfo.episodes.minWatched)

{"showId":26,"seasonNum":2,"length":80}
{"showId":26,"seasonNum":1,"length":145}
{"showId":16,"seasonNum":2,"length":190}
{"showId":16,"seasonNum":1,"length":250}
{"showId":15,"seasonNum":2,"length":295}
{"showId":15,"seasonNum":1,"length":347}

For best performance of the above query, create the following index. The index
idx_showid_seasonNum_minWatched is a multi key index. The episodeID must be
added in this index, as the last index path, in order for the "unique keys per row"
constraint to be satisfied.

CREATE INDEX idx_showid_seasonNum_minWatched ON
 stream_acct(acct_data.contentStreamed[].showId as integer,
 acct_data.contentStreamed[].seriesInfo[].seasonNum as integer,

Chapter 9
Examples: Using Indexes for Query Optimization

9-10

 acct_data.contentStreamed[].seriesInfo[].episodes[].minWatched as
integer,
 acct_data.contentStreamed[].seriesInfo[].episodes[].episodeID as
integer)
WITH UNIQUE KEYS PER ROW

Note:

An index is called a multikey index if for each row of data in the table, there are
multiple entries created in the index. In a multikey index, there is at least one index
path that uses .keys(), .values(), or [] steps. Any such index path will be called a
multikey index path.

If you want your query to use an index on the array(s)/maps() that it is unnesting, each path
expression in the UNNEST clause must match with the multikey_path_prefix of an index path
in the index. As shown in the syntax for the CREATE INDEX Statement the
multikey_path_prefix is the part of an index path up to and including the last multikey step.
For example, the multikey_path_prefix of the first index path should match the first path
expression in the UNNEST clause and so on. If this is not the case, the index will not be
used.

In the above query the expression n.value.contentStreamed[] matches the
multikey_path_prefix of the first index path in idx_showid_seasonNum_minWatched, and the
expression $show.seriesInfo[] matches the multikey_path_prefix of the second index path,
after the $show variable is replaced with its domain expression. So this index will be used in
the query.

Choosing the Best Applicable Index
To choose an index for a query, the query processor uses a simple heuristic together with any
user-provided index hints.

Syntax

hints ::= '/*+' hint* '*/'

hint ::= (
 (PREFER_INDEXES "(" name_path index_name* ")") |
 (FORCE_INDEX "(" name_path index_name ")") |
 (PREFER_PRIMARY_INDEX "(" name_path ")") |
 (FORCE_PRIMARY_INDEX "(" name_path ")")
) [STRING]

There are 2 kinds of hints: a FORCE_INDEX hint and a PREFER_INDEXES hint. The
FORCE_INDEX hint specifies a single index and the query is going to use that index without
considering any of the other indexes (even if there are no index predicates for the forced
index). The PREFER_INDEXES hint specifies one or more indexes. The query processor
may or may not use one of the preferred indexes. Specifically, in the absence of a forced
index, index selection works as follows.

The query processor uses the heuristic to assign a score to each applicable index and then
chooses the one with the highest score. If two or more indexes have the same score, the

Chapter 9
Choosing the Best Applicable Index

9-11

index chosen is the one whose name is alphabetically before the others. In general,
preferred indexes will get high scores, but it is possible that other indexes may still win.
Describing the details of the heuristic is beyond the scope of this document, but a few
high-level decisions are worth mentioning:

• If the query has a complete primary key, the primary index is used.

• Indexes that are preferred (via a PREFER hint), covering, or have a complete key
(i.e., there is an equality predicate on each of its index fields) get high stores and
will normally prevail over other indexes.

• Among 2 indexes where one is a sorting index, the other is not, and the 2 indexes
would otherwise have the same score, the sorting index is chosen.

The FORCE_INDEX and PREFER_INDEXES hints specify indexes by their name.
Since the primary index has no explicit name, 2 more hints are available to force or to
prefer the primary index: FORCE_PRIMARY_INDEX and
PREFER_PRIMARY_INDEX. Hints are inserted in the query as a special kind of
comment that appears immediately after the SELECT keyword. Here is the relevant
syntax:

The '+' character immediately after (with no spaces) the comment opening sequence
('/*') is what turns the comment into a hint. The string at the end of the hint is just for
informational purposes (a comment for the hint) and does not play any role in the
query execution.

Appendix
The following code creates Users2 and User3 tables.

CREATE TABLE Users2 (
 id INTEGER,
 income INTEGER,
 address RECORD(
 street STRING,
 city STRING,
 state STRING,
 phones ARRAY(
 RECORD(
 area INTEGER,
 number INTEGER,
 kind STRING
)
)
),
 connections ARRAY(INTEGER),
 expenses MAP(INTEGER),
 PRIMARY KEY (id)
);

CREATE TABLE users3 (id INTEGER, info JSON, PRIMARY KEY(id));

Chapter 9
Appendix

9-12

The following code populates Users2 and User3 tables with sample rows.

INSERT INTO Users2 VALUES (
 0,
 1000,
 {
 "street" : "somewhere",
 "city": "Boston",
 "state" : "MA",
 "phones" : [
 { "area":408, "number":50, "kind":"work" },
 { "area":415, "number":60, "kind":"work" },
 { "area":NULL, "number":52, "kind":"home" }
]
 },
 [100, 20, 20, 10, 20],
 { "housing" : 1000, "clothes" : 230, "books" : 20 }
);

INSERT INTO Users2 VALUES (
 1,
 NULL,
 {
 "street" : "everywhere",
 "city": "San Fransisco",
 "state" : "CA",
 "phones" : [
 { "area":408, "number":50, "kind":"work" },
 { "area":408, "number":60, "kind":"home" }
]
 },
 [],
 { "housing" : 1000, "travel" : 300 }
);

INSERT INTO Users2 VALUES (
 2,
 2000,
 {
 "street" : "nowhere",
 "city": "San Jose",
 "state" : "CA",
 "phones" : []
 },
 NULL,
 NULL
);

INSERT INTO users3 VALUES (
 0,
 {
 "income" : 1000,
 "address": {
 "street" : "somewhere",

Chapter 9
Appendix

9-13

 "city": "Boston",
 "state" : "MA",
 "phones" : [
 { "area":408, "number":50, "kind":"work" },
 { "area":415, "number":60, "kind":"work" },
 { "area":null, "number":52, "kind":"home" }
]
 },
 "expenses" : { "housing" : 1000, "clothes" : 230, "books" :
20 },
 "connections" : [100, 20, 20, 10, 20]
 }
);

INSERT INTO users3 VALUES (
 1,
 {
 "income" : null,
 "address": {
 "street" : "everywhere",
 "city": "San Fransisco",
 "state" : "CA",
 "phones" : [
 { "area":408, "number":50, "kind":"work" },
 { "area":408, "number":60, "kind":"home" },
 "4083451232"
]
 },
 "expenses" : { "housing" : 1000, "travel" : 300 },
 "connections" : []
 }
);

INSERT INTO users3 VALUES (
 2,
 {
 "income" : 2000,
 "address": {
 "street" : "nowhere",
 "city": "San Jose",
 "state" : "CA",
 "phones" : []
 },
 "expenses" : null,
 "connections" : null
 }
);

INSERT INTO users3 VALUES (3,{});

INSERT INTO users3 VALUES (
 4,
 {
 "address": {
 "street" : "top of the hill",

Chapter 9
Appendix

9-14

 "city": "San Fransisco",
 "state" : "CA",
 "phones" : { "area":408, "number":50, "kind":"work" }
 },
 "expenses" : { "housing" : 1000, "travel" : 300},
 "connections" : [30, 5, null]
 }
);

INSERT INTO Users3 VALUES (
 5,
 {
 "address": {
 "street" : "end of the road",
 "city": "Portland",
 "state" : "OR"
 }
 }
);

The following are some examples of indexes.

Example 9-22 Simple Index

CREATE INDEX idx1 ON Users2 (income);

It creates an index with one entry per user in the Users table. The entry contains the income
and id of the user represented by the row. The contents of this index for the sample rows in
Users2 are:

[1000, 0]
[2000, 2]
[NULL, 1]

If the WITH NO NULLS clause were used in the above create index statement, the last of the
above 3 entries would not appear in the index.

Example 9-23 Simple Index

CREATE INDEX idx2 ON Users2 (address.state, address.city, income);

It creates an index with one entry per user in the Users table. The entry contains the state,
city, income and id of the user represented by the row. The contents of this index for the
sample rows in Users2 are:

["CA", "San Fransisco", NULL, 1]
["CA", "San Jose", 2000, 2]
["MA", "Boston", 1000, 0]

Example 9-24 Simple Index

CREATE INDEX idx3 ON Users2 (expenses.books);

Chapter 9
Appendix

9-15

Creates an index entry for each user. The entry contains the user's spending on
books, if the user does record spending on books, or EMPTY if there is no "books"
entry in expenses, or NULL if there is no expenses map at all (i.e. the value of the
expenses column is NULL). The contents of this index for the sample rows in Users2
are:

[20, 0]
[EMPTY, 1]
[NULL, 2]

If the WITH NO NULLS clause were used in the above create index statement, only
the first of the above 3 entries would appear in the index.

Example 9-25 Simple Index

CREATE INDEX idx4 ON users2 (expenses.housing, expenses.travel);

Creates an index entry for each user. The entry contains the user's housing expenses,
or EMPTY if the user does not record housing expenses, and the user's travel
expenses, or EMPTY if the user does not record travel expenses. If expenses is
NULL, both fields in the index entry will be NULL. The contents of this index for the
sample rows in Users2 are:

[1000, 300, 1]
[1000, EMPTY, 0]
[NULL, NULL, 2]

Example 9-26 Multi-Key Index

CREATE INDEX midx1 ON Users2 (connections[]);

Creates an index on the elements of the connections array. The contents of this index
for the sample rows in Users2 are:

[10, 0]
[20, 0]
[100, 0]
[EMPTY, 1]
[NULL, 2]

If the WITH NO NULLS clause were used in the above create index statement, the last
2 of the above entries would not appear in the index.

Example 9-27 Multi-Key Index

CREATE INDEX midx2 ON Users2 (address.phones[].area, income);

Creates an index on the area codes and income of users. The contents of this index
for the sample rows in Users2 are:

[408, 1000, 0]
[408, NULL, 1]

Chapter 9
Appendix

9-16

[415, 1000, 0]
[EMPTY, 2000, 2]
[NULL, 1000, 0]

Example 9-28 Multi-Key Index

CREATE INDEX midx3 ON Users2
 (address.phones[].area, address.phones[].kind, income);

Creates an index on the area codes, the phone number kinds, and the income of users. The
contents of this index for the sample rows in Users2 are:

[408, "work", 1000, 0]
[408, "home", NULL, 1]
[408, "work", NULL, 1]
[415, "work", 1000, 0]
[EMPTY, EMPTY, 2000, 2]
[NULL, "home", 1000, 0]

Example 9-29 Multi-Key Index

CREATE INDEX midx4 ON Users2 (
 expenses.keys(), expenses.values());

Creates an index on the fields (both keys and values) of the expenses map. The contents of
this index for the sample rows in Users2 are:

["books", 50, 0]
["clothes", 230, 0]
["housing", 1000, 0]
["housing", 1000, 1]
["travel", 300, 1]
[NULL, NULL, 2]

Example 9-30 Simple Typed json Index

CREATE INDEX jidx1 ON users3(info.income AS INTEGER);

It creates an index with one entry per user in the Users table. The entry contains the income
and id (the primary key) of the user represented by the row. The contents of this index for the
sample rows in Users3 are:

[1000, 0]
[2000, 2]
[EMPTY, 4]
[EMPTY, 5]
[JNULL, 1]
[NULL, 3]

Chapter 9
Appendix

9-17

Example 9-31 Simple Typed json Index

CREATE INDEX jidx1u ON users3 (
 info.income AS ANYATOMIC);

It creates an untyped index on info.income. The contents of this index are the same as
in jidx1 above, but the values 1000 and 200 are stored as Numbers instead of
integers. If the following row is added to the users3 table:

INSERT INTO users3 VALUES (
 6,
 {
 "address": {},
 "expenses" : {},
 "connections" : []
 }
);

The index will look like this:

 ["none", 6]
 [EMPTY, 5]
 [EMPTY, 4]
 [NULL, 3]
 [2000, 2]
 [JNULL, 1]
 [1000, 0]

Example 9-32 Simple Typed json Index

CREATE INDEX jidx2 ON users3 (
 info.address.state AS STRING,
 info.address.city AS STRING,
 info.income AS INTEGER);

It creates an index with one entry per user in the Users table. The entry contains the
state, city, income and id (the primary key) of the user represented by the row. The
contents of this index for the sample rows in Users3 are:

["CA", "San Fransisco", EMPTY, 4]
["CA", "San Fransisco", JNULL, 1]
["CA", "San Jose", 2000, 2]
["MA", "Boston", 1000, 0]
["OR", "Portland", EMPTY, 5]
[NULL, NULL, NULL, 3]

Example 9-33 Simple Typed json Index

CREATE INDEX jidx3 ON users3 (
 info.expenses.books AS INTEGER);

Chapter 9
Appendix

9-18

Creates an index entry for each user. The entry contains the user's spending on books, if the
user does record spending on books, or EMPTY if there is no "books" entry in expenses or
there is no expenses map at all, or NULL if there is no info at all (i.e. the value of the info
column is NULL). The contents of this index for the sample rows in Users3 are:

[20, 0]
[EMPTY, 1]
[EMPTY, 2]
[EMPTY, 4]
[EMPTY, 5]
[NULL, 3]

Example 9-34 Simple Typed json Index

CREATE INDEX jidx4 ON users3 (
 info.expenses.housing AS INTEGER,
 info.expenses.travel AS INTEGER);

Creates an index entry for each user. The entry contains 2 fields: (a) the user's housing
expenses, or EMPTY if the user does not record housing expenses or there is no expenses
field at all, and (b) the user's travel expenses, or EMPTY if the user does not record travel
expenses or there is no expenses field at all. If info is NULL, both fields in the index entry will
be NULL. The contents of this index for the sample rows in Users3 are:

[1000, 300, 1]
[1000, 300, 4]
[1000, EMPTY, 0]
[EMPTY, EMPTY, 2]
[EMPTY, EMPTY, 5]
[NULL, NULL, 3]

Example 9-35 Multi-Key Typed json Index

CREATE INDEX jmidx1 ON users3 (
 info.connections[] AS INTEGER);

Creates an index on the elements of the connections array. The contents of this index for the
sample rows in Users3 are:

[5, 4]
[10, 0]
[20, 0]
[30, 4]
[100, 0]
[EMPTY, 1]
[EMPTY, 5]
[JNULL, 2]
[JNULL, 4]
[NULL, 3]

Chapter 9
Appendix

9-19

Example 9-36 Multi-Key Typed json Index

CREATE INDEX jmidx2 ON users3 (
 info.address.phones[].area AS INTEGER,
 info.income AS INTEGER);

Creates an index on the area codes and income of users. The contents of this index
for the sample rows in Users3 are:

[408, 1000, 0]
[408, EMPTY, 4]
[408, JNULL, 1]
[415, 1000, 0]
[EMPTY, 2000, 2]
[EMPTY, EMPTY, 5]
[EMPTY, JNULL, 1]
[JNULL, 1000, 0]
[NULL, NULL, 3]

Example 9-37 Multi-Key Typed json Index

CREATE INDEX jmidx2u ON users3 (
 info.address.phones[].area AS ANYATOMIC,
 info.income AS INTEGER);

This is a variation of the jmidx2 index, where the first index path is untyped and
second is typed. The contents of jmidx2 and jmidx2u are the same, except that in
jmidx2u the numeric values in the first column are stored as Numbers instead of
integers.

Example 9-38 Multi-Key Typed json Index

CREATE INDEX jmidx3 ON users3 (
 info.address.phones[].area AS INTEGER,
 info.address.phones[].kind AS string,
 info.income AS INTEGER);

Creates an index on the area codes, the phone number kinds, and the income of
users. The contents of this index for the sample rows in Users3 are:

[408, "home", JNULL, 1]
[408, "work", 1000, 0]
[408, "work", EMPTY, 4]
[408, "work", JNULL, 1]
[415, "work", 1000, 0]
[EMPTY, EMPTY, 2000, 2]
[EMPTY, EMPTY, EMPTY, 5]
[EMPTY, EMPTY, JNULL, 1]
[JNULL, "home", 1000, 0]
[NULL, NULL, NULL, 3]

Chapter 9
Appendix

9-20

Example 9-39 Multi-Key Typed json Index

CREATE INDEX jmidx4 ON users3 (
 info.expenses.keys(),
 info.expenses.values() AS INTEGER);

Creates an index on the fields (both keys and values) of the expenses map. Notice that the
keys() portion of the index definition must not declare a type. This is because the type will
always be String. The contents of this index for the sample rows in Users2 are:

["books", 50, 0]
["clothes", 230, 0]
["housing", 1000, 0]
["housing", 1000, 1]
["housing", 1000, 4]
["travel", 300, 1]
["housing", 1000, 4]
[EMPTY, EMPTY, 2]
[EMPTY, EMPTY, 5]
[NULL, NULL, 3]

Chapter 9
Appendix

9-21

10
Query Plan

A query execution plan is the sequence of operations Oracle NoSQL Database performs to
run a query.

Topics:

• Overview of a query plan

• Examples of query execution plan

Overview of a query plan
Internally, a query execution plan is structured as a tree of plan iterators.

Each kind of iterator evaluates a different kind of expression that may appear in a query. In
general the choice of index and the kind of associated index predicates can have a drastic
effect on the query performance. As a result, you as a developer often want to see what index
is used by a query and what predicates have been pushed down to it. Based on this
information, you may want to force the use of a different index via index hints. This
information is contained in the query execution plan. All Oracle NoSQL drivers provide APIs
to display the execution plan of a query. All Oracle NoSQL graphical UIs including the IntelliJ,
VSCode, and Eclipse plugins along with the Oracle Cloud Infrastructure Console include
controls for displaying the query execution plan.

Iterators in a query execution plan

Some of the most common and important iterators used in queries are :

TABLE iterator

A TABLE iterator is responsible for:

• Scanning the index used by the query (which may be the primary index).

• Applying any filtering predicates pushed to the index.

• Retrieving the rows pointed to by the qualifying index entries if necessary. If the index is
covering, the result set of the TABLE iterator is a set of index entries, otherwise it is a set
of table rows.

Note:

An index is called a covering index with respect to a query if the query can be
evaluated using only the entries of that index, that is, without the need to retrieve
the associated rows.

A TABLE iterator will always have the following properties:

• target table: The name of the target table in the query.

10-1

• index used: The name of the index used by the query. If the primary index were
used, “primary index” would appear as the value of this property.

• covering index: Whether the index is covering or not.

• row variable: The name of a variable ranging over the table rows produced by the
TABLE iterator. If the index is covering, no table rows are produced and this
variable is not used.

• index scans: Contains the start and stop conditions that define the index scans to
be performed.

A TABLE iterator has 2 more optional properties:

• index row variable: The name of a variable ranging over the index entries
produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the index variable will be bound to that entry.

• index filtering predicate: A predicate evaluated on every index entry produced
by the index scan. If the result of this evaluation is true, the index variable is bound
to this entry and the entry or its associated table row is returned as the result of
the next() call on the TABLE iterator. Otherwise, the entry is skipped, the next
entry from the index scan is produced, the predicate is evaluated again on this
entry and it continues until a qualifying entry is found.

SELECT iterator

It is responsible for executing the SELECT expression.

RECEIVE iterator

It is a special internal iterator that separates the query plan into 2 parts:

• The RECEIVE iterator itself and all iterators that are above it in the iterator tree are
executed at the driver.

• All iterators below the RECEIVE iterator are executed at the replication nodes
(RNs); these iterators form a subtree rooted at the unique child of the RECEIVE
iterator.

In general, the RECEIVE iterator acts as a query coordinator. It sends its subplan to
appropriate RNs for execution and collects the results. It may perform additional
operations such as sorting and duplicate elimination, and propagates the results to its
ancestor iterators (if any) for further processing.

Distribution kinds :

A distribution kind specifies how the query will be distributed for execution across the
RNs participating in an Oracle NoSQL database (a store). The distribution kind is a
property of the RECEIVE iterator.

Different choices of Distribution kinds are:

• SINGLE_PARTITION: A SINGLE_PARTITION query specifies a complete shard
key in its WHERE clause. As a result, its full result set is contained in a single
partition, and the RECEIVE iterator will send its subplan to a single RN that stores
that partition. A SINGLE_PARTITION query may use either the primary-key index
or a secondary index.

• ALL_PARTITIONS: Queries use the primary-key index here and they don’t specify
a complete shard key. As a result, if the store has M partitions, the RECEIVE
iterator will send M copies of its subplan to be executed over one of the M

Chapter 10
Overview of a query plan

10-2

partitions each. See show topology to determine the number of partitions in your store.

• ALL_SHARDS: Queries use a secondary index here and they don’t specify a complete
shard key. As a result, if the store has N shards, the RECEIVE iterator will send N copies
of its subplan to be executed over one of the N shards each.

Anatomy of a query execution plan:

Query execution takes place in batches. When a query subplan is sent to a partition or shard
for execution, it will execute there until a batch limit is reached. For an on-premises NoSQL
database, batch limit is the number of local results produced from the underlying partition/
shard. The default is 100 results, but you can change it via a query-level option. For NoSQL
Database Cloud Service, the batch limit is the number of read units consumed locally by the
query. The default is 2000 read units (about 2MB of data), and it can only be decreased via a
query-level option.

When the batch limit is reached, any local results that were produced are sent back to the
RECEIVE iterator for further processing along with a boolean flag that says whether more
local results may be available. If the flag is true, the reply includes resume information. If the
RECEIVE iterator decides to resend the query to the same partition/shard, it will include this
resume information in its request, so that the query execution will restart at the point where it
stopped during the previous batch. This is because no query state is maintained at the RN
after a batch finishes. The next batch for the same partition/shard may take place at the same
RN as the previous batch or at a different RN that also stores the same partition/shard.

Examples of query execution plan
You can write some queries using the users table and understand how query execution plan
is generated.

Description of the users table:

CREATE TABLE users (
 id INTEGER,
 firstName STRING,
 lastName STRING,
 otherNames ARRAY(RECORD(first STRING, last STRING)),
 age INTEGER,
 income INTEGER,
 address JSON,
 connections ARRAY(INTEGER),
 expenses MAP(INTEGER),
PRIMARY KEY (id)
);

The following index has been created in the users table.

CREATE INDEX idx_state_city_income on Users(address.state as string,
 address.city as string, income)

Some examples of query execution plan :

• Example 1 : Using a covering index in a query plan with only index scans

Chapter 10
Examples of query execution plan

10-3

• Example 2 : Using a covering index in a query plan with index scans and index
predicates

• Example 3: Using a non-covering index in a query plan with index scans

• Example 4: Sort the data using a Covering index

• Example 5: Sort the data using a field not part of the index

• Example 6: Group the data using a Covering index

• Example 7: Group data with fields not part of the index

Example 1 : Using a covering index in a query plan with only index
scans

An index is called a covering index with respect to a query if the query can be
evaluated using only the entries of that index, that is, without the need to retrieve the
associated rows.

Fetch the id and income of users whose state is CA and their city value must be
greater or equal to S and whose income is between 1000 and 2000.

SELECT id, income FROM Users u WHERE u.address.state = "CA" AND
u.address.city >= "S" AND 1000 < income and income < 2000

Query execution plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "users",
 "row variable" : "$$u",
 "index used" : "idx_state_city_income",
 "covering index" : true,
 "index row variable" : "$$u_idx",
 "index scans" : [
 {
 "equality conditions" :
{"address.state":"CA","address.city":"Santaclara"},
 "range conditions" : { "income" : { "start value" : 1000,
"start inclusive" : false, "end value" : 2000, "end inclusive" :
false } }
 }
]
 },
 "FROM variable" : "$$u_idx",
 "SELECT expressions" : [
 {
 "field name" : "id",

Chapter 10
Examples of query execution plan

10-4

 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 },
 {
 "field name" : "income",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 }
]
 }
}

Explanation of the query execution plan :

• The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator. The only property of the RECEIVE iterator in this example, is
the distribution kind whose value is ALL_SHARDS.

• The index idx_state_city_income is used here and this is a covering index as all the
fields in the SELECT expression can be fetched only using the index entries. .

• The index scan property contains the start and stop conditions that define the index
scans to be performed.

"index scans" : [
 {
 "equality conditions" :
{"address.state":"CA","address.city":"Santaclara"},
 "range conditions" : { "income" : { "start value" : 1000, "start
inclusive" : false, "end value" : 2000, "end inclusive" : false } }
 }
]

In this query, only one index scan will be performed. The equality conditions correspond
to the predicates u.address.state = "CA" and u.address.city = "Santaclara" from the
query. The range conditions correspond to the predicates 1000 < income and income <
2000. The index scan will start at the first entry whose address.state field is equal to
CA, its address.city field is equal to Santaclara, and its income field is greater than
1000. The index scan will return all subsequent entries until the first entry whose

Chapter 10
Examples of query execution plan

10-5

address.state field is not CA, or its address.city field is not Santaclara, or its
income field is greater that or equal to 2000.

• The index row variable is $$u_idx, which is the name of a variable ranging over
the index entries produced by the TABLE iterator. Every time a new index entry is
produced by the index scan, the $$u_idx variable will be bound to that entry.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as
either the index row variable or the row variable of the TABLE iterator,
depending on whether the used index is covering or not. In this example, the
FROM variable is same as the index row variable ($$u_idx) as the index is
covering because all the fields in the SELECT expression can be evaluated only
using the index entries.

• This index row variable ($$u_idx) will be referenced by iterators implementing the
other clauses of the SELECT expression.

• In the SELECT expression, two fields (id and income) are fetched. These
correspond to two field names and field expressions in the SELECT expression
clause.

{
 "field name" : "id",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
}

For every field to be fetched by the SELECT expression, the field expression is
computed by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and
returns the value of a field (id as shown above) from the records produced by its
input iterator. The same is done for every field to be fetched in the SELECT
expression.

Example 2 : Using a covering index in a query plan with index scans
and index predicates

Fetch the id and income of users whose state is CA and whose income is greater than
2000.

SELECT id, income FROM Users u WHERE u.address.state = "CA" AND income
> 2000

Query execution plan:

{
 "iterator kind" : "RECEIVE",

Chapter 10
Examples of query execution plan

10-6

 "distribution kind" : "ALL_SHARDS",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "users",
 "row variable" : "$$u",
 "index used" : "idx_state_city_income",
 "covering index" : true,
 "index row variable" : "$$u_idx",
 "index scans" : [
 {
 "equality conditions" : {"address.state":"CA"},
 "range conditions" : {}
 }
],
 "index filtering predicate" :
 {
 "iterator kind" : "GREATER_THAN",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : 2000
 }
 }
 },
 "FROM variable" : "$$u_idx",
 "SELECT expressions" : [
 {
 "field name" : "id",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 },
 {
 "field name" : "income",

Chapter 10
Examples of query execution plan

10-7

 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 }
]
 }
}

Explanation of the query execution plan :

• The root iterator of this query plan is a RECEIVE iterator with a single child (input
iterator) that is a SELECT iterator. The only property of the RECEIVE iterator in
this example, is the distribution kind whose value is ALL_SHARDS.

• The index idx_state_city_income is used here and this is a covering index as all
the fields in the SELECT expression can be fetched only using the index entries.

• The index scan property contains the start and stop conditions that define the
index scans to be performed.

"index scans" : [
 {
 "equality conditions" : {"address.state":"CA"},
 "range conditions" : {}
 }
]

In this example, only one index scan will be performed. The conditions correspond
to the predicates u.address.state = "CA" from the query. Specifically, the starting
index entry must have the value CA on the address.state field. All subsequent
entries must have CA as the value of their address.state field, and the scan will
stop as soon as an entry with a different state value is encountered. Although the
query contains a range predicate on income, this predicate does not appear as a
range condition of the index scan. This is because there is no equality condition on
the address.city field that appears before the income field in the index definition,
and as a result, the income predicate cannot be used to determine the boundaries
of the scan. Instead, the income predicate can be used as an index filtering
predicate that is applied on every index entry produced by the index scan.

• The index filtering predicate evaluates the filter criteria on the income field.
Using the greater than operator the filter condition is evaluated.

"index filtering predicate" :
{
 "iterator kind" : "GREATER_THAN",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",

Chapter 10
Examples of query execution plan

10-8

 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : 2000
 }
}

• The index row variable is $$u_idx which is the name of a variable ranging over the index
entries produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the $$u_idx variable will be bound to that entry.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is same as the index
row variable ($$u_idx) as the index is covering because all the fields in the SELECT
expression can be evaluated only using the index entries.

• This index row variable ($$u_idx) will be referenced by iterators implementing the other
clauses of the SELECT expression.

• In the SELECT expression, two fields (id and income) are fetched. These correspond to
two field names and field expressions in the SELECT expression clause.

{
 "field name" : "id",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
}

For every field to be fetched by the SELECT expression, the field expression is computed
by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the value of a
field (id as shown above) from the records produced by its input iterator. The same is
done for every field to be fetched in the SELECT expression.

Example 3: Using a non-covering index in a query plan with index scans
An index becomes non-covering when query cannot be fully evaluated using only the entries
of an index.

Chapter 10
Examples of query execution plan

10-9

Fetch id, age and income of users residing in CA whose income is greater than 5000.

SELECT id, age, income FROM Users u WHERE u.address.state = "CA"
AND income >5000

Query execution plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "users",
 "row variable" : "$$u",
 "index used" : "idx_state_city_income",
 "covering index" : false,
 "index row variable" : "$$u_idx",
 "index scans" : [
 {
 "equality conditions" : {"address.state":"CA"},
 "range conditions" : {}
 }
],
 "index filtering predicate" :
 {
 "iterator kind" : "GREATER_THAN",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : 5000
 }
 }
 },
 "FROM variable" : "$$u",
 "SELECT expressions" : [
 {
 "field name" : "id",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",

Chapter 10
Examples of query execution plan

10-10

 "field name" : "id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
 },
 {
 "field name" : "age",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "age",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
 },
 {
 "field name" : "income",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
 }
]
 }
}

Explanation of the query execution plan :

• The root iterator of this query plan is a RECEIVE iterator with a single child (input iterator)
that is a SELECT iterator. The only property of the RECEIVE iterator in this example, is
the distribution kind whose value is ALL_SHARDS.

• The index idx_state_city_income is used here and in this example, it is a not a covering
index as the age field to be fetched is not part of the index entry.

• The index scan property contains the start and stop conditions that define the index
scans to be performed.

"index scans" : [
 {
 "equality conditions" : {"address.state":"CA"},
 "range conditions" : {}

Chapter 10
Examples of query execution plan

10-11

 }
]

In this example, only one index scan will be performed. The conditions correspond
to the predicates u.address.state = "CA" from the query. Specifically, the starting
index entry must have the value CA on the address.state field. All subsequent
entries must have CA as the value of their address.state field, and the scan will
stop as soon as an entry with a different state value is encountered. Although the
query contains a range predicate on income, this predicate does not appear as a
range condition of the index scan. This is because there is no equality condition on
the address.city field that appears before the income field in the index definition,
and as a result, the income predicate cannot be used to determine the boundaries
of the scan. Instead, the income predicate can be used as an index filtering
predicate that is applied on every index entry produced by the index scan.

• The index filtering predicate evaluates the filter criteria on the income field.
Using the greater than operator the filter condition is evaluated.

"index filtering predicate" :
{
 "iterator kind" : "GREATER_THAN",
 "left operand" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 },
 "right operand" :
 {
 "iterator kind" : "CONST",
 "value" : 5000
 }
}

• The index row variable is $$u_idx which is the name of a variable ranging over the
index entries produced by the TABLE iterator. Every time a new index entry is
produced by the index scan, the $$u_idx variable will be bound to that entry.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as
either the index row variable or the row variable of the TABLE iterator,
depending on whether the used index is covering or not. In this example, the
FROM variable is same as the row variable as the index is not covering.

• This row variable ($$u) will be referenced by iterators implementing the other
clauses of the SELECT expression.

• In the SELECT expression, three fields (id, income and age) are fetched. These
correspond to three field names and field expressions in the SELECT expression
clause.

{
 "field name" : "id",

Chapter 10
Examples of query execution plan

10-12

 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
}

For every field to be fetched by the SELECT expression, the field expression is computed
by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the value of a
field (id as shown above) from the records produced by its input iterator. The same is
done for every field to be fetched in the SELECT expression.

Example 4: Sort the data using a Covering index
Fetch the id and income of users whose state is CA and whose city of residence is
Santaclara and whose income is between 1000 and 10000. Sort the result by the income of
the users.

SELECT id, income FROM Users u WHERE u.address.state = "CA" AND
u.address.city= "Santaclara" AND 1000 < income and income < 10000
ORDER BY income

Query execution plan:

{
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "order by fields at positions" : [1],
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "users",
 "row variable" : "$$u",
 "index used" : "idx_state_city_income",
 "covering index" : true,
 "index row variable" : "$$u_idx",
 "index scans" : [
 {
 "equality conditions" :
{"address.state":"CA","address.city":"Santaclara"},
 "range conditions" : { "income" : { "start value" : 1000, "start
inclusive" : false, "end value" : 10000, "end inclusive" : false } }
 }
]
 },

Chapter 10
Examples of query execution plan

10-13

 "FROM variable" : "$$u_idx",
 "SELECT expressions" : [
 {
 "field name" : "id",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 },
 {
 "field name" : "income",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 }
]
 }
}

Explanation of the query execution plan :

• The root iterator of this query plan is a RECEIVE iterator with a single child (input
iterator) that is a SELECT iterator. The only property of the RECEIVE iterator in
this example, is the distribution kind whose value is ALL_SHARDS.

• The results need to be sorted by income. The income is a part of the
idx_state_city_income index. So in this example, you don't need a separate
SORT operator. The sorting is done by the RECEIVE operator using its
propertyorder by fields at positions,which is an array. The value of this array
depends on the position of the field that is sorted in the SELECT expression.

"order by fields at positions" : [1]

In this example, the order by is done using the income field, which is the second
field in the SELECT expression. That is why you see "1" in the order by fields
at position property of the iterator.

Chapter 10
Examples of query execution plan

10-14

Note:

If the order of fields in the SELECT expression is different, then the value above
changes. For example, if the query is SELECT income, id FROM Users u
WHERE u.address.state = "CA" AND u.address.city= "Santaclara"AND 1000 <
income and income < 10000 ORDER BY income, the order by fields would be
order by fields at positions : [0] as theincome field is the first field in the
SELECT expression.

• The index idx_state_city_income is used here and in this example, it is a covering
index as the query can be evaluated using only the entries of the index.

• The index scan property contains the start and stop conditions that define the index
scans to be performed.

"index scans" : [
 {
 "equality conditions" :
{"address.state":"CA","address.city":"Santaclara"},
 "range conditions" : { "income" : { "start value" : 1000, "start
inclusive" : false,
 "end value" : 10000, "end
inclusive" : false } }
 }
]

In this query, only one index scan will be performed. The equality conditions correspond
to the predicates u.address.state = "CA" and u.address.city = "Santaclara" from the
query. The index scan will start at the first entry must have the value CA on the
address.state field and its address.city field is equal to Santaclara. Specifically, the
starting index entry must have the value CA on theaddress.state field. All subsequent
entries must have CA as the value of their address.state field, and the scan will stop as
soon as an entry with a different state value is encountered. There is a range condition to
be applied here on the income field.

• The index row variable is $$u_idx which is the name of a variable ranging over the index
entries produced by the TABLE iterator. Every time a new index entry is produced by the
index scan, the $$u_idx variable will be bound to that entry.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as either the
index row variable or the row variable of the TABLE iterator, depending on whether the
used index is covering or not. In this example, the FROM variable is same as the index
row variable ($$u_idx) as the index is covering because all the fields in the SELECT
expression can be evaluated only using the index entries.

• This index row variable ($$u_idx) will be referenced by iterators implementing the other
clauses of the SELECT expression.

• In the SELECT expression, two fields (id and income) are fetched. These correspond to
two field names and field expressions in the SELECT expression clause.

{
 "field name" : "id",
 "field expression" :
 {

Chapter 10
Examples of query execution plan

10-15

 "iterator kind" : "FIELD_STEP",
 "field name" : "#id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
}

For every field to be fetched by the SELECT expression, the field expression is
computed by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and
returns the value of a field (id as shown above) from the records produced by its
input iterator. The same is done for every field to be fetched in the SELECT
expression.

Example 5: Sort the data using a field not part of the index
Fetch the id, income and age of users belonging to the state CA and whose city of
residence is Santaclara and have income between 1000 and 10000. Sort the results
by age.

SELECT id, income,age FROM Users u WHERE u.address.state = "CA"
AND u.address.city ="Santaclara" AND 1000 < income AND
income < 10000 ORDER BY age

Query execution plan:

{
 "iterator kind" : "SORT",
 "order by fields at positions" : [2],
 "input iterator" :
 {
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "users",
 "row variable" : "$$u",
 "index used" : "idx_state_city_income",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" :
{"address.state":"CA","address.city":"Santaclara"},
 "range conditions" : { "income" : { "start value" : 1000,
"start inclusive" : false, "end value" : 10000, "end inclusive" :
false } }
 }

Chapter 10
Examples of query execution plan

10-16

]
 },
 "FROM variable" : "$$u",
 "SELECT expressions" : [
 {
 "field name" : "id",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
 },
 {
 "field name" : "income",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
 },
 {
 "field name" : "age",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "age",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
 }
]
 }
 }
}

Explanation of the query execution plan :

• In this example, you perform a sort in addition to filtering the data. The results need to be
sorted by age. The age is not part of the idx_state_city_income index. So in this
example, you need a separate SORT operator.

Chapter 10
Examples of query execution plan

10-17

• The sorting is done by a SORT iterator, which is the parent of the RECEIVE
iterator. The order by fields at positions property specifies the field used for
sorting. The value of this array depends on the position of the field that is sorted in
the SELECT expression. In this example, age is the third field in the SELECT
expression. So order by fields at positions has a value of 2.

"order by fields at positions" : [2]

• The index idx_state_city_income is used here and in this example, it is not a
covering index as the query has the age field that is not part of the entries of the
index.

• The index scan property contains the start and stop conditions that define the
index scans to be performed.

"index scans" : [
 {
 "equality conditions" :
{"address.state":"CA","address.city":"Santaclara"},
 "range conditions" : { "income" : { "start value" : 1000,
"start inclusive" : false,
 "end value" : 10000, "end
inclusive" : false } }
 }
]

In this example, only one index scan will be performed. The conditions correspond
to the predicates u.address.state = "CA" and u.address.city = "Santaclara" from
the query. Specifically, the starting index entry must have the value CA on the
address.state field. All subsequent entries must have CA as the value of their
address.state field, and the scan will stop as soon as an entry with a different
state value is encountered. There is a range condition to be applied here on the
income field.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as
either the index row variable or the row variable of the TABLE iterator,
depending on whether the used index is covering or not. In this example, the
FROM variable is same as the row variable as the index is not covering.

• This row variable ($$u) will be referenced by iterators implementing the other
clauses of the SELECT expression.

• In the SELECT expression, three fields (id, income and age) are fetched. These
correspond to three field names and field expressions in the SELECT expression
clause.

{
 "field name" : "id",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "#id",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",

Chapter 10
Examples of query execution plan

10-18

 "variable" : "$$u"
 }
 }
}

For every field to be fetched by the SELECT expression, the field expression is computed
by a FIELD_STEP iterator. The FIELD_STEP iterator extracts and returns the value of a
field (id as shown above) from the records produced by its input iterator. The same is
done for every field to be fetched in the SELECT expression.

Example 6: Group the data using a Covering index
Fetch the state ,city and sum of income of all users grouped by the state and city.

SELECT u.address.state, u.address.city, sum(income)
AS income FROM Users u GROUP BY u.address.state, u.address.city

Query execution plan:

{
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "order by fields at positions" : [0, 1],
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "Users",
 "row variable" : "$$u",
 "index used" : "idx_state_city_income",
 "covering index" : true,
 "index row variable" : "$$u_idx",
 "index scans" : [
 {
 "equality conditions" : {},
 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$u_idx",
 "GROUP BY" : "Grouping by the first 2 expressions in the SELECT
list",
 "SELECT expressions" : [
 {
 "field name" : "state",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",

Chapter 10
Examples of query execution plan

10-19

 "field name" : "address.state",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 },
 {
 "field name" : "city",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "address.city",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 },
 {
 "field name" : "income",
 "field expression" :
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u_idx"
 }
 }
 }
 }
]
 }
 },
 "FROM variable" : "$from-1",
 "GROUP BY" : "Grouping by the first 2 expressions in the SELECT list",
 "SELECT expressions" : [
 {
 "field name" : "state",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "state",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }

Chapter 10
Examples of query execution plan

10-20

 }
 },
 {
 "field name" : "city",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "city",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }
 }
 },
 {
 "field name" : "income",
 "field expression" :
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }
 }
 }
 }
]
}

Explanation of the query execution plan :

• In this example, you group the users based on state and city and then you determine
the sum of income of the users grouped.

• The group-by is index-based, that is the group by fields are also part of the index used.
This is indicated by the lack of any GROUP iterators. Instead, the grouping is done by the
SELECT iterators.

• There are two SELECT iterators, the inner one has a GROUP BY property that specifies
which of the SELECT-clause expressions are also grouping expressions. Here the group
by fields are the first 2 expressions in the SELECT list
(u.address.state,u.address.city).

"GROUP BY" : "Grouping by the first 2 expressions in the SELECT list"

• The index idx_state_city_income is used here and in this example, it is a covering
index as the query can be evaluated using only the entries of the index.

Chapter 10
Examples of query execution plan

10-21

• The index row variable is $$u_idx, which is the name of a variable ranging over
the index entries produced by the TABLE iterator. Every time a new index entry is
produced by the index scan, the $$u_idx variable will be bound to that entry.

• This index row variable ($$u_idx) will be referenced by iterators implementing the
other clauses of the SELECT expression.

• In the SELECT expression, three fields (state, city and sum(income)) are
fetched. These correspond to three field names and field expressions in the
SELECT expression clause.

• The results returned by the inner SELECT iterators from the various RNs are
partial groups, because rows with the same state and city may exist at multiple
RNs. So, regrouping and re-aggregation has to be performed at the driver. This is
done by the outer SELECT iterator (above the RECEIVE iterator).

• The result is also sorted by state and city. The order by fields at positions
property specifies the field used for sorting. The value of this array depends on the
position of the field that is sorted in the SELECT expression. In this example,
state is the first field and city is the second field in the SELECT expression. So
order by fields at positions has a value of 0,1.

"order by fields at positions" : [0, 1]

• In the outer SELECT expression, three fields are fetched: state, cityand
sum(income). The FROM variable$from-1 will be referenced by iterators
implementing the other clauses of the outer SELECT expression. This
corresponds to three field names and field expressions in the outer SELECT
expression clause. In this example, two of the field expressions fetch only the
fields and there is one field expression which evaluates a function (sum(income)).

• For the two fields to be directly fetched by the SELECT expression, the field
expression is computed by a FIELD_STEP iterator. The FIELD_STEP iterator
extracts and returns the value of a field (state as shown below) from the records
produced by its input iterator. The same is done for the city field.

{
 "field name" : "state",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "state",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }
 }
}

The third field in the SELECT expression is a function to determine the sum of
income. The FUNC_SUM iterator is used for this. It iterates over the value of the

Chapter 10
Examples of query execution plan

10-22

income field and determines the sum of all incomes from the result of its input iterator.

{
 "field name" : "income",
 "field expression" :
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$from-1"
 }
 }
 }
}

Example 7: Group data with fields not part of the index
Fetch the age and sum of income of all users whose state is CA, grouping the data by age.

SELECT age, sum(income) FROM Users u
WHERE u.address.state = "CA" GROUP BY age

Query execution plan:

{
 "iterator kind" : "GROUP",
 "input variable" : "$gb-2",
 "input iterator" :
 {
 "iterator kind" : "RECEIVE",
 "distribution kind" : "ALL_SHARDS",
 "input iterator" :
 {
 "iterator kind" : "GROUP",
 "input variable" : "$gb-1",
 "input iterator" :
 {
 "iterator kind" : "SELECT",
 "FROM" :
 {
 "iterator kind" : "TABLE",
 "target table" : "users",
 "row variable" : "$$u",
 "index used" : "idx_state_city_income",
 "covering index" : false,
 "index scans" : [
 {
 "equality conditions" : {"address.state":"CA"},

Chapter 10
Examples of query execution plan

10-23

 "range conditions" : {}
 }
]
 },
 "FROM variable" : "$$u",
 "SELECT expressions" : [
 {
 "field name" : "age",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "age",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
 },
 {
 "field name" : "Column_2",
 "field expression" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "income",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$$u"
 }
 }
 }
]
 },
 "grouping expressions" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "age",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$gb-1"
 }
 }
],
 "aggregate functions" : [
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "Column_2",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",

Chapter 10
Examples of query execution plan

10-24

 "variable" : "$gb-1"
 }
 }
 }
]
 }
 },
 "grouping expressions" : [
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "age",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$gb-2"
 }
 }
],
 "aggregate functions" : [
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "Column_2",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$gb-2"
 }
 }
 }
]
}

Explanation of the query execution plan :

• In this example , you group all users in the state CA based on their age and determine
the sum of the income of users belonging to each age group.

• As the GROUP BY field (age in this example) is not part of any index, you need a
separate GROUP operator to do the grouping. This is indicated by the existence of the
GROUP iterators in the execution plan. There are two GROUP iterators: one that
operates at the driver (above the RECEIVE iterator) and another that operates at the RNs
(below the RECEIVE iterator).

• The lower GROUP iterator has a SELECT iterator as input. The SELECT returns the age
and income of each user in the state CA. The GROUP iterator will operate until the batch
limit is reached. If the batch limit is defined as the max number N of results produced, the
GROUP iterator will stop when up to N age groups have been created. If the batch limit is
defined as the max number of bytes read, it will stop when this max is reached. The
GROUP operator has an input variable. For the inner GROUP operator the input variable
is $gb-1 and for the outer GROUP operator it is $gb-2.

"iterator kind" : "GROUP","input variable" : "$gb-1",

Chapter 10
Examples of query execution plan

10-25

• The index idx_state_city_income is used here and in this example, it is not a
covering index as the query has the age field, which is not part of the entries of the
index.

• The index scan property contains the start and stop conditions that define the
index scans to be performed. In this example, only one index scan will be
performed. The conditions correspond to the predicate u.address.state = "CA".
Specifically, the starting index entry must have the value CA on the address.state
field. All subsequent entries must have CA as the value of their address.state
field, and the scan will stop as soon as an entry with a different state value is
encountered.

• When the FROM iterator is a TABLE iterator, the FROM variable is the same as
either the index row variable or the row variable of the TABLE iterator,
depending on whether the used index is covering or not. In this example, the
FROM variable is same as the row variable as the index is not covering.

• This row variable ($$u) will be referenced by iterators implementing the other
clauses of the inner SELECT expression.

• The GROUP iterator creates an internal variable ($gb-1) that iterates over the
records produced by the SELECT expression.

• The result set produced by the lower GROUP iterator is partial: it may not contain
all the age groups and for the age groups that it does contain, the income may be
a partial sum (because all rows for a given age may not have been retrieved when
query execution stops). The upper GROUP iterator receives the partial results
from each RN and performs the final grouping and aggregation. It operates the
same way as the lower GROUP iterators and will keep operating until there are no
more partial results from the RNs. At that point, the full and final result set is
cached at the upper GROUP iterator and is returned to the application.

• The upper GROUP iterator creates an internal variable ($gb-2) that iterates over
the records produced by the outer SELECT expression. The $gb-2 variable has
the age and sum of income of all users of the CA state, grouped by age.

• In the SELECT expression, two fields are fetched: age and sum(income). These
correspond to two field names and field expressions in the SELECT expression
clause.

• For the age field, the field expression is computed by a FIELD_STEP iterator. The
FIELD_STEP iterator extracts and returns the value of the age field from the
records produced by its input iterator.

{
 "iterator kind" : "FIELD_STEP",
 "field name" : "age",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$gb-2"
 }
}

Chapter 10
Examples of query execution plan

10-26

• The second field to be fetched is an aggregate function sum of income values. The
FUNC_SUM iterator is used for this. It iterates over the value of the income field and
determines the sum of all incomes from the result of its input iterator.

"aggregate functions" : [
 {
 "iterator kind" : "FUNC_SUM",
 "input iterator" :
 {
 "iterator kind" : "FIELD_STEP",
 "field name" : "Column_2",
 "input iterator" :
 {
 "iterator kind" : "VAR_REF",
 "variable" : "$gb-2"
 }
 }
 }
]

Chapter 10
Examples of query execution plan

10-27

11
GeoJson Data Management

This chapter describes GeoJson data and how to search and index GeoJson data in Oracle
NoSQL Database. Support for GeoJson data is available only in the Enterprise Edition of
Oracle NoSQL Database.

This chapter contains the following topics:

• About GeoJson Data

• Lines and Coordinate System

• Restrictions on GeoJson Data

• Searching for GeoJson Data

• Indexing GeoJson Data

About GeoJson Data
The GeoJson specification (Internet Engineering Task Force) defines the structure and
content of json objects that are supposed to represent geographical shapes on earth (called
geometries). Oracle NoSQL Database implements a number of functions that do indeed
interpret such json objects as geometries and allow for the search for rows containing
geometries that satisfy certain conditions. Search is made efficient via the use of special
indexes.

According to the GeoJson specification, for a json object to be a geometry object it must have
two fields called "type" and "coordinates", where the value of the "type" field specifies the kind
of geometry and the value of "coordinates" must be an array whose elements define the
geometrical shape (the GeometryCollection kind is an exception to this rule, as we will see
below). The value of the "type" field must be one of the following 7 strings, corresponding to 7
different kinds of geometry objects: "Point", "LineSegment", "Polygon", "MultiPoint",
"MultiLineString", "MultiPolygon", and "GeometryCollection". The value of "coordinates"
depends on the kind of geometry, but in all cases it is composed of a number of positions. A
position specifies a position on the surface of the earth as an array of 2 double numbers,
where the first number is the longitude and the second number is the latitude of the position
(GeoJson allows the position’s altitude as a 3rd coordinate, but Oracle NoSQL Database
does not support altitudes). Longitude and latitude are specified as degrees and must range
between -180 to +180 and -90 to +90, respectively.

The 7 kinds of geometry objects are defined as follows: (with an example given in each case)

Point
For type "Point", the "coordinates" field is a single position.

{ "type" : "point", "coordinates" : [23.549, 35.2908] }

LineString
A LineString is one or more connected lines; the end-point of one line is the start-point of the
next line. The "coordinates" member is an array of two or more positions: the 1st position is

11-1

the start point of the 1st line and each subsequent position is the end point of the
current line and the start of the next line. Lines may cross each other.

{
"type" : "LineString",
"coordinates" : [[121.9447, 37.2975],
[121.9500, 37.3171],

[121.9892, 37.3182],
[122.1554, 37.3882],
[122.2899, 37.4589],
[122.4273, 37.6032],
[122.4304, 37.6267],
[122.3975, 37.6144]
]
}

Polygon
A polygon defines a surface area by specifying its outer perimeter and the perimeters
of any potential holes inside the area. More precisely, a polygon consists of one or
more linear rings, where (a) a linear ring is a closed LineString with four or more
positions, (b) the first and last positions are equivalent, and they must contain
identical values, (c) a linear ring is the boundary of a surface or the boundary of a hole
in a surface, and (d) a linear ring must follow the right-hand rule with respect to the
area it bounds, i.e., for exterior rings their positions must be ordered
counterclockwise, and for holes their position must be ordered clockwise. Then, the
"coordinates" field of a polygon must be an array of linear ring coordinate arrays,
where the first must be the exterior ring, and any others must be interior rings. The
exterior ring bounds the surface, and the interior rings (if present) bound holes within
the surface. The example below shows a polygon with no holes.

{
"type" : "polygon",
"coordinates" : [[
[23.48, 35.16],
[24.30, 35.16],
[24.30, 35.50],
[24.16, 35.61],
[23.74, 35.70],
[23.56, 35.60],
[23.48, 35.16]
]
]
}

MultiPoint
For type "MultiPoint", the "coordinates" field is an array of two or more positions.

{
"type" : "MultiPoint",
"coordinates" : [[-121.9447, 37.2975],
[-121.9500, 37.3171],

Chapter 11
About GeoJson Data

11-2

[-122.3975, 37.6144]
]
}

MultiLineString
For type "MultiLineString", the "coordinates" member is an array of LineString coordinate
arrays.

{
"type": "MultiLineString",
"coordinates": [
[[100.0, 0.0], [01.0, 1.0]],
[[102.0, 2.0], [103.0, 3.0]]
]
}

MultiPolygon
For type "MultiPolygon", the "coordinates" member is an array of Polygon coordinate arrays.

{
"type": "MultiPolygon",
"coordinates": [
[
[
[102.0, 2.0],
[103.0, 2.0],
[103.0, 3.0],
[102.0, 3.0],
[102.0, 2.0]
]
],
[
[
[100.0, 0.0],
[101.0, 0.0],
[101.0, 1.0],
[100.0, 1.0],
[100.0, 0.0]
]
]
]
}

GeometryCollection
Instead of a "coordinates" field, a GeometryCollection has a "geometries" field. The value of
"geometries" is an array. Each element of this array is a GeoJSON object whose kind is one
of the 6 kinds defined earlier. So, in general, a GeometryCollection is a heterogeneous
composition of geometries.

{
"type": "GeometryCollection",

Chapter 11
About GeoJson Data

11-3

"geometries": [
{
"type": "Point",
"coordinates": [100.0, 0.0]
},
{
"type": "LineString",
"coordinates": [[101.0, 0.0], [102.0, 1.0]]
}
]
}

The GeoJson specification defines 2 additional kinds of entities, called Feature and
FeatureCollection, which allow for combining geometries with other, non-geometrical
properties. The specification uses defined above) or a Feature or a FeatureCollection.
Feature and FeatureCollection are defined as follows:

Feature
A Feature object has a "type" member with the value "Feature". A Feature object has
a "geometry" member, whose value either a geometry object of the 7 kinds defined
above or the JSON null value. A Feature object has a "properties" member, whose
value is any JSON object or the JSON null value.

FeatureCollection
A FeatureCollection object has a "type" member with the value "FeatureCollection". A
FeatureCollection object has a "features" member, whose value is a JSON array.
Each element of the array is a Feature object as defined above. It is possible for this
array to be empty.

Lines and Coordinate System
As shown in the previous section, all kinds of geometries are specified in terms of a
set of positions. However, for line strings and polygons, the actual geometrical shape
is formed by the lines connecting their positions. The GeoJson specification defines a
line between two points as the straight line that connects the points in the (flat)
cartesian coordinate system whose horizontal and vertical axes are the longitude and
latitude, respectively. More precisely, the coordinates of every point on a line that does
not cross the antimeridian between a point P1 = (lon1, lat1) and P2 = (lon2, lat2) can
be calculated as:

P = (lon, lat) = (lon1 + (lon2 - lon1) * t, lat1 + (lat2 - lat1) * t)

with t being a real number greater than or equal to 0 and smaller than or equal to 1.

However, Oracle NoSQL Database uses a geodetic coordinate system (WGS 84) and
as a result deviates from the GeoJson specification by using geodetic lines: A
geodetic line between 2 points is the shortest line that can be drawn between the 2
points on the ellipsoidal surface of the earth. For a simplified, but more illustrative
definition, assume for a moment that the earth surface is a sphere. Then, the geodetic
line between two points on earth is the minor arc between the two points on the great
circle corresponding to the points, i.e., the circle that is formed by the intersection of
the sphere and the plane defined by the center of the earth and the two points.

The following figure shows the difference between the geodetic and straight lines
between Los Angeles and London.

Chapter 11
Lines and Coordinate System

11-4

Figure 11-1 Geodetic vs Straight Line

(source: https://developers.arcgis.com)

The following figure shows the difference between the two coordinate systems for a square
defined by points P1, P2, P3, and P4. The square is assumed to be in the northern
hemisphere. The 2 vertical lines of the square are the same in both systems; points on each
of these lines have the same longitude. This is not true for the "horizontal" lines. In the
GeoJson system all points on the P1-P2 line (the blue line) have the same latitude (so this
line is part of an earth parallel). But the geodetic line between P1 and P2 forms a curve (the
red line) to the north of the GeoJson line. The difference between the two lines (the
curvature) gets more pronounced closer to the poles and as the distance between P1 and P2
increases.

Figure 11-2 Geodetic vs GeoJson Box

When searching for points or other geometries inside the [P1, P2, P3, P4] polygon (using one
of the functions described in the next section), Oracle NoSQL Database uses the geodetic
view of the search polygon. So, for example, points that are between the blue and the red P1-
P2 lines will not appear in the result. What if you really want to search inside the blue box?
Such a search can be approximated by adding points between P1-P2 and P4-P3 in the
definition of the search polygon. This is illustrated in the following figure, where we have
added points P5 and P6. We can see that with the [P1, P6, P2, P3, P5, P4] polygon, the area

Chapter 11
Lines and Coordinate System

11-5

difference between the geodetic and GeoJson boxes is smaller than with the [P1, P2,
P3, P4] polygon.

Figure 11-3 Approximating a Search within a GeoJson Box

Restrictions on GeoJson Data
The following 2 restrictions apply to the kind of GeoJson data supported by Oracle
NoSQL Database:

Anti-meridian crossing
Geometries that cross the anti-meridian line cannot be indexed and cannot appear as
arguments to the geo search functions described in the following section.

Too big geometries
A geometry is considered "too big" if its Minimum Bounding Box (MBR) has a side
whose end points are more than 120 degrees or latitude or longitude apart. Such
geometries cannot be indexed and cannot appear as arguments to the geo search
functions described in the following section.

Searching for GeoJson Data
Oracle NoSQL Database provides 4 functions to search for GeoJson data that have a
certain relationship with a search geometry.

boolean geo_intersect(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a
single valid geometry object. Otherwise, the runtime behavior is as follows:

• Returns false if any operand returns 0 or more than 1 items.

• Returns NULL if any operand returns NULL.

• Returns false if any operand returns an item that is not a valid geometry object.

Finally, if both operands return a single geometry object, it returns true if the 2
geometries have any points in common; otherwise false.

boolean geo_inside(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a
single valid geometry object. Otherwise, the runtime behavior is as follows:

• Returns false if any operand returns 0 or more than 1 items.

• Returns NULL if any operand returns NULL.

Chapter 11
Restrictions on GeoJson Data

11-6

• Returns false if any operand returns an item that is not a valid geometry object (however,
if it can be detected at compile time that an operand will not return a valid geometry, an
error is raised).

• Returns false if the second operand returns a geometry object that is not a polygon.

Finally, if both operands return a single geometry object and the second geometry is a
polygon, it returns true if the first geometry is completely contained inside the second
polygon, i.e., all its points belong to the interior of the polygon; otherwise false. The interior of
a polygon is all the points in the polygon area except the points on the linear rings that define
the polygon’s boundary.

boolean geo_within_distance(any*, any*, double)

Raises an error if it can be detected at compile time that any of the first two operands will not
return a single valid geometry object. Otherwise, the runtime behavior is as follows:

• Returns false if any of the first two operands returns 0 or more than 1 items.

• Returns NULL if any of the first two operands returns NULL.

• Returns false if any of the first two operands returns an item that is not a valid geometry
object.

Finally, if both of the first two operands return a single geometry object, it returns true if the
first geometry is within a distance of N meters from the second geometry, where N is the
number returned by the third operand; otherwise false. The distance between 2 geometries is
defined as the minimum among the distances of any pair of points where the first point
belongs to the first geometry and the second point to the second geometry. If N is a negative
number, it is set to 0.

boolean geo_near(any*, any*, double)

geo_near is converted internally to geo_within_distance plus an (implicit) order-by the
distance between the two geometries. However, if the query has an (explicit) order-by
already, no ordering by distance is performed. The geo_near function can appear in the
WHERE clause only, where it must be a top-level predicate, i.e, not nested under an OR or
NOT operator.

In addition to the above search functions, the following two functions are also provided:

double geo_distance(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a single
valid geometry object. Otherwise, the runtime behavior is as follows:

• Returns -1 if any operand returns zero or more than 1 items.

• Returns NULL if any operand returns NULL.

• Returns -1 if any of the operands is not a geometry.

Otherwise it returns the geodetic distance between the 2 input geometries. The returned
distance is the minimum among the distances of any pair of points where the first point
belongs to the first geometry and the second point to the second geometry. Between two
such points, their distance is the length of the geodetic line that connects the points.

boolean geo_is_geometry(any*)

• Returns false if the operand returns zero or more than 1 items.

• Returns NULL if the operand returns NULL.

Chapter 11
Searching for GeoJson Data

11-7

• Returns true if the input is a single valid geometry object. Otherwise, false.

Notice that the above geo functions operate on geometry objects, but not on Features
or FeatureCollections. Nevertheless, Features and FeatureCollections can still be
queried effectively by passing their contained geometry objects to the geo function. An
example of this is shown in the following section.

Example 11-1 Searching for GeoJson Data

Consider a table whose rows store points of interest. The table has an id column as its
primary key and a poi column of type json.

CREATE TABLE PointsOfInterest (
 id INTEGER, poi JSON,
PRIMARY KEY(id));

INSERT INTO PointsOfInterest VALUES (
 1,
 {
 "kind" : "city hall",
 "address" : {
 "state" : "CA",
 "city" : "Campbell",
 "street" : "70 North 1st street"
 },
 "location" : {
 "type" : "point",
 "coordinates" : [121.94,37.29]
 }
 }
);
INSERT INTO PointsOfInterest VALUES (
 2,
 {
 "kind" : "nature park",
 "name" : "castle rock state park",
 "address" : {
 "state" : "CA",
 "city" : "Los Gatos",
 "street" : "15000 Skyline Blvd"
 },
 "location" : {
 "type" : "polygon",
 "coordinates" : [
 [
 [122.1301, 37.2330],
 [122.1136, 37.2256],
 [122.0920, 37.2291],
 [122.1020, 37.2347],
 [122.1217, 37.2380],
 [122.1301, 37.2330]
]
]
 }

Chapter 11
Searching for GeoJson Data

11-8

 }
);

The following query looks for nature parks in northern California. The query uses
geo_intersect, instead of geo_inside, to include parks that straddle the border with neighbor
states.

SELECT t.poi AS park
FROM PointsOfInterest t
WHERE t.poi.kind = "nature park"
AND
geo_intersect(
 t.poi.location,
 {
 "type" : "polygon",
 "coordinates" : [
 [
 [121.94, 36.28],
 [117.52, 37.38],
 [119.99, 39.00],
 [120.00, 41.97],
 [124.21, 41.97],
 [124.39, 40.42],
 [121.94, 36.28]
]
]
 }
);

The following query looks for gas stations within a mile of a given route. The returned gas
stations are ordered by ascending distance from the route.

SELECT
t.poi AS gas_station,
geo_distance(
 t.poi.location,
 {
 "type" : "LineString",
 "coordinates" : [
 [121.9447, 37.2975],
 [121.9500, 37.3171],
 [121.9892, 37.3182],
 [122.1554, 37.3882],
 [122.2899, 37.4589],
 [122.4273, 37.6032],
 [122.4304, 37.6267],
 [122.3975, 37.6144]
]
 }
) AS distance
FROM PointsOfInterest t
WHERE t.poi.kind = "gas station"
AND
geo_near(

Chapter 11
Searching for GeoJson Data

11-9

 t.poi.location,
 {
 "type" : "LineString",
 "coordinates" : [
 [121.9447, 37.2975],
 [121.9500, 37.3171],
 [121.9892, 37.3182],
 [122.1554, 37.3882],
 [122.2899, 37.4589],
 [122.4273, 37.6032],
 [122.4304, 37.6267],
 [122.3975, 37.6144]
]
 },
 1609
);

Example 11-2 Searching for GeoJson data

This example shows how FeatureCollections can be queried in Oracle NoSQL
Database. Consider a "companies" table that stores info about companies, including
the locations where each company has offices and some properties for each office
location.

CREATE TABLE companies (
 id INTEGER, info JSON, PRIMARY KEY(id));

INSERT INTO companies VALUES (
 1,
 {
 "id" : 1,
 "info" : {
 "name" : "acme",
 "CEO" : "some random person",
 "locations" : {
 "type" : "FeatureCollection",
 "features" : [
 {
 "type" : "Feature",
 "geometry" : {
 "type" : "point",
 "coordinates" : [23.549, 35.2908]
 },
 "properties" : {
 "kind" : "development",
 "city" : "palo alto"
 }
 },
 {
 "type" : "Feature",
 "geometry" : {
 "type" : "point",
 "coordinates" : [23.9, 35.17]
 },
 "properties" : {

Chapter 11
Searching for GeoJson Data

11-10

 "kind" : "sales",
 "city" : "san jose"
 }
 }
]
 }
 }
 }
);

The following query looks for companies that have sales offices within a search region and
returns, for each such company, an array containing the geo-locations of the sales offices
within the same search region.

SELECT id,
c.info.locations.features [
 geo_intersect(
 $element.geometry,
 {
 "type" : "polygon",
 "coordinates" : [
 [
 [23.48, 35.16],
 [24.30, 35.16],
 [24.30, 35.70],
 [23.48, 35.70],
 [23.48, 35.16]
]
]
 }
)
 AND
 $element.properties.kind = "sales"
].geometry AS loc
FROM companies c
WHERE EXISTS c.info.locations.features [
 geo_intersect(
 $element.geometry,
 {
 "type" : "polygon",
 "coordinates" : [
 [
 [23.48, 35.16],
 [24.30, 35.16],
 [24.30, 35.70],
 [23.48, 35.70],
 [23.48, 35.16]
]
]
 }
)
 AND
 $element.properties.kind = "sales"
] ;

Chapter 11
Searching for GeoJson Data

11-11

For efficient execution of this query, the following index can be created:

CREATE INDEX idx_kind_loc ON companies (
info.locations.features[].properties.kind AS STRING,
info.locations.features[].geometry AS POINT);

Indexing GeoJson Data
Indexing GeoJson data is similar to indexing other json data. In the GeoJson case, the
GEOMETRY or POINT keyword must be used after an index path that leads to
geometry objects. POINT should be used only if all rows in the table are expected to
have single point geometries at the indexed field (GEOMETRY can also be used in
this case, but POINT is recommended for better performance). As in the case of other
json data, an error will be raised if for some row the value of the index path is not a
valid GeoJson point or geometry, unless that value is NULL, json null, or EMPTY.

An index that includes a path to geometry objects is called a geometry index. A
geometry index can index other fields as well, but some restrictions apply: (a) a
geometry index cannot index more than one GeoJson field, (b) the GeoJson field
cannot be inside an array, unless it is a POINT field, and (c) a geometry index cannot
be a multi-key index, unless the GeoJson field is a POINT field and the array or map
being indexed is the one that contains the POINT field.

Indexing of geometries is based on geohashing. Geohashing is an encoding of a
longitude/latitude pair to a string. It works by recursively partitioning the 2-D longitude/
latitude coordinate system into a hierarchy of rectangulars called cells. The initial
(level-0) cell is the whole world, i.e., all points with a longitude between -180 and +180
and latitude between -90 and +90. The first (level-0) split creates the 32 level-1 cells
shown in the following figure. Each cell is assigned a "name", which is a character out
of this 32-char-long string G = "0123456789bcdefghjkmnpqrstuvwxyz". This name is
called the geohash of the cell.

Figure 11-4 32 Level-1 Geohash Cells

Chapter 11
Indexing GeoJson Data

11-12

The next (level-1) split splits each level-1 cell into 32 level-2 cells. The following figure shows
all the level-2 cells inside the "g" cell.

Figure 11-5 Level-1 and Level-2 Geohash Cells

As shown, the geohash of each level-2 is 2 chars long, where the 1st char is the geohash of
the parent cell, and the 2nd char is again drawn from the same char set. This process
continues down to some given level L, called the geohash length. During an even-numbered
split, each cell is split into 8 vertical slices and 4 horizontal slices. During an odd-numbered
split, each cell is split into 4 vertical slices and 8 horizontal slices. In both cases, for each of
the 32 sub-cells, its geohash is formed by using the parent-cell geohash as a prefix and
appending a char out of G. The extra char for each sub-cell is chosen the same way as
shown in both the earlier figures for even and odd splits respectively.

Oracle NoSQL Database uses a geohash length of 10. Cells at level 10 have an area of
about 1 square meter. When indexing a point, the level-10 cell that contains the point is
computed and the geohash of that cell is placed in the index entry. So, for points, a single
index entry is generated for each point, and a geometry index on a POINT field behaves like

Chapter 11
Indexing GeoJson Data

11-13

a simple (non-multikey) index, unless the POINT field itself is inside an array or map
that is being indexed. Notice that all points inside the same level-10 cell will have the
same geohash.

With the geohashing algorithm described above, points that are close to each other
will usually (but not always) be close together in the geometry index as well, i.e., have
long common prefixes. So, searching for points using one of the functions described in
the previous section translates to one or more range scans in the geometry index.
These range scans may return false positives, so the search function itself must still be
applied on the rows returned by index scans to eliminate the false positives.

When indexing a LineString or Polygon, the geometry’s minimum bounding box (MBR)
is computed first, and then a set of cells is found that completely cover the MBR. The
level of the covering cells depends on the size and shape and position of the MBR
(usually it will be less than 10). Then, an index entry is created for each of the covering
cells containing the geohash of that cell. So, a geometry index on a LineString or
Polygon is always a multi-key index since multiple index entries will be created for a
single row. For MultiPoints, MultiLineStrings, MultiPolygons, and GeometryCollections
each of the constituent geometries is indexed separately and the index for such
geometries it also a multi-key index.

Chapter 11
Indexing GeoJson Data

11-14

12
Built-in Functions

This chapter discusses about the Built-in functions supported in Oracle NoSQL Database.

Most of the examples demonstrated in this section use one of the two common schemas, that
is, the BaggageInfo table schema and stream_acct table schema.

The BaggageInfo table contains passenger details and bag information that is made available
as a part of the airline application. The stream_acct table includes information about various
shows that the customers watch and can be used on a TV streaming application.

If you want to use the common schema and follow along with the examples, download the
scripts baggageschema_loaddata.sql and acctstream_loaddata.sql.

Start your KVSTORE or KVLite and open the SQL shell.

java -jar lib/kvstore.jar kvlite -secure-config disable

java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the required script.

Example:

load -file baggageschema_loaddata.sql

load -file acctstream_loaddata.sql

This creates the tables used in the examples and loads the data into the tables.

For more details on the common schema, see Getting started with SQL for Oracle NoSQL
Database in the Developers Guide.

This chapter contains the following topics:

• Functions on Complex Values

• Functions on Sequences

• Functions on Timestamps

• Functions on Rows

• Function to generate a UUID string

• Functions on GeoJson Data

• Functions on Strings

• Function to Convert String to JSON

12-1

Functions on Complex Values
size function

Returns the number of fields/entries of a complex item (array, map, record). The
function accepts an empty sequence as argument, in which case it will return the
empty sequence. The function will return NULL if its input is NULL. The result type is
Integer.

Syntax:

integer? size(any?)

Semantics:

• any: The any?element in the above syntax is a complex parameter. The size
function accepts any complex parameter such as an array, map, or record.
Although the parameter type appears as any?, the function raises an error if the
given item is not complex.

• return type: Integer

Example:

Every passenger usually carries one or more pieces of luggage during their travel. In
the airline application, you can determine the number of bags owned by a passenger
using the size function.

SELECT
fullName AS NAME,
size(bagInfo) AS BagCount
FROM BaggageInfo;

Explanation:

In this example, the information on all the luggage owned by each a passenger is
available in the bagInfo array of each passenger record. The size function returns the
size of the bagInfo array, which indicates the number of bags. If a passenger owns
two pieces of luggage, the bagInfo array has two items and the size function returns
the value as 2.

Output:

{"NAME":"Adelaide Willard","BagCount":1}
{"NAME":"Raymond Griffin","BagCount":1}
{"NAME":"Henry Jenkins","BagCount":1}
{"NAME":"Lucinda Beckman","BagCount":1}
{"NAME":"Michelle Payne","BagCount":1}
{"NAME":"Joanne Diaz","BagCount":1}
{"NAME":"Mary Watson","BagCount":1}
{"NAME":"Gerard Greene","BagCount":1}
{"NAME":"Fallon Clements","BagCount":1}
{"NAME":"Kendal Biddle","BagCount":1}
{"NAME":"Elane Lemons","BagCount":1}

Chapter 12
Functions on Complex Values

12-2

{"NAME":"Adam Phillips","BagCount":1}
{"NAME":"Lorenzo Phil","BagCount":2}
{"NAME":"Omar Harvey","BagCount":1}
{"NAME":"Lisbeth Wampler","BagCount":1}
{"NAME":"Dierdre Amador","BagCount":1}
{"NAME":"Teena Colley","BagCount":1}
{"NAME":"Rosalia Triplett","BagCount":1}
{"NAME":"Zulema Martindale","BagCount":1}
{"NAME":"Doris Martin","BagCount":1}
{"NAME":"Zina Christenson","BagCount":1}

In the above query, since the bagInfo array contains one JSON document for each bag
checked in by a passenger, the Bagcount in this query displays the number of bags that each
passenger has checked into their flight.

Functions on Sequences
seq_concat function

seq_concat is a variadic function: it can have any number of arguments. It simply evaluates
its arguments (if any) in the order they are listed in the argument list, and concatenates the
sequences returned by these arguments. This function accepts any data type as the input
argument. If the input is a scalar, then the input item is treated as a sequence of size 1.

Syntax:

any* seq_concat(any*, ...)

Semantics:

• any: The any? element in the above syntax can be of any data type. The seq_concat
function accepts any number of input arguments. The arguments have to be in a comma-
separated format.

• return type: any type

Example 1:

In the TV streaming application, you can offer suggestions to the users regarding upcoming
shows. This is usually based on the shows they have already watched or the genres they
prefer.

SELECT acct_id,

concat(stream_acct.acct_data[].firstName,
' ',stream_acct.acct_data[].lastName) AS Fullname,
seq_concat(stream_acct.acct_data[].contentStreamed[].showName) AS Uwatched,
seq_concat(stream_acct.acct_data[].contentStreamed[].genres) AS Uprefer
FROM stream_acct
ORDER BY acct_id;

Explanation:

Chapter 12
Functions on Sequences

12-3

In this example, the seq_concat function lists all the watched shows and their genres
as a comma-separated list.

Output:

{"acct_id":1,"Fullname":"Adam Phillips","Uwatched":["At the
Ranch","Bienvenu"],"Uprefer":[["action","crime","spanish"],
["comedy","french"]]}

{"acct_id":2,"Fullname":"Adelaide
Willard","Uwatched":"Bienvenu","Uprefer":["comedy","french"]}

The concat function is also used in the query to concatenate the two strings,
firstName and lastName and display it as a single object Fullname in the output. For
more details, see concat Function.

Example 2:

In this TV streaming application example, you can retrieve the details of the shows
watched by users.

SELECT

 concat(stream_acct.acct_data[].firstName,
' ',stream_acct.acct_data[].lastName) AS Fullname,
 CASE
 WHEN exists stream_acct.acct_data[].contentStreamed[].showId
 THEN
seq_concat(stream_acct.acct_data[].contentStreamed[0].showName,
stream_acct.acct_data[0].contentStreamed[0].seriesInfo[0].episodes[0],
stream_acct.acct_data[0].contentStreamed[0].seriesInfo[0].episodes[1],s
tream_acct.acct_data[].contentStreamed[1].showName,
stream_acct.acct_data[0].contentStreamed[0].seriesInfo[1].episodes[0],
stream_acct.acct_data[0].contentStreamed[0].seriesInfo[1].episodes[1])
 ELSE "Start streaming your favorite shows here"
 END AS Showdetails
FROM stream_acct WHERE acct_id=1;

Explanation:

If a user has watched any show, the details are stored in the contentSreamed JSON
field. The above query retrieves the date of streaming, details of the episode, the
duration, and the time elapsed for each show. The seq_concat function is used to
concatenate and display all the details in the output.

Output:

{"Fullname":"Adam Phillips","Showdetails":["At the Ranch",
{"date":"2022-04-18","episodeID":20,"lengthMin":85,"minWatched":85},
{"date":"2022-04-18","episodeID":30,"lengthMin":60,"minWatched":60},"Bi
envenu",
{"date":"2022-04-25","episodeID":40,"lengthMin":50,"minWatched":50},
{"date":"2022-04-27","episodeID":50,"lengthMin":45,"minWatched":30}]}

Chapter 12
Functions on Sequences

12-4

The concat function is also used in the query to concatenate the two strings, firstName and
lastName and display it as a single object Fullname in the output. For more details, see
concat Function.

In addition to the above there are also the following aggregate functions on sequences. They
are described in the Sequence Aggregate Functions section.

• long seq_count(any*)

• number seq_sum(any*)

• number seq_avg(any*)

• any_atomic seq_min(any*)

• any_atomic seq_max(any*)

seq_distinct function

Returns the distinct values of its input sequence.

Syntax:

any* seq_distinct(any*)

Semantics:

• any: The seq_distinct function accepts any parameter type as the input argument.

• return type: any type

Example:

Consider an application that maintains the information of the users. Create the schema for
users table as follows:

CREATE TABLE users (id INTEGER,
 firstName STRING,
 lastName STRING,
 otherNames ARRAY(RECORD(first STRING, last STRING)),
 age INTEGER,
 income INTEGER,
 address JSON,
 connections ARRAY(INTEGER),
 expenses MAP(INTEGER),
PRIMARY KEY (id));

Insert the following user record into the table.

INSERT INTO users VALUES (
 10,
 "John",
 "Smith",
 [{"first" : "Johny", "last" : "BeGood"}],
 22,
 45000,
 {
 "street" : "Pacific Ave",

Chapter 12
Functions on Sequences

12-5

 "number" : 101,
 "city" : "Santa Cruz",
 "state" : "CA",
 "zip" : 95008,
 "phones" : [
 { "area" : 408, "number" : 4538955, "kind" : "work" },
 { "area" : 831, "number" : 7533341, "kind" : "home" },
 { "area" : 831, "number" : 7533382, "kind" : "mobile" }
]
 },
 [30, 55, 43],
 DEFAULT
);

Explanation:

A user may have multiple phone numbers in the same area code. To determine the
number of users having phone numbers in different area codes, a particular user
should be counted only once (even if the user has more than one phone number with
the same area code).

This is possible using the seq_distinct function, which eliminates duplicate values
from its input sequence.

SELECT $area, count(*) AS cnt
FROM Users u, seq_distinct(u.address.phones.area) AS $area
GROUP BY $area

Output:

{"area":408,"cnt":1}
{"area":831,"cnt":1}

The user John Smith has three phone numbers, two of which have the same area
code. However, only distinct area codes are fetched in the query.

Functions on Timestamps
• Create and populate Baggage schema

• timestamp_add function

• timestamp_diff and get_duration functions

• Miscellaneous Timestamp functions

Create and populate Baggage schema
If you want to follow along with the examples, download the script
baggageschema_loaddata.sql and run it as shown below. This script creates the table
used in the example and loads data into the table.

Chapter 12
Functions on Timestamps

12-6

Start your KVSTORE or KVLite and open the SQL.shell.

java -jar lib/kvstore.jar kvlite -secure-config disable
 java -jar lib/sql.jar -helper-hosts localhost:5000 -store kvstore

Using the load command, run the script.

load -file baggageschema_loaddata.sql

timestamp_add function
Adds a duration to a timestamp value and returns the new timestamp. The duration can be
positive or negative. The result type is TIMESTAMP(9).

Syntax:

TIMESTAMP(9) timestamp_add(TIMESTAMP timestamp, STRING duration)

Semantics:

• timestamp: A TIMESTAMP value or a value that can be cast to TIMESTAMP.

• duration: A string with format [-](<n> <UNIT>)+, where 'n' is a number and the <UNIT>
can be YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, MILLISECOND,
NANOSECOND or the plural form of these keywords (e.g. YEARS).

Note:

The UNIT keyword is case-insensitive.

• returnvalue: TIMESTAMP(9)

Example 1: In the airline application, a buffer of five minutes delay is considered "on-time" .
Print the estimated arrival time on the first leg with a buffer of five minutes for the passenger
with ticket number 1762399766476.

SELECT timestamp_add(bag.bagInfo.flightLegs[0].estimatedArrival, "5 minutes")
AS ARRIVAL_TIME FROM BaggageInfo bag WHERE ticketNo=1762399766476;

Explanation: In the airline application, a customer can have any number of flight legs
depending on the source and destination. In the query above, you are fetching the estimated
arrival in the "first leg" of the travel. So the first record of the flightsLeg array is fetched and
the estimatedArrival time is fetched from the array and a buffer of "5 minutes" is added to
that and displayed.

Output:

{"ARRIVAL_TIME":"2019-02-03T06:05:00.000000000Z"}

Chapter 12
Functions on Timestamps

12-7

Note:

The column estimatedArrival is a STRING. If the column has STRING
values in ISO-8601 format, then it will be automatically converted by the SQL
runtime into TIMESTAMP datatype.

Example 1a: Print the estimated arrival time in every leg with a buffer of five minutes
for the passenger with ticket number 1762399766476.

SELECT $s.ticketno, $value as estimate, timestamp_add($value, '5
minute') AS add5min
FROM baggageinfo $s,$s.bagInfo.flightLegs.estimatedArrival as $value
WHERE ticketNo=1762399766476;

Explanation: You want to display the estimatedArrival time in every leg. The
number of legs can be different for every customer. So variable reference is used in
the query above and the baggageInfo array and the flightsLegs array are unnested
to execute the query.

Output:

{"ticketno":1762399766476,"estimate":"2019-02-03T06:00:00Z","add5min":"
2019-02-03T06:05:00.000000000Z"}
{"ticketno":1762399766476,"estimate":"2019-02-03T08:22:00Z","add5min":"
2019-02-03T08:27:00.000000000Z"}

Example 2 : How many bags arrived in the last week?

SELECT count(*) AS COUNT_LASTWEEK FROM baggageInfo bag WHERE
EXISTS bag.bagInfo[$element.bagArrivalDate > current_time()
AND $element.bagArrivalDate < timestamp_add(current_time(), "-7 days")]

Explanation: You get a count of the number of bags processed by the airline
application in the last week. A customer can have more than one bag(that is bagInfo
array can have more than one record). The bagArrivalDate should have a value
between today and the last 7 days. For every record in thebagInfo array, you
determine if the bag arrival time is between the time now and one week ago. The
function current_time gives you the time now. An EXISTS condition is used as a filter
for determining if the bag has an arrival date in the last one week. The count function
determines the total number of bags in this time period.

Example 3: Find the number of bags arriving in the next 6 hours.

SELECT count(*) AS COUNT_NEXT6HOURS FROM baggageInfo bag WHERE
exists bag.bagInfo[$element.bagArrivalDate > current_time()
AND $element.bagArrivalDate < timestamp_add(current_time(), "6 hours")]

Explanation: You get a count of the number of bags that will be processed by the
airline application in the next 6 hours. A customer can have more than one bag(that is
bagInfo array can have more than one record). The bagArrivalDate should be
between the time now and the next 6 hours. For every record in the bagInfo array, you

Chapter 12
Functions on Timestamps

12-8

determine if the bag arrival time is between the time now and six hours later. The function
current_time gives you the time now. An EXISTS condition is used as a filter for
determining if the bag has an arrival date in the next six hours. The count function determines
the total number of bags in this time period.

timestamp_diff and get_duration functions
timestamp_diff: Returns the number of milliseconds between two timestamp values. The
result type is LONG.

Syntax:

LONG timestamp_diff(TIMESTAMP timestamp1, TIMESTAMP timestamp2

Semantics:

• timestamp1: A TIMESTAMP value or a value that can be cast to TIMESTAMP

• timestamp2: A TIMESTAMP value or a value that can be cast to TIMESTAMP

• returnvalue: LONG

get_duration: Converts the given number of milliseconds to a duration string. The result type
is STRING.

Syntax:

STRING get_duration(LONG duration_millis)

Semantics

• duration_millis: the duration in milliseconds

• returnvalue: STRING. The returned duration string format is [-](<n> <UNIT>)+, where
the <UNIT> can be DAY, HOUR, MINUTE, SECOND and MILLISECOND, e.g. "1 day 2
hours" or "-10 minutes 0 second 500 milliseconds".

Example 1 : What is the duration between the time the baggage was boarded at one leg and
reached the next leg for the passenger with ticket number 1762355527825?

To determine the duration in milliseconds, use the timestamp_diff function.

SELECT $bagInfo.bagArrivalDate, $flightLeg.flightDate,
timestamp_diff($bagInfo.bagArrivalDate, $flightLeg.flightDate) AS diff
FROM baggageinfo $s,
$s.bagInfo[] AS $bagInfo, $bagInfo.flightLegs[] AS $flightLeg
WHERE ticketNo=1762355527825;

Explanation: In an airline application every customer can have different number of hops/legs
between their source and destination. In this query, you determine the time taken between
every flight leg. This is determined by the difference between bagArrivalDate and
flightDate for every flight leg.

Output:

{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:00:00Z",
"diff":11820000}

Chapter 12
Functions on Timestamps

12-9

{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:23
:00Z","diff":10440000}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T08:23
:00Z","diff":6840000}

To determine the duration in days or hours or minute , pass the result of the
timestamp_diff function to the get_duration function.

SELECT $s.ticketno, $bagInfo.bagArrivalDate, $flightLeg.flightDate,
get_duration(timestamp_diff($bagInfo.bagArrivalDate, $flightLeg.flightD
ate)) AS diff
FROM baggageinfo $s, $s.bagInfo[] AS $bagInfo, $bagInfo.flightLegs[]
AS $flightLeg
WHERE ticketNo=1762355527825;

Output:

{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:00
:00Z","diff":"3 hours 17 minutes"}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T07:23
:00Z","diff":"2 hours 54 minutes"}
{"bagArrivalDate":"2019-03-22T10:17:00Z","flightDate":"2019-03-22T08:23
:00Z","diff":"1 hour 54 minutes"}

Example 2: How long does it take from the time of check-in to the time the bag is
scanned at the point of boarding for the passenger with ticket number 176234463813?

To determine the duration in milliseconds, use the timestamp_diff function.

SELECT $flightLeg.flightNo,
$flightLeg.actions[contains($element.actionCode,
"Checkin")].actionTime AS checkinTime,
$flightLeg.actions[contains($element.actionCode, "BagTag
Scan")].actionTime AS bagScanTime,
timestamp_diff(
 $flightLeg.actions[contains($element.actionCode,
"Checkin")].actionTime,
 $flightLeg.actions[contains($element.actionCode, "BagTag
Scan")].actionTime
) AS diff
FROM baggageinfo $s,
$s.bagInfo[].flightLegs[] AS $flightLeg
WHERE ticketNo=176234463813 AND
starts_with($s.bagInfo[].routing, $flightLeg.fltRouteSrc);

Explanation: In the baggage data, every flightLeg has an actions array. There are
three different actions in the actions array. The action code for the first element in the
array is Checkin/Offload. For the first leg, the action code is Checkin and for the other
legs, the action code is Offload at the hop . The action code for the second element
of the array is BagTag Scan. In the query above, you determine the difference in action
time between the bag tag scan and check-in time. You use the contains function to
filter the action time only if the action code is Checkin or BagScan. Since only the first

Chapter 12
Functions on Timestamps

12-10

flight leg has details of check-in and bag scan, you additionally filter the data using
starts_with function to fetch only the source code fltRouteSrc.

Output:

{"flightNo":"BM572","checkinTime":"2019-03-02T03:28:00Z","bagScanTime":"2019-
03-02T04:52:00Z","diff":-5040000}

To determine the duration in days or hours or minutes, pass the result of the timestamp_diff
function to the get_duration function.

SELECT $flightLeg.flightNo,
$flightLeg.actions[contains($element.actionCode, "Checkin")].actionTime AS
checkinTime,
$flightLeg.actions[contains($element.actionCode, "BagTag Scan")].actionTime
AS bagScanTime,
get_duration(timestamp_diff(
 $flightLeg.actions[contains($element.actionCode, "Checkin")].actionTime,
 $flightLeg.actions[contains($element.actionCode, "BagTag
Scan")].actionTime
)) AS diff
FROM baggageinfo $s,
$s.bagInfo[].flightLegs[] AS $flightLeg
WHERE ticketNo=176234463813
AND starts_with($s.bagInfo[].routing, $flightLeg.fltRouteSrc);

Output:

{"flightNo":"BM572","checkinTime":"2019-03-02T03:28:00Z",
"bagScanTime":"2019-03-02T04:52:00Z","diff":"- 1 hour 24 minutes"}

Example 3: How long does it take for the bags of a customer with ticket no 1762320369957
to reach the first transit point?

To determine the duration in milliseconds, use the timestamp_diff function.

SELECT $bagInfo.flightLegs[0].flightDate,
$bagInfo.flightLegs[0].estimatedArrival,
timestamp_diff($bagInfo.flightLegs[0].estimatedArrival,
$bagInfo.flightLegs[0].flightDate) AS diff
FROM baggageinfo $s, $s.bagInfo[] AS $bagInfo
WHERE ticketNo=1762320369957;

Explanation: In an airline application every customer can have different number of hops/legs
between their source and destination. In the example above, you determine the time taken for
the bag to reach the first transit point. In the baggage data, the flightLeg is an array. The
first record in the array refers to the first transit point details. The flightDate in the first
record is the time when the bag leaves the source and the estimatedArrival in the first flight
leg record indicates the time it reaches the first transit point. The difference between the two
gives the time taken for the bag to reach the first transit point.

Chapter 12
Functions on Timestamps

12-11

Output:

{"flightDate":"2019-03-12T03:00:00Z","estimatedArrival":"2019-03-12T16:
00:00Z","diff":46800000}
{"flightDate":"2019-03-12T03:00:00Z","estimatedArrival":"2019-03-12T16:
40:00Z","diff":49200000}

To determine the duration in days or hours or minutes, pass the result of the
timestamp_diff function to the get_duration function.

SELECT $bagInfo.flightLegs[1].actions[2].actionTime,
$bagInfo.flightLegs[0].actions[0].actionTime,
get_duration(timestamp_diff($bagInfo.flightLegs[1].actions[2].actionTim
e,
$bagInfo.flightLegs[0].actions[0].actionTime)) AS diff
FROM baggageinfo $s, $s.bagInfo[] as $bagInfo
WHERE ticketNo=1762320369957;

Output:

{"flightDate":"2019-03-12T03:00:00Z","estimatedArrival":"2019-03-12T16:
00:00Z","diff":"13 hours"}
{"flightDate":"2019-03-12T03:00:00Z","estimatedArrival":"2019-03-12T16:
40:00Z","diff":"13 hours 40 minutes"}

Miscellaneous Timestamp functions
year function

Returns the year for the given timestamp. The returned value is in the range -6383 to
9999. If the argument is NULL or empty, the result is also NULL or empty.

Syntax:

integer? year(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

month function

Returns the month for the given timestamp, in the range 1 ~ 12. If the argument is
NULL or empty, the result is also NULL or empty.

Syntax:

integer? month(timestamp?)

Semantics:

Chapter 12
Functions on Timestamps

12-12

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

day function

Returns the day of month for the timestamp, in the range 1 ~ 31. If the argument is NULL or
empty, the result is also NULL or empty.

Syntax:

integer? day(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

hour function

Returns the hour of day for the timestamp, in the range 0 ~ 23. If the argument is NULL or
empty, the result is also NULL or empty.

Syntax:

integer? hour(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

minute function

Returns the minute for the timestamp, in the range 0 ~ 59. If the argument is NULL or empty,
the result is also NULL or empty.

Syntax:

integer? minute(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

second function

Returns the second for the timestamp, in the range 0 ~ 59. If the argument is NULL or empty,
the result is also NULL or empty.

Syntax:

integer? second(timestamp?)

Chapter 12
Functions on Timestamps

12-13

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

millisecond function

Returns the fractional second in millisecond for the timestamp, in the range 0 ~ 999. If
the argument is NULL or empty, the result is also NULL or empty.

Syntax:

integer? millisecond(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

microsecond function

Returns the fractional second in microsecond for the timestamp, in the range 0 ~
999999. If the argument is NULL or empty, the result is also NULL or empty.

Syntax:

integer? microsecond(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

nanosecond function

Returns the fractional second in nanosecond for the timestamp, in the range 0 ~
999999999. If the argument is NULL or empty, the result is also NULL or empty.

Syntax:

integer? nanosecond(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

Example 1: Miscellaneous timestamp functions

In an airline application, it is beneficial to the passengers to have a quick summary of
their upcoming travel details. You can use miscellaneous time functions to get
consolidated travel details of the passengers from the BaggageInfo table.

SELECT DISTINCT
$s.fullName,

Chapter 12
Functions on Timestamps

12-14

$s.bagInfo[].flightLegs[].flightNo AS flightnumbers,
$s.bagInfo[].flightLegs[].fltRouteSrc AS From,
concat ($t1,":", $t2,":", $t3) AS Traveldate
FROM baggageinfo $s, $s.bagInfo[].flightLegs[].flightDate AS $bagInfo,
day(CAST($bagInfo AS Timestamp(0))) $t1,
month(CAST($bagInfo AS Timestamp(0))) $t2,
year(CAST($bagInfo AS Timestamp(0))) $t3;

Explanation:

You can use the time functions to retrieve the travel date, month, and year. The concat
function is used to concatenate the retrieved travel records to display them in the desired
format on the application. You first use CAST to convert the flightDates to a TIMESTAMP
and then fetch the date, month, and year details from the timestamp.

Output:

{"fullName":"Adam Phillips","flightnumbers":["BM604","BM667"],"From":
["MIA","LAX"],"Traveldate":"1:2:2019"}

{"fullName":"Adelaide Willard","flightnumbers":["BM79","BM907"],"From":
["GRU","ORD"],"Traveldate":"15:2:2019"}

The query returns the flight details which can serve as a quick look-up for the passengers.

week function

Returns the week number within the year where a week starts on Sunday and the first week
has a minimum of 1 day in this year, in the range 1 ~ 54. If the argument is NULL or empty,
the result is also NULL or empty.

Syntax:

integer? week(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

isoweek function

Returns the week number within the year based on IS0-8601, where a week starts on
Monday and the first week has a minimum of 4 days in this year, in range 0 ~ 53. If the
argument is NULL or empty, the result is also NULL or empty.

Syntax:

integer? isoweek(timestamp?)

Semantics:

• timestamp: This function expects a timestamp as the input argument.

• return type: integer

Chapter 12
Functions on Timestamps

12-15

current_time_millis function

Returns the current time in UTC, as the number of milliseconds since January 1, 1970
UTC.

Syntax:

long current_time_millis()

Semantics:

• This function does not expect any input argument.

• return type: long

current_time function

Returns the current time in UTC, as a timestamp value with millisecond precision.

Syntax:

timestamp(3) current_time()

Semantics:

• This function does not expect any input argument.

• return type: timestamp(3)

Example 2: Miscellaneous timestamp functions

In an airline application, a few customers travel very frequently and are entitled to
frequent flier miles rewards. You can determine the time lapse between the last travel
date of a passenger and the current date to assess if they can be considered for such
a reward program.

SELECT
$s.fullName,
$s.contactPhone,
week(CAST($bagInfo.flightLegs[1].flightDate AS Timestamp(0))) AS
TravelWeek,
isoweek(CAST($bagInfo.flightLegs[1].flightDate AS Timestamp(0))) AS
ISO_TravelWeek,
get_duration(timestamp_diff(current_time(),
CAST($bagInfo.flightLegs[1].flightDate AS Timestamp(0)))) AS LastTravel
FROM baggageinfo $s, $s.bagInfo[] AS $bagInfo;

Explanation:

You can use the current_time function to get the current time. To determine the
timespan between the last travel date and the current date, you can supply the current
time to the get_duration/timestamp_diff function along with the last travel time. For
more details on timestamp_diff and get_duration functions, see timestamp_diff and
get_duration functions.

Chapter 12
Functions on Timestamps

12-16

Output:

{"fullName":"Adelaide
Willard","contactPhone":"421-272-8082","TravelWeek":7,"ISO_TravelWeek":7,"Las
tTravel":"1453 days 6 hours 20 minutes 56 seconds 601 milliseconds"}

{"fullName":"Adam
Phillips","contactPhone":"893-324-1064","TravelWeek":5,"ISO_TravelWeek":5,"La
stTravel":"1451 days 23 hours 19 minutes 39 seconds 543 milliseconds"}

The week function determines the travel week, isoweek function provides the ISO week
details. You use the current_time function to calculate the current time. Use the
timestamp_diff function to calculate the time difference between the current time and the
last flight date. You first use CAST to convert the flightDates to a TIMESTAMP and then
fetch the day, month, and year details from the timestamp. Since the timestamp_diff
function returns the number of milliseconds between two timestamp values, you then use the
get_duration function to convert the milliseconds to a duration string.

The get_duration function converts the milliseconds to days, hours, minutes, seconds, and
milliseconds based on the return value. The following conversions are considered for
calculation purposes:

1000 milliseconds = 1 second
60 seconds = 1 minute
60 minutes = 1 hour
24 hours = 1 day

For example: If the timestamp_diff function returns the value 129084684821 milliseconds,
the get_duration function converts it correspondingly to 1494 days 52 minutes 4 seconds
687 milliseconds.

Function to generate a UUID string
The function random_uuid returns a randomly generated UUID, as a string of 36 characters.
This function can be used to generate values for columns of type UUID in an INSERT or
UPDATE SQL statement.

Syntax:

string random_uuid()

Semantics:

• This function does not expect any input argument.

• return type: string

Example:

Chapter 12
Function to generate a UUID string

12-17

In certain applications like maintaining student records in a university, you can auto-
generate the ID instead of providing the value. Consider a simple table schema with
an id as the primary key and a name column.

CREATE TABLE myTable (id STRING AS UUID, name STRING, PRIMARY KEY
(id));

Insert the following data into the table. You can use the random_uuid function to
generate the primary key values.

INSERT INTO myTable values(random_uuid(),"Adam");
INSERT INTO myTable values(random_uuid(),"Lily");

Explanation:

The random_uuid function internally generates unique UUID during the INSERT
operation and assigns them to the id fields. Run the query to select the elements from
the table.

select * from myTable order by name;

Output:

{"id":"ff7057c2-cda9-4f6b-b94f-227b259a94d3","name":"Adam"}
{"id":"37166790-4470-4484-bfbb-66364e0ff807","name":"Lily"}

The output of the query displays the assigned UUID values against the student names.

The random_uuid function generates a random but unique 36-byte string. Consider the
multi-region tables where the identity columns are unique to a single region. You can
use the random_uuid function to generate a globally unique identity during the record
insertion.

You can retrieve the UUID of the inserted record by using the RETURNING clause in
the INSERT or UPDATE statement as follows:

INSERT INTO myTable values(random_uuid(),"Adam") RETURNING *;

Output:

{"id":"9f05eb60-2fa7-4c32-a90a-64371961cb9d","name":"Adam"}

For more details on the RETURNING clause, see the Upsert statement

You can retrieve the generated value of an identity column using class methods from
various Oracle NoSQL Database Drivers.

For example: If your application is using the Java SDK, you can use the
getGeneratedValue() method, which returns the generated value if the operation
creates a new value for an identity column. For more details, see PutResult.

If your application is using the Python SDK, you can use the get_return_row()
method, which succeeds only if the row exists. For more details, see PutRequest.

Chapter 12
Function to generate a UUID string

12-18

Similarly, each language SDK exposes an interface for retrieving the generated value.

Functions on Rows
As described in the Table Management section, table rows are record values conforming to
the table schema, but with some additional properties that are not part of the table schema.
To extract the value of such properties, the functions listed in this section must be used.

Although the signature of these functions specifies AnyRecord as the type of the input
parameter, the functions actually require a row as input. The only expression that returns a
row is a row variable, that is, a table alias whose name starts with '$'. The Example: Updating
TTL section shows an example of using the remaining_hours() function, which is one of the
row available functions.

modification_time function

The modification_time function allows you to see the most recent modification time (in
UTC) of a row. The time is returned as a timestamp value of precision 3 (milliseconds). If the
row has never been modified since its insertion, it returns the insertion time. You may find this
useful in deployments where tables span multiple regions and the Oracle NoSQL Database
cross-region agent is updating your table by replicating data from remote regions.

Syntax:

timestamp(3) modification_time (AnyRecord)

Semantics:

• AnyRecord: This function expects a row as the input value.

• return type: timestamp(3)

Example:

In an airline application, you can schedule periodic back-ups of passenger travel records
based on the last modification time. Only the records that have been modified after the last
scheduled backup can be considered for the next iteration.

SELECT modification_time($u)
FROM BaggageInfo $u
WHERE ticketNo = 1762344493810;

Explanation:

You can use the modification_time function to retrieve the last modified time details for a
passenger record from the BaggageInfo table.

Output:

 +--------------------------+
 | Column_1 |
 +--------------------------+
 | 2023-01-18T07:53:02.048Z |
 +--------------------------+

Chapter 12
Functions on Rows

12-19

The query returns the information on the most recent modification time for the
passenger with ticketNo 1762344493810 from the BaggageInfo table.

remaining_hours function

Returns the number of full hours remaining until the row expires. If the row has no
expiration time, it returns a negative number.

Syntax:

integer remaining_hours(AnyRecord)

Semantics:

• AnyRecord: This function expects a row as the input value.

• return type: integer

remaining_days function

Returns the number of full days remaining until the row expires. If the row has no
expiration time, it returns a negative number.

Syntax:

integer remaining_days(AnyRecord)

Semantics:

• AnyRecord: This function expects a row as the input value.

• return type: integer

expiration_time function

Returns the expiration time of the row, as a timestamp value of precision zero. If the
row has no expiration time, it returns a timestamp set on January 1, 1970 UTC.

Syntax:

timestamp(0) expiration_time(AnyRecord)

Semantics:

• AnyRecord: This function expects a row as the input value.

• return type: timestamp(0)

expiration_time_millis function

Returns the expiration time of the row, as the number of milliseconds since January 1,
1970 UTC. If the row has no expiration time, it returns zero.

Syntax:

long expiration_time_millis(AnyRecord)

Semantics:

Chapter 12
Functions on Rows

12-20

• AnyRecord: This function expects a row as the input value.

• return type: long

Example: TTL-related functions

In an airline application, you may want to back up the passenger records before the data
expiration time or extend the expiration date to retain the information in the table for a longer
period.

SELECT
remaining_hours($u) AS hours,
remaining_days($u) AS days,
expiration_time($u) AS expirytime,
expiration_time_millis($u) AS expirytime_ms
FROM BaggageInfo $u
WHERE ticketNo = 1762344493810;

Explanation:

You can use the TTL expiration functions to check the expiration details (if any) of the rows
containing the passenger records in the BaggageInfo table.

Output:

{"hours":376,"days":15,"expirytime":"2023-02-04T00:00:00.000Z","expirytime_ms
":1675468800000}

The query returns the TTL information on the row that contains the passenger data for
ticketNo 1762344493810 from the BaggageInfo table.

Here, the row expires after 15 days. The same information is displayed in hours, timestamp
value, and number of milliseconds since January 1, 1970, UTC using the row functions
described above.

You can update the expiration day/time of a row using the UPDATE statement as follows:

UPDATE BaggageInfo $u
SET TTL remaining_days($u) + 15 days
WHERE ticketNo = 1762344493810;

The above statement extends the life of the row by 15 days. In this example, the remaining
days until the expiry of the row is 15 days, to which the above statement adds 15 more days,
effectively rendering the row to expire after 30 days. You can use the remaining_hours
function and add hours to it to extend the expiration of a row by hours.

For more details on updating the TTL values, see Example: Updating TTL.

The following functions allow you to see how the data is distributed across the store and
collect statistics.

integer shard (AnyRecord)

The shard function allows you to retrieve the shard ID in which a given rows of data is stored.
It returns an integer value. For more information on shard ID, see the Viewing Key
Distribution Statistics section in the Administrator's Guide.

Chapter 12
Functions on Rows

12-21

Syntax:

integer shard (AnyRecord)

Semantics:

• AnyRecord: This function expects a row as the input value.

• return type: integer

Example:

You may identify potential storage hotspots or an imbalance in your Oracle NoSQL
Database cluster using the function. For example, you may notice that a particular
shard seems to consume more storage than any other shard.

SELECT shard($u) AS Shard
FROM BaggageInfo $u
WHERE ticketNo = 1762344493810;

Explanation:

In an airline application, you use the shard function to determine the shard details
where the passenger record is stored.

Output:

{"Shard":1}

The query returns the shard in which the row with ticketNo 1762344493810 is stored
in the BaggageInfo table.

You can compare the number of records in that shard with the other shards in your
store by issuing the following command.

SELECT count(ticketNo) AS Shard_count
FROM BaggageInfo $u
WHERE shard($u) =1;

Output:

{"Shard_count":2}

partition function

All data in the KVStore is accessed by one or more Keys. A Key might be a column in
a table, or it might be the key portion of a Key/Value pair. The Keys are placed in
logical containers called partitions, and each shard contains one or more partitions.
For more details, see Partitions in the Concepts Guide.

The partition function allows you to see the partition id in which a given rows of data
is stored.

Chapter 12
Functions on Rows

12-22

Syntax:

integer partition (AnyRecord)

Semantics:

• AnyRecord: This function expects a row as the input value.

• return type: integer

Example:

Use the partition function to determine the partitions in which the rows are stored in your
Oracle NoSQL Database cluster.

SELECT partition($u) AS partition
FROM BaggageInfo $u
WHERE ticketNo = 1762344493810;

Explanation:

In this example, the partition function returns the partition details of where the passenger
record is stored. The query returns the partition in which the row with ticketNo
1762344493810 is stored in the BaggageInfo table.

Output:

{"partition":80}

The following query returns the list of partitions in the shard with id 1.

SELECT partition ($u) AS partition_count
FROM BaggageInfo $u
WHERE shard($u)=1;

Output:

{"partition_count":80}
{"partition_count":131}

row_storage_size function

The row_storage_size function allows you to see the persistent storage size (in bytes) used
by the given rows of data. It returns an integer value.

Syntax:

integer row_storage_size (AnyRecord)

Semantics:

• AnyRecord: This function expects a row as the input value.

• return type: integer

Chapter 12
Functions on Rows

12-23

Example:

You can use the row_storage_size function to obtain the record size for a given row.

SELECT row_storage_size($u) AS storage_size
FROM BaggageInfo $u
WHERE ticketNo = 1762344493810;

Explanation:

In an airline application, you can use the row_storage_size function to determine
the storage size of the individual passenger records.

Output:

{"storage_size":1123}

The query returns the storage size of the row containing the passenger record with
ticketNo 1762344493810 in the BaggageInfo table. The storage size is displayed in
bytes.

index_storage_size function

The index_storage_size function allows you to see the persistent storage size (in
bytes) used by the index for the given row(s) of data. It returns an integer value. This
function takes two arguments. The first argument is the table reference in which the
index is created. The second argument is the index name for which the storage size is
required. The index name is case-insensitive.

Syntax:

integer index_storage_size (AnyRecord, String)

Semantics:

• AnyRecord: A table reference in which the index is created as its first argument.

• string: The name of the index.

• return type: integer

Example:

You can use the index_storage_size function to determine the storage size of the
individual index on a Table. The storage size of each index must be queried
separately. To determine the total storage size of all the indexes on a table, you have
to call the function for every index.

SELECT index_storage_size($u,"idx_contact")
FROM baggageInfo $u
WHERE ticketNo = 1762344493810;

Explanation:

Chapter 12
Functions on Rows

12-24

In an airline application, you can create an index for required fields on your Oracle NoSQL
Database table. You use the index_storage_size function to retrieve the storage size of
each index.

In this example, an index is created on the contactPhone field in the table. The table name
BaggageInfo table and the index name idx_contact are supplied as arguments to the
function.

For more information on Indexes, see About Indexes.

Output:

 +----------+
 | Column_1 |
 +----------+
 | 40 |
 +----------+

The query returns the storage size of the row containing the passenger record with ticketNo
1762344493810 in the BaggageInfo table. The storage size is displayed in bytes.

Example:

In an airline application, you can get a detailed view of how your storage is distributed for
your table across the partitions in your cluster by using the following query. For each partition,
the total number of bytes used to store all the rows of the table contained in that partition is
retrieved.

SELECT
partition($u) AS partition,
sum(row_storage_size($u)) AS sum
FROM BaggageInfo $u
GROUP BY partition($u);

Explanation:

In this example, the partition function determines the partitions in which the passenger
records are stored in the BaggageInfo table. The sum function computes the storage size of
each row and sums up the result.

Output:

 +----------+----------+
 | partition| sum |
 +----------+----------+
 | 80| 1123|
 | 131| 1115|
 +----------+----------+

The first column in the output is the list of partition numbers, and the second column is the
current size of those partitions.

Chapter 12
Functions on Rows

12-25

Functions on GeoJson Data
The GeoJson specification defines the structure and content of JSON objects that are
supposed to represent geographical shapes on earth (called geometries). The
following functions interpret the JSON objects as geometries and allow the search for
rows containing geometries that satisfy certain conditions.

For more information on the functions and examples, see Managing GeoJSON data in
the Developers Guide.

boolean geo_intersect(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a
single valid geometry object. Otherwise, the runtime behavior is as follows:

• Returns false if any operand returns 0 or more than 1 items.

• Returns NULL if any operand returns NULL.

• Returns false if any operand returns an item that is not a valid geometry object.

Finally, if both operands return a single geometry object, it returns true if the 2
geometries have any points in common; otherwise false.

boolean geo_inside(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a
single valid geometry object. Otherwise, the runtime behavior is as follows:

• Returns false if any operand returns 0 or more than 1 items.

• Returns NULL if any operand returns NULL.

• Returns false if any operand returns an item that is not a valid geometry object
(however, if it can be detected at compile time that an operand will not return a
valid geometry, an error is raised).

• Returns false if the second operand returns a geometry object that is not a
polygon.

Finally, if both operands return a single geometry object and the second geometry is a
polygon, it returns true if the first geometry is completely contained inside the second
polygon, i.e., all its points belong to the interior of the polygon; otherwise false. The
interior of a polygon is all the points in the polygon area except the points on the linear
rings that define the polygon’s boundary.

boolean geo_within_distance(any*, any*, double)

Raises an error if it can be detected at compile time that any of the first two operands
will not return a single valid geometry object. Otherwise, the runtime behavior is as
follows:

• Returns false if any of the first two operands returns 0 or more than 1 items.

• Returns NULL if any of the first two operands returns NULL.

• Returns false if any of the first two operands returns an item that is not a valid
geometry object.

Finally, if both of the first two operands return a single geometry object, it returns true if
the first geometry is within a distance of N meters from the second geometry, where N

Chapter 12
Functions on GeoJson Data

12-26

is the number returned by the third operand; otherwise false. The distance between 2
geometries is defined as the minimum among the distances of any pair of points where the
first point belongs to the first geometry and the second point to the second geometry. If N is a
negative number, it is set to 0.

boolean geo_near(any*, any*, double)

geo_near is converted internally to geo_within_distance plus an (implicit) order-by the
distance between the two geometries. However, if the query has an (explicit) order-by
already, no ordering by distance is performed. The geo_near function can appear in the
WHERE clause only, where it must be a top-level predicate, i.e, not nested under an OR or
NOT operator.

double geo_distance(any*, any*)

Raises an error if it can be detected at compile time that an operand will not return a single
valid geometry object. Otherwise, the runtime behavior is as follows:

• Returns -1 if any operand returns zero or more than 1 items.

• Returns NULL if any operand returns NULL.

• Returns -1 if any of the operands is not a geometry.

Otherwise it returns the geodetic distance between the 2 input geometries. The returned
distance is the minimum among the distances of any pair of points where the first point
belongs to the first geometry and the second point to the second geometry. Between two
such points, their distance is the length of the geodetic line that connects the points.

boolean geo_is_geometry(any*)

• Returns false if the operand returns zero or more than 1 items.

• Returns NULL if the operand returns NULL.

• Returns true if the input is a single valid geometry object. Otherwise, false.

Functions on Strings
This section describes various functions on strings.

To follow along with the examples in the section, create users table that provides information
about users. See the seq_distinct function in Functions on Sequences section for users table
creation.

substring Function
The substring function extracts a string from a given string according to a given numeric
starting position and a given numeric substring length.

Syntax

returnvalue substring (source, position [, substring_length])

source ::= any*
position ::= integer*

Chapter 12
Functions on Strings

12-27

substring_length ::= integer*
returnvalue ::= string

Semantics

source
The input string from which the substring should be extracted. This argument is
implicitly cast to a sequence of strings.

position
This argument indicates the starting point of the substring within the source. The first
character of the source string has position 0.
An error is thrown if a non-integer value is supplied for the position.

substring_length
This argument indicates the length of the substring starting from the position value. If
the supplied value is greater than the length of the source, then the length of the
source is assumed for this argument.
An error is thrown if a non-integer value is supplied for the substring_length.

returnvalue
Returns an empty string ("") if the function did not return any characters.
Returns an empty string ("") if the substring_length is less than 1.
Returns NULL if the source argument is NULL.
Returns NULL if the position argument is less than 0 or greater or equal to the source
length.

Example 12-1 substring Function

In this example, the first character in the firstname is selected from the users table.
Notice that to select the first character, we have provided the value 0 for the position
argument.

SELECT substring(firstname,0,1) as Initials FROM users;

 +----------+
 | Initials |
 +----------+
 | J |
 | P |
 | M |
 +----------+

Example 12-2 substring Function

This example illustrates that providing a negative value for the position argument will
result in a NULL output value.

SELECT substring (firstname, -5, 4) FROM users;

 +----------+
 | Column_1 |
 +----------+

Chapter 12
Functions on Strings

12-28

 | NULL |
 | NULL |
 | NULL |
 +----------+

Example 12-3 substring Function

In this example, we select the first 4 characters from the firstname in the users table.

SELECT substring (firstname, 0, 4) FROM users;

 +----------+
 | Column_1 |
 +----------+
 | John |
 | Pete |
 | Mary |
 +----------+

Example 12-4 substring Function

In this example, we select 100 characters starting from position 2. Notice that even though
none of the rows has more than 5 characters in firstname, still we get the output up to the
length of the source starting from position 2.

SELECT substring (firstname, 2, 100) FROM users;

 +----------+
 | Column_1 |
 +----------+
 | hn |
 | ter |
 | ry |
 +----------+

Example 12-5 substring Function

In this example, the substring_length argument is not provided as it is optional. In such
cases, we get the complete substring starting from the given position.

SELECT substring (firstname, 2) FROM users;

 +----------+
 | Column_1 |
 +----------+
 | hn |
 | ter |
 | ry |
 +----------+

Chapter 12
Functions on Strings

12-29

concat Function
The concat function returns arg1 concatenated with arg2. Both arg1 and arg2 can be
of any data type.

Syntax

returnvalue concat (source,[source*])

source ::= any*
returnvalue ::= boolean

Semantics

source
The input values that are joined to get a character string. This argument is implicitly
cast to a sequence of strings.

returnvalue
Returns the character string made by joining its character string operands in the order
given.
If any of the arguments is a sequence, then all the items are concatenated to the
result in the order they appear in the sequence.
If all the arguments are empty sequence, then an empty sequence is returned.
If all the arguments are NULL, then a NULL is returned. This is because a NULL
argument is converted to an empty string during concatenation unless all arguments
are NULL, in which case the result is NULL. So NULL can result only from the
concatenation of two or more NULL values.

Note:

For security/denial of service reasons the maximum number of chars of the
returned string will be less than STRING_MAX_SIZE = 2^18 - 1 in chars i.e.
512kb. If the number of chars exceeds this number, then a runtime query
exception is thrown.

Example 12-6 concat function

This example joins id, firstname, and lastname into a single string and provides the
output. Notice that id, which is an integer type, also gets concatenated with the string
values.

SELECT concat(id, firstname, lastname) AS name FROM users;

 +-------------+
 | name |
 +-------------+
 | 10JohnSmith |
 | 30PeterPaul |

Chapter 12
Functions on Strings

12-30

 | 20MaryAnn |
 +-------------+

upper Function
The upper function converts all the characters in a string to uppercase.

Syntax

returnvalue upper (source)

source ::= any*
returnvalue ::= string

Semantics

source
The input string that should be converted to uppercase. This argument is implicitly cast to a
sequence of strings.

returnvalue
Returns NULL if the source argument is NULL.
Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Note:

If you want to convert a sequence with more than one item, see the Sequence
Transform Expressions section.

Example 12-7 upper Function

In this example, the lastname field is converted to uppercase.

SELECT id, firstname, upper(lastname) FROM users;

 +----+-----------+----------+
 | id | firstname | Column_3 |
 +----+-----------+----------+
10	John	SMITH
20	Mary	ANN
30	Peter	PAUL
 +----+-----------+----------+

lower Function
The lower function converts all the characters in a string to lowercase.

Chapter 12
Functions on Strings

12-31

Syntax

returnvalue lower (source)

source ::= any*
returnvalue ::= string

Semantics

source
The input string that should be converted to lowercase. This argument is implicitly
cast to a sequence of strings.

returnvalue
Returns NULL if the source argument is NULL.
Returns NULL if the source argument is an empty sequence or a sequence with more
than one item.

Note:

If you want to convert a sequence with more than one item, see the
Sequence Transform Expressions section.

Example 12-8 lower Function

In this example, the lastname field is converted to lowercase.

SELECT id, firstname, lower(lastname) FROM users;

 +----+-----------+----------+
 | id | firstname | Column_3 |
 +----+-----------+----------+
10	John	smith
20	Mary	ann
30	Peter	paul
 +----+-----------+----------+

trim Function
The trim function enables you to trim leading or trailing characters (or both) from a
string.

Syntax

returnvalue trim(source [, position [, trim_character]])

source ::= any*
position ::= "leading"|"trailing"|"both"

Chapter 12
Functions on Strings

12-32

trim_character ::= string*
returnvalue ::= string

Semantics

source
The input string that should be trimmed. This argument is implicitly cast to a sequence of
strings.
If you provide only the source argument, then the leading and trailing blank spaces are
removed.

position
This argument indicates whether leading or trailing or both leading and trailing characters
should be removed. The following are the valid values that can be specified for this
argument.

• If leading is specified, then the characters equal to the trim_character argument are
removed from the beginning of the string.

• If trailing is specified, then the characters equal to the trim_character argument are
removed at the end of the string.

• If both is specified, then the characters equal to the trim_character argument are
removed from both the beginning and end of the string.

• If no value is specified, then both value is assumed.

• If any value other than the above valid values are specified, then NULL is returned.

trim_character
This argument specifies the characters that should be removed from the source string. If you
do not specify this argument, then a blank space is taken as the default value.
Only one character is allowed for this argument. If there are more than one character, then
the first character will be used.
If an empty string is specified, then no trimming happens.

return_value
Returns NULL if any of the arguments is NULL.
Returns NULL if any argument is an empty sequence or a sequence with more than one
item.

Example 12-9 trim function

Create this table and insert values in it to run the trim, ltrim, and rtrim function examples.

CREATE TABLE trim_demo (
 id INTEGER,
 name STRING,
 yearofbirth STRING,
 PRIMARY KEY (id)
);

INSERT INTO trim_demo VALUES (10, " Peter ", 1980);
INSERT INTO trim_demo VALUES (20, "Mary", 1973);
INSERT INTO trim_demo VALUES (30, " Oliver", 2000);
INSERT INTO trim_demo VALUES (40, "John ", 2000);

Chapter 12
Functions on Strings

12-33

SELECT * FROM trim_demo;

 +----+-----------+-------------+
 | id | name | yearofbirth |
 +----+-----------+-------------+
10	Peter	1980
20	Mary	1973
30	Oliver	2000
40	John	2000
 +----+-----------+-------------+

Example 12-10 trim Function

In this example, the id and yearofbirth are selected from the trim_demo table. Notice
that the zeros at the end of the yearofbirth are removed using the trim function.

SELECT id, trim(yearofbirth,"trailing",'0') FROM trim_demo;

 +----+----------+
 | id | Column_2 |
 +----+----------+
10	198
20	1973
30	2
40	2
 +----+----------+

Example 12-11 trim Function

In this example, '19' is provided as the trim_character. However, as per semantics,
only the first character '1' will be considered for trimming.

SELECT id, trim(yearofbirth,"leading",'19') FROM trim_demo;

 +----+----------+
 | id | Column_2 |
 +----+----------+
10	980
20	973
30	2000
40	2000
 +----+----------+

ltrim Function
The ltrim function enables you to trim leading characters from a string.

Chapter 12
Functions on Strings

12-34

Syntax

returnvalue ltrim(source)

source ::= any*
returnvalue ::= string

Semantics

source
The input string that should be trimmed. The leading spaces in this string are removed. This
argument is implicitly cast to a sequence of strings.

returnvalue
Returns NULL if the source argument is NULL.
Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Example 12-12 trim Function

This example demonstrates ltrim function. Notice that the empty spaces at the beginning are
removed but the empty spaces at the end are not removed.

Note:

You can use JSON query output mode so that the empty spaces are visible.

MODE JSON

SELECT id, ltrim(name) FROM trim_demo;

{"id":10,"Column_2":"Peter "}
{"id":20,"Column_2":"Mary"}
{"id":30,"Column_2":"Oliver"}
{"id":40,"Column_2":"John "}

rtrim Function
The rtrim function enables you to trim trailing characters from a string.

Syntax

returnvalue rtrim(source)

source ::= any*
returnvalue ::= string

Chapter 12
Functions on Strings

12-35

Semantics

source
The input string that should be trimmed. The trailing spaces in this string are removed.
This argument is implicitly cast to a sequence of strings.

returnvalue
Returns NULL if the source argument is NULL.
Returns NULL if the source argument is an empty sequence or a sequence with more
than one item.

Example 12-13 trim Function

This example demonstrates rtrim function. Notice that the empty spaces at the end are
removed but the empty spaces at the beginning are not removed.

Note:

You can use JSON query output mode so that the empty spaces are visible.

MODE JSON

SELECT id, rtrim(name) FROM trim_demo;

{"id":10,"Column_2":" Peter"}
{"id":20,"Column_2":"Mary"}
{"id":30,"Column_2":" Oliver"}
{"id":40,"Column_2":"John"}

length Function
The length function returns the length of a character string. The length function
calculates the length using the UTF character set.

Syntax

returnvalue length(source)

source ::= any*
returnvalue ::= integer

Semantics

source
The input string for which the length should be determined. This argument is implicitly
cast to a sequence of strings.

returnvalue
Returns NULL if the source argument is NULL.

Chapter 12
Functions on Strings

12-36

Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Note:

Characters that are represented on 32 or more bits, the length is considered 1,
while Java String.length() returns 2 for UTF32 chars, 4 for UTF64, etc.

Example 12-14 length Function

In this example, the length of the first name is selected from the users table.

SELECT firstname, length(firstname) as length FROM users;

 +-----------+--------+
 | firstname | length |
 +-----------+--------+
John	4
Mary	4
Peter	5
 +-----------+--------+

contains Function
The contains function indicates whether or not a search string is present inside the source
string.

Syntax

returnvalue contains(source, search_string)

source ::= any*
search_string ::= any*
returnvalue ::= boolean

Semantics

source
The input string to be searched. This argument is implicitly cast to a sequence of strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

returnvalue
Returns true if search_string exists inside source else returns false.
Returns false if any argument is an empty sequence or a sequence with more than one item.
Returns NULL if source or search_string argument is NULL.

Chapter 12
Functions on Strings

12-37

Example 12-15 contains Function

In this example, the firstname field values that contain the string "ar" in it is indicated
as true.

SELECT firstname, contains(firstname,"ar") FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
John	false
Peter	false
Mary	true
 +-----------+----------+

starts_with Function
The starts_with function indicates whether or not the source string begins with the
search string.

Syntax

returnvalue starts_with(source, search_string)

source ::= any*
search_string ::= any*
returnvalue ::= boolean

Semantics

source
The input string to be searched. This argument is implicitly cast to a sequence of
strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

returnvalue
Returns true if source begins with search_string else returns false.
Returns false if any argument is an empty sequence or a sequence with more than
one item.
Returns NULL if source or search_string is NULL.

Chapter 12
Functions on Strings

12-38

Example 12-16 starts_with Function

In this example, the firstname field values that starts with the string "Pe" is indicated as true.

SELECT firstname, starts_with(firstname,"Pe") FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
John	false
Peter	true
Mary	false
 +-----------+----------+

ends_with Function
The ends_with function indicates whether or not the source string ends with the search string.

Syntax

returnvalue ends_with(source, search_string)

source ::= any*
search_string ::= any*
returnvalue ::= boolean

Semantics

source
The input string to be searched. This argument is implicitly cast to a sequence of strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

returnvalue
Returns true if source ends with search_string else returns false.
Returns false if any argument is an empty sequence or a sequence with more than one item.
Returns NULL if source or search_string is NULL.

Example 12-17 ends_with Function

In this example, the firstname field values that ends with the string "hn" is indicated as true.

SELECT firstname, ends_with(firstname,"hn") FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
 | John | true |
 | Peter | false |

Chapter 12
Functions on Strings

12-39

 | Mary | false |
 +-----------+----------+

index_of Function
The index_of function determines the position of the first character of the search string
at its first occurrence, if any.

Syntax

returnvalue index_of(source, search_string [, start_position])

source ::= any*
search_string ::= any*
start_position ::= integer*
returnvalue ::= integer

Semantics

source
The input string to be searched. This argument is implicitly cast to a sequence of
strings.

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

start_position
An optional integer indicating, numerically, the position in the source from where the
search should begin.
The default start_position is 0 which is also the position of the first character in the
source.
If a negative value is supplied to start_position then 0 is assumed.

returnvalue
Returns the position of the first character of the search string at its first occurrence.
Returns -1 if search_string is not present in source.
Returns 0 for any value of source if the search_string is of length 0.
Returns NULL if any argument is NULL.
Returns NULL if any argument is an empty sequence or a sequence with more than
one item.
Returns error if start_position argument is not an integer.

Note:

The returnvalue is relative to the beginning of source, regardless of the value
of start_position.

Example 12-18 index_of Function

In this example, the index of "r" is selected in the firstname.

Chapter 12
Functions on Strings

12-40

In the output, John has no occurrence of "r" so -1 is returned. Peter and Mary has "r" at 4 and
2 position respectively.

SELECT firstname, index_of(firstname,"r") FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
John	-1
Peter	4
Mary	2
 +-----------+----------+

Example 12-19 index_of Function

In this example, the index of "e" is selected in the firstname. In the output, notice that
although "e" occurs twice in Peter, only the position of the first occurrence is returned.

SELECT firstname, index_of(firstname,"e") FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
John	-1
Peter	1
Mary	-1
 +-----------+----------+

replace Function
The replace function returns the source with every occurrence of the search string replaced
with the replacement string.

Syntax

returnvalue replace(source, search_string [, replacement_string])

source ::= any*
search_string ::= any*
replacement_string ::= any*
returnvalue ::= string

Semantics

source
The input string that should be searched. This argument is implicitly cast to a sequence of
strings.

Chapter 12
Functions on Strings

12-41

search_string
The string that should be searched in the source. This argument is implicitly cast to a
sequence of strings.

replacement_string
The string that should be substitued in place of search_string in the source. This is an
optional argument. If replacement_string is omitted or empty sequence, then all
occurrences of search_string are removed from source. The result will be checked so
that the result would not be bigger than STRING_MAX_SIZE = 2^18 - 1 in chars ie.
512kb, if that is the case a runtime query exception is thrown. This argument is
implicitly cast to a sequence of strings.

returnvalue
Returns source if the search_string argument is NULL.
Returns NULL if source argument is NULL.
Returns NULL if either source or search_string argument is an empty sequence.
Returns NULL if any argument is a sequence with more than one item.

Example 12-20 replace Function

In this example, the string "e" is replaced with "X" in all the occurences in firstname.
Notice the occurrence of "X" in Peter.

SELECT firstname, replace(firstname,"e","X") FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
John	John
Peter	PXtXr
Mary	Mary
 +-----------+----------+

Example 12-21 replace Function

In this example, the string "ar" is replaced with "urph". Notice that in the source the
remaining characters after the search_string are retained for output. This yields the
output for "Mary" as "Murphy".

SELECT firstname, replace(firstname,"ar","urph") FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
John	John
Peter	Peter
Mary	Murphy
 +-----------+----------+

Chapter 12
Functions on Strings

12-42

Example 12-22 replace Function

In this example, the replacement_string is not specified. Since the replacement_string is not
specified, the search_string is removed and the remaining source is displayed.

SELECT firstname, replace(firstname,"oh") FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
John	Jn
Peter	Peter
Mary	Mary
 +-----------+----------+

reverse Function
The reverse function returns the characters of the source string in reverse order, where the
string is written beginning with the last character first. For example, the reverse order for
"welcome" is "emoclew".

Syntax

returnvalue reverse(source)

source ::= any*
returnvalue ::= string

Semantics

source
The input string for which the characters should be reversed. This argument is implicitly cast
to a sequence of strings.

returnvalue
Returns NULL if the source argument is NULL.
Returns NULL if the source argument is an empty sequence or a sequence with more than
one item.

Example 12-23 reverse Function

In this example, the first name is displayed along with its reverse order.

SELECT firstname, reverse(firstname) FROM users;

 +-----------+----------+
 | firstname | Column_2 |
 +-----------+----------+
John	nhoJ
Peter	reteP
Mary	yraM
 +-----------+----------+

Chapter 12
Functions on Strings

12-43

Function to Convert String to JSON
parse_json function

The function parse_json converts a string argument to a JSON instance. The input
string must be a comma-separated list of one or more name-value pairs.

Syntax:

json parse_json(string)

Semantics:

The input string argument must be a valid JSON text. The parse_json function parses
the string and converts it to a JSON object.

For more details on JSON data type in Oracle NoSQL Database data model, see
JSON Data Type. An error is displayed if an incorrect JSON text is supplied in the
string argument (for example, a missing colon to separate the name and field values).

Example 1: Consider a user data table for a library application. Currently, the
subscription details are in a JSON document, which is stored as a string. You want to
add them as a JSON object.

To achieve this, consider the following schema for the table:

CREATE TABLE userslib (id LONG GENERATED BY DEFAULT AS IDENTITY,
details JSON, Book1 json,
 Book2 Json, Book3 Json, PRIMARY KEY (id))

You can declare the subscription ID as an IDENTITY column. The current subscription
details can be included as a JSON object in the details field. Assuming, three books
are allowed per subscription at any point, you can update the details of the borrowed
books as JSON objects in the corresponding Book fields.

You use the parse_json function to convert the subscription data of a user, which is in
a string format to a JSON object and insert it into the JSON field as follows:

mode json -pretty

insert into userslib (details) values
(parse_json("{\"firstName\":\"John\",\"lastName\":\"Smith\",\"DOB\":\"2
2-2-1995\",\"address\":{\"city\":\"Santa
Cruz\",\"number\":101,\"contactphone\":\"408-453-8955\",\"state\":\"CA\
",\"street\":\"Pacific
Ave\",\"zip\":95008},\"email\":\"john.smith@reachmail.com\"}"))
RETURNING *

Explanation:

You must provide a string that is a valid JSON text. In this example, the INSERT
statement parses the string using the parse_json function to create JSON objects,
which are then updated as elements in the details field. Notice that the value for the id

Chapter 12
Function to Convert String to JSON

12-44

field, which is the primary key is auto-generated as you have declared it as an IDENTITY
column. For more details, see Inserting Rows with an IDENTITY Column. Also, since you
have not provided any values for the books fields in this example, they are populated with
NULL values.

Output:

{
 "id" : 2,
 "details" : {
 "DOB" : "22-2-1995",
 "address" : {
 "city" : "Santa Cruz",
 "contactphone" : "408-453-8955",
 "number" : 101,
 "state" : "CA",
 "street" : "Pacific Ave",
 "zip" : 95008
 },
 "email" : "john.smith@reachmail.com",
 "firstName" : "John",
 "lastName" : "Smith"
 },
 "Book1" : null,
 "Book2" : null,
 "Book3" : null
}

Example 2: Fetch from the library application, the book titles of the borrowed books for a
user.

In the userslib table above, update the book fields for a user with the details of the books
that are borrowed from the library.

UPSERT into userslib values (2, {"DOB":"22-2-1995","address":{"city":"Santa
Cruz","contactphone":"408-453-8955","number":101,"state":"CA","street":"Pacif
ic
Ave","zip":95008},"email":"john.smith@reachmail.com","firstName":"John","last
Name":"Smith"}, '{"doc":{"title":"A Tale of two cities", "author":"Charles
Dickens", "site":"brooks.publishers.com"}}', {"doc":'{"title":"Harry
Potter", "author":"J K Rowling", "site":"brooks.publishers.com"}'}, {"doc":
{"title":"Percy Jackson", "author":"Rick Riodran",
"site":"brooks.publishers.com"}}) RETURNING *;

If any JSON data is in a string format inadvertently while updating the book details, the
operation still succeeds as the string data is a valid JSON. However, the fields are populated
with the unparsed string as follows:

{
 "id" : 2,
 "details" : {
 "DOB" : "22-2-1995",
 "address" : {
 "city" : "Santa Cruz",

Chapter 12
Function to Convert String to JSON

12-45

 "contactphone" : "408-453-8955",
 "number" : 101,
 "state" : "CA",
 "street" : "Pacific Ave",
 "zip" : 95008
 },
 "email" : "john.smith@reachmail.com",
 "firstName" : "John",
 "lastName" : "Smith"
 },
 "Book1" : "{\"doc\":{\"title\":\"A Tale of two cities\",
\"author\":\"Charles Dickens\", \"site\":\"brooks.publishers.com\"}}",
 "Book2" : {
 "doc" : "{\"title\":\"Harry Potter\", \"author\":\"J K Rowling\",
\"site\":\"brooks.publishers.com\"}"
 },
 "Book3" : {
 "doc" : {
 "author" : "Rick Riordan",
 "site" : "brooks.publishers.com",
 "title" : "Percy Jackson"
 }
 }
}

Here, the Book1 field is populated as a complete string. The Book2 field has a doc
attribute, which is JSON, however, the value is a string. The Book3 field is a proper
JSON document.

You can use the parse_json function to select the JSON values from the table as
follows:

SELECT
u.id, u.details.email,
parse_json(u.Book1).doc.title as title1,
parse_json(u.Book2.doc).title as title2,
u.Book3.doc.title as title3
FROM userslib u WHERE id=2;

Explanation:

You can use the parse_json function to parse the string values in the JSON field. In
the Book1 field above, the value is a JSON document stored as a string. You parse the
complete string to convert it to a JSON object and then select the title field. In the
Book2 field, the value of the doc attribute is a JSON document stored as a string. Here,
you parse the attribute value to convert it to a JSON object and then select the title
field. The Book3 field is a valid JSON object, from which you can extract the title value
directly using the path expression.

Output:

{
 "id" : 2,
 "email" : "john.smith@reachmail.com",

Chapter 12
Function to Convert String to JSON

12-46

 "title1" : "A Tale of two cities",
 "title2" : "Harry Potter",
 "title3" : "Percy Jackson"
}

Chapter 12
Function to Convert String to JSON

12-47

	Contents
	1 Introduction to SQL for Oracle NoSQL Database
	SQL Program
	EBNF Syntax
	Comments
	Identifiers
	Literals
	Operator Precedence
	Reserved Words
	Case Sensitivity
	Constraints

	2 Oracle NoSQL Database Data Model
	Atomic Data Types
	Complex Data Types
	JSON Data Type
	Wildcard Data Types
	Data Type Hierarchy
	Data Type Definitions

	3 Namespace Management
	CREATE NAMESPACE Statement
	SHOW NAMESPACES Statement
	DROP NAMESPACE Statement
	Namespace Resolution
	Namespace Scoped Privileges
	Granting Authorization Access to Namespaces

	4 Region Management
	CREATE REGION Statement
	SHOW REGIONS Statement
	DROP REGION Statement

	5 Table Management
	CREATE TABLE Statement
	SHOW TABLES Statement
	DESCRIBE TABLE Statement
	Table Hierarchies
	Using JSON Collection Tables
	Using the IDENTITY Column
	Creating Tables With an IDENTITY Column

	Using the UUID data type
	Using the MR_COUNTER datatype
	Using CRDT datatype in a multi-region table
	Create table using MR_COUNTER datatype

	Sequence Generator
	DROP TABLE Statement
	ALTER TABLE Statement
	Altering an IDENTITY Column
	Add or Remove a UUID column
	Add or Remove an IDENTITY column
	Add or Remove an MR_COUNTER column

	6 SQL Query Management
	Expressions
	Sequences
	Sequence Types
	Variable Declaration
	SELECT Expression
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	Using Aggregate Functions
	Sequence Aggregate Functions

	ORDER BY Clause
	SELECT Clause
	LIMIT Clause
	OFFSET Clause

	Path Expressions
	Field Step Expressions
	Map-Filter Step Expressions
	Array-Filter Step Expressions
	Array-Slice Step Expressions

	Comparison Expressions
	Logical Operators: AND, OR, and NOT
	IS NULL and IS NOT NULL Operators
	Value Comparison Operators
	Sequence Comparison Operators
	BETWEEN Operator
	IN Operator
	Regular Expression Conditions
	Exists Operator
	Is-Of-Type Operator

	Concatenation Operator
	Arithmetic Expressions
	Primary Expressions
	Parenthesized Expressions
	Constant Expressions
	Column References
	Variable References
	Array and Map Constructors
	Case Expressions
	Cast Expression
	Extract Expressions
	Function Calls
	Sequence Transform Expressions

	Unnest Arrays & Maps
	Example: Using unnesting with a GROUP BY clause

	Joins
	Using NESTED TABLES clause to query multiple tables in the same hierarchy
	Example: Using NESTED TABLES clause to query multiple tables in the same hierarchy
	Left Outer Join (LOJ)
	Different scenarios of using an LOJ
	Limitations of LOJ
	Nested tables Vs LOJ
	Example: Using Left Outer Joins

	7 Data Row Management
	INSERT Statement
	Inserting Rows into JSON Collection Tables
	Inserting Rows with an IDENTITY Column
	Inserting rows into a table with a UUID column
	Inserting rows with an MR_COUNTER column
	Upsert statement
	Updating rows of a table with a UUID column
	DELETE Statement
	UPDATE Statement
	Update Clauses
	SET Clause
	ADD Clause
	PUT Clause
	REMOVE Clause
	SET TTL Clause

	Updating rows with an IDENTITY Column
	Updating rows with an MR_COUNTER column
	Example: Updating Rows
	Example: Updating JSON Data
	Example: Updating JSON collection tables
	Example: Updating TTL
	Example: Updating IDENTITY defined as GENERATED ALWAYS
	Example: Updating IDENTITY defined as GENERATED BY DEFAULT

	JSON Collection Table Example

	8 Indexes
	About Indexes
	CREATE INDEX Statement
	Classification of Indexes
	Single Field Index
	Composite Index
	Fixed Schema Index
	JSON Index
	Simple Index
	Multikey Index
	Nested Multikey Index
	Composite Multikey Index
	Specifications & Restrictions on Multikey Indexes

	Index on JSON Collection Tables
	Indexes on Functions
	Examples of creating indexes on functions

	SHOW INDEXES Statement
	DESCRIBE INDEX Statement
	DROP INDEX Statement
	Appendix

	9 Query Optimization
	Using Indexes for Query Optimization
	Finding Applicable Indexes
	Examples: Using Indexes for Query Optimization
	Optimizing unnesting queries with the UNNEST clause

	Choosing the Best Applicable Index
	Appendix

	10 Query Plan
	Overview of a query plan
	Examples of query execution plan
	Example 1 : Using a covering index in a query plan with only index scans
	Example 2 : Using a covering index in a query plan with index scans and index predicates
	Example 3: Using a non-covering index in a query plan with index scans
	Example 4: Sort the data using a Covering index
	Example 5: Sort the data using a field not part of the index
	Example 6: Group the data using a Covering index
	Example 7: Group data with fields not part of the index

	11 GeoJson Data Management
	About GeoJson Data
	Lines and Coordinate System
	Restrictions on GeoJson Data
	Searching for GeoJson Data
	Indexing GeoJson Data

	12 Built-in Functions
	Functions on Complex Values
	Functions on Sequences
	Functions on Timestamps
	Create and populate Baggage schema
	timestamp_add function
	timestamp_diff and get_duration functions
	Miscellaneous Timestamp functions

	Function to generate a UUID string
	Functions on Rows
	Functions on GeoJson Data
	Functions on Strings
	substring Function
	concat Function
	upper Function
	lower Function
	trim Function
	ltrim Function
	rtrim Function
	length Function
	contains Function
	starts_with Function
	ends_with Function
	index_of Function
	replace Function
	reverse Function

	Function to Convert String to JSON

