
Oracle® NoSQL Database
Streams Developer's Guide

Release 23.3
E91416-19
November 2023

Oracle NoSQL Database Streams Developer's Guide, Release 23.3

E91416-19

Copyright © 2011, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Conventions Used in This Book v

1 Introduction to the Oracle NoSQL Database Streams API

Architecture 1-1

API Components 1-2

Checkpoints 1-3

Dynamic Streaming 1-4

System Requirements 1-4

Limitations 1-4

Compiling and Running a Streams Application 1-4

2 Using the StreamOperation Class

3 Working with Subscriptions

Using NoSQLSubscriptionConfig 3-1

NoSQLStreamMode 3-3

Using NoSQLSubscription 3-3

4 Implementing Subscribers

Using the NoSQLSubscriber Interface 4-1

NoSQLSubscriber Example 4-4

5 Using a Streams Publisher

Using NoSQLPublisherConfig 5-1

Configuring a Connection to the Store 5-1

Creating a Basic NoSQLPublisherConfig Object 5-2

Tuning Your Publisher 5-2

iii

Authenticating to a Secure Store 5-3

Reauthentication 5-3

Streams Example 5-5

Sample Streams Output 5-9

6 Using Checkpoints

Implementing Checkpoints in GSGStreamExample 6-1

Implementing Checkpoints in GSGSubscriberExample 6-4

Example Checkpoint Behavior 6-9

7 Scaling a Streams Application

Scaling Subscribers 7-2

A GSGStreamsWriteTable

iv

Preface

This document is intended to provide a rapid introduction to the Oracle NoSQL Database
Streams API. This API is an implementation of the Reactive Streams standard, which
provides for asynchronous stream processing with non-blocking back pressure. See Reactive
Streams.

Conventions Used in This Book
The following typographical conventions are used within this manual:

Information that you are to type literally is presented in monospaced font.

Variable or non-literal text is presented in italics. For example: "Go to your KVHOME
directory."

Note:

Finally, notes of special interest are represented using a note block such as this.

v

1
Introduction to the Oracle NoSQL Database
Streams API

The Oracle NoSQL Database Streams API lets you subscribe to all logical changes (puts
and deletes) made to Oracle NoSQL Database tables. These changes are streamed to your
application as a series of discrete StreamOperation class objects. This API is based on the
Reactive Streams standard. See Reactive Streams.

Oracle NoSQL Database Streams APIs are prefixed with NoSQL to differentiate them from the
APIs described by the Reactive Streams standard. For example, Reactive Streams describes
a Publisher class. The Oracle NoSQL Database implementation of that class is called
NoSQLPublisher.

Note:

The Oracle NoSQL Database streams API supports table namespaces. If you
reference a table that is in a namespace, prefix the table, such as Users, with its
namespace name (such as ns1) followed by a colon (:). For example, ns1:Users.

The remainder of this chapter provides an introduction to the Oracle NoSQL Database
Streams API.

Architecture
The Oracle NoSQL Database streams API offers access to a store-wide stream of all the
insert, update, and delete operations made to the tables that an application has subscribed
to.

The following illustration depicts the overall architecture of the Oracle NoSQL Database
streaming service:

1-1

Each shard in the Oracle NoSQL Database supplies a stream of updates from the
shard. The NoSQLPublisher aggregates all shard streams to implement a unified
publisher interface for the entire Oracle NoSQL Database store that it presents to
users.

A NoSQLPublisher is responsible for creating, managing, and canceling all
subscriptions that the user creates.

Note:

The current Streams API continues to stream data while store elasticity
operations are in progress. When Storage Nodes, Replication Nodes, or
Admins are being added to the store, streaming continues without effect on
performance.

API Components
The Reactive Streams standard, available at (http://www.reactive-streams.org)
describes various API components. These are all implemented for the Oracle NoSQL
Database Streams API. Briefly, these are the major API components:

Chapter 1
API Components

1-2

http://www.reactive-streams.org

API Description More Informatin

NoSQLPublish
er

Aggregates table operations into a single stream, and
publishes them according to the configuration received
from its subscriber(s).

For any Java JVM, create only one NoSQLPublisher
class instance for a publisher configuration. You can
create multiple publishers per JVM, as long as their
configurations differ. For example, you can create a
single JVM to support two or more publishers, each
connecting to different stores with their different
configurations.

You can scale the streaming service to use multiple
subscribers to stream events from Oracle NoSQL
Database store.

NoSQLPublisher is introduced in the
chapter titled Using a Streams
Publisher.
For more information about scaling the
streaming service to use multiple
substribers, see Scaling a Streams
Application.

For more information on
NoSQLPublisher, see
NoSQLPublisher.

NoSQLSubscri
ber

Interface that you must implement to define how to
process each store operation, warning, and error.
NoSQLPublisher manages each NoSQLSubscriber
instance that you provide. The NoSQLPublisher can
use multiple NoSQLSubscriber instances.

For an introduction to subscriber
implementation, see Implementing
Subscribers.

For information about how to use
multiple subscribers streaming events
from Oracle NoSQL Database store,
see Scaling a Streams Application.

For more information on
NoSQLSubscriber, see
NoSQLSubscriber.

NoSQLSubscri
ption

Represents a single subscription that you created. This
class receives write and delete events present in the
operations stream, in the form of StreamOperation
objects, and provides them to your NoSQLSubscriber
implementation for processing.

For an introduction to
NoSQLSubscription, see Working
with Subscriptions. The
StreamOperation class is introduced
in Using the StreamOperation Class.

For more information on
NoSQLSubscription, see
NoSQLSubscription.

Checkpoints
When a subscriber opens a subscription stream, the subscriber can start consuming events
from the earliest available point in the stream, or from some other location in the stream. To
begin consuming from another location, the application must have run and saved at least one
checkpoint (perhaps more). Checkpoints represent different locations in the stream. For
example, your application could save a stream checkpoint after the publisher has streamed
every 1024 records.

Your application can take a checkpoint at any time; however, only one checkpoint may be in
progress at any given time. The most recent checkpoint is saved in a checkpoint table within
the Oracle NoSQL Database store. If you want to save more than the most recent
checkpoint, you must manually save it to disk or to a database of your choosing.

For an introduction to checkpoints, see Using Checkpoints. For information about
NoSQLStreamMode, see Implementing Checkpoints in GSGStreamExample.

Chapter 1
Checkpoints

1-3

Dynamic Streaming
The Oracle NoSQL Database supports Dynamic Streaming. Dynamic streaming
enables a user to add or remove a table in a live stream at run time without shutting
down and recreating a new stream. An empty stream which does not have any tables
can be created, and later the tables can be added at runtime. Also, all the existing
tables in a stream can be deleted such that the stream is made empty. A subscription
is called empty when it does not have at least one table in it. The duration for which an
empty stream should be kept alive can be determined by the user.

System Requirements
The Oracle NoSQL Database Streams API requires Java 11 or later version. It is
recommended to use Java 17.

Limitations
The stream will not include a separate notice of DDL operations (table creations,
alterations, and table deletions). After the table is dropped, your stream will no longer
receive any streamed operation from the dropped table. It is your responsibility to
check with the server if the table has been dropped. Then, decide if the stream shall
be canceled after the table is dropped.

Compiling and Running a Streams Application
The Oracle NoSQL Database Streams APIs can be found in the kvstore.jar file,
which is located in your distribution's lib directory.

To run the Streams-related examples in the distribution, first get the Examples
download from Oracle Technology Network (OTN) and run the following commands:

• cd $KVHOME/examples

• javac -cp $KVHOME/lib/kvstore.jar:. pubsub/NoSQLStreamExample.java

• java -cp $KVHOME/lib/kvstore.jar:. pubsub.NoSQLStreamExample

Example Usage:

+ NoSQLStreamExample
 [create-table | load-table | subscribe | cleanup]
 -store <instance name>
 -table <table name>
 -host <host name>
 -port <port number>
 -num <number of rows>
 -checkpoint <checkpoint interval in number of rows>
 -from [now | checkpoint | exact_checkpoint]

Chapter 1
Dynamic Streaming

1-4

2
Using the StreamOperation Class

A streams application works by implementing Subscribers. Subscribers receive a stream of
events that consist of write operations to a table of interest.

For more information, see Implementing Subscribers.

Every event your application receives in the subscription stream is represented as an
oracle.kv.pubsub.StreamOperation. Each of these events represents either a put or delete
operation on the table that your application subscribes to.

For more information, see oracle.kv.pubsub.StreamOperation class summary in the — Java
Direct Driver API Reference

The StreamOperation interface provides the following methods:

• StreamOperation.getType()
Returns a StreamOperation.Type object. This is an enum constant that is either delete
or put. For example:

// so is a StreamOperation object. It is obtained using
// NoSQLSubscriber.onNext().
switch (so.getType()) {
 case PUT:
 {
 // Process the put operation here.
 }
 break;
 case DELETE:
 {
 // Process the delete operation here.
 }
 break;
 default:
 // Received an unknown and therefore illegal operation type.
 throw new IllegalStateException("... exception message ...");
}

• StreamOperation.asDelete()
Returns the operation as a StreamOperation.DeleteEvent object. The object contains
only the Primary Key associated with the delete operation:

// so is a StreamOperation object. It is obtained using
// NoSQLSubscriber.onNext().
StreamOperation.DeleteEvent de = so.asDelete();
PrimaryKey pk = de.getPrimaryKey();

• StreamOperation.asPut()

2-1

Returns the operation as a StreamOperation.PutEvent object. This object allows
you to obtain the row that was changed by the put operation. Be aware that the
row returned here represents the state of the row after the put operation has been
performed:

// so is a StreamOperation object. It is obtained using
// NoSQLSubscriber.onNext().
StreamOperation.PutEvent pe = so.asPut();
Row row = pe.getRow();

• StreamOperation.getRepGroupId()
Returns the Shard ID (as an int) where this write operation was performed.

• StreamOperation.getSequenceId()
Returns the unique sequence ID associated with this operation. This ID uniquely
identifies a stream operation associated with a given Publisher.

These IDs can be used to sequence operations seen for a given key. The
Subscription API guarantees that the order of events for a particular key is the
same as the order in which these operations were applied in Oracle NoSQL
Database. The subscription API provides no guarantees about the order of
operations beyond the single key.

Chapter 2

2-2

3
Working with Subscriptions

NoSQLSubscription is used to manage an active subscription to the Oracle NoSQL Database
store. A Subscription is configured using NoSQLSubscriptionConfig.
NoSQLSubscriptionConfig is used to identify important information such as what table(s) you
want to subscribe to.

In this chapter, we first show how to use NoSQLSubscriptionConfig, and then show how to
use NoSQLSubscription.

Using NoSQLSubscriptionConfig
You configure your subscription by building an oracle.kv.pubsub.NoSQLSubscriptionConfig
object. You then provide this object to your NoSQLSubscriber implementation, and also
implement NoSQLSubscriber.getSubscriptionConfig() to return this object when it is
called. When you construct the publisher, you will provide it with your NoSQLSubscriber
implementation, and the publisher will then call NoSQLSubscriber.getSubscriptionConfig()
in order to understand how to create the subscription. See Implementing Subscribers and
Using a Streams Publisher.

To build your NoSQLSubscriptionConfig object, you use NoSQLSubscriptionConfig.Builder
as follows:

final NoSQLSubscriptionConfig subConfig =
 new NoSQLSubscriptionConfig.Builder("ChkptTable")
 .setSubscribedTables("UserTable")
 .setStreamMode(NoSQLStreamMode.FROM_NOW)
 .build();

This configuration causes the subscription to:

• Use the checkpoint table called ChkptTable. For more information about checkpoint
table, see Using Checkpoints. Be aware that the table name used here is chosen by you,
and should be unique to your subscription. If you are using multiple subscriptions, then
each subscription should use a unique name for the checkpoint table. This table is
created automatically.

If you are using a secure store, you need read/write access to the checkpoint table. If a
checkpoint table does not exist, you also need the CREATE TABLE privilege. For
information about:

– Connecting to a secure store, see Authenticating to a Secure Store.

– Configuring Authorization for a secure store, see Privileges in the Security Guide.

3-1

• Subscribe to all write activity performed on the user table called UserTable.
Subscriptions can be created for user-defined tables; updates to system tables
would not be streamed. You can use this to subscribe to multiple tables:

new NoSQLSubscriptionConfig.Builder("ChkptTable")
 .setSubscribedTables("UserTable", "PriceTable",
"InventoryTable")

If you do not call setSubscribedTables(), then the subscription will subscribe to
all tables in the store. If a subscription is for every table in the store, and a new a
table is created after subscription is established (using the DDL CREATE TABLE
operation), the stream will include all put events for every row created in the new
table.

• Set the stream mode to NoSQLStreamMode.FROM_NOW. The stream mode indicates
from where in the stream the Publisher will start retrieving events. For more
information, see NoSQLStreamMode.

Once you have created your subscription configuration, you provide it to your
NoSQLSubscriber implementation, which then must make it available via the
NoSQLSubscriber.getSubscriptionConfig() method:

class mySubscriber implements NoSQLSubscriber {

 ...

 private final NoSQLSubscriptionConfig config;

 ...

 // Generally the constructor will require more than just
 // the subscription configuration. The point here is that you
 // must somehow provide the configuration object to
 // your subscriber implemention because that is how
 // your publisher will get it.
 mySubscriber(NoSQLSubscriptionConfig config,) {

 ...

 this.config = config;

 ...
 }

 @Override
 public NoSQLSubscriptionConfig getSubscriptionConfig() {
 return config;
 }

 ...

When you implement your streams application, you will use your subscriber
implementation. The getSubscriptionConfig() method on the subscriber is how your
publisher finds out what tables to follow, and so forth. See Using a Streams Publisher.

Chapter 3
Using NoSQLSubscriptionConfig

3-2

The expiration time for an empty stream can be specified using the
NoSQLSubscriptionConfig.setEmptyStreamDuration() method. The expiration time will
begin only when a stream becomes empty after which the publisher would shut down the
empty stream. The default empty stream expiration time is 60 seconds. The user can
override the default empty stream expiration time by the setEmptyStreamDuration() method.

In this section, we have shown only a few options that you can set using
NoSQLSubscriptionConfig. For a complete list of configuration options, see
NoSQLSubscriptionConfig and NoSQLSubscriptionConfig.Builder in the Java Direct Driver
API Reference.

NoSQLStreamMode
NoSQLStreamMode is the subscription stream mode used to configure the starting point for a
NoSQL subscription.

Once you have taken a checkpoint, you indicate where you want event consumption to begin
by specifying a NoSQLStreamMode to NoSQLSubscriptionConfig.Builder.setStreamMode().
For example, if you specify NoSQLStreamMode.FROM_EXACT_CHECKPOINT, then events will begin
at the stream position identified by the checkpoint saved in the checkpoint table.

The stream positions available to you are:

• FROM_CHECKPOINT
Starts the stream from the last checkpoint saved in the checkpoint table, using the next
available position for shards where the checkpoint position is not available.

• FROM_EXACT_CHECKPOINT
Starts the stream from the last checkpoint saved in the checkpoint table, signaling an
exception if the checkpoint position is not available.

• FROM_EXACT_STREAM_POSITION
Starts the stream from the specified start stream position, signaling an exception if the
requested position is not available.

• FROM_NOW
Starts the stream from the latest available stream position.

• FROM_STREAM_POSITION
Starts the stream from the specified start stream position, using the next available
position for shards where the requested position is not available.

See NoSQLStreamMode in the Java Direct Driver API Reference.

Using NoSQLSubscription
oracle.kv.pubsub.NoSQLSubscription is used to control your subscription. It is used to
request operations from the subscribed tables, to perform checkpoints, terminate the stream,
and so forth. It is used as a part of your NoSQLSubscriber implementation.

The NoSQLSubscription interface extends org.reactivestreams.Subscription, so it is
sufficient for your NoSQLSubscription implementation class to extend NoSQLSubscription.
When your implementation class implements NoSQLSubscriber.onSubscribe(), you will

Chapter 3
NoSQLStreamMode

3-3

usually call NoSQLSubscription.request(), which asks for an initial set number of
events to be delivered to the subscriber (these are consumed using
NoSQLSubscriber.onNext()):

...
private NoSQLSubscription subscription;
...

@Override
public void onSubscribe(Subscription s) {
 subscription = (NoSQLSubscription) s;
 // request 100 store operations be streamed to this
 // subscriber.
 s.request(100);
 }

The important actions that you can take with your NoSQLSubscription object are:

• Cancel the stream using NoSQLSubscription.cancel().

• Request more operations from the subscribed table.

If you want to stream infinite number of operations, you can use Long.MAX_VALUE,
which allows to stream for 584 years, assuming that the subscriber can process 1
billion operations per second.

If the request is made at the beginning of the application's runtime before any
operations have been consumed, then the operations will begin from the location
identified by NoSQLSubscriptionConfig.setStreamMode(). If the request is made
after operations have been consumed, then the operations will begin at the point in
the stream immediately after the last consumed operation. For more information,
see NoSQLStreamMode.

• Take a checkpoint. See Using Checkpoints for information about checkpoints.

• Get a list of currently subscribed tables anytime during the lifetime of the stream
using NoSQLSubscription.getSubscribedTables() method.
SubscriptionFailureException would be raised if the subscription is canceled or
has shut down.

• Add a table to the running subscription stream asynchronously using
NoSQLSubscription.subscribeTable() method. The change result will be
signaled via the callback NoSQLSubscriber.onChangeResult() method.

• Remove a table from the running subscription stream asynchronously using
NoSQLSubscription.unsubscribeTable() method. The change result will be
signaled via the callback NoSQLSubscriber.onChangeResult() method.

For a complete list of operations supported by NoSQLSubscription, see
NoSQLSubscription in the Java Direct Driver API Reference.

Chapter 3
Using NoSQLSubscription

3-4

4
Implementing Subscribers

For every publisher, you must implement one or more Subscriber. The Subscriber is used to
process stream events, which arrive in the form of StreamOperation class objects. See Using
the StreamOperation Class.

Using the NoSQLSubscriber Interface
You implement subscribers using the oracle.kv.pubsub.NoSQLSubscriber interface, an
extension of org.reactivestreams.Subscriber. NoSQLSubscriber provides the following
methods, which you must implement:

• onSubscribe()
This is the method invoked after the publisher has successfully established contact with
the Oracle NoSQL Database store. The argument you pass to this method is an
org.reactivestreams.Subscription instance, which you cam then cast to
oracle.kv.pubsub.NoSQLSubscription. See Working with Subscriptions.

...
private NoSQLSubscription subscription;
...

@Override
public void onSubscribe(Subscription s) {
 subscription = (NoSQLSubscription) s;
 // request 100 store operations be streamed to this
 // subscriber.
 s.request(100);
}

Note:

You do not have to call the s.request(100)method inside onSubscribe().
Once an instance of NoSQLSubscription is available, you can call the method
outside onSubscribe(). The main point of the onSubscribe() method here is to
pass the user the subscription instance that the publisher generates.

• onNext()
Signals the next Oracle NoSQL Database operation. You pass this method a
StreamOperation class instance. See Using the StreamOperation Class. This method is
where you perform whatever processing you want to perform on the stream events.

@Override
public void onNext(StreamOperation t) {

4-1

 // perform processing on the StreamOperation
 // here. Typically you will do different
 // things depending on whether this is
 // a put or delete event.
 switch (t.getType()) {
 case PUT:
 {
 // Process the put operation here.
 }
 break;
 case DELETE:
 {
 // Process the delete operation here.
 }
 break;
 default:
 // Received an unknown and therefore illegal operation
 // type.
 throw new
 IllegalStateException("... exception message ...");
 }
 }
}

• onComplete()
Signals the completion of a subscription. Use this method to perform whatever
cleanup your application requires once a subscription has ended.

@Override
public void onComplete() {
 /* nothing to do, so make this a no-op */
}

Note:

You must implement this method in your stream processing application,
because streaming from a KVStore table is unbounded by nature, so
onComplete() will never be called. Any no-op implementation of this
method will be ignored.

• onError()
Signals that the subscription encountered an irrecoverable error and has to be
terminated. The argument passed to this method is a java.lang.Throwable class
instance. Use this method to perform whatever actions you want to take in
response to the error.

@Override
public void onError(Throwable t) {
 logger.severe("Error: " + t.getMessage());
}

• onWarn()

Chapter 4
Using the NoSQLSubscriber Interface

4-2

Signals that the subscription encountered an irrecoverable error and has be terminated.
The argument passed to this method is a java.lang.Throwable class instance. Use this
method to perform whatever actions you want to take in response to the warning.

@Override
public void onWarn(Throwable t) {
 logger.warning("Warning: " + t.getMessage());
}

A warning does not end the subscription. Warnings in the form of
ShardTimeoutException are provided as a way to inform the application that a particular
shard is not responding.

• onCheckPointComplete()
Signals when a previously requested checkpoint has been completed. Checkpoints are
performed by calling NoSQLSubscription.doCheckpoint(). Note that if an error occurred,
the subscription will lose the checkpoint but the subscription itself will not terminate, and
will continue streaming. See Using Checkpoints.

Call this method with two arguments:

– oracle.kv.pubsub.StreamPosition
Identifies the location in the stream where the checkpoint was performed.

– java.lang.Throwable
Null, unless an error occurred while taking the checkpoint.

@Override
public void onCheckpointComplete(StreamPosition pos,
 Throwable cause) {
 if (cause == null) {
 logger.info("Finish checkpoint at position " + pos);
 } else {
 logger.warning("Fail to checkpoint at position " + pos +
 ", cause: " + cause.getMessage());
 }
}

• onChangeResult()
Adding and removing tables from running subscription streams are made using
asynchronous calls. The asynchronous calls will return immediately without any return
value. The result of the operation can be fetched using the onChangeResult callback
method after the change is effective. If the change was successful, this method will be
called with a non-null stream position that represents the first stream position for which
the change has taken effect. If the change was unsuccessful, but the subscription is still
active, this method will be called with a non-null exception that describes the cause of the
failure. If the change caused the subscription to be canceled, this method will not be
called, and the onError method will be called instead.

• getSubscriptionConfig()
Use this method to return the oracle.kv.pubsub.NoSQLSubscriptionConfig object used
by this subscription. This method is invoked by the publisher when it is creating a
subscription.

Chapter 4
Using the NoSQLSubscriber Interface

4-3

NoSQLSubscriber Example
This section provides a complete, but simple, NoSQLSubscriber example called
GSGSubscriberExample. This implementation is used by the publisher example shown
in Streams Example.

GSGSubscriberExample subscribes to a single table called Users. To see the
application that defines this table and writes table rows to it, see
GSGStreamsWriteTable.

To begin, we provide our imports. Notice that org.reactivestreams.Subscription is
a required import. Your Java environment must have the reactive-streams.jar file in
its classpath in order to both compile and run this example code.

package pubsub;

import java.util.List;

import oracle.kv.pubsub.NoSQLSubscriber;
import oracle.kv.pubsub.NoSQLSubscription;
import oracle.kv.pubsub.NoSQLSubscriptionConfig;
import oracle.kv.pubsub.StreamOperation;
import oracle.kv.pubsub.StreamPosition;

import oracle.kv.table.MapValue;
import oracle.kv.table.Row;

import org.reactivestreams.Subscription;

Next we declare our class, and initialize our data members. As described previously,
this is an implementation of NoSQLSubscriber.

class GSGSubscriberExample implements NoSQLSubscriber {

 /* subscription configuration */
 private final NoSQLSubscriptionConfig config;

 /* number of operations to stream */
 private final int numOps;

 /* number of operations seen in the stream */
 private long streamOps;

 private NoSQLSubscription subscription;

 private boolean isSubscribeSucc;

 private Throwable causeOfFailure;

 GSGSubscriberExample(NoSQLSubscriptionConfig config,
 int numOps) {
 this.config = config;
 this.numOps = numOps;

Chapter 4
NoSQLSubscriber Example

4-4

 causeOfFailure = null;
 isSubscribeSucc = false;
 streamOps = 0;
 subscription = null;
 }

The first thing we do is implement NoSQLSubscriber.getSubscriptionConfig(). This simply
returns our NoSQLSubscriptionConfig object, which is provided to the class when it is
constructed by the implementing streams application. This method is how the publisher will
learn how to configure the stream for this subscriber.

 @Override
 public NoSQLSubscriptionConfig getSubscriptionConfig() {
 return config;
 }

The implementation we provide for onSubscribe() does several things. First, it makes the
NoSQLSubscription class instance available to this subscriber implementation. Notice that
the instance is passed to this class as an object of type
org.reactivestreams.Subscription, and that object must be cast to NoSQLSubscription.

This method is also where this subscriber begins requesting operations from the subscription.
Without that call to NoSQLSubscription.request(), this subscriber will never receive any
operations to process. For this simple implementation, this is the only place operations are
requested. In a more elaborate implementation, operations are initially asked for here, and
once that number of operations have been received by the subscriber, more can be asked for
in another part of the class — usually in onNext().

Finally, we signal that the subscription attempt is a success. This information is used by our
streams application when we are creating the publisher and subscriber.

 @Override
 public void onSubscribe(Subscription s) {
 subscription = (NoSQLSubscription) s;
 subscription.request(numOps);
 isSubscribeSucc = true;
 }

Next we set up our Error and Warning handlers. Note that, when onError is called, the
subscription has already been canceled. Here, we do the simple thing and simply write to the
console. However, a more robust implementation would write to the application log file, and
potentially take other notifications and/or corrective actions (such as quit processing the
stream entirely), depending on the nature of the error.

 @Override
 public void onError(Throwable t) {
 causeOfFailure = t;
 System.out.println("Error: " + t.getMessage());
 }

 @Override
 public void onWarn(Throwable t) {

Chapter 4
NoSQLSubscriber Example

4-5

 System.out.println("Warning: " + t.getMessage());
 }

The application has to provide an onComplete() method, although the implementation
is not required to do anything, since this method is not called.

 @Override
 public void onComplete() {
 /* no-op */
 }

Because this example does not implement checkpoints (see Using Checkpoints for
more information), there is nothing to do in this method.

 /* called when publisher finishes a checkpoint */
 @Override
 public void onCheckpointComplete(StreamPosition pos,
 Throwable cause) {
 /* no-op. This example doesn't implement checkpoints */
 }

The onNext() method is where the subscriber receives and processes individual
stream operations in the form of StreamOperation objects.

In the following method, we show how to determine what type of operation the
subscription has received (either put or delete). What you would do with an individual
operation is up to your application's requirements. In this case, for put operations we
retrieve field information from the enclosed Row object, and write it to the console. Be
aware that this code is not very robust. In particular, we expect JSON data with a
specific schema. Because any valid JSON can be written to a JSON table column,
some defensive code is required here for a production application to ensure that the
JSON column contains the expected schema.

For delete operations, we simply write the StreamOperation object to the console.

 @Override
 public void onNext(StreamOperation t) {

 switch (t.getType()) {
 case PUT:
 streamOps++;
 System.out.println("\nFound a put. Row is:");

 StreamOperation.PutEvent pe = t.asPut();
 Row row = pe.getRow();

 Integer uid = row.get("uid").asInteger().get();
 System.out.println("UID: " + uid);

 MapValue myjson = row.get("myJSON").asMap();
 int quantity = myjson.get("quantity")
 .asInteger().get();

Chapter 4
NoSQLSubscriber Example

4-6

 String array =
 myjson.get("myArray").asArray().toString();
 System.out.println("\tQuantity: " + quantity);
 System.out.println("\tmyArray: " + array);
 break;
 case DELETE:
 streamOps++;
 System.out.println("\nFound a delete. Row is:");
 System.out.println(t);
 break;

 default:
 throw new
 IllegalStateException("Receive unsupported " +
 "stream operation from shard " +
 t.getRepGroupId() +
 ", seq: " + t.getSequenceId());
 }
 if (streamOps == numOps) {
 getSubscription().cancel();
 System.out.println("Subscription cancelled after " +
 "receiving " + numOps + " operations.");
 }
 }

Finally, we provide a series of getter methods, which are used by our stream application to
retrieve information of interest from this subscriber. Using a Streams Publisher shows how
these are used.

 String getCauseOfFailure() {
 if (causeOfFailure == null) {
 return "success";
 }
 return causeOfFailure.getMessage();
 }

 boolean isSubscriptionSucc() {
 return isSubscribeSucc;
 }

 long getStreamOps() {
 return streamOps;
 }

 NoSQLSubscription getSubscription() {
 return subscription;
 }

}

Chapter 4
NoSQLSubscriber Example

4-7

5
Using a Streams Publisher

Each shard in the store publishes changes made to table data in the shard. Each of these
publishing streams is combined into a single stream of table write operations, which the
oracle.kv.pubsub.NoSQLPublisher class can access. This class constructs one or more
NoSQLSubscription class objects, each of which can be used to manage a single
subscription stream (where each subscription stream can include changes made to one or
more tables in the store).

You configure NoSQLPublisher using oracle.kv.pubsub.NoSQLPublisherConfig, described
next in this chapter. See Streams Example to see how the configuration is used within a
streams application.

For any JVM, only one NoSQLPublisher instance can be created given identical
NoSQLPublisherConfig objects. After creating an instance of NoSQLPublisher, the factory
constructor returns the same instance of NoSQLPublisher for all subsequent construction
requests, if the NoSQLPublisherConfig for those requests is identical.

Two NoSQLPublisherConfig objects are identical if all of the following information the same
for both objects:

• Store name

• Shard timeout

• Maximum concurrent allowed subscriptions

• Security properties use identical username and credentials

Using NoSQLPublisherConfig
Use oracle.kv.pubsub.NoSQLPublisherConfig to specify connection and authentication
information to the store. You can also use this class to configure performance parameters.

Configuring a Connection to the Store
When you construct a NoSQLPublisherConfig object, you provide it with an
oracle.kv.KVStoreConfig object. This object is used to provide store connection
information:

• The name of the store that your publisher is monitoring

• A list of one or more helper host port pairs. These helper hosts are Storage Nodes in the
store. They must be resolvable using either DNS or the local /etc/hosts file.

For example:

package pubsub;

import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;

5-1

import oracle.kv.KVStoreFactory;

...

String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);

This simple example is sufficient to connect to a store that is not configured for
authentication. For information about connecting to a secure store, see Authenticating
to a Secure Store.

Creating a Basic NoSQLPublisherConfig Object
You use NoSQLPublisherConfig.Builder to construct a NoSQLPublisherConfig
object. The constructor for this class requires you to provide a KVStoreConfig object,
as well as a path to the publisher's root directory (this directory is used to contain files
necessary for the publisher's proper operation).

...

// Create a minimal KVStoreConfig
String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);

final NoSQLPublisherConfig publisherConfig =
 new NoSQLPublisherConfig.Builder(kconfig, "/export/publisher")
 .build();

Once you have created the NoSQLPublisherConfig object, you can use it in a call to
the NoSQLPublisher.get() method to obtain a NoSQLPublisher instance and connect
to the store. See, Authenticating to a Secure Store for an example of this.

Tuning Your Publisher
When you construct a NoSQLPublisherConfig object, you can specify several tuning
controls:

• Maximum concurrent subscriptions

Specifies the maximum number of subscribers that this publisher can run. This
must be set to at least 1.

Use NoSQLPublisherConfig.setMaxConcurrentSubs() to configure this value.
Default is 32.

• A shard timeout value. If the publisher does not hear from a source shard in the
amount of time specified here, the publisher will throw ShardTimeoutException via
a call to NoSQLSubscriber.onWarn. If a ShardTimeoutException is thrown, the
stream and the connection to the shard still remain alive, just that there is no
operation received from that shard within the timeout period.

Use NoSQLPublisher.setShardTimeoutMs() to configure this value. This method
takes a long that represents the timeout value in milliseconds. Default is 600000
ms (10 minutes).

Chapter 5
Using NoSQLPublisherConfig

5-2

For example:

...

// Create a minimal KVStoreConfig
String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);

final NoSQLPublisherConfig publisherConfig =
 new NoSQLPublisherConfig.Builder(kconfig, "/export/publisher")
 .setMaxConcurrentSubs(2)
 .setShardTimeoutMs(10000)
 .build();

Authenticating to a Secure Store
To authenticate to a secure store, you must provide login credentials. The simplest way to
connect your stream processing application to secure store is by specifying a value for the
oracle.kv.security system property, which incudes the pathname of a file containing the
security property settings generated while setting up a user login for a secure store. For more
information about setting up a secure store to generate the security property file, see
Performing a Secure Oracle NoSQL Database Installation in the Security Guide.

Note that if you choose to follow the method above, you do not need to modify your
application code. To run the example to connect to secure store, use the command below:

java -Doracle.kv.security=mylogin
-cp $KVHOME/lib/kvstore.jar:. pubsub.NoSQLStreamExample

Reauthentication
Once the publisher has created an initial authenticated connection to the store, the
authentication credentials are lost; they are not kept in memory or in any way cached.

After the initial connection, every subscription also has to be authenticated. This
authentication process ensures that the subscriber has the appropriate read access to the
table(s) for which a subscription is being obtained. If the user is attempting to subscribe to a
single table or a small set of tables, she needs READ_TABLE access for each table. If the user
wants to subscribe to any table in the store, then for convenience that user account can be
configured with READ_ANY_TABLE access.

To allow subscriptions to authenticate, you implement a ReauthenticationHandler class and
then provide it to your NoSQLPublisherConfig object using the
NoSQLPublisherConfig.setReauthHandler() method.

The following example extends the authentication example shown in the previous section to
add a reauthentication handler.

First, you must implement ReauthenticationHandler. The following is an example of a very
simple implementation:

package pubsub;

import oracle.kv.ReauthenticationHandler;

Chapter 5
Using NoSQLPublisherConfig

5-3

import oracle.kv.PasswordCredentials;

public class MyReauthHandler implements ReauthenticationHandler {
 public void reauthenticate(KVStore reauthStore) {

 // The code you use to obtain the username and password strings
 // should be consistent with the code you use to perform
 // simple authentication for your publisher. Here we do
 // the simplest -- and least secure -- thing possible.

 // This is really not what you should do for production
 // code.

 final String username = "beth";
 final String password = "my_clever_password00A";

 PasswordCredentials cred = new PasswordCredentials(username,
 password.toCharArray());

 reauthStore.login(cred);

We then extend the previous authentication example to use our implemented
ReauthenticationHandler. We do this with a single line of code, which is in bold in
the example.

package pubsub;

...

// Create a KVStoreConfig object that is configured
// for a secure store.
String[] hhosts = {"n1.example.org:5088", "n2.example.org:4129"};
KVStoreConfig kconfig = new KVStoreConfig("exampleStore", hhosts);

// Need to set some required security properties.
Properties secProps = new Properties();
secProps.setProperty(KVSecurityConstants.TRANSPORT_PROPERTY,
 KVSecurityConstants.SSL_TRANSPORT_NAME);

// The client.trust file is created when you install your
// store. It must be moved locally to every machine where
// client code will run.
secProps.setProperty
 (KVSecurityConstants.SSL_TRUSTSTORE_FILE_PROPERTY,
 "/home/kv/client.trust");
kconfig.setSecurityProperties(secProps);

// Create a PasswordCredentials instance. We hard-code
// the credentials here, but in a production environment
// this information should be provided in a significantly
// more secure way.

// username and password must have been configured for the store
// by its administrator.

Chapter 5
Using NoSQLPublisherConfig

5-4

final String username = "beth";
final String password = "my_clever_password00A";

PasswordCredentials pc =
 new PasswordCredentials(username,
 password.toCharArray());

// Create the publisher's configuration object.
// Keeping it simple.
final NoSQLPublisherConfig publisherConfig =
 new NoSQLPublisherConfig.Builder(kconfig, "/export/publisher")
 .setReauthHandler(new MyReauthHandler())
 .build();

// Now connect to the store
try {
 NoSQLPublisher publisher =
 NoSQLPublisher.get(publisherConfig, pc);
} catch (PublisherFailureException pfe) {
 System.out.println("Connection or authentication failed.");
 System.out.println(pfe.toString());
}

Streams Example
This section presents an example of a streams application. While this example is simplified
as much as possible, its broad outline is typical for applications of this nature.

This example application makes use of the example Subscriber that we described in
NoSQLSubscriber Example.

This application begins by defining information required by the application. It indicates what
table the application will watch — a single subscriber can receive operations from multiple
tables, but for this example we will only subscribe to the table Users. Also, num is the number
of operations the subscriber will request for the Users table.

Note:

Stream operations support namespaces. If you want to subscribe to a table in a
namespace, prefix the table name with a namespace and a colon (:), as follows:
ns1:Users.

We then provide Oracle NoSQL Database connection information. Because this is a simple
example that exists purely for illustration purposes, we avoid authentication issues by using a
non-secure store. However, in a production environment you will probably be required to
provide authentication credentials as described in Authenticating to a Secure Store and
Reauthentication.

Finally, we provide some information that is specific to a streaming application.
MAX_SUBSCRIPTION_TIME_MS is used to identify how long the application can wait before it
times out. CKPT_TABLE_NAME is the name of the checkpoint table. This information is required

Chapter 5
Streams Example

5-5

when constructing a NoSQLPublisher, but is not otherwise used by this particular
application. For information about checkpoints, see Using Checkpoints.

package pubsub;

import oracle.kv.KVStoreConfig;
import oracle.kv.pubsub.NoSQLPublisher;
import oracle.kv.pubsub.NoSQLPublisherConfig;
import oracle.kv.pubsub.NoSQLSubscriptionConfig;

public class GSGStreamExample {

 /* table to subscribe */
 private static final String TABLE_NAME = "Users";
 /* Number of operations to stream */
 private static final int num = 100;

 private static final String storeName = "kvstore";
 private static final String[] hhosts = {"localhost:5000"};

 /* max subscription allowed time before forced termination */
 private static final long MAX_SUBSCRIPTION_TIME_MS =
 Long.MAX_VALUE;

 private static final String rootPath = ".";
 private static final String CKPT_TABLE_NAME = "CheckpointTable";

 public static void main(final String args[]) throws Exception {

 final GSGStreamExample gte = new GSGStreamExample(args);
 gte.run();
 }

 private GSGStreamExample(final String[] argv) {
 }

First we construct a NoSQLPublisher object. NoSQLPublisherConfig is used to specify
the Oracle NoSQL Database connection information.

 /*
 * Subscribes a table. The work flow is ReactiveStream
 * compatible
 */
 private void run() throws Exception {

 NoSQLPublisher publisher = null;
 try {
 /* step 1 : create a publisher configuration */
 final NoSQLPublisherConfig publisherConfig =
 new NoSQLPublisherConfig.Builder(
 new KVStoreConfig(storeName, hhosts), rootPath)
 .build();

Chapter 5
Streams Example

5-6

 /* step 2 : create a publisher */
 publisher = NoSQLPublisher.get(publisherConfig);

Next we construct a NoSQLSubscriptionConfig. This is where we identify the table(s) to
which we are subscribing.

 /* step 3: create a subscription configuration */
 final NoSQLSubscriptionConfig subscriptionConfig =
 /* stream with specified mode */
 new NoSQLSubscriptionConfig.Builder(CKPT_TABLE_NAME)
 .setSubscribedTables(TABLE_NAME)
 .build();

Now we construct our subscriber. Here, we use the NoSQLSubscriber implementation that we
describe in NoSQLSubscriber Example.

 /* step 4: create a subscriber */
 final GSGSubscriberExample subscriber =
 new GSGSubscriberExample(subscriptionConfig, num);
 System.out.println("Subscriber created to stream " +
 num + " operations.");

The above example specifies the number of events to be streamed as 100. However, if you
want to do continuous streaming, you must use new
GSGSubscriberExample(subscriptionConfig, Long.MAX_VALUE).

Next you create a subscription. If GSGSubscriberExample reports an error on creating the
subscription (using the getSubscriptionSucc() method), we throw an Exception and quit the
application with a message that identifies the nature of the error (getCauseOfFailure()) and
the subscriber's unique ID (getSubscriberId()).

 /* step 5: create a subscription and start stream */
 publisher.subscribe(subscriber);
 if (!subscriber.isSubscriptionSucc()) {
 System.out.println("Subscription failed for " +
 subscriber.getSubscriptionConfig()
 .getSubscriberId() +
 ", reason " +
 subscriber.getCauseOfFailure());

 throw new RuntimeException("fail to subscribe");
 }
 System.out.println("Start stream " + num +
 " operations from table " + TABLE_NAME);

At this point we put the application thread to sleep, which allows the subscriber to run
unimpeded by the parent application. Occasionally we allow this thread to wake up, check
how many stream operations have been consumed by the subscriber, and make sure we
have not exceeded our maximum amount of run time. If we have exceeded our timeout

Chapter 5
Streams Example

5-7

threshold, we throw an exception and quit the application. Otherwise, we continue to
run until all of the required operations have been consumed.

 /*
 * Wait for the stream to finish. Throw exception if it
 * cannot finish within max allowed elapsed time
 */
 final long s = System.currentTimeMillis();
 while (subscriber.getStreamOps() < num) {
 final long elapsed = System.currentTimeMillis() - s;
 if (elapsed >= MAX_SUBSCRIPTION_TIME_MS) {
 throw new
 RuntimeException("Not done within max " +
 "allowed elapsed time");
 }
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 throw new RuntimeException("Interrupted!");
 }
 }

Finally, we clean up and close the application. Note that we could cancel the
subscription at this point using subscriber.getSubscription.cancel(), but our
GSGSubscriberExample class is already calling that in its onNext() method. For a more
robust application, you could call cancel() from the stream application itself,
particularly as a part of responding to error situations.

 /* step 6: clean up */
 subscriber.getSubscription().cancel();
 publisher.close(true);
 System.out.println("Publisher closed normally.");

 } catch (Exception exp) {
 String msg = "Error: " + exp.getMessage();
 System.out.println(msg);
 if (publisher != null) {
 publisher.close(exp, false);
 System.out.println("Publisher closed with error.");
 }
 throw exp;
 } finally {
 System.out.println("All done.");
 }
 }
}

Chapter 5
Streams Example

5-8

Sample Streams Output
Once the Users table is loaded with sample data (see GSGStreamsWriteTable), the output
from this example program is as follows (the output is truncated at the 12th operation for
brevity):

> java pubsub.GSGStreamExample
Subscriber created to stream 100 operations.
Start stream 100 operations from table Users

Found a put. Row is:
UID: 0
 Quantity: 10
 myArray: [1,14,3,9,12,12,13,13,4,6]

Found a put. Row is:
UID: 1
 Quantity: 4
 myArray: [3,14,1,13]

Found a put. Row is:
UID: 2
 Quantity: 5
 myArray: [5,7,15,1,5]

Found a put. Row is:
UID: 3
 Quantity: 2
 myArray: [10,7]

Found a put. Row is:
UID: 4
 Quantity: 7
 myArray: [2,17,5,9,1,10,5]

Found a put. Row is:
UID: 5
 Quantity: 5
 myArray: [13,1,2,3,11]

Found a delete. Deleted row is:
Del OP [seq: 6304, shard id: 1, primary key: {
 "uid" : 2
}]

Found a put. Row is:
UID: 6
 Quantity: 9
 myArray: [16,7,11,13,13,10,11,15,5]

Found a put. Row is:
UID: 7
 Quantity: 2

Chapter 5
Streams Example

5-9

 myArray: [11,3]

Found a put. Row is:
UID: 8
 Quantity: 6
 myArray: [12,12,5,11,11,3]

Found a put. Row is:
UID: 9
 Quantity: 4
 myArray: [10,7,6,4]

Found a put. Row is:
UID: 10
 Quantity: 8
 myArray: [3,9,18,11,16,12,6,2]

 ...

Every time this example is run, it always starts streaming from the first table operation
seen for the Users table; that is, for the write operation that created the first row in the
table (UID 0). Instead of streaming from the beginning every time, if you want to
stream from the Nth operation, you need to implement checkpoints. These are
described in the next chapter, Using Checkpoints.

Chapter 5
Streams Example

5-10

6
Using Checkpoints

When a subscriber opens a subscription stream, it starts consuming events from the earliest
available point in the stream, unless you specify a different start point. To begin consuming
from another location, your application must have run and saved a checkpoint that represents
a stream location. Use NoSQLSubscription.getCurrentPosition() to obtain the current
stream position. This method returns as StreamPosition class. Use
NoSQLSubscription.doCheckpoint() to run the actual checkpoint.

Running a checkpoint causes the current stream position to be saved in the store using the
checkpoint table you identified when you configured your NOSQLSubscription instance. Only
the latest checkpoint is saved to this table. If you want to save other checkpoints, you can
serialize the StreamPosition class representing a checkpoint, and save it to disk or a
database of your choice.

Note:

• You are responsible for choosing a name for the checkpoint table. Be sure that
the name is unique to your subscription. If you are using multiple subscriptions,
make sure that each subscription has a unique name for its checkpoint table.

• Checkpoint tables are used to store checkpoint-related information. Do not
delete or change the table structure without consideration. If you delete the
table, you lose the checkpoint for this subscription. If the subscription continues
after its checkpoint table is deleted, at the next checkpoint, the subscriber will
be unable to locate the expected checkpoint and will skip a checkpoint. The
method onCheckpointComplete() captures the CheckpointFailureException
error message.

If you cancel the current subscription and re-create a new one, the new
subscription will create the checkpoint for you at the beginning, as long as it has
the privilege to do so.

The method NoSQLSubscription.doCheckpoint() runs asynchronously, so the call returns
after the checkpoint is requested, and NoSQLSubscriber.onCheckpointComplete is called
when the checkpoint is complete. TheCheckpointFailureException is raised if you call this
method while there is another outstanding request for a checkpoint running for the same
subscription.

Implementing Checkpoints in GSGStreamExample
This section shows how to implement checkpoints by adding the functionality to the examples
provided in Streams Example. You must also add functionality to the Subscriber
implementation shown in NoSQLSubscriber Example. For those updates, see the next
section, Implementing Checkpoints in GSGSubscriberExample.

New additions to the original example code are indicated by bold text.

6-1

The changes to GSGStreamsExample.java are fairly minor. To begin, we need to import
NoSQLStreamMode:

package pubsub;

import oracle.kv.KVStoreConfig;
import oracle.kv.pubsub.NoSQLPublisher;
import oracle.kv.pubsub.NoSQLPublisherConfig;
import oracle.kv.pubsub.NoSQLStreamMode;
import oracle.kv.pubsub.NoSQLSubscriptionConfig;

Next, we add several new private data members.

The first of these is chkptIntv, indicating how many operations this application will see
before it runs a checkpoint. In this case, for illustration purposes, we are running a
checkpoint for every ten operations. If this were production code, this would probably
prove to be too frequent. Also, you are not required to take a checkpoint on a number
of operations interval. You can perform them for any reason whatsoever. You could, for
example, take checkpoints on a clock interval. Or you could take them whenever you
see a delete operation, or whenever you see a table row written that conforms to
some meaningful criteria.

Beyond the checkpoint interval, we indicate our stream mode will be FROM_CHECKPOINT.

public class GSGStreamExample {

 /* table to subscribe */
 private static final String TABLE_NAME = "Users";
 /* Number of operations to stream */
 private static final int num = 100;

 private static final String storeName = "kvstore";
 private static final String[] hhosts = {"localhost:5000"};

 /* max subscription allowed time before forced termination */
 private static final long MAX_SUBSCRIPTION_TIME_MS =
 Long.MAX_VALUE;

 private static final String rootPath = ".";
 private static final String CKPT_TABLE_NAME = "CheckpointTable";
 /* number of ops before a checkpoint is performed */
 private long ckptIntv = 10;
 private NoSQLStreamMode streamMode =
 NoSQLStreamMode.FROM_CHECKPOINT;

Next we add the desired stream mode when we configure the subscription.

 public static void main(final String args[]) throws Exception {

 final GSGStreamExample gte = new GSGStreamExample(args);
 gte.run();
 }

Chapter 6
Implementing Checkpoints in GSGStreamExample

6-2

 private GSGStreamExample(final String[] argv) {
 }

 /*
 * Subscribes a table. The work flow is ReactiveStream
 * compatible
 */
 private void run() throws Exception {

 NoSQLPublisher publisher = null;
 try {
 /* step 1 : create a publisher configuration */
 final NoSQLPublisherConfig publisherConfig =
 new NoSQLPublisherConfig.Builder(
 new KVStoreConfig(storeName, hhosts), rootPath)
 .build();

 /* step 2 : create a publisher */
 publisher = NoSQLPublisher.get(publisherConfig);

 /* step 3: create a subscription configuration */
 final NoSQLSubscriptionConfig subscriptionConfig =
 /* stream with specified mode */
 new NoSQLSubscriptionConfig.Builder(CKPT_TABLE_NAME)
 .setSubscribedTables(TABLE_NAME)
 .setStreamMode(streamMode)
 .build();

The only other change to this application is to provide our checkpoint interval to our
NoSQLSubscriber implementation. Again, this change is driven purely by how we choose to
know when to take a checkpoint in this example. Your production code can, and probably will,
do something entirely different.

 /* step 4: create a subscriber */
 final GSGSubscriberExample subscriber =
 new GSGSubscriberExample(subscriptionConfig, num,
 ckptIntv);
 System.out.println("Subscriber created to stream " +
 num + " operations.");

 /* step 5: create a subscription and start stream */
 publisher.subscribe(subscriber);
 if (!subscriber.isSubscriptionSucc()) {
 System.out.println("Subscription failed for " +
 subscriber.getSubscriptionConfig()
 .getSubscriberId() +
 ", reason " +
 subscriber.getCauseOfFailure());

 throw new RuntimeException("fail to subscribe");
 }
 System.out.println("Start stream " + num +
 " operations from table " + TABLE_NAME);

Chapter 6
Implementing Checkpoints in GSGStreamExample

6-3

 /*
 * Wait for the stream to finish. Throw exception if it
 * cannot finish within max allowed elapsed time
 */
 final long s = System.currentTimeMillis();
 while (subscriber.getStreamOps() < num) {
 final long elapsed = System.currentTimeMillis() - s;
 if (elapsed >= MAX_SUBSCRIPTION_TIME_MS) {
 throw new
 RuntimeException("Not done within max " +
 "allowed elapsed time");
 }
 try {
 Thread.sleep(100);
 } catch (InterruptedException e) {
 throw new RuntimeException("Interrupted!");
 }
 }

 /* step 6: clean up */
 publisher.close(true);
 System.out.println("Publisher closed normally.");

 } catch (Exception exp) {
 String msg = "Error: " + exp.getMessage();
 System.out.println(msg);
 if (publisher != null) {
 publisher.close(exp, false);
 System.out.println("Publisher closed with error.");
 }
 throw exp;
 } finally {
 System.out.println("All done.");
 }
 }
}

Implementing Checkpoints in GSGSubscriberExample
In this section, we illustrate how to implement checkpoints by adding functionality to
the examples provided in NoSQLSubscriber Example.

Be aware that you must also add functionality to the example streams application
shown in Streams Example. For those updates, see the previous section,
Implementing Checkpoints in GSGStreamExample.

New additions to the original example code are indicated by bold text.

The changes to GSGSubscriberExample.java are moderately extensive. To begin, we
add some private data members necessary for our checkpoint implementation.

• chkptInv is the checkpoint interval that we defined when we updated
GSGStreamsExample for checkpoints. This variable indicates the number of
operations that this subscriber sees before running a checkpoint.

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

6-4

• ckptSucc is a flag to indicate whether a checkpoint is successful.

• CHECKPOINT_TIMEOUT_MS is the time in milliseconds a checkpoint can run before it is
declared a failure.

package pubsub;

import java.util.List;

import oracle.kv.pubsub.NoSQLSubscriber;
import oracle.kv.pubsub.NoSQLSubscription;
import oracle.kv.pubsub.NoSQLSubscriptionConfig;
import oracle.kv.pubsub.StreamOperation;
import oracle.kv.pubsub.StreamPosition;

import oracle.kv.table.MapValue;
import oracle.kv.table.Row;

import org.reactivestreams.Subscription;

class GSGSubscriberExample implements NoSQLSubscriber {

 /* subscription configuration */
 private final NoSQLSubscriptionConfig config;

 /* number of operations to stream */
 private final int numOps;

 /* number of operations seen in the stream */
 private long streamOps;

 private NoSQLSubscription subscription;

 private boolean isSubscribeSucc;

 private Throwable causeOfFailure;

/* checkpoint interval in number of ops */
 private final long ckptInv;

 /*
 * true if checkpoint is successful.
 * because this value can technically be changed by
 * different threads, we declare it as volatile
 */
 private volatile boolean ckptSucc;
 /*
 * amount of time in milliseconds that the checkpoint
 * has to run before the operation times out.
 */
 private final static long CHECKPOINT_TIMEOUT_MS = 60 * 1000;

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

6-5

Next we change our class signature to allow specification of the checkpoint interval
when this class is constructed. We also initialize our ckptInv private data member.

 GSGSubscriberExample(NoSQLSubscriptionConfig config,
 int numOps, long ckptIntv) {
 this.config = config;
 this.numOps = numOps;

 causeOfFailure = null;
 isSubscribeSucc = false;
 streamOps = 0;
 subscription = null;

 this.ckptInv = ckptIntv;
 }

 @Override
 public NoSQLSubscriptionConfig getSubscriptionConfig() {
 return config;
 }

 @Override
 public void onSubscribe(Subscription s) {
 subscription = (NoSQLSubscription) s;
 subscription.request(numOps);
 isSubscribeSucc = true;
 }

 @Override
 public void onError(Throwable t) {
 causeOfFailure = t;
 System.out.println("Error: " + t.getMessage());
 }

 @Override
 public void onComplete() {
 /* shall be no-op */
 }

 @Override
 public void onWarn(Throwable t) {
 System.out.println("Warning: " + t.getMessage());
 }

Next, we implement onCheckpointComplete(), which was not implemented earlier. In
this simple example, we use it only to indicate the checkpoint's success status. You
can tell if the checkpoint is successful if the cause method parameter is null.

Notice that we cannot examine the return status of
NoSQLSubscription.doCheckpoint() because that method runs asynchronously, in a

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

6-6

separate thread. The reason is so that doCheckpoint() is free to return immediately without
waiting for the checkpoint to complete.

 /* called when publisher finishes a checkpoint */
 @Override
 public void onCheckpointComplete(StreamPosition pos,
 Throwable cause) {
 if (cause == null) {
 ckptSucc = true;
 System.out.println("Finish checkpoint at position " +
 pos);
 } else {
 ckptSucc = false;
 System.out.println("Fail to checkpoint at position " +
 pos + ", cause: " + cause.getMessage());
 }

 }

Next, we update the onNext() method to always call a new internal method,
performCheckpoint() (described next).

We could have added logic here to determine if it is time to run a checkpoint. Instead, we
push that functionality into the new doCheckpoint() method.

 @Override
 public void onNext(StreamOperation t) {

 switch (t.getType()) {
 case PUT:
 streamOps++;
 System.out.println("\nFound a put. Row is:");

 StreamOperation.PutEvent pe = t.asPut();
 Row row = pe.getRow();

 Integer uid = row.get("uid").asInteger().get();
 System.out.println("UID: " + uid);

 MapValue myjson = row.get("myJSON").asMap();
 int quantity = myjson.get("quantity")
 .asInteger().get();
 String array =
 myjson.get("myArray").asArray().toString();
 System.out.println("\tQuantity: " + quantity);
 System.out.println("\tmyArray: " + array);
 break;
 case DELETE:
 streamOps++;
 System.out.println("\nFound a delete. Row is:");
 System.out.println(t);
 break;

 default:

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

6-7

 throw new
 IllegalStateException("Receive unsupported " +
 "stream operation from shard " +
 t.getRepGroupId() +
 ", seq: " + t.getSequenceId());
 }

 performCheckpoint();
 if (streamOps == numOps) {
 getSubscription().cancel();
 System.out.println("Subscription cancelled after " +
 "receiving " + numOps + " operations.");
 }
 }

Finally, we implement a new private method, performCheckpoint(). This method
implements the bulk of the checkpoint functionality.

In this method, we first check if chkptInv is 0. If it is, we return:

 private void performCheckpoint() {

 /* If 0, turn off checkpointing */
 if (ckptInv == 0) {
 return;
 }

A checkpoint is run if the number of streamOps is greater than zero, and if the number
of streamOps is evenly divisible by ckptInv. If these conditions are met,
NoSQLSubscription.getCurrentPosition() is used to get the current
StreamPosition, and then NoSQLSubscription.doCheckpoint() is used to actually
perform the checkpoint.

Finally, once the checkpoint concludes, we check its success status. Regardless of the
success status, we report it to the console, and then we are done. For production
code, we recommend that you consider taking more elaborate actions here, especially
if the checkpoint was not successful.

 if (ckptSucc) {
 System.out.println("\nCheckpoint succeeded after "
 + streamOps +
 " operations at position " + ckptPos +
 ", elapsed time in ms " +
 (System.currentTimeMillis() - start));
 /* reset for next checkpoint */
 ckptSucc = false;
 } else {
 System.out.println("\nCheckpoint timeout " +
 "at position " + ckptPos +
 ", elapsed time in ms " +
 (System.currentTimeMillis() -
start));
 }
 }

Chapter 6
Implementing Checkpoints in GSGSubscriberExample

6-8

 }

 private boolean isCkptTimeout(long start) {
 return (System.currentTimeMillis() - start) >
 CHECKPOINT_TIMEOUT_MS;
 }

 String getCauseOfFailure() {
 if (causeOfFailure == null) {
 return "success";
 }
 return causeOfFailure.getMessage();
 }

 boolean isSubscriptionSucc() {
 return isSubscribeSucc;
 }

 long getStreamOps() {
 return streamOps;
 }

 NoSQLSubscription getSubscription() {
 return subscription;
 }

}

Example Checkpoint Behavior
As shown in Sample Streams Output, the reason why we want to implement checkpoints is
so that our streams application will not consume operations from the very beginning of the
stream every time it is run. Now that we have implemented checkpoints, our application will
begin streaming from the last saved checkpoint.

On the initial run, of 100 operations, the application's behavior is no different from the original
application, with the exception of the checkpoints. (Output is truncated for brevity.)

> java pubsub.GSGStreamExample
Subscriber created to stream 100 operations.
Start stream 100 operations from table Users

Found a put. Row is:
UID: 0
 Quantity: 10
 myArray: [19,10,3,6,14,17,20,8,7,20]

Found a put. Row is:
UID: 1
 Quantity: 5
 myArray: [2,3,10,12,5]

Found a put. Row is:
UID: 2

Chapter 6
Example Checkpoint Behavior

6-9

 Quantity: 9
 myArray: [16,6,19,17,6,11,19,1,6]

... skipped ops for brevity ...

Found a put. Row is:
UID: 9
 Quantity: 1
 myArray: [2]
Finish checkpoint at position {kvstore(id=1500857641631):
[rg1(vlsn=69)]}

Checkpoint succeeded after 10 operations at position
{kvstore(id=1500857641631): [rg1(vlsn=69)]}, elapsed time in ms 36

Found a put. Row is:
UID: 10
 Quantity: 3
 myArray: [4,7,9]

Found a put. Row is:
UID: 11
 Quantity: 5
 myArray: [14,9,14,14,12]

... skipped ops for brevity ...

Found a delete. Row is:
Del OP [seq: 233, shard id: 1, primary key: {
 "uid" : 54
}]

Found a put. Row is:
UID: 88
 Quantity: 6
 myArray: [4,12,2,2,11,9]

Found a put. Row is:
UID: 89
 Quantity: 1
 myArray: [4]
Fail to checkpoint at position {kvstore(id=1500857641631):
[rg1(vlsn=249)]}, cause: Cannot do checkpoint because there
is a concurrently running checkpoint for subscriber 1_0
Finish checkpoint at position {kvstore(id=1500857641631):
[rg1(vlsn=249)]}

Checkpoint succeeded after 100 operations at position
{kvstore(id=1500857641631): [rg1(vlsn=249)]}, elapsed time in ms 42
Publisher closed normally.
All done.

Notice in the previous output that at least one checkpoint failed to complete because
there was already a concurrently running checkpoint. This happened because we are
taking checkpoints far too frequently in this example. As a consequnce, we tried to

Chapter 6
Example Checkpoint Behavior

6-10

take a checkpoint before the previous checkpoint finished. Extending the checkpoint interval
to something more reasonable would eliminate the error situation.

Having completed one run of the example program, a subsequent run will begin where the
previous run left off. In this example run, the previous stream left off on the database write
that created the row with UID 89. The next run begins with the write operation that created
row UID 90.

> java pubsub.GSGStreamExample
Subscriber created to stream 100 operations.
Start stream 100 operations from table Users

Found a put. Row is:
UID: 90
 Quantity: 3
 myArray: [3,1,8]

Found a put. Row is:
UID: 91
 Quantity: 4
 myArray: [2,9,6,13]

Found a put. Row is:
UID: 92
 Quantity: 6
 myArray: [2,3,9,9,7,3]

... skipped ops for brevity ...

Chapter 6
Example Checkpoint Behavior

6-11

7
Scaling a Streams Application

You can scale a single streaming service to run on multiple nodes to handle a high volume of
stream events from large Oracle NoSQL Database stores. The streaming service can use
multiple subscribers to stream data from the Oracle NoSQL Database store.

The stream processing application does not need to know the topology of the Oracle NoSQL
Database store, but can simply add or remove more independent subscribers as needed. All
that the stream processing application needs to specify is the number of subscribers and a
subscriber ID.

The following illustration depicts how a stream application can be scaled to use two clients to
stream data from the six shards of the Oracle NoSQL Database store:

The Oracle NoSQL Database store strives to achieve even distribution of streams among its
subscribers. As shown in the illustration, there are six shards and two subscribers. In this
example, each subscriber receives streams from three shards. The subscriber does not
choose which shard it gets streams from. The system determines this automatically, and the
decision is transparent to the subscribers. In cases where there are more shards than of
subscribers (as in this example), some subscribers can receive streams from more than one
shard.

7-1

Note:

• The maximum number of scalable subscribers cannot exceed the
number of shards. For example, if the Oracle NoSQL Database has six
shards, subscribers cannot be scaled to more than six clients.

• Oracle NoSQL Databasethat you scale stream processing applications
by running them on different nodes to benefit from newly added
resources.

Although scalable subscribers can be created and run inside separate JVMs on the
same node, such configuration would not have any benefit over running a single
subscriber without using scalable subscribers. In our example, running two scalable
subscribers inside different JVMs (but within the same node), streaming over three
shards each, would not benefit over running a single subscriber on the same node that
is subscribed to the entire (six shards) Oracle NoSQL Database store.

Scaling Subscribers
To add or remove subscribers running on different nodes, NoSQLSubscriptionConfig
has to be created with the following additional builder API.

/* step 3: create a subscription configuration */
 final NoSQLSubscriptionConfig subscriptionConfig =
 // Scalable subscriber should set Subscriber Id
 // with 2 as total number of subscribers and
 // 0 as its own SubscriberId within the group of 2 subscribers

 new NoSQLSubscriptionConfig.Builder(CKPT_TABLE_NAME)
 .setSubscribedTables("usertable")
 .setSubscriberId(new NoSQLSubscriberId(2,0))
 .setStreamMode(streamMode)
 .build();

The API setSubscriberId() takes a single argument NoSQLSubscriberID.
NoSQLSubscriberId is an object with both total number of subscribers and subscriber
index. Hence, we need the following two arguments to construct a NoSQLubscriberId
object.

• Number of Subscribers

The total number of subscribers that would be running on different nodes. For
example, in the code example above, .setSubscriberId(new
NoSQLSubscriberId(2,0)), the NoSQLSubscriberId created has two subscribers
in total.

• Subscriber Index

A numerical index of the current subscriber among the total number of
subscribers. Note that a numerical index begins with 0. For example, two
subscriber clients can be identified as 0 and 1.

Chapter 7
Scaling Subscribers

7-2

A
GSGStreamsWriteTable

The examples in this document rely on a Users table that is populated with data. The
application we used to create and populate this table is provided in this appendix.

Note:

While this example does not use namespaces, the streaming API supports them. To
assess a table in a namespace, such as ns1, prefix the table name with the
namespace, followed by a colon. For example: ns1:Users.

We provide this class without comment and solely for completeness. The actions taken by
this class should be familiar to anyone who has used the Oracle NoSQL Database Java API.
See Java Direct Driver Developer's Guide.

package pubsub;

import java.util.Arrays;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;

import oracle.kv.FaultException;
import oracle.kv.KVStore;
import oracle.kv.KVStoreConfig;
import oracle.kv.KVStoreFactory;
import oracle.kv.StatementResult;

import oracle.kv.table.PrimaryKey;
import oracle.kv.table.Row;
import oracle.kv.table.Table;
import oracle.kv.table.TableAPI;

public class GSGStreamsWriteTable {

 private static final String[] hhosts = {"localhost:5000"};
 private static final int MAX_ROWS = 200;

 public static void main(String args[]) {
 GSGStreamsWriteTable gswt = new GSGStreamsWriteTable();

 gswt.run(args);

 System.out.println("All done.");
 }

A-1

 private void run(String args[]) {
 KVStoreConfig kconfig = new KVStoreConfig("kvstore", hhosts);
 KVStore kvstore = KVStoreFactory.getStore(kconfig);

 defineTable(kvstore);
 writeTable(kvstore);
 }

 private void defineTable(KVStore kvstore) {
 System.out.println("Creating table schema....");
 TableAPI tableAPI = kvstore.getTableAPI();
 StatementResult result = null;
 String statement = null;

 try {
 statement = "DROP TABLE IF EXISTS Users";
 result = kvstore.executeSync(statement);
 displayResult(result, statement);

 statement = "CREATE TABLE Users (" +
 " uid INTEGER, " +
 " myJSON JSON, " +
 " PRIMARY KEY(uid))";
 result = kvstore.executeSync(statement);
 displayResult(result, statement);

 } catch (IllegalArgumentException e) {
 System.out.println("Invalid statement:\n" +
 e.getMessage());
 } catch (FaultException e) {
 System.out.println
 ("Statement couldn't be executed, please retry: " + e);
 }
 }

 private void writeTable(KVStore kvstore) {
 System.out.println("In writeTable....");

 TableAPI tableH = kvstore.getTableAPI();

 Table myTable = tableH.getTable("Users");
 int count = 0;
 Random rand = new Random();

 /*
 * Write rows to the table, using random information
 * for the JSON data.
 */
 while (count < MAX_ROWS) {
 Row row = myTable.createRow();
 row.put("uid", count);

 int q = rand.nextInt(10) + 1;
 List<Integer> integersList = new ArrayList<Integer>();
 int a_count = 0;

Appendix A

A-2

 while (a_count < q) {
 int val = rand.nextInt(q + 10) + 1;
 integersList.add(val);
 a_count++;
 }

 String json = "{";
 json += "\"quantity\" : " + q + ", ";
 json += "\"myArray\" : " + integersList.toString();
 json += "}";

 /* Write the row to the store */
 row.putJson("myJSON", json);
 tableH.put(row, null, null);

 /* Randomly delete table rows */
 int shouldDelete = rand.nextInt(10);
 if (shouldDelete == 1) {
 /* Randomly select a row to delete */
 int toDelete = rand.nextInt(count);
 PrimaryKey pk = myTable.createPrimaryKey();
 pk.put("uid", toDelete);
 tableH.delete(pk, null, null);
 }

 count++;
 }
 System.out.println("Wrote " + count + " rows");
 }

 private void displayResult(StatementResult result,
 String statement) {
 System.out.println("===========================");
 if (result.isSuccessful()) {
 System.out.println("Statement was successful:\n\t" +
 statement);
 System.out.println("Results:\n\t" + result.getInfo());
 } else if (result.isCancelled()) {
 System.out.println("Statement was cancelled:\n\t" +
 statement);
 } else {
 /*
 * statement wasn't successful: may be in error, or may
 * still be in progress.
 */
 if (result.isDone()) {
 System.out.println("Statement failed:\n\t" +
 statement);
 System.out.println("Problem:\n\t" +
 result.getErrorMessage());
 } else {
 System.out.println("Statement in progress:\n\t" +
 statement);
 System.out.println("Status:\n\t" +
 result.getInfo());

Appendix A

A-3

 }
 }
 }
}

Appendix A

A-4

	Contents
	Preface
	Conventions Used in This Book

	1 Introduction to the Oracle NoSQL Database Streams API
	Architecture
	API Components
	Checkpoints
	Dynamic Streaming
	System Requirements
	Limitations
	Compiling and Running a Streams Application

	2 Using the StreamOperation Class
	3 Working with Subscriptions
	Using NoSQLSubscriptionConfig
	NoSQLStreamMode
	Using NoSQLSubscription

	4 Implementing Subscribers
	Using the NoSQLSubscriber Interface
	NoSQLSubscriber Example

	5 Using a Streams Publisher
	Using NoSQLPublisherConfig
	Configuring a Connection to the Store
	Creating a Basic NoSQLPublisherConfig Object
	Tuning Your Publisher
	Authenticating to a Secure Store
	Reauthentication

	Streams Example
	Sample Streams Output

	6 Using Checkpoints
	Implementing Checkpoints in GSGStreamExample
	Implementing Checkpoints in GSGSubscriberExample
	Example Checkpoint Behavior

	7 Scaling a Streams Application
	Scaling Subscribers

	A GSGStreamsWriteTable

