
Java Platform, Standard Edition
Monitoring and Management Guide

Release 21
F80258-02
September 2023

Java Platform, Standard Edition Monitoring and Management Guide, Release 21

F80258-02

Copyright © 2006, 2023, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, and MySQL are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

Contents

 Preface

Audience vi

Documentation Accessibility vi

Diversity and Inclusion vi

Related Documents vi

Conventions vii

1 Overview of Java SE Monitoring and Management

Key Monitoring and Management Features 1-1

Java Virtual Machine Instrumentation 1-1

Monitoring and Management API 1-1

Monitoring and Management Tools 1-2

Java Management Extensions Technology 1-2

What Are MBeans? 1-3

MBean Server 1-3

Creating and Registering MBeans 1-3

Instrumenting Applications 1-4

Platform MXBeans 1-4

Platform MBean Server 1-5

2 Monitoring and Management Using JMX Technology

Setting System Properties 2-1

Ready-to-Use Management 2-1

Local Monitoring and Management Using JConsole 2-2

Remote Monitoring and Management 2-2

Using Password Authentication 2-3

Using SSL 2-6

Enabling RMI Registry Authentication 2-9

Enabling SSL Client Authentication 2-9

Disabling SSL 2-9

Disabling Security 2-10

iii

Remote Monitoring with JConsole 2-10

Remote Monitoring with JConsole with SSL Enabled 2-10

Using Password and Access Files 2-11

Password Files 2-11

Access Files 2-11

Remote Monitoring with JConsole with SSL Disabled 2-12

Ready-to-Use Monitoring and Management Properties 2-12

Configuration Errors 2-15

Connecting to the JMX Agent Programmatically 2-15

Setting Up Monitoring and Management Programmatically 2-16

Mimicking Ready-to-Use Management Using the JMX Remote API 2-17

Example of Mimicking Ready-to-Use Management 2-17

Monitoring Applications Through a Firewall 2-20

Using an Agent Class to Instrument an Application 2-20

Creating an Agent Class to Instrument an Application 2-21

3 Using JConsole

Starting JConsole 3-1

Command Syntax 3-1

Setting Up Local Monitoring 3-1

Setting Up Remote Monitoring 3-2

Setting Up Secure Remote Monitoring 3-2

Connecting to a JMX Agent 3-3

Connecting JConsole to a Local Process 3-3

Connecting JConsole to a Remote Process 3-5

Connecting Using a JMX Service URL 3-6

Presenting the JConsole Tabs 3-7

Viewing Overview Information 3-8

Saving Chart Data 3-8

Monitoring Memory Consumption 3-8

Monitoring Class Loading 3-13

Viewing VM Information 3-14

Monitoring and Managing MBeans 3-16

Creating Custom Tabs 3-25

4 Using the Platform MBean Server and Platform MXBeans

Using the Platform MBean Server 4-1

Accessing Platform MXBeans 4-1

Accessing Platform MXBeans Using the ManagementFactory Class 4-1

iv

Accessing Platform MXBeans Using an MXBean Proxy 4-2

Accessing Platform MXBeans Using the MBeanServerConnection Class 4-2

Using Oracle JDK's Platform Extension 4-3

Accessing MXBean Attributes Directly 4-3

Accessing MXBean Attributes Using MBeanServerConnection 4-3

Monitoring Thread Contention and CPU Time 4-4

Managing the Operating System 4-4

Logging Management 4-5

Detecting Low Memory 4-5

Memory Thresholds 4-5

Usage Threshold 4-6

Collection Usage Threshold 4-6

Memory MXBean 4-6

Memory Pool MXBean 4-7

Polling 4-7

Threshold Notifications 4-8

5 Java Discovery Protocol (JDP)

v

Preface

The Java Platform, Standard Edition 21 (Java SE 21) provides utilities that allow you
to monitor and manage the performance of a Java Virtual Machine (Java VM), and the
Java applications that are running in it. The Java SE Monitoring and Management
Guide describes those monitoring and management utilities.

Audience
This guide is intended for experienced users of the Java language, such as systems
administrators and software developers, for whom the performance of the Java
platform and their applications is of vital importance.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documents
See JDK 21 Documentation for other JDK 21 guides.

Preface

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase21&id=homepage

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

vii

1
Overview of Java SE Monitoring and
Management

This topic introduces the features and utilities that provide monitoring and management
services to the Java Platform, Standard Edition (Java SE platform).

Key Monitoring and Management Features
The Java SE platform includes significant monitoring and management features. These
features fall into four broad categories:

• Java Virtual Machine Instrumentation

• Monitoring and Management API

• Monitoring and Management Tools

• Java Management Extensions Technology

Java Virtual Machine Instrumentation
The Java Virtual Machine (Java VM) is instrumented for monitoring and management,
enabling built-in (or ready-to-use) management capabilities that can be accessed both
remotely and locally.

See Monitoring and Management Using JMX Technology.

The Java VM includes a platform MBean server and platform MBeans for use by
management applications that conform to the Java Management Extensions (JMX)
specification. These platforms are implementations of the monitoring and management API.
The platform MXBeans and MBean servers are introduced in the Platform MXBeans and
Platform MBean Server topics.

Monitoring and Management API
Java SE includes the following APIs for monitoring and management:

• java.lang.management: Enables monitoring and managing the Java virtual machine
and the underlying operating system. The API enables applications to monitor
themselves, and enables JMX-compliant tools to monitor and manage a virtual machine
locally and remotely. This API provides access to the following types of information:

– Number of classes loaded and threads running

– Java VM uptime, system properties, and VM input arguments

– Thread state, thread contention statistics, and stack trace of live threads

– Memory consumption

– Garbage collection statistics

1-1

https://docs.oracle.com/en/java/javase/18/docs/api/java.management/java/lang/management/package-summary.html

– Low memory detection

– On-demand deadlock detection

– Operating system information

• Attach: Allows a management agent to be dynamically loaded onto a virtual
machine.

• JConsole: Provides a programmatic interface to access JConsole such as adding
a JConsole plug-in.

Monitoring and Management Tools
The Java SE platform provides a graphical monitoring tool called JConsole. JConsole
implements the JMX API, and enables you to monitor the performance of a Java VM
and any instrumented applications. It provides information to help you optimize the
performance.

Some of the enhancements in JConsole are as follows:

• JConsole plug-in support, which allows you to build your own plug-ins to run with
JConsole. For example, you can add a custom tab for accessing the MBeans of
the application.

• Dynamic attach capability allowing you to connect JConsole to any application that
supports the Attach API.

• Enhanced user interface, which makes data more easily accessible.

• New Overview and VM Summary tabs for a better presentation of general
information about your Java VM.

• HotSpot Diagnostic MBean, which provides an API to request heap dump at
runtime and also change the setting of certain VM options.

• Improved presentation of MBeans to make it easier to access the MBeans
operations and attributes.

JConsole is presented in detail in the Using JConsole topic.

Other command-line tools are also supplied with the Java SE platform.

Java Management Extensions Technology
The Java SE platform, release 21 includes the Java Management Extensions (JMX)
specification, version 1.4. The JMX API allows you to instrument applications for
monitoring and management. A remote method invocation (RMI) connector allows this
instrumentation to be remotely accessible, for example, using JConsole.

See JMX technology documentation in the Java Platform, Standard Edition Java
Management Extensions Guide.

The following sections provide a brief introduction to the main components of the JMX
API.

Chapter 1
Key Monitoring and Management Features

1-2

https://docs.oracle.com/en/java/javase/18/docs/api/jdk.attach/module-summary.html
https://docs.oracle.com/en/java/javase/18/docs/api/jdk.jconsole/module-summary.html

What Are MBeans?
JMX technology MBeans are managed beans, namely Java objects that represent
resources to be managed. An MBean has a management interface consisting of the
following:

• Named and typed attributes that can be read and written.

• Named and typed operations that can be invoked.

• Typed notifications that can be emitted by the MBean.

For example, an MBean representing an application's configuration can have attributes
representing different configuration parameters, such as a CacheSize. Reading the
CacheSize attribute will return the current size of the cache. Writing CacheSize updates the
size of the cache, potentially changing the behavior of the running application. An operation
such as save stores the current configuration persistently. The MBean can send a notification
such as ConfigurationChangedNotification when the configuration changes.

MBeans can be standard or dynamic. Standard MBeans are Java objects that conform to
design patterns derived from the JavaBeans component model. Dynamic MBeans define
their management interface at runtime. An additional type of MBean, called MXBean, is
added to the Java platform.

• A standard MBean exposes the resource to be managed directly through its attributes
and operations. Attributes are exposed through getter and setter methods. Operations
are the other methods of the class that are available to managers. All these methods are
defined statically in the MBean interface and are visible to a JMX agent through
introspection. This method is the most straightforward way of making a new resource
manageable.

• A dynamic MBean is an MBean that defines its management interface at runtime. For
example, a configuration MBean determines the names and types of the attributes that it
exposes, by parsing an XML file.

• An MXBean is a type of MBean that provides a simple way to code an MBean that
references only a predefined set of types. In this way, you can ensure that the MBean is
usable by any client. It includes remote clients without any requirement that the client has
access to model-specific classes, which represents the types of your MBeans. The
platform MBeans are all MXBeans.

MBean Server
To be useful, an MBean must be registered in an MBean server. An MBean server is a
repository of MBeans. Each MBean is registered with a unique name within the MBean
server. Usually the only access to the MBeans is through the MBean server. In other words,
code does not access an MBean directly, but rather accesses the MBean by the name
through the MBean server.

The Java SE platform includes a built-in platform MBean server. See Using the Platform
MBean Server and Platform MXBeans.

Creating and Registering MBeans
There are two ways to create an MBean. One is to construct a Java object that will be the
MBean, then use the registerMBean method to register it in the MBean server. The other

Chapter 1
Key Monitoring and Management Features

1-3

method is to create and register the MBean in a single operation using one of the
createMBean methods.

The registerMBean method is simpler for local use, but cannot be used remotely. The
createMBean method can be used remotely, but sometimes requires attention to the
class loading issues. An MBean can perform actions when it is registered in or
unregistered from an MBean server if it implements the MBeanRegistration interface.

Instrumenting Applications
General instructions on how to instrument your applications for management by the
JMX API is beyond the scope of this document.

Platform MXBeans
A platform MXBean is an MBean for monitoring and managing the Java VM, and other
components of the Java run-time environment. Each MXBean encapsulates a part of
VM functionality such as the class loading system, just-in-time (JIT) compilation
system, garbage collector, and so on.

Table 1-1 lists all the platform MXBeans and the aspect of the VM that they manage.
Each platform MXBean has a unique javax.management.ObjectName for registration in
the platform MBean server. A Java VM may have zero, one, or more than one instance
of each MXBean, depending on its function, as shown in the table.

Table 1-1 Platform MXBeans

Interface Part of VM Managed Object Name Instances per VM

ClassLoadingMXBea
n

Class loading system java.lang:type=
ClassLoading

One

CompilationMXBean Compilation system java.lang:type=
Compilation

Zero or one

GarbageCollectorM
XBean

Garbage collector java.lang:type=
GarbageCollector,
name=collectorNam
e

One or more

LoggingMXBean Logging system java.util.logging
:type =Logging

One

MemoryManagerMXBe
an (subinterface of
GarbageCollectorM
XBean)

Memory pool java.lang:
typeMemoryManager
,
name=managerName

One or more

MemoryPoolMXBean Memory java.lang: type=
MemoryPool,
name=poolName

One or more

MemoryMXBean Memory system java.lang:type=
Memory

One

OperatingSystemMX
Bean

Underlying operating
system

java.lang:type=
OperatingSystem

One

Chapter 1
Platform MXBeans

1-4

Table 1-1 (Cont.) Platform MXBeans

Interface Part of VM Managed Object Name Instances per VM

RuntimeMXBean Runtime system java.lang:type=
Runtime

One

ThreadMXBean Thread system java.lang:type=
Threading

One

The details on platform MXBeans (apart from LoggingMXBean) are described in the
java.lang.management API reference. The LoggingMXBean interface is described in the
java.util.logging API reference.

Platform MBean Server
The platform MBean server can be shared by different managed components running within
the same Java VM. You can access the platform MBean server with the method
ManagementFactory.getPlatformMBeanServer(). The first call to this method creates the
platform MBean server and registers the platform MXBeans using their unique object names.
Subsequently, this method returns the initially created platform MBeanServer instance.

MXBeans that are created and destroyed dynamically (for example, memory pools and
managers) will automatically be registered and unregistered in the platform MBean server. If
the system property javax.management.builder.initial is set, then the platform MBean
server will be created by the specified MBeanServerBuilder parameter.

You can use the platform MBean server to register other MBeans besides the platform
MXBeans. This enables all MBeans to be published through the same MBean server, and
makes network publishing and discovery easier.

Chapter 1
Platform MBean Server

1-5

https://docs.oracle.com/en/java/javase/18/docs/api/java.management/java/lang/management/package-summary.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.logging/java/util/logging/package-summary.html

2
Monitoring and Management Using JMX
Technology

The Java virtual machine (Java VM) has built-in instrumentation that enables you to monitor
and manage it using the Java Management Extensions (JMX) technology. These built-in
management utilities are often referred to as out-of-the-box management tools for the Java
VM. You can also monitor any appropriately instrumented applications using the JMX API.

Setting System Properties
To enable and configure the ready-to-use JMX agent so that it can monitor and manage the
Java VM, you must set certain system properties when you start the Java VM. You set a
system property on the command line as follows:

java -Dproperty=value ...

You can set any number of system properties in this way. If you do not specify a value for a
management property, then the property is set with its default value. See Table 2-1 for the full
set of ready-to-use management properties. You can also set system properties in a
configuration file, as described in the Ready-to-Use Monitoring and Management Properties
section.

Note:

To run the Java VM from the command line, you must add JAVA_HOME/bin to your
path, where JAVA_HOME is the directory where the JDK is installed . Alternatively, you
can enter the full path when you enter the command.

The syntax and the full set of command-line options supported by the Java HotSpot VMs are
described in the java section of Java Development Kit Tool Specifications.

Ready-to-Use Management
With the current Java SE platform, any application can be monitored and managed locally
when required through the Attach API (no need to specify -
Dcom.sun.management.jmxremote). However, you need to enable and configure remote
monitoring.

2-1

http://www.oracle.com/pls/topic/lookup?ctx=javase20&id=java_tool_reference

Note:

On Windows platforms, for security reasons, local monitoring and
management is supported only if your default temporary directory is on a file
system that allows the setting of permissions on files and directories (for
example, on a New Technology File System (NTFS) file system). It is not
supported on a File Allocation Table (FAT) file system, which provides
insufficient access controls.

Local Monitoring and Management Using JConsole
Local monitoring with JConsole is useful for development. In production environments,
be cautious that JConsole itself may affect the platform being monitored.

To perform local monitoring using JConsole, start the tool by entering jconsole in a
command shell. When you start jconsole without any arguments, it will automatically
detect all local Java applications, and display a dialog box that enables you to select
the application that you want to monitor. Both JConsole and the application must by
executed by the same user, because the monitoring and management system uses
the operating system's file permissions.

Note:

To run JConsole from the command line, you must add JDK_HOME/bin to your
path. Alternatively, you can enter the full path when you enter the command.
See Using JConsole.

Remote Monitoring and Management
RMI is the transport for remote connection. By default, the remote stubs for locally
created remote objects that are sent to clients contain the IP address of the local host
in dotted-quad format. For remote stubs to be associated with a specific interface
address, the java.rmi.server.hostname system property must be set to IP address of
that interface.

To enable monitoring and management from remote systems, you must set the
following system property when you start the Java VM:

com.sun.management.jmxremote.port=portNum

Where, portNum is the port number to enable JMX RMI connections. Ensure that you
specify an unused port number. In addition to publishing an RMI connector for local
access, setting this property publishes an additional RMI connector in a private read-
only registry at the specified port using the name, jmxrmi. The port number to which
the RMI connector will be bound using the system property:

com.sun.management.jmxremote.rmi.port

Ensure to use an unused port number.

Chapter 2
Ready-to-Use Management

2-2

Note:

You must set the prior system property in addition to any properties that you might
set for security.

You can also configure the third port that accepts local JMX connections by using the system
property:

com.sun.management.jmxremote.local.port

Remote monitoring and management requires security to ensure that unauthorized persons
cannot control or monitor your application. Password authentication over the Secure Sockets
Layer (SSL) and Transport Layer Security (TLS) is enabled by default. You can disable
password authentication and SSL separately.

Note:

For production systems, use both SSL client certificates to authenticate the client
host and password authentication for user management. See Using SSL and Using
LDAP Authentication.

The Java platform supports pluggable login modules for authentication. You can plug in
any login module depending on the authentication infrastructure in your organization. Using
LDAP Authentication describes how to plug in the
com.sun.security.auth.module.LdapLoginModule module for Lightweight Directory
Access Protocol (LDAP)-based authentication.

After you have enabled the JMX agent for remote use, you can monitor your application using
JConsole, as described in Remote Monitoring with JConsole. How to connect to the
management agent programmatically is described in Connecting to the JMX Agent
Programmatically.

Using Password Authentication
This section details different password authentication methods.

Using File-Based Password Authentication
The file-based password authentication mechanism supported by the JMX agent stores the
password in clear-text and is intended only for development use. For production use, it is
recommended that you use SSL client certificates for authentication or plug in a secure login
configuration.

Chapter 2
Ready-to-Use Management

2-3

https://docs.oracle.com/en/java/javase/18/docs/api/jdk.security.auth/com/sun/security/auth/module/package-summary.html
https://docs.oracle.com/en/java/javase/18/docs/api/jdk.security.auth/com/sun/security/auth/module/LdapLoginModule.html

Note:

Caution : A potential security issue has been identified with password
authentication for remote connectors when the client obtains the remote
connector from an insecure RMI registry (the default). If an attacker starts a
bogus RMI registry on the target server before the legitimate registry is
started, then the attacker can steal clients' passwords. This scenario
includes the case where you start a Java VM with remote management
enabled, using the system property
com.sun.management.jmxremote.port=portNum, even when SSL is enabled.
Although such attacks are likely to be noticed, it is nevertheless a
vulnerability.

By default, when you enable the JMX agent for remote monitoring, it uses password
authentication. As passwords are stored in clear-text in the password file, it is not
advisable to use your regular user name and password for monitoring. Instead, use
the user names specified in the password file such as monitorRole and controlRole.
See Using Password and Access Files.

Setting Up the Password File

You set up the password file in the JAVA_HOME/conf/management directory as follows:

1. Copy the password template file jmxremote.password.template to
jmxremote.password.

2. Set file permissions so that only the owner can read and write the password file.

3. Add passwords for roles such as monitorRole and controlRole.
If the JDK is used for a single purpose or all invocations need to use the same roles
and passwords for monitoring, editing jmxremote.password in the conf/management
directory is appropriate.

If an instance of the JDK is to run with a specific jmxremote.password file:

1. Copy the template to jmxremote.password in some other location (not within the
JDK directory).

2. Set file permissions so that only the user starting the Java application can read
and write the password file.

3. Set the following system property when you start the Java VM:

com.sun.management.jmxremote.password.file=pwFilePath

Where pwFilePath is the path to the password file.

Disabling Password Authentication
Password authentication for remote monitoring is enabled by default. To disable it, set
the following system property when you start the Java VM:

com.sun.management.jmxremote.authenticate=false

Chapter 2
Ready-to-Use Management

2-4

Note:

Caution : This configuration is insecure. Any remote user who knows (or guesses)
your JMX port number and host name will be able to monitor and control your Java
application and platform. While it may be acceptable for development, it is not
recommended for production systems.

When you disable password authentication, you can also disable SSL, as described in
Disabling Security. You can also disable passwords, but use SSL client authentication, as
described in Enabling SSL Client Authentication.

Using LDAP Authentication
The JMXAuthenticator implementation in the JMX agent is based on Java Authentication
and Authorization Service (JAAS) technology. Authentication is performed by passing the
user credentials to a JAAS javax.security.auth.spi.LoginModule object. The
com.sun.security.auth.module.LdapLoginModule class enables authentication
using LDAP. You can replace the default LoginModule class with the LdapLoginModule class.

Create a JAAS configuration file that works in the required business organization. Here is an
example of a configuration file (ldap.config) :

ExampleCompanyConfig {
 com.sun.security.auth.module.LdapLoginModule REQUIRED
 userProvider="ldap://example-ds/ou=people,dc=examplecompany,dc=com"
 userFilter="(&(uid={USERNAME})(objectClass=inetOrgPerson))"
 authzIdentity=monitorRole;
 };

Here is an overview of the options mentioned in the configuration file:

• The com.sun.security.auth.module.LdapLoginModule REQUIRED option means that
authentication using LdapLoginModule is required for the overall authentication to be
successful.

• The userProvider option identifies the LDAP server and the position in the directory tree
where user entries are located.

• The userFilter option specifies the search filter to use to locate a user entry in the
LDAP directory. The token {USERNAME} is replaced with the user name before the filter is
used to search the directory.

• The authzIdentity option specifies the access role for authenticated users. In the
example, authenticated users will have the monitorRole option. See Access Files.

The details of the configuration options mentioned in the code example is explained in the
com.sun.security.auth.module.LdapLoginModule class.

Start your application with the following properties set on the command line:

• com.sun.management.jmxremote.login.config: This property configures the JMX agent
to use the specified JAAS configuration entry.

• java.security.auth.login.config: This property specifies the path to the JAAS
configuration file.

Chapter 2
Ready-to-Use Management

2-5

https://docs.oracle.com/en/java/javase/18/docs/api/java.management/javax/management/remote/JMXAuthenticator.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/javax/security/auth/spi/LoginModule.html
https://docs.oracle.com/en/java/javase/18/docs/api/jdk.security.auth/com/sun/security/auth/module/LdapLoginModule.html
https://docs.oracle.com/en/java/javase/18/docs/api/jdk.security.auth/com/sun/security/auth/module/LdapLoginModule.html

Here is a sample command line:

java -Dcom.sun.management.jmxremote.port=5000
 -Dcom.sun.management.jmxremote.login.config=ExampleCompanyConfig
 -Djava.security.auth.login.config=ldap.config
 -jar MyApplication.jar

Using SSL
SSL is enabled by default when you enable remote monitoring and management, but it
needs to be configured.

A keystore is a secure repository of cryptographic keys or trusted certificates. A
truststore is where we place the certificates that we trust. The keytool command
can create and manipulate both keystores and truststores. It can work on a default
store for the user, or a store specified with a command-line option.

Complete explanation of configuring and customizing SSL is beyond the scope of this
document, but you can refer to:

• Java Security Overview

• Java Secure Socket Extension (JSSE) Reference Guide

in Java Platform, Standard Edition Security Developer's Guide.

Example Scenarios of Configuring SSL

Here are few example scenarios that will help you to configure SSL.

Use a self-signed certificate pair at the JMX agent (server)

1. Create a self-signed certificate pair on the JMX server:

keytool -genkeypair -dname "CN=My Name, OU=Department, O=Company,
L=City, S=State,
 C=Country" -alias jmxservercert -keyalg rsa –keystore /
path/to/keystore -storepass
 mystorepass

Specifying the location of the keystore is optional. The keytool uses a default
keystore file .keystore in the home directory. However, it is recommended to
specify the keystore location as there could be different keystores for different
purposes.

2. Export the certificate as a file. This exports the public key from the generated
certificate pair:

keytool -export -alias jmxservercert –keystore /path/to/keystore -
storepass mystorepass
 -rfc -file exported_server_cert

Chapter 2
Ready-to-Use Management

2-6

https://docs.oracle.com/en/java/javase/21/security/java-security-overview1.html#GUID-2EF91196-D468-4D0F-8FDC-DA2BEA165D10
https://docs.oracle.com/en/java/javase/21/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345

3. Copy the exported certificate to the client (where the attaching tool executes) and import
into a truststore:

keytool -importcert -alias jmxservercert -file exported_server_cert -
storepass mystorepass
 -keystore myTruststore

4. Run the server, specifying the keystore and the specific port where JMX is enabled:

java -Djavax.net.ssl.keyStore=/path/to/keystore
 -Djavax.net.ssl.keyStorePassword=mystorepass -
Dcom.sun.management.jmxremote.port=<<PORTNUMBER>>
 MyJavaApp

5. Run the client tool, for example JConsole:

jconsole -J-Djavax.net.ssl.trustStore=myTruststore
 -J-Djavax.net.ssl.trustStorePassword=mystorepass

6. In the New Connection dialog, specify host:port and the configured role name and
password. See Using Password and Access Files.

Another option for importing the server certificate at the client is to import into the default
truststore. This is within the JDK directory, so may not be appropriate if the JDK is shared,
but could be easier as there is no need to specify a truststore location or password when
running JConsole. For example:

keytool -importcert -file exported_server_cert

Enabling SSL client authentication

In the Use a self-signed certificate pair at the JMX agent (server) section, the server public
certificate proves the identity of the server. In this section, the following procedure permits
two-way SSL authentication, where additionally the server has a public certificate from the
client as proof of its identity.

Before you begin, create a self-signed certificate pair at the JMX agent (server) and import
that to the truststore of the client, as in the steps above. Then:

1. At the client, generate a key pair:

keytool -genkeypair -dname "CN=My Name, OU=Department, O=Company, L=City,
S=State,
 C=Country" -alias jmxservercert -keyalg rsa -storepass mystorepass

2. Export the key pair:

keytool -export -alias jmxclientcert -storepass mystorepass -rfc -file
exported_client_cert

Chapter 2
Ready-to-Use Management

2-7

3. At the JMX server, import

keytool -importcert -alias jmxclientcert -file exported_client_cert
-keystore myTruststore
 -storepass mystorepass

4. Run the JMX server specifying the truststore, and the
com.sun.management.jmxremote.ssl.need.client.auth property:

java -Djavax.net.ssl.trustStore=myTruststore
-Djavax.net.ssl.trustStorePassword=mystorepass
-Djavax.net.ssl.keyStore=/path/to/keystore
-Djavax.net.ssl.keyStorePassword=mystorepass
-Dcom.sun.management.jmxremote.port=PORTNUMBER
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true MyJavaApp

5. Run JConsole (the client):

jconsole -J-Djavax.net.ssl.trustStore=myTruststore
 -J-Djavax.net.ssl.trustStorePassword=mystorepass

SSL with CA-signed certificates

When a certificate is signed by a Certificate Authority, it can be verified without being
exported and imported to the other party.

The general procedure to set up SSL is as follows:

1. If you do not have a key pair and certificate set up on the server, then perform the
following tasks:

• Generate a key pair with the keytool -genkey command.

• Request a signed certificate from a certificate authority (CA) with the keytool
-certreq command. This creates a Certificate Signing Request (CSR).

• Import the certificate into your keystore with the keytool -import command.
See the Importing Certificates in keytool documentation.

2. Configure SSL on the server system. Complete explanation of configuring and
customizing SSL is beyond the scope of this document, but you generally need to
set the system properties as described in the following list:

javax.net.ssl.keyStore Keystore location

javax.net.ssl.keyStoreType Default keystore type

javax.net.ssl.keyStorePassword Default keystore password

javax.net.ssl.trustStore Truststore location

javax.net.ssl.trustStoreType Default truststore type

javax.net.ssl.trustStorePassword Default truststore password

Chapter 2
Ready-to-Use Management

2-8

http://www.oracle.com/pls/topic/lookup?ctx=javase21&id=keytool_tool_reference

3. Setting system properties is detailed in the Setting System Properties section.

4. With this certificate on the server, the client can trust the server. Similarly, the client can
create a key pair and then a CSR to have it signed by a CA. Then, the server can trust
the client and the com.sun.management.jmxremote.ssl.need.client.auth property can
be set to true.

See:

• keytool - Key and Certificate Management Tool in the Java Development Kit Tool
Specifications

• Customizing the Default Keystores and Truststores, Store Types, and Store Passwords in
Java Platform, Standard Edition Security Developer's Guide

Enabling RMI Registry Authentication
When setting up connections for monitoring remote applications, you can optionally bind the
RMI connector stub to an RMI registry that is protected by SSL. This allows clients with the
appropriate SSL certificates to get the connector stub that is registered in the RMI registry. To
protect the RMI registry using SSL, you must set the following system property:

com.sun.management.jmxremote.registry.ssl=true

When this property is set to true, an RMI registry protected by SSL will be created and
configured by the ready-to-use management agent when the Java VM is started. The default
value of this property is false. However, it is recommended that you set this property to true.
If this property is set to true, then to have full security, you must also enable SSL client
authentication.

Enabling SSL Client Authentication
To enable SSL client authentication, set the following system property when you start the
Java VM:

com.sun.management.jmxremote.ssl.need.client.auth=true

SSL must be enabled (default is set to false) to use client SSL authentication. It is
recommended that you set this property to true. This configuration requires that the client
system have a valid digital certificate. You must install a certificate and configure SSL on the
client system, as described in Using SSL. As stated in the previous section, if RMI registry
SSL protection is enabled, then client SSL authentication must be set to true.

Disabling SSL
To disable SSL when monitoring remotely, you must set the following system property when
you start the Java VM:

com.sun.management.jmxremote.ssl=false

Password authentication will still be required unless you disable it, as specified in Disabling
Password Authentication.

Chapter 2
Ready-to-Use Management

2-9

http://www.oracle.com/pls/topic/lookup?ctx=javase21&id=keytool_tool_reference

Disabling Security
To disable both password authentication and SSL (namely to disable all security), you
should set the following system properties when you start the Java VM:

com.sun.management.jmxremote.authenticate=false
com.sun.management.jmxremote.ssl=false

Note:

Caution : This configuration is insecure; any remote user who knows (or
guesses) your port number and host name will be able to monitor and control
your Java applications and platform. Furthermore, possible harm is not
limited to the operations that you define in your MBeans. A remote client
could create a javax.management.loading.MLet MBean and use it to create
new MBeans from arbitrary URLs, at least if there is no security manager. In
other words, a remote client can make your Java application execute
arbitrary code.

Consequently, while disabling security might be acceptable for development, it is
strongly recommended that you do not disable security for production systems.

Remote Monitoring with JConsole
You can remotely monitor an application using JConsole, with or without security
enabled.

Remote Monitoring with JConsole with SSL Enabled
To monitor a remote application with SSL enabled, you need to set up the truststore
file on the system where JConsole is running and configure SSL properly. For
example, you can create a keystore file and start your application (called Server in
this example) with the following commands:

% java -Djavax.net.ssl.keyStore=keystore \
 -Djavax.net.ssl.keyStorePassword=password Server

See Customizing the Default Keystores and Truststores, Store Types, and Store
Passwords in the Java Platform, Standard Edition Security Developer's Guide.

If you create the keystore file and start the Server applicaton, then start JConsole as
follows:

% jconsole -J-Djavax.net.ssl.trustStore=truststore \
 -J-Djavax.net.ssl.trustStorePassword=trustword

See Using JConsole.

Chapter 2
Ready-to-Use Management

2-10

The configuration authenticates the server only. If SSL client authentication is set up, then
you need to provide a similar keystore file for JConsole's keys and an appropriate
truststore file for the application.

Using Password and Access Files
The password and access files control security for remote monitoring and management.
These files are located by default in JAVA_HOME/conf/management and are in the standard
Java properties file format. For more information on the format, see the API reference for the
java.util.Properties package.

Password Files
The password file defines the different roles and their passwords. The access control file
(jmxremote.access by default) defines the permitted access for each role. To be functional, a
role must have an entry in both the password and the access files.

The JDK contains a password file template named jmxremote.password.template. Copy this
file to JAVA_HOME/conf/management/jmxremote.password in to your home directory and add
the passwords for the roles defined in the access file.

You must ensure that only the owner has read and write permissions on this file, because it
contains the passwords in clear-text. For security reasons, the system checks that the file is
readable only by the owner and exits with an error if it is not. Thus in a multiple-user
environment, you should store the password file in a private location such as your home
directory.

Property names are roles, and the associated value is the role's password. Example 2–1
shows sample entries in the password file.

Example 2-1 An Example Password File

specify actual password instead of the text password
monitorRole password
controlRole password

On Linux or macOS operating systems, you can set the file permissions for the password file
by running the following command:

chmod 600 jmxremote.password

Access Files
By default, the access file is named jmxremote.access. Property names are identities from
the same space as the password file. The associated value must either be readonly or
readwrite.

The access file defines roles and their access levels. By default, the access file defines the
following primary roles:

• monitorRole, which grants read-only access for monitoring.

• controlRole, which grants read/write access for monitoring and management.

Chapter 2
Ready-to-Use Management

2-11

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/Properties.html

An access control entry consists of a role name and an associated access level. The
role name cannot contain spaces or tabs and must correspond to an entry in the
password file. The access level can be either one of the following:

• readonly: Grants access to read the MBean's attributes. For monitoring, this
means that a remote client in this role can read measurements but cannot perform
any action that changes the environment of the running program. The remote
client can also listen to MBean notifications.

• readwrite: Grants access to read and write the MBean's attributes, and to call
operations on them. This access should be granted only to trusted clients,
because they can potentially interfere with the operation of an application. The
readwrite access level can optionally be followed by the create or unregister
keywords. The unregister keyword grants access to unregister (delete) MBeans.
The create keyword grants access to create MBeans of a particular class or of
any class matching a particular pattern. Access should only be granted to create
MBeans of known and trusted classes.

A role should have only one entry in the access file. If a role has no entry, then it has
no access. If a role has multiple entries, then the last entry takes precedence. Typical
predefined roles in the access file resemble what is shown in the Example 2-2.

Example 2-2 Example Access File

The "monitorRole" role has readonly access.
The "controlRole" role has readwrite access.
monitorRole readonly
controlRole readwrite

In Example 2-3, the entry grants readwrite access to controlRole. It also provides
access to create MBeans of the class javax.management.monitor.CounterMonitor
and to unregister any MBean.

Example 2-3 Example using create and unregister

controlRole readwrite \
 create javax.management.monitor.CounterMonitorMBean \
 unregister

Remote Monitoring with JConsole with SSL Disabled
To monitor a remote application with SSL disabled, start the JConsole with the
following command:

% jconsole hostName:portNum

You can also omit the host name and port number, and enter them in the dialog box
that JConsole provides.

Ready-to-Use Monitoring and Management Properties
You can set ready-to-use monitoring and management properties in a configuration file
or on the command line. Properties specified on the command line override properties

Chapter 2
Remote Monitoring with JConsole with SSL Disabled

2-12

in a configuration file. The default location for the configuration file is JAVA_HOME/conf/
management/management.properties. The Java VM reads this file if any of the command-line
properties is set:

• com.sun.management.jmxremote
or

• com.sun.management.jmxremote.port
or

• com.sun.management.jmxremote.local.port
You can specify a different location for the configuration file with the following command-line
option:

com.sun.management.config.file=ConfigFilePath

ConfigFilePath is the path to the configuration file.

Table 2-1 describes the ready-to-use monitoring and management properties.

Table 2-1 Ready-to-Use Monitoring and Management Properties

Property Description Values

com.sun.management.jmxrem
ote

Enables the JMX remote agent
and local monitoring using a JMX
connector. This agent is
published on a private interface
that is used by JConsole and any
other local JMX clients, which
use the Attach API. JConsole
can use this connector if it is
started by the same user who
started the agent. No password
or access files are checked for
requests coming from this
connector.

true / false. Default is true.

com.sun.management.jmxrem
ote.port

Enables the JMX remote agent
and creates a remote JMX
connector to listen through the
specified port. By default, the
SSL, password, and access file
properties are used for this
connector. It also enables local
monitoring as described for the
com.sun.management.jmxrem
ote property.

Port number. No default.

com.sun.management.jmxrem
ote.registry.ssl

Binds the RMI connector stub to
an RMI registry that is protected
by SSL.

true / false. Default is false.

com.sun.management.jmxrem
ote.ssl

Enables secure monitoring using
SSL. If the value is false, then
SSL is not used.

true / false. Default is true.

Chapter 2
Ready-to-Use Monitoring and Management Properties

2-13

Table 2-1 (Cont.) Ready-to-Use Monitoring and Management Properties

Property Description Values

com.sun.management.jmxrem
ote.ssl.enabled.protocols

Shows a comma-delimited list of
SSL/TLS protocol versions to
enable. Used in conjunction with
com.sun.management.jmxrem
ote.ssl.

Default SSL/TLS protocol
version.

com.sun.management.jmxrem
ote.ssl.enabled.cipher.su
ites

Shows a comma-delimited list of
SSL/TLS cipher suites to enable.
Used in conjunction with
com.sun.management.jmxrem
ote.ssl.

Default SSL/TLS cipher suites.

com.sun.management.jmxrem
ote.ssl.need.client.auth

Performs client authentication if
this property is true and the
property
com.sun.management.jmxrem
ote.ssl is also true.

It is recommended that you set
this property to true.

true / false. Default is false.

com.sun.management.jmxrem
ote.authenticate

Prevents JMX from using
password or access files if this
property is false. All users are
provided complete access.

true / false. Default is true.

com.sun.management.jmxrem
ote. password.file

Specifies the location for the
password file. If
com.sun.management.jmxrem
ote.authenticate is false,
then this property, and the
password and access files are
ignored. Otherwise, the
password file must exist and be
in the valid format. If the
password file is empty or
nonexistent, then no access is
allowed.

JAVA_HOME/conf/
management/
jmxremote.password

com.sun.management.jmxrem
ote.access.file

Specifies the location for the
access file. If
com.sun.management.jmxrem
ote.authenticate is false,
then this property, and the
password and access files, are
ignored. Otherwise, the access
file must exist and be in the valid
format. If the access file is empty
or nonexistent, then no access is
allowed.

JAVA_HOME/conf/
management/
jmxremote.access

Chapter 2
Ready-to-Use Monitoring and Management Properties

2-14

Table 2-1 (Cont.) Ready-to-Use Monitoring and Management Properties

Property Description Values

com.sun.management.jmxrem
ote.login.config

Specifies the name of a Java
Authentication and Authorization
Service (JAAS) login
configuration entry to use when
the JMX agent authenticates
users. When using this property
to override the default login
configuration, the named
configuration entry must be in a
file that is loaded by JAAS. In
addition, the login modules
specified in the configuration
should use the name and
password callbacks to acquire
the user's credentials. For more
information, see the API
documentation for
javax.security.auth.callb
ack.NameCallback and
javax.security.auth.callb
ack.PasswordCallback.

Default login configuration is a
file-based password
authentication.

com.sun.management.jmxrem
ote.rmi.port

Specifies the port number to
which the RMI connector will be
bound.

Port number. Ensure to use an
unused port number.

com.sun.management.jmxrem
ote.local.port

Specifies the local port number
that accepts local JMX
connections.

Port number. Ensure to use an
unused port number.

Configuration Errors
If any errors occur during the start up of the MBean server, the RMI registry, or the connector,
then the Java VM will throw an exception and exit. Configuration errors include the following:

• Failure to bind to the port number

• Invalid password file

• Invalid access file

• Password file is readable by users other than the owner

If your application runs a security manager, then additional permissions are required in the
security permissions file.

Connecting to the JMX Agent Programmatically
After you have enabled the JMX agent, a client can use the following URL to access the
monitoring service:

service:jmx:rmi:///jndi/rmi://hostName:portNum/jmxrmi

Chapter 2
Connecting to the JMX Agent Programmatically

2-15

A client can create a connector for the agent by instantiating a
javax.management.remote.JMXServiceURL object using the URL, and then creating a
connection using the JMXConnectorFactory.connect method, as shown in the
Example 2-3.

Example 2-3 Creating a Connection Using JMXConnectorFactory.connect

JMXServiceURL u = new JMXServiceURL(
 "service:jmx:rmi:///jndi/rmi://" + hostName + ":" + portNum + "/
jmxrmi");
 JMXConnector c = JMXConnectorFactory.connect(u);

Setting Up Monitoring and Management Programmatically
You can create a JMX client that uses the Attach API to enable ready-to-use
monitoring and management of any applications that are started on the Java SE
platform, without having to configure the applications for monitoring when you start
them. The Attach API provides a way for tools to attach to and start agents in the
target application. After an agent is running, JMX clients (and other tools) are able to
obtain the JMX connector address for that agent using a property list that is
maintained by the Java VM on behalf of the agents. The properties in the list are
accessible from tools that use the Attach API. So, if an agent is started in an
application, and if the agent creates a property to represent a piece of configuration
information, then that configuration information is available to tools that attach to the
application.

The JMX agent creates a property with the address of the local JMX connector server.
This allows JMX tools to attach to and get the connector address of an agent, if it is
running.

Example 2-4 shows code that could be used in a JMX tool to attach to a target VM, get
the connector address of the JMX agent and connect to it.

Example 2-4 Attaching a JMX Tool To A Connector And Getting the Agent's Address

static final String CONNECTOR_ADDRESS =
"com.sun.management.jmxremote.localConnectorAddress";

// attach to the target application
VirtualMachine vm = VirtualMachine.attach(id);

// get the connector address
String connectorAddress =
 vm.getAgentProperties().getProperty(CONNECTOR_ADDRESS);

// no connector address, so we start the JMX agent
if (connectorAddress == null) {
 vm.startLocalManagementAgent();

 // agent is started, get the connector address
 connectorAddress =
 vm.getAgentProperties().getProperty(CONNECTOR_ADDRESS);
}
// establish connection to connector server

Chapter 2
Setting Up Monitoring and Management Programmatically

2-16

https://docs.oracle.com/en/java/javase/18/docs/api/jdk.attach/com/sun/tools/attach/package-summary.html

JMXServiceURL url = new JMXServiceURL(connectorAddress);
JMXConnector jmxConnector = JMXConnectorFactory.connect(url);

Example 2-4 uses the com.sun.tools.attach.VirtualMachine class's attach() method to
attach to a given Java VM so that it can read the properties that the target Java VM maintains
on behalf of any agents running in it. If an agent is already running, then the VirtualMachine
class's getAgentProperties() method is called to obtain the agent's address. The
getAgentProperties() method returns a string property for the local connector address
com.sun.management.jmxremote.localConnectorAddress, which you can use to connect to
the local JMX agent.

If no agent is running, then one is loaded by the VirtualMachine class and its connector
address is obtained by the getAgentProperties() method.

A connection to the agent is then established by calling JMXConnectorFactory.connect on a
JMX service URL that has been constructed from this connector address.

Note:

Previous to JDK 11, the Attach API had issues locating JVMs running in docker
containers. This is now fixed, and jcmd and jps work as expected. However, jmc
will not list java processes running in separate docker containers. There is no
known way to explicitly provide the PID of the java process to this tool.

Mimicking Ready-to-Use Management Using the JMX Remote
API

The remote access to the ready-to-use management agent is protected by authentication and
authorization, and by SSL encryption. The configuration is performed by setting system
properties or by defining a management.properties file. In most cases, using the ready-to-
use management agent and configuring it through the management.properties file is
sufficient to provide secure management of remote Java VMs. However, in some cases,
greater levels of security are required and in other cases, certain system configurations do
not allow the use of a management.properties file. Such cases might involve exporting the
RMI server's remote objects over a certain port to allow passage through a firewall, or
exporting the RMI server's remote objects using a specific network interface in multihomed
systems. For such cases, the behavior of the ready-to-use management agent can be
mimicked by using the JMX Remote API directly to create, configure, and deploy the
management agent programmatically.

Example of Mimicking Ready-to-Use Management
This section provides an example of how to implement a JMX agent that identically mimics an
ready-to-use management agent. In exactly the same way as the ready-to-use management
agent, the agent created in Example 2-5 will run on port 3000. It will have a password file
named password.properties, an access file named access.properties, and it will
implement the default configuration for SSL/TLS-based RMI Socket Factories, requiring
server authentication only. This example assumes a keystore has already been created, as
described in Using SSL. Information about how to set up the SSL configuration is explained

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

2-17

in Creating a Keystore to Use with JSSE section of Java Platform, Standard Edition
Security Developer's Guide.

To enable monitoring and management on an application named com.example.MyApp,
using the ready-to-use JMX agent with the configuration, run the com.example.MyApp
with the following command:

% java -Dcom.sun.management.jmxremote.port=3000 \
 -Dcom.sun.management.jmxremote.password.file=password.properties \
 -Dcom.sun.management.jmxremote.access.file=access.properties \
 -Djavax.net.ssl.keyStore=keystore \
 -Djavax.net.ssl.keyStorePassword=password \
 com.example.MyApp

Note:

The com.sun.management.jmxremote.* properties can be specified in a
management.properties file instead of passing them at the command line. In
that case, the system property -
Dcom.sun.management.config.file=management.properties is required to
specify the location of the management.properties file.

Example 2-5 shows the code that you need to write to programmatically create a JMX
agent, which will allow exactly the same monitoring and management on
com.example.MyApp as using the prior command.

Example 2-5 Mimicking a Ready-to-Use JMX Agent Programmatically

package com.example;

import java.lang.management.*;
import java.rmi.registry.*;
import java.util.*;
import javax.management.*;
import javax.management.remote.*;
import javax.management.remote.rmi.*;
import javax.rmi.ssl.*;

public class MyApp {

 public static void main(String[] args) throws Exception {

 // Ensure cryptographically strong random number generator used
 // to choose the object number - see java.rmi.server.ObjID
 //
 System.setProperty("java.rmi.server.randomIDs", "true");

 // Start an RMI registry on port 3000.
 //
 System.out.println("Create RMI registry on port 3000");
 LocateRegistry.createRegistry(3000);

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

2-18

 // Retrieve the PlatformMBeanServer.
 //
 System.out.println("Get the platform's MBean server");
 MBeanServer mbs = ManagementFactory.getPlatformMBeanServer();

 // Environment map.
 //
 System.out.println("Initialize the environment map");
 HashMap<String,Object> env = new HashMap<String,Object>();

 // Provide SSL-based RMI socket factories.
 //
 // The protocol and cipher suites to be enabled will be the ones
 // defined by the default JSSE implementation and only server
 // authentication will be required.
 //
 SslRMIClientSocketFactory csf = new SslRMIClientSocketFactory();
 SslRMIServerSocketFactory ssf = new SslRMIServerSocketFactory();
 env.put(RMIConnectorServer.RMI_CLIENT_SOCKET_FACTORY_ATTRIBUTE, csf);
 env.put(RMIConnectorServer.RMI_SERVER_SOCKET_FACTORY_ATTRIBUTE, ssf);

 // Provide the password file used by the connector server to
 // perform user authentication. The password file is a properties
 // based text file specifying username/password pairs.
 //
 env.put("jmx.remote.x.password.file", "password.properties");

 // Provide the access level file used by the connector server to
 // perform user authorization. The access level file is a properties
 // based text file specifying username/access level pairs where
 // access level is either "readonly" or "readwrite" access to the
 // MBeanServer operations.
 //
 env.put("jmx.remote.x.access.file", "access.properties");

 // Create an RMI connector server.
 //
 // As specified in the JMXServiceURL the RMIServer stub will be
 // registered in the RMI registry running in the local host on
 // port 3000 with the name "jmxrmi". This is the same name that the
 // ready-to-use management agent uses to register the RMIServer
 // stub.
 //
 System.out.println("Create an RMI connector server");
 JMXServiceURL url =
 new JMXServiceURL("service:jmx:rmi:///jndi/rmi://:3000/jmxrmi");
 JMXConnectorServer cs =
 JMXConnectorServerFactory.newJMXConnectorServer(url, env, mbs);

 // Start the RMI connector server.
 //
 System.out.println("Start the RMI connector server");
 cs.start();
 }
}

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

2-19

Start this application with the following command:

java -Djavax.net.ssl.keyStore=keystore \
 -Djavax.net.ssl.keyStorePassword=password \
 com.example.MyApp

The com.example.MyApp application will enable the JMX agent and will be monitored
and managed in exactly the same way as if the Java platform's ready-to-use
management agent has been used. However, there is one slight but important
difference between the RMI registry used by the ready-to-use management agent and
the one used by a management agent that mimics it. The RMI registry used by the
ready-to-use management agent is read-only, namely a single entry can be bound to it
and upon being bound, this entry cannot be unbound. This is not true with the RMI
registry created in Example 2-5.

Furthermore, both RMI registries are insecure as they do not use SSL/TLS. The RMI
registries should be created using SSL/TLS-based RMI socket factories that require
client authentication. This will prevent a client from sending its credentials to a rogue
RMI server and will also prevent the RMI registry from giving access to the RMI server
stub to a nontrusted client.

RMI registries that implement SSL/TLS RMI socket factories can be created by adding
the following properties to your management.properties file:

com.sun.management.jmxremote.registry.ssl=true
com.sun.management.jmxremote.ssl.need.client.auth=true

Example 2-5 mimics the main behavior of the ready-to-use JMX agent, but does not
replicate all the existing properties in the management.properties file. However, you
can add other properties by modifying com.example.MyApp appropriately.

Monitoring Applications Through a Firewall
The code in Example 2-5 can be used to monitor applications through a firewall, which
might not be possible if you use the ready-to-use monitoring solution. The
com.sun.management.jmxremote.port management property specifies the port where
the RMI registry can be reached but the ports where the RMIServer and
RMIConnection remote objects are exported is chosen by the RMI stack. To export the
remote objects (RMIServer and RMIConnection) to a given port, you need to create
your own RMI connector server programmatically, as described in Example 2-5.
However, you must specify JMXServiceURL as follows:

JMXServiceURL url = new JMXServiceURL("service:jmx:rmi://localhost:" +
 port1 + "/jndi/rmi://localhost:" + port2 + "/jmxrmi");

port1 is the port number on which the RMIServer and RMIConnection remote objects
are exported, and port2 is the port number of the RMI Registry.

Using an Agent Class to Instrument an Application
The Java SE platform provides services that allow Java programming language agents
to instrument programs running on the Java VM. Creating an instrumentation agent

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

2-20

means that you do not have to add any new code to your application in order to allow it to be
monitored. Instead of implementing monitoring and management in your application's static
main method, you implement it in a separate agent class, and start your application with the -
javaagent option specified. See the API reference documentation for the
java.lang.instrument package for full details about how to create an agent class to
instrument your applications.

Creating an Agent Class to Instrument an Application
The following procedure shows how you can adapt the code of com.example.MyApp to create
an agent to instrument any other application for monitoring and management.

1. Create a com.example.MyAgent class.
Create a class called com.example.MyAgent, declaring a premain method rather than a
main method.

package com.example;

[...]

public class MyAgent {

 public static void premain(String args) throws Exception {

 [...]

The rest of the code for the com.example.MyAgent class is same as the
com.example.MyApp class as shown in Example 2-5.

2. Compile the com.example.MyAgent class.

3. Create a manifest file, MANIFEST.MF, with a Premain-Class entry.
An agent is deployed as a Java archive (JAR) file. An attribute in the JAR file manifest
specifies the agent class that will be loaded to start the agent. Create a file called
MANIFEST.MF, containing the following line:

Premain-Class: com.example.MyAgent

4. Create a JAR file, MyAgent.jar.
The JAR file should contain the following files:

• META-INF/MANIFEST.MF
• com/example/MyAgent.class

5. Start an application, specifying the agent to provide monitoring and management
services.
You can use com.example.MyAgent to instrument any application for monitoring and
management. This example uses the Notepad application.

% java -javaagent:MyAgent.jar -Djavax.net.ssl.keyStore=keystore \
 -Djavax.net.ssl.keyStorePassword=password -jar Notepad.jar

The com.example.MyAgent agent is specified using the -javaagent option when you start
Notepad. Also, if your com.example.MyAgent application replicates the same code as the

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

2-21

https://docs.oracle.com/en/java/javase/18/docs/api/java.instrument/java/lang/instrument/package-summary.html

com.example.MyApp application shown in Example 2-5, then provide the keystore
and password information because the RMI connector server is protected by SSL.

Chapter 2
Mimicking Ready-to-Use Management Using the JMX Remote API

2-22

3
Using JConsole

The JConsole graphical user interface is a monitoring tool that complies with the Java
Management Extensions (JMX) specification. JConsole uses the extensive instrumentation of
the Java Virtual Machine (Java VM) to provide information about the performance and
resource consumption of applications running on the Java platform.

JConsole has been updated to present the look and feel of the Windows and GNOME
desktops (other platforms will present the standard Java graphical look and feel). The screen
captures presented in this document are taken from an instance of the interface running on
Windows XP.

Starting JConsole
The jconsole executable file can be found in JDK_HOME/bin, where JDK_HOME is the directory
in which the Java Development Kit (JDK) is installed. If this directory is in your system path,
then you can start JConsole by simply entering jconsole in a command (shell) prompt.
Otherwise, you have to enter the full path to the executable file.

Command Syntax
You can use JConsole to monitor both local applications, namely those running on the same
system as JConsole, as well as remote applications, namely those running on other systems.

Note:

Using JConsole to monitor a local application is useful for development and for
creating prototypes, but is not recommended for production environments, because
JConsole itself consumes significant system resources. Remote monitoring is
recommended to isolate the JConsole application from the platform being
monitored.

See jconsole in the Java Development Kit Tool Specifications for the complete syntax.

Setting Up Local Monitoring
Start JConsole using the following command:

% jconsole

When JConsole starts, select the required Java applications running locally that JConsole
can connect to.

If you want to monitor a specific application, and you know that application's process ID, then
start JConsole so that it connects to that application. This application must be running with

3-1

http://www.oracle.com/pls/topic/lookup?ctx=javase21&id=jconsole_tool_reference

the same user ID as JConsole. Use the following command syntax to start JConsole
for local monitoring of a specific application:

% jconsole processID

processID is the application's process ID (PID). You can determine an application's
PID in the following ways:

• On Linux or macOS systems, you can use the ps command to find the PID of the
java instance that is running.

• On Windows systems, you can use the Task Manager to find the PID of java or
javaw.

• You can also use the jps command-line utility to determine PIDs. See jps in Java
Development Kit Tool Specifications.

For example, if the process ID of the Notepad application is 2956, then start JConsole
with the following command:

% jconsole 2956

Both JConsole and the application must by executed by the same user. The
management and monitoring system uses the operating system's file permissions. If
you do not specify a process ID, JConsole will automatically detect all local Java
applications, and display a dialog box that lets you select which one you want to
monitor (see Connecting to a JMX Agent).

See Local Monitoring and Management Using JConsole.

Setting Up Remote Monitoring
To start JConsole for remote monitoring, use the following command syntax:

% jconsole hostName:portNum

The hostName is the name of the system running the application and portNum is the
port number you specified when you enabled the JMX agent while starting the Java
VM. See Remote Monitoring and Management.

If you do not specify a host name/port number combination, then JConsole will display
a connection dialog box (Connecting to a JMX Agent) to enable you to enter a host
name and port number.

Setting Up Secure Remote Monitoring
You can also start JConsole so that monitoring will be performed over a connection
that is secured using Secure Sockets Layer (SSL). See Remote Monitoring with
JConsole with SSL Enabled for the command to start JConsole with a secure
connection.

Chapter 3
Starting JConsole

3-2

http://www.oracle.com/pls/topic/lookup?ctx=javase21&id=jps_tool_reference

Connecting to a JMX Agent
If you start JConsole with arguments specifying a JMX agent to connect to, then it will
automatically start monitoring the specified Java VM. You can connect to a different host at
any time by selecting Connection and New Connection, and entering the necessary
information.

Otherwise, if you do not provide any arguments when you start JConsole, then the first thing
that you see is the connection dialog box. This dialog box has two options, allowing
connections to either Local or Remote processes.

Connecting JConsole to a Local Process
If you start JConsole without providing a specific JMX agent to connect to, then you will see
the following dialog box:

Figure 3-1 Creating a Connection to a Local Process

The Local Process option lists any Java VMs running on the local system that were started
with the same user ID as JConsole, along with their process ID and their class or argument
information. To connect JConsole to your application, select the application that you want to
monitor, then click Connect. The list of local processes includes applications running in the
following types of Java VM:

• Applications with the management agent enabled: These include applications on the
Java SE platform that were started with the -Dcom.sun.management.jmxremote option or
with the -Dcom.sun.management.jmxremote.port option specified. In addition, the list

Chapter 3
Starting JConsole

3-3

also includes any applications that were started on the Java SE platform without
any management properties, but are attached to by JConsole, which enables the
management agent at runtime.

• Applications that are attachable, with the management agent disabled: These
include an attachable application that supports loading of the management agent
at runtime. Attachable applications include applications that are started on the
Java SE platform, which support the Attach API. Applications that support dynamic
attach do not require the management agent to be started by specifying the
com.sun.management.jmxremote or com.sun.management.jmxremote.port options
at the command line. JConsole does not need to connect to the management
agent before the application is started. If you select this application, then a note is
displayed on screen that the management agent will be enabled when the
connection is made. In the example, connection dialog box that is shown in
Figure 3-1, the NetBeans IDE and JConsole are started within a Java SE platform
VM. Both appear in normal text, meaning that JConsole can connect to them. In
Figure 3-1, JConsole is selected and the note is visible.

• Applications that are not attachable, with the management agent disabled: These
include applications started on a Java SE platform without the -
Dcom.sun.management.jmxremote or com.sun.management.jmxremote.port
options. These applications appear grayed-out in the table and JConsole cannot
connect to them. In the example connection dialog box shown in Figure 3-1, the
Anagrams application was started with a Java SE platform VM without any of the
management properties to enable the JMX agent, and consequently shows up in
gray and cannot be selected.

Figure 3-2 Attempting to Connect to an Application Without the Management
Agent Enabled

Chapter 3
Starting JConsole

3-4

In the example connection dialog box shown in Figure 3-2, you can see that the Anagrams
application is selected, but Connect remains grayed-out, and a note has appeared informing
you that the management agent is not enabled for this process. JConsole cannot connect to
Anagrams because it was not started with the correct Java VM or with the correct options.

Connecting JConsole to a Remote Process
When the connection dialog box opens, you are also given the option of connecting to a
remote process.

Figure 3-3 Creating a Connection to a Remote Process

Chapter 3
Starting JConsole

3-5

To monitor a process running on a remote Java VM, you must provide the following
information:

• Host name: The name of the machine on which the Java VM is running.

• Port number: The JMX agent port number you specified when you started the Java
VM.

• User name and password: The user name and password to use (required only if
monitoring a Java VM through a JMX agent that requires password
authentication).

To set the port number of the JMX agent, see Ready-to-Use Management.

See Using Password and Access Files.

To monitor the Java VM that is running JConsole, click Connect and enter host as
localhost and the port 0.

Connecting Using a JMX Service URL
You can also use the Remote Process option to connect to other JMX agents by
specifying their JMX service URL, and the user name and password. The syntax of a
JMX service URL requires that you provide the transport protocol used to make the
connection, as well as a service access point. The full syntax for a JMX service URL is
described in the API documentation for javax.management.remote.JMXServiceURL.

Figure 3-4 Connecting to a JMX Agent Using the JMX Service URL

Chapter 3
Starting JConsole

3-6

If the JMX agent uses a connector that is not included in the Java platform, then you must
add the connector classes to the class path when you run the jconsole command, as
follows:

% jconsole -J-Djava.class.path=JAVA_HOME/lib/jconsole.jar:JAVA_HOME/lib/
tools.jar:connector-path

connector-path is the directory or the Java archive (JAR) file containing the connector
classes that are not included in the JDK, to be used by JConsole.

Presenting the JConsole Tabs
After you have connected JConsole to an application, JConsole displays the following six
tabs:

• Overview: Displays overview information about the Java VM and monitored values

• Memory: Displays information about memory use

• Threads: Displays information about thread use

• Classes: Displays information about class loading

• VM: Displays information about the Java VM

• MBeans: Displays information about MBeans

Use the green connection status icon in the upper right-hand corner of JConsole to
disconnect from or reconnect to a running Java VM. You can connect to any number of
running Java VMs at a time by selecting Connection, then New Connection from the drop-
down menu.

Chapter 3
Starting JConsole

3-7

Viewing Overview Information
The Overview tab displays graphical monitoring information about CPU usage,
memory usage, thread counts, and the classes loaded in the Java VM, all in a single
screen.

Figure 3-5 Overview Tab

The Overview tab provides an easy way to correlate information that was previously
available only by switching between multiple tabs.

Saving Chart Data
JConsole allows you to save the data presented in the charts in a comma-separated
values (CSV) file. To save data from a chart, right-click on any chart, select Save data
as..., and then specify the file in which the data will be saved. You can save the data
from any of the charts displayed in any of JConsole's different tabs in this way.

The CSV format is commonly used for data exchange between spreadsheet
applications. The CSV file can be imported into spreadsheet applications and can be
used to create diagrams in these applications. The data is presented as two or more
named columns, where the first column represents the time stamps. After importing
the file into a spreadsheet application, you will usually need to select the first column
and change its format to be date or date/time as appropriate.

Monitoring Memory Consumption
The Memory tab provides information about memory consumption and memory pools.

Figure 3-6 Memory Tab

Chapter 3
Starting JConsole

3-8

Click Perform GC in the Memory tab to perform garbage collection whenever you want. The
chart shows the memory use of the Java VM over time, for heap and nonheap memory, as
well as for specific memory pools. The memory pools available depend on the version of the
Java VM being used. For the HotSpot Java VM, the memory pools for serial garbage
collection are the following:

• Eden Space (heap): The pool from which memory is initially allocated for most objects.

• Survivor Space (heap): The pool containing objects that have survived the garbage
collection of the Eden space.

• Tenured Generation (heap): The pool containing objects that have existed for some time
in the survivor space.

• Permanent Generation (nonheap): The pool containing all the reflective data of the virtual
machine itself, such as class and method objects. With Java VMs that use class data
sharing, this generation is divided into read-only and read/write areas.

• Code Cache (nonheap): The HotSpot Java VM also includes a code cache, containing
memory that is used for compilation and storage of native code.

You can display different charts for charting the consumption of these memory pools by
selecting the required options in the Chart drop-down menu. Also, clicking either the Heap or
Nonheap bar charts in the bottom right-hand corner will switch the chart displayed. Finally,
you can specify the time range over which you track memory usage, by selecting the required
options in the Time Range drop-down menu.

See Garbage Collection.

The Details area shows several current memory metrics:

• Used: The amount of memory currently used, including the memory occupied by all
objects, both reachable and unreachable.

Chapter 3
Starting JConsole

3-9

• Committed: The amount of memory guaranteed to be available for use by the Java
VM. The amount of committed memory may change over time. The Java virtual
machine may release memory to the system and the amount of committed
memory could be less than the amount of memory initially allocated at startup. The
amount of committed memory will always be greater than or equal to the amount
of used memory.

• Max: The maximum amount of memory that can be used for memory
management. Its value may change or be undefined. A memory allocation may fail
if the Java VM attempts to increase the used memory to be greater than
committed memory, even if the amount used is less than or equal to max (for
example, when the system is low on virtual memory).

• GC time: The cumulative time spent on garbage collection and the total number of
calls. It may have multiple rows, each of which represents one garbage collector
algorithm used in the Java VM.

The bar chart on the lower right-hand side shows the memory consumed by the
memory pools in heap and nonheap memory. The bar will turn red when the memory
used exceeds the memory usage threshold. You can set the memory usage threshold
through an attribute of the MemoryMXBean.

Heap and Nonheap Memory
The Java VM manages two kinds of memory: heap and nonheap memory, both of
which are created when the Java VM starts.

• Heap memory: Is the runtime data area from which the Java VM allocates memory
for all class instances and arrays. The heap may be of a fixed or variable size. The
garbage collector is an automatic memory management system that reclaims heap
memory for objects.

• Nonheap memory: Includes a method area shared among all threads and memory
required for the internal processing or optimization for the Java VM. It stores per-
class structures such as a runtime constant pool, field and method data, and the
code for methods and constructors. The method area is logically part of the heap
but, depending on the implementation, a Java VM may not garbage collect or
compact it. Like the heap memory, the method area may be of a fixed or variable
size. The memory for the method area does not need to be contiguous.

In addition to the method area, a Java VM may require memory for internal processing
or optimization, which also belongs to nonheap memory. For example, the Just-In-
Time (JIT) compiler requires memory for storing the native machine code translated
from the Java VM code for high performance.

Memory Pools and Memory Managers
Memory pools and memory managers are key aspects of the Java VM's memory
system.

• Memory pool: Represents a memory area that the Java VM manages. The Java
VM has at least one memory pool and it may create or remove memory pools
during execution. A memory pool can belong either to heap or to nonheap
memory.

• Memory manager: Manages one or more memory pools. The garbage collector is
a type of memory manager responsible for reclaiming memory used by
unreachable objects. A Java VM may have one or more memory managers. It may

Chapter 3
Starting JConsole

3-10

add or remove memory managers during execution. A memory pool can be managed by
more than one memory manager.

Garbage Collection
Garbage collection (GC) is how the Java VM frees memory occupied by objects that are no
longer referenced. It is common to think of objects that have active references as being live
and nonreferenced (or unreachable) objects as dead. Garbage collection is the process of
releasing memory used by the dead objects. The algorithms and parameters used by GC can
have dramatic effects on performance.

The Java HotSpot VM garbage collector uses generational GC. Generational GC takes
advantage of the observation that most programs conform to the following generalizations:

• They create many objects that have short lives, for example, iterators and local variables.

• They create some objects that have very long lives, for example, high-level persistent
objects.

Generational GC divides memory into several generations, and assigns one or more memory
pools to each. When a generation uses up its allotted memory, the VM performs a partial GC
(also called a minor collection) on that memory pool to reclaim memory used by dead objects.
This partial GC is usually much faster than a full GC.

The Java HotSpot VM defines two generations: the young generation (sometimes called the
nursery) and the old generation. The young generation consists of an Eden space and two
survivor spaces. The VM initially assigns all objects to the Eden space, and most objects die
there. When it performs a minor GC, the VM moves any remaining objects from the Eden
space to one of the survivor spaces. The VM moves objects that live long enough in the
survivor spaces to the tenured space in the old generation. When the tenured generation fills
up, there is a full GC that is often much slower because it involves all live objects. The
permanent generation holds all the reflective data of the virtual machine itself, such as class
and method objects.

The default arrangement of generations looks something like Figure 3-7.

Figure 3-7 Generations of Data in Garbage Collection

Chapter 3
Starting JConsole

3-11

If the garbage collector has become a bottleneck, then you can improve performance
by customizing the generation sizes. Using JConsole, you can investigate the
sensitivity of your performance metric by experimenting with the garbage collector
parameters. See Performance Considerations in Java Platform, Standard Edition
HotSpot Virtual Machine Garbage Collection Tuning Guide.

Monitoring Thread Use
The Threads tab provides information about thread use.

Figure 3-8 Threads Tab

The Threads list in the lower left corner lists all the active threads. If you enter a string
in the Filter field, then the Threads list will show only those threads whose name
contains the string that you entered. Click the name of a thread in the Threads list to
display information about that thread to the right, including the thread name, state, and
stack trace.

The chart shows the number of live threads over time. Two lines are shown:

• Red: Peak number of threads

• Blue: Number of live threads

The Threading MXBean provides several other useful operations that are not covered
by the Threads tab.

• findMonitorDeadlockedThreads: Detects if any threads are deadlocked on the
object monitor locks. This operation returns an array of deadlocked thread IDs.

• getThreadInfo: Returns the thread information. This includes the name, stack
trace, and the monitor lock that the thread is currently blocked on, if any, and
which thread is holding that lock, as well as thread contention statistics.

• getThreadCpuTime: Returns the CPU time consumed by a given thread.

Chapter 3
Starting JConsole

3-12

You can access these additional features through the MBeans tab by selecting Threading
MXBean in the MBeans tree. This MXBean lists all the attributes and operations for
accessing threading information in the Java VM being monitored. See Monitoring and
Managing MBeans.

Detecting Deadlocked Threads
To check if your application has run into a deadlock (for example, your application seems to
be hanging), deadlocked threads can be detected by clicking Detect Deadlock. If any
deadlocked threads are detected, these are displayed in a new tab that appears next to the
Threads tab, as shown in Figure 3-9.

Figure 3-9 Deadlocked Threads

Detect Deadlock will detect deadlock cycles involving object monitors and
java.util.concurrent ownable synchronizers (see the API specification documentation for
java.lang.management.LockInfo). Monitoring support for java.util.concurrent locks
has been added in Java SE from version 6.0. If JConsole connects to a Java SE 5.0 VM,
then the Detect Deadlock mechanism will find only deadlocks related to object monitors.
JConsole will not show any deadlocks related to ownable synchronizers.

See the API documentation for java.lang.Thread for more information about threads and
daemon threads.

Monitoring Class Loading
The Classes tab displays information about class loading.

Figure 3-10 Classes Tab

Chapter 3
Starting JConsole

3-13

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/java/lang/management/LockInfo.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Thread.State.html

The chart plots the number of classes loaded over time.

• The red line is the total number of classes loaded (including those subsequently
unloaded).

• The blue line is the current number of classes loaded.

The Details section at the bottom of the tab displays the total number of classes
loaded since the Java VM started, the number currently loaded, and the number
unloaded. You can set the tracing of class loading to verbose output by selecting the
check box in the top right-hand corner.

Viewing VM Information
The VM Summary tab provides information about the Java VM.

Figure 3-11 VM Summary Tab

Chapter 3
Starting JConsole

3-14

The information presented in this tab includes the following:

• Summary

– Uptime: Total amount of time since the Java VM was started.

– Process CPU Time: Total amount of CPU time that the Java VM has consumed since
it was started.

– Total Compile Time: Total accumulated time spent in JIT compilation. The Java VM
determines when JIT compilation occurs. The Hotspot VM uses adaptive compilation,
in which the VM launches an application using a standard interpreter, but then
analyzes the code as it runs to detect performance bottlenecks, or hot spots.

• Threads

– Live threads: Current number of live daemon threads plus nondaemon threads.

– Peak: Highest number of live threads since Java VM started.

– Daemon threads: Current number of live daemon threads.

– Total threads started: Total number of threads started since Java VM started,
including daemon, nondaemon, and terminated threads.

• Classes

– Current classes loaded: Number of classes currently loaded into memory.

Chapter 3
Starting JConsole

3-15

– Total classes loaded: Total number of classes loaded into memory since the
Java VM started, including those that have subsequently been unloaded.

– Total classes unloaded: Number of classes unloaded from memory since the
Java VM started.

• Memory

– Current heap size: Number of kilobytes currently occupied by the heap.

– Committed memory: Total amount of memory allocated for use by the heap.

– Maximum heap size: Maximum number of kilobytes occupied by the heap.

– Objects pending for finalization: Number of objects pending for finalization.

– Garbage collector: Information about garbage collection, including the garbage
collector names, number of collections performed, and total time spent
performing GC.

• Operating System

– Total physical memory: Amount of random access memory (RAM) the
operating system has.

– Free physical memory: Amount of free RAM available to the operating system.

– Committed virtual memory: Amount of virtual memory guaranteed to be
available to the running process.

• Other Information

– VM arguments: The input arguments that the application passed to the Java
VM, not including the arguments to the main method.

– Class path: The class path that is used by the system class loader to search
for class files.

– Library path: The list of paths to search when loading libraries.

– Boot class path: The path used by the bootstrap class loader to search for
class files.

Monitoring and Managing MBeans
The MBeans tab displays information about all the MBeans registered with the
platform MBean server in a generic way. The MBeans tab allows you to access the full
set of the platform MXBean instrumentation, including the ones that are not visible in
the other tabs. In addition, you can monitor and manage your application's MBeans
using the MBeans tab.

Figure 3-12 MBeans Tab

Chapter 3
Starting JConsole

3-16

The tree on the left shows all the MBeans currently running. When you select an MBean in
the tree, its MBeanInfo and its MBean Descriptor are both displayed on the right, and any
attributes, operations, or notifications appear in the tree below it.

All the platform MXBeans and their various operations and attributes are accessible from
JConsole's MBeans tab.

Constructing the MBean Tree
By default, the MBeans are displayed in the tree based on their object names. The order of
key properties specified when the object names are created is preserved by JConsole when it
adds MBeans to the MBean tree. The exact key property list that JConsole will use to build
the MBean tree will be the one returned by the method
ObjectName.getKeyPropertyListString(), with type as the first key, and j2eeType, if
present, as the second key.

However, relying on the default order of the ObjectName key properties can sometimes lead
to unexpected behavior when JConsole renders the MBean tree. For example, if two object
names have similar keys but their key order differs, then the corresponding MBeans will not
be created under the same node in the MBean tree.

For example, suppose you create Triangle MBean objects with the following names.

com.sun.example:type=Triangle,side=isosceles,name=1
com.sun.example:type=Triangle,name=2,side=isosceles
com.sun.example:type=Triangle,side=isosceles,name=3

As far as the JMX technology is concerned, these objects will be treated in exactly the same
way. The order of the keys in the object name makes no difference to the JMX technology.

Chapter 3
Starting JConsole

3-17

However, if JConsole connects to these MBeans and the default MBean tree rendering
is used, then the object com.sun.example:type=Triangle,name=2,side=isosceles
will end up being created under the Triangle node, in a node called 2, which in turn
will contain a subnode called isosceles. The other two isosceles triangles, name=1 and
name=3, will be grouped together under Triangle in a different node called isosceles,
as shown in Figure 3-13.

Figure 3-13 Example of Unexpected MBean Tree Rendering

To avoid this problem, you can specify the order in which the MBeans are displayed in
the tree by supplying an ordered key property list when you start JConsole at the
command line. This is achieved by setting the system property
com.sun.tools.jconsole.mbeans.keyPropertyList, as shown in the following
command.

% jconsole -J-Dcom.sun.tools.jconsole.mbeans.keyPropertyList=key[,key]*

The key property list system property takes a comma-separated list of keys, in the
order of your selection, where key must be a string representing an object name key or
an empty string. If a key specified in the list does not apply to a particular MBean, then
that key will be discarded. If an MBean has more keys than the ones specified in the
key property list, then the key order defined by the value returned by
ObjectName.getKeyPropertyListString() will be used to complete the key order
defined by keyPropertyList. Therefore, specifying an empty list of keys means that
JConsole will display keys in the order that they appear in the MBean's ObjectName.

So, returning to the example of the Triangle MBeans cited previously, you can start
JConsole by specifying the keyPropertyList system property, so that all your MBeans
will be grouped according to their side key property first, and their name key property
second. To do this, start the JConsole with the following command:

% jconsole -J-Dcom.sun.tools.jconsole.mbeans.keyPropertyList=side,name

Starting JConsole with this system property specified will produce the MBean tree as
shown in the Figure 3-14.

Figure 3-14 Example of MBean Tree Constructed Using keyPropertyList

Chapter 3
Starting JConsole

3-18

In Figure 3-14, the side key comes first, followed by the name key. The type key comes at the
end because it was not specified in the key property list, so the MBean tree algorithm applied
the original key order for the remaining keys. Consequently, the type key is appended at the
end, after the keys, which were defined by the keyPropertyList system property.

According to the object name convention defined by the JMX Best Practices Guidelines, the
type key should always come first. You must start JConsole with the following system
property:

% jconsole -J-Dcom.sun.tools.jconsole.mbeans.keyPropertyList=type,side,name

The prior command will cause JConsole to render the MBean tree for the Triangle MBeans as
shown in the Figure 3-15.

Figure 3-15 Example of MBean Tree Constructed Respecting JMX Best Practices

This is comprehensible than the MBean trees as shown in Figure 3-13 and Figure 3-14.

MBean Attributes
Selecting the Attributes node displays all the attributes of an MBean. Figure 3-16 shows all
the attributes of the Threading platform MXBean.

Figure 3-16 Viewing All MBean Attributes

Chapter 3
Starting JConsole

3-19

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

Selecting an individual MBean attribute from the tree then displays the attribute's
value, its MBeanAttributeInfo, and the associated Descriptor in the right pane, as you
can see in Figure 3-17.

Figure 3-17 Viewing an Individual MBean Attribute

You can display additional information about an attribute by double-clicking the
attribute value, if it appears in bold text. For example, if you click the value of the
HeapMemoryUsage attribute of the java.lang.Memory MBean, then you will see a chart
that looks something like Figure 3-18.

Figure 3-18 Displaying Attribute Values

Chapter 3
Starting JConsole

3-20

Double-clicking numeric attribute values will display a chart that plots changes in that numeric
value. For example, double-clicking the CollectionTime attribute of the Garbage Collector
MBean PS Marksweep will plot the time spent performing garbage collection.

You can also use JConsole to set the values of writable attributes. The value of a writable
attribute is displayed in blue. Here you can see the Memory MBean's Verbose attribute.

Figure 3-19 Setting Writable Attribute Values

You can set attributes by clicking them and then editing them. For example, to enable or
disable the verbose tracing of the garbage collector in JConsole, select the Memory MXBean
in the MBeans tab and set the Verbose attribute to true or false. Similarly, the class loading
MXBean also has the Verbose attribute, which can be set to enable or disable class loading
verbose tracing.

MBean Operations
Selecting the Operations node displays all the operations of an MBean. The MBean
operations appear as buttons, that you can click to call the operation. Figure 3-20 shows all
the operations of the Threading platform MXBean.

Figure 3-20 Viewing All MBean Operations

Chapter 3
Starting JConsole

3-21

Selecting an individual MBean operation in the tree displays the button for calling the
MBean operation, and the operation's MBeanOperationInfo and its Descriptor, as
shown in Figure 3-21.

Figure 3-21 Viewing Individual MBean Operations

Chapter 3
Starting JConsole

3-22

MBean Notifications
You can subscribe to receive notifications by selecting the Notifications node in the left-hand
tree, and clicking the Subscribe button that appears on the right. The number of notifications
received is displayed in brackets, and the Notifications node itself will appear in bold text
when new notifications are received. The notifications of the Memory platform MXBean are
shown in Figure 3-22.

Figure 3-22 Viewing MBean Notifications

Selecting an individual MBean notification displays the MBeanNotificationInfo in the right
pane, as shown in Figure 3-23.

Figure 3-23 Viewing Individual MBean Notifications

Chapter 3
Starting JConsole

3-23

HotSpot Diagnostic MXBean
JConsole's MBeans tab also allows you to tell the HotSpot VM to perform a heap
dump, and to get or set a VM option using the HotSpotDiagnostic MXBean.

Figure 3-24 Viewing the HotSpot Diagnostic MBean

Chapter 3
Starting JConsole

3-24

You can perform a heap dump manually by calling the
com.sun.management.HotSpotDiagnostic MXBean's dumpHeap operation. In addition, you
can specify the HeapDumpOnOutOfMemoryError Java VM option using the setVMOption
operation, so that the VM performs a heap dump automatically whenever it receives an
OutOfMemoryError.

Creating Custom Tabs
In addition to the existing standard tabs, you can add your own custom tabs to JConsole, to
perform your own monitoring activities. The JConsole plug-in API provides a mechanism by
which you can, for example, add a tab to access your own application's MBeans. The
JConsole plug-in API defines the com.sun.tools.jconsole.JConsolePlugin abstract class
that you can extend to build your custom plug-in.

As stated previously, your plug-in must extend JConsolePlugin, and implement the
JConsolePlugingetTabs and newSwingWorker methods. The getTabs method returns either
the list of tabs to be added to JConsole, or an empty list. The newSwingWorker method
returns the SwingWorker to be responsible for the plug-in's GUI update.

Your plug-in must be provided in a Java archive (JAR) file that contains a file named META-
INF/services/com.sun.tools.jconsole.JConsolePlugin. This JConsolePlugin file itself
contains a list of all the fully qualified class names of the plug-ins that you want to add as new
JConsole tabs. JConsole uses the service-provider loading facility to look up and load the
plug-ins. You can have multiple plug-ins, with one entry per plug-in in the JConsolePlugin.

To load the new custom plug-ins into JConsole, start JConsole with the following command:

% jconsole -pluginpath plugin-path

In the previous command, plugin-path specifies the paths to the JConsole plug-ins to be
looked up. These paths can either be to directory names or to JAR files, and multiple paths
can be specified, using your platform's standard separator character.

An example JConsole plug-in is provided with the Java SE 21 platform. The JTop application
is a JDK demonstration (demo) that shows the CPU usage of all threads running in the
application. This demo is useful for identifying threads that have high CPU consumption, and
it has been updated to be used as a JConsole plug-in as well as a standalone GUI. JTop is
bundled with the Java SE 21 platform, as a demo application. You can run JConsole with the
JTop plug-in by running the following command:

% JDK_HOME/bin/jconsole -pluginpath JDK_HOME/demo/management/JTop/JTop.jar

If you connect to this instance of JConsole, then you will see that the JTop tab has been
added, showing CPU usage of the various threads running.

Figure 3-25 Viewing a Custom Plug-in Tab

Chapter 3
Starting JConsole

3-25

Chapter 3
Starting JConsole

3-26

4
Using the Platform MBean Server and
Platform MXBeans

This topic introduces the MBean server and the MXBeans that are provided as part of the
Java Platform, Standard Edition (Java SE), which can be used for monitoring and
management purposes. Java Management Extensions (JMX) technology MBeans and
MBean servers were introduced briefly in Overview of Java SE Monitoring and Management.
See Introduction to JMX Technology in Java Platform, Standard Edition Java Management
Extensions Guide.

Using the Platform MBean Server
An MBean server is a repository of MBeans that provides management applications access
to MBeans. Applications do not access MBeans directly, but instead access them through the
MBean server using their unique ObjectName class. An MBean server implements the
interface javax.management.MBeanServer.

The platform MBean server was introduced in Java SE 5.0, and is an MBean server that is
built into the Java Virtual Machine (Java VM). The platform MBean server can be shared by
all managed components that are running in the Java VM. You access the platform MBean
server using the java.lang.management.ManagementFactory method
getPlatformMBeanServer. Of course, you can also create your own MBean server using the
javax.management.MBeanServerFactory class. However, there is generally no need for more
than one MBean server, so using the platform MBean server is recommended.

Accessing Platform MXBeans
A platform MXBean is an MBean for monitoring and managing the Java VM. Each MXBean
encapsulates a part of the VM functionality. A full list of the MXBeans that are provided with
the platform is provided in Table 1-1 - Platform MXBeans.

A management application can access platform MXBeans in three different ways:

• Direct access from the ManagementFactory class

• Direct access from an MXBean proxy

• Indirect access from the MBeanServerConnection class

Accessing Platform MXBeans Using the ManagementFactory Class
An application can make direct calls to the methods of a platform MXBean that is running in
the same Java VM as itself. To make direct calls, you can use the static methods of the
ManagementFactory class. The ManagementFactory class has accessor methods for each of
the different platform MXBeans, such as, getClassLoadingMXBean(),
getGarbageCollectorMXBeans(), getRuntimeMXBean(), and so on. In case there are more
than one platform MXBean, the method returns a list of the platform MXBeans found.

4-1

For example, Example 4-1 uses the static method of ManagementFactory to get the
platform MXBean RuntimeMXBean, and then gets the vendor name from the platform
MXBean.

Example 4-1 Accessing a Platform MXBean Using ManagementFactory Class

RuntimeMXBean mxbean = ManagementFactory.getRuntimeMXBean();
String vendor = mxbean.getVmVendor();

Accessing Platform MXBeans Using an MXBean Proxy
An application can also call platform MXBean methods using an MXBean proxy. To do
so, you must construct an MXBean proxy instance that forwards the method calls to a
given MBean server by calling the static method
ManagementFactory.newPlatformMXBeanProxy(). An application typically constructs a
proxy to obtain remote access to a platform MXBean of another Java VM.

For example, Example 4-2 performs exactly the same operation as Example 4-1, but
this time it uses an MXBean proxy.

Example 4-2 Accessing a Platform MXBean Using an MXBean Proxy

MBeanServerConnection mbs;
...
// Get a MBean proxy for RuntimeMXBean interface
RuntimeMXBean proxy =

ManagementFactory.newPlatformMXBeanProxy(mbs,ManagementFactory.RUNTIME_
MXBEAN_NAME,RuntimeMXBean.class);
// Get standard attribute "VmVendor"
String vendor = proxy.getVmVendor();

Accessing Platform MXBeans Using the MBeanServerConnection
Class

An application can indirectly call platform MXBean methods through an
MBeanServerConnection interface that connects to the platform MBean server of
another running Java VM. You use the MBeanServerConnection class getAttribute()
method to get an attribute of a platform MXBean by providing the MBean's ObjectName
and the attribute name as parameters.

For example, Example 4-3 performs the same job as Example 4-1 and Example 4-2,
but it uses an indirect call through MBeanServerConnection.

Example 4-3 Accessing a Platform MXBean Using the MBeanServerConnection Class

MBeanServerConnection mbs;
...
try {
 ObjectName oname = new
ObjectName(ManagementFactory.RUNTIME_MXBEAN_NAME);
 // Get standard attribute "VmVendor"
 String vendor = (String) mbs.getAttribute(oname, "VmVendor");

Chapter 4
Accessing Platform MXBeans

4-2

} catch (....) {
 // Catch the exceptions thrown by ObjectName constructor
 // and MBeanServer.getAttribute method
 ...
}

Using Oracle JDK's Platform Extension
Java VMs can extend the management interface by defining interfaces for platform-specific
measurements and management operations. The static factory methods in the
ManagementFactory class will return the MBeans with the platform extension.

The com.sun.management package contains Oracle JDK's platform extensions. The following
sections provide examples of how to access a platform-specific attribute from Oracle JDK's
implementation of the OperatingSystemMXBean interface.

Accessing MXBean Attributes Directly
Example 4-4 illustrates direct access to one of Oracle JDK's MXBean interfaces.

Example 4-4 Accessing an MXBean Attribute Directly

com.sun.management.OperatingSystemMXBean mxbean =
 (com.sun.management.OperatingSystemMXBean)
ManagementFactory.getOperatingSystemMXBean();

// Get the number of processors
int numProcessors = mxbean.getAvailableProcessors();

// Get the Oracle JDK-specific attribute Process CPU time
long cpuTime = mxbean.getProcessCpuTime();

Accessing MXBean Attributes Using MBeanServerConnection
Example 4-5 illustrates access to one of Oracle JDK's MXBean interfaces using the
MBeanServerConnection class.

Example 4-5 Accessing an MXBean Attribute Using MBeanServerConnection

MBeanServerConnection mbs;

// Connect to a running Java VM (or itself) and get MBeanServerConnection
// that has the MXBeans registered in it
...

try {
 // Assuming the OperatingSystem MXBean has been registered in mbs
 ObjectName oname = new
ObjectName(ManagementFactory.OPERATING_SYSTEM_MXBEAN_NAME);

 // Get standard attribute "Name"
 String vendor = (String) mbs.getAttribute(oname, "Name");

Chapter 4
Using Oracle JDK's Platform Extension

4-3

 // Check if this MXBean contains Oracle JDK's extension
 if (mbs.isInstanceOf(oname,
"com.sun.management.OperatingSystemMXBean")) {
 // Get platform-specific attribute "ProcessCpuTime"
 long cpuTime = (Long) mbs.getAttribute(oname,
"ProcessCpuTime");
 }
} catch (....) {
 // Catch the exceptions thrown by ObjectName constructor
 // and MBeanServer methods
 ...
}

Monitoring Thread Contention and CPU Time
The ThreadMXBean platform MXBean provides support for monitoring thread contention
and thread central processing unit (CPU) time.

The Oracle JDK's HotSpot VM supports thread contention monitoring. You use the
ThreadMXBean.isThreadContentionMonitoringSupported() method to determine if a
Java VM supports thread contention monitoring. Thread contention monitoring is
disabled by default. Use the setThreadContentionMonitoringEnabled() method to
enable it.

The Oracle JDK's HotSpot VM supports the measurement of thread CPU time on most
platforms. The CPU time provided by this interface has nanosecond precision but not
necessarily nanosecond accuracy.

You use the isThreadCpuTimeSupported() method to determine if a Java VM supports
the measurement of the CPU time for any thread. You use
isCurrentThreadCpuTimeSupported() to determine if a Java VM supports the
measurement of the CPU time for the current thread. A Java VM that supports CPU
time measurement for any thread will also support that for the current thread.

A Java VM can disable thread CPU time measurement. You use the
isThreadCpuTimeEnabled() method to determine if thread CPU time measurement is
enabled. You use the setThreadCpuTimeEnabled() method to enable or disable the
measurement of thread CPU time.

Managing the Operating System
The OperatingSystem platform MXBean allows you to access certain operating system
resource information, such as the following:

• Process CPU time

• Amount of total and free physical memory

• Amount of committed virtual memory (that is, the amount of virtual memory
guaranteed to be available to the running process)

• Amount of total and free swap space

• Number of open file descriptors (only for Linux or macOS platforms).

When the Operating System MXBean in the MBeans tab is selected in JConsole, you
see all the attributes and operations including the platform extension. You can monitor

Chapter 4
Monitoring Thread Contention and CPU Time

4-4

the changes of a numerical attribute over time by double-clicking the value field of the
attribute.

Logging Management
The Java SE platform provides a special MXBean for logging purposes, the LoggingMXBean
interface.

The LoggingMXBean interface enables you to perform the following tasks:

• Get the name of the log level associated with the specified logger

• Get the list of currently registered loggers

• Get the name of the parent for the specified logger

• Set the specified logger to the specified new level

The unique ObjectName of the LoggingMXBean is java.util.logging:type=Logging. This
object name is stored in the LogManager.LOGGING_MXBEAN_NAME field.

There is a single global instance of the LoggingMXBean interface, which you can get by calling
LogManager.getLoggingMXBean().

The LoggingMXBean interface defines a LoggerNames attribute describing the list of logger
names. To find the list of loggers in your application, you can select the Logging MXBean
interface under the java.util.logging domain in the MBeans tab, and double-click the
value field of the LoggerNames attribute.

The Logging MXBean interface also supports two operations:

• getLoggerLevel: Returns the log level of a given logger

• setLoggerLevel: Sets the log level of a given logger to a new level

These operations take a logger name as the first parameter. To change the level of a logger,
enter the logger name in the first parameter and the name of the level that it should be set to
in the second parameter of the setLoggerLevel operation.

Detecting Low Memory
Memory use is an important attribute of the memory system. It can be indicative of the
following problems:

• Excessive memory consumption by an application

• An excessive workload imposed on the automatic memory management system

• Potential memory leakages

There are two kinds of memory thresholds that you can use to detect low memory conditions:
a usage threshold and a collection usage threshold. You can detect low memory conditions
using either of these thresholds with polling or threshold notification.

Memory Thresholds
A memory pool can have two kinds of memory thresholds: a usage threshold and a collection
usage threshold. Either one of these thresholds may not be supported by a particular memory

Chapter 4
Logging Management

4-5

pool. The values for the usage threshold and collection usage threshold can both be
set using the MBeans tab in JConsole.

Usage Threshold
The usage threshold is a manageable attribute of some memory pools. It enables you
to monitor memory use with a low overhead. Setting the threshold to a positive value
enables a memory pool to perform usage threshold checking. Setting the usage
threshold to zero disables usage threshold checking. The default value is supplied by
the Java VM.

A Java VM performs usage threshold checking on a memory pool at the most
appropriate time, typically during garbage collection. Each memory pool increments a
usage threshold count whenever the usage crosses the threshold.

You use the isUsageThresholdSupported() method to determine whether a memory
pool supports a usage threshold, because a usage threshold is not appropriate for
some memory pools. For example, in a generational garbage collector (such as the
one in the HotSpot VM; see Garbage Collection), most of the objects are allocated in
the young generation, from the Eden memory pool. The Eden pool is designed to be
filled up. Garbage collecting the Eden memory pool will free most of its memory space
because it is expected to contain mostly short-lived objects that are unreachable at
garbage collection time. So, it is not appropriate for the Eden memory pool to support
a usage threshold.

Collection Usage Threshold
The collection usage threshold is a manageable attribute of some garbage-collected
memory pools. After a Java VM has performed garbage collection on a memory pool,
some memory in the pool will still be in use. The collection usage threshold allows you
to set a value for this memory. You use the isCollectionUsageThresholdSupported()
method of the MemoryPoolMXBean interface to determine if the pool supports a
collection usage threshold.

A Java VM may check the collection usage threshold on a memory pool when it
performs garbage collection. Set the collection usage threshold to a positive value to
enable checking. Set the collection usage threshold to zero (the default) to disable
checking.

The usage threshold and collection usage threshold can be set in the MBeans tab of
JConsole.

Memory MXBean
The various memory thresholds can be managed using the platform MemoryMXBean.
The MemoryMXBean defines the following four attributes:

• HeapMemoryUsage: A read-only attribute describing the current heap memory
usage.

• NonHeapMemoryUsage: A read-only attribute describing nonheap memory usage.

• ObjectPendingFinalizationCount: A read-only attribute describing the number of
objects pending for finalization.

• Verbose: A Boolean attribute describing the Garbage Collection (GC) verbose
tracing setting. This can be set dynamically. The GC verbose traces will be

Chapter 4
Detecting Low Memory

4-6

displayed at the location specified when you start the Java VM. The default location for
GC verbose output of the Hotspot VM is stdout.

The Memory MXBean supports one operation, gc, for explicit garbage collection requests.

Details of the Memory MXBean interface are defined in the
java.lang.management.MemoryMXBean specification.

Memory Pool MXBean
The MemoryPoolMXBean platform MXBean defines a set of operations to manage memory
thresholds.

• getUsageThreshold()
• setUsageThreshold(long threshold)
• isUsageThresholdExceeded()
• isUsageThresholdSupported()
• getCollectionUsageThreshold()
• setCollectionUsageThreshold(long threshold)
• isCollectionUsageThresholdSupported()
• isCollectionUsageThresholdExceeded()
Each memory pool may have two kinds of memory thresholds for low memory detection
support: a usage threshold and a collection usage threshold. Either one of these thresholds
might not be supported by a particular memory pool. For more information, see the API
reference documentation for the MemoryPoolMXBean class.

Polling
An application can continuously monitor its memory usage by calling either the getUsage()
method for all memory pools or the isUsageThresholdExceeded() method for memory pools
that support a usage threshold.

Example 4-6 has a thread dedicated to task distribution and processing. At every interval, it
determines whether it should receive and process new tasks based on its memory usage. If
the memory usage exceeds its usage threshold, then it redistributes outstanding tasks to
other VMs and stops receiving new tasks until the memory usage returns below the
threshold.

Example 4-6 Using Polling

pool.setUsageThreshold(myThreshold);
....
boolean lowMemory = false;
while (true) {
 if (pool.isUsageThresholdExceeded()) {
 lowMemory = true;
 redistributeTasks(); // redistribute tasks to other VMs
 stopReceivingTasks(); // stop receiving new tasks
 } else {
 if (lowMemory) { // resume receiving tasks
 lowMemory = false;

Chapter 4
Detecting Low Memory

4-7

 resumeReceivingTasks();
 }
 // processing outstanding task
 ...
 }
 // sleep for sometime
 try {
 Thread.sleep(sometime);
 } catch (InterruptedException e) {
 ...
 }
}

Example 4-6 does not differentiate the case in which the memory usage has
temporarily dropped below the usage threshold from the case in which the memory
usage remains above the threshold between two iterations. You can use the usage
threshold count returned by the getUsageThresholdCount() method to determine if
the memory usage has returned below the threshold between two polls.

To test the collection usage threshold instead, you use the
isCollectionUsageThresholdSupported(), isCollectionThresholdExceeded() and
getCollectionUsageThreshold() methods in the same way as shown in the
Example 4-6.

Threshold Notifications
When the MemoryMXBean interface detects that a memory pool has reached or
exceeded its usage threshold, it emits a usage threshold exceeded notification. The
MemoryMXBean interface will not issue another usage threshold exceeded notification
until the usage has fallen below the threshold and then exceeded it again. Similarly,
when the memory usage after garbage collection exceeds the collection usage
threshold, the MemoryMXBean interface emits a collection usage threshold exceeded
notification.

Example 4-7 implements the same logic as Example 4-6, but uses usage threshold
notification to detect low memory conditions. Upon receiving a notification, the listener
notifies another thread to perform actions such as redistributing outstanding tasks,
refusing to accept new tasks, or allowing new tasks to be accepted again.

In general, you should design the handleNotification method to do a minimal
amount of work, to avoid causing delay in delivering subsequent notifications. You
should perform time-consuming actions in a separate thread. As multiple threads can
concurrently call the notification listener, the listener should synchronize the tasks that
it performs properly.

Example 4-7 Using Threshold Notifications

class MyListener implements javax.management.NotificationListener {
 public void handleNotification(Notification notification, Object
handback) {
 String notifType = notification.getType();
 if
(notifType.equals(MemoryNotificationInfo.MEMORY_THRESHOLD_EXCEEDED)) {
 // potential low memory, redistribute tasks to other VMs & stop
receiving new tasks.

Chapter 4
Detecting Low Memory

4-8

 lowMemory = true;
 notifyAnotherThread(lowMemory);
 }
 }
}

// Register MyListener with MemoryMXBean
MemoryMXBean mbean = ManagementFactory.getMemoryMXBean();
NotificationEmitter emitter = (NotificationEmitter) mbean;
MyListener listener = new MyListener();
emitter.addNotificationListener(listener, null, null);

Assuming this memory pool supports a usage threshold, you can set the threshold to some
value (representing a number of bytes), above which the application will not accept new
tasks.

pool.setUsageThreshold(myThreshold);

After this point, usage threshold detection is enabled and MyListener class will handle
notification.

Chapter 4
Detecting Low Memory

4-9

5
Java Discovery Protocol (JDP)

The Java Discovery Protocol (JDP) is a protocol that enables technologies, in particular, Java
Mission Control and Java Flight Recorder, to discover manageable JVMs across the same
network subnet.

A manageable JVM is one that has the Java Management Extensions (JMX) agent running.
JDP is multicast-based and works like a beacon; it broadcasts the JMX service URL (see the
class JMXServiceURL) required to connect to the external JMX agent. This enables
technologies to detect JVMs that have failed or are no longer available for monitoring.

Enabling and Configuring JDP

To enable JDP, specify the following option at the command line when starting a Java
application:

-Dcom.sun.management.jmxremote.autodiscovery=true

Note:

Enabling JDP does not affect JMX security. To enable and configure JMX security,
see Monitoring and Management Using JMX Technology.

Table 6-1 describes other properties that you may set to configure JDP:

Table 5-1 JDP Properties

Property Description Default Value

-
Dcom.sun.management.jmxremot
e.autodiscovery

Enables autodiscovery (JDP) on
the network subnet

false

-
Dcom.sun.management.jdp.paus
e

Specifies the broadcast interval
in seconds

5

-Dcom.sun.management.jdp.ttl Time-to-live in seconds for
autodiscovery packets

1

-
Dcom.sun.management.jdp.addr
ess

Multicast address to send
autodiscovery packets

224.0.23.178

-
Dcom.sun.management.jdp.port

Multicast port to send
autodiscovery packets. Enables
autodiscovery even if the
com.sun.management.jmxrem
ote.autodiscovery property
has not been set.

7095

5-1

https://docs.oracle.com/en/java/javase/11/docs/api/java.management/javax/management/remote/JMXServiceURL.html

Table 5-1 (Cont.) JDP Properties

Property Description Default Value

-
Dcom.sun.management.jdp.name

Broadcast name of the JVM No default

-
Dcom.sun.management.jdp.sour
ce_addr

Address of source interface to
use for broadcast

Automatically assigned

Chapter 5

5-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 Overview of Java SE Monitoring and Management
	Key Monitoring and Management Features
	Java Virtual Machine Instrumentation
	Monitoring and Management API
	Monitoring and Management Tools
	Java Management Extensions Technology
	What Are MBeans?
	MBean Server
	Creating and Registering MBeans
	Instrumenting Applications

	Platform MXBeans
	Platform MBean Server

	2 Monitoring and Management Using JMX Technology
	Setting System Properties
	Ready-to-Use Management
	Local Monitoring and Management Using JConsole
	Remote Monitoring and Management
	Using Password Authentication
	Using File-Based Password Authentication
	Setting Up the Password File

	Disabling Password Authentication
	Using LDAP Authentication

	Using SSL
	Enabling RMI Registry Authentication
	Enabling SSL Client Authentication
	Disabling SSL
	Disabling Security
	Remote Monitoring with JConsole
	Remote Monitoring with JConsole with SSL Enabled

	Using Password and Access Files
	Password Files
	Access Files

	Remote Monitoring with JConsole with SSL Disabled
	Ready-to-Use Monitoring and Management Properties
	Configuration Errors

	Connecting to the JMX Agent Programmatically
	Setting Up Monitoring and Management Programmatically
	Mimicking Ready-to-Use Management Using the JMX Remote API
	Example of Mimicking Ready-to-Use Management
	Monitoring Applications Through a Firewall
	Using an Agent Class to Instrument an Application
	Creating an Agent Class to Instrument an Application

	3 Using JConsole
	Starting JConsole
	Command Syntax
	Setting Up Local Monitoring
	Setting Up Remote Monitoring
	Setting Up Secure Remote Monitoring

	Connecting to a JMX Agent
	Connecting JConsole to a Local Process
	Connecting JConsole to a Remote Process
	Connecting Using a JMX Service URL

	Presenting the JConsole Tabs
	Viewing Overview Information
	Saving Chart Data
	Monitoring Memory Consumption
	Heap and Nonheap Memory
	Memory Pools and Memory Managers
	Garbage Collection
	Monitoring Thread Use
	Detecting Deadlocked Threads

	Monitoring Class Loading
	Viewing VM Information
	Monitoring and Managing MBeans
	Constructing the MBean Tree
	MBean Attributes
	MBean Operations
	MBean Notifications
	HotSpot Diagnostic MXBean

	Creating Custom Tabs

	4 Using the Platform MBean Server and Platform MXBeans
	Using the Platform MBean Server
	Accessing Platform MXBeans
	Accessing Platform MXBeans Using the ManagementFactory Class
	Accessing Platform MXBeans Using an MXBean Proxy
	Accessing Platform MXBeans Using the MBeanServerConnection Class

	Using Oracle JDK's Platform Extension
	Accessing MXBean Attributes Directly
	Accessing MXBean Attributes Using MBeanServerConnection

	Monitoring Thread Contention and CPU Time
	Managing the Operating System
	Logging Management
	Detecting Low Memory
	Memory Thresholds
	Usage Threshold
	Collection Usage Threshold
	Memory MXBean
	Memory Pool MXBean

	Polling
	Threshold Notifications

	5 Java Discovery Protocol (JDP)

