
Java Platform, Standard Edition
JavaDoc Guide

Release 22
F91567-01
March 2024

Java Platform, Standard Edition JavaDoc Guide, Release 22

F91567-01

Copyright © 2014, 2024, Oracle and/or its affiliates.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or related
documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software,
any programs embedded, installed, or activated on delivered hardware, and modifications of such programs)
and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end
users are "commercial computer software," "commercial computer software documentation," or "limited rights
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation
of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications of such
programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and
limitations specified in the license contained in the applicable contract. The terms governing the U.S.
Government's use of Oracle cloud services are defined by the applicable contract for such services. No other
rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications.
It is not developed or intended for use in any inherently dangerous applications, including applications that
may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you
shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its
safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this
software or hardware in dangerous applications.

Oracle®, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc,
and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered
trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services unless otherwise
set forth in an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be
responsible for any loss, costs, or damages incurred due to your access to or use of third-party content,
products, or services, except as set forth in an applicable agreement between you and Oracle.

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc

Contents

 Preface

Audience iv

Documentation Accessibility iv

Diversity and Inclusion iv

Related Documents iv

Conventions v

1 JavaDoc Tool

JavaDoc Features 1-1

2 Programmer’s Guide to JavaDoc CSS Themes

Command line options 2-1

Stucture of Generated Documentation 2-1

Custom Properties 2-2

Creating and Applying a Custom Theme 2-4

3 Programmer's Guide to Snippets

Introduction 3-1

Inline Snippets 3-2

Indentation 3-2

Attributes 3-3

Markup Comments 3-3

Regions 3-6

External Snippets 3-7

Limitations of End-of-Line Comments 3-10

Hybrid Snippets 3-11

Testing Snippets 3-11

iii

Preface

This guide provides information about using the JavaDoc tool.

Audience
This document provides a general overview of features and pointers to other
documentation for users who are reading the API documentation produced by the
JavaDoc tool and for JavaDoc tool users who are writing and generating API
documentation. Users who are developing JavaDoc content should also see the
Documentation Comment Specification for the Standard Doclet for detailed information
required to create JavaDoc content.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at http://www.oracle.com/pls/topic/lookup?
ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.

Diversity and Inclusion
Oracle is fully committed to diversity and inclusion. Oracle respects and values having
a diverse workforce that increases thought leadership and innovation. As part of our
initiative to build a more inclusive culture that positively impacts our employees,
customers, and partners, we are working to remove insensitive terms from our
products and documentation. We are also mindful of the necessity to maintain
compatibility with our customers' existing technologies and the need to ensure
continuity of service as Oracle's offerings and industry standards evolve. Because of
these technical constraints, our effort to remove insensitive terms is ongoing and will
take time and external cooperation.

Related Documents
• JDK 22 Documentation

• The javadoc Command for users running the tool to generate API documentation

Preface

iv

https://docs.oracle.com/en/java/javase/14/docs/specs/javadoc/doc-comment-spec.html
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
https://www.oracle.com/pls/topic/lookup?ctx=javase22&id=homepage
https://docs.oracle.com/en/java/javase/17/docs/specs/man/javadoc.html

• Documentation Comment Specification for the Standard Doclet for authors writing
content for API documentaion

• Javadoc Search Specification for authors writing content for API documentation

• jdk.javadoc module for authors writing content for API documentation

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which
you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code in
examples, text that appears on the screen, or text that you enter.

Preface

v

https://docs.oracle.com/en/java/javase/17/docs/specs/javadoc/doc-comment-spec.html
https://docs.oracle.com/en/java/javase/17/docs/specs/javadoc/javadoc-search-spec.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.javadoc/module-summary.html

1
JavaDoc Tool

The JavaDoc tool is a program that reads Java source files and class files into a form that
can be analyzed by a pluggable back end, called a doclet.

To use the JavaDoc tool, you must:

• Use source code that contains Java documentation comments.

• Run the javadoc tool with a doclet to analyze the documentation comments and any
other special tags. If you don’t specify a doclet in the command, the Standard Doclet is
used by default.

The content of any generated files is specific to the doclet. The Standard Doclet generates
HTML output, but a different doclet could generate other output, such as a report of
misspelled words or grammatical errors.

If you specify a doclet other than the Standard Doclet, then the descriptions in this guide
might not apply to the operation of that doclet or the files (if any) that are generated.

In addition to the descriptions in this guide, JavaDoc tool users and content developers
should use the following documentation:

• For authors writing content API documentation: Documentation Comment Tag
Specification for the Standard Doclet

• For users running the tool to generate API documentation: The javadoc Command

• For end-user readers of API documentation: The Help page, in any generated
documentation. The content of the Help page will be customized for the content of the
API and the command used to generate the documentation. For example, see the Help
page for the Java SE and JDK API specification.

JavaDoc Features
JavaDoc features include enhanced support for code examples, search, summary pages,
module system, Doclet API, HTML support, and DocLint.

Enhanced Support for Code Examples

The Standard Doclet provides improved support for code examples, as described in JEP 413:
Code Snippets in Java API Documentation. See Programmer's Guide to Snippets for detailed
information.

Search

When the JavaDoc tool runs the Standard Doclet, it generates output that enables users to
search the generated documentation for elements and additional key phrases defined in the
generated API documentation. Search results include matching characters from any position
in the search string. The Search facility can also provide page redirection based on user
selection.

1-1

https://docs.oracle.com/en/java/javase/17/docs/specs/javadoc/doc-comment-spec.html
https://docs.oracle.com/en/java/javase/17/docs/specs/javadoc/doc-comment-spec.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/javadoc.html
https://docs.oracle.com/en/java/javase/17/docs/api/help-doc.html#overview
https://docs.oracle.com/en/java/javase/17/docs/api/help-doc.html#overview
https://openjdk.java.net/jeps/413
https://openjdk.java.net/jeps/413

Note:

The Search feature uses JavaScript. If you disable JavaScript in your
browser, you will not be able to use the Search feature. However, all the
information in the Search feature is also available in the A-Z Index that is
present in any generated API documentation. The A-Z Index is in plain HTML
and doesn’t require the use of JavaScript. See Javadoc Search Specification
for detailed information about using Search.

Summary Pages

The Standard Doclet may generate various additional summary pages based on
detailed descriptions of individual declarations contained in the API. These pages
include information about new API, deprecated API, constant values, and serialized
forms. Find links to these pages in the main navigation bar at the top of each page or
in the A-Z Index.

Module System

The javadoc tool supports documentation comments in module declarations. Some
JavaDoc command-line options enable you to specify the set of modules to document
and generate a summary page for any modules being documented. See The javadoc
Command for detailed information.

Doclet API

The Doclet API supports all of the latest language features. See the module
jdk.javadoc for detailed information.

HTML Support

The Standard Doclet uses current web standards to generate documentation.

Note:

The Standard Doclet doesn’t repair or fix any HTML errors in documentation
comments. HTML errors may cause the generated API documentation to fail
validation by a conformance checker.

DocLint

DocLint is a feature provided by the JavaDoc tool, as well as the JDK Java compiler,
javac, to detect and report issues in documentation comments that may cause the
output to be not as the author intended. The issues include missing comments,
references to undeclared items (perhaps because of a spelling error), accessibility
errors, malformed HTML, and syntax errors. Depending on the severity of each issue,
it may be reported as either a warning or an error. See The javadoc Command for
more information about DocLint.

Chapter 1
JavaDoc Features

1-2

https://docs.oracle.com/en/java/javase/17/docs/specs/javadoc/javadoc-search-spec.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/javadoc.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/javadoc.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.javadoc/module-summary.html
https://docs.oracle.com/en/java/javase/17/docs/specs/man/javadoc.html

Note:

While features like DocLint may be helpful in detecting issues, it is strongly
recommended that authors always check and proofread the generated API
documentation, to make sure that it is as intended.

Chapter 1
JavaDoc Features

1-3

2
Programmer’s Guide to JavaDoc CSS
Themes

API documentation generated by JavaDoc comes with a default CSS stylesheet (see
Cascading Style Sheets home page) that defines its visual properties such as fonts, colors,
and spacing. While the default stylesheet is built with the goals of accessibility and appeal to
the widest possible audience, there may be projects that prefer a custom style that extendes
or replaces the default stylesheet. This document provides information on how to achieve
this, including an example stylesheet for a dark CSS theme.

Topics

• Command Line Options

• Stucture of Generated Documentation

• Custom Properties

• Creating and Applying a Custom Theme

Command line options
The javadoc tool provides two command line options to customize stylesheets for the
generated documentation.

• The --add-stylesheet option adds a stylesheet to the generated documentation in
addition to the default stylesheet. Rules in the added stylesheet override corresponding
rules in the default stylesheet, so this option can be used to set styles that selectively
change styles in the default stylesheet.

• The --main-stylesheet option replaces the default stylesheet with the one provided as
argument to the command line option. This means the custom stylesheet is solely
responsible for the style of the documentation. It is advisable to use the default stylesheet
as a starting point for the custom stylesheet.

For this guide we will use the --add-stylesheet option, because we want to build on the
built-in stylesheet, overriding only the properties we want to change. Of course, replacing the
default stylesheet opens up more possiblities, but it is much more involved and beyond the
scope of this guide.

Stucture of Generated Documentation
The output of the documentation generated by the JavaDoc Standard Doclet is described in
JavaDoc Output Generated by the Standard Doclet, which includes a list of CSS classes
used in generated API documentation. While this may serve as a reference for for those
wanting to write their own JavaDoc stylesheet from the ground up, it is probably sufficient and
much simpler to customize styles using the custom properties described below.

2-1

https://www.w3.org/Style/CSS/Overview.en.html
https://docs.oracle.com/en/java/javase/21/docs/specs/man/javadoc.html#option-add-stylesheet
https://docs.oracle.com/en/java/javase/21/docs/specs/man/javadoc.html#option-main-stylesheet
https://docs.oracle.com/en/java/javase/21/docs/specs/javadoc/std-doclet-output.html
https://docs.oracle.com/en/java/javase/21/docs/specs/javadoc/std-doclet-output.html#css-classes

Custom Properties
CSS Custom Properties (see Using CSS custom properties (variables)) are a
convenient way to define CSS values in one place and use them anywhere in the
stylesheet. The JavaDoc default stylesheet uses CSS custom properties for all fonts
and colors, making it possible to create a complete CSS theme by simply providing a
stylesheet containing redefined custom properties.

CSS custom property names always begin with a double hyphen (--). In order to be
usable by all page elements, the JavaDoc stylesheet defines its custom properties in
the :root pseudo class. The following example shows how to set the body font size to
15 px.

:root { --body-font-size: 15px;}

The number of custom properties in the default stylesheet was intentionally kept small,
and many of the variables are used in more than one place. While this makes it
simpler to create consistent themes, it also limits the freedom of choosing specific
styles for individual page elements. This is a deliberate choice, the limitation can be
bypassed by directly overriding the underlying CSS rules.

The following subsections document the custom properties used in the default
stylesheet.

Font families

The following properties define the font families used for various kinds of text in the
page.

--body-font-family
Defines the base font family for the page

--block-font-family
Defines the font family used for blocks of documentation

--code-font-family
Defines the font family used to display program code

Font sizes

The following custom properties define font sizes for basic text in the page. Note that
font sizes for specific elements such as headings and navigation links are derived from
these custom properties:

--body-font-size
Defines the base font size for normal text

--code-font-size
Defines the base font size for program code

Background colors

The following custom properties define background colors for various generic page
elements.

Chapter 2
Custom Properties

2-2

https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties

--body-background-color
Defines the main background color of the page

--section-background-color
Defines the background color of primary page sections

--detail-background-color
Defines the background color of the details section

--navbar-background-color
Defines the background color of the primary navigation bar and inactive tab buttons

--subnav-background-color
Defines the background color of the secondary navigation bar and table headers

--selected-background-color
Defines the background color of selected navigation items and tab buttons

--even-row-color
Defines the background color of even-numbered table rows in summary tables

--odd-row-color
Defines the background color of odd-numbered table rows in summary tables

Text colors

The following custom properties define text colors of various generic page elements.

--body-text-color
Defines the main text color of the page

--block-text-color
Defines the text color for text blocks

--navbar-text-color
Defines the text color for the navigation bars

--selected-text-color
Defines the text color for selected navigation items and tab buttons

--selected-link-color
Defines the text color for links in selected navigation items and tab buttons

--title-color
Defines the text color for the page title

--link-color
Defines the text color for links

--link-color-active
Defines the text color for active links

Colors for specific features

The following custom properties define background and text colors for various specific
elements in the page.

Chapter 2
Custom Properties

2-3

--snippet-background-color
Defines the background color for code snippets

--snippet-text-color
Defines the text color for code snippets

--snippet-highlight-color
Defines the text color for highlights in code snippets

--border-color
Defines the color for borders of section boxes

--table-border-color
Defines the color for border of tables

--search-input-background-color
Defines the background color for the search input

--search-input-text-color
Defines the text color for the search input

--search-input-placeholder-color
Defines the text color for the search input placeholder text

--search-tag-highlight-color
Defines the background color for highlighted search tags

--copy-icon-brightness
Defines the brightness for the copy-to-clipboard icon

--copy-button-background-color-active
Defines the background for the copy-to-clipboard button

--invalid-tag-background-color
Defines the background color for invalid-tag notifications

--invalid-tag-text-color
Defines the text color for invalid-tag notifications

Creating and Applying a Custom Theme
The following example shows how to create a custom stylesheet that overrides some
of the custom properties used by the JavaDoc stylesheet in order to create a dark CSS
theme.

Since we need to create some files it is a good idea to start with a new empty
directory. In a Terminal window, create a directory called javadoc-style or something
similar and enter it.

The first thing we need is some Java code to document, so we’ll create a simple test
class. Create a file called Test.java in your new empty current working directory with
the content below.

/**
 * A test class.
 */
public class Test {

Chapter 2
Creating and Applying a Custom Theme

2-4

 /**
 * Constructor.
 */
 public Test() {}

 /**
 * Constructor.
 * @param s a string
 */
 public Test(String s) {}

 /**
 * A simple method.
 * @param s a string
 */
 public void hello(String s) {}

 /**
 * A method.
 */
 public void foo() {}

 /**
 * Another method.
 */
 public void bar() {}
}

The only other file we need is a CSS files containing our custom style. Create a file called
dark-theme.css in your current working directory with the following content:

:root {
 --body-text-color: #e0e0e3;
 --block-text-color: #e6e7ef;
 --body-background-color: #404040;
 --section-background-color: #484848;
 --detail-background-color: #404040;
 --navbar-background-color: #505076;
 --navbar-text-color: #ffffff;
 --subnav-background-color: #303030;
 --selected-background-color: #f8981d;
 --selected-text-color: #253441;
 --selected-link-color: #1f389c;
 --even-row-color: #484848;
 --odd-row-color: #383838;
 --title-color: #ffffff;
 --link-color: #a0c0f8;
 --link-color-active: #ffb863;
 --snippet-background-color: #383838;
 --snippet-text-color: var(--block-text-color);
 --snippet-highlight-color: #f7c590;
 --border-color: #383838;
 --table-border-color: #000000;

Chapter 2
Creating and Applying a Custom Theme

2-5

 --search-input-background-color: #000000;
 --search-input-text-color: #ffffff;
 --search-input-placeholder-color: #909090;
 --search-tag-highlight-color: #ffff00;
 --copy-icon-brightness: 250%;
 --copy-button-background-color-active: rgba(168, 168, 176, 0.3);
 --invalid-tag-background-color: #ffe6e6;
 --invalid-tag-text-color: #000000;
}

Next we invoke the javadoc tool with our Java class as primary argument. Our style
sheet is passed using the --add-stylesheet option option, and the -d option is used
to place the generated documentation in a subdirectory called docs.

 javadoc -d docs --add-stylesheet dark-theme.css Test.java

Note:

The proper JDK binaries must be on your PATH for this to work. Alternatively,
you can invoke the javadoc tool by specifying the complete path name.

If the invocation of javadoc terminates successfully it will create a directory called docs
containing the generated API documentation. If you open file docs/Test.html in your
browser it should look similar to the page shown below.

Chapter 2
Creating and Applying a Custom Theme

2-6

https://docs.oracle.com/en/java/javase/21/docs/specs/man/javadoc.html#option-add-stylesheet

Figure 2-1 API documentation using a dark theme

It should be straightforward to adapt the invocation to your project and build system, and of
course you can modify the theme to your taste or create a new theme from scratch. The
custom theme will be used in every HTML file that is part of the generated documentation.

Chapter 2
Creating and Applying a Custom Theme

2-7

3
Programmer's Guide to Snippets

JEP 413 adds a JavaDoc feature to improve support for code examples in API
documentation to JDK 18 and later. This guide provides information on how to use the
feature, using a series of simple examples.

Topics

• Introduction

• Inline Snippets

• Indentation

• Attributes

• Markup Comments

• Regions

• External Snippets

• Limitations of End-of-Line Comments

• Hybrid Snippets

• Testing Snippets

Introduction
Authors of API documentation frequently include fragments of source code in documentation
comments, using constructs like {@code ...} for short or one-line examples, or
<pre>{@code ...}</pre> for longer examples. The {@snippet ...} tag is a replacement for
those techniques that is more convenient to use, and which provides more power and
flexibility.

It is common practice in documentation comments to prefix lines with whitespace characters
and an asterisk, as shown in this example:

/**
 * The main program.
 *
 * The code calls the following statement:
 * <pre>{@code
 * System.out.println("Hello, World!");
 * }</pre>
 */
public static void main(String... args) {
 ...
}

In the examples that follow, snippet tags and related files are displayed in indented blocks
with a border. For simplicity and clarity, snippet tags are shown without the typographic

3-1

https://openjdk.java.net/jeps/413

decoration of the enclosing comment. (It is neither required nor incorrect to use such
decoration in actual use.) Blocks without a border are used to display the
corresponding output generated by the Standard Doclet. The output for all snippets
includes a Copy to Clipboard button in the upper-left corner.

Inline Snippets
In its simplest form, {@snippet ...} can be used to enclose a fragment of text, such
as source code or any other form of structured text.

{@snippet :
 public static void main(String... args) {
 System.out.println("Hello, World!");
 }
}

This will appear in the generated output as follows:

 public static void main(String... args) {
 System.out.println("Hello, World!");
 }

Apart from some inherent limitations, there are no restrictions on the content of a
snippet. The limitations are a result of embedding the snippet within a documentation
comment. The limitations for an inline snippet are:

• the content may not contain the character pair */, because that would terminate
the enclosing comment

• Unicode escape sequences (\uNNNN) will be interpreted while parsing the source
code, and so it is not possible to distinguish between the presence of a character
and the equivalent Unicode escape sequence, and

• any curly bracket characters ({}) must be "balanced", implying an equal number
of appropriately nested left curly bracket and right curly bracket characters, so that
the closing curly bracket of the @snippet tag can be determined.

Indentation
The content of an inline snippet is the text between the newline after the initial colon
(:) and the final right curly bracket (}). Incidental white space is removed from the
content in the same way as with String.stripIndent. This means you can control the
amount of indentation in the generated output by adjusting the indentation of the final
right bracket.

In this example, the snippet tag is the same as in the previous example, except that
the indentation of the final right curly bracket is increased, to eliminate the indentation
in the generated output.

{@snippet :
 public static void main(String... args) {
 System.out.println("Hello, World!");
 }
}

Chapter 3
Inline Snippets

3-2

https://docs.oracle.com/en/java/javase/18/text-blocks/index.html#incidental-white-space
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/lang/String.html#stripIndent()

This will appear in the generated output as follows:

public static void main(String... args) {
 System.out.println("Hello, World!");
}

Attributes
A snippet may have attributes, which are name=value pairs. Values can be quoted with
single-quote (') characters or double-quote (") character. Simple values, such as identifiers or
numbers need not be quoted. Note: escape sequences are not supported in attribute values.

The lang attribute is used to identify the language of the snippet text, and to infer the kind of
line comment or end-of-line comment that may be supported in that language. The Standard
Doclet recognizes java and properties as supported values. The value of the attribute is
also passed through to the generated HTML. The attribute may be used by other tools that
can be used to analyze the snippet text.

{@snippet lang="java" :
 public static void main(String... args) {
 System.out.println("Hello, World!");
 }
}

Snippets often contain Java source code, but are not limited to that. Snippets may contain
other forms of structured text, such as the resources that can appear in a "properties" file.

{@snippet lang="properties" :
 house.number=42
 house.street=Main St.
 house.town=AnyTown, USA
}

This will appear in the generated output as follows:

 house.number=42
 house.street=Main St.
 house.town=AnyTown, USA

The id attribute can be used to provide an identifier to uniquely name an individual snippet.
The Standard Doclet does not utilize the attribute, except to pass it down to the generated
HTML. The attribute may be used by other tools that may be used to analyze the snippet text.

{@snippet id="example" :
 public static void main(String... args) {
 System.out.println("Hello, World!");
 }
}

Markup Comments
A snippet can contain markup comments, which can be used to affect what is displayed in the
generated output. Markup comments are end-of-line comments in the declared language for
the snippet, and contain one or more markup tags. Markup tags are generally of the form
@namearguments. Most arguments are name=value pairs, in which case the values have the
same syntax as that for snippet tag attributes.

Chapter 3
Attributes

3-3

https://docs.oracle.com/en/java/javase/18/code-snippet/index.html#attributes

Highlighting

To highlight all or part of a line in a snippet, use the @highlight tag. The content to be
highlighted can be specified as either a literal string using a substring argument, or
with a regular expression using a regex argument. If neither are given, the entire line is
highlighted.

In the following example, a simple regular expression is used to specify that the
content of a string literal should be highlighted.

{@snippet :
 public static void main(String... args) {
 System.out.println("Hello, World!"); // @highlight
regex='".*"'
 }
}

This will appear in the generated output as follows:

 public static void main(String... args) {
 System.out.println("Hello, World!");
 }

Linking

To link text to API declarations, use the @link tag. The target for the link uses the
same syntax and mechanism as that used for standard {@link ...} tags elsewhere in
documentation comments. In particular, the set of names that may be used in an @link
tag is the set of names that can are visible at that point in the source code, and
includes any imported types and members.

In the following example, the method name println is linked to the declaration in the
platform documentation.

{@snippet :
 public static void main(String... args) {
 System.out.println("Hello, World!"); // @link
substring="println" target="PrintStream#println(String)"
 }
}

The simple use of PrintStream implies that the name is imported by the import
declarations at the head of the source file. It would be equally correct, but more
verbose, to use the fully qualified name of the class instead.

The snippet will appear in the generated output as follows:

 public static void main(String... args) {
 System.out.println("Hello, World!");
 }

Modifying Text

When presenting examples, it is sometimes convenient to use an ellipsis or some
other token to indicate to the reader that the specific details at that position do not
matter. However, such tokens may be invalid in the declared language for the snippet.
To solve this problem, you can use a legal placeholder value in the body of the
snippet, and use a marker comment to specify that the placeholder value should be
replaced by alternative text in the generated output.

Chapter 3
Markup Comments

3-4

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/io/PrintStream.html#println(java.lang.String)

In the following example, an empty string is used as the placeholder value, and the @replace
tag is used to specify that it should be replaced with an ellipsis.

{@snippet :
 public static void main(String... args) {
 var text = ""; // @replace substring='""'
replacement=" ... "
 System.out.println(text);
 }
}

In the generated output, you can see that the empty string literal "" has been replaced by
three dots

 public static void main(String... args) {
 var text = ... ;
 System.out.println(text);
 }

Using Regular Expressions

Using regular expressions can be tricky when you need to identify a specific instance of a
string in a line or region. In this situation you can use a regular expression with either
boundary matchers or zero-width lookahead or lookbehind to help select the desired
instance.

In the following example, a word boundary is used to isolate a string that is a substring of
another string earlier on the line.

{@snippet :
 int x2 = x; // @highlight regex='x\b'
 }

This will appear in the generated output as follows:

int x2 = x;

In the following example, zero-width lookahead is used to isolate the second instance of x in
the statement. Note that the + in the lookahead needs to be escaped, to prevent the
lookahead being "one or more spaces".

{@snippet :
 x = x + 1; // @highlight regex='x(?= \+)'
 }

This will appear in the generated output as follows:

x = x + 1;

You could also use zero-width lookbehind as well, in which case the regular expression would
be (?!=)x. The choice between using boundary matchers, lookahead or lookbehind is just a
matter of style.

In general, when using regular expressions, it is recommended that you should always check
the generated documentation, to make sure that the regular expressions match the expected
text and that the output is as intended.

Chapter 3
Markup Comments

3-5

https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/regex/Pattern.html#bounds
https://docs.oracle.com/en/java/javase/18/docs/api/java.base/java/util/regex/Pattern.html#special

Regions
The markup comments in the preceding examples only affected the content earlier on
the same line. However, it is sometimes convenient to affect the content on a range of
lines, or region.

Regions can be anonymous or named. To have a markup tag apply to an anonymous
region, place it at the start of the region and use an @end tag to mark the end of the
region.

The following example highlights all occurrences of the word text in the specified
region, as well as replacing some content within the region.

{@snippet :
 public static void main(String... args) { // @highlight region
substring="text" type=highlighted
 var text = ""; // @replace
substring='""' replacement=" ... "
 System.out.println(text);
 } // @end
}

This will appear in the generated output as follows:

 public static void main(String... args) {
 var text = ... ;
 System.out.println(text);
 }

If you want to explicitly state the correspondence between the start and end of a
region, you can use a named region, by giving a name with the region attribute.

The following example is the same as the previous one, except that the region is
explicitly named, in this case R1. Although this example is small and simple and does
not by itself warrant use of a named region, it serves to illustrate the mechanism.

{@snippet :
 public static void main(String... args) { // @highlight region=R1
substring="text" type=highlighted
 var text = ""; // @replace
substring='""' replacement=" ... "
 System.out.println(text);
 } // @end region=R1
}

Naming a region does not affect the generated output, which will appear as follows:

 public static void main(String... args) {
 var text = ... ;
 System.out.println(text);
 }

Regions may be nested. Nested regions need not be named, although you may
choose to use named regions for clarity. Although maybe uncommon, regions need not
be nested and may overlap. For overlapping regions, you must use named regions, to
establish the relationship between the beginning and end of the individual regions.

Chapter 3
Regions

3-6

External Snippets
It is not always convenient, or even possible, to use inline snippets. It may be desirable to
show different parts of a single example, or to include /* ... */ comments, which cannot be
represented in an inline snippet (because such comments do not nest and the trailing */
would terminate the enclosing comment). The character sequence */ may also appear in
string literals, such as glob patterns or regular expressions, with the same issues when trying
to write the character sequence in a traditional comment. To address this, you can use
external snippets, where the snippet tag references code in an external file.

External files can be placed either in a snippet-files subdirectory of the package containing
the snippet tag, or in a completely separate directory specified using the --snippet-path
option when running javadoc. The following examples illustrate the two different ways you
can layout the files.

The first example shows a directory named src, containing the source for a class p.Main, an
image icon.png in the doc-files subdirectory, and a file for external snippets,
Snippets.java, in the snippet-files directory. The presence of doc-files/icon.png is just
to show the similarity between the use of doc-files and snippet-files directories. No
additional options are required for the Standard Doclet to locate the external snippets in this
example.

• src
– p

* Main.java
* doc-files

* icon.png
* snippet-files

* Snippets.java

Note:

Some build systems may (incorrectly) treat files in the snippet-files directory as
part of the enclosing package hierarchy, even though snippet-files is not a valid
Java identifier and cannot be part of a Java package name. The local snippet-
files directory cannot be used in these cases.

In this next example, similar to the previous one, the file Snippets.java is moved to a
separate source hierarchy. The root of that hierarchy must be specified with the --snippet-
path option when running javadoc.

• src
– p

* Main.java
* doc-files

* icon.png

Chapter 3
External Snippets

3-7

• snippet-files
– Snippets.java

Basic External Snippet

You can identify the external file for a snippet using either a class name using the
class attribute, for a Java source file, or by a file name, using the file attribute.

Here is a simple example of a basic external snippet referencing a class called
HelloWorld in an external source file.

{@snippet class=HelloWorld }

Here is the content of the file snippet-files/HelloWorld.java, rooted in the same
package directory as that for the class containing the snippet itself.

public class HelloWorld {
 /**
 * The ubiquitous "Hello, World!" program.
 */
 public static void main(String... args) {
 System.out.println("Hello, World!");
 }
}

Not surprisingly, the generated output looks similar to the external source file.

public class HelloWorld {
 /**
 * The ubiquitous "Hello, World!" program.
 */
 public static void main(String... args) {
 System.out.println("Hello, World!");
 }
}

Selecting Part of an External File

To include just part of an external file, define and use a named region.

Use the region attribute in the @snippet tag to name the region within the external file
to be included.

{@snippet class=ExternalSnippets region=main }

In the external source file, define the region with @start and @end tags.

...
/* // @start region=main
 * Prints "Hello, World!"
 */
System.out.println("Hello, World!");
// @end region=main
...

The result in the generated output is as follows:

/*
 * Prints "Hello, World!"

Chapter 3
External Snippets

3-8

 */
System.out.println("Hello, World!");

An external file can have more than one region, to be referenced by different snippets. Here's
a example of another snippet that could be in the same file as the previous example. It refers
to a region named join.

{@snippet class=ExternalSnippets region=join }

Here is that region in the external source file:

...
// join a series of strings // @start region=join
var result = String.join(" ", args);
// @end region=join
...

The result in the generated output is as follows:

// join a series of strings
var result = String.join(" ", args);

You can mix and match regions within an external source file, with some regions being used
to define parts of the file to be referenced by a snippet tag, and other regions used in
conjunction with markup tags for highlighting or modifying the text to be displayed.

Here's a variation on the previous example, where the region to be displayed contains a
markup comment to modify the displayed text.

The @snippet tag is essentially the same as before.

{@snippet class=ExternalSnippets region=join2 }

The external file combines tags to mark the region to be displayed and a markup comment to
modify the displayed text.

...
// join a series of strings // @start region=join2
var delimiter = " " ; // @replace substring='" "' replacement="..."
var result = String.join(delimiter, args);
// @end region=join2
...

The result in the generated output is as follows:

// join a series of strings
var delimiter = ... ;
var result = String.join(delimiter, args);

Kinds of External Files

External snippets are not limited to be Java source files. They can be any form of structured
text that is appropriate to display in an HTML <pre> element. When referencing non-Java
files use the file attribute to specify the path of the file; it should be relative to either the local
snippet-files directory or on the path given by the --snippet-path option.

Here is an example of an external snippet referencing a region named house in a properties
file.

Chapter 3
External Snippets

3-9

{@snippet file=external-snippets.properties region=house }

Here is the relevant part of that properties file:

...
@start region=house
house.number=42
house.street=Main St.
house.town=AnyTown, USA
@end region=house
...

The result in the generated output is as follows:

house.number=42
house.street=Main St.
house.town=AnyTown, USA

Limitations of End-of-Line Comments
While end-of-line comments are convenient to use for markup comments, there are
some limitations. Not all languages support end-of-line comments, and there may be
restrictions on where you can use such comments. For example, properties files only
support line comments, where the comment character is the first non-white character
on a line. And, even in Java source files, you cannot use end-of-line comments within
a text block.

There are two ways to work around these limitations. You can enclose the appropriate
text with a region, and have the markup apply to the content in that region, even if the
region is only a single line. This would be the way to have a markup comment apply to
the content of a text block in Java source code. In addition, there is a special syntax
for markup comments in this situation: if the markup comment ends with a colon (:), it
is treated as though it were an end-of-line comment on the following line.

In the following example, a @highlight tag is used in a properties file to highlight
some text on the following line:

{@snippet file=external-snippets.properties region=house2 }

...
@start region=house2
house.number=42
@highlight substring="Main St." :
house.street=Main St.
house.town=AnyTown, USA
@end region=house2
...

The result in the generated output is as follows:

house.number=42
house.street=Main St.
house.town=AnyTown, USA

Chapter 3
Limitations of End-of-Line Comments

3-10

Hybrid Snippets
External snippets are convenient to use, because they are relatively easy to compile and
execute as part of a testing regimen. Inline snippets are convenient to use, at least for short
examples, because they allow the author-developer to see the content of the snippet in the
context of the enclosing comment.

Hybrid snippets provide the best of both worlds, albeit at a slight cost in convenience. A
hybrid snippet is a combination of both an inline snippet and an external snippet. As an inline
snippet, it has inline content like any other inline snippet, but as an external snippet, it also
has the attributes to specify an external file and possibly a region in that file.

To avoid any chance of the two forms getting out of sync with each other, the Standard Doclet
verifies that the result of processing the snippet tag as an inline snippet is the same as
processing it as an external snippet. Given that this may be a maintenance burden during the
development of an API, it is recommended that the snippet initially be developed as either an
inline snippet or an external snippet, and then converted to a hybrid snippet late in the
development process, when the code of the snippet has stabilized.

The following example combines two of the preceding examples, one for an inline snippet
and one for an external snippet, into a single hybrid snippet. Note that the inline content is not
exactly the same as the content of the region in the external snippet. The external snippet
uses a @replace tag so that it is compilable code, whereas for the sake of readability, the
inline snippet shows ... directly instead.

{@snippet class=ExternalSnippets region=join2 :
// join a series of strings
var delimiter = ... ;
var result = String.join(delimiter, args);
}

The result in the generated output is as follows:

// join a series of strings
var delimiter = ... ;
var result = String.join(delimiter, args);

Testing Snippets
The Standard Doclet does not compile or otherwise test snippets; instead, it supports the
ability of external tools and library code to test them.

External snippets are the easiest to test because the content of the snippet is placed in
external source files, where the code can be compiled and executed with standard tools
appropriate for the kind of source files.

Testing inline snippets is harder because you first have to locate the snippets, and then have
to decide how to process them.

You can locate snippets using a combination of the Compiler API and Compiler Tree API to
parse the source files to get syntax trees, scan those trees for declarations, and then scan
the associated doc comment trees for snippets. You can also locate documentation tree
comments for an element, provided the element was declared in a source file, using
DocTrees.getDocCommentTree.

Chapter 3
Hybrid Snippets

3-11

https://docs.oracle.com/en/java/javase/18/docs/api/java.compiler/javax/tools/package-summary.html
https://docs.oracle.com/en/java/javase/18/docs/api/jdk.compiler/module-summary.html
https://docs.oracle.com/en/java/javase/18/docs/api/jdk.compiler/com/sun/source/util/TreeScanner.html
https://docs.oracle.com/en/java/javase/18/docs/api/jdk.compiler/com/sun/source/util/DocTreeScanner.html
https://docs.oracle.com/en/java/javase/18/docs/api/java.compiler/javax/lang/model/element/Element.html
https://docs.oracle.com/en/java/javase/18/docs/api/jdk.compiler/com/sun/source/util/DocTrees.html#getDocCommentTree(javax.lang.model.element.Element)

After locating a snippet, the processing will depend on the kind of snippet and the
testing goals. The lang and id can help identify the kind and specific instance of each
snippet that is found. If it is a snippet of Java source code, with some heuristics, you
can check that it is syntactically correct code, by parsing it with javac, perhaps by
wrapping it as necessary to form a compilation unit. To do anything more than just
parsing the snippet code will generally require more context, which might be inferred
from the snippet's id. For example, the snippet could be injected into a template that
allows the snippet to be compiled and maybe even executed.

Chapter 3
Testing Snippets

3-12

	Contents
	Preface
	Audience
	Documentation Accessibility
	Diversity and Inclusion
	Related Documents
	Conventions

	1 JavaDoc Tool
	JavaDoc Features

	2 Programmer’s Guide to JavaDoc CSS Themes
	Command line options
	Stucture of Generated Documentation
	Custom Properties
	Creating and Applying a Custom Theme

	3 Programmer's Guide to Snippets
	Introduction
	Inline Snippets
	Indentation
	Attributes
	Markup Comments
	Regions
	External Snippets
	Limitations of End-of-Line Comments
	Hybrid Snippets
	Testing Snippets

