Java DB Server and Administration Guide

Version 10.6

Derby Document build:
April 7, 2014, 5:04:59 PM (EDT)

Version 10.6 Java DB Server and Administration Guide

Contents
1670] o)V A 8 [0 1| ST TP PP PPR PP 4
o= 1= T PR 5
Relationship between Java DB and Apache Derby.........cccoiiiiiiiiiiiiiiniie e 9
N Lo U A TS0 U T =SOSR 10
PUrpose of thisS gUIde.......cooi e 10
N E o 1= o o =T PP 10
How this guide iS Organized.........occueiiiiiiiiiiiii e 10
Part one: Derby Server GUIE.ocueiiii it 12
Derby in a multi-usSer enVirONMeENT......coocuuiiiiiiiii e 12
Derby in a server frameworkK.. ... 12
About this guide and the Network Server documentation............cccccceeeeeviriinnnnns 15
Using the Network Server with preexisting Derby applications............c.cccceeee. 15
The Network Server and JVMS..........coiiiiiiiiiiiiiie e 15
Installing required jar files and adding them to the classpath.................cceee. 15
Starting the NetWOrk SEIVET.......ocuvvii i 16
Shutting down the NetWOrk SEIVEr ... 18
Obtaining System iNfOrMALION.eeiiiiiiiiie e 19
Accessing the Network Server by using the network client driver....................... 20
Accessing the Network Server by using a DataSource object.............occveeeeennnee. 27
XA and the NetWOTrK SEIVET........ccoiiiiiiiiiiiiiii et 29
Using the Derby tools with the Network Server.........cccccccviieeiiiiiiieeeee e 30
Differences between running Derby in embedded mode and using the Network
ST Y= P RPRRRRRP 30
Setting POIt NUMDEIS. ...ccoiiiiiiee e 34
Managing the Derby NetwWork Server........cocoiiiiii e 34
L@ YT T PR 34
Setting Network Server Properties.......oovveeeeiiiiiiee et 35
VErIYING STAMTUD. ..ceeiiiiiiiie ittt e e e reeeeeaae 40
Managing the Derby Network Server remotely by using the servlet
) =T = T = S 41
SEAIM-UD PAGE. . et teeeeeiiee ettt e e e e e e e e e 42
RUNNING PAJE ... eeiei ittt et s et e e e e e 42
TraCE SESSION PAGE. .. .eeeieieiiitiiiee ettt e e ettt e e et e e e s sttt e e e s atb b e e e s abbeeeeesabneeeeeans 42
Trace dIrECIOMY PAYE .. eeeei i itiiee ettt ettt e et e e e e e e e 42
Set Network Server ParamMeterScooiieieie it e e 43
Derby Network Server advanced tOPICS. ...t 43
NEWOIK SEIVEI SECUILY......euiiiiiiiiiiee ettt e 43
Running the Network Server under the security manager...........ccccccovvvveeeennne. 43
Running the Network Server with User Authentication................occccvviiiivennene.n. 46
Network encryption and authentication with SSL/TLS..........c.oooiiiiiiiiiinieeeeeen, 47
Configuring the Network Server to handle connections..............ccccccvvviveeenneeenn. 50
Controlling logging by using the 10g file...........oooiii e, 51
Controlling tracing by using the trace facility...........ccccooiiiiiiice, 51
Derby Network Server sample ProgramsS......ooueee e 52
The NsSample sample Program..........ceoiiiiee e 53
Network Server sample programs for embedded and client connections........... 55
Part two: Derby Administration GUIdE..........cooiiiiiiiiiiiii e 58
Checking database CONSISIENCYcoiiiiiiiiiiiiiie e 58
The SYSCS_CHECK_TABLE fUNCHON.........coiiiiiiiiiiiiiiiieee e 58

Version 10.6 Java DB Server and Administration Guide

Sample SYSCS_CHECK_TABLE error meSSages.........cccccuvrrvrerrereeeeesiesiinnnnnnns 58
Sample SYSCS _CHECK_TABLE QUETIES........ccccviiiiieeiieeee e 59
Backing up and restoring databases........ccccceveeeiiiiiiiiiiiie e 59
Backing Up @ database...........cueeeiiiiiiiiii e 59
Restoring a database from a backup COPY........cccooviiiiiiiiiiieiieeeee e 62
Creating a database from a backup COPY......ccoceeviiiiiiiiiiiiiiiiieee e 63
ROII-FOrWArd FECOVEIY......uuiiiiiieiiiee e e e e e e e e s e eeee s 63
Replicating databases. ... ———— 65
Starting and running repliCation..............cveveeeoii i 66

Y (o] o] o1 o T =] o] o= 11T] o TSP PPERRPR 67
FOrciNg @ faIlOVET......coeiiie e 67
Replication @and SECUNLY........uiiieeeii it e e eeeaae s 68
Replication failure handling............ccccciiiiiiiiie e 68
LOgQging 0N @ SeParate dEVICE.......uiiiieee ittt e e e e 69
Using the logDevice=logDirectoryPath attribute..............ccccovvveveieeiiiiiiiiieee, 70
Example of creating a log in a non-default location...............cccoeeiviiiiieineneeeenn, 70
Example of moving a log manually..........ccccccceeoiiiiiiiiiiiiieee e 70
Issues for logging in a non-default location.............c..ooeeciiiiiieinee e, 71
Obtaining locking iNnfOrmation..........uueiiiiii e 71
MoNitoring deadIOCKS...........oo i 71
Reclaiming UNUSEd SPACE........ccccieiiiiiiiiie et e e e e e e e e e s e e ennnenes 72
LI 16 L= 4= T S PRSPPI 73

Java DB Server and Administration Guide
Apache Software FoundationJava DB Server and Administration GuideApache Derby

Java DB Server and Administration Guide

Copyright

Apache Derby %

Copyright 2004-2010 The Apache Software Foundation
Copyright 2010 Oracle and/or its affiliates. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this
file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0.

Related information

License

http://www.apache.org/licenses/LICENSE-2.0

Java DB Server and Administration Guide
License

The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://ww. apache. org/licenses/

TERMS AND CONDI TI ONS FOR USE, REPRODUCTI ON, AND DI STRI BUTI ON
1. Definitions.

"Li cense" shall nmean the terns and conditions for use
reproduction, and distribution as defined by Sections 1 through
9 of this docunent.

"Li censor" shall mean the copyright owner or entity authorized
by the copyright owner that is granting the License

"Legal Entity" shall nean the union of the acting entity and al
other entities that control, are controlled by, or are under
common control with that entity. For the purposes of this
definition, "control" neans (i) the power, direct or indirect,
to cause the direction or managenent of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%
or nmore of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall nmean an individual or Legal Entity
exerci sing perm ssions granted by this License.

"Source" formshall nean the preferred formfor naking
nodi fi cations, including but not linted to software source code
docunent ati on source, and configuration files.

"Cbject" formshall nean any formresulting from nechani ca
transformation or translation of a Source form including but
not limted to conpiled object code, generated docunentation,
and conversions to other nedia types.

"Work" shall nean the work of authorship, whether in Source or
Ooj ect form nade avail abl e under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendi x bel ow).

"Derivative Wrks" shall mean any work, whether in Source or
oject form that is based on (or derived fronm) the Wrk and
for which the editorial revisions, annotations, el aborations,
or other nodifications represent, as a whole, an original work
of authorship. For the purposes of this License, Derivative
Works shall not include works that remain separable from or
nerely link (or bind by nane) to the interfaces of, the Wrk
and Derivative Wrks thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any nodifications or
additions to that Work or Derivative Wrks thereof, that is
intentionally submtted to Licensor for inclusion in the Wrk
by the copyright owner or by an individual or Legal Entity
authorized to subnmit on behalf of the copyright owner. For the
purposes of this definition,

"submtted" means any form of electronic, verbal, or witten
comuni cation sent to the Licensor or its representatives,
including but not limted to comrunication on electronic mailing
lists, source code control systenms, and issue tracking systens

5

Java DB Server and Administration Guide

that are nmanaged by, or on behalf of, the Licensor for the
purpose of discussing and i nproving the Work, but excl uding
communi cation that is conspicuously nmarked or otherw se
designated in witing by the copyright owner as "Not a
Contri bution.™"

"Contributor" shall nean Licensor and any individual or Legal
Entity on behal f of whom a Contribution has been recei ved by
Li censor and subsequently incorporated within the Wrk.

2. Gant of Copyright License. Subject to the terns and conditions
of this License, each Contributor hereby grants to You a
per petual, worldw de, non-exclusive, no-charge, royalty-free,
irrevocabl e copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform sublicense, and
distribute the Work and such Derivative Wrks in Source or
Obj ect form

3. Grant of Patent License. Subject to the ternms and conditions of
this License, each Contributor hereby grants to You a perpetual,
wor | dwi de, non-excl usi ve, no-charge, royalty-free, irrevocable
(except as stated in this section) patent |icense to make, have
made, use, offer to sell, sell, inport, and otherw se transfer
the Wrk, where such license applies only to those patent clains
l'i censabl e by such Contributor that are necessarily infringed by
their Contribution(s) alone or by conbination of their
Contribution(s) with the Wrk to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claimor counterclaimin a lawsuit) alleging
that the Work or a Contribution incorporated within the Wrk
constitutes direct or contributory patent infringenent, then any
patent |icenses granted to You under this License for that Wrk
shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Wrks thereof in any nedium wth or wthout
nmodi fications, and in Source or (bject form provided that You
neet the follow ng conditions:

(a) You must give any other recipients of the Work or
Derivative Wrks a copy of this License; and

(b) You nust cause any nodified files to carry promi nent notices
stating that You changed the files; and

(c) You nust retain, in the Source formof any Derivative Wrks
that You distribute, all copyright, patent, trademark, and
attribution notices fromthe Source formof the Wrk,
excl udi ng those notices that do not pertain to any part of
the Derivative Wrks; and

(d) If the Work includes a "NOTICE" text file as part of its
di stribution, then any Derivative Wrks that You distribute
nmust include a readable copy of the attribution notices
contai ned within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Wrks, in
at | east one of the follow ng places: within a NOTICE text
file distributed as part of the Derivative Wrks; within the
Source form or docunentation, if provided along with the
Derivative Wrrks; or, within a display generated by the
Derivative Wrks, if and wherever such third-party notices
normal | y appear. The contents of the NOTICE file are for
i nformati onal purposes only and do not nodify the License.
You may add Your own attribution notices within Derivative
Works that You distribute, alongside or as an addendumto
the NOTICE text fromthe Work, provided that such additional
attribution notices cannot be construed as nodifying the
Li cense.

You may add Your own copyright statenent to Your nodifications

Java DB Server and Administration Guide

and nay provide additional or different |license terns and
conditions for use, reproduction, or distribution of Your

nodi fications, or for any such Derivative Wrks as a whol e,
provi ded Your use, reproduction, and distribution of the Work
ot herwi se conplies with the conditions stated in this License.

5. Subni ssion of Contributions. Unless You explicitly state
ot herwi se, any Contribution intentionally subnmitted for
inclusion in the Wrk by You to the Licensor shall be under the
ternms and conditions of this License, w thout any additional
terns or conditions. Notwithstanding the above, nothing herein
shal | supersede or nodify the terns of any separate |icense
agreenent you may have executed with Licensor regardi ng such
Contri buti ons.

6. Trademarks. This License does not grant perm ssion to use the
trade names, trademarks, service marks, or product nanes of the
Li censor, except as required for reasonable and custonary use
in describing the origin of the Wrk and reproducing the content
of the NOTICE file.

7. Disclaimer of Warranty. Unl ess required by applicable |aw or
agreed to in witing, Licensor provides the Wrk (and each
Contri butor provides its Contributions) on an "AS | S* BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or
inmplied, including, without limtation, any warranties or
conditions of TITLE, NON- I NFRI NGEMENT, MERCHANTABI LITY, or

FI TNESS FOR A PARTI CULAR PURPCSE. You are solely responsible for
determ ni ng the appropriateness of using or redistributing the
Work and assune any risks associated with Your exercise of
permi ssi ons under this License

8. Limtation of Liability. In no event and under no | egal theory,
whet her in tort (including negligence), contract, or otherw se,
unl ess required by applicable | aw (such as deliberate and
grossly negligent acts) or agreed to in witing, shall any
Contributor be liable to You for danmages, including any direct,
indirect, special, incidental, or consequential danages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limted to
danmages for |oss of goodw ||, work stoppage, conputer failure or
mal function, or any and all other conmercial danmages or | osses),
even i f such Contributor has been advi sed of the possibility of
such damages.

9. Accepting Warranty or Additional Liability. Wile redistributing
the Work or Derivative Wrks thereof, You may choose to offer
and charge a fee for, acceptance of support, warranty, indemity,
or other liability obligations and/or rights consistent with this
Li cense. However, in accepting such obligations, You may act only
on Your own behal f and on Your sole responsibility, not on behal f
of any other Contributor, and only if You agree to i ndemify,
def end, and hol d each Contributor harm ess for any liability
incurred by, or clains asserted agai nst, such Contributor by
reason of your accepting any such warranty or additiona
liability.

END OF TERMS AND CONDI TI ONS
APPENDI X: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the foll ow ng
boil erpl ate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
coment syntax for the file format. W al so recommend that a
file or class nanme and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives

Java DB Server and Administration Guide
Copyright [yyyy] [name of copyright owner]

Li censed under the Apache License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww. apache. org/ |l i censes/ LI CENSE-2. 0

Unl ess required by applicable |aw or agreed to in witing, software
di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KI ND, either express or
inmplied. See the License for the specific | anguage governing

perm ssions and |limtations under the License.

Java DB Server and Administration Guide

Relationship between Java DB and Apache Derby

Java DB is a relational database management system that is based on the Java
programming language and SQL. Java DB is the Oracle release of the Apache Derby
project, the Apache Software Foundation's (ASF) open source relational database
project.

The Java DB product includes Derby without any modification whatsoever to the
underlying source code.

Because Java DB and Derby have the same functionality, the Java DB documentation
refers to the core functionality as Derby.

The Java DB 10.6 documentation is based on the Derby 10.6 documentation. References
to "Derby" in the Java DB documentation should be understood as synonyms for "Java
DB."

Oracle has made changes to the Apache Derby documentation. This manual is identical
to the Derby Server and Administration Guide, with the following exceptions:

» Oracle has added this topic, "Relationship between Java DB and Apache Derby".
* In the titles of manuals, "Derby" has been changed to "Java DB".

Java DB Server and Administration Guide

About this guide

This section describes who this guide is for as well as how to use it.

Purpose of this guide

This guide explains how to use Derby in a multiple-client environment. It also provides
information that a server administrator might need to keep Derby running with a high

level of performance and reliability in a server framework or in a multiple-client application
server environment (When running in embedded mode, Derby databases typically do not
need any administration).

To connect multiple clients with Derby, you can embed Derby in a server framework
that you choose, or you can use the Derby Network Server. This guide describes these
options.

Audience

The first part of this guide is intended for developers of client/server and multiple-client
applications. The second part of this guide is intended for administrators.

How this guide is organized
This guide includes the following two parts:
Part one: Derby Server Guide
» Derby in a multi-user environment

Describes the different options for embedding Derby in a server framework and
explains the Network Server option.
 Using the Network Server with preexisting Derby applications

Describes how to change existing Derby applications to work with the Network
Server.
* Managing the Derby Network Server

Describes how to use shell scripts, the command line, and the Network Server API
to manage the Network Server.
» Managing the Derby Network Server remotely by using the servlet interface

Describes how to use the servlet interface to manage the Network Server.
» Derby Network Server advanced topics

Describes advanced topics for Derby Network Server users.
Part two: Derby Administration Guide
« Checking database consistency

Describes how to check the consistency of Derby databases.
« Backing up and restoring databases

Describes how to back up a database when it is online.
» Logging on a separate device

Describes how to put a database's log on a separate device, which can improve the
performance of large databases.
 Obtaining locking information

10

Java DB Server and Administration Guide

Describes how to get detailed information about locking status.
¢ Reclaiming unused space

Describes how to identify and reclaim unused space in tables and related indexes.

11

Java DB Server and Administration Guide

Part one: Derby Server Guide

This part of the guide explains the Derby Network Server and other server frameworks.

Derby in a multi-user environment

This section describes how to use Derby in a multi-user (or "server") environment.

Derby in a server framework

In a sense, Derby is always an embedded product. You can embed it in an application

in which users access the database from a single JVM or you can embed it in a server
framework (an application that allows users from different JVMs to connect to Derby
simultaneously). When Derby is embedded in an application, the local JDBC driver calls
the local Derby database. When Derby is embedded in a server framework, the server
framework's connectivity software provides data to multiple client JDBC applications over
a network or the Internet.

For local or remote multi-user connectivity (multiple users who access Derby from
different JVMs), use the Derby Network Server. If you require features that are not
included in the Network Server, you can embed the basic Derby product in another
server framework.

Connectivity configurations
There are several ways to embed Derby in a server framework:

Use the Network Server
This is the easiest way to provide connectivity to multiple users who are accessing
Derby databases from different JVMs. The Derby Network Server provides this kind
of connectivity to Derby databases within a single system or over a network.

Purchase another server framework
You can use Derby within many server frameworks, such as IBM WebSphere
Application Server.

Write your own framework
Derby's flexibility allows other configurations as well. For example, rather than
embedding Derby in a server that communicates with a client that uses JDBC, you
can embed Derby within a servlet in a web server that communicates with a browser
using HTTP.

Multiple-client features available in Derby

Derby contains some features that are useful for developing multi-user applications.
Row-level locking:

To support multi-user access, Derby utilizes row-level locking. However, you can
configure Derby to use table-level locking in environments that have few concurrent
transactions (for example, a read-only database) . Table-level locking is preferable if
there are few or no writes to the server, while row-level locking is essential for good
performance if many clients write to the server concurrently. The Derby optimizer tunes
lock choice for queries automatically.

Multiple concurrency levels:

Derby supports SERIALIZABLE (RR), REPEATABLE (RS), READ COMMITTED (CS),
and READ UNCOMMITTED (UR) isolation levels.

CSs

12

Java DB Server and Administration Guide

CS (the default isolation level) provides the best balance between concurrency and
consistency in multiple-client environments.

RS
RS provides less consistency than RR but allows more concurrency.

RR
RR provides greatest consistency.

UR
UR provides maximum concurrency, if uncommitted values are allowed in the query.
It is typically used if approximate results are acceptable.

See "Types and Scope of Locks in Derby Systems" in the Java DB Developer's Guide for
more information.

Multi-connection and multi-threading:

Derby allows multiple simultaneous connections to a database, even in embedded mode.
Derby is also fully multi-threaded, and you can have multiple threads active at the same
time. However, JDBC semantics impose some limitations on multi-threading. See the
Java DB Developer's Guide for more information.

Administrative tools:
Derby provides some tools and features to assist database administrators, including:

« Consistency checker
¢ Online backup
« The ability to put a database's log on a separate device

These tools and features are discussed in part two of this guide. See the sections in that
part for more information.

The Derby Network Server

The Derby Network Server provides multi-user connectivity to Derby databases within
a single system or over a network. The Network Server uses the standard Distributed
Relational Database Architecture (DRDA) protocol to receive and reply to queries from
clients. Databases are accessed through the Derby Network Server by using the Derby
Network Client driver.

The Network Server is a solution for multiple JVMs that connect to the database, unlike
the embedded scenario where only one JVM runs as part of the system. When Derby is
embedded in a single-JVM application, the embedded JDBC driver calls the local Derby
database. When Derby is embedded in a server framework, the server framework's
connectivity software provides data to multiple client JDBC applications over a network or
the Internet.

To run the Derby Network Server, you need to install the following files:
e Onthe server side, install der by. j ar and der bynet . j ar.
« On the client side, install der byclient.jar.

There are several ways to manage the Derby Network Server, including:

e Through the command line

« By using .bat and .ksh scripts

Through the servlet interface

« With your own Java program (written using the Network Server API)
« By setting Network Server properties

Using the Network Server with preexisting Derby applications explains how to change
existing Java applications that currently run against Derby in embedded mode to run
against the Derby Network Server.

13

Java DB Server and Administration Guide

Managing the Derby Network Server explains how to manage the Network Server by
using the command line, including starting and stopping it.

Managing the Derby Network Server remotely by using the servlet interface explains how
to use the servlet interface to manage the Network Server.

Derby Network Server advanced topics contains advanced topics for Derby Network
Server users.

Because of the differences in JDBC drivers that are used, you might encounter
differences in functionality when running Derby in the Network Server framework as
opposed to running it embedded in a user application. Refer to Using the Network
Server with preexisting Derby applications for a complete list of the differences between
embedded and Network Server configurations.

Embedded servers

Because Derby is written in Java, you have great flexibility in how you choose to
configure your deployment. For example, you can run Derby, the JDBC server
framework, and another application in the same JVM as a single process.

How to start an embedded server from an application

In one thread, the embedding application starts the local JDBC driver for its own access.

/*
If you are running on JDK 6 or higher, you do not
need to invoke Cl ass.forNanme(). In that environnment, the
EnbeddedDri ver | oads automatically.

*/

Cl ass. for Nane(" or g. apache. der by. j dbc. EnbeddedDri ver");
Connection conn = DriverManager. get Connecti on(
"j dbc: der by: sanpl e") ;

In another thread, the same application starts the server framework to allow remote
access. Starting the server framework from within the application allows both the server
and the application to run in the same JVM.

Embedded server example

You can start the Network Server in another thread automatically when Derby starts

by setting the derby.drda.startNetworkServer property (see Setting Network Server
properties), or you can start it by using a program. The following example shows how to
start the Network Server by using a program:

i nport org. apache. der by. dr da. Net wor kSer ver Control ;

i mport java. net. | net Address;

Net wor kSer ver Cont rol server = new Networ kSer ver Cont r ol
(I net Addr ess. get ByNane("Il ocal host "), 1527) ;

server.start(null);

The program that starts the Network Server can access the database by using either
the embedded driver or the Network Client driver. The server framework's attempt to
boot the local JDBC driver is ignored because it has already been booted within the
application's JVM. The server framework simply accesses the instance of Derby that is
already booted. There is no conflict between the application and the server framework.

The remote client can then connect through the Derby client driver:

String nsURL="j dbc: derby://| ocal host: 1527/ sanpl e";

java. util.Properties props = new java.util.Properties();
props. set Property("user","usr");

props. set Property("password", "pwd");

/*
If you are running on JDK 6 or higher, you do not

14

Java DB Server and Administration Guide

need to invoke Class.forNane(). In that environnment, the
ClientDriver |oads automatically.
*/
Cl ass. for Name(" or g. apache. derby. jdbc. ClientDriver");
Connection conn = DriverManager. get Connecti on(nsURL, props);

/*interact with Derby*/
Statenment s = conn.createStatenment();

Resul tSet rs = s. execut eQuery(
"SELECT * FROM Hot el Booki ngs");

About this guide and the Network Server documentation

This guide assumes that you are familiar with Derby features and tuning. Before reading
this guide, you should first learn about basic Derby functionality by reading the Java DB
Developer's Guide. Also, because multi-user environments typically have performance
and tuning issues, you should read Tuning Java DB.

Using the Network Server with preexisting Derby applications

You must modify Java applications that currently run against Derby in embedded mode
so that they work with the Derby Network Server. The topics in this section discuss these
changes.

The Network Server and JVMs

The Derby Network Server is compatible with Java Platform, Standard Edition, v 1.4.2
(J2SE) and above.

Installing required jar files and adding them to the classpath

To use the Network Server and network client driver, add the following jar file to your
server classpath:

e derbyrun.jar

Adding this file to your classpath has the effect of including all of the Derby classes in
your classpath. These classes are in the following jar files, which you can also add to
your classpath separately:

e derbynet.jar

This jar file contains the Network Server code. It must be in your classpath to start
the Network Server.
e derby.jar

This jar file contains the Derby database engine code. It must be in the classpath
in order for the Network Server to access Derby databases. der by. j ar is
included in the Class-Path attribute of der bynet . j ar 's manifest file. If you have
der bynet . j ar in the classpath and der by. j ar is in the same directory as
der bynet . j ar, itis not necessary to include der by. j ar explicitly.

e derbyclient.jar

This jar file contains the Derby Network Client JDBC driver that is necessary
for communication with the Network Server. It must be in the classpath of the
application on the client side in order to access Derby databases over a network.

All of the jar files are in the $DERBY_HOVE/ | i b directory.

15

Java DB Server and Administration Guide

Derby provides script files for setting the classpath to work with the Network Server. The
scripts are located in the $DERBY_HOVE/ bi n directory.

« set Net wor kd i ent CP. bat (Windows)
« set Net wor kd i ent CP (UNIX)
» set Net wor kSer ver CP. bat (Windows)
« set Net wor kSer ver CP (UNIX)

See Managing the Derby Network Server and Getting Started with Java DB for more
information on setting the classpath.

Starting the Network Server
To start the Network Server, you can invoke a script, a jar file, or a class.

> Important: Note that you should always properly shut down the Network Server after
use, because failure to do so might result in unpredictable side-effects, such as blocked
ports on the server.

You are strongly urged to enable user authentication when you run a Network Server. For
details on how to configure user authentication, please consult the "Working with user
authentication" section in the Developer's Guide. You are also urged to install a Java
security manager with a customized security policy. For details on how to do this, see
Customizing the Network Server's security policy.

You can start the Network Server in any of the following ways:

« If you are relatively new to the Java programming language, follow the
instructions in "Setting up your environment" in Getting Started with Java DB
to set the DERBY_HOVME and JAVA HOVE environment variables and to add
DERBY_HOVE/ bi n to your path. Then use the st art Net wor kSer ver . bat script
to start the Network Server on Windows machines and the st art Net wor kSer ver
script to start the Network Server on UNIX systems. These scripts are located in
$DERBY_HOWE/ bi n, where $DERBY_HOME is the directory where you installed
Derby.

You can run NetworkServerControl commands only from the host that started the
Network Server.

Operating Command
System
Windows set DERBY_HOVE=C: \ der by

set JAVA HOME=C: \ Program Fi | es\ Java\jdk1.5.0_10
set PATH=%DERBY_ HOVE% bi n; YPATHY%
st art Net wor kSer ver

UNIX (Korn Shell) export DERBY_HOVE=/ opt / der by

export JAVA HOVE=/usr/j 2se

export PATH=" $DERBY_HOVE/ bi n: $PATH"

st art Net wor kSer ver

« If you are a regular Java user but are new to Derby, set the DERBY_HOVE
environment variable, then use a j ava command to invoke the der byrun. j ar or

der bynet . j ar file:

Operating Command
System
Windows set DERBY_HOVE=C:\ der by
java -jar YOERBY_HOVE% | i b\ der byrun.jar server
start
or

16

Java DB Server and Administration Guide

java -jar YOERBY_HOVE% | i b\ derbynet.jar start

UNIX (Korn Shell) export DERBY_HOVE=/ opt/ der by

java -jar $DERBY_HOVE/ | i b/ derbyrun.jar server
start

or

java -jar $DERBY_HOVE/ | i b/ derbynet.jar start

To see the command syntax, invoke der byrun. j ar server orderbynet.jar
with no arguments.

« If you are familiar with both the Java programming language and Derby, you have
already set DERBY_ HOME. Set your classpath to include the Derby jar files. Then
use a j ava command to invoke the Net wor kSer ver Cont r ol class directly.

Operating Command
System

Windows]

YOERBY_HOVE% bi n\ set Net wor kSer ver CP

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
start

UNIX (Korn Shell)]

$DERBY_HQOVE/ bi n/ set Net wor kSer ver CP

java org. apache. der by. drda. Net wor kSer ver Cont r ol
start

The default system directory is the directory in which Derby was started. (See the Java
DB Developer's Guide for more information about the default system directory.)

You can specify a different host or port number when you start the Network Server by
specifying an option to the command.

» Specify a port number other than the default (1527) by using the - p port nunber
option, as shown in the following example:

java org. apache. der by. drda. Net wor kServer Control start -p 1368
» Specify a specific interface (host name or IP address) to listen on other than the
default (I ocal host) by using the - h option, as shown in the following example:

$DERBY_HOME/ bi n/ st art Net wor kServer -h nyhost -p 1368
where myhost is the host name or IP address.

Remember: Before using the - h option, you should run under the Java
security manager with a customized security policy and you should enable user
authentication.

By default, the Network Server will listen to requests only on the loopback address, which
means that it will only accept connections from the local host.

Starting the Network Server from a Java application

Note that you should always properly shut down the Network Server after use, because
failure to do so might result in unpredictable side-effects, such as blocked ports on the
server.

There are two ways to start the Network Server from a Java application.

* You can include the following line in the der by. properti es file:

der by. dr da. st art Net wor kSer ver =t rue

This starts the server on the default port, 1527, listening on | ocal host (all
interfaces).

17

Java DB Server and Administration Guide

To specify a different port or a specific interface in the der by. properti es file,
include the following lines, respectively:

der by. drda. port Nunber=1110
der by. dr da. host =nyhost

You can also specify the st art Net wor kSer ver and port Nurrber properties by
using a Java command:

java - Dderby. drda. st art Net wor kServer =true
- Dder by. dr da. por t Number =1110
- Dder by. dr da. host =nyhost your App

* You can use the NetworkServerControl API to start the Network Server from a
separate thread within a Java application:

Net wor kSer ver Control server = new Networ kServer Control ();
server.start (null);
Starting the Network Server on IPv6/Ipv4 dual stack Windows machines

The following JVM properties need to be added to the command when starting the server
on IPv6/lpv4 dual stack Windows machines:

-Dj ava. net . preferl Pv4St ack=f al se
-D ava. net. pref er| Pv6Addr esses=t rue

Shutting down the Network Server
To shut down a Network Server, you can invoke a script, a jar file, or a class.

The scripts to shut down a Network Server are located in the $DERBY_HOVE/ bi n
directory.

> Important: If user authentication is enabled, you must specify a valid Derby user
name and password; if the user authentication check fails, you'll see an authentication
error and the running server remains intact. Note that Derby does not yet restrict the
shutdown privilege to specific users: the server can be shut down by any user on the
server machine who presents valid credentials.
« To shut down the Network Server by using the scripts provided for Windows
systems, use:

st opNet wor kServer. bat [-h hostnane] [-p portnunber] [-user usernang]
[- password passwor d]
» To shut down the Network Server by using the scripts provided for UNIX systems,

use:

st opNet wor kServer [-h hostnane] [-p portnunber] [-user usernane]
[- password password]
Shutting down by using the command line

From the command line, you can shut down a Network Server by invoking a jar file or a
class.

Note that you need to provide user credential arguments to shut down a server running
with user authentication.

 To shut down the Network Server by invoking a jar file from the $DERBY_HOVE/ | i b
directory, use:

java -jar derbyrun.jar server shutdown [-h <hostname>] [-p
<portnunber>] [-user <username>] [-password <password>]

or

18

Java DB Server and Administration Guide

java -jar derbynet.jar shutdown [-h <hostnane>] [-p <portnunber>]
[-user <usernane>] [-password <passwor d>]

» To shut down the Network Server by invoking a class, use:

java org. apache. der by. dr da. Net wor kSer ver Cont rol shutdown [-h
<host name>] [-p <portnunber>] [-user <usernanme>] [-password
<passwor d>]
Shutting down by using the API

You can use the NetworkServerControl API to shut down the Network Server from within
a Java application. The name of the method that you use to shutdown the Network
Server is shut down() .

For example, the following command shuts down the Network Server running on the
current machine using the default port number (1527):

Net wor kSer ver Control server = new Networ kServer Control ();
server. shut down() ;

To shut down a server running with user authentication, you need to use a
NetworkServerControl instance created with user credentials:

Net wor kSer ver Control server = new Networ kServer Control (user nane,
passwor d) ;
server. shut down() ;

Obtaining system information

You can obtain information about the Network Server, such as version and current
property values, Java information, and Derby database server information, by using the
sysi nf o utility. The sysi nf o utility is available from scripts, the command line, the
NetworkServerControl API, and through the servlet interface.

The following scripts are located in the $DERBY_HOVE/ bi n directory. Before running
these scripts, make sure that the Derby Network Server is started.

« Run the following script to obtain information about the Network Server on a
Windows system:

Net wor kSer ver Control . bat sysinfo [-h hostnane] [-p portnunber]
« Run the following script to obtain information about the Network Server on a UNIX
system:

Net wor kSer ver Control sysinfo [-h hostnane] [-p portnunber]
For more information on the sysi nf o utility, see the Java DB Tools and Utilities Guide.

You can also use Java Management Extensions (JMX) technology to obtain system

information. For details, visit the wiki page http://wiki.apache.org/db-derby/DerbyJMX
and refer to the API documentation for the packages or g. apache. der by. nbeans
and or g. apache. der by. nbeans. dr da. For information on JMX technology, see

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

Obtaining system information by using the command line

To run sysi nf o from the command line, use a command like one of the following while
the Network Server is running:

java -jar $DERBY_HOWE/ Il i b/ derbyrun.jar server sysinfo
[-h hostnane] [-p portnumnber]

19

http://wiki.apache.org/db-derby/DerbyJMX
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Java DB Server and Administration Guide

java org. apache. der by. drda. Net wor kSer ver Control sysinfo
[-h hostnane] [-p portnunber]

Administrative commands such as sysi nf o can only execute on the host where the
server was started, even if the server was started with the - h option.

Obtaining system information by using the API

The sysi nf o method produces the same information as the sysinfo command. The
signature for this method is

String getSysinfo();

For example:

Net wor kSer ver Control serverControl = new NetworkServerControl ();
String nyinfo = serverControl . getSysinfo();

The get Sysi nf o() method returns information about the Network Server that is
running on the current machine on the default port number (1527).

Obtaining Network Server runtime information:

Use the runtimeinfo command or getRuntimelnfo method to get memory usage and
current session information about the Network Server including user, database, and
prepared statement information.

e To run runtimeinfo from the command line:

java org. apache. der by. dr da. Net wor kServer Control runtinei nfo
[-h <hostname>] [<-p portnunmber >]
* The getRuntimelnfo method returns the same information as the runtimeinfo
command. The signature for the getRuntimelnfo method is String getRuntimelnfo().
For example:

Net wor kSer ver Control serverControl = new NetworkServerControl ();
String nyinfo = serverControl.getRunti mel nfo();

Obtaining Network Server properties by using the getCurrent Properties
method:

The getCurrentProperties method is a Java method that you can use to obtain
information about the Network Server. It returns a Properties object with the value of all
the Network Server properties as they are currently set.

The signature of this method is:

Properties getCurrentProperties();

For example:

Net wor kServer Control server = new Networ kServer Control ();
Properties p = server.getCurrentProperties();
p.list(Systemout);

System out . printl n(p.getProperty("derby.drda. host"));

As shown in the previous example, you can look up the current properties and then work
with individual properties if needed by using various APIs on the Properties class. You
can also print out all the properties by using the Properties.list() method.

See Managing the Derby Network Server remotely by using the servlet interface for
information about obtaining system information using the servlet interface.

Accessing the Network Server by using the network client driver

20

Java DB Server and Administration Guide

When connecting to the Network Server, your application needs to load a driver and
connection URL that is specific to the Network Server. In addition, you must specify a
user name and password if you are using authentication.

The driver that you need to access the Network Server is:

or g. apache. derby. jdbc. Client Dri ver

The syntax of the URL that is required to access the Network Server is:

jdbc: derby://<server>[:<port>]/
<dat abaseName>[; <URL attribute>=<value> [;...]]

where the <URL attri but e> is either a Derby embedded or network client attribute.

To access an in-memory database using the Network Server, the syntax is:

jdbc: derby://<server>[:<port>]/nenory:
<dat abaseNane>[; <URL attri bute>=<value> [;...]]

For more information, see "Using in-memory databases" in the Java DB Developer's
Guide.

For both driver and DataSource access, the database name (including path), user,
password and other attribute values must consist of single-byte characters that can be
converted to EBCDIC. The total byte length of the database name plus attributes when
converted to EBCDIC must not exceed 255 bytes. You may be able to work around

this restriction for long paths or paths that include multibyte characters by setting the

der by. syst em hone system property when starting Network Server and accessing the
database with a relative path that is shorter and does not include multibyte characters.

Table 1. Standard JDBC DataSource properties

URL
Property Type Description attribute Notes
databaseName String | The name of ' This property is
the database. also available using
This property is EmbeddedDataSource.
required.
dataSourceName | String | The data source | This property is
name. also available using
EmbeddedDataSource.
description String | A description of ' This property is
the data source. also available using
EmbeddedDataSource.
user String | The user's user Default is APP.
account name. This property is
also available using
EmbeddedDataSource.
password String | The user's password | This property is
database also available using
password. EmbeddedDataSource.
serverName String | The host name or| ' Default is "localhost".
TCP/IP address
where the server

21

Java DB Server and Administration Guide

URL
Property Type Description attribute Notes

is listening for
requests.

portNumber Integer | The port number | ' Default is "1527".
where the server
is listening for
requests.

Table 2. Client-specific DataSource properties

Property Type Description URL attribute Notes

traceFile String The filename for | traceFile '
tracing output.
Setting this
property turns
on tracing. See
Network client
tracing.

traceDirectory String The directory traceDirectory '
for the tracing
output. Each
connection will
send output

to a separate
file. Setting this
property turns
on tracing. See
Network client
tracing.

traceLevel Integer | The level of traceLevel The default is
client tracing TRACE_ALL.
if traceFile or
traceDirectory
are set.

traceFileAppend Boolean | Value is true if traceFileAppend The default is
tracing output false.

should append
to the existing
trace file.

securityMechanism | Integer The security securityMechanism [The default is
mechanism. See USER_ONLY
Network client _SECURITY.
security.

retrieveMessageTey Boolean | Retrieve retrieveMessageText| The default is
message true.

text from the
server. A stored
procedure is
called to retrieve
the message

22

Java DB Server and Administration Guide

Property Type Description URL attribute Notes

text with each
SQLException
and might start
a new unit of
work. Set this
property to
false if you do
not want the
performance
impact or when
starting new
units of work.

ssl String The SSL mode | ssl The default is
for the client of .
connection.

See Network
encryption and
authentication
with SSL/TLS

Table 3. Server-Specific DataSource properties

URL
Property Type Description attributes Notes
connectionAttributes | String Set to the list of || Various This property is
Derby embedded also available using
connection EmbeddedDataSource.
attributes See the Java DB
separated by Reference Manual for
semicolons. more information about
the various connection
attributes.
createDatabase String If set to "create", | create This property is
create the also available using
database EmbeddedDataSource.
specified with See the Java DB
databaseName Reference Manual
property. for more information.
Similar to setting
connectionAttribute
to "create=true". Only
"create" is allowed,
other values equate
to null. The result of
conflicting settings
of createDatabase,
shutdownDatabase and
connectionAttributes is
undefined.
shutdownDatabase | Strind If set to shutdown This property is
"shutdown", also available using
shutdown EmbeddedDataSource.

23

Java DB Server and

Administration Guide

URL
Property Type Description attributes Notes
the database See the Java DB
specified with Reference Manual
databaseName for more information.
property. Similar to setting

connectionAttribute to
"shutdown=true". Only
"shutdown" is allowed,
other values equate

to null. The result of
conflicting settings

of createDatabase,
shutdownDatabase and
connectionAttributes

is undefined. If
authentication and
sqglAuthorization are
both enabled, database
shutdown is restricted
to the database owner.

Note that setAttributesAsPassword , which is available for the embedded DataSource, is
not available for the client DataSource.

Network client security

The Derby Network Client allows you to select a security mechanism by specifying a
value for the securi t yMechani smproperty.

You can set the securi t yMechani smproperty in one of the following ways:

< When you are using the Dr i ver Manager interface, set securi t yMechani sm
inajava.util.Properties object before you invoke the form of the
get Connect i on method, which includes the j ava. uti | . Properti es
parameter.

« When you are using the Dat aSour ce interface to create and deploy your own
DataSource objects, invoke the Dat aSour ce. set Securi t yMechani smmethod
after you create a DataSource object.

Security mechanisms supported by the Derby Network Client lists the security
mechanisms that the Derby Network Client supports, and the corresponding property
value to specify to obtain this securityMechanism. The default security mechanism is the
user id only if no password is set. If the password is set, the default security mechanism
is both the user id and password. The default user is APP if no other user is specified.

Table 4. Security mechanisms supported by the Derby Network Client

Sedqrity mecha securityMechanism property value Comments
User id and| ClientDataSource.CLEAR_TEXT_PASSWORD_{ Default if password is
password | (0x03) set
User id ClientDataSource.USER_ONLY_SECURITY Default if password is
only (0Ox04) not set
Strong ClientDataSource.STRONG_PASSWORD_SUBY Strong password
password | (0x08) substitution can be
substitution used only with Derby's

24

Java DB Server and Administration Guide

Secjurity mechar| securityMechanism property value Comments

BUILTIN authentication
mechanism or

with authentication
disabled. Also, for the
BUILTIN mechanism,
strong password
substitution does not
work for database-level
users whose password
has been protected

by a custom message
digest algorithm
specified by the derby.ajithentication.bui

property.
Encrypted | ClientDataSource. ENCRYPTED_USER_AND_PA4 Encryption requires a
user id and | (0x09) JCE implementation
encrypted that supports the
password Diffie-Hellman

algorithm with a public
prime of 256 bits.

Network client tracing

The Derby Network client provides a tracing facility to collect JDBC trace information and
view protocol flows.

There are various ways to obtain trace output. However, the easiest way to obtain trace
output is to use the t raceFi | e=pat h attribute on the URL in'i j . The following example
shows all tracing going to the file t race. out fromanij session.

i j>connect 'jdbc:derby://Iocal host: 1527/ mydb;
create=true;traceFil e=trace. out; user =user 1; passwor d=secr et 4ne' ;

To append trace information to the specified file, use the t r aceFi | eAppend=t r ue URL
attribute in addition to t r aceFi | e=pat h.

For more information, see "traceFile=path attribute" and "traceFileAppend=true attribute"
in the Java DB Reference Manual.

Implementing ClientDataSource tracing
You can use one of three methods to collect tracing data while obtaining connections
from the ClientDataSource:
* Usetheset LogWiter(java.io.PrintWiter) method of ClientDataSource
and setthe Pri nt Wi t er to a non-null value.
* Usetheset TraceFil e(String fil enane) method of ClientDataSource.
* Usetheset TraceDirectory(String dirname) method of ClientDataSource
to trace each connection flow in its own file for programs that have multiple
connections.

Implementing DriverManager tracing
Use one of the following two options to enable and collect tracing information while
obtaining connections using the DriverManager:
e UsethesetLogWiter(java.io.PrintWiter) method of DriverManager and
setthe Pri nt Wi t er to a non null-value.
» UsethetraceFil e=pat h ortraceDi rect or y=pat h URL attributes
to set these properties prior to creating the connection with the
Dri ver Manager . get Connect i on() method. For more information, see

25

Java DB Server and Administration Guide

"traceFile=path attribute" and "traceDirectory=path attribute" in the Java DB
Reference Manual.

Changing the default trace level

The default trace level is C i ent Dat aSour ce. TRACE_ALL. You can choose the
tracing level by calling the set TraceLevel (i nt | evel) method or by setting the
tracelLevel =val ue URL attribute:

String url = "jdbc:derby://sanpl ehost. exanpl e. com 1528/ nydb" +
":;traceFil e=/u/userl/trace.out" +
";tracelLevel =" +

or g. apache. der by. j dbc. d i ent Dat aSour ce. TRACE_PROTOCOL_FLOWS;
Dri ver Manager . get Connecti on(url, "user 1", "secret4nme");

Table 5. Available tracing levels and values

Trace level Value
org.apache.derby.jdbc.ClientDataSource. TRACE_NONE 0x0
org.apache.derby.jdbc.ClientDataSource. TRACE_CONNECTION_CALLS | Ox1
org.apache.derby.jdbc.ClientDataSource. TRACE_STATEMENT_CALLS | O0x2
org.apache.derby.jdbc.ClientDataSource. TRACE_RESULT_SET_CALLS | 0x4
org.apache.derby.jdbc.ClientDataSource. TRACE 0x10
_DRIVER_CONFIGURATION
org.apache.derby.jdbc.ClientDataSource. TRACE_CONNECTS 0x20
org.apache.derby.jdbc.ClientDataSource. TRACE_PROTOCOL_FLOWS | 0x40
org.apache.derby.jdbc.ClientDataSource. TRACE 0x80
_RESULT_SET_META_DATA
org.apache.derby.jdbc.ClientDataSource. TRACE 0x100
_PARAMETER_META_DATA
org.apache.derby.jdbc.ClientDataSource. TRACE_DIAGNOSTICS 0x200
org.apache.derby.jdbc.ClientDataSource. TRACE_XA_CALLS 0x800
org.apache.derby.jdbc.ClientDataSource. TRACE_ALL OXFFFFFFF

To specify more than one trace level, use one of the following techniques:
« Use hitwise OR operators (|) with two or more trace values. For example, to trace
PROTOCOL flows and connection calls, specify this value for traceLevel:

TRACE_PROTOCOL_FLOWS | TRACE_CONNECTI ON_CALLS

» Use a bitwise complement operator (~) with a trace value to specify all except a
certain trace. For example, to trace everything except PROTOCOL flows, specify
this value for tracelLevel:

~TRACE_PROTOCOL_FLOWS
For more information, see "traceLevel=value attribute" in the Java DB Reference Manual.
Network client driver examples

The following examples specify the user and password URL attributes. To enable user
authentication, the property derby.connection.requireAuthentication must be set to true,
otherwise, Derby does not require a user name and password. For details on how to
enable user authentication, please see "Working with user authentication” in the Java DB
Developer's Guide.

26

Java DB Server and Administration Guide

For a multi-user product, you would typically set it for the system in the derby.properties
file for your server, since it is in a trusted environment. Below is a sample
derby.properties file that conforms to these examples:

der by. connecti on. requi r eAut henti cati on=true
der by. aut henti cati on. provi der=BU LTI N
der by. user. judy=nol2see

> Important: Derby's BUILTIN authentication mechanism is suitable only for
development and testing purposes. It is strongly recommended that production systems
rely on LDAP or a user-defined class for authentication. It is also strongly recommended
that production systems protect network connections with SSL/TLS.

Example 1

The following example connects to the default server name localhost on the default port,
1527, and to the database sample.

jdbc: derby:/ /1 ocal host: 1527/ sanpl e; user =j udy; passwor d=nol2see

Example 2
The following example specifies both Derby and Network Client driver attributes:

jdbc: derby://| ocal host: 1527/ sanpl e; cr eat e=t r ue; user =j udy;
passwor d=nol2see

Example 3

This example connects to the default server name localhost on the default port, 1527,
and includes the path in the database name portion of the URL.

jdbc: derby:/ /1 ocal host: 1527/ c:/ ny- db-di r/ my- db- nane; user =j udy;
passwor d=nol2see

Example 4

The following example shows how to use the network client driver to connect the network
client to the Network Server:

String databaseURL = "jdbc:derby://Iocal host: 1527/ sanpl e";

t
/1
/1 Load Derby Network Cient driver class.

/1 If you are running on JDK 6 or higher, you do not

/1 need to invoke Class.forNane(). In that environnment, the

/1l network client driver |oads automatically.

/1

Cl ass. for Name(" or g. apache. derby. jdbc. ClientDriver");

/1 Set user and password properties

Properties properties = new Properties();
properties.setProperty("user", "judy");
properties. set Property("password”, "nol2see");

/1 Get a connection

Connecti on conn = Driver Manager. get Connecti on(dat abaseURL, properties);

Accessing the Network Server by using a DataSource object

The Network Server supports the Derby Network Client driver Dat aSour ce

classes or g. apache. der by. j dbc. i ent Dat aSour ce and

or g. apache. derby. j dbc. C i ent Connect i onPool Dat aSour ce on all supported
Java SE platforms.

If your client runs on the Java SE 6 platform, and if you want to use
Dat aSour ce methods specific to the JDBC 4 API, use the Dat aSour ce

27

Java DB Server and Administration Guide

classes named or g. apache. der by. j dbc. d i ent Dat aSour ce40 and
or g. apache. derby. j dbc. d i ent Connecti onPool Dat aSour ce40.

If your client is running on the Java SE 6 platform, all connection objects returned from
the Dat aSour ce will be JDBC 4 connection objects, whether or not you are using a
Dat aSour ce whose name ends in "40".

Using statement caching

Derby supports JDBC statement caching, which can improve the performance of
applications that use Pr epar edSt at enent or Cal | abl eSt at enment objects.
Statement caching avoids the performance penalty incurred by going over the network
from the client to the server to prepare a statement that has already been prepared on
the same connection.

To use statement caching, you must use an

or g. apache. der by. j dbc. d i ent Connecti onPool Dat aSour ce or an

org. apache. derby. j dbc. d i ent Connecti onPool Dat aSour ce40 object. After
you instantiate this object, perform these steps:

1. Specify the desired size of your statement cache by calling the
set MaxSt at enent s method on the Dat aSour ce object, specifying an argument
greater than zero.

2. Call the get Pool edConnect i on method on the Dat aSour ce object to obtain a
j avax. sql . Pool edConnect i on object (a physical connection).

3. Callthej avax. sql . Pool edConnect i on. get Connect i on method to obtain a
j ava. sgl . Connect i on object (a logical connection).

After you obtain a connection, use either prepared statements or callable statements to
interact with the database. Close each statement to return it to the cache after you finish
using it. The statements you create are held in the cache on the client side and reused
when needed.

See Statement caching example for a code example.

Use of the JDBC statement cache makes each physical connection use more memory.
The amount depends on how many statements the connection is allowed to cache and
how many statements are actually cached.

If you enable JDBC statement caching, error handling changes slightly. Some errors that
previously appeared when the pr epar eSt at enent method was executed may now
appear during statement execution. For example, suppose you query a table using a
prepared statement that is then cached. If the table is deleted, the prepared statement
that queries the table is not invalidated. If the query is prepared again on the same
connection, the cached object is fetched from the cache, and the pr epar eSt at enent
call seems to have succeeded, although the statement has not actually been prepared.
When the prepared statement is executed, the error is detected on the server side, and
the client is notified.

DataSource access examples

The following example uses or g. apache. der by. j dbc. O i ent Dat aSour ce to
access the Network Server:

or g. apache. derby. j dbc. O i ent Dat aSource ds =
new or g. apache. derby. j dbc. d i ent Dat aSour ce() ;
ds. set Dat abaseNane(" nydb") ;
ds. set Cr eat eDat abase("create");
ds. set User ("user");
ds. set Passwor d(" nypass");

/1 The host on which Network Server is running
ds. set Server Name("| ocal host");

28

Java DB Server and Administration Guide

/1 The port on which Network Server is |istening
ds. set Por t Nunber (1527) ;

Connection conn = ds. get Connection();
Statement caching example

The following example uses
or g. apache. der by. j dbc. d i ent Connect i onPool Dat aSour ce to access the
Network Server and use JDBC statement caching:

or g. apache. derby. j dbc. d i ent Connect i onPool Dat aSour ce cpds =
new Cl i ent Connect i onPool Dat aSour ce() ;

/1 Set the nunmber of statenents the cache is allowed to cache.
/1 Any nunber greater than zero will enable the cache.
cpds. set MaxSt at enent s(20) ;

/'l Set other DataSource properties
cpds. set Dat abaseNanme(" mydb") ;

cpds. set Cr eat eDat abase("create");
cpds. set User ("user");

cpds. set Passwor d(" mypass") ;

cpds. set Server Nane("l ocal host");
cpds. set Port Nunber (1527) ;

/'l This physical connection will have JDBC statenment cachi ng enabl ed.
j avax. sql . Pool edConnecti on pc = cpds. get Pool edConnecti on();

/1l Create a |ogical connection.
java. sql . Connecti on con = pc. get Connection();

/1 Interact with the database.
java. sql . Prepar edSt at ement ps = con. prepar eSt at emrent (
"select * fromnyTable where id = ?");

ps.close(); // Inserts or returns statenent to the cache
con. cl ose();

/'l The next | ogical connection can gain fromusing the cache.
con = pc. get Connection();

/1 This prepare causes a statenment to be fetched fromthe |ocal cache.
Pr epar edSt at enent ps = con. prepar eSt at enent (
"select * fromnyTable where id = ?");

/1 To dispose of the cache, close the connection.
pc. cl ose();

XA and the Network Server

Both the Derby embedded driver and the Network Server provide XA support. The
Network Server provides DRDA level 7 support. DRDA clients that support XAMGR, such
as the Derby network client, can send XA requests to the Network Server.

Using XA with the network client driver

You can access XA support for the Network Server by using the network client driver's
XA DataSource interface.

The interface or g. apache. der by. j dbc. C i ent XADat aSour ce is available on all
supported Java SE platforms. If your client runs on the Java SE 6 platform, and if you
want to use XA DataSource methods specific to the JDBC 4 API, use the DataSource
named or g. apache. der by. j dbc. C i ent XADat aSour ce40.

29

Java DB Server and Administration Guide

If your client is running on the Java SE 6 platform, all connection objects returned from
the DataSource will be JDBC 4 connection objects, whether or not you are using the
DataSource whose name ends in "40".

The following example illustrates how to obtain an XA connection with the network client
driver:

i nport org. apache. derby. j dbc. i ent XADat aSour ce;
i mport javax.sqgl.XAConnecti on;

XAConnect i on xaConnection = null;
Connection conn = null;

Cl i ent XADat aSource ds = new Cl i ent XADat aSour ce() ;

ds. set Dat abaseNane ("sanple");
ds. set Cr eat eDat abase("create");

ds. set Server Name("| ocal host");
ds. set Port Nunmber (1527) ;

xaConnecti on = ds. get XAConnecti on("auser", "shhhh");

conn = xaConnecti on. get Connection();

Using the Derby tools with the Network Server
The Derby tools i j and dbl ook work in embedded mode and client/server mode.
Using the Derby ij tool with the Network Server

To use the ij tool with the network client driver:
1. Startij in one of the following ways. For details, see "Starting ij" in the Java DB
Tools and Utilities Guide.
a. Use a script.

Runtheij . bat script on Windows systems and the i j script on UNIX
systems. These scripts are located in the $DERBY_HOVE/ bi n directory.
b. Run the ij tool using the $DERBY_HOVE/ | i b/ der byr un. j ar file.

java -jar derbyrun.jar ij
c. Run the ijj tool by specifying the class name.

java org. apache. derby.tool s.ij
2. Connect by specifying the URL:

i j> CONNECT ' dbc: derby://I|ocal host: 1527/ sanpl €'
USER ' j udy' PASSWORD ' nol2see';

See Network client driver examples for additional URL examples.
Using the Derby dblook tool with the Network Server

To use the dblook tool with the Network Client driver, make sure the Network Server
is running (see Starting the Network Server), and then include the necessary Derby
and Network Client driver connection attributes as part of the database URL, as in the
following example:

java org. apache. derby. t ool s. dbl ook -d

"jdbc: derby: / /1 ocal host: 1527/ sanpl e;
user =user 1; passwor d=secr et 4ne; '

For details on using the dblook tool, see the Java DB Tools and Utilities Guide.

30

Java DB Server and Administration Guide
Differences between running Derby in embedded mode and using the Network

Server

This section describes the differences between running Derby in embedded mode and
using the Network Server. Note that there may be undocumented differences that have
not yet been identified.

Differences between the embedded client and the network client driver
The following are known differences that exist between the Derby embedded driver and
the network client driver. Note that there may be undocumented differences that have not
yet been identified. Some differences with the network client may be changed in future
releases to match the embedded driver functionality.

« Error messages and SQLStates can differ between the network client and

embedded driver. Some SQLStates may be null when using the network client,
particularly for data conversion errors.

Multiple SQL exceptions and warnings will only return the SQLState of the first
exception when using the network client. The text of the additional exceptions will
be appended to the text of the first exception. See Error message differences.
Treatment of error situations encountered during batch processing with
java.sqgl.Statement, java.sgl.PreparedStatement and java.sql.CallableStatement is
different. With the embedded driver processing stops when an error is encountered,;
with the network client driver processing continues, but an appropriate value as
defined in the java.sql.Statement api is returned in the resulting update count array.
To use an encrypted user id and password, you need to have the IBM's Java
Cryptography Extension (JCE) Version 1.2.1 or later.

Updatable Result Sets
The functionality of updatable result sets in a server environment are similar to an
embedded environment in Derby, with the exception of the following differences:

» The Network Client requires that there be at least one column in the select list

from the target table. For example, the following statement will fail in a server
environment:

select 1, 2 fromtl for update of cll

The Network Client driver looks at both of the columns in the select list and cannot
determine the target table for update/delete by looking at the column metadata. This
requirement is not necessary in an embedded environment.

The embedded driver allows for statement name changes when there is an open
result set on the statement object. This is not supported in a server environment.

Other differences between updatable result sets in a server or embedded environment
can be found in the following table.

Table 6. Comparison of updatable result sets features in server and embedded
environments

Embedded environment Server environment

updateBytes on CHAR, VARCHAR, LONG | Not supported
VARCHAR datatypes supported.

updateTime on TIMESTAMP datatypes Not supported
supported.

updateClob and updateBlob supported. Not supported

Error message differences

The Network Server reports only the first error or warning message if multiple errors or
warnings occur for a given statement. For example:

31

Java DB Server and Administration Guide

ij>create table ai (x int, y int generated always as identity
(i ncrenent by 200000000));

ij>insert into ai (x) values (1),(2),(3),(4),(5),(6),(7),
(8),(9),(10),(11),(12),(13),(14),(15),(16),(17),(18),(19);

The Network Server generates the following error message and appends the exception
message to the error:

ERROR 42724: COverflow occurred in identity for colum 'Y in table "Al':
SQLSTATE: 22003: The resulting value is outside the range
for the data type | NTEGER

The Derby embedded driver, however, would generate two SQL exceptions:
ERROR 42724: COverflow occurred in identity for colum 'Y in table "Al".

ERROR 22003: The resulting value is outside the range for the data type
| NTEGER.

This is because the network client driver reports only one SQLException or one
SQLWarning per statement.

User authentication differences

When running Derby in embedded mode or when using the Derby Network Server, you
can enable or disable server-side user authentication. However, when using the Network
Server, the default security mechanism (CLEAR_TEXT _PASSWORD SECURI TY) requires
that you supply both the user name and password.

In addition to the default user name and password security mechanism,
org.apache.derby.jdbc.ClientDataSource.CLEAR_TEXT_PASSWORD_SECURITY,
Derby Network Server supports the following security properties:

« UserID (org.apache.derby.jdbc.ClientDataSource.USER_ONLY_SECURITY)

When using this mechanism, you must specify only the user property. All other
mechanisms require you to specify both the user name and the password.
» Encrypted UserID and encrypted password (org.apache.derby.jdbc.ClientDataSource. ENCRYPTED_

When using this mechanism, both password and user id are encrypted.
« Strong password substitution
(org.apache.derby.jdbc.ClientDataSource. STRONG_PASSWORD_SUBSTITUTE_SECURITY)

When using this mechanism, a strong password substitute is generated and used to
authenticate the user with the network server. The original password is never sent
in any form across the network.

The user's name that is specified upon connection is the default schema for the
connection, if a schema with that name exists. See the Java DB Developer's Guide for
more information on schema and user names.

If you specify any other security mechanism, you will receive an exception.

To change the default, you can specify another security mechanism either as a property
or on the URL (using the securi t yMechani smeval ue attribute) when making the
connection. For details, see Network client security and "securityMechanism=value
attribute” in the Java DB Reference Manual.

Whether the security mechanism you specify for the client actually takes effect depends
upon the setting of the der by. dr da. securi t yMechani smproperty for the Network
Server. If the der by. dr da. securi t yMechani smproperty is set, the Network Server
accepts only connections that use the security mechanism specified by the property
setting. If the der by. dr da. securi t yMechani smproperty is not set, clients can use
any valid security mechanism. For details, see derby.drda.securityMechanism property.

32

Java DB Server and Administration Guide

Security mechanism options when user authentication is enabled on the
Network Server:

When user authentication is enabled in Derby, you can use any of the following security
mechanisms:

 Clear text user name and password security, the default

« Strong password substitute security

« Encrypted user name and password security
Security mechanism options when user authentication is disabled on the
Network Server:

When user authentication is turned off in Derby, you can use any of the security
mechanism options.

You must provide a user and password for all security mechanisms except
USER_ONLY_SECURITY. However, because user authentication is disabled in the
Derby server, the user name and password that you supply does not have to be one
recognized as valid by Derby.

Enabling the encrypted user ID and password security mechanism:

To use the encrypted user ID and password security mechanism, you need a
Java environment with a JCE (Java Cryptography Extension) which supports the
Diffie-Hellman algorithm with a public prime of 256 bits. The Sun Java Platform,
Standard Edition, Version 1.4 (J2SE) and later requires a public prime of 512 bits
or more. An alternative mechanism if the 256 bit public prime is not supported, is
STRONG_PASSWORD_SUBSTITUTE_SECURITY.

To use the encrypted user id and password security mechanism during JDBC connection
using the network client, specify the securi t yMechani smin the connection property.
Note: If an encrypted database is booted in the Network Server, users can connect to
the database without giving the boot Passwor d. The first connection to the database
must provide the boot Passwor d, but all subsequent connections do not need to supply
it. To remove access from the encrypted database, use the shut down=t r ue option to
shut down the database.

Differences in JDBC 3.0 methods

The following JDBC 3.0 methods are supported only with the Derby embedded driver.
Attempts to call these methods with the network client driver will result in a "not
implemented" error.

Connecti on. prepareStatenent (String sqgl, String[] col umNanes)
Connecti on. prepareStatenent (String sql, int[] columml ndexes)

St at enent . execute(String sql, String[] col unmNanes)

St at enent . execute(String sql, int[] col um ndexes)

St at enent . execut eUpdate(String sql, String[] columNanes)
St at enent . execut eUpdate(String sql, int[] columl ndexes)

For more on the use of these methods, see the sections "java.sql.Connection interface:
supported JDBC 3.0 methods", "java.sql.Statement interface: supported JDBC 3.0
methods", and "Autogenerated keys" in the Java DB Reference Manual.

Differences using the Connection.setReadOnly method

In the embedded mode, when the Connection.setReadOnly method has t r ue as the
parameter, the connection is marked as a read-only connection. When using a Network
Server, the Connection.setReadOnly(true) method is ignored and the connection is not
marked as a read-only connection.

33

Java DB Server and Administration Guide

Setting port numbers

By default, Derby using the Network Server listens on TCP/IP port number 1527. If you
want to use a different port number, you can specify it on the command line when starting
the Network Server. For example:

java org. apache. der by. drda. Net wor kSer ver Control start -p 1088

1. However, it is better to specify the port numbers by using any of the following
methods
» Change the startNetworkServer.bat or startNetworkServer.ksh scripts
« Use the der by. dr da. por t Nunber property in der by. properties

See Starting the Network Server for more information.

Managing the Derby Network Server

Overview

The Derby Network Server can be run in either of these configurations:

< As a stand-alone server, in which case it is an independent Java process
embedding the Derby database engine

< As an embedded server, in which case it is embedded within another Java
application, and both the Network Server framework and the Derby database
engine are loaded by the Java application

You can use Java Management Extensions (JMX) technology to monitor and
manage Derby and the Network Server. For information on how to do this,

visit the wiki page http://wiki.apache.org/db-derby/DerbyJMX and refer to the
API documentation for the packages or g. apache. der by. nbeans and

or g. apache. der by. nbeans. dr da. For information on JMX technology, see
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/.

You can manage the Network Server by using shell scripts, the command line, or the
Network Server API. The Network Server can also be managed remotely from a web
server by using a servlet interface. See Managing the Derby Network Server remotely by
using the servlet interface for information about starting and shutting down the Network
Server using the servlet interface.

You start the Derby Network Server using the command line or using the Derby Server
API. (Derby provides scripts for you to use to start the server from the command line.)
Before starting the server, you will probably set certain Derby and Network Server
properties.

Using the NetworkServerControl API

You need to create an instance of the NetworkServerControl class if you are using the
API. There are four constructors for this class:

Note: Before enabling connections from other systems, ensure that you are running
under a security manager.
* NetworkServerControl()

This constructor creates an instance that listens either on the default port
(1527) or the port that is set by the der by. dr da. port Nunber property.
It will also listen on the host set by the der by. dr da. host property

or the loopback address if the property is not set. This is the default
constructor; it does not allow remote connections. It is equivalent to calling

34

http://db.apache.org/derby/papers/DerbyTut/ns_intro.html#ns_intro
http://db.apache.org/derby/papers/DerbyTut/ns_intro.html#Embedded+Server
http://wiki.apache.org/db-derby/DerbyJMX
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Java DB Server and Administration Guide

NetworkServerControl(InetAddress.getByName("localhost"),1527) if no properties
are set.
« NetworkServerControl(InetAddress address, int portNumber)

This constructor creates an instance that listens on the specified por t Nunber on
the specified address. The | net Addr ess will be passed to Ser ver Socket . NULL
is an invalid address value. The following examples show how you might allow
Network Server to accept connections from other hosts:

|l accepts connections fromother hosts on an |IPv4 system
Net wor kSer ver Cont rol server Control =
new Net wor kSer ver Control (| net Addr ess. get ByNanme("0. 0. 0.0"), 1527) ;

/laccepts connections fromother hosts on an | PV6 system
Net wor kSer ver Control serverControl =
new Net wor kSer ver Control (| net Addr ess. get ByNane(":: "), 1527);

* NetworkServerControl(String userName, String password)

If a network server should run with user authentication, certain operations like
NetworkServerControl.shutdown() require that you provide user credentials. This
constructor creates an instance with user credentials, which are then used for
operations that require them. In all other aspects, this constructor behaves like
NetworkServerControl().

* NetworkServerControl(InetAddress address, int portNumber, String userName,
String password)

This constructor creates an instance with user credentials, which are then used
for operations that require them. In all other aspects, this constructor behaves like
NetworkServerControl(InetAddress address, int portNumber).

Setting Network Server properties

You can specify Network Server properties in three ways:
* On the command line
* Inthe . bat or. ksh files (loading the properties by executing j ava - D)
* Inthe der by. properti es file.

Properties in the command line or in the . bat or . ksh files take precedence over the
properties in the der by. pr operti es file. Arguments included on commands that are
issued on the command line take precedence over property values.

derby.drda.host property

Causes the Network Server to listen on a specific network interface. This property allows
multiple instances of Network Server to run on a single machine, each using its own
unique host:port combination. The host needs to be set to enable remote connections. By
default, the Network Server will listen only on the loopback address. If the property is set
to 0.0.0.0, Network Server will listen on all interfaces. Ensure that you are running under
the security manager and that user authorization is enabled before you enable remote
connections with this property.

Syntax
der by. dr da. host =host nane
Default

If no host name is specified, the Network Server listens on the loopback address of the
current machine (localhost).

Example

der by. dr da. host =nyhost

35

Java DB Server and Administration Guide
Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.keepAlive property

Indicates whether SO_KEEPALIVE is enabled on sockets. The keepAlive mechanism
is used to detect when clients disconnect unexpectedly. A keepalive probe is sent to
the client if a long time (by default, more than two hours) passes with no other data
being sent or received. The derby.drda.keepAlive property is used to detect and clean
up connections for clients on powered-off machines or clients that have disconnected
unexpectedly.

If the property is set to false, Derby will not attempt to clean up disconnected clients.
The keepAlive mechanism might be disabled if clients need to resume work without
reconnecting even after being disconnected from the network for some time. To disable
keepAlive probes on Network Server connections, set this property to false.

Syntax

der by. drda. keepAl i ve=[true| fal se]
Default
True.

Example

der by. drdra. keepAl i ve=f al se

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.logConnections property

Indicates whether to log connections. Also controls the logging of the connection number.
Connection number tracing, if enabled, goes to both the der by. | og file and the network
server console.

Syntax

der by. drda. | ogConnecti ons=[true| fal se]
Default
False.

Example

der by. drda. | ogConnect i ons=true
Static or dynamic

Dynamic. System values can be changed by using commands or the servlet interface
after the Network Server has been started.

derby.drda.maxThreads property

Use the derby.drda.maxThreads property to set a maximum number of connection
threads that Network Server will allocate. If all of the connection threads are currently
being used and the Network Server has already allocated the maximum number of
threads, the threads will be shared by using the derby.drda.timeSlice property to
determine when sessions will be swapped.

Syntax

36

Java DB Server and Administration Guide
der by. dr da. maxThr eads=nunt hr eads

Default
0

Example

der by. dr da. maxThr eads=50

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.minThreads property

Use the derby.drda.minThreads property to set the minimum number of connection
threads that Network Server will allocate. By default, connection threads are allocated as
needed.

Syntax

der by. drda. mi nThr eads=nunt hr eads
Default
0

Example

der by. drda. mi nThr eads=10

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.portNumber property

Indicates the port number to use.

Syntax

der by. dr da. port Nunber =por t nunber
Default
If no port number is specified, 1527 is the default.

Example

der by. dr da. port Nunber=1110

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.securityMechanism property

The derby.drda.securityMechanism property restricts the client connections based on the
security mechanism.

If the derby.drda.securityMechanism property is set to a valid mechanism, the Network
Server accepts only connections which use that security mechanism. No other types of
connections are accepted. If the derby.drda.securityMechanism property is not set, the
Network Server accepts any connection which uses a valid security mechanism.

Syntax

der by. drda. securityMechani sm = [
USER ONLY_SECURI TY |

37

Java DB Server and Administration Guide

CLEAR_TEXT_PASSWORD SECURI TY |
ENCRYPTED USER_AND PASSWORD SECURI TY |
STRONG_PASSWORD_SUBSTI TUTE_SECURI TY

|
Default
None.

Example

der by. drda. securityMechani snFUSER_ONLY_SECURI TY

The server that runs with this setting accepts only client connections with the
USER_ONLY_SECURITY value.

Static or dynamic

Static. You must restart the Network Server for the changes that are associated with this
property to take effect.

derby.drda.ssIMode property

The derby.drda.ssIMode property indicates whether the client connection is encrypted or
not, and whether certificate based peer authentication is enabled.

Syntax

derby. drda. ssl Mode = [off | basic | peerAuthentication]
Default
of f

Example

der by. dr da. ssl Mode=basi c
The server that runs with this setting accepts client connections encrypted with SSL.
Static or dynamic

Static. You must restart the Network Server for the changes that are associated with this
property to take effect.

derby.drda.startNetworkServer property

Use the derby.drda.startNetworkServer property to simplify embedding the Network
Server in your Java application. When you set derby.drda.startNetworkServer to true, the
Network Server will automatically start when you start Derby (in this context, Derby will
start when the embedded driver is loaded). Only one Network Server can be started in a
JVM.

NOTE: If you start the Network Server with this property set to true, the Network Server
will stop when your application ends or when you stop it by other means (e.g. by using
the Java API, the command line interface, or by shutting down the Derby system),
whichever comes first.

Syntax

der by. drda. st art Net wor kServer=[true | fal se]
Default

False.

Example

38

Java DB Server and Administration Guide
der by. drda. st art Net wor kSer ver =t r ue

Static or dynamic

Static. You must shut down the Network Server and restart Derby for this change to take
effect.

derby.drda.streamOutBufferSize property

Configure size of buffer for streaming blob/clob from server to client. If the configured
size is 0 or less, the buffer is not placed.
Note:

This configuration is used when optimizing streaming blob/clob from server to client.

If there were found many small packets, of which sizes are much lower than maximum
size of packet possible in the network, it will improve performance of streaming to setting
this configuration.

Recommended value of this configuration is maximum packet size possible in the
network minus appropriate size for header.

Syntax

der by. dr da. st reanut Buf f er Si ze=si ze of buffer
Default
0

Example

der by. dr da. st reanQut Buf f er Si ze=1024
Static or dynamic

Dynamic. System values can be changed by using commands or the servlet interface
after the Network Server has been started.

derby.drda.timeSlice property

Use the derby.drda.timeSlice property to set the number of milliseconds that each
connection will use before yielding to another connection. This property is relevant only if
the derby.drda.maxThreads property is set to a value greater than zero.

Syntax
derby.drda.tineSlice=nilliseconds
Default

0

Example

der by. drda. ti neSli ce=2000

Static or dynamic

Static. You must restart the Network Server for changes to take effect.
derby.drda.traceAll property

Turns tracing on for all sessions.

Syntax

derby.drda.traceAl |l =[true]|fal se]

39

Java DB Server and Administration Guide
Default

False.

Example

derby. drda. traceAl | =true
Static or dynamic

Dynamic. System values can be changed by using commands or the servlet interface
after the Network Server has been started.

derby.drda.traceDirectory property
Indicates the location of tracing files.

Security Considerations

The Network Server will attempt to create the trace directory (and any parent directories)
if they do not exist. This will require that the Java security policy for der bynet . j ar
permits verification of the existence of the named trace directory and all necessary parent
directories. For each directory created, the policy must allow

permi ssion java.io.FilePerm ssion "<directory>", "read,wite";

and for the trace directory itself, the policy must allow

permi ssion java.io.FilePerm ssion "<tracedirectory>${/}-", "wite";

See Customizing the Network Server's security policy for information about customizing
the Network Server's security policy.

Syntax

derby. drda. traceDi rectory=tracefil edirectory
Default

If the derby.system.home property has been set, it is the default. Otherwise, the default is
the current directory.

Example

derby. drda. tracebDi rectory=c:/Derby/trace
Static or dynamic

Dynamic. System values can be changed by using commands or the servlet interface
after the Network Server has been started.

Verifying Startup
To verify that the Derby Network Server is currently running, use the ping command.
You can use the ping command in the following ways:

* You can use the scripts NetworkServerControl.bat for Windows systems or
NetworkServerControl.ksh for UNIX systems with the ping command. For example:

Net wor kSer ver Control ping [-h <hostnane>;] [-p <portnunber>]
¢ You can use the NetworkServerControl command:

40

Java DB Server and Administration Guide

java org. apache. der by. dr da. Net wor kSer ver Cont r o
ping [-h <hostnanme>] [-p <portnunber>]
* You can use the NetworkServerControl API to verify startup from within a Java
application:

ping();

The following example uses a method to verify startup. It will try to verify for the specified
number of seconds:

private static bool ean i sServerStarted(NetworkServer Control server, int
ntries)

for (int i =1; i <= ntries; i ++)
{
try {

Thr ead. sl eep(500);
server. ping();
return true;

}
catch (Exception e) {
if (i == ntries)
return fal se;
}

return fal se;

}

Managing the Derby Network Server remotely by using the servlet
interface

You can use the servlet interface to manage the Network Server remotely. To use
the servlet interface, the servlet must be registered with an Application Server, and
derby.system.home must be known to the Application Server.

A Web application archive (WAR) file, derby.war, for the Derby Network Server is
available in $DERBY_HOME/lib. This file registers the Network Server's servlet at the
relative path /derbynet. See the documentation for your Application Server for instructions
on how to install it.

For example, if derby.war is installed in WebSphere Application Server with a context
root of der by, the URL of the server is:

http://<server>[:port]/derby/derbynet

Notes:
< A servlet engine is not part of the Network Server.
« When the Network Server is started by the servlet interface, shutting down the
Application Server also shuts the Network Server down, since both run in the same
JVM.

The servlet takes the following optional configuration parameters:

host
Specifies the host name to be used by the Network Server. See the Security
Considerations section below.
portNumber
Specifies the port number to be used by the Network Server.
startNetworkServerOnlnit
Specifies that the Network Server is to be started when the servlet is initialized.
tracingDirectory

41

Java DB Server and Administration Guide

Specifies the location for trace files. If the tracing directory is not specified, the traces
are placed in derby.system.home.

Security Considerations
For general security considerations for the Network Server, see Network Server security.

The "host" parameter allows configuration of the host name that will be used for the
listening socket for network connections. By default, the Network Server will listen to
requests only on the loopback address, which means that it will only accept connections
from the local host. Changing this value could expose the server to external connections,
which raises security concerns, so before using the "host" parameter, you should run
under the Java security manager and enable user authentication.

This section describes the servlet pages.

Start-up page
Use the start-up page to start the server.

In addition to starting the Network Server, you can use the startup page to perform the
following actions:

« Turn logging on when the server is started.
« Turn tracing on for all sessions when the server is started.

Running page

If the Network Server is running (whether it was started by initializing the servlet or in
some other manner), the running page is displayed. The running page indicates whether
logging is on or off, whether tracing is on or off, and if tracing is on, indicates for which
session.

You can use the running page to stop the server and turn logging and tracing on or off.
The following options are available from the running page:

 Start or stop logging.

 Start or stop tracing all sessions.

» Specify session to trace. (If you choose this option, the Trace session page is
displayed.)

« Change tracing directory (If you choose this option, the Trace directory page is
displayed.)

« Specify threading parameters for Network Server. (If you choose this option, the
Thread parameters page is displayed.)

« Stop the Network Server.

Trace session page

If on the running page you choose to specify a session to trace, this page is displayed.
You must enter the Session ID.

You are given the option to turn tracing on or off or return to the previous menu. When
you push the Trace On/Off button, information indicating the current tracing state is
displayed.

Trace directory page

This page is displayed if the you choose to change the tracing directory on the Running
page. You must enter the Trace Directory.

42

Java DB Server and Administration Guide
You can either set a tracing directory, or you can return to the previous menu. Additional
information is displayed that indicates the current tracing directory when you push the Set
Directory button.

Set Network Server parameters

The first page is displayed if the thread parameter button is pressed. Use this page to set
the new parameters. Enter the following information:

* New maximum number of threads

* New thread time slice
If either the maximum threads or time slice parameters are left blank, that value is left
unchanged from the current setting.

Click Set Network Server parameters to display the updated values for the maximum
threads and the time slice parameters.

Derby Network Server advanced topics

This section discusses several advanced topics for users of the Derby Network Server.

Network Server security

By default, the Derby Network Server will only listen on the localhost. Clients must
use the localhost host name to connect. By default, clients cannot access the
Network Server from another host. To enable connections from other hosts, set the
derby.drda.host property, or start the Network Server with the - h option in the j ava
or g. apache. der by. dr da. Net wor kServer Control start command.

In the following example the server will listen only on localhost and clients cannot access
the server from another host.

java org. apache. der by. drda. Net wor kServer Control start

In the following example, the server runs on host machine
sanpl eserver. exanpl e. comand also listens for clients from other hosts. Clients
must specify the server in the URL or DataSource as sampleserver.example.com:

java org. apache. der by. dr da. Net wor kServer Control start
-h sanpl eserver. exanpl e. com

To start the Network Server so that it will listen on all interfaces, start with an IP address
of 0. 0. 0. 0, shown in the following example:

java org. apache. der by. drda. Net wor kServer Control start -h 0.0.0.0

A server that is started with the - h 0. 0. 0. 0 option will listen to client requests that
originate from both | ocal host and from other machines on the network.

However, administrative commands (for example,
or g. apache. der by. dr da. Net wor kSer ver Cont r ol shut down) can run only on
the host where the server was started, even if the server was started with the - h option.

Running the Network Server under the security manager

By default, the Network Server boots with a Basic security policy. You are encouraged

to customize this policy to fit the security needs of your application and its runtime
environment. You may also run the Network Server without a security manager, although
this is not recommended.

43

Java DB Server and Administration Guide
Basic Network Server security policy

If you boot the Network Server without specifying a security manager, the Network Server
will install a default Java security manager enforcing a Basic policy. This happens if you
boot the Network Server as your VM's entry point, e.g.:

java org. apache. der by. dr da. Net wor kServer Control start

Note that you should run your Network Server with user authentication enabled.
For details on how to enable user authentication, please see "Working with user
authentication" in the Java DB Developer's Guide.

Some of your application code may run as procedures and functions which you have
declared using the CREATE PROCEDURE and CREATE FUNCTION statements. You
will need to add privileged blocks to your declared procedures and functions if they
perform sensitive operations such as file and network i/o, classloading, system property
reading, etc.

If for some reason you do not want to run your client/server application under a security
manager, you may override the Network Server's impulse to install a default policy. For
details, see Running the Network Server without a security policy.

Note that the Network Server attempts to install a security manager only if you boot the
server as the entry point of your VM. The Network Server will not attempt to install a
security manager if you start the server from your application using the programmatic API
described in the following section: Starting the Network Server from a Java application.

You will find a template security policy in the Derby distribution at
demo/templates/server.policy. Most likely, you will want to customize this policy. For
example, probably you will want to restrict the server's liberal file i/o permissions which

let the server backup/restore and export/import to or from any location in the local file
system. For details on how to customize the Template policy, please see Customizing the
Network Server's security policy. The following example is a copy of the Basic policy:

grant codeBase "${derby.install.url}derby.jar"
{
/1
/'l These perm ssions are needed for everyday, enbedded Derby usage.
/1
perm ssion java.l ang. Runti mePerm ssion "createC assLoader";
perm ssion java.util.PropertyPerm ssion "derby.*", "read";
/1 The next two properties are used to deternmine if the VMis 32 or 64
bit.
perm ssion java. util.PropertyPerm ssion "sun. arch. data. nodel ", "read";
perm ssion java.util.PropertyPerm ssion "os.arch", "read";
permi ssion java.util.PropertyPerm ssion "user.dir", "read";
permi ssion java.util.PropertyPerm ssion "derby. storage.jvmn nstancel d",
"wite";

perm ssion java.io.Fil ePern ssion "${derby.system hone}", "read";
perni ssion java.io. FilePernission "${derby.system hone}${/}-",
"read, wite, del ete";

/1
/1 This perm ssion | ets you backup and restore databases
// to and fromarbitrary locations in your file system
/1
/1 This perm ssion also lets you inport/export data to and from
/1 arbitrary locations in your file system
/1
/1 You may want to restrict this access to specific directories.
/1
permi ssion java.io.FilePerm ssion "<<ALL FILES>>", "read,wite, delete";
[

44

Java DB Server and Administration Guide

grant codeBase "${derby.install.url}derbynet.jar"

{

/1

/1 This permission lets the Network Server manage connections from
clients.

/1

/'l Accept connections fromany host. Derby is |listening to the host

/'l interface specified via the -h option to "NetworkServer Control

/1 start" on the command |ine, via the address paranmeter to the

/1 org.apache. der by. drda. Net wor kServer Control constructor in the API
/1 or via the property derby.drda. host; the default is |ocal host.

/1 You may want to restrict allowed hosts, e.g. to hosts in a specific
/1 subdonmin, e.g. "*.exanple.coni.

perm ssi on java. net. Socket Perm ssion "*", "accept";

Customizing the Network Server's security policy

The Network Server's Basic security policy is documented in the section Basic Network
Server security policy. Most likely, you will want to customize your own security policy.
For example, you might want to restrict the server's liberal file i/o permissions which

let the server backup/restore and export/import to or from any location in the local file
system. Customizing the security policy is simple:

» Atemplate policy lives in the Derby distribution at demo/templates/server.policy.
Copy the file from this location to your own file, say myCustomized.policy. All of the
following edits take place in your custom file.

» Replace the ${derby.install.url} variable with the location of the Derby jars in your
local file system.

* Replace the ${derby.system.home} variable with the location of your Derby system
directory. Alternatively, rather than replacing this variable, you can simply set the
value of the derby.system.home system property when you boot the server.

* You may want to restrict the socket permission for der bynet . j ar, which by
default accepts connections from any host (" *"). Note that the special wildcard
address " 0. 0. 0. 0" is not understood by SocketPermission, even though Derby
accepts this wildcard as a valid value for accepting connections on all network
interfaces (IPv4).

» Refine the file permissions needed by backup/restore, import/export, and the
loading of application jars.

The following example is a copy of a sample, customized policy file:

grant codeBase "file:/usr/local/share/sw derby/lib/derby.jar"
{
/1
/'l These perm ssions are needed for everyday, enbedded Derby usage.
/1
perm ssion java.l ang. Runti mePerm ssion "createC assLoader";
perm ssion java. util.PropertyPerm ssion "derby.*", "read";
/1 The next two properties are used to deternmine if the VMis 32 or 64
bit.
perm ssion java. util.PropertyPerm ssion "sun. arch. data. nodel ", "read";
perm ssion java.util.PropertyPerm ssion "os.arch", "read";
permi ssion java.util.PropertyPerm ssion "user.dir", "read";

permi ssion java.io. Fil ePerm ssion
"/ usr/local / shoppi ngCart App/ dat abases", "read";
permi ssion java.io. Fil ePerm ssion
"/usr/local / shoppi ngCart App/ dat abases/-",
"read, wite, del ete";
perm ssion java. util.PropertyPerm ssion "derby. storage.jvm nstanceld",
"wite";

45

Java DB Server and Administration Guide

/1
/1l This permission lets a DBA reload the policy file while the server
/1 is still running. The policy file is reloaded by invoking the
/1 SYSCS_UTI L. SYSCS_RELOAD SECURI TY_POLI CY() system procedure.
/1
permi ssi on java. security. SecurityPerm ssion "getPolicy";
/1
/1 This permission |lets you backup and restore databases
/1 to and froma sel ected branch of the local file system
/1
permi ssion java.io. Fil ePerm ssion
"/ usr/local / shoppi ngCart App/ backups/-", "read,wite,delete";
/1
/1 This permission |lets you inport data from
/1 a selected branch of the local file system
/1
permi ssion java.io. Fil ePerm ssion
"/usr/local / shoppi ngCart App/i nports/-", "read";
/1
/1 This permission |lets you export data to
/! a selected branch of the local file system
/1
permi ssion java.io. Fil ePerm ssion
"/usr/local / shoppi ngCart App/ exports/-", "wite";
/1
/1 This perm ssion |lets you | oad your databases with jar files of
/'l application code
/1
permi ssion java.io.FilePerm ssion "/usr/local/shoppi ngCartApp/lib/*",
"l’ead";
I
grant codeBase "file:/usr/l|ocal/share/sw derby/lib/derbynet.jar"
{
/
/1 This permission lets the Network Server manage connections from

/
/
clients
/ originating fromthe |ocal host, on any port.
/

perm ssi on java. net. Socket Permi ssion "l ocal host: 0-", "accept";

&
After customizing the Basic policy, you may bring up the Network Server as follows:

java -Djava. security. manager
-Dj ava. security. policy=/usr/local / shoppi ngCart App/|i b/

myCust om zed. pol i cy org. apache. der by. drda. Net wor kSer ver Control start -h
| ocal host

Running the Network Server without a security policy

You may override the Network Server's impulse to install a security manager if, for some
reason, you need to run your application outside Java's security protections.

CAUTION: You incur a severe security risk by opening up the server to all clients without
limiting access via user authentication and a security policy.

Use the -noSecurityManager option to force the Network Server to come up without a
security manager. E.g.:

java org. apache. der by. drda. Net wor kServer Control start -h | ocal host
-noSecurit yManager

Running the Network Server with User Authentication

46

Java DB Server and Administration Guide
By default, the Network Server boots with user authentication disabled. However, it
is strongly recommended that you run your Network Server with user authentication
enabled. For details on how to enable user authentication, please see "Working with user
authentication” in the Java DB Developer's Guide.

Network encryption and authentication with SSL/TLS

By default, all Derby network traffic is unencrypted, with the exception of user names and
user passwords which may be encrypted separately (See Network client security). There
is also no network layer access control mechanism. For deployment scenarios where
these are possible security issues, Derby Network Server supports network security with
Secure Socket Layer/Transport Layer Security (SSL/TLS).

With SSL/TLS, the client/server communication protocol is encrypted and both the client
and the server may independently of each other require certificate based authentication
of the other part.

It is assumed that the reader is somewhat familiar with SSL, key pairs and certificates.
This documentation is also based on the Java Development Kit (JDK) and its keyt ool
application.

For the remainder of this section, the term SSL is used for SSL/TLS and the term peer
is used for the other part of the communication (The server's peer is the client and vice

versa).
SSL for Derby (both for client and for server) operates in three possible modes:
off
The default, no SSL encryption
basic

SSL encryption, no peer authentication
peerAuthentication
SSL encryption and peer authentication

Peer authentication may be set either on the server or on the client or on both. Peer
authentication means that the other side of the SSL connection is authenticated based on
a trusted certificate installed locally.

Alternatively, a Certification Authority (CA) certificate may be installed locally and the
peer has a certificate signed by that authority. How to achieve this is not descibed in this
document. Consult your Java environment documentation for details on this.

Attention: If a plaintext client tries to communicate with an SSL server or an SSL client
tries to communicate with a plaintext server, the plaintext side of the communication will
see the SSL communication as noise and report protocol errors.

Key and certificate handling

For SSL operation, the server always needs a key pair. If the server runs in peer
authentication mode (the server authenticates the clients), then each client needs its own
key pair. In general, if one end of the communication wants to authenticate its partner,
then the first end needs to install a certificate generated by the partner.

The key pair is located in a file which is called a key store and the JDK's SSL
provider needs the system properties j avax. net. ssl . keySt or e and
j avax. net . ssl . keySt or ePasswor d to access the key store.

The certificates of trusted parties are installed in a file called a trust store. The JDK's
SSL provider needs the system properties j avax. net . ssl . trust Store and
j avax. net. ssl . trust St or ePasswor d to access the trust store.

Key pair generation

a7

Java DB Server and Administration Guide

Key pairs are generated with keyt ool - genkey. The simplest way to generate a key
pair is to do

keyt ool -genkey <alias> -keystore <keystore>
ket ool will prompt for needed information like identity details and passwords.
Consult the JDK documentation for more information on keyt ool .

Certificate generation
Certificates are generated with keyt ool - export like this:

keyt ool -export -alias <alias> -keystore <keystore> \
-rfc -file <certificate file>

The certificate file may then be distributed to the relevant parties.

Certificate installation
Installation of a certificate in a trust store is done with keyt ool -i nmport like this:

keytool -inmport -alias <alias> -file <certificate file>\
-keystore <trust store>

Examples
Generate the server key pair:

keyt ool -genkey -alias nyDerbyServer -keystore serverKeyStore. key

Generate a server certificate:

keyt ool -export -alias nyDerbyServer -keystore serverKeyStore. key \
-rfc -file nyServer.cert

Generate a client key pair:

keyt ool -genkey -alias aDerbyC ient -keystore clientKeyStore.key

Generate a client certficate:

keyt ool -export -alias aDerbyCient -keystore clientKeyStore.key \
-rfc -file aCient.cert

Install a client certificate in the server's trust store:

keytool -inport -alias aDerbyClient -file aClient.cert
- keystore server Trust St ore. key

Install the server certificate in a client's trust store:

keytool -inport -alias nyDerbyServer -file myServer.cert
-keystore clientTrust Store. key

Starting the server with SSL/TLS

For server SSL/TLS, a server key pair needs to be generated. If the server is going to do
client authentication, the client sertificates need to be installed in the trust store. These
operations are described in Key and certificate handling.

48

Java DB Server and Administration Guide

SSL at the server side is activated with the property der by. dr da. ssl Mode (default off)
or the - ssl option for the server start command.

Starting the server with basic SSL encryption
When the SSL mode is set to basi c, the server will only accept SSL encrypted
connections.

The properties j avax. net . ssl . keySt or e and
j avax. net . ssl . keySt or ePasswor d need to be set with the proper values.

Example:

java -Djavax. net.ssl. keySt ore=server KeySt ore. key \
- Dj avax. net. ssl . keySt or ePasswor d=qwerty \
-jar derbyrun.jar server start -ssl basic

Starting a server which authenticates clients

When the server's SSL mode is set to peer Aut hent i cat i on, then the server
authenticates its clients' identity in addition to encrypting network traffic. In this situation,
the server's trust store must contain a certificate for each client which will connect.

The j avax. net.ssl.trust Store andj avax. net. ssl.trust St or ePassword
need to be set in addition to the properties above.

See Running the client with SSL/TLS for client settings when the server does client
authentication

Example:

java -Dj avax. net.ssl. keySt ore=server KeySt ore. key \
- Dj avax. net. ssl . keySt or ePasswor d=qwerty \
- Dj avax. net. ssl . trust St ore=server Trust St ore. key \
- O avax. net. ssl . trust St orePassword=qwerty \
-jar derbyrun.jar server start -ssl peerAuthentication

Running the client with SSL/TLS

Basic SSL encryption on the client is enabled either by the URL attribute ssl , the
property ssl or the datasource attribute ssl set to basi c.

Example:

Connection ¢ =
get Connecti on("j dbc: derby: // myhost: 1527/ db; ssl =basi c") ;

Running a client which authenticates the server

If the client wants to authenticate the server, then the client's trust store must contain the
server's certificate. See Key and certificate handling.

Client SSL with server authentication is enabled by the URL attribute ssl or the

property ssl set to peer Aut henti cati on. In addition, the system properties

javax. net.ssl.trustStoreandjavax. net.ssl.trust StorePassword need to
be set.

Example:

System set Property("javax. net.ssl.trustStore","clientTrust Store. key");
Syst em set Property("javax. net. ssl.trust StorePassword", "quwerty");
Connection ¢ =

49

Java DB Server and Administration Guide

get Connecti on("j dbc: derby: // myhost: 1527/ db; ssl =peer Aut henti cati on");

Running the client when the server does client authentication
If the server does client authentication, the client will need a key pair and a client
certificate which is installed in the server's trust store, See Key and certificate handling.

The client needs to setj avax. net . ssl . keySt or e and
j avax. net . ssl . keySt or ePasswor d.

Example:

Syst em set Property("j avax. net.ssl . keyStore", "clientKeyStore. key");
Syst em set Property("j avax. net. ssl . keySt orePassword", "gwerty");
Connection ¢ =

get Connecti on("j dbc: derby: // myhost : 1527/ db; ssl =basi c");

Running the client when both parties do peer authentication
This is a combination of the two last variants.

Example:

Syst em set Property("javax. net. ssl. keyStore", "clientKeyStore. key");
Syst em set Property("j avax. net. ssl . keySt orePassword", "qwerty");

System set Property("javax. net.ssl.trustStore", "clientTrust Store. key");
System set Property("javax. net. ssl.trust StorePassword", "quwerty");
Connection ¢ =

get Connecti on("j dbc: derby: // myhost: 1527/ db; ssl =peer Aut henti cati on");
Other server commands

The other server commands (shut down, pi ng, sysi nf o, runti nei nf o,

| ogconnecti ons, maxt hreads,tineslice,trace,tracedirectory)are
implemented as clients, and they behave exactly as clients with regards to SSL. The SSL
mode is set with the property der by. dr da. ssl Mode or the server command option
-ssl.

Example:

java -jar derbyrun.jar server shutdown -ssl basic
will shutdown an SSL-enabled server.
Example:

Similarly, if you have peerAuthentication on both sides, use the following command:

java -Djavax. net.ssl. keyStore=client KeyStore. key \
- O avax. net . ssl . keySt or ePasswor d=querty \
-Dj avax. net.ssl.trust Store=clientTrust Store. key \
- Dj avax. net. ssl . trust St or ePasswor d=qwerty \
-jar derbyrun.jar server shutdown -ssl peerAuthentication

Configuring the Network Server to handle connections

You can configure the Network Server to use a specific number of threads to handle
connections. You can change the configuration on the command line or by using the
servlet interface.

50

Java DB Server and Administration Guide

The minimum number of threads is the number of threads that are started

when the Network Server is booted. This value is specified as a property,

der by. drda. mi nThreads = <m n>. The maximum number of threads is the
maximum number of threads that will be used for connections. If more connections are
active than there are threads available, the extra connections must wait until the next
thread becomes available. Threads can become available after a specified time, which is
checked only when a thread has finished processing a communication.

* You can change the maximum number of threads by using the following command:

java org. apache. der by. drda. Net wor kSer ver Control maxt hreads <max> [-h
<host nane>]
[-p <portnunber>]

You can also use the der by. dr da. maxThr eads property to assign the maximum
value. A <max> value of 0 means that there is no maximum and a new thread will
be generated for a connection if there are no current threads available. This is the
default. The <max> and <min> values are stored as integers, so the theoretical
maximum is 2147483647 (the maximum size of an integer). But the practical
maximum is determined by the machine configuration.

* To change the time that a thread should work on one session's request and check if
there are waiting sessions, use the following command:

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
timeslice <mlliseconds> [-h <hostname>] [-p <portnunber>]

You can also use the derby.drda.timeSlice property to set this value. A value of

0 milliseconds indicates that the thread will not give up working on the session
until the session ends. A value of -1 milliseconds indicates to use the default. The
default value is 0. The maximum number of milliseconds that can be specified is
2147483647 (the maximum size of an integer).

Controlling logging by using the log file

The Network Server uses the der by. | og file to log problems that it encounters. It also
logs connections when the property der by. dr da. | ogConnecti ons issettotrue.
The der by. | og file is created when the Derby server is started. The Network Server
then records the time and version. If a log file exists, it is overwritten, unless the property
der by. i nf ol 0og. appendissettotrue.

When the Network Server is logging connections, it also logs the Connection Number;
this log message is written both to the der by. | og file and to the Network Server
console.

< To turn on connection logging, you can use the servlet interface or you can issue
the following command:

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
| ogconnections on [-h <hostname>] [-p <portnunber>]

« To turn connection logging off you can use the servlet interface or you can issue the
following command:

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
| ogconnections off [-h <hostname>][-p <portnunber>]

See the Java DB Developer's Guide for more information about the der by. | og file.

Controlling tracing by using the trace facility

Use the trace facility only if you are working with technical support and they require
tracing information.

51

Java DB Server and Administration Guide

See Managing the Derby Network Server remotely by using the servlet interface for
information about managing the trace facility using the servlet interface.

Turning on the trace facility
1. Turn on tracing for all sessions by specifying the following property:

derby. drda. traceAl | =true

Alternatively, while the Network Server is running, you can use the following
command to turn on the trace facility:

java org. apache. der by. dr da. Net wor kSer ver Cont r ol
trace on [-s <connection nunber>] [-h <hostname>][-p
<port nunmber >]

If you specify a <connection number>, tracing will be turned on only for that
connection.
2. Set the location of the tracing files by specifying the following property:

derby.drda.traceDirectory=<directory for tracing fil es>

Alternatively, while the Network Server is running, enter the following command to
set the trace directory:

java org. apache. der by. dr da. Net wor kServer Control traceDirectory
<directory for tracing files> [-h <hostnane>] [-p <portnunber>]

You need to specify only the directory where the tracing files will reside. The names
of the tracing files are determined by the system. If you do not set a trace directory,
the tracing files will be placed in derby.system.home.

The Network Server will attempt to create the trace directory (and any parent
directories) if they do not exist. This will require that the Java security policy for
der bynet . j ar permits verification of the existence of the named trace directory
and all necessary parent directories. For each directory created, the policy must
allow

perm ssion java.io.FilePerm ssion "<directory>", "read,wite";

and for the trace directory itself, the policy must allow

perm ssion java.io.FilePerm ssion "<tracedirectory>${/}-",
"wite";

See Customizing the Network Server's security policy for information about
customizing the Network Server's security policy.
Turning off the trace facility

Enter the following command to turn off tracing:
java org. apache. der by. drda. Net wor kServer Control trace off [-s <connection

nunber >]
[-h <hostname>] [-p <portnumber>]

The tracing files are named ServerX.trace, where X is a connection number.

Derby Network Server sample programs

This section describes several Derby Network Server sample programs for Network
Server users.

52

Java DB Server and Administration Guide

The NsSample sample program

The NsSample demonstration program is a simple JDBC application that interacts with
the Network Server.

The NsSample program performs the following tasks:

« Starts the Network Server.

» Checks that the Network Server is running.

« Loads the Network Client driver. (Note that this step is not necessary if you are
running the client on JDK 1.6 or higher. In that environment, the network client
driver loads automatically.)

» Creates the NsSampledb database if not already created.

« Checks to see if the schema is already created, and if not, creates the schema
which includes the SAMPLETBL table and corresponding indexes.

» Connects to the database.

« Loads the schema by inserting data.

« Starts client threads to perform database related operations.

» Has each of the clients perform DML operations (select, insert, delete, update)
using JDBC calls. For example, one client thread establishes an embedded
connection to perform database operations, while another client thread establishes
a client connection to the Network Server to perform database operations.

» Waits for the client threads to finish the tasks.

» Shuts down the Network Server at the end of the demonstration.

You must install the following files in the “DERBY_HOVE% denp\ nser ver deno\
directory before you can run the sample program:
* NsSanpl e. j ava

This is the entry point into the sample program. The program starts up two client
threads. The first client establishes an embedded connection to perform database
operations, and the second client establishes a client connection to the Network
Server to perform database operations.

You can change the following constants to modify the sample program:

NUM_ROWS
The number of rows that must be initially loaded into the schema.
ITERATIONS
The number of iterations for which each client thread does database related work.
NUM_CLIENT_THREADS
The number of clients that you want to run the program against.
NETWORKSERVER_PORT
The port on which the Network Server is running.
 NsSanpl eCl i ent Thread. j ava
This file contains two Java classes:

« The NsSampleClientThread class extends Thread and instantiates a
NsSampleWork instance.

« The NsSampleWork class contains everything that is required to perform DML
operations using JDBC calls. The doWork method in the NsSampleWork class
represents all the work done as part of this sample program.

* NetworkServerUtil.java

This file contains helper methods to start the Network Server and to shutdown the
server.
The compiled class files for the NsSample program are:
* NsSanpl e. cl ass
 NsSanpl el i ent Thr ead. cl ass
* NsSanpl eVWor k. cl ass

53

Java DB Server and Administration Guide

* Networ kServerUtil.cl ass

Running the NsSample sample program

To run the NsSample program:

1.

2.

Open a command prompt and change directories to the %DERBY_HOME%\demo\
directory, where %DERBY_HOME% is the directory where you installed Derby.
Set the CLASSPATH to the current directory (".") and also include the following jar
files in order to use the Network Server and the network client driver:

derbynet.jar
The Network Server jar file. It must be in your CLASSPATH to use any of the
Network Server functions.
derbyclient.jar
This jar file must be in your CLASSPATH to use the Network Client driver.
derby.jar
The Derby database engine jar file.
derbytools.jar
The Derby tools jar file.
Test the CLASSPATH settings by running the following Java command:

java org. apache. derby. t ool s. sysi nfo

This command shows the Derby jar files that are in the classpath as well as their
respective versions.

After you set up your environment correctly, run the NsSample program from the
same directory:

java nserver deno. NsSanpl e

If the program runs successfully, you will receive output similar to that shown in the
following table:

Der by Network Server created

Server is ready to accept connections on port 1621.
Connecti on nunber: 1.

[NsSanpl e] Derby Network Server started.

[NsSanpl e] Sanpl e Derby Network Server program deno starting.
Please wait

Connecti on nunber: 2.

[NsSanpl eWor k] Begin creating table - SAVPLETBL and necessary
i ndexes.

[NsSanpl ed i ent Thread] Thread id - 1; started.

[NsSanpl eWork] Thread id - 1; requests database connecti on,
dbUr| =j dbc: der by: NSSanpl edb;

[NsSanpl ed i ent Thread] Thread id - 2; started.

[NsSanpl eWork] Thread id - 2; requests database connecti on,
dbUr| =jdbc:derby://|ocal host: 1621/

NSSanpl edb; def er Pr epar es=t r ue;

Connecti on nunber: 3.

[NsSanpl eWwrk] Thread id - 1 selected 1 row [313, Derby36

, 1. 7686243E23, 9620]

[NsSanpl eWork] Thread id - 1 selected 1 row [313, Derby36

, 1. 7686243E23, 9620]

[NsSanpl eWwork] Thread id - 1; deleted 1 row with t_key = 9620
[NsSanpl eWork] Thread id - 1 selected 1 row [700, Derby34

, 8. 7620301E9, 9547]

[NsSanpl eWork] Thread id - 1 selected 1 row [700, Derby34

, 8. 7620301E9, 9547]

[NsSanpl eWork] Thread id - 2 selected 1 row [700, Der by34

, 8. 7620301E9, 9547]

[NsSanpl eWork] Thread id - 2 selected 1 row [700, Derby34

, 8. 7620301E9, 9547]

[NsSanpl eWork] Thread id - 1; inserted 1 row.

54

Java DB Server and Administration Guide

[NsSanpl eWork] Thread id - 1 selected 1 row [52, Derby34
, 8. 7620301E9, 9547]

[NsSanpl eWork] Thread id - 2; updated 1 row with t_key = 9547
[NsSanpl eWwork] Thread id - 1; deleted 1 row with t_key = 9547
[NsSanpl eWork] Thread id - 2 selected 1 row [617, Der by31

, 773. 83636, 9321]

[NsSanpl eWork] Thread id - 2 selected 1 row [617, Derby31

, 773. 83636, 9321]

[NsSanpl eWork] Thread id - 2 selected 1 row [617, Der by31

, 773. 83636, 9321]

[NsSanpl eWork] Thread id - 2 selected 1 row [617, Derby31

, 773. 83636, 9321]

NsSanpl eWork] Thread id - 1; inserted 1 row.

NsSanpl eWork] Thread id - 2; deleted 1 rowwith t_key = 9321
[NsSanpl eWork] Thread id - 1; deleted 1 row with t_key = 8707
NsSanpl eWork] Thread id 1; cl osed connection to the database.

NsSanpl ed i ent Thr ead] Thread id - 1; finished all tasks.
NsSanpl eWork] Thread id - 2; deleted 1 rowwith t_key = 8490

[NsSanpl eWork] Thread id - 2; closed connection to the database.
NsSanpl eCl i ent Thread] Thread id - 2; finished all tasks.
NsSanpl e] Shutting down Network Server.

Connecti on nunber: 4.

Shut down successful .

Running the NsSample program also creates the following new directories and files:
NSSampledb

This directory makes up the NSSampledb database.
derby.log

This log file contains Derby progress and error messages.

Network Server sample programs for embedded and client connections

This Derby Network Server sample program demonstrates how to obtain an embedded
connection and client connections to the same database by using the Network Server.
This program shows how to use either the DriverManager or a DataSource to obtain
client connections.

For a database to be consistent, only one JVM can access it at a time. The embedded
driver is loaded when the Network Server is started. The JVM that starts the Network
Server can obtain an embedded connection to the same database that the Network
Server is accessing to serve clients from other JVMs. This solution provides the
performance benefits of the embedded driver and also allows client connections from
other JVMs to connect to the same database.

Overview of the SimpleNetworkServerSample program
The SimpleNetworkServerSample program starts the Derby Network Server, as well
as the embedded driver, and waits for clients to connect. The program performs the
following tasks.
 Starts the Derby Network Server by using a property and also loads the embedded
driver
» Determines if the Network Server is running
» Creates the NSSimpleDB database if it is not already created
* Obtains an embedded database connection
» Tests the database connection by executing a sample query
« Allows client connections to connect to the server until you decide to stop the server
and exit the program
* Closes the connection
« Shuts down the Network Server before exiting the program

To run the sample program, install the following files in the
YOERBY_HOVE% deno\ nser ver deno\ directory:

* The source file: Si npl eNet wor kSer ver Sanpl e. j ava

* The compiled class file: Si npl eNet wor kSer ver Sanpl e. cl ass

55

Java DB Server and Administration Guide

Running the SimpleNetworkServerSample program

To run the Derby Network Server sample program:

1.

Open a command prompt and change directories to the
%DERBY_HOME%\demo\nserverdemo directory, where %DERBY_HOME% is the
directory where you installed Derby.

Set the classpath to include the current directory ("."), and the following jar files:

derbynet.jar
The Network Server jar file. It must be in your CLASSPATH because you start the
Network Server in this program.
derby.jar
The database engine jar file.
derbytools.jar
The Derby tools jar file.
Test the CLASSPATH settings by running the following Java command:

java org. apache. derby. tool s. sysi nfo

This command displays the Derby jar files that are in the classpath.
After you set up your environment correctly, run the SimpleNetworkServerSample
program from the same directory:

java Si npl eNet wor kSer ver Sanpl e

If the program runs successfully, you will receive output that is similar to that shown
in the following exampleS:

Starting Network Server

Testing if Network Server is up and running!

Der by Network Server now running

Got an enbedded connecti on.

Testing enbedded connection by executing a sanple query

nunber of rows in sys.systables = 16

Wiile my app is busy with enbedded work, ij mght connect like this:

$ java -Dij.user=ne -Dij.password=pw -Dij. protocol =
jdbc: derby:\\ 1l ocal host: 1527\ org. apache. derby.tool s.ij
i j> connect ' NSSinpl eDB';

Clients can continue to connect:
Press [Enter] to stop Server

Running the SimpleNetworkServerSample program also creates the following new
directories and files:
NSSimpleDB
This directory makes up the NSSimpleDB database.
derby.log
This log file contains Derby progress and error messages.

Connecting a client to the Network Server with the SimpleNetworkClientSample program
The SimpleNetworkClientSample program is a client program that interacts with the
Derby Network Server from another JVM. The program performs the following tasks:

Loads the network client driver. (Note that this step is not necessary if you are
running the client on JDK 1.6 or higher. In that environment, the network client
driver loads automatically.)

Obtains a client connection by using the DriverManager.

Obtains a client connection by using a DataSource.

Tests the database connections by running a sample query.

Closes the connections and then exits the program.

56

Java DB Server and Administration Guide

You must install the following files in the “DERBY_HOVE% denp\ nser ver deno\
directory before you can run the sample program:

» The source file: Si npl eNet wor kCl i ent Sanpl e. j ava.

» The compiled class file: Si npl eNet wor kCl i ent Sanpl e. cl ass.

Running the SimpleNetworkClientSample program

To connect to the Network Server that has been started with the
SimpleNetworkServerSample program:

1. Open a command prompt and change directories to
the%DERBY_HOME%\demo\nserverdemo directory, where %DERBY_HOME% is
the directory where you installed Derby.

2. Set the classpath to include the following jar files:

« The current directory (".")
« derbyclient.jar
3. After you set up your environment correctly, run the SimpleNetworkClientSample
program from the same directory:

java Sinpl eNet wor kC i ent Sanpl e

If the program runs successfully, you will receive output similar to that shown in the
following example:

Starting Sanple client program

CGot a client connection via the DriverMnager.

connecti on from dat asour ce;

Got a client connection via a DataSource.

Testing the connection obtained via Driver Manager by executing a
sanpl e query

nunber of rows in sys.systables = 16

Testing the connection obtained via a DataSource by executing a
sanpl e query

nunber of rows in sys.systables
Goodbye!

16

57

Java DB Server and Administration Guide

Part two: Derby Administration Guide

This section of the guide is divided into several administrative tasks.

Checking database consistency

If you experience hardware or operating system failure, you can use the
SYSCS_UTIL.SYSCS CHECK_ TABLE function to verify that the database is still
consistent.

Check consistency only if there are indications that such a check is needed because a
consistency check can take a long time on a large database.

The SYSCS_CHECK_TABLE function

The SYSCS_UTIL.SYSCS_CHECK_TABLE() function checks the consistency of a Derby
table. In particular, the SYSCS_UTIL.SYSCS_CHECK_TABLE function verifies the
following conditions:

» Base tables are internally consistent

« Base tables and all associated indexes contain the same number of rows

« The values and row locations in each index match those of the base table

< All BTREE indexes are internally consistent
You run this function in an SQL statement, as follows:

VALUES SYSCS_UTI L. SYSCS_CHECK_TABLE(
SchermaNane, Tabl eNane)

where SchemaName and TableName are expressions that evaluate to a string data type.
If you created a schema or table name as a non-delimited identifier, you must present
their names in all upper case. For example:

VALUES SYSCS_UTI L. SYSCS_CHECK_TABLE(' APP', 'CITIES)

The SYSCS_UTIL.SYSCS_CHECK_TABLE function returns a smallint. If the table

is consistent (or if you run SYSCS_UTIL.SYSCS CHECK_TABLE on a view),

SYSCS _UTIL.SYSCS CHECK_TABLE returns a non-zero value. Otherwise, the function
throws an exception on the first inconsistency that it finds.

For a consistent table, the following result is displayed:

1 row sel ected

Sample SYSCS_CHECK_TABLE error messages

This section provides examples of error messages that the
SYSCS_UTIL.SYSCS_CHECK_TABLE() function can return.

If the row counts of the base table and an index differ, error message X0Y55 is issued:

ERROR X0Y55: The nunber of rows in the base table does not natch
the nunber of rows in at least 1 of the indexes on the table. |ndex
"T1 1" on table '"APP.T1' has 4 rows, but the base table has 5 rows.
The suggested corrective action is to recreate the index.

58

Java DB Server and Administration Guide

If the index refers to a row that does not exist in the base table, error message X0X62 is
issued:

ERROR X0X62: Inconsistency found between table ' APP. T1' and i ndex

"T1 1'. Error when trying to retrieve row location '(1,6)' fromthe
table. The full index key,including the row location, is '{ 1, (1,6) }'.
The suggested corrective action is to recreate the index.

If a key column value differs between the base table and the index, error message X0X61
is issued:

ERROR X0X61: The values for columm 'Cl10' in index 'T1_Cl10' and

table 'APP. T1' do not nmatch for row location (1,7). The value in the
index is '2 2 ', while the value in the base table is 'NULL'. The full
i ndex key, including the row location, is '{ 2 2 , (1,7) }'. The
suggested corrective action is to recreate the index.

Sample SYSCS_CHECK_TABLE queries

This section provides examples that illustrate how to use the
SYSCS_UTIL.SYSCS_CHECK_TABLE function in queries.

To check the consistency of a single table, run a query that is similar to the one shown in
the following example:

VALUES SYSCS_UTI L. SYSCS_CHECK_TABLE(' APP', ' FLI GHTS')

To check the consistency of all of the tables in a schema, stopping at the first failure, run
a query that is similar to the one shown in the following example:

SELECT t abl ename, SYSCS _UTI L. SYSCS_CHECK_TABLE(
' SAMP' | t abl enane)
FROM sys. sysschemas s, sys.systables t
WHERE s. schemanane = ' SAMP AND s.schenmaid = t.schemaid

To check the consistency of an entire database, stopping at the first failure, run a query
that is similar to the one shown in the following example::

SELECT schemanane, tabl enane,

SYSCS_UTI L. SYSCS_CHECK _TABLE(schemanane, tabl enane)
FROM sys. sysschemas s, sys.systables t

WHERE s. schermaid = t.schemaid

Backing up and restoring databases

Derby provides a way to back up a database while it is online. You can also restore a full
backup from a specified location.

Backing up a database
The topics in this section describe how to back up a database.
Offline backups

To perform an offline backup of a database, use operating system commands to copy
the database directory. You must shut down the database prior to performing an offline
backup.

For example, on Windows systems, the following operating system command backs up
a (closed) database that is named sample and that is located in d: \ mydat abases by
copying it to the directory c: \ nybackups\ 2005- 06- 01:

59

Java DB Server and Administration Guide
xcopy d:\ nydat abases\ sanpl e c:\ nybackups\ 2005- 06-01\sanple /s /i

If you are not using Windows, substitute the appropriate operating system command for
copying a directory and all contents to a new location.

Note: On Windows systems, do not attempt to update a database while it is being
backed up in this way. Attempting to update a database during an offline backup will
generate a java.io.lOException. Using online backups prevents this from occurring.

For large systems, shutting down the database might not be convenient. To back up a
database without having to shut it down, you can use an online backup.

Online backups

Use online backups to back up a database while it is running, without blocking
transactions.

You can perform online backups by using several types of backup procedures or by using
operating systems commands with the freeze and unfreeze system procedures.

Using the backup procedure to perform an online backup:

Use the SYSCS_UTIL.SYSCS_ BACKUP_DATABASE procedure to perform an online
backup of a database to a specified location.

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE procedure takes a string argument
that represents the location in which to back up the database. Typically, you provide the
full path to the backup directory. (Relative paths are interpreted as relative to the current
directory, not to the derby.system.home directory.)

For example, to specify a backup location of ¢: / nybackups/ 2005- 06- 01 for a
database that is currently open, use the following statement (forward slashes are used as
path separators in SQL commands):

CALL SYSCS_UTI L. SYSCS_BACKUP_DATABASE(' c: / nybackups/ 2005- 06- 01')

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE procedure puts the database into

a state in which it can be safely copied. The procedure then copies the entire original
database directory (including data files, online transaction log files, and jar files) to the
specified backup directory. Files that are not within the original database directory (for
example, derby.properties) are not copied. With the exception of a few cases mentioned
in Unlogged Operations, the procedure does not block concurrent transactions at any
time.

The following example shows how to back up a database to a directory with a name that
reflects the current date:

public static void backUpDat abase(Connecti on conn)throws SQLException

{
/] Get today's date as a string:
java. text. Si npl eDat eFormat todaysDate =
new j ava. t ext. Si npl eDat eFor mat ("yyyy- M dd") ;
String backupdirectory = "c:/mybackups/" +
t odaysDate. format ((java. util.Cal endar. getlnstance()).getTinme());

Cal | abl eSt at enent cs = conn. prepareCal | (" CALL
SYSCS_UTI L. SYSCS_BACKUP_DATABASE(?) ") ;
cs.setString(1l, backupdirectory);
cs. execute();
cs.close();
System out . printl n("backed up database to "+backupdirectory);

}

For a database that was backed up on 2005-06-01, the previous commands copy the
current database to a directory of the same name in c:/mybackups/2005-06-01.

60

Java DB Server and Administration Guide
Uncommitted transactions do not appear in the backed-up database.

Note: Do not back up different databases with the same name to the same backup
directory. If a database of the same name already exists in the backup directory, it is
assumed to be an older version and is overwritten.

Unlogged Operations

For some operations, Derby does not log because it can keep the database consistent
without logging the data.

The SYSCS_UTIL.SYSCS_BACKUP_DATABASE procedure will issue an error if there
are any unlogged operations in the same transaction as the backup procedure.

If any unlogged operations are in progress in other transactions in the system when
the backup starts, this procedure will block until those transactions are complete before
performing the backup.

Derby automatically converts unlogged operations to logged mode if they are started
while the backup is in progress (except operations that maintain application jar files in the
database). Procedures to install, replace, and remove jar files in a database are blocked
while the backup is in progress.

If you do not want backup to block until unlogged operations in other transactions are
complete, use the SYSCS _UTIL.SYSCS BACKUP_DATABASE_NOWAIT procedure.
This procedure issues an error immediately at the start of the backup if there are

any transactions in progress with unlogged operations, instead of waiting for those
transactions to complete.

Unlogged operations include:
1. Index creation.

Only CREATE INDEX is logged, not all the data inserts into the index. The reason
inserts into the index are not logged is: if there is a failure , it will just drop the index.

If you create an index when the backup is in progress, it will be slower because it
has to be logged.

Foreign Keys , Primary Keys create backing indexes. Adding those keys to an
existing table with data will also run slower.
2. Import to an empty table or replacing all the data in a table.

In this case also, data inserts into table are not logged. Internally, Derby creates
a new table for the import and changes the catalogs to point to the new table and
drops the original table when import completes.

If you perform such an import operation when backup is in progress , it will be
slower because data is logged.

Using operating system commands with the freeze and unfreeze system
procedures to perform an online backup:

Typically, these procedures are used to speed up the copy operation involved in an
online backup. In this scenario, Derby does not perform the copy operation for you.

You use the SYSCS_UTIL.SYSCS FREEZE_DATABASE procedure to lock the
database, and then you explicitly copy the database directory by using operating system
commands.

For example, because the UNIX tar command uses operating system file-copying
routines, and the SYSCS_UTIL.SYSCS BACKUP_DATABASE procedure

uses java I/O calls with additional internal synchronization that allow updates
during the backup, the tar command might provide faster backups than the
SYSCS_UTIL.SYSCS_BACKUP_DATABASE procedure.

61

Java DB Server and Administration Guide

To use operating system commands for online database backups, call

the SYSCS_UTIL.SYSCS FREEZE_DATABASE system procedure. The

SYSCS _UTIL.SYSCS FREEZE_DATABASE system procedure puts the database into
a state in which it can be safely copied. After the database has been copied, use the
SYSCS _UTIL.SYSCS UNFREEZE_DATABASE system procedure to continue working
with the database. Only after SYSCS_UTIL.SYSCS_UNFREEZE_DATABASE has
been specified can transactions once again write to the database. Read operations can
proceed while the database is "frozen."

Note: To ensure a consistent backup of the database, Derby might block applications
that attempt to write to a frozen database until the backup is completed and the
SYSCS_UTIL.SYSCS UNFREEZE_DATABASE system procedure is called.

The following example demonstrates how the freeze and unfreeze procedures are used
to surround an operating system copy command:

public static void backUpDat abaseW t hFreeze(Connecti on conn)
throws SQLException

{

Statenment s = conn. createStatenment();
s. execut eUpdat e(

"CALL SYSCS_UTI L. SYSCS_FREEZE_DATABASE() ") ;
// copy the database directory during this interval
S. execut eUpdat e(

"CALL SYSCS_UTI L. SYSCS_UNFREEZE_DATABASE() ") ;
s.cl ose();

}

When the log is in a non-default location
Note: Read Logging on a separate device to find out about the default location of the
database log.

If you put the database log in a non-default location prior to backing up the database, be
aware of the following requirements:

« If you are using an operating system command to back up the database, you must
explicitly copy the log file as well, as shown in the following example:

xcopy d:\ nydat abases\ sanpl e c:\ nmybackups\ 2005- 06- 01\ sanple /s /i
xcopy h:\janet\tourslog\log c:\nybackups\2005-06-01\sanple\log /s /i

If you are not using Windows, substitute the appropriate operating system command for
copying a directory and all of its contents to a new location.

 Edit the logDevice entry in service.properties of the database backup so that it
points to the correct location for the log. In the previous example, the log was
moved to the default location for a log, so you can remove the logDevice entry
entirely, or leave the logDevice entry as is and wait until the database is restored to
edit the entry.

See Logging on a separate device for information about putting the log in a non-default
location.

Backing up encrypted databases

When you back up an encrypted database, both the backup and the log files remain
encrypted.

To restore an encrypted database, you must know the boot password.

Restoring a database from a backup copy

To restore a database by using a full backup from a specified location, specify the
r est or eFr om=Pat h attribute in the boot time connection URL.

62

Java DB Server and Administration Guide

If a database with the same name exists in the derby.system.home location, the system
will delete the database, copy it from the backup location, and then restart it.

The log files are copied to the same location they were in when the backup was taken.
You can use the | ogDevi ce attribute in conjunction with the r est or eFr onePat h
attribute to store logs in a different location.

For example, to restore the sample database by using a backup copy in
c: \ mybackups\ sanpl e, the connection URL should be:

j dbc: der by: sanpl e; r est or eFr on¥c: \ nybackups\ sanpl e

For more information, see "restoreFrom=path attribute" in the Java DB Reference
Manual.

Creating a database from a backup copy

To create a database from a full backup copy at a specified location, specify the
cr eat eFr onePat h attribute in the boot time connection URL.

If there is already a database with the same name in derby.system.home, an error will
occur and the existing database will be left intact. If there is not an existing database
with the same name in the current derby.system.home location, the system will copy the
whole database from the backup location to derby.system.home and start it.

The log files are also copied to the default location. You can use the | ogDevi ce attribute
in conjunction with the cr eat eFr om=Pat h attribute to store logs in a different location.
With the cr eat eFr om=Pat h attribute, you do not need to copy the individual log files to
the log directory.

For example, to create the sample database from a backup copy in
c: \ mybackups\ sanpl e, the connection URL should be:

j dbc: der by: sanpl e; cr eat eFr onrc: \ nybackups\ sanpl e

For more information, see "createFrom=path attribute" in the Java DB Reference Manual.

Roll-forward recovery

Derby supports roll-forward recovery to restore a damaged database to the most recent
state before a failure occurred.

Derby restores a database from full backup and replays all the transactions after the
backup. All the log files after a backup are required to replay the transactions after the
backup. By default, the database keeps only logs that are required for crash-recovery.
For roll-forward recovery to be successful, all log files must be archived after a backup.
Log files can be archived using the backup function calls that enable log archiving.

In roll-forward recovery the log archival mode ensures that all old log files are available.
The log files are available only from the time that the log archival mode is enabled.

Derby uses the following information to restore the database:
» The backup copy of the database
* The set of archived logs
« The current online active log

You cannot use roll-forward recovery to restore individual tables. Roll-forward recovery
recovers the entire database.

To restore a database by using roll-forward recovery, you must already have a backup
copy of the database, all the archived logs since the backup was created, and the active
log files. All the log files should be in the database log directory.

63

Java DB Server and Administration Guide
There are two types of log files in Derby: active logs and online archived logs.

Active logs
Active logs are used during crash recovery to prevent a failure that might leave a
database in an inconsistent state. Roll-forward recovery can also use the active logs
to recover to the end of the log files. Active logs are located in the database log path
directory.

Online archived logs
Log files that are stored for roll-forward recovery use when they are no longer needed
for crash recovery. Online archived logs are also kept in the database log path
directory.

Enabling log archival mode

Online archive logs are available only if the database is enabled for log archival mode.
You can use the following system procedure to enable the database for log archival
mode:

SYSCS_UTI L. SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG ARCHI VE_MODE
(I'N BACKUPDI R VARCHAR(32672), | N SMALLI NT DELETE_ARCH VED LOG FI LES)

The input parameters for the calls in the previous example specify the location

where the backup should be stored and specify whether or not the database should
keep online archived logs for the backup. Existing online archived log files that

were created before this backup will be deleted if the input parameter value for the
deleteOnlineArchivedLogFiles parameter is non-zero. The log files are deleted only after
a successful backup.

Note: Make sure to store the backup database in a safe place when you choose the log
file removal option.

The
SYSCS_UTIL.SYSCS_BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE
procedure will issue an error if there are any unlogged operations in the same transaction
as backup procedure.

If any unlogged operations are in progress in other transactions in the system when

the backup starts, this procedure will block until those transactions are complete before
performing the backup. Derby automatically converts unlogged operations to logged
mode if they are started while the backup is in progress (except operations that maintain
application jar files in the database). Procedures to install, replace, and remove jar files in
a database are blocked while the backup is in progress.

If you do not want backup to block until unlogged operations

in other transactions are complete, use the

SYSCS_UTIL.SYSCS BACKUP_DATABASE_AND_ENABLE_LOG_ARCHIVE_MODE_NOWAIT
procedure. This procedure issues an error immediately at the start of the backup if there

are any transactions in progress with unlogged operations, instead of waiting for those
transactions to complete.

Disabling log archival mode:

After you enable log archival mode, the database will always have the log archival mode
enabled even if it is subsequently booted or backed up. The only way to disable the log
archive mode is to run the following procedure:

SYSCS_UTI L. SYSCS_DI SABLE_LOG_ARCHI VE_MODE(| N SMALLI NT
DELETE_ARCHI VED_LOG FI LES)

This system procedure disables the log archive mode and deletes any existing online
archived log files if the input parameter DELETE_ARCHIVED _LOG_FILES is non-zero.

Performing roll-forward recovery:

64

Java DB Server and Administration Guide

By using the full backup copy, archived logs, and active logs, you can restore a database
to its most recent state by performing roll-forward recovery. You perform a roll-forward
recovery by specifying the connection URL attribute rollForwardRecoveryFrom=path

at boot time. This brings the database to its most recent state by using full backup

copy, archived logs, and active logs. All the log files should be in the database log path
directory.

For more information, see "rollIForwardRecoveryFrom=path attribute" in the Java DB
Reference Manual.

Backing up a database:

In the following example, a database named wombat is backed up to the d:/backup
directory with log archive mode enabled:

connect 'jdbc: derby: wonbat ; creat e=true';

create table t1(a int not null primry key);

------------------ DM/ DDL Oper ati ons

CALL SYSCS _UTI L. SYSCS_BACKUP_DATABASE _AND ENABLE_LOG ARCH VE_MODE
('d:/backup', 0);

insert into tl values(19);

create table t2(a int);

----------------- DML/ DDL Oper ati ons

----------------- Dat abase Crashed (Media Corruption on data di sks)

Restoring a database using roll-forward recovery:

In the following example, the database is restored using roll-forward recovery after a
media failure:

connect 'jdbc: derby: wonbat ; rol | For war dRecover yFr om=d: / backup/ wonbat ' ;
select * fromtl;
--------------- DM/ DDL Oper ati ons

After a database is restored from full backup, transactions from the online archived logs
and active logs are replayed.

Replicating databases

Replication is an important feature of a robust database management system. In Derby,
you start database replication by using connection URL attributes.

The replication capability of Derby has the following features:

« One master, one slave: A replicated database resides in two locations and is
managed by two different Derby instances. One of these Derby instances has the
master role for this database, and the other has the slave role. Typically, the master
and slave run on different nodes, but this is not a requirement. Together, the master
and its associated slave represent a replication pair.

* Roll-forward shipped log: Replication is based on shipping the Derby transaction
log from the master to the slave, and then rolling forward the operations described
in the log to the slave database.

* Asymmetry: Only the master processes transactions. The slave processes no
transactions, not even read operations.

» Asynchronicity: Transactions are committed on the master without waiting for the
slave. The shipping of the transaction log to the slave is performed regularly, and is
completely decoupled from the transaction execution at the master. This may lead
to a few lost transactions if the master crashes.

» Shared nothing: Apart from the network line, no hardware is assumed to be
shared.

65

Java DB Server and Administration Guide

Starting and

« Replication granularity: The granularity for replication is exactly one database.
However, one Derby instance may have different roles for different databases. For
example, one Derby instance may have the following roles, all at the same time:

« The master role for one database D1 replicated to one node
* The slave role for a database D2 replicated from another node
« The normal, non-replicated, role for a database D3

Replication builds on Derby's ability to recover from a crash by starting with a backup and
rolling forward Derby's transaction log files. The master sends log records to the slave
using a network connection. The slave then writes these log records to its local log and
redoes them.

If the master fails, the slave completes the recovery by redoing the log that has not
already been processed. The state of the slave after this recovery is close to the state
the master had when it crashed. However, some of the last transactions performed on
the master may not have been sent to the slave and may therefore not be reflected.
When the slave has completed the recovery work, it is transformed into a normal Derby
instance that is ready to process transactions. For more details, see Forcing a failover
and Replication and security.

Several Derby properties allow you to specify the size of the replication log buffers
and the intervals between log shipments, as well as whether replication messages are
logged. See the Java DB Reference Manual for details.

You can perform replication on a database that runs in either embedded mode or
Network Server mode.

running replication

Each replicated database is replicated from a master to a slave version of that database.
Initially there is no replication; a master database must be created before it can be
replicated. The database may, of course, be empty when replication starts. On the other
hand, replication does not need to be specified immediately after the database is created;
it can be initiated at any time after the database is created.

Before you start replication, you must shut down the master database and then copy the
database to the slave location. Follow these steps to start replication:

1. Make sure that the database on the master system is shut down cleanly.

2. Copy the database to the slave location.

3. Start slave replication mode on the Derby instance that is acting as the slave for
the database. To start slave replication, use the startSlave=true attribute and,
optionally, the slaveHost=hostname and slavePort=portValue attributes. For
example, for a database named wonbat , you might use the following connection
URL:

j dbc: der by: wonbat ; start Sl ave=t rue

4. Start master replication mode on the Derby instance that is acting as the master for
the database. To start replication, connect to the database on the master system
using the startMaster=true attribute in conjunction with the slaveHost=hostname
attribute (and, optionally, the slavePort=portValue attribute). For example, you might
use the following connection URL:

j dbc: der by: wonbat ; st art Mast er =t r ue; sl aveHost =nmyr enpt esyst em
A successful use of the startMaster=true attribute will also start the database.

See the Java DB Reference Manual for details about these attributes.

66

Java DB Server and Administration Guide

After replication has been started, the slave is ready to receive logged operations from
the master. The master can now continue to process transactions. From this point on, the
master forwards all logged operations to the slave in chunks. The slave repeats these
operations by applying the contents of the Derby transaction log, but does not process
any other operations. Attempts to connect to the slave database are refused. In case of
failure, the slave can recover to the state the master was in at the time the last chunk of
the transaction log was sent.

While replication is running, neither the slave or the master database is permitted to be
shut down. Replication must be stopped before you can shut down either the slave or the
master database. There is one exception to this rule: if the entire system is shut down,
the peer that is shut down notifies the other replication peer that replication is stopped.

If you install jar files on the master system while replication is running, the same jars are
not automatically installed on the slave. But because the transaction log information sent
to the slave system includes the jar file installation, the slave database has a record of
the jar files, even though they are not actually there. Therefore, you must install the jar
files on the former slave after a failover by calling either SQLJ. r enove_j ar followed by
SQLJ.install _jar,orSQ.J.replace_j ar. (For information on installing jar files,
see "Storing jar files in a database" in the Java DB Tools and Utilities Guide.)

If the jar files must be available to clients immediately after a failover, you must stop
replication and then start replication over again from the beginning, so that the slave
database will have the same jar files as the master.

Stopping replication

To stop replication of a database, connect to the master database using the
stopMaster=true connection URL attribute. The master sends the remaining log records
that await shipment, and then sends a stop replication command to the slave. The slave
then writes all logs to disk and shuts down the database. For example, for a database
named wonbat , you might specify the following connection URL:

j dbc: der by: wonbat ; st opMast er =t r ue

To stop replication on the slave system if the connection to the master is lost, use the
stopSlave=true connection URL attribute.

See the Java DB Reference Manual for details about these attributes.

You cannot resume replication after it has been stopped. You need to start replication
over again from the beginning using the startMaster=true attribute, as described in
Starting and running replication.

Forcing a failover

At any time, you can transform the Derby database that has the slave role into a normal
Derby database that can process transactions. This transformation from being a slave
to becoming an active Derby database is called failover. During failover, the slave
applies the parts of the transaction log that have not yet been processed. It then undoes
operations that belong to uncommitted transactions, resulting in a transaction-consistent
state that includes all transactions whose commit log record has been sent to the slave.

You perform failover from the master system. To do so, you connect to the database on
the master system using the failover=true connection URL attribute. For example, for a
database named worbat , you might specify the following connection URL:

j dbc: der by: wonbat ; f ai | over =true

67

Java DB Server and Administration Guide

If the network connection between the master system and the slave system is lost, you
can perform failover from the slave system.

See the Java DB Reference Manual for details about the failover=true attribute.

There is no automatic failover or restart of replication after one of the instances has
failed.

Replication and security

If you want to perform replication with the security manager enabled, you must modify
the security policy file on both the master and slave systems to allow the master-slave
network connection. The section to be modified is the one following this line:

grant codeBase "${derby.install.url}derby.jar"

Add the following permission to the policy file on the master system:

perni ssi on java. net. Socket Perm ssi on "sl aveHost : sl avePort ™",
"connect, resol ve";

Add the following permission to the policy file on the slave system:

permi ssi on java. net. Socket Pernmi ssion "sl aveHost", "accept, resol ve";

slaveHost and slavePort are the values you specify for the slaveHost=hostname and
slavePort=portValue attributes, which are described in the Java DB Reference Manual.

See Basic Network Server security policy for details on the security policy file.

Depending on the security mode Derby is running under, the measures described in the
following table are enforced when you specify the replication-related connection URL
attributes.

Table 7. Replication behavior with Derby security

Security mode Replication attribute requirements

No security Anyone may specify the replication attributes

Authentication is turned | Normal Derby connection policy: specify valid
on user=userName and password=userPassword attributes

Authorization is turned The user=userName and password=userPassword
on attributes must be valid, and the user must be the owner of
the replicated database

Replication failure handling

Replication can encounter several failure situations. The following table lists these
situations and describes the actions that Derby takes as a result.

Table 8. Replication failure handling

Failure situation Action taken

Master loses connection | Transactions are allowed to continue processing while
with slave. the master tries to reconnect with the slave. Log records

68

Java DB Server and Administration Guide

Failure situation

Action taken

generated while the connection is down are buffered

in main memory. If the log buffer reaches its size limit
before the connection can be reestablished, the master
replication functionality is stopped. You can use the property
derby.replication.logBufferSize to configure the size limit of
the buffer; see the Java DB Reference Manual for details.

Slave loses connection
with master.

The slave tries to reestablish the connection with the master
by listening on the specified host and port. It will not give

up until it is explicitly requested to do so by either the
failover=true or stopSlave=true connection URL attribute.

If a failover is requested, the slave applies all received log
records and boots the database as described in Forcing a
failover. If the stopSlave=true attribute is specified, the slave
database is shut down without further actions.

Two different masters
of database D try to
replicate to the same
slave.

The slave will only accept the connection from the first
master attempting to connect. Note that authentication is
required to start both the slave and the master, as described
in Replication and security.

The master and slave
Derby instances are
not at the same Derby
version.

An exception is raised and replication does not start.

The master Derby
instance crashes, then
restarts.

Replication must be restarted, as described in Starting and
running replication.

The master Derby
instance is not able to
send log data to the
slave at the same pace
as the log is generated.
The main memory log
buffer gradually fills up
and eventually becomes
full.

The master notices that the main memory log buffer is filling
up. It first tries to increase the speed of the log shipment to
keep the amount of log in the buffer below the maximum.

If that is not enough to keep the buffer from getting full,

the response time of transactions may increase for as long
as log shipment has trouble keeping up with the amount

of generated log records. You can use properties to tune
both the log buffer size and the minimum and maximum
interval between consecutive log shipments. See the Java
DB Reference Manual for details.

The slave Derby
instance crashes.

The master sees this as a lost connection to the slave. The
master tries to reestablish the connection until the replication
log buffer is full. Replication is then stopped on the master.
Replication must be restarted, as described in Starting and
running replication.

An unexpected failure is
encountered.

Replication is stopped. The other Derby instance of the
replication pair is notified of the decision if the network
connection is still alive.

Logging on a separate device

You can improve the performance of update-intensive, large databases by putting a
database's log on a separate device, which reduces I/O contention.

69

Java DB Server and Administration Guide

By default, the transaction log is in the log subdirectory of the database directory. Use
either of the following methods to store this log subdirectory in another location:

 Specify the non-default location by using the logDevice=logDirectoryPath attribute
on the database connection URL when you create the database.

« If the database is already created, move the log manually and update the
service.properties file.

Using the logDevice=logDirectoryPath attribute

To specify a non-default location for the log directory, set the
| ogDevi ce=l ogDi r ect or yPat h attribute on the database connection URL when you
create the database.

This attribute is meaningful only when you are creating a database. You can specify
| ogDevi ce=l ogDi r ect or yPat h as either an absolute path or as a path that is relative
to the directory where the JVM is executed.

Setting | ogDevi ce=l ogDi r ect or yPat h on the database connection URL adds an
entry to the service.properties file. If you ever move the log manually, you will need to
alter the entry in service.properties. If you move the log back to the default location,
remove the logDevice entry from the service.properties file.

To check the log location for an existing database, you can retrieve the
| ogDevi ce=l ogDi r ect or yPat h attribute as a database property by using the
following statement:

VALUES SYSCS_UTI L. SYSCS_GET_DATABASE_PROPERTY(' | ogDevi ce')

For more information, see "logDevice=logDirectoryPath attribute" in the Java DB
Reference Manual.

Example of creating alog in a non-default location

The following database connection URL creates a database in the directory
d: / mydat abases, but puts the database log directory in h: / j anet s/ t our sl 0g:

j dbc: der by: d: / nydat abases/ t our sDB;
create=true; | ogDevi ce=h:/janets/toursl og

Example of moving a log manually

If you want to move the log to g: / bi gdi sk/ t our sl og, move the log with operating
system commands:

move h:\janets\tourslog\log*.* g:\bigdisk\toursl og\l og

Then, alter the logDevice entry in service.properties to read as follows:

| ogDevi ce=g: / bi gdi sk/toursLog

Note: You can use either a single forward slash or double back slashes for a path
separator.

If you later want to move the log back to its default location (in this case,
d: \ mydat abases\t our sDB\ | 0g), move the log manually as follows:

nmove g:\bigdi sk\tourslog\log*.* d:\nydat abases\toursDB\I og

Then, delete the logDevice entry from service.properties.

70

Java DB Server and Administration Guide

Note: This example uses commands that are specific to the Windows NT operating
system. Use commands appropriate to your operating system to copy a directory and all
of its contents to a new location.

Issues for logging in a non-default location

When the log is not in the default location, backing up and restoring a database can
require extra steps. See Backing up and restoring databases for details.

Obtaining locking information

Derby provides a tool to monitor and display locking information. This tool can help you
create applications that minimize deadlock. It can also help you locate the cause of
deadlock when it does occur.

To diagnose locking problems, constantly monitor locking traffic by logging all deadlocks
by using the derby.locks.monitor property.

Monitoring deadlocks

The der by. stream error. | ogSeveritylLevel property determines the level of
error that you are informed about.

By default, der by. st ream error. | ogSeverityLevel is setto 40000. If
derby.streamerror.| ogSeveritylLevel is setto display transaction-level
errors (that is, if it is set to a value less than 40000), deadlock errors are logged to the
der by. | og file. If it is set to a value of 40000 or higher, deadlock errors are not logged
to the der by. | og file.

The der by. | ocks. noni t or property ensures that deadlock errors are logged
regardless of the value of der by. stream error. | ogSeveritylLevel . When
der by. | ocks. noni t or is set to true, all locks that are involved in deadlocks are
written to der by. | og along with a uniqgue number that identifies the lock.

To see a thread's stack trace when a lock is requested, set
der by. | ocks. deadl ockTr ace to true. This property is ignored if
der by. | ocks. noni t or is set to false.

Note: Use der by. | ocks. deadl ockTr ace with care. Setting this property can alter
the timing of the application, severely affect performance, and produce a very large
der by. | og file.

For information about working with properties, see the Java DB Developer's Guide. For
information about the specific properties that are mentioned in this topic, see the Java DB
Reference Manual.

Here is an example of an error message when Derby aborts a transaction because of a
deadlock:

- - SQLExcepti on Caught - -

SQ.State: 40001 =

Error Code: 30000

Message: A lock coul d not be obtained due to a deadl ock,

cycle of locks and waiters is: Lock : ROW DEPARTMENT, (1,14)
Waiting XID : {752, X} , APP, update departnent set |ocation="Boise'
wher e dept no=" E21'

Ganted XID : {758, X} Lock : RON EMPLOYEE, (2,8)

Waiting XID: {758, U , APP, update enpl oyee set bonus=150 where
sal ary=23840

Ganted XID : {752, X} The selected victimis XID: 752

71

Java DB Server and Administration Guide

Note: You can use the der by. | ocks. wai t Ti neout and

der by. | ocks. deadl ockTi neout properties to configure how long Derby waits for

a lock to be released, or when to begin deadlock checking. For more information about
these properties, see the section that discusses controlling Derby application behavior in
the Java DB Developer's Guide.

Reclaiming unused space

A Derby table or index (sometimes called a conglomerate) can contain unused space
after large amounts of data have been deleted or updated.

This happens because, by default, Derby does not return unused space to the operating
system. After a page has been allocated to a table or index, Derby does not automatically
return the page to the operating system until the table or index is dropped, even if the
space is no longer needed. However, Derby does provide a way to reclaim unused space
in tables and associated indexes.

If you determine that a table and its indexes have a significant amount of

unused space, use either the SYSCS_UTIL.SYSCS_COMPRESS_TABLE or

SYSCS _UTIL.SYSCS INPLACE_COMPRESS_ TABLE procedure to reclaim that
space. SYSCS_COMPRESS_TABLE is guaranteed to recover the maximum amount
of free space, at the cost of temporarily creating new tables and indexes before the
statement is committed. SYSCS_INPLACE_COMPRESS attempts to reclaim space
within the same table, but cannot guarantee it will recover all available space. The
difference between the two procedures is that unlike SYSCS_COMPRESS_TABLE, the
SYSCS_INPLACE_COMPRESS procedure uses no temporary files and moves rows
around within the same conglomerate.

You can use the SYSCS_ DIAG.SPACE_TABLE diagnostic table to estimate the
amount of unused space in a table or index by examining, in particular, the values of the
NUMFREEPAGES and ESTIMSPACESAVING columns. For example:

SELECT * FROM TABLE(SYSCS_DI AG. SPACE_TABLE(' APP', ' FLI GHTAVAI LABI LI TY"))
AS T

For more information about SYSCS_DIAG.SPACE_TABLE, see "SYSCS_DIAG
diagnostic tables and functions” in the Java DB Reference Manual.

As an example, after you have determined that the FlightAvailability table and its related
indexes have too much unused space, you could reclaim that space with the following
command:

cal | SYSCS_UTI L. SYSCS_COWRESS_TABLE(' APP', ' FLI GHTAVAI LABI LI TY', 0);

The third parameter in the SYSCS_UTIL.SYSCS_COMPRESS_TABLE() procedure
determines whether the operation will run in sequential or non-sequential mode. If you
specify 0 for the third argument in the procedure, the operation will run in non-sequential
mode. In sequential mode,Derby compresses the table and indexes sequentially, one

at a time. Sequential compression uses less memory and disk space but is slower. To
force the operation to run in sequential mode, substitute a non-zero SMALLINT value for
the third argument. The following example shows how to force the procedure to run in
sequential mode:

cal | SYSCS_UTI L. SYSCS_COWMPRESS _TABLE(' APP', ' FLI GHTAVAI LABI LI TY', 1);

For more information about this command, see the Java DB Reference Manual.

72

Java DB Server and Administration Guide

Trademarks

The following terms are trademarks or registered trademarks of other companies and
have been used in at least one of the documents in the Apache Derby documentation
library:

Cloudscape, DB2, DB2 Universal Database, DRDA, and IBM are trademarks of
International Business Machines Corporation in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft
Corporation in the United States, other countries, or both.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

73

	Cover
	Contents
	Copyright
	License
	Relationship between Java DB and
Apache Derby
	About this guide
	Purpose of this guide
	Audience
	How this guide is organized

	Part one: Derby Server Guide
	Derby in a multi-user environment
	Derby in a server framework
	Connectivity configurations
	Multiple-client features available in Derby
	Row-level locking
	Multiple concurrency levels
	Multi-connection and multi-threading
	Administrative tools

	The Derby Network Server
	Embedded servers
	How to start an embedded server from an application
	Embedded server example

	About this guide and the Network Server documentation

	Using the Network Server with preexisting Derby applications
	The Network Server and JVMs
	Installing required jar files and adding them to the classpath
	Starting the Network Server
	Starting the Network Server from a Java application
	Starting the Network Server on IPv6/Ipv4 dual stack Windows machines

	Shutting down the Network Server
	Shutting down by using the command line
	Shutting down by using the API

	Obtaining system information
	Obtaining system information by using the command line
	Obtaining system information by using the API
	Obtaining Network Server runtime information
	Obtaining Network Server properties by using the getCurrent Properties
method

	Accessing the Network Server by using the network client driver
	Network client security
	Network client tracing
	Network client driver examples

	Accessing the Network Server by using a DataSource object
	DataSource access examples

	XA and the Network Server
	Using XA with the network client driver

	Using the Derby tools with the Network Server
	Using the Derby ij tool with the Network Server
	Using the Derby dblook tool with the Network Server

	Differences between running Derby in embedded mode and using the Network
Server
	Differences between the embedded client and the network client driver
	Updatable Result Sets
	Error message differences
	User authentication differences
	Security mechanism options when user authentication is enabled on the
Network Server
	Security mechanism options when user authentication is disabled on the
Network Server
	Enabling the encrypted user ID and password security mechanism

	Differences in JDBC 3.0 methods
	Differences using the Connection.setReadOnly method

	Setting port numbers

	Managing the Derby Network Server
	Overview
	Using the NetworkServerControl API

	Setting Network Server properties
	derby.drda.host property
	derby.drda.keepAlive property
	derby.drda.logConnections property
	derby.drda.maxThreads property
	derby.drda.minThreads property
	derby.drda.portNumber property
	derby.drda.securityMechanism property
	derby.drda.sslMode property
	derby.drda.startNetworkServer property
	derby.drda.streamOutBufferSize property
	derby.drda.timeSlice property
	derby.drda.traceAll property
	derby.drda.traceDirectory property

	Verifying Startup

	Managing the Derby Network Server remotely by using the servlet interface
	Start-up page
	Running page
	Trace session page
	Trace directory page
	Set Network Server parameters

	Derby Network Server advanced topics
	Network Server security
	Running the Network Server under the security manager
	Basic Network Server security policy
	Customizing the Network Server's security policy
	Running the Network Server without a security policy

	Running the Network Server with User Authentication
	Network encryption and authentication with SSL/TLS
	Key and certificate handling
	Starting the server with SSL/TLS
	Running the client with SSL/TLS
	Other server commands

	Configuring the Network Server to handle connections
	Controlling logging by using the log file
	Controlling tracing by using the trace facility
	Turning on the trace facility
	Turning off the trace facility

	Derby Network Server sample programs
	The NsSample sample program
	Running the NsSample sample program

	Network Server sample programs for embedded and client connections
	Overview of the SimpleNetworkServerSample program
	Running the SimpleNetworkServerSample program
	Connecting a client to the Network Server with the SimpleNetworkClientSample
program
	Running the SimpleNetworkClientSample program

	Part two: Derby Administration Guide
	Checking database consistency
	The SYSCS_CHECK_TABLE function
	Sample SYSCS_CHECK_TABLE error messages
	Sample SYSCS_CHECK_TABLE queries

	Backing up and restoring databases
	Backing up a database
	Offline backups
	Online backups
	Using the backup procedure to perform an online backup
	Using operating system commands with the freeze and unfreeze system
procedures to perform an online backup

	When the log is in a non-default location
	Backing up encrypted databases

	Restoring a database from a backup copy
	Creating a database from a backup copy
	Roll-forward recovery

	Replicating databases
	Starting and running replication
	Stopping replication
	Forcing a failover
	Replication and security
	Replication failure handling

	Logging on a separate device
	Using the logDevice=logDirectoryPath attribute
	Example of creating a log in a non-default location
	Example of moving a log manually
	Issues for logging in a non-default location

	Obtaining locking information
	Monitoring deadlocks

	Reclaiming unused space

	Trademarks

