Document Information

Preface

Part I Introduction

1.  Overview

2.  Using the Tutorial Examples

Part II The Web Tier

3.  Getting Started with Web Applications

4.  Java Servlet Technology

5.  JavaServer Pages Technology

6.  JavaServer Pages Documents

7.  JavaServer Pages Standard Tag Library

8.  Custom Tags in JSP Pages

9.  Scripting in JSP Pages

10.  JavaServer Faces Technology

11.  Using JavaServer Faces Technology in JSP Pages

12.  Developing with JavaServer Faces Technology

13.  Creating Custom UI Components

14.  Configuring JavaServer Faces Applications

15.  Internationalizing and Localizing Web Applications

Part III Web Services

16.  Building Web Services with JAX-WS

17.  Binding between XML Schema and Java Classes

18.  Streaming API for XML

19.  SOAP with Attachments API for Java

Part IV Enterprise Beans

20.  Enterprise Beans

What Is an Enterprise Bean?

Benefits of Enterprise Beans

When to Use Enterprise Beans

Types of Enterprise Beans

What Is a Session Bean?

State Management Modes

Stateful Session Beans

Stateless Session Beans

When to Use Session Beans

What Is a Message-Driven Bean?

What Makes Message-Driven Beans Different from Session Beans?

When to Use Message-Driven Beans

Defining Client Access with Interfaces

Remote Clients

Local Clients

Deciding on Remote or Local Access

Web Service Clients

Method Parameters and Access

Isolation

Granularity of Accessed Data

The Contents of an Enterprise Bean

Naming Conventions for Enterprise Beans

Further Information about Enterprise Beans

21.  Getting Started with Enterprise Beans

22.  Session Bean Examples

23.  A Message-Driven Bean Example

Part V Persistence

24.  Introduction to the Java Persistence API

25.  Persistence in the Web Tier

26.  Persistence in the EJB Tier

27.  The Java Persistence Query Language

Part VI Services

28.  Introduction to Security in the Java EE Platform

29.  Securing Java EE Applications

30.  Securing Web Applications

31.  The Java Message Service API

32.  Java EE Examples Using the JMS API

33.  Transactions

34.  Resource Connections

35.  Connector Architecture

Part VII Case Studies

36.  The Coffee Break Application

37.  The Duke's Bank Application

Part VIII Appendixes

A.  Java Encoding Schemes

B.  About the Authors

Index

 

The Life Cycles of Enterprise Beans

An enterprise bean goes through various stages during its lifetime, or life cycle. Each type of enterprise bean (stateful session, stateless session, or message-driven) has a different life cycle.

The descriptions that follow refer to methods that are explained along with the code examples in the next two chapters. If you are new to enterprise beans, you should skip this section and run the code examples first.

The Life Cycle of a Stateful Session Bean

Figure 20-3 illustrates the stages that a session bean passes through during its lifetime. The client initiates the life cycle by obtaining a reference to a stateful session bean. The container performs any dependency injection and then invokes the method annotated with @PostConstruct, if any. The bean is now ready to have its business methods invoked by the client.

Figure 20-3 Life Cycle of a Stateful Session Bean

Diagram showing the life cycle of a stateful session bean.

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by moving it from memory to secondary storage. (Typically, the EJB container uses a least-recently-used algorithm to select a bean for passivation.) The EJB container invokes the method annotated @PrePassivate, if any, immediately before passivating it. If a client invokes a business method on the bean while it is in the passive stage, the EJB container activates the bean, calls the method annotated @PostActivate, if any, and then moves it to the ready stage.

At the end of the life cycle, the client invokes a method annotated @Remove, and the EJB container calls the method annotated @PreDestroy, if any. The bean’s instance is then ready for garbage collection.

Your code controls the invocation of only one life-cycle method: the method annotated @Remove. All other methods in Figure 20-3 are invoked by the EJB container. See Chapter 34, Resource Connections for more information.

The Life Cycle of a Stateless Session Bean

Because a stateless session bean is never passivated, its life cycle has only two stages: nonexistent and ready for the invocation of business methods. Figure 20-4 illustrates the stages of a stateless session bean.

Figure 20-4 Life Cycle of a Stateless Session Bean

Diagram showing the life cycle of a stateless session bean.

The client initiates the life cycle by obtaining a reference to a stateless session bean. The container performs any dependency injection and then invokes the method annotated @PostConstruct, if any. The bean is now ready to have its business methods invoked by the client.

At the end of the life cycle, the EJB container calls the method annotated @PreDestroy, if any. The bean’s instance is then ready for garbage collection.

The Life Cycle of a Message-Driven Bean

Figure 20-5 illustrates the stages in the life cycle of a message-driven bean.

Figure 20-5 Life Cycle of a Message-Driven Bean

Diagram showing the life cycle of a message-driven bean.

The EJB container usually creates a pool of message-driven bean instances. For each instance, the EJB container performs these tasks:

  1. If the message-driven bean uses dependency injection, the container injects these references before instantiating the instance.

  2. The container calls the method annotated @PostConstruct, if any.

Like a stateless session bean, a message-driven bean is never passivated, and it has only two states: nonexistent and ready to receive messages.

At the end of the life cycle, the container calls the method annotated @PreDestroy, if any. The bean’s instance is then ready for garbage collection.