Document Information


Part I Introduction

1.  Overview

2.  Using the Tutorial Examples

Part II The Web Tier

3.  Getting Started with Web Applications

4.  JavaServer Faces Technology

5.  Introduction to Facelets

6.  Expression Language

Overview of the EL

Value and Method Expressions

Value Expressions

Referencing Objects Using Value Expressions

Referring to Object Properties Using Value Expressions

Where Value Expressions Can Be Used

Method Expressions

Parameterized Method Calls

Defining a Tag Attribute Type

Literal Expressions


Reserved Words

Examples of EL Expressions

7.  Using JavaServer Faces Technology in Web Pages

8.  Using Converters, Listeners, and Validators

9.  Developing with JavaServer Faces Technology

10.  JavaServer Faces Technology: Advanced Concepts

11.  Using Ajax with JavaServer Faces Technology

12.  Composite Components: Advanced Topics and Example

13.  Creating Custom UI Components and Other Custom Objects

14.  Configuring JavaServer Faces Applications

15.  Java Servlet Technology

16.  Uploading Files with Java Servlet Technology

17.  Internationalizing and Localizing Web Applications

Part III Web Services

18.  Introduction to Web Services

19.  Building Web Services with JAX-WS

20.  Building RESTful Web Services with JAX-RS

21.  JAX-RS: Advanced Topics and Example

Part IV Enterprise Beans

22.  Enterprise Beans

23.  Getting Started with Enterprise Beans

24.  Running the Enterprise Bean Examples

25.  A Message-Driven Bean Example

26.  Using the Embedded Enterprise Bean Container

27.  Using Asynchronous Method Invocation in Session Beans

Part V Contexts and Dependency Injection for the Java EE Platform

28.  Introduction to Contexts and Dependency Injection for the Java EE Platform

29.  Running the Basic Contexts and Dependency Injection Examples

30.  Contexts and Dependency Injection for the Java EE Platform: Advanced Topics

31.  Running the Advanced Contexts and Dependency Injection Examples

Part VI Persistence

32.  Introduction to the Java Persistence API

33.  Running the Persistence Examples

34.  The Java Persistence Query Language

35.  Using the Criteria API to Create Queries

36.  Creating and Using String-Based Criteria Queries

37.  Controlling Concurrent Access to Entity Data with Locking

38.  Using a Second-Level Cache with Java Persistence API Applications

Part VII Security

39.  Introduction to Security in the Java EE Platform

40.  Getting Started Securing Web Applications

41.  Getting Started Securing Enterprise Applications

42.  Java EE Security: Advanced Topics

Part VIII Java EE Supporting Technologies

43.  Introduction to Java EE Supporting Technologies

44.  Transactions

45.  Resources and Resource Adapters

46.  The Resource Adapter Example

47.  Java Message Service Concepts

48.  Java Message Service Examples

49.  Bean Validation: Advanced Topics

50.  Using Java EE Interceptors

Part IX Case Studies

51.  Duke's Bookstore Case Study Example

52.  Duke's Tutoring Case Study Example

53.  Duke's Forest Case Study Example



Immediate and Deferred Evaluation Syntax

The EL supports both immediate and deferred evaluation of expressions. Immediate evaluation means that the expression is evaluated and the result returned as soon as the page is first rendered. Deferred evaluation means that the technology using the expression language can use its own machinery to evaluate the expression sometime later during the page’s lifecycle, whenever it is appropriate to do so.

Those expressions that are evaluated immediately use the ${} syntax. Expressions whose evaluation is deferred use the #{} syntax.

Because of its multiphase lifecycle, JavaServer Faces technology uses mostly deferred evaluation expressions. During the lifecycle, component events are handled, data is validated, and other tasks are performed in a particular order. Therefore, a JavaServer Faces implementation must defer evaluation of expressions until the appropriate point in the lifecycle.

Other technologies using the EL might have different reasons for using deferred expressions.

Immediate Evaluation

All expressions using the ${} syntax are evaluated immediately. These expressions can be used only within template text or as the value of a tag attribute that can accept runtime expressions.

The following example shows a tag whose value attribute references an immediate evaluation expression that gets the total price from the session-scoped bean named cart:

<fmt:formatNumber value="${}"/>

The JavaServer Faces implementation evaluates the expression ${}, converts it, and passes the returned value to the tag handler.

Immediate evaluation expressions are always read-only value expressions. The preceding example expression cannot set the total price, but instead can only get the total price from the cart bean.

Deferred Evaluation

Deferred evaluation expressions take the form #{expr} and can be evaluated at other phases of a page lifecycle as defined by whatever technology is using the expression. In the case of JavaServer Faces technology, its controller can evaluate the expression at different phases of the lifecycle, depending on how the expression is being used in the page.

The following example shows a JavaServer Faces h:inputText tag, which represents a text field component into which a user enters a value. The h:inputText tag’s value attribute references a deferred evaluation expression that points to the name property of the customer bean:

<h:inputText id="name" value="#{}" />

For an initial request of the page containing this tag, the JavaServer Faces implementation evaluates the #{} expression during the render-response phase of the lifecycle. During this phase, the expression merely accesses the value of name from the customer bean, as is done in immediate evaluation.

For a postback request, the JavaServer Faces implementation evaluates the expression at different phases of the lifecycle, during which the value is retrieved from the request, validated, and propagated to the customer bean.

As shown in this example, deferred evaluation expressions can be

  • Value expressions that can be used to both read and write data

  • Method expressions

Value expressions (both immediate and deferred) and method expressions are explained in the next section.