

JavaFX
JavaFX Architecture

Release 2.2.21

E22902-05

April 2013

The JavaFX platform is designed to enable application
developers to easily create and deploy rich client
applications that behave consistently across platforms.

JavaFX Architecture and Framework, Release 2.2.21

E22902-05

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

Primary Author: Cindy Castillo

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 JavaFX Architecture

Scene Graph .. 1-2
Java Public APIs for JavaFX Features ... 1-2
Graphics System ... 1-3
Glass Windowing Toolkit ... 1-3

Threads .. 1-4
Pulse ... 1-4

Media and Images .. 1-4
Web Component ... 1-5
CSS .. 1-5
UI Controls .. 1-6
Layout ... 1-7
2-D and 3-D Transformations... 1-8
Visual Effects... 1-8

iv

1

JavaFX Architecture 1-1

1JavaFX Architecture

The JavaFX is a set of Java libraries designed to enable developers to create and deploy
rich client applications that behave consistently across platforms. See the What is
JavaFX 2 document for a summary of what JavaFX has to offer.

Figure 1–1 illustrates the architectural components of the JavaFX platform. The
sections following the diagram describe each component and how the parts
interconnect. Below the JavaFX public APIs lies the engine that runs your JavaFX code.
It is composed of subcomponents that include the new JavaFX high performance
graphics engine, called Prism; the new small and efficient windowing system, called
Glass; a media engine, and a web engine. Although these components are not exposed
publicly, their descriptions can help you to better understand what runs a JavaFX
application.

■ Scene Graph

■ Java Public APIs for JavaFX Features

■ Graphics System

■ Glass Windowing Toolkit

■ Media and Images

■ Web Component

■ CSS

■ UI Controls

■ Layout

■ 2-D and 3-D Transformations

■ Visual Effects

Figure 1–1 JavaFX Architecture Diagram

Scene Graph

1-2 JavaFX Architecture and Framework

Scene Graph
The JavaFX scene graph, shown as part of the top layer in Figure 1–1, is the starting
point for constructing a JavaFX application. It is a hierarchical tree of nodes that
represents all of the visual elements of the application’s user interface. It can handle
input and can be rendered.

A single element in a scene graph is called a node. Each node has an ID, style class,
and bounding volume. With the exception of the root node of a scene graph, each node
in a scene graph has a single parent and zero or more children. It can also have the
following:

■ Effects, such as blurs and shadows

■ Opacity

■ Transforms

■ Event handlers (such as mouse, key and input method)

■ An application-specific state

Unlike in Swing and Abstract Window Toolkit (AWT), the JavaFX scene graph also
includes the graphics primitives, such as rectangles and text, in addition to having
controls, layout containers, images and media.

For most uses, the scene graph simplifies working with UIs, especially when rich UIs
are used. Animating various graphics in the scene graph can be accomplished quickly
using the javafx.animation APIs, and declarative methods, such as XML doc, also
work well.

The javafx.scene API allows the creation and specification of several types of
content, such as:

■ Nodes: Shapes (2-D and 3-D), images, media, embedded web browser, text, UI
controls, charts, groups, and containers

■ State: Transforms (positioning and orientation of nodes), visual effects, and other
visual state of the content

■ Effects: Simple objects that change the appearance of scene graph nodes, such as
blurs, shadows, and color adjustment

For more information, see the Working with the JavaFX Scene Graph document

Java Public APIs for JavaFX Features
The top layer of the JavaFX architecture shown in Figure 1–1 provides a complete set
of public APIs that support rich client application development. These APIs provide
unparalleled freedom and flexibility to construct rich client applications. The JavaFX
platform combines the best capabilities of the Java platform with comprehensive,
immersive media functionality into an intuitive and comprehensive one-stop
development environment. These new Java APIs for JavaFX features:

■ Allow the use of powerful Java features, such as generics, annotations, and
multithreading.

■ Make it easier for Web developers to use JavaFX from other JVM-based dynamic
languages, such as Groovy, and JavaScript.

■ Allow Java developers to use other system languages, such as Groovy, for writing
large or complex JavaFX applications.

Glass Windowing Toolkit

JavaFX Architecture 1-3

■ Allow the use of binding which includes support for the high performance lazy
binding, binding expressions, bound sequence expressions, and partial bind
reevaluation. Alternative languages (like Groovy) can use this binding library to
introduce binding syntax similar to that of JavaFX Script.

■ Extend the Java collections library to include observable lists and maps, which
allow applications to wire user interfaces to data models, observe changes in those
data models, and update the corresponding UI control accordingly.

The JavaFX APIs and programming model are a continuation of the JavaFX 1.x
product line. Most of the JavaFX APIs have been ported directly to Java. Some APIs,
such as Layout and Media, along with many other details, have been improved and
simplified based on feedback received from users of the JavaFX 1.x release. JavaFX
relies more on web standards, such as CSS for styling controls and ARIA for
accessibility specifications. The use of additional web standards is also under review.

Graphics System
The JavaFX Graphics System, shown in blue in Figure 1–1, is an implementation detail
beneath the JavaFX scene graph layer. It supports both 2-D and 3-D scene graphs. It
provides software rendering when the graphics hardware on a system is insufficient to
support hardware accelerated rendering.

Two graphics accelerated pipelines are implemented on the JavaFX platform:

■ Prism processes render jobs. It can run on both hardware and software renderers,
including 3-D. It is responsible for rasterization and rendering of JavaFX scenes.
The following multiple render paths are possible based on the device being used:

– DirectX 9 on Windows XP and Windows Vista

– DirectX 11 on Windows 7

– OpenGL on Mac, Linux, Embedded

– Java2D when hardware acceleration is not possible

The fully hardware accelerated path is used when possible, but when it is not
available, the Java2D render path is used because the Java2D render path is
already distributed in all of the Java Runtime Environments (JREs). This is
particularly important when handling 3-D scenes. However, performance is
better when the hardware render paths are used.

■ Quantum Toolkit ties Prism and Glass Windowing Toolkit together and makes
them available to the JavaFX layer above them in the stack. It also manages the
threading rules related to rendering versus events handling.

Glass Windowing Toolkit
The Glass Windowing Toolkit, shown in beige in the middle portion of Figure 1–1, is
the lowest level in the JavaFX graphics stack. Its main responsibility is to provide
native operating services, such as managing the windows, timers, and surfaces. It
serves as the platform-dependent layer that connects the JavaFX platform to the native
operating system.

The Glass toolkit is also responsible for managing the event queue. Unlike the Abstract
Window Toolkit (AWT), which manages its own event queue, the Glass toolkit uses
the native operating system’s event queue functionality to schedule thread usage. Also
unlike AWT, the Glass toolkit runs on the same thread as the JavaFX application. In
AWT, the native half of AWT runs on one thread and the Java level runs on another

Media and Images

1-4 JavaFX Architecture and Framework

thread. This introduces a lot of issues, many of which are resolved in JavaFX by using
the single JavaFX application thread approach.

Threads
The system runs two or more of the following threads at any given time.

■ JavaFX application thread: This is the primary thread used by JavaFX application
developers. Any “live” scene, which is a scene that is part of a window, must be
accessed from this thread. A scene graph can be created and manipulated in a
background thread, but when its root node is attached to any live object in the
scene, that scene graph must be accessed from the JavaFX application thread. This
enables developers to create complex scene graphs on a background thread while
keeping animations on 'live' scenes smooth and fast. The JavaFX application
thread is a different thread from the Swing and AWT Event Dispatch Thread
(EDT), so care must be taken when embedding JavaFX code into Swing
applications.

■ Prism render thread: This thread handles the rendering separately from the event
dispatcher. It allows frame N to be rendered while frame N +1 is being processed.
This ability to perform concurrent processing is a big advantage, especially on
modern systems that have multiple processors. The Prism render thread may also
have multiple rasterization threads that help off-load work that needs to be done
in rendering.

■ Media thread: This thread runs in the background and synchronizes the latest
frames through the scene graph by using the JavaFX application thread.

Pulse
A pulse is an event that indicates to the JavaFX scene graph that it is time to
synchronize the state of the elements on the scene graph with Prism. A pulse is
throttled at 60 frames per second (fps) maximum and is fired whenever animations are
running on the scene graph. Even when animation is not running, a pulse is scheduled
when something in the scene graph is changed. For example, if a position of a button
is changed, a pulse is scheduled.

When a pulse is fired, the state of the elements on the scene graph is synchronized
down to the rendering layer. A pulse enables application developers a way to handle
events asynchronously. This important feature allows the system to batch and execute
events on the pulse.

Layout and CSS are also tied to pulse events. Numerous changes in the scene graph
could lead to multiple layout or CSS updates, which could seriously degrade
performance. The system automatically performs a CSS and layout pass once per pulse
to avoid performance degradation. Application developers can also manually trigger
layout passes as needed to take measurements prior to a pulse.

The Glass Windowing Toolkit is responsible for executing the pulse events. It uses the
high-resolution native timers to make the execution.

Media and Images
JavaFX media functionality is available through the javafx.scene.media APIs.
JavaFX supports both visual and audio media. Support is provided for MP3, AIFF, and
WAV audio files and FLV video files. JavaFX media functionality is provided as three
separate components: the Media object represents a media file, the MediaPlayer plays
a media file, and a MediaView is a node that displays the media.

CSS

JavaFX Architecture 1-5

The Media Engine component, shown in green in Figure 1–1, has been designed with
performance and stability in mind and provides consistent behavior across platforms.
For more information, read the Incorporating Media Assets into JavaFX Applications
document.

Web Component
The Web component is a new JavaFX UI control, based on Webkit, that provides a Web
viewer and full browsing functionality through its API. This Web Engine component,
shown in orange in Figure 1–1, is based on WebKit, which is an open source web
browser engine that supports HTML5, CSS, JavaScript, DOM, and SVG. It enables
developers to implement the following features in their Java applications:

■ Render HTML content from local or remote URL

■ Support history and provide Back and Forward navigation

■ Reload the content

■ Apply effects to the web component

■ Edit the HTML content

■ Execute JavaScript commands

■ Handle events

This embedded browser component is composed of the following classes:

■ WebEngine provides basic web page browsing capability.

■ WebView encapsulates a WebEngine object, incorporates HTML content into an
application's scene, and provides fields and methods to apply effects and
transformations. It is an extension of a Node class.

In addition, Java calls can be controlled through JavaScript and vice versa to allow
developers to make the best of both environments. For more detailed overview of the
JavaFX embedded browser, see the Adding HTML Content to JavaFX Applications
document.

CSS
JavaFX Cascading Style Sheets (CSS) provides the ability to apply customized styling
to the user interface of a JavaFX application without changing any of that application's
source code. CSS can be applied to any node in the JavaFX scene graph and are
applied to the nodes asynchronously. JavaFX CSS styles can also be easily assigned to
the scene at runtime, allowing an application's appearance to dynamically change.

Figure 1–2 demonstrates the application of two different CSS styles to the same set of
UI controls.

UI Controls

1-6 JavaFX Architecture and Framework

Figure 1–2 CSS Style Sheet Sample

JavaFX CSS is based on the W3C CSS version 2.1 specifications, with some additions
from current work on version 3. The JavaFX CSS support and extensions have been
designed to allow JavaFX CSS style sheets to be parsed cleanly by any compliant CSS
parser, even one that does not support JavaFX extensions. This enables the mixing of
CSS styles for JavaFX and for other purposes (such as for HTML pages) into a single
style sheet. All JavaFX property names are prefixed with a vendor extension of
“-fx-“, including those that might seem to be compatible with standard HTML CSS,
because some JavaFX values have slightly different semantics.

For more detailed information about JavaFX CSS, see the Skinning JavaFX
Applications with CSS article.

UI Controls
The JavaFX UI controls available through the JavaFX API are built by using nodes in
the scene graph. They can take full advantage of the visually rich features of the
JavaFX platform and are portable across different platforms. JavaFX CSS allows for
theming and skinning of the UI controls.

Figure 1–3 shows some of the UI controls that are currently supported. New Java UI
controls, like TitlePane or Accordion, have been introduced with the JavaFX SDK.
These new controls reside in the javafx.scene.control package.

Layout

JavaFX Architecture 1-7

Figure 1–3 JavaFX UI Controls Sample

For more detailed information about all the available JavaFX UI controls, see the Using
JavaFX UI Controls document and the API documentation for the
javafx.scene.control package.

Layout
Layout containers or panes can be used to allow for flexible and dynamic
arrangements of the UI controls within a scene graph of a JavaFX application. The
JavaFX Layout API includes the following container classes that automate common
layout models:

■ The BorderPane class lays out its content nodes in the top, bottom, right, left, or
center region.

■ The HBox class arranges its content nodes horizontally in a single row.

■ The VBox class arranges its content nodes vertically in a single column.

■ The StackPane class places its content nodes in a back-to-front single stack.

■ The GridPane class enables the developer to create a flexible grid of rows and
columns in which to lay out content nodes.

2-D and 3-D Transformations

1-8 JavaFX Architecture and Framework

■ The FlowPane class arranges its content nodes in either a horizontal or vertical
“flow,” wrapping at the specified width (for horizontal) or height (for vertical)
boundaries.

■ The TilePane class places its content nodes in uniformly sized layout cells or
tiles

■ The AnchorPane class enables developers to create anchor nodes to the top,
bottom, left side, or center of the layout.

To achieve a desired layout structure, different containers can be nested within a
JavaFX application.

To learn more about how to work with layouts, see the Working with Layouts in
JavaFX article. For more information about the JavaFX layout API, see the API
documentation for the javafx.scene.layout package.

2-D and 3-D Transformations
Each node in the JavaFX scene graph can be transformed in the x-y coordinate using
the following javafx.scene.tranform classes:

■ translate – Move a node from one place to another along the x, y, z planes
relative to its initial position.

■ scale – Resize a node to appear either larger or smaller in the x, y, z planes,
depending on the scaling factor.

■ shear – Rotate one axis so that the x-axis and y-axis are no longer perpendicular.
The coordinates of the node are shifted by the specified multipliers.

■ rotate – Rotate a node about a specified pivot point of the scene.

■ affine – Perform a linear mapping from 2-D/3-D coordinates to other 2-D/3-D
coordinates while preserving the 'straight' and 'parallel' properties of the lines.
This class should be used with Translate, Scale, Rotate, or Shear transform
classes instead of being used directly.

To learn more about working with transformations, see the Applying Transformations
in JavaFX document. For more information about the javafx.scene.transform
API classes, see the API documentation.

Visual Effects
The development of rich client interfaces in the JavaFX scene graph involves the use of
Visual Effects or Effects to enhance the look of JavaFX applications in real time. The
JavaFX Effects are primarily image pixel-based and, hence, they take the set of nodes
that are in the scene graph, render it as an image, and apply the specified effects to it.

Some of the visual effects available in JavaFX include the use of the following classes:

■ Drop Shadow – Renders a shadow of a given content behind the content to which
the effect is applied.

■ Reflection – Renders a reflected version of the content below the actual content.

■ Lighting – Simulates a light source shining on a given content and can give a flat
object a more realistic, three-dimensional appearance.

For examples on how to use some of the available visual effects, see the Creating
Visual Effects document. For more information about all the available visual effects
classes, see the API documentation for the javafx.scene.effect package.

Visual Effects

JavaFX Architecture 1-9

Visual Effects

1-10 JavaFX Architecture and Framework

	Contents
	1 JavaFX Architecture
	Scene Graph
	Java Public APIs for JavaFX Features
	Graphics System
	Glass Windowing Toolkit
	Threads
	Pulse

	Media and Images
	Web Component
	CSS
	UI Controls
	Layout
	2-D and 3-D Transformations
	Visual Effects

