

JavaFX
Getting Started with JavaFX

Release 2.2.40

E20473-09

September 2013

Get started with JavaFX 2 by creating simple applications
that introduce you to layouts, CSS, FXML, visual effects,
animation, and deployment.

JavaFX Getting Started with JavaFX, Release 2.2.40

E20473-09

Copyright © 2008, 2013, Oracle and/or its affiliates. All rights reserved.

Primary Author: Gail Chappell

Contributing Author: Jasper Potts, Nancy Hildebrandt

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are “commercial computer software” pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

1 Hello World, JavaFX Style

Construct the Application... 1-1
Run the Application... 1-3
Where to Go Next ... 1-3

2 Creating a Form in JavaFX

Create the Project.. 2-1
Create a GridPane Layout ... 2-2
Add Text, Labels, and Text Fields.. 2-2
Add a Button and Text ... 2-4
Add Code to Handle an Event ... 2-5
Run the Application... 2-5
Where to Go from Here ... 2-6

3 Fancy Forms with JavaFX CSS

Create the Project.. 3-1
Create the CSS File... 3-2
Add a Background Image ... 3-2
Style the Labels... 3-3
Style Text .. 3-4
Style the Button .. 3-5
Where to Go from Here ... 3-6

4 Using FXML to Create a User Interface

Set Up the Project ... 4-1
Load the FXML Source File .. 4-2
Modify the Import Statements .. 4-2
Create a GridPane Layout ... 4-3
Add Text and Password Fields... 4-3
Add a Button and Text ... 4-4
Add Code to Handle an Event ... 4-5
Use a Scripting Language to Handle Events ... 4-6
Style the Application with CSS... 4-7
Where to Go from Here ... 4-8

iv

5 Animation and Visual Effects in JavaFX

Set Up the Application .. 5-2
Set Up the Project ... 5-2
Add Graphics .. 5-3
Add a Visual Effect... 5-4
Create a Background Gradient .. 5-5
Apply a Blend Mode.. 5-6
Add Animation ... 5-7
Where to Go from Here ... 5-8

6 Deploying Your First JavaFX Application

Deployment Modes.. 6-1
Packaging the Application in NetBeans IDE.. 6-1

Sizing the Application Window ...6-3
Running the Application Outside NetBeans IDE.. 6-3
Deploying the Packaged Files.. 6-4
Other Ways to Package JavaFX Applications .. 6-4

Part I
Part I About This Tutorial

This collection of tutorials is designed to get you started with common JavaFX tasks,
including working with layouts, controls, style sheets, and visual effects.

Hello World, JavaFX Style Form Design in JavaFX Fancy Design with CSS

User Interface Design with
FXML

Animated Shapes and Visual
Effects

Deployment Quickstart

1

Hello World, JavaFX Style 1-1

1Hello World, JavaFX Style

The best way to teach you what it is like to create and build a JavaFX application is
with a “Hello World” application. An added benefit of this tutorial is that it enables
you to test that your JavaFX technology is properly installed.

The tool used in this tutorial is NetBeans IDE 7.3. Before you begin, ensure that the
version of NetBeans IDE that you are using supports JavaFX 2. See the System
Requirements for details.

Construct the Application
1. From the File menu, choose New Project.

2. In the JavaFX application category, choose JavaFX Application. Click Next.

3. Name the project HelloWorld and click Finish.

NetBeans opens the HelloWorld.java file and populates it with the code for a
basic Hello World application, as shown in Example 1–1.

Example 1–1 Hello World

package helloworld;

import javafx.application.Application;
import javafx.event.ActionEvent;
import javafx.event.EventHandler;
import javafx.scene.Scene;
import javafx.scene.control.Button;
import javafx.scene.layout.StackPane;
import javafx.stage.Stage;

public class HelloWorld extends Application {
 public static void main(String[] args) {
 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("Hello World!");
 Button btn = new Button();
 btn.setText("Say 'Hello World'");
 btn.setOnAction(new EventHandler<ActionEvent>() {

 @Override
 public void handle(ActionEvent event) {
 System.out.println("Hello World!");

Construct the Application

1-2 Getting Started with JavaFX

 }
 });

 StackPane root = new StackPane();
 root.getChildren().add(btn);
 primaryStage.setScene(new Scene(root, 300, 250));
 primaryStage.show();
 }
}

Here are the important things to know about the basic structure of a JavaFX
application:

■ The main class for a JavaFX application extends the
javafx.application.Application class. The start() method is the main entry
point for all JavaFX applications.

■ A JavaFX application defines the user interface container by means of a stage and
a scene. The JavaFX Stage class is the top-level JavaFX container. The JavaFX
Scene class is the container for all content. Example 1–1 creates the stage and scene
and makes the scene visible in a given pixel size.

■ In JavaFX, the content of the scene is represented as a hierarchical scene graph of
nodes. In this example, the root node is a StackPane object, which is a resizable
layout node. This means that the root node's size tracks the scene's size and
changes when the stage is resized by a user.

■ The root node contains one child node, a button control with text, plus an event
handler to print a message when the button is pressed.

■ The main() method is not required for JavaFX applications when the JAR file for
the application is created with the JavaFX Packager tool, which embeds the JavaFX
Launcher in the JAR file. However, it is useful to include the main() method so
you can run JAR files that were created without the JavaFX Launcher, such as
when using an IDE in which the JavaFX tools are not fully integrated. Also, Swing
applications that embed JavaFX code require the main() method.

Figure 1–1 shows the scene graph for the Hello World application. For more
information on scene graphs see Working with the JavaFX Scene Graph.

Figure 1–1 Hello World Scene Graph

Where to Go Next

Hello World, JavaFX Style 1-3

Run the Application
1. In the Projects window, right-click the HelloWorld project node and choose Run.

2. Click the Say Hello World button.

3. Verify that the text “Hello World!” is printed to the NetBeans output window.
Figure 1–2 shows the Hello World application, JavaFX style.

Figure 1–2 Hello World, JavaFX style

Where to Go Next
This concludes the basic Hello World tutorial, but continue reading for more lessons
on developing JavaFX applications:

■ Creating a Form in JavaFX teaches the basics of screen layout, how to add controls
to a layout, and how to create input events.

■ Fancy Forms with JavaFX CSS provides simple style tricks for enhancing your
application, including adding a background image and styling buttons and text.

■ Using FXML to Create a User Interface shows an alternate method for creating the
login user interface. FXML is an XML-based language that provides the structure
for building a user interface separate from the application logic of your code.

■ Animation and Visual Effects in JavaFX shows how to bring an application to life
by adding timeline animation and blend effects.

■ Deploying Your First JavaFX Application describes how to run your application
outside NetBeans IDE.

Where to Go Next

1-4 Getting Started with JavaFX

2

Creating a Form in JavaFX 2-1

2Creating a Form in JavaFX

Creating a form is a common activity when developing an application. This tutorial
teaches you the basics of screen layout, how to add controls to a layout pane, and how
to create input events.

In this tutorial, you will use JavaFX to build the login form shown in Figure 2–1.

Figure 2–1 Login Form

The tool used in this Getting Started tutorial is NetBeans IDE. Before you begin, ensure
that the version of NetBeans IDE that you are using supports JavaFX 2. See the System
Requirements for details.

Create the Project
Your first task is to create a JavaFX project in NetBeans IDE and name it Login:

1. From the File menu, choose New Project.

2. In the JavaFX application category, choose JavaFX Application. Click Next.

3. Name the project Login and click Finish.

When you create a JavaFX project, NetBeans IDE provides a Hello World
application as a starting point, which you have already seen if you followed the
Hello World tutorial.

Create a GridPane Layout

2-2 Getting Started with JavaFX

4. Remove the start() method that NetBeans IDE generated and replace it with the
code in Example 2–1.

Example 2–1 Application Stage

@Override
 public void start(Stage primaryStage) {
 primaryStage.setTitle("JavaFX Welcome");

 primaryStage.show();
 }

Tip: After you add sample code into a NetBeans project, press Ctrl (or Cmd) + Shift + I
to import the required packages. When there is a choice of import statements, choose
the one that starts with javafx.

Create a GridPane Layout
For the login form, use a GridPane layout because it enables you to create a flexible
grid of rows and columns in which to lay out controls. You can place controls in any
cell in the grid, and you can make controls span cells as needed.

The code to create the GridPane layout is in Example 2–2. Add the code before the line
primaryStage.show();

Example 2–2 GridPane with Gap and Padding Properties

GridPane grid = new GridPane();
grid.setAlignment(Pos.CENTER);
grid.setHgap(10);
grid.setVgap(10);
grid.setPadding(new Insets(25, 25, 25, 25));

Scene scene = new Scene(grid, 300, 275);
primaryStage.setScene(scene);

Example 2–2 creates a GridPane object and assigns it to the variable named grid. The
alignment property changes the default position of the grid from the top left of the
scene to the center. The gap properties manage the spacing between the rows and
columns, while the padding property manages the space around the edges of the grid
pane. The insets are in the order of top, right, bottom, and left. In this example, there
are 25 pixels of padding on each side.

The scene is created with the grid pane as the root node, which is a common practice
when working with layout containers. Thus, as the window is resized, the nodes
within the grid pane are resized according to their layout constraints. In this example,
the grid pane remains in the center when you grow or shrink the window. The
padding properties ensure there is a padding around the grid pane when you make
the window smaller.

This code sets the scene width and height to 300 by 275. If you do not set the scene
dimensions, the scene defaults to the minimum size needed to display its contents.

Add Text, Labels, and Text Fields
Looking at Figure 2–1, you can see that the form requires the title “Welcome “and text
and password fields for gathering information from the user. The code for creating

Add Text, Labels, and Text Fields

Creating a Form in JavaFX 2-3

these controls is in Example 2–3. Add this code after the line that sets the grid padding
property.

Example 2–3 Controls

Text scenetitle = new Text("Welcome");
scenetitle.setFont(Font.font("Tahoma", FontWeight.NORMAL, 20));
grid.add(scenetitle, 0, 0, 2, 1);

Label userName = new Label("User Name:");
grid.add(userName, 0, 1);

TextField userTextField = new TextField();
grid.add(userTextField, 1, 1);

Label pw = new Label("Password:");
grid.add(pw, 0, 2);

PasswordField pwBox = new PasswordField();
grid.add(pwBox, 1, 2);

The first line creates a Text object that cannot be edited, sets the text to Welcome, and
assigns it to a variable named scenetitle. The next line uses the setFont() method to
set the font family, weight, and size of the scenetitle variable. Using an inline style is
appropriate where the style is bound to a variable, but a better technique for styling
the elements of your user interface is by using a style sheet. In the next tutorial, Fancy
Forms with JavaFX CSS, you will replace the inline style with a style sheet.

The grid.add() method adds the scenetitle variable to the layout grid. The
numbering for columns and rows in the grid starts at zero, and scenetitle is added in
column 0, row 0. The last two arguments of the grid.add() method set the column
span to 2 and the row span to 1.

The next lines create a Label object with text User Name at column 0, row 1 and a Text
Field object that can be edited. The text field is added to the grid pane at column 1,
row 1. A password field and label are created and added to the grid pane in a similar
fashion.

When working with a grid pane, you can display the grid lines, which is useful for
debugging purposes. In this case, you can add grid.setGridLinesVisible(true)
after the line that adds the password field. Then, when you run the application, you
see the lines for the grid columns and rows as well as the gap properties, as shown in
Figure 2–2.

Add a Button and Text

2-4 Getting Started with JavaFX

Figure 2–2 Login Form with Grid Lines

Add a Button and Text
The final two controls required for the application are a Button control for submitting
the data and a Text control for displaying a message when the user presses the button.

First, create the button and position it on the bottom right, which is a common
placement for buttons that perform an action affecting the entire form. The code is in
Example 2–4. Add this code before the code for the scene.

Example 2–4 Button

Button btn = new Button("Sign in");
HBox hbBtn = new HBox(10);
hbBtn.setAlignment(Pos.BOTTOM_RIGHT);
hbBtn.getChildren().add(btn);
grid.add(hbBtn, 1, 4);

The first line creates a button named btn with the label Sign in, and the second line
creates an HBox layout pane named hbBtn with spacing of 10 pixels. The HBox pane sets
an alignment for the button that is different from the alignment applied to the other
controls in the grid pane. The alignment property has a value of Pos.BOTTOM_RIGHT,
which positions a node at the bottom of the space vertically and at the right edge of
the space horizontally. The button is added as a child of the HBox pane, and the HBox
pane is added to the grid in column 1, row 4.

Now, add a Text control for displaying the message, as shown in Example 2–5. Add
this code before the code for the scene.

Example 2–5 Text

final Text actiontarget = new Text();
 grid.add(actiontarget, 1, 6);

Figure 2–3 shows the form now. You will not see the text message until you work
through the next section of the tutorial, Add Code to Handle an Event.

Run the Application

Creating a Form in JavaFX 2-5

Figure 2–3 Login Form with Button

Add Code to Handle an Event
Finally, make the button display the text message when the user presses it. Add the
code in Example 2–6 before the code for the scene.

Example 2–6 Button Event

btn.setOnAction(new EventHandler<ActionEvent>() {

 @Override
 public void handle(ActionEvent e) {
 actiontarget.setFill(Color.FIREBRICK);
 actiontarget.setText("Sign in button pressed");
 }
});

The setOnAction() method is used to register an event handler that sets the
actiontarget object to Sign in button pressed when the user presses the button.
The color of the actiontarget object is set to firebrick red.

Run the Application
Right-click the Login project node in the Projects window, choose Run, and then click
the Sign in button. Figure 2–4 shows the results. If you run into problems, then take a
look at the code in the Login.java file.

Where to Go from Here

2-6 Getting Started with JavaFX

Figure 2–4 Final Login Form

Where to Go from Here
This concludes the basic form tutorial, but you can continue reading the following
tutorials on developing JavaFX applications.

■ Fancy Forms with JavaFX CSS provides tips on how to add a background image
and radically change the style of the text, label, and button in the login form.

■ Using FXML to Create a User Interface shows an alternate method for creating the
login user interface. FXML is an XML-based language that provides the structure
for building a user interface separate from the application logic of your code.

■ Working With Layouts in JavaFX explains the built-in JavaFX layout panes, and
tips and tricks for using them.

■ Deploying Your First JavaFX Application provides information on how to run
your application outside NetBeans IDE.

Also try out the JavaFX samples, which you can download from the JDK Demos and
Samples section of the Java SE Downloads page at
http://www.oracle.com/technetwork/java/javase/downloads/. The Ensemble
sample contains examples of layouts and their source code.

3

Fancy Forms with JavaFX CSS 3-1

3Fancy Forms with JavaFX CSS

This tutorial is about making your JavaFX application look attractive by adding a
Cascading Style Sheet (CSS). You develop a design, create a .css file, and apply the
new styles.

In this tutorial, you will take a Login form that uses default styles for labels, buttons,
and background color, and, with a few simple CSS modifications, turn it into a stylized
application, as shown in Figure 3–1.

Figure 3–1 Login Form With and Without CSS

The tool used in this Getting Started tutorial is NetBeans IDE. Before you begin, ensure
that the version of NetBeans IDE that you are using supports JavaFX 2. See the System
Requirements for details.

Create the Project
If you followed the Getting Started guide from the start, then you already created the
Login project required for this tutorial. If not, download the Login project by
right-clicking Login.zip and saving it to your file system. Extract the files from the
zip file, and then open the project in NetBeans IDE.

Create the CSS File

3-2 Getting Started with JavaFX

Create the CSS File
Your first task is to create a new CSS file and save it in the same directory as the main
class of your application. After that, you must make the JavaFX application aware of
the newly added Cascading Style Sheet.

1. In the NetBeans IDE Projects window, expand the Login project node and then the
Source Packages directory node.

2. Right-click the login folder under the Source Packages directory and choose New,
then Other.

3. In the New File dialog box, choose Other, then Cascading Style Sheet, and click
Next.

4. Enter Login for the File Name text field and ensure the Folder text field value is
src\login.

5. Click Finish.

6. In the Login.java file, initialize the style sheets variable of the Scene class to
point to the Cascading Style Sheet by including the line of code shown in bold
below so that it appears as shown in Example 3–1.

Example 3–1 Initialize the stylesheets Variable

Scene scene = new Scene(grid, 300, 275);
primaryStage.setScene(scene);
scene.getStylesheets().add
 (Login.class.getResource("Login.css").toExternalForm());
primaryStage.show();

This code looks for the style sheet in the src\login directory in the NetBeans
project.

Add a Background Image
A background image helps make your form more attractive. For this tutorial, you add
a gray background with a linen-like texture.

First, download the background image by right-clicking background.jpg and saving it
to your file system. Then, copy the file into the src\login folder in the Login NetBeans
project.

Now, add the code for the background-image property to the CSS file. Remember that
the path is relative to the style sheet. So, in the code in Example 3–2, the
background.jpg image is in the same directory as the Login.css file.

Example 3–2 Background Image

.root {
 -fx-background-image: url("background.jpg");
}

The background image is applied to the .root style, which means it is applied to the
root node of the Scene instance. The style definition consists of the name of the
property (-fx-background-image) and the value for the property
(url(“background.jpg”)).

Figure 3–2 shows the login form with the new gray background.

Style the Labels

Fancy Forms with JavaFX CSS 3-3

Figure 3–2 Gray Linen Background

Style the Labels
The next controls to enhance are the labels. You will use the .label style class, which
means the styles will affect all labels in the form. The code is in Example 3–3.

Example 3–3 Font Size, Fill, Weight, and Effect on Labels

.label {
 -fx-font-size: 12px;
 -fx-font-weight: bold;
 -fx-text-fill: #333333;
 -fx-effect: dropshadow(gaussian , rgba(255,255,255,0.5) , 0,0,0,1);
}

This example increases the font size and weight and applies a drop shadow of a gray
color (#333333). The purpose of the drop shadow is to add contrast between the dark
gray text and the light gray background. See the section on effects in the JavaFX CSS
Reference Guide for details on the parameters of the drop shadow property.

The enhanced User Name and Password labels are shown in Figure 3–3.

Style Text

3-4 Getting Started with JavaFX

Figure 3–3 Bigger, Bolder Labels with Drop Shadow

Style Text
Now, create some special effects on the two Text objects in the form: scenetitle,
which includes the text Welcome, and actiontarget, which is the text that is returned
when the user presses the Sign in button. You can apply different styles to Text objects
used in such diverse ways.

1. In the Login.java file, remove the following lines of code that define the inline
styles currently set for the text objects:

scenetitle.setFont(Font.font(“Tahoma”, FontWeight.NORMAL, 20));

actiontarget.setFill(Color.FIREBRICK);

By switching to CSS over inline styles, you separate the design from the content.
This approach makes it easier for a designer to have control over the style without
having to modify content.

2. Create an ID for each text node by using the setID() method of the Node class:

scenetitle.setId("welcome-text");

actiontarget.setId("actiontarget");

3. In the Login.css file, define the style properties for the welcome-text and
actiontarget IDs. For the style name, use the ID preceded by a number sign (#),
as shown in Example 3–4.

Example 3–4 Text Effect

#welcome-text {
 -fx-font-size: 32px;
 -fx-font-family: "Arial Black";
 -fx-fill: #818181;
 -fx-effect: innershadow(three-pass-box , rgba(0,0,0,0.7) , 6, 0.0 , 0 , 2);
}
#actiontarget {
 -fx-fill: FIREBRICK;
 -fx-font-weight: bold;
 -fx-effect: dropshadow(gaussian , rgba(255,255,255,0.5) , 0,0,0,1);
}

Style the Button

Fancy Forms with JavaFX CSS 3-5

The size of the Welcome text is increased to 32 points and the font is changed to Arial
Black. The text fill color is set to a dark gray color (#818181) and an inner shadow effect
is applied, creating an embossing effect. You can apply an inner shadow to any color
by changing the text fill color to be a darker version of the background. See the section
on effects in the JavaFX CSS Reference Guide for details about the parameters of inner
shadow property.

The style definition for actiontarget is similar to what you have seen before.

Figure 3–4 shows the font changes and shadow effects on the two Text objects.

Figure 3–4 Text with Shadow Effects

Style the Button
The next step is to style the button, making it change style when the user hovers the
mouse over it. This change will give users an indication that the button is interactive, a
standard design practice.

First, create the style for the initial state of the button by adding the code in
Example 3–5. This code uses the .button style class selector, such that if you add a
button to the form at a later date, then the new button will also use this style.

Example 3–5 Drop Shadow for Button

.button {
 -fx-text-fill: white;
 -fx-font-family: "Arial Narrow";
 -fx-font-weight: bold;
 -fx-background-color: linear-gradient(#61a2b1, #2A5058);
 -fx-effect: dropshadow(three-pass-box , rgba(0,0,0,0.6) , 5, 0.0 , 0 , 1);
}

Now, create a slightly different look for when the user hovers the mouse over the
button. You do this with the hover pseudo-class. A pseudo-class includes the selector
for the class and the name for the state separated by a colon (:), as shown in
Example 3–6.

Where to Go from Here

3-6 Getting Started with JavaFX

Example 3–6 Button Hover Style

.button:hover {
 -fx-background-color: linear-gradient(#2A5058, #61a2b1);
}

Figure 3–5 shows the initial and hover states of the button with its new blue-gray
background and white bold text.

Figure 3–5 Initial and Hover Button States

Figure 3–6 shows the final application.

Figure 3–6 Final Stylized Application

Where to Go from Here
Here are some things for you to try next:

■ See what you can create using CSS. Some documents that can help you are
Skinning JavaFX Applications with CSS, Styling Charts with CSS, and the JavaFX
CSS Reference Guide. Skinning with CSS and CSS Analyzer also provides
information on how you can use the JavaFX Scene Builder tool to skin your JavaFX
FXML layout.

■ See Styling FX Buttons with CSS for examples of how to create common button
styles using CSS.

■ Try deploying your application outside NetBeans IDE. See Deploying Your First
JavaFX Application.

4

Using FXML to Create a User Interface 4-1

4Using FXML to Create a User Interface

This tutorial shows the benefits of using JavaFX FXML, which is an XML-based
language that provides the structure for building a user interface separate from the
application logic of your code.

If you started this document from the beginning, then you have seen how to create a
login application using just JavaFX. Here, you use FXML to create the same login user
interface, separating the application design from the application logic, thereby making
the code easier to maintain. The login user interface you build in this tutorial is shown
in Figure 4–1.

Figure 4–1 Login User Interface

This tutorial uses NetBeans IDE. Ensure that the version of NetBeans IDE that you are
using supports JavaFX 2.2. See the System Requirements for details.

Set Up the Project
Your first task is to set up a JavaFX FXML project in NetBeans IDE:

1. From the File menu, choose New Project.

2. In the JavaFX application category, choose JavaFX FXML Application. Click Next.

3. Name the project FXMLExample and click Finish.

Load the FXML Source File

4-2 Getting Started with JavaFX

NetBeans IDE opens an FXML project that includes the code for a basic Hello
World application. The application includes three files:

■ FXMLExample.java. This file takes care of the standard Java code required for
an FXML application.

■ Sample.fxml. This is the FXML source file in which you define the user
interface.

■ SampleController.java. This is the controller file for handling the mouse and
keyboard input.

4. Rename SampleController.java to FXMLExampleController.java so that the name
is more meaningful for this application.

a. In the Projects window, right-click SampleController.java and choose
Refactor then Rename.

b. Enter FXMLExampleController, and click Refactor.

5. Rename Sample.fxml to fxml_example.fxml.

a. Right-click Sample.fxml and choose Rename.

b. Enter fxml_example and click OK.

Load the FXML Source File
The first file you edit is the FXMLExample.java file. This file includes the code for
setting up the application main class and for defining the stage and scene. More
specific to FXML, the file uses the FXMLLoader class, which is responsible for loading
the FXML source file and returning the resulting object graph.

Make the changes shown in bold in Example 4–1.

Example 4–1 FXMLExample.java

 @Override
 public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader.load(getClass().getResource("fxml_example.fxml"));

 Scene scene = new Scene(root, 300, 275);

 stage.setTitle("FXML Welcome");
 stage.setScene(scene);
 stage.show();
 }

A good practice is to set the height and width of the scene when you create it, in this
case 300 by 275; otherwise the scene defaults to the minimum size needed to display
its contents.

Modify the Import Statements
Next, edit the fxml_example.fxml file. This file specifies the user interface that is
displayed when the application starts. The first task is to modify the import statements
so your code looks like Example 4–2.

Example 4–2 XML Declaration and Import Statements

<?xml version="1.0" encoding="UTF-8"?>

Add Text and Password Fields

Using FXML to Create a User Interface 4-3

<?import java.net.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.text.*?>

As in Java, class names can be fully qualified (including the package name), or they
can be imported using the import statement, as shown in Example 4–2. If you prefer,
you can use specific import statements that refer to classes.

Create a GridPane Layout
The Hello World application generated by NetBeans uses an AnchorPane layout. For
the login form, you will use a GridPane layout because it enables you to create a
flexible grid of rows and columns in which to lay out controls.

Remove the AnchorPane layout and its children and replace it with the GridPane
layout in Example 4–3.

Example 4–3 GridPane Layout

<GridPane fx:controller="fxmlexample.FXMLExampleController"
 xmlns:fx="http://javafx.com/fxml" alignment="center" hgap="10" vgap="10">
<padding><Insets top="25" right="25" bottom="10" left="25"/></padding>

</GridPane>

In this application, the GridPane layout is the root element of the FXML document and
as such has two attributes. The fx:controller attribute is required when you specify
controller-based event handlers in your markup. The xmlns:fx attribute is always
required and specifies the fx namespace.

The remainder of the code controls the alignment and spacing of the grid pane. The
alignment property changes the default position of the grid from the top left of the
scene to the center. The gap properties manage the spacing between the rows and
columns, while the padding property manages the space around the edges of the grid
pane.

As the window is resized, the nodes within the grid pane are resized according to their
layout constraints. In this example, the grid remains in the center when you grow or
shrink the window. The padding properties ensure there is a padding around the grid
when you make the window smaller.

Add Text and Password Fields
Looking back at Figure 4–1, you can see that the login form requires the title
“Welcome” and text and password fields for gathering information from the user. The
code in Example 4–4 is part of the GridPane layout and must be placed above the
</GridPane> statement.

Example 4–4 Text, Label, TextField, and Password Field Controls

 <Text text="Welcome"
 GridPane.columnIndex="0" GridPane.rowIndex="0"
 GridPane.columnSpan="2"/>

 <Label text="User Name:"

Add a Button and Text

4-4 Getting Started with JavaFX

 GridPane.columnIndex="0" GridPane.rowIndex="1"/>

 <TextField
 GridPane.columnIndex="1" GridPane.rowIndex="1"/>

 <Label text="Password:"
 GridPane.columnIndex="0" GridPane.rowIndex="2"/>

 <PasswordField fx:id="passwordField"
 GridPane.columnIndex="1" GridPane.rowIndex="2"/>

The first line creates a Text object and sets its text value to Welcome. The
GridPane.columnIndex and GridPane.rowIndex attributes correspond to the
placement of the Text control in the grid. The numbering for rows and columns in the
grid starts at zero, and the location of the Text control is set to (0,0), meaning it is in
the first column of the first row. The GridPane.columnSpan attribute is set to 2, making
the Welcome title span two columns in the grid. You will need this extra width later in
the tutorial when you add a style sheet to increase the font size of the text to 32 points.

The next lines create a Label object with text User Name at column 0, row 1 and a
TextField object to the right of it at column 1, row 1. Another Label and
PasswordField object are created and added to the grid in a similar fashion.

When working with a grid layout, you can display the grid lines, which is useful for
debugging purposes. In this case, set the gridLinesVisible property to true by
adding the statement <gridLinesVisible>true</gridLinesVisible> right after the
<padding></padding> statement. Then, when you run the application, you see the
lines for the grid columns and rows as well as the gap properties, as shown in
Figure 4–2.

Figure 4–2 Login Form with Grid Lines

Add a Button and Text
The final two controls required for the application are a Button control for submitting
the data and a Text control for displaying a message when the user presses the button.
The code is in Example 4–5. Add this code before </GridPane>.

Add Code to Handle an Event

Using FXML to Create a User Interface 4-5

Example 4–5 HBox, Button, and Text

<HBox spacing="10" alignment="bottom_right"
 GridPane.columnIndex="1" GridPane.rowIndex="4">
 <Button text="Sign In"
 onAction="#handleSubmitButtonAction"/>
</HBox>

<Text fx:id="actiontarget"
 GridPane.columnIndex="1" GridPane.rowIndex="6"/>

An HBox pane is needed to set an alignment for the button that is different from the
default alignment applied to the other controls in the GridPane layout. The alignment
property is set to bottom_right, which positions a node at the bottom of the space
vertically and at the right edge of the space horizontally. The HBox pane is added to the
grid in column 1, row 4.

The HBox pane has one child, a Button with text property set to Sign in and an
onAction property set to handleSubmitButtonAction(). While FXML is a convenient
way to define the structure of an application's user interface, it does not provide a way
to implement an application's behavior. You implement the behavior for the
handleSubmitButtonAction() method in Java code in the next section of this tutorial,
Add Code to Handle an Event.

Assigning an fx:id value to an element, as shown in the code for the Text control,
creates a variable in the document's namespace, which you can refer to from elsewhere
in the code. While not required, defining a controller field helps clarify how the
controller and markup are associated.

Add Code to Handle an Event
Now make the Text control display a message when the user presses the button. You
do this in the FXMLExampleController.java file. Delete the code that NetBeans IDE
generated and replace it with the code in Example 4–6.

Example 4–6 FXMLExampleController.java

package fxmlexample;

import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.scene.text.Text;

public class FXMLExampleController {
 @FXML private Text actiontarget;

 @FXML protected void handleSubmitButtonAction(ActionEvent event) {
 actiontarget.setText("Sign in button pressed");
 }

}

The @FXML annotation is used to tag nonpublic controller member fields and handler
methods for use by FXML markup. The handleSubmtButtonAction method sets the
actiontarget variable to Sign in button pressed when the user presses the button.

You can run the application now to see the complete user interface. Figure 4–3 shows
the results when you type text in the two fields and click the Sign in button. If you
have any problems, then you can compare your code against the FXMLLogin example.

Use a Scripting Language to Handle Events

4-6 Getting Started with JavaFX

Figure 4–3 FXML Login Window

Use a Scripting Language to Handle Events
As an alternative to using Java code to create an event handler, you can create the
handler with any language that provides a JSR 223-compatible scripting engine. Such
languages include JavaScript, Groovy, Jython, and Clojure.

Optionally, you can try using JavaScript now.

1. In the file fxml_example.fxml, add the JavaScript declaration after the XML
doctype declaration.

<?language javascript?>

2. In the Button markup, change the name of the function so the call looks as follows:

onAction="handleSubmitButtonAction(event);"

3. Remove the fx:controller attribute from the GridPane markup and add the
JavaScript function in a <script> tag directly under it, as shown in Example 4–7.

Example 4–7 JavaScript in FXML

 <GridPane xmlns:fx="http://javafx.com/fxml"
 alignment="center" hgap="10" vgap="10">
 <fx:script>
 function handleSubmitButtonAction() {
 actiontarget.setText("Calling the JavaScript");
 }
 </fx:script>

Alternatively, you can put the JavaScript functions in an external file (such as
fxml_example.js) and include the script like this:

<fx:script source="fxml_example.js"/>

The result is in Figure 4–4.

Style the Application with CSS

Using FXML to Create a User Interface 4-7

Figure 4–4 Login Application Using JavaScript

If you are considering using a scripting language with FXML, then note that an IDE
might not support stepping through script code during debugging.

Style the Application with CSS
The final task is to make the login application look attractive by adding a Cascading
Style Sheet (CSS).

1. Create a style sheet.

a. In the Project window, right-click the login folder under Source Packages and
choose New, then Other.

b. In the New File dialog box, choose Other, then Cascading Style Sheet and
click Next.

c. Enter Login and click Finish.

d. Copy the contents of the Login.css file attached to this document into your
CSS file. For a description of the classes in the CSS file, see Fancy Forms with
JavaFX CSS.

2. Download the gray, linen-like image for the background in the background.jpg
file and add it to the fxmlexample folder.

3. Open the fxml_example.fxml file and add a stylesheets element before the end of
the markup for the GridPane layout as shown in Example 4–8.

Example 4–8 Style Sheet

<stylesheets>
<URL value="@Login.css" />

</stylesheets>

</GridPane>

The @ symbol before the name of the style sheet in the URL indicates that the style
sheet is in the same directory as the FXML file.

Where to Go from Here

4-8 Getting Started with JavaFX

4. To use the root style for the grid pane, add a style class to the markup for the
GridPane layout as shown in Example 4–9.

Example 4–9 Style the GridPane

<GridPane fx:controller="fxmlexample.FXMLExampleController"
 xmlns:fx="http://javafx.com/fxml" alignment="center" hgap="10" vgap="10"
 styleClass="root">

5. Create a welcome-text ID for the Welcome Text object so it uses the style
#welcome-text defined in the CSS file, as shown in Example 4–10.

Example 4–10 Text ID

<Text id="welcome-text" text="Welcome"
 GridPane.columnIndex="0" GridPane.rowIndex="0"
 GridPane.columnSpan="2"/>

6. Run the application. Figure 4–5 shows the stylized application.

Figure 4–5 Stylized Login Application

For information about how to run your application outside NetBeans IDE, see
Deploying Your First JavaFX Application.

Where to Go from Here
Now that you are familiar with FXML, look at Introduction to FXML, which provides
more information on the elements that make up the FXML language. The document is
included in the javafx.fxml package in the API documentation at
http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_
fxml.html.

You can also try out the JavaFX Scene Builder tool by opening the fxml_example.fxml
file in Scene Builder and making modifications. This tool provides a visual layout
environment for designing the UI for JavaFX applications and automatically generates
the FXML code for the layout. Note that the FXML file might be reformatted when
saved. See Getting Started with JavaFX Scene Builder for more information on this
tool. The Skinning with CSS and CSS Analyzer section of the JavaFX Scene Builder
User Guide also give you information on how you can skin your FXML layout.

http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html
http://docs.oracle.com/javafx/2/api/javafx/fxml/doc-files/introduction_to_fxml.html

5

Animation and Visual Effects in JavaFX 5-1

5Animation and Visual Effects in JavaFX

You can use JavaFX to quickly develop applications with rich user experiences. In this
Getting Started tutorial, you will learn to create animated objects and attain complex
effects with very little coding.

Figure 5–1 shows the application to be created.

Figure 5–1 Colorful Circles Application

Figure 5–2 shows the scene graph for the ColorfulCircles application. Nodes that
branch are instantiations of the Group class, and the nonbranching nodes, also known
as leaf nodes, are instantiations of the Rectangle and Circle classes.

Set Up the Application

5-2 Getting Started with JavaFX

Figure 5–2 Colorful Circles Scene Graph

The tool used in this Getting Started tutorial is NetBeans IDE. Before you begin, ensure
that the version of NetBeans IDE that you are using supports JavaFX 2. See the System
Requirements for details.

Set Up the Application
Set up your JavaFX project in NetBeans IDE as follows:

1. From the File menu, choose New Project.

2. In the JavaFX application category, choose JavaFX Application. Click Next.

3. Name the project ColorfulCircles and click Finish.

4. Open the ColorfulCircles.java file, copy the import statements, and paste them
into the source file for your project, overwriting the import statements that
NetBeans IDE generated.

Or, you can generate the import statements as you work your way through the
tutorial by using either the code completion feature or the Fix Imports command
from the Source menu in NetBeans IDE. When there is a choice of import
statements, choose the one that starts with javafx.

Set Up the Project
Delete the ColorfulCircles class from the source file that NetBeans IDE generated
and replace it with the code in Example 5–1.

Example 5–1 Basic Application

public class ColorfulCircles extends Application {

 public static void main(String[] args) {

Add Graphics

Animation and Visual Effects in JavaFX 5-3

 launch(args);
 }

 @Override
 public void start(Stage primaryStage) {
 Group root = new Group();
 Scene scene = new Scene(root, 800, 600, Color.BLACK);
 primaryStage.setScene(scene);

 primaryStage.show();
 }
}

For the ColorfulCircles application, it is appropriate to use a group node as the root
node for the scene. The size of the group is dictated by the size of the nodes within it.
For most applications, however, you want the nodes to track the size of the scene and
change when the stage is resized. In that case, you use a resizable layout node as the
root, as described in Creating a Form in JavaFX.

You can compile and run the ColorfulCircles application now, and at each step of the
tutorial, to see the intermediate results. If you run into problems, then take a look at
the code in the ColorfulCircles.java file. At this point, the application is a simple black
window.

Add Graphics
Next, create 30 circles by adding the code in Example 5–2 before the
primaryStage.show() line.

Example 5–2 30 Circles

Group circles = new Group();
for (int i = 0; i < 30; i++) {
 Circle circle = new Circle(150, Color.web("white", 0.05));
 circle.setStrokeType(StrokeType.OUTSIDE);
 circle.setStroke(Color.web("white", 0.16));
 circle.setStrokeWidth(4);
 circles.getChildren().add(circle);
}
root.getChildren().add(circles);

This code creates a group named circles, then uses a for loop to add 30 circles to
the group. Each circle has a radius of 150, fill color of white, and opacity level of 5
percent, meaning it is mostly transparent.

To create a border around the circles, the code includes the StrokeType class. A
stroke type of OUTSIDE means the boundary of the circle is extended outside the
interior by the StrokeWidth value, which is 4. The color of the stroke is white, and
the opacity level is 16 percent, making it brighter than the color of the circles.

The final line adds the circles group to the root node. This is a temporary structure.
Later, you will modify this scene graph to match the one shown in Figure 5–2.

Figure 5–3 shows the application. Because the code does not yet specify a unique
location for each circle, the circles are drawn on top of one another, with the upper
left-hand corner of the window as the center point for the circles. The opacity of the
overlaid circles interacts with the black background, producing the gray color of the
circles.

Add a Visual Effect

5-4 Getting Started with JavaFX

Figure 5–3 Circles

Add a Visual Effect
Continue by applying a box blur effect to the circles so that they appear slightly out of
focus. The code is in Example 5–3. Add this code before the primaryStage.show()
line.

Example 5–3 Box Blur Effect

circles.setEffect(new BoxBlur(10, 10, 3));

This code sets the blur radius to 10 pixels wide by 10 pixels high, and the blur
iteration to 3, making it approximate a Gaussian blur. This blurring technique
produces a smoothing effect on the edge of the circles, as shown in Figure 5–4.

Figure 5–4 Box Blur on Circles

Create a Background Gradient

Animation and Visual Effects in JavaFX 5-5

Create a Background Gradient
Now, create a rectangle and fill it with a linear gradient, as shown in Example 5–4.

Add the code before the root.getChildren().add(circles) line so that the
gradient rectangle appears behind the circles.

Example 5–4 Linear Gradient

Rectangle colors = new Rectangle(scene.getWidth(), scene.getHeight(),
 new LinearGradient(0f, 1f, 1f, 0f, true, CycleMethod.NO_CYCLE, new
 Stop[]{
 new Stop(0, Color.web("#f8bd55")),
 new Stop(0.14, Color.web("#c0fe56")),
 new Stop(0.28, Color.web("#5dfbc1")),
 new Stop(0.43, Color.web("#64c2f8")),
 new Stop(0.57, Color.web("#be4af7")),
 new Stop(0.71, Color.web("#ed5fc2")),
 new Stop(0.85, Color.web("#ef504c")),
 new Stop(1, Color.web("#f2660f")),}));
colors.widthProperty().bind(scene.widthProperty());
colors.heightProperty().bind(scene.heightProperty());
root.getChildren().add(colors);

This code creates a rectangle named colors. The rectangle is the same width and
height as the scene and is filled with a linear gradient that starts in the lower left-hand
corner (0, 1) and ends in the upper right-hand corner (1, 0). The value of true means
the gradient is proportional to the rectangle, and NO_CYCLE indicates that the color
cycle will not repeat. The Stop[] sequence indicates what the gradient color should
be at a particular spot.

The next two lines of code make the linear gradient adjust as the size of the scene
changes by binding the width and height of the rectangle to the width and height of
the scene. See Using JavaFX Properties and Bindings for more information on binding.

The final line of code adds the colors rectangle to the root node.

The gray circles with the blurry edges now appear on top of a rainbow of colors, as
shown in Figure 5–5.

Apply a Blend Mode

5-6 Getting Started with JavaFX

Figure 5–5 Linear Gradient

Figure 5–6 shows the intermediate scene graph. At this point, the circles group and
colors rectangle are children of the root node.

Figure 5–6 Intermediate Scene Graph

Apply a Blend Mode
Next, add color to the circles and darken the scene by adding an overlay blend effect.
You will remove the circles group and the linear gradient rectangle from the scene
graph and add them to the new overlay blend group.

1. Locate the following two lines of code:

root.getChildren().add(colors);
root.getChildren().add(circles);

2. Replace the two lines of code from Step 1 with the code in Example 5–5.

Example 5–5 Blend Mode

Group blendModeGroup =
 new Group(new Group(new Rectangle(scene.getWidth(), scene.getHeight(),
 Color.BLACK), circles), colors);

Add Animation

Animation and Visual Effects in JavaFX 5-7

colors.setBlendMode(BlendMode.OVERLAY);
root.getChildren().add(blendModeGroup);

The group blendModeGroup sets up the structure for the overlay blend. The group
contains two children. The first child is a new (unnamed) Group containing a new
(unnamed) black rectangle and the previously created circles group. The second
child is the previously created colors rectangle.

The setBlendMode() method applies the overlay blend to the colors rectangle.
The final line of code adds the blendModeGroup to the scene graph as a child of the
root node, as depicted in Figure 5–2.

An overlay blend is a common effect in graphic design applications. Such a blend can
darken an image or add highlights or both, depending on the colors in the blend. In
this case, the linear gradient rectangle is used as the overlay. The black rectangle
serves to keep the background dark, while the nearly transparent circles pick up colors
from the gradient, but are also darkened.

Figure 5–7 shows the results. You will see the full effect of the overlay blend when you
animate the circles in the next step.

Figure 5–7 Overlay Blend

Add Animation
The final step is to use JavaFX animations to move the circles:

1. If you have not done so already, add import static
java.lang.Math.random; to the list of import statements.

2. Add the animation code in Example 5–6 before the primaryStage.show() line.

Example 5–6 Animation

Timeline timeline = new Timeline();
for (Node circle: circles.getChildren()) {
 timeline.getKeyFrames().addAll(
 new KeyFrame(Duration.ZERO, // set start position at 0
 new KeyValue(circle.translateXProperty(), random() * 800),
 new KeyValue(circle.translateYProperty(), random() * 600)

Where to Go from Here

5-8 Getting Started with JavaFX

),
 new KeyFrame(new Duration(40000), // set end position at 40s
 new KeyValue(circle.translateXProperty(), random() * 800),
 new KeyValue(circle.translateYProperty(), random() * 600)
)
);
}
// play 40s of animation
timeline.play();

Animation is driven by a timeline, so this code creates a timeline, then uses a for loop
to add two key frames to each of the 30 circles. The first key frame at 0 seconds uses
the properties translateXProperty and translateYProperty to set a random
position of the circles within the window. The second key frame at 40 seconds does the
same. Thus, when the timeline is played, it animates all circles from one random
position to another over a period of 40 seconds.

Figure 5–8 shows the 30 colorful circles in motion, which completes the application.
For the complete source code, see the ColorfulCircles.java file.

Figure 5–8 Animated Circles

Where to Go from Here
Here are several suggestions about what to do next:

■ Try deploying your application outside NetBeans IDE. See Deploying Your First
JavaFX Application.

■ Try the JavaFX samples, which you can download from the JDK Demos and
Samples section of the Java SE Downloads page at
http://www.oracle.com/technetwork/java/javase/downloads/.
Especially take a look at the Ensemble application, which provides sample code
for animations and effects.

■ Read Creating Transitions and Timeline Animation in JavaFX.
You will find more details on timeline animation as well as information on fade,
path, parallel, and sequential transitions.

Where to Go from Here

Animation and Visual Effects in JavaFX 5-9

■ See Creating Visual Effects in JavaFX for additional ways to enhance
the look and design of your application, including reflection, lighting, and shadow
effects.

■ Try the JavaFX Scene Builder tool to create visually interesting applications. This
tool provides a visual layout environment for designing the UI for JavaFX
applications and generates FXML code. You can use the Properties panel or the
Modify option of the menu bar to add effects to the UI elements. See the
Properties Panel section or Table 3-3 in the Menu Bar section of the
JavaFX Scene Builder User Guide for information.

Where to Go from Here

5-10 Getting Started with JavaFX

6

Deploying Your First JavaFX Application 6-1

6Deploying Your First JavaFX Application

This topic shows how to deploy the samples from any of the Getting Started with
JavaFX tutorials.

If you develop your JavaFX application in NetBeans IDE, it is packaged automatically
and is easy to deploy.

This page contains the following sections.

■ Deployment Modes

■ Packaging the Application in NetBeans IDE

■ Running the Application Outside NetBeans IDE

■ Deploying the Packaged Files

■ Other Ways to Package JavaFX Applications

Deployment Modes
JavaFX applications can be run in several ways:

■ Launch as a desktop application from a JAR file or self-contained application
launcher

■ Launch from the command line using the Java launcher

■ Launch by clicking a link in the browser to download an application

■ View in a web page when opened

Packaging the Application in NetBeans IDE
When you run your application in NetBeans IDE or use the Clean and Build
command, your application is packaged for all modes of JavaFX deployment, using
options that are set as project properties. By default, applications are packaged into the
following files as shown in Figure 6–1:

■ A JAR file, which contains the compiled class files and images.

■ A JNLP file, which contains a deployment descriptor for the two web modes (Web
Start and embedded in browser).

■ An HTML file, which contains basic code for running both the Web Start
application and the embedded application using the Deployment Toolkit.

■ A web-files folder, which contains an offline set of files from the Java Deployment
Toolkit to assist with starting up your application. For more information about

Packaging the Application in NetBeans IDE

6-2 Getting Started with JavaFX

using the Java Deployment Toolkit in JavaFX applications, see "Deployment in the
Browser" at
http://docs.oracle.com/javafx/2/deployment/deployment_toolkit.htm

Figure 6–1 Example of Default Application Packaging

Optionally, you can package your application as a self-contained application in
NetBeans IDE by adding the task shown in Example 6–1 to the build.xml file.

Example 6–1 Changes to the build.xml File for Packaging Self-Contained Applications

<project name="ColorfulCircles" default="default" basedir="."
xmlns:fx="javafx:com.sun.javafx.tools.ant">

target name="-post-jfx-deploy">
<fx:deploy width="${javafx.run.width}" height="${javafx.run.height}"

nativeBundles="all"
outdir="${basedir}/${dist.dir}" outfile="${application.title}">

<fx:application name="${application.title}"
mainClass="${javafx.main.class}"/>

<fx:resources>
<fx:fileset dir="${basedir}/${dist.dir}" includes="*.jar"/>

</fx:resources>
<fx:info title="${application.title}" vendor="${application.vendor}"/>

</fx:deploy>
</target>

</project>
A self-contained application runs similar to the way in which a native application
runs. The self-contained application package contains your application, the JRE, the
JavaFX runtime, and a platform-specific application launcher. An example of a
package is shown in Figure 6–2. For additional information, see Self-Contained
Application Packaging.

Figure 6–2 Example of a Self-Contained Application Package

Running the Application Outside NetBeans IDE

Deploying Your First JavaFX Application 6-3

Sizing the Application Window
With standalone and Web Start mode, the window is sized around the width and
height values you specify for the scene in the code. If you do not specify a width and
height in the code, the window automatically sizes itself to fit the application.

Applications that are embedded in a web page require that you set width and height
values in the NetBeans project’s properties, even if you specify width and height
values in the code. You can even specify different width and height values in the
project properties from what is specified in the code, so you can experiment to see
what looks best in the browser.

To specify application width and height in NetBeans project properties:

1. In the Projects pane, right-click your NetBeans project and choose Properties.

2. Select the Run category.

3. In the section entitled Web Start and Browser Application Properties, specify
width and height values.

4. If you want to test the application in a browser when you run it inside NetBeans
IDE, choose in Browser in the Run field.

5. Click OK to close the Properties dialog box.

6. Right-click the project and choose Clean and Build.

7. If you chose to run the application in the browser in the project properties, you can
right-click the project and choose Run. Otherwise, test the HTML file outside the
browser by following the instructions in Running the Application Outside
NetBeans IDE.

Running the Application Outside NetBeans IDE
To run the packaged application outside NetBeans IDE, go to the dist subdirectory of
your application project directory and do the following:

■ To run the application in standalone mode, double-click the JAR file.

■ To run as a Web Start application, either click the link in the HTML page in your
browser or double-click the JNLP file. The advantage of using the link in the
browser is that the web page contains logic that uses the Deployment Toolkit,
which checks to ensure that the minimum required version of both the Java and
JavaFX Runtimes are installed on the user’s system.

■ To run the application in a web page, open the HTML file in a browser.

Note: If you open the HTML file in Google Chrome, you might have
to click either Run this time or Always run on this site to enable the
Java plug-in, as shown in Figure 6–3. Then reload the page to run the
application.

Deploying the Packaged Files

6-4 Getting Started with JavaFX

Figure 6–3 Plug-In Message in Google Chrome

■ To run a self-contained application package, go to the folder that contains the
application. If you are running on a Windows or Linux platform, click the launcher
file for the application. If you are running on a Mac platform, double click the
application folder.

Deploying the Packaged Files
With the Java 7 Runtime and later, you can move the deployment files to other
locations without changing any configuration properties in the deployment descriptor
(which means the contents of the JNLP file). The files required for each deployment
mode are shown in Table 6–1.

Other Ways to Package JavaFX Applications
Instead of using NetBeans IDE to package your deployment files, you can also use the
JavaFX Packager tool or a custom Ant task. All of these tools generate a default HTML
file with application launch descriptors that you manually copy into your web page,
but you can optionally generate the application launch descriptors directly into your
own HTML pages using an input template. You can also customize many other aspects
of application startup and execution. For more information, see Deploying JavaFX

Note: For applications that include FXML markup, NetBeans IDE
adds a digital signature to the JAR file by default to ensure that it will
run on the web. For more information about packaging FXML
applications and FXML deployment, see
http://docs.oracle.com/javafx/2/fxml_get_started/fxml_
deployment.htm

Table 6–1 Files Required for Each Deployment Mode

Deployment Mode Files Required

Standalone JAR

Run in Browser JAR, JNLP, HTML

Web Start JAR, JNLP, HTML

Self-Contained Application Folder that contains the application and supporting files

http://docs.oracle.com/javafx/2/fxml_get_started/fxml_deployment.htm
http://docs.oracle.com/javafx/2/fxml_get_started/fxml_deployment.htm

Other Ways to Package JavaFX Applications

Deploying Your First JavaFX Application 6-5

Applications at
http://docs.oracle.com/javafx/2/deployment/jfxpub-deployment.htm

	Contents
	Part I About This Tutorial
	1 Hello World, JavaFX Style
	Construct the Application
	Run the Application
	Where to Go Next

	2 Creating a Form in JavaFX
	Create the Project
	Create a GridPane Layout
	Add Text, Labels, and Text Fields
	Add a Button and Text
	Add Code to Handle an Event
	Run the Application
	Where to Go from Here

	3 Fancy Forms with JavaFX CSS
	Create the Project
	Create the CSS File
	Add a Background Image
	Style the Labels
	Style Text
	Style the Button
	Where to Go from Here

	4 Using FXML to Create a User Interface
	Set Up the Project
	Load the FXML Source File
	Modify the Import Statements
	Create a GridPane Layout
	Add Text and Password Fields
	Add a Button and Text
	Add Code to Handle an Event
	Use a Scripting Language to Handle Events
	Style the Application with CSS
	Where to Go from Here

	5 Animation and Visual Effects in JavaFX
	Set Up the Application
	Set Up the Project
	Add Graphics
	Add a Visual Effect
	Create a Background Gradient
	Apply a Blend Mode
	Add Animation
	Where to Go from Here

	6 Deploying Your First JavaFX Application
	Deployment Modes
	Packaging the Application in NetBeans IDE
	Sizing the Application Window

	Running the Application Outside NetBeans IDE
	Deploying the Packaged Files
	Other Ways to Package JavaFX Applications

