
Oracle® Java ME Embedded
Developer’s Guide

Release 8

E52611-01

April 2014

This document is a resource for software developers and
release engineers who want to build applications for the
Oracle Java ME Embedded software for embedded devices.

Oracle Java ME Embedded Build Guide, Release 8

E52611-01

Copyright © 2012, 2014 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. xi

Audience.. xi
Documentation Accessibility .. xi
Related Documents .. xi
Operating System Commands.. xi
Shell Prompts .. xi
Conventions .. xii

1 Developer Migration Guide

Overview .. 1-1
Modified Permission Model .. 1-1
Device I/O Namespace ... 1-2
Generic Connection Framework Changes... 1-2

2 Java Embedded VM Proxy and Console

Design... 2-1
Starting the VM Proxy on the Desktop .. 2-2

Server Mode Connection... 2-2
Client Mode Connection ... 2-3

VM Proxy Options ... 2-3
Using the Command Line Interface.. 2-3

ams-install ... 2-5
ams-list... 2-6
ams-update.. 2-7
ams-remove... 2-8
ams-run.. 2-9
ams-stop... 2-9
blacklist ... 2-10
properties-list ... 2-10
get-property ... 2-11
set-property.. 2-12
save-properties .. 2-13
net-info.. 2-13
net-set .. 2-13
net-reconnect.. 2-14

iv

device-list.. 2-15
device-change .. 2-15
shutdown.. 2-16
cd ... 2-16
delete ... 2-17
get .. 2-17
ls... 2-18
mkdir... 2-19
pwd.. 2-19
put.. 2-19

3 Security

Permissions for Accessing Peripherals .. 3-1
Accessing Peripherals.. 3-3

Signing the Application with API Permissions ... 3-3
Method #1: Signing Application Using the NetBeans IDE ... 3-4
Method #2: Signing Application Using a Command Line.. 3-4
Method #3: Using NullAuthenticationProvider... 3-5

4 Software Management

SuiteInstallListener Interface .. 4-1
SuiteListener Interface .. 4-2
SuiteManager Interface ... 4-2
TaskListener Interface ... 4-2
TaskManager Interface .. 4-3
ManagerFactory Class.. 4-3
The Suite Class ... 4-4
SuiteInstaller Class .. 4-5
SuiteInstaller Class .. 4-6
SWMPermission Class .. 4-7
Task Class... 4-7
InstallerErrorCode.. 4-8

5 General Purpose Input/Output

Setting a GPIO Output Pin... 5-1
Working with a Breadboard ... 5-5
Blinking an LED ... 5-8
Testing Output and Input Pins ... 5-10

6 Working with the I2C Bus

Experimenting with a 7-Segment Display... 6-1
Experimenting with a 16x2 LCD Display .. 6-7

7 The Serial Peripheral Interface (SPI) Bus

Using the SPI Bus to Communicate with an ADC... 7-1

v

Glossary ..

Index

vi

List of Examples

5–1 Setting a GPIO Pin .. 5-2
5–2 Creating a GPIO Pin Listener ... 5-10
6–1 HT16K33 I2C Driver for 7-Segment Display... 6-2
6–2 IMlet to Write to the 7-Segment Display ... 6-5
6–3 Testing the PCF8574N I/O Expander Chip ... 6-10
6–4 LCD Driver Class to Control the HD44780 Chip .. 6-11
6–5 IMlet to Write to the 16x2 LCD Display ... 6-13
7–1 Testing Out the SPI Bus Connection .. 7-3

vii

List of Figures

2–1 VM Proxy and Agent Design for Java Embedded ... 2-2
2–2 PuTTY Configuration ... 2-4
2–3 Command-Line Interface ... 2-5
3–1 Adding Permissions Using the NetBeans IDE.. 3-4
5–1 API Permissions in the Application Descriptor in NetBeans ... 5-3
5–2 Raspberry Pi Pin 7 with Low (0V) Voltage ... 5-4
5–3 Raspberry Pi Pin 7 with High (3.3V) Voltage ... 5-5
5–4 A Typical Breadboard .. 5-6
5–5 Wiring Pattern for a Typical Breadboard .. 5-6
5–6 T-Cobbler Extension Board for the Raspberry Pi ... 5-7
5–7 Schematic for Wiring an LED to GPIO 7 ... 5-9
5–8 Wiring an LED to GPIO Pin 7 ... 5-9
5–9 Output of Example 1-2 .. 5-12
6–1 Binary Encoding for 7-Segment Display ... 6-5
6–2 Result of Running the 7-Segment Display IMlet .. 6-7
6–3 Pinout Diagram for PCF8574N IC .. 6-8
6–4 Running the i2cdetect Command ... 6-9
6–5 I/O Data Bus with the PCF8574N chip .. 6-11
6–6 LCD Display after Running Example ... 6-14
7–1 Pinouts for TLC549CP Analog-to-Digital Converter Chip ... 7-2
7–2 Breadboard with the Analog-to-Digital Converter Circuit... 7-3

viii

ix

List of Tables

3–1 Oracle Java ME Embedded Permissions .. 3-1
4–1 SuiteInstallState .. 4-1
4–2 SuiteType Enumeration .. 4-4
4–3 SuiteStageFlag Enumeration .. 4-4
4–4 Installer Error Codes.. 4-8
5–1 Hardware for Example 1-1 ... 5-1
5–2 Permissions for Example 1-1 .. 5-3
5–3 Broadcom GPIO to T-Cobbler Conversion... 5-7
5–4 Equipment Needed for Blinking LED Example .. 5-8
5–5 Hardware for Example 1-1 .. 5-10
5–6 Permissions for Example 1-2 ... 5-11
6–1 Hardware for 7-Segment Display Example ... 6-1
6–2 Raspberry Pi to HT16K33 Jumper Connections .. 6-1
6–3 HT16K33 7-Segment Display Addresses .. 6-5
6–4 API Permissions for 7-Segment Display Project.. 6-6
6–5 Hardware for Example 2-2 ... 6-7
6–6 Raspberry Pi to PCF8574N Jumper Connections .. 6-8
6–7 Connections to PCF8574N and HD44780 Chip ... 6-9
6–8 API Permissions for LCD Example .. 6-14
7–1 Hardware for Example 3-1 ... 7-1
7–2 Raspberry Pi to TLC549CP SPI Pins.. 7-2
7–3 TLC549CP to Analog Signal Pins .. 7-2

x

xi

Preface

This book describes how to create and build Oracle Java ME Embedded software from
its source code.

Audience
This document is intended for developers who want to build Oracle Java ME
Embedded software for embedded devices.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For a complete list of documents with the Oracle Java ME Embedded software, see the
Release Notes.

Operating System Commands
This document does not contain information on basic commands and procedures such
as opening a terminal window, changing directories, and setting environment
variables. See the software documentation that you received with your system for this
information.

Shell Prompts

Shell Prompt

Bourne shell $

xii

Conventions
The following text conventions are used in this document:

Windows directory>

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Shell Prompt

1

Developer Migration Guide 1-1

1Developer Migration Guide

This chapter discusses the changes between version 3.4 of the Oracle Java ME
Embedded and the current instance, version 8. It is designed as a guide to help
application developers port earlier applications to the latest version of the Oracle Java
ME Embedded runtime. If you have not developed IMlets using version 3.4 or earlier
of the Oracle Java ME Embedded platform, you can safely skip this chapter.

Overview
Java ME 8 is an umbrella terms for two new JSRs: CLDC 8 and MEEP 8. CLDC 8 is a
major evolution of CLDC 1.1, while MEEP 8 is a major evolution of IMP-NG. Java ME
8 also includes support for the new Device I/O API.

CLDC 8 is backwards compatible with CLDC 1.1, but includes alignment with the Java
SE 7 and 8 language, core APIs, and VM functionality, Java SE-style class-based
fine-grain permissions, as well as a significantly enhanced Generic Connection
Framework (GCF).

MEEP 8 allows execution of most IMP-NG applications, and includes significant
enhancements by leveraging the CLDC 8 features, improvements in the application
platform, improved software provisioning and management, footprint scalability
through optional APIs, improved connectivity options, and more flexible
authentication and authorization mechanisms.

The Device I/O API defines an API that allows Java applications running on small
embedded devices to access peripheral devices, from a peripheral device external to
the host device to a peripheral chip embedded in the host device.

It is strongly recommended that developers familiarize themselves with the CLDC 8
specification and API, the MEEP 8 specification and API, and the Device I/O API.

Modified Permission Model
There are a number of new permissions that object methods must obtain before they
can successfully access peripherals. These permissions are covered in more detail in
Chapter 2. However, developers should be aware of the following:

■ Java ME 8 now uses Java SE-style class-based fine-grain permissions.

■ Applications should request the jdk.dio.DeviceMgmtPermission permission
when accessing any devices connected to the board through protocols such as
GPIO, I2C, SPI, or MMIO, in addition to the permissions required by the
communication bus they are using.

Device I/O Namespace

1-2 Oracle Java ME Embedded Application Management System API Guide

■ The syntax for the permissions request has changed. The request now includes the
device identifier and any specific actions that are requested, if applicable. Device
identifiers (e.g., GPIO7, SPI) are listed in the appropriate appendix of the Getting
Started Guide for that development board.

■ A single request cannot be used for multiple devices; each permissions must be
listed separately. For example, you cannot do the following:

MIDlet-Permission-1: jdk.dio.GPIOPinPermission "GPIO7,GPIO8" "open"

Instead, you must do this:

MIDlet-Permission-1: jdk.dio.GPIOPinPermission "GPIO7" "open"
MIDlet-Permission-2: jdk.dio.GPIOPinPermission "GPIO8" "open"

In some cases, you can use an asterisk as a wildcard.

Device I/O Namespace
The Device Access API of the Oracle Java ME Embedded platform is now referred to
as the Device I/O API, and is no longer part of the com.oracle.deviceaccess
package. Instead, all classes now use the jdk.dio namespace. In addition:

■ Classes that contain "Peripheral" have been changed to "Device." So, for example,
PeripheralManager has been replaced by DeviceManager, and
PeripheralPermission has been replaced by DevicePermission.

■ Support now exists for pulse width modulation (PWM) on all platforms.

■ Almost all of the individual class methods are unchanged.

Generic Connection Framework Changes
The IMP-NG javax.microedition classes are now replaced by the Generic Connection
Framework (GCF) with JSR-360 and Java ME Embedded Profile classes (MEEP) with
JSR-361. There are a large number of changes that are included in these new profiles.
See the specification pages online for more information on each of these classes.

2

Java Embedded VM Proxy and Console 2-1

2Java Embedded VM Proxy and Console

In a typical profiling and monitoring session, the Java virtual machine must do a large
amount of extra work: collecting, storing, and analyzing data, as well as replying to
requests from external tools. When this is done on embedded devices, possibly using a
slower CPU or constrained memory, development can become an unacceptably
sluggish experience.

For this reason, version 8 of the Oracle Java ME Embedded software moves as much
CPU intensive processing away from the embedded Java VM as possible. Instead, a
separate application running on the host side will interact across the network with the
internals of the Java VM. With this design, the VM only sends low-level events to the
host application, such as state change information, methods transition, and objects
information. The information is then stored and analyzed on host side, and the host
application in turn provides the information to all external profilers, monitors, and
managers.

External tools can treat the Java SE host application as if it was the VM itself. Besides
performance and footprint goals, this approach minimizes development efforts on
porting different component communications to new physical transport such as USB,
serial, or Bluetooth. Instead, this VM proxy application and the VM proxy channel
becomes the inter-component tool, and Javacall, CLDC, MEEP, JSRs and SDK
components can all take advantage of it.

Design
The VM proxy uses a single transport connection to transmit all data for any
subsystem. See Figure 2–1 for an illustration of this design; the VM proxy is the middle
component.

Starting the VM Proxy on the Desktop

2-2 Oracle Java ME Embedded Application Management System API Guide

Figure 2–1 VM Proxy and Agent Design for Java Embedded

Be sure not to confuse the VM proxy with the VM agent. The VM agent consists of
native code and is located on the embedded device. The VM proxy is written in Java
SE and is launched on the desktop host.

The proxy also provides a software management (SWM) API, similar to the
javax.microedition.swm package, as declared in the Java ME Embedded Profile
(MEEP) specification. This API is an extension of the previous Application
Management System (AMS) API of previous versions of the Oracle Java ME
Embedded platform, and can be leveraged by ME SDK, IDEs, and the CLI to manage
applications with any connected device.

The transport layer between the VM proxy (desktop) and the VM agent (device) is
protocol-agnostic by design. However, it is currently implemented for TCP, Serial
(COM port), and USB. The transport can initiate connection establishment in any
direction, either from device to host or vise versa. The current supported platforms
are: Win32 (the emulator), RPi (Raspberry Pi with an embedded Linux OS), Keil (RTX
OS), Orion (Brew MP OS), and STMicro Discovery.

Starting the VM Proxy on the Desktop
To use the VM Proxy, extract the files from your copy of the Oracle Java ME Embedded
ZIP archive on the Windows desktop. The VM Proxy program is found as a JAR file
inside the util directory of the Oracle Java ME Embedded distribution, named
proxy.jar. You can start the VM Proxy on the desktop host computer either in a
server or a client mode as described below.

Server Mode Connection
The server mode is used by default. In this mode, the VM Proxy must be started after
the Java runtime is started on the embedded board. Then do the following.

1. Change to the util directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar -socket <Raspberry Pi IP Address>

Channel 8 CLOSED -> AVAILABLE
Trying to open socket connection with device: <IP Address>:2201
Connected to the socket Socket[addr=/<IP address>, port 2201, localport=54784]
Debugger Connection initialized

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-3

Client Mode Connection
To switch to a client mode connection, perform the following steps.

1. Edit the jwc_properties.ini file on the embedded board as follows:

■ Set the proxy.connection_mode property to the client value.

■ Set the proxy.client_connection_address property to the IP address of the
host running the Developer Agent.

2. Start the Java runtime on the embedded board.

3. Change to the lib directory on your desktop host and enter the following
command. You should see an output similar to the following:

C:\mydir\util> java -jar proxy.jar
Starting with default parameters: -ServerSocketPort 2200 -jdbport 2801
Channel 8 CLOSED -> AVAILABLE
Waiting for device connections on port 2200

By default, the proxy listens for CLI connections at 65002 port on the host. The port
can be changed by passing the -cliport option while launching the proxy.

VM Proxy Options
The following options are available when starting the VM Proxy using the java -jar
proxy.jar command.

no options - runs proxy with default transport. The host opens a server socket and
waits for a connection from the embedded device. This means the Java Embedded
runtime should be started on the device with its jwc_properties.ini file containing
the following settings:

proxy.connection_mode=client
proxy.client_conncetion_address=(IP address of VM Proxy)

-socket <IpAddress> - runs the proxy as a client. This means that the device should
open a server socket and wait for a connection from the host. The Java Embedded
runtime should be started on the device with its jwc_properties.ini file containing
the following setting:

proxy.connection_mode=server

-serial <COM_PORT> - runs the proxy with a serial transport. This means that the
VM proxy communicates with device across the specified serial port.

-debug - Adds additional debugging information when the VM proxy is running.

Using the Command Line Interface
Once the VM proxy is running on the desktop, you can use the AMS CLI. The easiest
way to do this is to start a PuTTY executable on your desktop computer, and connect
to localhost at port 65002. This is shown in Figure 2–1. See the appropriate Getting
Started Guide for your embedded board for platform-specific information on using the
Command Line Interface.

Using the Command Line Interface

2-4 Oracle Java ME Embedded Application Management System API Guide

Figure 2–2 PuTTY Configuration

The window from port 65002 provides a command-line interface (CLI), and is shown
in Figure 2–2:

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-5

Figure 2–3 Command-Line Interface

The following CLI commands are available for developers. When a command is only
available for a specific embedded platform, it is shown in the description.

ams-install
Installs IMlets on the embedded device.

Usage
ams-install <URL> [auth=<username>:<password>] [hostdownload]

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

WARNING: The command-line interface (CLI) feature in this
Oracle Java ME Embedded software release is provided only as a
concept for your reference. It uses insecure connections with no
encryption, authentication, or authorization.

Parameter Description

<URL> Specifies the JAD/JAR location. The URL may contain
credentials to access the JAD/JAR server (e.g.
http://username:password@host/...).

hostdownload Downloads the JAR file using HTTP and then installs it to
device via the tooling channel. Applicable for JAR files
only.

auth Specifies the user credentials to access the JAD/JAR server.

Using the Command Line Interface

2-6 Oracle Java ME Embedded Application Management System API Guide

ams-list
Shows a list of installed IMlets on the device or in the specified suite. If no arguments
are specified, the ams-list command will return a list of all installed suites. If a suite’s
index or name/vendor combination are used, the command will list the suite’s
midlets.

Usage
ams-list [<index> or <name>|<vendor>]

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

Response Description

<<ams-install,start install, <URL> Information message about the start
of the installation process.

<<ams-install, install status: stage stage ,
%percentage%

Information message about the
installation progress

<<ams-install, OK,install success Information message about the
installation completing.

<<ams-install,FAIL,missing parameters. see help. The URL is not specified.

<<ams-install,ERROR,unknown parameter:
unexpected. see help.

An unexpected parameter was found.

<<ams-install,ERROR,duplicate parameter: auth. see
help.

One or more parameters were found
two or more times.

<<ams-install,FAIL,credentials must be specified
once: in url or in auth parameter

Credential info specified twice: in
<URL> and in <auth> parameter.

<<ams-install,FAIL,can’t download jar data from
<URL>

An error occurred while
downloading the JAR in
hostdownload mode.

<<ams-install,FAIL,errorCode errorcode,
errorMessage : message

Installation was aborted for some
reason, described in error message.

<<ams-install,FAIL, error occurred exception An unexpected error occurred. Note
that this response is added for
debugging purposes and to avoid
confusion.

Parameter Description

<index> Specifies the suite via its index number.

<name>|<vendor> Specified the suite via its name and vendor

Response Description

<<ams-list,FAIL,invalid parameters Unexpected parameters were found

<<ams-list,OK,0 suites are installed No suites were found on the device

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-7

ams-update
Updates the specified suite.

Usage
ams-update <index> or <name|vendor> [auth=<username>[:<password>]]

Parameters
This command takes the following parameters:

Note: The suite’s <index> or <name|vendor> combination is mandatory and must be
placed first.

Responses
This command may return the following responses:

<<ams-list,0.name|vendor,status

...

<<ams-list,N.name|vendor,status

<<ams-list,OK,N suites are installed

List of installed suites with details

<<ams-list,FAIL,invalid parameter Parsing the suite’s index failed or the
| character was missed

<<ams-list,FAIL,not found The suite was not found

<<ams-list,1.midlet,status

...

<<ams-list,N.midlet,status

<<ams-list,OK,N midlets are installed in
suiteName|suiteVendor

List of the installed midlets in the
suite. Note that each suite status can
be RUNNING or STOPPED.

Parameter Description

<index> The index of the suite to be updated. To obtain the suite
index, use the ams-list command.

<name>|<vendor> Specifies the suite to be updated via its name and vendor.

auth Specifies the user credentials to access the JAD/JAR server.

Response Description

<<ams-update,FAIL,missing parameters. see help. Missing parameters (the suite’s index
or name|vendor combination is not
specified)

<<ams-update,ERROR,unknown parameter:
parameter. see help.

An unexpected parameter was found.

<<ams-update,ERROR,duplicate parameter:
parameter. see help.

A duplicate parameter was found

<<ams-update,ERROR,Can't update suite suiteIndex
(suiteName|suiteVendor): download url is not
specified.

The download URL is not specified.
For suites, installed in hostdownload
mode, see the ams-install
command.

Response Description

Using the Command Line Interface

2-8 Oracle Java ME Embedded Application Management System API Guide

ams-remove
Removes the specified suite from device.

Usage
ams-remove <index or name|vendor>

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

<<ams-update,FAIL,not found Suite not found. Either the suite was
removed or the index /
name|vendor identifier was
specified incorrectly.

<<ams-update,start install, <URL> Information message about the
update process starting.

<<ams-update, install status: stage stage ,
percentage%

Information message about the
update progress

<<ams-update, OK,install success Information message about the
update process completing.

<<ams-update,FAIL, errorCode errorcode,
errorMessage : message

The update was aborted for some
reason, as described in the error
message.

<<ams-update,FAIL, error occurred exception An unexpected error occurred. Note
that this response is added for
debugging purposes and to avoid
confusion.

Parameter Description

<index> The index of the suite to be removed. To obtain the suite
index, use the ams-list command.

<name>|<vendor> Specifies the suite to be removed via its name and vendor

Response Description

<<ams-update,FAIL,missing parameters. see help. Missing parameters (suite’s index or
name|vendor not specified)

<<ams-remove,OK,removed The suite was successfully removed:

<<ams-remove,FAIL,not found The suite was not found. Either the
suite has been already removed, or
the <index>/<name|vendor>
identifier was specified incorrectly.

<<ams-remove,FAIL,locked The suite is locked and cannot be
removed. The suite is likely in the
RUNNING state. The ams-stop
command must be called first.

<<ams-remove,FAIL,not allowed The user doesn’t have permissions to
remove suites.

Response Description

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-9

ams-run
Run default suite’s MIDlet or MIDlet, specified wit [MILET_ID] parameter

Usage
ams-run <index or name|vendor> [<id>]

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

ams-stop
Stops the default MIDlet, or the MIDlet with the specified ID if given.

Usage
ams-stop <index or name|vendor> [id]

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

Parameter Description

<index> Index of suite to be run. To obtain the suite index, use the
ams-list command.

<name>|<vendor> Specifies the suite to be launched via its name and vendor

<id> The index of midlet in the suite to be run.

Response Description

<<ams-run,FAIL,invalid parameters Unexpected parameters were found.

<<ams-run,FAIL,failed to start Cannot start the midlet. The index of
the suite or midlet was specified
incorrectly.

<<ams-run,FAIL,already started The suite has been already started.

<<ams-run,OK,started The suite was started successfully.

Parameter Description

<index> Index of suite to be stopped. To obtain the suite index, use
the ams-list command.

<name>|<vendor> Specified the suite to be stopped via its name and vendor

<id> The ID of midlet in the suite to be stopped.

Response Description

<<ams-stop,FAIL,invalid parameters Unexpected parameters were found

Using the Command Line Interface

2-10 Oracle Java ME Embedded Application Management System API Guide

blacklist
Blacklists clients and applications.

Usage
blacklist -client <name>

blacklist -app <name|vendor>

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

properties-list
Shows the list of names of properties which control Java ME runtime, common to the
java_properties.ini file. Note that a property type may be only INT, STRING or
BOOL. The read/write flag value may be only read/write or read only, and a BOOL
property value may be only true or false.

Usage
properties-list [-l]

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

<<ams-stop,FAIL,not found Cannot stop the midlet. The index of
the suite or midlet was specified
incorrectly.

<<ams-stop,OK,started The suite was stopped successfully

Parameter Description

<name> The name of the client to be blacklist.

<name>|<vendor> Specifies the suite to be blacklisted via its name and
vendor

Response Description

<<blacklist,FAIL,invalid parameters Unexpected parameters were found

<<blacklist status OK The command was successful.

Parameter Description

-l Use the long listing format with properties' types, values
and readonly flags.

Response Description

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-11

get-property
Shows the value of requested property. If the property is not defined, the command
shows an empty string as its value.

Usage
get-property <name> [-i]

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

Response Description

<<properties-list,AMS_MEMORY_LIMIT_MVM
AMS_MEMORY_RESERVED_MVM
AuthenticationName AuthenticationPwd btgoep
btl2cap btspp cbs ...

The response without the long listing
flag. Shows property names
separated by a space.

<<properties-list,OK

read/write INT AMS_MEMORY_LIMIT_MVM = -1

read/write INT AMS_MEMORY_RESERVED_MVM
= 100

read/write STRING AuthenticationName = user

read/write STRING AuthenticationPwd = password

read only BOOL microedition.deviceid.isunique =
false

read only BOOL
microedition.devicevendor.isunique = false

The response with the long listing
flag.

<<properties-list,FAIL,invalid parameters

<<properties-list,Usage: properties-list [-l]

<<properties-list,list of properties which control
Java ME runtime

<<properties-list, -l use a long listing format

An unexpected parameter was found

<<properties-list,OK,there is no property found An empty list of properties was
found.

<<properties-list,FAIL,connection is closed An IOException has occurred.

Parameter Description

-i Displays additional property information

Response Description

<<get-property,OK,imc =
com.sun.midp.io.j2me.imc.ProtocolPushImpl

The property was found (without
displaying additional information)

<<get-property,OK,dummy.property = The property value is empty or not a
set (without additional information)

<<get-property,OK, read/write STRING imc =
com.sun.midp.io.j2me.imc.ProtocolPushImpl

The property is found (with -i flag)

Using the Command Line Interface

2-12 Oracle Java ME Embedded Application Management System API Guide

set-property
Sets the new value for the requested property. If the property controls the Java ME
Runtime (i.e., it is defined in the java_properties.ini file), it cannot be rewritten
unless the read-only flag is disabled. Note that properties are verified for type
correctness. The value of a BOOL property may be any string. However, only "true"
(case insensitive) is considered a true value; any other string is considered to be false.

The new value for a property that controls the Java ME Runtime will be applied only
after a VM reboot. In this case, only the latest set-property command will have an
effect after reboot. New values for other properties can be read just after the
get-property command has finished.

Usage
set-property <name> <value>

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

<<get-property,OK, read/write STRING
dummy-property =

The property value is empty or not a
set (with -i flag)

<<get-property,FAIL,invalid parameters

<<get-property,Usage: get-property name [-i]

<<get-property,shows value of string property
'name'

<<get-property, -i display property info

An unexpected parameter was found

<<get-property,FAIL,illegal argument [info]

<<get-property,Usage: get-property name [-i]

<<get-property,shows value of string property
'name'

<<get-property, -i display property info

The wrong flag format was used(e.g.
using -info instead of -i)

<<get-property,FAIL,connection is closed An IOException has occurred.

Parameter Description

<name> The name of the requested property

<value> The new value for the property.

Response Description

<<set-property,OK,imc = new.value The operation completed
successfully.

<<set-property,FAIL,illegal number [hello].

<<set-property,Usage: set-property name value

<<set-property,sets 'value' to property 'name'

The value type is not a number when
property type is INT:

Response Description

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-13

save-properties
Saves properties to an internal storage.

Usage
save-properties

Parameters
This command takes no parameters:

Responses
This command may return the following responses:

net-info
Show the network information of the system. This command only works on
Qualcomm IoE devices.

Usage
net-info

Parameters
This command takes no parameters:

Responses
This command may return the following responses:

net-set
Sets a new value for the requested property of the network system. The property is
verified for type correctness. This command only works on Qualcomm IoE devices.

<<set-property,FAIL,illegal argument
[microedition.devicevendor.isunique] or [true].

<<set-property,Usage: set-property name value

<<set-property,sets 'value' to property 'name'

The property is read-only:

<<set-property,FAIL,invalid parameters.

<<set-property,Usage: set-property name value

<<set-property,sets 'value' to property 'name'

Wrong number of parameters:

<<set-property,FAIL,connection is closed An IOException has occurred

Response Description

<<save-properties,OK,success Properties have been successfully
saved to the internal storage

<<save-properties,FAIL An IOException has occurred.

Response Description

<<net-info,OK,success getting info Shows network information in the
format <name>=<value>

<<net-info,FAIL, connection is closed An IOException has occurred.

Response Description

Using the Command Line Interface

2-14 Oracle Java ME Embedded Application Management System API Guide

Usage
net-set <name> <value>

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

net-reconnect
Reconnects the network and reboots Java. This command only works on Qualcomm
IoE devices.

Usage
net-reconnect

Parameters
This command takes no parameters:

Responses
This command may return the following responses:

Parameter Description

<name> The name of the requested property

<value> The new value for the property.

Response Description

<<net-set,OK,<NAME> = <VALUE> The operation completed
successfully.

<<net-set,FAIL,illegal first argument [<NAME>]

<<net-set ssid <SSID>:set value for WIFI access

<<net-set passwd <PASSWD>:set password for WIFI
access

<<net-set pref <0|1|2|3|4|5>:set network mode
preference 0:AUTO, 1:NO OP, 2:WLAN Only,
3:GSM/WCDMA only, 4:WCDMA only,
5:GSM/WCDMA/WLAN

<<net-set apn <APN>:set APN

<<net-set pdp_authtype <0|1|2>:set APN's auth
type 0:NONE, 1:PAP, 2:CHAP

<<net-set pdp_username <USERNAME>:set pdp
username

<<net-set pdp_password <PASSWORD>:set pdp
password

An illegal type of property was
encountered. The response dictates
the correct syntax and property type.

<<net-set,FAIL,illegal value [<VALUE>] The value type was not a number
when the property type is INT.

<<net-set,FAIL,illegal argument [<NAME>] or
[<VALUE>]

This is returned if any of arguments
are null or if the property.name has
an incorrect property type.

<<net-set,FAIL,connection is closed An IOException has occurred.

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-15

device-list
Prints a list of all connected devices at the current time.

Usage
device-list

Parameters
This command takes no parameters.

Responses
This command may return the following responses:

device-change
Switches the currently-selected device. Once changed, all further device-related
commands will be address to the newly selected device.

Usage
device-change <index>

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

Response Description

<<net-reconnect,OK,VM will reboot. Device will
reconnect to the network

The network reconnect command
completed successfully. The device
will be rebooted and reconnected to
the network.

<<net-reconnect,FAIL Cannot reconnect the device to the
network

<<net-reconnect,FAIL, connection is closed An IOException has occurred.

Response Description

< <<device-list,0,<IP0>:<port0>,CURRENT

<<device-list,1,<IP1>:<port1>

...

<<device-list,<N-1>,<IPN-1>:<portN-1>

<<device-list,OK,N devices are connected

Printed list of devices. The "CURRENT"
annotation indicates the currently
seleted device that all device-related
CLI command are addressed to.

<<device-list,FAIL,invalid parameters Unexpected parameters were found.
In this case, the command has no
parameters, but the user has specified
some:

Parameter Description

<index> An integer index of device, as printed by the device-list
command.

Using the Command Line Interface

2-16 Oracle Java ME Embedded Application Management System API Guide

shutdown
Shutdown or restart the device.

Usage
shutdown [-r]

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

cd
Changes the working directory on the device.

Usage
cd <deviceDirectoryName>

Parameters
This command takes the following parameters:

Response Description

<<device-change,OK,current device is changed The command has been processed
successfully; the current device was
changed.

<<device-change,FAIL,invalid parameters An invalid number of parameters
have been specified (either no
parameters or more than one
parameter).

<<device-change,FAIL,incorrect device index The index is not an integer.

<<device-change,FAIL,device not found There is no such device.

<<device-change,FAIL,the device is already current An attempt was made to switch to a
device that is already the current
device.

Parameter Description

-r Restart the device. Note that restart is not supported on
Win32 platform.

Response Description

<<shutdown,OK,device will shutdown! The shutdown command was
processed successfully. The device
will be shutdown soon.

<<shutdown,OK,device will reboot! The shutdown command was
processed successfully, device will be
restarted soon.

<<shutdown,FAIL,can't reboot device Cannot restart the device

<<shutdown,FAIL,wrong parameters. see help. Unexpected parameters were found.

<<shutdown,FAIL,<Error message> Shutdown command failed due an
unknown reason.

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-17

Responses
This command may return the following responses:

delete
Deletes file on the device.

Usage
delete <deviceFileName>

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

get
Copies a device file to the host.

Usage
get <deviceFileName> <hostFileName>

Parameters
This command takes the following parameters:

Parameter Description

<deviceDirectoryName> This specifies the directory on the device to which you
want to change. The <deviceDirectoryName> can be relative
to the current working directory, or an absolute path

Response Description

<<cd,OK The command completed
successfully

<<cd,FAIL,invalid parameters Missing or excess parameters were
encountered

<<cd,FAIL,directory not found
<deviceDirectoryName>

Incorrect <deviceDirectoryName>
specified

<<cd,FAIL,connection is closed An IOException has occurred

Parameter Description

<deviceFileName> Specifies the file to delete. <deviceFileName> can be relative
to the current working directory, or an absolute path.

Response Description

<<delete,OK The command completed
successfully

<<delete,FAIL,invalid parameters Missing or excess parameters were
encountered.

<<delete,FAIL,file not found <deviceFileName> Incorrect <deviceFileName> specified

<<delete,FAIL,connection is closed An IOException has occurred

Using the Command Line Interface

2-18 Oracle Java ME Embedded Application Management System API Guide

Responses
This command may return the following responses:

ls
Displays a list of files and subdirectories in a device directory.

Usage
ls [<deviceDirectoryName>]

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

Parameter Description

<deviceFileName> Specifies the file to copy. <deviceFileName> can be relative
to the current working directory, or an absolute path.

<hostFileName> Specifies the name of the file to use on the host.

Response Description

<<get,OK The command completed
successfully

<<get,FAIL,invalid parameters Missing or excess parameters were
encountered

<<get,FAIL,file not found <deviceFileName> Incorrect <deviceFileName> specified

<<get,FAIL,unable to write into file <hostFileName> Incorrect <hostFileName> specified

<<get,FAIL,connection is closed An IOException has occurred

Parameter Description

<deviceDirectoryName> Specifies the directory for which you want to see a listing.
<deviceDirectoryName> can be relative to the current
working directory, or an absolute path. If no directory is
specified, the current working directory on the device is
used. In the result listing, subdirectories are marked by a
trailing device file separator symbol (for example, "\" on
Windows, "/" on RPi).

Response Description

<<ls,OK

alljavalist.txt

all_classes.zip

appdb\

bin\

classes\

classes.zip

The command completed
successfully

<<ls,FAIL,invalid parameters Excess or invalid parameters were
encountered

Using the Command Line Interface

Java Embedded VM Proxy and Console 2-19

mkdir
Creates a directory on the device.

Usage
mkdir <deviceDirectoryName>

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

pwd
Prints the current working directory on the device.

Usage
pwd

Responses
This command may return the following responses:

put
Copies a local host file to the device.

<<ls,FAIL,directory not found
<deviceDirectoryName>

Incorrect <deviceDirectoryName>
specified

Parameter Description

<deviceDirectoryName> Specifies the name of the new device directory.
<deviceDirectoryName> can be relative to the current
working directory, or an absolute path.

Response Description

<<mkdir,OK The command completed
successfully

<<mkdir,FAIL,invalid parameters Missing or excess parameters were
encountered

<<mkdir,FAIL,directory not found
<deviceDirectoryName>

Incorrect <deviceDirectoryName> was
specified

<<mkdir,FAIL,connection is closed An IOException has occurred

Response Description

<<pwd,OK

c:\Users\abc\javame-sdk\8.0_
ea\work\EmbeddedDevice1\appdb

The command processed successfully

<<pwd,FAIL,invalid parameters Excess parameters were encountered

Response Description

Using the Command Line Interface

2-20 Oracle Java ME Embedded Application Management System API Guide

Usage
put <hostFileName> <deviceFileName>

Parameters
This command takes the following parameters:

Responses
This command may return the following responses:

Parameter Description

<hostFileName> Specifies the local host file to copy.

<deviceFileName> Specifies the name to use on the device. <deviceFileName>
can be relative to the current working directory, or an
absolute path.

Response Description

<<put,OK The command processed successfully

<<put,FAIL,invalid parameters Missing or excess parameters

<<put,FAIL,unable to read file <hostFileName> Incorrect <hostFileName> specified

<<put,FAIL,file not found <deviceFileName> Incorrect <deviceFileName> specified

<<put,FAIL,connection is closed An IOException has occurred

3

Security 3-1

3Security

This chapter discusses security with the Oracle Java ME Embedded environment. Note
that with version 8 of the OJMEE, the security system was changed considerably, and
now uses Java SE-style fine-grain permissions. In addition, a security policy must be
chosen and JAR files, if applicable, must be digitally signed in order for peripherals to
be accessed.

Permissions for Accessing Peripherals
Applications that require access to peripherals or resources must request appropriate
permissions in the JAD file. For more information on using the Device I/O APIs,
please see the Device I/O API Proposal for Java ME 8 specification and the associated
Javadocs at the following site:

http://docs.oracle.com/javame/embedded/embedded.html

Table 3–1 gives a list of all permissions that can be requested in the Oracle Java ME
Embedded environment, as well as a description of when they are applicable.

Table 3–1 Oracle Java ME Embedded Permissions

Permission Description

jdk.dio.adc.ADCPermission Use of analog-to-digital
converter (ADC)

jdk.dio.atcmd.ATPermission Use of AT communication line

jdk.dio.counter.CounterPermission Use of the hardware counter

jdk.dio.dac.DACPermission Use of digital-to-analog
converter (DAC)

jdk.dio.DeviceMgmtPermission Opening of any Device I/O
peripheral.

jdk.dio.generic.GenericPermission Use of the generic classes

jdk.dio.gpio.GPIOPinPermission Use of a General Purpose I/O
(GPIO) pin

jdk.dio.gpio.GPIOPortPermission Use of a General Purpose I/O
(GPIO) port

jdk.dio.i2cbus.I2CPermission Use of the I2C bus on the board

jdk.dio.mmio.MMIOPermission Use of the MMIO capabilities
on the board

jdk.dio.PeripheralMgmtPermission Use of any peripherals on the
board

"http://docs.oracle.com/javame/embedded/embedded.html

Permissions for Accessing Peripherals

3-2 Oracle Java ME Embedded Application Management System API Guide

jdk.dio.spibus.SPIPermission Use of the SPI bus on the board

jdk.dio.uart.UARTPermission Use of the UART bus on the
board

jdk.dio.watchdog.WatchdogTimerPermission Use of the watchdog timer on
the board

javax.microedition.apdu.APDUPermission Use of an APDU device (e.g.,
card reader) on a board

javax.microedition.cellular.CellularPermission Use of cellular telephone
functionality on a board.

javax.microedition.event.EventPermission Use of events

javax.microedition.io.CommProtocolPermission Use of a communications
protocol

javax.microedition.io.Connector.cbs Use of a Cell Broadcast Service
(CBS) Connector

javax.microedition.io.Connector.file.read Use of a file read Connector

javax.microedition.io.Connector.file.write Use of a file write Connector

javax.microedition.io.Connector.rtsp Use of a real-time streaming
protocol (RTSP) Connector

javax.microedition.io.Connector.sms Use of an SMS Connector

javax.microedition.io.DatagramProtocolPermission Use of the datagram protocol

javax.microedition.io.DTLSProtocolPermission Use of the Datagram Transport
Layer Security (DLTS) protocol

javax.microedition.io.FileProtocolPermission Use of a file protocol

javax.microedition.io.HttpProtocolPermission Use of the HTTP protocol

javax.microedition.io.HttpsProtocolPermission Use of the HTTPS protocol

javax.microedition.io.IMCProtocolPermission Use of the Inter-MIDlet
communication protocol

javax.microedition.io.MulticastProtocolPermission Use of a multicast protocol

javax.microedition.io.PushRegistryPermission Use of a push registry

javax.microedition.io.SocketProtocolPermission Use of a socket protocol

javax.microedition.io.SSLProtocolPermission Use of the Secure Sockets Layer
(SSL) protocol

javax.microedition.location.LocationPermission Obtain the current location

javax.microedition.media.control.RecordControl Use of a recording feature on
the device

javax.microedition.media.control.VideoControl.getS
napshot

Use of a video snapshot feature
on the device

javax.microedition.midlet.ActionsDeniedPermission A permission to deny actions
on a device

javax.microedition.midlet.AutoStartPermission A permission to autostart an
IMlet suite on a device

javax.microedition.pim.ContactList.read Read a contact list

javax.microedition.pim.ContactList.write Write to a contact list

Table 3–1 (Cont.) Oracle Java ME Embedded Permissions

Permission Description

Accessing Peripherals

Security 3-3

Accessing Peripherals
Applications that require access to Device I/O APIs must request appropriate
permissions in JAD files. For more information on using the Device I/O APIs, please
see the Device I/O API 1.0 specification and the associated Javadocs at the following
site:

http://docs.oracle.com/javame/embedded/embedded.html

Signing the Application with API Permissions
First, the JAD file must have the proper API permissions. Here is how to sign the
application both in NetBeans and without an IDE.

■ In NetBeans, right-click the project name and choose Properties. Select
Application Descriptor, then in the resulting pane, select API Permissions. Click
the Add... button, and add the appropriate permissions, as shown in Figure 3–1.
Click OK to close the project properties dialog.

javax.microedition.pim.EventList.read Read from an event list
(calendar)

javax.microedition.pim.EventList.write Write to an event list (calendar)

javax.microedition.pim.ToDoList.read Read a to-do list

javax.microedition.power.PowerStatePermission Access the current power state
of the device

javax.microedition.swm.SWMPermission Access the software
management features of the
Java ME Embedded runtime

javax.wireless.messaging.cbs.receive Receive a Cell Broadcast
Service (CBS) message

javax.wireless.messaging.sms.receive Receive an SMS message

javax.wireless.messaging.sms.send Send an SMS message

Table 3–1 (Cont.) Oracle Java ME Embedded Permissions

Permission Description

"http://docs.oracle.com/javame/embedded/embedded.html

Accessing Peripherals

3-4 Oracle Java ME Embedded Application Management System API Guide

Figure 3–1 Adding Permissions Using the NetBeans IDE

■ If you are not using an IDE, you can manually modify the application descriptor
file to contain the following permissions.

MIDlet-Permission-1: com.oracle.dio.DeviceMgmtPermission "*:*" "open"

Method #1: Signing Application Using the NetBeans IDE
The NetBeans IDE enables developers both to sign the applications with a local
certificate and upload the certificate on the device. See the appropriate Getting Started
Guide for your embedded platform to learn how to use the NetBeans IDE to sign your
application.

Method #2: Signing Application Using a Command Line
This method is more complex, but is the preferred route for applications that are
widely distributed. Here are the instructions on how to setup a keystore with a local
certificate that can be used to sign the applications.:

1. Generate a new self-signed certificate with the following command on the
desktop, using the keytool that is shipped with the Oracle Java SE JDK.

keytool -genkey -v -alias mycert -keystore mykeystore.ks -storepass
spass -keypass kpass -validity 360 -keyalg rsa -keysize 2048 -dname
"CN=thehost"

This command generates a 2048-bit RSA key pair and a self-signed certificate,
placing them in a new keystore with a keystore password of spass and a key
password of kpass that is valid for 360 days. You can change both passwords as
desired.

2. Copy the certs directory from the board over to the desktop using an sftp client
or scp command, change into the certs directory, and perform the following
command using the mekeytool.exe command (or alternatively java -jar

Accessing Peripherals

Security 3-5

MEKeyTool.jar... if your distribution contains only that) that ships with the
Oracle Java ME SDK 8 distribution.

{mekeytool} -import -MEkeystore _main.ks -keystore mykeystore.ks
-storepass spass -alias mycert -domain trusted

This command imports the information in mykeystore.ks that you just created to
the _main.ks keystore. After this is completed, copy the certs directory back to
the board by using an sftp client or scp command.

Use the following commands to sign your application before deploying it to the board:

jadtool -addcert -chainnum 1 -alias myalias -keystore mykeystore.ks
-storepass spass -inputkad myjad.jad -outputjad myjad.jad

jadtool -addjarsig -chainnum 1 -jarfile myjar.jar -alias myalias -keystore
mykeystore.ks -storepass spass -keypass kpass -inputjad myjad.jad
-outputjad myjad.jad

Method #3: Using NullAuthenticationProvider
This method allows to bypass a certificate check and execute unsigned applications as
if they were signed and given all requested permissions. This method should be used
only for development and debugging. Final testing must be done using a real
certificate as described in method #1.

To use NullAuthenticationProvider, set the following property in the jwc_
properties.ini file on the board:

[internal]
authentication.provider = com.oracle.meep.security.NullAuthenticationProvider

Note that the Java runtime must not be running when editing the jwc_properties.ini
file.

Accessing Peripherals

3-6 Oracle Java ME Embedded Application Management System API Guide

4

Software Management 4-1

4Software Management

This chapter introduces the Software Management (SWM) APIs of the Java ME
Embedded Profile (MEEP) version 8. These APIs provided extended software
management features for Oracle Java ME Embedded applications, as given in the
javax.microedition.swm package. There are five interfaces and six classes in this
package that can be used by applications to enhance software management. In
addition, there are a number of enumerations that are present in the package; these are
documented near the classes and methods that use them throughout this chapter.

SuiteInstallListener Interface
SuiteInstallListener is a sub-interface that provides progress data for an installer
that is downloading an app or a link.

The interface consists of two methods, both of which are called at certain times during
installation. One is the installationDone() method, which provides only a single
code, the definitions of which can be found in the InstallerErrorCode interface. The
other is the updateStatus() method, which identifies the current task as one of the
SuiteInstallStage constants that are shown in Table 4–1, and provides an integer
percentage of completeness.

Here are the two method defined in the SuiteInstallListener interface:

■ void installationDone(int errorCode)

This method is called by the installer to report that the installation has completed.
The resulting integer code is contained in the InstallerErrorCode class. See
"InstallerErrorCode" on page 4-8 for more information on installation error codes.

■ void updateStatus(SuiteManagementTracker tracker,
SuiteInstallStage status, int percent)

Table 4–1 SuiteInstallState

Name Description

DONE Installation has completed

DOWNLOADING_BODY Install stage: downloading application body.

DOWNLOADING_DATA Install stage: downloading additional application
data.

DOWNLOADING_DESCRIPTOR Install stage: downloading application descriptor.

STORING Install stage: storing application.

VERIFYING Install stage: verifying downloaded content.

SuiteListener Interface

4-2 Oracle Java ME Embedded Application Management System API Guide

This method is called by the installer to inform the listener of the current status of
the install. The stage is given by an integer constant as shown in Table 4–1. The
percent is an integer between 0 and 100.

SuiteListener Interface
SuiteListener is an interface that provides a notification that the current state of a
suite has changed.

There is only one method defined in the SuiteListener interface:

■ void notifySuiteStateChanged(SuiteManagementTracker tracker,
SuiteState newState)

This method is called to notify a listener that the current state of a suite has
changed. A reference to the current SuiteManagementTracker is included, as well
as an instance of SuiteState, which indicates the new state.

SuiteManager Interface
The SuiteManager interface consists of only seven methods that add or remove suites,
add or remove suite listeners, retrieve a list of the currently installed suites, or retrieve
the current SuiteInstaller.

■ void addSuiteListener(SuiteListener theListener)

This method adds a SuiteListener object to the current SuiteManager.

■ Suite getSuite(java.lang.String vendor, java.lang.String name

This method returns an instance of the currently installed Suite.

■ SuiteInstaller getSuiteInstaller(byte[] instData, int offset, int
length, boolean ignoreUpdateLock)

This method returns the current SuiteInstaller.

■ SuiteInstaller getSuiteInstaller(java.lang.String locationUrl, boolean
ignoreUpdateLock)

This method returns the current SuiteInstaller

■ java.util.List<Suite> getSuites(SuiteType type)

This method requests a list of installed suites of specified type.

■ void removeSuite(Suite suite, boolean ignoreRemoveLock)

This method removes a Suite.

■ void removeSuiteListener(SuiteListener theListener)

This method removes a SuiteListener.

TaskListener Interface
The TaskListener interface is an interface used to receive updates about a task that is
currently running.

■ void notifyStatusUpdate(Task task, TaskStatus newStatus)

This method is called when the current task has a new status update to report. The
method passes a reference to the Task in question, as well as a TaskStatus object
reporting the new status.

ManagerFactory Class

Software Management 4-3

TaskManager Interface
The SuiteInstaller interface is a sub-interface that consists of only two methods: one
that starts the installation and one that cancels the installation.

■ void addTaskListener(TaskListener) throws SecurityException

This method adds a TaskListener.

■ Task getCurrentTask() throws SecurityException

This method returns the current task that is running.

■ java.util.List<Task> getTaskList(boolean includeSystem)

This method obtains a list of Task objects. If system tasks are to be included, that
can be specified with the boolean parameter.

■ void removeTaskListener(TaskListener listener)

This method removes a TaskListener.

■ boolean setForegroundTask(Task task) throws
java.lang.IllegalArgumentException

This method assigns the specified task to be the currently running foreground
task. A task is said to be in the foreground if the LUI API or another UI API is
supported and the task is visible on the display, or if the Key API is supported and
input device events will be delivered to it. If none of those packages is supported
by the implementation, a call to this method has no effect.

■ boolean setPriority(Task task, TaskPriority priority) throws
java.lang.IllegalArgumentException

Changes the priority for the given task. The method returns true if the change was
successful, or false otherwise.

■ Task startTask(Suite suite, String className) throws
java.lang.IllegalArgumentException, java.lang.IllegalStateException

Starts a Task from the given class name in the given Suite. This method throws an
exception if suite is a library and can therefore not be started. Calling this method
schedules a new application execution. The new task is created with
TaskStatus.STARTING on success or TaskStatus.START_FAILED on failure.

More than one call to this method can be performed with the same arguments. In
this case subsequent calls lead to attempts to re-start the task. In case of
unsuccessful attempt to re-start the task, an appropriate exception is thrown or the
corresponding state TaskStatus.START_FAILED is set to the returned task object.

■ boolean stopTask(Task task) throws java.lang.IllegalArgumentException,
java.lang.IllegalStateException

This method cancels an installation that is in progress. It returns true if the
cancellation was successful, or false otherwise.

ManagerFactory Class
The ManagerFactory class is a global factory that is used to obtain a SuiteManager or a
TaskManager implementation.

■ static SuiteManager getSuiteManager()

This method returns an implementation of a SuiteManager.

The Suite Class

4-4 Oracle Java ME Embedded Application Management System API Guide

■ static TaskManager getTaskManager()

This method returns an implementation of a TaskManager.

The Suite Class
All IMlet suites maintain a basic set of identification and state information that acts as
a descriptor. This descriptor is represented by the Suite class.

Suites can be one of four types, presented in the SuiteType enumeration, and shown
in Table 4–2:

In addition, suites contain binary flags that describe their state, presented in the
SuiteStateFlag enumeration, and shown in Table 4–3:

The following are method present in the Suite class.

■ java.lang.String getName()

This method returns the name for the given suite.

■ java.lang.String getVendor()

This method returns the vendor for the given suite.

■ java.lang.String getVersion()

This method returns the version of the given suite.

■ java.lang.String getDownloadUrl()

This method returns the URL that the JAD or JAR was downloaded from.

■ java.util.Iteration<String> getAttributes()

Table 4–2 SuiteType Enumeration

Suite Type Description

ST_APPLICATION The suite contains one or more MIDlets with an entry point that
can be executed.

ST_LIBRARY The suite is a library that can be used by one or more
applications.

ST_SYSTEM The suite is a system-level application.

ST_INVALID The suite is invalid and cannot be found or executed.

Table 4–3 SuiteStageFlag Enumeration

State Description

AVAILABLE The suite is available for use.

ENABLED The suite is enabled. When a suite is disabled, any attempt to
run application or use a library from this suite should fail.

SYSTEM The suite is a system-level suite.

PREINSTALLED The suite is hidden, and should not be visible to the user.

REMOVE_DENIED The suite should not be removed.

UPDATE_DENIED The suite should not be updated.

SuiteInstaller Class

Software Management 4-5

This method returns a String array that provides the names of the available
properties. The properties returned are those from the JAD file and the manifest
combined into a single array.

■ java.lang.String getAttributeValue(String name)

This method retrieves the value for the respective attribute name.

■ SuiteType getSuiteType()

This method returns the suite type. See Table 4–2 for more information.

■ public boolean isSuiteState(SuiteStateFlag state)

This method checks the current state boolean to see if it is true.

■ public void setSuiteStateFlag(SuiteStateFlag state, boolean value)
throws java.lang.IllegalArgumentException,
java.lang.IllegalStateException, java.lang.SecurityException

This method sets the specified flag to the specified value. If a Suite has been
created, SuiteStateFlag.ENABLED and SuiteStateFlag.AVAILABLE are always set
to true, while SuiteStateFlag.REMOVE_DENIED and SuiteStateFlag.UPDATE_
DENIED are set to false. These states can be changed by calling this method. The
SuiteStateFlag.SYSTEM and SuiteStateFlag.PREINSTALLED flags are only set for
system suites or pre-installed suites, respectively, and cannot be unset or set by
this method. To be able to set suite flags, caller application should request
javax.microedition.swm.SWMPermission("client", "manageSuite") or
javax.microedition.swm.SWMPermission ("crossClient", "manageSuite")
permission. See SWMPermission for more details.

■ public java.util.Iterator<java.lang.String> getMIDlets()

This method returns a list of the applications (application class names) in this
suite. The first application in the enumeration is the default application as
specified in the MIDlet-1 field of the descriptor.

■ public java.util.Iterator<Suite> getDependencies()

This method returns a list of the shared libraries this Suite depends on

■ public boolean isTrusted()

Checks if this Suite is trusted or not. The return value is always true if it is a
SYSTEM_SUITE.

■ public boolean isInstalled()

Checks if this Suite is still installed or has been removed.

SuiteInstaller Class
The ManagerFactory class is a global factory that is used to obtain a SuiteManager or a
TaskManager implementation.

■ void addInstallationListener(SuiteInstallListener listener)

This method adds a SuiteInstallListener to this suite installer

■ void removeInstallationListener(SuiteInstallationListener listener)

This method removes a SuiteInstallListener to this suite installer.

■ SuiteManagementTracker start()

SuiteInstaller Class

4-6 Oracle Java ME Embedded Application Management System API Guide

This method starts installation of the suite. The installation can be the first
installation of this suite, or a re-installation (update) of a suite that had been
installed before. A SuiteInstallListener must be added in order to handle
callback requests.

This method returns an instance of SuiteManagementTracker; the caller can
observe the progress of the installation via the SuiteInstallListener added.
Please note that the method may not return quickly. Depending on the
provisioning mechanism used in the implementation of MEEP 8, it may be
necessary to download the entire JAR data first in order to inspect the manifest of
the application suite in order to find out whether this is a new installation or an
update of an existing application suite. Depending on the network connection, this
may take some time.

In case the previous attempt to install this suite (initiated by a previous call of the
start() method) has not been finished at the time the new call takes place, the call
is queued and the new attempt to install (in case the first one failed) or the
re-installation (in case the first call was successful), respectively, starts as soon as
the first installation attempt or installation has been finished.

A new instance of SuiteManagementTracker will be created for every call to this
method and assigned to the Suite to be installed as soon as the installation has
been completed successfully. In case of an update of an existing Suite, the
SuiteManagementTracker instance is assigned to the existing Suite object from the
beginning.

If the initiating application does not have the right SWMPermission, the installation
will fail with InstallErrorCodes.UNAUTHORIZED_INSTALL.

■ void cancel()

Begins installation of the suite.

SuiteInstaller Class
An instance of this class is generated as soon as an installation or update of a Suite is
started using SuiteInstaller.start(). Invoking that method creates a new tracker
instance. Whether two trackers refer to the same Suite can be found out by calling
getSuite() for both and compare the returned Suite instances. The tracker instance
created for a management operation is passed to any call of
SuiteListener.notifySuiteStateChanged() in order to inform about the progress of
this operation.

For the installation of a new Suite, as long as the installation hasn't been successfully
completed, an instance of SuiteManagementTracker is not assigned to any Suite
instance yet, as it does not exit yet. In these cases, a call to getSuite() returns null. In
case of an update, the tracker is assigned to the existing Suite from the beginning,
though.

This class has one method.

■ Suite getSuite()

This method returns the Suite that this tracker is assigned to, if the installation
has completed successfully

Task Class

Software Management 4-7

SWMPermission Class
The SWMPermission provides permission handling for SWM API permissions. An
SWMPermission object contains a scope and actions. The scope is the scope of the
permission. Valid scopes are

"client" stands for permission to perform the listed actions only for applications
assigned to the same Client.

"crossClient" stands for permission to perform the listed actions also for
applications assigned to other Clients. Usually this is a permission reserved for the
Root Client. Granting this permissions to other Clients should be figured out well in
order to avoid security breaches.

The actions to be granted are passed to the constructor in a non-empty string,
containing a list of comma-separated keywords. Trailing and leading white spaces as
well as those between the keywords and commas in the list are not allowed and lead
to an IllegalArgumentException. The possible values can be seen in this table in the
Security Policy Provider chapter of the spec. The actions string is converted to
lowercase before processing.

This class has one constructor and several methods.

■ SWMPermission(java.lang.String scope, java.lang.String actions)

This method creates a new SWMPermission object with the specified name and
actions.

■ public boolean implies(java.security.Permission p)

This method checks if the specified permission is "implied" by this object.

■ String getActions()

This method returns the permitted actions of this Permission as a comma
separated list in alphabetical order.

■ java.security.PermissionCollection newPermissionCollection()

This method creates a new SWMPermissionCollection.

Task Class
The Task class is, in effect, a simple task descriptor. A Task is the abstraction of the
execution of an application (see javax.microedition.midlet.MIDlet). Tasks are
started using the TaskManager.startTask() method, where the arguments specify the
application suite and the class within the suite being the starting point of the
application. Starting a new task attempts to execute corresponding application. A task
has a status, as described in the TaskStatus enumeration, that describes
corresponding application lifecycle state. A task has a priority with possible values as
described in TaskPriority. Depending on whether the implementation supports
multiple VMs, several tasks can run in parallel.

There are special tasks called system tasks. Those tasks cannot be started or stopped
via this API, but are started by the system. The isSystemTask() method can be used to
find out whether a task is a considered a system task.

The Task class contains the following methods.

■ String getName()

This is a convenience method for returning the name of the task. The returned
string is the name of the application running in this task.

InstallerErrorCode

4-8 Oracle Java ME Embedded Application Management System API Guide

■ TaskPriority getPriority()

This method returns the priority of given task.

■ public int getHeapUse()

This method returns the heap use of given task.

■ public TaskStatus getStatus()

This method returns the task's status.

■ public Suite getSuite()

This method returns the suite information this task executed from.

■ public boolean isSystemTask()

This method returns a boolean indicating whether a task is a system task.

InstallerErrorCode
The InstallerErrorCode provides several constants used by the installation routines.
These constants are shown in Table 4–4.

Table 4–4 Installer Error Codes

Constant Error Code Description

ALAA_ALIAS_NOT_FOUND 78 Application Level Access Authorization:
The alias definition is missing.

ALAA_ALIAS_WRONG 80 Application Level Access Authorization:
The alias definition is wrong.

ALAA_MULTIPLE_ALIAS 79 Application Level Access Authorization:
An alias has multiple entries that match.

ALAA_TYPE_WRONG 77 Application Level Access Authorization:
The MIDlet-Access-Auth-Type has
missing parameters.

ALREADY_INSTALLED 39 The JAD matches a version of a suite
already installed.

APP_INTEGRITY_FAILURE_
DEPENDENCY_CONFLICT

69 Application Integrity Failure: two or
more dependencies exist on the
component with the same name and
vendor, but have different versions or
hashs.

APP_INTEGRITY_FAILURE_
DEPENDENCY_MISMATCH

70 Application Integrity Failure: there is a
component name or vendor mismatch
between the component JAD and IMlet
or component JAD that depends on it.

APP_INTEGRITY_FAILURE_HASH_
MISMATCH

68 Application Integrity Failure: hash
mismatch.

ATTRIBUTE_MISMATCH 50 A attribute in both the JAD and JAR
manifest does not match.

AUTHORIZATION_FAILURE 49 Application authorization failure,
possibly indicating that the application
was not digitally signed.

CA_DISABLED 60 Indicates that the trusted certificate
authority (CA) for this suite has been
disabled for software authorization.

InstallerErrorCode

Software Management 4-9

CANCELED 101 Canceled by user.

CANNOT_AUTH 35 The server does not support basic
authentication.

CIRCULAR_COMPONENT_DEPENDENCY 64 Circular dynamic component
dependency.

COMPONENT_DEPS_LIMIT_EXCEEDED 65 Dynamic component dependencies limit
exceeded.

COMPONENT_NAMESPACE_COLLISION 72 The namespace used by a component is
the same as another.

CONTENT_HANDLER_CONFLICT 55 The installation of a content handler
would conflict with an already installed
handler.

CORRUPT_DEPENDENCY_HASH 71 A dependency has a corrupt hash code.

CORRUPT_JAR 36 An entry could not be read from the
JAR.

CORRUPT_PROVIDER_CERT 5 The content provider certificate cannot
be decoded.

CORRUPT_SIGNATURE 8 The JAR signature cannot be decoded.

DEVICE_INCOMPATIBLE 40 The device does not support either the
configuration or profile in the JAD.

DUPLICATED_KEY 88 Duplicated JAD/manifest key attribute

EXPIRED_CA_KEY 12 The certificate authority's public key has
expired.

EXPIRED_PROVIDER_CERT 11 The content provider certificate has
expired.

INCORRECT_FONT_LOADING 82 A font that is contained with the JAR
cannot be loaded.

INSUFFICIENT_STORAGE 30 Not enough storage for this suite to be
installed.

INVALID_CONTENT_HANDLER 54 The MicroEdition-Handler-<n> JAD
attribute has invalid values.

INVALID_JAD_TYPE 37 The server did not have a resource with
the correct type or the JAD downloaded
has the wrong media type.

INVALID_JAD_URL 43 The JAD URL is invalid.

INVALID_JAR_TYPE 38 The server did not have a resource with
the correct type or the JAR downloaded
has the wrong media type.

INVALID_JAR_URL 44 The JAR URL is invalid.

INVALID_KEY 28 A key for an attribute is not formatted
correctly.

INVALID_NATIVE_LIBRARY 85 A native library contained within the
JAR cannot be loaded.

INVALID_PACKAGING 87 A dependency cannot be satisfied.

Table 4–4 (Cont.) Installer Error Codes

Constant Error Code Description

InstallerErrorCode

4-10 Oracle Java ME Embedded Application Management System API Guide

INVALID_PAYMENT_INFO 58 Indicates that the payment information
provided with the IMlet suite is
incomplete or incorrect.

INVALID_PROVIDER_CERT 7 The signature of the content provider
certificate is invalid.

INVALID_RMS_DATA_TYPE 76 The server did not have a resource with
the correct type or the JAD downloaded
has the wrong media type.

INVALID_RMS_DATA_URL 73 The RMS data file URL is invalid.

INVALID_SERVICE_EXPORT 86 A LIBlet that exports a service with a
LIBlet Services attribute does not
contain the matching service provider
configuration information.

INVALID_SIGNATURE 9 The signature of the JAR is invalid.

INVALID_VALUE 29 A value for an attribute is not formatted
correctly.

INVALID_VERSION 16 The format of the version is invalid.

IO_ERROR 102 A low-level hardware error has
occurred.

JAD_MOVED 34 The JAD URL for an installed suite is
different than the original JAD URL.

JAD_NOT_FOUND 2 The JAD was not found.

JAD_SERVER_NOT_FOUND 1 The server for the JAD was not found.

JAR_CLASSES_VERIFICATION_FAILED 56 Not all classes within JAR package can
be successfully verified with class
verifier.

JAR_IS_LOCKED 100 Component or MIDlet or IMlet suite is
locked by the system.

JAR_NOT_FOUND 20 The JAR was not found at the URL given
in the JAD.

JAR_SERVER_NOT_FOUND 19 The server for the JAR was not found at
the URL given in the JAD.

JAR_SIZE_MISMATCH 31 The JAR downloaded was not the same
size as given in the JAD.

MISSING_CONFIGURATION 41 The configuration is missing from the
manifest.

MISSING_DEPENDENCY_HASH 67 A dependency hash code is missing.

MISSING_DEPENDENCY_JAD_URL 66 A dependency JAD URL is missing.

MISSING_JAR_SIZE 21 The JAR size is missing.

MISSING_JAR_URL 18 The URL for the JAR is missing.

MISSING_PROFILE 42 The profile is missing from the manifest.

MISSING_PROVIDER_CERT 4 The content provider certificate is
missing.

MISSING_SUITE_NAME 13 The name of MIDlet or IMlet suite is
missing.

Table 4–4 (Cont.) Installer Error Codes

Constant Error Code Description

InstallerErrorCode

Software Management 4-11

MISSING_VENDOR 14 The vendor is missing.

MISSING_VERSION 15 The version is missing.

NEW_VERSION 32 This suite is newer that the one currently
installed.

NO_ERROR 0 No error.

NOT_YET_VALID_PROVIDER_CERT 89 A certificate is not yet valid.

NOT_YET_VALID_CA_KEY 90 A CA’s public key is not yet valid.

OLD_VERSION 17 This suite is older that the one currently
installed.

OTHER_ERROR 103 Other errors.

PROXY_AUTH 51 Indicates that the user must first
authenticate with the proxy.

PUSH_CLASS_FAILURE 48 The class in a push attribute is not in
MIDlet-<n> attribute.

PUSH_DUP_FAILURE 45 The connection in a push entry is
already taken.

PUSH_FORMAT_FAILURE 46 The format of a push attribute has an
invalid format.

PUSH_PROTO_FAILURE 47 The connection in a push attribute is not
supported.

REVOKED_CERT 62 The certificate has been revoked.

RMS_DATA_DECRYPT_PASSWORD 83 Indicates that a password is required to
decrypt RMS data.

RMS_DATA_ENCRYPT_PASSWORD 84 Indicates that a password is required to
encrypt RMS data.

RMS_DATA_NOT_FOUND 75 The RMS data file was not found at the
specified URL.

RMS_DATA_SERVER_NOT_FOUND 74 The server for the RMS data file was not
found at the specified URL.

RMS_INITIALIZATION_FAILURE 81 Failure to import RMS data.

SUITE_NAME_MISMATCH 25 The MIDlet or IMlet suite name does not
match the one in the JAR manifest.

TOO_MANY_PROPS 53 Indicates that either the JAD or manifest
has too many properties to fit into
memory.

TRUSTED_OVERWRITE_FAILURE 52 Indicates that the user tried to overwrite
a trusted suite with an untrusted suite
during an update.

UNAUTHORIZED 33 Web server authentication failed or is
required.

UNKNOWN_CA 6 The certificate authority (CA) that issued
the content provider certificate is
unknown.

UNKNOWN_CERT_STATUS 63 The certificate is unknown to OCSP
server.

Table 4–4 (Cont.) Installer Error Codes

Constant Error Code Description

InstallerErrorCode

4-12 Oracle Java ME Embedded Application Management System API Guide

UNSUPPORTED_CERT 10 The content provider certificate has an
unsupported version.

UNSUPPORTED_CHAR_ENCODING 61 Indicates that the character encoding
specified in the MIME type is not
supported.

UNSUPPORTED_PAYMENT_INFO 57 Indicates that the payment information
provided with the MIDlet or IMlet suite
is incompatible with the current
implementation.

UNTRUSTED_PAYMENT_SUITE 59 Indicates that the MIDlet or IMlet suite
has payment provisioning information
but it is not trusted.

VENDOR_MISMATCH 27 The vendor does not match the one in
the JAR manifest.

VERSION_MISMATCH 26 The version does not match the one in
the JAR manifest.

Table 4–4 (Cont.) Installer Error Codes

Constant Error Code Description

5

General Purpose Input/Output 5-1

5General Purpose Input/Output

This chapter describes the General Purpose Input/Output (GPIO) functionality in the
Oracle Java ME Embedded product. GPIO typically refers a generic pin on an
embedded board whose behavior, including whether it is an input or output pin, can
be programmed by the user at runtime.

GPIO pins are often lined up in rows. By design, they have no dedicated purpose, and
are used by programmers for a wide variety of tasks. For example:

■ GPIO pins can be enabled or disabled.

■ GPIO pins can be configured to be input or output.

■ Input values are readable, often with a 1 representing a high voltage, and a 0
representing a low voltage.

■ Input GPIO pins can be used as "interrupt" lines, which allow a peripheral board
connected via multiple pins to signal to the primary embedded board that it
requires attention.

■ Output pin values are both readable and writable.

GPIO pins have much greater functionality than this, but it is important to start with
the basics.

Setting a GPIO Output Pin
For this example, you will need the following hardware:

WARNING: Be sure to observe manufacturer’s specifications and
warnings carefully. For example, with the Raspberry Pi board, the
voltage value that represents a "high" value on an input pin may be
3.3 volts (+3.3V). However, other pins may output 5 volts (+5V). Be
sure to check the manufacturer’s specifications to ensure that you
are not placing too much voltage on an input GPIO line, as the
board may not have an overvoltage protection.

Table 5–1 Hardware for Example 1-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Multimeter Various. Sinometer DT830B used in the example.

Setting a GPIO Output Pin

5-2 Oracle Java ME Embedded Build Guide

Perhaps the simplest example of working with the GPIO functionality in the Oracle
Java ME Embedded product is to set the high/low value of an arbitrary output pin
and read its voltage with a multimeter. In this example, we set the value of GPIO pin 7
to alternate between high (3.3V) and low (0V) at intervals of 10 seconds and 5 seconds,
respectively. Example 5–1 shows the source code.

Example 5–1 Setting a GPIO Pin

import jdk.dio.UnavailablePeripheralException;
import jdk.dio.DeviceManager;
import jdk.dio.gpio.GPIOPin;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.midlet.MIDlet;

public class GPIOExample1 extends MIDlet {

GPIOPin pin;

public void startApp() {

try {

pin = (GPIOPin) DeviceManager.open(7);
System.out.println("--");
Thread.sleep(5000);

for (int i = 0; i < 20; i++) {
System.out.println("Setting pin to true...");
pin.setValue(true);
Thread.sleep(10000);
System.out.println("Setting pin to false...");
pin.setValue(false);
Thread.sleep(5000);
System.out.println("--");

}

} catch (IOException ex) {
Logger.getLogger(GPIOExample1.class.getName()).

log(Level.SEVERE, null, ex);
} catch (InterruptedException ex) {

Logger.getLogger(GPIOExample1.class.getName()).
log(Level.SEVERE, null, ex);

}
}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {

try {
pin.close();

} catch (IOException ex) {
Logger.getLogger(GPIOExample1.class.getName()).

log(Level.SEVERE, null, ex);
}

Setting a GPIO Output Pin

General Purpose Input/Output 5-3

}
}

The following permissions must be added to the Application Descriptor of the IMlet so
that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

Note that if you’re using an IDE such as NetBeans as the development environment,
you will need to access the project properties of the project and set API permissions
under the application descriptor, as shown in Figure 5–1.

Figure 5–1 API Permissions in the Application Descriptor in NetBeans

After running the application, set your multimeter to read DC voltage with a
maximum of 20V, then connect one of the leads of the multimeter to GPIO 7, and the
other to GND (ground). As the application is running, note that the voltage that is read
by the multimeter will jump from its low value of around 0V after a call to
pin.setValue(false) to its high value of around 3.3V after a call to
pin.setValue(true). This is shown in Figure 5–2 and Figure 5–3.

Table 5–2 Permissions for Example 1-1

Permission Device Operation

jdk.dio.DeviceMgmtPermission GPIO7:7 open

WARNING: Remember that the GPIO pin assignments on the
Raspberry Pi do not match the pin numbers on the board. For
example, GPIO 7 is not mapped to pin 7, but instead pin 26. See
Appendix A (or the hardware-appropriate Getting Started Guide)
for the pin assignments for the target boards of the Oracle Java ME
Embedded software.

Setting a GPIO Output Pin

5-4 Oracle Java ME Embedded Build Guide

Figure 5–2 Raspberry Pi Pin 7 with Low (0V) Voltage

Working with a Breadboard

General Purpose Input/Output 5-5

Figure 5–3 Raspberry Pi Pin 7 with High (3.3V) Voltage

Working with a Breadboard
When prototyping circuits, it is often helpful to have a way of connecting wires
without having to perform soldering. In some cases, if there are only a few
connections, you can use jumper wires. However, when layout out more complex
circuits, it’s helpful to use a breadboard. A typical breadboard is shown in Figure 5–4.

Working with a Breadboard

5-6 Oracle Java ME Embedded Build Guide

Figure 5–4 A Typical Breadboard

A breadboard consists of a large number of holes, each of which are wired together on
the bottom using a standardized pattern, such as the one shown in Figure 5–5. Note
that the two columns on both the left and the right of the breadboard are wired
vertically--these provide power (+) and ground (-) connections that can be tapped into
to. The horizontal rows on either side of the center line, on the other hand, are used to
create circuits. Circuits can be created using small wires with metal tips on each end
that can "plug into" the holes.

Figure 5–5 Wiring Pattern for a Typical Breadboard

For the Raspberry Pi, we can connect the GPIO pins on the Pi to a breadboard using a
device called a T-Cobbler Extension Board. This device attaches a ribbon cable to the

Working with a Breadboard

General Purpose Input/Output 5-7

GPIO pins, which in turn connects to the T-cobbler board. The T-cobbler board is then
inserted into the top of the breadboard, as shown in Figure 5–6.

Figure 5–6 T-Cobbler Extension Board for the Raspberry Pi

Once connected to the Pi, you can use any of the holes running along the red stripe on
the left side of the breadboard to provide +3.3 volts (3V3), or any of the holes running
along the red stripe on the right side of the breadboard to provide +5 volts (5V0). In
addition, any of the holes running along the blue stripes on either side of the board
connect to the ground (GND) on the Raspberry Pi.

The GPIO pins on the Raspberry Pi map to the pins on the T-cobbler (and hence the
respective horizontal rows on the breadboard) as shown in Table 5–3.

Table 5–3 Broadcom GPIO to T-Cobbler Conversion

GPIO (Pi Pin Number) Alternate Name

2 (Pin 3) SDA

3 (Pin 5) SCL

4 (Pin 7) P7

7 (Pin 26) CE1

Blinking an LED

5-8 Oracle Java ME Embedded Build Guide

Blinking an LED
We can use the code in Example 5–1 to create a small circuit on the breadboard that
turns on an off a light-emitting diode (LED). For this example, you will need the
following equipment.

Use the breadboard to connect one end of a 1000-ohm resistor to a row that connects to
GPIO7, which is marked on the T-Cobbler by CE1. Plug the other end of the 1000-ohm
resistor into an unused row further down the breadboard. Then, run an LED from that
row an adjacent row, and then connect that row to the ground (GND). The circuit
should look similar to the schematic in Figure 5–7.

8 (Pin 24) CE0

9 (Pin 21) MISO

10 (Pin 19) MOSI

11 (Pin 23) SCLK

14 (Pin 8) TXD

15 (Pin 10) RXD

18 (Pin 12) P1

22 (Pin 15) P3

23 (Pin 16) P4

24 (Pin 18) P5

25 (Pin 22) P6

27 (Pin 13) P2

Table 5–4 Equipment Needed for Blinking LED Example

Hardware Where to Obtain

LED Any electronics store

1000 ohm resistor Any electronics store

T-Cobbler and Breadboard Adafruit

Jumper Wires (Male to
Male)

Adafruit

Table 5–3 (Cont.) Broadcom GPIO to T-Cobbler Conversion

GPIO (Pi Pin Number) Alternate Name

Blinking an LED

General Purpose Input/Output 5-9

Figure 5–7 Schematic for Wiring an LED to GPIO 7

When completed, you should have a prototype that looks like Figure 5–8. Run
Example 5–1 again, and you should see the LED light blinking off an on whenever the
setValue(true) call is made on the GPIOPin object.

Figure 5–8 Wiring an LED to GPIO Pin 7

Note: Remember that an LED is a diode, which by definition only
allows current to travel one way through it. If your LED does not light
up when the voltage is applied, try flipping the connections so that
the current travels the reverse direction through the diode.

Testing Output and Input Pins

5-10 Oracle Java ME Embedded Build Guide

Testing Output and Input Pins
Our next GPIO example will take the output voltage from one pin and redirect it back
to an adjacent input pin, while creating a listener on the input pin that reacts
accordingly. For this example, you will need the following hardware:

Here, we use GPIO 8 and 11 on the Raspberry Pi due to their proximity to each other.
These pins are right next to GPIO 7 and GND, which was used in the previous
example. In Example 5–2, we’ve added a listener to an input pin that will trigger
whenever the input voltage changes in both directions (high-to-low and low-to-high).

Example 5–2 Creating a GPIO Pin Listener

import jdk.dio.UnavailablePeripheralException;
import jdk.dio.DeviceManager;
import jdk.dio.gpio.GPIOPin;
import jdk.dio.gpio.PinEvent;
import jdk.dio.gpio.PinListener;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.midlet.MIDlet;

public class GPIOExample2 extends MIDlet {

GPIOPin pin8;
GPIOPin pin11;

public void startApp() {

try {

pin8 = (GPIOPin) DeviceManager.open(8); // Output pin by default
pin11 = (GPIOPin) DeviceManager.open(11); // Input pin by default
pin11.setInputListener(new MyPinListener());

System.out.println("--");
Thread.sleep(5000);

for (int i = 0; i < 20; i++) {
System.out.println("Setting pin 8 to true...");
pin8.setValue(true);
Thread.sleep(10000);
System.out.println("Setting pin 8 to false...");
pin8.setValue(false);
Thread.sleep(5000);
System.out.println("--");

}

} catch (IOException ex) {
Logger.getLogger(GPIOExample2.class.getName()).

log(Level.SEVERE, null, ex);

Table 5–5 Hardware for Example 1-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Multimeter Various. Sinometer DT830B used in the example.

Testing Output and Input Pins

General Purpose Input/Output 5-11

} catch (InterruptedException ex) {
Logger.getLogger(GPIOExample2.class.getName()).

log(Level.SEVERE, null, ex);
}

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {

try {
pin8.close();
pin11.close();

} catch (IOException ex) {
Logger.getLogger(GPIOExample2.class.getName()).

log(Level.SEVERE, null, ex);
}

}

class MyPinListener implements PinListener {

@Override
public void valueChanged(PinEvent event) {

try {
System.out.println("Pin listener for pin 11 has been called!");
System.out.println("Pin 11 is now " + pin11.getValue());

} catch (IOException ex) {
Logger.getLogger(GPIOExample2.class.getName()).

log(Level.SEVERE, null, ex);
}

}

}
}

Table 5–6 shows the permission that must be added to the Application Descriptor of
the IMlet so that it will execute without any security exceptions from the Oracle Java
ME Embedded runtime.

After running the application, either connect one of the leads of the multimeter to the
GPIO 8 pin and the other to the GPIO 11 pin of the Raspberry Pi (or create a
compatible circuit on a breadboard). Set your multimeter to read DCV with a
maximum of 200 mV. As the application is running, note that the voltage that is read
by the multimeter will jump from its low value to its high voltage, although the
voltages will be much smaller than that from GPIO 7. Try disconnecting the lead from
GPIO 11 momentarily and reconnecting it when GPIO 8 is high. The output of the
program should reflect that the listener is called both when the lead is released, and
when it is reconnected.

Table 5–6 Permissions for Example 1-2

Permission Device Operation

jdk.dio.DeviceMgmtPermission *:* open

Testing Output and Input Pins

5-12 Oracle Java ME Embedded Build Guide

The output of the application when running in NetBeans is shown in Figure 5–9.

Figure 5–9 Output of Example 1-2

WARNING: Remember that the GPIO pin assignments on the
Raspberry Pi do not match the pin numbers on the board. For
example, GPIO 8 is not mapped to pin 8, but instead pin 24.
Likewise, GPIO 11 is mapped to pin 23. See Appendix A and
Appendix B for the pin assignments for the target boards of the
Oracle Java ME Embedded software.

6

Working with the I2C Bus 6-1

6 Working with the I2C Bus

The I2C bus, often referred to as "i-2-c" or "i-squared-c", is a low-speed bus frequently
used between micro-controllers and peripherals. I2C uses only two bi-directional lines,
Serial Data Line (SDA) and Serial Clock (SCL), often pulled-up with resistors. Typical
voltages used are +5 V or +3.3 V, although systems with other voltages are permitted.

When using the Raspberry Pi, be sure to check the manufacturer’s specifications as to
which voltages are acceptable for powering the peripheral. The Raspberry Pi provides
both 3.3V and 5V pins.

To enable I2C on the Raspberry Pi, add the following lines to the /etc/modules files
and reboot. Note that the file will need to be edited with root privileges.

i2c-bcm2708
i2c-dev

Experimenting with a 7-Segment Display
For this exercise, you will need the following hardware:

Our first example allows us to use the GPIO2 and GPIO3 pins for the I2C data and
clock connections. Using these connections, we will write a simple program that
allows us to set the display using an I2C connection.

In order to hook up the 7-Segment display to the Raspberry Pi properly, the jumper
wires must be connected as shown in Table 6–2. Note that because there are only four
connections, we opted not to use a T-cobber and a breadboard in this example.

Table 6–1 Hardware for 7-Segment Display Example

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Adafruit .56" 4-digit
7-segment display with
HT16K33 I2C Backpack

Adafuit or Amazon. Requires a small amount of soldering of the
LED display unit to I2C logic board, as well as 4 I2C connector
pins.

Jumper Wires - Female to
Female (x4)

Electronics store. We used SchmartBoard P/N 920-0065-01 Rev
A

Table 6–2 Raspberry Pi to HT16K33 Jumper Connections

Pins on Raspberry Pi HT16K33 Board

5V (Pin 2) VCC

Ground (Pin 6) GND

Experimenting with a 7-Segment Display

6-2 Oracle Java ME Embedded Build Guide

First, we need a basic class that communicates with the HT16K33 "LED backpack" that
is soldered to the actual 7-segment LED display. Example 6–1 shows the source code
for the 7-segment I2C display driver.

Example 6–1 HT16K33 I2C Driver for 7-Segment Display

import jdk.dio.DeviceManager;
import jdk.dio.i2cbus.I2CDevice;
import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.logging.Level;
import java.util.logging.Logger;

public class LEDBackpack {

I2CDeviceConfig LEDBackpackConfig;
int[] displaybuffer = new int[10];

byte[] OSCILLATOR_ON = {0x21};
byte BRIGHTNESS = (byte) 0xE0;

static byte HT16K33_BLINK_CMD = (byte) 0x80;
static byte HT16K33_BLINK_DISPLAYON = (byte) 0x01;

static byte HT16K33_BLINK_OFF = (byte) 0;
static byte HT16K33_BLINK_2HZ = (byte) 1;
static byte HT16K33_BLINK_1HZ = (byte) 2;
static byte HT16K33_BLINK_HALFHZ = (byte) 3;

static byte LETTER_J = 0x1E;
static byte LETTER_A = 0x77;
static byte LETTER_V = 0x3E;

static final byte numbertable[] = {
0x3F, /* 0 */
0x06, /* 1 */
0x5B, /* 2 */
0x4F, /* 3 */
0x66, /* 4 */
0x6D, /* 5 */
0x7D, /* 6 */
0x07, /* 7 */
0x7F, /* 8 */
0x6F, /* 9 */
0x77, /* a */
0x7C, /* b */
0x39, /* C */
0x5E, /* d */
0x79, /* E */
0x71, /* F */};

public LEDBackpack() {

GPIO 2 (Pin 3) SDA (Serial Data)

GPIO 3 (Pin 5) SCL (Serial Clock)

Table 6–2 (Cont.) Raspberry Pi to HT16K33 Jumper Connections

Pins on Raspberry Pi HT16K33 Board

Experimenting with a 7-Segment Display

Working with the I2C Bus 6-3

LEDBackpackConfig = new I2CDeviceConfig(1, 0x70, 7, 100000);
}

void begin() {

try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig)) {

ByteBuffer oscOnCmd = ByteBuffer.wrap(OSCILLATOR_ON);
slave.write(oscOnCmd);
slave.close();

} catch (IOException ioe) {
Logger.getLogger(LEDBackpack.class.getName()).
log(Level.SEVERE, null, ioe);

}

setBlinkRate(HT16K33_BLINK_OFF);
setBrightness(15);

}

void setBrightness(int b) {

if (b > 15) {
b = 15;

} else if (b < 0) {
b = 0;

}

byte[] ea = {(byte) (BRIGHTNESS | b)};

try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig)) {

ByteBuffer brightnessCmd = ByteBuffer.wrap(ea);
slave.write(brightnessCmd);
slave.close();

} catch (IOException ioe) {
Logger.getLogger(LEDBackpack.class.getName()).

log(Level.SEVERE, null, ioe);
}

}

void setBlinkRate(int b) {

if (b > 3) {
b = 0; // turn off if not sure

} else if (b < 0) {
b = 0;

}

byte[] ea =
{(byte) (HT16K33_BLINK_CMD | HT16K33_BLINK_DISPLAYON | (b << 1))};

try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig)) {

ByteBuffer blinkRateCmd = ByteBuffer.wrap(ea);
slave.write(blinkRateCmd);
slave.close();

Experimenting with a 7-Segment Display

6-4 Oracle Java ME Embedded Build Guide

} catch (IOException ioe) {
Logger.getLogger(LEDBackpack.class.getName()).

log(Level.SEVERE, null, ioe);
}

}

void writeDisplay() {

try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig)) {

byte start[] = {0x00};

ByteBuffer startCmd = ByteBuffer.wrap(start);
slave.write(0x00, 1, startCmd);

for (int i = 0; i < displaybuffer.length; i++) {

byte b1a[] = {(byte) (displaybuffer[i] & 0xFF)};
ByteBuffer b1Cmd = ByteBuffer.wrap(b1a);
slave.write(i, 1, b1Cmd);

}

slave.close();

} catch (IOException ioe) {
Logger.getLogger(LEDBackpack.class.getName()).

log(Level.SEVERE, null, ioe);
}

}

void clear() {
for (int i = 0; i < displaybuffer.length; i++) {

displaybuffer[i] = 0;
}

}

}

This driver class contains five methods: begin(), setBrightness(),
setBlinkRate(), writeDisplay(), and clear(). Let’s cover each of these in
more detail.

The begin() method will initialize the display. There are three operations that must
be performed to do this properly. First, the oscillator on the HT16K33 LED backboard
must be turned on. We can do this by sending a byte value of hex 0x21 across the bus.
Next, we set the blink rate of the 7-segment display to one of four values: OFF, 2 Hz, 1
Hz, or .5 Hz. Finally, we can set the brightness of the display using a value of 1 to 15.
For the latter two operations, we make use of the next two methods which can also be
called independently.

The setBlinkRate() and setBrightness() methods simply take an input value,
perform bounds checking, and calculate the correct byte value to send across the bus.
Just like turning on the oscillator, we only need to send one byte across the bus to
modify the blink rate or brightness to any level we choose.

The writeDisplay() method, on the other hand, is a little more complex. Here, the
class makes use of an array of 10 integers, declared as a field, that serves as a display
buffer. In reality, the writeDisplay() method will truncate any value larger then

Experimenting with a 7-Segment Display

Working with the I2C Bus 6-5

255 before sending it across the bus, but making it an array of integers is helpful for
the user.

Each of the entries in the array will map to an address on the HT16K33 "LED
backpack" that can be written to using the I2C bus. The purpose of each of the
addresses is shown in Table 6–3. Note that since the HT16K33 can drive different types
of LED displays, several of the addresses are ignored when using this particular
4-character 7-segment display.

Each address can have one byte written to it. The contents of each byte is mapped out
in binary as shown in Figure 6–1. As such, the number 7 with a decimal point is
represented in binary as 10000111, which is equal to 0x87 in hexadecimal. Note that
address 0x04 is reserved for the colon that appears between the first two numbers and
the second two numbers in the display; it does not represent character 3.

Figure 6–1 Binary Encoding for 7-Segment Display

Example 6–2 shows a sample IMlet that will write the word "JAVA", without any
decimal points or colon, to the display (even though the "V" looks the same as a "U" in
the 7-segment display).

Example 6–2 IMlet to Write to the 7-Segment Display

import javax.microedition.midlet.MIDlet;

public class I2CExample1 extends MIDlet {

public void startApp() {

LEDBackpack backpack = new LEDBackpack();

Table 6–3 HT16K33 7-Segment Display Addresses

Address Purpose

0x00 7-Segment Display Character 1 and Period

0x01 Ignored

0x02 7-Segment Display Character 2 and Period

0x03 Ignored

0x04 Colon (0xFF for colon on; 0x00 for colon off)

0x05 Ignored

0x06 7-Segment Display Character 3 and Period

0x07 Ignored

0x08 7-Segment Display Character 4 and Period

0x09 Ignored

Experimenting with a 7-Segment Display

6-6 Oracle Java ME Embedded Build Guide

backpack.begin();
backpack.setBrightness(10);
backpack.setBlinkRate(LEDBackpack.HT16K33_BLINK_OFF);

backpack.clear();
backpack.writeDisplay();

backpack.displaybuffer[0] = LEDBackpack.LETTER_J;
backpack.displaybuffer[2] = LEDBackpack.LETTER_A;
backpack.displaybuffer[4] = 0x00; // No colon
backpack.displaybuffer[6] = LEDBackpack.LETTER_V;
backpack.displaybuffer[8] = LEDBackpack.LETTER_A;
backpack.writeDisplay();

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

}

The following permissions must be added to the Application Descriptor of the project
so that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

After running the application, you should see the display as shown in Figure 6–2.

Table 6–4 API Permissions for 7-Segment Display Project

Permission Device Operation

jdk.dio.DeviceMgmtPermission *:* open

jdk.dio.i2cbus.I2CPinPermission *:* open

Experimenting with a 16x2 LCD Display

Working with the I2C Bus 6-7

Figure 6–2 Result of Running the 7-Segment Display IMlet

Experimenting with a 16x2 LCD Display
For this exercise, you will need the following hardware:

This example uses the I2C bus to interface to an LCD display with a Hitachi HD44780
backboard. The HD44780-based 16x2 character LCDs are inexpensive and widely
available. However, in addition to the LCD display, we must also use a PCF8574-based
IC, which is an general purpose bidirectional 8 bit I/O port expander that uses the I2C
protocol.

The first step is to hook up the Raspberry Pi to the PCF8574 chip. Typically, an IC chip
is installed on a breadboard vertically along the center aisle, with the pins from the IC
connecting to the holes adjacent to the center. The pinouts for the PCF8574N IC are
shown in Figure 6–3.

Table 6–5 Hardware for Example 2-2

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

16x2 LCD Display with an
HD44780 Controller

Amazon. Requires a small amount of soldering for the 16
connector pins that run on the top of the logic board.

PCF8574N 8-bit I/O
Expander Chip

Mouser Electronics.

T-Cobbler and Breadboard Electronics store.

Jumper Wires Electronics store

Experimenting with a 16x2 LCD Display

6-8 Oracle Java ME Embedded Build Guide

Figure 6–3 Pinout Diagram for PCF8574N IC

Once the chip is on the breadboard, there are several pins on the chip that must be
connected to the T-Cobbler using jumper wires, as shown in Table 6–6.

The first four pins shown in are the standard I2C connections that are required of any
slave device that wishes to use the I2C bus. However, the remaining 3 pins are used to
set the slave address on I2C bus #1, represented as a binary digit from 0-7 (A0=1,
A1=2, A2=4) that is added to the hexidecimal value of 0x20. Because we are not
running voltage on any of these pins, the address of the PCF8574N chip on the I2C bus
should remain 0x20. If you’d like to verify this, login to the Raspberry Pi and issue the
command shown in Figure 6–4. Here, the i2cdetect command shows that on bus 1
there is a device at address 0x20. To change the address, try connecting a 10K resistor
between the 5V pin and one of the Ax pins and rerunning the command. The address
that is reported should change accordingly.

Table 6–6 Raspberry Pi to PCF8574N Jumper Connections

Pins on T-Cobbler (Pi) PCF8574N Pins

+5V (Pin 2) VCC

GND (Pin 6) GND

SDA / GPIO 2 (Pin 3) SDA (Serial Data)

SCL / GPIO 3 (Pin 5) SCL (Serial Clock)

GND (Pin 6) A0

GND (Pin 6) A1

GND (Pin 6) A2

Experimenting with a 16x2 LCD Display

Working with the I2C Bus 6-9

Figure 6–4 Running the i2cdetect Command

The remaining pins P0-P7 and INT (high) on the PCF8574N are used to communicate
with other devices, in this case the HD44780 chip that drives the 16x2 LCD display.
Table 6–7 shows the connections to and from the PCF8574N chip and the HD44780
controller.

Table 6–7 Connections to PCF8574N and HD44780 Chip

Raspberry Pi (T-Cobbler) PCF8574N HD44780

SCL / GPIO 3 (Pin 5) SCL

SDA / GPIO 2 (Pin 3) SDA

GND (Pin 6) A0 (see discussion on I2C
address above)

GND (Pin 6) A1

GND (Pin 6) A2

+5V (Pin 2) VDD

GND (Pin 6) VSS

P0 DB4

P1 DB5

P2 DB6

P3 DB7

P4 RS

P5 R/W

P6 E

P7 (unused)

INT (unused)

+5V (Pin 2) VDD

0 to +5V VO (variable resistor if desired
for dimming backlit display)

Experimenting with a 16x2 LCD Display

6-10 Oracle Java ME Embedded Build Guide

Before connecting the Px lines on the IC, try placing a resistor and an LED on a line
coming from the P0 pin. Then, run the code shown in Example 6–3.

Example 6–3 Testing the PCF8574N I/O Expander Chip

import javax.microedition.midlet.MIDlet;
import jdk.dio.DeviceManager;
import jdk.dio.i2cbus.I2CDevice;
import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;

public class IOExpanderExample extends MIDlet {

public void startApp() {

LEDBackpackConfig = new I2CDeviceConfig(1, 0x20, 7, 100000);
try (I2CDevice slave = DeviceManager.open(LEDBackpackConfig))
{

slave.write((byte)0x01);

} catch (IOException ex) {
// Handle exception

}

}

public void pauseApp() {

}

public void destroyApp(boolean unconditional) {

}

}

To understand this example, it helps to look at the data line dialog, as shown in
Figure 6–5. Each of the Px lines can be activated or deactivated by writing a binary
number to the slave device, where P7 represents the most-significant digit and P0
represents the least-significant digit. Writing a value of 0x01 to the slave device will
activate only the P0 line, which should in turn make the LED that is connected to it
light up (be sure that the LED’s cathode and anode connected are the right direction
and that there is a resistor in line so the LED does not burn out!). Note that the LED
will remain lit until a new value is written to the bus, or the PCF8574N chip loses
power.

GND (Pin 6) VSS

Table 6–7 (Cont.) Connections to PCF8574N and HD44780 Chip

Raspberry Pi (T-Cobbler) PCF8574N HD44780

Experimenting with a 16x2 LCD Display

Working with the I2C Bus 6-11

Figure 6–5 I/O Data Bus with the PCF8574N chip

Next, complete the circuit according to Table 6–7. Example 6–4 shows a sample driver
class that will control the HD44780.

Example 6–4 LCD Driver Class to Control the HD44780 Chip

import javax.microedition.midlet.MIDlet;
import jdk.dio.DeviceManager;
import jdk.dio.i2cbus.I2CDevice;
import jdk.dio.i2cbus.I2CDeviceConfig;
import java.io.IOException;
import java.util.logging.Level;
import java.util.logging.Logger;

public class LCDDisplay {

I2CDeviceConfig LEDBackpackConfig;
I2CDevice slave;

public LCDDisplay()
throws InterruptedException, IOException {

LEDBackpackConfig = new I2CDeviceConfig(1, 0x20, 7, 100000);
slave = DeviceManager.open(LEDBackpackConfig);

}

public void begin()
throws InterruptedException, IOException {

slave.write(0x03);
byte result1 = (byte) slave.read();
Thread.sleep(5);

slave.write(0x03);
byte result2 = (byte) slave.read();

Thread.sleep(1);
slave.write(0x03);
byte result3 = (byte) slave.read();

Thread.sleep(1);

slave.write(0x02);
byte result4 = (byte) slave.read();

writeCommand((byte) 0x28);
writeCommand((byte) 0x08);
writeCommand((byte) 0x01);
writeCommand((byte) 0x06);
writeCommand((byte) 0x0C);

Thread.sleep(1);
byte result5 = (byte) slave.read();

Experimenting with a 16x2 LCD Display

6-12 Oracle Java ME Embedded Build Guide

}

public void writeCharacter(byte charvalue)
throws InterruptedException, IOException {

slave.write((byte) (0x10 | (charvalue >> 4)));
strobe();
slave.write((byte) (0x10 | (charvalue & 0x0F)));
strobe();
slave.write(0x00);
Thread.sleep(1);

}

public void writeCommand(byte value)
throws InterruptedException, IOException {

slave.write((byte) (value >> 4));
strobe();
slave.write((byte) (value & 0x0F));
strobe();
slave.write(0x00);
Thread.sleep(5);

}

public void writeString(int line, String string)
throws InterruptedException, IOException {

if (line == 1) {
writeCommand((byte) 0x80);

} else if (line == 2) {
writeCommand((byte) 0xC0);

} else if (line == 3) {
writeCommand((byte) 0x94);

} else if (line == 4) {
writeCommand((byte) 0xD4);

}

char[] chars = string.toCharArray();

for (int i = 0; i < chars.length; i++) {
writeCharacter((byte) chars[i]);

}
}

public void strobe()
throws InterruptedException, IOException {

Thread.sleep(1);

byte readResult = (byte) slave.read();
readResult |= 0x40;
slave.write(readResult);

Thread.sleep(1);

readResult = (byte) slave.read();
readResult &= 0xBF;

Experimenting with a 16x2 LCD Display

Working with the I2C Bus 6-13

slave.write(readResult);

}

public void clear()
throws InterruptedException, IOException {

Thread.sleep(5);

writeCommand((byte) 0x01);
Thread.sleep(5);

writeCommand((byte) 0x02);
Thread.sleep(5);

}

public void end()
throws IOException {

slave.close();

}

}

To use the driver class, run the IMlet shown in Example 6–5.

Example 6–5 IMlet to Write to the 16x2 LCD Display

import java.io.IOException;
import javax.microedition.midlet.MIDlet;

public class I2CExample2 extends MIDlet {

public void startApp() {

LCDDisplay display;
try {

display = new LCDDisplay();
display.begin();
display.clear();
display.writeString(1, "Java ME");
display.writeString(2, "Embedded");
display.end();

} catch (InterruptedException ex) {
ex.printStackTrace();

} catch (IOException ex) {
ex.printStackTrace();

}

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

}

Experimenting with a 16x2 LCD Display

6-14 Oracle Java ME Embedded Build Guide

The following permissions must be added to the Application Descriptor of the project
so that it will execute without any security exceptions from the Oracle Java ME
Embedded runtime.

After running the application, you should see the display as shown in Figure 6–6.

Figure 6–6 LCD Display after Running Example

Table 6–8 API Permissions for LCD Example

Permission Device Operation

jdk.dio.DeviceMgmtPermission *:* open

jdk.dio.i2cbus.I2CPinPermission *:* open

7

The Serial Peripheral Interface (SPI) Bus 7-1

7The Serial Peripheral Interface (SPI) Bus

The Serial Peripheral Interface or SPI bus is a synchronous serial data link that
operates in full duplex mode. In other words, data can be sent and received at the
same time. Devices communicate in master/slave mode, where the master device
initiates the data exchange with one or more slaves. Multiple slave devices are allowed
with individual slave select lines.

The SPI bus specifies four logic signals:

■ SCLK : Serial Clock (a clock signal that is sent from the master).

■ MOSI : Master Output, Slave Input (data sent from the master to the slave).

■ MISO : Master Input, Slave Output (data sent from the slave to the master).

■ SS : Slave Select (sent from the master, active on low signal). Often paired with the
Chip Select (CS) line on an integrated circuit that supports SPI.

In order to enable the SPI bus on the Raspberry Pi, uncomment the entry spi_bcm2708
in the file /etc/modprobe.d/raspi-blacklist.conf. Note that you will need to have
root privileges to edit the file.

Using the SPI Bus to Communicate with an ADC
Because the Raspberry Pi board does not come with a analog-to-digital converter, the
SPI bus can be used to communicate with a peripheral analog-to-digital converter chip
that is reading an analog signal.

For this exercise, you will need the following hardware:

The data sheet of the TLC549CP shows 8 pins, as shown in Figure 7–1. Note that the
SPI connections reside on the right side of the chip, while the connections for
measuring the analog signal are on the left side of the chip.

Table 7–1 Hardware for Example 3-1

Hardware Where to Obtain

Raspberry Pi 512 MB Rev B Various third-party sellers

Texas Instruments
TLC549CP 8-bit ADC

Various electronics suppliers. We used mouser.com.

T-Cobbler and Breadboard Adafuit. See Chapter 1 for more information.

Potentiometer Electronics store

Jumper Wires (M/M and
F/F)

Electronics store.

Using the SPI Bus to Communicate with an ADC

7-2 Product Title/BookTitle as a Variable

Figure 7–1 Pinouts for TLC549CP Analog-to-Digital Converter Chip

In order to connect the TLC549CP chip to the Raspberry Pi, the SPI connections must
be connected as shown in Table 7–2.

The other four pins must be connected to provide the analog voltage to measure. In
this example, we are using a potentiometer (in effect, a variable resistor) to vary the
amount of voltage being sent into the Analog In pin.

Table 7–3 shows how to connect the remaining pins on the TCL549CP chip.

Note that in order to complete our circuit and provide power to the potentiometer, the
Vref+ must be also connected to a 3.3V input, and the Vref- must be connected to a
ground. The chip does not provide voltage. You can test the voltage that is being sent
through the potentiometer with a voltmeter to ensure that the circuit is working
properly. The completed circuit on the breadboard is shown in Figure 7–2.

Table 7–2 Raspberry Pi to TLC549CP SPI Pins

Pins on Raspberry Pi TLC549CP ADC Board Pins (Right Side)

3.3V VCC

SCLK (GPIO 11 / Pin 23) CLK

MISO (GPIO 9/ Pin 21) Data

CE0 (GPIO 8 / Pin 24) CS

Table 7–3 TLC549CP to Analog Signal Pins

TLC549CP ADC Board
Pins (Left Side) Analog Signal

Vref+ Voltage (Side Pin on Potentiometer) / 3.3V

Analog In Variable Voltage Signal (Middle Pin on Potentiometer)

Vref- Voltage (Other Side Pin on Potentiometer)

GND To Ground

Using the SPI Bus to Communicate with an ADC

The Serial Peripheral Interface (SPI) Bus 7-3

Figure 7–2 Breadboard with the Analog-to-Digital Converter Circuit

Once this is completed, we can use the source code in Example 7–1 to test out the ADC
chip.

Example 7–1 Testing Out the SPI Bus Connection

import jdk.dio.Device;
import jdk.dio.DeviceManager;
import jdk.dio.spibus.SPIDevice;
import jdk.dio.spibus.SPIDeviceConfig;
import java.io.IOException;
import java.nio.ByteBuffer;
import java.util.logging.Level;
import java.util.logging.Logger;
import javax.microedition.midlet.MIDlet;

public class SPIExample1 extends MIDlet {

public void startApp() {

System.out.println("Preparing to open SPI device...");

SPIDeviceConfig config = new SPIDeviceConfig(0, 0,
SPIDeviceConfig.CS_ACTIVE_LOW,
500000,
3,
8,
Peripheral.BIG_ENDIAN);

Using the SPI Bus to Communicate with an ADC

7-4 Product Title/BookTitle as a Variable

try (SPIDevice slave = (SPIDevice)DeviceManager.open(config)) {

System.out.println("SPI device opened.");

for (int i = 1; i < 200; i++) {
ByteBuffer sndBuf = ByteBuffer.wrap(new byte[]{0x00});
ByteBuffer rcvBuf = ByteBuffer.wrap(new byte[1]);
slave.writeAndRead(sndBuf,rcvBuf);
System.out.println("Analog to digital conversion at " +

i + " is: " + rcvBuf.get(0));
Thread.sleep(1000);

}

} catch (IOException ioe) {
// handle exception

} catch (InterruptedException ex) {
Logger.getLogger(SPIExample1.class.getName()).

log(Level.SEVERE, null, ex);
}

}

public void pauseApp() {
}

public void destroyApp(boolean unconditional) {
}

}

This program is very simple: it opens up a connection to the Raspbeery Pi SPI bus
using a SPIDeviceConfig and writes a byte to the peripheral device: the ADC chip.
Since there is no input connection being sent from the master (the Raspberry Pi) to the
slave (the ADC chip), this data is effectively ignored. The SPI bus will, concurrently,
attempt to retrieve a byte of data from the chip. This byte is passed along the MISO
line, which returns an 8-bit number that represents the current voltage level. This
process will be repeated 200 times, with a one-second delay between each sampling on
the bus.

The program output looks like the following. As the program is running, try turning
the dial on the potentiometer to vary the voltage that is being sent into the chip. Here,
we are turning the voltage from higher to lower, and the ADC chip is representing this
with a steady drop in the 8-bit value that is returned.

Starting emulator in execution mode
...
About the open device
Device opened...
Value for 1 is: 145
Value for 2 is: 143
Value for 3 is: 120
Value for 4 is: 113
Value for 5 is: 90
Value for 6 is: 75
Value for 7 is: 63

Glossary-1

Glossary

Access Point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as WiFi or bluetooth.

ADC

Analog-to-Digital Converter. A hardware device that converts analog signals (time and
amplitude) into a stream of binary numbers that can be processed by a digital device.

AMS

Application Management System. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM Cards and
smart cards to communicate with card reader software or a card reader device.

API

Application Programming Interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors using reduced instruction
set (RISC) CPU technology, developed by ARM Holdings. ARM is a licensable
instruction set architecture (ISA) and is used in the majority of embedded platforms.

AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set, AT means attention.

AXF

ARM Executable Format. An ARM executable image generated by ARM tools.

BIP

Bearer Independent Protocol. Allows an application on a SIM Card to establish a data
channel with a terminal, and through the terminal, to a remote server on the network.

CDMA

Glossary-2

CDMA

Code Division Multiple Access. A mobile telephone network standard used primarily
in the United States and Canada as an alternative to GSM.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

Configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java virtual machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

Digital-to-Analog Converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.

ETSI

European Telecommunications Standards Institute. An independent, non-profit group
responsible for the standardization of information and communication technologies
within Europe. Although based in Europe, it carries worldwide influence in the
telecommunications industry.

GCF

Generic Connection Framework. A part of CLDC, it is a Java ME API consisting of a
hierarchy of interfaces and classes to create connections (such as HTTP, datagram, or
streams) and perform I/O.

GPIO

General Purpose Input/Output. Unassigned pins on an embedded platform that can
be assigned or configured as needed by a developer.

GPIO Port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

GSM

Global System for Mobile Communications. A 3G mobile telephone network standard
used widely in Europe, Asia, and other parts of the world.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

ICCID

Integrated Circuit Card Identification. The unique serial number assigned to an
individual SIM Card.

JCP

Glossary-3

IMP-NG

Information Module Profile Next Generation. A profile for embedded "headless"
devices, the IMP-NG specification (JSR 228) is a subset of MIDP 2.0 that leverages
many of the APIs of MIDP 2.0, including the latest security and networking+, but does
not include graphics and user interface APIs.

IMEI

International Mobile Equipment Identifier. A number unique to every mobile phone. It
is used by a GSM or UMTS network to identify valid devices and can be used to stop a
stolen or blocked phone from accessing the network. It is usually printed inside the
battery compartment of the phone.

IMlet

An application written for IMP-NG. An IMlet does not differ from MIDP 2.0 MIDlet,
except by the fact that an IMlet can not refer to MIDP classes that are not part of
IMP-NG. An IMlet can only use the APIs defined by the IMP-NG and CLDC
specifications.

IMlet Suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment.

IMSI

International Mobile Subscriber Identity. A unique number associated with all GSM
and UMTS network mobile phone users. It is stored on the SIM Card inside a phone
and is used to identify itself to the network.

I2C

Inter-Integrated Circuit. A multi-master, serial computer bus used to attach low-speed
peripherals to an embedded platform

ISA

Instruction Set Architecture. The part of a computer’s architecture related to
programming, including data type, addressing modes, interrupt and exception
handling, I/O, and memory architecture, and native commands. Reduced instruction
set computing (RISC) is one kind of instruction set architecture.

JAD file

Java Application Descriptor file. A file provided in a MIDlet suite that contains
attributes used by application management software (AMS) to manage the MIDlet's
life cycle, and other application-specific attributes used by the MIDlet suite itself.

JAR file

Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet suite.

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

JDTS

Glossary-4

JDTS

Java Device Test Suite. A set of Java programming language tests developed
specifically for the wireless marketplace, providing targeted, standardized testing for
CLDC and MIDP on small and handheld devices.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a
configuration (such as CLDC) and a profile (such as MIDP or IMP-NG) tailored to a
specific class of device.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

Java Virtual Machine

A software “execution engine” that safely and compatibly executes the byte codes in
Java class files on a microprocessor.

KVM

A Java virtual machine designed to run in a small, limited memory device. The CLDC
configuration was initially designed to run in a KVM.

LCDUI

Liquid Crystal Display User Interface. A user interface toolkit for interacting with
Liquid Crystal Display (LCD) screens in small devices. More generally, a shorthand
way of referring to the MIDP user interface APIs.

MIDlet

An application written for MIDP.

MIDlet suite

A way of packaging one or more MIDlets for easy distribution and use. Each MIDlet
suite contains a Java application descriptor file (.jad), which lists the class names and
files names for each MIDlet, and a Java Archive file (.jar), which contains the class
files and resource files for each MIDlet.

MIDP

Mobile Information Device Profile. A specification for a Java ME platform profile,
running on top of a CLDC configuration that provides APIs for application life cycle,
user interface, networking, and persistent storage in small devices.

MSISDN

Mobile Station Integrated Services Digital Network. A number uniquely identifying a
subscription in a GSM or UMTS mobile network. It is the telephone number to the SIM
Card in a mobile phone and used for voice, FAX, SMS, and data services.

MVM

Multiple Virtual Machines. A software mode that can run more than one MIDlet or
IMlet at a time.

RMI

Glossary-5

Obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

Optional Package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

Preemption

Taking a resource, such as the foreground, from another application.

Preverification

Due to limited memory and processing power on small devices, the process of
verifying Java technology classes is split into two parts. The first part is preverification
which is done off-device using the preverify tool. The second part, which is
verification, occurs on the device at runtime.

Profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

Provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

Pulse Counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

Push Registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

Reduced Instruction Set Computing. A CPU design based on simplified instruction
sets that provide higher performance and faster execution of individual instructions.
The ARM architecture is based on RISC design principles.

RL-ARM

Real-Time Library. A group of tightly coupled libraries designed to solve the real-time
and communication challenges of embedded systems based on ARM processor-based
microcontroller devices.

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

RMS

Glossary-6

RMS

Record Management System. A simple record-oriented database that enables an IMlet
or MIDlet to persistently store information and retrieve it later. MIDlets can also use
the RMS to share data.

RTOS

Real-Time Operating System. An operating system designed to serve real-time
application requests. It uses multi-tasking, an advanced scheduling algorithm, and
minimal latency to prioritize and process data.

RTSP

Real Time Streaming Protocol. A network control protocol designed to control
streaming media servers and media sessions.

SCWS

Smart Card Web Server. A web server embedded in a smart card (such as a SIM Card)
that allows HTTP transactions with the card.

SD card

Secure Digital cards. A non-volatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber Identity Module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

Slave Mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

Smart Card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM Card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol allowing transmission of short text-based messages
over a wireless network. SMS messaging is the most widely-used data application in
the world.

SMSC

Short Message Service Center. The SMSC routes messages and regulates SMS traffic.
When an SMS message is sent, it goes to an SMS center first, then gets forwarded to
the destination. If the destination is unavailable (for example, the recipient embedded
board is powered down), the message is stored in the SMSC until the recipient
becomes available.

URI

Glossary-7

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full-duplex communication between a master device and one or more slave
devices.

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

Task

At the platform level, each separate application that runs within a single Java virtual
machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

Terminal Profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
Card along with the IMEI at SIM Card initialization. The terminal profile tells the SIM
Card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

UICC

Universal Integrated Circuit Card. The smart card used in mobile terminals in GSM
and UMTS networks. The UICC ensures the integrity and security of personal data on
the card.

UMTS

Universal Mobile Telecommunications System. A third-generation (3G) mobile
communications technology. It utilizes the radio spectrum in a fundamentally different
way than GSM.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USAT

Glossary-8

USAT

Universal SIM Application Toolkit. A software development kit intended for 3G
networks. It enables USIM to initiate actions that can be used for various value-added
services, such as those required for banking and other privacy related applications.

USB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

WAE

Wireless Application Environment. An application framework for small devices, which
leverages other technologies, such as Wireless Application Protocol (WAP).

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

Watchdog Timer

A dedicated piece of hardware or software that "watches" an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, the watchdog timer initiates a reboot procedure or takes other
steps to return the system to a running state.

WCDMA

Wideband Code Division Multiple Access. A detailed protocol that defines how a
mobile phone communicates with the tower, how its signals are modulated, how
datagrams are structured, and how system interfaces are specified.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML Schema

A set of rules to which an XML document must conform to be considered valid.

Index-1

Index

A
app

descriptor, 4-4

I
InstallerErrorCode, 4-1, 4-8

L
library

descriptor, 4-4
link

descriptor, 4-4
Locale Change Notifier, 1-1, 2-1
LocaleChangeListener, 1-1

localeChanged, 1-1
LocaleChangeNotifier, 1-1, 2-1
locking suites, 4-4

N
NetBeans

Accessing Peripherals, 3-3
Signing an Application with API Permissions, 3-3

S
SuiteInfo, 4-4

getAvailableProperties, 4-5
getDownloadURL, 4-4
getName, 4-4
getSuiteType, 4-5
getVendor, 4-5
remove, 4-5
setState, 4-5

SuiteInstaller, 4-2, 4-3, 4-5, 4-6, 4-7
cancel, 4-2, 4-3
start, 4-2, 4-3, 4-4, 4-5, 4-6, 4-7, 4-8

SuiteInstallerProgressListener, 4-1, 4-2
done, 4-1, 4-2
updateStatus, 4-2

SuiteLockedException, 4-5

Index-2

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Operating System Commands
	Shell Prompts
	Conventions

	1 Developer Migration Guide
	Overview
	Modified Permission Model
	Device I/O Namespace
	Generic Connection Framework Changes

	2 Java Embedded VM Proxy and Console
	Design
	Starting the VM Proxy on the Desktop
	Server Mode Connection
	Client Mode Connection

	VM Proxy Options
	Using the Command Line Interface
	ams-install
	ams-list
	ams-update
	ams-remove
	ams-run
	ams-stop
	blacklist
	properties-list
	get-property
	set-property
	save-properties
	net-info
	net-set
	net-reconnect
	device-list
	device-change
	shutdown
	cd
	delete
	get
	ls
	mkdir
	pwd
	put

	3 Security
	Permissions for Accessing Peripherals
	Accessing Peripherals
	Signing the Application with API Permissions
	Method #1: Signing Application Using the NetBeans IDE
	Method #2: Signing Application Using a Command Line
	Method #3: Using NullAuthenticationProvider

	4 Software Management
	SuiteInstallListener Interface
	SuiteListener Interface
	SuiteManager Interface
	TaskListener Interface
	TaskManager Interface
	ManagerFactory Class
	The Suite Class
	SuiteInstaller Class
	SuiteInstaller Class
	SWMPermission Class
	Task Class
	InstallerErrorCode

	5 General Purpose Input/Output
	Setting a GPIO Output Pin
	Working with a Breadboard
	Blinking an LED
	Testing Output and Input Pins

	6 Working with the I2C Bus
	Experimenting with a 7-Segment Display
	Experimenting with a 16x2 LCD Display

	7 The Serial Peripheral Interface (SPI) Bus
	Using the SPI Bus to Communicate with an ADC

	Glossary
	Index
	A
	I
	L
	N
	S

