

Oracle® Java Micro Edition Software Development
Kit
Developer’s Guide

Release 8 for Windows

E50624-01

April 2014

Describes how to use the Oracle Java Micro Edition
Software Development Kit (Java ME SDK) on Windows

Oracle Java Micro Edition Software Development Kit Developer's Guide, Release 8 for Windows

E50624-01

Copyright © 2012, 2014, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate failsafe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Operating System Commands ... vii
Shell Prompts ... viii
Conventions ... viii

Part I Introduction

1 Before You Begin

Installing the Java SE Platform.. 1-1
Installing the Oracle Java ME SDK 8 Platform .. 1-1
Installing and Starting NetBeans IDE 8.0.. 1-2

2 Creating a Java ME SDK 8 Sample Project

Installing Java ME SDK Plugins ... 2-1
Creating a Sample IMlet File ... 2-2
Creating a New Project.. 2-3
Including Sample IMlet Code and Running the Project.. 2-3

Part II Devices

3 Using the Emulators

Starting the Emulator... 3-1
Understanding the Main Window .. 3-1
Running Emulators .. 3-3
Running the Qualcomm_IoE_Device Emulator ... 3-4

4 Using the External Events Generator

5 Working with Devices

Using the Device Connections Manager ... 5-1
Using the Device Selector ... 5-2

Viewing Platform and Device Properties ...5-2

iv

Changing Platform and Device Properties ...5-2
Viewing Device Information ..5-4
Editing the Security Configuration ..5-4

Using the Custom Device Editor ... 5-4
Creating a Custom Device ..5-5
Setting Custom Device Properties ...5-5
Managing Custom Devices ...5-6

Making Device Connections .. 5-6
Connecting to a UART Device ...5-6

Additional Peripherals .. 5-7

Part III NetBeans IDE

6 Creating Projects

Creating a Java ME Project ... 6-1
Create a New IMlet .. 6-2
Debugging Java ME Projects.. 6-2

7 Viewing and Editing Project Properties

Configuring Project Sources .. 7-1
Selecting the Platform for the Project .. 7-1
Configuring Project Libraries .. 7-1
Configuring Application Descriptor Attributes .. 7-1
Configuring the Build Process... 7-2
Configuring Project Running Properties... 7-2
Building a Project from the Command Line ... 7-2
Packaging an IMlet Suite (JAR and JAD).. 7-3

8 Finding Files in the Multiple User Environment

Switching Users .. 8-1
Installation Directories.. 8-1
NetBeans IDE 8.0 User Directories ... 8-2
Oracle Java ME SDK 8 User Directories .. 8-2

9 Logs

10 Profiling Applications

Collecting and Saving Profiler Data in the IDE .. 10-1
Loading an NPS File ... 10-2
Importing PROF File .. 10-2

11 Network Monitoring

Monitoring Network Traffic.. 11-1
Filtering and Sorting Messages .. 11-1
Saving and Loading Network Monitor Information.. 11-2

v

Searching the Connection Data .. 11-2
Clearing the Connection List .. 11-2

12 Memory Monitoring and Runtime Tracing

Enabling Tracing.. 12-1
Using the Memory Monitor... 12-2
Viewing a Session Snapshot ... 12-2

13 Application Debugging

Part IV Security

14 Security and IMlet Signing

Security Policy Provider Clients... 14-1
Configuring the Security Policy ... 14-2
Signing a Project.. 14-3
Managing Keystores and Key Pairs ... 14-3
Managing Root Certificates... 14-4
Command-Line Security Features.. 14-4

Sign IMlet Suites (jadtool) .. 14-5
Manage Certificates (mekeytool) .. 14-5

15 Custom Security Policy and Authentication Providers

Creating a Security Policy Provider ... 15-1
Creating an Authentication Provider .. 15-2
Installing Custom Providers ... 15-3

Part V Optional Packages

16 API Support

Oracle APIs ... 16-2

17 JSR 75: PDA Optional Packages

FileConnection API... 17-1
Running PDAPDemo ... 17-2

Browsing Files .. 17-2

18 JSR 120: Wireless Messaging

Using the WMA Console to Send and Receive Messages... 18-1
Sending a Text or Binary SMS Message ... 18-1
Sending Text or Binary CBS Messages ... 18-2
Receiving Messages in the WMA Console .. 18-2

Running the WMA Tool... 18-2
Examples of smsreceive and cbsreceive ... 18-3

vi

Example of smssend ... 18-3
Example cbssend ... 18-4

19 JSR 172: Web Services Support

Generating Stub Files from WSDL Descriptors.. 19-1
Generating Stub Files from the Command Line ... 19-1

20 JSR 177: Smart Card Security (SATSA)

Card Slots in the Emulator .. 20-1
Adjusting Access Control .. 20-1

Specifying PIN Properties .. 20-2
Specifying Application Permissions ... 20-2
Access Control File Example ... 20-3

21 JSR 179: Location API Support

Setting the Emulator's Location at Runtime .. 21-1

Part VI Sample Applications

22 Using Sample Applications

Installing Sample Applications.. 22-1
Configuring the Web Browser and Proxy Settings ... 22-2
Running Sample Applications ... 22-2

Running the DataCollectionDemo .. 22-2
Running the GPIODemo .. 22-2
Running the I2CDemo .. 22-3
Running the NetworkDemo .. 22-3

Running the NetworkDemo on the Reference Board ... 22-4
Running the PDAPDemo ... 22-4

Running the PDAPDemo on the Reference Board .. 22-5
Running the LightTrackDemo .. 22-5
Running the SystemControllerDemo ... 22-6

Troubleshooting... 22-6

Part VII Appendixes

A Using the Command-Line Emulator

Using the Oracle Java ME SDK 8 Emulator ... A-1
Useful Emulator Command Options... A-1

B Installation and Runtime Security Guidelines

Maintaining Optimum Network Security.. B-1

Glossary ..

vii

Preface

This guide describes how to use the Oracle Java Micro Edition Software Development
Kit (Java ME SDK) to develop embedded applications in the NetBeans integrated
development environment (IDE). Oracle Java ME SDK 8 contains a complete
implementation of the Oracle Java ME Embedded 8 software runtime.

Together, these products support embedded software development on:

■ Windows platform in emulation

■ Qualcomm Internet of Everything (IoE) platform (for more information, see Oracle
Java ME Embedded Getting Started Guide for the Reference Platform (Qualcomm IoE))

■ Raspberry Pi (for more information, see Oracle Java ME Embedded Getting Started
Guide for the Reference Platform (Raspberry Pi))

Audience
This document is intended for developers of embedded software who want to develop
applications using Oracle Java ME SDK 8 on Windows.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Operating System Commands
This document does not contain information about basic commands and procedures
such as opening a terminal window, changing directories, and setting environment
variables. See the software documentation that you received with your system for this
information.

viii

Shell Prompts

Shell Prompt

Bourne shell and Korn shell $

Windows >

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Part I Introduction

Part I provides an introduction to Oracle Java ME SDK 8. It describes how to install the
necessary components, create and run a sample application.

Part I contains the following chapters:

■ Chapter 1, "Before You Begin"

■ Chapter 2, "Creating a Java ME SDK 8 Sample Project"

1

Before You Begin 1-1

1Before You Begin

Oracle Java ME SDK 8 is a sophisticated and useful tool for programmers who want to
develop embedded applications. It can be used with NetBeans IDE 8.0 running on
Microsoft Windows 7 (32-bit and 64-bit).

Note: There is no need to install the Oracle Java ME Embedded 8
emulation runtime, because it is implemented in Oracle Java ME SDK
8.

Before you begin, ensure that all the latest Windows 7 updates and service packs are
installed.

Installing the Java SE Platform
The Oracle Java ME SDK 8 software requires the Java Platform, Standard Edition
Development Kit (JDK) release 7 update 55 or later installed on your computer. This
guide assumes you have already installed the JDK. Otherwise, you can download it
from http://www.oracle.com/technetwork/java/javase/downloads

Installing the Oracle Java ME SDK 8 Platform
To install Oracle Java ME SDK 8:

1. If you already have the Java ME SDK installed, uninstall the previous version:

a. If you have Java ME SDK data that you want to save, copy it to a safe location.

b. In the notification area of the Windows taskbar, right-click the Java ME SDK
Device Manager icon and select Exit.

c. Start the Java ME SDK Installer Wizard by opening the Windows Start Menu,
selecting All Programs, and then Uninstall under the Java ME Platform SDK
8.0 folder. Alternatively, you can use the Programs and Features window in
the Windows Control Panel.

d. On the first step of the wizard, select the option to remove the user data
directory.

e. Follow the other steps of the wizard.

2. Download Oracle Java ME SDK 8 from
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk

3. Double-click the executable file and follow the steps of the installation wizard.

Installing and Starting NetBeans IDE 8.0

1-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Installing and Starting NetBeans IDE 8.0
To install NetBeans IDE 8.0:

1. Download the version of NetBeans IDE 8.0 that supports Java ME from
https://netbeans.org/downloads/.

2. Double-click the executable file and follow the steps of the installation wizard.

3. Double-click the icon on the desktop to start NetBeans IDE 8.0.

Note: Ensure that you install the most recent version of NetBeans
IDE 8.0 and apply all available updates related to Java ME support.

For more information about working with NetBeans IDE 8.0, see Chapter 2, "Creating
a Java ME SDK 8 Sample Project."

2

Creating a Java ME SDK 8 Sample Project 2-1

2Creating a Java ME SDK 8 Sample Project

This chapter describes NetBeans IDE 8.0 which provides a rich, visual environment for
developing embedded applications and numerous tools to improve the programming
process.

Oracle Java ME SDK 8 provides two plugins for working with NetBeans IDE 8.0:

■ Java ME SDK Tools plugin

■ Java ME SDK Demos plugin (optional)

Installing Java ME SDK Plugins
To install the Java ME SDK plugins for NetBeans:

1. Download the ZIP archive with the plugins from
http://www.oracle.com/technetwork/java/javame/javamobile/download/sdk

2. Extract the contents of the archive to a directory on your local machine.

3. Start NetBeans IDE, open the Tools menu, and then select Plugins to open the
Plugins window.

4. Uninstall the previous Java ME SDK plugins:

■ On the Installed tab, select the Show Details check box, then select Java ME
SDK Tools and Java ME SDK Demos, and click Uninstall.

5. On the Settings tab, ensure that Additional Development Plugins and Latest
Development Build are deselected.

6. Click the Add button in the lower right of the Settings tab.

7. In the Update Center Customizer window, do the following:

■ In the Name field, enter Java ME SDK Update Center.

■ Select Check for updates automatically.

■ In the URL field, use the file command to point to the location where you
extracted your plugins, for example:

file:/C:/My_Update_Center_Plugins/updates.xml

■ Click OK.

8. On the Settings tab, select the Java ME SDK Update Center that you just added.

9. On the Available Plugins tab, select Java ME SDK Tools and Java ME SDK
Demos, and click Install.

Creating a Sample IMlet File

2-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

10. Follow the steps in the NetBeans IDE Installer Wizard.

■ Accept the license terms.

■ If additional Validation screens appear, click Continue.

11. Click Finish to restart NetBeans IDE 8.0.

12. After NetBeans IDE 8.0 restarts, open the Tools menu and select Plugins to open
the Plugins window.

13. On the Installed tab, click Category to sort the plugins. Ensure that Java ME SDK
Tools and Java ME SDK Demos plugins are active (if they are not, then select
them and click Activate).

14. When the Java ME SDK plugins are active, click Close.

Creating a Sample IMlet File
This section describes how to create a sample IMlet file (IMletDemo.java) from the
code provided in Example 2–1. This IMlet file is used in the next section, "Creating a
New Project". To create a sample IMlet file:

1. Copy the code shown in Example 2–1 into a text file. Use Notepad rather than
WordPad, to avoid any unnecessary extra characters.

2. Save the file with the following name: IMletDemo.java.

Example 2–1 Code for the Sample IMletDemo.java Project in NetBeans IDE

package imletdemo;
import javax.microedition.midlet.MIDlet;

public class IMletDemo extends MIDlet {

 boolean bFirst = false;

 public void startApp() {
 try {
 // Perform startup operations
 } catch (Exception ex) {
 ex.printStackTrace();
 return;
 }

 bFirst = true;
 System.out.println("IMlet Demo is already started...");
 // Start program here

 }

 public void pauseApp() {
 // Pause the application
 }

 public void destroyApp(boolean unconditional) {
 // Close all resources that have been opened

 }

}

Including Sample IMlet Code and Running the Project

Creating a Java ME SDK 8 Sample Project 2-3

Creating a New Project
This section describes how to create a new embedded project using Oracle Java ME
SDK 8 and NetBeans IDE 8.0.

1. Open the File menu and select New Project.

2. In the New Project window, select Java ME Embedded from the Categories list
and Java ME Embedded Application from the Projects list. Click Next.

3. In the New Java ME Embedded Application window, specify IMletDemo in the
Project Name field at the top, and imletdemo.Midlet in the Create Midlet field at
the bottom. Click Finish.

Including Sample IMlet Code and Running the Project
Now you can update the generic project with the sample code that you created earlier
in Creating a Sample IMlet File. To include sample IMlet code and run the project:

1. Right-click the Midlet.java file in the Projects window and select Properties.

2. In the Properties window, note the path to the imletdemo directory in the All Files
field.

3. Copy the IMletDemo.java file you created in Creating a Sample IMlet File to the
imletdemo directory.

4. Delete the file Midlet.java from the directory.

5. This changes the project tree: instead of Midlet.java, the project tree should
contain IMletDemo.java.

6. Right-click the IMletDemo project in the Projects window and select Properties.

7. In the Application Descriptor category, open the MIDlets tab.

8. Select the IMletDemo row (where the imletdemo.Midlet class is flagged in red,
because you removed the class file) and click Edit.

9. In the Edit MIDlet window, select the imletdemo.IMletDemo class from the
MIDlet Class drop-down list. Click OK.

10. Click OK to close the Project Properties window.

11. Clean and build the IMletDemo project by selecting it in the Projects window and
clicking on the hammer-and-broom icon in the NetBeans IDE 8.0 toolbar, or by
selecting Clean and Build Project (IMletDemo) in the Run menu.

12. Run the IMletDemo project by selecting the green right-arrow icon in the
NetBeans IDE 8.0 toolbar, or by selecting Run Project (IMletDemo) in the Run
menu.

If successful, the EmbeddedDevice1 emulator starts with the IMletDemo suite
running, as shown in Figure 2–1. For more information about the main window of
the Java ME Embedded Emulator, see Understanding the Main Window.

Including Sample IMlet Code and Running the Project

2-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Figure 2–1 The EmbeddedDevice1 Emulator Running IMletDemo

Part II
Part II Devices

Part II provides an introduction to devices—the most important and fundamental
features of Oracle Java ME SDK 8.

Part II contains the following chapters:

■ Chapter 3, "Using the Emulators"

■ Chapter 4, "Using the External Events Generator"

■ Chapter 5, "Working with Devices"

3

Using the Emulators 3-1

3Using the Emulators

The Oracle Java ME SDK 8 embedded emulation environment provides you with a
platform to test and run Oracle Java ME Embedded Profile (MEEP) IMlet suites
without installing those IMlet suites onto an embedded device.

This is done using two default embedded emulators (EmbeddedDevice1 and
EmbeddedDevice2). These emulators do not represent a specific device, but provide a
correct implementation of the APIs for this platform.

The Qualcomm_IoE_Device emulator, which is also described in this chapter, provides
an emulation of the Qualcomm Internet-of-Everything (IoE) embedded hardware
device. For more information, see Oracle Java ME Embedded Getting Started Guide for the
Reference Platform (Qualcomm IoE).

This chapter describes how to run and use the Java ME Embedded Emulator.

Starting the Emulator
If the Embedded emulator is not displayed when you run the sample project described
in Chapter 2, "Creating a Java ME SDK 8 Sample Project.", it can be started from the
Windows command line. For more information, see Appendix A, "Using the
Command-Line Emulator".

Alternatively, click the Windows Start menu, select All Programs, open the Java ME
Platform SDK 8.0 folder, and then select Java ME Embedded Emulator.

You can also run emulator.exe under bin in the Java ME SDK installation directory.
The default location is C:\Java_ME_platform_SDK_8.0\bin\emulator.exe.

Understanding the Main Window
The main window of the Java ME Embedded Emulator is shown in Figure 2–1. The
name of the current emulated device is displayed in the title of the main window (for
example, EmbeddedDevice1).

The menu bar contains the following menus:

■ Application: Used to install and run IMlet suites, and to exit the emulator.

■ Device: Used to view messages addressed to the device through the JSR 120:
Wireless Messaging API (WMA).

■ Tools: Used to manage landmarks, the file system, connectivity, and start the
External Events Generator.

■ View: Used to configure desktop and exit behavior, view output from a running
application, and view logging information from the emulated device.

Understanding the Main Window

3-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

■ Help: Used to open the context-sensitive help, and view the Java ME SDK release
and copyright information.

Below the menu bar is the toolbar with buttons that provide shortcuts for the
following operations:

■ Run IMlet suite

■ Install IMlet suite

■ Start the External Events Generator

■ Always display the emulator window on top of other windows

Note: When the Device Manager detects an external embedded
device, only the Application, View, and Help menus, and the Run
IMlet Suite, Install IMlet Suite, and Emulator window always on
top buttons in the toolbar are available in the main emulator window.

Below the toolbar, there are two labels:

■ Device ID: A numerical identifier that is unique for each device

■ Phone Number: A number used by the emulator to send messages to itself for
testing purposes

Below the Oracle logo, there are 11 tabs:

■ AMS: The Application Management System (AMS) tab displays a table that lists
installed IMlet suites, showing the name of the suite and IMlet, and its status. This
is the default tab that opens when you start the Java ME Embedded Emulator. You
can select a suite and perform one of the following operations by clicking the
corresponding button to the right of the table:

■ Install: Specify the path or URL to the IMlet suite location and the security
domain to load the IMlet suite into the emulator.

■ Reload: Reload the selected suite.

■ Remove: Remove the selected suite.

■ Info: Display information about the selected suite.

■ Output: Open the output console of the selected suite.

At the bottom of the AMS tab, there is a button that can be used to start and stop
an IMlet suite. It is labeled either Start or Stop.

■ GPIO Pins: The General Purpose Input/Output (GPIO) Pins tab displays which
pins are configured for input/output, their values, and which port they belong to.

■ GPIO Ports: The GPIO Ports tab displays a list of ports, port direction
(input/output), and their maximum and current values.

■ I2C: The Inter-Integrated Circuit (I2C) tab displays information for the selected
slave device, data sent to a master device, and data received from a master device.

■ SPI: The Serial Peripheral Interface (SPI) tab displays information for the selected
slave device, data sent to a master device, and data received from a master device.
If you have created a custom implementation with the Custom Device Editor, the
Slave drop-down list might have additional slaves.

■ MMIO: The Memory-Mapped Input/Output (MMIO) tab displays memory
configuration and memory content for the selected device.

Running Emulators

Using the Emulators 3-3

■ ADC: The Analog-to-Digital Converter (ADC) tab displays the current channel,
converter number, sampling intervals, minimum and maximum values, and other
information.

■ DAC: The Digital-to-Analog Converter (DAC) tab displays the current channel
information, converter characteristics, and a graphic display of signal
characteristics with the x-axis showing the digital input and the y-axis showing
the analog output.

■ PWM: The Pulse Width Modulation (PWM) tab displays the amount of electrical
power flowing to a device.

■ Pulse Counters: The Pulse Counters tab displays the identifier, counter name,
counter number, counter type, and the pins to which the counters are bound.

■ Displays and Input Devices: The Displays and Input Devices tab shows
information about specific displays and input devices attached to your emulated
device, including both primary and auxiliary displays.

Below the tabs, the emulator status bar contains information about the power state,
and the memory indicator showing used and total heap memory.

Note: For more information about the Java ME Embedded Emulator
GUI, open the Help menu and select Help Contents to see the help
topics. For context-sensitive help, press F1. This will open the topic for
the window or tab that is currently open.

Running Emulators
Oracle Java ME SDK 8 runs applications on an emulator or an external device. The
Device Manager automatically starts detecting external devices when Oracle Java ME
SDK 8 is installed. The default emulators are automatically found and displayed in the
Device Selector window.

To view the Device Selector in NetBeans IDE, open the Tools menu, select Java ME,
and then Device Selector. The Device Selector window is shown in Figure 3–1.

Figure 3–1 Available Devices in the NetBeans IDE 8.0 Device Selector

Alternatively, run the device-selector.exe file under bin in the Java ME SDK
installation directory. For example, you can use the following command:

C:\> Java_ME_platform_SDK_8.0\bin\device-selector.exe

This command displays the standalone Device Selector, as shown in Figure 3–2.

Running the Qualcomm_IoE_Device Emulator

3-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Figure 3–2 The Standalone Device Selector

When an Oracle Java ME SDK 8 project is run from NetBeans IDE 8.0 or from the
command line, the default emulator starts (it is defined by the Java ME platform
selected for the project). If you do not want to use the default emulator, right-click any
emulator in the Device Selector window, and select the project or JAR file with the
application you want to run.

To open an emulator without running an application, run the emulator.exe file under
bin in the Java ME SDK installation directory. For example, to run the
EmbeddedDevice1 emulator, use the following command:

C:\> Java_ME_platform_SDK_8.0\bin\emulator.exe -Xjam -Xdevice:EmbeddedDevice1

Alternatively, you can double-click the emulator shortcut installed on your Windows
desktop, or use the shortcut in the Start menu under All Programs in the Java ME
Platform SDK 8.0 folder.

To run an application from the emulator, click the Application menu and select Run
IMlet Suite. Provide the path to the application and any other information, and click
OK.

Running the Qualcomm_IoE_Device Emulator
The Qualcomm_IoE_Device emulator is based on MEEP, but for a specific embedded
platform, the Qualcomm IoE device. Many of the menus and settings are the same as
in the MEEP emulator.

To run the Qualcomm_IoE_Device emulator from the Windows command line:

1. Open the bin directory under the Oracle Java ME SDK 8 installation directory:

C:\> cd Java_ME_platform_SDK_8.0\bin

2. To start the Qualcomm_IoE_Device emulator without running an application, use
the following command:

C:\> emulator.exe -Xdevice:Qualcomm_IoE_Device -Xjam

To start the Qualcomm_IoE_Device emulator with a running application, use the
-Xdescriptor option. For example, to run the DataCollectionDemo sample
application, use the following command:

C:\> emulator.exe -Xdevice:Qualcomm_IoE_Device -Xdescriptor:C:\Java_ME_
platform_SDK_8.0\apps\DataCollectionDemo\DataCollectionDemo.jad

4

Using the External Events Generator 4-1

4Using the External Events Generator

The External Events Generator enables you to test the capabilities of your device by
simulating events on that device. For example, you can send pulses to a pulse counter.

To start the External Events Generator, click the External Events Generator icon in the
main emulator window, or open the Tools menu and select External Events
Generator. For information about starting the emulator, see Chapter 3, "Using the
Emulators".

Although the External Events Generator functionality is similar for all default
emulators (EmbeddedDevice1, EmbeddedDevice2, and Qualcomm_IoE_Device), the
tabs are not the same.

The External Events Generator has the following tabs:

■ ADC: The Analog-to-Digital Converter (ADC) tab can be used to test analog input.

■ GPIO: The General Purpose Input/Output (GPIO) tab displays input pins for a
specific device. You can create a custom device to represent a different GPIO
device.

For information about the GPIO interface, see the Device I/O API docs in the
device-io.zip file under \docs\api\ in the Java ME SDK installation directory.

■ I2C: The Inter-Integrated Circuit (I2C) tab is available only for the Qualcomm_
IoE_Device emulator. It enables to emulate input for all available sensors. You can
adjust the settings of the G-sensor, light sensor, and temperature sensor on the
device. For information about developing applications that use these sensors, see
the documentation for the corresponding sensor. The emulator uses the following
sensor models:

– G-sensor: Bosch BMA150

– Light sensor: Intersil ISL29011

– Temperature sensor: ON Semiconductor ADT7481

■ Location: This tab can be used to set and test the location functionality of the
device.

■ MMIO: The Memory-Mapped Input/Output (MMIO) tab is available only for the
EmbeddedDevice1 and EmbeddedDevice2 emulator. If not already selected, select
the following default device:

■ BIG_ENDIAN_DEVICE: A big endian device that contains all block types
(byte, short, int, and block).

Note: If you are using a custom device created with the Custom
Device Editor, the MMIO device list might include additional devices.
For more information about the Custom Device Editor, see Chapter 5,
"Working with Devices"

4-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

For information about the MMIO interface, see the Device I/O API documents in
the device-io.zip file and the Embedded Support API documents in the
embedded-support-api.zip file under \docs\api\ in the Java ME SDK installation
directory.

■ Power Management: The Power Management tab enables you to emulate the
battery life of an external device, in seconds.

■ Pulse Counters: The Pulse Counters tab displays the current pulse counters on the
device. The default configurations for EmbeddedDevice1 and EmbeddedDevice2
emulators are:

– COUNTER_PA0

– COUNTER_PB3

– COUNTER_PB10

– COUNTER_PA3

There is only one default counter for the Qualcomm_IoE_Device emulator.

You can configure the pulse counters you want and send a signal to the configured
pulse counter by clicking Send Pulse.

■ SPI: The Serial Peripheral Interface (SPI) tab is available only for the Qualcomm_
IoE_Device emulator. It can be used to configure a sample accelerometer sensor.

Move the slider of the X, Y, and Z acceleration scale to change the x, y, and z values
transmitted over the SPI. The minimum and maximum values for the sliders in the
G-sensor are defined by the Java ME application.

The G-sensor sample duplicates in emulation the functionality of the digital,
triaxial acceleration sensor on the Qualcomm IoE embedded device. The
acceleration sensor is used to sense tilt, motion, and shock vibration in embedded
devices, such as medical instruments, computer peripherals, and monitoring
devices. For information about writing applications that use the G-sensor, see the
documentation for the sensor. The emulator uses the following G-sensor model:
Bosch BMA150.

5

Beta Draft Working with Devices 5-1

5Working with Devices

This chapter describes the Oracle Java ME SDK 8 components that enable you to work
effectively with devices, including making device connections, creating, configuring,
and customizing devices, and detecting external embedded devices.

The Device Manager is an Oracle Java ME SDK 8 service used to manage both
emulated and external devices. As soon as you install the Java ME SDK, the Device
Manager automatically starts to detect available devices (including any connected
hardware devices).

Alternatively, run the device-manager.exe file under bin in the Java ME SDK
installation directory. For example, you can use the following command:

C:\> Java_ME_platform_SDK_8.0\bin\device-manager.exe

Oracle Java ME SDK 8 provides several components for working with emulated and
external devices. This chapter contains the following sections:

■ "Using the Device Connections Manager"

■ "Using the Device Selector"

■ "Using the Custom Device Editor"

■ "Making Device Connections"

■ "Additional Peripherals"

Using the Device Connections Manager
The Device Manager is started automatically when Oracle Java ME SDK 8 is installed.
However, it is primarily used for external embedded hardware attached to the
computer.

To start the Device Connections Manager, right-click the Oracle Java ME SDK 8.0
Device Manager icon in the notification area of the Windows taskbar and select
Manage Device Connections.

To add a new device connection, click Add, enter an IP address or host name, and click
OK. The Java ME SDK automatically detects available devices, listing them in the IP
Address or Host Name drop-down list. If an embedded hardware device is attached,
you can select a COM port for the hardware connection in the Select COM Port
drop-down list.

If you have an address you no longer want to detect, select the address and click
Remove. The device will no longer be displayed in the Device Connections Manager.

Using the Device Selector

5-2 Oracle Java Micro Edition Software Development Kit Developer's Guide Beta Draft

To see a list of registered devices and their configuration information, right-click the
Oracle Java ME SDK 8.0 Device Manager icon in the notification area of the Windows
taskbar and select Registered Devices.

Using the Device Selector
The Device Selector lists the devices detected by the Device Manager, grouped by
platform. The Device Selector can be opened as a tab in NetBeans IDE, or as a separate
window.

To access the Device Selector tab in NetBeans IDE, open the Tools menu, select Java
ME, and then Device Selector.

To open the Device Selector in a separate window, run the device-selector.exe file
under bin in the Java ME SDK installation directory. For example, you can use the
following command:

C:\> Java_ME_platform_SDK_8.0\bin\device-selector.exe

The list in the Device Selector matches the list displayed in the Registered Devices
window.

Note: When an external hardware device is detected, such as a
Raspberry Pi or Qualcomm IoE (MB997B) embedded board, it appears
in the Device Selector window with a sequential number on the end,
for example, ExternalEmbeddedDevice1, ExternalEmbeddedDevice2,
and so on.

Viewing Platform and Device Properties
To access the Properties tab in NetBeans IDE, open the Window menu, select IDE
Tools, and then Properties. You can now select the platform or device node in the
Device Selector tab to view the properties of the platform or device in the Properties
tab.

To view platform or device properties in a separate window, right-click the platform or
device node in the Device Selector tab and select Properties.

To view the platform or device properties in the standalone Device Selector window,
select the platform or device node. The properties are displayed in the right pane of
the window.

Changing Platform and Device Properties
Properties displayed in gray font or on a gray background cannot be changed. You can
adjust properties displayed in black font on a white background. Only MEEP options
can be adjusted.

When viewing properties in NetBeans IDE, if you select a property, a short explanation
is displayed in the description area below the Properties table.

Device properties consist of the following categories:

■ General

The following general properties can be changed:

Using the Device Selector

Beta Draft Working with Devices 5-3

– Remove IMlet Suite in execution mode: If this option is selected, the IMlet
suite and resources created by the IMlet are removed when you exit the IMlet
(assuming the IMlet was started in execution mode).

You should select the execution mode for a project by right-clicking a project,
selecting Properties, opening the Run category, and selecting the Regular
Execution option under Run Method.

To run a standalone application (not a NetBeans project) in execution mode,
you should use the -Xdescriptor option when running the emulator. For
example, you can run the DataCollectionDemo application on the Qualcomm_
IoE_Device emulator using the following command:

> emulator.exe -Xdevice:Qualcomm_IoE_Device
-Xdescriptor:DataCollectionDemo.jad

– Phone Number: You can set the phone number to any appropriate sequence,
considering country codes, area codes, and so on. If you change this value, the
setting will be applied to future instances. The number is a base value for the
selected device.

– Heapsize: The heap is the memory allocated on a device to store your
application objects. Select the maximum heap size from the drop-down list.

– Memory Limit Per Suite in KB: This property enables you to define how
much memory in kilobytes an IMlet suite is allocated when started. Unlimited
means the IMlet can use as much memory as is required to run, but not more
than the size of the heap specified by the Heapsize value.

– JAM storage size in KB: The amount of storage space in kilobytes available
for applications installed over the air.

– Locale: The locale as defined in the ME Embedded Profile specification at
https://jcp.org/aboutJava/communityprocess/edr/jsr361/inde
x.html

■ Monitor

Selecting the Trace GC, Trace Class Loading, Trace Exceptions, and Trace Method
Calls activates tracing for the corresponding device the next time the emulator is
started. The trace output is displayed in the Device Log window.

Note: Trace Method Calls returns a lot of messages, which can affect
emulator performance.

■ SATSA

Security and Trust Services (SATSA) provide the ability to define security settings.
You can define the host name of a Java Card emulator, and port numbers for slots
0 and 1.

■ Location Provider #1 and Location Provider #2

The properties in these categories determine the selection of a location provider.
Two providers are available so that your application can be tested matching the
location provider criteria.

For more information about these properties, see the Location API at
http://jcp.org/en/jsr/detail?id=179

■ Landmark Editor

Using the Custom Device Editor

5-4 Oracle Java Micro Edition Software Development Kit Developer's Guide Beta Draft

This category contains only one property (Max length of input) that defines the
maximum length of input for landmarks.

Viewing Device Information
To view the device information in NetBeans IDE, double-click a device node in the
Device Selector tab. The Device Information tab opens with detailed information
about the device.

To view the device information in the standalone Device Selector window, select a
device node. Device information is displayed in the right pane of the window along
with the properties.

The Device Information window contains details about the device, such as the
supported runtime, supported Java ME extensions, supported optional packages, and
other capabilities, such as power management or cellular support.

Editing the Security Configuration
The security configuration for a device is set at the time the device is created using the
Client Security Model (CSM). For more information about CSM, see the JSR 361: Java
ME Embedded Profile at https://jcp.org/en/jsr/detail?id=361. For more
information about how CSM is implemented for Java ME SDK, see Chapter 14,
"Security and IMlet Signing".

To edit the security configuration for a device:

1. Right-click the device node in the Device Selector window and select Security
Configuration.

2. At the top of the Security Configuration window, specify the custom security
providers implementation JAR file, and the class names for the custom
authentication and security policy providers. For more information about creating
custom providers, see Chapter 15, "Custom Security Policy and Authentication
Providers".

3. Select a client in the Clients pane and view its permissions and certificates in the
panes to the right.

4. To add a client, click Add in the Client pane, specify the name, and then click OK.
To remove a client, select it and click Remove.

5. To add a permission, click Add in the Permissions pane, select a permission from
the drop-down list, specify a protected resource name, and then click OK. To edit
or remove a permission, select it and click Edit or Remove.

6. To add a certificate, click Add in the Certificates pane, select a certificate from the
list, and click OK. To remove a certificate, select it and click Remove.

7. Click OK to apply changes to the security configuration.

Using the Custom Device Editor
The Custom Device Editor can be used to create custom devices. The appearance of a
custom device is generic, but the functionality can be configured according to your
specifications.

To run the Custom Device Editor in NetBeans IDE, open the Tools menu, select Java
ME, and then Custom Device Editor.

Using the Custom Device Editor

Beta Draft Working with Devices 5-5

To run the Custom Device Editor in a separate window, run the device-editor.exe
file under bin in the Java ME SDK installation directory. For example, you can use the
following command:

C:\> Java_ME_platform_SDK_8.0\bin\device-editor.exe

Creating a Custom Device
To create a custom device:

1. In the Custom Device Editor, select a platform (for example, MEEP) and click
New.

2. Specify a name and description of the device.

3. Ensure that the Device Configuration and Device Profile match the specifications
for your new device.

4. Select optional packages that provide additional functionality for your device,
corresponding to the required configuration.

5. Define properties for the interfaces and protocols supported by your custom
device under the corresponding tabs.

6. Click OK to create and add the device to the custom device tree.

The created device appears in the Device Selector, and the device definition is saved
under \toolkit-lib\devices in the Java ME SDK installation directory. You can run
projects from the NetBeans IDE or from the command line on this device.

Setting Custom Device Properties
When you create a new embedded device using the Custom Device Editor, you can
use the default implementation or create your own custom implementation for the
interfaces discussed in this section.

You can set device properties when you create the custom device, or define device
properties later, by selecting your custom device in the Custom Device Editor and
clicking Edit.

This section briefly describes the tabs in the custom device properties. For more
information about custom device protocols and property settings, see the
corresponding help topic by pressing F1 with the necessary tab open.

For each custom device, you can configure properties in the following tabs:

■ GPIO: The General Purpose Input/Output (GPIO) ports are groupings of GPIO
pins that can be configured for output, input, or bidirectional.

■ I2C and SPI: The Inter-Integrated Circuit (I2C) and the Serial Peripheral Interface
(SPI) tabs are similar. Each one can be used to simulate a simple peripheral slave
device that echoes back data sent to it.

■ MMIO: The Memory-Mapped Input/Output (MMIO) tab can be used to emulate
the MMIO interface bus. It facilitates I/O between the CPU, memory, and
peripheral devices.

■ ADC: The Analog-to-Digital Converter (ADC) tab can be used to set up the
conversion of an input analog stream to a sequence of digital numbers.

■ DAC: The Digital-to-Analog Converter (DAC) tab can be used to set up the
conversion of a sequence of digital numbers to an analog stream.

Making Device Connections

5-6 Oracle Java Micro Edition Software Development Kit Developer's Guide Beta Draft

■ PWM: The Pulse Width Modulation (PWM) tab can be used to set up the
conformance of a digital signal’s width based on its duration.

■ Pulse Counters: The Pulse Counters tab can be used to set up pulse counters that
track the number of pulses sent to a device.

■ Line-Oriented Displays: The Line-Oriented Displays tab can be used to configure
a line-oriented display that provides a simple user interface in emulation.

■ Headless Input Devices: The Headless Input Devices tab can be used to configure
input devices not connected to a monitor, such as buttons.

Managing Custom Devices
Custom devices should be managed using the Custom Device Editor. Using the tool
ensures that your device can be detected and integrated with Oracle Java ME SDK 8.

To clone a device, select it and click Clone. Provide a unique name to prevent
confusion.

To remove a device, select it and click Remove. This completely deletes the device.

To save the device configuration as a ZIP file, select it and click Export. Specify the
path and name in the file system explorer.

To load a device configuration from a previously exported ZIP file, click Import and
select the file in the file system explorer.

Making Device Connections
The configuration of all peripherals, except Universal Asynchronous
Receiver/Transmitter (UART), ATCommands devices, and WatchDog timers, can be
inspected in the emulator main window. The configuration of UART is defined by the
hardware configuration of the COM ports on your PC.

For more information about connecting to a UART Device, see Connecting to a UART
Device.

To open a serial port, such as COM1 or COM2, in Windows, use the Device
Connections Manager. You can use the following code in the application:

Connector.open("comm:COM1")

Connecting to a UART Device
To use the UART functionality, you must configure the daapi_config.json file located
under runtimes\meep\lib in the Java ME SDK installation directory. For example, the
default location is:

C:\Java_ME_platform_SDK_8.0\runtimes\meep\lib\daapi_config.json

The configuration of the hardware device name for the UART ports in Windows is
made up of two settings:

■ The deviceNumber property of UARTDeviceConfiguration

■ The system property of device.uart.prefix

For example, if UARTDeviceConfiguration.deviceNumber = 1 and
device.uart.prefix = COM, then the hardware device name is COM1.

Additional Peripherals

Beta Draft Working with Devices 5-7

For an already opened UART, you can add it to the peripheral manager by calling
DeviceManager.open with the configuration object.

Additional Peripherals
The EmbeddedDevice1 emulator provides support for additional peripherals: ATDevice
and Watchdog timers. Use the following configuration settings to open them using the
device manager:

■ There are two Watchdog timers on the EmbeddedDevice1 emulator with the
following configurations:

– Device Name: WDG, ID: 30, Hardware Timer's Number: 1
(This is a regular watchdog timer)

– Device Name: WWDG, ID: 31, Hardware Timer's Number: 2
(This is a windowed watchdog timer)

Watchdog timers provide the services to track how your application functions.
Because no hardware is available on Windows, all running applications are
stopped when the Watchdog event is started.

■ ATDevice is a simple AT commands-based device on the EmbeddedDevice1
emulator that responds with OK to any command. It has the following
configuration:

– Device Name: EMUL, ID: 13, Controller Number: 1, Hardware Channel's
Number: 1

Additional Peripherals

5-8 Oracle Java Micro Edition Software Development Kit Developer's Guide Beta Draft

Part III
Part III NetBeans IDE

Part III provides an introduction to more specialized developer operations, such as
tooling, monitoring, and debugging, and information about file structure, logging,
properties, and projects.

Part III contains the following chapters:

■ Chapter 6, "Creating Projects"

■ Chapter 7, "Viewing and Editing Project Properties"

■ Chapter 8, "Finding Files in the Multiple User Environment"

■ Chapter 9, "Logs"

■ Chapter 10, "Profiling Applications"

■ Chapter 11, "Network Monitoring"

■ Chapter 12, "Memory Monitoring and Runtime Tracing"

■ Chapter 13, "Application Debugging"

6

Creating Projects 6-1

6Creating Projects

A project is a group of files comprising a single application, including source files,
resource files, XML configuration files, automatically generated Apache Ant build
files, and a properties file.

When a project is created, the Oracle Java ME SDK 8 performs the following tasks:

■ Creates a source tree

■ Sets the emulator platform for the project

■ Sets the project run and compile-time classpaths

■ Creates a build script that contains actions for running, compiling, debugging, and
building Javadoc

The Oracle Java ME SDK 8 and NetBeans IDE 8.0 create their project infrastructure
directly on top of Apache Ant. An Oracle Java ME SDK 8 project can be opened and
edited in NetBeans IDE 8.0. With the Ant infrastructure in place, you can build and
run your projects within the Oracle Java ME SDK 8 or from the command line.

NetBeans IDE provides two views of the project:

■ The Projects tab provides a logical view of the project.

■ The Files tab displays a physical view of the project.

Project settings are controlled in the project Properties window. To open the Properties
window, right-click on an item or subitem in the project tree and select Properties.

Creating a Java ME Project
The project provides a basic infrastructure for development. You provide source files,
resource files, and project settings as needed. Most project properties can be edited
later.

To create a Java ME project:

1. Open the File menu and select New Project.

2. In the Choose Project window, select the Java ME Embedded category, and the
Java ME Embedded Application project type. Click Next.

3. In the Name and Location window, specify a project name and any other settings.
The default values are usually fine. Click Finish.

Create a New IMlet

6-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Create a New IMlet
By default, the new project contains an IMlet class that extends the
javax.microedition.midlet.MIDlet class. This class can be used as the main IMlet.
To add another IMlet to the project:

1. Right-click the project, select New, and then MIDlet.

2. Specify the name of the IMlet, its location within the selected project, and other
settings. Click Finish.

When the new IMlet is created, the Oracle Java ME SDK 8 automatically adds it to the
project's Application Descriptor File.

Debugging Java ME Projects
Oracle Java ME SDK 8 projects use standard NetBeans IDE 8.0 debugging utilities. See
the NetBeans help topic, Debugging Tasks: Quick Reference. This topic includes links to a
variety of debugging procedures.

If you have an external device that runs a supported runtime you can perform
on-device debugging. The device must be detected by the Device Manager and be
present on the Device Selector, as described in Chapter 5, "Working with Devices."

7

Viewing and Editing Project Properties 7-1

7Viewing and Editing Project Properties

All projects have properties. Some properties, such as the project's name and location
cannot be changed, but other properties can be edited.

To view or edit a project's properties, right-click the project node and select Properties.
In the Project Properties window, you can view and customize the project properties.

Configuring Project Sources
Use the Sources category in the Project Properties window to view the project folder
location and configure a list of source folders with the corresponding labels used in the
Projects view.

You can add and remove folders to the list of sources, and order the list.

Below the list, use the drop-down lists to select the source format and encoding.

Selecting the Platform for the Project
The Java ME platform emulates the execution of an application on one or more target
devices. Use the Platform category in the Project Properties window to select and
configure the platform used in your project.

Ensure that Oracle Java Platform Micro Edition SDK 8.0 is selected as the platform.

By default, the devices in the device menu are also suitable for the platform type and
emulator platform. The device you select is the default device for this project. It is used
whenever you run the project. The selected device influences the device’s
Configuration and Profile options, and the available optional packages.

Configuring Project Libraries
Use the Libraries category in the Project Properties window to configure the list of
libraries used for compiling, running, and testing the project.

You can add, edit, and remove projects, libraries, JAR files, and folders to the lists in
corresponding tabs. You an also reorder the lists as required.

Configuring Application Descriptor Attributes
Use the Application Descriptor category in the Project Properties window to
configure the project attributes.

Configuring the Build Process

7-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Under each tab, you can add, edit, remove, and reorder the general attributes for JAR
manifests, MIDlets in the suite, the push registry, and permissions requested by the
API.

Note: Do not begin user-defined attribute keys with MIDlet- or
MicroEdition-.

To use the push registry, you must configure the permission to access
the Push Registry API (javax.microedition.io.PushRegistry) in the
API Permissions tab.

Configuring the Build Process
When you build a project, the Oracle Java ME SDK 8 compiles the source files and
generates the packaged build output (a JAR file) for your project. You can build the
main project and all of its required projects, or build any project individually.

In general, you do not need to build the project or compile individual classes to run
the project. Use the Build category and its subcategories in the Project Properties
window to configure the following build tasks:

■ Compiling: Use this category to define how your project is compiled.

■ Signing: Use this category to enable signing and assign key pairs to the project.

■ Obfuscating: Use this category to install an obfuscator library and set the level of
obfuscation for project files.

■ Documenting: Use this category to define how your project is documented.

Configuring Project Running Properties
Use the Run category in the Project Properties window to set up the configuration for
running the project.

You can set command-line options, the debugger timeout, and the run method.

Building a Project from the Command Line
In NetBeans IDE, you click one button to build and run the project. Behind the scenes,
however, there are two steps. First, Java source files are compiled into Java class files.
Next, the class files are preverified, which means they are prepared for the CLDC virtual
machine.

To build the project manually from the command line, do the following:

1. Run the jar command to verify that it is in your PATH environment variable.

Check the version of the JDK by running java -version on the command line.

2. Use the javac compiler from the JDK to compile the source files. You can use the
existing Oracle Java ME SDK 8 project directory structure. Use the
-bootclasspath option to tell the compiler to use the MEEP APIs, and use the -d
option to tell the compiler where to put the compiled class files.

The following example demonstrates how you might compile an application,
taking source files from the src directory and placing the class files in the
tmpclasses directory:

Packaging an IMlet Suite (JAR and JAD)

Viewing and Editing Project Properties 7-3

C:\> javac -bootclasspath ..\..\lib\cldc_1.8.jar;..\..\lib\meep_8.0.jar
 -d tmpclasses
 src*.java

For more information about javac, see the JDK Command Reference.

Packaging an IMlet Suite (JAR and JAD)
To package an IMlet suite manually, you must create a manifest file, an application
JAR file, and an IMlet descriptor (also known as a Java Application Descriptor or
JAD).

Create a manifest file that contains the appropriate attributes as specified in the MEEP
specification. You can use any text editor to create the manifest file. For example, a
manifest might have the following contents:

MIDlet-1: My MIDlet, MyMIDlet.png, MyMIDlet
MIDlet-Name: MyMIDlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MicroEdition-Configuration: CLDC-1.8
MicroEdition-Profile: MEEP 8.0

Create a JAR file that contains the manifest and the suite's classes and resource files. To
create the JAR file, use the jar tool that comes with the Java SE software development
kit. The syntax is as follows:

jar cfm file manifest -C class-directory . -C resource-directory .

The arguments are as follows:

■ file: JAR file to create

■ manifest: Manifest file for the MIDlets

■ class-directory: Directory containing the application's classes

■ resource-directory: Directory containing the application's resources

For example, to create a JAR file named MyApp.jar whose classes are in the classes
directory and resources are in the res directory, use the following command:

jar cfm MyApp.jar MANIFEST.MF -C classes . -C res .

Create a JAD file that contains the appropriate attributes as specified in the MEEP
specification. You can use any text editor to create the JAD file. This file must have the
extension .jad.

Note: You must set the MIDlet-Jar-Size entry to the size in bytes
of the JAR file created in the previous step.

For example, a JAD file might have the following contents:

MIDlet-Name: MyIMlet
MIDlet-Vendor: My Organization
MIDlet-Version: 1.0
MIDlet-Jar-URL: MyApp.jar
MIDlet-Jar-Size: 24601

Packaging an IMlet Suite (JAR and JAD)

7-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

8

Finding Files in the Multiple User Environment 8-1

8Finding Files in the Multiple User
Environment

All users with an account on the host machine can access Oracle Java ME SDK 8. This
feature is called Multiple User Environment (MUE).

Note: A MUE supports access from several accounts. It does not
support multiple users accessing Oracle Java ME SDK 8
simultaneously. For more information, see Switching Users.

MUE in Oracle Java ME SDK 8 requires an installation directory to be used as a source
for copying. Each user's personal files are located in the user’s folder under C:\Users.
This document uses the variable username to refer to the user’s personal directory. The
personal Java ME SDK configuration files are maintained in a subdirectory named
javame-sdk that has subdirectories for each version installed. For example, the Java
ME SDK 8 configuration files for a user named johns are located under
C:\Users\johns\javame-sdk\8.0.

For information about log files, see Chapter 9, "Logs."

Switching Users
Multiple users cannot run Oracle Java ME SDK 8 simultaneously, but you can run
Oracle Java ME SDK 8 from different user accounts on the host machine. When you
switch users, you must close Oracle Java ME SDK 8 and exit the Device Manager. A
different user can then start Oracle Java ME SDK 8 as the owner of all processes.

Installation Directories
The Oracle Java ME SDK 8 directory structure conforms to the Unified Emulator
Interface (UEI) Specification
(http://www.oracle.com/technetwork/java/javame/documentation/uei
specs-187994.pdf), version 1.0.2. This structure is recognized by all IDEs and other
tools that work with the UEI.

By default, Oracle Java ME SDK 8 is installed under C:\Java_ME_platform_SDK_8.0.
The installation directory has the following structure:

■ bin: Contains the following command-line tools:

– cref: The Java Card Platform Simulator tool, which is used to simulate smart
cards in the emulator. It is used for testing SATSA (JSR 177) applications with
the Oracle Java ME SDK 8. For more information about SATSA, see

NetBeans IDE 8.0 User Directories

8-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Chapter 20, "JSR 177: Smart Card Security (SATSA)".

– device-editor: Tool for creating new custom devices.

– device-manager: The Device Manager is a component that must be running
when you work with Oracle Java ME SDK 8. After installation, it starts as a
service, and it automatically restarts every time your computer restarts.

– device-selector: Tool for viewing and editing device and platform properties
and information. It can also be used to run applications on a specific device.

– emulator: UEI-compliant emulator. For more information, see Chapter 3,
"Using the Emulators."

– jadtool: Tool for signing IMlets. For more information, see Chapter 14,
"Security and IMlet Signing."

– mekeytool: Tool for managing Java ME keystores. For more information, see
Chapter 14, "Security and IMlet Signing."

– update-center: The Oracle Java ME SDK 8 Update Center.

– wma-tool: A command-line tool for sending and receiving SMS and CBS
messages. For more information, see "Running the WMA Tool."

– wscompile: Tool for compiling stubs and skeletons for JSR 172.

■ docs: Release documentation.

■ legal: License and copyright files.

■ lib: JSR JAR files for compilation.

■ runtimes: MEEP runtime files.

■ toolkit-lib: Oracle Java ME SDK 8 files for configuration and definition of
devices and UI elements. Executables and configuration files for the Device
Manager and other Oracle Java ME SDK 8 services and utilities.

NetBeans IDE 8.0 User Directories
These are the default NetBeans IDE 8.0 user directories:

■ NetBeans IDE 8.0 default project location:

username\My Documents\NetBeansProjects

■ To see the NetBeans IDE 8.0 user directory, click the Help menu and select About
in the main window. The default location:

username\.netbeans\8.0

Oracle Java ME SDK 8 User Directories
The javame-sdk directory contains device instances and session information. If you
delete this directory, it is re-created automatically when the Device Manager is
restarted. It contains subdirectories for each available release. For example, the
directory for Oracle Java ME SDK 8 is:

username\javame-sdk\8.0

Device working directories are located under work, for example:

username\javame-sdk\8.0\work\EmbeddedDevice1

Any detected external devices are also added to this directory.

9

Logs 9-1

9Logs

Each Java ME SDK tool (Device Manager, Device Selector, Custom Device Editor, and
so on) saves its log to the user configuration directory under log. The default location
is userdir\javame-sdk\8.0\log\

Each device (or emulator) instance writes its own log to the device.log file in the
device’s configuration directory. For example, the EmbeddedDevice1 log is located in
userdir\javame-sdk\8.0\work\EmbeddedDevice1\device.log

9-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

10

Profiling Applications 10-1

10Profiling Applications

Oracle Java ME SDK 8 supports performance profiling for Java ME applications. The
profiler keeps track of every method in your application. For a particular emulation
session, the profiler figures out how much time was spent in each method.

Oracle Java ME SDK 8 supports offline profiling. Data is collected during the
emulation session. After you close the emulator, you can export the data to an NPS file
you can load and view later. As you view the snapshot you, can investigate particular
methods, classes, and packages, and save a customized snapshot (a PNG file) for
future reference.

You can start a profiling session from NetBeans IDE 8.0, as described in Collecting and
Saving Profiler Data in the IDE or from the command line. It is important to
understand that profiling data produced from the command line has a different format
(PROF) than data produced from the NetBeans IDE 8.0 profiler (NPS).

Note: This feature might slow down the execution of your
application.

Profiling data from Oracle Java ME SDK 8 projects is displayed in NetBeans IDE on a
tab labeled cpu with the name of the file or the time the data was displayed. The cpu
tab opens when a profiled application stops. Because only performance profiling is
supported, the Profiler window has limited usefulness for MEEP applications.

Collecting and Saving Profiler Data in the IDE
This procedure describes interactive profiling.

Note: The profiler maintains a large amount of data, so profiled
IMlets place greater demands on the heap. To increase the Heapsize
property, see Chapter 5, "Working with Devices."

To run the profiler:

1. In the Projects widow, right-click the project you want to profile and select Profile.

If this is the first time profiling this project, you are prompted to integrate the
profiler. Click Yes to perform the integration.

2. Select CPU Profiler and click Run.

3. Profiling data is displayed in a tab labeled cpu with the time the data was
displayed.

Loading an NPS File

10-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

4. To export the profile data to an NPS file, click the Export to button and specify the
file name and location. This data can be reloaded at a later time. See Loading an
NPS File.

5. To save the current view to a PNG file, click the Save current view to image
button and specify a file name and location.

Loading an NPS File
To retrieve profile data from a previously exported NPS file (see Collecting and Saving
Profiler Data in the IDE):

1. Open the Profile menu and select Load Snapshot.

2. Select the NPS file.

The Profiler opens in its own tab labeled cpu with the name of the file.

Note: The profiling values obtained from the emulator do not
reflect the actual values on an external device.

Importing PROF File
A PROF file created from the command line can be loaded in NetBeans IDE 8.0. The
following example shows what a profiling session command might look like:

emulator.exe -Xdevice:EmbeddedDevice1
-Xdescriptor:"C:\Documents and Settings\user\My Documents\NetBeansProjects\SomeDem
o\dist\Games.jad" -Xprofile:file=C:\temp\SomeDemo.prof

Files created from the command line are formatted differently from the NPS files
created as described in Collecting and Saving Profiler Data in the IDE

To retrieve command-line profile data in NetBeans:

1. Open the File menu and select Open File.

2. Select the PROF file and click Open.

The Profiler displays the data as a text file.

11

Network Monitoring 11-1

11Network Monitoring

The network monitor provides a convenient way to see the information your
application is sending and receiving on the network. This is helpful if you are
debugging network interactions or looking for ways to optimize network traffic.

MEEP applications can connect through HTTP and other protocols.

Monitoring Network Traffic
To activate network activity monitoring for an application:

1. In the Projects window, right-click a project and select Profile.

2. If this is the first time profiling this application, you are prompted to integrate the
profile with the project. Click Yes to perform the integration.

3. In the Profile window, select Network Monitor, and click Run.

4. Start your application.

When the application makes a network connection, information about the connection
is captured and displayed in the Network Monitor tab.

The top frame displays a list of connections. Click a connection to display its details in
the bottom frame.

Under Hex View, raw connection data is shown as raw hexadecimal values with the
equivalent text.

Filtering and Sorting Messages
Filters are used to examine a subset of the total network traffic.

■ In the Select Devices list, select only the devices you want to view.

■ In the Select Protocols list, select only the protocols you want to view. The
protocols listed reflect what is installed on the device.

■ In the URL Filter field, you can specify the URL for which you want to view
connection data.

Click on a table header to sort the message data:

■ No.: Connections are sorted by phone number.

■ Protocol: Connections are sorted by protocol name.

■ Device: Connections are sorted by device name.

■ URL: Connections are sorted by URL.

Saving and Loading Network Monitor Information

11-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

■ Time: Connections are sorted in chronological order.

■ Size: Connections are sorted by the size of data.

■ Active: Connections are sorted based on whether it is currently active.

Saving and Loading Network Monitor Information
To save your network monitor session, click the Save Snapshot button in the Network
Monitor toolbar. Select a file name. The default file extension is NMD (network
monitor data).

To load a network monitor session:

1. Open the File menu and select Open File.

2. Browse to find the necessary NMD file.

Note: To avoid memory issues, the Hex view display is currently
limited to 16 kilobytes of data.

Searching the Connection Data
To specify a string that you want to find in the available connection data, click the
button with the magnifying glass labeled Find in results (Ctrl + F) above the table in
the Network Monitor toolbar.

You can search the records up to the specified string or back to a previous string
occurrence by clicking the Find Next Occurrence (F3) or Find Previous Occurrence
(Shift+F3) buttons in the toolbar.

Clearing the Connection List
To remove all inactive protocol records from the network monitor, click the Clear
button (the broom icon in the right part of the Network Monitor toolbar).

12

Memory Monitoring and Runtime Tracing 12-1

12Memory Monitoring and Runtime Tracing

This chapter describes how to use tracing and the Memory Monitor to examine an
application’s memory use on a particular device.

Activating tracing for a particular device enables you to see low-level information as
an application runs.

The Memory Monitor shows memory use as an application runs. It displays a dynamic
detailed listing of the memory usage per object in table form, and a graphical
representation of the memory use over time. You can take a snapshot of the memory
monitor data. Snapshots can be loaded and examined later.

Note: The memory usage that you observe with the emulator is not
the same as the memory usage on an external device. Remember, the
emulator does not represent an external device. It is one possible
implementation of its supported APIs.

Enabling Tracing
To enable tracing:

1. In the Device Selector window, right-click a device and select Properties.

2. In the device’s Properties window, expand the Monitor node and select the
desired trace options:

■ Trace GC: Monitoring garbage collection can help you determine object
health. The garbage collector cannot delete objects that do not have a null
reference. Null objects will be garbage collected and not reported as active.

■ Trace Class Loading: Observing class initialization and loading is useful for
determining dependencies among classes.

■ Trace Exceptions: Displaying exceptions caught by the Java ME SDK can be
used for debugging.

■ Trace Method Calls: Reporting called and returned methods is useful to
understand the operational sequence of the application. The output for this
option is very verbose, and it can affect performance.

3. (Optional) Verbose tracing output might cause you to run out of memory on the
device before the application is fully tested. To increase the device memory,
right-click a device and select Properties, expand the General node, and then
specify the value for the Heapsize option.

To display tracing data, in the emulator, open the View menu and select Device Log
when an application is running. Each device (or emulator) instance writes its own log

Using the Memory Monitor

12-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

to the device.log file in the device’s configuration directory. For example, the
EmbeddedDevice1 log is located in
userdir\javame-sdk\8.0\work\EmbeddedDevice1\device.log

Using the Memory Monitor
To examine an application’s memory usage:

1. In the Projects view, right-click the project and select Profile.

If the profiler is not yet integrated, you are prompted to enable profiling for the
project. Click Yes to continue.

2. Select Memory Monitor, and click Run.

The Memory Monitor tab opens in the main working area of NetBeans IDE.

The top part of the Memory Monitor tab contains a graph, while the bottom part of
the tab contains an object table. To the left of the graph is the current memory usage in
bytes. The green line plots these values. The red line is the maximum amount of
memory used since program execution, corresponding to the maximum size in bytes
on the left.

Beneath the object table you see counters that display the total number of objects, the
amount of memory used, the amount of free memory, and the total amount of memory
on the device.

Click a column header in the object table to sort the data. Sorting is case sensitive.

Click a row to display the call stack tree in a window to the right of the table.

Click a folder to browse the call stack tree to see the methods that created the object.

To find a particular method in the call stack tree, click Find and enter a search string.

Click Refresh to update the call stack tree as data is gathered. It is not refreshed
automatically.

Because the data changes rapidly, it is convenient to take several snapshots of the
memory monitor data and review them later. Open the File menu and select Save As,
then specify an MMS (memory monitor snapshot) file name and location for the
monitor data snapshot.

When you exit an IMlet, object table data is cleared, but graph data is not cleared. The
graph data you see is cumulative for this emulator session. The Memory Monitor plots
session data for any IMlet run on the current emulator until you exit the application
and close the emulator.

Viewing a Session Snapshot
To load a memory monitor snapshot.

1. Open the File menu and select Open File.

2. Browse to find the MMS file you saved.

The Memory Monitor opens in its own tab in the main window. Note that the tab
displays the time when the snapshot was saved.

13

Application Debugging 13-1

13Application Debugging

This chapter discusses the debugging process for a MEEP application.

Before starting this procedure, ensure that your environment is properly configured:

■ Ensure that the device is connected and that it appears in the Device Selector
window.

■ Right-click the project and select Properties. In the Properties window, select the
Platform category and set the device currently available.

To debug a project, right-click the project name and select Debug.

13-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Part IV
Part IV Security

Part IV provides information about the security model in Oracle Java ME SDK 8.

Part IV contains the following chapters:

■ Chapter 14, "Security and IMlet Signing"

■ Chapter 15, "Custom Security Policy and Authentication Providers"

14

Security and IMlet Signing 14-1

14Security and IMlet Signing

This chapter describes how the security architecture is organized in Oracle Java ME
SDK 8.

Applications are installed, run, closed, and restarted according to the IMlet life cycle
described in the Java ME Embedded Profile specification. You can find the specification
in the meep-8.0.zip file located under docs\api in the Java ME SDK installation
directory. The default location is C:\Java_ME_platform_SDK_
8.0\docs\api\meep-8.0.zip

In particular, the following chapters in the specification are the most relevant for
understanding the security model:

■ Security for Applications

■ Security Authentication Providers

■ Security Policy Providers

The following is the general process for creating a cryptographically signed IMlet
suite:

1. The IMlet author, probably a software company, buys a signing key pair from a
certificate authority (CA).

2. The author signs the IMlet suite with the signing key pair and distributes the
company’s certificate with the IMlet suite.

3. When the IMlet suite is installed on the emulator or on a device, the
implementation verifies the author's certificate using its own copy of the CA's root
certificate. Then the implementation uses the author's certificate to verify the
signature on the IMlet suite.

4. After verification, the device or emulator assigns the IMlet suite to one of the
clients defined by the security policy. The default authentication scheme
(X.509-based certificate) uses the certificate DN to determine to which client an
application must be bound.

Security Policy Provider Clients
Oracle Java ME SDK 8 supports the following clients by default:

■ Signed: An example client with all permissions granted.

■ untrusted: Defines the security policy for untrusted applications. According to the
X.509 authentication scheme, unsigned applications are bound to the untrusted
client.

Configuring the Security Policy

14-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Configuring the Security Policy
To configure the security policy for a device, right-click the device in the Device
Selector and select Security Configuration. Figure 14–1 shows the Security
Configuration window.

Figure 14–1 The Security Configuration Window

The options in the Security Providers group at the top of the Security Configuration
window can be used if you want to specify a custom security provider implementation
JAR file, and class names of your custom authentication provider and security policy
provider. For information about creating custom providers, see Chapter 15, "Custom
Security Policy and Authentication Providers".

To add a client, click Add under the Clients list, specify a name and click OK. To
remove a client, select it in the list and click Remove.

When you select a client from the list, you can add, edit, and remove permissions and
certificates for the selected client.

To add a permission, select the necessary client, and click Add under the Permissions
list. Then select the permission from the list, specify the name of the protected resource
(you can use wildcards) and the requested actions separated by commas (for example,
read,write), and click OK. To edit a permission, select it from the list of permissions,
and click Edit under the Permissions list. To remove a permission, select it in the list,
and click Remove.

To add a certificate, select the necessary client, and click Add under the Certificates
list. Then select the certificate from the list of available certificates and click OK. To
remove a certificate, select it in the list, and click Remove.

Managing Keystores and Key Pairs

Security and IMlet Signing 14-3

Signing a Project
Devices use signing information to verify an application's source and validity before
allowing it to access protected APIs.

Oracle Java ME SDK 8 provides a default built-in keystore, but you can also create any
number of key pairs using the Keystores Manager as described in Managing Keystores
and Key Pairs.

The key pair consists of the following keys:

■ A private key that is used to create a digital signature.

■ A public key that anyone can use to verify the authenticity of the digital signature.

To sign a project with a key pair:

1. Right-click a project and select Properties.

2. In the Signing category, select Sign JAR.

3. Select an existing keystore or click Open Keystores Manager to create another
keystore. For information about managing keystores, see Managing Keystores and
Key Pairs.

4. Select a key pair alias.

A keystore might be accessed by several key pairs, each with a different alias. If
you prefer to use a unique key pair, click Open Keystores Manager and create a
new key pair.

The Certificate Details area displays the subject, issuer, and validity dates for the
selected keystore.

5. Click OK.

It is also necessary to export the certificate to the device. For more information, see
Managing Root Certificates.

Managing Keystores and Key Pairs
For test purposes, you can create a signing key pair to sign an IMlet. The Keystores
Manager administers this task. The keystores known to the Keystores Manager are
listed when you sign a project.

To deploy an IMlet on a device, you must obtain a signing key pair from a certificate
authority recognized by the device. You can also import keys from an existing Java SE
platform keystore.

To create a keystore:

1. Open the Tools menu and select Keystore Management.

2. Click Add Keystore.

3. Select Create a New Keystore and specify a name, location, and password.

4. Click OK.

To add an existing keystore:

1. Open the Tools menu and select Keystore Management.

2. Click Add Keystore.

3. Select Add Existing Keystore and specify the path to the keystore file. The default
location for user-defined keystores is the user’s folder under C:\Users.

Managing Root Certificates

14-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

4. Click OK.

You might have to unlock this keystore and each key pair within it.

To create a new key pair:

1. Open the Tools menu and select Keystore Management.

2. Select a keystore.

Note: You cannot create key pairs in the default built-in keystore.

3. Click New.

4. Specify an alias used to refer to this key pair and at least one field under
Certificate Details. Optionally, you can also provide a password.

5. Click OK.

To remove a key pair, select it in the list and click Delete.

Managing Root Certificates
The Oracle Java ME SDK 8 command-line tools manage the emulator's list of root
certificates.

External devices have similar lists of root certificates. When you deploy your
application on an external device, you must use signing keys issued by a certificate
authority whose root certificate is on the device. This makes it possible for the device
to verify your application.

Each emulator instance has its own keystore. The keystore file is named _main.ks and
located under appdb\certs in the device’s configuration directory. For example, the
default keystore for EmbeddedDevice1 is
userdir\javame-sdk\8.0\work\EmbeddedDevice1\appdb\certs_main.ks

You can use the -import option to import certificates from these keystores as described
in Manage Certificates (mekeytool).

To export a certificate to an emulated device:

1. Open the Tools menu and select Keystore Management.

2. Select a keystore, and then select a key.

3. Click Export.

4. Select and emulator and a certificate, and click Export.

Note: Before exporting, you can modify the list of registered keys by
selecting any key and clicking Delete Key to delete it from the list.

5. Click Close when you are done.

Command-Line Security Features
The full spectrum of the Oracle Java ME SDK 8 security features are also available
from the command line. You can adjust the emulator's default protection domain, sign
IMlet suites, and manage certificates.

Command-Line Security Features

Security and IMlet Signing 14-5

Sign IMlet Suites (jadtool)
jadtool is a command-line interface for signing IMlet suites using public key
cryptography according to the MEEP specification. Signing an IMlet suite is the
process of adding the signer certificates and the digital signature of the JAR file to a
JAD file. jadtool is also capable of signing payment update (JPP) files.

jadtool only uses certificates and keys from Java ME platform keystores. Java SE
software provides keytool, the command-line tool to manage Java SE platform
keystores.

jadtool.exe is located under bin in the Java ME SDK installation directory.

The following options can be used with the jadtool command:

-help
Prints usage instructions for jadtool.

-addcert
Adds the certificate of the key pair from the given keystore to the JAD file or JPP file.
This option has the following syntax:

-addcert -alias <key_alias> [-storepass <password>] [-keystore <keystore>] [-certnum <number>]
[-chainnum <number>] [-encoding <encoding>] -inputjad <filename> -outputjad <filename>

-addjarsig
Adds a digital signature of the input JPP file to the specified output JPP file. This
option has the following syntax:

-addjarsig [-jarfile <filename>] -keypass <password> -alias <key_alias> -storepass <password> [-keystore
<keystore>] [-chainnum <number>] [-encoding <encoding>] -inputjad <filename> -outputjad <filename>

-showcert
Displays information about certificates in JAD files. This option has the following
syntax:

-showcert [[-certnum <number>] [-chainnum <number>] | [-all]] [-encoding <encoding>] -inputjad
<filename>

Manage Certificates (mekeytool)
mekeytool manages the public keys of certificate authorities (CAs). It is functionally
similar to the keytool utility that comes with the Java SE Development Kit (JDK). The
purpose of the public keys is to facilitate secure HTTP communication over SSL
(HTTPS).

Before using mekeytool, you must have access to a Java Cryptography Extension
keystore. You can create one using the Java SE keytool utility (found in the bin
directory under the JDK installation location).

Oracle Java ME SDK 8 provides a default Java ME keystore, which is located in the
Java ME SDK installation directory under runtimes\cldc-hi\appdb\certs. This
keystore contains an index file named _main.ks and a set of certificate files.

Command-Line Security Features

14-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

Each emulator instance has its own keystore located in the device folder, for example:
userdir\javame-sdk\8.0\work\EmbeddedDevice1\appdb\certs. If you do not specify
a value for -keystore, the default keystore is used.

The -Xdevice option can be used with any command to run it on the specified device.
Note that not every device supports all of the mekeytool commands. Specify the
device name after a colon. For example, to list the keys in the keystore of
EmbeddedDevice1, run the following command:

> mekeytool.exe -Xdevice:EmbeddedDevice1 -list

The following commands can be used with the mekeytool utility:

-help
Prints usage instructions for mekeytool.

-import
Imports a public key from the source keystore to the device’s keystore. This command
has the following syntax:

-import [-keystore <filename>] [-storepass <password>] [-keypass <password>] [-alias <key_alias>]

Option Description Default

-keystore Path to the JCA
keystore file or file
that contains the
certificate

%HOME%\.keystore.k
s

-storepass Password to unlock
the input JCA
keystore

N/A

-keypass Private key password
for the JKS or
PKCS12 keystore

N/A

-alias The key pair alias in
the input JCA
keystore

N/A

-list
Lists the keys in the Java ME keystore, including the owner and validity period for
each.

-delete
Deletes a key from the given Java ME keystore with the given owner. This command
has the following syntax:

-delete {-owner <owner> | -number <number>}

Option Description Default

-number The key number in
the keystore. Keys are
numbered starting
from 1. To view the
key number, use the
-list option.

N/A

-owner The key owner. N/A

Command-Line Security Features

Security and IMlet Signing 14-7

-export
Exports the key from the keystore. This command has the following syntax:

-export -number <number> -out <filename>

Option Description Default

-number The key number in
the keystore. Keys are
numbered starting
from 1. To view the
key number, use the
-list option.

N/A

-out Name of the output
file.

N/A

Command-Line Security Features

14-8 Oracle Java Micro Edition Software Development Kit Developer's Guide

15

Custom Security Policy and Authentication Providers 15-1

15Custom Security Policy and Authentication
Providers

This chapter describes how you can create custom security policy and authentication
providers, as defined in the MEEP specification. Oracle Java ME SDK 8 is bundled
with default providers that can be used without any modification or configured to
your needs, as described in Configuring the Security Policy.

The classes necessary to create custom security policy and authentication providers are
defined in the com.oracle.meep.security package. You can find a detailed Javadoc of
this package in the security_api_javadoc.zip file located under docs\api in the Java
ME SDK installation directory. The default location is C:\Java_ME_platform_SDK_
8.0\docs\api\security_api_javadoc.zip

This chapter contains the following sections:

■ Section 15.1, "Creating a Security Policy Provider"

■ Section 15.2, "Creating an Authentication Provider"

■ Section 15.3, "Installing Custom Providers"

15.1 Creating a Security Policy Provider
The purpose of a security policy provider is to define the list of clients and their
protection domains. A protection domain of a client is a set of permissions that can be
granted to the application bound to this client.

A custom security policy provider must extend the Policy class and implement the
Policy.initialize() abstract method. This method is called by the security
framework and is responsible for security policy initialization. During initialization,
the custom security policy provider must use the
Policy.addClient(com.oracle.meep.security.Client) helper method to create the
list of clients.

Example 15–1 shows how to create a custom security policy provider that defines two
clients with different protection domains and specifies a separate protection domain
for the virtual untrusted client.

Example 15–1 Custom Security Policy Provider

package com.company.security;

import com.oracle.meep.security.Client;
import com.oracle.meep.security.Policy;

public class PolicyProvider extends Policy {

Creating an Authentication Provider

15-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

 public void initialize() {
 Client clientA = new Client("clientA");
 clientA.addPermissions(new
javax.microedition.io.HttpProtocolPermission("http://locahost:80/"),
 new javax.microedition.io.SSLProtocolPermission("ssl://:*"));
 addClient(clientA);

 Client clientB = new Client("clientB");
 clientB.addPermissions(new
javax.microedition.io.PushRegistryPermission("*", "static,dynamic,alarm"));
 addClient(clientB);

 getUntrustedClient().addPermissions(new
javax.microedition.location.LocationPermission("location", "location"));
 }
}

15.2 Creating an Authentication Provider
The purpose of an authentication provider is to verify an application or LIBlet and
return the list of appropriate clients. A custom authentication provider must extend
the AuthenticationProvider class and implement the following abstract methods:

■ AuthenticationProvider.initialize()

■ AuthenticationProvider.authenticateApplication(com.oracle.meep.security.M
IDletProperties, java.io.InputStream)

The authenticateApplication() method should either return the list of clients to
which an application or LIBlet is bound, or report an authentication error by throwing
AuthenticationProviderException.

Application properties from JAD and JAR files can be used for authentication
purposes. To access the list of clients defined by the security policy, use the following
methods:

■ Policy.getPolicy(): Access the security policy provider instance.

■ Policy.getClients(): Get the list of all clients except for virtual clients.

■ Policy.getClient(java.lang.String): Get the client by name.

■ Policy.getRootClient(): Get the virtual root client.

■ Policy.getUntrustedClient(): Get the virtual untrusted client.

Example 15–2 shows how to create a custom authentication provider that selects
clients depending on the application vendor property.

Example 15–2 Custom Authentication Provider

package com.company.security;

import com.oracle.meep.security.AuthenticationProvider;
import com.oracle.meep.security.AuthenticationProviderException;
import com.oracle.meep.security.Client;
import com.oracle.meep.security.MIDletProperties;
import com.oracle.meep.security.Policy;
import java.io.InputStream;
import java.util.ArrayList;
import java.util.List;

public class AuthProvider extends AuthenticationProvider {

Installing Custom Providers

Custom Security Policy and Authentication Providers 15-3

 public List<Client> authenticateApplication(MIDletProperties props,
InputStream in) throws AuthenticationProviderException {
 List<Client> result = new ArrayList<>();
 String vendor = props.getProperty("MIDlet-Vendor");

 switch (vendor) {
 case "Manufacturer":
 result.add(Policy.getPolicy().getRootClient());
 break;
 case "TrustedCompany":
 result.add(Policy.getPolicy().getClient("clientA"));
 result.add(Policy.getPolicy().getClient("clientB"));
 break;
 case "UntrustedCompany":
 result.add(Policy.getPolicy().getUntrustedClient());
 break;
 default:
 throw new
AuthenticationProviderException(AuthenticationProviderException.ErrorCode.AUTHENTI
CATION_FAILURE);
 }

 return result;
 }

 public void initialize() {
 }
}

15.3 Installing Custom Providers
To install a custom security policy or authentication provider on an emulated device:

1. Build the provider into a single JAR file. You can find API stub files in the
security_api.jar archive under lib\ext in the Java ME SDK installation
directory. The default location is C:\Java_ME_platform_SDK_
8.0\lib\ext\security_api.jar

2. In NetBeans IDE, right-click an emulated device in the Device Selector and select
Security Configuration.

3. Specify the path to the custom security provider implementation JAR file, and the
class names of the authentication and security policy providers. For more
information about using the Security Configuration window, see "Configuring the
Security Policy".

To install custom security providers on a physical external device, see the
documentation for the device.

Installing Custom Providers

15-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Part V
Part V Optional Packages

Part V provides information about supported Java Specification Requests (JSRs) in
Oracle Java ME SDK 8.

Part V contains the following chapters:

■ Chapter 16, "API Support"

■ Chapter 17, "JSR 75: PDA Optional Packages"

■ Chapter 18, "JSR 120: Wireless Messaging"

■ Chapter 19, "JSR 172: Web Services Support"

■ Chapter 20, "JSR 177: Smart Card Security (SATSA)"

■ Chapter 21, "JSR 179: Location API Support"

16

API Support 16-1

16API Support

Oracle Java ME SDK 8 supports many standard application programming interfaces
(APIs) defined through the Java Community Process (JCP) program. JCP APIs are
often referred to as JSRs, named after the Java Specification Request process. JSRs that
are not part of the platform are referred to as optional packages.

The MEEP platform is based on JSR 228: Information Module Profile - Next Generation
(IMP-NG).

For a full list of supported JCP APIs, see Table 16–1. Oracle Java ME SDK 8
provides documentation that describes how certain APIs are implemented. Many
supported APIs do not require special implementation considerations, so they are not
described. For information about Oracle APIs provided to support the MEEP platform,
see Oracle APIs.

For convenience, Javadocs that are the intellectual property of Oracle are located under
docs in the Java ME SDK installation directory. The remainder can be downloaded
from http://jcp.org.

Table 16–1 Supported JCP APIs

JSR Supported APIs Name and URL

JSR 75 File Connection PDA Optional Packages for the J2ME Platform

http://jcp.org/en/jsr/detail?id=75

JSR 120 WMA 1.1 Wireless Messaging API

http://jcp.org/en/jsr/detail?id=120

JSR 172 Web Services J2ME Web Services Specification

http://jcp.org/en/jsr/detail?id=172

JSR 177 APDU and CRYPTO Security and Trust Services API for Java ME

http://jcp.org/en/jsr/detail?id=177

JSR 179 Location Location API for Java ME

http://jcp.org/en/jsr/detail?id=179

JSR 280 XML API XML API for Java ME

http://jcp.org/en/jsr/detail?id=280

JSR 360 CLDC 8 Connected Limited Device Configuration 8

http://jcp.org/en/jsr/detail?id=360

JSR 361 MEEP Java ME Embedded Profile

http://jcp.org/en/jsr/detail?id=361

Oracle APIs

16-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Oracle APIs
The MEEP project type supports developing applications for the Oracle Java ME
Embedded 8.0 runtime. The Java ME Embedded 8.0 runtime includes several standard
JSR APIs and additional Oracle APIs for embedded use cases. These new APIs are:

■ Device I/O API: Provides interfaces and classes for communicating with and
controlling peripheral devices.

■ Configuration API: Provides read and write access to the Java ME runtime
configuration.

■ HTTP API Client: Provides a Java-based framework for communication with Web
Services.

■ JSON API: Provides an object model to process the JavaScript Object Notation
(JSON) format.

■ OAuth 2.0 API: Provides access to the OAuth 2.0 authorization framework.

Javadocs for these APIs are located under docs in the Java ME SDK installation
directory.

17

JSR 75: PDA Optional Packages 17-1

17JSR 75: PDA Optional Packages

Oracle Java ME SDK 8 supports JSR 75: PDA Optional Packages for the J2ME Platform.
JSR 75 includes the FileConnection optional package that enables IMlets to access a
local device’s file system.

This chapter describes how Oracle Java ME SDK 8 implements the FileConnection
API.

FileConnection API
On an external device, the FileConnection API typically provides access to files stored
in the device's memory or on a memory card.

In the Oracle Java ME SDK 8 emulator, the FileConnection API enables IMlets to
access files stored on your computer's hard disk.

The files that can be accessed using the FileConnection optional package are stored in
the device’s directory, for example:

userdir\javame-sdk\8.0\work\EmbeddedDevice1\appdb\filesystem

Each subdirectory of filesystem is called a root. Oracle Java ME SDK 8 provides a
mechanism for managing roots in the Java ME Embedded Emulator.

While the emulator is running, open the Tools menu and select Manage File System.
In the Manage File System window, you can mount, unmount, or unmount and delete
file system roots. Mounted roots are displayed in the top list, and unmounted roots are
displayed in the bottom list. You can remount or delete a selected directory. Mounted
root directories and their subdirectories are available to applications using the
FileConnection API. Unmounted roots can be remounted in the future.

■ To add a new empty file system root directory, click Mount Empty and enter a
name for the directory.

■ To mount a copy of an existing directory, click Mount Copy and browse to select a
directory you want to copy. When the File System Root Entry dialog box opens,
specify the name for this root. A deep copy of the selected directory is placed into
the emulator's file system with the specified root name.

■ To make a directory inaccessible to the FileConnection API, select it in the list and
click Unmount. The selected root is unmounted and moved to the unmounted
roots list.

■ To completely remove a mounted directory, select it and click Unmount & Delete.

■ To remount an unmounted directory, select it and click Remount. The root is
moved to the mounted roots list.

Running PDAPDemo

17-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

■ To delete an unmounted directory, select it and click Delete. The selected root is
removed from the list.

Running PDAPDemo
PDAPDemo shows you how to use the FileConnection API that is part of the JSR 75
specification.

Browsing Files
The default emulators have one directory, root1. This directory is located at:

username\javame-sdk\8.0\work\devicename\appdb\filesystem\root1

For test purposes, copy files or directories into the root1 directory of the default
emulator. You can also add other directories at the same level as root1.

Open and run the PDAPDemo project:

■ Start the FileBrowser IMlet. You see a directory listing, and you can browse
through the directories and files you placed there.

■ Select a directory and click the View button to open it.

■ Using the Menu commands, you can view a file or see its properties. Try selecting
the file and choosing Properties or View from the menu.

You can view the content of text files in the browser.

■ Try using the Java ME Embedded Emulator to unmount and mount directories.
Unmounted directories are not visible in the application running on the emulator.

18

JSR 120: Wireless Messaging 18-1

18JSR 120: Wireless Messaging

Oracle Java ME SDK 8 supports the Wireless Messaging API (WMA) with a
sophisticated simulation environment. WMA 1.1 (JSR 120) enables IMlets to send and
receive Short Message Service (SMS) or Cell Broadcast Service (CBS) messages.

This chapter describes the tools you can use to develop WMA applications. It begins
by showing you how to configure the emulator's support of WMA. Next, it describes
the WMA console, a tool for testing WMA applications.

Many of the tasks in this topic can also be accomplished from the command line. For
more information, see Running the WMA Tool.

Using the WMA Console to Send and Receive Messages
The WMA console is a tool that enables you to send messages to and receive messages
from applications. You can, for example, use the WMA console to send SMS messages
to an IMlet running on the emulator.

To start the WMA console in NetBeans IDE 8.0, open the Tools menu, select Java ME,
and then WMA Console. Messages can be sent from the WMA Console to an emulator
instance.

The console opens as a tab in NetBeans IDE 8.0. The console phone number is
displayed as part of the WMA Console tab label (for example, 987654321).

The WMA console phone number is an editable CLDC property. In the Device Selector,
right-click the CLDC, Java(TM) ME Platform SDK 8.0 node and select Properties.
Enter a new value in the WMA Console Phone Number field. If the number is
available, it is assigned to the console. If the number is in use, it is assigned to the
console the next time you restart NetBeans IDE 8.0.

Each instance of the emulator has a simulated phone number that is shown in the
emulator window. The phone numbers are important because they are used as
addresses for WMA messages. The phone number is a device property, and it can be
changed. In the Device Selector, right-click a device and select Properties. Enter a new
value in the Phone Number field.

Sending a Text or Binary SMS Message
To send a text SMS message, open the WMA Console and click Send SMS.

■ The To Clients list contains phone numbers of all running emulator instances.
Select one or more destinations and enter a port number.

■ To send a text message, select the Text Message tab, enter your message and click
Send.

Running the WMA Tool

18-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

■ To send the contents of a file as a binary message, click the Binary Message tab.
Enter the path of a file directly, or click Browse to select it in the file system
explorer.

Note: The maximum message length for text and binary messages is
4096 bytes.

Sending Text or Binary CBS Messages
To send a text or binary CBS message, click Send CBS in the WMA Console. Sending
CBS messages is similar to sending SMS messages, except that recipients are
unnecessary because it is a broadcast. Specify a message identifier and enter the text or
binary content of your message. The maximum message length for text and binary
messages is 4096 bytes.

Note: The application running on the emulator receives only the first
160 symbols of the CBS message.

Receiving Messages in the WMA Console
To access the WMA Output Window, open the Window menu, select Java ME and
then WMA Console Output. The WMA Output Window has its own phone number
displayed in the label. You can send messages from your applications running on the
emulator to the WMA console.

Received messages are displayed in the WMA Output Window.

Running the WMA Tool
wma-tool is the command-line version of the WMA Console. It is located under bin in
the Java ME SDK installation directory. The Device Manager must be running before
you start wma-tool. When the tool is started, it outputs the phone number it is using.

wma-tool has the following syntax:

wma-tool <command> [options]

Each protocol has send and receive commands. The requested command is passed to
the tool as the first argument. The following commands are available:

■ receive: Receive any message

■ smsreceive: Receives SMS messages

■ cbsreceive: Receives CBS messages

■ smssend: Sends SMS message

■ cbssend: Sends CBS message

All *send commands send the specified message and exit. All *receive commands
print incoming messages until they are explicitly stopped.

The following options are available:

Running the WMA Tool

JSR 120: Wireless Messaging 18-3

-o
Stores binary content to the output directory specified after a space.

-t
After starting in non-interactive mode, waits for a message for the number of seconds
specified after a space.

-f
Stores text content as files instead of printing it.

-q
Runs in quite mode.

Examples of smsreceive and cbsreceive
The syntax for receiving a message is similar for both protocols:

smsreceive [-o <output_dir>] [-t <timeout>] [-q]

cbsreceive [-o <output_dir>] [-t <timeout>] [-q]

The following example demonstrates how to receive a message from an emulator:

1. Start the Java ME Embedded Emulator. Click the Windows Start menu, open All
Programs, select Java ME Platform SDK 8.0, and then Java ME Embedded
Emulator.

2. Use the following command to run wma-tool:

C:\Java_ME_platform_SDK_8.0\bin> wma-tool smsreceive

WMA tool started with phone number: 987654321
press <Enter> to exit.

3. In the emulator, run the SMS Send IMlet and send a message to the WMA
Console. Enter the console phone number.

The console receives the message as follows:

SMS Received:
 From: 123456789
Timestamp: Thu Aug 23 23:31:26 PDT 2012
 Port: 50000
 Content type: Text
 Encoding: GSM7BIT
 Content: A message from EmbeddedDevice1 to wma-tool
Waiting for another message, press <Enter> to exit.

Example of smssend
The following syntax is used for sending SMS messages:

wma-tool smssend <target_phone> <target_port> <message_content>

The message content can be specified either as text or using the -f option with the
name of the file that you want to send as a binary message.

For example, to send a text message to phone number 123456789 on port number
50000, use the following command:

Running the WMA Tool

18-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

C:\Java_ME_platform_SDK_8.0\bin> wma-tool smssend 123456789 50000 "smssend message
from wma-tool"

Example cbssend
The following syntax is used for sending CBS messages:

wma-tool cbssend <message_id> <message_content>

The message content can be specified either as text or using the -f option with the
name of the file that you want to send as a binary message.

For example, to send a text message with message identifier 50001, use the following
command:

C:\Java_ME_platform_SDK_8.0\bin> wma-tool cbssend 50001 "cbssend message from
wma-tool"

19

JSR 172: Web Services Support 19-1

19JSR 172: Web Services Support

The Oracle Java ME SDK 8 emulator supports JSR 172: J2ME Web Services
Specification. JSR 172 provides APIs for accessing web services from mobile
applications. It also includes an API for parsing XML documents.

NetBeans IDE 8.0 provides a stub generator that automates creating source code for
accessing web services that conform to the J2ME Web Services Specification.

Generating Stub Files from WSDL Descriptors
You can add stub files to any MEEP application.

Note: If you are using NetBeans IDE 8.0, the SOAP Web Services
plugin must be installed and activated.

To add a stub file:

1. In the Projects window, expand the tree for a project, right-click the Source
Packages node and select New, and then Other. Select the Java ME Embedded
category and then Java ME Web Service Client.

2. In the New Java ME Webservice Client page, you can do one of the following:

■ Click Running Web Service and enter the URL for the WSDL, and then click
Retrieve WSDL.

■ Click Specify the Local filename for the retrieved WSDL and browse to find
a file on your system.

In either case, you must enter a package name (if it is not supplied), and then click
Finish. The new package appears in the project and includes an interface file and a
stub file.

3. You can now edit your source files to call the content that the stub file provides,
then build and run the project.

For additional information about how to generate stub files and other supporting
files from the command line, see Generating Stub Files from the Command Line.

Generating Stub Files from the Command Line
Mobile clients can use the Stub Generator to access web services. The wscompile tool
generates stub files, ties, serializers, and WSDL files used in Java API for XML (JAX)
RPC clients and services. The tool reads a configuration file that specifies a WSDL file,
a model file, or a compiled service endpoint interface.

Generating Stub Files from the Command Line

19-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

The wscompile.exe file is located under bin in the Java ME SDK installation directory.
The syntax for the stub generator command is as follows:

wscompile <command> [options] <config_file>

The following commands for the wscompile tool are available:

Command Description

-gen Same as -gen:client

-gen:client Generates client artifacts (stubs, etc.)

-import Generates interfaces and value types only

The following options for the wscompile tool are available:

Option Description

-d <output_dir> Specifies where to place generated output files

-f:<features> Enables the given features

-g Generates debugging information

-features:<features> Same as -f

-httpproxy:<host>:<port> Specifies a HTTP proxy server (port defaults to 8080)

-model <file> Writes the internal model to the given file

-O Optimizes generated code

-s <dir> Specifies where to place generated source files

-verbose Outputs messages about what the compiler is doing

-version Prints version information

-cldc1.0 Sets the CLDC version to 1.0 (default). Float and
double become String.

-cldc1.1 Sets the CLDC version to 1.1. Float and double are
OK.

-cldc1.0info Shows all CLDC 1.0 information and warning
messages.

Note: Only one -gen option must be specified. The -f option
requires a comma-separated list of features.

The wscompile tool can read WSDL files, compiled service endpoint interface (SEI)
files, or model files as input. The following table lists features that can be specified
with the -f option for the wscompile command, and the type of files that can be
provided when the feature is specified. Multiple features must be separated by
commas.

Option Description

explicitcontext Turns on explicit service context mapping

nodatabinding Turns off data binding for literal encoding

noencodedtypes Turns off encoding type information

Generating Stub Files from the Command Line

JSR 172: Web Services Support 19-3

The following are examples of using the wscompile command:

wscompile -gen -d generated config.xml
wscompile -gen -f:nounwrap -O -cldc1.1 -d generated config.xml

nomultirefs Turns off support for multiple references

novalidation Turns off full validation of imported WSDL
documents

searchschema Searches schema for subtypes

serializeinterfaces Turns on direct serialization of interface types

wsi Enables WSI-Basic Profile features (default)

resolveidref Resolves xsd:IDREF

donotunwrap No unwrap

Option Description

Generating Stub Files from the Command Line

19-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

20

JSR 177: Smart Card Security (SATSA) 20-1

20JSR 177: Smart Card Security (SATSA)

This topic describes how you can use Oracle Java ME SDK 8 to work with SATSA in
your applications. JSR 177: Security and Trust Services API (SATSA) for J2ME provides
smart card access and cryptographic capabilities to applications running on small
devices. The SATSA specification defines several APIs as optional packages. The
Oracle Java ME SDK 8 emulator supports the following SATSA packages:

■ SATSA-APDU: Enables applications to communicate with smart card applications
using a low-level protocol.

■ SATSA-CRYPTO: A general-purpose cryptographic API that supports message
digests, digital signatures, and ciphers.

For a more general introduction to SATSA and using smart cards with small devices,
see the SATSA Developer's Guide at
http://www.oracle.com/technetwork/index.html.

To develop your own Java Card applications, download the Java Card Development
Kit at http://www.oracle.com/technetwork/java/javame/index.html.

Card Slots in the Emulator
SATSA devices are likely to have one or more slots that hold smart cards. Applications
that use SATSA to communicate with smart cards must specify a slot and a card
application.

The Oracle Java ME SDK 8 emulator is not an external device and, therefore, does not
have physical slots for smart cards. Instead, it communicates with a smart card
application using a socket protocol. The other end of the socket might be a smart card
simulator, or it might be a proxy that communicates with smart card hardware.

The Oracle Java ME SDK 8 emulator includes two simulated smart card slots. Each slot
has an associated socket that represents one end of the protocol that is used to
communicate with smart card applications.

The default card emulator host name is localhost, and the default ports are 9025 for
slot 0 and 9026 for slot 1. These port defaults are a property of the device. To change
the port numbers, right-click the device in the Device Selector, and select Properties.

Adjusting Access Control
Access control permissions and PIN properties can be specified in text files. When the
first APDU connection is established, the implementation reads the ACL and PIN data
from a file named acl_ followed by a slot number, located in the device’s

Adjusting Access Control

20-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

configuration directory. For example, the access control file for slot 0 on the
EmbeddedDevice1 device is:

userdir\javame-sdk\8.0\work\EmbeddedDevice1\appdb\acl_0

If the file is absent or contains errors, the access control verification for this slot is
disabled.

The file can contain information about PIN properties and application permissions.

Specifying PIN Properties
PIN properties are represented by a pin_data record in the access control file. The
record has the following format:

Example 20–1 PIN Properties Example

pin_data {
 id number
 label string
 type bcd | ascii | utf | half-nibble | iso
 min minLength
 max maxLength
 stored storedLength
 reference byte
 pad byte - optional
 flag case-sensitive | change-disabled | unblock-disabled
 needs-padding | disable-allowed | unblockingPIN
 }

Specifying Application Permissions
Application permissions are defined in access control file (acf) records. The record has
the following format:

Example 20–2 Access Control File Record Format

acf AID fnumbers separated by blanks {
 ace {
 root CA name
 ...
 apdu {
 eight numbers separated by blanks
 ...
 }
 ...
 pin_apdu {
 id number
 verify | change | disable | enable | unblock
 four hexadecimal numbers
 ...
 }
 ...
 }
 ...
}

The acf record is an access control file. The AID after acf identifies the application. A
missing AID indicates that the entry applies to all applications. The acf record can

Adjusting Access Control

JSR 177: Smart Card Security (SATSA) 20-3

contain ace records. If there are no ace records, then access to an application is
restricted by this acf.

The ace record is an access control entry. It can contain root, apdu, and pin_apdu
records.

The root record contains one certification authority (CA) name. If the IMlet suite was
authorized using a certificate issued by this CA, the ace grants access to this IMlet. A
missing root field indicates that the ace applies to all identified parties. One principal
is described by one line. This line must contain only the word root and the principal
name, for example:

root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

The apdu record describes an APDU permission. A missing permission record
indicates that all operations are allowed.

An APDU permission contains one or more sequences of 8 hexadecimal values,
separated by blanks. The first 4 bytes describe the APDU command, and the other 4
bytes are the mask, for example:

apdu {
 0 20 0 82 0 20 0 82
 80 20 0 0 ff ff 0 0
}

All the numbers are hexadecimal. Tabulation, blank, CR, and LF symbols are used as
separators. Separators can be omitted before and after braces ({ }).

The pin_apdu records contain information necessary for PIN entry methods, which is
the PIN identifier and APDU command headers, or remote method names.

Access Control File Example
A sample control file is provided in Example 20–3.

Example 20–3 Access Control File Example

pin_data {
 label Unblock pin
 id 44
 type utf
 min 4
 stored 8
 max 8
 reference 33
 pad ff
 flag needs-padding
 yflag unblockingPIN
}
pin_data {
 label Main pin
 id 55
 type half-nibble
 min 4
 stored 8
 max 8
 reference 12
 pad ff
 flag disable-allowed
 flag needs-padding

Adjusting Access Control

20-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

}

acf a0 0 0 0 62 ee 1 {
 ace {
 root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US

 pin_apdu {
 id 55
 verify 1 2 3 1
 change 4 3 2 2
 disable 1 1 1 3
 enable 5 5 5 4
 unblock 7 7 7 5
 }
 }
}

acf a0 00 00 00 62 03 01 0c 02 01 {
 ace {
 root CN=thehost;OU=JCT;O=dummy CA;L=Santa Clara;ST=CA;C=US
 apdu {
 0 20 0 82 0 20 0 82
 80 20 0 0 ff ff 0 0
 }
 apdu {
 80 22 0 0 ff ff 0 0
 }
 }
 }
acf a0 00 00 00 62 03 01 0c 02 01 {

 ace {
 apdu {
 0 20 0 82 ff ff ff ff
 }
 }
}

acf a0 00 00 00 62 03 01 0c 06 01 {

 ace {
 apdu {
 0 20 0 82 ff ff ff ff
 }
 }
}

21

JSR 179: Location API Support 21-1

21JSR 179: Location API Support

JSR 179: Location API for J2ME gives applications the opportunity to use a device's
location capabilities. For example, some devices include Global Positioning System
(GPS) hardware. Other devices might be able to receive location information from the
wireless network. The Location API provides a standard interface to location
information, regardless of the underlying technique.

In the Location API, a location provider encapsulates a positioning method and supplies
information about the device's location. The application requests a provider by
specifying required criteria, such as the desired accuracy and response time. If an
appropriate implementation is available, then the application can use it to obtain
information about the device's physical location.

Oracle Java ME SDK 8 includes a simulated location provider. You can use the
emulator's External Events Generator to specify where the emulator should think it is
located. In addition, you can configure the properties of the provider itself, and you
can manage a database of landmarks.

Setting the Emulator's Location at Runtime
To specify the simulated location of the emulator while it is running:

1. In the emulator, open the Tools menu and select External Events Generator. Click
the Location tab.

2. Under the Location group, specify values for latitude, longitude, altitude, speed,
and course. Applications that use the Location API can retrieve these values as the
location of the emulator.

For more elaborate testing, you can set up a location script that describes motion over
time. Location scripts are XML files that consist of a list of locations, called waypoints,
and associated times. Oracle Java ME SDK 8 determines the current location of the
emulator by interpolating between the points in the location script. Here, for example,
is a simple location script that specifies a starting point (time="0") and moves to a new
point in 10 seconds (time="10000"):

Example 21–1 Location Script Example

<waypoints>
 <waypoint time="0"
 latitude="14" longitude="50" altitude="310" />
 <waypoint time="10000"
 latitude="14.5" longitude="50.1" altitude="215" />
</waypoints>

The altitude measurement is in meters, and the time values are in milliseconds.

Setting the Emulator's Location at Runtime

21-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Use a text editor to create your location script. You can point the External Events
Generator to this script by clicking Browse next to the Script field. Below the Script
field are controls for playing, pausing, stopping, and moving to the beginning and end
of the location script. You can also drag the time slider to a particular point.

Some devices are also capable of measuring their orientation. To make this kind of
information available to your application, change the State field in the Orientation
group to Supported, and specify values for azimuth, pitch, and roll. The Magnetic
Orientation check box defines whether the azimuth and pitch measurements are
relative to the Earth's magnetic field or relative to true north and gravity.

To test how your application handles unexpected conditions, try changing the State
field in the Location Provider group to Temporarily Unavailable or Out of Service.
When your application attempts to retrieve the emulator's location, an exception is
thrown, and you can see how your application responds.

Part VI
Part VI Sample Applications

Part VI provides information about working with sample programs in Oracle Java ME
SDK 8.

Part VI contains the following chapters:

■ Chapter 22, "Using Sample Applications"

22

Using Sample Applications 22-1

22Using Sample Applications

The Oracle Java ME SDK 8 sample applications introduce you to the emulator's API
features and the Oracle Java ME SDK 8 features, tools, and utilities that support the
various APIs.

Note: Before using the Oracle Java ME SDK 8 sample
applications, carefully read Appendix B, "Installation and Runtime
Security Guidelines." Some demonstrations use network access and
open ports, and do not include protection against malicious intrusion.
If you run the sample projects, ensure that your environment is secure.

Installing Sample Applications
Sample applications are installed using an Oracle Java ME SDK 8 ZIP file that has the
following name format: jmesdk-8_0-samples-<build_number>-<date>.zip. The
default location for installing the sample applications is in the Oracle Java ME SDK 8
installation directory.

To install sample applications:

1. Download the sample applications file from the Oracle Technology Network
(OTN).

2. Move the sample applications file to the Oracle Java ME SDK 8 installation
directory. By default, it is C:\Java_ME_platform_SDK_8.0.

3. Extract the sample applications file and the file contained inside
(com.oracle.javame.sdk.sample.applications.zip) to the apps directory.

4. Ensure that the following subdirectories are available in the apps directory:

■ DataCollectionDemo

■ GPIODemo

■ I2CDemo

■ LightTrackDemo

■ NetworkDemo

■ PDAPDemo

■ SystemControllerDemo

Configuring the Web Browser and Proxy Settings

22-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

Configuring the Web Browser and Proxy Settings
If you are behind a firewall, you can configure the sample applications to use proxy
server settings that you define.

The sample application proxy server settings typically match the proxy server settings
used in your web browser. To manually set the proxy server settings for your sample
applications, do the following:

1. In NetBeans IDE 8.0, open the Tools menu, select JavaME, and then Device
Selector.

2. Right-click CLDC, Oracle Java ME SDK 8.0 and select Properties.

3. Specify the HTTP Proxy Settings, HTTP Proxy Host, and HTTP Proxy Port fields
to match your network and browser settings.

Running Sample Applications
This section describes how to use sample applications created specifically for Oracle
Java ME SDK 8. Because these sample applications are headless, you must observe the
application status in the emulator’s External Events Generator, in the Output window,
or in the console window if you execute the demo straight from the command line.

Running the DataCollectionDemo
 The DataCollectionDemo demonstrates the following functionality:

■ Multiple virtual machines (MVM)

■ Inter-IMlet communication using local datagrams

■ Device I/O API pulse counter

■ Device I/O API serial peripheral interface

■ Logging API

In the DataCollectionDemo, several data collector IMlets read data from peripheral
devices using the Device I/O API and send the data to a data processor.

For more information about the setup and behavior of the DataCollectionDemo, see
the readme.txt file, under apps\DataCollectionDemo in the Java ME SDK installation
directory.

For more information about the Qualcomm IoE platform, see Oracle Java ME Embedded
Getting Started Guide for the Reference Platform (Qualcomm IoE).

Running the GPIODemo
The GPIODemo can run on an emulator. The implementations are different, because the
emulator uses the External Events Generator, and the external device supports direct
interaction.

To run GPIODemo on the emulator:

1. Run GPIODemo on the EmbeddedDevice1 emulator.

2. Click the GPIO Pins tab. This view approximates the device actions.

3. Open the Tools menu and select External Events Generator. Open the GPIO tab.

4. Click BUTTON 1 in the External Events Generator to toggle the state of the pin
named BUTTON 1 in the EmbeddedDevice1 emulator. If the button value in the

Running Sample Applications

Using Sample Applications 22-3

External Events Generator is changed to High, then the button value in the
EmbeddedDevice1 emulator is also changed to High.

Running the I2CDemo
The I2CDemo is designed to work with Oracle Java ME SDK 8. It has no user
interaction.

To run I2CDemo on the emulator:

1. Run I2CDemo on the EmbeddedDevice1 emulator.

2. Click the I2C tab.

3. Run I2CDemo.jad located under apps\I2CDemo in the Java ME SDK installation
directory.

4. The I2CDemo acquires a slave named I2C_Joystick, writes data to the slave, and
retrieves it. The I2CDemo is successful if the Sent Data and Received Data match.

Running the NetworkDemo
You can configure the NetworkDemo as a server or as a client by editing the application
descriptor. You start two instances of NetworkDemo; the first one acts as a server and the
second one acts as a client. The client instance attempts to connect to the server
instance and if the connection is successful they exchange a message.

To run NetworkDemo on the emulator:

1. Create two instance projects of the NetworkDemo sample project.

2. Right-click the first project and select Properties.

3. In the Platform category, select the device EmbeddedDevice1. In the Application
Descriptor category, set the value of the following property:

Oracle-Demo-Network-Mode:Server

4. Click OK.

5. Start the first project. It opens on the emulator EmbeddedDevice1 and waits for a
connection.

6. Right-click the second project and select Properties.

7. In the Platform category, select the device EmbeddedDevice2. In the Application
Descriptor category, set the value of the following property:

 Oracle-Demo-Network-Mode:Client

8. Click OK.

9. Start the second project. It opens on the emulator EmbeddedDevice2.

10. The client attempts to connect to the server. If successful, the following is
displayed in the output for the first project (the server):

Waiting for connection on port 5000
Connection accepted
Message received - Client messages

The following is displayed in the output of the second project (the client):

Connected to server localhost on port 5000
Message received - Server string

Running Sample Applications

22-4 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running the NetworkDemo on the Reference Board
You can run one of the instance projects on the board and the other in one of the
emulators.

Note: Applications that are run on an embedded platform, such as
the Qualcomm IoE or Raspberry Pi, must be signed. For more
information, see the Oracle Java ME SDK 8 Getting Started Guide for
your embedded platform.

To run the client on the board and the server in one of the emulators:

1. Right-click the first project (the server) and select Properties. In the Platform
category, select the device EmbeddedDevice1 (the emulator). In the Application
Descriptor category, set the value of the property Oracle-Demo-Network-Mode
to Server and click OK.

2. Start the first project (the server). It runs on the emulator and waits for a
connection.

3. Right-click the second project (the client) and select Properties. In the Platform
category, select the device EmbeddedExternalDevice1 (the board). In the
Application Descriptor category, set the value of the property
Oracle-Demo-Network-Mode to Client and the value of the property
Oracle-Demo-Network-Address to the IP address of the computer where
NetBeans IDE 8.0 is running and click OK.

4. Start the second project (the client). It runs on the board and attempts to connect to
the server. If successful, the following is displayed in the output tab of the first
project (the server):

Connection accepted
Message received - Client messages

The following is displayed in the TCP log of the board (the client):

Connected to server 10.0.0.10 on port 5000
Message received - Server String

Running the PDAPDemo
To run PDAPDemo on the emulator:

1. Create test files and directories inside the emulator’s file system. The file system is
located in the Java ME SDK configuration directory. For example, for
EmbeddedDevice1, the file system is located under
userdir\javame-sdk\8.0\work\EmbeddedDevice1\appdb\filesystem\root1

2. Open the project in NetBeans IDE 8.0, right-click the project and select Properties.

3. In the Platform category, select the device EmbeddedDevice1 and click OK.

4. In the Device Selector window, right-click an EmbeddedDevice1 emulator, select
Run Project and then PDAPDemo.

5. Start the project.

Running Sample Applications

Using Sample Applications 22-5

6. On the EmbeddedDevice1 emulator, open the Tools menu and select Manage File
System to see a list of mounted file systems.

7. Open a terminal emulator and create a Telnet connection to localhost on port 5001.

Note: The Telnet negotiation mode must be set to Passive. The
negotiation mode can be set inside a Telnet client application (for
example, PuTTY), by selecting Category, then Connection, then
Telnet, and then Passive.

8. A command line opens where you can browse the emulator’s file system. You can
use the following commands:

– cd: Change directory

– ls: List information about the files for the current directory

– new: Create a file or directory

– prop: Show properties of a file

– rm: Remove a file

– view: View a file's content

Running the PDAPDemo on the Reference Board
To run PDAPDemo on the reference board:

1. Right-click the project and select Properties. In the Platform category, select the
device EmbeddedExternalDevice1 and click OK.

2. Start the project. It runs on the reference board.

3. Open a terminal emulator and create a raw connection to the IP address of the
board on port 5001.

4. The command line that opens is the same as the one you use when you run the
PDAPDemo on the emulator.

The file system of the demo is stored in the java directory on the SD card. In that
directory, there are a subdirectories that are named using the number identifier that
the AMS assigns to an IMlet during its installation.

Running the LightTrackDemo
The LightTrackerDemo is specifically aimed at demonstrating functionality on an
embedded device.

In the LightTrackerDemo, a certain number of LEDs are turned on and turned off on
the board, in a sequence that you can control. It makes use of the Device I/O API and
the GPIO port to demonstrate its functionality. It requires connection of an ADC
channel to an on-board potentiometer.

For more information about the setup and behavior of the Light Tracker demo, see the
readme.txt file located under apps\LightTrackDemo in the Java ME SDK installation
directory.

Troubleshooting

22-6 Oracle Java Micro Edition Software Development Kit Developer's Guide

Running the SystemControllerDemo
The SystemControllerDemo is specifically aimed at showing off functionality on an
embedded device, such as the Qualcomm IoE reference platform.

The purpose of the SystemControllerDemo is to control the life cycle of IMlets on the
reference platform. It makes use of the following functionalities:

■ Multitasking Virtual Machine (MVM)

■ IMlet auto-start

■ Application Management System (AMS) API

■ Logging API

■ General Purpose Input/Output (GPIO)

■ Watchdog timer

For more information about the setup and behavior of the System Controller demo, see
the readme.txt file located under apps\SystemControllerDemo in the Java ME SDK
installation directory.

For more information about the Qualcomm IoE platform, see Oracle Java ME Embedded
Getting Started Guide for the Reference Platform (Qualcomm IoE).

Troubleshooting
Sometimes a sample application does not run successfully. Often, the problem is your
environment.

■ Some demonstrations require specific setup and instructions. For example, if a
sample uses web services and you are behind a firewall, you must configure the
emulator's proxy server settings. See "Configuring the Web Browser and Proxy
Settings."

■ Because sample programs can be started remotely, virus checking software can
sometimes prevent them from running. In the console, you see warnings that the
emulator cannot connect.

Consider configuring your antivirus software to allow access to sample
application directories and components.

Part VII
Part VII Appendixes

Part VII provides supporting information, such as running the emulator using the
Windows command line, and security considerations when using sample applications.

Part VII contains the following appendixes:

■ Appendix A, "Using the Command-Line Emulator"

■ Chapter B, "Installation and Runtime Security Guidelines"

A

Using the Command-Line Emulator A-1

AUsing the Command-Line Emulator

The Oracle Java ME SDK 8 Embedded Emulator can be started from the Windows
command line. After the emulator starts, it runs and behaves the same as it does when
started from NetBeans IDE 8.0.

Starting the emulator from the Windows command line enables you to use a number
of emulator options. For more information, see Useful Emulator Command Options.

You can find the Oracle Java ME SDK 8 command-line emulator under bin in the
Oracle Java ME SDK 8 installation directory.

Using the Oracle Java ME SDK 8 Emulator
To start the emulator from the Windows command line:

1. Open the Windows command prompt. There are several ways to do this:

■ Press Win+R on the keyboard, or open the Start menu and select Run to open
the Run window. Now, type cmd and click OK.

■ Open the Start menu, search for cmd.exe and run it.

■ Double-click C:\Windows\System32\cmd.exe.

2. Change to the bin directory in the Oracle Java ME SDK 8 installation directory. For
the default location, use the following command:

> cd C:\Java_ME_platform_SDK_8.0\bin

3. Run the emulator.exe command. Use the -Xdevice option to specify the device
you would like to run, and the -Xdescriptor option to specify the JAD file you
would like to run on the device. For example, to run the sample_imlet.jad file on
EmbeddedDevice1, use the following command:

C:\Java_ME_platform_SDK_8.0\bin> emulator.exe -Xdevice:EmbeddedDevice1
-Xdescriptor:C:\Java_ME_platform_SDK_8.0\apps\sample\sample_imlet.jad

Note: You can run the emulator command without the .exe
extension.

Useful Emulator Command Options
The emulator command can be used with the following command-line options:

Useful Emulator Command Options

A-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

-help
Displays usage information with a complete list of command-line options.

-Xjam:list
Displays a list of installed IMlets.

-Xquery
Displays a list of supported devices.

-Xjam:install=URL
Installs a JAD file over the air and executes the IMlet. You must specify a URL of the
JAD file, for example:

> emulator -Xjam:install=http://www.example.com/TestJAD.jad

-Xjam:run={storage_name|storage_number}
Runs an IMlet. You must specify either the storage name or storage number, which can
be displayed using the -Xjam:list command.

-Xjam:remove={storage_name|storage_number|all}
Removes an IMlet. To remove a specific IMlet, you must specify either the storage
name or storage number, which can be displayed using the -Xjam:list command. To
remove all IMlets, specify all as the parameter.

-Xdescriptor:path
Installs a JAD file, executes the IMlet locally, and removes it after completion. You
must specify the path and name of the JAD file, for example:

> emulator -Xdescriptor:C:\imlets\sample.jad

-Xautotest:URL
Runs an IMlet in autotest mode. You must specify the URL of the JAD file, for
example:

> emulator -Xautotest:http://127.0.0.1:8080/getNextApp.jad

B

Installation and Runtime Security Guidelines B-1

BInstallation and Runtime Security Guidelines

Oracle Java ME SDK 8 requires an execution model that makes certain network
resources are available for emulator execution. These required resources might include
(but are not limited to) a variety of communication capabilities between product
components.

Note: The Oracle Java ME SDK 8 installation and runtime system is a
developer system. It is not designed to guard against any malicious
attacks from outside intruders.

During execution, the Oracle Java ME SDK 8 architecture can present an insecure
operating environment to the platform’s installation file system, and its runtime
environment. For this reason, it is critically important to observe the precautions
outlined in these guidelines when you install and run Oracle Java ME SDK 8.

Maintaining Optimum Network Security
To maintain optimum network security, Oracle Java ME SDK 8 can be installed and
run in an isolated network environment, where the Oracle Java ME SDK 8 system is
not connected directly to the Internet. It can also be connected to a secure company
intranet environment, which will reduce unwanted exposure to malicious intrusion.

An example of an Oracle Java ME SDK 8 requirement for an Internet connection is
when wireless functionality requires a connection to the Internet to support
communications with the wireless network infrastructure that is part of an Oracle Java
ME SDK 8 application execution process. Whether or not an Internet connection is
required depends on the particular application running on Oracle Java ME SDK 8. For
example, some applications can use an HTTP connection.

If Oracle Java ME SDK 8 is open to any network access, then you must take the
following precautions to protect valuable resources from malicious intrusion:

■ Installing the Java ME Demos plugin is optional. Some sample projects use
network access and open ports. Because the sample code does not include
protection against malicious intrusion, ensure that your environment is secure if
you install and run the sample projects.

■ Install Oracle Java ME SDK 8 behind a secure firewall that strictly limits
unauthorized network access to the Oracle Java ME SDK 8 file system and
services. Limit access privileges to those that are required for Oracle Java ME SDK
8 usage while allowing all the bidirectional local network communications that are
necessary for Oracle Java ME SDK 8 functionality. The firewall configuration must
support these requirements to run the Oracle Java ME SDK 8 while also

Maintaining Optimum Network Security

B-2 Oracle Java Micro Edition Software Development Kit Developer's Guide

addressing them from a security standpoint.

■ Follow the principle of least privileged by assigning the minimum set of system
access permissions required to install and execute Oracle Java ME SDK 8.

■ Do not store any sensitive information on the same file system that is hosting
Oracle Java ME SDK 8.

■ To maintain the maximum level of security, ensure that all the latest updates for
the operating system are installed.

Glossary-1

Glossary

access point

A network-connectivity configuration that is predefined on a device. An access point
can represent different network profiles for the same bearer type, or for different
bearer types that may be available on a device, such as Wi-Fi or Bluetooth.

ADC

Analog-to-digital converter. A hardware device that converts analog signals (time and
amplitude) into a stream of binary numbers that can be processed by a digital device.

AMS

Application management system. The system functionality that completes tasks such
as installing applications, updating applications, and managing applications between
the foreground and background.

APDU

Application Protocol Data Unit. A communication mechanism used by SIM cards and
smart cards to communicate with card reader software or a card reader device.

API

Application programming interface. A set of classes used by programmers to write
applications that provide standard methods and interfaces and eliminate the need for
programmers to reinvent commonly used code.

ARM

Advanced RISC Machine. A family of computer processors that use reduced
instruction set (RISC) CPU technology, developed by ARM Holdings. ARM is a
licensable instruction set architecture (ISA) and is used in the majority of embedded
platforms.

AT commands

A set of commands developed to facilitate modem communications, such as dialing,
hanging up, and changing the parameters of a connection. Also known as the Hayes
command set, AT means attention.

CLDC

Connected Limited Device Configuration. A Java ME platform configuration for
devices with limited memory and network connectivity. It uses a low-footprint Java
virtual machine such as the CLDC HotSpot Implementation, and several minimalist
Java platform APIs for application services.

configuration

Glossary-2

configuration

Defines the minimum Java runtime environment (for example, the combination of a
Java Virtual Machine and a core set of Java platform APIs) for a family of Java ME
platform devices.

DAC

Digital-to-analog converter. A hardware device that converts a stream of binary
numbers into an analog signal (time and amplitude), such as audio playback.

GPIO pins

The general purpose input/output pins are unassigned pins on an embedded platform
that can be assigned or configured as needed by a developer.

GPIO port

A group of GPIO pins (typically 8 pins) arranged in a group and treated as a single
port.

HTTP

HyperText Transfer Protocol. The most commonly used Internet protocol, based on
TCP/IP that is used to fetch documents and other hypertext objects from remote hosts.

HTTPS

Secure HyperText Transfer Protocol. A protocol for transferring encrypted hypertext
data using Secure Socket Layer (SSL) technology.

IMlet

Similar to a MIDP 2.0 MIDlet, an IMlet is a small application specifically for running in
an embedded environment. An IMlet uses classes defined by the MEEP 8.0 and CLDC
1.8 specifications.

IMlet suite

A way of packaging one or more IMlets for easy distribution and use. Similar to a
MIDlet suite, but for smaller applications running in an embedded environment. Each
IMlet suite contains a Java application descriptor file (.jad), which lists the class
names and files names for each IMlet, and a Java Archive file (.jar), which contains
the class files and resource files for each IMlet

I2C

Inter-Integrated Circuit. A multimaster, serial computer bus used to attach low-speed
peripherals to an embedded platform

JAD file

Java Application Descriptor file. A file provided in a MIDlet or IMlet suite that
contains attributes used by application management software (AMS) to manage the
MIDlet or IMlet life cycle, and other application-specific attributes used by the MIDlet
or IMlet suite itself.

JAR file

Java Archive file. A platform-independent file format that aggregates many files into
one. Multiple applications written in the Java programming language and their
required components (class files, images, sounds, and other resource files) can be
bundled in a JAR file and provided as part of a MIDlet or IMlet suite.

pulse counter

Glossary-3

JCP

Java Community Process. The global standards body guiding the development of the
Java programming language.

Java ME platform

Java Platform, Micro Edition. A group of specifications and technologies that pertain
to running the Java platform on small devices, such as cell phones, pagers, set-top
boxes, and embedded devices. More specifically, the Java ME platform consists of a
configuration (such as CLDC) and a profile (such as MEEP) tailored to a specific class
of device.

JSR

Java Specification Request. A proposal for developing new Java platform technology,
which is reviewed, developed, and finalized into a formal specification by the JCP
program.

Java Virtual Machine

A software execution engine that safely and compatibly executes the byte codes in Java
class files on a microprocessor.

MEEP

Oracle Java ME Embedded Profile. A profile for embedded (headless) devices, the
MEEP specification (JSR 361) includes APIs for security, networking, connectivity,
concurrency, and other functionality, and but not graphics and user interface APIs.

MVM

Multiple virtual machines. A software mode that can run more than one MIDlet or
IMlet at a time.

obfuscation

A technique used to complicate code by making it harder to understand when it is
decompiled. Obfuscation makes it harder to reverse-engineer applications and
therefore, steal them.

optional package

A set of Java ME platform APIs that provides additional functionality by extending the
runtime capabilities of an existing configuration and profile.

profile

A set of APIs added to a configuration to support specific uses of an embedded or
mobile device. Along with its underlying configuration, a profile defines a complete
and self-contained application environment.

provisioning

A mechanism for providing services, data, or both to an embedded or mobile device
over a network.

pulse counter

A hardware or software component that counts electronic pulses, or events, on a
digital input line, for example, a GPIO pin.

push registry

Glossary-4

push registry

The list of inbound connections, across which entities can push data. Each item in the
list contains the URL (protocol, host, and port) for the connection, the entity permitted
to push data through the connection, and the application that receives the connection.

RISC

Reduced Instruction Set Computing. A CPU design based on simplified instruction
sets that provide higher performance and faster execution of individual instructions.
The ARM architecture is based on RISC design principles.

RMI

Remote Method Invocation. A feature of Java SE technology that enables Java
technology objects running in one virtual machine to seamlessly invoke objects
running in another virtual machine.

SD card

Secure Digital card. A non-volatile memory card format for use in portable devices,
such as mobile phones and digital cameras, and embedded systems. SD cards come in
three different sizes, with several storage capacities and speeds.

SIM

Subscriber identity module. An integrated circuit embedded into a removable SIM
card that securely stores the International Mobile Subscriber Identity (IMSI) and the
related key used to identify and authenticate subscribers on mobile and embedded
devices.

slave mode

Describes the relationship between a master and one or more devices in a Serial
Peripheral Interface (SPI) bus arrangement. Data transmission in an SPI bus is initiated
by the master device and received by one or more slave devices, which cannot initiate
data transmissions on their own.

smart card

A card that stores and processes information through the electronic circuits embedded
in silicon in the substrate of its body. Smart cards carry both processing power and
information. A SIM card is a special kind of smart card for use in a mobile device.

SMS

Short Message Service. A protocol that allows transmission of short text-based
messages over a wireless network. SMS messaging is the most widely used data
application in the world.

SOAP

Simple Object Access Protocol. An XML-based protocol that enables objects of any
type to communicate in a distributed environment. It is most commonly used to
develop web services.

SPI

Serial Peripheral Interface. A synchronous bus commonly used in embedded systems
that allows full duplex communication between a master device and one or more slave
devices.

WAP

Glossary-5

SSL

Secure Sockets Layer. A protocol for transmitting data over the Internet using
encryption and authentication, including the use of digital certificates and both public
and private keys.

SVM

Single Virtual Machine. A software mode that can run only one MIDlet or IMlet at a
time.

task

At the platform level, each separate application that runs within a single Java Virtual
Machine is called a task. The API used to instantiate each task is a stripped-down
version of the Isolate API defined in JSR 121.

TCP/IP

Transmission Control Protocol/Internet Protocol. A fundamental Internet protocol that
provides for reliable delivery of streams of data from one host to another.

terminal profile

Device characteristics of a terminal (mobile or embedded device) passed to the SIM
card along with the IMEI during SIM card initialization. The terminal profile tells the
SIM card what values are supported by the device.

UART

Universal Asynchronous Receiver/Transmitter. A piece of computer hardware that
translates data between serial and parallel formats. It is used to facilitate
communication between different kinds of peripheral devices, input/output streams,
and embedded systems, to ensure universal communication between devices.

URI

Uniform Resource Identifier. A compact string of characters used to identify or name
an abstract or physical resource. A URI can be further classified as a uniform resource
locator (URL), a uniform resource name (URN), or both.

USB

Universal Serial Bus. An industry standard that defines the cables, connectors, and
protocols used in a bus for connection, communication, and power supply between
computers and electronic devices, such as embedded platforms and mobile phones.

USIM

Universal Subscriber Identity Module. An updated version of a SIM designed for use
over 3G networks. USIM is able to process small applications securely using better
cryptographic authentication and stronger keys. Larger memory on USIM enables the
addition of thousands of contact details including subscriber information, contact
details, and other custom settings.

WAP

Wireless Application Protocol. A protocol for transmitting data between a server and a
client (such as a cell phone or embedded device) over a wireless network. WAP in the
wireless world is analogous to HTTP in the World Wide Web.

watchdog timer

Glossary-6

watchdog timer

A dedicated piece of hardware or software that watches an embedded system for a
fault condition by continually polling for a response. If the system goes offline and no
response is received, the watchdog timer initiates a reboot procedure or takes other
steps to return the system to a running state.

WMA

Wireless Messaging API. A set of classes for sending and receiving Short Message
Service (SMS) messages.

XML schema

A set of rules to which an XML document must conform to be considered valid.

	Contents
	Preface
	Part I Introduction
	1 Before You Begin
	Installing the Java SE Platform
	Installing the Oracle Java ME SDK 8 Platform
	Installing and Starting NetBeans IDE 8.0

	2 Creating a Java ME SDK 8 Sample Project
	Installing Java ME SDK Plugins
	Creating a Sample IMlet File
	Creating a New Project
	Including Sample IMlet Code and Running the Project

	Part II Devices
	3 Using the Emulators
	Starting the Emulator
	Understanding the Main Window
	Running Emulators
	Running the Qualcomm_IoE_Device Emulator

	4 Using the External Events Generator
	5 Working with Devices
	Using the Device Connections Manager
	Using the Device Selector
	Viewing Platform and Device Properties
	Changing Platform and Device Properties
	Viewing Device Information
	Editing the Security Configuration

	Using the Custom Device Editor
	Creating a Custom Device
	Setting Custom Device Properties
	Managing Custom Devices

	Making Device Connections
	Connecting to a UART Device

	Additional Peripherals

	Part III NetBeans IDE
	6 Creating Projects
	Creating a Java ME Project
	Create a New IMlet
	Debugging Java ME Projects

	7 Viewing and Editing Project Properties
	Configuring Project Sources
	Selecting the Platform for the Project
	Configuring Project Libraries
	Configuring Application Descriptor Attributes
	Configuring the Build Process
	Configuring Project Running Properties
	Building a Project from the Command Line
	Packaging an IMlet Suite (JAR and JAD)

	8 Finding Files in the Multiple User Environment
	Switching Users
	Installation Directories
	NetBeans IDE 8.0 User Directories
	Oracle Java ME SDK 8 User Directories

	9 Logs
	10 Profiling Applications
	Collecting and Saving Profiler Data in the IDE
	Loading an NPS File
	Importing PROF File

	11 Network Monitoring
	Monitoring Network Traffic
	Filtering and Sorting Messages
	Saving and Loading Network Monitor Information
	Searching the Connection Data
	Clearing the Connection List

	12 Memory Monitoring and Runtime Tracing
	Enabling Tracing
	Using the Memory Monitor
	Viewing a Session Snapshot

	13 Application Debugging
	Part IV Security
	14 Security and IMlet Signing
	Security Policy Provider Clients
	Configuring the Security Policy
	Signing a Project
	Managing Keystores and Key Pairs
	Managing Root Certificates
	Command-Line Security Features
	Sign IMlet Suites (jadtool)
	Manage Certificates (mekeytool)

	15 Custom Security Policy and Authentication Providers
	15.1 Creating a Security Policy Provider
	15.2 Creating an Authentication Provider
	15.3 Installing Custom Providers

	Part V Optional Packages
	16 API Support
	Oracle APIs

	17 JSR 75: PDA Optional Packages
	FileConnection API
	Running PDAPDemo
	Browsing Files

	18 JSR 120: Wireless Messaging
	Using the WMA Console to Send and Receive Messages
	Sending a Text or Binary SMS Message
	Sending Text or Binary CBS Messages
	Receiving Messages in the WMA Console

	Running the WMA Tool
	Examples of smsreceive and cbsreceive
	Example of smssend
	Example cbssend

	19 JSR 172: Web Services Support
	Generating Stub Files from WSDL Descriptors
	Generating Stub Files from the Command Line

	20 JSR 177: Smart Card Security (SATSA)
	Card Slots in the Emulator
	Adjusting Access Control
	Specifying PIN Properties
	Specifying Application Permissions
	Access Control File Example

	21 JSR 179: Location API Support
	Setting the Emulator's Location at Runtime

	Part VI Sample Applications
	22 Using Sample Applications
	Installing Sample Applications
	Configuring the Web Browser and Proxy Settings
	Running Sample Applications
	Running the DataCollectionDemo
	Running the GPIODemo
	Running the I2CDemo
	Running the NetworkDemo
	Running the NetworkDemo on the Reference Board

	Running the PDAPDemo
	Running the PDAPDemo on the Reference Board

	Running the LightTrackDemo
	Running the SystemControllerDemo

	Troubleshooting

	Part VII Appendixes
	A Using the Command-Line Emulator
	Using the Oracle Java ME SDK 8 Emulator
	Useful Emulator Command Options

	B Installation and Runtime Security Guidelines
	Maintaining Optimum Network Security

	Glossary

