
Sun Microsystems, Inc.
www.sun.com

CDC HotSpot Implementation
Dynamic Compiler
Architecture Guide

Connected Device Configuration, Version 1.1.1

Foundation Profile, Version 1.1.1

Optimized Implementation

August 2005

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS,
INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, HotSpot, the Duke logo and the Java Coffee Cup logo are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et dans
les autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, HotSpot, le logo Duke et le logo Java Coffee Cup sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations
et la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

Contents

1. Dynamic Compiler Architecture 1–1

1.1 Introduction 1–1

1.2 Compiler Front End – IR Creation 1–2

1.3 Compiler Back End – JCS and IR Parsing 1–2

1.4 Compiler Back End – Semantic Actions 1–3

1.5 Compiler Back End – Register Manager 1–4

1.6 Compiler Back End – Code Emitters 1–4

1.7 Other Compiler Components 1–4

1.8 Compiler Porting Layers 1–5

1.9 CVMJITCompilationContext 1–6

1.10 Compiling a Method 1–7

2. VM Overview and Runtime Internals 2–1

2.1 CVM Internal Structure with Compiler 2–1

2.2 Globals 2–3

2.3 The Java Heap 2–3

2.3.1 The Garbage Collector 2–3

2.3.2 GC Consistency 2–3

2.3.3 CVMObjectICell 2–4

2.4 The JIT Code Cache 2–5
iii

2.5 Java Classes 2–5

2.5.1 java.lang.Class 2–5

2.5.2 CVMClassBlock 2–6

2.5.3 CVMMethodBlock 2–6

2.5.4 Preloaded Classes 2–7

2.6 Java Objects 2–7

2.7 Java Threads 2–8

2.7.1 CVMExecEnv 2–8

2.7.2 JNIEnv 2–8

2.7.3 Native Stack Data 2–9

2.7.4 Native Stack 2–9

2.7.5 Java Stack 2–9

2.7.6 Java Stack Frames 2–9

2.7.6.1 CVMInterpreterFrame 2–10

2.7.6.2 CVMCompiledFrame 2–10

2.7.6.3 CVMFreelistFrame 2–11

2.7.7 Stackmaps 2–11

2.8 GC Roots 2–12

2.9 Synchronization 2–12

2.10 Other VM Components 2–14

2.11 The Bootstrapping Process 2–14

3. JIT Intermediate Representation 3–1

3.1 Overview 3–1

3.2 From Stack-Oriented to Value-Oriented 3–2

3.3 IR Basics 3–3

3.4 IR Node Format 3–3

3.5 Conversion 3–9

3.6 Example Expression Trees 3–11
iv CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

3.6.1 Arithmetic Operation 3–12

3.6.2 Object Access With Null Check 3–13

3.6.3 Object Access With Lazy Class Initialization Check 3–14

3.6.4 Array Access With Runtime Checks 3–15

3.6.5 Method Invocation With Parameters and Return Value 3–17

3.7 Conversion Passes 3–19

3.8 Simple Inlining 3–20

3.9 Simple Multi-block Inlining 3–21

3.10 Virtual Inlining 3–23

3.11 Nested and Recursive Inlining 3–26

3.12 Method Contexts 3–28

3.13 Argument Handling and Locals 3–28

3.14 Limiting Inlining 3–30

3.15 Runtime Inlining Information and BEGIN/END_INLINING Nodes 3–30

4. JavaCodeSelect 4–1

4.1 Introduction 4–1

4.2 Concepts 4–2

4.2.1 Tokens, Terminals, and Nonterminals 4–2

4.2.2 Patterns, Pattern Specification, and Rules 4–3

4.2.2.1 Example 1 4–3

4.2.2.2 Example 1a 4–4

4.2.3 Code Generator Operation: Parsing the Tree 4–5

4.2.3.1 Match Phase 4–5

4.2.3.2 Rule-based Phases 4–5

4.2.4 DAG Support 4–12

4.2.5 Conditional Compilation 4–13

4.3 JCS Syntax 4–13

4.4 Other Input 4–16
Contents v

4.4.1 Default Actions 4–17

4.4.2 Managing Recursion 4–17

4.5 Debugging 4–19

4.6 Output 4–20

4.7 References 4–21

5. Code Generation Mechanics 5–1

5.1 Working with DAGs in Code Generation 5–1

5.1.1 Introduction 5–1

5.1.2 Properties and semantics Of DAGs in the CDC-HI IR 5–1

5.1.3 JCS handling of DAGs 5–2

5.1.4 Decoration of IDENTITY Nodes 5–3

5.2 Code Generator’s Semantic Stack 5–5

5.3 Synthesis, Inheritance, and Register Targeting 5–10

5.3.1 Targeting with DAGs 5–14

5.3.2 Targeting for Avoidance 5–15

5.4 Using and Reference Counting Resources 5–16

5.5 Full Example of Inheritance and Resouce Management 5–17

5.6 Rule Costs and Overriding 5–23

6. Code Cache Manager 6–1

6.1 Code Buffers 6–1

6.2 Free Buffers 6–2

6.3 Allocated Buffers for CDC 1.0.1 6–2

6.4 Allocated Buffers for CDC 1.1 6–3

6.5 Decompilation 6–4

6.6 Logical PC vs. Physical PC 6–6

6.7 Pushing and Popping Fixup PCs 6–6

6.8 Emitting Code 6–7
vi CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

6.9 Copying Assembler Code to the Code Cache 6–8

6.10 Debugging Support 6–8

6.11 Reference 6–9

7. JIT Runtime Support 7–1

7.1 CVMglobals.jit 7–1

7.2 CPU Cache Flushing 7–1

7.2.1 Data Caches 7–1

7.2.2 Instruction Caches 7–2

7.2.3 Cache Coherency 7–2

7.2.4 External Caches 7–3

7.3 CVMCompiledMethodDescriptor 7–3

7.3.1 Computing the CMD 7–3

7.4 Entry to Compiled Code 7–3

7.5 Assembler Glue 7–4

7.6 Helper Functions 7–5

7.6.1 Default C Helper Functions 7–5

7.6.2 ASM Helper Functions 7–6

7.6.3 Disabling Default Helper Functions 7–7

7.7 CVMCCExecEnv 7–8

7.8 Code Execution and Stack Frames 7–8

7.9 Throwing Exceptions 7–12

7.10 On-Stack Replacement (OSR) 7–14

8. JIT Memory Manager 8–1

8.1 Permanent Memory Allocation 8–1

8.2 Transient Memory Allocation 8–1

8.3 Memory Fence 8–2

8.4 Statistics Gathering 8–2
Contents vii

8.5 Reference 8–3

9. Constant Pool Manager 9–1

9.1 Loading Constants into Registers 9–1

9.2 Adding Constants to the Constant Pool 9–2

9.3 Dumping the Constant Pool 9–3

9.4 Patching Forward Constant Pool References 9–3

9.5 CVMCPU_HAS_CP_REG 9–4

9.6 Register Manager Usage 9–4

9.7 Typical Code Generation 9–4

9.8 Reference 9–5

10. Register Manager 10–1

10.1 Evaluated Expressions 10–1

10.2 Interactions with the JCS Grammar 10–2

10.3 CVMRMResource 10–4

10.4 Resource Flags 10–5

10.5 Register Contexts (Register Banks) 10–7

10.6 Register Sets 10–7

10.7 Allocating Resources 10–8

10.8 Reference Counts and Deleting Resources 10–9

10.9 Register Allocation and Targeting 10–9

10.10 ResourcePinning 10–10

10.11 Dirty Resources and Spilling 10–11

10.12 Resources for Constants 10–11

10.13 Resources for Locals 10–12

10.14 Block Handling 10–12

10.15 Phi Handling 10–13

10.16 Method Result Handling 10–13
viii CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

10.17 Porting Effort 10–14

10.18 Reference 10–15

11. Stack Manager 11–1

11.1 Overview 11–1

11.2 Handling Method Results 11–2

11.3 CVMSMadjustJSP() 11–3

11.4 Stack Maps 11–3

11.5 Handling Non-parameter Stack Values 11–4

11.6 CVMSMgetSingle() and CVMSMgetDouble() 11–4

11.7 Porting Effort 11–5

11.8 Reference 11–5

12. Phi Values 12–1

12.1 Overview 12–1

12.2 Passing Phi Values Between Blocks 12–2

12.3 DEFINE Nodes and USED Nodes 12–3

12.4 CVMJITirblockPhiMerge() 12–4

12.5 CVMJITirblockAtLabelEntry() 12–5

12.6 Unsupported Phi Constructs 12–5

12.7 Virtual Method Inlining 12–5

12.8 Register Phis 12–6

12.9 Phi Handling in the Backend 12–7

12.10 Reference 12–7

13. Trap-based NullPointerExceptions 13–1

13.1 Overview 13–1

13.2 Reference 13–3

14. GC Checks in Compiled Code 14–1
Contents ix

14.1 Explicit GC Checks 14–1

14.2 Patch-based GC Checks 14–2

14.3 Patch-based GC Checks with Delay Slots 14–4

14.4 Trap-based GC Checks 14–4

14.5 Reference 14–5

15. JIT Stack Maps 15–1

15.1 Stack Map Components 15–1

15.2 GC Points in Compiled Code 15–2

15.3 Capturing Stack Maps 15–2

15.4 Accessing Stack Maps 15–3

15.5 CVMcompiledFrameScanner() 15–4

15.6 Porting Effort 15–4

15.7 Reference 15–5

16. JIT Intrinsic Methods 16–1

16.1 How Intrinsics Work 16–1

16.2 The Intrinsics Framework 16–2

16.2.1 Chaining the Intrinsics Config List 16–3

16.2.2 Compiler Front-End Support 16–4

16.2.3 Compiler Back-End Support 16–4

16.2.4 Intrinsics Code Generation 16–5

16.2.5 CVMJITINTRINSIC_OPERATOR_ARGS 16–5

16.2.6 CVMJITINTRINSIC_C_ARGS 16–6

16.2.7 CVMJITINTRINSIC_JAVA_ARGS 16–6

16.3 The Value of Intrinsics 16–7

16.4 Disabling Intrinsics 16–8

16.5 Reference 16–8

17. JIT Debugging Support 17–1
x CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

17.1 Tracing 17–1

17.2 Controlling Which Methods Are Compiled 17–2

17.3 Controlling Which Methods Are Traced 17–3

17.4 CVMJITcodeCacheFindCompiledMethod() 17–3

17.5 GDB Support 17–4

17.6 Trap-based NullPointerExceptions 17–4

17.7 Reference 17–4

18. Profiling Dynamically Compiled Code 18–1

18.1 Building Support for JIT Profiling 18–1

18.2 Enabling JIT Profiling at Runtime 18–1

18.3 Profiling Output Format 18–2

18.4 Instruction Level Profiling 18–3

18.5 Application Exit 18–3

18.6 Decompilation 18–4

18.7 Porting Effort 18–4

18.8 Reference 18–4

19. Assembler Listings for Dynamically Compiled Code 19–1

19.1 Example Code Generation Assembler Listing 19–1

19.2 CVMtraceJITCodegen() and CVMtraceJITCodegenExec() 19–2

19.3 CVMJITprintCodegenComment() 19–2

19.4 CVMJITaddCodegenComment() and
CVMJITdumpCodegenComments() 19–3

19.5 CVMJITpushCodegenComment() and
CVMJITpopCodegenComment() 19–4

19.6 CVMJITsetSymbolName() and CVMJITgetSymbolName() 19–4

19.7 Reference 19–5

20. Code Generation Examples 20–1

20.1 Example 1 20–1
Contents xi

20.2 Example 2 20–3

20.3 Example 3 20–4

20.4 Example 4 20–6

20.5 Example 5 20–8

20.6 Example 6 20–11
xii CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Code Samples

CODE EXAMPLE 7-1 Example 1 - Calling from an interpreted method to a JNI native method 7-8

CODE EXAMPLE 7-2 Example 2 - Calling from an interpreted method to a compiled method 7-9

CODE EXAMPLE 7-3 Example 3 - Calling from a compiled method to a compiled method 7-9

CODE EXAMPLE 7-4 Example 4 - Calling from a compiled method to an interpreted method 7-9

CODE EXAMPLE 7-5 Example 5 - Calling from a compiled method to a JNI native method 7-10

CODE EXAMPLE 7-6 Example 6 - Calling from compiled to JNI to compiled 7-10

CODE EXAMPLE 7-7 Example 7 - Calling from a compiled method to a C or Assembler helper 7-11

CODE EXAMPLE 7-8 Example 8 - Returning from an interpreted method to a compiled method 7-11

CODE EXAMPLE 7-9 7-12

CODE EXAMPLE 7-10 Before CVMgcUnsafeHandleException unwinds the Java stack: 7-13

CODE EXAMPLE 7-11 After exception is caught in Interpreted Frame 1: 7-13

CODE EXAMPLE 7-12 Before CVMgcUnsafeHandleException unwinds the Java stack: 7-14

CODE EXAMPLE 7-13 After exception is caught in Compiled Frame 1: 7-14

CODE EXAMPLE 9-1 PC Relative (ARM) 9-4

CODE EXAMPLE 9-2 CP Base Register (PowerPC) 9-5

CODE EXAMPLE 9-3 Multiple ALU Instructions (Sparc) 9-5

CODE EXAMPLE 19-1 Example 1 19-4

CODE EXAMPLE 19-2 Example 2 19-5

CODE EXAMPLE 20-1 Java code 20-1

CODE EXAMPLE 20-2 Bytecodes 20-1
xiii

CODE EXAMPLE 20-3 IR 20-1

CODE EXAMPLE 20-4 Generated code 20-2

CODE EXAMPLE 20-5 Java code 20-3

CODE EXAMPLE 20-6 Bytecodes 20-3

CODE EXAMPLE 20-7 IR tree 20-4

CODE EXAMPLE 20-8 Generated code 20-4

CODE EXAMPLE 20-9 Java code 20-4

CODE EXAMPLE 20-10 Byte-codes 20-5

CODE EXAMPLE 20-11 Generated code 20-5

CODE EXAMPLE 20-12 Java code 20-6

CODE EXAMPLE 20-13 Bytecodes 20-6

CODE EXAMPLE 20-14 IR 20-7

CODE EXAMPLE 20-15 Generated code 20-7

CODE EXAMPLE 20-16 Java code 20-8

CODE EXAMPLE 20-17 Bytecodes 20-8

CODE EXAMPLE 20-18 IR 20-9

CODE EXAMPLE 20-19 Generated code 20-9

CODE EXAMPLE 20-20 Non-static non-synchronized method 20-11

CODE EXAMPLE 20-21 Static synchronized method 20-12
xiv CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 1

Dynamic Compiler Architecture

1.1 Introduction
This document describes the internal workings of the CDC-HI dynamic compiler. It
is assumed that the reader is already familiar with Chapter 5, Dynamic Compiler, of
the CDC Porting Guide, and section 4.3, Tuning Dynamic Compiler Performance, of
the CDC Runtime Guide.

The CDC-HI Dynamic Compiler, also called a just-in-time compiler (JIT),
dynamically converts Java bytecodes to native code during execution of a Java
application. Compilation is per-method, meaning that a single method of a class is
compiled at a time.

Compilation is triggered based on the specified compilation policy. The compilation
policy determines how soon a method is compiled based on number of invocations
and backwards branches. See the Dynamic Compilation Policy section of the CDC
Runtime Guide for details on how to specify the compilation policy.

The JIT supports on stack replacement (OSR) of executing methods. This means that
while a method is being interpreted, it can be compiled and then have execution
resume in the compiled method. In order to simplify support for OSR, it is only
triggered on backwards branches, and only when there are no values on the Java
evaluation stack.

The JIT has two passes: a front end that converts Java bytecodes to an intermediate
representation (IR), and a backend that converts the IR to native code. A build tool
called JCS produces code used by the backend to parse the IR tree. It is similar to
Yacc in both its purpose and syntax. There is also a large amount of runtime code to
support compiled methods, such as for object allocation and invocations.
1-1

1.2 Compiler Front End – IR Creation
The goal of the front end is to convert the Java bytecodes to an intermediate
representation (IR), which takes the form of a DAG (directed acyclic graph). For
example:

x = y + 1000;

Produces the following bytecodes:

iload y

sipush 1000

iadd

istore x

The following represents the IR tree for this assignment statement:

ASSIGN

/ \

LOCAL(X) ADD

/ \

LOCAL(Y) CONSTANT(1000)

This shows an assignment (the ASSIGN node) to the local x (the LOCAL node on the
lhs of the ASSIGN node) of the result of an add (the ADD node on the rhs of the
ASSIGN node). The ADD node shows the adding of the local y (the LOCAL node on
the lhs of the ADD node) to the constant 1000 (the CONSTANT node on the rhs of
the add node).

The front end also handles other tasks, such as verifier and security checks usually
made when the interpreter quickens opcodes, plus numerous optimizations on the
IR, such as method inlining and null check eliminating. This is all covered in more
detail in the JIT Intermediate Representation chapter.

1.3 Compiler Back End – JCS and IR Parsing
The back end is responsible for converting the IR generated by the front end into
native instructions. To do this, the IR tree must first be parsed. This is handled by a
parser produced by the JCS tool at build time. As input it takes files that contain the
grammar of the IR, the syntax of which is also very similar to that of Yacc. For
example, the following grammar rule could be used to describe the ADD IR node:
1-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

reg32: IADD32 reg32 aluRhs

Note – The ADD node has been renamed to IADD32. This is because of a
transformation done in the back end, which will be explained in more detail later.

In this example, the rhs rule is an IADD32 node with a reg32 node its lhs and aluRhs
node on its rhs, and it produces a reg32 node. This above rule can be viewed as
converting an IADD32 node to a reg32 node, so it can then be consumed by other
rules requiring a reg32 node.

A reg32 node represents an evaluated IR expression, either in memory or in a
register. In the case of the example IR above, it would be the local y. An aluRhs node
is either an evaluated IR expressions (a reg32) or an immediate value that can
possibly be used in a native instruction without loading it into a register first. In the
example IR above, it would be the constant 1000.

More details on JCS and grammar rules can be found in the JavaCodeSelect
chapter.

1.4 Compiler Back End – Semantic Actions
Most JCS rules have semantic actions (in the form of C code), and this is where code
generation takes place. For example, the semantic action for the IADD32 rule would
contain something like the following:

CVMCPUemitBinaryALU(con,

CVMCPU_ADD_OPCODE,

CVMRMgetRegisterNumber(dest),

CVMRMgetRegisterNumber(lhs),

CVMCPUalurhsGetToken(con, rhs));

This is only a small part of the semantic action for the IADD32 rule. There is a lot of
other bookkeeping work that is also done, but this is where code is actually emitted.
An emitter function is called, specifying that an add instruction should be emitted,
using the specified register numbers as the destination and the lhs operands. The
aluRhs “token” will either be register number or a small immediate value which is
encodeable by the add instruction. For our example above the token would be the
constant 1000, and the following code would be emitted:

add r0, r1, #1000
Chapter 1 Dynamic Compiler Architecture 1-3

1.5 Compiler Back End – Register Manager
The Register Manager is a key component of the compiler back end that is used to
track the location of evaluated expressions. The location can be either in the
compiled frame, in the constant pool, and/or in a register allocated for the evaluated
expression. Each evaluated expression is mapped to a resource tracked by the
Register Manager.

The Register Manager supports targeting of resources into registers allocated from a
register set specified by the caller. Although register allocation is a key feature of the
Register Manager, the tracking of evaluated expressions is the primary function, and
therefore it could be more appropriately named the Resource Manager or Value
Manager.

The Register Manager is described in more detail in the Register Manager chapter.

1.6 Compiler Back End – Code Emitters
Another key component of the compiler back end are the code emitters. The
CVMCPUemitBinaryALU() emitter is used in the example above to emit the add
instruction. Code emitters exist at the lowest layer of the dynamic compiler and
usually are responsible for generating a very specific instruction or set of
instructions, such as adding together the value of two specific registers and storing
the result in a specific register. While much of the JIT source code is shareable across
most processors, the code emitters are always processor specific. In fact, it is the
presence of the code emitter APIs in the JIT HPI that make it possible to share much
of the JIT source code. Code emitters are covered in section 5.3.6 of the CDC Porting
Guide.

1.7 Other Compiler Components
There are many other components in the JIT. They are described in the following
chapters:

■ Code Cache Manager: Describes the management of memory that compiled
methods reside in.

■ JIT Memory Manager: Describes the management of memory allocated for use
during compilation.
1-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

■ Constant Pool Manager: Describes the management of constants referenced from
compiled code.

■ Stack Manager: Describes the management of method parameters on the Java
stack.

■ JIT Stack Maps: Describes the creation of GC stack maps for compiled methods.
■ JIT Runtime Support: Describes the runtime support code used by compiled

methods for doing things like invocations, object allocation, and object
synchronization.

■ In addition, more details on various compiler topics can be found in the following
chapters:

■ Phi Values: Explains phis, which are values left on the Java stack across basic
blocks.

■ Trap-based NullPointerExceptions: Explains the handling of null object
references by allowing them to cause a trap (SEGV).

■ GC Checks in Compiled Code: Explains how explicit GC check points at
backwards branch targets work in compiled methods.

■ Assembler Listings for Dynamically Compiled Code: Explains how to generate
assembler listings for dynamically generated code.

■ Code Generation Example: Steps through a few code generation examples from
Java source to bytecodes to IR to native code.

■ Intrinsic Methods: Explains how intrinsic methods work.
■ JIT Debugging Support: Provides debugging tips.
■ Profiling: Explains how JIT profiling works.

1.8 Compiler Porting Layers
One of the primary goals of the JIT is to make as much source code shareable as
possible among as many processor ports as possible. As mentioned above, having a
well defined set of emitter APIs aids in this goal. However, it is not possible to
define a set of emitter APIs that is flexible enough to support all processors, while
still allowing most JIT source to be shared. For this reason, it was decided that the
emitter APIs would only support common RISC processors such as ARM, PowerPC,
MIPS, Sparc, and SH. These processors all have many common characteristics, such
as a large set of general purpose registers, uniform instruction sizes, and simple
addressing modes. The differences between the processors, such as the number of
registers and instruction encodings, are easily abstracted with or hidden behind a set
of porting interfaces. Since some porting interfaces can be made common to all
processor ports, the JIT porting layer is split into two parts:

■ Shared layer: The shared porting layer is expected to be implemented by all
processor ports. This porting layer is relatively small and is defined in
src/share/javavm/include/porting/jit/jit.h and ccm.h.
Chapter 1 Dynamic Compiler Architecture 1-5

■ RISC layer: The RISC porting layer is where most of the porting effort is made,
but is only implemented by RISC ports. It mostly consists of two parts: the low
level emitter APIs and the CPU abstraction macros. The emitter APIs are
responsible for emitting instructions and the CPU abstraction macros define
characteristics of the processor.

Because of these two abstraction layers, all source for a JIT port that implements the
RISC porting layer will fall into one of three categories:

■ Processor specific code: This is where the porting effort for RISC ports is made,
and includes the implementation of the RISC porting layer and part of the Shared
porting layer. Code emitters and macros that characterize the processor make up
most of the processor specific code.

■ Shared RISC code: This code is shareable by all RISC ports and is expected to run
on all RISC processors. Most of the Shared porting layer is implemented by
Shared RISC code. Although there is very little to implement in terms of the
number of APIs, one of the APIs is CVMJITcompileGenerateCode(), which is
responsible for translating the IR into native instructions, so there is a large
amount of Shared RISC code to handle this task. The Shared RISC code is
implemented within the src/portlibs/jit/risc directory. The primary
Shared RISC components are the JCS grammar and the Register Manager, and
they are also the primary clients of the RISC porting layer. Shared RISC code is
the client of the RISC porting layer.

■ Shared code: This code is shareable by all ports and is expected to run on all
processors. It includes the entire front end (IR generator) and some minor
backend components such as the Code Cache Manager and JIT Memory Manager.
Shared code is the client of the Shared porting layer.

More information on the porting layers can be found in Dynamic Compiler chapter
of the CDC Porting Guide. It documents all the source files involved in doing a port.
Details of the porting layers are documented in the header files.

1.9 CVMJITCompilationContext
Whenever a method is being compiled, a CVMJITCompilationContext struct is
created. It maintains information about the state or context of the compilation, and is
the main conduit of information between the various passes and components of the
compilation.

A CVMJITCompilationContext* is passed to almost every API in the compiler.
Usually it is referred to as con, both as the argument name and when referenced in
this document.
1-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

1.10 Compiling a Method
CVMJITcompileMethod() is the entry point for the compilation of a method. It is
called automatically by the interpreter loop when it detects that a method should be
compiled. The actions taken by CVMJITcompileMethod() are summarized below:

CVMJITcompileMethod() {

CVMsysMutexLock(ee, &CVMglobals.jitLock);

CVMJITinitializeCompilation(&con);

CVMJITcompileBytecodeToIR(&con);

CVMJITcompileOptimizeIR(&con);

CVMJITcbufAllocate(&con, extraCodeExpansion);

CVMJITcompileGenerateCode(&con);

CVMJITwriteStackmaps(&con);

<intialize cmd>

CVMsysMutexUnlock(ee, &CVMglobals.jitLock);

}

■ CVMsysMutexLock(): Only one compilation is allowed at a time, and this is
accomplished by holding the jitLock during compilation.

■ CVMJITinitializeCompilation(): initializes the
CVMJITCompilationContext for use during the compilation.

■ CVMJITcompileBytecodeToIR(): The front end pass. Converts the Java
bytecodes to the intermediate representation (IR).

■ CVMJITcompileOptimizeIR(): An optimization pass over the IR. Currently all
IR optimizations are done when creating the IR, so
CVMJITcompileOptimizeIR() does nothing at this point.

■ CVMJITcbufAllocate(): Allocates a code buffer for the compiled method.
■ CVMJITCompileGenerateCode(): The back end pass. Converts the IR to native

instructions.
■ CVMJITwriteStackmaps(): Writes GC stack maps for the compiled method.
■ <initialize cmd>: A series of instructions that initializes the methods

CVMCompiledMethodDescriptor(cmd). This is where compilation specific
information for a method is stored, such as the pointer to the start of the method
and the pointer to stack maps for the method.

■ CVMsysMutexUnlock(): Unlocks the jitLock so another thread can start
compilation.
Chapter 1 Dynamic Compiler Architecture 1-7

1-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 2

VM Overview and Runtime
Internals

2.1 CVM Internal Structure with Compiler
CVM is a fully compliant Java 2 VM. The following sections will go through a map
of all the major data structures in the VM, and discuss the various sub-systems that
are associated with those data structures.
2-1

FIGURE 2-1 Map of CVM Data Structures

CVMglobals Java heap

• gc

ROOT STACKS

• jit

• cstate[]

• sysMutexes

• target

• javaVM

• mainEE

• threadList

• objLocks

...

• cvmObjMonitors

∅

EE EEEE

JNIJNI
INVOKE
INTERFACE

VECTOR
TABLE

STACK CHUNKS

∅

∅ROOT

CODE CACHE

COMPILED
METHOD

• threadICell

• jniEnv

• localRootsStack
• InterpreterStack

• tcstate[]

• prev/Next

• threadInfo

NATIVE THREAD DATA

NATIVE STACK

∅

ee

CHUNK

CHUNK

currentFrame

chunks

CVMStack

cvmFrame

ROOT
OBJ4

∅

Java Stack

Java Thread

eeTop

Thread

ClassLoader

Class

OBJ1

OBJ2

OBJ3

Class

Class

CVMClassBlock

CVMClassBlock

• javaInstanceX

METHODBLOCKS

BYTECODE

...

...
2-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

2.2 Globals
CVMglobals (of type CVMGlobalState) is a consolidated struct for holding all
global variables in the VM, and as the root of the tree of all runtime data structures
used in the VM. A consolidated location for all global variables makes it easier to re-
initialize the VM when needed in the absence of a process model.

2.3 The Java Heap
CVMglobals.gc (of type CVMGCGlobalState) is the global data structure for the
GC implementation that is built into CVM, and its contents are defined by the GC
implementation.

The Java heap is allocated and is managed by the GC implementation. It is allocated
during GC initialization, and a pointer to it is usually stored somewhere inside
CVMglobals.gc. The Java heap is used exclusively for storing Java objects only.
Other VM and class meta-data constructs are stored in malloced memory.

2.3.1 The Garbage Collector
CVM implements a built time pluggable garbage collector interface that allows it to
be used with different GC implementations if desirabed. The garbage collector
choice is configured at build time and is not changeable at runtime. CVM comes
with a generational collector which is built into CVM by default.

Regardless of the specific GC implementation, CVM assumes that the GC will be
exact. This means that CVM will provide some point in the execution of code when
the VM will be in a known state and all object references can be found. (See Chapter
6, “Creating a Garbage Collector” in the CDC Porting Guide.)

2.3.2 GC Consistency
Java threads will constantly alternate back and forth between a GC consistent (GC
safe) and GC inconsistent (GC unsafe) state. When the thread is in a GC safe state, it
will not hold onto any direct object pointers. Instead, all object references are kept in
ICells (see below) which are indirect pointers to the Java objects. This allows the GC
Chapter 2 VM Overview and Runtime Internals 2-3

to run without fear of moving objects and invalidating pointers that are being used
by the thread. When the thread is in a GC unsafe state, the thread may operate on
direct object pointers without fear of GC invalidating the values of those pointers.

The thread voluntarily switches back and forth between GC safe and unsafe states. It
never stays in a GC unsafe state for too long so as to not starve threads wanting to
do GC. The thread running GC will request that all threads become safe before
proceeding with GC. All threads are supposed to cooperate and become GC safe at
their earliest convenience. When all threads are GC safe, the GC thread is notified
and GC can commence.

Threads executing Java byte codes in interpreted mode will operate while mostly GC
unsafe except at designated points such as:

■ method invocations and returns
■ backward branches
■ calls into complex VM runtime functions

Threads executing JIT compiled code will operate while mostly GC unsafe until they
need to call into certain JIT runtime functions. Backwards branches and method
invocations can be made to become GC safe by use of a patching mechanism if
available. Else, these locations will implement explicit GC checks which become GC
safe if necessary.

Threads executing JNI native methods will operate while mostly GC safe. When the
thread needs to operate on Java objects, it calls through JNI APIs which will become
GC unsafe long enough to operate on the object, and then resumes being GC safe
before returning to the native method.

Most complex VM runtime work needs to be done in a GC safe state for 2 reasons:

■ The work being done may be lengthy, and this should not stop another thread
from running GC while waiting for this work to complete.

■ The VM runtime may need to acquire locks for its work. Hence, the current
thread may block on those locks. The thread needs to make sure it is GC safe
when blocked so as to not stop another thread from running GC.

GC safety within the VM is covered in more detail in the first few pages of the
Creating a Garbage Collector section and the chapter “How To Be GC-Safe” in the
CDC Porting Guide.

2.3.3 CVMObjectICell

A CVMObjectICell (or icells in general) is a construct for holding a pointer to an
object. The location of every icell in the system is known to the VM. Hence, when
GC needs to run, each icell will be updated with new object pointer values if the
object that they refer to gets moved during the GC cycle.
2-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

GC safe code are not supposed to refer to Java objects using direct pointers. Instead,
they should be using icell pointers (i.e. CVMObjectICell* or jobject).

2.4 The JIT Code Cache
CVMglobals.jit(of type CVMJITGlobalState) is the global data structure for
storing control data structures and parameters for the dynamic compiler. A pointer
to the JIT code cache is also stored there. The JIT code cache is a contiguous memory
buffer which is used for storing compiled methods and their meta-data generated by
the dynamic compiler. The amount of memory available for storing compiled
methods and their meta-data is limited by the size of the code cache which can be
specified on the VM command line. The code cache is allocated using malloc during
VM initialization.

2.5 Java Classes
Java classes are represented in memory as two constructs that work together in
pairs:

■ java.lang.Class object
■ CVMClassBlock struct

2.5.1 java.lang.Class

The Class object, like any Java objects, are allocated out of the Java heap, except for
preloaded classes (see ROMized / Preloaded Classes below). Each Class object has a
pointer to its CVMClassBlock counterpart. The Class object only serves the purpose
of being the representation of the class that is observable from Java code. All the
interesting information about the class itself is actually stored in the corresponding
CVMClassBlock.
Chapter 2 VM Overview and Runtime Internals 2-5

2.5.2 CVMClassBlock

The CVMClassBlock (or class block in general) is a C struct that is used to hold all
the meta-data for a Java class. It is allocated using malloc, except for preloaded
classes (see ROMized / Preloaded Classes below). There is one class block per Java
class. The class block contains an icell pointer to an icell that refers to its
corresponding java.lang.Class instance.

The class meta-data that is stored in or tracked by the class block includes:

■ GC reference map for instances
■ pointer to the virtual function table
■ pointer to static fields
■ method blocks
■ other properties of the class (superclass, inner classes)

The GC reference map is used during garbage collection to identify the reference
fields in the object instances of the class. This allows the GC to scan and update
those reference fields if needed.

Static fields which are references are grouped together contiguously at the start of
the block of static fields of the class. The class block also keeps track of how many
reference static fields it has. This allows GC to scan and update these reference fields
without the use of a map.

2.5.3 CVMMethodBlock

The CVMMethodBlock (or method block in general) is a C struct for holding meta-
data about a method. It is allocated on the C heap as part of the class block
allocation, i.e. the allocation of the class block asks for more memory to allow for the
method blocks to be located immediately after the class block data itself. There is
one method block struct for each method in the Java class (abstract, Java bytecode,
or native).

The method block contains the following method data:

■ name and signature
■ exceptions
■ pointer to more specific information for Java bytecode or native method

The method block is not immutable. When a method gets compiled, a pointer to the
start of the compiled method is stored into the method block.

Java bytecode methods are commonly referred to simply as Java methods. For Java
methods, the method block will have a pointer to a CVMJavaMethodDescriptor
struct. The CVMJavaMethodDescriptor contains:

■ the bytecodes for the method
2-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

■ the method exception table
■ debugging information like the line number table if applicable

The CVMJavaMethodDescriptor is immutable once it is initialized.

For native methods, the method block will have a pointer to the first instruction of
the native method.

2.5.4 Preloaded Classes
CVM includes support for preloaded classes. Preloading of classes means to pre-
digest the data for Java classes into java.lang.Class instances and class blocks
(and all its sub-tree of information including the method blocks) at build time.
Hence, classloading time will not be incurred at runtime for these preloaded classes.
The preloaded java.lang.Class instances are allocated from the .bss segment
(instead of from the Java heap), and the class blocks are allocated in read-only data
(instead of using malloc).

2.6 Java Objects
Java objects are allocated out of the Java heap, except for preloaded objects.
Preloaded objects are allocated from the .bss segment. The only objects which can
be preloaded currently are java.lang.String objects.

All Java objects start with the following header structure:

struct CVMClassBlock *

identity hask value

pointer to lock structure

GC

or

0:

1:

1:

GC mark bit
heap = 0
preloaded = 1

10

locked = 0
monitor = 1appropriate lock structure contains

evacuated data from header word
Chapter 2 VM Overview and Runtime Internals 2-7

2.7 Java Threads
Each Java thread executes in its own native thread, and is associated with the
following data structures:

■ a CVMExecEnv struct
■ a JNIEnv struct
■ some native thread data
■ a native stack
■ a Java stack

2.7.1 CVMExecEnv

The CVMExecEnv is the root data structure of the Java thread. A pointer to the
current thread’s CVMExecEnv (commonly known as the ee) is usually passed around
to all VM functions. The CVMExecEnv serves as a node in the global link list of all
threads in the VM. The head of the list is stored at CVMglobals.threadList.

The CVMExecEnv also serves to store the state of the thread. This includes:

■ Java locks owned, system mutexes owned
■ the Java stack
■ exceptions

All CVMExecEnvs are allocated using malloc except for the one for the main
thread. The main thread’s CVMExecEnv is embedded in CVMglobals as
CVMglobals.mainEE.

2.7.2 JNIEnv

The JNIEnv is the thread specific context for JNI native methods. The JNIEnv struct
is actually embedded within the CVMExecEnv of the thread. The JNIEnv* pointer
value can be computed from the CVMExecEnv* pointer value, and vice versa as
illustrated by the following macros:

#define CVMjniEnv2ExecEnv(je) \

((CVMExecEnv *)((char *)(je) - \

CVMoffsetof(CVMExecEnv, jniEnv)))

#define CVMexecEnv2JniEnv(ee) (&(ee)->jniEnv)
2-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

2.7.3 Native Stack Data
The native stack data is a CVMThreadID struct which is embedded in the
CVMExecEnv. CVMThreadID is target platform specific and is defined in the VM
porting layer implementation.

2.7.4 Native Stack
Since each Java thread executes in its own native thread, it also has its own native
stack. The shape and mechanics of the native stack depends on the underlying target
platform.

2.7.5 Java Stack
Each Java thread has a Java stack (CVMStack) which is allocated as a link list of
chunks. The Java stack is also commonly referred to as the interpreter stack. The
stack is allocated using malloc. More chunks are added automatically to the stack
as needed up to a limit. The stack is bounds checked as a new frame is pushed
during method invocation. Chunk crossing can cause arguments or return value
copying during method invocation or return.

2.7.6 Java Stack Frames
For each method invocation, a frame is pushed on the stack. The frames types
include:

■ Java frames (CVMInterpreterFrame)
■ Compiled frames (CVMCompiledFrame)
■ JNI native method frames (CVMFreelistFrame)

Stack frames generally consists of incoming arguments which are part of the local
variables of the method (also commonly referred to as locals), a frame record, and an
operand stack area. The outgoing arguments of a method usually reside in the
operand stack region of the caller method frame, and this stack region is mapped as
the start of the locals region in the callee method frame. No arguments copying is
done except for a few exceptional cases.
Chapter 2 VM Overview and Runtime Internals 2-9

2.7.6.1 CVMInterpreterFrame

The CVMInterpreterFrame is shaped as shown in FIGURE 2-2:

FIGURE 2-2 CVMInterpreterFrame

2.7.6.2 CVMCompiledFrame

The CVMCompiledFrame is shaped as shown in FIGURE 2-3:

FIGURE 2-3 CVMCompiledFrame

incoming arguments

local variables

struct

evaluation stack &
outgoing arguments

CVMInterpreterFrame

local pointers

frame pointer

stack pointer

previous frame

outgoing arguments

incoming arguments

local variables

struct

evaluation stack &
outgoing arguments

CVMInterpreterFrame

local pointers

frame pointer

stack pointer

previous frame

outgoing arguments

compiler temporaries

JSP

JFP
2-10 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

2.7.6.3 CVMFreelistFrame

The CVMFreelistFrame is shaped as shown in FIGURE 2-4:

FIGURE 2-4 CVMFreelistFrame

2.7.7 Stackmaps
In order for the GC to be able to find object references on the Java stack, it makes use
of stackmap data structures (CVMStackMaps) for the method being executed in the
frame on the stack. For a given program counter values, the stackmap will indicate
where in the object references are located within the stack frame. There only need to
be stackmaps for program counter values which represent GC points in the code.

Stackmaps for interpreted frames are generated at GC time as needed using a
stackmap computer. Stackmaps for compiled frames are generated at the JIT
compilation time of the method being executed.

JNI native frames do not require stackmaps. Their incoming arguments are scanned
as part of the caller frame. Their local refs are contiguous and the bounds of this
region is known. Their outgoing arguments are scanned as part of the callee frame.

The native stack is not scanned by the GC. This is because there are no direct object
references on the native stack. All references to objects on the native stack are made
through icells.

incoming arguments

struct

evaluation stack &
outgoing arguments

CVMInterpreterFrame

local pointers

frame pointer

stack pointer

previous frame

outgoing arguments

compiler temporaries

JSP

JFP
Chapter 2 VM Overview and Runtime Internals 2-11

2.8 GC Roots
During garbage collection, the GC needs to scan all object references that are live.
These object references can reside in the following locations:

■ object instance fields
■ static fields
■ Java stack references and local refs
■ global refs

Object instance fields are found using the GC reference maps stored in the class
block of the object, and static fields are always located contiguously at the beginning
of the class static fields (see CVMClassBlock above). Java stack references are found
using stackmaps. Local refs are found using specific knowledge about the shape of
JNI native frames.

Global refs are allocated from global root stacks which are similar to the interpreter
stack. Unlike interpreter stacks, the global root stacks are not associated with a
specific thread but are part of the VM globals (e.g. CVMglobals.globalRoots).
The global root stacks only have one CVMFreelistFrame that can hold as many
global refs (also known as roots) as is limited by space in the stack. Like the JNI
native frames, no stackmap is needed here because the global refs are all contiguous
and the bounds of the region containing these references are known from the
CVMFreelistFrame.

2.9 Synchronization
Synchronization on Java objects is done using a fast lock mechanism using light-
weight lock records (referred to as fast locks) in most cases and only done using a
real lock mechanism (referred to as inflated locks) when needed. The premise behind
this implementation is that contention on Java locks are rare. Hence, there is no need
to associate an inflated lock with the object until contention occurs. Using an inflated
lock tends to be slower than just using a fast lock.

A Java object can be in one of 3 lock states at any one time:

 enum {

 CVM_LOCKSTATE_LOCKED = 0,

 CVM_LOCKSTATE_MONITOR = 1,

 CVM_LOCKSTATE_UNLOCKED = 2

 };
2-12 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

The lock state of the object is recorded in the least significant 2 bits of the 2nd word
in the object header (see Java Objects notes above). These bits are commonly referred
to as the object sync bits. For simplicity, this 2nd word in the object will be referred
to as the header word in the following.

By default, an object is unlocked, and the sync bits are set to
CVM_LOCKSTATE_UNLOCKED.

When a thread attempts to lock the object, it uses atomic operations to check and set
the sync bits as well as the header word. If the sync bits are
CVM_LOCKSTATE_UNLOCKED, then there is no contention on this object yet. Within
the same atomic operation, the header word will be replaced with a pointer to a fast
lock record and the sync bits are set to CVM_LOCKSTATE_LOCKED. The original
header word value is saved in the fast lock record (CVMOwnedMonitor).

If the same thread attempts to re-enter the lock on this object, it will find that the
sync bits are already set to CVM_LOCKSTATE_LOCKED, and check to see if it is the
owner of the fast lock. Since the current thread does own this fast lock, it simply
increments the reentry count in the fast lock record and proceed with code
execution.

If a different thread attempts to acquire the lock on this object, it will check and see
that it is not the owner of the fast lock record. This is considered a contention case
which will trigger the inflation of the lock. The lock inflation process is synchronized
with a global system mutex (CVMglobals.syncLock). Hence, only one thread can
do lock inflation at any one time.

To inflate the lock, the thread first replaces the header word and sync bits with
values that make the object appear as if it is locked with a fast lock but no thread
owns it. Once the header word and sync bits have been set appropriately, the thread
can proceed with associating the object with an inflated lock (CVMObjMonitor). The
original header word and sync bits are saved in the inflated lock. The object header
word will now be a pointer to the inflated lock, and its sync bits will be set to
CVM_LOCKSTATE_MONITOR. Ownership of the inflated lock will be assigned to the
thread that is the owner of the fast lock record previously associated with this object.
After inflation is complete, the thread will try to acquire the inflated lock. Since the
inflated lock is owned by another thread, this thread will block.

Other threads (including the actual lock owner thread) that try to lock this object
while inflation is in progress will detect a contention case and attempt to inflate the
lock. In so doing they will block on CVMglobals.syncLock. Once the inflater
thread is done inflating the lock and releases CVMglobals.syncLock, these other
threads will detect that the lock is already inflated and contend directly on the
inflated lock. The owner thread will be able to re-enter the inflated lock and
continues execution since it already owns the lock. Other threads will block on the
lock until the owner releases it completely (i.e. re-entry count goes back down to 0).
Chapter 2 VM Overview and Runtime Internals 2-13

The atomic operations used depend on the fastlock type (CVM_FASTLOCK_TYPE).
The fastlock type choice is a build time option and depends on the target platform
port. The choices are:

■ CVM_FASTLOCK_NONE
■ CVM_FASTLOCK_ATOMICOPS
■ CVM_FASTLOCK_MICROLOCK

CVM_FASTLOCK_NONEis basically a scheme where every lock on an unlocked object
is considered a contention case, and triggers inflation. Hence, an inflated lock will
always be used to synchronize on the object.

CVM_FASTLOCK_ATOMICOPS is a scheme where the object header word and sync
bits are checked and modified using an atomic compare and swap instruction.

CVM_FASTLOCK_MICROLOCKis a scheme where the object header word and sync
bits are checked and modified only within critical regions that are protected by
mutexes called microlocks. By default, microlocks are implemented as mutexes
supplied by the underlying target platform port. The platform may choose to
implement the microlock using custom mechanisms. An example of this is by using
a scheduler lock that disables context switching of threads.

See Chapter 4, “Fast Locking” in the CDC Porting Guide.

2.10 Other VM Components
Other components of the VM include:

■ the Java bytecode interpreter.
■ the class loading, linking, preparing, and verification sub-systems.
■ the dynamic compiler.
■ glue logic to enable transitions between interpreted and compiled code.
■ Misc.runtime libraries for interpreted and compiled code.

2.11 The Bootstrapping Process
The following listing shows the flow of execution from the main C function until the
main Java method is executed. Each line in the listing signifies a forward step in
time. Some details are left out for succinctness. In essence, the bootstrap process
starts with initializing the VM. After the VM is initialized, the JNI APIs are used to
invoke the main method of the Java application.
2-14 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

We see that the call to JNI’s CallStaticVoidMethod() for invoking the main Java
method eventually leads to CVMgcUnsafeExecuteJavaMethod. This is true
regardless of whether the main Java method is interpreted, compiled, or native.
CVMgcUnsafeExecuteJavaMethod is the VM’s interpreter loop function.

New threads are bootstrapped in a similar fashion by invoking the thread’s start
method using the JNI CallVoidMethod API which ultimately calls
CVMgcUnsafeExecuteJavaMethod.

main(argc, argv) {

 ansiJavaMain(argc, argv) {

 // Initialize the VM:

 JNI_CreateJavaVM() {

 CVMinitVMGlobalState(gs) {

 CVMpreloaderInit();

 CVMinitExecEnv(ee, CVM_TRUE) {

 // Init the thread's Java stack:

 CVMinitStack(... ee->interpreterStack);

 CVMjniFrameInit(...);

 CVMinitStack(... ee->localRootsStack) ;

 CVMinitJNIEnv(ee->jniEnv);

 }

 CVMinitGCRootStack(... gs->globalRoots);

 ...

 CVMinitGCRootStack(... gs->classLoaderGlobalRoots);

 CVMinitStack(... gs->classTable);

 CVMfreelistFrameInit(gs->classTable.currentFrame);

 ...

 CVMinitVMTargetGlobalState(gs->target);

 CVMgcImplInitGlobalState(gs->gc);

 CVMinitJNIJavaVM(gs->javaVM);

 ...

 CVMtypeidInit(ee);

 ...

 CVMID_allocNewInstance (...,

 CVMsystemClass (java_lang_OutOfMemoryError));

 CVMID_allocNewInstance (...,

 CVMSystemClass (java_lang_StackOverflowError));

 }
Chapter 2 VM Overview and Runtime Internals 2-15

 }

 ...

 // Invoke the main Java method:

 (*env)->CallStaticVoidMethod(env, cvmClass, runMainID) {

 ...

 // Use assembly glue to call native method:

 CVMjniInvoke(...) {

 // Marshall arguments onto Java stack:

 ...

 // Invoke the interpreter:

CVMgcUnsafeExecuteJavaMethod(...);

 // Marshall return value:

 ...

 }

 }

 }

}

2-16 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 3

JIT Intermediate Representation

3.1 Overview
Java source files are compiled into Java byte-codes, as defined in the JVM
specification. The JVM execution model is stack based. There is a runtime stack
which is used by byte-code instructions. Values are popped from the stack,
computation results are pushed back on the stack, method arguments and return
values are passed on the stack. So all “communication” between instructions and all
computation happens via the stack.

Our aim in the JIT is to translate these stack-oriented byte-codes into native code. In
the process, we’d like to analyze and manipulate code, optimize it, and remove
redundant computation. We’d like this manipulation to be fairly platform
independent, so we can share most of it between our ports. In addition, we aim to
expose some of the implicit Java language semantics inherent in the byte-codes by
expressing them via explicit lower-level operations (among these implicit semantics
are runtime checks and strict left-to-right evaluation order of expressions). Finally,
on architectures where it makes sense, we’d like to eliminate stack overhead as much
as possible, and use registers for most computations.

So we choose to translate byte-codes into a platform-independent intermediate
representation (IR) that is more amenable to manipulation than stack-oriented byte-
codes. Most code manipulation happens on the IR. The resultant IR is passed on to
the code generator for conversion into native code.

The purpose of this section is to outline what the IR looks like, and how the byte-
code to IR conversion is done. We outline the data structures, the conversion passes,
and the APIs involved in this intermediate conversion. The resultant set of data
structures make up the IR that represents the original byte-codes.
3-1

3.2 From Stack-Oriented to Value-Oriented
Our IR is a list of expression trees, which when traversed in postfix order represent
the original byte-code computation. All implicit Java semantics, such as strict left-to-
right evaluation order and implicit bounds checks and null checks, are made explicit
in the IR. This structure is most convenient to represent our stack-oriented byte-
codes for conversion into register-oriented low-level machine code.

Let’s start with an example:

class c {

int _foo;

public int f(int k) {

return _foo + k;

}

}

The stack-based byte-codes for method c.f() are:

 aload_0 // this

 getfield 2 // _foo

 iload_1 // k

 iadd // _foo + k

 ireturn

Our IR would represent this statement as an expression tree:

 IRETURN (7)

 |

 IADD (6)

 / \

 (4) FETCH32 LOCAL 1 (5)

 |

 (3) FIELDREF32

 / \

 (1) LOCAL 0 CONST 2 (2)

The original stack semantics are replaced with a value-based system. Each node has
zero, one or two arguments. These are linked together in a tree to reflect the original
computation.
3-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

The code generator receives this tree, and traverses it in a postfix manner. The
traversal order is marked on the above graph. Each subnode traversal could involve
code generation as a side effect. The result of each computation can be associated
with the subnode and passed on to other nodes for use for their code generation.
When the traversal is complete, the program’s translation is complete. Note that the
traversal order is key to satisfying Java evaluation order and runtime check
requirements, so the “shape” of the IR tree produced by the front end cannot be
altered very easily.

3.3 IR Basics
First off, let’s define a few terms and concepts.

Our JIT compiles Java methods. Each method is split into “extended basic blocks” --
sequences of byte-codes in which flow control always enters at the beginning (i.e.
there are no branches into the middle of an extended basic block). Once extended
basic blocks are determined, the front-end works block by block, and generates the
IR for each block.

Expressions are built into expression trees made up of “IR nodes.” IR expression
trees are collected under “root IR nodes.” Root nodes represent statements, such as
an assignment, branch or void method invocation.

At the end of the bytecode-to-IR conversion, a list of root IR nodes hangs off of each
block, representing the code for that block. And blocks are linked together as well.
This means that the code generator can go over each block, iterate over the root
nodes of each block, and generate code for the trees found within.

Now we will explain the format of an IR node, a root node, and a block.

3.4 IR Node Format
Each IR node is represented by a C struct. The main node type is CVMJITIRNode. In
object-oriented terms, CVMJITIRNode is the “super-class” of all IR nodes.
“Subclasses” of nodes include binary nodes, unary nodes, lookupswitch and
tableswitch nodes, among others.

For reference, here’s the full declaration of a CVMJITIRNode:

struct CVMJITIRNode {

#if defined(CVM_DEBUG) || defined(CVM_TRACE_JIT)
Chapter 3 JIT Intermediate Representation 3-3

 CVMUint32 nodeID; /* for IRdump purpose */

 CVMBool dumpTag; /* Each IR node is dumped only once. */

#endif

 CVMUint16 tag; /* encodes node type, opcode, and typeid
*/

 CVMUint16 refCount;

 CVMUint16 curRootCnt; /* number of nodes built in current node */

 /* also used by code gen for state tag */

 CVMUint16 flags; /* See CVMJITIRNodeFlags enum list below. */

CVMInt32 regsRequired;/* code generation synthesized attributes */

 /*

 * Nodes can be decorated with some extra information so the

* backend can do a better job of register allocation. For example,

* we like to pass phi values in registers, but often the phi value

* is evaluated into the wrong register before the backend sees its

* DEFINE node. The solution is to have the creation of the DEFINE

 * node store the stackIdx in the value node so the backend knows

 * which register to put it in.

 */

 CVMJITIRNodeDecorationType decorationType;

 union {

CVMUint16 phiStackInfo;/* Stack index for outgoing
phi values */

CVMUint16 argNo; /* argument # for outgoing
parameter values */

 } decorationData ;

 CVMJITIRSubclassNode type_node;

};

Each node has several fields we care about. The most important shared fields are:

■ An id: a unique block-local identifier for the node. (’nodeID’)
■ A tag: A 16-bit value that encodes the opcode, basic type and subclass type of the

node. (’tag’)
■ A set of flags for the node. (’flags’)
■ A field of type CVMJITIRSubclassNode that is a union of all subclass

specializations of an IR node (’type_node’).
3-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Node identifiers are assigned sequentially as the IR nodes for a block are created. A
node created during the translation of a block can only be referred to by other nodes
created within the block. So the id is unique for the nodes of a block. Note that id’s
are only created in debug builds, for memory efficiency reasons.

Tags are an encoding of the opcode, node type, and basic type of the node. The
<opcode,node,type> triple uniquely defines the kind of a node.

Opcode tags are picked from the enumerated type CVMJITIROpcodeTag, and
indicate what operation this opcode represents. Examples are CVMJIT_GET_VTBL,
CVMJIT_LOCAL, CVMJIT_RETURN, and CVMJIT_NEW_OBJECT.

For reference, here’s the definition of a CVMJITIROpcode tag with a few highlighted
items (for full defintion see jitirnode.h).

typedef enum CVMJITIROpcodeTag {

 [...]

 /**

 * Constants - opcodes starting with CVMJIT_CONST are all opcodes

 * for CVMJITConstant32 or CVMJITConstant64 nodes.

**/

 /* The follow are all genreted by ldc opcodes */

 CVMJIT_CONST_JAVA_NUMERIC32, /* java Integer and Float */

 /* CVMJITLocal, reference to local variables */

 CVMJIT_LOCAL, /* {i|f|a|l|d|l}load */

 /* CVMJITUnaryOp */

 CVMJIT_ARRAY_LENGTH,

 CVMJIT_NEW_OBJECT,

 /* NOTE: It is important that the following NEW_ARRAY

 opcodes are sorted in the same order as the sequence

 of corresponding types in the CVMBasicType enum list

 (see basictypes.h). */

 CVMJIT_NEW_ARRAY_BOOLEAN,

 /* CVMJITUnaryOp, arithmethic and conversion ops */

 CVMJIT_CONVERT_I2B, /* convert i2b. */

 /* CVMJITUnaryOp */

 CVMJIT_RET, /* opc_ret */

 CVMJIT_RETURN_VALUE, /* {a|i|f|l|d}return */

 /* CVMJITBinaryOp */

 CVMJIT_ASSIGN, /* {i|f|a|l|d|c|s|b}store */

 CVMJIT_INVOKE,
Chapter 3 JIT Intermediate Representation 3-5

 /* CVMJITBinaryOp, arithmetic ops */

 CVMJIT_ADD, /* {i|f|l|d}ADD */

 /* CVMJITBranchOp */

 CVMJIT_GOTO,

 /* CVMJITConditionalBranch */

 CVMJIT_BCOND,

 [...]

} CVMJITIROpcodeTag;

Node tags (subclass indicators) are picked from the enumerated type
CVMJITIRNodeTag, and indicate what “concrete subclass” this node is. Examples
are CVMJIT_ROOT_NODE, CVMJIT_UNARY_NODE and CVMJIT_BINARY_NODE.

Here’s the full list of node tags:

typedef enum CVMJITIRNodeTag {

 CVMJIT_ROOT_NODE,

 CVMJIT_CONSTANT_NODE,

 CVMJIT_NULL_NODE,

 CVMJIT_LOCAL_NODE,

 CVMJIT_UNARY_NODE,

 CVMJIT_BINARY_NODE,

 CVMJIT_BRANCH_NODE,

 CVMJIT_CONDBRANCH_NODE,

 CVMJIT_LOOKUPSWITCH_NODE,

 CVMJIT_TABLESWITCH_NODE,

 CVMJIT_PHI_NODE, /* DEFINE and USED */

 CVMJIT_PHI_LIST_NODE, /* LOAD_PHIS, RELEASE_PHIS */

 CVMJIT_MAP_PC_NODE,

 /* NOTE: CVMJIT_TOTAL_IR_NODE_TAGS must always be at

 end of this enum list. It is used to ensure that the

 number of types of IROpcodeTags don't exceed the

 storage capacity alloted for it in the encoding of

 node tags.

 */

 CVMJIT_TOTAL_IR_NODE_TAGS

} CVMJITIRNodeTag;
3-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

And finally, type tags are picked from a CVM_TYPEID_* set of #define’s, and
indicate which basic Java type this node represents. Examples are
CVM_TYPEID_VOID, CVM_TYPEID_INT and CVM_TYPEID_OBJ.

Here’s a full list of basic types:

#define CVM_TYPEID_NONE 0

#define CVM_TYPEID_ENDFUNC1

#define CVM_TYPEID_VOID2

#define CVM_TYPEID_INT3

#define CVM_TYPEID_SHORT4

#define CVM_TYPEID_CHAR5

#define CVM_TYPEID_LONG6

#define CVM_TYPEID_BYTE7

#define CVM_TYPEID_FLOAT8

#define CVM_TYPEID_DOUBLE9

#define CVM_TYPEID_BOOLEAN10

#define CVM_TYPEID_OBJ11

For reference, the entire set of node definitions can be found in
src/share/javavm/include/jit/jitirnode.h

And the basic type definitions can be found in
src/share/javavm/include/typeid.h

There are macros that encode tags to fit into an IR node.

The basic macro is CVMJIT_TYPE_ENCODE(opcode,node,type), which encodes a
16-bit tag based on the parameters -- the triple that uniquely defines the ’kind’ of an
IR node.

Here are a few examples on how this works.

The first example is an integer type binary node. For that we have:

#define CVMJIT_ENCODE_IBINARY(opcodeTag) \

 CVMJIT_TYPE_ENCODE(opcodeTag,

 CVMJIT_BINARY_NODE, CVM_TYPEID_INT)

Here we are setting the type to int, and the subclass to binary. But we are leaving the
opcode open.
Chapter 3 JIT Intermediate Representation 3-7

Here’s how an integer addition would be encoded:

CVMJIT_ENCODE_IBINARY(CVMJIT_ADD)

The CVMJIT_BINARY_NODE subclass tag would tell the JIT to select the
CVMJITBinaryOp part of the CVMJITIRSubclassNode union of the IR node. This
is defined as:

 typedef struct {

 CVMJITIRNode* lhs;

 CVMJITIRNode* rhs;

 CVMUint16 data; /* e.g. true argsize of invoke node */

 CVMUint8 data2; /* more node specific data. */

 CVMUint8 flags; /* CVMJITCMPOP_UNORDERED_LT|

 CVMJITBINOP_ALLOCATION */

 } CVMJITBinaryOp;

Ignoring the last word, the binary operation has two arguments, the left-hand side
node and the right-hand side node. The tag already encodes an integer addition
operation. The arguments to the integer addition are the nodes pointed to by ’lhs’
and ’rhs’, which themselves may be composed of other subnodes.

In another example, to encode a local variable node kind, we would use
CVMJIT_LOCAL as the opcode and CVMJIT_LOCAL_NODE as the node subclass. The
type of local (integer vs. float, for example) would be indicated by the type_tag field.

So we would have:

#define CVMJIT_ENCODE_LOCAL(typeTag) \

 CVMJIT_TYPE_ENCODE(CVMJIT_LOCAL,

 CVMJIT_LOCAL_NODE, typeTag)

and now we can specialize an integer local node in the following way:

 CVMJIT_ENCODE_LOCAL(CVM_TYPEID_INT)

Here, CVMJIT_LOCAL is the opcode, and CVMJIT_LOCAL_NODE is the subclass
selector.

The CVMJIT_LOCAL_NODE subclass tag would tell the JIT to select the
CVMJITLocal part of the CVMJITIRSubclassNode union of the IR node. This is
simply defined as:

 typedef struct {

CVMUint16 localNo;

 } CVMJITLocal;
3-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

3.5 Conversion
Now we outline how byte-codes are converted to IR nodes. We first treat this phase
for individual expressions. In the next section, we define how the compiler performs
its passes to initiate this conversion for a given method.

The conversion of byte-codes to IR nodes involves emulation of the stack-based
byte-code architecture, and extracting a value-based intermediate representation
from the emulation.

To go back to our initial example, let’s consider the method c.f(I):

 aload_0 // this

 getfield 2 // _foo

 iload_1 // k

 iadd // _foo + k

 ireturn

We emulate the byte-codes’ effect on the stack. But our emulation serves a tracking
purpose only. We maintain an internal “stack” of IR nodes to figure out what the
byte-codes would be doing to the runtime stack were they to be executed at runtime.

So aload_0 accesses local 0, and pushes it onto the stack. When the translator sees
aload_0, this is what it does, in effect:

 loc = CVMJITirnodeNewLocal(CVMJIT_ENCODE_LOCAL

 (CVM_TYPEID_OBJ), 0);

 CVMJITirnodeStackPush(loc);

This in effect creates an object-typed local node, sets its local number to 0 (since this
node represents local 0), and pushes it on our emulation stack.

The next byte-code is getfield 2, which is defined as popping the top-most item on
the stack, and accessing field #2 out of it. So we pop the top item on the emulation
stack, which is “LOCAL 0” (the node), and we create a field read node off of it.

The ’2’ becomes a “constant node”:

 fieldOffsetNode = CVMJITirnodeNewConstantFieldOffset(2);

The popped “LOCAL 0” is set to be objrefNode:

 objrefNode = CVMJITirnodeStackPop();

And now we create:

 fieldRefNode =

 CVMJITirnodeNewBinaryOp(CVMJIT_ENCODE_FIELD_REF
Chapter 3 JIT Intermediate Representation 3-9

 (CVM_TYPEID_32BITS), objrefNode, fieldOffsetNode)

So basically we have created a binary node:

 fieldRefNode ---> FIELDREF32

/ \

LOCAL 0 CONST 2

We now want to do a read off of this field, since that is what getfield is supposed to
do. So we create a read:

fetchNode =

CVMJITirnodeNewUnaryOp(

CVMJIT_ENCODE_FETCH(CVM_TYPEID_32BITS),

fieldRefNode);

The read is a 32-bit read off of an object, which is represented as a unary operation.
So we now have:

 fetchNode ---> FETCH32

 |

 FIELDREF32

 / \

 LOCAL 0 CONST 2

So now fetchNode is a pointer to the head of this “compound” node. We now push
fetchNode back on our emulation stack:

The iload_1 instruction that follows pushes “LOCAL 1” onto the emulation stack.
And the addition operation simply creates a binary integer addition, and sets the
arguments of the binary node to be the two top values on the stack. Which leaves us
with the following, which is pushed back onto the stack:

 IADD

 / \

 FETCH32 LOCAL 1

 |

 FIELDREF32

 / \

 LOCAL 0 CONST 2

And finally, we get the return statement. We pop the IADD expression of the
emulation stack, we attach to it IRETURN, and we push it back.

 IRETURN

 |

 IADD
3-10 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 / \

 FETCH32 LOCAL 1

 |

 FIELDREF32

 / \

 LOCAL 0 CONST 2

So we basically iterate over the byte-codes to be translated, we keep track of the
stack state of the byte-codes using our own emulation stack, and we compose
expression trees that represent the original computation. By composing the tree in
the correct order (and expecting traversal to happen in the right order), we make
sure that Java semantics and evaluation order are followed correctly.

3.6 Example Expression Trees
Now we can go through a few common byte-code sequences, and show what the
resultant IR looks like. Before we do that, a few words about tracing bytecode to IR
translation (enable when the build option CVM_TRAE_JIT=true). The command
line option “-Xjit:trace=bctoir” traces the IR nodes created for compiled
methods. The display is hierarchical, where each level in an expression tree is
indicated with indentation.

So the following tree:

NODE1

 / \

 NODE2 NODE3

 / \

 NODE4 NODE5

would appear as:

 <(ID: 1) NODE1

 <(ID: 2) NODE2

 <(ID: 3) NODE3

 <(ID: 4) NODE4

 <(ID: 5) NODE5
Chapter 3 JIT Intermediate Representation 3-11

3.6.1 Arithmetic Operation
Arithmetic operations are the easiest type of expression trees to construct. Here’s an
example:

 public static int arith(int x, int y, int z) {

 return x * y + z;

 }

The bytecodes for this are:

<0> iload_0

<1> iload_1

<2> imul

<3> iload_2

<4> iadd

<5> ireturn

Where local 0, 1, and 2 correspond to x, y and z respectively.

The corresponding IR tree is:

 <(ID: 7) RETURN_VALUE (int)

 <(ID: 6) ADD (int)

 <(ID: 4) MUL (int)

 <(ID: 2) LOCAL (int) 0>

 <(ID: 3) LOCAL (int) 1>

 <(ID: 5) LOCAL (int) 2>

which corresponds to:

 RETURN (int)

 |

 ADD(int)

 / \

 MUL(int) LOCAL2

 / \

LOCAL0 LOCAL1
3-12 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

3.6.2 Object Access With Null Check
Here’s an example of an access to a field:

class C {

 Object f;

 [...]

}

class C2 {

 public static Object accessField(C x)

 {

return x.f;

 }

}

The corresponding byte-codes are:

<0> aload_0

<1> getfield <C.x>

<4> areturn

Assume for now that the offset of the field C.x is 2 words from the header (i.e. the
first data word in the object). So the getfield below would refer to the constant 2
as the field offset.

The generated IR tree (ignore for now the TEMP and IDENTITY nodes. They are
going to be explained later on).

 <(ID: 7) TEMP (NONE)

 <(ID: 6) IDENTITY (reference) (ref count: 2)

 <(ID: 9) FETCH (reference)

 <(ID: 5) FIELD_REF (reference)

 <(ID: 4) NULL_CHECK (reference)

 <(ID: 2) LOCAL (reference) 0>

 <(ID: 3) CONST_FIELD_OFFSET (NONE) (2)

 <(ID: 8) RETURN_VALUE (reference)

 <(ID: 6) IDENTITY (reference) (ref count: 2)

This corresponds to:

 TEMP-------------RETURN_VALUE

| |
Chapter 3 JIT Intermediate Representation 3-13

 IDENTITY <--------------/

 |

 FETCH

 |

 FIELD_REF

/ \

 NULL_CHECK CONST 2

 |

 LOCAL0

Note here that there are two root nodes in this statement. Traversing the first one
forces the evaluation of the field access. The second one points to the first (which
when traversed already holds the value of the field read), and returns that value.

Also note that we’ve introduced a unary node called “NULL_CHECK.” This makes
explicit what’s only implicit in the byte-code semantics - that *before* a field access
is performed, an explicit null check has to be performed. The traversal order of this
tree preserves the original order of the implicit runtime check and the evaluation of
the read. First the local node is evaluated. Then the NULL_CHECK node is
evaluated, and causes code to be generated that tests the local node for null and
throws an exception if it is. The field reference is only evaluated after the null check.

There are ways to eliminate explicit null checks. This will be explained later on.

3.6.3 Object Access With Lazy Class Initialization
Check
The above example referred to a field reference in a class that was already loaded
and initialized in the system. The use of the constant 2 for the field offset implies the
field is well known at JIT-time (i.e. the class C is loaded and initialized when the
method C2.accessField() is JIT’ed). But Java semantics require that a class not
be initialized until its first active use. So it is now worth examining what would
happen if the class C above were not initialized, and the offset of the field C.x was
not known at JIT time. The JIT would then have to generate code that would resolve
the field reference at runtime and figure out its offset. We can’t “aggressively”
resolve this offset at JIT-time, because that would involve actually initializing the
class C, which is forbidden by Java semantics.

So here’s the IR tree (the byte-code is unchanged):

<(ID: 8) RETURN_VALUE (reference)

 <(ID: 7) FETCH (reference)

 <(ID: 6) FIELD_REF (reference)
3-14 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 <(ID: 5) NULL_CHECK (reference)

 <(ID: 2) LOCAL (reference) 0>

 <(ID: 4) RESOLVE_REFERENCE (NONE)

 <(ID: 3) CONST_GETFIELD_FB_UNRESOLVED (NONE)

 (cpIndex 2)

The tree looks similar to the above:

 RETURN_VALUE

 |

 FETCH

|

 FIELD_REF

/ \

 NULL_CHECK RESOLVE_REFERENCE

 | |

 LOCAL0 CONST_GETFIELD_FB_UNRESOLVED (cpIndex: 2)

Note that the constant field reference has been replaced with a
RESOLVE_REFERENCE opcode that refers to a constant pool entry for the field to be
accessed. The code generator will replace this with a call to a runtime routine that
will resolve the required reference “lazily,” only when it’s first executed.

Note once again that implicit Java semantics have been replaced with explicit
operations that preserve the original order of operations. The null check is done first.
The reference resolution is done next. The field reference is executed only if the two
succeed without an exception thrown. An exception due to a null check has to
happen before an exception due to a reference resolution. All this is implicit in
’getfield’ but explicit in the IR.

3.6.4 Array Access With Runtime Checks
Now an example of an array access expression:

public static Object accessArray(Object[] arr, int idx)

{

 return arr[idx];

}

The bytecodes for this are:

<0> aload_0

<1> iload_1
Chapter 3 JIT Intermediate Representation 3-15

<2> aaload

<3> areturn

And the IR tree is:

 <(ID: 10) RETURN_VALUE (reference)

 <(ID: 9) FETCH (reference)

 <(ID: 7) INDEX (int)

 <(ID: 2) IDENTITY (reference) (ref count: 2)

 <(ID: 8) LOCAL (reference) 0>

 <(ID: 6) BOUNDS_CHECK (NONE)

 <(ID: 3) LOCAL (int) 1>

 <(ID: 5) ARRAY_LENGTH (int)

 <(ID: 4) NULL_CHECK (reference)

 <(ID: 2) IDENTITY (reference) (ref

 count: 2)

which corresponds to:

 RETURN_VALUE

 |

 FETCH

 |

 INDEX

 / \

 /---> IDENTITY BOUNDS_CHECK

 | | / \

 | LOCAL 0 LOCAL 1 ARRAY_LENGTH

 | |

 | NULL_CHECK

 | |

 \------------------------------/

Note once again that this expression explicitly reflects what’s implicit in aaload.
The array reference ’arr’ first has to be evaluated (it can be composed of an
expression with side effects so its evaluation might throw an exception). Then the
index expression has to be evaluated (it too might be an expression with side effects,
so its evaluation might throw an exception). Then a NULL_CHECK has to be
performed on the array reference. Finally a bounds check has to be performed for
the arr[idx] reference, so the BOUNDS_CHECK node is generated, against the index
expression and the length of the array reference ’arr’.
3-16 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

When all these checks are performed, we can compute &arr[idx] (the INDEX
node) and do a read off of that (the FETCH node). Any exceptions thrown in the
evaluation of the array and index expressions, and the null and bounds checks all
have to be performed in the order prescribed by the JVM specification.

3.6.5 Method Invocation With Parameters and Return
Value
And finally, here’s an example of a method invocation, with parameter passing.

class C {

 public static int f(int arg1, int arg2, int arg3)

 {

 return arg1 + arg2 + arg3;

 }

 public static int g(int v1, int v2, int v3) {

 int result = f(v1, v2, v3);

 return result * result;

 }

}

The bytecodes for g() involve an invocation to f():

<0> iload_0

<1> iload_1

<2> iload_2

<3> invokestatic #3 // f(III)

<6> istore_3

<7> iload_3

<8> iload_3

<9> imul

<10> ireturn

The IR tree is:

 <(ID: 12) TEMP (NONE)

 <(ID: 11) IDENTITY (int) (ref count: 3)

 <(ID: 14) INVOKE (int)

 <(ID: 10) PARAMETER (int)

 <(ID: 2) LOCAL (int) 0>
Chapter 3 JIT Intermediate Representation 3-17

 <(ID: 9) PARAMETER (int)

 <(ID: 3) LOCAL (int) 1>

 <(ID: 8) PARAMETER (int)

 <(ID: 4) LOCAL (int) 2>

 <(ID: 7) NULL_PARAMETER (NONE)

 <(ID: 6) RESOLVE_REFERENCE (NONE)

 <(ID: 5) CONST_STATIC_MB_UNRESOLVED (NONE) (cpIndex 3)

 <(ID: 15) RETURN_VALUE (int)

 <(ID: 13) MUL (int)

 <(ID: 11) IDENTITY (int) (ref count: 3)

 <(ID: 11) IDENTITY (int) (ref count: 3)

which corresponds to:

TEMP------------------------------------> RETURN_VALUE

 | |

 | MUL

 IDENTITY< <-- / \

 | \ \--

 INVOKE --

 / \

 / RESOLVE_REFERENCE

 / |

 PARAMETER CONST_STATIC_MB_UNRESOLVED(3)

 / \

LOCAL0 PARAMETER

 / \

 LOCAL1 PARAMETER

 / \

 LOCAL2 NULL_PARAMETER

A few things to note: Once again, there is a TEMP root node that evaluates the
invocation. The next statement, the return statement, points to the evaluated
invocation nodes.
3-18 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Parameters are passed using a list composed of multiple binary PARAMETER nodes.
The left-hand side of a PARAMETER node points to an individual parameter, and
the right hand side points to either the next parameter in line, or the
NULL_PARAMETER node. Evaluating this list evaluates each parameter, and the
code generator can set up the parameter list in preparation for the invocation.

3.7 Conversion Passes
This section talks about the implementation of byte-code to IR translation: the entry
point for the translation, the passes that are performed, and functions of interest.

The entry point for compilation is the function CVMJITcompileMethod() in
src/share/javavm/runtime/jit/jitcompile.c. This function is called by the
runtime system on a compilation trigger. In pseudo-code, it does roughly the
following:

 LOCK(jitLock); // Allow one compilation at a time

 InitializeContext(&con);

 CompileBytecodeToIR(&con);

 CompileOptimizeIR(&con);

 AllocateCodeBufferSpace(&con);

 GenerateCode(&con);

 WriteStackmaps(&con);

 FinalizeMethod();

 FreeWorkingMemory();

 UNLOCK(jitLock);

The byte-code to IR translation is done in the CompileBytecodeToIR() stage. The
entry point function is CVMJITcompileBytecodeToIR() in
src/share/javavm/runtime/jit/jitir.c. The IR is created at this stage.

The bulk of the work is done in jitir.c:translateMethod().

The function firstPass() handles the preparation for the translation. This is the
block discovery phase. The byte-codes are scanned. Extended basic blocks are
identified. These are defined to be sequences of byte-codes with the only incoming
flow of control at the head, but with potentially multiple outflows of control. It is
possible to trivially identify extended basic blocks by iterating over the code and
following branches. An incoming branch makes an instruction a block header. When
there are no more branches to traverse, all blocks have been discovered.
Chapter 3 JIT Intermediate Representation 3-19

In the Java world, there are also exception handler blocks. These are not discovered
via the traversal of branches, but by looking at exception tables in class files.
Exception handlers are also marked as blocks.

Each block is represented by the data structure CVMJITIRBlock. Blocks are linked
together in a list, and arranged in byte-code pc order. So iterating over the blocks
follows the original order of the byte-codes.

After the first pass is over, we have a list of ordered blocks. Machine code generation
follows this block order as well, which ensures that generated code follows the
original byte-code order.

The second pass involves the actual translation. Here we don’t actually follow the pc
order, but flow order instead. We have a queue of blocks to be compiled. The first
block is placed on the queue. Translation then starts by retrieving the head block
from the queue. Every branch to a new block causes it to be placed on the
compilation queue. When there are no more queued blocks to process we are done.

Each block is translated in translateBlock(). Due to inlining (more on that later),
the translation unit is the “range” -- a range of byte-codes that could belong to the
method currently being compiled, or any of the methods it inlines. translateRange()
is the function that drives the byte-code to IR conversion. It handles each byte-code
in a byte-code range and translates it to IR trees. It emulates byte-code execution via
the use of an “IR node stack” to facilitate IR tree creation.

The root nodes that are created are all added to the block being translated. Once all
blocks are completely translated, byte-code to IR translation is completed, and code
generation takes over.

3.8 Simple Inlining
Assume we have a simple accessor method:

 private int getSize() {

return size;

 }

And a block of code that calls it using a nonvirtual invocation:

Block B0

 [...]

L0:

 x = getSize();

L1:
3-20 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 [...]

Inlining effectively rewrites the invocation, resulting in an equivalent list of inlined
statements:

Block B0

 [...]

L0:

 x = size;

L1:

 [...]

Conceptually, the bytecodes for the inlinable target method are translated as if they
encountered at the call site. This is very similar to macro expansion in the C
preprocessor. In the above example, there are no branches in the target method, so
inlining did not cause new blocks to be created. But in general, inlining can cause
new blocks to be created.

3.9 Simple Multi-block Inlining
Suppose the target method is more complicated, requiring branches:

 private int getSize(int n) {

if (n > 0) {

 return size;

} else {

 return 0;

}

 }

Block B0

L0:

 [...]

L1:

 x = getSize(1);

L2:

 [...]

To correctly inline the reference at L1, Block B0 must be split:

Block B0
Chapter 3 JIT Intermediate Representation 3-21

L0:

 [...]

 /* fall through to next block */

Block B1

L1:

 /* getSize() prologue */

 ARG1 = 1

 /* fall through to next block */

Block B2

 /* expansion of getSize() */

 if (ARG1 > 0) { // if (n > 0) {

RETVAL = size; // return size;

goto R0;

 } else { // } else {

Block B3

R1:

RETVAL = 0;// return 0;

goto R0;

 } // }

Block B4

R0:

 /* getSize() epilogue */

 /* fall through to next block */

Block B5:

 x = RETVAL; // x = getSize(1);

L2:

 [...]

In the example, the current block is split into 6 different blocks. First, the block is
split into three parts, pre-invocation, invocation, and post-invocation. Finally, the
invocation block is split into separate prologue, expansion, and epilogue blocks.
Because the method contains an if-then-else, the expansion block is again split into
two blocks. For this example, there is no more block splitting required. For nested
inlining, the process would be repeated inside the expansion block if it contained
inlinable invocations.

The prologue block is where incoming arguments are copied into local variables.
Also, if the target method is synchronized, a monitor-enter operation is performed.
3-22 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

The epilogue block is where the target method returns to. All “returns” in the
inlined method are converted into “gotos” to the epilogue block. A monitor-exit will
be performed if the inlined method was synchronized.

During translation, split blocks are rejoined wherever possible. In the above
example, blocks B0, B1, and B2 will be rejoined, and block B4 and B5 will also be
rejoined, resulting in:

Block B0

L0:

 [...]

L1:

 /* getSize() prologue */

 ARG1 = 1

 /* expansion of getSize() */

 if (ARG1 > 0) { // if (n > 0) {

RETVAL = size; // return size;

goto R0;

 } else { // } else {

Block B3

R1:

RETVAL = 0;// return 0;

goto R0;

 } // }

Block B4

R0:

 /* getSize() epilogue */

 x = RETVAL; // x = getSize(1);

L2:

 [...]

3.10 Virtual Inlining
In the above examples, the invocation was always nonvirtual, because the target
method was known as compile time. For virtual invocations, the actual target
method may not be known at compile time. The following is an example of a virtual
invocation due to method overriding.
Chapter 3 JIT Intermediate Representation 3-23

class A {

 int getSize(int n) {

if (n > 0) {

 return size;

} else {

 return 0;

}

 }

}

class B extends A {

 int getSize(int n) {

if (n > 2) {

 return size;

} else {

 return 0;

}

 }

}

Block B0

L0:

 A a;

 [...]

L1:

 x = a.getSize(1); // virtual invocation

L2:

 [...]

The inline a virtual invocation, the call site is rewritten to the following:

L1:

 // compare method block pointers

 if (a.getSize == A.getSize) {

L3:

x = a.getSize(1);// nonvirtual invocation

 } else {

L4:

x = a.getSize(1);// virtual invocation

 }
3-24 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

L2:

We “guess” that a.getSize() is calling A.getSize() instead of B.getSize(). If
our guess is right, we perform a nonvirtual invocation, which gets inlined. If the
guess is wrong, we perform a virtual invocation. For performance reasons, the
virtual invocation block at L4 is moved “out-of-line” to the end of the method,
resulting in the following before inlining:

Block B0

L0:

 A a;

 [...]

L1:

 // compare method block pointers

 if (a.getSize != A.getSize) {

goto L4;

 }

 x = a.getSize(1); // nonvirtual invocation

L2:

 [...]

Block B1

L4:

 x = a.getSize(1); // virtual invocation

 goto L2;

And finally, after inlining:

Block B0

L0:

 A a;

 [...]

L1:

 // compare method block pointers

 if (a.getSize != A.getSize) {

goto L4;

 }

 // expansion of "x = a.getSize(1);" nonvirtual invocation

 /* getSize() prologue */

 ARG1 = 1

 /* expansion of getSize() */
Chapter 3 JIT Intermediate Representation 3-25

 if (ARG1 > 0) { // if (n > 0) {

RETVAL = size; // return size;

goto R0;

 } else { // } else {

Block B2:

R1:

RETVAL = 0;// return 0;

goto R0;

 } // }

Block B3

R0:

 /* getSize() epilogue */

 x = RETVAL; // x = getSize(1);

L2:

 [...]

Block B1 // out-of-line virtual invocation

L4:

 x = a.getSize(1); // virtual invocation

 goto L2;

3.11 Nested and Recursive Inlining
In the above examples, the method being inlined did not call any other methods. But
suppose method A calls method B, and we inline method A. During the translation
of method A, we encounter the invocation of method B. If method B is also inlinable,
the inlining process begins again, recursively. A stack of these inlined method
contexts is maintained during this process.

 int B() {

return 5;

 }

 int A() {

return B();

 }

Block B0

 [...]
3-26 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

L0:

 x = A();

L1:

 [...]

inlined to:

Block B0

 [...]

L0:

 // begin inlined method A

 RETVAL_A = B();

 // end inlined method A

 x = RETVAL_A;

L1:

 [...]

and recursively inlined to:

Block B0

 [...]

L0:

 // begin inlined method A

// begin inlined method B

RETVAL_B = 5;

// end inlined method B

 RETVAL_A = RETVAL_B;

 // end inlined method A

 x = RETVAL_A;

L1:

 [...]

If A() had called itself instead of B(), the invocations would have been recursive.
The expansion could potential have an unlimited depth. The front end has tunable
parameters for controlling inlining depth, and uses heuristics to sometimes stop
inlining before the hard limits are reached.
Chapter 3 JIT Intermediate Representation 3-27

3.12 Method Contexts
The front end uses a CVMJITMethodContext data structure to keep track of
inlining information each time an inlinable method is expanded. In the above
example, block B0 contains tree method contexts. The outer context belonging to the
original method being compiled, the context for inlined method A, and the context
for inlined method B. When an inlined method refers to LOCAL N, the method
context is used to map it to the appropriate local in the outermost context. So
LOCAL 0 in method A might map to LOCAL 5 in the generated code.

3.13 Argument Handling and Locals
Incoming arguments for an inlined methods are converted into locals. They are
assigned in the prologue block. As each new method context is pushed, the range of
locals mapped to that context increases. When translation reaches the end of the
inlined method, the range of locals is popped so that they can be reused by another
inlined method. So inlined method A might use LOCAL 5 through 6. Method B,
inlined from A, might use LOCAL 7 through 8. If A also called another method C,
that method might use LOCAL 7 through 10. After calling A, the outmost method
(call it X) might call D, using locals 5 through 9:

/* local map XXXXX */

 // begin inlined method A, locals 5 - 6

/* local map XXXXXAA */

// begin inlined method B, locals 7 - 8

/* local map XXXXXAABB */

// end inlined method B

/* local map XXXXXAA */

// begin inlined method C, locals 7 - 10

/* local map XXXXXAACCCC */

// end inlined method C

/* local map XXXXXAA */

 // end inlined method A

/* local map XXXXX */

 // begin inlined method D, locals 5 - 9

/* local map XXXXXDDDDD */
3-28 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 // end inlined method D

/* local map XXXXX */

It should be noted that passing a constant to an inlinable method might allow extra
optimizations to be performed. For example, getSize(1) would expand to

if (1 > 0) {

 return size;

} else {

 return 0;

}

which would be simplified into:

return size;

Likewise, returning a constant from an inlined method will also be optimized.
Sometimes the method did not return a liternal constant, but due to other
optimizations, return value turned into a constant:

if (n == 0) {

 return size;

} else {

 return n;

}

turns into:

if (1 == 0) {

 return size;

} else {

 return 1;

}

and simplifies into:

return 1;

when n == 1. These are some of the many benefits of inlining.
Chapter 3 JIT Intermediate Representation 3-29

3.14 Limiting Inlining
The depth of inlining is one tunable parameter (-Xjit:maxInliningDepth) that
effects the amount of code generated for each compiled method. Because any
method can be inlined, unlimited inlining would quickly fill up the code cache. The
front end use heuristics to decide how much inlining to do. Sometimes, especially if
recursive inlining is involved, the IR generated by the front end results in generated
code that is too big. In this case, we can ask for a bigger code buffer. But there is a
reasonable limit on code buffer size. In order to allow the method to be compiled
into, the front end will sometimes need to retry the compile with a smaller inlining
depth limit. So if the previous attempt failed at inlining depth 5, the next attempt
might limit the depth to 4.

3.15 Runtime Inlining Information and
BEGIN/END_INLINING Nodes
After a method is compiled, inlined method will not push a new frame on the stack.
Instead they use the frame for the outermost method. But there are times when
runtime system still needs to know, for a given program counter, what the call chain
(or stack trace) would look like, including inlined methods. To support this, the front
end generates BEGIN_INLINING and END_INLINING IR nodes. The END_INLINING
node is attached to the return value for inlined methods that return a value. So in the
example where we had

 x = RETVAL_A;

this will be represented in the IR as if it RETVAL_A was wrapped in an
END_INLINING node:

 x = END_INLINING(RETVAL_A);

This ensures that the end of the inlined method is correctly identified.

The back end is required to match these IR nodes with the appropriate logical PC
range in the generated code and store the range in a lookup table. At runtime, this
lookup table is used to map (PC) to (inlining depth, method block), for a given
compiled frame, allowing complete stack back trace and caller information to be
reconstructed.

// begin method X

L0:

 // begin inlined method A, locals 5 - 6
3-30 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

L1:

// begin inlined method B, locals 7 - 8

L2:

// end inlined method B

L3:

// begin inlined method C, locals 7 - 10

L4:

// end inlined method C

L5:

 // end inlined method A

L6:

 // begin inlined method D, locals 5 - 9

L7:

 // end inlined method D

L8:

// end method X

If the PC values were as labeled above, the mappings for this frame would be:

L0 --> (depth 0, method X)

L1 --> (depth 1, method A)

L2 --> (depth 2, method B)

L3 --> (depth 1, method A)

L4 --> (depth 2, method C)

L5 --> (depth 1, method A)

L6 --> (depth 0, method X)

L7 --> (depth 1, method D)

L8 --> (depth 0, method X)
Chapter 3 JIT Intermediate Representation 3-31

3-32 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 4

JavaCodeSelect

4.1 Introduction
When a method is being compiled, CDC-HI parses the method’s bytecodes and
builds an intermediate representation (IR) that can be further analyzed and
optimized. Details of the IR are described elsewhere, but here’s a quick overview:
the method is a linked list of basic blocks; each basic block contains a linked list of
directed acyclic graphs (DAGs), which can contain edges connecting one rooted
DAG to another. The DAGs are carefully constrained, so that in general they can be
viewed as trees.

Java Code Select (JCS) is a parser generator similar in purpose to YACC or Bison.
Where YACC or Bison build parsers that perform pattern matching with streams,
JSC produces parsers that performs pattern matching within tree-based data
structures. JCS is based on the work of Graham, Henry, and Pelegri-Llopart [Pel88,
Hen89].

Patterns are organized as a set of JCS rules similar to those of a parser generator
such as YACC or Bison. These rules are processed by JCS when CDC-HI is built,
resulting in files of C source code and initialized data. These are compiled at build
time and linked into CDC-HI.

Code generation using rule-based pattern matching on trees is described in
[Muchnick] and [AhoG89]. The principle difference between JCS and the pattern
matching described there is that JCS determines which rules to apply using static
costs, rather than dynamically computed costs. This means that JCS make more of
the decisions at build time rather than when the compiler is running.

Code generation using rule-based pattern matching is easier to program when the
set of instructions is at all complex or at all flexible (as it is for a retargetable code
generator). This is because the code generator generator takes care of making sure
that the best rule is used at any point, based on the cost metric.
4-1

4.2 Concepts
The following sections describe some of the basic concepts of JCS. Understanding
these will help with the JCS Syntax section that follows.

4.2.1 Tokens, Terminals, and Nonterminals
JCS patterns are made up of grammatical terminals and grammatical nonterminals.
The terminals represent nodes in the IR tree which matches a pattern. The
nonterminals represent the result of some other rule. That is, a nonterminal indicates
that another rule of a certain sort matched a subtree of the one matching this rule.

A terminal represents one of:

■ a leaf node, which is an IR node having no subtrees, such as a local variable or
constant

■ a unary node, which is an IR node having one subtree, such as a unary negation
operator

■ a binary node, which is an IR node having two subtrees, such as a subtraction
operator

Terminals and non-terminals are represented by <word>s in the JCS input. A
<word> begins with a letter and is followed by zero or more letters, numerals, or
underscore characters.

[a-zA-Z][a-zA-Z_0-9]*

The <word>s representing terminals are specified as part of the JCS input. All other
<word>s used as parts of patterns or the result of rules (see below) are implicitly
declared as nonterminals.

The JCS statements that specify terminals are these:

<statement> ::= '%leaf' <word>// specify a leaf-terminal

<statement> ::= '%unary' <word>// specify a unary-terminal

<statement> ::= '%binary' <word>// specify a binary-terminal

The <word>s specified as terminals are used in the C files produced by JCS as labels
on switch statements.
4-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

4.2.2 Patterns, Pattern Specification, and Rules
A pattern is represented by a left-to-right, prefix form of the subtree it matches, as
specified here:

<pattern> ::= <subtree>

<subtree> ::= <non-terminal>

<subtree> ::= <leaf-terminal>

<subtree> ::= <unary-terminal> <subtree>

<subtree> ::= <binary-terminal> <(left) subtree> <(right)
subtree>

A rule consists of several parts, the first three of which specify the rule’s result (a
nonterminal), its pattern, and a small number giving the rule’s relative cost. Costs
are used to break ties when two or more sets of rules could be used to match the
same tree. A rule’s parts are separated by colons.

<statement> ::= <rule>

<rule> ::= <result> ':' <pattern> ':' <cost> ':' ...

<result> ::= <non-terminal>

<cost> ::= <number>

The number of non-terminals in a pattern is sometimes called its arity. Although IR
nodes are constrained to being at most binary, there is no limit on the arity of a
pattern. A rule is called a chain rule if its pattern consists solely of a single non-
terminal.

4.2.2.1 Example 1

Here is a simple example of partial JCS input. It specifies simple arithmetic on and
assignment to variables. Note that the full form of a rule has not yet been fully
specified.

%leaf LOCAL32

%unary INEG32

%binary IADD32

%binary ISUB32

%binary ASSIGN
Chapter 4 JavaCodeSelect 4-3

statement : ASSIGN LOCAL32 reg32 : 1 : ... // 1: assignment of
value to variable

reg32: LOCAL32 : 1 : ... // 2: a variable's value

reg32: INEG32 reg32 : 1 : ... // 3: the negation of a value

reg32: IADD32 reg32 reg32 : 1 : ... // 4: the sum of two values

reg32: ISUB32 reg32 reg32 : 1 : ... // 5: the difference of two
values

What Do These Names Represent?

The examples here follow the naming conventions of the production grammar.
Grammatical nonterminals are in lower or mixed case, grammatical terminals are
upper case.

■ ‘reg32’ represents any 32-bit value -- conceptually it is in a register during
execution of a RISC instruction, but the Register Manager (q.v.) is actually
allowed to move it between registers and temporary locations on the stack.

■ ‘IADD32’ is a 32-bit integer add operation. In general, the prefix I indicates an
integer operation, and the suffix 32 represents a 32-bit operation. ’INEG32’ and
’ISUB32’ follow this pattern.

■ ‘LOCAL32’ is a 32-bit local variable of indeterminate type.

4.2.2.2 Example 1a

So far, the costs have not helped us, since there is only one rule for each operation.
Consider this input tree:

 ASSIGN(a)

/ \

LOCAL32(b) IADD32(c)

 / \

 LOCAL32(d) INEG32(e)

 \

 LOCAL32(f)

According to the costs and rules given above, this tree will take 5 units of cost to
evaluate: rule 2 is applied to nodes d and f, rule 3 to node e, rule 4 at node c, and
rule 1 at node a. If the addition of a negation appears often in the input, it may be
worthwhile to recognize this as an opportunity to do subtraction. By adding this
rule:
4-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

reg32: IADD32 reg32 INEG32 reg32 : 1 : ... // 6: difference of
2 values

the same tree can be matched with cost 4: rule 2 applied at nodes d and f, rule 6 at
node c, then rule 1 at node a.

4.2.3 Code Generator Operation: Parsing the Tree
The parser generated by JCS does a bottom-up pattern match on a tree. This takes
multiple passes over the tree.

4.2.3.1 Match Phase

Each node is labeled with a state number. A state represents the set of possible
partial and full rules matches of the subtree rooted at the node.

Each leaf node is labeled with a state number based only on the node’s own
information, such as its operator and type.

Each interior node (binary or unary) is labeled with a state number based on the
node’s own information together with the state number(s) of its direct descendent(s).

4.2.3.2 Rule-based Phases

The rule-based phases are driven by node states and submatch goals. In order to
successfully match any rule with nonterminals in its pattern, other rules having
those nonterminals as results must first be matched. Thus at each step, nonterminals
in the rule’s pattern are used as the goals for subtree matches. Since a node’s state
represents a set of full and partial matches, knowing the goal for that node lets us
select a fully-matched rule from that set which will result in the goal nonterminal.
Costs are used to make the best selection.

Thus we can start at the top of the tree and recursively select rules which allow us to
parse the entire tree.

During the rule-based phases, the only nodes visited are those which matched rules.
Thus not every node is visited, and nodes which participate in chain rules may be
visited multiple times.
Chapter 4 JavaCodeSelect 4-5

Synthesis Phase

The synthesis phase gives us an opportunity to propagate information up the tree
from children to parents. It is a bottom-up rule-based tree traversal. This is generally
used for register targeting but there is nothing built into JCS specific to this task.
Each rule specifies a C expression which will be applied to the node rooting each
subtree which that rule will match.

Action Phase

The action phase is also a rule-based traversal of the tree. Each node rooting a
submatch will be visited twice: once before visiting all submatches, and once after.

The previsit is called the inheritance action. Like synthesis, it is used for register
targeting. It allows a rule to propagate information down to its children before those
nodes are visited. It is specified as a C expression which will be applied to the node.

The postvisit is called the semantic action. It is used for code generation and other
semantic bookkeeping. It is specified as a C statement.

Example 2

Given the grammar of Example 1 above, the match states are described below. In the
following [...] represents the part of a rule’s pattern matched by the state. If [...]
encloses the entire pattern, it is a full match of that rule. Through closure, a full
match of a rule induces us to add partial matches of further rules.

state #1: // for the leaf node LOCAL32

statement : ASSIGN [LOCAL32] reg32 // partial match
of rule 1

reg32: [LOCAL32] // full match of rule 2

// the following added by closure

statement: ASSIGN LOCAL32 [reg32]

reg32: INEG32 [reg32]

reg32: IADD32 [reg32] reg32

reg32: IADD32 reg32 [reg32]

reg32: ISUB32 [reg32] reg32

reg32: ISUB32 reg32 [reg32]

state #2: // for the unary node INEG32 and its reg32 submatches

reg32: [INEG32 reg32] // full match of rule 3

// the following added by closure

statement: ASSIGN LOCAL32 [reg32]
4-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

reg32: INEG32 [reg32]

reg32: IADD32 [reg32] reg32

reg32: IADD32 reg32 [reg32]

reg32: ISUB32 [reg32] reg32

reg32: ISUB32 reg32 [reg32]

state #3: // for the binary node IADD32 and its reg32 submatches

reg32: [IADD32 reg32 reg32] // full match of rule 4

// the following added by closure

statement: ASSIGN LOCAL32 [reg32]

reg32: INEG32 [reg32]

reg32: IADD32 [reg32] reg32

reg32: IADD32 reg32 [reg32]

reg32: ISUB32 [reg32] reg32

reg32: ISUB32 reg32 [reg32]

state #4: // for the binary node ISUB32 and its reg32 submatches

reg32: [ISUB32 reg32 reg32] // full match of rule 5

// the following added by closure

statement: ASSIGN LOCAL32 [reg32]

reg32: INEG32 [reg32]

reg32: IADD32 [reg32] reg32

reg32: IADD32 reg32 [reg32]

reg32: ISUB32 [reg32] reg32

reg32: ISUB32 reg32 [reg32]

state #5: // for the binary node ASSIGN and its reg32 submatch

statement : [ASSIGN LOCAL32 reg32] // full match of
rule 1

Here are the match phase transition tables. (-1) is the error state.

The leaf node LOCAL32 requires no transition table: it is immediately labeled with
state #1.

INEG32: descendent| result

 state # | state #

 1 2

 2 2

 3 2

 4 2

 5 -1
Chapter 4 JavaCodeSelect 4-7

IADD32: right descendent state #

 1 2 3 4 5

left 1 | 3 3 3 3 -1

desc. 2 | 3 3 3 3 -1

state 3 | 3 3 3 3 -1

 # 4 | 3 3 3 3 -1

 5 | -1 -1 -1 -1 -1

ISUB32: same as IADD32 but substitute state #4 for #3 in the result values.

ASSIGN: right descendent state #

 1 2 3 4 5

left 1 | 5 5 5 5 -1

desc. 2 | -1 -1 -1 -1 -1

state 3 | -1 -1 -1 -1 -1

 # 4 | -1 -1 -1 -1 -1

 5 | -1 -1 -1 -1 -1

This is the table mapping the state number and goal into rule numbers:

 STATE #

 1 2 3 4 5

 GOAL ________________

 |

 reg32 | 2 3 4 5 -1

 |

statement | -1 -1 -1 -1 1

Here is the state assignment for the example tree:

 ASSIGN(5)

 / \

 LOCAL32(1) IADD32(3)

 / \

 LOCAL32(1) INEG32(2)

 \

 LOCAL32(1)
4-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Example 2a

Adding rule 6 from example 1a causes a lot of changes in the above states and tables.
Changes are marked with a *. State #2 is now as follows:

state #2: // for the unary node INEG32 and its reg32 submatches

reg32: [INEG32 reg32] // full match of rule 3

* reg32: IADD32 reg32 [INEG32 reg32] // partial match
of rule 6

// the following added by closure on full match of
rule 3

statement: ASSIGN LOCAL32 [reg32]

reg32: INEG32 [reg32]

reg32: IADD32 [reg32] reg32

reg32: IADD32 reg32 [reg32]

reg32: ISUB32 [reg32] reg32

reg32: ISUB32 reg32 [reg32]

* reg32: IADD32 [reg32] INEG32 reg32

* reg32: IADD32 reg32 INEG32 [reg32]

To states #1, 3 and 4 the partially matched states now include the following due to
closure:

* reg32: IADD32 [reg32] INEG32 reg32

* reg32: IADD32 reg32 INEG32 [reg32]

and state #6 is added as:

* state #6: // for a full match of rule #6

* reg32: [IADD32 reg32 INEG32 reg32]

* // the following added by closure on full match of
rule 6

* statement: ASSIGN LOCAL32 [reg32]

* reg32: INEG32 [reg32]

* reg32: IADD32 [reg32] reg32

* reg32: IADD32 reg32 [reg32]

* reg32: ISUB32 [reg32] reg32

* reg32: ISUB32 reg32 [reg32]

* reg32: IADD32 [reg32] INEG32 reg32

* reg32: IADD32 reg32 INEG32 [reg32]

The transition tables are as follows:
Chapter 4 JavaCodeSelect 4-9

LOCAL32 remains as state #1

INEG32: descendent| result

 state # | state #

 1 2

 2 2

 3 2

 4 2

 5 -1

 *6 *2

IADD32 right descendent state #

 1 2 3 4 5 *6

left 1 | 3 *6 3 3 -1 *3

desc. 2 | 3 *6 3 3 -1 *3

state 3 | 3 *6 3 3 -1 *3

 # 4 | 3 *6 3 3 -1 *3

 5 | -1 -1 -1 -1 -1 *3

 *6 | *3 *6 *3 *3 *-1 *3

ISUB32: right descendent state #

 1 2 3 4 5 *6

left 1 | 4 4 4 4 -1 *4

desc. 2 | 4 4 4 4 -1 *4

state 3 | 4 4 4 4 -1 *4

 # 4 | 4 4 4 4 -1 *4

 5 | -1 -1 -1 -1 -1 *-1

 *6 | *4 *4 *4 *4 *-1 *4

ASSIGN: right descendent state #

 1 2 3 4 5 *6

left 1 | 5 5 5 5 -1 *5

desc. 2 | -1 -1 -1 -1 -1 *-1

state 3 | -1 -1 -1 -1 -1 *-1

 # 4 | -1 -1 -1 -1 -1 *-1

 5 | -1 -1 -1 -1 -1 *-1

 *6 | *-1 *-1 *-1 *-1 *-1 *-1
4-10 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

This is the table mapping state number and goal into rule numbers:

 STATE #

 1 2 3 4 5 *6

 GOAL ___________________

 |

 reg32 | 2 3 4 5 -1 *6

 |

statement | -1 -1 -1 -1 1 *-1

And finally, we can make a table of prerequisite actions for each rule. These can
easily be derived from inspecting the rules alone. In this table, the path is an
encoding of a path to follow from the root node of the subtree we want to match
with the rule:

L -- left subtree

R -- right subtree

U -- unary subtree

The goal gives the nonterminal we want to be the result of a subtree match at that
point. Note that a rule can have no prerequisites, or multiple prerequisites.

 path goal

 rule # _______________

 1 | R reg32

 3 | U reg32

 4 | L reg32

 & | R reg32

 5 | L reg32

 & | R reg32

 6 | L reg32

 & | RU reg32

Here is the state assignment for the example tree:

 ASSIGN(5)

 / \

 LOCAL32(1) IADD32(*6)

 / \

 LOCAL32(1) INEG32(2)

 \

 LOCAL32(1)

To parse this tree the algorithm would proceed as follows:
Chapter 4 JavaCodeSelect 4-11

At the top of the tree, we have a node in state 5 which we want to evaluate to goal
statement. We will use rule 1 which requires that we first evaluate its right subtree
into a reg32. So we recursively visit the IADD32 node to do so.

At the IADD32 node, we have a node in state 6 which we want to evaluate to goal
reg32. We will use rule 6. Rule 6 requires that we first evaluate the left subtree into a
reg32, then evaluate the unary subtree of the right subtree as a reg32. So we first
recursively visit the left subtree.

At the LOCAL32 node we have a node in state 1 which we want to evaluate to goal
reg32. We will use rule 2. Rule 2 has no prerequisites so we can execute its semantic
action immediately and return.

Evaluation of the IADD32 node next recursively visits the unary subtree of the right
subtree to evaluate it as a reg32.

At the LOCAL32 node we have a node in state 1 which we want to evaluate to goal
reg32. We will use rule 2. Rule 2 has no prerequisites so we can execute its action
immediately, and return.

All prerequisites of rule 6 have been met, so its action can be executed. We return.

All prerequisites of rule 1 have been met, so its action can be executed.

Having completed the parse, we return.

4.2.4 DAG Support
Thus far the examples have all been trees. JCS has very simple support for DAGs.
When a rule is prefaced with ’%dag’, JCS generates code to tag the rule’s root with
additional state information. This allows it to avoid traversing the subtree multiple
times in each of its phases. Multiple traversals would cause JCS to be very confused
about the state of the subtree and the propagation of its information.

<statement> ::= '%dag' <rule>

Encountering a DAG rule subsequent to the first time causes recursion to be cut off.
Though the synthesis and semantic actions occur, inheritance does not. A test is
available allowing the semantic code to determine whether or not it is executing the
rule in the context of this node for the first time. See the section on Working with
DAGS in Code Generation for more information.
4-12 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

4.2.5 Conditional Compilation
Because one of the rule-selection criteria is cost, it is possible to write a grammar
with rules that JCS would never use. This most often happens when a platform-
specific rule overrides a higher-cost generic rule supplied by the RISC porting layer
of CDC-HI.

In normal operation, JCS will not emit the code for such unreachable rules, and can
be directed to generate #define symbols based on the rule’s use. This allows the
programmer to allow helper functions or data structures to compile or not, possibly
reducing the footprint of the resulting code generator.

Conditionally excluded rules and helpers can be unconditionally added by
#define CVM_CG_EXPAND_UNREACHED_RULE.

4.3 JCS Syntax
Now that all JCS’s important features have been introduced, the full input syntax of
JCS input files can be given.

■ Blank lines are ignored.
■ JCS comments are // to EOL.
■ Comments in C statements are /*...*/.
■ Each statement ends with a new line.
■ Newlines may be embedded within a C expression or statement.
■ A <word> is [a-zA-Z][a-zA-Z_0-9]*

<statement> ::= '%name' <word>

Specify <name>, which is used to compose the names of generated symbols in the
output. This allows multiple JCS generated parsers in the same program.

<statement> ::= '%type' <word>

Specify <type>, the typedef name to be used for pointer-to-nodes in the generated
output.

<statement> ::= '%goal' <word>

Specify the nonterminal which is the top-level goal of an entire tree match.

<statement> ::= '%opcode' <word>
Chapter 4 JavaCodeSelect 4-13

Specify the name of an int-valued function or macro used to retrieve a node’s
operator. A pointer to the node is passed as its parameter. This can be a simple field-
access macro or a function that combines opcode with type or other information to
provide a different view of the IR.

<statement> ::= '%left' <word>

Specify the name of a function or macro used to retrieve a pointer to a binary node’s
left subtree or a unary node’s only subtree. A pointer to the node is passed as its
parameter.

<statement> ::= '%right' <word>

Specify the name of a function or macro used to retrieve a pointer to a binary node’s
right subtree. A pointer to the node is passed as its parameter.

<statement> ::= '%setstate' <word>

Specify the name of a function or macro used to store state to a node. A pointer to
the node and an integer state number are passed as parameters.

<statement> ::= '%getstate' <word>

Specify the name of a function or macro used to retrieve a node’s state. A pointer to
the node is passed as its parameter.

<statement> ::= '%leaf' <word>

<statement> ::= '%unary' <word>

<statement> ::= '%binary' <word>

Specify terminals which are leaves, unary operators, or binary operators.

Hereafter, these are referred to as <leaf-terminal>, <unary-terminal> and <binary-
terminal>. These are used in the generated output as switch statement case labels.

The above <statements> make up the declarative statements. All declarative
statements must precede all rules.

<statement> ::= <rule>

<statement> ::= '%dag' <rule>

<rule> ::= <result> ':' <pattern> ':' <cost> ':' <synthesis-action>
':'

<inheritance-action> ':' <macro-list> ':'
<semantic-action>

<result> ::= <non-terminal>

<non-terminal> ::= <word>
4-14 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

A <non-terminal> is a <word> which is no a <leaf-terminal>, <unary-terminal> or
<binary-terminal>.

<pattern> ::= <subtree>

<subtree> ::= <non-terminal>

<subtree> ::= <leaf-terminal>

<subtree> ::= <unary-terminal> <subtree>

<subtree> ::= <binary-terminal> <(left) subtree> <(right) subtree>

<cost> ::= <number>

Decimal numbers only. Must be ? 0. Should be small.

<synthesis-action> ::= <C-expr> // a C expression

<synthesis-action> ::= // may be empty

If omitted, a default is used. It is one of the following:

i. For 0-ary rules, there is no default action

ii. DEFAULT_SYNTHESIS_CHAIN(con, $$) for chain rules

iii. DEFAULT_SYNTHESIS_ACTIONn(con, $$) for n-ary rules,

See below for the meaning of ’$$’ within a C-expr

<inheritance-action> ::= <C-expr> // a C expression

<inheritance-action> ::= // may be empty

If omitted, a default is used. It is one of the following:

i. For 0-ary rules, there is no default action

ii. DEFAULT_INHERITANCE_CHAIN(con, $$) for chain rules

iii. DEFAULT_INHERITANCE_ACTIONn(con, $$) for n-ary rules,

See below for the meaning of ’$$’ within a C-expr

<macro-list> ::= // may be empty

<macro-list> ::= <word> <macro-list>

This is the list of macros associated with the rule that will govern conditionally
compiled helper code. For each macro associated with a reachable rule, the following
will appear in the generated header file (see section on Output):

#ifndef <word>

#define <word>

#endif

For each macro associated with an unreachable rule, the following will appear in the
generated header file:
Chapter 4 JavaCodeSelect 4-15

#ifdef CVM_CG_EXPAND_UNREACHED_RULE

#ifndef <word>

#define <word>

#endif

#endif

<semantic-action> ::= <C-stmt>

<statement>::= <C-block>

<C-block> ::= '%{' .* '\n%}'

A <C-block> is any block of text that begins with ’%{’ and ends with ’%}’. These
delimiters should be on lines by themselves. The containing text is immediately
passed through without modification to the C program file produced by JCS. A <C-
block> usually contains helper code and data structures. Note that it will precede
any C code evaluated in the context of rules, such as <C-expr> or <C-stmt>. As such,
functions in a <C-block> don’t need forward declarations to be visible to that code.

<C-expr> and <C-stmt>

A <C-expr> is a well-formed C expression or statement. It may contain calls, /**/
comments ?: expressions, balanced () {} [], and generally anything except a naked
colon.

A <C-stmt> is a well-formed C statement. It is terminated by a semicolon or is a
sequence of statements enclosed by ’{’ and ’}’. A C statement may contain /**/
comments, quoted strings and newlines.

'$$'

The code included in <C-expr> and <C-stmt> is evaluated in the context of a specific
rule. The special symbol ’$$’ is expanded to the name of a pointer variable which
addresses the node that is the root of the subtree which this rule matches.

4.4 Other Input
In addition to the input grammar and associated actions, the programmer must
provide additional definitions to allow the operation of the program produced by
JCS. These should be defined in a <C-block> statement, or in a header file included
by one.
4-16 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

4.4.1 Default Actions
If any non 0-ary rules are specified with empty synthesis or inheritance expressions,
JCS will cause default actions to be called. These must be defined by the
programmer:

DEFAULT_SYNTHESIS_CHAIN(CVMCompilationContext*, <type>)

DEFAULT_SYNTHESIS_ACTIONn(CVMCompilationContext*, <type>)

DEFAULT_INHERITANCE_CHAIN(CVMCompilationContext*, <type>)

DEFAULT_INHERITANCE_ACTIONn(CVMCompilationContext*, <type>)

To make it easier to write default synthesis rules, the variable

<type> submatch_roots[<MAX-ARITY>];

(for <MAX-ARITY> the maximum rule arity) contains the roots of submatches to the
current rule. The synthesis action can use this to examine subtrees and their
properties.

For the mechanisms available during inheritance, see the section on Synthesis,
Inheritance, and Register Targeting.

4.4.2 Managing Recursion
The match, synthesis and inheritance algorithms all require traversing the IR tree
recursively. In order to minimize C stack depth, we avoid simple programmatic
recursion and use auxiliary data structures instead. The types of these data
structures are declared as

struct <name>_match_computation_state and

struct <name>_rule_computation_state

Though the form of these structures is fixed, their allocation is not.

These macros must be provided for the match phase:

INITIALIZE_MATCH_STACK

No parameters. Sets up the stack of struct <name>_match_computation_state.
Should declare a stack pointer.

MATCH_PUSH(<type> this, int op, <type> l, <type> r, int n, int
arity)

Fill in a new <name>_match_computation_state record and push it on the stack.
Assuming that mcp is the stack pointer declared in INITIALIZE_MATCH_STACK, it
could be defined like this:
Chapter 4 JavaCodeSelect 4-17

#define MATCH_PUSH(_p, op, l, r, n, arity){ \

 mcp->p = (_p); \

 mcp->opcode = (op); \

 mcp->subtrees[0] = (l); \

 mcp->subtrees[1] = (r); \

 mcp->which_submatch = (n); \

 mcp++->n_submatch = (arity); \

}

MATCH_POP(p, op, l, r, n)

The pop operation corresponding to MATCH_PUSH. Must be defined as a macro since
values from the top record are stored in the parameter values.

GET_MATCH_STACK_TOP

No parameters. Returns a (struct <name>_match_computation_state *) which is a
pointer to the topmost recursion record. Used for direct access to this record.

MATCH_STACK_EMPTY

int valued macro. No parameters. Returns 1 if stack is empty, else 0.

These must be provided for the synthesis and action phases:

INITIALIZE_GOAL_STACK

No parameters. Sets up the stack of struct <name>_rule_computation_state. Does
not need to declare a stack pointer, but must initialize the stack pointer

struct <name>_rule_computation_state* goal_top;

The goal stack will grow forward. Generated code increments goal_top to point just
after the top record.

GOAL_STACK_TOP

No parameters. Returns a (struct <name>_rule_computation_state *) which is the
limit of goal stack growth. Used to test stack integrity by calls of validateStack()
q.v.

GOAL_STACK_EMPTY

int valued macro. No parameters. Returns 1 if stack is empty, else 0.

Part of the definition generated for struct <name>_rule_compuatation_state is

 #define <name>_MAX_ARITY <MAX-ARITY>

 <name>_attribute * curr_attribute;

<name>_attribute attributes[<name>_MAX_ARITY];
4-18 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

The typedef for <name>_attribute must be provided. This is used for managing

inheritance in the presence of DAGs. See the section on Synthesis, Inheritance and
Register Targeting.

4.5 Debugging
The following macros are for debugging and instrumentation. Though they must
have definitions, the definitions may be empty.

The macro validateStack is called with a boolean expression and a word. The
word is an indicator of which stack is being verified. Here are examples of its use:

validateStack((goal_top < GOAL_STACK_TOP), Synthesis);

validateStack((goal_top < GOAL_STACK_TOP), Action);

and here’s an example definition:

#define validateStack(condition, stackName) { \

 CVMassert(condition); \

 if (!(condition)) { \

CVMJITerror(con, CANNOT_COMPILE, #stackName " stack too small"); \

 } \

}

validateStack can also be used by other code. For instance a call to
validateStack could be added to the MATCH_PUSH macro defined above.

These macros are for collecting stack depth statistics.

INITIALIZE_STACK_STATS(name)

A macro that defines and initializes a counter which will be manipulated by the
following routines. The name parameter is used to compose the counter name, and
may be used to pass information to any further collection mechanism.

statsPushStack(name) indicates a push to the named stack.

statsPopStack(name) indicates a pop of the named stack.

The following macros or functions are for debugging the execution of semantic
actions.

CVMJITdoStartOfCodegenRuleAction(
Chapter 4 JavaCodeSelect 4-19

CVMJITCompilationContext* con,

int ruleno, const char* ruleString, <type> nodePtr)

is called immediately before executing each rule’s semantic action.

CVMJITdoEndOfCodegenRuleAction(CVMJITCompilationContext* con) is
called immediately after.

Defining CVM_DEBUG or CVM_TRACE_JIT causes additional information to be
retained in case of a parse error (which should never occur in a production system).

Finally, the oldest and crudest form of debugging is to define the following:

#define <name>_DEBUG1

#define id(p)... get an identifying tag (e.g. node number) from
<type> p

will cause messages to stderr at various points in rule processing.

4.6 Output
The program produced by JCS defines three entry points. They are

int <name>_match(<type> root, CVMJITCompilationContext* con);

int <name>_synthesis(<type> root, CVMJITCompilationContext*
con);

int <name>_action(<type> root, CVMJITCompilationContext* con
);

Each phase returns 0 on success, -1 on failure.

The phases can be called independently, as long as they are called in the right order.
CDC-HI uses this capability by calling the match and synthesis phases on every
rooted DAG in the block before running the action phase on any of them. Since
DAGs can be connected, this can allow improved register targeting across
expressions.

JCS produces three output files:

■ Header file - Contains struct definitions shared between the other two files,
extern declarations for the above three entry points, and any conditional
compilation macro definitions produced as a result of processing a <macro-list>.
4-20 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

■ Data file - Contains constant data such as the transition tables, the table mapping
state and goal into the applicable rule, and the rule prerequisit table. JCS goes to
some lengths to reduce the size of these data. During state construction, JCS
reduces the number of states by combining those that are indistinguishable. And
when writing the output tables, identical rows and columns are coalesced using a
simple mapping process. This causes table lookup to take more time, but we
believe it is worth it.

■ Code file - Starts with the output of all <C-block>s, in the order given. Helper
routines should be bracketed with #ifdef if they are to be conditionally
compiled. This is followed by the three phases of pattern matching and rules
application. The declarations of these three entry points is given above.

4.7 References
■ [AhoG89] Aho, Alfred V., Mahadevan Ganaparhi, and Steven W.K. Tijiang. “Code

Generation Using Tree Pattern Matching and Dynamic Programming,” ACM
TOPLAS, Vol. 11, No. 4, Oct. 1989, pp. 491-516.

■ [Hen89] Henry, Robert R., “Encoding Optimal Pattern Selecection in a Table-
Driven Bottom-Up Tree-Pattern Matcher” Technical Report #89-02-04, Computer
Science Department, University of Washington, Seattle, WA.
[Muchnick] Muchnick, Steven S., Advanced Compiler Design and
Implementation, Morgan Kauffman Publishers, San Francisco, CA, 1997.

■ [Pel88] Pelegri-Llopart, Eduardo “Rewrite Systems, Pattern Matching, and Code
Generation” Technical Report UCB/CSD 88/423, Department of Electrical
Engineering and Computer Sciences, UC Berkeley.
Chapter 4 JavaCodeSelect 4-21

4-22 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 5

Code Generation Mechanics

A few points on the mechanics of code generation are introduced here:

■ Code generation for DAGs in the IR
■ The code generator’s semantic stack and its relation to JCS rules
■ Synthesis, inheritance and register targeting
■ Simple rule overriding using rule costs

5.1 Working with DAGs in Code Generation

5.1.1 Introduction
Although DAGs are a special case in the CDC-HI IR, their handling must be fully
understood for correct code generation. Here we discuss three aspects of DAGs:
their properties, the mechanism of traversal using JCS, and their annotations in the
semantic actions of code generation.

5.1.2 Properties and semantics Of DAGs in the CDC-HI
IR
■ The only nodes which can have multiple parents are the IDENTITY operator the

CONSTANT node.

■ All IR nodes have a refCount field. Only the IDENTITY and CONSTANT nodes
can have a refCount > 1.
5-1

■ Java has very strict left-to-right semantics, which the code generator must obey. A
DAG must be fully evaluated when it is first encountered using a first-to-last
traversal of a block’s roots, depth-first left-to-right traversal of each rooted DAG.
Thereafter it must not be reevaluated. This obviously doesn’t matter for
CONSTANT nodes, but it does for IDENTITY operators.

■ Due to the way the IR is generated, an IDENTITY node must be no larger than the
smallest node. If you don’t modify the node type definitions this should not be a
concern.

5.1.3 JCS handling of DAGs
When a DAG rule is present in a JCS grammar, special code is generated for the
pattern matching phases. In addition to the state numbers attached to every node
using the%setstate function, the code stores a state flag which tells it whether a
node has been visited the match phase, the synthesis phase, or the action phase.
Once a node has been Matched, it will not be traversed and marked again. Code like
this is generated at the top of the match loop:

stateno = IRGetState(p);

if (stateno >= CVMJIT_JCS_STATE_MATCHED){

 goto skip_match;

}

As a side note, the field we use to keep state is the same one that the front end uses
to keep subtree-size count

CVMUint16curRootCnt;

At the end of front-end processing of a method, this is summarized and used to
estimate the size requirements of some of the back end’s compile-time structures, so
this field is available for back end use. However, we don’t bother to rezero it before
entering the back end, counting on the small size of trees to be less than the int value
of this flag. If we ever did wish to reparse the block, this field would have to be
zeroed to clear all the state bits.

Similarly, the synthesis phase flags those nodes it visits. If it comes across a node
which has already been visited by synthesis and the rule being matched is marked
as a %dag rule, then synthesis processing of this node and any subtree matches is
cut off.

Finally, the action phase acts similarly to the synthesis phase, cutting off recursive
processing when a flagged node rooting a DAG rule is found. The semantic action
part of the rule is still executed. The semantic action is responsible for determining
whether or not it has been executed before, and determining what to do on reentry.
The macro CVMJIT_DID_SEMANTIC_ACTION is available to help it do this. Here’s
an example:
5-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 %dag reg32: IDENT32 reg32 : 0 : : : : {

 /* COMMON DECLARATIONS AND ACTIONS */

 ...

 if (!CVMJIT_DID_SEMANTIC_ACTION($$)){

/* FIRST VISIT ACTIONS */

...

 } else {

/* SUBSEQUENT VISIT ACTIONS */

...

 }

 /* COMMON ACTIONS */

 ...

};

5.1.4 Decoration of IDENTITY Nodes
In addition to all the fields shared with the Unary node type, the IDENTITY node
has one unique field, identDecl, which is a pointer to
CVMJITIdentityDecoration, declared as follows:

 typedef struct {

 #ifdef CVM_DEBUG_ASSERTS

CVMJITIdentityDecorationType decorationTag;

 #endif

CVMInt32 refCount;

 } CVMJITIdentityDecoration;

This is an example of faking a hierarchical type system using C: the identDecl field
must point to a struct the first element of which is a CVMJITIdentityDecoration.
We should know by context – which rule we are processing -- what the actual type
is, but when debugging we also have the decorationTag to test for correctness.

The simplest and most common subtype of CVMJITIdentityDecoration is the
CVMRMResource. This is an object representing a value either in a register or in a
temporary memory location. These are managed by calls to the register manager,
which allocates registers and manages their contents by generating load and store
instructions. The refCount field is used to determine when a value still has future
uses and indicate that it should be retained. When the semantic action of a rule
producing a 'reg32' is executed, a pointer to a CVMRMResource is pushed on a
compile-time semantic stack for consumption by later rules. With this background,
we can flesh out the above example:
Chapter 5 Code Generation Mechanics 5-3

 %dag reg32: IDENT32 reg32 : 0 : : : : {

 CVMRMResource* src;

 if (!CVMJIT_DID_SEMANTIC_ACTION($$)){

/* FIRST EVALUATION */

/* get subtree's CVMRMresource from stack */

src = popResource(con);

/*

 * point $$->identDecl to src using

 * CVMJITidentitySetDecoration(con, src, $$);

 * this should set src->dec.refCount to $$-
>refCount using

 * CVMJITidentitySetDecorationRefCount(con,
&(src->dec),

 * CVMJITirnodeGetRefCount($$));

 * Do other management tasks, too.

 */

CVMRMoccupyAndUnpinResource(CVMRM_INT_REGS(con), src, $$);

 } else {

/* SUBSEQUENT EVALUATIONS */

/*

 * fetch $$->identDecl using

 * CVMJITidentityGetDecoration(con, $$);

 */

src = CVMRMfindResource(CVMRM_INT_REGS(con),
$$);

if (src == NULL){

 /* something went unexpectedly wrong!! */

 return JIT_RESOURCE_NONE_ERROR;

}

 }

/* Our parent rule expects to find a CVMRMResource*
on the

 stack */

 pushResource(con, src);

};
5-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

The only other type of IDENTITY node decoration we use is the ScaledIndexInfo.
This is a structure that bundles up the information needed to use the commonly-
available array addressing modes:

[basereg+const]

[basereg+(indexreg*stride)] for stride in {1,2,4,8}

These are more intricate than CVMRMResources because of the number of elements
and choices that can be involved, but they are managed in the same manner.

5.2 Code Generator’s Semantic Stack
The semantic stack is used during code generation to communicate the product of a
subtree rule match to its parent match. The products of subtree matches become
input for their parents. Tree rule semantic actions are executed in depth-first, left-to-
right order. Thus a stack discipline can be used to manage rule products. When there
are multiple subrules, the left-most is deepest, and the right-most is on the stack top.
Each rule pops from the stack any products of subtree matches, does its own
processing, and pushes on the stack its own product.

The code generator’s semantic stack does not mimic the Java interpreter’s evaluation
stack.

Here is an example which assumes tree-formed expressions. This example shows
how the non-terminals of a JCS grammar define a simple type system, and how that
type system is reflected in the semantic stack.

 %name SimpleExample

 %leaf ICONST_32

 %leaf LOCAL32

 %binary INDEX

 %binary IADD32

 %binary IDIV32

 %binary ASSIGN

 %goal statement

 // nonterminals are: statement, reg32, aluRhs

 statement: ASSIGN INDEX reg32 reg32 reg32 : 1 : : :

 semantic_action;

 statement: ASSIGN LOCAL reg32 : 1 : : : semantic_action;

 reg32: ICONST_32 : 1 : : : semantic_action;
Chapter 5 Code Generation Mechanics 5-5

 reg32: LOCAL32 : 1 : : : semantic_action;

 reg32: IADD32 reg32 aluRhs : 1 : : : semantic_action;

 reg32: IDIV32 reg32 aluRhs : 4 : : : semantic_action;

 aluRhs: ICONST_32 : 0 : : : semantic_action;

 aluRhs: reg32 : 0 : : : semantic_action;

Note the forms of aluRhs here: a constant or a computed value. These correspond
to operand modes found in some instruction sets.

In the examples below, a CVMRMresource is the the data structure used by the
register manager (q.v.) to model the location of a value. The value can be in a
register, in a temporary location in memory, or a constant value to be instantiated on
demand.

Assume that each rule producing a reg32 computes this value into a temporary cell,
as represented by a CVMRMResource. An appropriate semantic stack element type
would look something like this:

typedef enum {

 REG_ELEMENT, ALU_RHS_ELEMENT;

} StackElementType;

typedef enum {

 CONST_RHS, VALUE_RHS

} AluRhsType;

typedef struct {

 AluRhsType rhsTag;

 ConstVal rhsConstVal;

 CVMRMResource * rhsRegVal;

} AluRhs;

typedef struct {

 StackElementType tag;

 union {

CVMRMResource *val;

AluRhs rhsVal;

 }u;

} SemanticStackElement;

Here, the StackElementType tag is only for debugging: when a reg32 nonterminal
is part of a pattern, the stack element must be a REG_ELEMENT; when an aluRhs
nonterminal is part of a pattern, the stack element must be an ALU_RHS_ELEMENT.
5-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

But the AluRhsType tag is required here, since the distinctions among the two types
of aluRhs nonterminals has been lost by the grammar, but must be rediscovered
when generating code.

Note that for a chain rule, you often have to pop an element from the stack,
manipulate the data, and re-push it in another form. The rule aluRhs: reg32 is an
example of a chain rule.

We can now fill in the example informally:

%{

 /*

 * In the production system, this is dynamically allocated

 * as part of the CVMJITCompilationContext.

 */

 static SemanticStackElement sstack[MAX_SS_DEPTH];

 static SemanticStackElement * sptr = &sstack[0];

 void

 pushResource(CVMJITCompilationContext* con, CVMRMResource* v){

sptr->tag = REG_ELEMENT;

sptr->u.val = v;

sptr++;

 }

 CVMRMResource *

 popResource(CVMJITCompilationContext* con){

sptr--;

assert(sptr->tag == REG_ELEMENT);

return sptr->u.val;

 }

 void

 pushAluRhs(

CVMJITCompilationContext* con,

AluRhsType tag,

ConstVal constant,

CVMRMResource* val

){

sptr->tag = ALU_RHS_ELEMENT;

sptr->u.rhsVal.rhsTag = tag;

sptr->u.rhsVal.rhsConstVal = constant;
Chapter 5 Code Generation Mechanics 5-7

sptr->u.rhsVal.rhsRegVal = val;

sptr++;

 }

 void

 popAluRhs(CVMJITCompilationContext* con, AluRhs* val){

sptr--;

assert(sptr->tag == ALU_RHS_ELEMENT);

val->rhsTag = sptr->u.rhsVal.rhsTag;

val->rhsConstVal = sptr->u.rhsVal.rhsConstVal;

val->rhsRegVal = sptr->u.rhsVal.rhsRegVal;

 }

%}

 statement: ASSIGN INDEX reg32 reg32 reg32 : 1 : : : {

 CVMRMResource* valToStore;

 CVMRMResource* baseReg;

 CVMRMResource* indexReg;

 valToStore = popResource(con);

 indexReg = popResource(con);

 baseReg = popResource(con);

 generateIndexedAssignment(baseReg, indexReg,
valToStore);

}

 statement: ASSIGN LOCAL32 reg32 : 1 : : : {

 CVMRMResource* val;

 LocalInfo* l;

 l = extractLocalInfo($$->left);

 val = popResource(con);

 generateLocalAssignment(l, val);

}

 reg32: ICONST_32 : 1 : : : {

 CVMRMResource* val;

 ConstantValue conval;

 conval = extractConstValue($$);

 val = getResource();

 generateLoadConstantValue(val, conval);

 pushResource(con, val);
5-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

}

 reg32: LOCAL32 : 1 : : : {

 CVMRMResource* val;

 LocalInfo* l;

 l = extractLocalInfo($$);

 val = getResource();

 generateLoadLocal(val, l);

 pushResource(con, val);

}

 reg32: IADD32 reg32 aluRhs : 1 : : : {

 AluRhs rhsVal;

 CVMRMResource* lhsVal;

 CVMRMResource* resultVal = getResource();

 popAluRhs(con, &rhsVal);

 lhsVal = popResource(con);

 generateALUInstruction(OPCODE_ADD, resultVal,
lhsVal,

 &rhsVal);

 pushResource(con, resultVal);

}

 reg32: IDIV32 reg32 aluRhs : 4 : : : {

 AluRhs rhsVal;

 CVMRMResource* lhsVal;

 CVMRMResource* resultVal = getResource();

 popAluRhs(con, &rhsVal);

 lhsVal = popResource(con);

 generateALUInstruction(OPCODE_IDIV, resultVal,
lhsVal,

 &rhsVal);

 pushResource(con, resultVal);

}

 aluRhs: ICONST_32 : 0 : : : {

 ConstantValue conval = extractConstValue($$);

 pushAluRhs(con, CONST_RHS, conval, NULL);

}

 aluRhs: reg32 : 0 : : : {
Chapter 5 Code Generation Mechanics 5-9

 CVMRMResource* val = popResource(con);

 pushAluRhs(con, VALUE_RHS, 0, val);

}

5.3 Synthesis, Inheritance, and Register
Targeting
Here we will walk through an example of using JCS’s synthesis and inheritance
phases to implement simple register targeting. For the sake of simplicity, this
example will assume tree formed expressions without DAGs. In the next section
we’ll revisit the example, showing how to target using the subtree evaluation target
stack managed by JCS.

This example is a continuation of the above example on the semantic stack. The
main difference is that in this case, we assume that integer division is implemented

by a subroutine call, that its parameters and return value are in registers, and that
the subroutine will use a larger set of registers without saving them. Let

SetAnnotation(node, which, value) -- annotate (decorate) the indicated
node. ’which’ indicates which annotation to set. For this example, TARGET or USED
’value’ is the set value to use for the annotation.

■ USED - the attribute naming the set of registers which must be used by this tree
and its subtrees. For example, if there’s a divide in here, it will include RdivSet.

■ TARGET - the attribute naming the set of registers acceptable for the result of this
subtree’s evaluation.

■ GetAnnotationValue(node, which) - retrieve the value of the indicated
annotation.

Rl -- set containing the target register for left operator of division

Rr -- set containing the target register for right operator of division

Rd -- set containing the register containing the result of a division

RdivSet -- set of registers used by division. Assumed to superset Rl + Rr + Rd.

RanySet -- set of usable registers

RbaseSet -- set of registers usable for base of indexed addressing.

Rempty -- empty register set
5-10 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

In this example, a node’s USED attribute is synthesized from those of its children
plus information about the node operation itself. The TARGET attribute is inherited
from its parent.

No default macros are used in these examples. In an actual JCS grammar there
would certainly be enough redundance that you would want to do so.

Ultimately, it is up to the consumer of a value to ensure that the value is in the
required register, but if a subrule match can cause a result to be delivered in the
proper register in the first place, excessive shuffling will be avoided.

 // target the base value to be in an acceptable base register

 // if possible

 statement: ASSIGN INDEX reg32 reg32 reg32 : 1 :

: SetAnnotation($$->left->left, TARGET,

RbaseSet - GetAnnotation($$->right, USED)

- GetAnnotation($$->left->right,USED));

 SetAnnotation($$->left->right, TARGET,

RanySet - GetAnnotation($$->right, USED));

 SetAnnotation($$->right, TARGET, RanySet)

: {

 CVMRMResource* valToStore;

 CVMRMResource* baseReg;

 CVMRMResource* indexReg;

 AluRhs target;

 valToStore = popResource(con);

 indexReg = popResource(con);

 baseReg = popResource(con);

 ensureInReg(baseReg, RbaseSet);

 ensureInReg(valToStore, RanySet);

 ensureInReg(indexReg, RanySet)

 generateIndexedAssignment(baseReg, indexReg,
valToStore);

}

 statement: ASSIGN LOCAL32 reg32 : 1 :

: SetAnnotation($$->right, TARGET, RanySet)

 : {

 CVMRMResource* val;

 LocalInfo* l;

 l = extractLocalInfo($$->left);
Chapter 5 Code Generation Mechanics 5-11

 val = popResource(con);

 ensureInReg(valToStore, RanySet);

 generateLocalAssignment(l, val);

}

 reg32: ICONST_32 : 1 : SetAnnotation($$,USED,Rempty) : : {

 CVMRMResource* val;

 ConstantValue conval;

 conval = extractConstValue($$);

 val = getResource(GetAnnotation($$,TARGET));

 generateLoadConstantValue(val, conval);

 pushResource(con, val);

}

 reg32: LOCAL32 : 1 : SetAnnotation($$,USED,Rempty) : : {

 CVMRMResource* val;

 LocalInfo* l;

 l = extractLocalInfo($$);

 val = getResource(GetAnnotation($$,TARGET));

 generateLoadLocal(val, l);

 pushResource(con, val);

}

 //

 // The set of registers used by this tree is the union of the

 // sets of its subtrees, since this node has no particular

 // requirements. Since the left-hand subtree is evaluated first,

 // it would be wise to target it to any that the

 // right-hand subtree does not require.

 reg32: IADD32 reg32 aluRhs : 1 :

 SetAnnotation($$, USED,

GetAnnotation($$->left,USED)

+ GetAnnotation($$->right,USED))

:

 SetAnnotation($$->left, TARGET,

RanySet-GetAnnotation($$->right,USED));

 SetAnnotation($$->right, TARGET, RanySet)

: {

 AluRhs rhsVal;
5-12 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 CVMRMResource* lhsVal;

 CVMRMResource* resultVal;

 popAluRhs(con, &rhsVal);

 lhsVal = popResource(con);

 resultVal =
getResource(GetAnnotation($$,TARGET));

 ensureInAluRhs(&rhsVal, RanySet);

 ensureInReg(lhsVal, RanySet);

 generateALUInstruction(OPCODE_ADD, resultVal,
lhsVal,

 &rhsVal);

 pushResource(con, resultVal);

}

 //

 // This operation requires that the value produced by the left

 // subtree be placed in register Rl,

 // and the value produced by the right subtree

// be placed in register Rr. This rule uses a large set of registers

 // as a side effect. It produces a value in register Rd.

 reg32: IDIV32 reg32 reg32 : 10 :

 SetAnnotation($$, USED, RdivSet

+ GetAnnotation($$->left,USED)

+ GetAnnotation($$->right,USED));

: SetAnnotation($$->left,TARGET,Rl);

 SetAnnotation($$->right,TARGET,Rr)

: {

 CVMRMResource* rhsVal = popResource(con);

 CVMRMResource* lhsVal = popResource(con);

 CVMRMResource* resultVal;

 ensureInReg(lhsVal,Rl);

 ensureInReg(rhsVal,Rr);

 flushRegs(RdivSet-Rl-Rr);

 generateCall("intDiv");

 resultVal = getResource(Rd);

 pushResource(resultVal);

}

Chapter 5 Code Generation Mechanics 5-13

 aluRhs: ICONST_32 : 0

 : SetAnnotation($$, USED, Rempty)

: {

 ConstantValue conval = extractConstValue($$);

 pushAluRhs(con, CONST_RHS, conval, NULL);

}

 aluRhs: reg32 : 0

: /* chain rule: pass through USED from below*/ ;

: /*chain rule: pass through TARGET from above */ ;

: {

 CVMRMResource* val = popResource(con);

 pushAluRhs(con, VALUE_RHS, 0, val);

}

5.3.1 Targeting with DAGs
In the presence of DAGs, the simple strategy given above doesn’t quite work.
Although the synthesized attributes propagate correctly, there is a problem with the
inherited attributes. Consider an IDENTITY node with multiple parents. Each parent
will hand down to it the target attribute desired for the evaluation of that parent.
Because of the first-to-last left-to-right evaluation order, that means that the
IDENTITY node will be left with the inherited attributes of the last parent that will
be evaluated. But it almost always makes more sense for it to have the attributes of
the first one when it is first evaluated. For this reason, inherited attributes can be
kept in the stack used by the Action phase to manage recursion. The inherited data
are encapsulated in the structure <name>_attributes mentioned in the section on
JCS.

Inherited attributes for the current node are accessed in the body of a semantic
action using

(goal_top-1)->curr_attributes.

In the body of an inheritance action the attribute inherited by the current node from
the parent currently being evaluated is also accessed using

(goal_top-1)->curr_attributes

while the value we wish to pass to our children -- left-to-right – are

goal_top->attributes[0] ... goal_top->attributes[n-1]
5-14 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Note that this also makes it easier to write default rules for any n-ary rules without
knowing the exact topography of them.

5.3.2 Targeting for Avoidance
The above example contained instances of targeting the evaluation of an expression
into a specific register or set of registers, and of targeting the evaluation of an
expression to avoid a specific set of registers. Consider this example IR tree:

 ASSIGN(8)

 / \

 / \

 / \

 INDEX IDIV32(7)

 / \ / \

 / \ / \

 LOCAL32(1) IADD32(4) LOCAL32(5) LOCAL32(6)

 / \

 / \

 LOCAL32(2) LOCAL32(3)

In order to obey strict left-to-right evaluation semantics, we must evaluate all the
components of the ASSIGN’s left hand subtree before evaluating its right hand
subtree. Conceptually, they will be evaluated in the order indicated by the labels.
(The INDEX node is not labeled because it is not the root of a rule submatch.)

Here is the targeting information for each node. In this table we break out the
positive targeting information (target set) from the negative targeting information
(avoid set).

node target set avoid set

1 RbaseSet RdivSet

2 RanySet RdivSet

3 RanySet RdivSet

4 RanySet RdivSet

5 Rl Rempty

6 Rr Rempty
Chapter 5 Code Generation Mechanics 5-15

In the CDC-HI compiler, the inherited register targeting attributes are represented as
pairs of register sets: the target set and the avoid set. These provide more
information to the register manager, which can weigh the following factors in a
register allocation decision:

■ Allocation request is strict or non-strict;
■ Which register, if any, the resource is currently in;
■ The values of the target set and the avoid set;
■ Whether any registers are available in the requested set.

5.4 Using and Reference Counting
Resources
There are a few rules that must be followed when working with CVMRMResources.

■ Whenever an instruction is generated, all value cells referenced by that
instruction must be bound to addresses. In general, this means bound (or as we
say ’pinned’) to registers. This includes values consumed by an instruction as well
as any values to be produced.

■ CVMRMResources should not be bound any longer than required, as this makes
the Register Manager’s job harder. In general, we don’t keep CVMRMResources
pinned between code generation rules.

■ CVMRMResources have reference counts, and these must be maintained as code
is generated.

■ A resource gets its initial reference count from the rule that first produces the
value. This count is taken from the IR node which is the root of the rule
submatch. IDENTITY and CONSTANT nodes can have a reference count
greater than 1.

■ Each time a rule consumes a value, the reference count must be decremented
by 1. Note that there isn’t necessarily a 1-to-1 correspondence between number
of instructions referencing a value and the number of conceptual uses of that
value: one example would be a special rule for multiplying an integer variable
by a small constant, which could be done by shifting and adding or
subtracting. This may result in several instructions referencing the variable, but
would still count as only one use. Generally, there is one use of a value for each
matched rule in which it appears in the pattern. An obvious exception to this
generality is a chain rule: this isn’t actually a use of the value but simply a
renaming, so must not be counted.

7 RanySet Rempty

8 n/a n/a
5-16 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

■ When a CVMRMResource’s reference count reaches 0, the register manager is
free to re-use the registers and temporary memory location occupied by it
without saving the value for any further uses.

■ So long as the reference count on a CVMRMResource remains greater than 0,
the register manager will preserve its value for a future reference.

5.5 Full Example of Inheritance and Resouce
Management
It is now possible to complete the above example with all the necessary targeting
and resource management code. All references to a node’s TARGET attribute have
been replaced with the goal_top-relative attribute handling, and all references
to a node’s USED attribute have been replaced by references to its regsRequired
field. An IDENTITY rule has been added to illustrate DAG handling.

This example is still a little simpler than the actual CVM-HI compiler. The example
causes constants to be evaluated into a register immediately. In the full CVM-HI
compiler, we use CVMRMbindResourceForConstant32 to create a resource for a
constant without allocating a register for it at this time. This allows us to delay
actual allocation until the call to CVMRMpinRegister.

%{

/*

 * Make SimpleExample_attribute a pair of sets.

 * the node annotations we've been using.

 */

typedef struct {

 SET target;

 SET avoid;

} SimpleExample_attribute;

/*

 * Easy way to get to the target of the current rule.

 * Result is a pair of SETs.

 */

#define GET_REGISTER_GOALS \

(goal_top-1)->curr_attributes.target, \

(goal_top-1)->curr_attributes.avoid

/*
Chapter 5 Code Generation Mechanics 5-17

 * Easy way to pass our own goals to one of our children

 */

#define PASS_GOALS_TO_CHILD(n) \

goal_top->attributes[n].target = (goal_top-1)-
>attributes.target;\

goal_top->attributes[n].avoid = (goal_top-1)-
>attributes.avoid

/*

 * Many rules have at least one child with relaxed targeting.

 */

#define PASS_ANY_GOALS_TO_CHILD(n) \

goal_top->attributes[n].target = RanySet;\

goal_top->attributes[n].avoid = Rempty

/*

 * pin and relinquish the reg32 underlying an AluRhs if indeed

 * there is one

 */

static void

pinAluRhs(..., AluRhs *rhsVal, SET targetSet, SET avoidSet){

 if (rhsVal->rhsTag == VALUE_RHS){

CVMRMpinResource(..., rhsVal->rhsRegVal, targetSet,
avoidSet);

 }

}

static void

relinquishAluRhs(..., AluRhs *rhsVal){

 if (rhsVal->rhsTag == VALUE_RHS){

/* to relinquish a resource is to both unpin it and
to

 * decrement the reference count.

 */

CVMRMrelinquishResource(..., rhsVal->rhsRegVal);

 }

}

%}

 %dag reg32: IDENTITY32 reg32 : 0
5-18 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

: $$->regsRequired = submatch_roots[0]-
>regsRequired

: PASS_GOALS_TO_CHILD(0)

: {

 CVMRMResource* src;

 if (!CVMJIT_DID_SEMANTIC_ACTION($$)){

/* FIRST EVALUATION */

/* get subtree's CVMRMresource from stack */

src = popResource(con);

/* associate this resource with the IDENTITY
node

 * and give the resource the node's reference
count.

 */

CVMRMoccupyAndUnpinResource(..., src, $$);

 } else {

/* SUBSEQUENT EVALUATIONS */

/*

 * find the resource containing the value.

 */

src = CVMRMfindResource(..., $$);

 }

 /* Our parent rule expects to find a

 * CVMRMResource* on the stack

 */

 pushResource(con, src);

};

 // target the base register to be in an acceptable base register

 // if possible. Target base register to avoid anything required

 // by the index or the RHS. Target the index register to avoid

 // the requirements of the RHS.

 statement: ASSIGN INDEX reg32 reg32 reg32 : 1 :

: goal_top->attributes[0].target = RbaseSet;

 goal_top->attributes[0].avoid = $$->right-
>regsRequired

 + $$->left->right->regsRequired;

 goal_top->attributes[1].target = RanySet;
Chapter 5 Code Generation Mechanics 5-19

 goal_top->attributes[1].avoid = $$->right-
>regsRequired;

 PASS_ANY_GOALS_TO_CHILD(2)

: {

 CVMRMResource* valToStore;

 CVMRMResource* baseReg;

 CVMRMResource* indexReg;

 valToStore = popResource(con);

 indexReg = popResource(con);

 baseReg = popResource(con);

CVMRMpinResource(..., baseReg, RbaseSet, Rempty);

 CVMRMpinResource(..., valToStore, RanySet,
Rempty);

 CVMRMpinResource(..., indexReg, RanySet, Rempty)

 generateIndexedAssignment(baseReg, indexReg,
valToStore);

 /* to relinquish a resource is to both unpin it
and to

 * decrement the reference count.

 */

 CVMRMrelinquishResource(..., baseReg);

 CVMRMrelinquishResource(..., valToStore);

 CVMRMrelinquishResource(..., indexReg);

}

 statement: ASSIGN LOCAL32 reg32 : 1 :

: PASS_ANY_GOALS_TO_CHILD(0)

: {

 CVMRMResource* val;

 LocalInfo* l;

 l = extractLocalInfo($$->left);

 val = popResource(con);

 CVMRMpinResource(..., valToStore, RanySet,
Rempty);

 generateLocalAssignment(l, val);

 CVMRMrelinquishResource(..., valToStore);

}

5-20 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 reg32: ICONST_32 : 1 : $$->regsRequired = Rempty : : {

 CVMRMResource* val;

 ConstantValue conval;

 conval = extractConstValue($$);

val = CVMRMgetResource(..., GET_REGISTER_GOALS,
1);

 generateLoadConstantValue(val, conval);

 CVMRMUnpinResource(...,val);

 pushResource(con, val);

}

 reg32: LOCAL32 : 1 : $$->regsRequired = Rempty : : {

 CVMRMResource* val;

 LocalInfo* l;

 l = extractLocalInfo($$);

 val = CVMRMgetResource(..., GET_REGISTER_GOALS,
1);

 generateLoadLocal(val, l);

 CVMRMUnpinResource(...,val);

 pushResource(con, val);

}

 //

 // The set of registers used by this tree is the union of the

 // sets of its subtrees, since this node has no particular

 // requirements.Since the left-hand subtree is evaluated first,

 // it would be wise to target it to any that the right-hand

 // subtree does not require.

 reg32: IADD32 reg32 aluRhs : 1 :

 $$->regsRequired = $$->left->regsRequired

 + $$->right->regsRequired

: goal_top->attributes[0].target = RanySet;

 goal_top->attributes[0].avoid = $$->right->regsRequired;

 PASS_ANY_GOALS_TO_CHILD(1)

: {

 AluRhs rhsVal;

 CVMRMResource* lhsVal;

 CVMRMResource* resultVal;
Chapter 5 Code Generation Mechanics 5-21

 popAluRhs(con, &rhsVal);

 lhsVal = popResource(con);

 resultVal = CVMRMgetResource(...,
GET_REGISTER_GOALS, 1);

 pinAluRhs(..., &rhsVal, RanySet, Rempty);

 CVMRMpinResource(..., lhsVal, RanySet, Rempty);

 generateALUInstruction(OPCODE_ADD, resultVal,
lhsVal,

 &rhsVal);

 CVMRMunpinResource(...,resultVal);

 relinquishAluRhs(..., &rhsVal);

 CVMRMrelinquishResource(..., lhsVal);

 pushResource(con, resultVal);

}

 //

 // This operation requires that the value produced by the left

 // subtree be placed in register Rl,

 // and the value produced by the right subtree

// be placed in register Rr. This rule uses a large set of registers

 // as a side effect. It produces a value in register Rd.

 //

 reg32: IDIV32 reg32 reg32 : 10 :

 $$->regsRequired = RdivSet

+ $$->left->regsRequired + $$->right-
>regsRequired;

: goal_top->attributes[0].target = Rl;

 goal_top->attributes[1].target = Rr;

: {

 CVMRMResource* rhsVal = popResource(con);

 CVMRMResource* lhsVal = popResource(con);

 CVMRMResource* resultVal;

 lhsVal = CVMRMpinResourceSpecific(..., lhsVal,
Rl);

 rhsVal = CVMRMpinResourceSpecific(..., rhsVal,
Rr);

 flushRegs(RdivSet-Rl-Rr);

 generateCall("intDiv");
5-22 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 CVMRMrelinquishResource(..., lhsVal);

 CVMRMrelinquishResource(..., rhsVal);

resultVal = CVMRMgetResourceSpecific(..., Rd, 1);

 CVMRMunpinResource(..., resultVal);

 pushResource(resultVal);

}

 aluRhs: ICONST_32 : 0

 : $$->regsRequired = Rempty

: {

 ConstantValue conval = extractConstValue($$);

 pushAluRhs(con, CONST_RHS, conval, NULL);

}

 aluRhs: reg32 : 0

: /* chain rule: pass through USED from below */ ;

: /*chain rule: pass through TARGET from above */ ;

: {

 CVMRMResource* val = popResource(con);

 pushAluRhs(con, VALUE_RHS, 0, val);

}

5.6 Rule Costs and Overriding
Because JCS uses costs in rule selection, it is possible to write a rule that effectively
overrides a similar rule of higher cost. The procedure for simple rule overriding is
very simple: write a new rule with the same result and pattern body as the rule you
wish to replace, but give it a lower cost. It is possible to override all uses of a rule, or
to write more specialized rules that use other, cheaper, instructions in some
circumstances.

For example, the default rules supplied with the CVM-HI RISC JIT assume that 32-
bit integer division is done by calling a helper function. The rule looks looks like
this:

(a) reg32: IDIV32 reg32 reg32 : 90 : ...

Note the very high cost of 90.

As an example of a simple yet complete rule override, a target instruction set having
a divide instruction might choose to add a rule looking like this:
Chapter 5 Code Generation Mechanics 5-23

(b) reg32: IDIV32 reg32 reg32 : 40 : ...

Because 40 < 90, this rule will completely replace all uses of the above rule.

The CVM-HI RISC JIT also has a rule for integer division by a constant. It does
shifting or multiplication by a reciprocal. Its rule looks like this:

(c) reg32: IDIV32 reg32 ICONST_32 : 40 : ...

Because of the lower cost, 40, this rule is used for integer division by a constant
when only the default rule (a) above is present, since 40 < 90.

But look at the interaction of rule (c) and the example overriding rule (b). To use rule
(b), both operands would have to be the result of reg32-producing rules. To turn an
ICONST_32 into a reg32 requires executing this rule, which has cost 20:

(d) reg32: ICONST_32 : 20 : : : : ...

So the overall cost of dividing a reg32 by a constant using rule (c) would actually be
the sum of the costs of rules (c) and (d), which is 60. Since the cost of rule (b), 40, is
less than this, it will still be used in preference to using rule (d) followed by rule (c).
5-24 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 6

Code Cache Manager

Compiled methods are stored in one large allocated piece of memory called the code
cache. The code cache is allocated during VM startup and, once allocated, it cannot
grow or shrink. The default size is 512k, but this can be modified on the command
line using the -Xjit:codeCacheSize option. The start of the code cache is pointed
to by CVMglobals.jit.codeCacheStart and the end is pointed to by
CVMglobals.jit.codeCacheEnd.

6.1 Code Buffers
When a method is compiled, a code buffer is allocated for it from the code cache,
and when a method is decompiled, its code buffer is returned to the code cache. A
buffer in the code cache has the following layout, whether allocated or free:

CVMUint32 size;

<variable length data, such as compiled code>

CVMUint32 size;

The first size field is used to locate the next buffer in the code cache. The second size
field is used to locate the start of the previous buffer. Thus the 4 bytes located before
any code buffer will be the size field of the previous buffer. This is mainly used
when coalescing free blocks so the start of the pervious buffer can be located.

The size fields also can have one of the following bits set to indicate what the code
buffer is used for:

#define CVMJIT_CBUFSIZE_FREE_BITS 0x1 /* free buffer */

#define CVMJIT_CBUFSIZE_UNCOMMITTED_BITS 0x2 /* compiling into
*/
6-1

#define CVMJIT_CBUFSIZE_CCMCOPY_BITS 0x3 /* copied CCM code
*/

If no bits are set then the code buffer contains a compiled method.

6.2 Free Buffers
Free buffers are maintained in a link list pointed to by
CVMglobals.jit.codeCacheFirstFreeBuf. The following struct is used for the
list:

struct CVMJITFreeBuf {

CVMUint32 size;

CVMJITFreeBuf* next;

CVMJITFreeBuf* prev;

};

Note that the size field is first, as is required by all buffers in the code cache. There is
also size field at the end of the free buffer that is not shown in the struct.

When a buffer is freed, it coalesced with the previous and next buffers if they are
also free, and is then added to the start of
CVMglobals.jit.codeCacheFirstFreeBuf.

CVMglobals.jit.codeCacheLargestFreeBuffer is used to keep track of the
largest free buffer, so it is not necessary to walk the free list if there isn’t a buffer of
sufficient size, and also to determine if forced decompilation produced a large
enough free buffer.

6.3 Allocated Buffers for CDC 1.0.1
Allocated buffers in CDC 1.0.1 have the following layout:

CVMCompiledMethodDescriptor

<generated code>

CVMUint32 size;

The first field of the CVMCompiledMethodDescriptor is a size field, so the first
field of an allocated buffer is the size field as is required for all code buffers.
6-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CVMJITcbufAllocate() is called to allocate a code buffer for compilation. An
estimate for the code buffer size is made based mostly on the size of the IR.
CVMJITcbufAllocate() will look for the first free block that meets the estimate
requirement (by walking CVMglobals.jit.codeCacheFirstFreeBuf).

Initially there is just one giant free buffer, and CVMJITcbufAllocate() will return
this entire buffer (since parallel compilations aren’t allowed). When compilation is
complete, CVMJITcbufCommit() is called to commit the code buffer. If any extra
memory is available after the end of code generated into the buffer, it is split off into
a new code buffer that is freed. Thus until any decompilation occurs, there will
always be just one free code buffer, and new compiled methods are placed at the
start of it.

If there has been decompilation and the code cache is fragmented, then
CVMJITcbufAllocate() simply returns the first free buffer from the
CVMglobals.jit.codeCacheFirstFreeBuf list that is large enough to meet the
estimate. Any extra is split into a new free block when CVMJITcbufCommit() is
called. If the estimate is too small, then the entire buffer is freed, and recompilation
is done with a larger block.

During code generation, CVMJITCompilationContext.codeBufAddr will point
to the start of the code buffer and codeBufEnd will point to the last word that code
can be generated into. codeBufEnd is not the end of the code buffer, since
CVMJITcbufAllocate() always reserves 4 bytes for the trailing size field, and will
also limit codeCacheEnd so generated code does not exceed the maximum allowed
by the -Xjit:maxCompiledMethodSize option.

CVMJITCompilationContext.codeEntry points to the first word of generated
code, which occurs just after the CVMCompiledMethodDescriptor struct at the
start of the code cache.

6.4 Allocated Buffers for CDC 1.1
For CDC 1.1, the format of an allocated buffer has changed quite a bit. The reason
for the change was to move into the code buffer many supporting data structures
that previously were allocated using malloc(). This served four purposes:

■ Reduced fragmentation in the malloc() heap.

■ Reduced memory consumption. malloc() headers, footers, and padding no
longer waste memory. Also, these data structures are now located using a 16-bit
offset off of the cmd rather than a 32-bit pointer.

■ Easier to free. Since these allocations are now part of the code buffer, freeing them
is done automatically when the code buffer is released.
Chapter 6 Code Cache Manager 6-3

■ Better accounting of memory used. The -Xjit:codeCacheSize option is
suppose to limit the amount of memory used by compiled methods. However,
since some of the data being allocated for compiled methods was located outside
of the code cache, total memory consumption for compiled code would actually
exceed the specified size. In CDC 1.1, all memory allocated for compiled methods
is now located in the code cache.

The four items that have been moved to the code cache are listed below. They are
still accessed using the same CVMcmdXXX() macros, except now the macros rely on
offsets from the start of the CMD rather than pointers to locate the data structures.

■ pcMapTable - Table mapping between Java PCs and compiled PCs.
■ inliningInfo - Table mapping compiled PCs to inlined methods.
■ gcCheckPCs - Table of all instructions patched for GC check points.
■ stackMaps - Table of stack maps for the method.

The following is the new layout of an allocated code buffer:

CVMUint32 size;

CVMCompiledMethodDescriptor* cmd;

pcMapTable[]; /* accessed using
CVMcmdCompiledPcMapTable() */

inliningInfo[]; /* accessed using
CVMcmdInliningInfo() */

gcCheckPCs[]; /* accessed using CVMcmdGCCheckPCs()
*/

CVMCompiledMethodDescriptor

<generated code>

stackmaps[]; /* accessed using CVMcmdStackMaps() */

CVMUint32 size;

Since the cmd is no longer located first in the code buffer, it no longer starts with the
codeBufSizeX. Note however that there is still a size field at the start of the code
buffer and at the end.

6.5 Decompilation
There are two ways a method can end up being decompiled. The first is when a class
is unloaded, all compiled methods belonging to the class are decompiled and their
code buffers freed. The second way a method can end up being decompiled is due to
forced decompilation when there is a lack of space in the code cache.
6-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

There are two situations that result in forced decompilation. The first occurs while
compiling a method and a request for a code buffer fails because of lack of space in
the code cache. In this case an attempt is made to decompile enough methods to
make room for the method. An emphasis is placed on decompiling a sequence of
methods that result in freeing up a large enough buffer for the method, while also
trying not to free up methods that don’t aide in creating the needed buffer.

The second cause of forced decompilation is when during a GC it is discovered that
the utilization of the code cache (bytes currently allocated) exceeds the value stored
in CVMglobals.jit.upperCodeCacheThreshold. This value is settable as a
percentage using -Xjit:upperCodeCacheThresholdPercent (default is 95%).

Regardless of the trigger for forced decompilation, an attempt is made to decompile
enough methods so the utilization of the code cache is brought down to
CVMglobals.jit.lowerCodeCacheThreshold, which is settable as a percentage
using -Xjit:lowerCodeCacheThresholdPercent (default is 90%).

During forced decompilation, the entryCounts of all methods are “aged” to help
locate less frequently called methods. When the entryCount reaches 0, then the
method is a candidate for decompilation.

Aging the entryCount consists of doing a right shift of the value. At one point the
entryCount was incremented every time the method was called, but this was
determined to be too expensive. Instead it is initialized to 8 when the method is first
compiled, and reset to 8 every time the method is found in a backtrace during a GC.
It is also incremented when called from the interpreter loop, since this is an
expensive operation anyway.

Forced decompilation is handled by
CVMJITcodeCacheAgeEntryCountsAndDecompile().

void

CVMJITcodeCacheAgeEntryCountsAndDecompile(

CVMExecEnv* ee,

CVMUint32 bytesRequested);

bytesRequested is 0 when called from GC. When called during compilation to free
up a large enough buffer for the method being compiled, it is set to the estimated
size of the required buffer.
Chapter 6 Code Cache Manager 6-5

6.6 Logical PC vs. Physical PC
During compilation, references to the code buffer can be either logical or physical.
Physical refers to the actual physical address. Logical refers to the offset from the
start of generated code (CVMJITCompilationContext.codeEntry). Usually
logical addresses are used until it is time to actually emit an instruction to the code
buffer.

The current physical and logical code buffer addresses are stored in the
CVMJITCompilationContext, and are accessed with the following macros:

#define CVMJITcbufGetLogicalPC(con) ((con)->curLogicalPC)

#define CVMJITcbufGetPhysicalPC(con) ((con)->curPhysicalPC)

#define CVMJITcbufLogicalToPhysical(con, logical) \ (&(con)-
>codeEntry[logical])

6.7 Pushing and Popping Fixup PCs
During compilation, sometimes a forward reference is generated to an address that
is unknown until a few instructions later. A forward branch around data of
unknown length is a common example of this. This is handled in the following
matter:

1. Save away current logicalPC.

2. Emit the instruction with the forward reference, but use an offset of 0 for the
forward reference address since the forward address is not known.

3. Emit code that varies in size and occurs before the forward address.

4. Forward address is now known. Call CVMJITcbufPushFixup(), using the
address saved in (1). This changes the current logicalPC back to the PC of the
instruction with the forward reference.

5. Properly emit the instruction with the forward reference.

6. Call CVMJITcbufPopFixup() to restore the proper logical PC.

The following example is from jitgrammarrules.jcs. The code is in charge of
dumping the constant pool and emitting a branch around the constants:

/* save away current logicalPC */
6-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CVMInt32 startPC = CVMJITcbufGetLogicalPC(con);

/* emit dummy branch */

CVMCPUemitBranch(con, startPC, CVMCPU_COND_AL);

/* dump constant pool */

CVMJITdumpRuntimeConstantPool(con, CVM_TRUE);

/* save away current logicalPC */

 CVMJITcbufPushFixup(con, startPC);

/* Emit branch around the constant pool dump: */

CVMCPUemitBranch(con, endPC, CVMCPU_COND_AL);

/* restore proper logicalPC */

CVMJITcbufPop(con);

Note that this technique is not used for all forward references. For branches between
basic blocks and for references to the constant pool, the forward references are
automatically patched by CVMJITfixupAddress() when the forward address
becomes known.

Also note that both of the above calls to CVMCPUemitBranch() must emit the same
number of instructions. The first call is really just reserving code buffer space for the
second call.

6.8 Emitting Code
Normally an instruction is emitted into the code buffer using CVMJITcbufEmit(). It
will emit one instruction of size CVMCPU_INSTRUCTION_SIZE into the code buffer
and increment CVMJITCompilationContext.curLogicalPC and
curPhysicalPC. It will also check to make sure the size of the code buffer is not
exceeded.

CVMJITcbufEmit() can also be used to emit data. However, it can only emit data
of size CVMCPU_INSTRUCTION_SIZE, so multiple calls to CVMJITcbufEmit() are
needed if the data is larger than an instruction. CVMJITcbufEmit() makes no
attempt to align data.

CVMJITcbufEmit() assumes a uniform instruction size. If instruction sizes can
vary, then CVMCPU_INSTRUCTION_SIZE should be set to 1, and either multiple calls
to CVMJITcbufEmit() can be used to emit multiple bytes, or the
CVMJITcbufEmit1(), CVMJITcbufEmit2(), and CVMJITcbufEmit4() macros
can be used to emit instructions or data of size 1, 2, or 4 bytes respectively.
Chapter 6 Code Cache Manager 6-7

6.9 Copying Assembler Code to the Code
Cache
Dynamically compiled code makes many calls to various helper functions written in
assembler. On most platforms these calls need to be made using a multiple
instruction long call. This is because the code cache is in the malloc heap, and is
normally too far away from code linked with the CDC-HI Java runtime binary to call
it with a single instruction.

In order to locate the assembler functions closer to the dynamically compiled code
so they can be called with a single instruction, the assembler functions can
optionally be copied into the start of the code cache where the dynamically compiled
code resides. This usually results in better performance.

The copying of the assembler functions is handled by shared code. It is enabled by
#define CVM_JIT_COPY_CCMCODE_TO_CODECACHE. This will cause all code
between the symbols CVMCCMcodeCacheCopyStart and
CVMCCMcodeCacheCopyEnd to be copied. Normally ccmcodecachecopy_cpu.S
is used to properly setup these two symbols.

A table of all functions that are copied must be setup in
CVMJITinitCompilerBackEnd(), which is usually implemented in
jitinit_cpu.c. The functions in the table must appear in the same order that they
appear in memory.

Note that if you enable CVM_JIT_COPY_CCMCODE_TO_CODECACHE, debugger
breakpoints set in the assembler code won’t function properly. If they are set after
running CDC, then they will never be hit since the code cache copy of the functions
are the ones actually used. If they are set before running CDC, then the trap
instruction inserted by the debugger will get copied into the code cache copy. This
will cause the breakpoint to be hit, but the debugger won’t know it’s a breakpoint
and get will get confused.

6.10 Debugging Support
The following code cache manager functions are provided for debugging purposes.
Calls to them can be made from a debugger like GDB if supported, or they can be
added to VM code as necessary.

/*

 * Dump all free and allocated blocks in the code cache and
6-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 * also do a bit of sanity checking.

 */

CVMBool

CVMJITcodeCacheVerify(CVMBool doDump);

/*

 * Find the method that the specified pc is in.

 */

CVMMethodBlock*

CVMJITcodeCacheFindCompiledMethod(CVMUint8* pc, CVMBool doPrint);

CVMJITcodeCacheVerify() is used to verify the integrity of the code cache, and
also to dump its contents if requested.

CVMJITcodeCacheFindCompiledMethod() is used to locate the method owning
the specified compiled pc. The CVMMethodBlock* of the method is returned, and
the name of the method is also printed if requested.

6.11 Reference
Primary Source Files:

■ jitcodebuffer.h
■ jitcodebuffer.c

-Xjit Command Line Options:

■ codeCacheSize - Size of the code cache
■ upperCodeCacheThreshold - % full that will trigger decompilation
■ lowerCodeCacheThreshold - Target % full when decompilation occurs
■ maxCompiledMethodSize - Maximum size of a compiled method

CVMJITGlobalState fields:

■ CVMUint8* codeCacheStart; /* start of allocated code cache */

■ CVMUint8* codeCacheGeneratedCodeStart;/* first method */

■ CVMUint8* codeCacheEnd; /* end of allocated code cache */

■ CVMJITFreeBuf* codeCacheFirstFreeBuf; /* list of free
buffers */

■ CVMUint32 codeCacheBytesAllocated; /* bytes allocated */

■ CVMUint32 codeCacheLargestFreeBuffer; /* largest free buffer
*/
Chapter 6 Code Cache Manager 6-9

■ CVMUint32 upperCodeCacheThresholdPercent; /* start
decompiling */

■ CVMUint32 lowerCodeCacheThresholdPercent; /* stop decompiling
*/

■ CVMUint32 upperCodeCacheThreshold; /* start decompiling */

■ CVMInt32 lowerCodeCacheThreshold; /* stop decompiling */

CVMJITCompilationContext fields:

■ CVMUint8* codeBufAddr; /* The allocated code buffer */
■ CVMUint8* codeBufEnd; /* End of code buffer */
■ CVMUint8* codeEntry; /* start of generated code */
■ CVMUint16 bufSizeEstimate; /* est. size of code buffer */
■ CVMInt32 curLogicalPC;
■ CVMUint8* curPhysicalPC;
■ CVMInt32 logicalPCstack[4]; /* for CVMJITcbufPushFixup */
■ CVMInt32 curDepth; /* depth of logicalPCstack */
6-10 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 7

JIT Runtime Support

7.1 CVMglobals.jit
CVMglobals.jit (of type CVMJITGlobalState) holds all the global data for JIT
runtime support. This includes:

■ Compiler tuning parameters, e.g.

■ Compilation trigger parameters: costs and threshold
■ Code cache size
■ Inlining limits

■ Compiler global state
■ Runtime computed data tables
■ Pointer to the code cache

7.2 CPU Cache Flushing
When a method is compiled, the generated code is written into a code buffer
allocated from the code cache (see the Code Cache Manager). From the CPU’s
perspective, emitting generated code is the same as writing data out to memory.

7.2.1 Data Caches
For CPUs that implement a write-back instead of write-through data cache, this
means that the generated code have been written to the data cache but may not yet
have been written back to main memory.
7-1

7.2.2 Instruction Caches
For CPU’s that implement an instruction cache, before code can be executed, it must
first be loaded into the instruction cache. When the CPU tries to execute code at a
certain memory location, it first checks to see if the content of that memory is
already loaded into the instruction cache. If so, it will proceed with executing the
code out of the instruction cache. If not, the memory content will be loaded into the
instruction cache before it gets executed.

7.2.3 Cache Coherency
If the CPU’s data cache and instruction caches are distinct, and the CPU
implementation does not guarantee coherency between the 2 caches, then the
dynamic compiler will have to ensure coherency is achieved for the memory region
for a newly compiled method at the end of the compilation process.

If this is not done, unpredictable failures can occur. Here are some scenarios of how
these failures can arise:

■ The compiled method has been written to the data cache but not flushed to main
memory yet. After compilation, the thread attempts to execute the compiled
method. It gets the starting address of the method and branches to that address.
This causes the CPU to load the memory content at that address from main
memory into the instruction cache. But since main memory does not contain the
code for the compiled method yet, the content loaded into the instruction cache is
garbage.

■ The compiled method occupies a code buffer. This method gets executed and
loaded into the instruction cache. Later on, this method gets decompiled, and the
code buffer is evacuated. A new method gets compiled and ends up occupying
the same code buffer in memory. The thread then tries to execute this newly
compiled method. The CPU checks the address of the method and finds that it is
already in the instruction cache. So, it proceeds executing directly out of the
instruction cache even though the instruction cache content is outdated and
invalid.

To avoid these cache coherency problems, the dynamic compiler will first need to
flush the data cache to make sure that the newly compiled method is written back
out to main memory. Next, it needs to flush the instruction cache to ensure that
outdated code doesn’t wrongly get executed. The dynamic compiler does this by
calling a cache flushing function that the target platform is supposed to provide:

extern void

CVMJITflushCache(void* begin, void* end);
7-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CVMJITflushCache need only flush the data and instruction cache lines which
correspond to the address range specified by the begin and end arguments. The data
cache must always be flushed first, before the instruction cache is flushed. There’s no
harm in flushing more cache lines than the minimum needed, except in some
performance loss due to some perhaps unnecessary cache misses. You might need to
do this if the only available target platform API for flushing the caches is to flush the
entire cache.

7.2.4 External Caches
If external caches are unified (no distinction between data and instruction caches),
then there is no need to flush them. Otherwise, they will need to be flushed as well.

7.3 CVMCompiledMethodDescriptor
For every compiled method, there is one CVMCompiledMethodDescriptor struct
(commonly referred to as the CMD) that is associated with it. The CMD is always
located in the code cache immediately before the generated code for the method. See
the Code Cache Manager for details about the layout of the code buffer allocated for
compiled methods.

7.3.1 Computing the CMD
In CVM, methods are primarily identified using a CVMMethodBlock pointer
(commonly referred to as an MB). If a method is compiled, given its MB, the CMD
can be computed as follows:

cmd = (((CVMCompiledMethodDescriptor *)mb.startPCX) - 1)

The startPCX in the MB contains the address of the generated code for the
compiled method. The CMD is computed by subtracting the size of the
CVMCompiledMethodDescriptor from this address.

7.4 Entry to Compiled Code
There are 2 entry points to a compiled method:
Chapter 7 JIT Runtime Support 7-3

■ Calling from Outside Compiled Code - From outside of compiled code (i.e. the
interpreter), when the compiled method is called, the caller will setup its frame
and just branch to the code address indicated in the
startPCFromInterpretedX field of the method’s CMD.

■ Calling from Compiled Code - From inside compiled code, the caller just sets up
a return address and branches to the address indicated in the jitInvokerX field
of the MB. For a compiled method, the jitInvokerX field will point to the same
location as the startPCX field, i.e. the first line of generated code of the compiled
method.

The difference between startPCX and startPCFromInterpretedX is that
startPCX includes prologue code to setup the stack frame for this method while
startPCFromInterpretedX skips the prologue code and starts in the method
body.

When calling from compiled code to compiled code, the callee is responsible for
setting up the callee stack frame through the use of prologue code. When calling
compiled code from outside code, the caller is responsible for setting up the callee
stack frame. Hence, the prologue code should not be executed when the compiled
code is called from outside code.

7.5 Assembler Glue
To transfer execution control from the VM to compiled code, the VM calls
CVMJITgoNative.

extern CVMMethodBlock*

CVMJITgoNative(CVMObject* exceptionObject, CVMExecEnv* ee,

 CVMCompiledFrame* jfp, void* pc);

CVMJITgoNative is a piece of assembler glue code that the target platform port
must provide. CVMJITgoNative is responsible for setting up a native stack frame
for use by the compiled code. This native stack frame includes memory reserved for
the CVMCCExecEnv struct (see CVMCCExecEnv below).

Another important piece of assembler glue that is called by VM code is
CVMJITexitNative.

extern void

CVMJITexitNative(CVMCCExecEnv* ccee);

CVMJITexitNative is used for unwinding native frames back to the interpreter
frame which called the compiled code (i.e. the frame just before the one that was
pushed by CVMJITgoNative). This is used for throwing Java exceptions (see
Throwing Exceptions below).
7-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

7.6 Helper Functions
The dynamic compiler does not generate inline code for every possible VM
operation. For some operations, the dynamic compiler will generating code to call
compiled code runtime helper functions instead.

Why use helper functions instead of generating inlined code to do all the work?

■ To reduce the amount of work to get a JIT port up and running quickly, a lot of
functionality can be implemented initially in terms of calls to helpers. The
performance of the compiled code may not be the most optimal but the port will
reach functional completeness quicker. Optimizations can subsequently be
applied gradually to targeted areas as schedule permits.

■ Some functionality is complex and not suitable for being inlined into the
compiled code for the following reasons:

■ It may be difficult to generate code for such complex functionality.

■ Such complex functionality may take up a lot of code space, thereby resulting
in inefficient usage of compiled code cache space.

■ The functionality may inherently take a long time to execute. Inlining it into
the compiled method would not yield any noticeable performance gain
anyway.

7.6.1 Default C Helper Functions
CDC HI provides some default C helper functions. These helper functions include:

■ Integer division and remainder
■ Long (64-bit) arithmetic, logical and shift operators
■ Single and double precision floating point operators
■ Primitive type converters (e.g. integer to float, float to double, etc.)
■ Comparators (long, float, and double)
■ Java object allocation
■ Java synchronization
■ Constant pool resolution
■ Static / class initialization
■ Throwing Java exceptions
■ Checkcast, instanceof, interface MB lookup, array assignability test
■ GC rendezvous

Note that some of these helper functions like integer division is provided in case the
CPU hardware does not have an instruction set that supports this operator. Again,
having these helper functions reduces the amount of work needed to get the
dynamic compiler up and running initially.
Chapter 7 JIT Runtime Support 7-5

7.6.2 ASM Helper Functions
Calling C helper functions from compiled code does incur function call overhead at
runtime. To optimize for speed (where appropriate), the dynamic compiler may
choose to implement some of these helper functions in assembler code.

Hand-crafted assembler code helpers can take advantage of knowledge about the
internals of compiled code, such as the reuse of the compiled code native frame and
the ccee (see Code Execution & Stack Frames below). This can help reduce or
eliminate the cost of the function call overhead.

In the ARM port, an example of this type of assembler helper are the single and
double precision floating point operator functions.

One of the main reasons for using helper functions in the first place is because the
work done by these helpers is inherently complex and difficult to implement.
However, some of this work may have a fast path which is easier to implement and
a slow path which is more complex and difficult to implement. To optimize for
speed, the dynamic compiler port may want to implement the fast path in assembler
and defer to the C helpers for the slow path case. These types of assembler helpers
are also commonly referred to as assembler glue functions.

In the ARM port, this type of assembler glue includes:

■ CVMCCMruntimeNewGlue
■ CVMCCMruntimeNewArrayGlue
■ CVMCCMruntimeANewArrayGlue
■ CVMCCMruntimeMultiANewArrayGlue
■ CVMCCMruntimeCheckCastGlue
■ CVMCCMruntimeInstanceOfGlue
■ CVMCCMruntimeCheckArrayAssignableGlue
■ CVMCCMruntimeLookupInterfaceMBGlue
■ CVMCCMruntimeMonitorEnterGlue
■ CVMCCMruntimeMonitorExitGlue

Another reason to use assembler glue is to to do marshaling of arguments before
calling C helpers. This simplifies the dynamic compiler port by alleviating it from
having to emit code to do this marshaling.

In the ARM port, examples of this type of glue code includes:

■ CVMCCMruntimeGCRendezvousGlue
■ CVMCCMruntimeThrowNullPointerExceptionGlue
■ CVMCCMruntimeThrowArrayIndexOutOfBoundsExceptionGlue
■ CVMCCMruntimeThrowDivideByZeroGlue
■ CVMCCMruntimeThrowObjectGlue
7-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

A third reason to use assembler glue is to code rewriting of the compiled code that
called it. This is done for code paths that are only expected to be executed once.
Once this path has been executed, the caller can be patched so that this helper need
not be called again the next time this code path is taken.

In the ARM port, examples of this type of glue code includes:

■ CVMCCMruntimeRunClassInitializerGlue
■ CVMCCMruntimeResolveGlue

Another side benefit of using assembler glue code is that it can take care of flushing
execution state like the program counter (PC), the Java frame pointer (JFP), and the
Java stack pointer (JSP) to the compiled frame on the Java stack before calling to a C
helper function. This again alleviates the dynamic compiler from having to generate
code to do this work when calling helper functions.

The above lists of assembler glue functions can be used as an indicator of assembler
glue that any dynamic compiler port may want to consider implementing.

7.6.3 Disabling Default Helper Functions
If the dynamic compiler port chooses to implement its own assembler (or even C)
helper function which can perform better than the default C helpers, it will want to
disable the defaults ones so that the target specific implementations can use the
same helper names without a linker conflict.

The src/<cpu>/javavm/include/jit/ccm_cpu.h file should contain a list of
#define or #undef of symbols that look like
CVMCCM_HAVE_PLATFORM_SPECIFIC_<helper name>. This list is based on the
one specified in the comments in
src/share/javavm/include/porting/jit/ccm.h.

For example, in the ARM port, we have:

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LMUL

#undef CVMCCM_HAVE_PLATFORM_SPECIFIC_LDIV

#define CVMCCM_HAVE_PLATFORM_SPECIFIC_LMUL indicates that the target port
will provide its own implementation of the helper function for the long
multiplication operator.

#undef CVMCCM_HAVE_PLATFORM_SPECIFIC_LDIV indicates that the target port
will not provide its own implementation of the helper function for long division.
Instead, it will rely on the the default C helper function implementation.

So, to disable the default helper functions, just #define these symbols in the
appropriate ccm_cpu.h file.
Chapter 7 JIT Runtime Support 7-7

Another reason why the target port will want to disable these helper functions is
that the dynamic compiler may choose to implement the functionality by generating
inlined code. For example, if the target CPU provides an integer division instruction,
then there is no need to use the C helper for integer division. The C helper should be
disabled so as to not link in unnecessary code.

7.7 CVMCCExecEnv
The CVMCCExecEnv (commonly referred to as the ccee) serves as a scratch area for
the use of the compiled code. Compiled code does not allocate automatic variables
nor push items onto the native stack. Its usage of the native stack is fixed and is
known ahead of time. This allows for stack size checks that ensure that the native
stack is overflowed during execution. For its own stack scratch area, compiled code
will only use memory allocated within the ccee.

7.8 Code Execution and Stack Frames
Calling from the interpreter to compiled code, a CVMCompiledFrame frame is
pushed on the Java stack, and a native stack frame is pushed by CVMJITgoNative.
But once in compiled code, invocation of another compiled method only requires a
new CVMCompiledFrame to be pushed on the Java stack. The same native stack
frame will be reused by the new compiled method. Only one native stack frame (and
therefore only one ccee) is needed for compiled code per recursion of the interpreter
loop. The execution state of a compiled method is stored in its CVMCompiledFrame
on the Java stack and not in the native stack frame. The native stack frame only
provides some scratch area for temporary use.

If the compiled method invokes a JNI native method which recurses into the
interpreter loop, which in turn invokes another compiled method, then a new native
stack frame (and ccee) will be pushed for that new compiled method.

The following examples illustrate how the Java and native stacks are used by
compiled code:

CODE EXAMPLE 7-1 Example 1 - Calling from an interpreted method to a JNI native method

Before:

Java Stack: Interpreted Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod

After:
7-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Java Stack: Interpreted Frame 1 ->

 JNI Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeJNIHelper ->

 CVMjniInvokeNative ->

 JNI Native Method

CODE EXAMPLE 7-2 Example 2 - Calling from an interpreted method to a compiled method

Before:

Java Stack: Interpreted Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod

After:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative

Note that the interpreter needs to go through the CVMJITgoNative glue to invoke
the compiled code.

CODE EXAMPLE 7-3 Example 3 - Calling from a compiled method to a compiled method

Before:

Java Stack: Compiled Frame 1

Native Stack: CVMJITgoNative

After:

Java Stack: Compiled Frame 1 ->

 Compiled Frame 2

Native Stack: CVMJITgoNative

Note that calling from a compiled method to a compiled method does not require
another native stack frame to be pushed.

CODE EXAMPLE 7-4 Example 4 - Calling from a compiled method to an interpreted method

Before:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative
Chapter 7 JIT Runtime Support 7-9

After:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1 ->

 Interpreted Frame 2

Native Stack: CVMgcUnsafeExecuteJavaMethod

Note that calling from a compiled method to an interpreted method does not recurse
into the interpreter loop. Instead, the compiled code returns to the interpreter loop
that called it in the first place. Even though the compiled code native frame
(CVMJITgoNative) has been popped, the compiled code frame is still on the Java
stack. This re-iterates that the execution state of the compiled methods are stored on
the Java stack and not on the native stack. The native stack frame only provides a
scratch area for the use of the compiled code.

CODE EXAMPLE 7-5 Example 5 - Calling from a compiled method to a JNI native method

Before:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative

After:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1 ->

 JNI Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative ->

 CVMinvokeJNIHelper ->

 CVMjniInvokeNative ->

 JNI Native Method

Compiled methods are able to call JNI methods without having to return to the
interpreter loop.

CODE EXAMPLE 7-6 Example 6 - Calling from compiled to JNI to compiled

Before:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1 ->

 JNI Frame 1
7-10 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative ->

 CVMinvokeJNIHelper ->

 CVMjniInvokeNative ->

 JNI Native Method

After:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1 ->

 JNI Frame 1 ->

 Compiled Frame 2

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative ->

 CVMinvokeJNIHelper ->

 CVMjniInvokeNative ->

 JNI Native Method ->

 CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative

Note that the JNI method’s attempts to invoke any Java methods causes recursion
into the interpreter loop. If a compiled method is invoked sub of that, another native
stack frame for compiled code (CVMJITgoNative) will be pushed on the stack.

CODE EXAMPLE 7-7 Example 7 - Calling from a compiled method to a C or Assembler helper

Before:

Java Stack: Compiled Frame 1

Native Stack: CVMJITgoNative

After:

Java Stack: Compiled Frame 1

Native Stack: CVMJITgoNative ->

 C/Assembler helper function

CODE EXAMPLE 7-8 Example 8 - Returning from an interpreted method to a compiled method

Before:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1 ->
Chapter 7 JIT Runtime Support 7-11

 Interpreted Frame 2

Native Stack: CVMgcUnsafeExecuteJavaMethod

After:

Java Stack: Interpreted Frame 1 ->

 Compiled Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative

In order to return execution to compiled code, the interpreter needs to re-establish
the ccee for the use of the compiled code. Hence, it calls CVMJITgoNative to push
the native stack frame for compiled code which allocates the ccee as well. Note that
CVMJITgoNative is used in this case to continue execution in the middle of a
compiled method (CVMJITgoNative is given the return address compiled PC)
whereas in previous examples, it is used for starting execution at the start of the
compiled method.

7.9 Throwing Exceptions
For compiled code, exceptions can be thrown from within assembler glue code or
from C helper functions. After an exception is thrown, execution should transfer to
an appropriate catch block rather than resuming at the return location in the
compiled code that called the glue code or helper function.

To do this, the glue code or helper functions will call CVMJITexitNative. This
causes execution to transfer resume at the interpreter frame that called
CVMJITgoNative as if CVMJITgoNative had returned with a return value and VM
state that tell the interpreter that an exception has been thrown. Note that this
execution transfer pops the compiled code native stack frame and all C helper
frames above it off the native stack, but the frames on the Java stack remains
unchanged.

For example,

CODE EXAMPLE 7-9

Before throwing exception:

Java Stack: Interpreted Frame 1 ->

 Interpreted Frame 2 ->

 Compiled Frame 1 ->

 Compiled Frame 2
7-12 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative ->

 C/Assembler helper function

After throwing exception:

Java Stack: Interpreted Frame 1 ->

 Interpreted Frame 2 ->

 Compiled Frame 1 ->

 Compiled Frame 2

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMgcUnsafeHandleException

CVMgcUnsafeHandleException is the VM’s function for finding the appropriate
catch block for the exception and for unwinding the Java stack to the appropriate
frame of the method with that catch block.

The try-catch ranges for methods are kept in terms of bytecode PC (program
counter) values. There is no corresponding ranges for compiled code. For an
exception thrown in compiled code, the compiled PC at which the exception is
thrown is first mapped into its bytecode PC equivalent. Next, the interpreter will
search through the try-catch ranges (for the methods whose frames are on the
Java stack) for a matching catch block.

When it finds a matching catch block, it will attempt to resume execution at the
start of the catch block. The catch block may or may not reside in the method that
threw the exception.

If the catch block is in an interpreted method, then the interpreter loop will start
interpreting the bytecodes at the start of the catch block.

CODE EXAMPLE 7-10 Before CVMgcUnsafeHandleException unwinds the Java stack:

Java Stack: Interpreted Frame 1 ->

 Interpreted Frame 2 ->

 Compiled Frame 1 ->

 Compiled Frame 2

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMgcUnsafeHandleException

CODE EXAMPLE 7-11 After exception is caught in Interpreted Frame 1:

Java Stack: Interpreted Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod
Chapter 7 JIT Runtime Support 7-13

If the catch block is in a compiled method, then the interpreter will map the
bytecode PC of the start of the catch block into its corresponding compiled PC. Next,
the interpreter will call CVMJITgoNative to transfer execution back to compiled
code in a similar way as if returning from interpreter code to compiled code. In this
case, CVMJITgoNative is given the compiled PC of the start of the catch block.

CODE EXAMPLE 7-12 Before CVMgcUnsafeHandleException unwinds the Java stack:

Java Stack: Interpreted Frame 1 ->

 Interpreted Frame 2 ->

 Compiled Frame 1 ->

 Compiled Frame 2

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMgcUnsafeHandleException

CODE EXAMPLE 7-13 After exception is caught in Compiled Frame 1:

Java Stack: Interpreted Frame 1 ->

 Interpreted Frame 2 ->

 Compiled Frame 1

Native Stack: CVMgcUnsafeExecuteJavaMethod ->

 CVMinvokeCompiledHelper ->

 CVMJITgoNative

7.10 On-Stack Replacement (OSR)
While interpreting a method, the interpreter may discover that the method got
compiled (perhaps by another thread or by the current thread at backwards
branches). If the method is now compiled, the interpreter will want to run the
compiled version instead of continuing with the interpreted version. In order to do
this, the interpreter will need to be able to replace the interpreted frame on the Java
stack with an equivalent compiled frame first. The mechanism for doing this is
called on-stack replacement (OSR) of frames.

As of version 1.0.1, CDC-HI is able to perform cases of OSR that match the following
criteria:

■ The OSR point occurs at the target of a backwards branch (i.e. the start of a basic
block).

■ The operand stack at that OSR point is empty.

■ The OSR is to replace an interpreted frame with a compiled frame.
7-14 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

The OSR mechanism relies on the fact that under the above criteria there isn’t much
difference between the interpreted frame and the compiled frame. The only
differences are:

■ The compiled frame has more locals. But the locals that exist in the interpreted
frame are mapped exactly the same as the first set of locals in the compiled frame.
Hence, the interpreted frame locals can just be copied into the compiled frame at
the start of its locals area.

■ The compiled frame has a slightly different structure of the frame record.
However, the information needed to fill out the compiled frame’s frame record
can be inferred from the information in the interpreted frame. The bytecode PC in
the interpreted frame will, of course, have to be mapped to its equivalent
compiled PC.

■ The compiled frame has a temp area. But at the start of basic block, this temp
areas is basically uninitialized. This means OSR only need to reserve space for the
temp area and not worry about initializing it.

■ The compiled frame also has an operand stack but perhaps with a greater
maximum depth. The fact that the interpreted frame operand stack is empty at
the OSR point also means that the compiled frame operand stack is empty. There
is nothing to do except to reserve space for the compiled frame operand stack.

Once the OSR mechanism has rewritten the interpreted frame into an equivalent
compiled frame, the interpreter calls CVMJITgoNative to transfer execution to the
compiled code. In this case the compiled PC for the start of the OSR point will be
passed to CVMJITgoNative.

Note that OSR’s feasibility relies on the properties describe above with regards to
the interpreted and compiled frames. If the layout and use of compiled frames
change and these properties cannot be preserved, then the current CDC-HI OSR
mechanism may not work correctly and will either have to be disable or modified.
Chapter 7 JIT Runtime Support 7-15

7-16 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 8

JIT Memory Manager

CDC-HI includes a memory manager for use by the JIT that provides services above
and beyond what is typically provided by malloc(). There are two types of
memory the JIT will allocate:

■ Permanent, which is in use as long as the method remains compiled.
■ Transient, which is only in use while the method is being compiled.

8.1 Permanent Memory Allocation
Permanent memory allocations are treated much like malloc() allocations. They
are allocated by calling CVMJITmemNewLongLivedMemory() and freed when a
method is decompiled by calling CVMJITmemFreeLongLivedMemory(). These
APIs just make use of calloc() and free(). The advantage of using them is that
they also provide the Memory Fence and Statistics Gathering features described
below.

8.2 Transient Memory Allocation
In order to simplify the handling of transient memory allocations, transient memory
allocations are not tracked and explicitly freed. Instead, 8k chunks of memory are
allocated by the Memory Manager using calloc(), and transient memory is
allocated by the Memory Manager from these chunks. When compilation is
complete, all the allocated chunks are freed.

There are a few advantages to this approach:

■ Simplicity: individual transient memory allocations are not tracked and don’t
have to be freed.
8-1

■ Speed: allocation is very fast, plus there is little overhead in freeing the chunks.

■ Efficiency: since the transient allocations are not tracked, there is no memory
overhead for allocation headers and trailers. Also, these allocations only need to
be 4-byte aligned, whereas calloc() does 8-byte alignment.

Transient memory is allocated by using CVMJITmemNew(). When compilation is
complete, all transient memory is freed by making a single call to
CVMJITmemFlush() to free all the allocated chunks.

8.3 Memory Fence
For debugging purposes, the Memory Manager can be compiled with support for
putting a memory fence around each allocation. The fence consists of header and
trailer words that are checked periodically during compilation and decompilation.
These checks are enabled by building with CVM_DEBUG_ASSERTS=true.

For transient memory, a check of all transient allocations is made when
CVMJITmemFlush() is called. However, if jitmemory.c is modified to also
#define CVM_DO_INTENSIVE_MEMORY_FENCE_VALIDATION, then a check is
made every time CVMJITmemNew() is called.

For permanent memory, a check of all permanently allocated memory is made when
CVMJITmemFreeLongLivedMemory() is called, but will also be made when
CVMJITmemNewLongLivedMemory() is called if jitmemory.c is modified to
#define CVM_DO_INTENSIVE_MEMORY_FENCE_VALIDATION.

If validation of a memory fence fails, an assertion is made and information about the
failing allocation is displayed, including the file name and line number where the
allocation was made from.

8.4 Statistics Gathering
One of the arguments to CVMJITmemNew() is a tag value. One of the following enum
values should be passed in for the tag argument:

enum CVMJITAllocationTag {

JIT_ALLOC_IRGEN_NODE = 0,/* IR node allocation
*/

JIT_ALLOC_IRGEN_OTHER, /* Other front-end
allocation */
8-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

JIT_ALLOC_OPTIMIZER, /* Optimizer allocations
*/

JIT_ALLOC_CGEN_REGMAN, /* working memory for
registers */

JIT_ALLOC_CGEN_ALURHS, /* working memory for
aluRhs */

JIT_ALLOC_CGEN_MEMSPEC, /* working memory for
memSpec */

JIT_ALLOC_CGEN_FIXUP, /* working memory for
fixups */

JIT_ALLOC_CGEN_OTHER, /* Other code generator
memory */

JIT_ALLOC_COLLECTIONS, /* sets, growable
arrays, etc. */

JIT_ALLOC_DEBUGGING, /* Allocations for
debugging */

JIT_ALLOC_NUM_ALLOCATION_KINDS

};

The purpose of the tag is for statistics gathering and is only used when building
with CVM_JIT_COLLECT_STATS=true and executing with -Xjit:stats=
minimal,trace=stats. After compilation of each method, details about the
transient memory usage will be traced to the console. Upon VM exit, a summary of
memory usage for all compilations will be traced to the console.

8.5 Reference
Primary Source Files:

jitmemory.h

jitmemory.c

APIs

CVMJITmemNew()

CVMJITmemFlush()

CVMJITmemNewLongLivedMemory()

ory()
Chapter 8 JIT Memory Manager 8-3

Build Options:

CVM_JIT_COLLECT_STATS=true

Command Line Options:

-Xjit:stats=minimal,trace=stats
8-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 9

Constant Pool Manager

The Constant Pool Manager is used during dynamic compilation to manage 32 and
64 bit constants that are referenced by generated code. Although many smaller
constants can be encoded within an instruction (immediate value for ALU
instruction or immediate offset for load/store instruction), large constants usually
need to be stored in memory and loaded into a register for use. Most large constants
are addresses of data structures that need to be referenced or functions that need to
be called, but some are just large numeric constants whose origins are in the Java
bytecodes.

The Constant Pool Manager provides a mechanism for accumulating these constants
into large pools, which limits the number of duplicates. It also allows constants to be
grouped together, which improves processor cache performance. Also, when used in
conjunction with the Register Manager, it is possible to track which constants are
already in registers so constants don’t need to be reloaded every time they are
referenced.

Note – The constant pools being discussed in this section should not be confused
with the per class Java constant pools, whose origins are the constant pool in the
class file, and are referenced using the CVMcbConstantPool() macro.

9.1 Loading Constants into Registers
When dealing with large constants, a platform has three choices on how to load the
constants into a register.
9-1

1. Load from a PC relative constant pool. This approach is only supportable on a
small number of platforms which allow PC relative loads, such as ARM. Multiple
constant pools may be needed within a method if the offset range of a PC relative
load is smaller than the size of the method. The constant pools are private to the
method.

2. Load from an offset off of a dedicated constant pool base register. This approach
makes use of a dedicated GPR as the base register for the constant pool. The base
register (called CVMCPU_CP_REG) is setup on method entry and whenever
execution returns to the method. Each method has its own constant pool.

3. Use multiple ALU instructions to build the constant. This approach is popular for
processors that can build any 32-bit constant with at most two instructions.
Constants created in this way do not use the Constant Pool Manager.

The preference between (2) and (3) usually depends on the availability of an extra
GPR as the base register, the cost of doing a load, and the cost of doing two ALU
instructions to build the constant. Having two ALUs often tips the scales towards
(3). The ability to do instruction scheduling (something not currently done) also can
affect the choice.

9.2 Adding Constants to the Constant Pool
Constants are added to the constant pool using
CVMJITgetRuntimeConstantReference32() and
CVMJITgetRuntimeConstantReference64(). They both return the logical
address of the constant in the constant pool. The caller is required to immediately
use the offset in a load instruction that will load the constant. No other instruction
can be emitted before doing this.

In most cases the constant has not yet been emitted, and an offset of 0 is returned.
The Patching Forward Constant Pool References section below describes how this is
handled properly.

Note that typically CVMJITgetRuntimeConstantReference32() is only called
from the platform specific CVMCPUemitLoadConstant() function, and all code
that desires a constant in a register should call CVMCPUemitLoadConstant(). This
allows CVMCPUemitLoadConstant() to determine how the constant should be
loaded, because even if there is a constant pool, it may be possible to load the
constant with just one ALU instruction if the constant is relatively small, thereby
bypassing the constant pool.
9-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

9.3 Dumping the Constant Pool
The Constant Pool can be dumped by calling
CVMJITdumpRuntimeConstantPool(). When using a dedicated base register, this
should not be done until all code for the method has been compiled. When using the
PC as a base register, it can be done at any point, assuming code is also generated to
branch around the constant pool.

When using PC relative constant pools, periodically CVMJITcpoolNeedDump()
should be called to check if the distance between the current PC and the furthest
unresolved reference to a constant is getting close to the maximum offset allowed by
a PC relative load. CVMJITcpoolNeedDump() will call
CVMJITcanReachAddress() for each unresolved forward reference to a constant
to make sure that the reference is not in danger of becoming out of range of a PC
relative load. CVMJITcanReachAddress() must be implemented for each
processor port if a PC relative constant pool is being used.

9.4 Patching Forward Constant Pool
References
As mentioned above, usually when CVMJITgetRuntimeConstantReference32()
and CVMJITgetRuntimeConstantReference64() are called, the constant is not
yet dumped and an offset of 0 is returned. When this happens, the Constant Pool
Manager adds the current logical address to the list of address that need to be
patched (or “fixed up”) when the constant is eventually emitted by
CVMJITdumpRuntimeConstantPool(). This is why the caller must immediately
generate a reference to the constant. Otherwise the wrong instruction will get
patched.

Patching is done by having CVMJITdumpRuntimeConstantPool() call
CVMJITfixupAddress() for each unresolved forward reference to a constant. Each
processor port must properly implement CVMJITfixupAddress() to handle this
patching. Usually this just involves masking the offset bits into the existing
instruction.

Note that CVMJITfixupAddress() must rewrite the instruction with the same
number of instructions as were originally emitted when the unresolved forward
reference to the constant was first emitted. If the load of the constant will vary in
Chapter 9 Constant Pool Manager 9-3

instruction length based on how far the offset of the constant is, then this may
require being pessimistic about how many instructions are needed when first
emitting the instruction

9.5 CVMCPU_HAS_CP_REG
The presence of the CVMCPU_HAS_CP_REG macro tells the Constant Pool Manager
that there will be a dedicated constant pool base register rather than a PC relative
base register. The Constant Pool Manager will behave differently based on the
setting of the macro.

9.6 Register Manager Usage
The Register Manager is capable of keeping track of resources that map to constants,
and more importantly, keeping track of constants that have already been loaded into
registers. This is done by calling CVMRMbindResourceForConstant32() or
CVMRMgetResourceForConstant32() when associating a constant with a
resource.

CVMRMbindResourceForConstant32() will defer the actual loading of the
constant until the resource is pinned, while CVMRMgetResourceForConstant32()
will ensure that resource is already loaded into the register. Both result in the
resource containing the constant being registered with the Register Manager, so the
next time either is called again for the same constant, the same resource will be
returned. This allows reuse of a constant already loaded into a register.

When a resource containing a constant is pinned and the register is not already
loaded with the constant, this will result in the Register Manager
reloadConstant32() function being called, which in turn will call
CVMCPUemitLoadConstant() to actually load a constant into the register.

9.7 Typical Code Generation
CODE EXAMPLE 9-1 PC Relative (ARM)

0x40756524 936: ldr r8, [pc, #+0] @
cardTableVirtualBase
9-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

...

0x4075658c 1040: .word 2532847 @
cardTableVirtualBase

:::::Fixed instruction at 936 to reference 1040

CODE EXAMPLE 9-2 CP Base Register (PowerPC)

0x30628848 1056: lwz r22, 0(rCP) @
cardTableVirtualBase

...

0x306288b8 1168: .word 271622479 @
cardTableVirtualBase

:::::Fixed instruction at 1056 to reference 1168

CODE EXAMPLE 9-3 Multiple ALU Instructions (Sparc)

0x00ae7bd4 1228:sethi 11081, %l5 @
cardTableVirtualBase

0x00ae7bd8 1232:or %l5, #83, %l5

Note that in the first two examples above that use a constant pool, the initial offset of
the constant is 0, but after the constant is dumped the instruction is “fixed” to have
the proper offset. The instruction with the proper offset is not shown above since no
code for it is traced.

9.8 Reference
Primary Source Files:

jitconstantpool.h

jitconstantpool.c

Macros:

CVMCPU_HAS_CP_REG

Functions:

CVMJITgetRuntimeConstantReference32

CVMJITgetRuntimeConstantReference64

CVMJITdumpRuntimeConstantPool

CVMJITcpoolNeedDump
Chapter 9 Constant Pool Manager 9-5

CVMJITcanReachAddress

CVMJITfixupAddress

CVMRMbindResourceForConstant32

CVMRMgetResourceForConstant32
9-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 10

Register Manager

The Register Manager has responsibility for keeping track of register usage during
compilation. It could more appropriately be called the Resource Manager, because
what it really does is use a data structure called CVMRMResource to keep track of
where evaluated expressions are currently stored, both in memory and in registers.

10.1 Evaluated Expressions
Evaluated expressions are IR nodes that have applied some sort of operation on their
subnode argument(s), such the adding the lhs and rhs subnodes of an ADD IR node.
Some expressions are implicitly evaluated, such as locals and constants, which don’t
require that an operation be performed other than loading from memory. Evaluated
expressions can reside in one of five possible locations:

■ In the locals area of the frame
■ In the temp (spill) area of the frame
■ On the parameter stack of the frame
■ In a constant pool
■ In a register

The resource manager will track in which of the above five locations a resource is
currently being stored in. The first four locations are all in memory. If an evaluated
expression is in a register, it can at the same time be stored in any one of the above
four memory locations.
10-1

10.2 Interactions with the JCS Grammar
The main clients of the Register Manager are the semantic actions of the JCS
grammar rules. An understanding of how the rules interact with the Register
Manager is best explained using a simple example. A general understanding of JCS
grammar rules is necessary for this example. Consider the following expression:

y + 1000;

The IR for this expressions will consist of an IADD32 node with a LOCAL32 node on
the lhs and a CONSTANT32 node on the rhs. The LOCAL32 node for y is handled
by the following rule:

reg32:LOCAL32 : 10 : : : : {

CVMJITRMContext *rc = CVMRM_INT_REGS(con);

CVMJITLocal* l = CVMJITirnodeGetLocal($$);

CVMBool isRef =
CVMJITirnodeIsReferenceType($$);

CVMRMResource* dest = CVMRMloadJavaLocal(

rc, GET_REGISTER_GOALS, 1, isRef, l-
>localNo);

CVMRMoccupyAndUnpinResource(rc, dest, $$);

pushResource(con, dest);

};

The key here is that a resource is created for the local by calling
CVMRMloadJavaLocal(), and then the resource is pushed onto the grammar
semantic stack for use by the rule that consumes the local (the IADD32 rule in this
case).

Next, the constant 1000 is handled by the following rule:

reg32: ICONST_32 : 20 : : : : {

CVMJITRMContext *rc = CVMRM_INT_REGS(con);

CVMInt32 constant =
CVMJITirnodeGetConstant32($$)->j.i;

CVMRMResource *dest =

CVMRMbindResourceForConstant32(rc,
constant);

CVMRMoccupyAndUnpinResource(rc, dest,
thisNode);

pushResource(con, dest);
10-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

};

This rule creates a resource for the constant by calling
CVMRMbindResourceForConstant32(). Just like the LOCAL32 rule above, it also
pushes this resource to the grammar semantic stack. Now resources for both
operands of the “y + 1000“ expression are on the grammar semantic stack.

Next, the add is handled by the following rule:

reg32: IADD32 reg32 reg32 : 10 : : : : {

CVMJITRMContext *rc = CVMRM_INT_REGS(con);

CVMRMResource* rhs = popResource(con);

CVMRMResource* lhs = popResource(con);

CVMRMResource* dest =

CVMRMgetResource(rc, GET_REGISTER_GOALS,
1);

CVMRMpinResource(rc, lhs, CVMRM_ANY_SET,
CVMRM_EMPTY_SET);

CVMRMpinResource(rc, rhs, CVMRM_ANY_SET,
CVMRM_EMPTY_SET);

CVMCPUemitBinaryALU(con,

CVMCPU_ADD_OPCODE,

CVMRMgetRegisterNumber(dest),

CVMRMgetRegisterNumber(lhs),

CVMRMgetRegisterNumber(rhs));

CVMRMrelinquishResource(rc, lhs);

CVMRMrelinquishResource(rc, rhs);

CVMRMoccupyAndUnpinResource(rc, dest,
thisNode);

pushResource(con, dest);

};

The IADD32 rule does the following:

1. Pops the resources for the two operands off of the grammar semantic stack.

2. Creates a new resource for the result of the add by calling
CVMRMgetResource(), which returns a resource already bound to a register.

3. Calls CVMRMpinResource() for the two operands, which forces them into
registers.

4. Calls CVMCPUemitBinaryALU() to emit the add instruction.
Chapter 10 Register Manager 10-3

5. Releases both of the operand resources, allowing them to be deleted if no other
references are being made to them.

6. Pushes the result resource onto the grammar semantic stack for use by the rule
that consumes the expression, such as an assignment to a local or a method
argument.

Although the above rules are similar to those used in jitgrammarrules.jcs for the
CDC-HI RISC ports, some liberties have been taken to make this example easier to
read. Most notably the rhs node of the IADD32 rule should be an aluRhs node, not a
reg32 node. However, making it a reg32 node simplifies the example.

More details on the JCS grammar can be found in a the JCS chapter.

10.3 CVMRMResource
As mentioned above, a Register Manager resource is used to track the state of
evaluated expressions, and this is done using the CVMRMResource struct:

struct CVMRMResource {

CVMJITIdentityDecoration dec;

CVMUint16 flags;

CVMInt8 regno;

CVMInt32 rmask;

CVMInt16 spillLoc;

CVMUint16 localNo; /* If local */

CVMInt8 size; /* size in words of data */

CVMInt8 nregs; /* number of registers occupied
*/

CVMInt32 constant; /* If constant */

CVMJITIRNode* expr;

struct CVMRMResource* prev;

struct CVMRMResource* next;

};

■ dec: Used by resources that map to IDENTITY nodes.

■ flags: See Resource Flags section below.

■ regno: Register number assigned to (allocated for) the resource. -1 if no register
assignment has been made.
10-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

■ rmask: Bitmap that represents the registers in use by the resource. Usually
1<<regno, but 1<<(regno+1) will also be in use for resources that represent
64 bit types when registers are only 32-bit.

■ spillLoc: Cell number in the temp area where the resource is spilled to. See the
Dirty Resources and Spilling section below.

■ localNo: Local number for resources that map to a local. See Resources for
Locals section below.

■ size: Size in words of the resource. 32-bit and 64-bit resources are supported.

■ nregs: Number of registers needed for the resource. 32-bit resources always need
one register. 64-bit resources will need two registers if the registers only hold 32-
bits, and one register if they hold 64-bits.

■ constant: The constant value if the resources represents a constant. See the
Resources for Constants section below.

■ expr: IR node of evaluated expression for occupied resources. Has no use other
than for debugging.

■ prev and next: For keeping resources in a doubly linked list of free or allocated
resources.

10.4 Resource Flags
The flags field of the resource indicates the state of the resource. One or more of the
following flags can be set:

#define CVMRMpinned (1<<0)

#define CVMRMdirty (1<<1)

#define CVMRMoccupied (1<<2)

#define CVMRMjavaStackTopValue (1<<3)

#define CVMRMstackParam (1<<4)

#define CVMRMphi (1<<5)

#define CVMRMtrash (1<<6)

#define CVMRMref (1<<7)

#define CVMRMclone (1<<8)

#define CVMRMLocalVar (1<<9)

#define CVMRMConstant32 (1<<10)

■ CVMRMpinned: The resource has been loaded into a register (specified by regno),
and this register is pinned, meaning that the Register Manager cannot currently
reallocate it to for some other resource.
Chapter 10 Register Manager 10-5

■ CVMRMdirty: The resource has been loaded into a register, but currently its value
has not been flushed to the backing store. This happens after the evaluation of an
intermediate result. See the Dirty Resources and Spilling section for details.

■ CVMRMoccupied: The resource is occupied by an IR node. This is usually is done
by calling CVMRMoccupyAndUnpinResource() at the end of each grammar rule
that produces a result. The expr field of the resource is set to point to the IR node
that occupies the resource. Currently the CVMRMoccupied flag is never checked
and the expr field is only used for debugging purposes.

■ CVMRMjavaStackTopValue: This is used to indicated that the resource
corresponds to a method result and is currently on the top of the parameter (Java)
stack. More details on parameter handling and CVMRMjavaStackTopValue can
be found in the Stack Parameter Handling section below and the Stack Manager
chapter.

■ CVMRMstackParam: Although referenced from the source, this flag is no longer
needed. See the CVMSMgetSingle() and CVMSMgetDouble() section of the
Stack Manager chapter for more details.

■ CVMRMphi: Indicates that this resource is for a phi value. See the Phi Handling
section below and the Phi Values chapter for more information on phis.

■ CVMRMtrash: This flag is set when a resource is deleted. A resource should never
be used after being deleted, and asserts for this are located throughout the
Register Manager source.

■ CVMRMref: This flag is set whenever the value loaded into a resource is an object
reference. This flag is set when the resource is first associated with a value, such
as in CVMRMbindStackTempToResource(), CVMRMbindUseToResource(),
CVMRMloadJavaLocal(), and CVMRMoccupyAndUnpinResource(). It is used
so the Register Manager can properly maintain the information needed for
generating stack maps. See the JIT Stack Maps chapter for more details.

■ CVMRMclone: Indicates that the resource is a clone of another resource. It is set by
CVMRMcloneResource() and CVMRMcloneResourceSpecific(). Currently
setting this flag serves no purpose.

■ CVMRMLocalVar: Indicates that the resource is for a local. See the Resources for
Locals section below.

■ CVMRMConstant32: Indicates that the resource is for a constant. See the
Resources for Constants section below.
10-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

10.5 Register Contexts (Register Banks)
The examples above all pass a CVMJITRMContext* argument (usually referred to as
rc), to the Register Manager APIs. CVMJITRMContext represents a register bank. For
most CDC-HI ports there are two such banks: one for GPRs and one for FPRs. For
processors that do not having an FPU, only the GPR bank is created and used.

Register Contexts are initialized by calling RMContextInit() with a set of
arguments describing the register bank. By default the Register Manager
CVMRMinit() function automatically initializes the GPR and FPR (if used) register
banks.

The GPR register context is accessed by using the CVMRM_INT_REGS(con) macro
and the FPR register context is accessed by using the CVMRM_FP_REGS(con) macro.

It is possible to add more register banks if a port wishes to. One possible reason for
this is to take advantage of multimedia or DSP registers and instructions available
on some modern processors. CVMRMinit() could be modified to handle the
initialization of any additional register banks.

10.6 Register Sets
When a register context is initialized by calling RMContextInit(), the registers are
categorized using the following register sets, all of which have corresponding fields
in the CVMJITRMContext:

■ phiRegSet: The set of registers available for passing phi values in registers. More
details on phis can be found in the Phi Values section below.

■ safeSet: The set of registers that are non-volatile across C function calls.

■ unsafeSet: The set of registers that are volatile across C function calls.

■ busySet: The set of registers known to be busy (such as SP). The Register
Manager cannot allocate registers from this set, even if they are included in one of
the other sets.

■ anySet: The set of all registers.

For CDC-HI RISC ports, the proper values for all of these registers sets are
determined by RISC porting layer macros provided by the port, such as
CVMCPU_BUSY_SET, CVMCPU_NON_VOLATILE_SET, and CVMCPU_VOLATILE_SET.
Chapter 10 Register Manager 10-7

These register sets are used to help determine preferences for register allocations.
They are used in conjunction with preferences specified by the Register Manager
client. This is described in more detail in the Register Allocation and Targeting
section below.

10.7 Allocating Resources
There are a number of APIs that allocate a resource, or in some cases return an
existing resource.

■ CVMRMgetResource(): Allocates a resource and assigns a register for the
resource.

■ CVMRMgetResourceStrict(): Like CVMRMgetResource(), but has stricter
requirements for register assignments.

■ CVMRMgetResourceSpecific(): Like CVMRMgetResource(), but requires a
specific register.

■ CVMRMcloneResource(): Clones the resource passed to it and assigns a register
to the new resource.

■ CVMRMcloneResourceSpecific(): Like CVMRMcloneResource(), but
requires a specific register.

■ CVMRMbindStackTempToResource(): Used by the Stack Manager to create a
resources that represents a method result stored on the top of the Java stack. No
register is assigned. See the Stack Parameter Handling for more details.

■ CVMRMbindResourceForConstant32(): If a resource for the constant exits,
then returns that resource. Otherwise a new resource is created and returned. No
register is assigned. See the Resources for Constants section below for more
details.

■ CVMRMgetResourceForConstant32(): Like
CVMRMbindResourceForConstant32(), but also assigns a register for the
resource and forces the constant into the register.

■ CVMRMloadJavaLocal(): Allocates a resource for a local. See the Resources for
Locals section below for more details.

Register assignments and the concepts of strict and specific register assignments are
explained in more detail in the Register Allocation and Targeting section below.
10-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

10.8 Reference Counts and Deleting
Resources
The Register Manager maintains a reference count (referred to as a refcount) for each
resource. A newly created resource has a refcount of 1. The only way a resource can
have a refcount greater than 1 is if the resource is for an IDENTITY node. IDENTITY
nodes are explained in more detail in JIT Front End and JCS chapters.

Calling CVMRMrelinquishResource() decrements the refcount, and the Register
Manager will destroy the resource if the refcount goes to zero. However, resources
for locals and constants are never destroyed since they may have subsequent
references in the block.

10.9 Register Allocation and Targeting
Some of the APIs that allocate a resource will return a resource already bound to a
register. Also, any API that does pinning will also bind the resource to a register.
These APIs will always take a target argument, which is a register set of the
preferred registers to allocate from. Most also take an avoid argument, which is a set
of registers to avoid if the registers in target are not available.

Usually the target and avoid set are only suggestions. However, the strict APIs will
require that the allocated register be in the target set and not in the avoid set. The
specific APIs are similar to the strict APIs, except they are passed a target register
number rather than register set, and there is no avoid set because the requested
register number has to be allocated for the resource.

When a register has been allocated for a resource, the regNo field of the resource
will contain the register number rather than a -1, and also the rc-
>occupiedRegisters bitmap is updated to include the newly allocated register.

If a resource has an assigned register and the resource is not pinned (see Resource
Pinning section below), it is possible that the Register Manager will take away the
register assigned to the resource. This will happen during register allocation if all
registers that meet the targeting requirements of the resource have already been
allocated to other resources. In this case one of the other resources will have to give
up its register assignment. When a register is taken away from a resource, its regNo
field is set back to -1.
Chapter 10 Register Manager 10-9

10.10 ResourcePinning
Pinning is the process of loading a resource into a register. If the regNo field of the
resource is -1, this means no register has been allocated for the resource yet, so the
first thing done is to allocate a register based on the target and avoid register sets
specified when pinning. After this, the APIs that handles the pinning calls
reloadRegister() to force the loading of the resource from its backing store. The
type of resource will determine where it is loaded from. See the Dirty Resources and
Spilling, Resources for Constants, Resources for Locals, and Phi Handling sections
for more details on resource types their backing store.

If the resource being pinned already has a register assigned to it, then the resource is
assumed to already be loaded into that register. In this case no action is needed,
assuming that the register meets the targeting requirements specified when pinning.
If not, a new register is allocated that does meet the targeting requirements, and the
old register is moved to the new register and then released.

Pinning always results in setting the CVMRMpinned flag. This prevents regNo from
being reallocated for use by another resource. For this reason, resources are usually
only pinned for a very short period of time. Generally resources are only left pinned
within the semantic action of a grammar rule, but not across rules. When a resource
is unpinned, it will still occupy the register, but the register is also made available
for reallocation for another resource.

■ CVMRMpinResource(): Forces the resource to be loaded into a register.

■ CVMRMpinResourceStrict(): Like CVMRMpinResource(), but forces the
resource into a register in the target set.

■ CVMRMpinResourceSpecific(): Like CVMRMpinResource(), but forces the
resource into the specified register.

■ CVMRMunpinResource(): Unpins the resource. This clears the CVMRMpinned
flag. The resource will still be considered loaded into regNo, but regNo will
made available for reallocation.

■ CVMRMoccupyAndUnpinResource(): Like CVMRMunpinResource(), but also
occupies the resource with the specified IR node. Occupying a resource no longer
serves any purpose in CDC-HI, except in some Register Manager debugging
code.
10-10 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

10.11 Dirty Resources and Spilling
Dirty resources are those that contain a value in a register, and the backing store for
the resource is out of date with respect to the value in the register. For example, in
the IADD32 rule above, after computing the result of the add into the dest resource,
the resource is considered dirty and will have its CVMRMdirty flag set. If the register
with the result were to be taken for use by another resource, then the result would
be lost forever.

The process of updating a dirty resource’s backing store with the contents of the
resource’s register is called spilling. A slot in the spill area (also called the temp area)
is set aside for resources that need to be spilled. Whenever a dirty resource’s register
has to be vacated for any reason (such as for use by another resource), its contents
are first stored to its slot in the spill area. The slot number is stored in the resources
spillLoc field.

As mentioned above, some spills happen implicitly as registers are reallocated for
other uses. However, some are also explicit. For example, when making a method
call, all registers allocated by the Register Manager are reused by the callee and are
not restored before returning. For this reason, when making a method call all dirty
resources need to be spilled first.

There are two APIs for handling this forced spilling of registers:

■ CVMRMminorSpill(): Used when calling C helper functions that won’t cause a
GC. All dirty resources in volatile registers (as defined by C calling conventions)
are spilled to the temp area. In addition to this, all resources in volatile registers
are vacated from their registers (the registers are freed).

■ CVMRMmajorSpill(): Used when calling anything that might result in a GC,
including method calls and C helpers such as allocators. Resources containing
object references are always spilled if dirty and also vacated. Also, resources not
in the register set specified by the safe argument are spilled if dirty and also
vacated. Usually the safe argument is either CVMRM_EMPTY_SET for things like
method calls that trash all registers, or CVMRM_SAFE_SET for calls to C helper
functions that preserve non-volatile registers.

10.12 Resources for Constants
The register manager has the ability to track resources used for constants, so for any
given constant there is only one resource created for it, even though the constant
might be referenced by multiple ICONST_32 IR nodes. This allows a constant
already loaded into a register to be reused without having to reload register.
Chapter 10 Register Manager 10-11

As already described in the Allocating Resources section,
CVMRMbindResourceForConstant32() and
CVMRMgetResourceForConstant32() are used for allocating resources associated
with constants.

A resource associated with a constant will have its CVMRMConstant32 flag set, and
will have its constant field set to the value of the constant. For this reason, a resource
for a constant is never considered to be dirty because code to reload the constant can
be generated at any point.

When a constant needs to be loaded into a register, reloadConstant() is called. It
will in turn call CVMCPUemitLoadConstant(), which may rely on the Constant
Pool Manager to track where in memory the constant is stored. See the Constant
Pool Manager chapter contains more details on this.

10.13 Resources for Locals
In the CDC-HI RISC ports, resources allocated for locals are always up to date and
never have their CVMRMdirty flag set. This is because locals are write through, and
is the result of assignment rules calling CVMRMstoreJavaLocal(), which does the
following:

1. Stores the specified pinned resource to the backing store for the local.

2. Sets the CVMRMLocalVar flag on the resource.

3. Sets the localNo field of the resource to the local number.

4. Adds the resource to rc->local2res[], which maps local numbers to resources

When a local is referenced in a grammar rule, such as in the LOCAL32 rule shown in
the example above, CVMRMloadJavaLocal() is called. It will first check if a
resource for the local already exists in rc->local2res[], in which case it can be
reused, saving a load if the local is already in a register. Otherwise a new resource is
created for the local, and like with CVMRMstoreJavaLocal(), the CVMRMLocalVar
flag is set, the localNo field is set, and the resource is added to rc->local2res[].

10.14 Block Handling
Generally speaking, the Register Manager state is not carried across basic blocks.
The one exception to this are Phis, which are described in the Phi Handling section
below.
10-12 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

■ CVMRMbeginBlock(): Called on block entry to initialize a few register set related
fields and to reset a few data structures, such as rc->local2res[]. It also
handles the binding of USED nodes to resources, which is described in more
detail in the Phi Handling section.

■ CVMRMendBlock(): Called on block exit. The main purpose of
CVMRMendBlock() is to free all resources.

10.15 Phi Handling
Phis are values that are left on the semantic stack across blocks. They are discussed
in detail in the Phi Values chapter. The following Register Manager APIs exist to
support phi handling:

■ CVMRMspillPhis(): Only used in the rare case where a backwards branch target
has incoming phis. If any phis are for object references or are stored in volatile
registers, they need to be spilled in order to avoid register corruption if a GC is
requested. See the GC Checks in Compiled Code chapter for more details on GC
handling at backwards branch targets.

■ CVMRMreloadPhis(): Reloads the phis spilled by CVMRMspillPhis() after the
GC is complete.

■ CVMRMbindAllUsedNodes(): Called on block entry. For each incoming phi,
binds the USED IR node for the phi to a newly created resource. The resource will
either map the phi to a register or to a cell in the temp area, depending on how it
was passed.

■ CVMRMstoreDefinedValue(): Stores an outgoing phi into its cell in the temp
area if the phi is not being passed in a register.

■ CVMRMloadOrReleasePhis(): The first call to CVMRMloadOrReleasePhis()
loads all phi resources being passed in registers into their proper registers and
leaves the resources pinned so the registers will not be reallocated during
handling of a conditional branch instructions. The second call unpins the phi
resources after the branch is emitted.

10.16 Method Result Handling
When a resource that maps to a method result is pinned, the Register Manager
pops the result off of the Java stack and into a register. This is handled in
reloadRegister() by calling CVMSMpopSingle() or CVMSMpopDouble().
Chapter 10 Register Manager 10-13

This is only done for resources created by calling
CVMRMbindStackTempToResource(), which is called by the Stack Manager
CVMSMinvocation() function, which is called by INVOKE rules in the
grammar.

The following two rules demonstrate result handling in the grammar:

invoke32_result: INVOKE32 parameters reg32 : 40 : :
: : {

CVMRMResource* dest = invokeMethod(con, $$);

pushResource(con, dest);

};

reg32:invoke32_result: 20 : : : : {

/* force into a register */

CVMJITRMContext *rc = CVMRM_INT_REGS(con);

CVMRMResource* operand = popResource(con);

CVMRMpinResource(rc, operand,
GET_REGISTER_GOALS);

CVMRMunpinResource(rc, operand);

pushResource(con, operand);

};

The first rule is responsible for emitting the invocation. This is handled by
invokeMethod(), which will make the call to CVMSMinvocation(), which creates
the resource that is eventually returned by invokeMethod(). This resource is
pushed onto the grammar semantic stack, and is later consumed by the second rule
above when the method result is needed in a register. The second rule pops the
resource that was pushed by the first rule and then pins it, which pops the result off
the Java stack and into a register. As mentioned above, this is handled in
reloadRegister() by calling CVMSMpopSingle().

See the Stack Manager chapter for more details on the interaction of the Register
Manager and the Stack Manager.

10.17 Porting Effort
For ports done within the JIT RISC porting layer, the only porting effort needed is
providing values for the macros used by the Register Manager that are also part of
the RISC porting layer. These are specified in the jitrisc_cpu.h header file.
10-14 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

For ports done outside of the JIT RISC porting layer, functionality similar to the
Register Manager is probably necessary, although a port is free to do this as it sees
fit. Unfortunately the Register Manager is not completely abstracted from shared JIT
code.

The first abstraction problem is that the CVMJITCompilationContext struct
embeds the CVMJITRMCommonContext and CVMJITRMContext structs, so this implies
the presence of some sort of Register Manager. To make matters worse, the header
file that describes these structs, jitrmcontext.h, is located in shared code. This
header file should be moved to src/portlibs/jit/risc/include/export so a
port is free to define CVMJITRMCommonContext and CVMJITRMContext any way it
wishes.

The second abstraction problem is that the following fields in con-
>RMcommonContext are all accessed from jitstackmap.c, which is shared code:

■ maxSpillNumber
■ spillRefSet
■ spillBusySet

These fields should probably all be moved to CVMJITCompilationContext.

10.18 Reference
Primary Source Files:

■ jitregman.c
■ jitregman.h
■ jitrmcontext.h
■ jitgrammarrules.jcs

Data Structures:

■ CVMJITRMCommonContext
■ CVMJITRMContext
Chapter 10 Register Manager 10-15

10-16 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 11

Stack Manager

11.1 Overview
The Stack Manager provides compile time management of method parameters
pushed on to the Java expression stack. It is part of the shared RISC implementation,
and is used by the backend in conjunction with the Register Manager to track values
on the Java stack that are to be used as parameters.

The following fields of CVMJITCompilationContext are used by the Stack
Manager:

CVMInt32SMdepth;

CVMJITSetSMstackRefSet;

#ifndef CVMCPU_HAS_POSTINCREMENT_STORE

CVMInt32SMjspOffset;

#endif

When the backend needs to push a parameter onto the Java stack, it calls
CVMSMpushSingle() or CVMSMpushDouble(). These calls are normally triggered
by PARAMETER32 and PARAMETER64 IR nodes. These functions will update the
current depth of the stack (SMdepth), make sure the resource representing the
parameter is loaded into a register by calling CVMRMpinResource(), and then call
an emitter to store the parameter to the Java stack.

When emitting code for a method call, first CVMSMpopParameters() is called. It
simply adjusts SMdepth by the number of parameters. Next, CVMSMinvocation()
is called. It creates a resource to represent the method result, binds the resource to
the current Java top of stack, and sets the resource’s CVMRMjavaStackTopValue
flag. This is known as a deferred pop and is done to optimize for method results that
are to be used as parameters, which is described in more detail below.
11-1

11.2 Handling Method Results
Method results are consumed by the grammar using one of the following two JCS
rules:

// Purpose: Stores a 32 return value into a
register.

reg32:invoke32_result: 20 : : : : {

/* force into a register */

CVMRMResource* operand = popResource(con);

CVMRMpinResource(CVMRM_INT_REGS(con), operand,
GET_REGISTER_GOALS);

CVMRMunpinResource(CVMRM_INT_REGS(con),
operand);

pushResource(con, operand);

};

param32: invoke32_result : 0 : : : : {

/* Free! Already on Stack */

CVMRMResource *operand = popResource(con);

CVMRMrelinquishResource(CVMRM_INT_REGS(con),
operand);

};

If a method result is not to be used as a parameter, then the first rule is used. The call
CVMRMpinResource() will result in the invoke32_result value being popped
from the Java stack and loaded it into a register. This is handled in jitregman.c by
the following code in reloadRegister():

} else if (CVMRMisJavaStackTopValue(rp)) {

/* this is a deferred pop operation. */

if (rp->size == 1){

CVMSMpopSingle(con, rp);

} else {

CVMSMpopDouble(con, rp);

}

CVMRMclearJavaStackTopValue(rp); /* not on top
of the stack */

rp->flags |= CVMRMdirty;

 } else ...
11-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Note that the value is marked as “dirty,” indicating that it is in a register, but is no
longer associated with an up-to-date memory location.

If a method result is to be used as a parameter to another method call, rather than
immediately popping the method result into a register, it is simply left on the stack.
This is handled by the “param32: invoke32_result” rule above. Since this rule
has a cost of 0 and the combination of the “param32: reg32” and “reg32:
invoke32_result” rules has a cost of 20, the “param32: invoke32_result”
rule is chosen if the parameter is a method result. This way the method result is not
popped by CVMSMpopSingle() and then pushed again by CVMSMpushSingle().
Since the result of the invocation is already on the top of the stack, there is no need
to push it on the stack again to be used as a parameter.

11.3 CVMSMadjustJSP()
Normally the Stack Manager relies on the platform specific emitters to handle the
adjustment of the stack pointer (JSP register) as parameters are pushed to the Java
stack. This works well if the platform supports post increment store instructions that
can automatically update JSP as part of the store instruction. If this is supported,
then the platform will #define CVMCPU_HAS_POSTINCREMENT_STORE, and the JSP
register is automatically updated as parameters are pushed.

If post increment stores are not supported, then normally the platform would be left
with doing a manual adjustment of JSP every time an argument is pushed. Instead
of this, the Stack Manager defers any JSP adjustment until necessary. In con-
>SMjspOffset it tracks the number of words pushed since the last adjustment.
When an adjustment is required (which is determined the client of the Stack
Manager), CVMSMadjustJSP() is called to emit code to adjust the JSP registers, and
con->SMjspOffset is reset to 0.

11.4 Stack Maps
When CVMSMpushSingle() is used to push an object reference onto the Java stack,
then con->SMstackRefSet is updated to reflect this. Periodically SMstackRefSet
is grabbed by the Stack Manager CVMJITcaptureStackmap() function. This is
done so a stackmap can be generated that accurately reflects object references on the
Java stack.
Chapter 11 Stack Manager 11-3

SMstackRefSet is also updated when CVMSMinvocation() is called to reflect the
refness of the returned result being pushed to the Java stack. Note that only the parts
of SMstackRefSet covered by SMdepth are ever used, so there is no need to
update the refness of parameters popped by CVMSMpopParameters().

11.5 Handling Non-parameter Stack Values
Only parameters are pushed to the Java stack in compiled methods. Other
expressions that would normally end up on the Java stack when interpreted are
either maintained in registers or stored to the temp area (spill area) of the compiled
Java frame. For example:

x = (val1 * val2) + foo(arg1, arg2);

First val*val2 is evaluated, and for the CDC-HI RISC ports, it would end up in a
register. Next arg1 is loaded into a register. Since it is a parameter, this is handled
by CVMSMpushSingle() when it calls CVMRMpinResource(), unless arg1
happens to already be in a register. CVMSMpushSingle() will then emit code to
store arg1 to the Java stack. The same is done for arg2. Next the invocation as
handled. Since the register containing val1*val2 will be lost during the invocation,
the Register Manager will spill the register to the temp area of the compiled frame.
After the invocation, val1*val2 is reloaded from the temp area into a register, and
can be added to the result of the invocation to provide the value to assign to x. At no
point was val1*val2 tracked by the Stack Manager since val1*val2 is considered
a temporary value and not a parameter.

11.6 CVMSMgetSingle() and
CVMSMgetDouble()
Although referenced in the source code, CVMSMgetSingle() and
CVMSMgetDouble() are no longer ever called at runtime and will be removed from
CDC 1.1. This is also true of all other code related to CVMSMgetSingle() and
CVMSMgetDouble(), including code in reloadRegister() that calls them,
CVMRMconvertJavaStackTopValue2StackParam() (plus the call to it), rp-
>stackLoc, and the CVMRMstackParam flag.
11-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

11.7 Porting Effort
The Stack Manager is shared RISC code, so no porting is needed when the processor
port is done within the shared RISC porting layer. Otherwise the Stack Manager will
need to be replaced with an implementation that still properly maintains
SMstackRefSet. This is required so the CVMJITcaptureStackmap() in
jitstackmap.c functions properly.

11.8 Reference
Primary Source Files:

■ jitstackman.h
■ jitstackman.c
Chapter 11 Stack Manager 11-5

11-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 12

Phi Values

12.1 Overview
Sometimes the Java stack is not empty when exiting or entering a basic block. The
most common example is a selection expression. For example:

int x = b ? val1 : val2;

is semantically equivalent to:

if (b) {

push(val1);

} else {

push(val2);

}

x = pop();

The Java bytecodes will look as follows:

L1 iload b

ifeq L2

iload val1

goto L3

L2 iload val2

L3 istore x

L0, L1, and L2 each start a new basic block. On exit from block L1 (the goto
bytecode), val1 is on the Java stack. On exit from L2 (fall through to L3), val2 is on
the Java stack. Block L3 pops the value off the stack and stores it into the local x.
12-1

Values left on the Java stack on block exit are referred to as Phi values. Phi values
require special handling by both the front end and backend of the JIT. Upon exit
from a block, whether the result of a branch (possibly conditional) or fall through,
code must be generated to make sure all phi values are flushed to known locations
in the compiled frame so the target block can load them when referenced.
Implementations can also instead choose to move the phi values well-known
registers that carry phi values across blocks. These are known as “register phis” and
will be discussed in more detail below.

Java semantics requires that if there are any phis on the stack when branching to
another block, all branches to the same block must have the same number and type
of phi values, and the target block must be expecting these phi values. Thus in our
example above, upon seeing the “goto L3” with one phi value on the stack, we can
conclude that L3 will expect one phi value, and any other blocks that flow to L3 will
also have one phi value. Otherwise the method would have failed bytecode
verification. This fact is important in the front end because it needs to know the
number and type of all phi values entering a block in order to properly parse the
block. Since IR parsing is done in flow order, when the front end begins to parse a
block we are guaranteed to have already parsed at least one branch or fall through to
the block, thus the number of incoming phi values is always known before a block is
parsed.

12.2 Passing Phi Values Between Blocks
Phi values are passed between blocks either in phi registers or in a part of the stack
frame referred to as the “spill area”, which is used to spill values that cannot be
maintained in a register. The “spill area” is also referred to as the “temp area”, and
is located just above the Java compiled frame (CVMCompiledFrame struct) and
below the Java expression stack.

The current CDC-HI ports use both phi registers and the spill area depending on the
number and type of the phi values. A port could choose just to use the spill area.
Choosing to use just phi registers has its limitations because this limits the number
of phis that are supported, requiring failure to compile some methods. The front end
provides hints for the storage of phi values, but ultimately the decision is up to the
backend.

Note that the source block and target blocks must agree on where each phi value is
stored. The source block cannot just choose to store the phi value in any available
spill location or register. It must be in the location agreed upon with the target block.
Usually the stack depth of the phi value is used to determine how it is passed, but
the backend is free to make this decision itself.
12-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

12.3 DEFINE Nodes and USED Nodes
A DEFINE node must be created for each phi expression when a block exit is
detected (branch or fall through). The DEFINE node is a root node that is responsible
for forcing the evaluation of the phi expression, and also forcing it either into the
proper frame location (referred to as “spilling”) or the proper phi register. Where the
phi value is stored is done in agreement with where the target block expects to find
the phi value.

DEFINE nodes are represented by the CVMJITDefineOp:

typedef struct {

CVMJITIRNode* operand; /* stack item for this
define node */

CVMJITIRNode* usedNode; /* USED node for this
define node */

CVMRMResource* resource; /* resource into which
it is stored */

} CVMJITDefineOp;

■ operand is the IR expression tree that will evaluate into the phi value.

■ usedNode is the corresponding USED node in the target block (see below).

■ resource is for use by the backend to track which Register Manager resource the
DEFINE operand node is represented by.

A USED node must be created for each phi value that flows into a block. USED
nodes are responsible for loading a spilled phi into a register for use, or in the case
of register phis, binding the USED node to a resource that specifies the register the
phi is already loaded into.

USED nodes are represented by the CVMJITUsedOp:

typedef struct {

CVMInt16 spillLocation; /* location this value
spills to */

CVMUint8 registerSpillOk; /* true if ok to spill
to a register */

CVMRMResource* resource; /* resource into which
it is stored */

} CVMJITUsedOp;

■ spillLocation is the offset in words of the phi value from the bottom of the
stack. It is computed by the front end when the IR is created, and is used by the
backend to determine where in the compiled frame the phi value should be
loaded from (or which register to load it into). It is called spillLocation
Chapter 12 Phi Values 12-3

because any DEFINE node referring to the USED node also uses it to determine
where in the frame the value should be spilled to so it can then be loaded by the
corresponding USED node.

■ registerSpillOk is set true if it is OK to maintain the phi value in a register
across blocks rather than spill it to the compiled frame. It is always set true for the
current CDC-HI ports, except that if -Xjit:registerPhis=false is specified
on the command line. Note that registerSpillOk is only advisory. It does
require that that phi value be passed between blocks in a register. The backend
gets to make this choice.

■ resource is for use by the backend to track which Register Manager resource the
USED node is represented by.

USED nodes are maintained in an array attached to each block with incoming phis.
The following fields in CVMJITIRBlock are used to track incoming phis:

CVMJITIRNode** phiArray; /* array of USED nodes */

CVMInt16 phiCount; /* number of phiArray items */

CVMUint16 phiSize; /* size in words of all phi
items */

12.4 CVMJITirblockPhiMerge()
The first task in handling phi values is to setup the relevant data structures in the IR.
The front end handles this every time it detects a branch or fall through out of a
block. CVMJITirblockAtBranch() will be called in this case, and it will handle
phi values by calling CVMJITirblockPhiMerge(), which is in charge of creating
all data structures related to passing phi values between blocks.

If this is the first time a branch to the target block has been encountered,
CVMJITIRBlock.phiArray is created for the target block and is populated with
USED nodes that are also created. CVMJITIRBlock.phiCount is set to the number
of incoming phis and CVMJITIRBlock.phiSize is set to the total size in words of
all phi values.

In the source block, a DEFINE node is created for each phi value and a root node is
created for each DEFINE node to force evaluation of the DEFINE node.

In order to support passing phis in registers, a LOAD_PHIS node is created, and it
points to an array containing pointers to all the DEFINE nodes. LOAD_PHIS is used
by the backend to make sure that after all expressions involved in the passing of phi
values (including expressions used in conditional branches) have been evaluated, all
phis are loaded into the proper registers. The registers remain pinned until after the
branch is emitted to ensure that arguments used in conditional branches are not
loaded into registers used by the phi values.
12-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Next a node to emit the branch is created. After this a RELEASE_PHIS node is
created to give the backend a chance to unpin all the phis that are currently in
registers.

12.5 CVMJITirblockAtLabelEntry()
CVMJITirblockAtLabelEntry() is called by the front end to do some prep work
for the block just before the block is parsed. One of the tasks is to prime the
simulated Java semantic stack with all incoming phi values. This is done by pushing
each USED node in the block’s phiArray on to the simulated Java semantic stack.
As the bytecodes are parsed, these phi values are popped when referenced by
bytecodes, and made part of the IR tree.

12.6 Unsupported Phi Constructs
If there are any phis on the Java stack when a ret instruction is encountered,
compilation of the method is refused.ret is used to return from a finally block,
and javac never produces phis in this case. Refusing compilation of such methods
simplifies phi handling. A CDC-HI implementation is free to reject methods with
Phis for other reasons if it wishes.

12.7 Virtual Method Inlining
Inlining of virtual methods also results in phi values being passed between blocks.
Inlining of virtual methods is handled by inlining a best guess method. Since this
guess might be wrong, first a runtime check needs to be made to make sure the
guess is correct and do a virtual method call if it is wrong.

Checking if the guess is correct results in creating a new basic blocks that are not
apparent when just observing the Java byte codes. A virtual method call usually
looks something like the following:

push arguments

invoke virtual method
Chapter 12 Phi Values 12-5

With the introduction of inlining a guess method, the semantics of an inlined virtual
method call will look something like the following:

push arguments

if (guess method == vtable method) {

<inlined method>

} else {

invoke virtual method

}

The single basic block in the original example has expanded into three, and the else
clause is entered with phi values on the stack. Note that for the if clause, the stack
arguments are not considered phi values since a new basic block does not start after
the conditional branch to the else clause. Since virtual inlining like this is so
common, most phi values are due to virtual inlining and selection expressions.

12.8 Register Phis
As mentioned above, CDC-HI will attempt to keep most phis in registers. The RISC
porting layer defines some macros for letting shared RISC code determine which
phis to pass in registers. The key macro is CVMCPU_PHI_REG_SET, which is the set
of registers to be used for passing phi values between blocks. Below is an example
from the ARM port.

 #define ARM_PHI_REG_1(1U << CVMARM_v3)

 #define ARM_PHI_REG_2(1U << CVMARM_v4)

 #define ARM_PHI_REG_3(1U << CVMARM_v5)

 #define ARM_PHI_REG_4(1U << CVMARM_v6)

 #define ARM_PHI_REG_5(1U << CVMARM_v7)

 #define ARM_PHI_REG_6(1U << CVMARM_v8)

 #define CVMCPU_PHI_REG_SET (\

ARM_PHI_REG_1 | ARM_PHI_REG_2 |\

ARM_PHI_REG_3 | ARM_PHI_REG_4 |\

ARM_PHI_REG_5 | ARM_PHI_REG_6\

)

12-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

12.9 Phi Handling in the Backend
In the backend for the shared RISC ports, the Register Manager is responsible for
most of the phi handling.

CVMRMstoreDefinedValue() is called by the grammar when a DEFINE node is
encountered to make sure the evaluated phi expression is moved or loaded into the
proper register (if being passed in a register) or stored to the proper spill location.

CVMRMbindAllUsedNodes() is called at the start of each basic block to bind
incoming phi values to resources that either represent a register (if the phi was
passed in a register) or a spill location. It does this by creating a resource for each
USED node in the block’s phiArray and binding the resource to either a spill location
or a register, depending on how the phi value is suppose to be passed to the block.

Phi handling is simpler if phi values are always passed in the spill area, but is less
optimal than passing in phi registers. Passing phis in registers adds some
complications, some of which is forced into the front end to make sure DEFINE
nodes and conditional branch expressions are all evaluated before attempting to load
phi values into registers. The reader should review the source for
CVMJITirblockPhiMerge() and in jitregman.c for more details.

12.10 Reference
Primary Source Files:

jitir.h

jitir.c

jitirblock.h

jitirblock.c

jitregman.c

-Xjit Command Line Options:

xregisterPhis: allow or disallow passing phis in registers
Chapter 12 Phi Values 12-7

12-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 13

Trap-based
NullPointerExceptions

13.1 Overview
The implementations of many Java bytecodes, such as opc_invokevirtual, need
to first check if an object reference is null, and throw a NullPointerException if
it is. Dynamically compiled methods must also do the equivalent of a null object
check. This leads to slower performance and an increase in generated code. The
following is an example of PowerPC code emitted for a null object check on an array
object. In this example the check is needed before accessing the arrayLength field
of the object.

cmpi r25, 0 @ NULL check

beql- CVMCCMruntimeThrowNullPointerExceptionGlue

lwz r23, 8(r25) @ arraylength

The CDC-HI dynamic compiler allows for a more lazy approach to check for null
object references. This approach is referred to as trap-based
NullPointerExceptions. It eliminates doing the above explicit check for a null
object reference, followed by a conditional branch to throw the exception. Instead
the dereference of the null object reference is allowed to cause a crash. This results in
a SIGSEGV on most POSIX platforms. A signal handler must be installed to catch
this signal, confirm that it occurred in compiled code, and cause execution to resume
in code that will throw a NullPointerException.

CDC-HI ports usually implement the SIGSEGV signal handler in jit_arch.c. The
handleSegv() function catches the signal, changes the link register to the
instruction after the crash occurred, and changes the pc to point to the
13-1

CVMCCMruntimeThrowNullPointerExceptionGlue() routine. This exactly
mimics the compiled code calling
CVMCCMruntimeThrowNullPointerExceptionGlue() itself from the point of
the crash, which is the desired behavior when using a null object references. The
implementation of the signal handler will vary for every processor and every OS. An
example from the Linux/PowerPC port is provided below.

static void handleSegv(int sig, siginfo_t* info, struct ucontext*
ucp)

{

CVMUint8* pc = (CVMUint8 *)ucp->uc_mcontext.regs-
>nip;

if (CVMJITcodeCacheInCompiledMethod(pc)) {

/* Coming from compiled code. */

/* Branch and link to throw null pointer
exception glue */

ucp->uc_mcontext.regs->link = ucp-
>uc_mcontext.regs->nip + 4;

ucp->uc_mcontext.regs->nip =

(unsigned
long)CVMCCMruntimeThrowNullPointerExceptionGlue;

}

}

The implementation of trap-based NullPointerExceptions is a performance
optimization that is entirely optional. A CDC-HI port can choose to implement it to
increase performance. To disable it, the port must #undef
CVMJIT_TRAP_BASED_NULL_CHECKS. CDC-HI 1.0.1 linux ports will also require
changes to handleSegv() to avoid treating crashes as NullPointerExceptions. This
problem is fixed in CDC-HI 1.1. Once the port is working, the port can choose to
enable trap-based NullPointerExceptions and implement the signal handler for
it.

One downside of trap-based NullPointerExceptions is that if there is a crash in
compiled code due to a bug in the dynamic compiler, the result is a
NullPointerException rather than a crash, which can make it difficult to track
down. The best way to handle this is to first do a lot of testing with trap-based
NullPointerExceptions disbabled, and also disable this feature whenever
investigating bugs.
13-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

13.2 Reference
Primary Source Files:

jit_arch.h

jit_arch.c

Macros:

CVMJIT_TRAP_BASED_NULL_CHECKS

APIs:

CVMCCMruntimeThrowNullPointerExceptionGlue()
Chapter 13 Trap-based NullPointerExceptions 13-3

13-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 14

GC Checks in Compiled Code

When a thread needs to do a GC, usually because the heap is full, it first sets the
CVMglobals.cstate[CVM_GC_SAFE].request flag. It then blocks until all
threads that are currently GC-unsafe have checked this flag, and as a consequence
have become GC-safe and called CVMD_gcRendezvous() to notify the blocking
thread. Once all threads become GC-safe, the thread requesting the GC can start
doing the GC.

Polling for GC requests must be done on every backwards branch. This is true of
both interpreted code and compiled code. This is necessary to ensure that a thread
does not sit in a loop, preventing other threads that need to GC from making any
progress. GC safety within the Virtual Machine is covered in more detail in first few
pages of the Creating a Garbage Collector section of the CDC Porting Guide.

In CDC-HI RISC ports, the code responsible for emitting the polling instructions is
done by CVMJITcheckGC() in jitgrammarrules.jcs. It is called by the Register
Manager CVMRMbeginBlock() function at the start of each block that is a
backwards branch target.

14.1 Explicit GC Checks
Polling for a GC request in compiled code can be done with an explicit check of the
CVMglobals.cstate[CVM_GC_SAFE].request flag before emitting code for a
block that is a backwards branch target. If it is set, then the thread must call
CVMCCMruntimeGCRendezvous(), a C helper function in ccm_runtime.c. Usually
rather than generating code to handle calling CVMCCMruntimeGCRendezvous(),
simpler code is generated to call the platform specific assembler function
CVMCCMruntimeGCRendezvousGlue(), which handles the C calling convention
issues. This simplifies the generated code.

Below is an ARM example of a generated GC rendezvous check:
14-1

@ Do GC Check:

ldr v8, =CVMglobals

ldr v8, [v8, #+24] @
CVMglobals.cstate[CVM_GC_SAFE].request;

cmp v8, #0 @ If GC is requested,

blne PC=(-8552) @ call
CVMCCMruntimeGCRendezvousGlue

Some ports may choose to keep CVMglobals in a register, which reduces the
overhead of the GC request check.

Note – There is no built in support for generating the above inlined GC check in
CDC-HI 1.0.1, although it could be easily added. Instead only patch-based GC
checks (described below) are supported. Explicit GC checks are supported in CDC-
HI 1.1 if neither CVMJIT_PATCH_BASED_GC_CHECKS or
CVMJIT_TRAP_BASED_GC_CHECKS are defined.

14.2 Patch-based GC Checks
Doing an explicit GC check at the start of every loop iteration as described above can
produce a lot of overhead. In many loop intensive benchmarks, this adds as much as
20% overhead. For CDC-HI a mechanism called Patch-based GC Checks is
implemented. Rather than generating explicit inline checks, instead when a GC
request is made the first instruction of the backward branch target is patched over
with an explicit call to CVMCCMruntimeGCRendezvousGlue(). This allows for a
zero overhead GC check.

The patching mechanism is quite complex, and is made even more complex on
processors that can’t handle the call to CVMCCMruntimeGCRendezvousGlue()
with one instruction, including all processors with delay slots. This is because only
one instruction can be atomically patched at a time, and after patching in the call
instruction, you don’t want the instruction in the delay slot to be executed. The other
complicating factor for patch-based GC checks is that data structures need to be
maintained to keep track of which instructions need to get patched and what they
should be patched.

Usually the generation of code at the patch site is done as follows. First the explicit
call to CVMCCMruntimeGCRendezvousGlue() is generated. Next the code buffer is
rewound back to the start of the call instruction by using CVMJITcbufRewind().
14-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Next this call instruction is stored away in a location that can be accessed when a
thread requests a GC. After this code generation resumes, and the call instruction is
overwritten by whatever code is first emitted for the block.

The following example is from PowerPC. The example shows the code generation
for a block that is a backwards branch target, and the first thing the block does is call
the method Foo.bar(). Note how after the call to
CVMCCMruntimeGCRendezvous() at offset 88 is generated, the code buffer is
rewound back to 88, and the first instruction of the method invocation code is
generated there.

@ Patchable GC Check point

88: bl PC=(-5168) @
CVMCCMruntimeGCRendezvousGlue

@ Invoke a method w/ a 32bit return type

88: lwz r3, 0(rCP) @ mb Foo.bar()LFoo;

92: lwz r0, 0(r3) @ call method through mb

96: mtlr r0

100:blrl

At runtime when a GC is requested, the entire code cache is walked, and all the calls
to CVMCCMruntimeGCRendezvousGlue() are patched back in. When an executing
compiled method hits this branch, it causes the thread to become GC-safe and do a
GC rendezvous. After the GC is complete, the branches are “unpatched” back to the
original instructions.

In CDC 1.0.1, the patching and unpatching are handled at GC time by
CVMJITcsPatchRendezvousCalls() and
CVMJITcsUnpatchRendezvousCalls() in jit_risc.c. In CDC 1.1, the patching and
unpatching is handled at GC time by CVMJITenableRendezvousCalls() and
CVMJITdisableRendezvousCalls(), also in jit_risc.c. Platforms not
implemented using the RISC porting layer will need to provide their own versions
of these functions.

Before doing the patching, if GC detects that all threads are already GC safe, for
efficiency reasons, it does not bother doing any of the patching. This is possible
because GC safe threads are already prevented from becoming GC-unsafe, so there’s
no way that the patched instructions could ever be executed anyway.
Chapter 14 GC Checks in Compiled Code 14-3

14.3 Patch-based GC Checks with Delay Slots
As mention above, it is difficult to deal with patch-based GC checks if the call to
CVMCCMruntimeGCRendezvousGlue() takes more than one instruction. This
section describes how this problem is solved when there is a delay slot, although in
general it applies whenever it take more than one instruction.

If there is a delay slot, it is necessary to emit a nop instruction after the call to
CVMCCMruntimeGCRendezvousGlue() in order to avoid execution of an
unwanted instruction in the delay slot. The introduction of the nop means that two
instructions need to get patched, and this isn’t possible to do in an atomic fashion.
Because of this, it is not possible to rewind the code buffer back to the call
instruction and then overwrite both the call instruction and the nop with the first
instructions of the block.

The solution is to explicitly overwrite the call instruction with a nop, leaving two
nop instructions at the start of the block, and the code buffer is left pointing after
these two nop instructions rather than overwriting the call instruction. Although this
nop solution works, it now means that we always execute two nop instructions at
the start of every backwards branch target. Although faster then doing an explicit
GC check every time, it is no longer zero cost.

The solution to the overhead of the nop instructions is to make branches to
backwards branch targets branch to after the nop instructions. When a GC is
requested, these branches are patched to branch to the start of the backwards branch
target where the two nop instructions are. Since the first nop is patched to branch to
CVMCCMruntimeGCRendezvousGlue(), the desired GC check is made. The
generation of this backwards branch code is done in branchToBlock() in
jitgrammarrules.jcs.

14.4 Trap-based GC Checks
As mentioned above, patch-based GC checks can be difficult to manage, especially if
it takes multiple instructions to call CVMCCMruntimeGCRendezvousGlue().
Another downside is that the patching results in writing into the code cache, which
means it is not possible to have a read only code cache, a feature that CDC 1.1 will
take advantage of for better memory efficiency.
14-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CDC 1.1 introduces trap-based GC checks. They are enabled with #define
CVMJIT_TRAP_BASED_GC_CHECKS. When trap-based GC checks are enabled, each
backwards branch target will have one instruction emitted at the start of the block.
This instruction is normally benign, but can be made to trap when a GC is requested.
The following example is from the ARM port

ldr rGC, [rGC, #+0] @ gc trap instruction

In this case, rGC is a dedicated register that is preloaded with the address of a page
in memory that is normally readable. All threads will load rGC with the same value
when entering compiled code. The first word in this page points back to itself,
causing the above instruction to reload rGC with itself, thus it is benign.

The value loaded into rGC is CVMglobals.gcTrapAddr.
CVMglobals.gcTrapAddr is setup by shared code in globals.c, but the loading
of rGC needs to be setup by platform specific code, usually in CVMJITgoNative().

When a GC is requested, the page of memory pointed to be
CVMglobals.gcTrapAddr is protected to prevent read access. On Linux this is
done with the mprotect() function. The platform specific
CVMJITenableRendezvousCalls() function is responsible for doing this, and is
usually implemented in jit_md.c. When GC is complete,
CVMJITdisableRendezvousCalls() is called to allow the platform to make the
page readable again.

Protecting the page pointed to by CVMglobals.gcTrapAddr will cause the above
instruction that loads from rGC to trap. The handling of this trap is done in the
manner similar to handling trap-based NullPointerExceptions, except execution
is redirected to CVMCCMruntimeGCRendezvousGlue() instead of
CVMCCMruntimeThrowNullPointerExceptionGlue(). This is usually done by
the handleSegv() function in jit_arch.c. See the section on trap-based
NullPointerExceptions for details.

The result the trap handling makes the execution of the trap causing instruction
behave just like a call to CVMCCMruntimeGCRendezvousGlue() from compiled
code.

14.5 Reference
APIs:

■ CVMJITcheckGC
■ CVMJITcsPatchRendezvousCalls (CDC-HI 1.0.1)
■ CVMJITcsUnpatchRendezvousCalls (CDC-HI 1.0.1)
■ CVMJITenableRendezvousCalls (CDC-HI 1.1)
■ CVMJITdisableRendezvousCalls (CDC-HI 1.1)
Chapter 14 GC Checks in Compiled Code 14-5

Macros (CDC-HI 1.1 only):

■ CVMJIT_PATCH_BASED_GC_CHECKS
■ CVMJIT_TRAP_BASED_GC_CHECKS
■ CVMJITGlobalState fields: (1.1 only)

■ void**
■ gcTrapAddr;
14-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 15

JIT Stack Maps

Like interpreted methods, stack maps are required for compiled methods so GC
knows how to properly scan object references in compiled frames. Unlike
interpreted methods, which have stack maps lazily produced for them on demand at
GC time, compiled methods have stack maps produced during compilation.

A stack map needs to be produced for every instruction in the compiled method that
could possibly become GC-safe. GC safety within the Virtual Machine is covered in
more detail in the first few pages of the Creating a Garbage Collector section of the
CDC Porting Guide.

15.1 Stack Map Components
The are three components of a compiled stack frame that need to be included in
(covered by) the stack map:

■ Locals
■ Temp area (spill area)
■ Java parameters on the Java stack

During compilation, the refness of locals is maintained in con->localRefSet by
the Register Manager CVMRMstoreJavaLocal() function. It calls
CVMJITlocalrefsSetRef() if the local is an object reference or
CVMJITlocalrefsSetValue() otherwise. This keeps con->localRefSet up to
date as locals are stored.

The refness of values in the temp area is maintained in con-
>RMcommonContext.spillRefSet by the Register Manager as temp values are
loaded and stored to the temp area. Storing occurs when a resource is spilled to the
temp area. Loading occurs when a resource that is not currently loaded into a
register is pinned. See the Register Manager section for more details on loading and
spilling resources.
15-1

The refness of Java parameters is maintained by the Stack Manager in con-
>SMstackRefSet as parameters are pushed using CVMSMpushSingle() and
CVMSMpushDouble(), popped using CVMSMpopParameters() and also as method
results are left on the parameter stack by calling CVMSMinvocation().

Note that only Java parameters are ever found on the evaluation stack, thus it is
often referred to as the parameter stack. Any other temporary evaluations are stored
to the temp area rather than pushed to the evaluation stack. The handling of Java
parameters is covered in more detail in the Stack Manager section.

15.2 GC Points in Compiled Code
As noted above, stack maps are needed at every instruction for which a garbage
collection can occur. These are referred to as “GC points” and can occur at any of the
following instructions in compiled code:

■ Backward branch target
■ Exception handler entry point
■ Method call
■ Object allocation
■ Monitor enter/exit
■ Calls to C helpers that may cause a GC or become GC-safe

At every GC point, a stack map must be captured and stored with the compiled
method so it can be consulted when a GC occurs. If GC finds a compiled method in
the backtrace of a thread, it will expect to be able to find a stack map for the current
PC of the thread.

GC points are easily observed when tracing generated code. Just look for the
“Captured a stack map here” messages in the trace output. Tracing generated code is
enabled by building with CVM_TRACE_JIT=true and running with -Xjit:trace=
codegen.

15.3 Capturing Stack Maps
Stack maps are captured (produced) during compilation by calling
CVMJITcaptureStackmap(), which creates a stack map for the current logical PC.
The stack map consists of a bitmap that indicates where object references are stored
in each of the three stack map components listed above.
15-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

When compilation of the method is complete, CVMJITwriteStackmaps() is called.
It copies all the stack maps captured by CVMJITcaptureStackmap(), and moves
them to permanent memory that is allocated for the method to hold the stack maps.
CVMJITwriteStackmaps() stores the stack maps in con->stackmaps, which is
later moved to CVMcmdStackMaps(cmd).

15.4 Accessing Stack Maps
A method’s stack maps are accessed by GC at runtime by using
CVMcmdStackMaps(CVMmbCmd(mb)), which returns a pointer to the following data
structure:

struct CVMCompiledStackMaps {

CVMUint32 noGCPoints;

CVMCompiledStackMapEntry smEntries[1];

};

noGCPoints indicates the size of the smEntries array, whose entries are the
following struct:

struct CVMCompiledStackMapEntry {

CVMUint16 pc; /* offset from start of
method's code */

CVMUint8 totalSize; /* total # of bits to
examine */

CVMUint8 paramSize; /* outgoing parameters */

CVMUint16 state; /* state bits or offset to
them. */

};

■ pc is the PC offset from the start of the method for this stack map. GC uses it to
find the proper stack map for a given PC.

■ totalSize is the number of entries in the stack map.

■ paramSize is the number of parameters in the stack map for stack maps
produced for method invocations. Special handling is needed for invocation stack
maps based on whether the invocation is in progress (being made from the
topmost frame) or the frame for the invocation has already been pushed. In the
later case, the parameters have already been made part of the locals area in the
callee’s frame, so they are not scanned as part of the caller’s frame.
Chapter 15 JIT Stack Maps 15-3

■ state is a bitmap indicating the refness of each field in the frame, unless
totalSize is 0xff, in which case state is used as an offset from the end of
smEnties[] to the start of large stack map entry, specified by the following data
structure:

struct CVMCompiledStackMapLargeEntry{

CVMUint16 totalSize;

CVMUint16 paramSize;

CVMUint16 state[1];

};

The fields are similar to those in CVMCompiledStackMapEntry, except state is now
an array of bitmaps indicating the refness of each field.

15.5 CVMcompiledFrameScanner()
CVMcompiledFrameScanner() is called by GC at runtime to scan compiled
frames. It makes use of the compiled frame stack maps described above to properly
scan the compiled frame passed to it.

15.6 Porting Effort
When porting within the RISC JIT porting layer, no stack map related porting is
needed.

If not porting within the RISC JIT porting layer, the following all have to be ported:

■ Proper calls to CVMJITcaptureStackmap() and CVMJITwriteStackmaps()
must be made.

■ The refness of temps and locals must be maintained in a way similar to what the
Register Manager does (the Register Manager is part of shared RISC code).

■ The refness of stack parameters must be maintained in a way similar to what the
Stack Manager does (the Stack Manager is part of shared RISC code).

If any changes are made to the layout of a compiled frame, then changes may also be
needed in CVMcompiledFrameScanner() to account for the changed layout.

Getting stack maps wrong has very serious consequences. Object references can go
unscanned, resulting in random crashes. If testing is done with asserts enabled
(CVM_DEBUG_ASSERTS=true), a missing stack map should result in an assert in
15-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CVMcompiledFrameScanner() if the PC with the missing stack map is current
when a GC is requested. It usually takes many days of stress testing to bring about
such an assert.

15.7 Reference
Primary Source Files:

■ jitstackmap.h
■ jitstackmap.c

Data Structures:

■ CVMCompiledStackMaps
■ CVMCompiledStackMapEntry
■ CVMCompiledStackMapLargeEntry

Macros:

■ CVMmbCmd(mb)
■ CVMcmdStackMaps(cmd)

APIs:

■ CVMJITcaptureStackmap()
■ CVMJITwriteStackmaps()
■ CVMcompiledFrameScanner()
Chapter 15 JIT Stack Maps 15-5

15-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 16

JIT Intrinsic Methods

Intrinsic methods (commonly referred to as intrinsics) are Java methods whose
semantics are known to the VM implementation. Hence, the VM can choose to
implement the execution of these methods in a special way to optimize for speed. As
of CDC HI 1.0.1, the dynamic compiler implements a framework for defining and
implementing intrinsic methods.

16.1 How Intrinsics Work
When compiling a method, if the dynamic compiler encounters a method invocation
operation, it checks to see if the method is one that it knows to be an intrinsic
method. This is done in the compiler front-end during the process of generating the
intermediate representation (IR) tree of the method being compiled. If the invocation
target method is a known intrinsic method, the compiler front-end will emit an IR
node tree that uses special intrinsic nodes as opposed to normal invoke nodes.

The resultant IR tree will look like an invocation tree except the node types are
different. Normal invocations will use INVOKE, PARAMETER, and NULL_PARAMETER
nodes. The INVOKE node indicates the method to invoke. The PARAMETER nodes
form a list of parameters to be passed to the method being invoked, and the
NULL_PARAMETER node terminates the parameter list.

The intrinsic equivalent will use INTRINSIC, IARG, and NULL_IARG nodes
respectively. The meaning of these nodes are analogous to their counterparts.

For example, here’s a piece of Java code:

 public static int doMin(int i, int j) {

 return Math.min(i, j);

 }

The bytecodes for this method will look like:
16-1

 <0> (0xb6c910): iload_0

 <1> (0xb6c911): iload_1

 <2> (0xb6c912): invokestatic_quick #2 <java.lang.Math.min(II)I>

 <5> (0xb6c915): ireturn

Here’s an excerpt of the IR tree generated for this code if Math.min is not an
intrinsic method:

 <(ID: 9) RETURN_VALUE (int)

 <(ID: 8) INVOKE (int)

 <(ID: 7) PARAMETER (int)

 <(ID: 2) LOCAL (int) 0>

 <(ID: 6) PARAMETER (int)

 <(ID: 3) LOCAL (int) 1>

 <(ID: 5) NULL_PARAMETER (NONE)

 <(ID: 4) CONST_MB (NONE) (java.lang.Math.min(II)I)

Here’s an excerpt of the IR tree generated for this code if Math.min is an intrinsic
method:

 <(ID: 9) RETURN_VALUE (int)

 <(ID: 8) INTRINSIC (int)

 <(ID: 7) IARG (int)

 <(ID: 2) LOCAL (int) 0>

 <(ID: 6) IARG (int)

 <(ID: 3) LOCAL (int) 1>

 <(ID: 5) NULL_IARG (NONE)

 <(ID: 4) CONST_MB (NONE) (java.lang.Math.min(II)I)

Having the intrinsic invocation IR tree used different IR node types allows the
compiler back-end to generate the code for the intrinsic method differently than for
normal method invocations.

16.2 The Intrinsics Framework
For CDC-HI 1.0.1, all intrinsic methods are defined in an intrinsics config list
(CVMJITIntrinsicConfigList). The list is made up of
CVMJITIntrinsicConfig records which specifies details about each intrinsic
method. The record will indicate details like:

■ Method identifiers (class, name, and signature)
16-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

■ Calling convention to use for this intrinsic

■ Attributes of the intrinsic method e.g.

■ Is it a static method?
■ Does it require register spills before calling it?
■ Will it offer a GC point, i.e. need a stackmap at the invocation point?

■ Pointer to a native function implementing the intrinsic method, or a pointer to an
intrinsic emitter function table for emitting inlined code.

The file jitintrinsics.h has a comment section that describes the meaning of all
the values that can be used to initialize a CVMJITIntrinsicConfig record.

16.2.1 Chaining the Intrinsics Config List
The intrinsics config list can be implemented as chained of multiple lists. For
example, on the ARM port, it is implemented as a chain of three lists:

In src/arm/javavm/include/jit/jit_cpu.h, CVMJITintrinsicsList is
#define’d to be CVMJITarmIntrinsicsList.

The intrinsics framework considers CVMJITintrinsicsList to be the head of the
list. This makes the ARM port’s CVMJITarmIntrinsicsList the head of the list.

In src/arm/javavm/runtime/jit/ccmintrinsics_cpu.c,
CVMJITarmIntrinsicsList is defined as follows:

 CVMJIT_INTRINSIC_CONFIG_BEGIN(CVMJITarmIntrinsicsList)

 ...

 CVMJIT_INTRINSIC_CONFIG_END(CVMJITarmIntrinsicsList,

 &CVMJITriscIntrinsicsList)

Note that CVMJITarmIntrinsicsList specifies CVMJITriscIntrinsicsList as
a parent list.

In src/portlibs/jit/risc/ccmintrinsics_risc.c,
CVMJITriscIntrinsicsList is defined as follows:

 CVMJIT_INTRINSIC_CONFIG_BEGIN(CVMJITriscIntrinsicsList)

 ...

 CVMJIT_INTRINSIC_CONFIG_END(CVMJITriscIntrinsicsList,

 &CVMJITriscParentIntrinsicsList)

CVMJITriscIntrinsicsList specifies CVMJITriscParentIntrinsicsList as
its parent list. CVMJITriscParentIntrinsicsList is defined in
src/portlibs/jit/risc/include/export/jit_risc.h to be
CVMJITdefaultIntrinsicsList.
Chapter 16 JIT Intrinsic Methods 16-3

Finally, CVMJITdefaultIntrinsicsList is defined in
src/share/javavm/runtime/ccmintrinsics.c as follows:

 CVMJIT_INTRINSIC_CONFIG_BEGIN(CVMJITdefaultIntrinsicsList)

 ...

 CVMJIT_INTRINSIC_CONFIG_END(CVMJITdefaultIntrinsicsList, NULL)

CVMJITdefaultIntrinsicsList specifies NULL as its parent. This means the
chain ends here.

Conceptually, the above chain of configuration list means that the ARM list inherits
from the RISC list which in turn inherits from the default list. Just like with typical
object-oriented inheritance, if we have duplicate definitions of config records in this
list, the child list’s record would override the parent list’s record, i.e., the duplicate
record in the parent list will be ignored. This inheritance mechanism means that the
target port can reuse some of the record already defined in the default list, and only
add and/or override records for intrinsic methods that it wants to customize in a
target specific way.

16.2.2 Compiler Front-End Support
The compiler front-end uses this intrinsics config list to identify if a given target
method is intrinsic or not. If it is, then the invocation IR tree is generated using
intrinsics IR node types instead of normal invocation IR node types.

16.2.3 Compiler Back-End Support
When the compiler back-end encounters the intrinsics IR nodes, it looks up the
CVMJITIntrinsicConfig record for the method. Based on the information in the
record, the compiler back-end will emit code for the intrinsics invocation in different
ways. Note that the information in the record are just hints for the compiler back-
end.

In order to supports intrinsics, the compiler back-end port will have to implement
some means of emitting code for these intrinsics. The compiler back-end will also
have to be very careful to be compliant with all the nuances indicated by the
intrinsics attributes indicated in the CVMJITIntrinsicConfig record. Failure to
handle these nuances properly may result in failures that are very difficult to detect
and debug. And example of this would be the attribute that indicates that certain
class of registers need to be spilled before the intrinsics method is invoked. If the
proper register spills are not done, then the values in the registers may not be
preserved appropriately during the intrinsics invocation, and unpredictable failures
can occur during execution.
16-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

16.2.4 Intrinsics Code Generation
In CDC HI 1.0.1, intrinsics code generation can be done using one of three calling
conventions:

■ Custom compiler back-end defined code emission
(CVMJITINTRINSIC_OPERATOR_ARGS).

■ Native function call with native arguments and return values
(CVMJITINTRINSIC_C_ARGS).

■ Native function call with arguments and return values on the Java stack
(CVMJITINTRINSIC_JAVA_ARGS).

16.2.5 CVMJITINTRINSIC_OPERATOR_ARGS

This option basically allows the compiler back-end to define its own custom calling
convention. This is useful in cases where the intrinsic method can be implemented
using special machine instructions, or an optimized sequence of instructions to be
inlined into the caller method. Arguments and return values are usually passed in
machine registers.

An example of this is the Math.min method which can be implemented efficiently
as a few instructions inlined into its caller. The following shows the
CVMJITIntrinsicConfig record for Math.min:

{

 "java/lang/Math", "min", "(II)I",

 CVMJITINTRINSIC_IS_STATIC |

 CVMJITINTRINSIC_OPERATOR_ARGS |

 CVMJITINTRINSIC_SPILLS_NOT_NEEDED |

 CVMJITINTRINSIC_STACKMAP_NOT_NEEDED |

 CVMJITINTRINSIC_NO_CP_DUMP,

 CVMJITIRNODE_NULL_FLAGS,

 (void *)&CVMJITRISCintrinsicIMinEmitter,

 },

CVMJITRISCintrinsicIMinEmitter is a table of pointers to functions that the
compiler back end can call to:

■ Setup the arguments for this intrinsic,
■ Emit the code to do the work of the intrinsic
■ Retrieve the return value of the intrinsic
Chapter 16 JIT Intrinsic Methods 16-5

16.2.6 CVMJITINTRINSIC_C_ARGS

This option indicates that the intrinsic method will be implemented as a native C or
assembly function. The calling convention to be used will be the C calling
convention defined by the underlying target platform. For example, arguments and
return values would be passed in registers or on the native stack.

An example of this is the Math.cos method. The intrinsic is implemented as a direct
call to the CVMfdlibmCos function. The CVMJITIntrinsicConfig record looks
like this:

 {

 "java/lang/Math", "cos", "(D)D",

 CVMJITINTRINSIC_IS_STATIC |

 CVMJITINTRINSIC_C_ARGS |

 CVMJITINTRINSIC_NEED_MINOR_SPILL |

 CVMJITINTRINSIC_STACKMAP_NOT_NEEDED |

 CVMJITINTRINSIC_CP_DUMP_OK,

 CVMJITIRNODE_NULL_FLAGS,

 (void*)CVMfdlibmCos,

 },

CVMfdlibmCos is the native function that will do the work of the intrinsic. Its
prototype looks like this:

 double CVMfdlibmCos(double x)

 {

 ...

 }

16.2.7 CVMJITINTRINSIC_JAVA_ARGS

This option indicates that the intrinsic method will be implemented as a native C or
assembly function, but arguments and return values will be passed on the Java
stack.

An example of this is the ARM implementation of Object.hashCode as an
intrinsic. The CVMJITIntrinsicConfig record looks like this:

 {

 "java/lang/Object", "hashCode", "()I",

 CVMJITINTRINSIC_IS_NOT_STATIC |

 CVMJITINTRINSIC_JAVA_ARGS |
16-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 CVMJITINTRINSIC_NEED_MAJOR_SPILL |

 CVMJITINTRINSIC_NEED_STACKMAP |

 CVMJITINTRINSIC_CP_DUMP_OK |

 CVMJITINTRINSIC_NEED_TO_KILL_CACHED_REFS |

 CVMJITINTRINSIC_FLUSH_JAVA_STACK_FRAME,

 CVMJITIRNODE_THROWS_EXCEPTIONS,

 CVMCCMARMintrinsic_java_lang_Object_hashCodeGlue,

 },

The native function has the prototype: void(*)(void). If any additional
arguments are needed, then the CVMJITIntrinsicConfig record’s function
pointer should point to assembly glue logic which sets up the additional arguments
before invoking the actual native function to do the needed work. The glue logic will
also be responsible for marshalling any return values back onto the Java stack. The
compiler back-end is only responsible for emitting code to setting up the arguments
on the Java stack before invoking the intrinsic method, and retrieving the return
value from the Java stack afterwards if necessary.

In the above example,
CVMCCMARMintrinsic_java_lang_Object_hashCodeGlue is a piece of glue
code that marshals the arguments from the Java stack onto the native stack as well as
set up any additional arguments needed, calls a C function to do the work of the
intrinsic, and lastly marshals the return value of the function back onto the Java
stack.

16.3 The Value of Intrinsics
Being able to support intrinsics basically allows the dynamic compiler to do targeted
optimizations on methods whose semantics are known ahead of time. This yields the
following benefits:

■ Certain intrinsic methods can be implemented using special machine instructions where
appropriate. The complexity of the compiler is reduced as it does not need to
support these special instructions or instruction sequences in the general case.

■ The VM can get the benefit of more advanced and time consuming or hand-crafted
optimization techniques on intrinsic methods without having to implement the
general optimization technique in the dynamic compiler, and without incurring
compilation time.

■ The VM can implement native methods as well as Java methods as intrinsics. This
means that intrinsic native methods can be inlined into the caller. Normally, native
methods cannot be inlined.
Chapter 16 JIT Intrinsic Methods 16-7

16.4 Disabling Intrinsics
Because support for the intrinsics framework can be difficult to implement, a porting
engineer may not want to attempt it for an initial port. Alternatively, if it has been
determined that intrinsics would not yield any benefit for certain target platforms,
then a port of the dynamic compiler may not want to support intrinsics.

To disable support for intrinsics, just #undef CVMJIT_INTRINSICS in the
src/<cpu>/javavm/include/jit/jit_cpu.h file.

16.5 Reference
Primary Source Files:

■ jitintrinsics.h
■ ccmintrinsics.c

Data Structures:

■ CVMJITIntrinsicConfigList
■ CVMJITIntrinsicConfig
■ CVMJITIntrinsicEmitterVtbl

Macros:

■ CVMJIT_INTRINSIC_CONFIG_BEGIN(listname)
■ CVMJIT_INTRINSIC_CONFIG_END(listname, parentlistname)
16-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 17

JIT Debugging Support

17.1 Tracing
CDC-HI provides a tracing facility to aid in the debugging of compiled methods.
When tracing is enabled, certain informative text is sent to the console. To add
support for tracing, build with CVM_TRACE_JIT=true, which is the default for
CVM_DEBUG=true builds.

To enable tracing at runtime, use the -Xjit:trace=<option> command line
option. The available tracing options are described in the CDC Runtime Guide. A
few are listed here:

■ status: Prints a line of status each time a method is compiled or decompiled.

■ bctoir: Prints the Java bytecodes being compiled, along with the IR they are
converted into.

■ codegen: Prints the generated code in a format similar to an assembler listing.

More than one tracing option can be specified at a time. For example:

-Xjit:trace=status+bctoir+codegen

If -Xjit:trace=codegen is specified with a build done with CVM_JIT_DEBUG=
true, then the JCS rules used to generate code are interspersed with the generated
code. This is known as “rule tracing” and is a very powerful tool for learning how IR
trees are actually parsed. An example of this rule tracing follows:

@ Doing node 49 codegen rule [148] param32:
reg32

312:st %o0,[%i5 + 0]

@ Doing node 50 codegen rule [26] reg32:
LOCAL32
17-1

316:ld [%i4 + -12], %l1@ Java local cell # 1

@ Doing node 50 codegen rule [148] param32:
reg32

320:st %l1,[%i5 + 4]

@ Doing node 54 codegen rule [35] reg32:
ICONST_32

@ Doing node 54 codegen rule [148] param32:
reg32

324:sethi 1036288, %i1@ const 1061158912

328:st %i1,[%i5 + 8]

17.2 Controlling Which Methods Are
Compiled
CDC-HI provides a filtering mechanism for controlling which methods get
compiled. Although designed to limit compilation to a specified list of classes or
methods, it can also be used to allow compilation in all but the specified list. To
make use of this filtering mechanism, CDC-HI must be build with
CVM_JIT_DEBUG=true.

The following code can be found in jitdebug.c:

#undef USE_COMPILATION_LIST_FILTER

#ifdef USE_COMPILATION_LIST_FILTER

CVMJIT_DEBUG_METHOD_LIST_BEGIN(methodsToCompile)

{<method name or class name},

{<method name or class name},

...

CVMJIT_DEBUG_METHOD_LIST_END(methodsToCompile)

#endif /* USE_COMPILATION_LIST_FILTER */

To limit compilation to methods and classes specified in the list, first change the
#undef USE_COMPILATION_LIST_FILTER to #define
USE_COMPILATION_LIST_FILTER. Next add all the desired class and methods to
the list. When specifying methods, the full signature of the method must be given.
Examples are provided in the default list in jitdebug.c. These can be deleted.

To change the methodsToCompile list to a “do not compile” list, the following code
needs to be modified:

CVMBool
17-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CVMJITdebugMethodIsToBeCompiled(CVMExecEnv *ee,
CVMMethodBlock *mb)

{

#ifdef USE_COMPILATION_LIST_FILTER

 if (CVMJITdebugMethodIsInMethodList(ee, mb,
&methodsToCompile)) {

return CVM_TRUE;

}

return CVM_FALSE;

#else

return CVM_TRUE;

#endif

}

Change the first “return CVM_TRUE;” to “return CVM_FALSE;” and the
“return CVM_FALSE;” to “return CVM_TRUE;”

17.3 Controlling Which Methods Are Traced
jitdebug.c also contains a filtering mechanism to control which methods get
traced when using -Xjit:trace=bctoir or -Xjit:trace=codegen. It works the
same as the methodsToCompile list described above, except the list to edit is
methodsToTraceCompilation and the macro to enable is
USE_TRACING_LIST_FILTER.

17.4 CVMJITcodeCacheFindCompiledMetho
d()
The function CVMJITcodeCacheFindCompiledMethod() can be used to map a
native PC to a compiled method. It is especially useful when called from gdb to
determined which compiled method crashed.
CVMJITcodeCacheFindCompiledMethod() is described in the Debugging
Support section of the Code Cache Manager chapter.
Chapter 17 JIT Debugging Support 17-3

17.5 GDB Support
Information on debugging CDC-HI using GDB can be found in the Appendix A:
Debugging with gdb in the CDC Porting Guide. The information provided in the
appendix can also be useful when using other debuggers.

17.6 Trap-based NullPointerExceptions
Disabling trap-based NullPointerExceptions may be necessary when
debugging. See the Trap-based NullPointerExceptions chapter for details.

17.7 Reference
Build Options:

■ CVM_DEBUG=true
■ CVM_TRACE_JIT=true
■ CVM_JIT_DEBUG=true

Runtime Options:

■ -Xjit:trace=status
■ -Xjit:trace=bctoir
■ -Xjit:trace=codegen

APIs:

■ CVMJITcodeCacheFindCompiledMethod()
■ handleSegv()
17-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 18

Profiling Dynamically Compiled
Code

The CDC-HI JIT has built-in support for profiling dynamically compiled code
(referred to as “JIT profiling”). It can be used to determine the percentage of time
spent in each compiled method, along with the time spent in assembler helper
functions that have been copied to the code cache (see the Code Cache Manager
chapter for details on copying assembler code to the code cache).

18.1 Building Support for JIT Profiling
To include support for JIT profiling, build with CVM_JIT_PROFILE=true. This will
include profiling support in the CDC-HI binary, but unless enabled at runtime it has
no performance impact.

18.2 Enabling JIT Profiling at Runtime
To enable JIT profiling at runtime, run with -Xjit:profile=<filename>. On
Linux, this will result in the use of the profil() API to profile the code cache.
profil() uses timer interrupts to profile the PC. 100 samples are taken per second.
It causes about a 1% performance hit.
18-1

18.3 Profiling Output Format
When the VM exits, the profile will by dumped into the specified filed. The
following is an example of the output file:

totalSampleCount = 336 = 37.07% of program execution
time

column #1: estimated savings if method is inlined

column #2: % of program time spent in method

column #3: % of code cache time spent in method

 <1> <2> <3>

 0.77% 2.08% CVMCCMruntimeMonitorEnterGlue

 1.43% 3.87% CVMCCMruntimeMonitorExitGlue

 0.88% 2.38% CVMCCMruntimeNewGlue

 5.41% 14.58%
CVMCCMinvokeNonstaticSyncMethodHelper

 0.66% 1.79% CVMCCMreturnFromMethod

 4.30% 11.61% CVMCCMreturnFromSyncMethod

 9.05% 24.40% java.lang.StringBuffer.append()

 3.72% 3.20% 8.63% java.lang.String.<init>()

 11.25% 30.36% Strings.execute()

 0.31% 0.11% 0.30% java.lang.String.toString()

Note that there is also a top 10 list printed at the end, but it has been omitted for this
example.

The first line of output contains total number of samples taken
(totalSampleCount). In this case there were 336, which would represent 3.36
seconds of execution time. The first line also includes the percent of total execution
time that was spent in the profiled area (the code cache). In this case 37.07%. From
this you can deduce that the total execution time was 9.06 seconds (3.36 / .3707). The
time not spent in the code cache is spent in the VM and OS libraries.

For each method or helper function in the code cache that had at least one sample
taken, a line of output is provided containing the following:
18-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

■ The first column is the estimated savings if the method had been inlined. This
column can be ignored since the user has little control over methods that don’t
get inlined.

■ The second column is the percentage of total program time that was spent in the
method or helper function. This is the most meaningful value provided.

■ The third column is the amount of time spent in each method or helper function
as a percentage of the amount time spent executing in the code cache.

■ The fourth column is the name of the method or helper function that was
profiled.

18.4 Instruction Level Profiling
If -Xjit:profileInstructions=true is also specified, the sample count for each
pc offset will also be included in the profiling output. This allows profiling to be
done at the instruction level. However, due to instruction latencies, sample counts
for any given instruction usually more accurately reflect the time spent in an earlier
instruction rather than the one specified. The instruction responsible for doing a
function return usually results in a large sample count at the return address rather
than at the instruction doing the return. This is especially true on ARM when ldm is
used to restore registers and load the PC with the return address.

18.5 Application Exit
If the application calls System.exit(), then normally VM shutdown code is
skipped and the profile is not dumped. To ensure that the profile is dumped in this
case, -XsafeExit should be specified on the command line.

If the application is forced to exit, such as when forcing termination of a process
using kill, then this will also prevent the profiling data from being dumped on exit.
The only workaround for this in CDC-HI 1.0.1 is to modify the VM to call
CVMJITcodeCacheDumpProfileData() at some predetermined time. In CDC-HI
1.1, the new sun.misc.CVM.dumpCompilerProfileData() API can be used by
the application to trigger the dump of the profiling data from Java at any time.
Chapter 18 Profiling Dynamically Compiled Code 18-3

18.6 Decompilation
Profiling data is only accurate if no decompilation takes place. This is because
profiling data is gathered simply by keeping track of the number of samples taken at
any given offset into the code cache. The mapping of instructions to methods does
not take place until the profiling data is dumped. Because of this, decompilation will
cause inaccurate results.

Decompilation will take place when a class is unloaded or the code cache has filled.
For most applications, class unloading does not occur unless the application has a
custom ClassLoader, so decompilation due to class unloading is usually not an
issue. To prevent decompilation due to running out of space in the code cache, a
sufficiently large code cache needs to be provided. To verify that no decompilation is
taking place, CDC-HI can be build with CVM_TRACE_JIT=true and then run with -
Xjit:trace=status. A message will appear each time a method is decompiled.

18.7 Porting Effort
If profil() is supported on the platform, then very little porting effort is necessary.
All that is needed is to #include "portlibs/posix/posix_jit_profil.h"
from jit_arch.h.

If profil() is not supported, then the functionality found in
portlibs/posix/posix_jit_profil.h needs to be provided by the port.
However, a port can choose not to support JIT profiling and simply never build with
CVM_JIT_PROFILE=true.

18.8 Reference
Primary Source Files:

jitcodebuffer.h

jitcodebuffer.c

posix_jit_profil.h

APIs:
18-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CVMJITcodeCacheDumpProfileData()

profil()

Build Options:

CVM_JIT_PROFILE=true

Runtime Options

-Xjit:profile=<filename>

-Xjit:profileInstructions=true

-XsafeExit
Chapter 18 Profiling Dynamically Compiled Code 18-5

18-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 19

Assembler Listings for Dynamically
Compiled Code

CDC-HI provides two facilities for generating assembler listings for generated code.
The first is part of the standard CDC JIT tracing support. JIT tracing support is
added at build time using CVM_TRACE_JIT=true (defaults to true for CVM_DEBUG=
true builds). Tracing of generated code can then be enabled at runtime using the -
Xjit:trace=codegen. The second facility is found in jitcomments.h and is used
to make the tracing of generated code more flexible.

19.1 Example Code Generation Assembler
Listing
The following is an example assembler listing for dynamically compiled code that
can be produced using the tracing facitlities provided with CDC-HI:

@ Do putfield:

0x40756518 924: ldr r9, [JFP, #+28] @ Java temp cell # 1

0x4075651c 928: add r11, r9, #8 @ fieldAddr = obj + fieldOffset;

0x40756520 932: str r0, [r11, #+0] @ putfield(fieldAddr, valueObj);

0x40756524 936: ldr r8, [pc, #+0] @ cardTableVirtualBase

0x40756528 940: mov r7, #0 @ zero

0x4075652c 944: strb r7, [r8, +r11, LSR #9] @ mark card table

The first column of each line contains the address of the instruction and the second
column contains the offset from the start of the compiled method. The remainder of
the line consists of the generated instruction and an applicable comment if provided.
19-1

19.2 CVMtraceJITCodegen() and
CVMtraceJITCodegenExec()
Traces are conditionally generated at runtime (based on the build and runtime
options mentioned above) using the macros CVMtraceJITCodegen() and
CVMtraceJITCodegenExec(). For example:

CVMtraceJITCodegenExec({

printPC(con);

CVMconsolePrintf(" sub JSP, JFP, #%d", offset);

});

CVMtraceJITCodegen(("call method"));

CVMconsolePrintf() is essentially the same as fprintf() to stderr, except that
it supports some additional arguments types, such as CVMClassBlock* and
CVMMethodBlock*. See CVMformatStringVaList() in utils.c for details. It is the
standard mechanism for sending debugging messages to the console from within the
CDC-HI virtual machine.

CVMtraceJITCodegen() uses CVMconsolePrintf() to trace its arguments, but
only if -Xjit:trace=codegen was specified on the command line. Likewise,
CVMtraceJITCodegenExec() only executes its argument if -Xjit:trace=
codegen was specified on the command line, allowing for more complex
conditional traces. Both of these macros expand to nothing if CVM_TRACE_JIT=
false.

Note – Usually CVMJITprintCodegenComment() is used instead of
CVMtraceJITCodegen().

19.3 CVMJITprintCodegenComment()
CVMJITprintCodegenComment() is just a helper function that is used in placed
of CVMtraceJITCodegen() to make comment printing more consistent. It just adds
some tab spacing to the start of the comment, plus the @ comment character, and
includes a newline at the end. It is used for comments that will take up an entire
line.

CVMJITprintCodegenComment(("Method prologue"));
19-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

Like CVMtraceJITCodegen(), it only traces if -Xjit:trace=codegen was
specified on the command line, and compiles into nothing if CVM_TRACE_JIT=
false.

19.4 CVMJITaddCodegenComment() and
CVMJITdumpCodegenComments()
One downside of using CVMtraceJITCodegen() is that frequently you want to
add a comment to the generated code trace, but don’t have the proper context. For
example,

CVMCPUemitMemoryReferenceImmediate(con,

CVMCPU_STR32_OPCODE,

CVMCPU_ARG1_REG,

VMCPU_JFP_REG,

mbOffset);

produces the following trace:

0x40756198 28: str r0, [JFP, #+12]

CVMCPUemitMemoryReferenceImmediate() is responsible for emitting the above
trace. It has no idea what the purpose of the code is, so it cannot provide a useful
comment. However, the caller of CVMCPUemitMemoryReferenceImmediate()
probably knows the reason for emitting the code, and would like to see a comment
indicating the reason. To do this, CVMJITaddCodegenComment() is used:

CVMJITaddCodegenComment((con, "Store MB into frame"));

CVMCPUemitMemoryReferenceImmediate(con,

CVMCPU_STR32_OPCODE,

CVMCPU_ARG1_REG,

CVMCPU_JFP_REG,

mbOffset);

which produces:

0x40756198 28: str r0, [JFP, #+12] @ Store MB into frame

It is up to CVMCPUemitMemoryReferenceImmediate() to make sure the added
comment gets traced. To do this it calls CVMJITdumpCodegenComments(), which
will print out all comments added by CVMJITaddCodegenComment(), and also
clear them from the queue.
Chapter 19 Assembler Listings for Dynamically Compiled Code 19-3

19.5 CVMJITpushCodegenComment() and
CVMJITpopCodegenComment()
Sometimes it is necessary to generate some code with a comment similar to the
CVMCPUemitMemoryReferenceImmediate() example above, but you know that
whoever called you already added a comment, and you don’t want to immediately
use this comment. In this case the comment can be saved away using
CVMJITpopCodegenComment() and later restored for use with
CVMJITpushCodegenComment(). This is common in code emitters that may need
to emit more than one instruction. The coding sequence is as follows:

CVMCodegenComment *comment;

/* save away current pending comment */

CVMJITpopCodegenComment(con, comment);

/* add your own comment */

CVMJITaddCodegenComment((con, "my comment"));

<Call some API that will emit code and dump your comment>

/* restore original comment */

CVMJITpushCodegenComment(con, comment);

<call another API that will emit code and dump restored comment>

19.6 CVMJITsetSymbolName() and
CVMJITgetSymbolName()
CVMJITsetSymbolName() plays a role similar to CVMJITaddCodegenComment().
It is used to set the name of a constant pool symbol. The symbol will be retrieved by
CVMJITgetSymbolName() and used in a comment when the constant pool entry is
dumped.

CVMJITgetSymbolName() is usually used just before calling
CVMRMgetResourceForConstant32() (which will retrieve and store away the
symbols), or before calling a function known to call
CVMRMgetResourceForConstant32() or
CVMRMbindResourceForConstant32(), and the caller is providing the constant.

CODE EXAMPLE 19-1 Example 1

CVMJITsetSymbolName((con, "cardTableVirtualBase"));
19-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

cardtableReg = CVMRMgetResourceForConstant32(

CVMRM_INT_REGS(con),

CVMRM_ANY_SET, CVMRM_EMPTY_SET,

(CVMInt32)CVMglobals.gc.cardTableVirtualBase);

0x4075658c 1040:.word 2531911 @ cardTableVirtualBase

CODE EXAMPLE 19-2 Example 2

CVMJITsetSymbolName((con, "mb %C.%M", CVMmbClassBlock(mb), mb));

dest = CVMRMbindResourceForConstant32(

CVMRM_INT_REGS(con), (CVMInt32)mb);

0x407565a0 1060: word 4362584 @ mb java.lang.String.<init>([CII)V

19.7 Reference
Primary Source Files:

jitcomments.h

jitcomments.c

jitutils.h - for CVMJITtraceXXX() macros

Command Line Options:

-Xjit:trace=codegen: enable tracing of code generation

Build Options:

CVM_TRACE_JIT=true
Chapter 19 Assembler Listings for Dynamically Compiled Code 19-5

19-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CHAPTER 20

Code Generation Examples

Here are a few code generation examples, including examples of accessing object
fields, accessing array elements, method invocation and simple arithmetic. The
assembly code in the examples are generated on ARM platform.

20.1 Example 1
This is a simple example of field accessing and arithmetic operation.

CODE EXAMPLE 20-1 Java code

class c {

 int _foo;

 public int f(int k) {

 return _foo + k;

 }

 }

CODE EXAMPLE 20-2 Bytecodes

 aload_0 // this

 getfield 2 // _foo

 iload_1 // k

 iadd // _foo + k

 ireturn

CODE EXAMPLE 20-3 IR

 <(ID: 9) RETURN_VALUE (int)

 <(ID: 8) ADD (int)

 <(ID: 6) FETCH (int)
20-1

 <(ID: 5) FIELD_REF (int)

 <(ID: 2) LOCAL (reference) 0>

 <(ID: 4) RESOLVE_REFERENCE (NONE)

 <(ID: 3) CONST_GETFIELD_FB_UNRESOLVED (NONE)

 (cpIndex 2)

 <(ID: 7) LOCAL (int) 1>

CODE EXAMPLE 20-4 Generated code

Following is a sequence of generated code corresponding to the above IR tree. The
first column is the physical address of the generated instructions. The second
column is the logical address. Comments start with @.

 @ Doing node 2 codegen rule [26] reg32: LOCAL32

0x40756cc0 64: ldr r11, [JFP, #-8] @ Java local cell # 0

 @ Doing node 4 codegen rule [184] reg32: RESOLVE_REF

 @ Resolving an instance field:

0x40756cc4 68: ldr r11, [pc, #-8] @ load cachedConstant

0x40756cc8 72: mov r2, #2 @ ARG3 = cpIndex

 @ call CVMCCMruntimeResolveGetfieldFieldOffset

0x40756ccc 76: bl PC=(-10704)

>>>>>>>>>Push Code Buffer to PC = 68 (0x40756cc4) >>>>>>>>

0x40756cc4 68: ldr r11, [pc, #+4] @ load cachedConstant

<<<<<<<<<Pop Code Buffer to PC = 80 (0x40756cd0) <<<<<<<<<

0x40756cd0 80: .word -1 @ cachedConstant

 @ Captured a stackmap here.

0x40756cd4 84: ldr r11, [pc, #-12] @ load cachedConstant

 @ Doing node 4 codegen rule [15] memSpec: reg32

 @ Doing node 6 codegen rule

 @ [105] reg32: FETCH32 FIELDREF32 reg32 memSpec

 @ Do getfield:

0x40756cd8 88: ldr r9, [JFP, #-8] @ Java local cell # 0

 @ value{I|F} = getfield(obj, fieldIdx);

0x40756cdc 92: ldr r10, [r9, +r11]

 @ Doing node 7 codegen rule [26] reg32: LOCAL32

0x40756ce0 96: ldr r11, [JFP, #-4] @ Java local cell # 1

 @ Doing node 7 codegen rule [13] aluRhs: reg32

 @ Doing node 8 codegen rule

 @ [42] reg32: IADD32 reg32 aluRhs
20-2 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

0x40756ce4 100: add r8, r10, r11 LSL #0

 @ Doing node 9 codegen rule [177] root: IRETURN reg32

0x40756ce8 104: str r8, [JFP, #-8] @ Java local cell # 0

0x40756cec 108: sub JSP, JFP, #4

 @ PREV (r6) = frame.prevX for return helper

 @ to use

0x40756cf0 112: ldr r6, [JFP, #+0]

 @ goto CVMCCMreturnFromMethod

0x40756cf4 116: bl PC=(-7824)

In this example, the ldr instruction at logical address 64 is doing IR node 2 by
loading local #0 (this object ref) from the Java frame. The instructions at address 68 ~
84 are generated corresponding to node 4, RESOLVE_REFERENCE. A helper function,
CVMCCMruntimeResolveGetfieldFieldOffset is called to resolve the field
reference. The mov instruction at address 72 sets up the third argument, cpIndex,
before calling the helper function. The rest of the arguments are set up by assembler
glue code. The result of the resolved field is stored at address 80 by the helper
function. After the helper returns, the instruction at address 84 loads the result into
the target register. The instructions at 88 ~ 92 are for node 6, FETCH. The first ldr
instruction loads the object reference (local #0) from the Java frame, the second ldr
loads the field value from the object using the resolved field offset. The instruction at
96 loads local #1 from the Java frame, which is corresponding to node 7. The add
instruction at address 100 is generated for node 8. The rest of the instructions (104 ~
116) are for RETURN_VALUE, node 9. First the result of the add is stored into the Java
frame as local #0. Then the sub instruction adjusts the JSP (the top of the Java stack).
The assembler code CVMCCMreturnFromMethod is called to do the return.

20.2 Example 2
CODE EXAMPLE 20-5 Java code

 public static int arith(int x, int y, int z) {

 return x * y + z;

 }

CODE EXAMPLE 20-6 Bytecodes

<0> iload_0

<1> iload_1

<2> imul

<3> iload_2
Chapter 20 Code Generation Examples 20-3

<4> iadd

<5> ireturn

Where local 0, 1, and 2 correspond to x, y and z respectively.

CODE EXAMPLE 20-7 IR tree

 <(ID: 7) RETURN_VALUE (int)

 <(ID: 6) ADD (int)

 <(ID: 4) MUL (int)

 <(ID: 2) LOCAL (int) 0>

 <(ID: 3) LOCAL (int) 1>

 <(ID: 5) LOCAL (int) 2>

CODE EXAMPLE 20-8 Generated code

 @ Doing node 2 codegen rule [26] reg32: LOCAL32

64: ldr r11, [JFP, #-12]@ Java local cell # 0

 @ Doing node 3 codegen rule [26] reg32: LOCAL32

68: ldr r10, [JFP, #-8]@ Java local cell # 1

 @ Doing node 4 codegen rule [47] reg32: IMUL32 reg32 reg32

72: mul r9, r11, r10

 @ Doing node 5 codegen rule [26] reg32: LOCAL32

76: ldr r8, [JFP, #-4]@ Java local cell # 2

 @ Doing node 5 codegen rule [13] aluRhs: reg32

 @ Doing node 6 codegen rule [42] reg32: IADD32 reg32 aluRhs

80: add r7, r9, r8 LSL #0

 @ Doing node 7 codegen rule [177] root: IRETURN reg32

84: str r7, [JFP, #-12]@ Java local cell # 0

88: sub JSP, JFP, #8

 @ PREV (r6) = frame.prevX for return helper to use

92: ldr r6, [JFP, #+0]@ goto CVMCCMreturnFromMethod

96: bl PC=(-6132)

20.3 Example 3
This is a field accessing example with explicit NULL check.

CODE EXAMPLE 20-9 Java code

 class C {
20-4 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

 Object f;

 [...]

 }

 class C2 {

 public static Object accessField(C x)

 {

 return x.f;

 }

 }

CODE EXAMPLE 20-10 Byte-codes

<0> aload_0

<1> getfield <C.x>

<4> areturn

IR

 <(ID: 8) RETURN_VALUE (reference)

 <(ID: 7) FETCH (reference)

 <(ID: 6) FIELD_REF (reference)

 <(ID: 5) NULL_CHECK (reference)

 <(ID: 2) LOCAL (reference) 0>

 <(ID: 4) RESOLVE_REFERENCE (NONE)

 <(ID: 3) CONST_GETFIELD_FB_UNRESOLVED (NONE)

 (cpIndex 2)

CODE EXAMPLE 20-11 Generated code

 @ Doing node 2 codegen rule [26] reg32: LOCAL32

64: ldr r11, [JFP, #-8]@ Java local cell # 0

 @ Doing node 5 codegen rule [139] reg32: NULLCHECK reg32

68: cmp r11, #0 @ NULL check

 @ CVMCCMruntimeThrowNullPointerExceptionGlue

72: bleqPC=(-9688)

 @ Doing node 4 codegen rule [184] reg32: RESOLVE_REF

 @ Resolving an instance field:

76: ldr r11, [pc, #+4]@ load cachedConstant

80: mov r2, #2 @ ARG3 = cpIndex

 @ call CVMCCMruntimeResolveGetfieldFieldOffset

84: bl PC=(-9036)

88: .word-1 @ cachedConstant
Chapter 20 Code Generation Examples 20-5

 @ Captured a stackmap here.

92: ldr r11, [pc, #-12]@ load cachedConstant

 @ Doing node 4 codegen rule [15] memSpec: reg32

 @ Doing node 7 codegen rule

 @ [104] reg32: FETCH32 FIELDREFOBJ reg32 memSpec

 @ Do getfield:

96: ldr r9, [JFP, #-8]@ Java local cell # 0

 @ valueObj = getfield(obj, fieldIdx);

100: ldr r10, [r9, +r11]

 @ Doing node 8 codegen rule [177] root: IRETURN reg32

104: str r10, [JFP, #-8]@ Java local cell # 0

108: sub JSP, JFP, #4

 @ PREV (r6) = frame.prevX for return helper to use

112: ldr r6, [JFP, #+0]@ goto CVMCCMreturnFromMethod

116: bl PC=(-6156)

In this example, the ldr instruction at address 64 is generated corresponding to node
2 in the IR tree. It loads the object reference from local #0 into a register. The next
instruction performs the NULLCHECK (node 5) on the loaded object reference by
doing a comparison. If the object is NULL, a NullPointerException is thrown by
calling CVMCCMruntimeThrowNullPointerExceptionGlue (the bleq instruction
at address 72).

20.4 Example 4
This is a simple example of array element accessing with explicit NULL check.

CODE EXAMPLE 20-12 Java code

 public static Object accessArray(Object[] arr, int idx)

 {

 return arr[idx];

 }

CODE EXAMPLE 20-13 Bytecodes

<0> aload_0

<1> iload_1

<2> aaload

<3> areturn
20-6 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

CODE EXAMPLE 20-14 IR

 <(ID: 10) RETURN_VALUE (reference)

 <(ID: 9) FETCH (reference)

 <(ID: 7) INDEX (int)

 <(ID: 2) IDENTITY (reference) (ref count: 2)

 <(ID: 8) LOCAL (reference) 0>

 <(ID: 6) BOUNDS_CHECK (NONE)

 <(ID: 3) LOCAL (int) 1>

 <(ID: 5) ARRAY_LENGTH (int)

 <(ID: 4) NULL_CHECK (reference)

 <(ID: 2) IDENTITY (reference) (ref count: 2)

CODE EXAMPLE 20-15 Generated code

 @ Doing node 8 codegen rule [26] reg32: LOCAL32

64: ldr r11, [JFP, #-8]@ Java local cell # 0

 @ Doing node 2 codegen rule [38] reg32: IDENT32 reg32

 @ Doing node 3 codegen rule [26] reg32: LOCAL32

68: ldr r10, [JFP, #-4]@ Java local cell # 1

 @ Doing node 2 codegen rule [38] reg32: IDENT32 reg32

 @ Doing node 4 codegen rule [139] reg32: NULLCHECK reg32

72: cmp r11, #0 @ NULL check

76: bleqPC=(-9988)@ NULL check

 @ Doing node 5 codegen rule [62] reg32: ALENGTH reg32

80: ldr r9, [r11, #+8]@ arraylength

 @ Doing node 6 codegen rule

 @ [169] reg32: BOUNDS_CHECK reg32 reg32

84: cmp r9, r10 LSL #0

 @ CVMCCMruntimeThrowArrayIndexOutOfBoundsExceptionGlue

88: bllsPC=(-9928)

 @ Doing node 6 codegen rule [97] arraySubscript: reg32

 @ Doing node 9 codegen rule

 @ [101] reg32: FETCH32 INDEX reg32 arraySubscript

 @ Do load(arrayObj, index) (elem type=L):

92: add r8, r11, r10 LSL #2

96: ldr r9, [r8, #+12]

 @ Doing node 10 codegen rule [177] root: IRETURN reg32

100: str r9, [JFP, #-8]@ Java local cell # 0
Chapter 20 Code Generation Examples 20-7

104: sub JSP, JFP, #4

 @ PREV (r6) = frame.prevX for return helper to use

108: ldr r6, [JFP, #+0]@ goto CVMCCMreturnFromMethod

112: bl PC=(-6456)

The instructions at address 72 and 76 are generated to do the NULL_CHECK (node 4)
for the array. If the NULL check fails, a NullPointerException is thrown (the bleq
instruction at address 76). The ldr instruction at address 80 loads the array length
into a register. The next two instructions are generated corresponding to the
BOUNDS_CHECK (node 6) node. Bounds check is done by comparing the index and
the array length. If bounds check fails, the blls calls
CVMCCMruntimeThrowArrayIndexOutOfBoundsExceptionGlue to throw an
ArrayIndexOutOfBoundsException. The instructions at 92 and 96 load the
indexed array element if both the NULL check and array bounds check pass.

20.5 Example 5
This is an example of method invocation with parameters and return value.

CODE EXAMPLE 20-16 Java code

 class C {

 public static int f(int arg1, int arg2, int arg3)

 {

 return arg1 + arg2 + arg3;

 }

 public static int g(int v1, int v2, int v3) {

 int result = f(v1, v2, v3);

 return result * result;

 }

 }

CODE EXAMPLE 20-17 Bytecodes

For g():

<0> iload_0

<1> iload_1

<2> iload_2

<3> invokestatic #3 // f(III)

<6> istore_3

<7> iload_3
20-8 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

<8> iload_3

<9> imul

<10> ireturn

CODE EXAMPLE 20-18 IR

 <(ID: 12) TEMP (NONE)

 <(ID: 11) IDENTITY (int) (ref count: 3)

 <(ID: 14) INVOKE (int)

 <(ID: 10) PARAMETER (int)

 <(ID: 2) LOCAL (int) 0>

 <(ID: 9) PARAMETER (int)

 <(ID: 3) LOCAL (int) 1>

 <(ID: 8) PARAMETER (int)

 <(ID: 4) LOCAL (int) 2>

 <(ID: 7) NULL_PARAMETER (NONE)

 <(ID: 6) RESOLVE_REFERENCE (NONE)

 <(ID: 5) CONST_STATIC_MB_UNRESOLVED (NONE) (cpIndex 3)

 <(ID: 15) RETURN_VALUE (int)

 <(ID: 13) MUL (int)

 <(ID: 11) IDENTITY (int) (ref count: 3)

 <(ID: 11) IDENTITY (int) (ref count: 3)

CODE EXAMPLE 20-19 Generated code

 @ Doing node 2 codegen rule [26] reg32: LOCAL32

64: ldr r11, [JFP, #-16]@ Java local cell # 0

 @ Doing node 2 codegen rule [148] param32: reg32

68: str r11, [JSP], #+4

 ...

 @ Doing node 6 codegen rule [184] reg32: RESOLVE_REF

 @ Resolving a static method:

88: ldr r0, [pc, #+4]@ load cachedConstant

92: mov r2, #3 @ ARG3 = cpIndex

 @ call CVMCCMruntimeResolveStaticMethodBlockAndClinit

96: bl PC=(-9616)

100: .word-1 @ cachedConstant

 @ Captured a stackmap here.

104: ldr r0, [pc, #-12]@ load cachedConstant

 @ Doing node 14 codegen rule
Chapter 20 Code Generation Examples 20-9

 @ [125] invoke32_result: INVOKE32 parameters reg32

 @ Invoke a method w/ a 32bit return type

108: mov lr, pc LSL #0@ call method through mb

112: ldr pc, [r0, #+0]

 @ Captured a stackmap here.

 @ Doing node 14 codegen rule [142] reg32: invoke32_result

116: ldr r11, [JSP, #-4]!

 @ Doing node 11 codegen rule [38] reg32: IDENT32 reg32

 @ Doing node 12 codegen rule [151] effect: FOR_TEMP reg32

 @ Doing node 12 codegen rule [1] root: effect

 @ Doing node 11 codegen rule [38] reg32: IDENT32 reg32

 @ Doing node 11 codegen rule [38] reg32: IDENT32 reg32

 @ Doing node 13 codegen rule [47] reg32: IMUL32 reg32 reg32

120: mul r10, r11, r11

 @ Doing node 15 codegen rule [177] root: IRETURN reg32

124: str r10, [JFP, #-16]@ Java local cell # 0

128: sub JSP, JFP, #12

 @ PREV (r6) = frame.prevX for return helper to use

132: ldr r6, [JFP, #+0]@ goto CVMCCMreturnFromMethod

136: bl PC=(-6712)

In this example, the ldr instruction at logical address 64 loads local #0 from the Java
frame into a register. The value is pushed onto the Java stack by the str instruction
after the ldr. The str instruction also adjusts the top of the stack.

The instructions at address 88 ~ 104 correspond to node #6, RESOLVE_REFERENCE.
The CVMCCMruntimeResolveStaticMethodBlockAndClinit helper function is
called to resolve the method block. The resolved MB is stored at address 100 by the
helper function.

The instructions at address 108 and 112 invoke the resolved method, corresponding
the node 14. The method invoker is the first word of the method block. Depending
the type of the method, the invoker can be CVMCCMletInterpreterDoInvoke (for
the Java method), CVMCCMinvokeJNIMethod (for the JNI method), and
CVMCCMinvokeCNIMethod (for the CNI method). If a Java method is compiled, then
the invoker is changed to be the start PC (in codecache) of the compiled method.
When the method returns, the result is loaded from the Java stack by the ldr
instruction at 116.
20-10 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

20.6 Example 6
These are examples of method prologue for compiled method. When a compiled
method invokes another compiled method, the callee’s method prologue is used.
Interpreted to compiled invocation does not go through the callee’s method
prologue. The prologue assumes the caller has set up the current MB (methodblock) as
the first argument (ARG 1) properly before the invocation.

The synchronized non-static method’s prologue is similar to the one for
synchronized static method, the only difference is that they call different assembler
helper functions (CVMCCMinvokeNonstaticSyncMethodHelper for synchronized
non-static method, and CVMCCMinvokeStaticSyncMethodHelper for
synchronized static method). The prologue for static non-synchronized method
basically is the same as the one for non-static no-synchronized method.

CODE EXAMPLE 20-20 Non-static non-synchronized method

@ Method prologue

@ Set R1 = JSP + (capacity - argsSize) * 4

0: add r1, JSP, #36

@ Stack limit check

4: ldr r3, [sp, #+4]@ ccee->stackChunkEnd

8: str lr, [JFP, #+16]@ Store LR into frame

12: cmp r3, r1 LSL #0

16: bls PC=(-8276)@ letInterpreterDoInvoke

@ Set up frame for method

@ Store curr JFP into new frame

20: str JFP, [JSP, #+0]

@ JFP = JSP + (maxLocals - argsSize) * 4

24: add JFP, JSP, #0

28: str r0, [JFP, #+12]@ Store MB into frame

@ Interpreted -> compiled entry point

...... @ Debugging only code

60: add JSP, JFP, #24@ spill adjust goes here

...... @ Compiled code for the Java method

>>>>>>>>>Push Code Buffer to PC = 0 (0x40756d9c) >>>>>>>>

@ Capacity is 11 word(s)

0: add r1, JSP, #36

<<<<<<<<<Pop Code Buffer to PC = 84 (0x40756df0) <<<<<<<<<
Chapter 20 Code Generation Examples 20-11

>>>>>>>>>Push Code Buffer to PC = 60 (0x40756dd8) >>>>>>>>

@ spillSize is 0 word(s), add to JFP+24

60: add JSP, JFP, #24

<<<<<<<<<Pop Code Buffer to PC = 84 (0x40756df0) <<<<<<<<<

This is an example of the method prologue for non-static non-synchronized method.
First it checks if there is enough space for the new frame (the instructions at 0 ~ 16)
in the current stack chunk. If the new frame would exceed the end of the chunk, the
invocation will be handled by the interpreter (the bls instruction calls
letInterpreterDoInvoke when there is not enough space). The str instruction at
address 8 saves the return address into the current frame.

The instruction at address 20 ~ 28 set up the new frame when there is enough space.
The instruction at 20 saves the current JFP into the new frame (frame->prevX). The
instruction at address 24 computes the new JFP. And the instruction at address 28
stores the MB (current method block) into the frame (frame->mb). The instruction at
address 60 adjust the JSP with the spill size. That is also the entry point when
invoking from the interpreter. The compiled code for the Java method starts after the
spill adjust.

The maximum temp words required by the compiled method is not determined
when the prologue is being generated. So the instructions at address 0 and 60 are
regenerated at the end of the method compilation.

CODE EXAMPLE 20-21 Static synchronized method

@ Method prologue

@ Set R1 = JSP + (capacity - argsSize) * 4

0: add r1, JSP, #40

@ Stack limit check

4: ldr r3, [sp, #+4]@ ccee->stackChunkEnd

8: str lr, [JFP, #+16]@ Store LR into frame

12: cmp r3, r1 LSL #0

16: bls PC=(-6448)@ letInterpreterDoInvoke

@ Set up frame for synchronized method

@ NEW_JFP = JSP + (maxLocals - argsSize) * 4

20: add r7, JSP, #4

@ call CVMCCMinvokeStaticSyncMethodHelper

24: bl PC=(-6736)

@ Interpreted -> compiled entry point

28: add JSP, JFP, #24@ spill adjust goes here

...... @ Compiled code for the Java method

>>>>>>>>>Push Code Buffer to PC = 0 (0x40756678) >>>>>>>>
20-12 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

@ Capacity is 11 word(s)

0: add r1, JSP, #40

<<<<<<<<<Pop Code Buffer to PC = 52 (0x407566ac) <<<<<<<<<

>>>>>>>>>Push Code Buffer to PC = 28 (0x40756694) >>>>>>>>

@ spillSize is 0 word(s), add to JFP+24

28: add JSP, JFP, #24

<<<<<<<<<Pop Code Buffer to PC = 52 (0x407566ac) <<<<<<<<<

Above is an example of a static synchronized method prologue. It calls assembler
helper, CVMCCMinvokeStaticSyncMethodHelper to do the synchronization work
(the bl instruction at address 24).
Chapter 20 Code Generation Examples 20-13

20-14 CDC HotSpot Implementation Dynamic Compiler Architecture Guide • August 2005

	Contents
	Code Samples
	Dynamic Compiler Architecture
	1.1 Introduction
	1.2 Compiler Front End - IR Creation
	1.3 Compiler Back End - JCS and IR Parsing
	1.4 Compiler Back End - Semantic Actions
	1.5 Compiler Back End - Register Manager
	1.6 Compiler Back End - Code Emitters
	1.7 Other Compiler Components
	1.8 Compiler Porting Layers
	1.9 CVMJITCompilationContext
	1.10 Compiling a Method

	VM Overview and Runtime Internals
	2.1 CVM Internal Structure with Compiler
	2.2 Globals
	2.3 The Java Heap
	2.3.1 The Garbage Collector
	2.3.2 GC Consistency
	2.3.3 CVMObjectICell

	2.4 The JIT Code Cache
	2.5 Java Classes
	2.5.1 java.lang.Class
	2.5.2 CVMClassBlock
	2.5.3 CVMMethodBlock
	2.5.4 Preloaded Classes

	2.6 Java Objects
	2.7 Java Threads
	2.7.1 CVMExecEnv
	2.7.2 JNIEnv
	2.7.3 Native Stack Data
	2.7.4 Native Stack
	2.7.5 Java Stack
	2.7.6 Java Stack Frames
	2.7.6.1 CVMInterpreterFrame
	2.7.6.2 CVMCompiledFrame
	2.7.6.3 CVMFreelistFrame

	2.7.7 Stackmaps

	2.8 GC Roots
	2.9 Synchronization
	2.10 Other VM Components
	2.11 The Bootstrapping Process

	JIT Intermediate Representation
	3.1 Overview
	3.2 From Stack-Oriented to Value-Oriented
	3.3 IR Basics
	3.4 IR Node Format
	3.5 Conversion
	3.6 Example Expression Trees
	3.6.1 Arithmetic Operation
	3.6.2 Object Access With Null Check
	3.6.3 Object Access With Lazy Class Initialization Check
	3.6.4 Array Access With Runtime Checks
	3.6.5 Method Invocation With Parameters and Return Value

	3.7 Conversion Passes
	3.8 Simple Inlining
	3.9 Simple Multi-block Inlining
	3.10 Virtual Inlining
	3.11 Nested and Recursive Inlining
	3.12 Method Contexts
	3.13 Argument Handling and Locals
	3.14 Limiting Inlining
	3.15 Runtime Inlining Information and BEGIN/END_INLINING Nodes

	JavaCodeSelect
	4.1 Introduction
	4.2 Concepts
	4.2.1 Tokens, Terminals, and Nonterminals
	4.2.2 Patterns, Pattern Specification, and Rules
	4.2.2.1 Example 1
	4.2.2.2 Example 1a

	4.2.3 Code Generator Operation: Parsing the Tree
	4.2.3.1 Match Phase
	4.2.3.2 Rule-based Phases

	4.2.4 DAG Support
	4.2.5 Conditional Compilation

	4.3 JCS Syntax
	4.4 Other Input
	4.4.1 Default Actions
	4.4.2 Managing Recursion

	4.5 Debugging
	4.6 Output
	4.7 References

	Code Generation Mechanics
	5.1 Working with DAGs in Code Generation
	5.1.1 Introduction
	5.1.2 Properties and semantics Of DAGs in the CDC-HI IR
	5.1.3 JCS handling of DAGs
	5.1.4 Decoration of IDENTITY Nodes

	5.2 Code Generator’s Semantic Stack
	5.3 Synthesis, Inheritance, and Register Targeting
	5.3.1 Targeting with DAGs
	5.3.2 Targeting for Avoidance

	5.4 Using and Reference Counting Resources
	5.5 Full Example of Inheritance and Resouce Management
	5.6 Rule Costs and Overriding

	Code Cache Manager
	6.1 Code Buffers
	6.2 Free Buffers
	6.3 Allocated Buffers for CDC 1.0.1
	6.4 Allocated Buffers for CDC 1.1
	6.5 Decompilation
	6.6 Logical PC vs. Physical PC
	6.7 Pushing and Popping Fixup PCs
	6.8 Emitting Code
	6.9 Copying Assembler Code to the Code Cache
	6.10 Debugging Support
	6.11 Reference

	JIT Runtime Support
	7.1 CVMglobals.jit
	7.2 CPU Cache Flushing
	7.2.1 Data Caches
	7.2.2 Instruction Caches
	7.2.3 Cache Coherency
	7.2.4 External Caches

	7.3 CVMCompiledMethodDescriptor
	7.3.1 Computing the CMD

	7.4 Entry to Compiled Code
	7.5 Assembler Glue
	7.6 Helper Functions
	7.6.1 Default C Helper Functions
	7.6.2 ASM Helper Functions
	7.6.3 Disabling Default Helper Functions

	7.7 CVMCCExecEnv
	7.8 Code Execution and Stack Frames
	7.9 Throwing Exceptions
	7.10 On-Stack Replacement (OSR)

	JIT Memory Manager
	8.1 Permanent Memory Allocation
	8.2 Transient Memory Allocation
	8.3 Memory Fence
	8.4 Statistics Gathering
	8.5 Reference

	Constant Pool Manager
	9.1 Loading Constants into Registers
	9.2 Adding Constants to the Constant Pool
	9.3 Dumping the Constant Pool
	9.4 Patching Forward Constant Pool References
	9.5 CVMCPU_HAS_CP_REG
	9.6 Register Manager Usage
	9.7 Typical Code Generation
	9.8 Reference

	Register Manager
	10.1 Evaluated Expressions
	10.2 Interactions with the JCS Grammar
	10.3 CVMRMResource
	10.4 Resource Flags
	10.5 Register Contexts (Register Banks)
	10.6 Register Sets
	10.7 Allocating Resources
	10.8 Reference Counts and Deleting Resources
	10.9 Register Allocation and Targeting
	10.10 ResourcePinning
	10.11 Dirty Resources and Spilling
	10.12 Resources for Constants
	10.13 Resources for Locals
	10.14 Block Handling
	10.15 Phi Handling
	10.16 Method Result Handling
	10.17 Porting Effort
	10.18 Reference

	Stack Manager
	11.1 Overview
	11.2 Handling Method Results
	11.3 CVMSMadjustJSP()
	11.4 Stack Maps
	11.5 Handling Non-parameter Stack Values
	11.6 CVMSMgetSingle() and CVMSMgetDouble()
	11.7 Porting Effort
	11.8 Reference

	Phi Values
	12.1 Overview
	12.2 Passing Phi Values Between Blocks
	12.3 DEFINE Nodes and USED Nodes
	12.4 CVMJITirblockPhiMerge()
	12.5 CVMJITirblockAtLabelEntry()
	12.6 Unsupported Phi Constructs
	12.7 Virtual Method Inlining
	12.8 Register Phis
	12.9 Phi Handling in the Backend
	12.10 Reference

	Trap-based NullPointerExceptions
	13.1 Overview
	13.2 Reference

	GC Checks in Compiled Code
	14.1 Explicit GC Checks
	14.2 Patch-based GC Checks
	14.3 Patch-based GC Checks with Delay Slots
	14.4 Trap-based GC Checks
	14.5 Reference

	JIT Stack Maps
	15.1 Stack Map Components
	15.2 GC Points in Compiled Code
	15.3 Capturing Stack Maps
	15.4 Accessing Stack Maps
	15.5 CVMcompiledFrameScanner()
	15.6 Porting Effort
	15.7 Reference

	JIT Intrinsic Methods
	16.1 How Intrinsics Work
	16.2 The Intrinsics Framework
	16.2.1 Chaining the Intrinsics Config List
	16.2.2 Compiler Front-End Support
	16.2.3 Compiler Back-End Support
	16.2.4 Intrinsics Code Generation
	16.2.5 CVMJITINTRINSIC_OPERATOR_ARGS
	16.2.6 CVMJITINTRINSIC_C_ARGS
	16.2.7 CVMJITINTRINSIC_JAVA_ARGS

	16.3 The Value of Intrinsics
	16.4 Disabling Intrinsics
	16.5 Reference

	JIT Debugging Support
	17.1 Tracing
	17.2 Controlling Which Methods Are Compiled
	17.3 Controlling Which Methods Are Traced
	17.4 CVMJITcodeCacheFindCompiledMetho d()
	17.5 GDB Support
	17.6 Trap-based NullPointerExceptions
	17.7 Reference

	Profiling Dynamically Compiled Code
	18.1 Building Support for JIT Profiling
	18.2 Enabling JIT Profiling at Runtime
	18.3 Profiling Output Format
	18.4 Instruction Level Profiling
	18.5 Application Exit
	18.6 Decompilation
	18.7 Porting Effort
	18.8 Reference

	Assembler Listings for Dynamically Compiled Code
	19.1 Example Code Generation Assembler Listing
	19.2 CVMtraceJITCodegen() and CVMtraceJITCodegenExec()
	19.3 CVMJITprintCodegenComment()
	19.4 CVMJITaddCodegenComment() and CVMJITdumpCodegenComments()
	19.5 CVMJITpushCodegenComment() and CVMJITpopCodegenComment()
	19.6 CVMJITsetSymbolName() and CVMJITgetSymbolName()
	19.7 Reference

	Code Generation Examples
	20.1 Example 1
	20.2 Example 2
	20.3 Example 3
	20.4 Example 4
	20.5 Example 5
	20.6 Example 6

