Oracle® Java Micro Edition Embedded Client

Reference Guide, Version 1.0

Part No.: 01-11-11

ORAC'_€® January 2011

Copyright © 2011 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by
intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohigited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us
in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the
following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are
"commercial computer software" or "commercial technical data” pursuant to the applicable Federal Acquisition Regulation and agency-specific
su[iﬁlemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set
forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any
inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all apprcg)riate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle
Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. Intel and Intel Xeon are
trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. UNIX is a registered trademark licensed through X/Open Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle
Corporation and its affiliates are not resiaonsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party

content, products, or services.

Copyright ©2011, Oracle et/ ou ses affiliés. Tous droits réservés.

Celogiciel et la documentation qui I’accompagne sont protégés par les lois sur la propriété intellectuelle. Ils sont concédés sous licence et soumis a des

restrictions d’utilisation et de divulgation. Sauf disposition §e votre contrat de licence ou de la loi, vous ne pouvez pas copier, reproduire, traduire,

diffuser, modifier, breveter, transmettre, distribuer, exposer, exécuter, publier ou afficher le logiciel, méme partiellement, sous quelque forme et par

guelque rocédé que ce soit. Par ailleurs, il est interdit de procéder a toute ingénierie inverse du logiciel, de le désassembler ou de le décompiler, excepté a
es fins d’interopérabilité avec des logiciels tiers ou tel que prescrit par la loi.

Les informations fournies dans ce document sont susceptibles de modification sans préavis. Par ailleurs, Oracle Corporation ne garantit pas qu’elles
soient exemptes d’erreurs et vous invite, le cas échéant, a lui en faire part par écrit.

Si ce logiciel, ou la documentation qui I’accompagne, est concédé sous licence au Gouvernement des Etats-Unis, ou a toute entité qui délivre la licence de
celogiciel ou I'utilise pour le compte du Gouvernement des Etats-Unis, la notice suivante s’applique :

U.S. GOVERNMENT RIGHTS. Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers
are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific
supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set
forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR
52.227-19, Commercial Computer Software License (December 2007). Orac?’e America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Celogiciel ou matériel a été développé pour un usage général dans le cadre d’applications de gestion des informations. Ce logiciel ou matériel n’est pas
congu ni n’est destiné a étre utilisé dans des aPplications arisque, notamment dans des applications pouvant causer des dommages corporels. Si vous
utilisez ce logiciel ou matériel dans le cadre d’applications dangereuses, il est de votre responsabilité de prendre toutes les mesures de secours, de
sauvegarde, de redondance et autres mesures nécessaires a son utilisation dans des conditions optimales de sécurité. Oracle Corporation et ses affiliés
déclinent toute responsabilité quant aux dommages causés par 1'utilisation de ce logiciel ou matériel pour ce type d’applications.

Oracle et Java sont des marques déposées d’Oracle Corporation et/ou de ses affiliés. Tout autre nom mentionné peut correspondre a des marques
appartenant a d’autres propriétaires qu’Oracle.

AMD, Opteron, le logo AMD et le logo AMD Opteron sont des marques ou des marques dé{)osées d’Advanced Micro Devices. Intel et Intel Xeon sont des
marques ou des marques déposées d'Intel Corporation. Toutes les marques SPARC sont utilisées sous licence et sont des marques ou des marques
déposées de SPARC International, Inc. UNIX est une marque déposée concédée sous licence par X/Open Company, Ltd.

Celogiciel ou matériel et la documentation qui ’accompagne peuvent fournir des informations ou des liens donnant acces a des contenus, des produits et
des services émanant de tiers. Oracle Corporation et ses affiliés déclinent toute responsabilité ou garantie expresse quant aux contenus, produits ou
services émanant de tiers. En aucun cas, Oracle Corporation et ses affiliés ne sauraient étre tenus pour responsables des pertes subies, des cofits
occasionnés ou des dommages causés par I’acces a des contenus, produits ou services tiers, ou a leur utilisation.

9]

Adobe PostScript

Contents

Part I

Using This Documentation vii

Developer Guide

1. Introduction 1-1

1.1
1.2

1.3

Software Overview 1-1
Target Device Hardware Components 1-2
1.2.1 Microprocessor Requirements 1-2
122 I/0O and Peripheral Requirements 1-3
1.2.2.1 Input Ports for Flash Updating 1-3
1222 I/0 Ports for Data 1-3
1.2.2.3 Graphics Output Ports 1-3
1.2.3 Memory Requirements 1-3
1.2.3.1 RAM 13
1.2.3.2 ROM and Flash 1-+4
Target Device Software Components 1-4
1.3.1 Operating System 1-4
1.3.2 Graphics Libraries 1-4

2. Execution 2-1

2.1

Components 2-1

2.2 Execution and Supported Runtime Parameters 2-2
2.3 Input Event Customizations for Remote Control 2-3
2.3.1 Keyboard Restrictions 2-3
24 Mouse Restrictions 2-3
241 Input Mechanisms 2-4
24.1.1 Standard Keyboard Support 2-4
242 Mouse Support 2-5

3. Developing Applications 3-1

3.1 Developer Tools 3-1

3.2 Finding API Documentation 3-2

3.3 Application Life Cycles 3-2

34 The Xlet Life Cycle 3-3

3.5 AFirst Xlet 34
v Use NetBeans to Create HelloXlet 3-7

3.6 Components and Layouts 3-8

3.7 Creating a User Interface 3-8

3.8 Profiling and Debugging with NetBeans 3-15
3.8.1 Profiling and Debugging VMs 3-15
3.8.2 Profiling Prerequisites 3-16
v Profiling a Test Application 3-16
v Local Debugging with NetBeans 3-20
v Remote Debugging with NetBeans 3-21

Part II Java Virtual Machine Reference

4. Java Virtual Machine Capabilities 4-1
4.1 Resource Registry for Cleanup Resources 4-1
42 Override Runtime Properties 4-2

v Using Dynamic Properties 4-2

iv Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

43 Enable/Disable JAR Caching 4-4
44 Heap Monitor 4-4

5. Internal Memory Allocator 5-1
51 Red Zone 5-1
52 Statistics 5-2
53 GC Triggered When Native Memory is Low 5-2

6. Threading 6-1
6.1 Monitoring Java Threads Life-Cycle = 6-1
6.2 Registering Callbacks 6-1
6.3 Thread Quota 6-2

6.4 Thread.stop Implementation 6-3

7. Internationalization 7-1
7.1 ROMized Character Converters 7-1
7.2 ROMized Locales 7-7
7.3 Using Non-ROMized Locales and Character Converters 7-10

8. External PBP Porting Layer Plugin 8-1
8.1 Javacalls 8-1
8.2 Algorithms 8-2
8.3 Native Image Decoding 8-6
8.4 Image Caching 8-7
8.5 Java VM Shutdown With PBP Application 8-7
8.6 External BLIT Interface 8-8
8.7 Dynamic Set Resolution 8-8
8.8 Configurable Background Color 8-8

8.9 IXC Generic Implementation (com. sun.xlet package) 8-9

Part IIIT Working Without An IDE

Contents

vi

A. Legacy Tools A-1
A1l Tools A-1
A2 Compiling the Hard Way A-2
A3 Automating With Ant A-4

Index Index-1

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

Using This Documentation

This service manual explains how to use the Oracle® Java Micro Edition Embedded
Client interfaces to create and test applications.

m “OS Commands” on page vii

m “Related Documentation” on page vii

OS Commands

This document might not contain information about basic Linux or Windows
commands and procedures such as shutting down the system, booting the system,
and configuring devices. Refer to the following resources for this information:

m Ubuntu operating system documentation, which is found at:
https://help.ubuntu.com
m Windows operating system documentation or online help

m The Oracle Java Micro Edition Embedded Client Installation Guide contains limited
descriptions of operating system commands used with the Oracle Java Micro
Edition Embedded Client.

Related Documentation

The following table lists the documentation that is related to this product.

vii

https://help.ubuntu.com

viii

Application Title Format
Release Notes Oracle Java Micro Edition Embedded Client Version 1.0 Release Printed
Notes PDF
Installation Guide Oracle Java Micro Edition Embedded Client Installation Guide PDF
HTML

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

rarr [Developer Guide

Part 1 includes the following developer topics:
Introduction:

Provides an overview of the software stacks, target device software and hardware
components.

Execution:
Execution and runtime information, and demos to run.
Developing Applications:

Discusses recommended developer tools and how to set up the development
environment.

CHAPTER 1

Introduction

Oracle Java Micro Edition Embedded Client (Oracle Java ME Embedded Client)
provides the Java ME platform for embedded devices. Oracle Java ME Embedded
Client is based on Connected Device Configuration (CDC) technologies and caters to
a wide range of embedded application and middleware needs, ranging from TV
set-top boxes to VoIP phones. Oracle Java ME Embedded Client can also support
various embedded platforms, such as e-book Readers, multi-functional peripheral
devices, smart electric metering devices, and Blu-Ray Disc players.

1.1

Software Overview

Oracle Java Micro Edition Embedded Client provides a platform for running
applications written in the Java programming language. This platform, combined
with GUI elements, provides rich, robust, and scalable application domains.

Applications

Oracle Java Embedded Client

Embedded OS

Device Drivers

11

The Oracle Java Micro Edition Embedded Client needs specific drivers and software
to host the Java technologies on embedded devices. It is based on several layers of
software:

= An embedded operating system running on the device. For example, Linux OS.

m A native graphics library or display driver to provide access to the device graphics
display plane (framebuffer)

The Oracle Java ME Embedded Client environment includes the following Java

technologies:

m Connected Device Configuration HotSpot™ Implementation (CDC HotSpot
Implementation, version 1.1.2) is a Java ME platform that enables Java technology
on resource-constrained devices.

m Foundation Profile (1.1.2) with Security Optional package (1.0.1)
m Personal Basis Profile (1.1)

m RMI Optional Package (1.0)

m JDBC Optional Package for CDC/Foundation Profile (1.0)

m J2ME Web Services

1.2

1.2.1

1.2.2

1-2

Target Device Hardware Components

These subsections outline some of the typical base requirements and features to
support the Oracle Java Micro Edition Embedded Client on an embedded
environment.

Microprocessor Requirements

Oracle Java ME Embedded Client uses the Oracle JIT (Just In Time) compiler
technology, CDC-Hotspot Implementation. Ports for this virtual machine are
available on numerous microprocessors. It performs best on 32-bit RISC-based
microprocessors (MIPS, ARM, PowerPC, SPARC and others) and 32-bit Intel x86
microprocessor. Typical clock speeds vary from low-end devices (150-200 megahertz)
to mid-range devices (300 megahertz) and faster.

I/0O and Peripheral Requirements

This section provides a basic breakdown of core device peripherals and I/O support
characteristics.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

1.2.21

1.2.2.2

1.2.2.3

1.2.3

1.2.3.1

Input Ports for Flash Updating

Serial ports may be included on device but are typically only used for in factory
device setup and configuration and are not accessible by developers or end users.
This input mechanism can be used to flash upgrade the device.

I/0 Ports for Data

An ethernet port is required for the Java networking functionality.

Typically, IR ports are also available to support input events from remote control
keypads for TV and media platforms. Some devices also support USB ports for
writing to flash memory or to support extra peripheral devices (camera connection or
full keyboard).

Graphics Output Ports

Java represents each graphics pixel as 32 bits (ARGB) but lower color-depth displays
can be supported, down to monochrome (1-bit).

Memory Requirements

The Oracle Java ME Embedded Client is designed to run on memory constrained
devices. Oracle’s CDC HotSpot implementation virtual machine by itself with core
CDC classes (headless) takes less than 5.5 megabytes of ROM with an additional
requirement of 1.5 megabytes if internationalization is required.

RAM

Usage of RAM typically depends on the Java application being executed. An average
use case for graphics applications can require up to 32 megabytes of RAM. The
memory requirement would be less in the case of non-graphics applications. This
typically implies a device with 64 megabytes of physical RAM when graphics use
cases are required. A larger amount of RAM might be needed to support applications
with large Java heap requirements. Smaller, non-graphics applications can require as
little as 4MB RAM or less.

Chapter 1 Introduction 1-3

1.2.3.2 ROM and Flash

Oracle Java ME Embedded Client requires close to 5 megabytes of ROM. An
additional 1.5 megabytes is required for internationalization support.

1.3 Target Device Software Components

This section discusses the basic components required to support the Oracle Java
Micro Edition Embedded Client in an embedded environment.

1.3.1 Operating System

Oracle’s CDC HotSpot Implementation virtual machine runs on numerous operating
systems, including Unix and Linux variants and other well known commercial
offerings. Oracle Java ME Embedded Client is optimized for a Linux host OS and
Windows XP OS. When the specific target device uses a proprietary operating
system, the basic requirements to support Connected Device Configuration and
Foundation Profile are as follows:

m Basic ANSI C and standard C library

m Multithreading

m Synchronization: mutexes, condvars, semaphores
m Millisecond timer

m File I/O (POSIX-like functionality)

m Full TCP/IP stack

1-4 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

CHAPTER 2

Execution

Oracle Java Micro Edition Embedded Client is the foundation for software product
development for many embedded client platforms. The client stack can be ported to
other platforms on request. The client software can be modified or extended to
provide the appropriate platform for Java applications or middleware. Applications
and middleware can be designed and implemented by partners or third parties
catering to end-user needs.

2.1

Components

This section identifies the typical binary components of the Oracle Java ME
Embedded Client. This reflects how the stack has been installed in various devices.

The Linux/x86 bundle (software development kit) contains prebuilt virtual machine
binaries and classes for target devices as follows:

/docs
/cde-1_1_2-mrel-spec-jdoc
/fp-1_1_2-mrel-spec-jdoc
/j2me_rmiop-1_0-fr-spec
/Jj2me_web_services-1_0-fr-spec-jdoc
/jdbc_cdc-1_0-fr-doc
/pbp-1_1_2-mrel-spec-jdoc

/emulator-platform
/bin

emulator
btclasses.zip
/1ib
/profiler
/1lib
/security
/ext

/fonts
/zi
/America
/Asia
/legal

2.2 Execution and Supported Runtime
Parameters

The supported runtime parameters can be considered separately for the virtual
machine and CDC and the supported profile.

To print the version, use the -version command option. The output is similar to the
following;:

Product: Oracle Java Micro Edition Embedded Client-1.0
(built on Profile: CDC 1.1.2 (JSR218)

- FP 1.1.2 (JSR219) (SecOp 1.0)

- PBP 1.1.2 (JSR217)

- (RMI JSR66)
- (JDBC JSR169)
- (WebServices JSR172)- (Specification 1.1.2)
- Toolkit: DirectFB (1.2)
JVM: CVM rev (mixed mode)
2.3 Mouse Restrictions

A Personal Basis Profile implementation can also optionally provide partial support
for a pointing device. The Personal Basis Profile specification states:

2-2 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

2.3.1

2.3.1.1

“If the property java.awt .MouseEvent.isRestricted is true, then the property
java.awt.event.MouseEvent . supportLevel reports the level of mouse events
generated by the implementation.” The following table describes the mouse events
generated by the implementation based on the support level.

TABLE 2-1 Level of Mouse Events Generated by the Implementation

Support Level Mouse Events Generated
0 No mouse events generated

1 MOUSE_CLICKED, MOUSE_PRESSED, MOUSE_RELEASED,
MOUSE_ENTERED, MOUSE_EXITED

2 All the events of level 1, plus MOUSE_MOVED

Input Mechanisms

The following sections describe the various input mechanisms: standard keyboard,
events outside the PBP specification, and mouse support.

Standard Keyboard Support

Developers can query the particular key events supported, by querying the following
runtime properties:

| java.awt .event .KeyEvent.isRestricted |

and

| java.awt.event.KeyEvent . supportMask

Typical values are:

java.awt.event .KeyEvent.isRestricted =true
java.awt.event.KeyEvent. supportMask=0x07

Hence the Oracle Java ME Embedded Client supports the following subset of key
events that match typical remote control input capabilities:

VK_LEFT and VK_RIGHT
VK_UP and VK_DOWN
VK_0 through VK_9
VK_ENTER

Chapter 2 Execution 2-3

232 Mouse Support

Developers can determine the particular mouse events supported, by querying the
following runtime properties:

| java.awt.MouseEvent.isRestricted

and

| java.awt.event.MouseEvent. supportLevel

Typical values are:

java.awt .MouseEvent.isRestricted=true
java.awt.event .MouseEvent . supportLevel=0

The last value indicates that Oracle Java ME Embedded Client supports no mouse
events.

2-4 Oracle Java Micro Edition Embedded Client Reference Guide * January 2011

CHAPTER 3

Developing Applications

This chapter describes the basic application object and its life cycle. It also describes
how to write, build and deploy simple applications.

Developing for Oracle Java Micro Edition Embedded Client is similar to developing
Java Platform, Standard Edition (Java SE) applications. Experience with AWT on the
desktop helps in learning to write Oracle Java ME Embedded Client applications.

Note — Please ensure that you have the specific hardware and software environment
described in the Oracle Java Micro Edition Embedded Client Installation Guide.

3.1

Developer Tools

The Oracle Java ME Embedded Client Emulator allows application developers to
develop, build and test Java ME Embedded client applications in an integrated IDE
environment such as NetBeans. Developers can work with command line tools
directly, rather than using an IDE interface.

The emulator runs on Windows or Linux/x86 systems. It is available when you use
the OJEC platform in NetBeans or Eclipse, or it can be launched from the command
line. For an overview of command line options, see the Oracle Java Micro Edition
Embedded Client Installation Guide.

m NetBeans offers full integration with the SDK. You can build applications, run
them on the emulator, and use the profiling and debugging features to test your
application.

m Eclipse integration is limited to application development and emulation.

The Oracle Java Micro Edition Embedded Client Installation Guide describes how to
configure these IDEs to work with the SDK.

3-1

3.2

Finding API Documentation

The API documentation for JSRs supported in this release can be found in the SDK
installation at /usr/local/Oracle_JavaME_Embedded_Client/1.0/docs or
C:\Program Files\Oracle\Oracle JavaME Embedded Client\1l.0\docs.

CDC, FP, and PBP are found online here:
http://download.oracle.com/javame/embedded.html

If you prefer to download the optional package documentation and install it locally,
consult the Java Community Process (JCP™) program web site:

http://jcp.org/en/jsr/detail?id=218

3.3

3-2

Application Life Cycles

The Oracle Java ME Embedded Client supports two application life cycle models.
The basic model is the traditional main () application model and the more TV-centric
model is an Xlet (javax.microedition.xlet.Xlet).

The traditional application model is quite simple: load a class, invoke its main ()
method, and wait until all non-background threads terminate or System.exit () is
called. In version 1.0 the available target is headless, so applications for the target
must use this model. You can see examples of this model in the Oracle Java Micro
Edition Embedded Client Installation Guide.

For many applications, this model allows too little control over the application's
behavior. Personal Basis Profile defines its own application model, similar in many
ways to the MIDIlet model. The X1et model has been borrowed from the Java TV
API, where it is used to control application life cycles in set-top boxes. The model's
two key elements are the X1et and XletContext interfaces, both found in the
javax.microedition.xlet package. The application's main class implements the
X1let interface, which defines event methods for the system to invoke. The
XletContext interface defines callback methods through which an application can
obtain information about its operating environment.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

http://download.oracle.com/javame/embedded.html
http://jcp.org/en/jsr/detail?id=218

3.4

The Xlet Lite Cycle

As most Java platform programmers are familiar with the main application model,
this section briefly describes the X1et life cycle.

An Xlet implements the javax.microedition.xlet.Xlet interface, which
declares four life-cycle notification methods: initXlet (), startXlet (),
pauseXlet (), and destroyXlet (). Note that, unlike applets or MIDlets, an Xlet
does not have to extend any particular class.

Like applets, X1ets have four possible states:

m Joaded: The X1et instance has been constructed, but no initialization has yet
occurred.

m paused: The X1et has been initialized but is inactive.
m active: The Xlet is active.

m destroyed: The X1et has been terminated and is ready for garbage collection.

When the Application Management System (AMS) creates an X1et, it starts in the
loaded state. Soon after construction, the AMS invokes the Xlet's initXlet ()
method, passing the XletContext that the X1et must use to interact with its
operating context (this parameter is necessary because the X1et does not extend a
specific base class). After initialization, the X1et changes to the paused state.

At this point, an X1et behaves more like a MIDlet than an applet. At some point, the
AMS activates the X1et and invokes its startXlet () method. The X1et activates
its user interface, obtains the system resources it needs to function properly, then
shifts to the active state.

Deactivation occurs when the Xlet's state changes from active to paused. When the
AMS deactivates the X1let, it invokes the X1let's pauseXlet () method. The Xlet
frees as many resources as possible. If the X1et deactivates itself, however, the
pauseXlet () method is not invoked.

An Xlet can change to the destroyed state at any time. If the AMS destroys the
Xlet, it invokes the destroyXlet () method. Like MIDlets, X1ets can sometimes
abort their destruction by throwing an exception. If an X1et destroys itself,
destroyXlet () is not invoked.

Chapter 3 Developing Applications 3-3

3.5 A First Xlet

With the Oracle Java ME Embedded Client Emulator installed, you can write, build,
and execute applications using the PBP 1.1 APL

In an application, the device decides what portion of the screen it wants to give to
your application.

Note — If you use the SDK on Windows the emulator will mimic the device’s screen
size behavior. On Linux, although the SDK does not adjust the window size. In both
cases, the window size is rendered correctly on the device.

This is supplied as an AWT Container. You can get at it from the X1etContext
that the device passes to your application’s initXlet () method.

You now know enough about X1lets to create your first application. Below is the
source code for HelloXlet.java, which simply displays a message on the screen
and exits when you press any key.

package helloxlet;

public class HelloXlet implements javax.microedition.xlet.Xlet {
/**
* Default constructor without arguments should be.
*/
public HelloXlet () {
}

/**
* Put your initialization here, not in constructor.
* If something goes wrong, XletStateChangeException should be thrown.
*/
public void initXlet (javax.microedition.xlet.XletContext context)
throws javax.microedition.xlet.XletStateChangeException {
// TODO implement initialization

/**
* Xlet will be started here.
* If something goes wrong, XletStateChangeException should be thrown.
*/
public void startXlet() throws
javax.microedition.xlet.XletStateChangeException {
// TODO implement

3-4 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

/**
* Free resources, stop unnecessary threads, remove itself from the screen.
*/
public void pauseXlet () {
// TODO implement

/**
* Destroy your xlet here. If parameter is false, you can try to not
* destroy xlet by throwing an XletStateChangeException
*/
public void destroyXlet (boolean unconditional)
throws javax.microedition.xlet.XletStateChangeException {
// TODO implement

Most of the excitement happens in the initXlet () method, which retrieves the
Xlet'’s visual space and saves it in the member variable context. Then an inner key
listener is registered to exit the application when a key is pressed.

When the X1let is started or paused, context is shown or hidden as appropriate.
The call to requestFocus () ensures that key events are delivered to the Xlet’s
container, which is where the listener is registered.

This X1et uses a very simple Component subclass to supply its visual content. The
default Main template provides sample code that will work with HelloXlet. java.

package helloxlet;

import javax.microedition.xlet.*;
import java.awt.BorderLayout;
import java.awt.Component;

import java.awt.Container;

import java.awt.Color;

import java.awt.Dimension;

import java.awt.Graphics;

import java.awt.Font;

// Create the Main class.

public class Main extends Component implements Xlet {
private Container rootContainer;
private Font font;

// Initialize the xlet.

public void initXlet (XletContext context) {
log("initXlet called");
// Setup the default container
// This is similar to standard JDK programming,

Chapter 3 Developing Applications 3-5

3-6

// except you need to get the container first.
// XletContext.getContainer gets the parent

// and location is arbitrary, so needs to be set.

try {
rootContainer = context.getContainer () ;
rootContainer.setSize (400, 300);
rootContainer.setLayout (new BorderLayout()) ;
rootContainer.setLocation (0, 0);
rootContainer.add("North", this);
rootContainer.validate () ;
font = new Font("SansSerif", Font.BOLD, 20);
} catch (Exception e) {
e.printStackTrace() ;

// Start the xlet.

public void startXlet() {
log("startXlet called");
//make the container visible
rootContainer.setVisible (true) ;

// Pause the xlet

public void pauseXlet() {
log("pauseXlet called");
//make the container invisible
rootContainer.setVisible (false) ;

// Destroy the xlet

public void destroyXlet (boolean unconditional) {
log("destroyXlet called");
//some cleanup for the xlet..
rootContainer.remove (this) ;

void log(String s) {
System.out.println("SimpleXlet: " + s);

public void paint (Graphics g) {
int w = getSize () .width;
int h = getSize() .height;
g.setColor (Color.blue) ;
g.fill3DRect (0, 0, w - 1, h - 1, true);
g.setColor (Color.white) ;

// container for the Xlet to put its AWT components in.

// Calling setVisible(true) make the container visible.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

g.setFont (font) ;
g.drawString ("Hello Java World", 20, 150);
}

public Dimension getMinimumSize() {
return new Dimension (400, 300);

}

public Dimension getPreferredSize() {
return getMinimumSize() ;

}

V¥ Use NetBeans to Create HelloXlet

Follow these steps to create a Netbeans project from two source files. The steps are
very similar for Eclipse.

1. Create a new project.
The project wizard opens.

2. On the New Project page, select the category Java ME and the CDC Application
project, and click Next.

3. On the Name and Location page, specify the name HelloXlet. Check Create
Main Class and click Next.

4. On the Select Platform page, select Oracle Java Micro Edition Embedded
ClientEmulator as the platform. Choose any device, and for the profile, select
JEC-1.0. Click Finish.

The Main file is created automatically. Main uses the container in the
HelloXlet.java file discussed earlier. The application prints the message “Hello
Java World” in white type in a window with a blue background.

5. Build the project and run it. You'll see the emulator window pop up with the
“Hello Java World” message. Hit any key to exit.

Note, on Windows the size of the window in the emulator is determined by the
device selection. On Linux the emulator cannot set the window size, but it will be
displayed properly on the device.

Chapter 3 Developing Applications 3-7

3.6

Components and Layouts

Oracle Java ME Embedded Client does not include a user interface (UI) toolkit. You
don’t get any buttons, lists, combo boxes, or any other user interface components.
This is both challenging and liberating.

You're not left out in the cold entirely. Oracle Java ME Embedded Client does include
most of the infrastructure you need to build a UI toolkit, just not the actual
components (widgets) themselves.

If you've done any work with AWT or Swing on the desktop, you'll feel right at
home. In essence, Oracle Java ME Embedded Client provides AWT without the usual
components.

The fundamental structure is defined by java.awt .Component and
java.awt.Container. A Component is something that shows up on the screen,
like a button, text field, or movie. A Container is simply a visual group of
Components. Container has a very useful concept, the layout manager which is an
object that places the Components of a Container in a certain way. Oracle Java
Platform ME Embedded Client includes several useful layout managers.

Most user interfaces are composed of a variety of Components, Containers, and
LayoutManagers. This kind of composition is possible because a Container can
hold other Containers.

The XletContext passed to your application’s initXlet () method has a reference
to a Container. Your application builds its entire user interface on this Container.

3.7

3-8

Creating a User Interface

You can use someone else’s Ul toolkit, or you can create your own.

This section describes how to create a simple UI button from scratch using Xlets and
containers. The first step is to create a subclass of Component, which provides lots of
useful plumbing.

Your subclass of Component has to provide implementations for a few methods to
appear on the screen:

m Your implementations of getPreferredSize (), getMinimumSize (), and
getMaximumSize () help the device in laying out your component in its parent
container.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

m The body of your component’s paint () method determines how the component
shows itself on the screen.

Below is a simple class, DTVButton, which shows a rudimentary round-cornered
rectangular button with a text label. The button exists in one of three states, either
normal, focussed, or pressed, which determine the colors that are used to display the
button.

DTVButton uses its text label to calculate how big it wants to be. It returns the same
size for the preferred, minimum, and maximum sizes.

package dtvui;
import java.awt.*;

public class DTVButton extends Component {
private static final int kPad = 6;

public static final int kNormal = 0;
public static final int kFocus = 1;
public static final int kPressed = 2;

private static Color sBG = Color.darkGray;
private static Color sFG Color.gray;

private static Color sBGH = Color.pink.darker() ;
private static Color sFGH = Color.red.darker();
private static Color sBGC = Color.pink;

private static Color sFGC = Color.red;

private String mLabel;
private Dimension mPreferredSize;
private int mState;

public DTVButton (String label) {
setLabel (label) ;
mState = kNormal;

public void setLabel (String label) { mLabel = label; }
public String getLabel() { return mLabel; }

private void calculate() {
Graphics g = getGraphics() ;
FontMetrics fm = g.getFontMetrics();
int tw = fm.stringWidth (mLabel) + kPad * 2;
int th = fm.getHeight() + kPad * 2;
mPreferredSize = new Dimension(tw, th);

Chapter 3 Developing Applications 3-9

public void setState(int state) {
boolean dirty = (mState != state);
mState = state;
if (dirty) repaint();

public int getState() { return mState; }

public void paint (Graphics g) {
int w = getWidth();
int h = getHeight();

Color bg, fg;

switch(getState()) {
case kFocus: bg = sBGH; fg
case kPressed: bg = sBGC; fg
case kNormal:
default: bg = sBG; fg = sFG; break;

sFGH; break;
sFGC; break;

g.setColor (bg) ;
g.fillRoundRect (0, 0, w, h, kPad, kPad);

g.setColor (fg) ;
g.drawRoundRect (0, 0, w - 1, h - 1, kPad, kPad);

FontMetrics fm = g.getFontMetrics();
int tw = (int)mPreferredSize.width;
int th = (int)mPreferredSize.height;

g.drawString (mLabel,
(w - tw) / 2 + kPad,
(h - 1 - th) / 2 + fm.getAscent() + kPad);

public Dimension getPreferredSize() {
if (mPreferredSize == null) calculate();
return mPreferredSize;

public Dimension getMinimumSize () { return getPreferredSize();
public Dimension getMaximumSize () { return getPreferredSize() ;

}
}

Now you can create one or more DTVButtons and show them on the screen, but they
can’t do anything unless you add some event handling.

3-10 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

The DTVButtonGroup class, below, serves to group buttons and handles key events.
It enables the user to navigate through a list of buttons using the arrow keys. A
button can be pressed with the Enter or select key. In this case, an event is fired to a
listener object.

package dtwvui;

import java.util.*;

import java.awt.event.*;

public class DTVButtonGroup implements KeyListener ({
private int mFocus;
private List mButtonList;

private DTVButtonListener mListener;
public DTVButtonGroup () {

mFocus = 0;
mButtonList = new ArrayList();

public void add(DTVButton button) ({
mButtonList.add (button) ;
if (mButtonList.size() == 1)
button.setState (DTVButton.kFocus) ;

public void setDTVButtonListener (DTVButtonListener listener) {
mListener = listener;
// KeyListener methods.

public void keyPressed(KeyEvent ke) {
int newState = DTVButton.kFocus;

DTVButton old = (DTVButton)mButtonList.get (mFocus) ;
old.setState (DTVButton.kNormal) ;

int code = ke.getKeyCode() ;

if (code == KeyEvent.VK _UP || code == KeyEvent.VK_LEFT) {
mFocus--;
if (mFocus < 0)
mFocus = mButtonList.size() - 1;
}
else if (code == KeyEvent.VK_DOWN || code == KeyEvent.VK_RIGHT) {
mFocus++;

if (mFocus >= mButtonList.size())

Chapter 3 Developing Applications 3-11

mFocus = 0;
}
else if (ke.getKeyCode() == KeyEvent.VK_ENTER) {
newState = DTVButton.kPressed;

DTVButton b = (DTVButton)mButtonList.get (mFocus) ;
b.setState (newState) ;

public void keyReleased (KeyEvent ke) {
int code = ke.getKeyCode() ;

if (code == KeyEvent.VK_ENTER) {
DTVButton b = (DTVButton)mButtonList.get (mFocus) ;
b.setState (DTVButton.kFocus) ;
if (mListener != null)

mListener.pressed(b) ;

public void keyTyped(KeyEvent ke) {}

Typical usage of these classes is to create some DTVButtons, add them to a group
and add them to a visual Container, and register a listener for the group. The
listener interface is very simple:

package dtvui;

public interface DTVButtonListener {
public void pressed(DTVButton button) ;

The Main.java file sets up the containers and manages the Xlet status. This is
similar to JDK programming, except you must get the container first.
context.getContainer gets the parent container where the Xlet puts its AWT
components. The size and location is arbitrary, so the values must be set. Calling
setVisible (true) makes the container visible.

package dtvui;

import javax.microedition.xlet.*;
import java.awt.BorderLayout;
import java.awt.Component;

import java.awt.Container;

import java.awt.Color;

import java.awt.Dimension;

3-12 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

import java.awt.Graphics;

import java.awt.Font;

// Create the Main class.

public class Main extends Component implements Xlet, DTVButtonListener{

private Container rootContainer;
private Font font;

private DTVButtonGroup group;
private DTVButton bl, b2, b3;

// Initialize the xlet.
public void initXlet (XletContext context) {
log("initXlet called");
// Setup the default container
try {
rootContainer = context.getContainer();
rootContainer.setSize (600, 600);
rootContainer.setLayout (new BorderLayout()) ;
rootContainer.setLocation (0, 0);
rootContainer.add("North", this);
font = new Font ("SansSerif", Font.BOLD, 20);
group = new DTVButtonGroup() ;
rootContainer.addKeyListener (group) ;

bl = new DTVButton("Uno") ;
group.add(bl) ;
bl.setVisible(true) ;
rootContainer.add ("West", bl);

b2 = new DTVButton("Due") ;
b2.setVisible(true) ;
group.add(b2) ;
rootContainer.add("South", b2);

b3 = new DTVButton("Tre");

b3 .setVisible (true) ;
group.add(b3) ;
rootContainer.add("East", b3);

group.setDTVButtonListener (this) ;
rootContainer.validate () ;

} catch (Exception e) {
e.printStackTrace () ;

// Start the xlet.
public void startXlet() {
log("startXlet called");

Chapter 3 Developing Applications 3-13

//make the container visible
rootContainer.setVisible (true) ;
rootContainer.update (rootContainer.getGraphics()) ;

bl.setVisible(true) ;

b2.setVisible (true) ;

b3 .setVisible (true) ;

// Pause the xlet

public void pauseXlet() {
log ("pauseXlet called");
//make the container invisible
rootContainer.setVisible(false) ;

// Destroy the xlet

public void destroyXlet (boolean unconditional) {
log("destroyXlet called");
//some cleanup for the xlet
rootContainer.remove (this) ;

void log(String s) {
System.out.println("SimpleXlet: " + s);

public void paint (Graphics g) {
log("Main Paint");
int w = getSize () .width;
int h = getSize() .height;
g.setColor (Color.blue) ;
.fill13DRect (0, 0, w - 1, h - 1, true);
.setColor (Color.white) ;
.setFont (font) ;
.drawString ("Button Layout Example", 20, 150);

Q Qo Q Q

public Dimension getMinimumSize () {
return new Dimension (400, 300);

}

public Dimension getPreferredSize() ({
return getMinimumSize () ;

}

public void pressed(DTVButton button) ({
group.keyPressed (null) ;

3-14 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

Examine the source code to see how you can respond to button presses to make
interactive applications.

3.8

3.8.1

Profiling and Debugging with NetBeans

To support debugging and profiling for the Oracle Java ME Embedded Client,
NetBeans establishes a connection between the IDE and the target device. The target
can be an embedded device running the Oracle Java ME Embedded Client, or the
emulator available with the Oracle Java ME Embedded Client SDK, which is
typically installed on the same machine as the NetBeans IDE. In both debugging and
profiling, the CVM sets up a server over a server socket on the target device, and
NetBeans connects as a client. In the case of the profiler, the methods to be profiled
are rewritten with extra bytecode so that profiling can take place. The VM is started
with special flags. The handshaking must take place before you launch the
application.

Note — The NetBeans profiling features Take Snapshot and Take Heap Dump are not
supported in this release. Also, profiling of ROMized system classes is not supported.

Profiling and Debugging VMs

If you are profiling or debugging locally (using the emulator) the installation
includes everything required. If you are using a remote target, download and install
the ARM runtime and mount it from the target. This process is described in the
Oracle Java Micro Edition Embedded Client Installation Guide.

In the SDK the CVM executable is found at:

InstallDir/Oracle_JavaME_Embedded_Client/1.0/emulator-platform/bin/
cvm

On the target the distribution offers the JVMTI (JVM tooling interface) and
Production binaries. Debugging and profiling requires the JVMTI virtual machine.
This is found at:

InstallDir/Oracle_JavaME_Embedded_Client/1.0/binaries/jvmti/bin/cvm

To profile or debug you launch the JVMTI version of the CVM in a special "server"
mode on the target. NetBeans attaches to this as a profiling or debugging "client".

Both debugging and profiling work this way, with the server on the target VM and
the client running in NetBeans.

Chapter 3 Developing Applications 3-15

3.8.2

3-16

Profiling Prerequisites

To profile you must know the full IP address or host name of the target device.

Note — If are profiling locally (on the SDK installation host) you must still supply an
IP address when you are running the SDK and the VM on the host machine. Using
Localhost or 127.0.0.1 does not work.

The following assets are used in profiling and must be available on the target device.
m The profiler interface library.

This can be in the form of a shared object file (1ibprofilerinterface.so on
Linux or a .d11 file on Windows).

m The jfluid-server. jar file.
m The jfluid-server-cvm. jar file.

m Calibration data. Produced when you run the calibration script (see Step 1 in
“Profiling a Test Application” on page 3-16).

Profiling a Test Application

This procedure describes profiling an application running on a local host, but the
process is basically the same with a remote target. For information on installing the
OJEC stack on a client and placing applications on a client, see the Installation Guide.

To see profiling results your application must create sufficient data. Use your own
program, or create an Oracle Java ME Embedded Client project named Test which
uses the following Main. java source code:

package test;
public class Main {
public static void main(String[] args) {
int 1, J, k;
boolean prime;
String demoString;
i = 98890000;
while (true) {
prime = true;
for (3=2; (3*3) <= 1i; Jj++) {
k =1/ 3;
if ((k*j)==1i) {
demoString = new String(String.valueOf(i));
prime = false;

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

}
if (prime) try {
System.out.println(i + " is prime");
Thread.sleep(100) ;
demoString = null;
} catch (Exception e) {
//Ignore

1++;

Follow these steps to launch a profiling session:

1. Generate calibration data
In the profiling directory, run the calibration script. You only need to do this once.

Linux:

/usr/local/Oracle_JavaME_Embedded_Client/1.0/emulator-platform/
lib/profiler/calibrate.sh

Linux Target:

installdir/Oracle_JavaME_Embedded_Client/1.0/binaries/jvmti/
lib/profiler/calibrate.sh

Windows XP:

\Program Files\Oracle\Oracle JavaME Embedded Client\1.0\
emulator-platform\lib\profiler\calibrate.bat

On Linux the calibration data is stored in your home directory in a directory
named: .nbprofiler. On Windows, the calibration data is stored in: Documents
and Settings\User\ .nbprofiler.

2. Set the NetBeans profiling settings:
a. In the “Attach to” dropdown choose “External Application” (the default).

b. Select the profiling type (Monitor, CPU, or Memory).

In this example we chose memory.
c. Next to Attach Mode, click the define link to open the Attach Wizard.

d. Choose Application in the drop-down menu.

Chapter 3 Developing Applications 3-17

define

e. Choose the Remote attach method and Direct invocation. Click Next.

f. After the review screen, click Finish.
These settings will persist. You do not have to repeat the define steps. You can
change the profiling type each time you attach the profiler.
3. Launch the project from the command line.

This example refers to a project named Test and the commands are issued from the
emulator-platform directory.

Linux:

./bin/cvm -Xms32m
-agentpath:./lib/libprofilerinterface.so=./lib/profiler/1ib,5140
-Xbootclasspath/p:./lib/profiler/lib/jfluid-server-cvm. jar

-cp path-to-NetBeansProjects/Test /dist/Test.jar test.Main

Linux Target:

On the target the directory structure is slightly different, as described in
Section 3.8.1 “Profiling and Debugging VMs” on page 3-15. The call is much the
same but you use the VM found in:
/Oracle_JavaME_Embedded_Client/binaries/jvmti/bin.

Windows:

bin\emulator.exe -Xms32m
-agentpath:bin\profilerinterface.dll=1ib\profiler\lib, 5140
-Xbootclasspath/p:lib\profiler\lib\jfluid-server-cvm. jar
-cp path-to-NetBeansProjects\Test\dist\Test.jar test.Main

Note — Xms is an optional argument to increase the heap size

The CVM launches the application and waits for the profiler to connect. You see:

Profiler Agent: Initializing

Profiler Agent: Options: >./lib/profiler/1lib, 5140
Profiler Agent: Initialized successfully 15.28
Profiler Agent: Waiting for connection on port 5140

4. Attach NetBeans to the waiting application.

Select Profile > Attach Profiler. You can change the type of profiling (Monitor,
CPU, or Memory) and set type-specific options before selecting Attach.

To see the results, select Window > Profiling and choose the views you want
displayed. For example, Telemetry Overview. These options are fully described in
the NetBeans online help.

3-18 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

. ©® Test- NetBeans IDE 6.9.1

Eile Edit Navi
Projects % = Threads * <& E
= B Test |
+ @ Source Packs & @ @ show: |All Threads @
o |PJ Resources L N ! !
i 1:40 1:50 2:00 2:[ms]

.
+ [Project config|| |Threads th g ! i
Emain [m— m—— —————

| | | |
O Reference Handler) ‘ ‘ ‘
O Finalizer i i i i

B9 Running B Sleeping 3 Wait B Monitor

|
Timeline | Teble Details

«

WM Telemetry Overview

100%

50%

oA T 0%
432 AM

T T
4:31 AM 4:32 AM

4:31 AM 4:32 AM

® Hesp Size M Used Heap B Surviving Generations M Relative Time Spent in GC B Threads M Losded Class

< J SR

Profiler
| ® Profiling Results
| B Saved Snapshots
‘EI View

ES
WM Telemetry Threads

ilil Basic Telemetry

The Save Current View to Image feature takes a graphic snapshot of the current

view &
main 1:51.064 (99.5%) 0.502 (0.4%) 0.0 (0.0%) 0.0 (0
Reference Handler 0.0 (0.0%) 0.0 (0.0%) 1:51.566 (100.0%) 0.0 (0.
0.0 (0.0%) 0.0 (0.0%) 1:51.566 (100.0%) 0.0 (0.

Finalizer

If you are finished looking at the results and the application is still running, stop it
from the command line with CTRL-C.

V¥V Local Debugging with NetBeans

You can debug applications on the SDK host using standard NetBeans tools.
Although it is not the same as debugging on the target, local debugging is worth
doing because it is simple and it’s useful for fixing generic problems unrelated to

device functionality.

Chapter 3 Developing Applications 3-19

Note — Only interpreted code can be debugged.

1. Make your project the Main project.

2. To set a breakpoint right click on a line of code and choose Toggle Line
Breakpoint.

Call Hierarchy
Insert Code...
Fix Imports
Preproc
Refactor

Format

Run File Shift+F6

Debug Filz Ctrl+Shift+F5
Test Filz Ctrl+-Fé
Debug Test File Ciri+Shift+F6
Run Into Method

3. Click on the debug icon in the tool bar, and select Debug Main Project to run
the project in debug mode.

3-20 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

i Attach Debugger...

The application runs, stopping at any breakpoints. You can continue or step
through the code. See the NetBeans help for details on the options in the Debug
menu. To end the session, choose Debug > Finish Debugger Session.

V¥ Remote Debugging with NetBeans

To debug an application running on a target device you must configure a connection
between the NetBeans IDE and the device. When the application is launched you
must invoke an agent that can communicate the JDWP protocol so that debugging
can take place.

1. Set any breakpoints in your application, compile it, and transfer the built
project to the target device (or mount it, as discussed in the Installation Guide).

2. On the target, start the application from the command line using the jvmti
binary and debug options.
Before attempting to run the debugger on your remote system, verify that you can
run the application without debugging. When your application runs successfully,
add the following parameters to the command you are using to launch the
application:

-Xdebug -agentlib:jdwp=transport=dt_socket,address=53955, server=y, suspend=y |

Note: the agentlib: jdwp arguments are separated with commas; do not insert
spaces in the jdwp argument string.

InstallDir/Oracle_JavaME_Embedded_Client/binaries/jvmti/bin/cvm -Xdebug
-agentlib:jdwp=transport=dt_socket,address=53955, server=y, suspend=y
-cp YourProjectDir/Test/build/compiled test.Main

When the connection is formed you see the following message in the console:

Listening for transport dt_socket at address: 53955

3. Click on the debug icon in the tool bar, and select Attach Debugger.

Chapter 3 Developing Applications 3-21

Debug Main Project

This opens the Attach dialog window. The settings should be similar to those
shown below.

Debugger: |_|ava Debugger (|JPDA) w
Connector: |SocketAttach (Attaches by socket to other WMs) m
Transport: |dt_socket |
Host: |jim-desk‘top |
Port: [53955 |

Timeout [ms]: | 100|

The host can be an IP address or a server name, for example,
server.sfbay.sun.com.

The port value 53955 is the default. You can change the port value as long as it
matches the value of the address argument you specified in Step 2.

Adjust the Timeout value as you see fit.

Click OK. The application loads and runs until it reaches a breakpoint.

The output appears in a Debugger Console tab in the Output window.

Consult the NetBeans help for descriptions of the NetBeans debugging options.

3-22 Oracle Java Micro Edition Embedded Client Reference Guide * January 2011

rart II - Java Virtual Machine Reference

Part two describes attributes of the Java Virtual Machine.

Java Virtual Machine Capabilities:

Discusses developer interaction with the JVM.

Internal Memory Allocator:

Describes JVM memory management.

Threading:

Discusses the threading behavior of the JVM.

Internationalization:

Discusses ROMized and Non-ROMized locales and character converters.
External PBP Porting Layer Plugin:

Discusses the JGFX graphics framework.

CHAPTER 4

Java Virtual Machine Capabilities

The Oracle Java ME Embedded Client Java VM implementation fully supports the
Java Native Interface (JNI) specification version 1.2.

4.1

Resource Registry for Cleanup Resources

This feature allows the application to control the resources consumed by the PBP
graphic layer by setting a ResourceRegistry implementation and have the ability
to track which resources are currently consumed and have the ability to dispose them
at any time.

The class misc.bluray. jvmbi.ResourceRegistry defines APIs to register and
unregister objects with a disposer to dispose them. The stack has a singleton resource
registry available. By default, the registry does nothing. However, the application can
set its own implementation of the registry using the following API:

| ResourceRegistry.setInstance (ResourceRegistry registry) |

The PBP layer implementation registers the following objects with their disposers to
the available registry:

m java.awt.Graphics objects

m java.awt.Image objects

m sun.xlet.ixc.Worker threads

m javax.microedition.xlet.XletContext objects

m Names of bound javax.microedition.xlet.XletContext objects
m Event listeners of all types: window, key, mouse, etcetera.

m java.awt event dispatch thread.

m Timer threads

4-1

4.2 Override Runtime Properties

This feature can be used for Java applications to override Java system property
values at runtime. This is useful in cases where the Java property value can vary
according to the context in which it is queried.

V¥ Using Dynamic Properties

Let us consider an example of property user.dir. When running in a multiple Xlet
environment, the value of this property can be different for each Xlet. The Java
application would like to control the value of this property and provide the correct
value according the context of the thread querying the value.

Dynamic properties are implemented using an interface
com.sun.cdc.config.PropertyProvider and a control manager called
com.sun.cdc.config.DynamicProperties.

Follow these steps to use dynamic properties.

1. Implement the PropertyProvider interface:

* Returns the current value of the dynamic
* propertycorresponding to this
* <code>PropertyProvider</code>.

* @param key key for the dynamic property.

* @param fromCache indicates whether property value should

* be taken from internal cache. It can be ignored if properties
* caching is not supported by underlying implementation.

* @return the value that is returned by

* <code>System.getProperty()</code> call for the corresponding
* dynamic property.

*/

public String getValue(String key, boolean fromCache) ;

/**
* Tells underlying implementation to cache values of all the
* properties corresponding to this particular class. This call

* can be ignored if property caching is not supported.
*

* @return <code>true</code> on success, <code>false</code>

4-2 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

* otherwise
*/
public boolean cacheProperties() ;

2. Register the properties you want to control using DynamicProperties.put
method:

* Sets the specified <code>PropertyProvider</code> object to be
* called for dynamic property resolution. This method should be
* used at the time of properties initialization.

* @param key key for the dynamic property.

* @param provider <code>PropertyProvider</code> instance that
* i1s used to resolve the dynamic property with the

* gpecified key.

*/

public static void put(String key, PropertyProvider provider) ;

3. In the PropertyProvider.getValue method implementation you can
override the value of the registered properties. The property providers are
called before the system properties are used. For any property you registered for
(using the DynamicProperties.put method), if you do not return null you are
overriding the system values.

This is a sample implementation:

import com.sun.cdc.config.DynamicProperties;
import com.sun.cdc.config.PropertyProvider;

public class MyProperties implements PropertyProvider {

public MyProperties() ({
/*
* to register a property to be in your control
*/
DynamicProperties.put ("my.prop", this);

/*
* Implementation of PropertyProvider interface
*/
public String getValue(String key, boolean fromCache)
{
if (key.equals("my.prop")) {
String myValue;
// calculate the value

Chapter 4 Java Virtual Machine Capabilities 4-3

return myValue;

}

return null;

}

public boolean cacheProperties() {
/* not supported */
return false;

}

4.3

Enable/Disable JAR Caching

Caching of an accessed JAR file can be enabled or disabled using the system-wide
property java.net.enableJarCaching.

Caching enabled by default. If the property is not set, the default value is set to
TRUE.

4.4

4-4

Heap Monitor

The heap monitor is intended to detect low Java heap availability in order to avoid a
Java out of memory exception. A heap status monitor task monitors the Java heap
size at a certain periodicity. When the Java heap size grows beyond a certain High
Water mark, the following measures are taken:

1. Trigger system garbage collection.
2. Application registers callback to identify which Xlet to kill.
3. Destroy the last Xlet that was initiated.

These actions are repeated in the next period until the heap size falls below the High
Watermark.

The default policy is to destroy the latest Xlet initialized (LIFO). Since the motive is
to kill Xlets, this Monitor task only starts when an Xlet is initialized. It is canceled
when there is no Xlet on the system.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

To set your callback to identify which Xlet must be killed, use the following API:

JNIEXPORT void JNICALL
JVM_SetDestroyXletIdentifierHook (jobject
(*JVMdestroyXletIdentifier)

(void)) ;

The object returned by your callback is of type java.lang.Thread.

You can use any thread that belongs to the Xlet you want to kill. The VM extracts the
Xlet application ID (see Section 3.4 “The Xlet Life Cycle” on page 3-3) and use it to
kill the Xlet.

Periodicity of monitoring and the Heap High Watermark can be specified by the
user as command line parameter at VM startup time.

The following are the properties with brief description:

m Heap High Watermark:

sun.misc.heapHighWaterMark: It is percentage and not absolute size. So if
-Dsun.misc.heapHighWaterMark=70, then Xlet killing would be attempted
when the Java heap size grows beyond 70% of Max heap size.

m Heap Check Period:

sun.misc.heapCheckPeriod: Period specified in milliseconds. Minimum is
fixed at 1 sec, so this property cannot be set below 1000ms. If set, it would default
to 1000ms.

Chapter 4 Java Virtual Machine Capabilities 4-5

4-6 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

CHAPTER 5

Internal Memory Allocator

Oracle JVM uses an Internal Memory Allocation and Statistics module for allocating
memory from native heap. It provides this functionality:

5.1

Replace ANSI C (glibc, uclibe), malloc (), calloc (), realloc (), free()
with the Real Time OS functionality, allowing the JVM to use these APIs on
platforms which lack memory allocation features.

Gather and provide memory usage statistics (amount of memory used, time spent
in allocation, etcetera) which are used to fine tune the memory behavior of the
application. For example, if you know which buffer sizes are used the most you
can define an exact allocation size, achieving minimal internal fragmentation
without losing allocation speed.

Enable full control over the memory allocated by the VM, including deallocating
all memory at VM shutdown, monitoring memory allocations per Xlet, and
enabling separate pools for separate needs. For example, separate pools can be
created to support different types of hardware memory, or to limit a specific pool
to specific size.

See Sections Section 5.1 “Red Zone ” on page 5-1, Section 5.2 “Statistics ” on
page 5-2, and Section 5.3 “GC Triggered When Native Memory is Low” on
page 5-2 for additional memory allocator features.

Red Zone

The memory allocator 'RedZone' feature, marks 32 bits right before an allocated area
and 32 bits after, and checks these bytes for validity after they are freed. In the debug
version a warning is printed if stamps are not valid, as the cause is most likely an out
of bounds array write or something similar. This feature also improves the stability of
the internal allocator, as it serves to indicate that the internal control structure which

5-1

resides in the area may be damaged and should be discarded. The ‘RedZone’ is
enabled by default after verification that the performance impact of the 32-bit
comparisons is negligible.

5.2

Statistics

The CVM's Memory Allocator module has been enhanced to record and report
memory allocations at configurable granularity and size range(s).

This module provides statistics of the following kind for each configured range at the
configured granularity:

m Allocation type

m Total number of allocation

m Total number of free

m Maximum outstanding buffers seen

m Time spent in allocation

m Time spent in free

At the Java application exit, the collected statistics would be printed on console.

Note — To avoid performance overhead at runtime, statistics collection is not enabled
in the optimized binary. Statistics collection can be enable on request.

5.3

5-2

GC Triggered When Native Memory is
Low

The VM memory allocator can trigger garbage collection (GC) when system malloc
returns NULL. This is useful on devices where the amount of RAM is small and GC
must occur to release native resources. In this case, GC is automatically triggered by
the VM.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

CHAPTER 6

Threading

This chapter discusses basic threading tasks.

6.1 Monitoring Java Threads Life-Cycle

This feature is relevant for applications that invoke the JVM from a shared library
(cvmi.dll for win32 or libcvm. so for Linux).

We have defined two types of callbacks that applications can register:

void (*JVMthreadStartHook_ G)
(char* name, int stackSize, char*groupName)
void (*JVMthreadEndHook_G) (char* name)

The JvMthreadStartHook_G is called when a Java thread starts execution and
passes the application information about the thread (name, stack size and Java thread
group name). The JvMthreadEndHook_G is called when the Java thread exits.

Applications can use these callbacks to monitor the life cycle of Java threads for
debugging purposes.

6.2 Registering Callbacks

Use the following API to register your callbacks:

JNIEXPORT void JNICALL

6-1

JVM_SetThreadRuntimeHooks (void
(*JVMthreadStartHook) (char* name, int stackSize, char *groupName),
void (*JVMthreadEndHook) (char* name)) ;

This API is defined in jni.h.
(Note: This extension to file jni.h can be obtained on request.)

For example:

void * myJVMthreadStartHook (char* name, int stackSize,
char* groupName)

printf (" [JavaThread Created Name=%s,group=%s]\n"
name, groupName == NULL ? "NULL" : groupName) ;

void myJdVMthreadEndHook (char* name)
{

printf (" [JavaThread Destroyed Name=%s]\n", name);

In your application initialization code write:

JVM_SetThreadRuntimeHooks (myJVMthreadStartHook, myJVMthreadEndHook) ;

6.3 Thread Quota

This feature supports limiting the number of Java threads that are alive at the same
time. It is also possible to limit system threads and application threads. The
definition of system thread is a thread whose class loader is the system class loader.
Any other thread is an application thread.

Usage:

The following properties configure quotas for system threads, application threads,
and all threads (application + system) respectively:
m java.lang.maxNumberOfSystemThreads

m java.lang.maxNumberOfApplicationThreads

m java.lang.maxNumberOfThreads

6-2 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

In addition, the property java.lang.maxThreadControl should be set to “true”

to activate thread quota.

Example:

./bin/cvm -Djava.lang.maxThreadControl=true
-Djava.lang.maxNumberOfSystemThreads=100
-Djava.lang.maxNumberOfApplicationThreads=50
-Djava.lang.maxNumberOfThreads=100
-jar myjar.jar

This code limits the number of application threads to 50, and system threads to 100

while limiting the total number of threads to 100.

6.4

Thread.stop Implementation

The original Thread.stop () functionality (as well as Thread. suspend and

Thread.resume) was marked as a deprecated method and removed from CDC

some time ago.

Re-enabling the original methods would break TCK compliance, as it would mean

addition of new public APIL In order to achieve the functionality without
jeopardizing compliance, a new class, sun.misc.ThreadControl has been
implemented. This class provides the following static public APIs that act on
supplied Thread objects:

public static void Thread.stop (Thread)
public static void Thread.suspend (Thread)
public static void Thread.resume (Thread)

For example, to use Thread.stop (), an application developer could do the
following;

Thread somethread;
<initialise and start thread>

ThreadControl.stop (somethread) ;

USAGE:

To activate or deactivate this feature set the build-time flag
CVM_THREAD_SUSPENSION. The current default is true.

Chapter 6 Threading

6-4 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

CHAPTER 7

Internationalization

Internationalization support is fully integrated in the CVM classes and packages that
provide language or culture-dependent functionality.

Some of the character converters and locales are ROMized in the CVM and some are
supported as JAR files to be included at runtime through the runtime parameter
-Xbootclasspath.

7.1

ROMized Character Converters

The following character converters are supported by default and are ROMized in the
CVM:

m [SO8859_1
m UTEF8

= ASCII

m UTF16

m Unicode

The list of character converters in the charsets. jar file, to be included at run time
is given in TABLE 7-1.

7-1

The following character converters are compiled in the charsets. jar file.

TABLE 7-1 Character Converters

Canonical Name for java.io and

java.lang API Description

Ascii American Standard Code for Information Interchange
Cp1250 Windows Eastern European

Cp1251 Windows Cyrillic

Cp1252 Windows Latin-1

Cp1253 Windows Greek

Cp1254 Windows Turkish

Cp1257 Windows Baltic

1SO8859_2 Latin Alphabet No. 2

1SO8859 4 Latin Alphabet No. 4

ISO8859_5 Latin/Cyrillic Alphabet

1SO8859_7 Latin/Greek Alphabet

1SO8859_9 Latin Alphabet No. 5

1SO8859_13 Latin Alphabet No. 7

1SO8859_15 Latin Alphabet No. 9

KOI8_R KOI8-R, Russian

Cp1255 Windows Hebrew

Cp1256 Windows Arabic

Cp1258 Windows Vietnamese

1SO8859_3 Latin Alphabet No. 3

1SO8859_6 Latin/Arabic Alphabet

1SO8859_8 Latin/Hebrew Alphabet

MS932 Windows Japanese

EUC_JP JISX 0201, 0208 and 0212, EUC encoding Japanese
EUC_JP_LINUX JISX 0201, 0208, EUC encoding Japanese
SJIS Shift-JIS, Japanese

1S02022JP JIS X 0201, 0208, in ISO 2022 form, Japanese
MS936 Windows Simplified Chinese

GB18030 Simplified Chinese, PRC standard

7-2 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

TABLE 7-1 Character Converters (Continued) (Continued)

Canonical Name for java.io and
java.lang API

Description

EUC_CN
GBK

ISCII91
MS949
EUC_KR
1SO2022KR
MS950
MS950_HKSCS
EUC_TW
Big5
Bigs_HKSCS
TIS620
Big5_Solaris

Cp037

Cp273
Cp277
Cp278
Cp280
Cp284
Cp285
Cp297
Cp420
Cp424
Cp437

Cp500
Cp737
Cp775
Cp838

GB2312, EUC encoding, Simplified Chinese

GBK, Simplified Chinese

ISCII91 encoding of Indic scripts

Windows Korean

KS C 5601, EUC encoding, Korean

1SO 2022 KR, Korean

Windows Traditional Chinese

Windows Traditional Chinese with Hong Kong extensions
CNS11643 (Plane 1-3), EUC encoding, Traditional Chinese
Big5, Traditional Chinese

Big5 with Hong Kong extensions, Traditional Chinese
TIS620, Thai

Big5 with seven additional Hanzi ideograph character
mappings for the Solaris zh_TW.BIG5 locale

USA, Canada (Bilingual, French), Netherlands, Portugal,
Brazil, Australia

IBM Austria, Germany

IBM Denmark, Norway

IBM Finland, Sweden

IBM Italy

IBM Catalan/Spain, Spanish Latin America
IBM United Kingdom, Ireland

IBM France

IBM Arabic

IBM Hebrew

MS-DOS United States, Australia, New Zealand, South
Africa

EBCDIC 500V1

PC Greek

PC Baltic

IBM Thailand extended SBCS

Chapter 7 Internationalization

7-3

TABLE 7-1 Character Converters (Continued) (Continued)

Canonical Name for java.io and

java.lang API Description

Cp850 MS-DOS Latin-1

Cp852 MS-DOS Latin-2

Cp855 IBM Cyrillic

Cp856 IBM Hebrew

Cp857 IBM Turkish

Cp858 Variant of Cp850 with Euro character

Cp860 MS-DOS Portuguese

Cp861 MS-DOS Icelandic

Cp862 PC Hebrew

Cp863 MS-DOS Canadian French

Cp864 PC Arabic

Cp865 MS-DOS Nordic

Cp866 MS-DOS Russian

Cp868 MS-DOS Pakistan

Cp869 IBM Modern Greek

Cp870 IBM Multilingual Latin-2

Cp871 IBM Iceland

Cp874 IBM Thai

Cp875 IBM Greek

Cp918 IBM Pakistan (Urdu)

Cp921 IBM Latvia, Lithuania (AIX, DOS)

Cp922 IBM Estonia (AIX, DOS)

Cp930 Japanese Katakana-Kanji mixed with 4370 UDC, superset of
5026

Cp933 Korean Mixed with 1880 UDC, superset of 5029

Cp935 Simplified Chinese Host mixed with 1880 UDC, superset of
5031

Cp937 Traditional Chinese Host mixed with 6204 UDC, superset of
5033

Cp939 Japanese Latin Kanji mixed with 4370 UDC, superset of 5035

Cp942 IBM OS/2 Japanese, superset of Cp932

7-4 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

TABLE 7-1 Character Converters (Continued) (Continued)

Canonical Name for java.io and

java.lang API Description

Cp942C Variant of Cp942

Cp943 IBM OS/2 Japanese, superset of Cp932 and Shift-JIS

Cp943C Variant of Cp943

Cp948 0OS/2 Chinese (Taiwan) superset of 938

Cp9%49 PC Korean

Cp949C Variant of Cp949

Cp950 PC Chinese (Hong Kong, Taiwan)

Cp964 AIX Chinese (Taiwan)

Cp970 AIX Korean

Cp1006 IBM AIX Pakistan (Urdu)

Cp1025 IBM Multilingual Cyrillic: Bulgaria, Bosnia, Herzegovinia,
Macedonia (FYR)

Cp1026 IBM Latin-5, Turkey

Cp1046 IBM Arabic — Windows

Cp1047 Latin-1 character set for EBCDIC hosts

Cp1097 IBM Iran (Farsi)/Persian

Cp1098 IBM Iran (Farsi)/Persian (PC)

Cp1112 IBM Latvia, Lithuania

Cpl122 IBM Estonia

Cpl1123 IBM Ukraine

Cpl1124 IBM AIX Ukraine

Cp1140 Variant of Cp037 with Euro character

Cpl141 Variant of Cp273 with Euro character

Cpl1142 Variant of Cp277 with Euro character

Cp1143 Variant of Cp278 with Euro character

Cpl144 Variant of Cp280 with Euro character

Cpl1145 Variant of Cp284 with Euro character

Cpl146 Variant of Cp285 with Euro character

Cp1147 Variant of Cp297 with Euro character

Cp1148 Variant of Cp500 with Euro character

Chapter 7 Internationalization

TABLE 7-1 Character Converters (Continued) (Continued)

Canonical Name for java.io and

java.lang API Description

Cp1149 Variant of Cp871 with Euro character

Cp1381 IBM OS/2, DOS People's Republic of China (PRC)
Cp1383 IBM AIX People's Republic of China (PRC)
Cp33722 IBM-euc]P - Japanese (superset of 5050)

1502022_CN_CNS

1502022_CN_GB

JISAutoDetect

MS874
MacArabic

MacCentralEurope

MacCroatian
MacClyrillic
MacDingbat
MacGreek
MacHebrew
Maclceland
MacRoman
MacRomania
MacSymbol
MacThai
MacTurkish
MacUkraine

CNS11643 in ISO 2022 CN form, Traditional Chinese
(conversion from Unicode only)

GB2312 in ISO 2022 CN form, Simplified Chinese
(conversion from Unicode only)

Detects and converts from Shift-JIS, EUC-JP, ISO 2022 JP
(conversion to Unicode only)

Windows Thai
Macintosh Arabic
Macintosh Latin-2
Macintosh Croatian
Macintosh Cyrillic
Macintosh Dingbat
Macintosh Greek
Macintosh Hebrew
Macintosh Iceland
Macintosh Roman
Macintosh Romania
Macintosh Symbol
Macintosh Thai
Macintosh Turkish

Macintosh Ukraine

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

ROMized Locales

The US English locale is supported by default and is ROMized in the CVM.

TABLE 7-2 lists other locales in the file localedata. jar.

TABLE 7-2 Locales

Locale ID Country Language

ar_SA Saudi Arabia Arabic

zh_CN China Chinese (Simplified)
zh_TW Taiwan Chinese (Traditional)
nl_NL Netherlands Dutch

en_AU Australia English

en_CA Canada English

en_GB United Kingdom English

fr CA Canada French

fr_FR France French

de_DE Germany German

iw_IL Israel Hebrew

hi_IN India Hindi

it_IT Ttaly Italian

ja_JP Japan Japanese

ko_KR South Korea Korean

pt_BR Brazil Portuguese

es_ES Spain Spanish

sv_SE Sweden Swedish

th_TH Thailand Thai (Western digits)
th_ TH_TH Thailand Thai (Thai digits)
sq_AL Albania Albanian

ar_DZ Algeria Arabic

ar_BH Bahrain Arabic

ar_EG Egypt Arabic

Chapter 7 Internationalization

TABLE7-2 Locales (Continued) (Continued)

Locale ID Country Language
ar_IQ Iraq Arabic
ar_JO Jordan Arabic
ar_ KW Kuwait Arabic
ar_LB Lebanon Arabic
ar LY Libya Arabic
ar MA Morocco Arabic
ar_OM Oman Arabic
ar_QA Qatar Arabic
ar_SD Sudan Arabic
ar_SY Syria Arabic
ar_TN Tunisia Arabic
ar_AE United Arab Emirates Arabic
ar_YE Yemen Arabic
be_BY Belorussia Belorussian
bg_BG Bulgaria Bulgarian
ca_ES Spain Catalan
zh_HK Hong Kong Chinese
hr_ HR Croatia Croatian
cs_CZ Czech Republic Czech
da_DK Denmark Danish
nl_BE Belgium Dutch
en_IN India English
en_IE Ireland English
en_NZ New Zealand English
en_ZA South Africa English
et_EE Estonia Estonian
fi_FI Finland Finnish
fr_BE Belgium French
fr LU Luxembourg French
fr CH Switzerland French

7-8 Oracle Java Micro Edition Embedded Client Reference Guide * January 2011

TABLE7-2 Locales (Continued) (Continued)

Locale ID Country Language
de_AT Austria German

de LU Luxembourg German
de_CH Switzerland German

el_ GR Greece Greek

hu_HU Hungary Hungarian
is_IS Iceland Icelandic

it CH Switzerland Italian

Iv_LV Latvia Latvian

1t LT Lithuania Lithuanian
mk_MK Macedonia Macedonian
no_NO Norway Norwegian (Bokmal)
no_NO_NY Norway Norwegian (Nynorsk)
pl_PL Poland Polish

pt_PT Portugal Portuguese
ro_RO Romania Romanian
ru_RU Russia Russian

sr_YU Yugoslavia Serbian (Cyrillic)
sh_ YU Yugoslavia Serbo-Croatian
sk_SK Slovakia Slovak

sl_SI Slovenia Slovenian
es_AR Argentina Spanish

es_BO Bolivia Spanish

es_CL Chile Spanish
es_CO Colombia Spanish

es_CR Costa Rica Spanish
es_DO Dominican Republic Spanish

es_EC Ecuador Spanish

es_SV El Salvador Spanish

es_GT Guatemala Spanish

es_ HN Honduras Spanish

Chapter 7 Internationalization

TABLE7-2 Locales (Continued) (Continued)

Locale ID Country Language
es_MX Mexico Spanish
es_NI Nicaragua Spanish
es_PA Panama Spanish
es_PY Paraguay Spanish
es_PE Peru Spanish
es_ PR Puerto Rico Spanish
es_UY Uruguay Spanish
es_VE Venezuela Spanish
tr_TR Turkey Turkish
uk_UA Ukraine Ukrainian

7.3 Using Non-ROMized Locales and

Character Converters

To start the CVM with the locales and charsets enabled, use the following command:

| path/bin/cvm -Xbootclasspath/p:/emulator-platform/1lib |

path is the path to the CVM 1ib/ directory containing the files charsets.jar and

locales.jar.

More details about internationalization can be found at the following link:
(http://java.sun.com/docs/books/tutorial/il8n/)

7-10 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

CHAPTER 8

External PBP Porting Layer Plugin

The Oracle Java ME Embedded Client has a feature to plug in a 3rd party porting
interface for Personal Basis Profile (PBP) 1.1. This feature implements a framework
named JGFX. The JGFX framework was designed to best leverage the commonalities
between different graphics library ports for PBP and also allow 3rd party plugins
implementing the native interfaces required to simply PBP to be easily integrated.
The native porting layer can either be plugged in as a shared library or as a static
archive.

The native porting layer plugin might implement a set of javacalls and additionally
some algorithms to best leverage the underlying graphics platform capabilities. The
set of javacalls must be implemented, while the algorithms may or may not be
implemented depending on platform capabilities.

Note — In version 1.0 the only available target is headless, therefore applications
developed with PBP libraries can only be run with the SDK and the emulator.

8.1

Javacalls

As mentioned above, a 3rd party PBP porting layer must implement a set of javacall
APIs which the core PBP implementation uses to achieve functionalities required
from the native platform. These javacalls implement very specific functionalities and
below is a brief description of each one of them.

jgfx_javacall_open_screen: Method to initialize screen, registering algorithms
for the primary display surface.

jgfx_javacall_set_resolution: Method to set screen resolution.

jgfx_javacall_release_surface: Method to release native window /surface.

8-1

jgfx_javacall_reset_context: Method to reset platform specific context
pointer, context pointer could point any porting specific data structure.

jgfx_javacall_destroy_context: Method to destroy the context pointer.

jgfx_javacall_set_surface_color_parms: Method to set up AlphaComposite
rules, foreground /background colors of a native surface/window.

jgfx_javacall_sync_clip: Method to set/update clip region of a native
surface/window.

jgfx_javacall_create_font: Method to create/register a font with the native
Graphics system.

jgfx_javacall_destroy_font: Method to destroy/unregister a font
created/registered with a native Graphics system.

jgfx_javacall_get_string width: Method to get width of an input string.

jgfx_javacall_get_string bounds: Method to get dimensions of the bounding
rectangle for an input string.

jgfx_javacall_init_events: Method to initialize input event module (key
events, mouse events, etcetera).

8.2

8-2

Algorithms

The 3rd party PBP porting layer plugin can implement some algorithms which are
used by the PBP core to best leverage the graphics capabilities of a platform.
Implementing these algorithms is optional, but the porting layer plugin may
implement them for more optimized PBP implementation, such as leveraging
graphics hardware accelerations and related features.

In situations where these algorithms are not implemented, PBP uses its software
modules to implement the functionality achieved by these algorithms. There is a
facility to associate capabilities of each algorithms. If one algorithm is not capable of
handling a certain case then the core PBP JGFX framework leverages its software
module to provide the missing capability.

Brief descriptions of these algorithms follow:

JGFXAlg_CreateSurface: Algorithm to create off-screen surface(s). If it is not
implemented PBP uses memory allocation modules at runtime to allocate memory to
hold surfaces.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

JGFXAlg_ReleaseSurface: Algorithm to release off screen surface(s). If an
implementation provides an algorithm to create a surface, then it must provide an
algorithm to release it as well.

JGFXAlg_GetSurfaceMemory: Algorithm to get the handle to a surface memory.
On some platforms, surface memory is retrieved by locking the surface.

JGFXAlg_ReleaseSurfaceMemory: Algorithm to release the handle to a surface
memory. On some platforms, the handle to surface memory is retrieved by locking
the surface. This method is supposed to unlock surface memory during release
operation.

JGFXAlg_GetPixel: Algorithm to get pixel value in raw pixel format. A platform
may have a different mechanism of storing pixel data or even have APIs to access
pixel information rather than direct access to the screen or window. In such cases
implementation of this algorithm is necessary.

JGFXAlg_GetPixels: Algorithm to get an array of pixel values in raw pixel format.
Some platforms may have faster ways of accessing this information rather than going
over all the members of the array list. Others might iterate over all the elements and
get the data.

JGFXAlg_SetPixel: Algorithm to set a pixel value in raw pixel format. As in the
case of JGFXAlg_GetPixel, JGFXAlg_SetPixel might need to use a special API
to access this information on some platforms. On others, the way pixel information is
stored could be different. It is better if the porting plug-in defines this algorithm.

JGFXAlg_SetPixels: Algorithm to set an array of pixel values in raw pixel format.
Some platforms have faster ways of achieving this other than iterating over all the
elements of the array.

JGFXAlg_GetColor: Algorithm to get the color value of a pixel in ARGB8888
format. For many platforms functionality achieved by this algorithm could be the
same as JGFXAlg_GetPixel. For color model other than ARGB8888, the
implementation must convert the color to ARGB8888 format.

JGFXAlg_SetColor: Algorithm to set color value of a pixel in ARGB8888 format.
For many platforms the functionality could be the same as JGFXAlg_SetPixel. For
platforms that support a color models other than ARGB8888, the implementation
needs to convert the color from ARGB8888 mode to the platform color model.

JGFXAlg_DrawLine: Algorithm to draw a line. It can be any form, and is not
restricted to vertical or horizontal. The implementation can leverage any hardware
acceleration that might be present on the platform for faster rendering.

JGFXAlg_DrawLines: Algorithm to draw a set of lines with specified array of
coordinates. Some platforms may have a graphics library API to achieve this. Others
the implementation must iterate over the coordinates and draw all the lines.

Chapter 8 External PBP Porting Layer Plugin 8-3

8-4

JGFXAlg_DrawRect: Algorithm to draw a rectangle with specified coordinates.
Absence of this algorithm directs JGFX core to draw a rectangle using the put pixel
mechanism. It is a good idea to implement this algorithm to leverage any hardware
acceleration available on the platform for this operation.

JGFXAlg_FillRect: Algorithm to draw a filled rectangle with specified
coordinates. In many platforms this operation is hardware accelerated, so a platform
specific implementation for this algorithm is highly desirable.

JGFXAlg_FillRectRGB: Algorithm to draw a filled rectangle with specified
coordinates and color. Like the Fi11Rect operation, this operation is
hardware-accelerated on many platforms. In such cases it is highly desirable to have
a platform-specific implementation for this algorithm.

JGFXAlg_DrawArc: Algorithm to draw or fill an arc with specific coordinates and
angles. If native graphics library supports this operation then it is ideal to implement
this algorithm.

JGFXAlg_RoundRect: Algorithm to draw or fill a rounded rectangle with specified
coordinates for the rectangle and horizontal and vertical diameters of the arc at the

four corners. If a native graphics library supports this operation, then it is desirable
to implement this algorithm to leverage any hardware acceleration facility available.

JGFXAlg_DrawString: Algorithm to draw a text string at a specific coordinate.
Since different graphics platform follow different ways of rendering a text string,
JGFX core expects an implementation to implement this algorithm.

JGFXAlg_LoadImage: Algorithm to load and decode images. Most graphics
libraries have support for this feature and an implementation can implement this to
take advantage of hardware-level decoding or any software optimizations present in
the native graphics system. In absence of this algorithm, the JGFX core falls back on
internal image decoders.

Implementation can also choose to implement different image decoders for GIF, JPEG
and PNG. Or implement only the ones available for the native graphics platform, the
others are decoded via built-in software image decoders with JVM.

JGFXAlg_Flip: Algorithm to flip the contents of the back-buffer to the front-buffer
of the double-buffered surface (could be primary screen surface or double-buffered
off-screen surfaces). Most graphics platforms have hardware acceleration support for
this operation and it is highly desirable for the porting layer to implement this
algorithm. Absence of this algorithm would force JGFX core to use pixel copy
functions to flip contents of back-buffer to the front-buffer and this could be a slow
process.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

JGFXAlg_Blit: Algorithm to block transfer of contents from one surface to another
or from one part of a same surface to the other. Usually such operations have
hardware acceleration support from graphics subsystem. Since this API is used
frequently, it is highly desirable to have an implementation for this algorithm with
native graphics system APIs, leveraging available hardware acceleration.

JGFXAlg_StretchBlit: Algorithm to block transfer and stretch and shrink the
contents from one surface to another. If the platform has hardware acceleration for
these operations it is desirable to have an implementation of this algorithm to
leverage hardware acceleration. Without an implementation the JGFX core uses
software algorithms to achieve this functionality and it could be a slow process.

JGFXAlg_GetEvent: Algorithm to get input events on a platform from sources such
as remote controller, key board, etc. Many graphics subsystems map the input events
in their own suitable form and pass on these events to applications. It is desirable to
implement this algorithm to suit the native graphics system.

Unlike javacalls, these algorithms must be registered at surface creation. This allows
an implementation to have an algorithm registered for the primary screen surface,
but not for an off-screen surface. This is useful if the graphics platform does not
support the operation for off-screen surfaces.

The JGFX framework also enables the integrator to specify capabilities of each
algorithm. The capabilities are as follows:

JGFX_ALGFLAG_HWACCEL = 0x00000001

/* whether the operation is hw accelerated */
JGFX_ALGFLAG_NEED_SURFMEM = 0x00000002

/* whether the operation required surface memory to be mapped */
JGFX_ALGFLAG_STRETCHFLIP = 0x00000004

/* whether the algorithm can flip pixels around while stretching */
JGFX_ALGFLAG_HANDLESCLIP = 0x00000008

/* whether the algorithm can handle clip settings */
JGFX_ALGFLAG_NEED_SW_PIXELS = 0x00000010

/* whether the algorithm needs foreground pixel to be calculated */

Depending on the capabilities attached, the JGFX core acts according to the situation
when it performs the actual operation. For example, if the algorithm is not capable of
handling clip regions and JGFX understands the need to render with respect to a
particular clip setting, then it might handle the operation using its own software
modules instead of calling the registered algorithm.

Chapter 8 External PBP Porting Layer Plugin 8-5

Along with these capabilities, some of the algorithms also have a facility to add the
Alpha Composite rules that the algorithm supports. The possible modes are as
follows:

JGFXCR_CLEAR = 0x01,
JGFXCR_SRC = 0x02,
JGFXCR_SRC_OVER = 0x04,
JGFXCR_XOR = 0x08,
JGFXCR_ALL = 0xO0F,

Ideally an algorithm could support ALL of these modes, but if the algorithm lacks
support for any of these rules (due to absence of platform support or something else),
then the algorithm can notify JGFX core about the missing support. JGFX core then
falls back on its software algorithms to implement the functionality for the missing
Alpha Composite rule. For example, if an algorithm cannot implement operations in
XOR mode due to lack of platform support, then JGFX can handle these operations
via the software algorithm once notified.

Note — JGFX header files are not included in the release bundle, but they can be
obtained from Oracle on request. They are important only if a plugin for JGFX must
be implemented, otherwise they are not of much importance.

8.3

8-6

Native Image Decoding

The image decoding module can use native graphics system APIs to leverage any
platform support available for image decoding and thus improving performance on
image decodes.

The Oracle Java ME Embedded Client implementation contains built-in Java image
decoders. On graphics platforms where there is no support for image decoding as a
whole or for a particular image format, the PBP implementation can still fall back on
the built-in image decoders. The implementation falls back on built-in image
decoders even in cases where a particular image cannot be decoded properly by the
native graphics system.

The important runtime properties to control the native image decoding feature are as
follows:
m java.awt.NativeImageDecoding

The default value of this property is true.

Setting this property to false disables the native image decoding module
completely and forces usage of built-in Java decoders.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

m java.awt.NativeImageDecoding.PNG

The default value of this property is true.

Setting this property to false disables the native image decoding of PNG images
and these images are decoded using built-in Java decoders.

m java.awt.NativeImageDecoding.JPEG

The default value of this property is true.

Setting this property to false disables the native image decoding of JPEG images
and these images are decoded using built-in Java decoders.

m java.awt.NativeImageDecoding.GIF
The default value of this property is false.
Setting this property to true enables native image decoding of GIF images.

Note: This property is set to false by default, because Java image decoders for GIF
images had better performance in JIT mode.

8.4

Image Caching

When many images are decoded and loaded to memory there is eventually a need to
dispose of some of the images. It is possible to cache the decoded images on the hard
disk automatically. When the image is loaded again, it is loaded directly from the
cached file. This saves CPU cycles as the image is decoded only once, even if its
memory is disposed.

8.5

Java VM Shutdown With PBP
Application

This enhancement allows JVM to shutdown properly when a PBP application
chooses to gracefully exit by meeting the following conditions:

m Java Main thread exits

m No User threads are alive

m No components are displayable

m No native events are pending to be processed

JVM cleans up all the resources allocated by itself and the application while exiting.

Chapter 8 External PBP Porting Layer Plugin 8-7

8.6 External BLIT Interface

The purpose of this interface is to allow the BD-] implementation to BLIT Java
images from native functions. It is used to implement the Frame Accurate Animation
(FAA) APL

8.7 Dynamic Set Resolution

Java APl java.awt.Frame.setSize () supports screen or window resolution
modification. The specified width and height parameter values are used to determine
the new resolution.

8.8 Configurable Background Color

To comply with the BD-] specification, the Oracle Java ME Embedded Client stack
has been enhanced to set the background color of the main Window to Clear.

This enhancement can affect certain interactive TCK tests, which assumes a Java SE
Solid Non-Black background.

Given the PBP stack, a Java SE AWT implementation can be used to set the default
background color to Light Gray. At runtime the parameter can reset the background
color (in ARGB format) at JVM startup. The new background color affects the main
AWT Window plus any default graphics instances that do not inherit a background
color.

USAGE:

To modify the default background color, set the runtime flag:

java.awt.DefaultBackgroundColor=[0x]<32bit ARGB hex value>
-Djava.awt .DefaultBackgroundColor=0xFFFF0000 (for solid Red)
-Djava.awt .DefaultBackgroundColor=0x8000FF00 (for 50% Green)
-Djava.awt .DefaultBackgroundColor=0x00000000 (for Clear)

8-8 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

8.9

IXC Generic Implementation
(com.sun.xlet package)

The IXC generic implementation supports javax.tv.xlet.XletContext as well
as javax.microedition.xlet.XletContext and can be used for
javax.tv.xlet based Xlets.

The IxcRegistry implementation is generic accordingly and is integrated with
com. sun.xlet.ixc package. Oracle provides an implementation for the
org.dvb.io.ixc.IxcRegistry class that supports the DVB persistent storage
requirements. Since the Class lacks support for the unbindall () API,
com.sun.dvb.io.ixc.IxcRegistryExtension provides this functionality.

Chapter 8 External PBP Porting Layer Plugin 8-9

8-10 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

rart [II Working Without An IDE

This section discusses porting tools and techniques.
Legacy Tools

Legacy information on building and running applications.

APPENDIX I\

Legacy Tools

This appendix contains information about building and running applications with
the Oracle Java ME Embedded Client. The techniques described here have been
superseded by the information in Chapter 3.

A.l

Tools

This section describes basic methods for building applications for Oracle Java ME
Embedded Client. Chapter 3 describes simpler methods based on NetBeans and an
emulator. Even so, reading this section helps you understand what is happening
behind the scenes.

The fundamental tools you need are in the Java 2 Platform, Standard Edition
Software Development Kit (J2SE SDK) version 1.4.2. At this stage JDK 1.4.2 is
end-of-life’d and version 1.4.2_19 is archived here:

http://java.sun.com/products/archive/j2se/1.4.2_19/index.html

Note — Because the CDC VM requires JDK 1.4.2 classes at build time this section
refers to a 1.4.2 installation. You can use a more recent version of the JDK if you
specify the option -target 1.4.

You also need some kind of scripting tool to automate your builds. You can use shell
scripts or make, but this chapter describes the process using Ant. Ant reads XML
build scripts and is useful for automating Java platform development tasks. Ant is
available here:

http://ant.apache.org/

A-1

http://ant.apache.org/
http://java.sun.com/products/archive/j2se/1.4.2_19/index.html

After you install the J2SE SDK 1.4.2 and Ant, you can test your installation like this:

$ java -version
java version "1.4.2_19"
Java (TM) 2 Runtime Environment, Standard Edition
(build 1.4.2_19-b04)
Java HotSpot (TM) Client VM (build 1.4.2_19-b04, mixed mode)
S ant -version

Apache Ant version 1.7.1 compiled on October 1 2008

Building an application for Oracle Java ME Embedded Client is a simple matter of
using javac to compile source files. Because Oracle Java ME Embedded Client is
based on a different software stack than the J2SE platform, use the -bootclasspath
option to tell the compiler where to find the classes for Oracle Java ME Embedded
Client.

When the classes are compiled, use jar to create an archive of them. Transfer this
archive to your Oracle Java ME Embedded Client device. Then run your application
with the Oracle Java ME Embedded Client virtual machine (cvm).

The next section shows how to create and run a simple application. The subsequent
section describes how to automate the development cycle using Ant.

A2

Compiling the Hard Way

Start with the Main. java source files described in Section 3.5 “A First Xlet” on
page 3-4. Create a directory named src and save Main. java there.

This section describes how to compile, package, and run your application directly
from the command line. You should read it just so you understand how it all works.
The next section includes an Ant build script that makes everything much cleaner.

Note — This section assumes you have installed JDK 1.4.2_19 as described in
Section A.1 “Tools” on page A-1. Download it from
http://java.sun.com/products/archive/j2se/1.4.2_19/index.html

To keep things neat as you're building, place the compiled bytecode (. class files) in
a HelloXlet/build/classes directory.

Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

http://java.sun.com/products/archive/j2se/1.4.2_19/index.html

At the command line, you can compile the source files like this (long lines are split
for clarity):

Uy U Ur Uy

export OJEC=/usr/local/Oracle_JavaME_Embedded_Client/1.0/emulator-platform
mkdir build

mkdir build/classes

javac -sourcepath src -bootclasspath $SOJEC/lib/btclasses.zip

-classpath $OJEC/lib/basis.jar src/*.java -d build/classes

It’s tidier as part of an Ant script, as shown in the next section.

The next step in building your application is bundling the class files. In a more
complex application, resource files like images and sounds are also bundled with
your class files.

At the command line, use the jar tool to create your application package,
HelloXlet/dist/HelloXlet.jar:

$ mkdir dist

$ jar cvf dist/HelloXlet.jar -C build/classes/

added manifest

adding: helloxlet/(in = 0) (out= 0) (stored 0%)

adding: helloxlet/Main.class(in = 2498) (out= 1355) (deflated 45%)

Finally, to run this application, invoke cvm. You have to supply a security policy,
which details which operations the application is allowed to perform. Save the
following wide-open security policy as HelloXlet/unsafe.policy:

grant {
permission java.security.AllPermission;

}i

Now you are ready to run your application as follows (with newlines for readability):

$ SOJEC/bin/cvm
-Djava.security.policy=unsafe.policy com.sun.xlet.XletRunner
-name helloxlet.Main
-path dist/HelloXlet.jar

@@XletRunner starting Xlet helloxlet.Main

You'll see a window the with words “Hello Java World”.

Appendix A Legacy Tools A-3

Hello Java World

A3 Automating With Ant

You can automate these complicated command lines using any kind of scripting tool.
This section describes a build script that automates the process using Ant.

The Ant script contains the three main targets that are described on the command
line in the previous section. The compile target takes care of compiling the source
code. Packaging occurs in jar. Finally, the run target launches your application
using cvm.

A fourth target, clean, removes compiled classes and the packaged application.

To use the following script, just edit the value of the ojec property near the top so it
points to your installation of Oracle Java ME Embedded Client.

A-4 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

<?xml version="1.0" encoding="UTF-8"?>
<project name="helloxlet.Main" default="run" basedir=".">
<!-- Modify this property to point to your installation. -->
<property name="ojec"
value="/usr/local/Oracle_JavaME_Embedded_Client/1l.0/emulator-platform/"/>
<property name="jarname" value="HelloXlet"/>
<target name="run" depends="jar">
<exec executable="${ojec}/bin/cvm">
<arg line="-Djava.security.policy=unsafe.policy"/>
<arg line="com.sun.xlet.XletRunner"/>
<arg line="-name ${ant.project.name}"/>
<arg line="-path dist/${jarname}.jar"/>
</exec>
</target>
<target name="jar" depends="compile">
<mkdir dir="dist"/>
<jar basedir="build/classes"
jarfile="dist/${jarname}.jar"/>
</target>
<target name="compile">
<mkdir dir="build/classes"/>
<javac destdir="build/classes" srcdir="src"
bootclasspath="${ojec}/btclasses.zip"
classpath="${ojec}/lib/basis.jar"/>
</target>
<target name="clean">
<delete dir="build"/>
<delete dir="dist"/>
</target>
</project>

To compile, package, and run in one easy step, just type ant run at the command
line.

Appendix A Legacy Tools A-5

A-6 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

Index

Symbols
nbprofiler, 3-17

A
AMS, 3-3
AWT, 3-1,3-4

B

BLIT interface, 8-8
build automation, A-4
button group, 3-11
buttons, 3-11

C

CDC HotSpot, 1-2
memory, 1-3
RAM, 1-3

character converters
ROMized, 7-1

charsets jar, 7-2,7-10

com.sun.cdc.config.PropertyProvider, 4-2

Component, 3-8
Container, 3-8
cvm, 3-15

D

debug locally, 3-20

debug remote application, 3-21
debugging, 3-15
DestroyJavaVM, 4-1
destroyXlet(), 3-3

DTVButtonGroup, 3-11
DTVButtons, 3-10, 3-12
DynamicProperties.put, 4-3

F
flash update ports, 1-3

G

garbage collection, 5-2
getMaximumSize(), 3-8
getMinimumSize(), 3-8
getPreferredSize(), 3-8
graphics libraries, 1-4

H
heap monitor, 4-4
heap size, 3-18

|

i/o data ports, 1-3
image caching, 8-7
image decoding, 8-6
initXlet(), 3-3, 3-5
internationalization, 7-1
IR ports, 1-3

IXC generic implementation, 8-9

J
JAR

caching, 4-4
java.awt, 4-1

Index-1

java.awt.Container, 3-8

java.awt.event. KeyEvent.isRestricted, 2-3
java.awt.event. KeyEvent.supportMask, 2-3
java.awt.Graphics, 4-1

java.awt.Image, 4-1
java.awt.MouseEvent.isRestricted, 2-4
java.awt.NativeImageDecoding, 8-6
java.awt.NativeImageDecoding.GIF, 8-7
java.awt.NativelmageDecoding.JPEG, 8-7
java.awt.NativelmageDecoding. PNG, 8-7

java.lang.maxNumberOfApplicationThreads, 6-2
java.lang.maxNumberOfSystemThreads, 6-2

java.lang.maxNumberOfThreads, 6-2
java.lang.Thread, 4-5
java.net.enablefJarCaching, 4-4
javacalls, 8-1
javax.microedition.xlet, 3-2
javax.microedition.xlet.Xlet, 3-2, 3-3
javax.microedition.xlet.XletContext, 4-1
javax.tv.xlet, 8-9
javax.tv.xlet.XletContext, 8-9

JDWP, 3-21
jgfx_javacall_create_font, 8-2
jgfx_javacall_destroy_context, 8-2
jgfx_javacall_destroy_font, 8-2
jgfx_javacall_get_string_bounds, 8-2
jgfx_javacall_get_string_width, 8-2
jgfx_javacall_init_events, 8-2
jgfx_javacall_open_screen, 8-1
jgfx_javacall_release_surface, 8-1
jgfx_javacall_reset_context, 8-2
jgfx_javacall_set_resolution, 8-1
jgfx_javacall_set_surface_color_parms, 8-2
jgfx_javacall_sync_clip, 8-2
JGFXAlg_Blit, 8-5
JGFXAlg_CreateSurface, 8-2
JGEXAlg_DrawArc, 8-4
JGEXAlg_DrawlLine, 8-3
JGFXAlg_DrawLines, 8-3
JGFXAlg_DrawRect, 8-4
JGFXAlg_DrawString, 8-4
JGFXAlg_FillRect, 8-4
JGFXAlg_FillRectRGB, 8-4

JGFXAlg_Flip, 8-4
JGFXAlg_GetColor, 8-3
JGFXAlg_GetEvent, 8-5
JGFXAlg_GetPixel, 8-3
JGFXAlg_GetPixels, 8-3
JGFXAlg_GetSurfaceMemory, 8-3
JGFXAlg_LoadImage, 8-4
JGFXAlg_ReleaseSurface, 8-3
JGFXAlg_ReleaseSurfaceMemory, 8-3
JGFXAlg_RoundRect, 8-4
JGFXAlg_SetColor, 8-3
JGFXAlg_SetPixel, 8-3
JGFXAlg_SetPixels, 8-3
JGEXAlg_StretchBlit, 8-5
JNI_CreateJavaVM, 4-1
JNI_GetDefaultJavaVMlInitArgs, 4-1
JVM shutdown, 8-7
JVMthreadStartHook_G, 6-1

L

locale
ROMized, 7-7, 7-10
locales.jar, 7-10

M
memory allocator

garbage collection, 5-2

internal, 5-1

red zone, 5-1

statistics, 5-2
misc.blurayjvmbi.ResourceRegistry, 4-1

N
native image decoding, 8-6
nitXlet(), 3-3

P

pauseXlet(), 3-3

PBP
applet model, 3-2
keyboard restrictions, 2-3
layer implementation, 4-1
mouse restrictions, 2-3

PBP 1.1, 1-2

porting layer algorithms, 8-2

Index-2 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

porting layer plugin, 8-1
profiling, 3-15
PropertyProvider.getValue, 4-3

R

remote debugging, 3-21
ResourceRegistry, 4-1
runtime mouse support, 2-5
runtime parameters, 2-2

S

startXlet(), 3-3
sun.misc.heapCheckPeriod, 4-5
sun.misc.heapHighWaterMark, 4-5
sun.xlet.ixc.Worker, 4-1

T

thread quota, 6-2
Thread.stop(), 6-3

U
UI button

sample, 3-8,3-9
USB ports, 1-3
user.dir, 4-2

-version, 2-2
version, 2-2

X

-Xbootclasspath, 7-1

Xlet, 3-2,3-3
sample, 3-4
states, 3-3

Xlet sample, 3-4

-Xms, 3-18

Index-3

Index-4 Oracle Java Micro Edition Embedded Client Reference Guide ¢ January 2011

	Oracle® Java Micro Edition Embedded Client
	Contents
	Using This Documentation
	I Developer Guide
	Introduction
	1.1 Software Overview
	1.2 Target Device Hardware Components
	1.2.1 Microprocessor Requirements
	1.2.2 I/O and Peripheral Requirements
	1.2.2.1 Input Ports for Flash Updating
	1.2.2.2 I/O Ports for Data
	1.2.2.3 Graphics Output Ports

	1.2.3 Memory Requirements
	1.2.3.1 RAM
	1.2.3.2 ROM and Flash

	1.3 Target Device Software Components
	1.3.1 Operating System

	Execution
	2.1 Components
	2.2 Execution and Supported Runtime Parameters
	2.3 Mouse Restrictions
	2.3.1 Input Mechanisms
	2.3.1.1 Standard Keyboard Support

	2.3.2 Mouse Support

	Developing Applications
	3.1 Developer Tools
	3.2 Finding API Documentation
	3.3 Application Life Cycles
	3.4 The Xlet Life Cycle
	3.5 A First Xlet
	Use NetBeans to Create HelloXlet

	3.6 Components and Layouts
	3.7 Creating a User Interface
	3.8 Profiling and Debugging with NetBeans
	3.8.1 Profiling and Debugging VMs
	3.8.2 Profiling Prerequisites
	Profiling a Test Application
	Local Debugging with NetBeans
	Remote Debugging with NetBeans

	II Java Virtual Machine Reference
	Java Virtual Machine Capabilities
	4.1 Resource Registry for Cleanup Resources
	4.2 Override Runtime Properties
	Using Dynamic Properties

	4.3 Enable/Disable JAR Caching
	4.4 Heap Monitor

	Internal Memory Allocator
	5.1 Red Zone
	5.2 Statistics
	5.3 GC Triggered When Native Memory is Low

	Threading
	6.1 Monitoring Java Threads Life-Cycle
	6.2 Registering Callbacks
	6.3 Thread Quota
	6.4 Thread.stop Implementation

	Internationalization
	7.1 ROMized Character Converters
	7.2 ROMized Locales
	7.3 Using Non-ROMized Locales and Character Converters

	External PBP Porting Layer Plugin
	8.1 Javacalls
	8.2 Algorithms
	8.3 Native Image Decoding
	8.4 Image Caching
	8.5 Java VM Shutdown With PBP Application
	8.6 External BLIT Interface
	8.7 Dynamic Set Resolution
	8.8 Configurable Background Color
	8.9 IXC Generic Implementation (com.sun.xlet package)

	III Working Without An IDE
	Legacy Tools
	A.1 Tools
	A.2 Compiling the Hard Way
	A.3 Automating With Ant

	Index

